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Abstract
The chemical composition of melanoidins formed from glucose (Glc) and alanine (Ala) in different molar ratios was inves-
tigated using UV/Vis, FTIR, EPR spectroscopy and elemental analysis (EA). Melanoidin samples were prepared at varying 
molar ratios of Glc and Ala ranging from 10:1 to 1:10 (Glc:Ala). Reaction systems containing a higher molar ratio of Ala 
show higher melanoidin yields and higher UV/Vis absorbance. This indicates that an excess of Ala facilitates the formation 
of larger π-electron systems and catalyzes the melanoidin formation. EPR spectroscopy showed more radicals in Ala enriched 
samples. The EA data suggest that during the formation of melanoidin from Glc and Ala higher amounts of amino acid sup-
port dehydration of the reaction products. On the basis of our data, we postulate the structures of products and intermediates 
for the reaction at different Glc/Ala ratios. PCA of the FTIR spectra allows to separate different melanoidin samples formed 
at varying molar ratios indicating their different molecular compositions.
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Abbreviations
Ala  l-Alanine
EPR  Electron paramagnetic resonance
FTIR  Fourier transformation infrared (spectroscopy)
Glc  d-Glucose
HMW  High molecular weight
NMR  Nuclear magnetic resonance
PCA  Principal component analysis
UV/Vis  Ultraviolet/visible (spectroscopy)

Introduction

The Maillard reaction (MR) plays a key role in producing 
taste, flavor and color of food products [1–4]. It is initial-
ized by the condensation of reducing sugars and amino com-
pounds such as amino acids or proteins and a subsequent 
conversion resulting in Amadori rearrangement products 
(ARP). In the following intermediate stage of the MR, the 
ARP might undergo a variety of parallel and consecutive 
reactions. In the course of these reactions, the amino acid 
residues play a key role in catalyzed dehydration reactions, 
usually in which hundreds of MR products containing C=C 
and C=O double bonds are generated which determine the 
UV/Vis absorption and therefore the color of the resulting 
reaction products. In the final step of the MR high-molecu-
lar-weight polymers, the so-called melanoidins are formed, 
causing the visible browning of foods during heat treatment. 
Melanoidins can be isolated from various foods such as cof-
fee, beer, bread crust, malt, and dried fruits [5, 6].

Relevant reactions occurring during the intermedi-
ate stage are the formation of deoxyosones, most notably 
3-deoxyglucosone (3-DG) by dehydration as well as frag-
mentation reactions leading to short-chain acids, carbonyls 
or 1,2-dicarbonyl compounds such as formic acid, acetic 
acid, acetaldehyde or methylglyoxal (MGO). MGO and 
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3-DG might undergo the Strecker degradation with amino 
acids resulting in Strecker aldehydes and α-amino ketones. 
Model studies employing MGO and Ala showed that these 
products are integrated into melanoidin backbones [7].

Parallel to the MR the amino acids may form dipep-
tides, cyclopeptides or other still unknown linkages without 
involvement of the carbohydrate [8, 9]. In the absence of 
amino acids, carbohydrates undergo caramelization reac-
tions and eventually form colorants based on transglycosida-
tion reactions [10] or based on polymerization of the dehy-
dration product 3-DG [11, 12]. Because of the multitude of 
involved reaction products that might be integrated in the 
melanoidin backbone in the course of the MR studies that 
help to cluster and classify possible end products based on 
different reaction conditions, it is necessary to investigate the 
composition of melanoidins and to better understand their 
role in food quality, for example, the flavors, colors and anti-
oxidant properties [13–15].

Our previous investigations [16–18] followed this 
approach by varying temperature, reactants and reaction 
conditions of the MR and analyzed the resulting melanoi-
dins. Mohsin et al. [17] successfully confirmed the structure 
of melanoidins produced from d-glucose (Glc) and l-alanine 
(Ala) at various temperatures by means of FTIR as proposed 
by Cämmerer and Kroh [19]. It was found that important 
functional groups of the respective reactants and the inter-
mediates during the reaction, such as carboxyl (COOH) and 
carbonyl (C=O) or double-bond carbon (C=C) and imine 
(C=N), respectively, are involved in the structure of the 
polymers. The structure proposed by Cämmerer and Kroh 
[19] also fits the molecular composition analyzed by ele-
mental analysis, for instance by [17, 20, 21]. Our studies 
included multivariate statistics techniques such as principal 
component analysis (PCA) showing that the differences in 
the FTIR spectra are determined by the ratio of character-
istic vibrational modes between 1030  cm−1 and 1150  cm−1 
assigned to C–O and the stretching vibrations of C=O at 
1745–1610  cm−1. Moreover, the FTIR fingerprints are suita-
ble to cluster and identify different melanoidins with respect 
to their structural composition [18]. Besides FTIR, a variety 
of analytical methods can be used to characterize food or 
model melanoidins. For example, free radicals in polymers 
are well known and can be characterized by EPR [22]. The 
color of melanoidins caused by delocalized π-electron sys-
tems is studied by UV/Vis spectroscopy [23, 24]. Elemental 
analysis of carbon, hydrogen, and nitrogen quantifies the 
amount of amino acid found in the reaction products.

The present study is focused on the influence of the molar 
ratio of the reactants on the structure and the formation of 
melanoidins, because our previous investigations indicated 
different reaction mechanisms depending on the availabil-
ity of the carbohydrates and amino compounds as well as 
possible catalytic effects of alanine [16]. For this reason, 

melanoidins were prepared from Glc and Ala mixed in 
molar ratios from 10:1 to 1:10. The samples were analyzed 
by means of FTIR, EPR, UV/Vis spectroscopy and EA. Glc 
and Ala were selected to prepare the model melanoidins in 
this study, because they are ubiquitously found in foods and 
represent most typical reactants in the MR. The reaction 
conditions are based on baking or roasting conditions as 
typical process steps of food production.

Materials and methods

Chemicals and reagents

d-Glucose (≥ 99.5%) was obtained from Carl Roth 
(Karlsruhe, Germany), l-alanine was obtained from Fluka 
(Steinheim, Germany), and potassium bromide was obtained 
from Sigma-Aldrich (Steinheim, Germany). The dialysis 
tubing was made from cellulose with a molecular weight 
cutoff (MWCO) of ca. 12,000–14,000 Da and ordered from 
Carl Roth (Karlsruhe, Germany).

Preparation of model melanoidins

Melanoidins were prepared according to [17]. Glc and Ala 
were mixed in different molar ratios (10:1, 2:1, 1:1, 1:2, 1:5 
and 1:10) and heated in a flat sheet for 10 min at 160 °C.

Clean‑up of raw melanoidins

The dialysis was performed according to Mohsin et al. [17]. 
The dry crude reaction products were ground in a mortar 
before being dialyzed. The dialysis tubing (Spectrum Por, 
Carl Roth, Germany) was composed of cellulose with a 
molecular weight cutoff (MWCO) around 12,000–14,000 Da 
and pore size of 1.5–3.0 nm (thickness: 23 nm and width: 
33 mm). Batch dialysis was achieved by dissolving 2.5 g 
of the reaction products in 150 mL of distilled water and 
putting it into  the dialysis tube. The distilled water was 
exchanged every 10 h, resulting in a total dialysis time of 
ca. 136 h.

FTIR spectroscopy: instrumentation and data 
acquisition

Melanoidin samples were measured as previously described 
[17]. FTIR measurements were recorded at the IR beamline 
‘IRMA’ of the Metrology Light Source (MLS) storage ring 
of PTB. Experiments were done with a Vertex-80v FTIR 
spectrometer coupled to an IR microscope Hyperion 3000 
(Bruker Optics GmbH, Germany) equipped with a  1282 
pixels FPA (Focal Plane Array) detector (pixel size ~ 3 µm 
at magnification 15 ×). Mid-IR spectroscopy (MIR) from 
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1900  cm−1 to 900  cm−1 was obtained in transmission geom-
etry by co-adding 128 scans at 4  cm−1 spectral resolution. 
Background scans were collected before sample measure-
ments from a KBr sample pellet and subtracted from the 
respective sample spectrum. For data representation, 100 
randomly picked spectra were chosen and shown with stand-
ard deviation as envelope.

EPR spectroscopy

EPR measurements were carried out on a MiniScope MS 
100 spectrometer (Magnetech, Berlin, Germany) in accord-
ance with Mohsin et al. [17]. The following acquisition 
parameters were used: magnetic flux density 3390 G, modu-
lation amplitude 1500 mG, sweep time 30 s, sweep width 
150 G. Microwave power was set to 15.8 mW (8 dB). A 
glass rod was used to compress 2.5–3.5 mg of sample into an 
NMR tube. Three measurements were taken for each sample 
and the obtained signal strength was normalized to the total 
sample weight with standard deviation.

UV/Vis spectroscopy

Melanoidins were measured as previously described [17] 
using a UV/Vis spectrometer (Specord 200 Plus, Analytik 
Jena, Jena, Germany). A melanoidin sample of 0.5 mg was 
dissolved in 1 mL distilled water. The wavelength range 
from 300 to 800 nm was measured against a blank, contain-
ing distilled water only.

Elemental analysis

A Flash EA 1112 Organic Elemental Analyzer was used to 
conduct the elemental analysis of carbon, hydrogen, and 
nitrogen (Thermo Fisher Scientific, Dreieich, Germany). 
Since only Glc and Ala were used to produce melanoidin, 
the amount of oxygen could be determined by subtracting 
the sum of the quantified elements from 100%. Melanoidin 
in the range of 1–3 mg was used for each analysis. Dupli-
cate measurements were taken for each sample (Table 2).

Principal component analysis (PCA)

Principal component analysis was performed in the fin-
gerprint region between 1900   cm−1–900   cm−1 with 
 MatlabR2012a® (The MathWorks, Inc), applying the Tool-
boxes “stats” and “PLS_Toolbox_795”. For calculation 
of principal components (PCs), 100 spectra per sample 
of six different samples were used, forming a PCA matrix 
of 600 spectra (311,400 datapoints) in total. This matrix 
comprised the spectral window, the absorbance (z) values 
stacked over the x–y dimension. Analysis was performed 

in the spectral window between 1900  cm−1 and 900  cm−1. 
Data pre-processing entailed mean centering, a baseline 
correction (weighted least squares), Savitzky–Golay algo-
rithm for smoothing (polynom third order, window length: 
15  cm−1) and vector normalization. Data were illustrated 
by PC scatter plots from PC1 to PC4 including their cor-
responding loading spectra (Fig. S-2).

Results and discussion

FTIR spectra of melanoidins formed from Glc 
and Ala in various molar ratios

Figure  1 shows the FTIR absorbance in the range of 
1900–900  cm−1 of melanoidins prepared in molar ratios of 
10:1, 2:1, 1:1, 1:2, 1:5 and 1:10 from Glc and Ala. Attention 
was given to this spectral window, because it covers most of 
the spectral variance.

The comparison of these spectra to spectra of heated Glc 
and heated Ala from our previous study shows distinctive 
differences [17]. Consequently, pure Ala or Glc as well as 
possible polymers formed from these during heat treatment 
were efficiently removed by dialysis and not integrated into 
the melanoidins to a relevant extent.

An overview on all characteristic bands of the prepared 
samples as shown in Fig. 1 is given in Table 1. All bands 
appear broadened due to a structural inhomogeneity of the 
samples, caused by the variety of different colorants formed 
by the MR. Among the most characteristic IR signals were 
the bands at 1745  cm−1 resulting from stretching vibrations 
of carbonyl (C=O) or carboxyl (COOH) groups [25] and 
1640  cm−1 (with a shoulder at 1610  cm−1) attributed to 
the stretching vibration in carboxylate  (COO−) [26, 27]. In 
contrast, C–O single bond bending vibrations occur in the 
1080–1035  cm−1 range and both areas (1745–1610  cm−1 and 
1080–1035  cm−1) were shown to be crucial for the classifica-
tion of different molecular MR compositions [16, 18].

Figure  1 and Table  1 show how the bands at 
1745–1610  cm−1 rise with increasing amino acid concen-
tration compared to 1080  cm−1 and 1035  cm−1. It is related 
to stretching vibrations of C=O, C=N, and C=C, or Amide I 
(see Table 1, Fig. S-1) [16, 18]. C–O single bonds contribut-
ing to the bands at 1080–1035  cm−1 are replaced by carbonyl 
(C=O) and carbon double (C=C) bonds when the content of 
alanine rises during the reaction.

EPR spectra of melanoidins based on Glc and Ala 
at various molar ratios

With EPR spectroscopy, unpaired electrons and conse-
quently organic radicals can be studied [36]. Radicals 
formed during the MR might be transferred to the conjugated 
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melanoidin skeletons. These radicals are identified using 
EPR spectroscopy. According to the EPR results, the radi-
cal character of melanoidins prepared at varying molar ratios 
from Glc and Ala increases with the amount of amino acid 
used for preparation of the corresponding melanoidin sample 
(Fig. 2). This observation indicates that melanoidins pre-
pared with an excess of Ala contain more substructures that 
are able to stabilize radicals. Most likely, a larger conjugated 
double-bond system is responsible. This interpretation is 
supported by the higher UV/Vis absorbance, the IR spectra 
and the elemental analysis of the corresponding samples, 
which also suggest more C=C and C=O double bonds.

UV/Vis spectroscopy

UV/Vis spectroscopy is commonly used as semi-quantitative 
measure for the melanoidin content in aqueous extracts of 

MR mixtures. As seen in Fig. 3 the melanoidin samples pre-
pared in this study show a continuous increase in absorption 
with higher content of Ala used for preparation (see Fig. 3) 
including a significant shift of the absorbance band at a 
ratio of 10:1 (Glc:Ala) toward shorter wavelengths, indicat-
ing less chromophores and smaller π-electron systems than 
melanoidins prepared from an excess of Ala. The amount 
of conjugated double bonds is one of the most important 
factors influencing the UV/Vis absorbance by a molecule. 
Renn and Sathe [23] concluded that an excess of amino acid 
was more effective in increasing the browning rate than the 
excess of glucose under the same conditions. Similar results 

Fig. 1  Infrared spectra in the spectral window of 1900–900   cm−1 of 
melanoidins prepared from Glc and Ala at 160 °C for 10 min at vari-
ous molar ratios. The solid lines represent average spectra and the 
gray envelopes indicate standard deviations (n = 100)

Fig. 2  EPR signal intensity obtained from melanoidin samples pre-
pared from Glc and Ala at different molar ratios. The relative signal 
strength per mass unit is shown with standard deviation (n = 3)

Fig. 3  UV/Vis absorbance spectra of melanoidins formed at different 
molar ratios of Glc and Ala at 160 °C
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were found by Shen et al. [24]. Combining these findings 
with the semi-quantitative FTIR analysis and results of the 
EA allows for a possible reaction scheme that might suggest 
new intermediate structures appearing during the dehydra-
tion reaction (see Fig. 4).

Elemental analysis and yield 
of the high‑molecular‑weight MR products

Table 2 shows the carbon, hydrogen, nitrogen and oxy-
gen contents of melanoidins formed from Glc and Ala at 
molar ratios of 5:1, 2:1, 1:1, 1:2 and 1:5. When Glc and 
Ala react at an equimolar ratio (1:1), the nitrogen content of 
the formed melanoidin (%N = 3.315) suggests that per mole 
amino acid two moles of carbohydrate are integrated into 
the melanoidin backbone. If the initial molar ratio of 1:1 
would be adopted in the melanoidin the nitrogen content 
would have to be above 5%. At a molar ratio of 2:1 (Glc:Ala) 
during the formation the nitrogen content of the resulting 
melanoidin is nearly identical to the equimolar preparation 
and does not significantly change when the ratio of Glc is 
further increased (See Table 2). This indicates that an excess 
of carbohydrate does not alter the general formation mecha-
nism. Consequently, at all molar ratios of 1:1, 2:1 and 5:1 
(Glc:Ala), the skeleton of melanoidin is considered to be 
composed of two sugar moieties per amino nitrogen.

On the other hand, an excess of amino acid (1:2, Glc:Ala) 
increases the nitrogen content of the melanoidin by 20%. 
This could be caused by integration of more amino acid 
per mole of carbohydrate in the backbone. However, this 
trend quickly saturates and does not show significant change 
when Glc:Ala is offered at a molar ratio of 1:5 (See Table 2). 

Therefore, it can be concluded that this increase of the N/C 
ratio does not necessarily account for a general change in 
ratio of carbohydrate to amino acid in the backbone of the 
melanoidin. In addition, as seen by UV/Vis spectroscopy, 
the melanoidin samples prepared with an excess of amino 
acid show a considerably higher absorbance indicating that 
an excess of Ala facilitates the formation of larger π-electron 
systems and larger amounts of  sp2 hybridized carbon (see 
Fig. 3). In the context of the results of the elemental analysis 
this indicates that a higher nitrogen content in melanoidins 
is connected to the formation of more chromophores and/or 
of chromophores with a higher molar extinction [16]. The 
decrease in hydrogen and oxygen indicates the elimination 
of water that would result in the formation of double-bond 
and conjugated double-bond systems.

The question arises, if a rising content of Ala leads to 
stronger catalytic efficiency of Ala and if it is catalyzing 
both, formation of high-molecular-weight MR products and 
dehydration of polymers during or after their formation. To 
answer this question, the yield of high-molecular-weight MR 
products after dialysis was compared with the theoretically 
expected yield as displayed in Table 3.

2.5  g of the MR reaction products was dissolved in 
150 mL of distilled water and put into dialysis tubes. After 
dialysis, the melanoidins were freeze-dried and weighted. 
The yield continuously rises with Ala content from 
0.4 ± 0.04% (Glc:Ala 10:1) to 1.1 ± 0.04% (Glc:Ala 1:10) 
with a highest amount of 27 ± 1.0 mg purified melanoidin 
for melanoidins at a ratio Glc:Ala, 1:10 after dialysis of 2.5 g 
of reaction products.

From this analysis, two important findings are derived: 1) 
high-molecular-weight MR products typically yield less than 

Table 1  Vibrational modes and their tentative assignments to functional groups found in sugar- and amino acid-enriched melanoidins which 
appear broadened (br), strong (s), medium (m) or weak (w)

Wavenumber  (cm−1) Modes Sugar-enriched 
melanoidin
(Glc:Ala 10:1)

Amino acid-enriched 
melanoidin
(Glc:Ala 1:10)

References

3500–3000 v(O–H) br br [16–18, 28–30]
3300 v(NH), amide A br, overlap br, overlap [31, 32]
3100 v(NH), amide B w, overlap w, overlap [25]
2930 v(CH3) w w [30, 33, 34]
2860 v(CH2) w w [33, 34]
1745 v(COOH) or v(C=O), w w [16–18, 25]
1640 v(COO−) s s [16–18, 26, 27]
1630–1610 v(COO−), v(C=O) or v(C=C), v(C=N), amide I m m [18, 29, 30, 35]
1455 v(C-N), δ(N–H), amide II w w [16–18]
1400 v(C-N), δ(N–H), δ(CH3), δ(CH2), amide II w w [16–18, 34]
1365 v(C–N) or δ(O–H), δ(CH3), amide II w w [16–18, 34]
1220 amide III or v(C–O) w w [16–18, 34]
1080–1035 δ(C–O) or δ(C–H) s w [16–18, 29, 30, 34]
920 v(C–C) in the carbohydrate structure, δ(C–H) w w [16–18, 29, 34]
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1% of the overall reaction products and 2) the MR product 
yield with high molecular weight steadily rises with rising 
content of Ala indicating that the formation of melanoidins 
itself is catalyzed by Ala.

Based on the results of the EA, melanoidins formed from 
Glc and Ala generally contain two carbohydrate moieties per 
molecule of Ala and an excess of Ala facilitates dehydration 
reactions; however, the latter effect is limited at molar ratios 
above 1:2 (Glc:Ala). The overall yield of high-molecular-
weight melanoidins is further increased at ratios of 1:5 and 
1:10 indicating that an excess of Ala catalyzes the formation 
of these MR colorants.

Structural conclusions

Derived from these empirical findings, a reaction pathway 
for the formation of melanoidins containing two carbohy-
drate backbones per mole of amino acid is postulated in 
Fig. 4. The condensation of Glc and Ala and the subse-
quent rearrangement result in the formation of the ARP 
(initial stage of the MR) [37]. Elimination of water at C3 
yields the most prevalent1,2-dicarbonyl compound of the 
MR 3-DG in form of its imine. Finally, hydrolysis of the 
amino acid results in free 3-DG. Both of the latter com-
pounds form polymeric structures by aldol condensation 
reactions and nucleophilic substitution reactions.

The resulting melanoidin structure [A] is based on a pos-
tulation of Cämmerer & Kroh [19] as well as our previous 
publication [17]. Subsequent dehydration would result in 
the formation of C=C and C=O double bonds and more 
potent chromophores such as structure [B] emerge. In addi-
tion, intramolecular cyclization reactions might occur and 
lead to the formation of furan-like substructures like [C] 
comparable to structures identified by Bruhns et al. [12] and 
Kanzler et al. [7] by means of high-resolution mass spec-
trometry. The elemental composition of the proposals [A] 
and [B] are close to the results of the elemental analysis of 
the melanoidin sample formed from Glc and Ala at a ratio 
of 1:1 and 1:2 (Glc:Ala), respectively. Though the amount 
of incorporated amino acid does not effectively change from 
[B] to [C], the elimination of water shifts the theoretical 
nitrogen content from 3.88 to 4.08%. It can be concluded 
that in this instance, the role of the amino acid is to catalyze 
dehydration reactions and promote the general browning 
reaction as described by Kaufmann et al. [38], rather than 
being a reactant that is integrated into the melanoidin skel-
eton at excess.

Naturally, in melanoidin samples a variety of different 
structures and substructures is to be expected [19, 38–40], 
and therefore in all melanoidin samples in this study, sub-
structures such as [A], [B] and [C] will dominate based on 
our finding, but also related substructures will be present. 
Apart from 3-DG, other 1,2-dicarbonyl compounds such 

as glucosone, 1-deoxyosone and MGO or carbonyl com-
pounds such as acetaldehyde, furfural and hydroxymeth-
ylfurfural could undergo comparable reactions. Kanzler 
et al. [7] could show that melanoidin backbones are indeed 
composed of a variety of structurally related MR products 
including products typically formed in the Strecker degra-
dation, namely Strecker aldehydes and α-aminoketones. In 
addition, products of carbohydrate fragmentation reactions 
further diversify the structure of melanoidins. This variety of 
the involved reactants explains the slight differences between 
the theoretical elemental composition of the proposed prod-
ucts (Fig. 4) and the experimentally determined elemental 
composition (Table 2). The samples in our study are always 
complex mixtures of different melanoidins in which the pro-
posed substructures are prevalent.

Depending on the content of free amino acids during 
the formation of the respective melanoidin, the degree of 
dehydration of the polymers may vary. A higher content of 
amino acids facilitates more dehydration reactions and con-
sequently the structures [B] and [C] will dominate and shift 
the elemental composition toward the measured values of 
the melanoidin prepared from Glc and Ala at a ratio of 1:2.

Principal component analysis of sugar‑ and amino 
acid‑enriched melanoidins

Principal component analysis (PCA) is one of the multivari-
ate statistical methods, which can advantageously be used for 
the characterization and identification of various melanoi-
dins [18]. The present results show that structurally differ-
ent melanoidins that are formed at different molar ratios of 
Glc:Ala can be distinguished by means of PCA, conducted 
in the spectral window between 1900  cm−1 and 900  cm−1 
which is abundant in spectral features. This region, includ-
ing the stretching vibrations of C–O at 1080–1035  cm−1 and 
C=O (COOH) at 1745–1640  cm−1, will be the focus of this 
section. Figure 5 displays the PC score plots from PC1 to 
PC4 which capture 92.4% of the total variance (See Table 
S-1). With an increasing amount of alanine (Glc:Ala 1:2, 1:5 
and 1:10, respectively), these melanoidin compositions are 
allocated opposite to the sugar-enriched samples (Glc:Ala 
2:1 and 10:1) in the scores diagram of PC1 versus PC2. 
They are negatively correlated with respect to PC2 which is 
mainly composed of vibrational peaks in the range between 
1700 and 1600  cm−1, i.e., stretching vibrations of double 
bonds of carbon (C=C) and carbonyl (C=O) (Fig. S-2). 
This is a clear evidence that a differentiation and separation 
among both types of melanoidin compositions (excess of 
amino acid versus excess of sugar during preparation) is 
possible with respect to the C=C and C=O content, balanced 
by the 1:1 Glc–Ala composition (green cluster), which can 
be found perfectly allocated in between both types. Similar 
motifs are observed in the PC2 versus PC3, and PC2 versus 
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PC4 score plots. The spectral contributions being responsi-
ble for these observations can be found in the corresponding 
loadings spectra (Fig. S-2 and Table S-1). To conclude, the 
separability of these different compositions is mainly caused 
by the spectral features of carboxyl or carbonyl groups in 
the 1745–1640  cm−1 window, which dominate in PC1 and 
PC2. Also, the C–O stretching vibrations found between 
1080 and 1035  cm−1 are partially represented by PC1, but 
with a smaller contribution.

Conclusion

In our previous studies, melanoidins were synthesized 
from glucose and alanine at different temperatures [17] or 
from different carbohydrate compounds [18]. These stud-
ies showed that higher UV/Vis absorption of melanodins is 
correlated with more C=C, C=O and C=N groups which 
are crucial for the formation of chromophores. The FTIR 
spectra (Fig. 1) for various melanoidins formed from differ-
ent ratios of Glc:Ala indicated that an excess of Ala during 
melanoidin formation induces the formation of these groups 

Fig. 4  Proposed pathway for the formation of melanoidins containing two carbohydrate backbones per mole of amino acid (A). Subsequent 
amino-catalyzed dehydration reactions yield the structures (B and C)

Table 2  Elemental composition 
of melanoidins formed from 
Glc:Ala at 5:1, 2:1, 1:1, 1:2 and 
1:5 at 160 °C for 10 min

Every sample was measured twice

Molar ratio 
Glc:Ala

%C %H %O %N H/C O/C N/C

5:1 49.34 6.08 41.10 3.48 0.123 0.833 0.071
2:1 49.420 6.215 40.860 3.505 0.126 0.827 0.071
1:1 48.855 6.285 41.545 3.315 0.129 0.85 0.068
1:2 50.550 6.255 38.905 4.290 0.124 0.77 0.085
1:5 50.46 6.30 38.89 4.35 0.125 0.77 0.086
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and corresponding chromophores as well as higher content 
of free radicals (Figs. 2 and 3). Elemental analysis and FTIR 
spectra show dehydration and in consequence formation 
of C=C and C=O double bonds resulting in more potent 
chromophores that occur with higher content of Ala during 
melanoidin formation. Cyclization and further dehydration 

reactions might even lead to the formation of furan-like sub-
structures (Fig. 4).

Considering the dual role of Ala as catalyst and reactant, 
the combined findings of UV–Vis (Fig. 3), EA (Table 2) and 
yield (Table 3) show that Ala mainly accelerates the reaction 
and functions as a catalyst for dehydration and formation 
of melanoidin up to ratios of Glc:Ala of 1:2 but primar-
ily as catalyst for the overall melanoidin formation at ratios 
of Glc:Ala above 1:2. It can practically be ruled out that 
additional glucose moieties are incorporated into the poly-
mer backbone after formation of polymeric MR products, 
because an excess of Glc during melanoidin formation does 
not affect the N/C ration significantly. On the other hand, an 
excess of Ala shows that the role of the amino acid lies in 
catalyzing dehydration reactions and promoting the general 
browning reaction as described by Kaufmann et al. [38] for 
the MR in general. In addition, the present approach shows 
that even if the FTIR spectra of the different preparations are 
quite similar, each preparation delivers melanoidins with a 
specific spectral FTIR pattern. Consequently, dominating 

Table 3  Yield of high-molecular-weight melanoidins formed from 
Glc:Ala at 10:1, 5:1 2:1, 1:1, 1:2 and 1:5 and 1:10 at 160  °C for 
10 min after dialysis of 2.5 g MR product before dialysis

Molar 
ratio 
Glc:Ala

Glc (mass) Ala (mass) MR product 
after dialysis

Experimental 
yield

10:1 180 g 9 g 10 ± 1.0 mg 0.4 ± 0.04%
5:1 180 g 18 g 12 ± 1.0 mg 0.5 ± 0.04%
2:1 180 g 45 g 13 ± 1.0 mg 0.5 ± 0.04%
1:1 180 g 90 g 18 ± 1.0 mg 0.7 ± 0.04%
1:2 90 g 90 g 20 ± 1.0 mg 0.8 ± 0.04%
1:5 36 g 90 g 22 ± 1.0 mg 0.9 ± 0.04%
1:10 18 g 90 g 27 ± 1.0 mg 1.1 ± 0.04%

Fig. 5  PCA analysis of the melanoidins formed at different molar ratios
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structures and substructures can be distinguished by PCA 
depending on the ratio of sugar and amino acid (Fig. 5).
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