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Abstract
Model predictive control allows to provide high performance and safety guar-
antees in the form of constraint satisfaction. These properties, however, can be
satisfied only if the underlying model, used for prediction, of the controlled pro-
cess is sufficiently accurate. One way to address this challenge is by data-driven
and machine learning approaches, such as Gaussian processes, that allow to
refine the model online during operation. We present a combination of an out-
put feedback model predictive control scheme and a Gaussian process-based
prediction model that is capable of efficient online learning. To this end, the
concept of evolving Gaussian processes is combined with recursive posterior
prediction updates. The presented approach guarantees recursive constraint sat-
isfaction and input-to-state stability with respect to the model–plant mismatch.
Simulation studies underline that the Gaussian process prediction model can
be successfully and efficiently learned online. The resulting computational load
is significantly reduced via the combination of the recursive update procedure
and by limiting the number of training data points while maintaining good
performance.
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1 INTRODUCTION

Model predictive control (MPC)1 is naturally capable of dealing with multi-input multi-output systems and constraints on
the input, state, and output already in the design process. This has led to manifold scientific interest, as well as practical
applications.2,3 In terms of performance, MPC can be superior to other control approaches because the prediction of the
process under consideration allows to compute control actions based on future outcomes and facilitates to take preview
information about references and disturbances into account. Hence, the prediction model plays a crucial role in MPC.
Unfortunately, there is always a certain process-model error or model uncertainty present in practice and the system
might change over time, which limits the prediction quality of the model. One way to deal with this situation is to resort to
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robust MPC schemes, such as, for instance, min-max MPC,4 tube-based MPC,5 multiscenario approaches,6,7 or stochastic
approaches8 that take the uncertainty explicitly into account.

Prediction models are often based on first principles approaches, which can be very time consuming or even impos-
sible in practice. Furthermore, if the underlying process or environmental conditions change, a once good model can
degrade and thus needs to be adapted. An alternative to first principle approaches is to derive prediction models directly
from measured data. The resulting models, so-called black or grey box models,9 can in principle be learned or refined dur-
ing operation by including newly available data. Thereby, they can account for changing process dynamics or a changing
process environment. Combining data-driven with first principles models is another possibility.10-12

Although data-driven modeling is not a new field of research, it gained significant attention over the last years due to
increasing computational power, the possibility to widely collect data, and the rise of machine learning algorithms, such
as neural networks, deep learning, support vector machines, or Gaussian processes (GPs).13,14 Especially the use of GPs
within MPC has attracted significant interest in recent years.10,11,15-18 However, combining GPs with MPC leads to multiple
challenges, such as the cubical increase of the computational load with the number of training data points. This also
increases the overall necessary computations to solve the resulting optimal control problem. Furthermore, the utilization
of GPs in an optimal control problem can render the resulting optimization very nonlinear, even for a small number of
data points, which increases the probability of obtaining suboptimal or infeasible solutions. Despite these challenges, GPs
are employed together with MPC as they provide several advantages. For instance, they do not only allow to compute a
prediction of the system evolution but also a prediction variance (an effective measure of the uncertainty of the learned
model), they are less susceptible to overfitting, and they have, under certain circumstances, universal approximation
capabilities for a large class of functions,19 thereby allowing to model the underlying dynamics of a wide variety of systems.

In order to reduce the computational load of GPs one can distinguish two main approaches. The first approach basi-
cally fixes the maximum number of training data points, while the second approach employs so-called sparsity.20,21 The
first approach often entails the drawback that the GP might not be able to model the system with sufficient accuracy
throughout the full operation space. To compensate for this, one can resort to online learning (or adaptation) of the GP
during operation, which also allows to account for time-varying systems or changing environmental conditions. On the
downside, some of the computation time that is saved by reducing the number of training data points is in turn spent by
the learning process, which includes updates of the training data set and covariance matrix, recalculation of the covari-
ance matrix inverse, and hyperparameter optimization in each time step. While these often computationally extensive
calculations can be performed offline, only very few publications exist that combine MPC with online learning of GPs. The
required computations often take too long to control most processes. Thus, GPs are mostly trained/learned offline.17,22,23

Exceptions are, for instance, the works by Ortman et al,24 where the system had a large time constant in the order of hours
or Klenske et al.,16 which provided a hyperparameter optimization tailored to the specific application.

Another important aspect when combining GPs and model predictive control is safety, constraint satisfaction, and
stability, for which different approaches have been proposed. One can, for example, avoid to enforce stability by design
and include instead the GP posterior variance in the cost function of the optimal control problem. This avoids steering the
plant into regions where the model validity is questionable.25-27 Also, one can perform a posteriori stability verification.
For instance, Berkenkamp et al.28 proposed to learn the region of attraction of a given closed-loop system, whereas Vino-
gradska et al.29 calculated invariant sets for the validation of stability in a closed-loop with GP models. Another possibility
is to use invariant safe sets and employ a two-layer control framework, where a safe controller is combined with a control
policy that optimizes performance.30-33 For instance, in the works by Aswani et al.34 and Bethge et al.35 two different pre-
diction models were used in parallel, where the first is a nominal model, used to guarantee robust stability using tubes,
and the other can be a general learning-based model (e.g., a GP) used to optimize performance. In the work of Soloperto
et al.36 tube-based MPC was considered together with GPs, which were also used to derive robust stability. To this end,
uncertainty sets that are based on the GP variance were used to construct tightened state and input constraint sets. Since
the uncertainty sets hold probabilistically, the same goes for the stability result. The two-layer framework was extended
to three layers in Bastani.37 The aforementioned approaches are based on the assumption of full state information and
the use of invariant terminal regions.

In Maiworm et al.18 we considered an output nominal MPC scheme (which neither does require full state information
nor terminal region in the optimal control problem) with an offline trained GP prediction model and combined it with
input-to-state stability (ISS), a framework that covers inherent robust stability of nominal MPC and stability of robust
MPC schemes in the presence of constraints.38 If a system under a predictive controller is shown to be ISS, then this
property is preserved even in the case of suboptimal solutions of the involved optimal control problem. We outlined
conditions under which the GP-MPC scheme is inherently robustly stable (i.e., bounded disturbances lead to bounded
effects on the output) and guarantees recursive constraint satisfaction. To this end, the uncertainty or disturbance has to
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be bounded deterministically. At the expense of a potentially smaller domain of attraction, the advantage of guaranteeing
inherent robust stability lies in its simplicity. The already involved ingredients in MPC merely have to satisfy certain
properties (e.g., uniform continuity). The aforementioned methods in the literature on the other hand are conceptually
more complex and/or more computationally expensive than the nominal MPC case because different control layers with
backup controllers are required,30-33,37 different prediction models are employed that have to be evaluated in parallel,35 or
tubes have to be computed.36 Furthermore, since the employed MPC formulation provides guarantees without a terminal
region, then if also no state constraints have to be fulfilled, the resulting optimal control problem is easier to solve.

In this work, we extend our previous results to the case of a limited training dataset of the GP and aim toward online
learning for a wide class of applications. To reduce the computational load we do not consider online hyperparameter
optimization. Instead, we focus on a recursive approach to adapt the training dataset and compute the inverse covariance
matrix tailored to MPC. The main contributions of this work are:

• Online learning of the GP model, by means of adaptation of the training dataset, at reduced computational cost. This
facilitates the possibility of deployment for faster processes. For this purpose, we employ a recursive formulation to
update the GP prediction model online.

• Guaranteed ISS with constraint satisfaction for the presented online learning approach. The result is not confined to
GPs but holds for general prediction models that are learned online and satisfy the presented conditions.

• The extension of the method such that it yields good performance with only limited prior process knowledge (e.g.,
lack of training data in important regions of the operation space). To this end, we incorporate the concept of evolving
GPs to facilitate online learning by means of adaptation of the training dataset.14,39 We derive criteria that use the GP
prediction error and the variance to determine which points to add to the training dataset.

• The use of analytic linearized GP models for the determination of the MPC terminal components.

The paper is structured as follows: The considered problem setup is formulated in Section 2. The concept of GPs,
together with the recursive formulation for online learning, is outlined in Section 3 and used for the formulation of the
optimal control problem in Section 4. The same section also contains the stability results. Section 5 presents simulation
results with focus on online learning of the GP before Section 6 concludes the paper.

Notation: Vectors, matrices, and sequences (of vectors or scalars) are set using bold variables. For matrices we use
upper case (Y), for vectors slanted lower case (y), and for sequences upright lower case (y). Sets are denoted by calligraphic
upper case variables (). The distance of a point z ∈ Rp to a set ⊂ Rp is defined as d(z,) = infy∈ ||y − z||∞, where ||⋅||∞
is the infinity norm (i.e., d(z,) = 0 if z ∈ ). If not stated otherwise, ||⋅|| denotes the Euclidean vector norm. A function
𝛼 ∶ R≥0 → R≥0 is a -function if it is continuous, 𝛼(0) = 0, and if it is strictly increasing. A function 𝛼 ∶ R≥0 → R≥0 is
a ∞-function if it is a -function and unbounded. A function 𝛽 ∶ R≥0 × R≥0 → R≥0 is a -function if 𝛽(s, t) is ∞ in
s for any value of t and limt→∞ 𝛽(s, t) = 0,∀s ≥ 0.

2 PROBLEM FORMULATION

We consider nonlinear discrete-time systems represented by a nonlinear autoregressive model with exogenous input
(NARX)*

yk+1 = f (xk,uk) + 𝜖 (1a)

s.t. uk ∈  (1b)

yk ∈  . (1c)

Here k denotes the discrete time index, uk ∈ R the input, yk ∈ R the output, and xk ∈ Rnx is the NARX “state vector”

xk = [yk … yk−my uk−1 … uk−mu]
T (2)

*Under certain observability assumptions,40 a NARX model is sufficient to describe the dynamics of a wide class of systems.
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that consists of the current and past outputs and inputs, and where my,mu determine the NARX model order nx = my +
mu + 1. The output is corrupted by Gaussian noise 𝜖 ∼  (0, 𝜎2

n) with zero mean, noise variance 𝜎2
n, and bounded support|𝜖| ≤ 𝜖 < ∞.† Inputs and outputs are restricted to lie in the constraint compact sets  ⊆ R and  ⊆ R, where  are hard

constraints and can be hard or soft constraints that we denote byh ands respectively. The NARX state and the output
are connected via yk = cTxk with cT =

[
1 0 · · · 0

]
.

The considered control objective is set-point stabilization and optimal set-point change, that is, we want to steer the
system from an initial point (x0,u0) to a target reference point (xref,uref), while satisfying the constraints and stabilizing
the system at the target. To this end, we employ model predictive control, which requires a model

ŷk+1 = f̂ (xk,uk), (3)

of the process (1a) that is capable of predicting future output values with sufficient accuracy. The hat notation ̂(⋅)
denotes an estimated quantity. We outline an approach to learn the system model approximation f̂ (xk,uk) from measured
input-output data using a GP, which is capable of online learning during operation based on newly available data. This
results in a GP-based NARX prediction model.

Remark 1. We consider a NARX model with one output that is modeled by a GP. The presented approach can be extended
to more outputs, where for each output an individual GP is used, compared to Ostafew et al.11,22 or Klenske et al.16 The
theoretical results obtained in Section 4 are also valid for the multi-output case.

3 GAUSSIAN PROCESSES

We first review the basics of GP regression and then present a recursive formulation that is based on the concept of
evolving GPs. This facilitates the generation of a NARX prediction model capable of adapting to changing conditions.
To reduce the online computational cost, we do not consider online hyperparameter optimization. Instead, we focus on
updating the training dataset efficiently and how to perform the required computations online. To this end, we combine
this concept with a recursive update of the involved Cholesky decomposition.

3.1 Basics

A GP is a collection of random variables, any finite number of which have a joint Gaussian distribution.13 It generalizes
the Gaussian probability distribution to distributions over functions and can therefore be used to model/approximate
functions that can be used to capture dynamic systems.14 They can be utilized for models purely derived from data or
combined in a hybrid way with other, for instance, deterministic models.10-12,28,30,31,36,41,42

For regression, GPs are employed to derive or approximate maps of the form z = f (𝝂) + 𝜖 with input 𝝂, output z,
and where f (⋅) is the underlying but unknown latent function. The output is assumed to be corrupted by Gaussian
noise‡ 𝜖 ∼  (0, 𝜎2

n) with zero mean and noise variance 𝜎2
n. The objective is to infer the function f (⋅) using mea-

sured input–output data (𝝂, z) with a GP g(w) with input w ∈ Rnw , called regressor. In the present case (1a), we have
z= yk+ 1 and f (𝝂) = f (xk,uk). The regressor of the GP will be wk = (xk,uk) ∈ Rnw with regressor order nw =nx + 1. For
the sake of brevity we omit the dependence on the discrete time step k in the remainder of this section whenever
possible.

The first required element is a GP prior distribution g(w) ∼ (m(w), k(w,w′)) that is specified via the mean func-
tion m(w) = E[g(w)] and the covariance function§ k(w,w′) = cov[g(w), g(w′)] = E[(g(w) − m(w))(g(w′) − m(w′))] with
w,w′ ∈ Rnw and E[⋅] denoting the expected value. The mean and covariance function together with a set of so-called
hyperparameters 𝜽, detailed later, fully specify the GP.

†In real processes the measurement noise is always bounded, for instance, due to the limitations of the involved data acquisition systems.
‡The concept of GPs assumes Gaussian noise in the measurements, that is, noise with unbounded support. The considered real system (1), however, is
corrupted by Gaussian noise with bounded support. The resulting approximation error can be absorbed in the prediction error (8) defined further
below. On the other hand, Gaussian noise with unbounded support can be regained by GP warping.43 The smaller the bounded support, the larger the
difference between the distributions and the larger the correcting effect of warping.
§The covariance function is also denoted as kernel.
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F I G U R E 1 Gaussian process (GP) inference: The top
figure depicts a GP prior distribution with the dashed black line
representing the mean function m(w) and the green lines
representing random function realizations drawn from the prior
distribution. The grey shaded area is the 95% (twice the SD)
confidence interval computed via k(w,w′). When data points
 are added (bottom figure, red crosses), the GP posterior with
m+(w|) and 𝜎2

+(w|) is inferred from this data

The GP prior is trained/learned using a set of n measured input-output data points, where the input dataset is w =
[w1 … wn]T ∈ Rn×nw and the output data set z = [z1 … zn]T ∈ Rn×1. The combined data  = {w, z} is denoted as
training dataset and is used to infer the posterior distribution

g(w|) ∼ (m+(w|), 𝜎2
+(w|)).

This is also a GP with posterior mean m+(w|) and posterior variance 𝜎2
+(w|) given by

m+(w|) = m(w) + k(w,w)K−1(z − m(w)) (4a)

𝜎2
+(w|) = k(w,w) − k(w,w)K−1k(w,w), (4b)

with m(w) = [m(w1) … m(wn)]T ∈ Rn×1, k(w,w) = [k(w,w1) … k(w,wn)] ∈ R1×n, k(w,w) = k(w,w)T, and
K = k(w,w) = [k(wi,wj)] ∈ Rn×n.

Note that realizations of the posterior can yield infinitely many function outcomes but as it is conditioned on
the training data points, it rejects all possible functions that do not go through or nearby (if 𝜎2

n ≠ 0) these points
(Figure 1).

The posterior mean function (4a) is the desired estimator of the unknown output latent function f (xk,uk) in (1a),
which we highlight by defining

ŷk+1 = ẑ ∶= f̂ (xk,uk) = m+(wk|k). (5)

The key elements for a GP to yield a sensible model are the prior mean and covariance function. Both depend generally
on a set of hyperparameters 𝜽, that is, m(w|𝜽) and k(w,w′|𝜽). Very often just a constant zero prior mean m(w|𝜽) = c = 0
is used.15,44,45 However, other choices include, for instance, the use of a deterministic base model xk+1 = f (xk,uk) as the
prior mean function.10,46 Regarding the covariance function, it is often assumed or known that the system dynamics can
be modeled by a member of the space of smooth functions C∞. A covariance function that provides this property is the
squared exponential covariance function with automatic relevance determination

k(wi,wj|𝜽) = 𝜎2
f exp

(
−1

2
(wi − wj)TΛ(wi − wj)

)
+ 𝜎2

n𝛿ij, (6)

where wi,wj ∈ Rnw , 𝜽 = {𝜎2
f ,Λ}, and Λ = diag(l−2

1 , … , l−2
nw
). The measurement noise 𝜎2

n is added via the Kronecker
delta 𝛿ij in (6). The minimal required number of regressors nw can be determined through optimization of the
length scale parameters l in Λ.47,48 Other choices include, for instance, the combination of (6) with a linear
kernel.47,49
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A common approach to determine the hyperparameters 𝜽, given a training dataset  = {w, z}, is to maximize the log
marginal likelihood13

log(p(z|w,𝜽)) = −1
2

zTK−1z − 1
2

log |K| − n
2

log(2𝜋). (7)

An advantage of GPs is that (4b) naturally provides a quantification of the model uncertainty in the form of its
variance. On the other hand, the involved computations in (4a) and (4b) scale with (n3) due to K−1, where n is the
number of training data points. This severely limits the application of GP models for fast processes, where small sam-
pling times are required; especially in the case of relatively large training datasets with several hundred or thousands
of data points. If online or close to online hyperparameter optimization is needed, this drawback becomes even more
pronounced.

3.2 Evolving GPs

In order to efficiently refine the GP model online we seek to update the training dataset k, possibly at each time step k,
during operation. To this end, we resort to the concept of so-called evolving GPs,14,39 which can be used, for instance, if
the training data is only available for certain regions of the operating space and one wants to expand operation beyond
these regions online. The concept basically leads to GPs whose training data set k is updated online using some type of
information criterion. Different criteria can be used to select new data points to be added and already existing points to
be removed if necessary.

The general idea is to include an incoming data point to the training dataset only if it contributes enough new valuable
information, which can be defined in different ways and depends on the respective application. Possible options are the
use of the information gain, entropy difference, or the expected likelihood.50,51 We employ the GP as a prediction model
in MPC and are therefore particularly interested in how accurate the current model is able to predict the output value at
the next time step and how confident this prediction is. To this end, given a new data point (wk, yk+1), we first define the
prediction error via

ep ∶= yk+1 − ŷk+1 = f (xk,uk) + 𝜖 − m+(wk|k), (8)

and define the following rule that determines a new training dataset candidate ′
k+1.

Rule 1 (New training dataset candidate). At the current time step k with regressor wk and training datasetk compute
ŷk+1 = m+(wk|k) and 𝜎2

+ = 𝜎2
+(wk|k). Once the next output yk+ 1 is available, the new data point (wk, yk+1) is considered

as a candidate for inclusion into the training dataset k

If |ep| > ē OR 𝜎2
+ > 𝜎

2 then
′

k+1 = k ∪ (wk, yk+1)
end if

where ē and 𝜎
2 are prespecified thresholds and ′

k+1 is the new training dataset candidate for k+ 1.
Thus, if the prediction error ep is larger then the threshold ē, the data point is considered to be included in the training

data set k because the current posterior model is not able to predict the output with the specified accuracy. If it is smaller
but the resulting posterior variance 𝜎2

+(w|k) is larger than the threshold 𝜎
2, the data point is also a candidate because

the current posterior model is not sufficiently confident in its prediction. This allows to include data points that are
relevant to attain a certain prediction quality and effectively allows to limit the necessary number of data points ink. This
becomes especially important for long operation times and many encountered data points with new information during
operation.

Remark 2. Since Rule 1 would also consider outliers for inclusion, we propose to combine it with an addi-
tional update rule presented in Theorem 1 (Section 4.3). The application of both update rules is contained in
Algorithm 1.
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Algorithm 1. Recursive GP model predictive control
MPC Parameters: Prediction horizon N, stage cost 𝓁(⋅) with respective parameters, hard input constraint set  ,
output constraint set  .
rGP Parameters: Prior mean m(⋅), covariance function k(⋅, ⋅), initial hyperparameters 𝜽, thresholds ē and 𝜎̄2, maxi-
mum number of training points M.

Initialization
Training data set .
Optimize hyperparameters 𝜽 (7) with initial data set .
Initialize GP posterior mean function m+(w) with covariance matrix K−1, Cholesky factor R, and 𝜶 (Section 3.3).
Compute GP posterior mean gradient 𝛻m+(w) (Section B).
Compute linear GP model at xref (Section 5.5).
Compute terminal cost function Vf(⋅) (Section 5.5).

Recursion
for each time step k do

Solve optimal control problem (12) for initial condition xk and obtain optimal input sequence û∗
k|k.

Apply first element uk = 𝜅MPC(xk|k) = û∗
k|k.

Obtain new output yk+1.
Construct new GP data point (wk, yk+1) with wk = (xk,uk).
Update GP:
Compute ŷk+1 = m+(wk|k) and 𝜎2

+ = 𝜎2
+(wk|k).

if |yk+1 − ŷk+1| > ē OR 𝜎2
+ > 𝜎̄2 then

′
k+1 = k ∪ (wk, yk+1).

Using ′
k+1, compute K′ and R′ via (A1).

if number of training points > M then
Remove oldest data point and downdate K′ and R′ via (A2).

end if
Compute 𝜶′ via (9).
if V∗

N

(
xk|′

k+1

)
≤ V∗

N (xk|k) then
k+1 = ′

k+1
Make K′, R′, and 𝜶′ effective.

else
k+1 = k
Reverse K′, R′, and 𝜶′.

end if
else

k+1 = k
end if

end for

As the available computational power is always limited and depending on the concrete system, this can require the
limitation of the maximum number of points in k by a constant M ∈ N.¶ If this limit is reached, data points have
to be removed to maintain the size of k. Again, different criteria can be employed to determine which data point
shall be deleted. For instance, the point in the training dataset with the lowest benefit for the model quality (e.g.,
the data point that is most accurately predicted under the current posterior) can be deleted. This, however, can be
computationally expensive because the prediction has to be evaluated for every of the M training data points at each
time instant k. For online implementation, we employ a more simple approach that deletes the oldest point contained
in k.

¶This approach is also sometimes denoted as truncated GP.52
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Remark 3. The concept of evolving GPs, in particular the outlined data handling approach, leads to a training dataset
k that captures the system dynamics in an (evolving) subregion of the whole operating region. Thus, information about
already visited regions can be lost when moving towards other regions and have to be regained when visited again. This
could be counteracted, for instance, by exploiting multiple GPs for different regions or by GP blending.35

Remark 4. In principle, the smaller the thresholds ē and 𝜎
2, the better the prediction. However, then also the overhead for

the computational evaluation for adding and removing data points becomes larger. In addition, the smaller the thresholds,
the smaller the region in which the training dataset captures the system behavior, given the case that only a finite number
of training data points is allowed. Hence, the selection of the thresholds ē and 𝜎

2 is an application specific trade-off and
might be chosen heuristically by the user. Some general guidelines are, (i) a lower bound for 𝜎2 is the measurement noise
variance, and (ii) ē could be chosen proportional to 1

M

∑M
i=1 |z − m+(w|k)|, that is, to the mean value of all the absolute

values of the prediction errors, based on the current training data set k. In the same way 𝜎
2 could be chosen.

3.3 Avoiding numerical illconditioning for MPC by Cholesky decomposition

The squared exponential covariance function (6) and other smooth covariance functions lead to a poor conditioned covari-
ance matrix K.53,54 This results in numerical problems when computing the inverse K−1 with computational cost(n3), as
required for (4a), (4b), or (7). These problems become even worse if (4a) and (4b) are nested within an optimization proce-
dure like model predictive control. One way to alleviate this problem is by adding an additional noise or jitter term53 to the
diagonal of the covariance matrix. An effective approach however is to avoid the numerical instabilities that arise in the
explicit computation of the matrix inverse by performing the required computations using the Cholesky decomposition,
which is numerically more stable.

Given a system of linear equations Ax = b with a symmetric positive matrix A, we denote the solution by x = A−1b ∶=
A ⧵ b. The Cholesky decomposition of A is A = RTR, where R = chol(A) is an upper triangular matrix that is called the
Cholesky factor. It can be used to obtain the solution via x = R ⧵ (RT ⧵ b). In order to use the Cholesky factor to solve (4a)
and (4b), we define

𝜶 ∶= K−1(z − m(w))
𝜷 ∶= K−1k(w,w) ,

which can then be computed with the Cholesky decomposition K = RTR via

𝜶 = R ⧵ (RT ⧵ (z − m(w)))
𝜷 = R ⧵ (RT ⧵ k(w,w)). (9)

The computational cost of computing R is 
(

n3

6

)
and the cost of computing 𝜶 and 𝜷 is (n2).13

If the training data set k does not change, the Cholesky decomposition K = RTR and the computation of 𝜶 have to
be performed only once at the beginning, whereas 𝜷 has to be recomputed for every new test point w. If k changes, that
is, with each inclusion or removal of a data point, the covariance matrix K has to be updated for an appropriate evaluation
of the GP posterior. If a data point is included, a row and column have to be added to K. If a data point is removed,
the respective row and column associated with this point have to be removed. These changes require in principle a full
recalculation of the Cholesky factor R, which is the most expensive computation. To reduce this computational load we
employ the approach of Osborne54 to recalculate the Cholesky factor recursively, taking advantage of the available factor
of the previous step. The precise procedure is outlined in the Appendix in Section A1.

Remark 5. The recursive update of the Cholesky factor can only be applied if the hyperparameters𝜽do not change because
otherwise, every single element of K changes and a recursive approach is not applicable anymore.

Remark 6. Note that in many works55-57 not the Cholesky decomposition but the covariance matrix inverse K−1 is recur-
sively computed, which is based on the partitioned block inverse using the Woodbury matrix identity. Presumably for the
numerical issues outlined above, this approach has never been used in combination with MPC. It has, however, in the
signal processing literature, where it is strongly connected to the concept of kernel recursive least-squares.56,57
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Due to the recursive nature, both in the data inclusion approach and the Cholesky decomposition, we denote the
resulting GP as recursive GP (rGP). The most important steps of the resulting rGP-MPC formulation are presented in
Algorithm 1.

4 GP-BASED OUTPUT FEEDBACK MODEL PREDICTIVE CONTROL

In this section, we present the output feedback model predictive control formulation, based on the rGP NARX model for
prediction. We highlight the necessary components and show under which conditions stability can be guaranteed even
if the GP model changes online.

4.1 Prediction model

In Section 4.3 we establish input-to-state stability for the considered system, which is defined using the evolution of the
state and not the output. For this reason, we first reformulate the GP output prediction in terms of the NARX state x̂k. We
start by setting k := k+ 1 in x̂k and arrive at

x̂k+1 = [ŷk+1, yk, … , yk+1−my ,uk, … ,uk+1−mu].

Since the predicted output ŷk+1 is computed by (5) we obtain the NARX prediction model

x̂k+1 = F̂(x̂k,uk|k) ∶= [m+(wk|k), yk, … , yk+1−my ,uk, … ,uk+1−mu], (10)

which we also denote as the nominal model.
Correspondingly, for the NARX model of the real process (1a) we have

xk+1 = [yk+1, yk, … , yk+1−my ,uk, … ,uk+1−mu]

= [f (xk,uk) + 𝜖, yk, … , yk+1−my ,uk, … ,uk+1−mu],

and due to (8) this can be reformulated as

xk+1 = [m+(wk|k) + ep, yk, … , yk+1−my ,uk, … ,uk+1−mu]

= F̂(xk,uk|k) + dep =∶ F(xk,uk, ep), (11)

with d =
[
1 0 · · · 0

]T, that is, the real NARX model can be represented as the superposition of the nominal/prediction
model and the prediction error.

4.2 MPC optimization problem

Using the prediction model (10), we consider at each time step k the optimization problem

min
ûk|k VN(xk, ûk|k)
s.t. ∀i ∈ 0∶N−1 ∶

x̂k+i+1|k = F̂(x̂k+i|k,ûk+i|k|k)
x̂k|k = xk

ûk+i|k ∈ 

x̂k+i|k ∈  . (12)
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The input sequence to be optimized is denoted by ûk|k = {ûk|k, … ,ûk+N−1|k}, N is the prediction horizon, xk is the initial
condition of the measured NARX state (2), and  ⊆ Rnx is the resulting constrained set of the NARX state that is a com-
bination of multiple instances of h depending on the specific composition of xk.|| Since h is compact, the resulting 

is also compact. As cost function in (12) we consider

VN(xk, ûk|k) =
N−1∑
i=0

𝓁(x̂k+i|k,ûk+i|k) + 𝜆Vf(x̂k+N|k − xref),

where V f(⋅) is the terminal cost function that is weighted by a design parameter 𝜆 ≥ 1. The employed positive stage cost
is given by

𝓁(x̂k,ûk) = 𝓁s(x̂k − xref,ûk − uref) + 𝓁b(ŷk),

where 𝓁s(⋅) penalizes input and state deviations from the reference and 𝓁b(⋅) is a barrier function that can account for
soft output constraints s. It is defined by

𝓁b(ŷk) ≥ 𝛼b(d(ŷk,s)),

and must satisfy 𝓁b(ŷk) = 0,∀ŷk ∈ s, where 𝛼b(⋅) is a -function and d(⋅) the distance function as defined in Section 1.
The optimal solution of (12) is denoted by û∗

k|k, the resulting optimal state sequence by x̂∗
k|k. The first element of û∗

k|k,
that is, û∗

k|k, is applied to the process such that we obtain uk = 𝜅MPC(xk|k) = û∗
k|k. Note that the implicitly defined control

law 𝜅MPC(xk|k) is time-varying, as well as the resulting optimal cost function V∗
N(xk|k) = VN(xk, û∗

k|k|k), also denoted
as value function, because they depend on the changing prediction model associated with k. Note furthermore that
(12) does not include any explicit terminal region constraint for stability. This makes its solution less computationally
expensive, especially if only soft output/state constraints are considered.

4.3 Stability

Establishing stability in MPC is often based on the use of a terminal cost function V f(⋅) and a terminal region f.58 Here
we employ an approach where the optimal control problem (12) does not require an explicit terminal region f. Instead,
we use V f(⋅) weighted by a factor 𝜆, as proposed by Limon et al,59 to establish ISS.

Definition 1 (ISS). Consider the closed-loop system xk+1 = F(xk, 𝜅MPC(xk|k), ek). The set-point xref is ISS if there exist
a -function 𝛽(⋅, ⋅) and a -function 𝛾(⋅) such that

||xk − xref|| ≤ 𝛽(||x0 − xref||, k) + 𝛾
(

max
k≥0

||ek||), (13)

holds for all initial states x0, errors ek, and for all k.

ISS combines nominal stability as well as uniformly bounded influence of uncertainty in a single condition. It implies
asymptotic stability of the undisturbed (nominal) system (with ek ≡ 0) and a bounded effect of the uncertainty on the
state evolution. Furthermore, if the error signal ek fades, the uncertain system asymptotically converges to the reference
point. We therefore consider stability first for the nominal case, i.e., when the prediction/nominal model (10) and the true
system (11) are exactly the same. After that, we establish robust stability in the sense of ISS.

4.3.1 Nominal stability

In the following, let the current deviation from the reference point and the deviation at the next time step be x̃ = x − xref
and x̃+ = x+ − xref respectively. This change of coordinates is required if xref ≠ 0.

||If for instance xk = [yk, yk−1, yk−2], then  = h × h × h.
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Assumption 1. Assume that

1. the stage cost function 𝓁(x,u) is positive definite, that is, 𝓁(xref,uref) = 0 and there exists a ∞-function 𝛼(⋅) such that
𝓁(x,u) ≥ 𝛼(||x̃||) for all u ∈  , and

2. there exists a terminal control law 𝜅f(⋅) and a control Lyapunov function V f(⋅) such that the conditions

𝛼1(||x̃||) ≤ Vf(x̃) ≤ 𝛼2(||x̃||),
and

Vf(x̃+) ≤ Vf(x̃) − 𝓁(x̃ + xref, 𝜅f(x̃) + uref),

hold for all x̃ ∈ f = {x̃ ∈ Rnx ∶ Vf(x̃) ≤ 𝜈} ⊆  with 𝜈 > 0 and x̃+ = F̂(x̃ + xref, 𝜅f(x̃) + uref|) − xref, and where 𝛼1(⋅)
and 𝛼2(⋅) are ∞-functions. The constant 𝜈 is chosen such that f ⊆  and 𝜅f(x̃) + uref ∈  for all x̃ ∈ f.

Assumption 1 ensures that the system is locally asymptotically stable on the positive invariant set f, while satisfying
state and input constraints. It can be satisfied if we have at least a locally valid description of the process at the target
point. This can, for instance, be a linearized version of the GP prediction model at the reference (e.g.,  = ref), which in
turn can then be used to derive a suitable terminal cost and controller. Possible options are then, for instance, the use of a
linear-quadratic regulator and/or applying Lyapunov methods (see also Section 5.5). Although it is sufficient to determine
the terminal components from the nominal model, one could also consider the design of a robust terminal controller and
cost. For instance, using a GP model for the target region one could consider a specific probability bound given by the
posterior variance and then based on this design a robust terminal controller.

Theorem 1 (Nominal stability). Let 𝜅MPC(xk|k) be the predictive controller derived from the optimal control problem (12)
and let Assumption 1 be satisfied. Furthermore, let k be the training dataset at time k, k+1 the one that will be used at time
k+ 1, and ′

k+1 the updated training dataset candidate resulting from Rule 1. If k is updated using the additional rule
If V∗

N(xk|′
k+1) ≤ V∗

N(xk|k) then
k+1 ← ′

k+1
else
k+1 ← k

end if
then ∀𝜆 ≥ 1, there exists a feasible region 0

N(𝜆) ⊆  such that ∀x0 ∈ 0
N(𝜆) the target xref of the nominal closed-loop

system xk+1 = F̂(xk, 𝜅MPC(xk|k)) is asymptotically stable. The size of the set 0
N(𝜆) increases with 𝜆.

Proof. Let x̂∗
k|k = {x̂∗

k|k, x̂∗
k+1|k, … , x̂∗

k+N|k} be the predicted state sequence that results from applying the optimal input
sequence û∗

k|k. Then we can write the optimal cost for initial condition xk = x̂∗
k|k also as V∗

N(xk|k) = VN(xk, û∗
k|k|k) =

VN(x̂∗
k|k, û∗

k|k|k). Let furthermore x̂∗
k+1|k = {x̂∗

k+1|k, … , x̂∗
k+N+1|k} and û∗

k+1|k = {û∗
k+1|k, … ,û∗

k+N−1|k, 𝜅f(x̂∗
k+N|k − xref) +

uref} be the respective sequences that start at k+ 1 computed at time k, where the last state is given by the terminal control
law, that is, x̂∗

k+N+1|k = F̂(x̂∗
k+N|k, 𝜅f(x̂∗

k+N|k − xref) + uref|k).
By Assumption 1 we have that the stage and terminal cost are positive definite. Hence, the cost function VN(xk, ûk|k)

is positive definite. Furthermore we also obtain

VN(x̂∗
k+1|k, û∗

k+1|k|k+1) ≤ VN(x̂∗
k|k, û∗

k|k|k+1) − 𝓁(xk,uk),

by Assumption 1, which is a well-known result in standard MPC (for the derivation see, for instance, Rawlings and Mayne1

or Rakovic et al.60). Given the update rule in Theorem 1 we have

VN(x̂∗
k|k, û∗

k|k|k+1) − 𝓁(xk,uk) ≤ VN(x̂∗
k|k, û∗

k|k|k) − 𝓁(xk,uk).

Combining the previous two equations we obtain

VN(x̂∗
k+1|k, û∗

k+1|k|k+1) ≤ VN(x̂∗
k|k, û∗

k|k|k) − 𝓁(xk,uk). (14)
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Thus, the value function is decreasing even if the prediction model changes. Hence the value function is a Lyapunov
function.

Regarding the feasible region, we first review a result of Limon et al.59 and show afterwards an extension to the present
case. In particular, theorem 3 of Limon et al.59 shows for the nominal and time-invariant case of (12) (i.e., constant predic-
tion model and no model-plant mismatch) with value function V∗

N(xk) that ∀𝜆 ≥ 1 there exists a feasible regionN(𝜆) such
that ∀x0 ∈ N(𝜆) the nominal closed-loop system xk+1 = F̂(xk, 𝜅MPC(xk)) is recursively feasible and asymptotically stable.
The feasible region is characterized by N(𝜆) = {xk ∈ Rnx ∶ V∗

N(xk) ≤ N ⋅ d + 𝜆 ⋅ 𝜈}, where 𝜈 is defined in Assumption 1
and d is a positive constant such that 𝓁(xk,uk) > d, ∀xk ∉ f and ∀uk ∈  . The size of the set N(𝜆) increases
with 𝜆.**

In this work, the value function V∗
N(xk|k) changes at certain time instances k whenever the data set k changes. For

this reason we extend the definition of the feasible region to k
N(𝜆) = {xk ∈ Rnx ∶ V∗

N(xk|k) ≤ N ⋅ d + 𝜆 ⋅ 𝜈}, which then
also changes with k. Due to (14), the optimal cost is decreasing for a particular state sequence x = {x0, x1, … , xk, …}
with Nd + 𝜆𝜈 ≥ V∗

N(x0|0) ≥ V∗
N(x1|1) ≥ … ≥ V∗

N(xk|k) and therefore k
N(𝜆) is increasing along the state sequence.

Thus, if the initial state x0 ∈ 0
N(𝜆), then the subsequent states xk ∈ k

N(𝜆) and the optimal control problem is recursively
feasible. Hence, the target xref is asymptotically stable for the nominal closed-loop system xk+1 = F̂(xk, 𝜅MPC(xk|k)). ▪

At xk (with the current output measurement yk) the optimal control problem is solved with data set k and the result-
ing input uk = 𝜅MPC(xk|k) = û∗

k|k is applied to the system. If the next data point (wk, yk+1) is a candidate for updating the
GP, the previous optimal cost is recomputed using the updated GP. If the cost does not increase, the GP update becomes
effective. Thus, the update rule in Theorem 1 is executed additionally after the data selection process of Rule 1. This is
also reflected in Algorithm 1.

Remark 7 (Conflicting objectives). Theorem 1 establishes nominal stability despite a changing training dataset k. In
order to determine the new dataset candidate ′

k+1 we use Rule 1, whose objective is to refine the current prediction
model. Note that also other rules, which utilize different selection criteria for model refinement (e.g., statistical methods,
see Section 3.2), can be employed. Now, one could assume that the additional update rule in Theorem 1 is not necessary
because with every new data point the prediction model should become more accurate. This is, however, not necessarily
the case if, for instance, the output is corrupted by noise or if outliers are present. In both cases, the apparent process
behavior differs from the true behavior and it cannot be guaranteed that the prediction model becomes more accurate
with every added data point, nor that the value function continues decreasing monotonically. Thus, the objective of the
update rule in Theorem 1 is to make sure that safety, in the sense of stability and constraint satisfaction, is guaranteed. This
is also illustrated in the simulations section in Figure 10. However, in the same simulations we also see that data points,
selected by Rule 1 and which carry valuable information, are discarded by the update rule of Theorem 1 because the
decreasing value function condition, and with that stability, could not be guaranteed. In other words, the two objectives
of model refinement (expressed by Rule 1) and safety (in the sense of stability, expressed by the update rule of Theorem 1)
are conflicting objectives, especially in the case of corrupted measurements. In this work we prioritize safety, thereby
sacrificing a bit of the potential of model refinement.

On the basis of the nominal stability result for the online rGP-MPC scheme, we now establish robust stability.

4.3.2 Robust stability

Based on Theorem 1 we show that the real process controlled by the proposed predictive controller is ISS w.r.t. the
prediction error ep.

Theorem 2 (ISS). Let 𝜅MPC(xk|k) be the predictive controller derived from optimal control problem (12) satisfying
Assumption 1 and Theorem 1. If

• the nominal model F̂(xk,uk|k) is uniformly continuous in xk for all xk ∈ 0
N(𝜆), all uk ∈  , and all k during the

prediction horizon††, and

**Note that theorem 3 of Limon et al.59 is stated the other way round, that is, for each region N (𝜆) and for all xk ∈ N (𝜆), there exists a 𝜆 ≥ 1 such that
the nominal closed-loop system is asymptotically stable at xref.
††Note that this condition does not prohibit the change of the nominal model from the current time instant k to the next k+ 1.
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• the stage cost function 𝓁(xk,uk) and the terminal cost function Vf(xk) are uniformly continuous in xk for all xk ∈ 0
N(𝜆)

and all uk ∈  ,

then the target xref of the closed-loop system xk+1 = F(xk, 𝜅MPC(xk|k), ep) is ISS w.r.t. the prediction error ep

in a robust feasible set Ω0
r (𝜆) ⊂ 0

N(𝜆) for a sufficiently small 𝜇 with |ep| < 𝜇 < ∞. The smaller 𝜇, the larger the
set Ω0

r (𝜆).

Proof. We first establish the set Ω0
r (𝜆) and prove recursive feasibility. Afterwards we prove the ISS property.

Regarding the nature of Ω0
r (𝜆) we first review a result of Limon et al.38 and then extend it to our case. Proposition 1

(C2) in38 shows for the time-invariant case of (12) (i.e., for a nonchanging prediction model) that the closed-loop xk+1 =
F(xk, 𝜅MPC(xk|k), ep) is robustly feasible for all xk in a robust feasible set Ωr(𝜆). In particular, it is proven that if |ep| < 𝜇

with a sufficiently small 𝜇, there exists a r such that Ωr(𝜆) ∶= {xk ∈ Rnx ∶ V∗
N(xk) ≤ r} ⊂ N(𝜆) is a compact and positive

invariant set (where N(𝜆) is the feasible set of the OCP with ep ≡ 0) and for all xk ∈ Ωr(𝜆) the resulting predicted state
sequence remains in Ωr(𝜆). Therefore the state constraints  do not become active. Hence, for all x0 ∈ Ωr(𝜆) the MPC
scheme is recursively feasible and the constraints are robustly satisfied. Furthermore, larger values of 𝜆 lead to a larger
region Ωr(𝜆).

In the definition of Ωr(𝜆) in Reference 38 the value function V∗
N(xk) is time-invariant, whereas in this work V∗

N(xk|k)
depends on the changing dataset k. For this reason we extend the definition of the robust feasible region to Ωk

r (𝜆) =
{xk ∈ Rnx ∶ V∗

N(xk|k) ≤ r} ⊂ k
N(𝜆), which then also changes with k. In order for Ωk

r (𝜆) ⊂ k
N(𝜆) to hold we require

0 < r < N ⋅ d + 𝜆 ⋅ 𝜈 because k
N(𝜆) = {xk ∈ Rnx ∶ V∗

N(xk|k) ≤ N ⋅ d + 𝜆 ⋅ 𝜈}. Thereby, N ⋅ d + 𝜆 ⋅ 𝜈 establishes an upper
bound for r. Like the feasible set k

N(𝜆) (see the proof to Theorem 1), also Ωk
r (𝜆) increases with 𝜆 and in particular with

k along a particular state sequence x = {x0, x1, …}. Therefore, if the initial state x0 ∈ Ω0
r (𝜆), then the subsequent states

xk ∈ Ωk
r (𝜆) and the state constraints do not become active. The existence of Ω0

r (𝜆) is established by proposition 1 (C2)
in Reference 38 (as outlined above) and therefore, if x0 ∈ Ω0

r (𝜆) then (12) is recursively feasible and the constraints are
robustly satisfied.

Now we show that the closed-loop system xk+1 = F(xk, 𝜅MPC(xk|k), ep) is ISS w.r.t. the prediction error ep. To this end
we start by showing that the cost function VN(xk, ûk|k) is uniformly continuous in xk. Since the nominal model F̂(xk,uk|k)
is uniformly continuous in xk during the prediction horizon, there exists a -function 𝜎x(⋅) such that ||F̂(xk,uk|k) −
F̂(zk,uk|k)|| ≤ 𝜎x(||xk − zk||) for all xk, zk ∈ 0

N(𝜆), all uk ∈  , and for a given data set k. In accordance with lemma 2
in Reference 38, the predicted state evolution then satisfies ||x̂k+i|k − ẑk+i|k|| ≤ 𝜎i

x(||xk − zk||) for i ∈ 0∶N−1. Furthermore,
since the stage and terminal cost are uniformly continuous in xk, there exists a couple of -functions 𝜎𝓁(⋅), 𝜎Vf(⋅) such
that ||𝓁(xk,uk) − 𝓁(zk,uk)|| ≤ 𝜎𝓁(||xk − zk||) and ||Vf(xk) − Vf(zk)|| ≤ 𝜎Vf(||xk − zk||) for all xk, zk ∈ 0

N(𝜆) and all u ∈  .
Combining these properties we obtain

||VN(xk, ûk|k) − VN(zk, ûk|k)|| ≤ N−1∑
i=0

||𝓁(x̂k+i|k,ûk+i|k) − 𝓁(ẑk+i|k,ûk+i|k)|| + ||Vf(x̂k+N|k) − Vf(ẑk+N|k)||
≤

N−1∑
i=0

𝜎𝓁 ◦ 𝜎i
x(||xk − zk||) + 𝜎Vf ◦ 𝜎N

x (||xk − zk||) =∶ 𝜎V (||xk − zk||),
where ◦ denotes the concatenation of functions (e.g. 𝜎1 ◦ 𝜎2(x) = 𝜎1(𝜎2(x))) and 𝜎V (⋅) is a -function. Therefore the cost
function is uniformly continuous in xk for all xk ∈ 0

N(𝜆) and all ûk|k.
As shown, for every xk ∈ Ω0

r (𝜆) the state constraints do not become active. Thus, the optimal solution û∗
k|k of (12) is

feasible for every x0 ∈ Ω0
r (𝜆) and we obtain

||V∗
N(xk|k) − V∗

N(zk|k)|| = ||VN(xk, û∗
k|k) − VN(zk, û∗

k|k)|| ≤ 𝜎V (||xk − zk||).
Therefore, the value function V∗

N(xk|k) is also uniformly continuous in xk for all xk ∈ Ω0
r (𝜆) and a given

dataset k.
At last we show that the value function is a ISS–Lyapunov function. Since V∗

N(xk|k) is a Lyapunov function for the
nominal system (Theorem 1) there exists ∞-functions 𝛼1(⋅), 𝛼2(⋅), 𝛼3(⋅), such that 𝛼1(||xk||) ≤ V∗

N(xk|k) ≤ 𝛼2(||xk||) and
V∗

N(xk+1|k+1) − V∗
N(xk|k) ≤ −𝛼3(||xk||). Moreover, from (11) we have that F(xk,uk, ep) is affine in ep and is therefore

uniformly continuous in ep. Then, there exists a -function 𝜎e(⋅) such that ||F(xk,uk, e1) − F(xk,uk, e2)|| ≤ 𝜎e(|e1 − e2|) for
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all xk ∈ 0
N(𝜆), all uk ∈  , and all |ep| ≤ 𝜇. From these facts, it can be inferred that

V∗
N(xk+1|k+1) − V∗

N(xk|k) = V∗
N(F(xk, 𝜅MPC(xk), ep)|k+1) − V∗

N(xk|k)
= V∗

N(F(xk, 𝜅MPC(xk), ep)|k+1) − V∗
N(F(xk, 𝜅MPC(xk), 0)|k+1)

+ V∗
N(F(xk, 𝜅MPC(xk), 0)|k+1) − V∗

N(xk|k)
≤ ||V∗

N(F(xk, 𝜅MPC(xk), ep)|k+1) − V∗
N(F(xk, 𝜅MPC(xk), 0)|k+1)|| − 𝛼3(||xk||)

≤ 𝜎V (||F(xk, 𝜅MPC(xk), ep) − F(xk, 𝜅MPC(xk), 0)||) − 𝛼3(||xk||)
≤ 𝜎V ◦ 𝜎e(|ep|) − 𝛼3(||xk||).

Hence, V∗
N(xk|k) is a ISS-Lyapunov function and the closed-loop system xk+1 = F(xk, 𝜅MPC(xk|k), ep) is ISS w.r.t. ep for

all x0 ∈ Ω0
r (𝜆). ▪

Remark 8 (Differences in soft and hard output constraints). In the case of soft constraints s, the proposed controller
ensures robust stability and constraint satisfaction for all initial states that lie in the feasible region 0

N(𝜆) of the opti-
mal control problem. In the case of hard constraints h, the proposed controller ensures robust stability and constraint
satisfaction for all initial states in a robust feasible set Ω0

r (𝜆) ⊂ 0
N(𝜆) where the constraints are not active. Thus, from a

practical point of view, if in the soft constraints case the initial state xk leads to a feasible solution, we then have xk ∈ 0
N(𝜆)

and the above guarantees hold. If in the hard constraints case the initial state xk leads to a feasible solution, then we also
have xk ∈ 0

N(𝜆). However, in that case, one cannot be sure if also xk ∈ Ω0
r (𝜆) is satisfied. If xk ∉ Ω0

r (𝜆), then feasibility
might be lost at one point. Thus, for safety critical applications the set Ω0

r (𝜆) would required to be known in order to
check xk ∈ Ω0

r (𝜆), which is challenging because Ω0
r (𝜆) (as well as 0

N(𝜆)) can in general not be computed but has to be
estimated via simulations.1 However, this issue could be circumvented if the hard constraints were tightened,38 thereby
enlarging Ω0

r (𝜆).

Remark 9. Notice that the ISS property is based on the uniform continuity of the optimal cost function and this does not
depend on the size of the error signal. Hence, even if ep is larger than 𝜇 for a short period of time in which we assume
that the feasibility of the optimal control problem is not lost, that is, xk remains in k

N(𝜆) and ends in Ωk
r (𝜆), then the

closed-loop ISS property and constraint satisfaction will still hold.

Remark 10 (Generalization). Theorems 1 and 2 are independent of the control input dimension and also hold
for general errors e independent of the concrete structure of the state xk, that is, whether xk is a vector comprised
of NARX states or of physical states. Thus, the theorems also include the multi-input multi-output case. In addi-
tion, as long as the presented assumptions are satisfied, in particular the update rule in Theorem 1, the stability
results also hold for the case of online hyperparameter optimization and even further, for general prediction mod-
els F̂(xk,uk|k) that are updated online, that is, the stability guarantees are not confined to the use of GP prediction
models.

A necessary condition in Theorem 2 is that the nominal model F̂(xk,uk|k) is uniformly continuous in xk for all
xk ∈ 0

N(𝜆), all uk ∈  , and all k during the prediction horizon. In the case of GPs, this can be guaranteed by the
following proposition.

Proposition 1 (GP Uniform Continuity18). The nominal model (10) is uniformly continuous in xk if f̂ (xk,uk) =
m+(wk|) is uniformly continuous in xk. Since the prior mean m(wk) is added to m+(wk|), the prior mean has
to be uniformly continuous in xk

‡‡. Then, one way to ensure that m+(wk|) is uniformly continuous in xk, is to
employ continuously differentiable kernels (e.g., the squared exponential covariance function, the Matérn class covari-
ance function with appropriate hyperparameters, or the rational quadratic covariance function). In that case the process
is mean square differentiable,13,61 that is, the posterior mean function is differentiable and therefore also uniformly
continuous§§.

Remark 11. Although not required for Theorem 2, note that uniform continuity of the process F(xk,uk, ep) =
F̂(xk,uk|k) + dep in xk is ensured if F̂(xk,uk|k) is uniformly continuous in xk, which can be established via Proposi-
tion 1.

‡‡The prior mean is usually specified by the user and often set to zero. Thus uniform continuity of m(w) is not an issue.
§§Continuous differentiability is a stronger assumption than uniform continuity.
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Resulting prediction errors
We finish this section with a discussion on the prediction error ep = yk − ŷk. According to Theorem 2, the smaller the error
bound |ep| ≤ 𝜇, the larger the feasible set Ω0

r (𝜆). Since the noise 𝜖 (affecting yk) is in practice bounded by a finite 𝜖, the
error bound 𝜇 is finite if ŷk is finite (given of course that the original process yk is finite), which translates to the necessity
that the GP posterior mean (4a) is bounded.

From a theoretical point of view, such a bound exists under certain conditions. Note that the posterior mean (with zero
prior mean m(w) = 0) can also be expressed via m+(w∗|) =

∑n
i=1 𝛼ik(wi,w∗), with wi ∈ w, as a linear combination of n

kernel functions13 that determines a reproducing kernel Hilbert space (RKHS). As shown in Steinwart and Christmann,19

a bound in the RKHS exists if universal kernels are employed. One such kernel is, for instance, the squared exponential
covariance function¶¶ (6) for which the existence of a bound had already been shown by Park and Sandberg.62 De Nicolao
and Pillonetto63 have presented a very similar result when modeling the impulse response via a spline kernel. The result
has also been used in Pillonetto and Chiuso.64 Furthermore, Engel65 and Srinivas et al66 provide ways to explicitly compute
the bound, though only with high probability.

In practice, however, m+(w∗|) will generally be bounded assuming that the employed GP prior is well chosen and
sufficiently informative training data  is used. Thus, the actual bound depends on the designer’s choices regarding the
particular employed GP model and the involved tuning parameters. Among these, in particular the thresholds for the
prediction error and posterior variance for the presented rGP approach.

5 SIMULATIONS

In this section, we provide simulation results for the presented rGP-MPC scheme and consider a continuous stirred-tank
reactor (CSTR) as simulation case study. We present the model equations, the training dataset generation, and the termi-
nal components for the MPC based on the linearized GP posterior mean function. The closed-loop simulations involve
investigations regarding the tuning parameters of the rGP-MPC, the influence of different initial training data sets, as well
as comparisons with other MPC controllers.

5.1 Continuous stirred-tank reactor

As exemplary case study, we consider the CSTR, where a substrate A is converted into product B.67 The following set of
differential equations describes the reactor dynamics:

ĊA(t) =
q0

V
(CAf − CA(t)) − k0 exp

(
−E

RT(t)

)
CA(t). (15a)

Ṫ(t) =
q0

V
(Tf − T(t)) − ΔHrk0

𝜌Cp
exp

(
−E

RT(t)

)
CA(t).

+ UA
V𝜌Cp

(Tc(t) − T(t)). (15b)

Ṫc(t) =
Tr(t) − Tc(t)

𝜏
. (15c)

The coolant temperature reference Tr(K) is the input and the concentration CA(mol/l) the output, that is, u=Tr and
y=CA. The tank and coolant temperatures are T and Tc, respectively. The model parameters are given in Table B1.

5.2 Training datasets

A raw data set raw (depicted in Figure 2) is generated using the plant (15). The data points (zi,wi) consist of values
of (yk+ 1, yk, … , yk−my, uk, … ,uk−mu), where z= yk+ 1 is going be the GP output and w = (yk, … , yk−my , uk, … ,uk−mu)

¶¶The squared exponential covariance function is sometimes also denoted as Gaussian radial basis function. Especially in the field of neural networks
or support vector machines.
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F I G U R E 2 Training datasets: The raw data set raw was
generated by chirp signals on the input. The sets 0 and ref are
local neighborhoods of the initial point y0 and the reference
point yref and their associated inputs

its corresponding regressor. Based on this data, we generate the three training data sets 0, ref, and comb. The set 0
is a local subset around the initial point y0 =CA = 0.6 mol/l. The associated input is u0 =Tr = 353.5 K. The set ref is
a local subset around the target reference point yref =CA = 0.439 mol/l with associated input uref =Tr = 356 K. The set
comb = 0 ∪ref is the union of the two sets.

The sets 0 and ref are generated by selecting first all points z= yk+ 1 (and their corresponding w) that are located
within a local neighborhood of the respective set-points and second, by reducing the number of points via exclusion of
those that add only little information. For a given data point (zi,wi), all following (zj,wj), j > i, are removed, for which||wi − wj|| < w with a chosen threshold w. As a result, the sets are less dense but still contain enough informative data
points. The thresholds for 0 and ref are chosen such that both sets contain approximately 40 data points.

Remark 12. All input and output values are given in the original units of the system (15). However, it is beneficial for the
modeling process with the GP to normalize the input–output data to the interval [0, 1].

5.3 GP prediction model

For the GP prior we employ a constant mean function with constant c. Since the underlying process equations are
smooth and to obtain the universal approximation property (see Section 4.3.2) we employ the covariance function (6)
with regressor w = [yk, yk−1, yk−2,uk]. According to (2), the NARX state is then xk = [yk, yk−1, yk−2]T. The hyperparame-
ters are 𝜽 = {c, l1, l2, l3, l4, 𝜎

2
f } and are computed offline via maximization of (7) for each of the three datasets 0, ref,

and comb. We obtain three sets of hyperparameters, respectively (Table B2) and with that three different GP prediction
models that use the same prior but different training data sets and hyperparameters. The cross-validation results of these
different GP models are shown in Figure 3, where we select test points throughout the regions of the respective training
datasets. Test points are chosen such that they are not part of0,ref, orcomb. As can be seen, appropriate GP predictions
are achieved with prediction error ep < ē = 0.02 mol/l and posterior standard deviation 𝜎+ < 𝜎

2 = 5 ⋅ 10−3 mol/l for all
three GPs.

5.4 Optimal control problem

The continuous-time model (15) is discretized with Euler’s method and a sampling time of Ts = 0.5 min. The input
constraints are  = {335K ≤ Tr ≤ 372K}, the output constraints h = {0.35} mol/L ≤ CA ≤ 0.65} mol/l. We add mea-
surement noise 𝜖 ∼  (0, 𝜎2

n) to the output data with 𝜎2
n = 0.0032, which we furthermore bound*** by ±4𝜎n. The employed

***According to the considered system class we add Gaussian noise with bounded support. Since GPs are based on Gaussian noise with unbounded
support, there is a small difference, which could be accounted for by GP warping.43 However, due to the large bound of four SDs, the difference is so
small that the following simulation results are equal to the ones with unbounded noise.
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F I G U R E 3 Cross-validation results: Top, the prediction
error ep (8) is depicted. Bottom, the posterior SD
𝜎+(w) =

√
𝜎2
+(w)

quadratic stage cost is given by

𝓁s(xk,uk) = ||xk − xref||2Q + ||uk − uref||2R,
with Q = diag(100, 0, 0), and R= 5. The prediction horizon is set to N = 5. The resulting optimal control problem is solved
in MATLAB using fmincon.

5.5 Terminal controller and cost function

The terminal controller 𝜅f(⋅) and cost function V f(⋅) can be determined arbitrarily, as long as the assumptions in Section 4.3
are satisfied. We choose the terminal controller as 𝜅f(x) = kT(x − xref) + uref and the terminal cost function as Vf(x) =||x − xref||2P, where k ∈ R3 and P ∈ R3×3 are computed using the linearization of the prediction model (10) with the GP
model, based on the training dataset ref obtained near the reference xref.

The linearization of the nominal NARX model xk+1 = F̂(xk,uk) with xk = [yk, yk−1, yk−2] takes the form

⎡⎢⎢⎢⎣
yk+1

yk

yk−1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

a11 a12 a13

1 0 0
0 1 0

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

⎡⎢⎢⎢⎣
yk

yk−1

yk−2

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣

b1

0
0

⎤⎥⎥⎥⎦
⏟⏟⏟

b

uk.

As the next output is computed using the GP, that is, yk+1 = m+(wk), the parameters a11, a12, a13, b1 can be deter-
mined using the posterior mean gradient derived in the appendix, Section B1. In particular we have [a11, a12, a13, b1] =
∇m+(wref)T with wref = [yref, yref, yref,uref]. The resulting linear model becomes

xk+1 =
⎡⎢⎢⎢⎣

0.162 0.005 −0.012
1 0 0
0 1 0

⎤⎥⎥⎥⎦ xk +
⎡⎢⎢⎢⎣
−0.034

0
0

⎤⎥⎥⎥⎦uk. (16)

We define the feedback vector as k = Ps with s ∈ R3, P = PT > 0, and G = P−1. We furthermore define
the state constraint set  = h × h × h and reformulate  and  as polyhedral sets of the form  =
{x ∈ Rnx ∶ qT

i x ≤ ri, i = 1, … ,n} and  = {u ∈ Rnu ∶ vT
l u ≤ tl, l = 1, … ,n }, where n and n are the respec-

tive numbers of inequalities. Then, we compute s and P offline by solving the semidefinite optimization
problem7
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max
G,s

log(det(G))

s.t.G = GT > 0[
G (AG + bsT)T

(AG + bsT) G

]
≥ 0[

G (Gqi)
(Gqi)T r2

i

]
≥ 0, ∀i ∈ {1, … ,n}[

G (svl)
(svl)T t2

l

]
≥ 0, ∀l ∈ {1, … ,n }, (17)

and obtain

kT =
[

1.745 0.082 −0.001
]

and P =
⎡⎢⎢⎢⎣

16.38 −0.556 −0.066
−0.556 16.32 −0.554
−0.066 −0.554 16.30

⎤⎥⎥⎥⎦ .
The optimization problem (17)7 results from using the Schur complement in combination with the discrete-time Lya-

punov equation and the support function concept of closed convex sets. The resulting s and P are such that the closed-loop
linearized system is asymptotically stable in f = {x ∈ Rnx ∶ Vf(x) = ||x − xref||2P ≤ 1} ⊆  and kf ⊆  .

Remark 13. It has been proven in the literature that the quadratic Lyapunov function holds for the nonlinear system in a
certain neighborhood of the equilibrium point. The terminal region definition f = {x ∈ Rnx ∶ Vf(x) = ||x − xref||2P ≤ 𝜈},
parameterized with 𝜈, could be used to characterize this neighborhood. Then we would need to take the
nonlinear remainder term into account to calculate a particular value for 𝜈, which would require the solu-
tion of a global optimization problem. Such a problem could be solved by using scenarios or a Monte Carlo
approach. However, since the optimal control problem does not need the terminal region constraint, 𝜈 is not
required.

5.6 Simulation results

First, we simulate the set-point change from (u0, y0) to (uref, yref) and compare the closed-loop results of the rGP-MPC, a
batch GP approach (bGP-MPC) that uses a fixed training dataset, and an output feedback MPC scheme (oMPC) that uses
the model Equation (15) and acts as a performance bound. We evaluate the performance for the three cases, where 0,
ref, and comb are used as initial training data sets. The bGP and rGP are initialized with the same initial training data
and hyperparameters but the rGP updates its training dataset during operation. We set ē = 𝜎

2 = 0 such that every data
point is considered as a candidate for inclusion††† with no upper limit on the number of data points. Hence, no points
are removed. Due to the stochastic nature of the noise component, we simulate each case Nsim = 50 times. The results are
depicted in Figures 4–6. To quantify the performance we employ the measure

V = 1
Nsim

Nsim∑
j=0

Nstep∑
k=0

𝓁
(

xj
k,uj

k

)
, (18)

which averages the stage costs of the resulting state and input sequences over all time steps k∈ {0, 1, … , Nstep}, as well
as the individual simulations j∈ {1, 2, … , Nsim}. The resulting V values are presented in Table B3.

As expected, the oMPC scheme that uses the true model performs best and always the same (see Table B1) because it
does not depend on any training data points. The rGP outperforms the bGP in the 0 and ref cases due to the additional
information gained during operation. The performance difference is especially large for ref, where the bGP, throughout

†††Not every data point is added due to the update rule of Theorem 1.
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F I G U R E 4 Comparison of the three model predictive
control schemes for the case of initial training data 0. Thin lines
represent individual simulations, thick lines represent mean
values

F I G U R E 5 Comparison of the three model predictive
control schemes for the case of initial training data ref. Thin
lines represent individual simulations, thick lines represent
mean values

the whole operation, has only data points at the reference at its disposal but not at the initial condition. The rGP per-
forms significantly better due to the added data points at the beginning of operation. In the comb case, the rGP and bGP
performance is almost the same for the employed training data points.

Remark 14. The previous simulation results suggest that one should in general prefer the ref case over the other cases,
which is convenient for the used MPC scheme because knowledge at the reference is required anyway to determine the
terminal cost and controller. Furthermore, this also suggests a practical rule for offline hyperparameter determination,
namely that the hyperparameters should be optimized for a dataset that contains the target reference.

In the second set of simulations, we investigate the influence of different thresholds used in Rule 1, that is, different
values for the maximum prediction error ē and the maximum prediction variance 𝜎

2. To this end, we start with Figure 7
that combines the rGP results of the previous figures for the three training data cases, together with the now plotted
evolution of the prediction error ep and the prediction variance 𝜎2

+. In particular the prediction variance illustrates nicely
the difference between the three cases. In the case of 0, the variance is small at the beginning and increases around t = 8
min when the system leaves the neighborhood of the initial condition and moves towards the reference. The same holds,
but the other way round, for the case with ref, where the initial (t < 3 min) large error and variance is caused by their
computation before the first data points are added to the training set. The prediction error bound 𝜇 is 0.033, 0.021, and
0.024 for the cases 0, ref, and comb, respectively.

Figures 8 and 9 show results for different threshold values, where we focus for the sake of brevity on the simulation
case with ref. The results illustrate that instead of adding all data points, almost the same closed-loop performance can
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F I G U R E 6 Comparison of the three model predictive
control schemes for the case of initial training data comb. Thin
lines represent individual simulations, thick lines represent
mean values

F I G U R E 7 Simulation results with the rGP-MPC for the
different training data cases together with the absolute value of
prediction error |ep| and the prediction variance 𝜎2

+

F I G U R E 8 Influence of ē on the rGP-MPC with initial
training data ref. With ē = 0, every encountered data point is
considered to be added to the training dataset. The variance
threshold 𝜎

2 was set to a large value to not affect the result
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F I G U R E 9 Influence of 𝜎2 on the rGP-MPC with initial
training data ref. With 𝜎

2 = 0, every encountered data point is
considered to be added to the training dataset. The prediction error
threshold ē was set to a large value to not affect the result

F I G U R E 10 Influence of the update rule in Theorem 1,
which permits inclusion of data point candidates only if they result
in a decreasing value function. Outliers are generated at 7, 10, 12.5,
and 20 min

be achieved by adding only a fraction of them. Hence, this shows not only that online learning can be achieved but also
that it allows working with significantly smaller training data sets, which in turn result in lower computational costs.

After evaluating the influence of the parameters of Rule 1, we illustrate the influence of the update rule in Theorem 1,
which guarantees a decrease of the value function. To this end, we continue with the ref case and additionally insert out-
liers into the output measurements in the course of the simulations. The effect of the update rule is shown in Figure 10.
With it, the results are almost the same as before, except for the distortions due to the outliers, which however are com-
pensated shortly after. All simulation outcomes are very similar in that case. Without the update rule, the resulting mean
output sequence is different but not necessarily worse (smaller rise time, similar settling time, no overshoot) than the
mean output sequence with the update rule. Some of the individual simulation outcomes perform even better, which is
an indication that data points with valuable information are indeed discarded by the update rule as was also pointed out
in Remark 7. On the other hand, the variability among the individual simulations is much larger. Several of the simulated
output evolutions converge slower to the target and some do not converge at all until the end of the simulation. This is
a direct result of the corresponding input sequences computed by the optimizer. In between 5 min and 11 min, the devi-
ation of the mean input sequence from the optimal input sequence of the performance bound (oMPC, see Figures 4–6)
is larger than in the case with the update rule. Furthermore, the individual input sequence outcomes vary considerably,
even hitting the lower constraints. Due to the inclusion of every encountered data point candidate, the prediction model
changes in some cases in an unfavorable way during the respective simulations, which leads to the depicted results. Note
that qualitatively the same results (including not converging output sequences) are obtained, even without outliers. For
instance, between the reference change at 5 min and the first outlier at 7 min, we observe that the input sequences already
deviate considerably from the case with an active update rule, that is, the outlier is not the cause but usual noisy data
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F I G U R E 11 Influence of a limited number of training data
points on the rGP-MPC with initial training data ref

F I G U R E 12 Comparison of computation times of the full
recalculation of the Cholesky factor and the recursive update. The
computational reduction that goes along with the recursive update
increases with the amount of training data points

points. This illustrates the importance of the update rule in Theorem 1, not only for theoretical guarantees but also in
terms of practical application.

Next, we consider the case that the number of training data points is limited by M. For the case of ref we set M = 40,
which is the number of initially available training points, that is, the training data set cannot increase but old data points
are exchanged with newer more informative ones. To this end, whenever a new point is added, the oldest data point
is removed. In Figure 11 we compare the bGP (the initial training dataset is not updated at all), the rGP with M = ∞,

ē = 𝜎
2 = 0 (every encountered data point is considered to be added), and the rGP with M = 40, ē = 0.01, 𝜎2 = 2 ⋅ 10−5 (data

points are only exchanged). The bGP result is the same as in Figure 5 and represents the worst case because the training
data set is not updated at all. The M =∞ case on the other hand represents the performance bound for this specific case
because it includes the maximum of the incoming data points and does not remove any. As can be seen, the reaction of the
limited case is a bit slower than the performance bound case but the resulting settling times are almost identical. Thus,
with a training data set of only 40 points, where the points are exchanged during operation, almost the same performance
can be achieved for the considered example as if every encountered point was included in the training dataset .

Besides the computational cost reduction due to the possibility to work with smaller training data sets, we also illus-
trate the computational reduction due to the recursive update of the Cholesky factor. In Figure 12 we continue with the
ref case, where we add every incoming point to the training data set and compare the computation times of the full and
the recursive update of the Cholesky factor. The results show that the larger the training dataset becomes, the larger the
absolute and relative computational reduction. At t = 24 min the full recomputation of the Cholesky factor increases sig-
nificantly. Investigations point to the reason lying in the generation of the covariance matrix and the inner workings of
Matlab’s chol function to compute the Cholesky decomposition.

At last we present simulations of the robust feasible setΩ0, also denoted region of attraction (ROA), and how it changes
for different maximum prediction errors 𝜇. We continue with the ref case with ē = 𝜎

2 = 0 such that every data point is
considered as a candidate for inclusion. Furthermore, M is set to a large value such that no points are removed from k.
Each initial condition x0 = [y0 y0 y0]T is simulated 30 times. Different 𝜇 values are obtained by varying the measurement
noise from 𝜎2

n = 0.0032 to 𝜎2
n = 0.0122, where 𝜇 is then the largest error of all simulation runs and time steps. The result

in Figure 13 yields a clear tendency. The larger 𝜇, the smaller Ω0.
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F I G U R E 13 Change of the region of attraction Ω0 for
different 𝜇. Red stars denote infeasible initial conditions, green stars
feasible initial conditions. An initial condition is marked as
infeasible if at least one simulation resulted in a constraint violation.

6 CONCLUSION

In this work, we outlined the use of a GP-based nonlinear autoregressive model with exogenous input for prediction in
an output feedback model predictive control scheme. The approach allows for online learning, by means of updating the
training data set, to account for limited a priori process knowledge and the possibility for adaptation during operation. To
this end, the concept of evolving GPs was adapted together with a recursive formulation to update the Cholesky decompo-
sition to minimize computational cost. It was shown that the resulting model predictive control scheme is input-to-state
stable with respect to the prediction error, despite the time-varying nature of the GP prediction model. Notably, the the-
oretic guarantees are not limited to Gaussian processes. They are rather valid for all online learning methods that satisfy
the presented conditions.

The approach was verified in simulations, which have shown that it is in general possible to start with limited a priori
process knowledge and refining the model during operation. One important finding is that it is particularly beneficial to
start with a model that captures at least the behavior at the target reference, which is fortunately an intrinsic necessity for
all MPC schemes that use a terminal region, cost, and controller to guarantee recursive feasibility and stability. In the case
of fixed hyperparameters during online operation, a further consequence is that the hyperparameters should be optimized
offline for a dataset that captures the target reference. Furthermore, the presented formulation yields good closed-loop
performance with few training data points, thereby efficiently reducing the computational load. This presents itself as
a possible option for very fast processes, where hyperparameter optimization is not an option but some kind of online
learning is desirable. Additionally, due to the output feedback scheme, this approach can be employed for processes,
whose state cannot be measured or is difficult to be estimated.

Future work aims at implementing the presented approach in laboratory experiments, together with a combination of
a deterministic base model and the GP prediction model. From a theoretical point of view, time-varying reference tracking
instead of set-point changes would be interesting to investigate. For instance, what conditions does the initial training
data set has to satisfy to achieve acceptable tracking results and how to automatically compute safe thresholds for the data
inclusion approach. Another interesting question to investigate is how the approach performs for time-varying processes.
A hypothesis would be to combine the squared exponential covariance function with a non-stationary one to account for
time variance in the process model.
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45. Gregorčič G, Lightbody G. Gaussian process approach for modelling of nonlinear systems. Eng Appl Artif Intell. 2009;22(4-5):522-533.
46. Roberts S, Osborne M, Ebden M, Reece S, Gibson N, Aigrain S. Gaussian processes for time-series modelling. Philos Trans Royal Soc Lond

A Math Phys Eng Sci. 2013;371(1984):20110550.
47. Williams Christopher K.I., Rasmussen Carl Edward. Gaussian processes for regression. In: Advances in Neural Information Processing

Systems. Cambridge, MA: MIT Press; 1996:514–520.
48. Kocijan J, Girard A, Banko B, Murray-Smith R. Dynamic systems identification with Gaussian processes. Math Comput Model Dyn Syst.

2005;11(4):411-424.
49. Ackermann ER, De Villiers JP, Cilliers PJ. Nonlinear dynamic systems modeling using Gaussian processes: predicting ionospheric total

electron content over South Africa. J Geophys Res Space Physics. 2011;116(A10).
50. Smola AJ, Bartlett PL. Sparse greedy Gaussian process regression. Advances in Neural Information Processing Systems. Cambridge, MA:

MIT Press; 2001:619-625.
51. Seeger M, Williams C, Lawrence N. Fast forward selection to speed up sparse Gaussian process regression. Artif Intell Stat. 2003;9. https://

infoscience.epfl.ch/record/161318.
52. Carron A, Todescato M, Carli R, Schenato L, Pillonetto G. Machine learning meets Kalman filtering. Paper presented at: Proceedings of

the Conference on Decision and Control (CDC). Las Vegas, NV; 2016:4594-4599; IEEE.
53. Neal RM. Monte Carlo implementation of Gaussian process models for bayesian regression and classification; 1997. arXiv preprint

physics/9701026.
54. Osborne MA. Bayesian Gaussian processes for sequential prediction, optimisation and quadrature [Ph. D thesis]. Oxford, UK: Oxford

University; 2010.
55. Huber MF. Recursive Gaussian process: On-line regression and learning. Pattern Recogn Lett. 2014;45:85-91.
56. Van Vaerenbergh S, Lázaro-Gredilla M, Santamaría I. Kernel recursive least-squares tracker for time-varying regression. IEEE Trans Neural

Netw Learn Syst. 2012;23(8):1313-1326.
57. Pérez-Cruz F, Van Vaerenbergh S, Murillo-Fuentes JJ, Lázaro-Gredilla M, Santamaria I. Gaussian processes for nonlinear signal

processing: an overview of recent advances. IEEE Signal Process Mag. 2013;30(4):40-50.
58. Mayne DQ, Rawlings JB, Rao CV, Scokaert Pierre OM. Constrained model predictive control: stability and optimality. Automatica.

2000;36(6):789-814.
59. Limón D, Alamo T, Salas F, Camacho EF. On the stability of constrained MPC without terminal constraint. IEEE Trans Automat Control.

2006;51(5):832-836.
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APPENDIX A. RECURSIVE CHOLESKY FACTOR UPDATE

According to Osborne,54 the Cholesky factor can be updated recursively as presented in the following. Regarding the
case of including a new data point, consider the covariance matrix K, represented in block form as[

K11 K13

KT
13 K33

]
,

and its Cholesky factor [
R11 R13

0 R33

]
.

Now, given an updated covariance matrix

⎡⎢⎢⎢⎣
K11 K12 K13

KT
12 K22 K23

KT
13 KT

23 K33

⎤⎥⎥⎥⎦ ,
that differs from the previous by insertion of a new row and column, the updated Cholesky factor

⎡⎢⎢⎢⎣
S11 S12 S13

0 S22 S23

0 0 S33

⎤⎥⎥⎥⎦ .
can be computed via

S11 = R11 S22 = chol(K22 − ST
12S12)

S12 = RT
11 ⧵K12 S23 = ST

22 ⧵ (K23 − ST
12S13)

S13 = R13 S33 = chol(RT
33R33 − ST

23S23). (A1)

On the other hand, if the current covariance matrix in block form

⎡⎢⎢⎢⎣
K11 K12 K13

KT
12 K22 K23

KT
13 KT

23 K33

⎤⎥⎥⎥⎦ ,
with Cholesky factor

⎡⎢⎢⎢⎣
R11 R12 R13

0 R22 R23

0 0 R33

⎤⎥⎥⎥⎦ ,
is reduced by one row and column, such that we obtain[

K11 K13

KT
13 K33

]
,

the downdated Cholesky factor
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[
S11 S13

0 S33

]

can be computed via

S11 = R11

S13 = R13

S33 = chol(RT
23R23 + RT

33R33). (A2)

APPENDIX B. POSTERIOR MEAN GRADIENT

The optimal control problem (12) requires a terminal cost function, which can be based on a linearized version of the
prediction model in Section 5. To this end we require the gradient of the GP posterior mean function

∇m+(w) = 𝜕m+(w)
𝜕w

=
[
𝜕m+(w)
𝜕w1

… 𝜕m+(w)
𝜕wnw

]T

w.r.t. to its regressor w = [w1, … ,wnw], where we omit the dependence on the training data  for the sake of brevity.
Assuming a constant prior mean in (4a) we obtain

∇m+(w) = 𝜕k(w,w)
𝜕w

K−1(z − m(w)),

with

𝜕k(w,w)
𝜕w

=
[
𝜕k(w,w1)

𝜕w
… 𝜕k(w,wn)

𝜕w

]
,

T A B L E B1 CSTR parameters Parameters Explanation Value

q0 Reactive input flow 10 l/min

V Liquid volume in the tank 1501

k0 Frequency constant 6 ⋅ 10101/min

E/R Arrhenius constant 9750 K

ΔHr Reaction enthalpy 10,000 J/mol

UA Heat transfer coefficient 70,000 J/(min K)

𝜌 Density 1100 g/l

Cp Specific heat 0.3 J/(g K)

𝜏 Time constant 1.5 min

CAf CA in the input flow 1 mol/l

Tf Input flow temperature 370 K

T A B L E B2 Hyperparameters c l1 l2 l3 l4 𝝈2
f

0 0.64 0.07 0.29 0.14 9.93 0.06

ref 0.36 0.20 11.7 0.64 5.07 0.13

comb 0.43 0.42 2.09 1.01 2.83 0.26
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0 ref comb

oMPC 59.5 59.5 59.5

bGP-MPC 71.3 95.3 66.2

rGP-MPC 64.5 63.6 66.7

T A B L E B3 Model predictive control performance computed by (18)

where w1, … ,wn is the corresponding regressor of each of the n measured training data points in .
For the covariance function (6), we obtain

𝜕k(w,w′)
𝜕w

= k∗(w,w′)Λ(w′ − w),

where k∗(w,w′) is (6) without the noise term, i.e., 𝜎2
n = 0.


