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Zusammenfassung

Experimente bei denen Probekörper bis zum Ausfall mit einer oszillierenden Last beauf-
schlagt werden, sind ein etabliertes Vorgehen, um Erkenntnisse über das Ermüdungsver-
halten von Elastomeren zu gewinnen. In der vorliegenden Arbeit werden Verbesserungen
dieser Methode mit Fokus auf präzisere Lebensdauerergebnisse vorgeschlagen und in einer
Studie zum Einfluss von Rastphasen im Lebensdauertest angewandt.
Zum Einstieg wird der starke Temperatureinfluss auf die Ermüdung von Elastomeren
gezeigt. Eine Kühlung durch erzwungene Konvektion im Zusammenspiel mit einer ampli-
tudenabhängigen Frequenzanpassung stellt sich als effektive Methodik heraus, um eine
konstante Materialtemperatur über eine ganze Messreihe hinweg zu gewährleisten.
Daran anschließend, wird die häufig getroffene Annahme weggesteuertes Oszillieren gleich
dehnungsgesteuertes Oszillieren auf den Prüfstand gestellt. Dafür wird die Dehnung
bei maximaler Auslenkung innerhalb der oszillierenden Last optisch über die Dauer des
Lebensdauerversuches aufgezeichnet. Als Ergebnis wird eine bemerkenswerte Zunahme
der Dehnung über die Lastzyklen detektiert. Dieser Effekt stellt sich als geometrie-, last-
und materialabhängig heraus. Lebensdauerergebnisse angewandt zur Betriebsfestigkeitsab-
schätzung werden meist in der Form konstante Belastung in Abhängigkeit der Ausfallzyklen
(Stichwort: Wöhlerkonzept) verarbeitet. Daher wird ein Verfahren zur Umrechnung dieser
über Lastzyklen inkonstanten Dehnungen zu Wöhler-konformen konstanten Vergleichs-
dehnungen vorgestellt.
Weiterhin wird eine neue Probekörpergeometrie entworfen. Denn in der Literatur fällt
auf, dass die überwiegende Mehrheit der Lebensdaueruntersuchungen mit Probekörpern
durchgeführt werden, welche durch oberflächliche Risse ausfallen. Folglich wird der neue
Probekörper derart geformt, dass dessen Lebensdauer durch Anrisse im Vollmaterial do-
miniert wird. Eine Vergleichsstudie zwischen Probekörpergeometrien beweist die deutliche
Lebensdauerzunahme bei oberflächenunabhängiger Rissinitiierung. Die Unregelmäßigkeiten
an der Oberfläche führen zu abgeänderten Lebensdauerdaten. Eine solche Unregelmäßigkeit
ist z.B. der Grat geformt durch die Formtrennnaht. Bruchbilduntersuchungen ergeben eine
Konzentrierung der Initiierungen auf diese vulkanisationsformabhängige Schwachstelle.
Auch innerhalb dieser Kategorie von oberflächlichen Unregelmäßigkeiten zeigen sich deut-
liche Lebensdauerabweichungen - Grat ist nicht gleich Grat.
Basierend auf den vorgestellten verbesserten Vorgehensweisen zur Ermüdungsmessung,
wird der Einfluss von Rastphasen innerhalb von ansonsten kontinuierlich oszillierenden
Lasten untersucht. Im Gegensatz zu Daten aus der Literatur, ermittelt durch Risswachs-
tumsmessungen, ergibt sich keinerlei Einfluss dieser Rastphasen bei den Lebensdauertests
der vorliegenden Arbeit. Einzig und allein für einen Styrol-Butadien-Kautschuk ohne
Füllstoff stellt sich eine große Lebensdauerabnahme für Haltephasen unter Last ein. Dieser
Effekt kann auf lastzeitabhängiges statisches Risswachstum zurückgeführt werden.

i



Abstract

Experiments with oscillating loads until failure applied on simple test pieces are often used
for the characterisation of the fatigue behaviour of rubber materials. In this work, the
method of fatigue testing is further optimised with the objective of increased precision in
lifetime results. These improvements are applied on a study of dwell periods and their
influence on durability.
At first, the strong dependency of the rubber lifetime on temperature is shown. Forced
convection combined with an adaptation of frequency, with respect to the amplitude,
is found to be an effective approach to obtain experimental data with similar material
temperatures from different test piece geometries exposed to various loading conditions.
Subsequently, the validity of the assumption displacement-controlled testing is equivalent
to strain-controlled testing is examined. Therefore, fatigue tests on filled natural rubber
and styrene butadiene rubber materials, using dumbbells die-cut from moulded sheet are
performed. The strains in the narrow section at maximum deflection of the dumbells
are measured with an optical method. A remarkable shift of this strain occurs over the
length of oscillation, even though the displacement amplitude was constant. It turns out,
that the effect of the strain shift over cycles dependents on the test piece (or engineering
component) geometry, the amplitude as well as on the material. This geometry dependent
evolution of the damaging propensity of the cyclic strain has influence on whatever lifetime
prediction methodology is favoured. A method is introduced to transfer the continuously
changing strains into a Wöhler curve-compliant constant equivalent strain.
In addition, a new fatigue test piece is designed. While the majority of the fatigue-data
in literature originate of test pieces with locus of failure initiation at the free surface,
motivates the design of the new test piece with failure initiation locus in the bulk material.
This new test piece shows a strong lifetime-prolonging effect if benchmarked with test
pieces that suffer from crack initiation at the surface. Inside the group of test pieces with
surface initiations, significant lifetime differences are measured, even though the failures
initiated nominally at the same locus, specifically at the flash.
In conclusion, based on all preceding suggestions for improvement, a presumably fatigue-
influencing factor is investigated; dwell periods in otherwise commonly continuous sinusoidal
load-signals. In disagreement with crack growth measurements from literature, no signifi-
cant impact of dwell periods on the fatigue of rubber material is found. This is verified for
a broad range of dwell conditions. Due to static crack growth, solely for unfilled styrene
butadiene rubber, a lifetime-reducing effect for loaded dwell periods is found.
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1 Introduction

Rubber can not only be found in car tyres. Independent of where you are right now, have
a thorough look in your environment. The probability of finding rubber components is
very large. First hint, have a look on how the window is sealed. But what is actually
rubber and why, as the title of this thesis suggest, is it worth of spend several years on the
investigation of the mechanical fatigue of this flexible material.

1.1 What is Rubber?

Gent very well answers this question on the second page of his book [1]: "Elastomers
(natural and synthetic rubber) are amorphous polymers to which various ingredients are
added (see Figure 1.1), creating what the rubber chemist refers to as a compound. After
heating and reaction (vulcanization), these materials become ’rubber’."
Here, an overview is given of polymers, ingredients and process of vulcanization, as applied
in this work. This overview is reduced to the essential, starting with natural rubber as the
oldest known gum rubber due to its origin in nature [2].

Figure 1.1: Example polymer with various example ingredients. Shown is the polymer,
a resin, the curing-system (composed of sulphur, accelerators and retarder)
and activators (zinc-oxide and stearic-acid) f.l.t.r.

Natural Rubber (NR)
The foundation for NR (see Figure 1.2), or named more chemically, natural cis-1,4-
polyisoprene, is the latex of the Hevea brasiliensis tree [1]. Yet, it is the most important
elastomer as measured by usage in weight [2]. As a result of the identical configuration
(called stereoregular), the NR macromolecules are able to crystallise [1,2]. During crys-
tallisation, caused by low temperatures (max. rate at −25 ◦C) or large deformations, the
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1 Introduction

macromolecules bundle together leading to high resistance against e.g. severe deforma-
tions [1].

Styrene-Butadiene Rubber (SBR)
Similar to NR, SBR (see Figure 1.2) belongs to the general group of hydrocarbon polymers
[1]. It has the highest use by volume among the many synthetic rubbers [1–3]. The base
components Styrene and Butadiene originate from petroleum [2]. Cut growth and similar
properties are significantly better for NR compared to SBR. However, SBR has greater
resistance against high temperatures (up to 100 ◦C), ageing and substances like oils, fats,
alcohol and water [2].

Figure 1.2: Natural rubber and oil extended Styrene-Butadiene rubber.

Vulcanisation / Curing
Vulcanisation is the process which transforms the elastomer, principally a very high
viscosity liquid, to an elastic solid [1]. Within the vulcanisation process (aka. curing) the
macromolecules obtain, additional to the pre-exciting weak physical links, strong chemical
links. Many methods are used to create these chemical links (aka. cross-links). Only sulfur
curing is applied in this study and is therefore briefly introduced.
Sulfur curing can only be performed for macromolecules with double bonds of allylic
hydrogens [1,2]. However, crosslinking with sulfur alone requires vulcanisation times of
several hours [1]. For this reason, sulfur curing is applied in combination with curing
accelerators to increase the efficiency and rate of cross-linking [1]. Accelerators used in
the present study are labelled with the short-cuts CBS, TBBS and TMTD. Whereby
the latter has a sulfur-donating function as well. Another class of ingredients are the
so-called activators. They are used to activate the accelerators and therefore enable a
more efficient accelerated sulfur curing. Examples from the applied recipes are zinc-oxide
and stearic-acid.

Reinforcement
The term reinforcement originates from the ability of certain fillers (i.e. insoluble particu-
late materials) added to the rubber formulation to improve physical properties e.g. the
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1 Introduction

mechanical strength by more than 10 times [1,4]. In this work only carbon black based
reinforcing fillers are used. A filler particle (aka. primary particle) needs to be small
(∅ < 1 µm) to possess a high specific surface area, up to few hundreds m2 per gram, to
cause strong interactions with the polymer macromolecules and other filler particles [1].
Donnet et al. [4]: "It is recognized that the main parameters of carbon blacks which govern
their reinforcing ability in rubber are the following:

• The size and distribution of primary particles [...] which are joined by fusion
into aggregates arranged at random. The particle size and its distribution directly
determine the surface area of the carbon blacks.

• The size, shape and distribution of aggregates (aggregate complexity), i.e., the degree
of irregularity of the carbon black units or the development of branchings due to
the aggregation of primary particles and the asymmetry of the aggregates. These
parameters are generally termed carbon black ’structure’.

• Surface activity which, in a chemical sense, is related to the reactivity of the chemical
groups in the carbon black surface, and, in terms of physical chemistry, is referred to
as adsorption capacity. This capacity is determined by carbon black surface energy,
both its dispersive and specific components, and the energy distribution on the carbon
black surface."

The two carbon blacks used in this study are labelled with N330 and N339. The first
digit after the ’N’ stands in correlation with the primary particle diameter [2], whereas the
last two digits correlate with the structure of the carbon black aggregates. High structure,
in simplified terms, describes the three-dimensional expansion of the aggregate divided by
the actual aggregate volume [1].
Carbon black is very effective in reinforcing non-crystallising elastomers e.g. SBR [1].
Without carbon black, SBR and these kind of synthetic rubbers show inferior properties [2].
Due to the ability to significantly crystallise, NR already has a self-reinforcing mechanism.
Actually, unfilled and black-filled NR exhibit the same tensile strength, nevertheless the
latter has improved resistance to tearing and abrasion [1].

Process aids and Softener
As its name implies, process aids are added in order to lower the viscosity of the rubber
compound and therefore to ease processing without much affecting vulcanisate properties [1].
The process oil labelled with Sunthene 410 is used in a NR compound in the present work.
On the other hand, softeners reduce the viscosity of the rubber compound but also the
stiffness of the vulkanisate [2]. Additionally, softeners e.g. support the absorption of fillers
like carbon black [1].
Process oils are added in small amounts, whereas softeners are added in sufficient quantities,
usually substantially higher than needed for processing.
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1 Introduction

Antioxidants
All organic rubbers succumb to degradation by light and oxidation. The NR and SBR
rubber used in this study are especially sensitive to these processes due to their double
bonds at the back bone [2]. Antioxidants interrupt the oxidative chemical reaction [2]. The
antioxidant labelled with the shortcut 6PPD is added to the NR and SBR formulations in
Section 4.2.

1.2 Fatigue and end-of-life prediction

In research, tests with oscillating loads using simple test pieces are conducted in order
to quickly gather insights about the fatigue behaviour of rubber under the conditions of
interest. In a more industrial environment, these kind of tests are often performed as
a foundation for the lifetime prediction of components, using the procedure developed
by August Wöhler [5]. The Wöhler concept is to express lifetimes (measured in cycles
to failure) as a function of the amplitude of a repeated mechanical duty cycle. A plot
of the amplitude against log(lifetime) - the Wöhler curve - may then be interpolated or
extrapolated to estimate the maximum amplitude consistent with a desired lifetime (see
Figure 1.3). The Wöhler curve is usually measured based on simple test pieces to save time
and costs. One main advantage of the Wöhler approach is that physical experiments need
to be performed only for simple test pieces but not for the industrial component. A virtual
existence of the component, e.g. in form of a finite element model is sufficient. However,
for rubber materials, there is a large list of fatigue-influencing factors (e.g. temperature)
as will be shown in Chapter 3. The simple test piece and the component usually differ in
these influencing factors. Therefore, one main challenge within the Wöhler concept is the
choice of the so-called: fatigue criterion. This criterion is plotted at the ordinate of the
Wöhler diagram. Prominent representatives of such criterion are strain and stress. The
objective of the criterion is to correctly consider differences in fatigue-influencing factors
between the component and the simple test pieces used to issue the Wöhler curve. For the
unique case of:

simple test piece geometry and load signal
=̂

component geometry and component load signal,
any criterion, even the global reaction force for a given displacement, leads to correctly
predicted lifetimes since there is no difference in fatigue-influencing factors between these
two. In a similar case in which the component is generally equal to the simple test piece,
but larger or smaller (scaled) in all directions in space, the global reaction force fails as
criterion for end-of-life prediction, and a local criterion like stress is necessary for a correct
prediction. This insight will be of significant importance for the Chapters 4 to 6. In a
more industrial environment there are often several fatigue-influencing factors that are
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1 Introduction

different between the component and the simple test piece. For research purposes the
simple test pieces can also be compared among themselves. Within such an investigation,
different kinds of load, e.g. for the same test piece geometry, or different test pieces with
particular geometries exposed to the same kind of loading etc. can be considered (see later
Chapter 6). Doing so, it is possible to isolate single fatigue-influencing factors and free of
interference study their influence on the lifetime.

103 104 105 106 107

Cycles to failure [Cycles]

R
ep

ea
te
d
du

ty
cy
cl
e

Simple test piece medians

Wöhler curve

Predicted failure [Cycles]

Experiment based

Component

Figure 1.3: Wöhler’s concept of end-of-life prediction.

Interest in the mechanical fatigue of rubber has continued unabated since one of the
first methodical investigations by Cadwell et al. [6], in 1940. The identification of what
mechanism within rubber exposed to a dynamic load results in a defined end-of-life, is
fundamental for the design of rubber components (e.g. the car tyre, the window-seal
of your room). However, after 80 years of research and far more than 400 articles (see
introducing words of State of the Art Chapter 3) dealing with the fatigue of rubber, many
major explanations for certain behaviour are still not given. In order to progress in rubber
fatigue research, simple test piece geometries with defined conditions at the locus of the
failure are used. A large number of publications present some fatigue results or extensive
databases of lifetime data using such test pieces. These experimental databases are often
further applied to develop or compare high-end end-of-life criteria, with the final goal to
unite the many fatigue-influencing factors of rubber in one end-of-life prediction criterion.
Within this study, no new fatigue criterion is proposed. Instead, it is focused on the
measurement of accurate fatigue test data (see Chapter 4). In Section 4.1 the impact
of temperature variations on the lifetime are shown and a straightforward procedure for
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1 Introduction

temperature-control is assessed. In addition, in Section 4.2 the strain evolution over the
duration of displacement-controlled lifetime testing is investigated and its implication on
the final fatigue results is shown. With the main objective to further improve the accuracy
of fatigue results, a new fatigue test piece geometry, with surface-effects independent
fatigue, is designed in Section 4.3 and is benchmarked with other entrenched test pieces in
Chapter 5. Also partially using this new geometry, a possibly new factor influencing the
lifetime of rubber is investigated in Chapter 6. There, the influence of dwell periods on
the fatigue of rubber is measured.
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2 Theoretical fundamentals

As foundation for the analytical and numerical analyses from Chapter 4 to 6, the principals
of continuum mechanics are given in Section 2.1, followed by different continuum mechanical
models of its mechanical response to deformation in Section 2.2. The last Section 2.3 of
the present Chapter focuses on the statistical evaluation of experimental fatigue.

2.1 Continuum mechanics

All matter is naturally discontinuous [7]. The discontinuities start on the atomic level
(different arrangements of molecules) and still exist on a larger scale in the form of
inhomogeneities e.g. cracks, inclusions, interfaces (for rubber see [8]). In continuum
mechanics these microscopic inhomogeneities are neglected. Instead, the material is
assumed to be continuous (dense). The properties of the continuous material can be
interpreted as statistical averages of the microscopic properties over a representative
volume.
Continuum mechanics deals with the determination of interior forces and deformations of
a body as a result of a given exterior load. These interior forces are locally described by
so called stress-states and the local deformations by strain-states [9].

2.1.1 Tensor algebra

In order to describe loading/deformation states in a continuum body, the setting has to
be described mathematically using vector/tensor algebra. Within the present work, only
orthogonal coordinate systems are considered.

Definition of first- and second-order tensors

In a three-dimensional system, a first-order tensor may be depicted by a (3× 1) vector ~a.
A second-order tensor A is a linear operator that acts on a vector ~a1 generating another
vector ~a2 [10]:

~a2 = A~a1 (2.1)

Eigenvalues, Eigenvectors, Invariants

One can derive tensorial characteristic variables (e.g. eigenvalues and invariants) that are
invariant of coordinate transformations. These characteristic variables originating from
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2 Theoretical fundamentals

deformation and stress tensors will turn out to be a unique describer of the deformation
and stress states in Section 2.1.2 and 2.1.3.
To obtain the eigenvalues λei and eigenvectors ~ni of an arbitrary second-order tensor A
(so i = 1, 2, 3) the equation

A ~ni = λei ~ni (2.2)

is fundamental [10]. Rearranging gives the following eigenvalue problem [11]

(A− λei I)~ni = ~0 (2.3)

with I as the identity tensor. For the eigenvalue problem a non-trivial solution for ~ni
exists only if [11]:

det(A− λei I) = 0 (2.4)

To determine the unknown eigenvalues, solving the cubic Equation 2.5 is required:

λ3
ei − I1λ

2
ei + I2λei + I3 = 0 (2.5)

This equation is the so called characteristic polynomial for (in this case) A [9]. The
polynomial contains the invariants Ii(A). As included in the name, the invariants are
independent (invariant) on coordinate transformations. Same applies for the eigenvalues,
although not for the eigenvectors. Therefore, the scalars Ii(A) and λei are characteristic
for A. The invariants are defined by [10]:

I1(A) = trA = λe1 + λe2 + λe3 (2.6)

I2(A) = 1
2[(trA)2 − tr(A2)] = λe1λe2 + λe1λe3 + λe2λe3 (2.7)

I3(A) = detA = λe1λe2λe3 (2.8)

With the known eigenvalues, the eigenvectors can be determined with Equation 2.3. The
eigenvectors form an orthonormal system if the tensor A is symmetric [10]. By normalising
the eigenvectors ~ni and arranging them in a matrix one obtains the orthogonal matrix N .
The spectral decomposition is given by [10]:

A = NΛNT (2.9)
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The diagonal matrix Λ is obtained by diagonalization of A:

NTAN = Λ =


λe1

λe2

λe3

 (2.10)

The spherical and deviatoric parts of a second-order tensor

In Section 2.1.2 and 2.1.3 is shown, using the example of strain and stress tensors, that
the separation of a second-order tensor A, in its spherical and deviatoric part, is a useful
operation:

A = aspherI + devA (2.11)

with: aspher = 1
3 trA (2.12)

2.1.2 Deformations and strains

Using the previous mathematical definition, the deformation of a solid can be described by
two points (P1, P2) with a certain separation on a continuum body. Unless the deformation
is homogeneous, this separation has to be infinitesimal. Moreover, it is necessary to define
a reference configuration, since no deformation can be detected without any knowledge of
the reference or undeformed configuration. Finally, the location of the points with respect
to themselves, is stored in a vector. This vector begins at P1 and ends at P2 and is labelled
d ~X and d~x in the reference and deformed configuration, respectively (see Figure 2.1).

Reference configuration

Deformed configuration

∂ ~X

P1 P2

∂~x

P1

P2

Figure 2.1: Reference and current (deformed) configurations of a continuum body.
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The conversion from vector d ~X to d~x may be described by the transformation matrix
F :

F = d~x
d ~X

=
[
dxi
dXj

]
=



dx1

dX1

dx1

dX2

dx1

dX3

dx2

dX1

dx2

dX2

dx2

dX3

dx3

dX1

dx3

dX2

dx3

dX3


(2.13)

This matrix F expressed independently of a particular coordinate system yields a
second-order tensor, namely, the deformation gradient F . This deformation gradient F
is a located tensor and measures deformations, but also pure rotations of a solid [12].
Deformation gradient F may be split by use of polar decomposition:

F = R U (2.14)

The tensor U and tensor R are known as right stretch tensor and rotation tensor,
respectively.

For the definitions of strains, solid body rotations are not considered. Note that unlike
displacements, that are measured in units of length, strains depend on the choice of
definition, of which several are in common use [10].
Prior to the definition of strain concepts, the right Cauchy-Green tensor C is introduced:

C = F TF = UTU (2.15)

The square root of the eigenvalues λei of C are known as stretches λi with i = 1, 2, 3 (see
Section 2.1.1). Note, that the principal directions of C are defined by the directions of its
eigenvectors.
Imagine three thin and short cylinders, cut out from a continuous body. These cylinders
deform affinely with the material and are located at a material point. Moreover, they are
oriented in the principal directions of C at this material point. The eigenvalues of the
symmetric second-order tensor C in this material - the stretches - are the factors between
initial cylinder length (blue) and deformed cylinder length (red).
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1 2

3

l01

l02

l03

λ1l01

λ2l02

λ3l03

Figure 2.2: Schematic illustration of the change in vector length (l01, l02, l03), measured
by the stretches (λ1, λ2, λ3).

Two strain concepts are introduced. Firstly the nominal strain concept, with the
corresponding Biot strain tensor, defined as follows:

E n =
√
C − I (2.16)

Nominal strains will regularly be used throughout this work, since they are intuitively
interpretable by humans. Only for the definition of strain-states, the Hencky strain concept
is employed, with its tensor given by:

E H = 1
2 ln(C) (2.17)

As an example, for a one-dimensional deformation, the two strain concepts are compared
in Figure 2.3.

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

λ− 1 [-]

ε
H
.1

1,
ε n
.1

1
[-]

Nominal
Hencky

Figure 2.3: Strain concepts in comparison for one dimension.
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The components of the nominal strain tensor E n are shown (see matrix representation
in Equation 2.18). Further, a Cartesian coordinate system with the axes notation x, y, z
is assumed.

E n =


εn.11 εn.12 εn.13

εn.21 εn.22 εn.23

εn.31 εn.32 εn.33

 =


εn.x

1
2γxy

1
2γxz

1
2γyx εn.y

1
2γyz

1
2γzx

1
2γzy εn.z

 (2.18)

The quantities εn.x, εn.y, εn.z measure length changes, similar to the stretches λi. Whereas
the non-diagonal matrix entries measure pure angle changes [9] (see Figure 2.4). Figure
2.4 shows the length change measured by εn.x only.

lx
ux

εn.x = ux

lx

lx

uy

ux

ly

γxy = ux

ly
+ uy

lx

(a) (b)

Figure 2.4: Implication of the the diagonal and non-diagonal elements of the nominal
strain tensor E n on small deformations.

It is possible to rotate E n in a sense that the deformation can be only described by its
diagonal elements εn.x, εn.y, εn.z. In order to obtain the diagonalised E n, Equation 2.10 is
applied:

NTE nN =


εn.1

εn.2

εn.3

 (2.19)

Figure 2.5 illustrates the concept of eigen-directions. The body highlighted in blue
represents a very small part of the enclosing body. This blue cuboid is always oriented
in alignment with the principal axis system. Assuming that εn.1 > εn.2 > εn.3, they
may be labelled with maximum, middle and minimum principal nominal strain (εn.max,
εn.mid, εn.min). The local εn.max is frequently applied within the present work in order to
compare fatigue data from e.g. different test piece geometries. It is assumed that the
gained knowledge from comparing the lifetime data is independent on the concept of strain.
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Undeformed (reference) configuration Deformed configuration

x
y

z
x

y

z

3
1

2

3
1

2

Figure 2.5: Visualisation of the eigen-directions for a simple shear deformation.

Further, one may split the strain tensors into their spherical and deviatoric parts. This
mathematical operation is applied ot the Hencky strain tensor, by using Equation 2.11:

E H = εHI + devE H (2.20)

with : εH = 1
3 trE H (2.21)

This yields the following matrix representation, oriented to its principal directions:

E H =


ln λ1

ln λ2

ln λ3

 =


εH

εH

εH

+


ln λ1 − εH

ln λ2 − εH

ln λ3 − εH


with : εH = 1

3(ln λ1 + ln λ2 + ln λ3)

Since E H is a tensor measuring deformations, its spherical- and deviatoric part are also
known as the dilatational and isochoric part. These two parts describe a pure volume-
changing and pure distortional deformation, respectively. Figure 2.6 shows these two
different kinds of deformation schematically on a simultaneously compressed and sheared
cuboid.

Undeformed state

Deformed state

Figure 2.6: Compressed and sheared cuboid.
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After the decomposition the dilatational part and isochoric part become visible:

Dilatational deformation Isochoric deformation

Figure 2.7: Deformation from Figure 2.6 decomposed in dilatational and isochoric parts.

In case of an incompressible material, the product of the stretches equals one:

λ1λ2λ3 = 1 (2.22)

Based on this law, one obtains a zero for the trace of E. For large deformations, trE
stays zero only when E is defined by the Hencky strain concept, e.g. not for the nominal
strain concept (see Equation 2.23).

εH = 1
3 trE H = 0 (2.23)

This is because:

εH = 1
3(ln λ1 + ln λ2 + ln λ3) = 1

3(ln(λ1λ2λ3)) = 0 (2.24)

The volume ratio J [10] is defined by:

J = dv
dV = detF (2.25)

with dv and dV as infinitesimal volume elements defined in the deformed and undeformed
states, respectively. The Equation 2.25 leads to Equation 2.22, by using the diagonalised
F . The volume ratio J is always equal to one for an incompressible material.

Strain-states

The basic strain-states are the uniaxial strain-state, plain strain-state and the equibiaxial
strain-state [10]. As shown in Table 2.1, these strain-states are defined for an incompressible
body with the three principal Hencky strains. An indicator for the different strain-states
is the so-called biaxiality ratio B:

B = εH.2

εH.1
(2.26)
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Uniaxial strain Plain strain Equibiaxial strain

2

1

3 2

1

3
2 1

3

εH.2 = εH.3 = −1
2εH.1 εH.2 = 0 εH.3 = −εH.1 εH.2 = εH.1 εH.3 = −2 εH.1

B = −1
2

B = 0 B = 1

Table 2.1: Strain-states defined by the biaxiality ratio B.

2.1.3 Stresses

Stresses are interior reactions, usually to exterior forces. The reference configuration is
assumed to be free of both exterior and interior forces.
If a continuum body is deformed, a resistance occurs - a reaction force - that works against
this deformation. Internal stresses become visible by using a plane that cuts the body [13].
They are defined as force per unit of area [10]. Figure 2.8 shows the body in the deformed
state. Additionally, the body is cut to visualise the interior resistance in terms of forces
and stresses.

~n

~t

dF

da
edge1

edge1

~n σ

τ ~t

a) b)

Figure 2.8: Traction vector and its decompostion in normal- and shear-stresses (referring
to [9]).

In Figure 2.8-a) the traction vector ~t is shown. This vector is defined through the
infinitesimal force vector d~F normalised by the infinitesimal surface area da:

~t = d~F
da (2.27)
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Since the surface element (framed in red) is situated in the deformed configuration, ~t is
labelled as the Cauchy traction vector [10].
The Figure 2.8-b) shows the decomposition of the Cauchy traction vector into the Cauchy
normal stress σ (perpendicular to the surface element) and the Cauchy shear stress τ
(tangential to the surface element):

σ = ~t · ~n , τ =
√
~t · ~t− σ2 (2.28)

with ~n as normal of the surface element [9].
The following question may occur: What are the components of ~t in another cut plane
however at the same spot? In order to obtain the full three-dimensional definition of the
stress state, three independent cuts are needed. Figure 2.9 shows a material point with
three independent cuts, including traction vectors for each cut.

x1

x2

x3

~t3

~t2

~t1

σ11

σ12

σ13 σ23

σ33

σ21
σ22

σ32

σ31

Figure 2.9: Stress components at a body cut by three independent planes.

Moreover, one may describe each traction vector by three components related to the cut
axis x1, x2, x3. For the axes xi (with i = 1, 2, 3) ~ti is defined [9]:

~ti =


σi1

σi2

σi3

 , i = 1, 2, 3 (2.29)

According to Figure 2.9, the stress components σij with i = j are called normal stresses
(with identifier σ) and those with i 6= j shear stresses (with identifier τ). These stresses
are still related to the surface area of the deformed configuration, hence they are labelled
Cauchy normal stresses and Cauchy shear stresses, respectively.
In order to merge the information of the three cuts to one entity, the following matrix
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notation is used:

σ = [~t1,~t2,~t3]T =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 (2.30)

with redefining the axes x1, x2, x3 (see Figure 2.9) to x, y, z. The matrix σ is the
matrix notation of the second-order tensor σ, called the Cauchy stress tensor. By using σ,
~t may now be calculated for each arbitrary cut with the normal ~n:

~t = σ~n (2.31)

Solving the eigenvalue problem for σ

(σ − σi I)~ni = ~0 (2.32)

provides the eigenvalues σi and eigenvectors ~ni from σ, with i = 1, 2, 3. Aligning σ in the
direction of its eigenvectors yields non-zero normal stresses only (see Figure 2.10).

zglob

yglob

xglob

Stress state in point P visualized in two different coordinate systems.

zloc

yloc

xloc

yloc ‖ ~n2

xloc ‖ ~n1

zloc ‖ ~n3

Normal stresses σ
Shear stresses τ

P

PP

Figure 2.10: The concept of eigendirections applied to the stress tensor.

Similar to the strain tensors, the Cauchy stress tensor σ may be split into its spherical
and deviatoric parts:
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σ = σ0 I + dev σ (2.33)

with : σ0 = 1
3 trσ = −p (2.34)

The spherical part σ0I is known as hydrostatic part, with σ0 as the hydrostatic stress
and p as hydrostatic pressure. Anticipating, this engineering value significantly influence
the mechanical fatigue of rubber.
Cauchy stresses are related to the deformed configuration i.e. the deformed area da (see
Equation 2.27). Stresses related to the area dA of the reference/undeformed configuration
are first Piola Kirchhoff stresses. We define these by defining first Piola Kirchoff tractions
analogously to Cauchy tractions:

~tPK = d~F
dA (2.35)

From an experimental point of view, first Piola Kirchhoff stresses have their advantages
against Cauchy stresses. They are more direct (without any assumption) accessible, since
the initial area dA stays constant by definition during the deformation of the body. The
corresponding stress tensor P is the first Piola Kirchhoff stress tensor and is consequently
defined as:

P = [~tPK.1,~tPK.2,~tPK.3]T =


P11 P12 P13

P21 P22 P23

P31 P32 P33

 (2.36)

The transformation from the first Piola Kirchhoff stress tensor P to the Cauchy stress
tensor σ is given by [10]

σ = J−1P F T (2.37)

with J as volume ratio (see Equation 2.25).
This closes the necessary continuum mechanics as foundation for the subsequent elabora-
tions of the present work.
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2.2 Constitutive models

The purpose of this section is to provide mathematical descriptions of the stresses caused
by a given strain for rubber materials (see Section 1.1). In order to connect the strains
with the stresses (defined in Sections 2.1.2 and 2.1.3, respectively) a constitutive model
is used. Our primary interest is in isochoric deformations, since unless the hydrostatic
stress is very large, the dilatation is negligible and as is the relationship between isochoric
deformations and deviatoric stresses (see Equations 2.20 and 2.33, respectively).
The isochoric stress-response (P iso) of an elastic body to an isochoric deformation (F iso)
is formulated via the isochoric elastic free energy Ψ:

P iso =
∂Ψ(F iso)
∂F iso

(2.38)

Elastomers show a non-linear stress-strain-behaviour for medium to large deformations.
Such non-linear response of the stress for a given deformation can be modelled with the
neo-Hookean material model.

Ψ = G

2 (I1 − 3) (2.39)

This model contains one parameter only, the shear modulus G and describes a material
with a linear shear-stress over strain behaviour to any strain [10]. For this model, the
loading and unloading paths are identical regardless of how large the strain is; such models,
and the idealised materials they describe, are said to be hyperelastic. Another hyperelastic
constitutive model is the Arruda-Boyce material model. Its free energy is defined by [14]:

Ψ = G
(1

2(I1 − 3) + 1
20N (I2

1 − 9)

+ 11
1050N2 (I3

1 − 27) + 19
7000N3 (I4

1 − 81) + 519
673750N4 (I5

1 − 243)
) (2.40)

with parameter G as shear modulus and N being associated with the average number
of macromolecule-segments between two neighbouring cross-links. Figure 2.11 shows
selected experimental data from a rubber material, as well as its numerical approximation
with the neo-Hookean and Arruda-Boyce material model. In this example, the material
model parameters are fitted separately for each amplitude (see Table 2.2). It appears
that those two models are not able to capture all aspects of the material behaviour of
the example material. Due to their pure hyperelastic nature, they are unable to describe
the rubber-typical material softening, hysteresis and set. As realised in this example,
the material softening can only be approximated by hyperelastic constitutive laws using
several parameter sets.
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Figure 2.11: Experimental tension data of a filled NR material and its numerical ap-
proximation with the neo-Hookean and Arruda-Boyce material model.

Neo-Hookean Arruda-Boyce
Strain range G [MPa] G [MPa] N
εn.11 = 50 % 0.9 0.55 2.10
εn.11 = 150 % 0.74 0.41 3.13

Table 2.2: Material parameters of the data shown in Figure 2.11.

A material model that is able to capture many of the mechanical behaviour characteristics
of rubber is the Plagge material model [15]. In its core, the stresses for a given deformation
are defined by:

σ = (1− φ)σ∞ + φσ ve (2.41)

where the parameter φ correlates with the amount of filler in the elastomer. For unfilled
rubber φ = 0, negligible viscoelastic properties are assumed; σ ve has no contribution. The
strain energy function for the remaining σ∞ reads:

Ψ∞ =
Xmax∫
1

P (X)
(
Ψp[X(I1 − 3)] + Ψf [X2(I1 − 3)]

)
dX (2.42)

with X as amplification factor. The amplification stems from the presence of filler. As
briefly discussed in Section 1.1, the filler is present in various aggregate-sizes within the
polymer-matrix. The largest aggregates are associated with the strongest amplification
(Xmax). This distribution of filler aggregate-sizes is given by distribution function:

P (X) = X−χ
χ− 1

1−X 1−χ
max

(2.43)
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with χ describing the shape of this distribution function. The maximum amplification
Xmax is reduced, associated with breakage of the largest filler aggregates, for newly reached
maximum deformations and over time. This decrease of Xmax over time describes the
linear (in time-log-scale) material softening and is formulated as follows:

Ẋmax = exp(−eb)− exp
(
−eb + vb

(
Ψp[Xmax(I1 − 3)] + Ψf [X2

max(I1 − 3)]
))

(2.44)

where eb stands for an energy threshold below which no significant softening occurs and
vb additionally scales the two energy functions.
Equation 2.42 contains two energy functions as well. On the one hand, Ψp models the
mechanical response of the pure cross-linked polymer using a simplified version of the
extended, non-affine hyperelastic tube-model [15, 16] (original tube-model: [17]):

Ψp = Gc

2
I1 − 3

1− 1
n
(I1 − 3) (2.45)

where Gc stand for the cross-link modulus and n for the elastically active chain length,
similar to parameter N from the Arruda-Boyce model. On the other hand, the filler is
assumed to behave like a neo-Hookean material with filler modulus Gf :

Ψf = Gf

2 (I1 − 3) (2.46)

Finally, the visco-elastic portion from Equation 2.41 is defined using the one-dimensional
rheological model from Figure 2.12.

σ∞

σve

σ

τve(σve)

Figure 2.12: Rheological, for the sake of simplicity only one-dimensional, model of the
constitutive law (see Equation 2.41) by Plagge [15].

Here the relaxation time τve is not a constant but depends on the applied stress:

τve = τve.0 exp
(
−|σve|

σr

)
(2.47)

with τve.0 as initial relaxation time and σr as stress reduction factor.
Figure 2.13 demonstrates the capabilities of the Plagge-model to describe:
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• the nonlinear material response (similar to the neo-Hookean and Arruda-Boyce
model);

• the material softening with increasing deformation;

• the material softening with repetition of a constant deformation;

• the hysteresis;

• as well as the remaining deformation with unloading (set).

The interaction of these parameters cause phenomena like the non-constant strain over
repeated displacement-controlled duty cycles (see Section 4.2). The Plagge-model will be
used to describe this and other effects.
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Figure 2.13: Experimental tension data of a rubber material and its numerical approxi-
mation with the Plagge-model.

Table 2.3 lists all nine parameter of the Plagge-model with a short description.

No. Parameter Description
1 φ filler volume fraction
2 Gc polymer cross-link modulus
3 Gf filler modulus
4 n elastically active chain length
5 χ shape of filler aggregate distribution function
6 eb energy threshold for material softening
7 vb energy scale factor
8 τve.0 initial relaxation time
9 σr stress reduction factor

Table 2.3: Overview of the parameters of the Plagge-model.
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2.3 Statistics evaluation of fatigue test data

The Wöhler concept from Section 1.2 and generally deriving knowledge from fatigue test
data only functions along-with a correct statistical evaluation of the experimental data,
which have usually a limited sample size. In mechanical fatigue testing of rubber, using
exactly the same load conditions, scattering with more than two orders of magnitude in
number of cycles to failure is not unusual. This scattering depends on e.g. the material
composition. In order to perform valid comparisons of e.g. different materials, the definition
and choice of appropriate statistical parameters is crucial. Using the well known arithmetic
average, with one or two standard deviations as measure for its error, might end in
misleading statements.
Figure 2.14 illustrates the difference between a probability density function (PDF) and a
cumulative distribution function (CDF). The CDF is here fitted at a sample of ten test
pieces. Based on this sample, this CDF describes the failure probability for a chosen
number of cycles. The differentiation of the CDF yields the PDF.
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Figure 2.14: Difference between a probability density function (PDF) and a cumulative
distribution function (CDF) and their correlation.

2.3.1 Mode, Median, Mean

These three terms are best defined via probability density functions (PDF). The number of
cycles until failure for rubber often shows a non-symmetric density distribution. Different
midpoint-like values for a later comparison of fatigue data can be defined for non-symmetric
distributions. Figure 2.15 visualises the terms mode, median and mean for a sketched
non-symmetric probability density function. For symmetric distributions (e.g. Gaussian
distribution) these values are all equal.
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mode

mean

median

50% 50%

Figure 2.15: Visualisation of the mode, median and mean on an artificial probability
density function (referring to [18]).

Only the median value is given for the statistical evaluation of the fatigue tests within
this work. Applied to fatigue tests, it describes the number of cycles for which statistically
half of the test pieces or components are considered as failed and the other half as still
intact. Figure 2.15 visualises the definition of the mode and mean as well to demonstrate
the difference among them.
Two of the most commonly used lifetime distributions are the log-normal and Weibull
distributions [19]. They are introduced in the following Sections 2.3.3 and 2.3.4, respectively.

2.3.2 The normal distribution

As the foundation of the log-normal distribution, the normal distribution or Gaussian
distribution is introduced. Its probability density function (PDF) reads [19]:

fnor(x) = 1
σnor
√

2π
exp

(
− (x−µnor)2

2σ2
nor

)
(2.48)

The parameters µnor and σnor are endued with a subscripted ’nor’ to exclude possible
confusions with physical values for the e.g. friction coefficient or mechanical stress. For
µnor = 0 and σnor = 1 one obtains the PDF of the standard normal distribution fstn.

fstn(z) = 1√
2π

exp
(
− z2

2

)
(2.49)

Equation 2.48 may be rewritten using the PDF of the standard normal distribution fstn:

fnor(x) = 1
σnor
√

2π
exp

(
− (x−µnor)2

2σ2
nor

)
= 1
σnor

fstn

[
x− µnor

σnor

]
(2.50)
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The cumulative distribution function (CDF) of the normal distribution is [19],

Fnor(x) =
x∫

−∞

fnor(x)dx =
x∫

−∞

1
σnor
√

2π
exp

(
− (x−µnor)2

2σ2
nor

)
dx (2.51)

and with µnor = 0 and σnor = 1 the CDF of the standard normal distribution Fstn

becomes:

Fstn(z) =
z∫

−∞

fstn(z)dz =
z∫

−∞

1√
2π

exp
(
−u2

2

)
du (2.52)

There is no simple closed form for these integrals [19]. Numerical methods are needed
to obtain Fnor or Fstn. Values of Fstn are e.g. tabulated in [19]. As previously done for the
PDF, one may rewrite the integral in Equation 2.51 using Fstn:

Fnor(t) =
x∫

−∞

fnor(x)dx = Fstn

[
x− µnor

σnor

]
(2.53)

2.3.3 The log-normal distribution

The normal and standard normal distribution mathematically accept argument values
from −∞ to ∞. However, durability measured in number of cycles cannot be negative.
This is one reason why fatigue results are better described by the log-normal distribution,
which accepts argument values between 0 and ∞.
The probability density function (PDF) of the log-normal distribution is [20],

flgn(x) = 1
σlgnx

√
2π

exp
(
− (lnx−µlgn)2

2σ2
lgn

)
(2.54)

and the corresponding CDF:

Flgn(t) =
t∫

0

flgn(x)dx =
t∫

0

1
σlgnx

√
2π

exp
(
− (lnx−µlgn)2

2σ2
lgn

)
dx (2.55)

Similar to the normal distribution, the CDF of the log-normal distribution may be
defined with the standard normal distribution (see Figure 2.52):

Flgn(t) = Fstn

[
ln t− µlgn

σlgn

]
(2.56)

In order to calculate the median of the log-normal distribution Φlgn, the inverse log-
normal CDF Flgn.inv can be used. The median value, as shown in Figure 2.15, is given
by:

Φlgn = Flgn.inv[50 %] (2.57)
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As for the log-normal CDF Flgn, there is no simple closed form for Flgn.inv. Its solution
can be determined numerically or is documented for certain probability values in tables
(e.g. in [19]). Alternatively, the median of the log-normal distribution Φlgn can be calculated
from the parameter µlgn:

Φlgn = eµlgn (2.58)

Estimate of µlgn and σlgn

A possible way to obtain estimates of µlgn and σlgn is to first linearise the CDF of the
log-normal distribution [21]:

Fstn.inv(Plgn.s) = 1
σlgn

ln(t)− µlgn

σlgn
(2.59)

with Plgn.s as an estimated probability. This estimated probability Plgn.s, e.g. for a
presumed log-normal distribution, is [22]:

Plgn.s = 3i− 1
3n+ 1 (2.60)

The data of the taken sample are sorted in ascending order. Where in Equation 2.60 n
stands for the sample size and i the position within the sorted data of the sample. Figure
2.16 shows an example of a linear regression of Fstn.inv(Plgn.s) over ln(Cycles) with n = 12.
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Figure 2.16: Linear regression of a sample with n = 12 within the linear environment
based on Equation 2.59.

From the parameters of this linear regression, the estimates µlgn.s and σlgn.s, are calculated
based on Equation 2.59. Additionally, the goodness of the linear regression provides
information about how well the sample is approximated by the log-normal distribution.
The shown data are a sample of the unknown population. Thus, the resulting µlgn.s and
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σlgn.s are only estimates of the real, but always unknown (population based), parameters
µlgn and σlgn. For this reason, a declaration of confidence limits to these estimates is
mandatory.

Confidence limits for the median

Pivotal quantities are essential for the determination of confidence limits. A pivotal
quantity is a random variable whose distribution does not depend on unknown parameters
(see e.g. [23]). Further, the resemblance of the log-normal distribution to the Gaussian
(normal) distribution is used again. For the normal distribution the unknown parameters
are here the two parameters σnor and µnor of the population. The pivotal quantity for the
normal distribution is given by [23]:

pnor(n) = µnor.s − µnor

σnor.s

√
n (2.61)

with µnor.s and σnor.s as estimates of the normal distribution parameters, based on a
sample with sample size n. Figure 2.17 shows the corresponding estimates of 1000 random
normal distributed samples of sample size n with given µnor = 0 and σnor = 1. This
deviation of µnor.s and σnor.s from the given µnor = 0 and σnor = 1 is independent from
the, in reality, unknown population based µnor and σnor described by the pivotal quantity
pnor(n). It is therefore unique for the normal distribution based estimates µnor.s and σnor.s.
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Figure 2.17: The sample standard deviation σnor.s over the sample expectation µnor.s
from 1000 normal distributed samples of size n = 5 and n = 26.

The Student’s t distribution describes the behaviour of pnor(n) [24]. In case the 1000
corresponding values of pnor are arranged according to size and are depicted in 1/1000
probability steps, the numerical Student’s t cumulative distribution function Tnum() is
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obtained.
Figure 2.18 shows Tnum.inv for the sample size n varied from n = 2 to n = 26 with step size
3. Additionally, the standard normal inverse CDF is depicted. The Student’s t distribution
approaches the standard normal distribution with increasing sample size [25].
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Figure 2.18: Numerically determined Student’s t CDF with varied sample size n and
the standard normal CDF Fstn.inv.

The upper and lower confidence limits for Φlgn.s are, respectively [19]:

Φ̃lgn.s = exp
(

ln Φlgn.s + Tnum.inv

[
1 + Probability

2 , n

]
σlgn.s√
n

)
(2.62)

˜
Φlgn.s = exp

(
ln Φlgn.s − Tnum.inv

[
1 + Probability

2 , n

]
σlgn.s√
n

)
(2.63)

With n as the sample size and Tnum.inv[Input1, Input2] as the Student’s t inverse CDF.
Since a two sided restriction is assumed, the term 1+Probability

2 is needed for Input1 [19].
The parameter Probability describes with which likelihood the true (population based
→unknown) median is located within these confidence limits.

2.3.4 The two parametric Weibull distribution

The probability density function (PDF) of the Weibull distribution is given by [26,27]:

fWB(x) = β

η

(
x

η

)β−1

exp
(
−
(
x
η

)β)
(2.64)
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In contrast to the normal or log-normal distribution, the cumulative distribution function
(CDF) of the Weibull distribution can be given in closed analytical form:

FWB(t) =
t∫

0

f(x)dx = 1− exp
(
−
(
t
η

)β)
(2.65)

with β as the so-called shape parameter and η as the scale parameter. The scale
parameter η describes the number of cycles for which 63.2 % of the test pieces/components
are failed:

FWB(x = η) = 1− exp
(
−
(
η
η

)β)
= 1− exp (−1) ≈ 0.632 (2.66)

Weibull’s median FWB(t) = 0.5 is given by:

ΦWB = FWB.inv(0.5) = η(− ln(0.5))1/β (2.67)

Estimate of η and β

Similar to the normal or log-normal distribution, estimates of η and β can be determined
with a linear fit of the linearised Weibull CDF [20]:

ln(− ln(1− Ps.WB)) = βs ln(x)− βs ln(ηs) (2.68)

The estimated probability PWB.s, for sample size n < 50, is given by the so called
Benard-method [28]:

PWB.s = i− 0.3
n+ 0.4 (2.69)

As for the log-normal distribution (see Section 2.3.3), i stands for the position within
the sorted data of the sample.
Alternatively, the shape parameter βs can be derived by solving a maximum likelihood
equation, defined as [29]:

0 =
(

n∑
i=1

xβs
i

)
·
(

1
βs

+ 1
n

n∑
i=1

ln(xi)
)
−

n∑
i=1

xβs
i ln(xi) (2.70)

With the known estimate βs, the scale parameter ηs is given by [29]:

ηs =
(

1
n

n∑
i=1

xβs
i

)1/βs

(2.71)
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Confidence limits for the median

For the calculation of the confidence limits of the Weibull median, the pivotal quantities
of the Weibull distribution are used. The pivotal quantity related to the scale parameter η
is given by [29]:

pWB(p, n) = βs ln
(
FWB.inv(ηs, βs, p)
FWB.inv(η, β, p)

)
= βs ln

(
ηs(− ln(1− p))1/βs

η(− ln(1− p))1/β

)
(2.72)

and for the shape parameter β:

pWB.2(n) = βs

β
(2.73)

with failure probability p. The probability is set at p = 0.5 in order to calculate the
confidence limits at the median. In order to determine the scatter behaviour of βs and ηs

for given β and η, here 10 000 samples are generated with sample size n, for given scale
parameter η = 1 and shape parameter β = 1. After sizing the 10 000 pivotal quantities
pWB(p, n), the upper and lower confidence limits for the median ΦWB are defined by [29]:

Φ̃WB.s = FWB.inv(0.5) · exp
−pWB

[
(1−Probability)

2 , n
]

βs

 (2.74)

˜
ΦWB.s = FWB.inv(0.5) · exp

−pWB
[

(1+Probability)
2 , n

]
βs

 (2.75)

The parameter Probability is the likelihood of the unknown population based ΦWB to
be located within Φ̃WB.s and ˜

ΦWB.s.

2.3.5 Principal of Sudden-death testing using the Weibull distribution

Sudden-death testing describes the parallel testing of a group of identical test pieces. If one
of the test pieces within this group fails, the test is considered as completed. Saving testing
time is the main motivation behind sudden-death testing. Fatigue test data originating
from this method are biased with respect to one by one-results. In order to compare
sudden-death-based results with standard results, this bias needs to be considered. In
the present work, this concept is adopted to enable the comparison of test pieces with
different volumes. Details to this adoption will be given in Section 4.3.
A transformation can be given for CDFs based on one by one-tested test pieces to CDFs
based on group or sudden-death tests [30]:

Fgroup(t) = 1− (1− Fsingle(t))ngroup (2.76)

With ngroup as the number of test pieces within the sudden-death group. For the case
of given sudden-death data, a transformation to one by one-tested test pieces can be
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conducted with the transposed Equation 2.76:

Fsingle(t) = 1− (1− Fgroup(t))1/ngroup (2.77)

Equation 2.76 provides the transformation from one by one to group tested components
or test pieces:

FWB.group(t) = 1− (1− FWB.single(t))ngroup

= 1−
(

1−
(

1− exp
(
−
(
t
η

)β)))ngroup

= 1− exp
(
−
(
n

1/β
groupt
η

)β)
(2.78)

The shape parameter β stays unaffected by the transformation from single to group
tested data (βsingle = βgroup). Only the scale parameter η varies:

1− exp
(
−
(

t
ηgroup

)β)
= 1− exp

(
−
(
n

1/β
groupt
ηsingle

)β)
(2.79)

ηgroup = ηsingle · n−1/β
group (2.80)

For the case of measured sudden-death group data and the need to calculate ηsingle for
the virtual one by one test case, Equation 2.77 is applied:

ηsingle = ηgroup · n1/β
group (2.81)

The median for the one by one case is defined, by use of Equation 2.81, as:

ΦWB.single = FWB.single.inv(0.5) = ηgroup · n1/βgroup
group · (− ln(0.5))1/βgroup (2.82)

Sudden-death testing and confidence limits

In order to determine the sudden-death based confidence limits for the median of the
Weibull distribution ΦWB.single, a modified pivotal function pWB.SD.1 is needed. The shape
parameter β related to the pivotal function pWB.2 (see Equation 2.73), stays unaffected by
the sudden-death transformations like the shape parameter β itself. The pivotal function
pWB.SD.1 is defined in [29] as:

pWB.SD.1(p, n, ngroup) = (1− pWB.2(n)) ln(ngroup) + pWB.1(p, n) (2.83)

The confidence limits for ΦWB.single are:

Φ̃WB.single.s = FWB.single.inv(0.5) · exp
−pWB.SD.1

[
(1−Probability)

2 , n
]

βs

 (2.84)
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˜
ΦWB.single.s = FWB.single.inv(0.5) · exp

−pWB.SD.1
[

(1+Probability)
2 , n

]
βs

 (2.85)
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3 Effects of temperature, cyclic loading, test piece
geometry and dwell periods with focus on mechanical
fatigue: State of the Art

The fatigue of rubber attracted a lot of scientific attention since one of the first studies
from Cadwell et al. in 1940 [6]. In 2002 and 2004 Mars et al. published articles with the
title "A literature survey on fatigue analysis approaches for rubber" [31] and "Factors that
affect the fatigue life of rubber: A literature survey" [32]. Summed up, these two articles
contain 243 citations with a certain but negligible overlap. Yun Lu Tee et al. [33] resumed
this fatigue focused literature survey reviewing articles published between 2002 and 2018
(period of 16 years). They cite 198 articles, leading to 441 publications about rubber
fatigue since Cadwell in 1940 to Yun Lu Tee in 2018. For this reason, sometimes only
substitute-like publications are cited with a large amount of, existing but not cited, articles
concluding similar statements.

3.1 Fatigue influence of temperature

Self-heating with cyclic deflection of test pieces made from filled rubber is inevitable due
to the significant amount of lost energy within the material combined with its low thermal
conductivity.
Already in one of the very first systematic investigations of filled natural rubber fatigue,
the influence of the test piece temperature (range −28 ◦C to 60 ◦C) on lifetime was in
focus [6]. The research on temperature and its implication on fatigue is still ongoing as
evident by current projects (see e.g. [34, 35]). A. G. James measured a decrease in lifetime
with two orders of magnitude for a temperature raise from −30 ◦C to 30 ◦C for different
SBR formulations [36]. With focus on NR, Charrier et el. performed a study on NR for a
temperature range of 10 ◦C to 102 ◦C [37] and found a corresponding decrease in lifetime
of about one order of magnitude. These studies demonstrate the significant influence of
the material temperature on the fatigue and highlight the need to consider this factor
in fatigue measurements. In the study of Ruellan et al. [38] a lot of effort is invested in
the experimental database containing NR based Haigh diagrams (iso-lifetime curves in an
amplitude-mean-load plot) for 23 ◦C, 90 ◦C and 110 ◦C. They describe the challenges to
ensure equivalent test piece temperatures within the three chosen ambient temperatures.
The objective of the present work is not to study the influence of the temperature on the
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fatigue of rubber, instead, the test piece temperature shall be held as constant as possible
for all tests among the experimental databases in the subsequent chapters. An approach
to ensure equivalent test piece temperatures is introduced in Section 4.1.

3.2 Effects of cyclic loading on rubber vulcanisates and its
implication in fatigue tests

A state of the art of relaxation effects during cycling loading and awareness of their
significance in fatigue tests on rubber shall be given. The intention is not to discuss fatigue
testing in general, such as is available elsewhere [31,32,39].
Cyclic creep is an established phenomenon; for example, numerous studies (see e.g. [40,41])
of it have been made for metallic materials. One of the first systematic investigations of
the behaviour of rubber under prolonged cyclic loading was performed by Derham and
Thomas in 1976 [42]. They revealed very much more creeping in the case of cyclic loading
of their filled NR than would be anticipated from the static creep. The majority of this
phenomenon was explained by rubber network reorganisation and permanent internal
rupture caused by NR’s significant ability to crystallise. Since, after the cyclic creep
test with 50 cycles, swelling in solvent and then de-swelling the rubber failed to result in
recovery to the virgin behaviour, they concluded that permanent internal rupture of the
rubber network caused this effect. In contrast for static creep tests, swelling and then
de-swelling resulted in full recovery of the rubber, indicating a purely topological basis of
the creep. Derham and Thomas [42] did not elucidate the relative contributions of changes
to the unstressed configuration (i.e. set) and of reduction in modulus to the phenomenon
of enhanced creep caused by cyclic loading. Comparative cyclic creep tests by Davies
et al. with SBR and NR showed a smaller effect for the SBR based material [43]. Pond
and Thomas investigated the cause of the phenomenon for SBR using swelling. They
found that half of the cyclic creep of SBR can be explained by breakage of crosslinks and
that the other half probably originates from viscoelastically recoverable deformation [44].
Kingston and Muhr [45] studied the effects of the shape of the loading-waveform, frequency
and minimum strain on the cyclic stress relaxation of filled and unfilled NR. They used
nominal simple shear, a near-homogeneous deformation, so that differential effects in the
test piece would have been very small.
Fatigue test pieces commonly contain a region of high deformation, wherein fatigue is
intended to be intensified and studied. This region is typically as far as necessary away
from the relatively lightly loaded regions of clamping or bonding to metal end-fixtures
(see Section 3.3). The intention is to avoid initiation of the failure in the complicated and
uncertain stress-field induced in the region of the clamps or bonding. However, a design
like this causes loading inhomogeneities within the test piece, leading to the possibility of
different rates of modulus reduction and set in the different regions, hence resulting in a
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redistribution of stress [42]. The effect of shifting strain over cyclic deflection is considered
in Standards e.g. ASTM D4482-11 [46] or ISO 6943 [47] for the fatigue determination of
2D-dumbbells. The former Standard recommends a measurement of the maximum strain
and set at 1000 cycles only. However, the ISO 6943 suggests the measurement of the
maximum strain and the set at every tenfold increase in the strain cycle count. The data
of these measurements are incorporated in Equation 3.1 in ISO 6943 giving the maximum
strain [47], reproduced here:

εN = LN − lN
lN

(3.1)

cited from ISO 6943 [47]: where, for dumbbell test pieces:

lN is the unstrained reference length after the test piece has been fatigued for N
cycles;

LN is the distance between the reference lines at maximum clamp separation after
the test piece has been fatigued for N cycles.

However, ISO 6943 gives little guidance on how to take into account the evolution of
the maximum strains εN in lifetime prediction using a Wöhler curve.
Narynbek Ulu et al. developed a concept for real stress controlled fatigue testing [39].
Even if not the main focus of their work, a discussion of the strain evolution over the
cyclic loading is also given. It is stated that the strain decreases over repeated loading.
This statement originates from the idea to always refer the reference length within the
strain calculation to the unstressed configuration of the material. Thanks to the typical
continuously increasing set, the reference length (at zero stress) also increases. A decreasing
strain is the consequence in their theoretical deliberations.

3.3 Uniaxial fatigue test pieces

One may be surprised by the big variety of test piece geometries to measure one material
property only: the fatigue for uniaxial deformation. In the early study of Cadwell et
al. [6] multiple test piece geometries are used (see Figure 3.1). These test pieces were
cyclically loaded along their symmetry axis until rupture. However, Cadwell et al. do not
differentiate within this large amount of test piece shapes when evaluating their fatigue
data.
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Figure 3.1: Test pieces geometries used by Cadwell et al. in [6].

Since Cadwell et al., many more studies followed focusing on different aspects of the
fatigue behaviour of rubber using other test piece geometries. A common test piece used in
the subsequent years is the 2D-dumbbell test piece (see Figure 3.2). This geometry has been
used by, for example, Roberts and Benzies [48]. The 2D-dumbbell geometry is also sug-
gested for fatigue testing of rubber by the Standards e.g. ASTM D4482 [46] or ISO 6943 [47].

Figure 3.2: 2D-dumbbell test piece geometry.

The 2D-dumbbell test piece has beneficial properties in terms of low self-heating under
cyclic loading thanks to the big surface area to volume ratio. The test piece is typically
die-cut from a rubber sheet.
The rotationally symmetric version of the 2D-dumbbell is depicted in Figure 3.3. It is
e.g. used by Abraham [49,50] or Gehrmann et al. [51] to investigate in fatigue-influence
of non-relaxing loadings on a synthetic elastomer. Compared to the 2D-dumbbell, the
3D-dumbbell has a significantly lower surface area to volume ratio, causing an increased
heat build-up for equal amplitudes and frequencies.
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Figure 3.3: 3D-dumbbell test piece and its fixture.

As detailed in [32], there are many factors impacting the fatigue of rubber products.
Several publications fatigued the two test piece geometries shown in Figure 3.4 to investigate
the impact of these factors. Some of these studies were aimed to compare different fatigue
predictors [52–60].

MetalRubber

Figure 3.4: Diabolo and AE2 test piece.

The fatigue test piece in Figure 3.5 is related to the ones from Figure 3.4. It is e.g. applied
in the studies from Flamm et al. [61].

Figure 3.5: Another diabolo-like test piece geometry.

Mars [62] carried out experimental work on multiaxial fatigue of strain-crystallising
and non-crystallising rubber, using a test piece published in [63] (see Figure 3.6). This
test piece does not exhibit distinct uniaxial deformation conditions at the locus of failure
initiation. Nevertheless, it is listed due to its purpose to initiate cracks at the outer surface.
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The database created by Mars [62] was used by other authors for the validations of fatigue
predictors e.g. [64,65].

Rubber Metal

Figure 3.6: Ring test piece by Mars and Fatemi [63]. This schematic sketch shows only
the half of the axis-symmetric test piece.

Yun Lu Tee et al. [33] give an overview of fatigue test pieces and their use in research
published between 2002 and 2017. The most prominent geometries are shown in Figure
3.2 to 3.5. Besides these, Yun Lu Tee et al. mention a few more geometries. All test piece
shapes shown in Figure 3.1 to 3.6 and listed in [33] are united by their propensity to failure
initiation with locus at the surface.
Fatigue results from cracks initiating at the surface of the test piece may be significantly
influenced by the surface finish of the mould or the properties of the partition lines or
flash, which may create unexpected critical flaws at the surface.
A short clarification on the terminology mould partition line and flash: typically a
vulcanisation mould has one or more partitions. The area of such mould partition that is
in contact with the moulding made from rubber during the vulcanisation process, may be
called mould partition line. The consequences of the mould partition line for the moulding,
is a surface imperfection that might be a protrusion, and might be termed as flash.
These surface flaws introduce a variability that may significantly alter the fatigue behaviour
of rubber and hence the accuracy of the corresponding lifetime estimates (see Section
1.2). Additionally, many real life components fail thanks to internally crack initiation [66].
Motivated by this observation, a uniaxial test piece with internal crack initiation was
proposed by Brüger et al. (see Figure 3.7) [66]. The convex metallic inserts cause a
concentration of the maximum deformation, when deformed along the symmetry axis, in
the bulk of the test piece (see red region in Figure 3.7-a).
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Figure 3.7: a) Maximum principal nominal strain εn.max [-] and b) hydrostatic stress σ0
[MPa] mapped on the non-deformed geometry.

However, for fully relaxing tensional loadings Ru = d∼.min/d∼.max = 0, the cracks initiate
close to the insert (see Figure 3.7-a, spot labelled with 0.79) even if the local deformation
at this spot is significantly lower (εn.max = 0.79) compared to the deformation at the
centre of the bulk (εn.max = 1.0). The variables d∼.min and d∼.max stand for the minimum
and maximum global deflection within a sinusoidal loading, respectively. In case of pure
compressive loadings (Ru = −∞), crack initiation in the centre of the test piece can be
found. The spot of crack initiation for Ru = −∞ is exposed to an equibiaxial deformation
and for Ru = 0 to a shearing deformation state [66]. This spot at the insert is close to a
region of hydrostatic loading (see Figure 3.7-b). An influence by cavitation effects on the
failure of the test piece cannot be excluded [67]. Gent summarises the phenomenon called
cavitation to:
If a rubber vulcanisate is subjected to a hydrostatic tension – that is, all three principal
stresses are equal and tensile – then failure may take place by what appears to be a different
mechanism, namely cavitation.
In order to justify a redevelopment of a test piece based on the Brüger geometry (see
Section 4.3), a short assessment of the cavitation-risk is conducted. For the FE results
shown in Figure 3.7 the neo-Hookean material model with a shear modulus G = 0.8 MPa
is used (see Section 2.2). According to Ball [68] and Gent [67, 69] cavitation occurs for
hydrostatic stresses greater than the critical hydrostatic stress σ0.crit:

σ0.crit = 5/6 · E (3.2)

For the chosen shear modulus (G = 0.8 MPa), a critical hydrostatic stress of σ0.crit =
2 MPa is calculated. As shown in Figure 3.7, the hydrostatic stress with σ0 = 2.3 MPa
exceeds σ0.crit. For this reason, the crack initiation might be influenced by cavitation
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effects for the given deflection.
Further on, for cases among which the numerical analysis is performed with the Plagge
material model, the Young’s modulus E is calculated from the initial shear modules at
the tenth load cycle for εn.max < 5 %.

3.4 Fatigue-influence of dwell periods

The new developed test piece from Section 4.3 shall not only be compared with other test
piece geometries but also support the investigation of a possibly fatigue-influencing factor,
namely dwell periods in an otherwise pure sinusoidal load signal.
In order to discuss the existing literature, the nomenclature from Harbour et al. is inherited
[70], as shown in Figure 3.8.

Dwell time, td
Cycle number, Nd

Dwell level, εd

ε∼.max

Time [-]
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Figure 3.8: Nomenclature for fatigue testing with dwell periods (referring to [70]).

In reality, dynamic loads are not perfect continuously sinusoidal by nature. Motivated by
this, Roland and Sobieski studied the influence of long dwell periods (td = 24 h - td = 72 h)
within a durability test on the fatigue behavior of rubber [71]. They found the maximum
impact, a reduction of lifetime by factor 3 to 3.5 for unfilled NR and polyisoprene rubber
(IR) for nearly unloaded (εd = 0.1 · ε∼.max) dwell periods. In the case that εd = ε∼.max,
the same or an even slightly greater lifetime compared to continuous periodic oscillation
test was measured. Both effects were not detectable for their filled NR. Filled IR was not
subject of their investigations.
Harbour et al. studied the impact of dwell periods on the crack growth rate of carbon
black filled SBR and NR materials [70]. In detail, they investigated the influence of
the parameters dwell time td, dwell level εd and number of cycles Nd between the dwell
periods (see Figure 3.8). The crack growth tests were conducted at pure shear test pieces
(dimension: width=150 mm, height=12.5 mm, thickness=1 mm) with a peak strain level
of εd = 27.5 %. Figure 3.9 shows a rapid increase of the crack growth rate with increasing
dwell time td. This increase slows down to a near plateau-like behaviour for dwell times
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td > 10 s. In agreement with the results of Roland and Sobieski [71], Figure 3.10 shows an
increasing crack growth rate with decreasing dwell level εd. The correlation, decreasing
number of cycles between dwell periods Nd increases the lifetime, is shown in Figure 3.11.
For the condition Nd = 5, td = 10 s and εd ≈ 10 % a variation of the cyclic frequency from
0.5 Hz to 3.5 Hz did not impact the crack growth rate.
Within the investigation of Harbour et al. the dependency of the crack growth rate on the
dwell time td for a fixed ratio between Nd and td was not studied.
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Figure 3.9: Carbon black filled SBR: Experimental data points of the crack growth
rate over dwell time td (referring to [70]); Material: carbon black filled SBR;
Constant parameters: Nd = 5 and dwell level εd ≈ 10 %.
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Figure 3.10: Carbon black filled SBR:Experimental data points of the crack growth
rate over dwell level εd (referring to [70]); Constant parameters: dwell time
td = 1 s and Nd = 5.
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Figure 3.11: Carbon black filled SBR: Experimental data points of the crack growth
rate over cycle number Nd (referring to [70]); Material: carbon black filled
SBR; Constant parameters: dwell time td = 10 s and dwell level εd ≈ 10 %.

47



4 Improvements for the characterisation of fatigue

There is a large list of fatigue-influencing factors for rubber materials. In order to free of
interference study them, the single fatigue-influencing factors should be to isolated. By this
means, one is able to allocate the observations of the fatigue study to the isolated factor.
New methods and improvements of existing methods for the isolation or consideration of
certain fatigue-influencing factors are discussed in the present chapter.

4.1 Test piece temperature control for fatigue testing of filled
elastomers

In agreement with the literature (see Section 3.1), Figure 4.1 shows the strong dependence
of the mechanical fatigue on the ambient temperature of a technical rubber. The fatigue
results are based on 3D-dumbbell test pieces. The experiment performed at an ambient
temperature of −30 ◦C was aborted for the lowest load-level (indicated by an arrow), due
to limitations in the test duration.
As a result of internally dissipated energy in combination with the low surface area to
volume ratio, significant self-heating occurs for the 3D-dumbbell test piece. For the lowest
load-levels the fatigue test was performed with a loading frequency of 3 Hz, whereas 1 Hz
is chosen for all other load-levels. An approximate increase of one order of magnitude in
lifetime for a decrease of 50 ◦C is shown in Figure 4.1.
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Figure 4.1: Impact of the ambient temperature on the fatigue behaviour of a technical
rubber; 3D-dumbbell based measurements. All medians are endued with
95 % confidence limits.

4.1.1 Control of the surface temperature

As broached in Section 3.1, the temperature and its implication on the lifetime is not a
main objective of the present study. Instead, the challenge is to maintain the test piece
temperatures as constant as possible for all experiments within the experimental database.
Moreover, it is decided that all investigated test pieces should not significantly heat-up
beyond room temperature.
A suitable way to create an experimental database of fatigue data close to room tempera-
ture is the use of forced convection combined with an adaptation of load frequency for
each load-level. The permanent usage of a temperature chamber to cool the test pieces
was found to be too intricate.
Figure 4.2 shows the impact of forced convection on the surface temperature of a 3D-
dumbbell. The test piece is oscillated with 130 N± 130 N with a frequency of 1.5 Hz. A
maximum surface temperature of greater than 50 ◦C at thermal equilibrium without forced
convection is measured using an infra-red sensor. The surface temperature rapidly drops
below 30 ◦C for an ambient temperature of 25 ◦C after starting the air-flow.
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Figure 4.2: Cooling impact by forced convection at the example of a 3D-dumbbell.

For failure initiation with locus in the bulk material, thus not at the surface, not only
the surface temperature but the also bulk temperature is of interest. The major question
is if the bulk temperature decreases in the same way as the surface temperature when
using forced convection. Equation 4.1 shows the general heat equation [72]:

∂

∂t
T (~x, t)− λcond

%c
∇T (~x, t) = q̇(~x, t)

%c
(4.1)

with T as the temperature and q̇ as heat flow at the location ~x and time t, ∇ as Laplace
operator and λcond, %, c as thermal conductivity, density and heat capacity, respectively. For
an infinite long cylinder, with an internal homogeneous heat source, in thermal equilibrium,
the centre temperature is given by:

Tr=0 = q̇

λcond

(
R

2

)2
+ Tr=R (4.2)

with R as the cylinder radius. It is assumed that the thermal conductivity λcond and
heat flow q̇ are independent on the temperature T . Based on these assumptions, the centre
temperature Tr=0 decreases in the same way as the surface temperature Tr=R once the fan
is activated.
With the 3D-dumbbell geometry in mind, the assumption of an infinite long cylinder might
appear quite inaccurate. In order to validate the applicability of Equation 4.2 on the 3D-
dumbbell an interrupted fatigue test is performed. The test is terminated due to a sudden
cut with a razor blade. This test is conducted with and without forced convection. In both
cases, the cut is performed at thermal equilibrium and at the location of maximum surface
temperature. The goal is to measure the centre temperature Tr=0 of the 3D-dumbbell with
respect to its surface temperature Tr=R. Within the first deci-seconds after the cut, the
centre temperature is captured by an infra-red camera, positioned in a steep angle to the
cut surface of the test piece (see Figure 4.3).
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sudden cut

0.3 seconds

62 ◦C

Figure 4.3: By a sudden cut with a razor blade, terminated fatigue test, recorded with
an infrared camera.

The considered load conditions are 130 N± 130 N at 1.5 Hz and 290 N± 90 N at 4.4 Hz.
Figure 4.4 shows the measured surface temperatures and the corresponding centre temper-
atures with and without forced convection. A decrease of the centre temperature with
the same magnitude as the surface temperature is measured for the uncooled and cooled
test. For this reason, the assumptions from Equation 4.2 are reasonably correct. A small
variation of the temperature difference between centre and surface for the uncooled and
cooled 130 N ± 130 N conditions (Tr=0 − Tr=R = 8 ◦C and Tr=0 − Tr=R = 10 ◦C, respec-
tively) is observed. Performing the razor blade cut at the location of maximum surface
temperature while the running fatigue test is more difficult for this condition compared
to the permanently stretched 290 N ± 90 N case. In addition, the overall temperature
drop is greater for the 130 N± 130 N case. Possible temperature dependencies of material
properties like the thermal conductivity λcond must have a greater impact.
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Figure 4.4: Impact of forced convection on surface and volumetric centre temperature.

Here, a simplified test frequency adaptation is chosen. Within a Wöhler curve database
one test condition (defined by: amplitude, mean load and frequency) is set as reference.
For reasons of limits in test duration, this reference condition should be one for which
cooling below a chosen threshold temperature is just possible. The frequency for all other
load conditions is subsequently adopted based on the reference amplitude. The following
rule is applied: double amplitude corresponds to halve load frequency. This significantly
lowers the influence of temperature by self-heating but also causes approximately equal
loading velocities among the database.
A more sophisticated approach would be based on equal dissipated power related to the
test piece surface. The former approach is chosen for its simplicity. For each test condition
the surface temperature at thermal equilibrium is monitored in order to detect possible
transgressions of the chosen threshold temperature.

4.1.2 Conclusions

• Test piece temperature variations of some degrees influence the lifetime of the
investigated elastomer significantly.

• A significant reduction of the surface temperature of a test piece close to ambient
temperature can be achieved by forced convection.

• The bulk temperature decreases equally to the surface temperature for the investi-
gated test piece geometry and loading conditions.
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• Forced convection, combined with an amplitude dependent frequency adaption, is
an effective method to control the test piece temperature among all fatigue tests in
this work.
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4.2 Displacement-controlled fatigue testing of rubber is not
strain-controlled

Former Section 4.1 discusses the control of the test piece temperature in fatigue tests. The
present section considers the findings from Section 4.1 and investigates the behaviour of
the local strain during displacement-controlled cyclic loading. Information to the state of
the art to this subject is given in Section 3.2.

4.2.1 Introduction

In research, tests with simple test pieces are used to quickly gather insights about the fatigue
behaviour of rubber under the conditions of interest. In a more industrial environment,
these kind of tests are often performed as a foundation for end-of-life prediction of
components, using the procedure developed by August Wöhler [5] (see Section 1.2).
Displacement-controlled fatigue testing is the most convenient way. The corresponding
test rigs can be made in a purely mechanical way (e.g. with a simple eccentric as in [6]).
No control loop such as, for example, for force-controlled testing is needed.
A procedure of displacement-controlled testing of the 2D-dumbbell (geometry defined
in ISO 6943 [47]) is to establish first, using an auxiliary extension device and a single
deformation, what displacement between the clamped dumbbell tabs is required to produce
the desired elongation in the narrow portion of the 2D-dumbbell, and then adjust the
fatigue machine to apply the same maximum displacement for each cycle. The assumption
is that the maximum elongation of the narrow section is constant for all subsequent cycles.
The validity of this assumption is quantitatively assessed in this work.
Section 4.2.2 provides information about the material composition, the test piece, the test
set up, the test definition and the raw test results. Within Section 4.2.3 the test data
are used to transform the experimentally measured varying strain to constant equivalent
strain with Concept 1 (Page 63) and a more sophisticated alternative approach (Concept
2, Page 67). Additionally, the contribution of set to the evolution of maximum strain in
the narrow test piece portion is discussed starting from Page 70, where the term set refers
to change in the stress-free material configuration after application and removal of stress
and not significantly recoverable in the period of the stress cycle.
A discussion and finite element analysis of the experiments can be found in Section 4.2.4.
Finally, conclusions in the form of a numbered list are given in Section 4.2.5.

4.2.2 Experiments

In the present study the strain in the narrow section of a 2D-dumbbell was measured over
the duration of cyclic loading conditions.
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Material
Two materials are used. The compositions of the filled NR and SBR compound are shown
in Table 4.1. They are the same as discussed in some previous publications, wherein
additional aspects of properties may be found [73–78].

Name NR SBR
Ingredient phr

NR SMR CV60 100
NR 1712 137.5
N330 45
N339 77

SUNTHENE 410 4.5
ZnO 3 3

Stearic acid 2 1
6PPD 3 3
CBS 0.6

TMTD 0.2
TBBS 1.6
Sulphur 2.5 1.6

Table 4.1: NR and SBR formulations (phr ≡ parts per hundred of rubber, by mass)

Test piece
The chosen test piece is die-cut from a moulded sheet, nominally 2 mm thick, conforming
to the (flat, not axisymmetric) 2D-dumbbell geometry defined in ISO 37:2011 [79]. Both
ends of the test piece are clamped. To reduce the probability of failure initiation by the
clamps, the 2D-dumbbell has a width of 12.5 mm at the ends, compared to 4 mm in the
narrow portion.

Strain measurement
The cyclic loading is applied in a fatigue test rig with a simple adjustable eccentric to
apply the varying displacement as shown diagrammatically in Figure 4.5. This machine
incorporates a computerised logging system for the load transducers and a single displace-
ment transducer for the motion of the bar to which the bottom clamps are fixed. Each load
cell is mounted on a linear actuator with feedback control, for the option of maintenance
of a peak maximum force, but this mode was not used for the work reported in this paper.
Instead, the top clamps were fixed in position.
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Figure 4.5: Test Rig. Top to bottom: load cells, test pieces attached to adjustable static
clamps, lower moving clamps fixed to a common guided beam, eccentric
drive.

Each dumbbell has two marked positions within the narrow section (see little white dots
in Figure 4.5 and solid red arrow in Figure 4.6). To capture the separation between these
two marks, a standard digital camera is used. Rulers placed in-plane serve as references
for the separation measurements (see dashed arrow in Figure 4.6). A ruler is positioned
next to each specimen to cover possible distortions in the images taken by the camera.
For the evaluation of the separation measurements the closest ruler is chosen as reference,
to convert the number of pixel to millimetre. In order to further convert these separation
measurements into strains, the dumbbells are also measured with the photo camera method
in the undeformed state before any displacement is applied.
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Figure 4.6: Photograph of the maximum deformed dumbbells to measure the strains in
the narrow section. The solid arrow stands for the maximum separation of
the narrow section whereas the dashed arrow serves for the conversion from
pixel into millimetre.

The following measure of lengths, referring to ISO 6943, are given [47]:

lN is the distance between the gauge marks at the zero load point of cycle N .

l0 is the initial gauge mark separation (ref configuration) measured in undeformed
state before any displacement is applied.

LN is the distance between the gauge marks at maximum clamp separation at cycle
N .

Based on these measures of lengths, stretches are defined:

λN = LN
lN

(4.3)

λset.N = lN
l0

(4.4)

λtot.N = λN · λset.N = LN
l0

(4.5)

The nominal strains are consequently defined as:

εn.N = λN − 1 = LN − lN
lN

→ equal to Equation 3.1 (4.6)
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εn.set.N = λset.N − 1 = lN − l0
l0

(4.7)

εn.tot.N = λtot.N − 1 = LN − l0
l0

(4.8)

Further, one may define:

εn.MS.N = λtot.N − λset.N = LN − lN
l0

(4.9)

So that the total strain εn.tot.N is split into set strain εn.set.N and another part, here
provisionally called material softening strain εn.MS.N :

εn.tot.N = εn.set.N + εn.MS.N (4.10)

Test protocol
Four amplitudes are defined for both materials. All tests are performed in fully relaxing
conditions, with respect to the global deflection (Ru = d∼.min/d∼.max = 0). Buckling of
the test pieces is not avoided. The amplitudes range from roughly εn.tot.1 = 90 % to
εn.tot.1 = 180 % nominal strain. In general a standard displacement-controlled fatigue
test is performed. The test rig is able to simultaneously cycle 12 dumbbells (Figure 4.5
only shows the half machine for simplicity). Only 6 of the total 12 2D-dumbbells are
photographed for the strain evaluation. The fatigue test is interrupted for the time of
recording the image after a selected number of cycles (the data from Chapter 6 prove
the independence of the lifetime to these dwell periods). Except for the reference photo
for the strain determination, all images are taken in the maximum deformed state of the
specific test condition. This means that only LN and l0 (not lN) were measured with
the photo camera method. To minimize the influence of temperature by self-heating and
different loading velocities the test frequencies are modified for each loading condition.
For the smallest of the four amplitudes, corresponding to roughly εn.tot.1 = 90 %, the
maximum frequency of the fatigue machine is used (4.5 Hz). Accordingly, a frequency
of 2.25 Hz is chosen for the largest amplitude, corresponding to roughly εn.tot.1 = 180 %.
Independent of the loading conditions, a fan is pointed on the specimens for all tests to
reduce the maximum surface temperature to 28 ◦C or lower (see Section 4.1). The surface
temperature is measured with an infra-red camera. Thanks to the large surface to volume
ratio of the 2D-dumbbell it can be assumed that the bulk temperature approximately
equals the surface temperature. The ambient temperature is controlled at 21 ◦C by an air
conditioning system.
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Test results
Figure 4.7 shows the strains εn.tot.N for each of the six evaluated positions in the test
rig, as determined using the camera method. The results of the εn.tot.1 ≈ 90 % fatigue
test of the NR mixture are chosen to illustrate the typical behaviour. The fatigue test
was interrupted four times, including the first cycle, to record an image. All test pieces
experience the same displacement-controlled amplitude. Nevertheless, the strains in the
narrow section increase. The scattering of strain at maximum deflection among the test
pieces originates from the manual clamping of the 2D-dumbbell; small deviations are
inevitable when operated by a human. The -symbol is the mean value for all test pieces
for each time point.
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Figure 4.7: NR: Measured nominal strain εn.tot.N over Cycles.

Re-plotting Figure 4.7 in a semilog-plot reveals a logarithmic creep behaviour, in
accord with the results of Derham and Thomas in their cyclic creep tests for a filled NR
material [42]. All other measurements show the same nearly perfect logarithmic behaviour
until the rupture of the dumbbell, independent of the loading condition and of the two
filled materials. As a guideline for the eye, the mean values ( ) are fitted by a logarithmic
function (see Equation 4.11).

εn.tot.N ≈ a · ln(N) + b (4.11)

With N as number of cycles and a, b as parameters.
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Figure 4.8: NR: Measured nominal strain εn.tot.N over log(Cycles). Each mean is endued
with 95 % confidence limits (⊥,>), based on a Gaussian distribution.

Figure 4.9 shows the logarithmic fits for each loading condition and material. The plots
are truncated at the mean number of cycles to failure ( -symbol). For the curves with the
same symbol (•, �, N, �), the same displacement-controlled amplitude is applied. The
differences in material behaviour lead to significant variations in the strains even at the
first loading cycle. The measured strains in the first cycle εn.tot.1 are used for the notation
in the diagram’s legend. The NR material shows larger strains in the narrow section of the
2D-dumbbell. In general, the NR-based material shows much greater creep-rates (strain
change at maximum displacement over cycles) compared to the SBR-based material, as
observed also by Davies et al. [43].
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Figure 4.9: NR & SBR: Mean of the measured strains εn.tot.N over cycles for all
loading conditions. Only the fitted logarithmic curves are shown and plotted
until the end-of-life. The legend gives the initial set-up strains εn.tot.1 (see
Equation 4.8).

Table 4.2 provides the values of the fitted logarithmic function from Equation 4.11. The
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parameter a describes the slope, mean creep-rate and parameter b the offset, here the
strain at the first cycle εn.tot.1.

NR Material a b SBR Material a b
NR 97 % 0.0071 0.9673 SBR 96 % 0.0033 0.9589
NR 123 % 0.0132 1.2273 SBR 118 % 0.0063 1.1764
NR 162 % 0.0252 1.6188 SBR 150 % 0.0079 1.5025
NR 188 % 0.04 1.8781 SBR 179 % 0.009 1.7934

Table 4.2: Parameter values of the fitted logarithmic function from Equation 4.11.

Even if the total strain εn.tot steadily increases, the maximum reaction force decreases
(see Figure 4.10). Here, the end-of-life or failure is reached if the dynamic stiffness drop
cannot anymore be associated with the material specific viscoelastic stiffness drop (see
Figure 4.10). This concept is applied for all fatigue tests throughout this work, not only
in the current section and chapter.
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Figure 4.10: NR & SBR: Measured maximum reaction force over cycles (Force∼.max)
for all loading conditions. Only one test piece data set, with the end-of-life
as close as possible to the mean end-of-life, per load-level is shown. The
legend gives the initial set-up strains εn.tot.1.

The Wöhler curves of the NR and SBR materials are shown in Figure 4.11. Each
median is endued with 95 % confidence limits (`a and ⊥,>). The vertical positions of the
medians and the vertical confidence limits (⊥,>) are based on a Gaussian distribution
while the horizontal positions of the medians and the horizontal confidence limits (`a) are
calculated based on the log-normal or Weibull distribution, depending on which of them
describes best the statistics of the data-points. Information of statistics based on these
two distribution can be found in Section 2.3. Each combination of horizontal median and
confidence limits is based on 12 data points. Noting that the same number of data-points
stands behind each confidence limit, the data for the SBR-based material can be surmised
to have greater scattering in end-of-life, as is often seen; see e.g. [80]. For reasons of
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demonstration, the strains εn.tot.1 of the first loading cycle are used for the depiction of
the two Wöhler curves.
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Figure 4.11: NR & SBR: Wöhler curves in comparison.

The median values are additionally listed in Table 4.3 and the power-law parameters in
Table 4.4, Page 67.

NR Material Median [Cycles] SBR Material Median [Cycles]
NR 97 % 277 309 SBR 96 % 1 463 538
NR 123 % 111 010 SBR 118 % 133 008
NR 162 % 30 162 SBR 150 % 21 747
NR 188 % 13 048 SBR 179 % 7 245

Table 4.3: Median end-of-life values of the NR and SBR materials from Figure 4.11.

4.2.3 Evaluation

From Section 1.2: The Wöhler concept is to express lifetimes (measured in cycles to failure)
as a function of the amplitude of a repeated mechanical duty cycle. A plot of the amplitude
against log(lifetime) – the Wöhler curve – may then be interpolated or extrapolated to
estimate the maximum amplitude consistent with a desired lifetime. In the following a
method is introduced to address the change of strain over cycles in the evaluation of the
Wöhler curve data. A Wöhler curve is defined by:

Load
�
��(N) = ε

�
��(N) = εn.const = α ·Nγ

eol (4.12)

where Neol (eol: end-of-life) is the lifetime and α, γ are power-law parameters. As
indicated by the cancelled dependency of the duty cycle amplitude on the number of cycles
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(��(N), see Equation 4.12), the Wöhler curve from its nature does not consider a changing
amplitude over cycles or time. The conception is that from tests at a constant duty cycle,
such as εn.const, we find the corresponding values of N at which the end-of-life criterion is
reached; these test results enable us, through interpolation and possibly extrapolation,
to map from a given requirement for Neol to the maximum duty cycle, or, for a given
duty cycle, what value of lifetime would be achievable. However, our test data shows
that, despite following the standard procedure, we do not achieve the ideal of a constant
strain cycle. Thus, the increasing strain over cycles needs to be replaced by an equivalent
constant strain, serving as a representative measure of the magnitude of a repeated duty
cycle. This is quite extensively discussed here in two possible concepts with Chapter 5,
6 and Section 4.3 in the back of one’s mind where different fatigue test pieces will be
compared.

Concept 1: Consideration of varying strains

It is assumed that the law of linear damage accumulation holds within this study; this
has been referred to as Miner’s rule [81]. This assumption is reasonably applicable for
the NR material [82,83]. However, more to doubt for the SBR material [84]. It is further
assumed that the current strain amplitude in the fatigue cycles serves as a measure of
their propensity to cause damage to the material.
The aim is to transfer the constantly increasing strain to an equivalent constant strain
value. It is assumed that cyclic straining accumulates damage in a linear way until the
failure of the test piece, according to the law of linear damage accumulation. Figure
4.12 illustrates the concept for the NR 162 % loading condition; the area A1 underneath
the εn.tot.N curve over cycles is defined to be the accumulated damage. In case of the
logarithmically changing strain described by Equation 4.11 the area is:

A1 =
Neol∫
0

εn.tot.N(N)dN = Neol(a · ln(Neol) + b− a) (4.13)
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Figure 4.12: NR: εn.tot.N over cycles with blue highlighted measure of damage, area
A1.

In case of constant strain over cycles, the area is given by (see Figure 4.13):

A2 =
Neol∫
0

εn dN = εn.const ·Neol (4.14)

In order to calculate the equivalent constant strain εn.const the area (or damage) A1 and
A2 are set equal (see Equation 4.15).

A2 = A1 → εn.const = a · ln(Neol) + b− a (4.15)

The result for εn.const based on Equation 4.15 is shown in Figure 4.13. A large magnifica-
tion of Figure 4.13, shown in Figure 4.14, is necessary to be able to differentiate between
the calculated εn.const and the measured strains at the end of the fatigue test εn.tot.Neol .
The difference between the strains at end-of-life and εn.const appears initially surprisingly
small. A re-plot of Figure 4.13 with linear abscissa eliminates the initial surprise (see
Figure 4.15).
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Figure 4.13: NR: εn.tot.N and εn.const over cycles with blue highlighted measure of
accumulated damage in case of constant strain εn.const, area A2.
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Figure 4.14: NR: Zoom of Figure 4.13 as highlighted.
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Figure 4.15: NR: Figure 4.13 with linear abscissa and enlarged ordinate.

Considering not only the strains from the first cycle εn.tot.1 (see Figure 4.11) but the
increase of strain over cycles in the displacement-controlled fatigue test, leads to shifted
Wöhler curves (see Figure 4.16). These Wöhler curves are plotted, based on εn.const defined
in Equation 4.15. The slope of the SBR material Wöhler curve stays almost unaffected
compared to the NR material (see Table 4.4). This suggests that the modification of the
Wöhler curve depends on the material as well. The values for εn.const based on this concept
are listed in Table 4.5.
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Figure 4.16: NR & SBR: Wöhler curves from Figure 4.11 using εn.const instead of the
strain from the first loading cycle εn.tot.1.
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Material α γ
NR, εn.tot.1 14.044 -0.2112
NR, εn.const 21.265 -0.2377
SBR, εn.tot.1 5.266 -0.1235
SBR, εn.const 5.366 -0.1211

Table 4.4: NR & SBR: Wöhler curve / power-law parameters from Figure 4.16. The
parameters are defined in Equation 4.12.

εn.tot.1 εn.tot.Neol εn.const
187.81 % 225.71 % 221.72 %
161.88 % 187.87 % 185.35 %
122.73 % 138.06 % 136.74 %
96.73 % 105.62 % 104.92 %

Table 4.5: NR: Strain comparison, starting with the strain measured in the first cycle
εn.tot.1, the cycle at end-of-life εn.tot.Neol and the equivalent constant strain
εn.const.

Concept 2: Consideration of varying strains

The small magnitude, but negative sign, of the Wöhler power law exponent γ (see Equation
4.12) implies that the propensity to damage increases very strongly with the cyclic strain
amplitude. The possible significance of this statement, valid for 0 > γ > −1, in choosing a
representative value εn.const for the evolving strain magnitude observed in the fatigue tests
was not considered in Concept 1 above so is considered here.
A virtual example, based on the slope γ ≈ −0.12 of the Wöhler curve for SBR (see Table
4.4) makes the strength of the effect clear. For γ ≈ −0.12, the lifetime at a strain amplitude
of 200 % would be reduced by a factor of approximately 1/320 compared to that at an
amplitude of 100 %, rather than halved. This simple property significantly complicates
the concept introduced in Equation 4.15, but will turn out to have very little impact on
the εn.const. To meet this load sensitivity, a weight factor ω(N) is introduced in Equations
4.13 and 4.15 for the areas (A1) and (A2) underneath respectively the non-constant strain
and the constant strain εn.const:

A1 =
Neol∫
0

εn.tot.N · ω(N) dN (4.16)

A2 =
Neol∫
0

εn.const · ω(N) dN (4.17)

with:

w(N) = Aref

A(N) = εn.ref ·Neol(εn.ref)
εn.tot.N ·Neol(εn.tot.N) (4.18)
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where Aref stands for the reference area. This reference area is based on the strain from
the first cycle (see Figure 4.17). Using the example of the NR εn.tot.1 = 162 % case, the
reference area is Aref = 162 % · 27616 cycles. The Neol for εn.ref differs somewhat from
the value in Table 4.3 since it is calculated using the NR power-law (see Equation 4.12),
fitted to the data points from Table 4.3. In the same way, the area at end-of-life can be
calculated as Aeol = 188 % · 13648 Cycles, and is highlighted in red in Figure 4.17. This
example demonstrates that, based on the information of the NR Wöhler curve, the strains
close to the time-point of rupture are 1.744 times more damaging compared to the strains
at the beginning of the fatigue test:

w(N) = Aref

Aeol
= 162 % · 27616 Cycles

188 % · 13648 Cycles = 1.744
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Aref = εn.ref ·Neol(εn.ref)

A(N) = εn.tot.N ·Neol

end-of-life [Cycles]

ε n
[-]

NR power-law

Figure 4.17: NR: Different areas representing damage with focus on the NR 162 %
loading case. The area highlighted in red is the area based on the strain
at end-of-life. The NR power-law used here is that fitted to the εn.tot.1 vs
median values of Neol given in Table 4.4.

This procedure needs to be performed continuously within the integrals from Equation
4.16 and 4.17. For that, the Wöhler curve power-law is plugged into Equation 4.18:

w(N) = Aref

A(N) = εn.ref ·Neol

εn.tot.N ·Neol(εn.tot.N) =
εn.ref · exp

(
ln(εn.ref/α)

γ

)
εn.tot.N · exp

(
ln(εn.tot.N/α)

γ

) (4.19)

As for Concept 1 the areas (damages) A1 and A2 are set equal:
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A1 =
Neol∫
0

εn.tot.N · ω(N) dN =
Neol∫
0

εn.const · ω(N) dN = A2

Now, Equation 4.19 can be used to substitute for the weight factor ω(N):

Neol∫
0

εn.tot.N ·
εn.ref · exp

(
ln(εn.ref/α)

γ

)
εn.tot.N · exp

(
ln(εn.tot.N/α)

γ

) dN = εn.const

Neol∫
0

εn.ref · exp
(

ln(εn.ref/α)
γ

)
εn.const · exp

(
ln(εn.const/α)

γ

) dN

Partly solving and simplifying the above equation leads to:

Integral︷ ︸︸ ︷
Neol∫
0

exp
(

ln(εn.tot.N/α)
γ

)
dN = Neol · exp

(
− ln(εn.const/α)

γ

)

The strain εn.tot.N depends on the number of cycles N , as described by the logarithmic
Equation 4.11, making the integral on the left side analytically difficult to solve. It is
solved numerically in Matlab and for reasons of clarity labelled as Integral. Finally
the equivalent constant strain εn.const considering the large load - small load sensitivity is
defined as:

εn.const = α · exp (γ · ln(Integral/Neol)) (4.20)

A shift of the single load-levels and consequently of the complete Wöhler curve, by
applying Equation 4.20, can be performed, as conducted for Concept 1 in Figure 4.16. The
difference is now, that the definition of the equivalent constant strain εn.const (see Equation
4.20) contains the Wöhler curves power-law parameter. Therefore, the shift of the Wöhler
curve happens in an iterative way until convergence is reached, as sketched in Figure 4.18.
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εconst = α · exp (γ · ln(Integral/Neol))

Figure 4.18: Iterative shift of the Wöhler curve.

One might expect a significantly stronger shift thanks to the extended Concept 2 in
comparison with the simple Concept 1. The comparison in Table 4.6 shows only small
differences in the values of εn.const between the two concepts. For the NR 162 % case, 82 %
of the entire strain increase takes place within the first 15 % of the lifetime. Because of
the long period of approximately constant strain, the influence when comparing Concept 1
and Concept 2 is negligible. However, one would be making a mistake were one to choose
to measure the strain for the evaluation in a Wöhler curve plot within the first quarter of
the lifetime.

Strain at N = 1 Strain at N = Neol
εn.const

based on Concept 1
εn.const

based on Concept 2
187.81 % 225.71 % 221.72 % 221.83 %
161.88 % 187.87 % 185.35 % 185.41 %
122.73 % 138.06 % 136.74 % 136.77 %
96.73 % 105.62 % 104.92 % 104.93 %

Table 4.6: NR: Strain comparison, starting with the strain measured in the first cycle,
the cycle at end-of-life, followed by the equivalent constant strain εn.const
calculated based on Concept 1 and 2.

Share of the set on strain increase over cycles.

The phenomenon of the increasing strain εn.tot.N over cycles is caused by different cyclic
creep between narrow section (higher peak stress) and the wider clamping area (lower
peak stress) of the 2D-dumbbell; it is consequently geometry dependent. In order to
investigate the influence of the geometry on this effect three test piece geometries were
chosen (see Figure 4.19). They vary in degree of non-uniformity of cross-sectional area
along their lengths. The cross-section area is constant for the strip test piece. All test pieces
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are die-cut from a 2 mm sheet. The cyclic deformation is applied using a Zwick/Roell
Z010 equipped with an optical strain measure module. The marks for optical strain
measurement were placed according to the Standard ISO 37 [79] in the narrow section.
Using this Zwick machine provides the possibility to stretch the test pieces up to a given
cross-head displacement and unload them to the unstressed state, rather than to the
initial crosshead position. Reloading is resumed without significant pause. This enables
the direct measurement of set in the narrow section. Such force-controlled unloading is
not possible with the fatigue test rig sketched in Figure 4.5. Using the time-point of
buckling from the fatigue force-displacement data to calculate the set turned out to be too
imprecise. The cross-head displacements and the resulting εn.tot.1 were chosen to replicate
the load-levels of the fatigue tests. Only 3 out of the 4 fatigue test load-levels and one test
piece were chosen per material and geometry to reduce test time. The test pieces were
cycled with a frequency of f ≈ 0.01 Hz, more than two orders of magnitude less than for
the fatigue test conditions. The displacement-time histories were also triangular, rather
than approximately sinusoidal, as for the TARRC fatigue machine from Figure 4.5.

4 80
4

12.5

75 25
450 16

8.5

Figure 4.19: Geometry of 2D-dumbbell (see [79]), type 3 dumbbell (see [79]) and strip
test pieces (f.l.t.r.).

Figure 4.20 shows εn.tot.N and εn.set.N for the three test pieces geometries. As for the
strain data collected during the fatigue tests, the datapoints are fitted with a logarithmic
regression (see Equation 4.11). For simplicity the single datapoints are displayed for the
2D-dumbbell only. Solely the regression function is plotted for the type 3 and strip test
pieces for all diagrams within Figure 4.20.
The behaviour of εn.set.N is approximately equal for all geometries, since this value is
measured in the stress-free state. Only in the case of a strong increase of εn.tot.N with
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respect to the initial strain εn.tot.1 can an impact of the test piece geometry be observed
(see e.g. case NR 188 % in Figure 4.20). Since the material softening and the formation
of set takes place uniformly within the strip, the strain at maximum deflection εn.tot.N

cannot change over cycles, assuming perfect control and end clamping. The regression
function shows an almost constant, slightly decreasing behaviour. This decrease might be
a consequence of small movements/slippage from the test piece in the clamps, since the
load on the clamping section of the strip is larger compared to the dumbbells. Another
possible explanation are the small deviations in thickness of the mould sheet the strip is
die-cut from, causing small material softening and set inhomogeneities.
Initially focusing on the lowest load-level, four times less increase of εn.tot.N over cycles for
the SBR material compared to the NR material can be observed, although the increase in
εn.set.N is very similar for both materials. Softening and set appear to distribute differently
between narrow and wide sections, and, furthermore, this difference must be material-
dependent. The basic statements made for the lowest load-level in Figure 4.20 hold for
the higher load-level as well.
The increase of εn.tot.N is slightly stronger for the 2D-dumbbell compared to the type 3
dumbbell. The non-uniformity in local deformation is larger for the 2D-dumbbell. An
overview over all creep rates with respect to ln(N) is given in Figure 4.21 for the NR
material and in Figure 4.22 for the SBR material.
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Figure 4.20: NR & SBR: εn.tot.N and εn.set.N of the three test piece geometries from
Figure 4.19 measured with the Zwick test rig. Maximum deformations are
intended to be equal to fatigue load cases labelled in the box within the
each diagram.
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The creep rate with respect to ln(N), slope of the lines in Figure 4.20, is given by:

∆ε = d ε
d ln(N) (4.21)

These creep rates are shown for the different load-level, geometries and for the strains
εn.tot.N and εn.set.N in Figure 4.21 for NR and in Figure 4.22 for SBR. The data from
the fatigue tests with the dumbbell ( ) match the data from the hundred times slower
Zwick test rig ( ) especially for the higher load-level well, since the camera method
becomes more accurate with larger strains. It is concluded that the creep rate ∆εn.tot.N is
much more dependent on the number of cycles rather than on time for the investigated
materials. For this reason Thomas and co-workers referred to the phenomenon as cyclic
creep, distinct from time-dependent creep [42].
Independent from the load-level, geometry and material, the creep rates of the set ∆εn.set.N

( , , ) coincide. Additionally, the creep rate ∆εn.tot.N of the 2D-dumbbell is always
greater than the creep rate ∆εn.tot.N of the type 3 dumbbell, since the the deformation
is more uniform in the type 3 dumbbell. The strip test pieces always shows creep rates
∆εn.tot.N close to, or slightly below, zero based on its entire uniform deformation field.
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∆
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Figure 4.21: NR: Creep rates ∆ε with respect to ln(N) for the different load-level and
test piece geometries. The data from the fatigue tests with the 2D-dumbbell
are shown as well.
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Figure 4.22: SBR: Creep rates ∆ε with respect to ln(N) for the different load-level and
test piece geometries. The data from the fatigue tests with the 2D-dumbbell
are shown as well.

A major difference between the NR and SBR material is the ratio of ∆εn.tot.N and
∆εn.set.N for the two types of dumbbell test pieces. For the NR material the creep rate
∆εn.tot.N is up to 3 times greater than ∆εn.set.N whereas for SBR the creep rate ∆εn.tot.N is
less than ∆εn.set.N for all load-levels. Having Equation 4.10 (Page 58) in mind, the latter
observation for SBR (∆εn.tot.N < ∆εn.set.N ) might be unexpected. In order to consider the
interaction of the narrow with the wide section of the dumbbells and their role in the
relation of ∆εn.tot.N to ∆εn.set.N a simplified linearised dumbbell model is used.

Simple dumbbell model
To word qualitative statements about the share of ∆εn.set.N on ∆εn.tot.N a simplified model
of a dumbbell is introduced. The idea is to evaluate the ratio of ∆εn.tot.N and ∆εn.set.N for
certain assumptions, including that of infinitesimal elastic and set strains, and afterwards
qualitatively compare the results with the experimental data from Figure 4.21 and 4.22.
Within the simplified model the wide section and narrow sections are replaced by linear
spring-like elements. Linear springs are assumed to be sufficient since only the moments
of maximum deflection are of interest using this model. These spring elements are allowed
to have different moduli (Ena, Ewi), different sets (εn.set.na, εn.set.wi) and different initial
lengths (lna, lwi). As a consequence, they undergo different deflections (dtot.na, dtot.wi) or
total strains (εn.tot.na, εn.tot.wi), if a global deflection (dovl) is applied.
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wide→ wi. narrow→ na.

Ewi → Stiffness
εn.set.wi
εn.tot.wi

dovl

Ena → Stiffness
εn.set.na
εn.tot.na

dtot.wi → Deflection
lwi → Initial spring length

dtot.na → Deflection
lna → Initial spring length

Figure 4.23: Simplified model of a dumbbell test piece.

Eliminating the stress on the simplified dumbbell in favour of the total deformation dovl,
the total deflection dtot.na of the spring, representing the narrow section of the dumbbell,
is given by:

dtot.na = lna · εn.tot.na = dovl − lna · εn.set.na − lwi · εn.set.wi

1 + Ena
Ewi

+ lna · εn.set.na (4.22)

In order to investigate the impact of the set creep rate ∆εn.set.N on ∆εn.tot.N , differentia-
tion with respect to ln(N) of Equation 4.22 is conducted. It is initially assumed that: a)
εn.set.na follows a logarithmic behaviour with slope ∆εn.set.na, b) εn.set.wi is neglected, c) the
ratio of the moduli is constant and equal to one:

a) εn.set.na = ∆εn.set.na · ln(N) + b b) εn.set.wi ≈ 0 c) Ena

Ewi�
��(N) ≈ 1

Performing the differentiation of Equation 4.22 based on these assumptions one obtains:

∆εn.tot.na = −∆εn.set.na

2 + ∆εn.set.na = 0.5 ·∆εn.set.na (4.23)

Based on Equation 4.23 the creep rate of εn.tot.na is half of the creep rate of εn.set.na. A
positive ∆εn.set.wi smaller than ∆εn.set.na would lower this ratio since its set is subtracted
from the global deflection dovl.
This result is compared with a case where the ratio of the modulus is constant over cycles
and equal to 0.32, being the ratio of the width of the narrow to the wide section (4/12.5)
of the 2D-dumbbell:

a) εn.set.na = ∆εn.set.na · ln(N) + b b) εn.set.wi ≈ 0 c) Ena

Ewi�
��(N) ≈ 0.32

The differentiation of Equation 4.22 results in:

∆εn.tot.na = −∆εn.set.na

1.1 + ∆εn.set.na = 0.24 ·∆εn.set.na (4.24)
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Lowering the ratio of the modulus leads to a lower impact of ∆εn.set.na on ∆εn.tot.na.
Even if the model from Figure 4.23 is a strong simplification of the dumbbell test piece
made from filled rubber one can deduce, that for the extreme case of the modulus ratio
of one and no significant εn.set.wi, the e.g. half (or more) of ∆εn.tot.na must originate from
the change in modulus (material softening) ratio between narrow and wide sections of the
NR 2D-dumbbell (see Figure 4.22). A much larger share of ∆εn.set.na on ∆εn.tot.na must
result from change in modulus ratio for the SBR 2D-dumbbell and type 3 dumbbell. For
quantitative statements about the share of ∆εn.set.na on ∆εn.tot.na it is necessary to measure
∆εn.set.wi as well. These data are missing in the present study. Even if simplified to the
limits, the dumbbell model from Figure 4.23 demonstrates the vital importance of the inter-
action between narrow and wide dumbbell section for phenomena like ∆εn.tot.N < ∆εn.set.N .

4.2.4 Discussion and Outlook

The 2D-dumbbell is a very suitable test piece for an optical measurement of the deformation
of its narrow section with a photo camera and some rulers. The quantification of the
relative significances of set and material softening as contributions to change in εn.tot.N

suggests that only a minor share of the overall εn.tot.N change originates from the set, in
the case of the highest cyclic deformation of the NR material. Significantly more of the
εn.tot.N change originates from the set in case of the NR material. The set and material
softening ratios change between the narrow and the clamping area of the dumbbell are
material, loading and geometry dependent. Even for displacement-controlled testing, the
changes of εn.tot.N over cycles are not comparable between different but similar test piece
geometries. For the exact same material the rate of εn.tot.N increase might be significantly
different for a diabolo to that for an AE2 test piece (e.g. used in [52, 53, 58–60, 85, 86]),
since both test pieces differ in their overall load inhomogeneity (see Figure 4.24).

Figure 4.24: Diabolo and AE2 test piece. Both with 100 % maximum principal nominal
strain εn.max at the spot of maximum deformation.

A possible solution for the imponderables that follow from the non-constant strain
over cycles comes from appropriate material models implemented in a finite element
(FE) software. One of these models - the Plagge-model - is introduced in Section 2.2;
other possible appropriate models can be found in [87]. The suitability of Plagge’s model
originates from its approximately linear stress relaxation behaviour over log(time), as
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observed in the test data reported here and in the prior literature. The model’s material
parameters are fitted using the strain-controlled uniaxial tensile test data containing differ-
ent amplitudes, loading velocities as well as dwell times at different loads (see Figure 4.31
within the subsequent Section 4.3). The simple symmetric geometry of the 2D-dumbbell
and the axis-symmetric geometries of the diabolo and AE2 test piece allows a simulation
of 1,000 load-cycles in an acceptable time. Only the lowest and the uppermost load-level
is simulated in case of the dumbbell (see Figure 4.25). The level of agreement between
the fatigue test data and numerical results is acceptable, having in mind that the loading
velocities in the fatigue tests are very much greater than in the test campaign used for the
parameter identification. For the simulations of the diabolo and AE2 test piece an arbitrary,
but similar for the first cycles, amplitude is chosen; the Plagge model was used with NR
material properties. The strong influence of the load inhomogeneity is shown in Figure 4.26.
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Figure 4.25: NR & SBR: Comparison of the measured ( , symbols) with the predicted
(FEA; Plagge model) εn.tot.N over cycles for the 2D-dumbbell.
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Figure 4.26: NR: Comparison of the diabolo and AE2 test piece FEA results, Plagge
model. The simulations are based on the NR material parameters.
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4.2.5 Conclusions

• For filled rubber test pieces and engineering components with inhomogeneous strain
fields but undergoing constant end-to-end displacement cycles, the local strains
depend not only on the current overall displacement, but also on the number of
times it has been applied.

• This change of distribution of local strain during cyclic loading with constant
displacement amplitude is strongly material and amplitude dependent.

• Moreover it is found that not only the magnitudes but also the relative significances
of set and material softening are material and strain-amplitude dependent. A filled
NR suffers greater softening, but similar set to, a filled SBR.

• Neither of the contributions (set and material softening) can be neglected for the
investigated materials.

• The stress-dependence of the relative material softening and increase in set results in
inhomogeneous softening and set evolution between, for example, wide and narrow
sections of a dumbbell.

• As a result, the strength of the strain shift must also depend on the geometry of the
cyclically loaded test piece or engineering component. In detail, it must depend on
the ratio of deformation in the highly stressed and lightly stressed cross sections.

• In order to accurately calculate the strain evolution over cycles for a general engi-
neering component, FE-analyses using an advanced material model, able to describe
the cyclic relaxation, softening and set, is necessary.

• If constant stress or strain are not accessible within fatigue tests, a transfer of
continuously changing strains into Wöhler curve-compliant constant equivalent strain
is necessary. Two methods are proposed to transfer the continuously changing strains
into constant equivalent strain, and lead to approximately the same result. Both
calculated constant equivalent strain are close to the strains measured just before to
the failure of the dumbbell.
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4.3 A new fatigue test piece

The design of a new test piece stems from the currently available choice of fatigue test
piece geometry. As discussed in Section 3.3, the majority of the fatigue test pieces suffer
from crack initiations with locus at their surface. Fatigue results using these test pieces
might be significantly influenced (even biased) by the surface finish of the mould or more
specific the properties of the partition line. In order to approach this issue, Brüger et
al. [66] introduced a fatigue test piece with two-sided bonded convex shaped inserts, to
shift the maximum deformation from the surface to the bulk material. This test piece
serves as foundation for the design of a new geometry within this section. Having Wöhler’s
principal of end-of-life prediction in mind (see Section 1.2), these simple test pieces should
be free of crack initiations with locus at surface features, unless the very same quality of
surface features is present at the component or test piece to be compared with. However,
the surface properties of the simple test pieces, used as surrogates for real components,
are likely to be significantly different to the surface properties of components. In some
cases, the components may even fail due to crack initiation within the bulk material.
As an additional requirement for the new test piece, a uniaxial strain-state shall be present
at the locus of failure initiation, to enable a direct comparison of the lifetime results of
this new test piece with a selection of the previously introduced ones (see Section 3.3).

4.3.1 Material and its numerical description

The two filled NR and SBR compounds from Section 4.2, shown in Table 4.1, are used.
Their stress-strain-characteristic is determined via a strain-controlled quasi-static multi-
hysteresis test with six different load-levels and five cycles per load-level. As a first step,
the design of the new test pieces is based on pure hyperelastic material-models only.
The neo-Hookean and Arruda-Boyce material models are chosen to describe the average
stress-strain-behaviour of the NR and SBR material (see Section 2.2). As shown in Figure
4.27 and 4.28, hysteresis loops need to be chosen from the whole data volume when using
pure hyperelastic material-models. For the determination of material parameters, only
the last (assumed to be softened), of the five cycles from three chosen load-levels are
considered. This is done because the design is conduced in the framework of fatigue testing
with many load-cycles applied on the test piece.
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Figure 4.27: SBR: Data of a pure shear quasi-static multi-hysteresis test.
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Figure 4.28: NR: Data of a pure shear quasi-static multi-hysteresis test.

However, not only one set of parameters is determined for the chosen softened data per
material and material model. Instead, one fit is performed for each load-level to take the
material-softening into account (see Figure 4.29 and 4.30). The parameters are listed in
Table 4.7.
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Figure 4.29: SBR: The data are fitted with the hyperelastic neo-Hookean and Arruda-
Boyce model based on the selected test data from Figure 4.27. A fit is
performed for each hysteresis loop (see material parameter in Table 4.7).
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Figure 4.30: NR: The data are fitted with the hyperelastic neo-Hookean and Arruda-
Boyce model based on the selected test data from Figure 4.28. A fit is
performed for each hysteresis loop (see material parameter in Table 4.7).
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Neo-Hookean Arruda-Boyce
Hys. loop G [MPa] G [MPa] N

50 % 0.9 0.55 2.10
100 % 0.8 0.5 2.86NR
150 % 0.74 0.41 3.13
50 % 0.88 0.27 1.17
100 % 0.8 0.34 1.85SBR
150 % 0.8 0.28 2.13

Table 4.7: Material parameters of Figure 4.29 and 4.30. The column labelled with
’Hys. loop’ indicates the hysteresis loops on the basis of the maximum strain
within the single loops.

The Arruda-Boyce model with the material parameters listed in Table 4.7 is used
in Section 4.3.2 for a manual geometry parameter study, as well as in Section 4.3.3
for the automated design of the new test piece. Within the automated design, the
optimisation algorithm performs up to tens of thousands single finite element simulations
of an eight parametric optimisation problem. The Arruda-Boyce model provides an
acceptable compromise between accuracy and numerical computation time. However, the
neo-Hookean material model is chosen to calculate the critical hydrostatic stress σ0.crit for
the appearance of damage by cavitation, since this model more accurately describes the
initial stiffness (see Figure 4.29 and 4.30, up to 20 % strain). Deformations are rather small
in regions of cavitational damage risk due to the near incompressible material behaviour
of rubber. This approach is supposed to consider the reduced material softening in the
regions of small deformations.
For the determination of the local εn.max-values for the Wöhler plots in Section 4.3.5 and
4.3.7, a more sophisticated material model, the Plagge-model, is chosen (see Section 2.2).
Apart from the calculation of the strain-field, the Plagge-model is applied for the geometry
optimisation for the second version of the new test piece (see Section 4.3.6). For this
optimisation only three geometry parameters are varied. Thus, much less FE-simulations
are performed by the optimisation algorithm. For the material parameter identification
multi-hysteresis tests including dwell-periods and a variation in strain-rates (see Figure
4.31 and 4.32) are conducted. Within each load-level, the test piece is cycled ten times
with strain rates of ε̇n.11 = 7 %

s , ε̇n.11 = 3 %
s and ε̇n.11 = 0.7 %

s . All cycle-blocks end with an
one hour long relaxation section for each load-level. In addition to the experimental data,
the fitted Plagge-model is shown as well in Figure 4.31 and 4.32. Prior, the strong impact
of cyclic relaxation compared to static relaxation on the material softening was discussed
in Section 4.2. For an accurate description of the experimental data the model needs
to be able to correctly differentiate between cyclic and static relaxation. However, the
Plagge-model currently predicts incorrectly stronger relaxation for static loading compared
to an oscillating load.
The fits in stress-strain-space are shown in Figure 4.33 and 4.34. For reasons of clarity, only

83



4 Improvements for the characterisation of fatigue

the first and last cycle for each load-level is shown. The physically motivated Plagge-model
does not include specific definitions covering the NR’s significant ability to strain-crystallise.
This results in overall less accurate fits for the NR material.
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Figure 4.31: SBR: Test protocol used for the material parameters determination of the
Plagge model. The measurements are performed with a uniaxial test piece.
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Figure 4.32: NR: Test protocol used for the material parameters determination of the
Plagge model. The measurements are performed with a uniaxial test piece.
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Figure 4.33: SBR: Data and fit based on a uniaxial quasi-static multi-hysteresis test
(see test protocol in Figure 4.31).
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Figure 4.34: NR: Data and fit based on a uniaxial quasi-static multi-hysteresis test (see
test protocol in Figure 4.32).
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No. Parameter NR SBR
1 φ 0.38 0.57
2 Gc 0.38 MPa 0.61 MPa
3 Gf 0.1 MPa 0.11 MPa
4 n 36.86 19.04
5 χ 2.84 2.96
6 eb 15.12 18.78
7 vb 0.11 0.45
8 τve.0 473.80 s 271.33 s
9 σr 0.048 MPa 0.044 MPa

Table 4.8: Parameters of the Plagge-model from Figure 4.31 to 4.34.

4.3.2 Design of the new test piece - manual study

The design of the new test piece originates from the rotational symmetric test piece
publicised by Brüger et al. [66] (see Section 3.3, Figure 3.7, Page 44). In contrast to this
geometry, the two convex inserts from the test piece designed in the present study, shall
be identical. Another plane of symmetry is the consequence. Figure 4.35 shows a sketch
of the new test piece, considering rotational symmetry, with the six parameters needed to
describe its geometry. The dashed-dotted line on the left hand side indicates the axis of
rotational symmetry. The radii R1 and R2 describe the convex and oval geometry of the
symmetric inserts. Whereas radii R3 and R4 dimension the curvature of the free surface.

R1

R2 L1

L2

R3

R4

plane of symmetry

 
εn.max.Centre

 
σ0.Insert εn.max.Insert

εn.max.Surface

Figure 4.35: Six parametric sketch of the new test piece with a dashed-dotted line
indicating the rotational symmetric axis and with a labelled plane of
symmetry. Additionally, this sketch contains relevant strain and hydrostatic
stress values.
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Firstly, a manual parameter study is performed to study the impact of each geometry
parameter on some chosen strain and stress values, introduced in the following. This
manual study serves as foundation for the automated parameter optimisation conducted
in Section 4.3.3. The hyperelastic Arruda-Boyce material model with material parameters
fitted at the NR 100 % load-level (G = 0.5 MPa and N = 2.86, see Table 4.7) is applied.
Using the same experimental dataset to fit the neo-Hookean material law gives a shear
modulus of G = 0.8 MPa. As reasoned in Section 4.3.1 this neo-Hookean-based shear
modulus is used to calculate the, for cavitation, critical hydrostatic stress, based on
Equation 3.2 (σ0.crit = 2.0 MPa).
In Figure 4.35:

• εn.max.Centre is the maximum principal nominal strain at the geometrical centre of
the test piece;

• εn.max.Insert are the maximum principal nominal strains values along the insert contour
(see red dotted line Figure 4.35), where max(εn.max.Insert) yields the maximum value
along the insert contour;

• εn.max.Surface are the maximum principal nominal strains values along the outer
surface contour (see red dotted line Figure 4.35), where max(εn.max.Surface) yields the
maximum value along the surface contour;

• σ0.Insert is the hydrostatic stress at the poles of the inserts.

Three evaluation criteria are chosen for the parameter study:

• Ratio of max(εn.max.Insert) to εn.max.Centre;

• Ratio of max(εn.max.Surface) to εn.max.Centre;

• σ0.Insert.

Since the overall aim of the new test piece is the focus of the maximum deformation
towards its centre, unaffected by cavitation, all three listed criteria should be simultane-
ously as small as possible. As a reminder, possible crack initiation at the insert shall be
avoided since the region of cavitation risk is in immediate vicinity. A later judgement of
the impact of the cavitation on the failure initiation would be aggravated. Futhermore,
a plain strain-like deformation-state at the insert’s region of maximum deformation is
present. However, a uniaxial deformation-state at the location of main failure initiation is
intended.
For the entire manual parameter study, the evaluation criteria are determined for εn.max.Centre =
100 %. Table 4.9 is an overview of the parameter study and the corresponding figures.
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Varied Parameter Impact on geometry Impact on evaluation criteria
R1 Figure 4.36 Figure 4.37

R1 & R2 Figure 4.38 Figure 4.39
R4 Figure 4.40 Figure 4.41

R3 & R4 Figure 4.42 Figure 4.43
L2 Figure 4.44 Figure 4.45

Table 4.9: Overview of the figures for the parameter study.

The radii R1 - R4 are varied while the total size of the geometry is kept constant.
The parameter L1 and L2 are adapted to meet this restriction (except for the variation
of L2 itself). Figure 4.36 shows the geometry variation of the test piece while varying
R1 only. The impact of this variation on the three evaluation parameters is shown in
Figure 4.37. A distinct decrease of max(εn.max.Surface) compared to the εn.max.Centre with
increasing R1 is shown. Evaluating max(εn.max.Insert) with respect to εn.max.Centre shows an
increasing and for R1 > 5 a decreasing behaviour. Considering simultaneously all three
evaluation parameters, yields a great value for R1 as best compromise. However, the value
for σ0.Insert = 2.73 MPa for R1 = 9 might cause cavitation since a critical hydrostatic stress
of σ0.crit = 2.0 MPa was determined.
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Figure 4.36: Variation of the geometry parameter R1; change of geometry. The increase
of R1 is indicated with an arrow.
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Figure 4.37: Variation of the geometry parameter R1; impact on the evaluation param-
eter.

In Figure 4.38, the change of geometry for a range of R2 and R1 = 2, 5, 8 is shown. The
evaluation is done in Figure 4.39. An increase of R2 has a positive impact on all three
evaluation criteria. Solely the ratio of max(εn.max.Insert) to εn.max.Centre slightly increases
with increasing R2 and R1 = 2. For R2 > 4, σ0.Insert stays rather unaffected by any further
increase of R2 for all R1. Overall, the increase of R1 greatly improves all (except in one
case) evaluation criteria.
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Figure 4.38: Variation of the geometry parameter R2 and R1; change of geometry. The
increase of R2 is indicated with an arrow.
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Figure 4.39: Variation of the geometry parameter R2 and R1; impact on the evaluation
parameter.

An increase of R4, as shown in Figure 4.40, has almost no influence up to R4 = 5
(see Figure 4.41). Beyond R4 = 5 the insert region becomes unloaded. Decreasing
max(εn.max.Insert) and σ0.Insert are the consequence. However, the deformation at the surface
compared to the deformation at the centre is slightly increasing, up to a ratio of 1.5, where
as < 1.0 is desired.
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Figure 4.40: Variation of the geometry parameter R4; change of geometry. The increase
of R4 is indicated with an arrow.
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Figure 4.41: Variation of the geometry parameter R4; impact on the evaluation param-
eter.

Figure 4.42 shows the variation of R3 for three different R4 (R4 = 2, R4 = 5, R4 = 8).
This variation is evaluated in Figure 4.43. An increase of R3 has a positive effect on the
ratio of max(εn.max.Surface) to εn.max.Centre; their ratio decreases. This ratio shifts towards
lower (better) values with decreasing R4. In contrast, a decrease in R4 yields an increase
of the max(εn.max.Insert)/εn.max.Centre-ratio and σ0.Insert. These two evaluation parameters stay
almost unaffected by the variation of R3.
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Figure 4.42: Variation of the geometry parameter R3 and R4; change of geometry. The
increase of R3 is indicated with an arrow.

92



4 Improvements for the characterisation of fatigue

0 2 4 6 8 10
0

0.5
1

1.5
2

m
ax

(ε
n.

m
ax
.S

ur
fa

ce
)

ε n
.m

ax
.C

en
tr

e Radius R4 = 8
Radius R4 = 5
Radius R4 = 2

0 2 4 6 8 10
0

0.5
1

1.5
2

m
ax

(ε
n.

m
ax
.I

ns
er

t)
ε n
.m

ax
.C

en
tr

e Radius R4 = 8
Radius R4 = 5
Radius R4 = 2

0 2 4 6 8 10
0
2
4
6
8

Radius R3 [-]

σ
0.

In
se

rt
[M

Pa
]

Radius R4 = 8
Radius R4 = 5
Radius R4 = 2

Figure 4.43: Variation of the geometry parameter R3 and R4; impact on the evaluation
parameter.

The last investigated parameter is the length L2 (see Figure 4.35). Compared to the
investigations of the radii R1 - R4, the total size of the test piece changes while varying
L2 (see Figure 4.44). The impact of the radii R1 - R4 on the ratio of max(εn.max.Surface) to
εn.max.Centre is more and more lost with the increase of L2. For L2 > 10 the influence on
all three evaluation criteria vanishes.
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Figure 4.44: Variation of the geometry parameter L2; change of geometry. The increase
of L2 is indicated with an arrow.
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Figure 4.45: Variation of the geometry parameter L2; impact on the evaluation parame-
ter.

Summing up the parameter variation:

• The ratio of max(εn.max.Surface) to εn.max.Centre may be strongly decreased/improved
by increasing ↑ R1.

• All three evaluation criteria are positively affected by a large curvature (↑ R2 and
↑ R3).

• With increasing ↑ R4 the insert region is unloaded and therefore the ratio of
max(εn.max.Insert) to εn.max.Centre and σ0.Insert decreases. However, the max(εn.max.Surface)
increases with ↑ R4.

• The length L2 needs to be in balance with the size of the curvatures at the surface and
insert. Otherwise, the ability of the insert curvature to shift the highest deformation
away from the surface to the inside of the test piece, is lost for too large L2.

In general, a balance of all geometric parameters needs to be found. No straight forward
way of decreasing all three evaluation criteria at the same time to a satisfying level was
found in the parameter study.

4.3.3 Design of the new test piece - automated

Based on the insights from the manual parameter investigation from the former Section
4.3.2, an automated parameter optimisation is set up. Two additional parameters (S1
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and S4) are introduced to allow the optimisation algorithm more freedom, especially for
generating large curvatures at the surface and insert.

S1 ·R1
R1

R2 L1

L2

R3

R4

S4 ·R4

 

εn.max.Centre

 

σ0.Insert εn.max.Insert

εn.max.Surface

plane of symmetry

Figure 4.46: Eight parametric sketch of the new test piece with a dashed-dotted line
indicating the rotational symmetric axis and with a labelled plane of
symmetry. Additionally this sketch contains relevant strain and hydrostatic
stress values.

The optimisation is performed using a Python-script which operates a finite element
software. Within this Python-script the Differential Evolution optimisation algorithm from
the scipy.optimize Python-package is chosen [88]. From Scipy’s documentation about the
Differential Evolution algorithm [89]: Finds the global minimum of a multivariate function.
Differential Evolution is stochastic in nature (does not use gradient methods) to find the
minimum, and can search large areas of candidate space, but often requires larger numbers
of function evaluations than conventional gradient-based techniques. The advantages of
the chosen optimisation algorithm are:

• The differential evolution algorithm is a global optimisation algorithm. It doesn’t
get stuck in local minima. First rehearsals applying an algorithm searching for local
minima, turned out to be stopped dead before reaching an acceptable result.

• Upper and lower bounds for the single parameter (here for the eight geometry
parameters) can be defined.

• No derivatives or similar extra information need to be provided.

However, the downside is an increased number of function calls (here, FEAs) compared
to other algorithm as described in [89].
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The six parameters (R1, R2, R3, R4, L1 and L2) are chosen to be restricted between 1 and
20. Whereby the shift-parameters (S1, S4) are only allowed to take on values between 0.1
and 1. The target function to be minimised within the optimisation is defined as:

ftarget = f

(
max(εn.max.Surface)

εn.max.Centre

)
+ f

(
max(εn.max.Insert)
εn.max.Centre

)
+ σ0.Insert

σ0.crit
(4.25)

Function f() is defined as shown in Figure 4.47. It returns the value 0.6 for input values
smaller than 0.6. Thanks to that, the algorithm focusses on the reduction of σ0.Insert for
ratios of max(εn.max.Surface)/εn.max.Centre or max(εn.max.Insert)/εn.max.Centre less than 0.6. The threshold
value of 0.6 is initially arbitrary since no data are available to judge the influence of surface
inhomogeneities on the lifetime.
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Figure 4.47: Function f().

The optimisation is performed for the NR material, SBR material and three different
εn.max at the centre of the test piece (see Table 4.10). For each of these cases, material
parameters for the Arruda-Boyce material model are given in Table 4.7.

NR SBR

εn.max.Centre

50 % 50 %
100 % 100 %
150 % 150 %

Table 4.10: Optimisations are performed for the shown six conditions.

Figure 4.48 shows the optimisation results for the six cases from Table 4.10.
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Figure 4.48: Calculated optimum for the given target function, materials and strain
levels at the center.

Unfortunately, three of the six solutions show issues with the finite element mesh. The
optimisation algorithm found a geometry where the automatic finite mesh generator places
a triangle element at the position where σ0.Insert is evaluated. Too low values for σ0.Insert

is the consequence, leading to an erroneously reduced target value. Nonetheless, the
optimisations are not repeated with improved settings for the mesh generator since the
remaining results are satisfactory and one optimisation run takes up to one or two weeks.
Especially the results for the NR 50 % and NR 100 % case are matching the insights from
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the manual parameter study well (see summary of Section 4.3.2). The algorithm chooses
a big curvature for the surface and for the insert. The result from the NR 100 % case is
chosen as foundation for a manual fine-tuning.
For the Brüger test piece only a small difference between surface and centre strain (ratio
= 0.9) can be found, as shown in Figure 3.7 (see Section 3.3). However, no surface crack
initiations are reported by Brüger et al. [66]. Instead, cracks initiate at the insert close
to a region with risk of damage by cavitation. Because of these findings, the focus of
the manual fine-tuning is to further reduce σ0.Insert, max(εn.max.Insert) and shift the locus
of maximum max(εn.max.Insert) further away from the point of maximum σ0 at the insert.
The last measure simplifies the later distinction between cavitation and non-tri-axial
deformation caused crack initiation. The result of the manual fine-tuning is shown in
Figure 4.49. Compared to the Brüger test piece, the hydrostatic stress reduces from
σ0 = 2.30 MPa to σ0 = 1.77 MPa (σ0.crit = 2.0 MPa, Equation 3.2) for εn.max.Centre=100 %.
This reduction is partly achieved by adding a small concave section at the insert. Focusing
on the result of the NR 100 % case in Figure 4.48, the low values of L1, L2 and R4 stand
out. The optimisation algorithm approached the lower bonds for these parameters to
generate the large curvatures of the insert and the free surface. In order to further increase
these curvatures, L1 and L2 are set zero and the free surface changed to a flat (infinite
curvature) section. A convex design for this section has been considered as well, however,
failed to reduce the deformation at the surface.

0.023
0.105
0.186
0.267
0.349
0.430
0.512
0.593
0.674
0.756
0.837
0.919
1.000

a) b)0.068
0.210
0.351
0.493
0.634
0.776
0.917
1.059
1.200
1.342
1.484
1.625
1.7670.75

0.69

Figure 4.49: NR: New final test piece geometry after manual fine-tuning; a) Strain
εn.max and b) hydrostatic stress σ0 mapped on the non-deformed geometry.

4.3.4 Reference Experiments - 2D-dumbbell test piece

The fatigue results from the new test piece (objective: crack initiation with locus in
the bulk) designed in the former section, is benchmarked with the fatigue results of the
2D-dumbbell test piece.
On the one hand, the 2D-dumbbell is chosen as reference since it is recommended by the
Standard ISO6943 [47]. On the other hand, the corners of the 2D-dumbbell are subjected
to large deformations during the die-cut from a sheet. Because of that, a certain propensity
of the cracks to the surface is assumed. In former Section 4.2, a detailed assessment of the
fatigue results can be found. Yet, an evaluation of the locus of failure initiation is missing
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and is completed subsequently.
A tremendous difference in cracking behaviour between the NR and SBR material is found.
The 2D-dumbbells made from NR, show the often reported (e.g. [57]) multi-crack initiation
(the SBR-based dumbbells do not) as shown in Figure 4.50. Moreover, these multi-cracks
preferentially initiate at the corner of the 2D-dumbbell’s cross-section.

Figure 4.50: NR: Typical multi-crack initiation at the 2D-dumbbell.

The locus of the crack initiation of the main crack, responsible to for final rupture of the
dumbbell, is investigated with a microscope (see Figure 4.51). As statistically evaluated in
Figure 4.52, the majority of the cracks start in the corner of the fracture surface.

Start

Final ligam
ent

Striations

Figure 4.51: NR: Typical fracture surface of the 2D-dumbbell.

Half of the fracture surface area exhibits striation patterns, as shown in Figure 4.51. The
ratio between striation area and cross section area increases with the load-level. Figure
4.51 shows an example of the uppermost load level. This very regular pattern is often
associated with NR’s ability to form crystals during straining. However, they have no
further relevance for the present study. Additional information to striations can be found
in Poisson et al. [78], Le Cam and Toussaint [90], Flamm et al. [61], Munoz et al. [91], Le
Cam et al. [92] or Ruellan et al. [93].
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Figure 4.52: NR: Corner initiations (yes: green) of the 2D-dumbbell in number of test
pieces in the bar and percent at the axis label. Results from the NR
material. Hence, the colour red is associated with crack initiation with
locus in the bulk material or at the edges in between the corners.

The corner cracks of the NR-based 2D-dumbbell initiate preferably at the side that is
facing the punch knife, indicating the die-cutting and the associated large deformations at
this corner as causal for the results from Figure 4.51.
In contrast to the NR surface/corner cracks, the main cracks of the dumbbells made from
the SBR material initiate with a probability of 97 % at particles (see Figure 4.53). The
distribution of these critical particles was found to be perfectly random over the fracture
surface; there is no propensity of cracks to initiate at particles close to the surface (Figure
4.53-right) or within the bulk material (Figure 4.53-left) of the dumbbell. Opposed to
NR’s multi-crack initiation, there is only one single macro-crack per dumbbell found being
responsible for the final fracture of the test piece.

1 millimetres

Start

Start

0 97100

257

Crack initiations at particles [%]

Figure 4.53: SBR: Crack initiations at particles (yes: green) in number of test pieces in
the bar and percent at the axis label. Hence, the colour red is associated
with crack initiation with locus not at the particles but e.g. at the corner.

This crack initiation behaviour of the SBR material, enables an evaluation of the
influence of the particle size on the number of the cycles to failure (see Figure 4.54). The
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evaluation is performed for each of the four load-levels. No distinct correlation between
maximum visible particle size and number of cycles to failure is evident as shown in Figure
4.54. Same was found for another filled synthetic elastomer by Balutch et al. [94]. However,
instead of the maximum visible size of the particle, they used a representative dimension
defined as the "square root of the area of a defect projected in the direction of the maximum
tensile stress" (first proposed by Murakami and Endo [95]). This measure is not used
in the present work since the length of a slim but long object is assumed to damage its
surrounding polymer matrix stronger, compared to its projected area.
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Figure 4.54: SBR: Maximum visible particle size over number of cycles to end-of-life.
The label of the load-levels are shown within the single plots. Only the
data of the clear evaluable particles are shown.

One of the many evaluated fracture surfaces strengthens the weak dependency of the
lifetime on the pure particle size. Figure 4.55 shows a fracture surface with a small (72 µm)
particle and a more than two times larger (161 µm) loosely attached particle. Nonetheless,
the crack initiated at the small particle.
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1 millimetres

1 millimetres

Figure 4.55: SBR: Unique fracture surface of a 2D-dumbbell with in-plane small and two
times bigger particle. This examples originates from the lowest load-level.

4.3.5 Fatigue results of the new test piece

Objective of the new test piece is to fail due to surface-independent fatigue cracks with
locus in the bulk material. The material load in the centre compared to the surface shall
be high enough so that crack initiation in the bulk reliably dominates possible surface
crack initiations.
Figure 4.56 shows the typical crack initiation behaviour of the new test piece made from the
NR material (see Figure 4.49). Even if the deformation of the material is ∆εn.max ≈ 20 %
greater in the centre, many cracks appear at the surface.

Figure 4.56: NR: Typical multi-crack initiation at the new test piece; shown in the
deflected state.

Like for the 2D-dumbbell in Section 4.3.4, the locus of failure initiation of the major
cracks is researched with a reflected light microscope. The statistical evaluation confirms
the first impression from Figure 4.56. Many major cracks initiate at the surface. Similar
was found for the NR material-based 2D-dumbbell (see Figure 4.52).
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0 92100
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Figure 4.57: NR: Surface initiations (yes: green) in number of test pieces in the bar and
percent at the axis label. Hence, the colour red is associated with macro
crack initiation with locus in the bulk material only.

However, because of the multi-crack initiation behaviour of the NR material, large cracks
with locus in the bulk material are found as well (see Figure 4.58). In the most cases no
single dominant crack, clearly responsible for the global failure of the test piece, can be
identified.

0 84.6 100

211
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Figure 4.58: NR: Crack initiations in the bulk material (yes: green) in number of test
pieces in the bar and percent at the axis label. Hence, the colour red is
associated with macro crack initiation with locus on the surface only.

Before comparing the Wöhler curves of the NR material-based 2D-dumbbell and the new
test piece, the volumes of the two test pieces are evaluated. This is done, because there
is a volume size effect on the durability of materials (for rubber materials see e.g. [96]).
The effect can be summarised to: with increasing volume, the probability to apply critical
loading to a matrix damaging inhomogeneity increases as well. Following this principle,
regions of the test piece that are almost undeformed if the test piece is globally deflected
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should not be considered in the estimation of the test piece volume. Figure 4.59 shows the
two test pieces with regions in colour that are deformed greater than 75 % of the maximum
εn.max; this is assumed to be the significantly loaded volume. The threshold of 75 % is
chosen for no particular reason. Only criteria is that the regions at the surface of the
new test piece, where crack initiation takes place (see Figure 4.56), should be included.
Additionally, other threshold values did not distinctly change the ratio of the loaded
volume between the two test pieces. Same is true for different global deflections. The size
of the loaded volume of the new test piece is approximately 10 times greater compared to
the 2D-dumbbell.

εn.max

0.975 ≈ 75 % ·max(εn.max)
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Figure 4.59: Comparison of the significantly loaded volume size of the 2D-dumbbell and
the new test piece. Only a quarter of the new test piece is displayed. The
test pieces are not shown in the same scale.

The principals of the Sudden Death (SD) testing are used to consider the loaded volume
differences for the two test pieces within the fatigue results (for Sudden Death testing
see Section 2.3). As a reminder, in case a fatigue test is considered as completed if one
within a group of equally loaded identically test pieces fails, it is designated as a Sudden
Death test. In a practical application this is often applied for rolling bearings, since the
whole bearing fails if one of its balls fails (see e.g. [97]). In the theory of the Sudden Death
testing, the test results of a group can be transformed in test results for the virtual case
of one by one-tested test pieces, using their cumulative failure distribution functions (see
Equation 2.77 in Section 2.3.5).
The following property of elastomers is fundamental for the way forward: the crack growth
rate increases with crack size (see e.g. [1, 98]; explanatory framework: one-sided notched
stripe test piece). For this reason, cracks are small in size during the majority of the
lifetime and only reach macro crack dimension towards the final rupture of the test piece.
This leads to a major impact of the conditions of the very initial failure initiation on the
final lifetime. These failure initiations are distributed over the loaded volume for the NR
material (see Figure 4.58). The most unfavourable failure initiations lead to critical macro
cracks. As mentioned above, the likelihood to initiate such critical failure increases with
the size of the loaded volume.
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In order to consider the loaded volume difference between the 2D-dumbbell to the new test
piece, it is assumed that ten small new test pieces (with 1/10 of the volume of the original
test piece) were fatigued and the test was stopped after the first of the 10 small test pieces
had failed. By using Equation 2.77 this biased group-tested result can be transformed into
a result of 1/10 - volume test pieces, fatigued one by one. Like that, one obtains a virtual
test result which equals the test results from the 2D-dumbbell regarding the size of loaded
volume.
Figure 4.60 shows the original test data ( ) and the test data with volume correction
based on the Sudden Death approach ( ). Each load-level consists of four test pieces only;
visible in the wide confidence limits, compared the 2D-dumbbell data (see Figure 4.61).
Within the Sudden Death procedure, the complete cumulative distribution function (see
Equation 2.77) is considered, but is determined using only four data points. This should
be considered when evaluating the data from Figure 4.60 or 4.61.
Similar to the 2D-dumbbell test piece (see Section 4.2), the local strains of the new test
piece increase with ongoing cyclic globally constant deflection. The varying strains are
converted into the equivalent constant strain (εn.const) for data with -symbol. See Section
4.2 for more details about εn.const. Compared to the 2D-dumbbell test pieces (see Figure
4.16, Page 66) the conversion from εn.max.tot.1 to εn.const yields less shift of the Wöhler curve
for the new test piece. The new test piece has a more homogeneous deformation field
than the 2D-dumbbell which lowers the strain increase over the cycles. The εn.max.tot.N for
the new test piece are derived using finite element simulations of 1000 amplitudes under
application of the Plagge-model (see Section 4.3.1).
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Figure 4.60: NR: Wöhler curve of the new test piece with different evaluation methods.
SD is the acronym for Sudden Death. The -symbol represents the silhou-
ette of the new test piece. The medians with -symbol are endued with
95 % confidence limits (`a).
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All data shown in Figure 4.60 are based on the maximum principal nominal strain
(εn.max.Centre) in the centre. Additionally, Figure 4.61 includes the data of the new test
pieces based on max(εn.max.Surface) (see curves in Figure 4.61) and the Wöhler curve
of the 2D-dumbbell (see curve). The data of εn.max.Centre and max(εn.max.Surface) are
simultaneously shown since macro cracks are present in both regions at end-of-life of the
new test piece (see Figure 4.57 and 4.58). Global failure is caused by the coalescence of
cracks from both regions.
The on first sight unnecessary amount of data from the new test piece in Figure 4.61 is
shown, since non of the six new test piece Wöhler curves is claimed to be the only correct
Wöhler curve. The unknown correct new test piece Wöhler curve is located somewhere in
between these six Wöhler curves.
The Wöhler curves from both test pieces are approximately aligned. This suggests that
the multi-crack driven fatigue behaviour of the NR material is quite robust against the
choice of test piece geometry.
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Figure 4.61: NR: New test piece Wöhler curves based on different evaluation methods
compared with the 2D-dumbbell Wöhler curve. SD is the acronym for
Sudden Death. The -symbol and -symbol represent the silhouette of the
new test piece and the 2D-dumbbell, respectively. All shown medians are
endued with 95 % confidence limits (`a).

Similar to the 2D-dumbbell, no multi-crack initiation is found for the SBR material-based
new test piece. The typical crack initiation behaviour is shown in Figure 4.62. Cracks
initiate almost always at the test piece’s surface (see Figure 4.63), preferably at the radius.
From there, the cracks grow towards the centre of the test piece, following the path of
maximum deformation.
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Figure 4.62: SBR: Typical crack-initiation at the new test piece. Experimental failure
compared with numerical εn.max-field.

The data from Figure 4.63 to Figure 4.65 are gathered using a microscope. Within the
large amount of surface-crack initiations (94 %, see Figure 4.63), the majority (66 %) of
these 31 surface cracks initiate at the flash. This large amount of surface-crack initiations
for the new test piece is in strong contrast to the randomly distributed initiations at
particle-like inhomogeneities for the SBR-based 2D-dumbbells (see Figure 4.53, Page 100).
Randomly distributed, even if the corners of the 2D-dumbbell are strongly deformed when
die-cut from a sheet. However, this die-cut appears to be less damaging than the flash of
the new test piece. The damage of the flash dominates the εn ≈ 20 % greater deformation
in the test piece’s centre and the most other surface inhomogeneities.
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Figure 4.63: SBR: Surface initiations (yes: green) in number of test pieces in the bar
and percent at the axis label. Hence, the colour red is associated with
crack initiation with locus in the bulk material.

As a consequence, almost no cracks initiate within the bulk material of the new test
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piece (see Figure 4.64). Three out of the five crack initiations in the bulk are caused by
non-natural inhomogeneities (e.g. metal particles, right in Figure 4.64). Inhomogeneities
that are not based on the ingredients of the material are judged to be non-natural, therefore
not considered in the fatigue data or within the evaluation in Figure 4.63. They are only
considered one-time in Figure 4.64.
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Figure 4.64: SBR: Crack initiations in the bulk material (yes: green) in number of test
pieces in the bar and percent at the axis label. Hence, the colour red is
associated with crack initiation with locus on the surface. In the outer
circular shaped images the particles are pushed aside with a needle.

For the SBR material-based new test piece, the appearance of cavitation is investigated.
Cavitation as shown in Figure 4.65 is always found for the uppermost load-level near the
inserts only. However, in only one out of eight cases, cavitation is involved in the critical
crack causing the failure of the entire test piece.

Figure 4.65: SBR: Cavitational damage at the metallic of the new test piece. Experi-
mental failure compared with numerical εn.max-field.
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Figure 4.66 shows the SBR material-based Wöhler curves of the 2D-dumbbell and the
new test piece. Like for the NR material, several Wöhler curves are shown for the new test
piece. However, the Sudden Death method to consider different volumes is not performed.
For the SBR material, the crack initiation is not spread over the loaded volume of the new
test piece, but is concentrated on the surface, in particular on the flash. Therefore it is
assumed that a loaded volume size correction should not be applied. For the same reason,
the two Wöhler curves based on εn.Surface are judged to be more relevant compared to
εn.Centre. A huge difference, of factor 50 in lifetime, is measured between the 2D-dumbbell
and the surface-based new test piece data (see arrow in Figure 4.66). A devastating damage
effect of surface inhomogeneities, especially of the flash, is quantified in Figure 4.66. The
ratio between εn.Surface to εn.Centre of approximately 0.8 is not sufficient to dominate the
damage of the surface inhomogeneities. Nevertheless, the data from Figure 4.66 provide
fundamental and unique information for a second design of the new test piece.
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Figure 4.66: SBR: New test piece Wöhler curves compared with the 2D-dumbbell
Wöhler curve. All shown medians are endued with 95 % confidence limits
(`a).

4.3.6 Design of the new test piece - version 2

The second design of the new test piece has its origin in the fatigue data of the SBR
material shown in the former section. Based on the complete randomly distributed crack
initiation locus for the 2D-dumbbell (see Figure 4.53, Page 100), it is assumed, that
the according Wöhler curve represents the bulk material. One might remark, that the
objective of surface-independent fatigue results is achieved with the dumbbell. However,
as shown for the NR material, the 2D-dumbbell test piece is not consequently delivering
surface-independent fatigue results. Additionally, the usage of the die-cut dumbbell is
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refused at times, based on its discrepancy in manufacture to components. The former is
die-cut from a compression-moulded sheet in contrast to injection-moulded components.
Figure 4.67 shows the Wöhler curve of the 2D-dumbbell compared with the Wöhler curve
of the first version of the new test piece, based on the maximum strain on the surface;
the main locus of crack initiation. Additionally, virtual centre strains, based on different
max(εn.max.Surface) to εn.max.Centre ratios, are indicated. A ratio of 0.5 or less is necessary to
dominate the surface inhomogeneities (including the flash) of the first version of the new
test piece.
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Figure 4.67: SBR: New test piece Wöhler curve compared with the 2D-dumbbell Wöhler
curve with indicated virtual centre strains, based on different εn.max.Surface
to εn.max.Centre ratios. All shown medians are endued with 95 % confidence
limits (`a).

Instead of the hyperelastic Arruda-Boyce model, the Plagge material model with the
parameters fitted in Figure 4.31 to 4.34 is used for the second geometry optimisation (see
Page 84). Triangle shaped finite elements are disabled to avoid the mesh issues shown
in Figure 4.48. The data for the target function are taken from the second loading-cycle.
Based on the Plagge-model an initial shear modulus of G = 1.48 MPa is estimated by ap-
plying a small simple shear load on a cube. Using Equation 3.2, a critical hydrostatic stress
for cavitation of σ0.crit = 3.7 MPa is calculated. A hydrostatic stress of σ0.Insert = 4.7 MPa
and σ0.Insert = 3.1 MPa is calculated based on the SBR material parameter at the insert
of the new test piece V1 for the uppermost and next lower load-level, respectively. Only
for the highest load-level, cavitation at the insert, as shown in Figure 4.65, can be found.
This supports the validity of the determined critical hydrostatic stress of σ0.crit = 3.7 MPa.
The design of the second version of the test piece is performed using the same auto-
mated procedure as described for the first version in Section 4.3.3. The function f2(),
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within the modified target-function ftarget (see Equation 4.26), is defined according to
the max(εn.max.Surface)/εn.max.Centre-ratios from Figure 4.67 (see Figure 4.68). In addition to
the threshold value of 0.6, two more threshold values of 0.5 and 0.4 are applied (see
Figure 4.68 and compare to Figure 4.47). Since no crack initiation at the location of
max(εn.max.Insert) is reported within former Section 4.3.5, the definition of f() for the
max(εn.max.Insert)/εn.max.Centre-ratio keeps its definition with a threshold value of 0.6.

ftarget = f2

(
max(εn.max.Surface)

εn.max.Centre

)
+ f

(
max(εn.max.Insert)
εn.max.Centre

)
+ σ0.Insert

σ0.crit
(4.26)
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Figure 4.68: Function f2().

Besides the threshold value variation within f2(), the geometry optimisation is perform
for three different εn.max.Centre values (75 %, 100 % and 130 %), for one threshold value of
0.5 within f2(). In order to not alter the damage behaviour of the mould-specific surface
imperfections, the mould from test piece V1 is used. Thus, the surface geometry is kept
constant between test piece V1 and V2. Consequently, the amount of geometry parameters
reduces from eight (see Figure 4.46, Page 95) to three (S1, R1 and R2).
On the left hand side (a) of Figure 4.69 the results of the threshold value variation are
shown, whereas, the right hand side (b) of Figure 4.69 shows the results of the εn.max.Centre

variation for a f2() threshold value of 0.5.
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Figure 4.69: Geometry optimisation results for a) the three threshold values 0.4, 0.5
and 0.6 within f2() and b) different εn.max.Centre values of 75 %, 100 % and
130 % for a constant threshold values of 0.5. The y-symbol symbolises the
threshold value from Figure 4.68.

Table 4.11 lists the optimisation criteria values for the three versions from the Figure 4.69-
a). The version with the ratio between max(εn.max.Surface) and εn.max.Centre of ≈ 0.5 is chosen,
since it is the best compromise between an as low as possible σ0.Insert and a great enough
max(εn.max.Insert)/εn.max.Centre-ratio to reliably dominate the surface inhomogeneities (based on
the Wöhler curves of 4.67). The variation of the εn.max.Centre for the threshold value 0.5
is shown in Figure 4.69-b). Almost the same geometry is found for εn.max.Centre = 75 %
and 100 %. For εn.max.Centre = 130 % the algorithm found the target function’s ftarget

minimum for a reduced radius parameter R2. Nevertheless, strain values of 75 % or 100 %
are assumed to be more relevant for this study and therefore the geometry found for
εn.max.Centre = 100 % is eventually chosen. Figure 4.70 compares the εn.max-fields of the
second test piece’s version with the first.

Case ≈ 0.4 ≈ 0.5 ≈ 0.6

max(εn.max.Surface)
εn.max.Centre

0.404 0.498 0.599

max(εn.max.Insert)
εn.max.Centre

0.653 0.640 0.633

σ0.Insert
σ0.crit=3.7 MPa 1.044 0.982 0.922

Table 4.11: Optimisation criteria values for threshold value variation from Figure 4.69-a).

A fourth parameter was temporarily used to introduce a concave section to the insert,
like manually found to cause a significant decrease of σ0.Insert for the first version (see
Section 4.3.3). This fourth parameter was chosen by the optimisation algorithm such
that this concave section disappears. Thus, a concave section at the insert for the second
version of the new test piece was not further considered.
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Figure 4.70: Comparison of the strain fields of the V1 (b) and V2 (a) new test piece.
Only a quarter of the test pieces is depicted.

4.3.7 Fatigue results concerning interbatch variation and comparison of new test
piece - version 1 and 2

The loaded volume, based on the εn.max-field with a threshold value of 75 % ·max(εn.max), of
the new test piece V2 is approximately equal compared to the 2D-dumbbell. A correction of
the fatigue test data using the Sudden Death method is not necessary. However, additional
rubber batches prepared at different institutions were used for the fatigue tests with the
new test piece V2. To be able to compare the fatigue data of the 2D-dumbbell with the
new test piece V2, the different material batches need to be compared first. However, test
results with the former material batch (BTARRC) and the current batch (BDIK-2), are only
available for the new test piece V1 (see Table 4.12). The institution initials are used in
the subscripts of the batch labels.
As shown in Figure 4.71, the NR material made in the TARRC institution withstands a
greater dynamic load for ≈ 100 000 cycles and shows the same fatigue resistance against
lower dynamic loads for ≈ 1 000 000 cycles.

Test piece BTARRC BDIK-1 BDIK-2
2D-dumbbell 2� 2 2

new test piece V1 2� 2 2�
new test piece V2 2 2� 2�

Table 4.12: Overview of the combination of batches and test pieces.
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Figure 4.71: NR: New test piece V1 Wöhler curves based on the TARRC batch
(BTARRC) and the DIK batch (BDIK-2). All shown medians are endued
with 95 % confidence limits (`a) and εn.const-based.

Roughly the same fatigue behaviour for the SBR material is shown in Figure 4.72.
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Figure 4.72: SBR: New test piece V1 Wöhler curves based on the TARRC batch
(BTARRC) and the DIK batch (BDIK-2). All shown medians are endued
with 95 % confidence limits (`a) and εn.const-based.

In addition to the naked number of cycles to end-of-life, the locus of failure initiation is
investigated too. For the NR material the amount of surface crack initiations and crack
initiations in the bulk material is equal (see Figure 4.73). However, the most of the bulk
crack initiations for the DIK batch (BDIK-2) are located in direct vicinity to the metallic
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inserts with large and lengthy shaped inhomogeneities (see Figure 4.74). This conspicuity
might originate from a faulty bonding system, leading to the slightly reduced lifetimes
shown in Figure 4.71.

92

BTARRC 112

0 88 100

BDIK-2 17

Crack initiation at surface [%]

Figure 4.73: NR: Surface initiations (yes: green) in number of test pieces in the bar
and percent at the axis label for the TARRC batch (BTARRC) and the
DIK batch (BDIK-2). Hence, the colour red is associated with macro crack
initiation with locus in the bulk material only.
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Figure 4.74: NR: Crack initiations in the bulk material (yes: green) in number of new
test pieces V1 in the bar and percent at the axis label for the TARRC
batch (BTARRC) and the DIK batch (BDIK-2). Hence, the colour red is
associated with macro crack initiation with locus on the surface only.

Figure 4.75 shows a different fatigue crack initiation behaviour for the SBR material-
based new test pieces V1. The majority of the test pieces made from the DIK batch
(BDIK-2) failed due to bulk material cracks instead of surface material cracks (BTARRC).
The main differences between the BDIK-2 and BTARRC-based tests are that:

• not the exact same polymer types for both SBR batches could be used;

• wear at the mould of the new test piece was eradicated between the manufacture
BDIK-2 and BTARRC-based test pieces;
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• the conditions while mixing the rubber might have been different, potentially lead-
ing to more damaging particles within the BDIK-2, able to dominate the surface
inhomogeneities.

BTARRC BDIK-2

94

BTARRC 231

0 25 100

BDIK-2 62

Crack initiation at surface [%]

Figure 4.75: SBR: New test piece V1 surface initiations (yes: green) in number of test
pieces in the bar and percent at the axis label for the TARRC batch
(BTARRC) and the DIK batch (BDIK-2). Hence, the colour red is associated
with macro crack initiation with locus in the bulk material only.

Subsequent to the assessment of the batch impact on the lifetime and the fracture
surfaces, the new test piece V2 may be compared with the 2D-dumbbell (see Figure
4.76). Independent of the batch, all major cracks of the new test piece V2 initiate in its
bulk material. Thus, only the Wöhler curves using εn.max.Centre are shown. The probable
bonding faults also occur for the BDIK-2-based new test piece V2. This bonding problem is
not present for the BDIK-1-batch as will be shown in the subsequent Chapter 5.
The indirect comparison for the NR material in Figure 4.76 of the new test piece V2
with the 2D-dumbbell suggest longer lifetimes for the new test piece. Unfortunately, only
an indirect comparison can be conducted since both test pieces are made from different
batches (see Table 4.12).
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Figure 4.76: NR: Wöhler curves of the 2D-dumbbell and new test piece V2 based
on the TARRC batch , DIK batch Nr. 2 and DIK batch Nr. 1 .
All shown medians are endued with 95 % confidence limits (`a) and all
shown data are εn.const-based.

Also for the new test piece V2, made from the SBR material, only bulk crack initiations
occurred. However, still less number of cycles to end-of-life are measured in this indirect
comparison with the 2D-dumbbell shown in Figure 4.77. However, the difference reduces
to factor ≈ 7 compared to the factor of ≈ 50 for the new test piece V1.
In addition to the inaccuracy due to the different batches, this comparison might be
influenced by the choice of fatigue criterion (εn.max for Figure 4.77). The 2D-dumbbell (free
contraction while deflection) differs from the new test piece V1 and V2, with their stiff
metallic inserts, in the magnitude of hydrostatic stress σ0 in the loaded volume. The new
test piece are characterised by a lower length to width ratio, leading to less free contraction
while deflection. Differences in hydrostatic stress σ0 are almost not considered by εn.max

due to the near incompressible behaviour of rubber. However, σ0 influences the maximum
principal stress σmax. For this reason, the Wöhler curve of the new test piece V2 moves
towards the 2D-dumbbell -based Wöhler curve in case σmax as fatigue criterion instead of
εn.max (see Figure 4.78). Still, a small difference remains between these two test pieces.

117



4 Improvements for the characterisation of fatigue

104 105 106 107
0.4

0.8

1.2

1.6

2

≈ 7×

6/8

50×

end-of-life [Cycles]

ε n
.m

ax
[-]

Medians surface, BTARRC
Power-law surface, BTARRC
Medians, BTARRC
Power-law, BTARRC
Medians centre, BDIK-2
Power-law centre, BDIK-2

Figure 4.77: SBR: Wöhler curves of the 2D-dumbbell , new test piece version one
and new test piece version two based on the TARRC batch and
DIK batch Nr. 2 . All shown medians are endued with 95 % confidence
limits (`a) and all shown data are εn.const-based. The X/Y stands for X
non-failed from Y total test pieces.
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Figure 4.78: SBR: Wöhler curves of the 2D-dumbbell and new test piece version two
based on the TARRC batch and DIK batch Nr. 2 . All shown

medians are endued with 95 % confidence limits (`a) and all shown data
are σn.const-based. The X/Y stands for X non-failed from Y total test pieces.

4.3.8 Conclusions

A high level of reliability of statements about the mechanical fatigue of rubber is not
easy to ensure. The consequences for an experimental database in case fatigue tests are
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conducted at different institutions with different material batches combined with slight
changes on a mould are shown.
From the further development of the fatigue test piece of Brüger et al. [66] the subsequent
can be concluded: An overview of generic statements about the lifetime difference and the
figures where these findings can be deduced from is given in Table 4.13.

• Within the manual study of the geometry parameters, it was shown that large
curvatures at the surface and inserts support the objective of failure initiations with
locus in the bulk material. However, a straight forward way to find optimum values
of the six geometry parameters could not be identified.

• For this reason, an automated parameter optimisation was set-up. The results of
this optimisation reflected the insights from the manual study.

• The 2D-dumbbell chosen as reference test piece for the new test piece turned out to
only systematically initiate failures at the surface for the NR material probably due
to the die-cut process.

• Unlike observed for the NR material, failures initiated randomly over the cross
section for the 2D-dumbbell made from SBR.

• The failure initiations of the new test piece V1 made from NR are spread over its
loaded volume, leading to a similar lifetime as measured for the 2D-dumbbell.

• However, for the new test piece V1 made from SBR, a focus of the failure initiation
on the flash was found. This behaviour led to a 50 times shorter lifetime of the new
test piece compared to the 2D-dumbbell.

• The new test piece V2 showed the desired failure initiation behaviour with locus in
the bulk material. A significant increase in lifetime for the SBR material compared
to the new piece V1 is the consequence.

• Finally, reliable conclusions from the comparison of the second version new test piece
with the 2D-dumbbell are hampered due to differences in the batch. Motivated by
this, a benchmark of several uniaxial test pieces is performed in Chapter 5.
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NR material SBR material

− ≈

Figure 4.61

≈

Figure 4.76
− <

Figure 4.78

≈

Figure 4.78

÷~ − ≈

Figure 4.61 & 4.76
÷~ − >

Figure 4.78

÷~ ÷~ − ÷~ ÷~ −

Table 4.13: Overview of the material-dependent lifetime differences between the test
pieces under neglect of any batch influence. The test pieces are depicted
using the symbols , and for 2D-dumbbell, new test piece V1 and new
test piece V2. For reasons of symmetry, the cells with ÷~-symbol are not
filled.
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5 Benchmark uniaxial test pieces

5.1 Why another test piece benchmark?

The main objective of the former Section 4.3 is the design of a fatigue test piece with
uniaxial deformation conditions at the locus of failure initiation in the bulk material. This
test piece should serve as reference for other test pieces with preferential surface failure
initiations. However, this comparison turned out to be partly invalid for two reasons:

• The chosen test piece with preferential surface failure initiations (2D-dumbbell) does
not show this expected behaviour. Only for the natural rubber material a certain
propensity of crack initiations towards the corner for the cross-section is ascertained.

• Only an indirect comparison of the 2D-dumbbell and the new test piece V2 was
possible because they were made from different batches.

In order to still obtain reliable insights into the lifetime-impact of flashes or, more generally,
surface-based failure initiations compared to failure initiations in the bulk material, an
additional benchmark study is performed.
Figure 5.1 shows εn.max-fields and a schematic silhouette-like depiction of the investigated
fatigue test pieces. The requirement on the test pieces is a uniaxial strain-state at the
locus of failure. This hotspot is identical for each test piece whether determined based
on σmax or maximum strain energy density Ψ. Unfortunately, the 2D-dumbbell was not
available for this study.
Except the 3D-dumbbell test piece, all test pieces are bonded to metal inserts. The concave
shape of the inserts of the TDSConcave causes a shift of the fatigue hotspot from the bulk
(see TDSV2) to the surface. The same mould is used for the production of these two test
pieces, therefore the surface properties are not altered. Only one of the four investigated
materials was tested using the TDSConcave, since as few as eight concave inserts were
available.
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3D- Boge TDSV2 TDSConcaveDumbbell Test piece

Figure 5.1: εn.max fields, mapped on half models, and a schematic silhouette-like de-
piction of the investigated fatigue test pieces. The silhouettes are used
within the Wöhler-diagrams. BOGE is the name of the company where the
BOGE test piece got tested and TDS stands for TARRC-DIK-Specimen;
this abbreviation is chosen since ’new test piece’ is too long and imprecise
for this comparison.

5.2 Material and its numerical description

The material formulations from the former Section 4.2 and 4.3 are employed again.
Additionally an unfilled version of each compound is investigated (see NR 0 and SBR 0 in
Table 5.1). The labels ’NR material’ and ’SBR material’ used in Section 4.2 and 4.3 are
extended by the amount of filler in the mixture, expressed by parts per hundred of rubber.

Name NR 45 SBR 77 NR 0 SBR 0
Ingredient phr

NR SMR CV60 100 100
SBR 1723/1793 137.5 137.5

N330 45
N339 77

SUNTHENE 410 4.5
ZnO 3 3 3 3

Stearic acid 2 1 2 1
6PPD 3 3 3 3
CBS 0.6 0.6

TMTD 0.2 0.2
TBBS 1.6 1.6
Sulphur 2.5 1.6 2.5 1.6

Table 5.1: Recipes of the investigated NR and SBR-based mixtures. The batch BDIK-1
contains SBR 1723 whereby BDIK-2 needed to be made of SBR 1793 (phr ≡
parts per hundred of rubber, by mass). The formulations of the NR 45 and
the SBR 77 compounds are equal to the ones called NR and SBR material
in former Section 4.2 and 4.3.
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5 Benchmark uniaxial test pieces

In order to conduct finite element analyses of the chosen test pieces, the Plagge material
model is used. The material parameters for this material model are determined with the
same procedure as described in Section 4.3.1 and are listed in Table 5.2. Compared to the
filled NR 45 and SBR 77 material, the unfilled compounds show much less cyclic as well as
static relaxation (see Figure 5.2 & 5.3 and compare with Figure 4.31 & 4.32 on Page 84).
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Figure 5.2: SBR 0: Test protocol used for the material parameters determination of
the Plagge model. Experimental data are based on a uniaxial test piece.
The test is interrupted after a few cycles with εn.11 = 1.5.
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Figure 5.3: NR 0: Test protocol used for the material parameters determination of the
Plagge model. Experimental data are based on a uniaxial test piece.

No. Parameter NR 45 SBR 77 NR 0 SBR 0
1 φ 0.38 0.57 0.17 0.14
2 Gc 0.38 MPa 0.61 MPa 0.48 MPa 0.33 MPa
3 Gf 0.1 MPa 0.11 MPa 0.037 MPa 0.015 MPa
4 n 36.86 19.04 193.44 194.16
5 χ 2.84 2.96 2.99 2.92
6 eb 15.12 18.78 19.22 17.07
7 vb 0.11 0.45 0.72 1.07
8 τve.0 473.80 s 271.33 s 0.49 s 2.55 s
9 σr 0.048 MPa 0.044 MPa 0.01 MPa 0.01 MPa

Table 5.2: Parameters of the Plagge-model from Figure 5.2 and 5.2. The parameter for
the filled materials, determined in Section 4.3.1, are shown as well.
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5.3 Fatigue test protocol

As in Section 4.2 and 4.3 all tests, except for the BOGE test piece, are conducted in
fully relaxing conditions, with respect to the global deflection (Ru = d∼.min/d∼.max = 0);
they are displacement-controlled. The amplitude is chosen such that approximately the
same range of maximum local deformation is calculated in the finite element analysis
for all test pieces. Likewise to the fatigue tests in Section 4.2, the test frequencies are
modified for each load-level. The reference frequency is chosen such that independent of
the load-level, the surface temperature of the test pieces can be kept below 30 ◦C with
the assistance of forced convection. This is ensured with infra-red sensor measurements.
Eventually, the frequencies range between 1 Hz and 6 Hz. As shown in Section 4.3, the
TDSV2 fails exclusively due to crack initiations in the bulk material. A critical question
here is how the temperature in the bulk material develops with respect to the surface
temperature. Estimating simulations of the temperature-field in thermal equilibrium
resulted in negligible temperature difference between surface bulk material temperature,
mainly due to the effective heat transfer over the metallic inserts.
Force-controlled fatigue tests are performed with the BOGE test piece for all four mate-
rials since displacement-controlled testing is not available within the facilities of BOGE
Elastmetall GmbH. As an additional obstacle, forced convection was not available neither.
Infra-red measurements show surface temperatures greater than 50 ◦C after 30 min cyclic
loading for the filled SBR 77 and NR 45 material. Fortunately, surface temperatures of
approximately 20 ◦C are measured for the unfilled materials. Because of the negligible cyclic
creep and self-heating of the unfilled materials, it is assumed that the forced-controlled
fatigue test data from the BOGE test piece are valid for the comparison with the other
displacement-controlled test pieces made from SBR 0 and NR 0. The fatigue test results
for the BOGE test pieces made from the filled SBR 77 and NR 45 material is discarded.
For them, the temperature difference to the remaining data is too significant and the
cyclic creep behaviour yields a very strong continuous increase of the global deflection and
accordingly of the local strain.
The test pieces from Figure 5.1 differ in size of the loaded volume. However, a shift of
certain fatigue data due to these differences is not conducted since all test pieces except
the TDSV2 suffer from failure initiation at the flash. A clear definition of a loaded volume
is not possible for these cases.

5.4 Fatigue test results

Figure 5.4 shows the fatigue results for the 3D-dumbbell , BOGE test piece and TDSV2

based on the DIK batch Nr. 1 and DIK batch Nr. 2 for the unfilled SBR material.
The existence of several batches has been briefly addressed in Section 4.3. Initially focusing
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on the greatest load-level of the BOGE test piece, only data from two test pieces were
available. This leads to a very great confidence limit (`a).
A difference of roughly two decades in lifetime is measured between the 3D-dumbbell and
the TDSV2. The lifetime of the BOGE test piece ranges in between these two samples.
Comparing the two batches BDIK-1 and BDIK-2 shows a reduced lifetime of the 3D-dumbbell
made from BDIK-2. However, longer or similar lifetimes are measured for the TDSV2.
Fatigue tests based only on the BDIK-2 batch are performed for the BOGE test piece.
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Figure 5.4: SBR 0: Wöhler-curves of the 3D-dumbbell , BOGE test piece and TDSV2
based on the DIK batch Nr. 1 and DIK batch Nr. 2 . All shown

medians are endued with 95 % confidence limits (`a) are εn.const-based. The
X/Y stands for X non-failed from Y total test pieces.

In order to possibly explain the measured differences in lifetime, a microscopical investi-
gation of the failure origin is conducted. Figure 5.5 shows representative fracture surfaces
of the test samples. The quantitative evaluation is shown in Figure 5.6 and Figure 5.7.
Evaluating whether the major crack initiated at the surface or in the bulk material verifies
the functionality of the TDSV2. In contrast to the 3D-dumbbell and BOGE test piece, all
failures initiate in the bulk material of this new test piece. Figure 5.7 shows how many
of the surface initiated major fatigue cracks started growing at the flash or somewhere
else at the surface. The majority of the cracks initiate at the flash for the surface crack
initiating 3D-dumbbell and BOGE test piece.
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Figure 5.5: SBR 0: Representative examples of fracture surfaces of the dumbbell,
BOGE and TDSV2 test piece.
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Figure 5.6: SBR 0: Crack initiations at the surface material (yes: green) in number of
test pieces in the bar and percent at the axis label. Hence, the colour red is
associated with crack initiation with locus in the bulk material.
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Figure 5.7: SBR 0: Crack initiations at the flash (yes: green) in number of test pieces
in the bar and percent at the axis label. Hence, the colour red is associated
with crack initiation elsewhere on the surface.

The focus of the fatigue cracks on the flash for the 3D-dumbbell and BOGE test piece
explains the reduced lifetimes compared to the TDSV2 since all other regions (general
surface or bulk material) of these two test pieces are still intact macroscopically at the
moment of crack initiation at the flash. However, an even greater lifetime difference is
measured between 3D-dumbbell and BOGE test piece. Figure 5.8 shows the difference of
their flashes; the difference of their major locus of crack initiation. The two microscopic
pictures in Figure 5.8 are equal dimensionally scaled. The 3D-dumbbell mould seems to
be more worn, leading to a thicker and on first sight more patchy geometry. The cracks
preferentially initiate at the thinner regions of the flash of the dumbbell (close look to
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Figure 5.8). Motivated by this, a very simplified finite element model is created. It assumes
a repeating narrow and three times thicker flash section (formed by rubber protruding into
the mould partition). Only one thick-narrow-thick section of flash is shown in Figure 5.9
on Page 129. In the case the body attached to the flash, representing the main test piece
corpus, is deformed with 100 % nominal strain, a deformation of 140 % nominal strain
within the narrow section and 174 % nominal strain at the transition region from thin
to thick flash is calculated with the finite element analysis. An increase of 40 % nominal
strain causes a decrease in lifetime with a factor of ten for the SBR 0 material as shown in
Figure 5.4.
The geometry of the shown finite element model is scalable to any arbitrary absolute
dimension. Even if not visible for the shown magnification of the BOGE test piece, its
flash might show similar thickness variations using a greater magnification. However, the
fatigue results shown in Figure 5.4 suggest a less pronounced ratio between thickness of
the thick and narrow flash sections, assuming this to be relevant for the lifetime differences.
Another possible influence on the lifetime might originate from the average thickness of
the flash. The two test pieces show a great difference in this geometrical property. A much
stronger orientation of the macro molecules for the thin flash of the BOGE test piece is
conceivable. Unfortunately, to the knowledge of the author, there is no research available
investigating the effect of thickness of thin rubber films on the lifetime.

250 µm 250 µm

Figure 5.8: Crack initiation at the flash of the dumbbell and BOGE test piece.
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Figure 5.9: Exemplary deformation concentration due to the varying thickness of the
flash. This example is motivated by 3D-dumbbell-based observations. Within
the micrograph one segment of the flash is overlain by colours to highlight
areas with potentially small (blue) and large (red) deformation.

Figure 5.10 shows the fatigue results for the 3D-dumbbell , TDSV2 and TDSConcave

based on the filled SBR 77 material. The results from the BOGE test piece are discard for
the SBR 77 as reasoned in Section 5.3.
As for the unfilled SBR 0, longer lifetimes are measured for the TDSV2 compared to the
3D-dumbbell and TDSConcave. The latter two show the same fatigue behaviour. However,
the lifetime difference of the 3D-dumbbell made from different batches, observed for the
SBR 0 in Figure 5.4, disappears for the SBR 77 as shown in Figure 5.10. Adding filler only,
seems to extinguish the lifetime reducing effects observed for SBR Type 1793 (BDIK-2),
compared to SBR Type 1723 (BDIK-1).
Table 5.3 helps to keep the overview in the subsequent discussion. The lifetime difference
for the lowest load-level (see Figure 5.10) of the TDSV2, made from SBR 77, is present for
SBR 0 in Figure 5.4 as well. For the TDSV2, a significant more rigid fatigue test machine
was used for the tests with the batch BDIK-2 compared to the tests based on the BDIK-1.
The overall less rigid fatigue machine from the BDIK-1 tests causes an increase in stroke
and therefore global deflection as soon as one of the four simultaneously tested TDSV2 fails.
The given deflection is set up within the first cycles, with four intact TDSV2. For this
reason, tests using the less rigid fatigue machine tend to result in biased data with shorter
lifetimes. This effect has more impact with increasing stiffness of the test piece, possibly
explaining the less pronounced effect for the softer SBR 0-based TDSV2, although it is still
present. While the stiffness differences of the fatigue machines give a possible answer to the
effect shown for the lowest load-level, no lifetime difference is measured of the uppermost
load-level of the TDSV2 and the two batches. However, the microscopic investigation of
the fracture surfaces of the TDSV2 a general shift, for BDIK-2 compared with BDIK-1, of the
locus of crack initiation towards the metallic insert is salient especially for the highest
load-level. This possibly raised sensitivity for hydrostatic loadings is detected for the
NR-based material too (see Section 4.3.7 or the following evaluations in this section). The

129



5 Benchmark uniaxial test pieces

possible issues with the bonding system might compensate the effects originating from the
stiffness differences of the fatigue machines.
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Figure 5.10: SBR 77: Wöhler-curves of the 3D-dumbbell , TDSV2 and TDSConcave
based on the DIK batch Nr. 1 and DIK batch Nr. 2 . All shown

medians are endued with 95 % confidence limits (`a) and are εn.const-based.
The X/Y stands for X non-failed from Y total test pieces.

SBR 77 BDIK-1 SBR 77 BDIK-2
Possible bonding defects No Yes

Test rig stiffness Low High

Table 5.3: SBR 77: Overview of the fracture surface abnormalities and test rig proper-
ties for tests on the TDSV2 made from BDIK-1 and BDIK-2.

Figure 5.11 shows generic examples of crack surfaces of the SBR 77 based on the 3D-
dumbbell, TDSConcave and TDSV2. All cracks initiated at the surface for the 3D-dumbbell
and for the TDSConcave whereas each crack initiates within the bulk material for the TDSV2

(see Figure 5.12). As shown for SBR 0 in Figure 5.4 on Page 126 and corresponding
evaluation, failures initiating in the bulk material instead of at the surface raise the lifetime;
same is measured for SBR 77 (see Figure 5.10). In detail for SBR 77, the majority of the
surface cracks of the 3D-dumbbell start at the flash (see Figure 5.13). Figure 5.13 shows
an equal amount of free surface and flash initiations for the TDSConcave. However, this
finding is based on a very small amount (four) of test pieces.
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5 Benchmark uniaxial test pieces

Figure 5.11: SBR 77: Representative examples of fracture surfaces of the dumbbell,
TDSConcave and TDSV2 test piece.
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Figure 5.12: SBR 77: Crack initiations at the surface material (yes: green) in number
of test pieces in the bar and percent at the axis label. Hence, the colour
red is associated with crack initiation with locus in the bulk material.
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Figure 5.13: SBR 77: Crack initiations at the flash (yes: green) in number of test pieces
in the bar and percent at the axis label. Hence, the colour red is associated
with crack initiation elsewhere on the surface.

Figure 5.14 shows fatigue results of the 3D-dumbbell , BOGE test piece and TDSV2

based on NR 0. The arrangement of the Wöhler curves is reminiscent of the results for the
SBR 0 shown in Figure 5.4, because the TDSV2 shows the longest and the 3D-dumbbell the
shortest lifetime with the BOGE test piece in between. Nonetheless, Figure 5.14 contains
several details that need elucidation. First of all, the possible bonding issues of the TDSV2

made from BDIK-2 yield much shorter lifetimes compared to the BDIK-1-based TDSV2 (
vs. ). The results of the 3D-dumbbell prove an otherwise similar fatigue behaviour of
both batches ( vs. ). An even stronger lifetime-reducing effect is found for the uppermost
load-level of the TDSV2 based on BDIK-2. As indicated by the depiction of the fracture
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pattern acquired at the insert, failure by cavitation took place. Solely for this load-level,
material and test piece, the present hydrostatic stress σ0 at the insert exceeds the critical
hydrostatic stress σ0.crit calculated using Equation 3.2 on Page 44. For all other test pieces
and materials (SBR 0, SBR 77, NR 45) the hydrostatic stress σ0 is less than σ0.crit at any
region of the test pieces. For this reason, only the two lower load-levels are consider in the
fit of the power-law for the TDSV2 from BDIK-1.
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Figure 5.14: NR 0: Wöhler-curves of the 3D-dumbbell , BOGE test piece and TDSV2
based on the DIK batch Nr. 1 and DIK batch Nr. 2 . All shown

medians are endued with 95 % confidence limits (`a) and are εn.const-based.
Picture of the fracture surface with cavitation for the uppermost load-level
of .

The detailed analysis of the fracture surfaces of the TDSV2 solidifies the assessment of
cavitational damage for uppermost load-level of the TDSV2 based on BDIK-2. For this test
condition each failure initiated in direct vicinity of the metallic insert; unlike initiation for
the two lower load-levels.
Figure 5.15 shows representative examples of fracture surfaces indicating the focus of the
crack initiation on the surface and flash for the 3D-dumbbell and BOGE test piece (see
Figure 5.16 and 5.17). As for the SBR materials only bulk material initiations are found
for the TDSV2 (see Figure 5.16). Yet, the properties of the first batch BDIK-1 and second
batch BDIK-2 differ. Except for the uppermost load-level (cavitation) of the TDSV2 the
cracks initiate in the region of maximum εn.max for the BDIK-1. The possible bonding issues,
firstly addressed in Section 4.3.7, with the BDIK-2 batch occur here as well. One might
remark that the bonding issues, in common with caviation, both have the failure locus
close to the metallic insert, which complicates distinguishably. This is further discussed in
the subsequent evaluation of the NR 45-based fatigue data while the differences between
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both phenomena are more distinct there.
BDIK-1 BDIK-2

Figure 5.15: NR 0: Representative examples of fracture surfaces of the dumbbell,
BOGE and TDSV2 test piece.
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Figure 5.16: NR 0: Crack initiations at the surface material (yes: green) in number of
test pieces in the bar and percent at the axis label. Hence, the colour red
is associated with crack initiation with locus in the bulk material.
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Figure 5.17: NR 0: Crack initiations at the flash (yes: green) in number of test pieces
in the bar and percent at the axis label. Hence, the colour red is associated
with crack initiation elsewhere on the surface.

Solely the 3D-dumbbell and TDSV2 -based Wöhler curves are available for NR 45
(see Figure 5.18). No lifetime difference is measured between the two batches BDIK-1 and
BDIK-2 based on the 3D-dumbbell. However, as for the unfilled material NR 0, a (five
times) shorter lifetime is measured for the TDSV2 made from BDIK-2 in comparison with
the BDIK-1-based TDSV2.
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Figure 5.18: NR 45: Wöhler-curves of the 3D-dumbbell and TDSV2 based on the
DIK batch Nr. 1 and DIK batch Nr. 2 . All shown medians are
endued with 95 % confidence limits (`a) and are εn.const-based.

Different fracture surfaces are associated with the different lifetimes between the TDSV2 of
the two batches, as shown Figure 5.19. The BDIK-2-based TDSV2 might remind of cavitation
because the fracture surface is in direct vicinity of the metallic insert. Nevertheless the
close-up analysis with a microscope reveals distinct differences between the fracture surface
of the BDIK-2-based TDSV2 and a classical cavitation damage.
Figure 5.20 shows magnifications of fracture surfaces from the BDIK-2 and BDIK-1-based
TDSV2. The cavitation damage of the BDIK-1 example occurred for the uppermost load-
level and was found by cutting the test piece close to the insert only. This cavitation
damage is not involved in the major failure of the test piece. As a first difference between
the two investigated cases in Figure 5.19 and 5.20, the cavitation-like patterns for BDIK-2

occur independent of the load-level; even if the hydrostatic stress σ0 is much lower than
the critical hydrostatic stress σ0.crit. Secondly, the classical cavitation damage from the
BDIK-1-based TDSV2 is characterised by pronounced crater-like patterns, as shown by
the three-dimensional depiction acquired with a confocal microscope in Figure 5.20. In
contrast to this, the cavitation-like patters of the BDIK-2-based TDSV2 are rather flat.
Additionally, this pattern spreads over the complete insert surface in case of BDIK-2, in
contrast to the localised (at maximum σ0) occurrence of the BDIK-1-based patterns. Hence,
the results of the BDIK-1-based TDSV2 are assumed to be relevant for the comparison with
the 3D-dumbbell results; less relevant are the results of the BDIK-2-based TDSV2 due to
the suspicion of bonding based failure.
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BDIK-1 BDIK-2

Figure 5.19: NR 45: Representative examples of fracture surfaces of the dumbbell and
TDSV2 test piece.
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Figure 5.20: Failure initiation at the insert for TDSV2; comparison between DIK batch
Nr. 1 (BDIK-1) and Nr. 2 (BDIK-2). The topographical figures at the right
hand side are rotated relative to the micrographs.

The reduced lifetime of the 3D-dumbbell and TDSV2 is attributed to the dumbbell’s
propensity for crack initiation at the flash (see Figure 5.21 and 5.22).
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Figure 5.21: NR 45: Crack initiations at the surface material (yes: green) in number
of test pieces in the bar and percent at the axis label. Hence, the colour
red is associated with crack initiation with locus in the bulk material.
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Figure 5.22: NR 45: Crack initiations at the flash (yes: green) in number of test pieces
in the bar and percent at the axis label. Hence, the colour red is associated
with crack initiation elsewhere on the surface.

5.5 Conclusions

Summing up Chapter 5:

• The mechanical failure of the TDSV2 is caused by cracks initiating in the bulk
material, independent of the load-level and material. TDSV2 fatigue test results are
therefore surface texture and flash-independent.

• Test pieces with propensity to crack initiation at the flash tend to have shortened
lifetimes.

• The comparison of the BOGE test piece with the 3D-dumbbell in Figure 5.4, Page
126 and 5.14, Page 132 shows a different impact of their flashes on the lifetime. Since
the flash is the only known varied fatigue-influencing parameter in this case, the
fatigue of rubber must significantly depend on the properties of the corresponding
mould partition line. This might be less true for filled rubber materials as indicated
by the equal lifetimes of the TDSConcave and 3D-dumbbell for SBR 77 in Figure 5.10,
Page 130. However, comprehensive results are pending for the TDSConcave.

• The damage by tri-axial tensile loads influences the fatigue much more strongly com-
pared to the classic failure initiation at inhomogeneities in e.g. uniaxial-dominated
stress-fields. Even if much more sophisticated cavitation criteria can be found in lit-
erature (see e.g. Fond’s review [99]), the applied criterion from Ball and Gent [67,68]
(see Equation 3.2, Page 44) shows good performance in the present study.

Note that, for the 3D-dumbbell made from filled EPDM, in the study from Gehrmann
et al. [51], a less distinct focus of the cracks on the flash is encountered. This can be
possibly explained by much more damaging particle-like inhomogeneities in this rubber
material, dominating the damage potential of the flash.
Conclusively of Chapter 5 it needs to be emphasised that the differences in hydrostatic
stress σ0 are negligible between the 3D-dumbbell, TDSConcave and BOGE test piece for
a given strain. The re-plot of the corresponding lifetime results using stress instead of
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strain would therefore not alter the location of the corresponding Wöhler curves with
respect to each other. A much bigger difference in hydrostatic stress σ0 at the average
locus of crack initiation is present for the TDSV2, compared to the other three test piece
geometries. Independent of the material, longer lifetimes are found for the TDSV2 in
strain-lifetime-plots. The depiction of these data in a stress-lifetime-plot would only
increase the gap in lifetime between the TDSV2 and the others. The same statement holds
for a strain energy density based depiction. The fatigue results are primarily plotted using
strains throughout this study since strain-values are assumed to be less susceptible for the
description of the displacement-controlled experiments against e.g. the chosen material
model.
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6 Influence of dwell periods on the mechanical fatigue of
rubber

Chapter 6 examines dwell periods within cyclic loading and their implication on the lifetime.
This investigation is motivated by components loaded in service. These real-life loadings
are rarely of continuous cyclic nature. However, the Wöhler concept based end-of-life
prediction of components commonly uses fatigue results of simple test pieces exposed to
continuous cyclic loading. A systematic inaccuracy in end-of-life prediction of components
might be the consequence. Prior to the study of this possibly fatigue-influencing factor,
the accuracy of mechanical fatigue testing itself was improved with the methods from
Section 4.1 and 4.2, as well as by the development of a test pieces geometry delivering
surface quality-independent lifetime results. The study of the dwell periods took place
parallel to the development of the new test piece. For this reason, the majority of the
results within this chapter are produced with the 3D-dumbbell.

6.1 Fatigue testing with dwell periods - Test protocol

Section 3.4 lists two studies approaching the influence of dwell periods on the fatigue of
rubber. Roland and Sobieski performed fatigue tests with 24 h to 72 h long single dwell
periods. A maximum influence in number of cycles to failure with a factor of 3.5 was
found for unfilled NR. More significant influence was measured by Harbour et al. with
crack growth tests (growth of a preexisting macroscopic crack under cyclic loading) [70].
They found a factor of ten in crack growth per cycle for their carbon black filled SBR for
much shorter dwell periods, of only a few seconds, but constantly recurring in between a
few load-cycles (see Section 3.4).
The fatigue of rubber was successfully correlated to fracture mechanics more than 55
years ago [98]. Therefore the study of Harbour et al. is used as main template for the
test protocol definition of the present study. Five cycles Nd = 5 between dwell periods
of td = 10 s length is chosen to be performed for all materials (nomenclature is shown
in Figure 3.8 on Page 45). It is a compromise between test duration and maximized
impact of the dwell periods on the fatigue (see Figures 3.9 to 3.11 starting on Page 46).
Moreover, this test condition is applied with loaded (εd = ε∼.max) and unloaded (εd = 0)
dwell periods. In addition to the (Nd = 5 - td = 10 s) - combination, for some materials,
experiments with longer dwell periods but same Nd/td-ratio (e.g. Nd = 100 - td = 200 s) as
well as changed Nd/td-ratio (e.g. Nd = 2000 - td = 5 min) are conducted.
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6 Influence of dwell periods on the mechanical fatigue of rubber

Further, all four materials from Chapter 5 (same two batches), shown in Table 5.1, are
investigated in this study about the influence of dwell periods. As before, all fatigue tests
are conducted using force convection, frequency adaptation for each load-level, and are
displacement-controlled loading. The results in the following figures that originate from
finite element simulations use the Plagge material model with corresponding fits shown in
Section 4.3.1 and 5.2.

6.2 Static relaxation vs. Cyclic relaxation

A dwell period is nothing more than a static relaxation step. In order to research
the static relaxation properties, the reaction force of a uniaxial compressed cylinder
εn.11 = −25 % with an undeformed height of 8 mm and diameter of 12 mm is measured
over time according to ISO 3384 [100]. The static relaxation rates of the SBR and NR
material are approximately equal (see Figure 6.1).
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Figure 6.1: Static relaxation of a compressed cylinder.

For the cyclic relaxation tests - the fatigue tests - four 3D-dumbbells are cycled simulta-
neously in one fixture, attached to one load-cell. For this reason, the data from Figure 6.2
to 6.9 are averaged over four to eight (eight in case of repeated experiments) test pieces.
Figure 6.2 shows the maximum reaction force Force∼.max within the cyclic deflection of
the 3D-dumbbell for the NR 0 material. The reaction force tends to greater values for
unloaded dwell periods (see blue lines in Figure 6.2). This propensity is measured for all
materials and is dedicated more focus to for the NR 45 material, which shows a much
more pronounced effect. The colour-code:
black ⇒ no dwell periods
red ⇒ loaded dwell periods
blue ⇒ unloaded dwell periods
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is used for the Figures 6.2 to 6.15.
The reason for greatest value of Force∼.max for the continuously cycled case ( ) and
the Nd = 2000 case ( ) is not fully understood within this dataset. A possible reason
originates from the circumstance that these two measurements are performed as the very
first ones from the complete dataset. All other tests were conducted one month later.
Small impacts of aging, even if the test pieces were stored at −25 ◦C, might show an
influence on the reaction force when deflected. The deviations of Force∼.max in Figure 6.2
are in general fairly small compared to the filled NR 45 or SBR 77 materials.
The finite element analysis (FEA) lies in the region of the test data. FE simulations are
performed consistently for all materials and load-level for the continuously cycled case.
Within these FEAs, 700 continuous displacement cycles are simulated. By way of example,
FEAs with dwell periods are only conducted for the NR 45 material and are discussed
at Figure 6.4. As broached in Section 3.2 and discussed in Section 4.2, cyclic relaxation
dominates static relaxation for the here investigated filled elastomers and mainly depends
on the number of times the load has been applied and not on the e.g. load frequency or
more general, the time the load has been applied. The validity of this assumption is shown
in Figure 6.3 and 6.6. Within these data plotted against load-cycles, based on the rate of
decrease of Force∼.max, one cannot distinguish between the different test conditions with
and without dwell periods. This pure dependency of the relaxation should be less true for
e.g. unfilled NR according to Derham and Thomas [42]. However, no clear assertion can
be made from the corresponding data in Figure 6.2.
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Figure 6.2: NR 0: Cyclic relaxation of the 3D-dumbbell with ε∼.max ≈ 150 % for all
cases. For the cases with the Nd = 5 and Nd = 100 the Force∼.max is taken
from the third for Nd = 2000 from the last cycle. The data from the ( )
and the ( ) case are only available starting from more than hundred
cycles, due to a different test procedure.
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Focusing on the cases with Nd = 5, a much more pronounced Force∼.max increase effect
due to unloaded dwell periods is measured for NR 45 compared to NR 0 (see Figure 6.3
and compare with 6.2). Figure 6.4 can be considered as an extract from Figure 6.3. It
shows the data from two cycle-dwell periods at approximately 2500 load-cycles against
time. The loaded εd = ε∼.max or unloaded εd = 0 holding determines whether an increasing
or decreasing characteristic is measured for Force∼.max within the dynamic periods (here
five cycles) and has a significant impact on the total average level of Force∼.max ( vs. ).
For unloaded εd = 0 dwell periods, the material recovers in the undeformed state causing
greater reaction force within the first subsequent cyclic loads. After 175 load-cycles, this
effect almost disappears and in Figure 6.3 is therefore close to . The case Nd = 5
with loaded and unloaded dwell periods is simulated in an FEA using the Plagge model
for in total 100 load-cycles. Similar to the test-data from Figure 6.4, an increasing and
decreasing Force∼.max trend is calculated within the 5 load-cycles for loaded and unloaded
dwell periods, respectively. A similar deviation in average Force∼.max is obtained as well.
Although the FEA based on the Plagge model calculates too large reaction forces, as
shown in Figure 6.3, the deviation of about 10 % between continuous cyclic loading
and Nd = 5 with εd = 0 is correctly predicted by this material model.
With reference to the fatigue results from subsequent Section 6.3, the behaviour of the
local strains and stresses at the average spot of failure initiation of the 3D-dumbbell shall
estimated with the simulations using the Plagge model. Although the global reaction
force significantly increases for the test Nd = 5 and εd = 0, with respect to the continuous
cyclic loading, the global deflection in this displacement-controlled FE-simulation stays
unaffected. For this reason, it is hardly surprising that the local strain does almost not
differ between these two load-cases. On the other hand, in the increase of 10 % in Force∼.max

is almost fully passed on to the local stress; the local maximum principal Cauchy stress
increases with 8 %. Therefore, the experiments of the present chapter provide the unique
possibility to obtain fatigue measurements with different local stress values and at the
same time almost unaltered local strains.
The position of the curve below the other data could not be conclusively resolved.
Possible reasons are an impact of the 5 ◦C to 10 ◦C greater test piece temperature during
the ongoing cyclic deformation, stiffness fluctuations among the test pieces or the more
precise displacement control of the servo-hydraulic fatigue test rig for continuous cyclic
loadings.
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Figure 6.3: NR 45:Cyclic relaxation of the 3D-dumbbell with ε∼.max ≈ 150 % for all
cases. For the cases with the Nd = 5 the Force∼.max is taken from the third
for Nd = 2000 and Nd = 175 from the last cycle.
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Figure 6.4: NR 45: Details of two cyclic loadings and dwell periods from the Nd = 5,
td = 10 s, εd = ε∼.max and Nd = 5, td = 10 s, εd = 0 load cases from Figure
6.3.

For the SBR 0 and SBR 77 material, the data for the cyclic relaxation are not limited on
only one load-level (see Figure 6.5 and 6.6). As with the NR materials, the dynamic force
peaks Force∼.max are significantly greater if the dwell periods are without strain (see ,

, in Figure 6.5 and 6.6). For the filled material SBR 77, the Force∼.max from the
tests with unloaded dwell periods (100 % , 75 % ) are even close to the Force∼.max
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from the next greater load-level of the tests with loaded dwell periods (130 % , 100 %
).
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Figure 6.5: SBR 0: Cyclic relaxation of the 3D-dumbbell for different load-level and
load cases. Force∼.max originates from the third load-cycle for fatigue tests
with dwell periods.
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Figure 6.6: SBR 77: Cyclic relaxation of the 3D-dumbbell for different load-level and
load cases. Force∼.max originates from the third load-cycle for fatigue tests
with dwell periods.

Summing up the results for the cyclic relaxation with loaded dwell periods and unloaded
dwell periods:
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• The average maximum cyclic reaction force Force∼.max is always greater in case of
unloaded dwell periods compared to loaded dwell periods.

• This stays true independent of the material or load-level and becomes less pronounced
with increasing number of cycles subsequent to the dwell periods Nd in case the
latter cycle of Nd-block is evaluated (see cases with Nd = 175 or Nd = 2000).

• In fact, the significant differences in Force∼.max for the unloaded and loaded dwell
periods for the exact same global deformation provides the unique possibility to
induce greater local stress for the same local strain.

The static relaxation experiments with the compressed cylinder according to ISO
3384 [100] from Figure 6.1 are only contingently comparable with the 3D-dumbbell loaded
in tension. As a result, static relaxation experiments using the 3D-dumbbell are conducted,
however, only for the SBR materials.
The data in Figure 6.2 to 6.6 are plotted against load-cycles. To be able to plot the cyclic
and static relaxation data in one figure, an "effective time" is introduced (see Figure 6.7).
As defined in Equation 6.1, this variable describes the time of true loading. For instance,
the effective time of a pure sinusoidal load (between zero & one) signal is taken to be one
half of the effective time of a pure static relaxation test with load one (simply one times
length of test).
In advance of the static relaxation periods, 200 cyclic deformations are performed to
soften the material. Figure 6.8 shows the SBR 77 based static relaxation with the cyclic
relaxation data over effective time for the uppermost load-level only. In agreement with
the results from Section 4.2, a greater decrease of Force∼.max from the cyclic relaxation
tests in comparison with the decrease of the static reaction force is shown in Figure 6.8.
Due to the visco-elastic material behaviour of rubber, the static reaction force is lower
than the dynamic reaction force Force∼.max. For the unfilled SBR 0 - material less distinct
tendencies in consequence of the relatively small reaction forces and much less general
relaxation (see Figure 5.2 on Page 123) are found.
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Figure 6.7: Illustration of the effective time.
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Effective time =
trial period∫

0

global deflection(t)
max(global deflection) dt (6.1)
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Figure 6.8: SBR 77: Cyclic relaxation vs. static relaxation of the 3D-dumbbell with
equal global deflection (εstatic = ε∼.max ≈ 130 %). Force∼.max originates
from the third load-cycle for fatigue tests with dwell periods.
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Figure 6.9: SBR 0: Cyclic relaxation vs. static relaxation of the 3D-dumbbell with
equal global deflection for different load-level and load cases. Force∼.max
originates from the third load-cycle for fatigue tests with dwell periods.
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6.3 Fatigue test results

Figure 6.10 shows the NR 0 based fatigue results. The different variations of dwell periods
do not influence the number of cycles to end-of-life. In addition to the tests with short
dwell periods, motivated from Harbour et al. [70], the test protocol from Roland and
Sobieski [71] is applied as well. Solely the test condition with the most significant lifetime
impact of factor 3.4 is repeated. This test protocol starts with 200 load-cycles, followed
by a single td = 48 h dwell period and ends with cycling the test piece until end-of-life.
However, only a factor of 1.8 is measured between continuous cyclic test and the test
with the single 48 h long dwell period . Yet, their factor of 3.4 is still statistically possible
with respect to the size of the 95 % confidence limits (see enlargement in Figure 6.10 ).
However, a very large number of test pieces would be necessary to work out these relatively
small lifetime impacts.
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Figure 6.10: NR 0: Fatigue test data of the 3D-dumbbell with and without dwell
periods. For reasons of clarity, a zoom of the load-level εn.max ≈ 150 % is
shown in the corner. Within this enlargement the data-points are vertically
shifted. All shown medians are endued with 95 % confidence limits (`a)
and all shown data are BDIK-1 and εconst-based. Only and are measured
based on BDIK-2.

The effect of increased peak reaction force for unloaded dwell periods is much more
distinct for NR 45 compared to NR 0 (see Figure 6.2 and 6.3 starting on Page 140). Figure
6.3 shows an up to 10 % increased average Force∼.max for unloaded dwell periods compared
to loaded dwell periods. A load difference of 10 % causes an approximate lifetime decrease
of 50 %, assuming the slope of the power-law from Figure 6.11. Nevertheless, only small
lifetime differences are found in Figure 6.11 for all load cases.
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Figure 6.11: NR 45, BDIK-1: Fatigue test data of the 3D-dumbbell with and without
dwell periods. For reasons of clarity, a zoom of the load-level εn.max ≈ 150 %
is shown in the corner. Within this enlargement the data-points are
vertically shifted. All shown medians are endued with 95 % confidence
limits (`a) and all shown data are εconst based.

A very significant fatigue influence due to dwell periods is measured for the unfilled
SBR compound (see Figure 6.12). However, in a converse direction as might be excepted
from the Force∼.max shown in Figure 6.5 on 143 and the results of Harbour et al. [70].
Their results state a greater crack growth rate in case of nearly unloaded dwell periods
compared to loaded dwell periods. By contrast, the lifetime decreases with a factor of
4.5 (BDIK-1) and even ten (BDIK-2) for loaded dwell periods compared to unloaded dwell
periods in Figure 6.12 for all load-levels. An almost negligible implication on the lifetime,
with the continuous test as reference, is measured in case of unloaded dwell periods. In
general, lower lifetimes are measured for the second batch BDIK-2 material as discussed
earlier in Section 5.4 and shown in Figure 5.4 on Page 126. In addition to the Harbour et
al. conditions Nd = 5, td = 10 s, an upscaled load-condition with Nd = 100, td = 200 s is
applied. This load-condition allows for longer static relaxation time for the same Nd/td-ratio.
The equal lifetimes are found with the upscaled load-condition compared to the (Nd = 5,
td = 10 s)-case, suggesting a crucial relevance of the Nd/td-ratio for the mechanical fatigue
for unfilled SBR.
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Figure 6.12: SBR 0: Fatigue test data of the 3D-dumbbell with and without dwell
periods. For reasons of clarity, a zoom of the load-level εn.max ≈ 100 % is
shown in the corner. Within this enlargement the data-points are vertically
shifted. All shown medians are endued with 95 % confidence limits (`a)
and all shown data are BDIK-1 and εconst based. Only the green colored
data (e.g. ) are measured based on BDIK-2.

The same lifetime shortening effect of loaded dwell periods is measured for the TDSV2

(see Figure 6.13). For this reason, the dwell period effect for the SBR 0 is not exclusively
found for test pieces with crack initiations at the flash, represented by the 3D-dumbbell.
For one load-level of the TDSV2, a continuous cyclic fatigue test with f = 1 Hz and
f = 6 Hz is conducted. The lifetime for the f = 1 Hz test is significantly shorter than for
the f = 6 Hz case.
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Figure 6.13: SBR 0, BDIK-2: Fatigue test data of the 3D-dumbbell and TDSV2
with and without dwell periods. For reasons of clarity, a zoom of the
load-level εn.max ≈ 130 % from the TDSV2 is shown in the corner. Within
this enlargement the data-points are vertically shifted. All shown medians
are endued with 95 % confidence limits (`a) and all shown data are εconst
based. The X/Y stands for X non-failed from Y total test pieces.

This frequency dependency and the lifetime shortening effect of loaded dwell periods
suggest an influence by the time of load, measured by the effective time (see Equation
6.1). Figure 6.14 shows the lifetime data from the tests with continuous sinusoidal duty
cycles, with dwell periods and also with the time until failure for the static relaxation
experiments. The statically loaded 3D-dumbbells fail due to static crack propagation (aka.
time-dependent crack propagation [101]). Note that only one out of four test pieces failed
for the lowest load-level due to static crack propagation. Unlike the dynamic failure, static
crack propagation seems to take place only for loads above a certain threshold. Similar
results were obtained by Lake and Lindley in e.g. [102, 103]. This threshold is situated
here for the 3D-dumbbell between the εn.max ≈ 75 % and εn.max ≈ 100 % load-level. The
plot of the fatigue data, with and without dwell periods, over the effective time, yields a
superposition of the fatigue data, confirming the strong dependency of the end-of-life on
the effective time of loading for the SBR 0 material. However, this statement holds only
for the dynamic fatigue experiments. Figure 6.14 still shows a gap in lifetime between all
dynamic fatigue data and the pure static fatigue tests.
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Figure 6.14: SBR 0, BDIK-1: Fatigue test data of the 3D-dumbbell with and without
dwell periods plotted over effective time instead of cycles. For reasons of
clarity, a zoom of the load-level εn.max ≈ 100 % is shown in the corner.
Within this enlargement the data-points are vertically shifted. All shown
medians are endued with 95 % confidence limits (`a) and all shown data
are εconst based. The X/Y stand for X non-failed from Y total test pieces.

Adding carbon black completely suppresses the effects of dwell periods under static stress
measured for the unfilled SBR. As shown in Figure 6.15, the Wöhler curves for the different
test conditions align. This does not only hold for the 3D-dumbbell but for the TDSV2

as well. Moreover, the increase in crack growth rate with nearly one order of magnitude
between tests with dwell periods and continuous crack growth tests measured by Harbour
et al. [70] is nowhere near found in the present data. This finding might be disputed with
the argument of a wrong criterion (εn.max) on the ordinate of the Wöhler-diagram. Stress
might be a better criterion due to its ability to differentiate between test conditions with
and without dwell periods (see Section 6.2.) However, in case the data from Figure 6.15
would be replotted in a Cauchy stress σmax based Wöhler diagram, the medians from
the tests with unloaded dwell periods would approximately shift as indicated by the blue
arrows, with respect to the tests with unloaded dwell periods. The shift factors originate
from the maximum cyclic reaction force Force∼.max difference in Figure 6.6 on Page 143
between cyclic relaxation data with loaded (red lines) and unloaded (blue lines) dwell
periods. In fact, a stress based Wöhler-plot would therefore even lead to the opposite crack
growth based conclusion made in Harbour et al. [70]; unloaded dwell periods, significantly
increase the lifetime. Re-plotting the data using the strain energy density yields a similar
trend as indicated in a stress-based Wöhler-diagram.
In the present study a carbon black filled SBR (SBR 77) is tested. However, the SBR 77
has in detail a different formulation to the material of Harbour et al.
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Figure 6.15: SBR 77: Fatigue test data of the 3D-dumbbell and TDSV2 with and
without dwell periods. For reasons of clarity, a zoom of the load-level
εn.max ≈ 100 % is shown in the corner. Within this enlargement the data-
points are vertically shifted. All shown medians are endued with 95 %
confidence limits (`a) and all shown data are BDIK-1 and εconst based. Only
the green colored data are measured based on BDIK-2. The blue arrows
indicate the location of with respect to in a stress based Wöhler-plot.

In order to verify whether the significant dwell period impact on the crack growth
rate is not only a phenomenon measurable with the SBR formulation of Harbour et
al., their tests are here partially repeated with the present SBR 77 material. For this
reason, crack growth tests with two-sided notched pure shear test pieces (dimension:
width= 40 mm, height= 4 mm, thickness= 0.85 mm) are conducted. Five test pieces are
cycled simultaneously via a common guided beam (see Figure 6.16). The test machine
is basically set up in a similar manner as the 2D-dumbbell test rig shown in Figure 4.5
(Section 4.2), with the only difference of a freely controllable electric actuator replacing
the eccentric drive.
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Figure 6.16: Set-up for crack growth measurements. Four out of five two-sided notched
pure shear test pieces in a temperature chamber monitored by one camera
per test piece.

Unfortunately it is not possible to perform a Nd = 5, td = 10 s - load signal throughout
the test run. The camera system, tracking the crack length, is unable to photograph all five
test pieces within only five load-cycles. One is forced to insert sections of 200 continuous
sinusoidal cycles in the load-signal. These ’recording-sections’ repeat every 150×(Nd = 5,
td = 10 s). Thus, 71 %, with respect to the number of cycles, of the test is running with
the desired conditions. An additional imprecision is incorporated by complete software
crashes every 4 h to 5 h, leading to several hours long standstills. The maximum test
frequency for the test rig with this dwell period procedure is limited on 1 Hz. In order to
avoid buckling of the 0.85 mm thin test pieces, the minimum dynamic force within the
sinusoidal deflection and the dwell periods is maintained at 0 N by stepper motors.
Figure 6.17 shows the crack growth rate (crack length increase per cycle) for the NR 45
material. In accord with the results from Harbour et al. [70], a minor increase of the crack
growth rate is measured in case that unloaded dwell periods are included in the load-signal.
See the caption of Figure 6.17 for further details.
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Figure 6.17: NR 45: Half crack contour increase per cycle. Data points labelled with
BDIK-2 originate from test pieces vulcanised one week after material mixing,
whereas data labelled with BDIK-2-old originate from test pieces vulcanised
three months after material mixing.

Yet, also for the SBR 77 material a minor impact of dwell periods is shown in Figure
6.18, relative to the Harbour et al. results. The factor of 9.3, found by Harbour et al.,
between the continuously cycled test pieces and the data-points originating from tests
with dwell periods is marked with an arrow in Figure 6.18.
Deviating temporarily from the subject of dwell periods, additionally the crack growth
rate in nitrogen atmosphere (O2-concentration < 1 %) is measured. This is motivated by
the large lifetime differences between the 3D-dumbbell and the TDSV2, found in Chapter
5. In addition to the possible reasons for this phenomenon in Chapter 5, the implication
on the lifetime of a more significant exposure to oxygen of surface cracks compared to bulk
cracks shall be investigated with the crack growth measurements in nitrogen atmosphere.
However, unlike often observed for NR materials (see e.g. [1]), there is no difference to the
crack growth rates in air (much higher oxygen content) as ambient medium ( vs. N2). A
possibly sufficient concentration of oxygen dissolved in the rubber to mask an effect of the
different atmospheres, even during the nitrogen tests, was not studied.
Coming back to the subject of dwell periods, the compromises in the test-signal or the
different material compositions are possible reasons for the gap in crack growth rate
between the data from Harbour et al. and the data from Figure 6.18. It is assumed that
for a 100 % and not only 71 % correct test-signal, the crack growth rate increases so that
moves towards the results from Harbour et al.
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Figure 6.18: SBR 77: Half crack contour increase per cycle. All tests are performed
for a peak strain of ε∼.max = 37.5 %. A factor of 9.3 is found by Harbour
et al. between the continuous tests and the tests with dwell periods. The
test for data-point N2 is performed in nitrogen atmosphere.

However, not even the (probably too low) factor of 3.3 can be observed in the fatigue
tests with the 3D-dumbbell (see Figure 6.15 or with relevant data only in Figure 6.19).
The factors from the crack growth experiments can be directly applied to the 3D-dumbbell
fatigue tests assuming crack growth dominated lifetime in a uniaxial deformed environment.
The crack growth Equation 6.2, only containing relevant quantities, shows the inversely
proportional relation of the crack growth rate ∆C to the number of cycles Nc1→c2 from
crack size c1 to crack size c2 [1].

Nc1→c2 = Multiplier · 1
∆C ·

(
1

cExponent
1

− 1
cExponent

2

)
(6.2)

The near superposition of the data-points from the fatigue tests with the 3D-dumbbell
in e.g. Figure 6.19 with and without dwells periods raises the question as to what extent
insights from crack growth tests are applicable to fatigue phenomena. One possible
explanation, at least for the SBR material, is that the failure initiation process of the
later macro cracks cannot be described with classical crack growth. These macro cracks
eventually yield the final failure of the test piece or component.

154



6 Influence of dwell periods on the mechanical fatigue of rubber

103 104 105
0.6

0.8

1

1.2

1.4
1.5

1.2×

1/1.4×

1×

end-of-life [Cycles]

ε n
.m

ax
[-]

Medians Ref.
Power-law Ref.
Medians, Nd = 5, td = 10 s, εd = 0
Power-law, Nd = 5, td = 10 s, εd = 0

Figure 6.19: SBR 77: Figure 6.15 with a choice of relevant 3D-dumbbell data only.

6.4 Conclusions

Summing up the implication of dwell periods on the lifetime of elastomers:

• Experiments with loaded and unloaded dwell periods afford the opportunity to
measure fatigue data with different stresses but almost equal strains.

• Irrespective of the 3D-dumbbell or the TDSV2, only the unfilled SBR 0 material
showed a dependence on dwell periods.

• This finding disagrees with the crack growth measurements, especially for the SBR
77 material.

• The significant dependence of the SBR 0 material on the dwell period could be
attributed to the effective time of loading.
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7 Summary

The present work may be divided into two segments. First, improvement of the mechanical
fatigue testing method and based on this, secondly, an investigation of a possible new
fatigue influencing factor. The aspects that were focused on for the improvement of fatigue
testing are: the control of the fatigue test piece temperature, the determination of the local
strain for displacement-controlled oscillations, and the measurement of fatigue resistance
using a new test piece geometry designed to be free of initiation of failure from surface
features. Chapter 5 is a hybrid between those two segments. It is dedicated to the impact
of failure initiation with locus in the bulk material on the lifetime compared to surface
inhomogeneity induced crack initiation. In addition, the details of the mould partition line,
resulting in a flash on the test piece, are found to significantly influence the mechanical
fatigue of elastomers. The present work closes with the investigation of dwell periods, in
otherwise continuous sinusoidal duty cycles, and their implication on the lifetime, which is
expected to show a strong lifetime-reducing effect based on crack growth examinations
from literature. Except for the unfilled SBR material, this expectation is not confirmed.
For the unfilled SBR material the lifetime depends significantly on the effective time of
strain. The observations of this work on the significant effects of reinforcing filler on the
crack growth and fatigue behaviour of SBR, and in particular its effect on time-dependent
crack growth and in the influence of dwell times at zero strain on cyclic crack growth and
cyclic fatigue, show that the reinforcing mechanism is not well understood. A satisfactory
mechanism of reinforcement needs to account for its influence on these time-dependent
effects.
In the following, the most relevant findings are summarised and complemented with
corresponding figures from where these may be inferred. Bullet points with J-symbol may
be found beside each figure.
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Figure Most relevant findings are summarised
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J Test piece temperature variations of
some degrees influence the lifetime of the
investigated elastomer significantly.
• A significant reduction of the surface
temperature of a test piece to a value
close to ambient temperature can be
achieved by forced convection.
• The bulk temperature decrease is
similar in magnitude to that of the
surface.
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J For filled rubber test pieces and
engineering components with
inhomogeneous strain fields but
undergoing constant end-to-end
displacement cycles, the local strains
depend not only on the current overall
displacement, but also on the number of
times it has been applied.
• This change of distribution of local
strain during cyclic loading with constant
displacement amplitude is strongly
material and amplitude dependent.
• If constant local stress or strain are not
accessible within fatigue tests, a transfer
of continuously changing strains into
Wöhler curve-compliant constant
equivalent strain is necessary.
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J The 2D-dumbbell chosen as reference
test piece for the new test piece turned
out to only initiate failures at the surface
for the NR material due to the die-cut
process.
J The second version of the new test
piece showed the desired failure
initiation behaviour with locus in the bulk
material.
• This led to a significant increase in
lifetime for the SBR material compared to
the first version .
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J Test pieces with propensity to crack
initiation at the flash tend to have
shortened lifetimes.
J This damage-impact depends on flash
details.
• The damage by tri-axial tensile loads
of significant magnitude leading to
cavitation, influences the fatigue much
more strongly compared to the classic
failure initiation at inhomogeneities at the
surface or within the bulk material
exposed to e.g. uniaxial-dominated
stress-fields.
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J Unlike seen in crack growth tests of
Harbour et al. [70], repeating dwell
periods do not show any impact of the
lifetime of filled NR, SBR and unfilled
NR.
• Only for the unfilled SBR material an
effect on the fatigue behaviour is
measured in case of loaded dwell periods.
• These findings suggest that insights
from crack growth tests may not be
simple to relate to fatigue phenomena.
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