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Abstract
We study the impact of the transition across the anti-parity-time (anti-PT ) symmetry breaking
point on the low-energy spin excitations in a synthetic antiferromagnet (SyAFM) that consists of
two magnetic layers coupled antiferromagnetically via the Ruderman–Kittel–Kasuya–Yosida
(RKKY) interaction. When varying the interlayer (RKKY) coupling strength a degeneracy point
(exceptional point) is reached beyond which the system enters the anti-PT symmetry-broken
phase. This phase is marked by the emergence of a finite net magnetization and low-lying
excitations beyond the Goldstone modes in the anti-PT symmetry-preserved phase. For systems
hosting an interfacial Dzyaloshinskii–Moriya interaction, we find a bound state in the continuum
with a maximal coherent superposition of SyAFM excitations without any radiation. Analytical
results for linearized models are corroborated with full numerical micromagnetic simulations
endorsing the robustness and generalities of the theory predictions.

1. Introduction

Antiferromagnetic (AFM) materials with zero net magnetization offer an exciting platform for information
handling that is robust against magnetic field perturbations and magnetic crosstalk between neighboring
devices [1]. Here, we focus on synthetic antiferromagnetic (SyAFM) structures which are fabricated out of
two ferromagnetic (FM) layers and are coupled via Ruderman–Kittel–Kasuya–Yosid (RKKY) interaction.
SyAFMs allow for electrical manipulation of AFM ordering and are convenient to investigate using
well-developed techniques for ferromagnets [2]. Recent research on their collective excitations, the spin
waves (with magnons as quanta of excitations) [3–7], demonstrated their potential for logic gates,
information processing, and sensory devices with low power operation [8–10]. Unlike FM systems with
only right-handed spin wave modes, AFMs have two degenerate spin wave eigenmodes with opposite
circular polarization, referred to as right- and left-handed magnons depending on the precessional
handiness of the Néel vector [3, 11, 12] (cf figure 1). Any polarization state can be produced by a
combination of these two eigenmodes, providing a way to encode information based on the spin wave
polarization as well as on the amplitude and phase. Adverse however is that, the two-fold degeneracy is
protected by the combined symmetry of time-reversal and sub-lattice exchange, and we have thus to seek
controlled interactions that break either or both of the two symmetries. A way to achieve that is presented
in this study.

The magnetic dynamic is generically non-unitary due to the ubiquitous magnetic damping. Hence, the
Hamiltonian governing the low energy (spin wave) modes can be intrinsically non-Hermitian, and may
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Figure 1. PT symmetric property of SyAFM structures. Red and black arrows represent the layers two antiparallel magnetic
moments �m1 and �m1̄ with the layers normal êz being along the easy axis. |R〉 and |L〉 denote the locally right- and left-handed
precessions around the equilibrium easy-direction of 〈�mn〉. The vectors �m1 and �m1̄ are exchanged under the parity operation P̂ .
The time-reversal operation T̂ leads to �mn →−�mn, while the handiness (|R〉 or |L〉) of the local precessional remains unchanged
under the time reversal T̂ . (a) If the interlayer interaction strength vanishes (J = 0), the magnetization dynamics in each layer is
characterized by right-handed modes which are shown to be eigenstates of P̂T̂ ; (b) as J > Jc, the precessions of neighboring
magnetic moments �m1 and �m1̄ are bundled anti-parallel around the Néel vector and the modes are shown to be eigenstates of the
anti-PT (APT) operation. (c) The real parts of the magnonic eigenmode energies as a function of the scaled interlayer
interaction strength J. Shown are the anti-PT symmetric SyAFM phase J > Jc, and the region below the exceptional point (EP
with J = Jc) corresponding to the APT broken (APTB) phase (J < Jc). Note, the slightly different ratios between the cone angles
of �m1 and �m1̄ in leading to the emergence of a finite magnetization.

become defective at special conditions (exceptional points, EPs) depending on the external parameters. At
these (degeneracy) points the number of eigenvalues (algebraic multiplicity) exceeds the number of
eigenvectors (geometric multiplicity). For FM structure, various facets of how EPs affect the magnetic
dynamics were discussed. We are concerned with SyAFMs. Such (interacting) systems are suitable for
studying anti-parity-time (anti-PT ) symmetry behavior (in contrast, FM structures with balanced gain and
loss magnetic damping are related to PT symmetry [13–30]). Different interlayer coupling (RKKY)
strengths J correspond to different free-energy densities of the SyAFMs. At a certain value of the interaction
strength J = Jc a degeneracy (or EP) in the relevant low-energy modes occur and the modes undergo a
symmetry change: for J < Jc the anti-PT symmetry is broken (APTB phase), while for J > Jc the anti-PT
symmetry (APT) is preserved. The degree of degeneracy is related to the order of the EP, which in turn can
be tuned by structural design [31]. The value of Jc depends on other determining parameters of the free
energy density such as the magnetic anisotropy and exchange energy as well as on magnetic damping and is
given explicitly in the next section. In the APT phase the system has an imaginary spectrum. In the APTB
phase the spectrum is complex [32–40].

The anti-PT phase transition point Jc can be reached by scanning J or the other parameters in the free
energy density. Experimentally, electric tuning of J were realized in SyAFM structures, e.g. FeCoB/Ru/FeCoB
and (Pt/Co)2/Ru/(Pt/Co)2 [41, 42], in which not only the amplitude but also the sign of RKKY interaction
can be tuned by changing gate voltages. Thus, when we discuss below properties with varying J we
implicitly mean that there is some external fields (such as gate voltage) which are varied affecting the
respective changes in J (and hence the free energy density). Furthermore, the magneto-electric interactions
upon interfacing an FM layer with a ferroelectrics allows for an electrical control of the magnetization
damping [43–45] and the magnetic anisotropy [46, 47].

Considering SyAFMs with an interfacial Dzyaloshinskii–Moriya interaction (DMI), we find that a
magnonic bound state in the continuum (BIC) is formed. This hybrid BIC cannot radiate away and consists
of a maximally coherent superposition of modes of the two FM layer. The above statement are inferred
analytically from a linearized model and confirmed with full numerical micromagnetic simulations.

2. Results

Anti-PT symmetric SyAFM dynamics. The magnetic dynamics in a SyAFM is describable by coupled
Landau–Lifshitz–Gilbert (LLG) equations [48]. For two coupled layers we write

∂tmn = − γn

1 + α2
n

mn ×
[

Heff
n + αn(mn × Heff

n )
]
. (1)

2
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Here mn (with n = 1, 1̄) denote the magnetization direction for two FM sublayers, γn is the gyromagnetic
ratio, and αn is the Gilbert damping constant. The effective magnetic field acting locally on mn reads

Heff
n = 2(An∇2mn + Kzmz

nêz − Jmn̄),

where An is the Heisenberg exchange coupling constant within each mn-layers, Kz is a magnetic anisotropy
along the easy z-axis, and J is the RKKY interaction between the two sublayers.

When J = 0, the two layers are decoupled; each magnetization mn prefers locally right-handed
precessions around its own easy-direction, as sketched in figure 1(a).

A positive RKKY interaction (J > 0) tends to align the layers magnetization antiparallel, enforcing m1

and m1̄ to process in the same global manner, i.e. right- or left-handed precessions around the Néel vector
n = (m1 − m1̄)/2 (cf figure 1(b)). To show that the low-energy magnetic dynamics is anti-PT symmetric,
we linearize the LLG equations by writing mn = m0

nêz + δmn with m0
n ≈ ±1 and |δmn| � 1 and obtain the

Schrödinger-type equation for the dynamical excitations of δmn

i∂tΨ(r, t) = HΨ(r, t) (2)

where Ψ(r, t) = (δmx
1 − iδmy

1, δmx
1̄ − iδmy

1̄)T and

H =

[
H1(γ̃1 − iα̃1) J(γ̃1 − iα̃1)
−J(γ̃1̄ + iα̃1̄) −H1̄(γ̃ 1̄ + iα̃1̄)

]
(3)

with renormalized γ̃n = 2γn/(1 + α2
n) and α̃n = αnγ̃n. For J = 0, the magnetization dynamics of

uncoupled layers are governed by their own Hamiltonian Hn = −An∇2 + Kz + J.
For SyAFMs with A1 = A1̄ = A, γ1 = γ1̄ = γ, and the same damping rates α1 = α1̄ = α, H reduces to

H′ =

[
Hk(1 − iα) J(1 − iα)
−J(1 + iα) −Hk(1 + iα)

]
(4)

where Hk = Ak2 + Kz + J in the long-wavelength limit of a plane-wave ansatz Ψ ∼ ei(k·r−ωt), where k stands
for the wave number of propagating spin waves [49].

Symmetry considerations. The eigenvalues of H′ are

ω± = Hk

(
−iα±

√
1 − ξ2

k

)
, (5)

where ξk = J
√

1 + α2/Hk.

(a) For purely imaginary ω± (when |ξk| > 1) the eigenvectors read

Ψ±
APT =

[
sechϕ± i tanh ϕ

−eiη

]
, (6)

where tanh ϕ =
√

1 − 1/ξ2
k and tan η = α. A parity operation P̂ corresponds to applying the Pauli

operator σx =

[
0 1
1 0

]
. The time-reversal T̂ corresponds to i →−i, t →−t and r → r. The states, given

by equation (6), Ψ±
APT are also eigenvectors of the P̂T̂ operator [50], satisfying P̂T̂ Ψ±

APT = λ±Ψ
±
APT

with |λ±|2 = 1. The anticommutator {H′, P̂T̂ } vanishes. Thus, H′ of a coupled SyAFM possesses an
anti-PT symmetry. This symmetry is preserved till J reaches

Jc = |Hk/
√

1 + α2|, (7)

where the EP occurs at J = Hk/
√

1 + α2 (cf figure 1(c)). Physically this means, the dynamic motions of
m1 and m1̄ in the two magnetic layers are equator modes, sharing the same amplitude. No net dynamic
magnetization is generated.

(b) For smaller J < Jc the system enters anti-PT symmetry-broken (APTB) phase with complex
eigenvalues (|ξk| < 1). The corresponding eigenvectors [51] are given by

Ψ+
APTB =

⎡
⎢⎣ cosh

φ

2

− sinh
φ

2
eiη

⎤
⎥⎦ , Ψ−

APTB =

⎡
⎢⎣− sinh

φ

2

cosh
φ

2
eiη

⎤
⎥⎦ (8)

3
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where tanhφ = ξk. Considering cosh2 φ
2 > sinh2 φ

2 , one infers that m1 and m1̄ precesses with different
cone angles in two FM sublayers. The left- and right-circularity polarized modes Ψ±

APTB around the
Néel vector n are dominated by the precession in the upper and lower sublayers. The precessional
dynamics is accompanied by the emergence of a small intrinsic magnetization m = (m1 + m1̄)/2
whose dynamics is governed by the temporal evolution of the Néel order, m ∝ (n × ∂tn) [52]. Thus,
the emergent magnetization in collinear SyAFM systems signals a breaking of anti-PT symmetry.

Generically, |ξk| < 1 and the anti-PT symmetry is broken. For isotropic SyAFMs (no magnetic
anisotropy Kz = 0) and for a frequency at/below the ferromagnetic resonance (FMR) point Hk=0 = J, no
spin waves are excited, leading to ξk =

√
1 + α2 and the eigenvalues ω+ = 0 and ω− = −2iJα. This APT

phase persists in the presence of a small anisotropy, as long as Kz/J < α2/(1 +
√

1 + α2). Both eigenvalues
become imaginary and their absolute values depend monotonically on Kz: |ω−| (|ω+|) approaches
increasingly (decreasingly) the Gilbert damping constant α, as Kz increases. No precessional motions are
found even at FMR point in the micromagnetic simulations and mn decays with time exponentially to the
easy-axis.

Generally, one may argue that due to the uniaxial magnetic anisotropy, the SU(2) spin rotational
symmetry is reduced to SO(2)×Z2. The low-lying excitations (Goldstone modes) are associated with the
continuous SO(2) symmetry. Above the energy gap which is determined by Z2 symmetry, the excitation
energy of the Goldstone mode should vanish when k → Q, where Q is the wavevector of magnetic ordering,
for example, Q = 0 for the SyAFMs. This is indeed confirmed by figures 2(a) and (b)) (for α = 0 or J = 0).
However, as the Gilbert damping constant α and/or RKKY interaction J increase in a way that√

1 + α2 − 1 > Kz/J is satisfied, an EP emerges and the APT phase is spread out over the k-space. As a
result, the real eigenfrequency of spin waves reaches its minimum value (zero) far away from the Q-point, as
shown by the results in figure 2 which follow from micromagnetic simulations using the OOMMF package.
A one-dimensional SyAFM system consisting of two 1000 × 1 × 1 nm3 FM layers is considered with a mesh
size of 1 × 1 × 1 nm3. The ground state equilibrium antiparallel magnetization is oriented along the z-axis.
To launch the magnetization excitations, we apply the rf magnetic fields, h̃x(t) = h0 sinc(ωct)êx with the
amplitude h0 = 10 mT and the cut-off frequency ωc = 60 GHz. The dispersion relation given by the fast
Fourier transform (FFT) clearly indicates that not all momenta k can be excited into spin waves as long as
ξk > 1 is fulfilled within a certain k-range, where the system is in the APT phase and the eigenfrequencies
are pure imaginary. It is clear that such low-energy magnetization excitations are beyond the traditional
Goldstone modes and can be realized by adjusting not only the Gilbert damping α but also the RKKY
interactions J (cf the right column of figure 2). These full numerical simulations endorse the theoretical
analysis as well as the experimental feasibility and relevance of the anti-PT symmetry breaking in SyAFM
systems.

BIC controlled by DMI. Besides EP, BIC is a (standing) wave that remains perfectly confined without
any radiation even though it falls within the continuum spectrum. BICs were originally proposed by von
Neumann and Wigner for electronic systems [53] and have been observed experimentally in
electromagnetic, acoustic, water and elastic waves [54–63]. The unique properties of BICs have led to
numerous applications, including slow light, sensors, filters, and quantum memory. Here, we show that
magnonic BICs can be generated by introducing the asymmetric DMI. This new kind of singularity maybe
useful for SyAFM magnonics.

For systems hosting interfacial DMI, we incorporate in the theory the interaction

HDMI = −Dmn · (∇̃ × mn), (9)

where ∇̃ = ên ×∇ with ên being the normal direction of DMI surfaces. For the one-dimensional SyAFM
along the x-axis, the DMI contribute to the energy density with Hn = −A∇2 + Kz + J − iDn∇x. Note that
ên is the normal direction of the upper or the lower surface of each FM sublayers, depending on where the
DMI is dominantly generated. For the sake of discussion, we have assigned an effective value Dn to each
magnetic layers. Two distinct magnonic BICs are then found in SyAFMs depending on whether they are
anti-PT symmetric or not:

(a) Asymmetric SyAFMs with D1 = −D1̄ = D. The Hamiltonian H′ has no PT or anti-PT symmetry.
The dispersion relation is asymmetric giving rise to nonreciprocal spin waves. The intrinsic Gilbert
damping is balanced by the introduced DMIs, resulting in ω± = 0, Friedrich–Wintgen (FW) [64] BICs
(which occur in the vicinity of avoided crossing of two dispersion curves) appear as a pair, as shown in
figure 3.

(b) Anti-PT symmetric SyAFMs with D1 = D1̄ = D. H′ now still satisfies {H′, P̂T̂ } = 0. In the APT
phase, near the EPs, FW BICs emerge at kBIC = (−D ±

√
D2 − 4AKz)/2A provided that the uniform

4
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Figure 2. Density plot of the energy dispersion relation under different Gilbert damping α (left column) or RKKY interactions J
(right column). The renormalized FFT intensities correspond to the micromagnetic simulation results. The analytical
dispersions, as follow from equation (5) are shown by the red curves. (a), (c) and (e) are given with a fixed RKKY interaction
J = 1.2 MJ m−3 (b), (d) and (f) are calculated with the same Gilbert damping constant α = 0.1. In the simulations, we assumed
for the exchange stiffness constant A = 0.5 pJ m−1 and for the magnetic anisotropy Kz = 0.5 kJ m−3.

Néel-type AFM ordering is preserved in a narrow window beyond D2 � 4AKz for the geometrically
constrained system discussed here. Unlike the above BICs in asymmetric SyAFMs, these anti-PT
symmetry-protected BICs are equator modes that stem from the maximal coherent superposition of
magnetization excitations with 50–50 contributions from the upper and lower FM layers, as
demonstrated by equation (6). They are further confirmed by the dynamic magnetic susceptibility
(χ(k,ω)) or dynamics spin correlations (Sn(k,ω) = 〈S−n (k)S+n (−k)〉ω). Based on the linear response
theory with S−1 = δmx

1 − iδmy
1 and S+1 = δmx

1 + iδmy
1, one has

χ(k,ω) ∝ S1(k,ω) =
ω + Hn(1 + iα)

(ω − ω+)(ω − ω−)
. (10)

As shown in figure 4, the imaginary part of the susceptibility Iχ(k,ω) diverges at the wavevector kBIC,
implying an infinite lifetime and a zero leakage rate of BICs. These unique hybridized modes are robust
against the detuning parameters in the APT phase.

5
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Figure 3. Energy dispersion relations of asymmetric SyAFMs with opposite DMIs. The density plot of FFT intensities are derived
from the mircomagnetic simulations. The red and green curves correspond to the real and imaginary parts of eigenvalues with
the DMI strength D1 = −D1̄ = 0.7 mJ m−2. Other parameters are A = 1.0 pJ m−1, Kz = 35 kJ m−3, J = 0.1 MJ m−3 and Gilbert
damping constant α = 0.01. The regions with BICs are shown on an enlarged scale in the insets.

Figure 4. Dynamic magnetic susceptibility of SyAFMs with same DMIs. (a) Three-dimensional density plot of susceptibility
χ(k,ω) where the complex frequencies ω = ω1 + iω2. The imaginary part of dynamic magnetic susceptibility Iχ in the APT
phase as functions of (b) ω1, (c) ω2 and the wave vector k. Other parameters are A = 2.0 pJ m−1, Kz = 0.5 kJ m−3,
J = 0.1005 MJ m−3, α = 0.2, and D = 68 μJ m−2. The BICs at kBIC = −23.2 μm−1 and -10.7 μm−1 are consistent with the
analytical values.

3. Conclusions

As a typical dissipative system, the low-energy magnetization excitations in the balanced SyAFMs are shown
to be eigenstates of the anti-PT symmetry operator for certain intrinsic parameters in the free energy
density. Such parameters can be tuned by external probes or by material engineering, and the system can be
driven to a phase with the low-energy modes are no longer eigenstates of the anti-PT operator. The phase
transition between the symmetry-preserved and the symmetry-broken APT phase is accompanied with the
emergence of a finite magnetization and bound states in the continuum with maximally coherent
superposition for spin waves. These tunable singularities can be relevant to transport of magnons and imply
numerous cross applications, such as magnon entanglement, slow spin waves, and magnonic
quantum-information devices.

6
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