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Introduction

While the mathematical concept of topology originally arose as a purely theoretical discipline,

topological physics exploded onto the scene after the experimental realization of Topological

Insulators (TI) [1, 2, 3] in 2007. This opened the door for mathematics, mixed with mate-

rial science, to become an important fundamental and technological topic for researching novel

physical phenomena, as well as technologically relevant properties [2, 4, 5]. The idea of using

topological invariants for the classifications of an Hamiltonian’s eigenstates in crystalline solids,

i.e. electronic bands in energy-momentum space (E vs k), has been used to successfully predict

protected electronic states and properties including the quantum Hall effect [6, 7]. There have

also been attempts to use topology to characterize other types of experimentally observed trans-

port phenomena (e.g. the non-quantized anomalous Hall effect (AHE), spin Hall effect (SHE),

skyrmion/domain wall dynamics and superconductivity) based on the non-quantized properties

of a gauge generated field on the electronic band, which is known as the Berry phase [8]. However,

for the prediction of quantum transport effects mostly only a curl of the Berry phase, a.k.a. the

Berry curvature, is used. This Berry curvature based approach works relatively well for predict-

ing the intrinsic AHE and SHE (where carriers acquire a velocity component orthogonal to an

applied electric field without an externally applied magnetic field), but has had accuracy issues

with compounds like Ni [9]. The topological theories of electronic band structures for strongly

correlated phenomena, like superconductivity and charge density wave formation, however, are

not as successfully used as macro models such as the Ginzburg-Landau and the Mott-Hubbard

theories [10, 11].

Topology, as a branch of mathematics, studies possible ways to introduce continuity into the

space of abstract objects like wavefunctions. This allows the use of methods of classical differ-

ential calculus for the Hamiltonian, considering it simply as a function acting on numbers (e.g.

crystal momentum indexing the wavefunction), rather than on the wavefunctions. In order to

do this the space of the wavefunctions is considered as a manifold. The ”shape” of this mani-

fold, resulting in connectivity between the wavefunctions, results in non-trivial properties of the

Hamiltonian. The connected bands of eigenfunctions of the Hamiltonian can be grouped into

the set of bands according to its elementary band representation (EBR), for which the simpli-

fied consideration of the Hamiltonian, acting as a function on numbers is applicable, and thus

the semiclassical approximation with the Berry curvature correction is valid, as it was recently

presented in the work on topological quantum chemistry [12]. The study of the eigenstates’ con-

nectivity and their topological properties by introducing indexes and geometrical phases, like the

Berry phase, however, doesn’t allow full implementation of methods of topology into quantum
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Introduction

transport theories. The currently used approach works well for classification, in the way it was

done in the topological quantum chemistry database, but fundamentally it doesn’t change the

semiclassical transport formalism. So far, quantum transport theories of, for example, AHE are

based on Green’s functions for calculation of two bands transition to estimate Berry phase-related

properties [8].

In this work, the limits of this approach will be discussed and an alternative approach, based

on the geometrical properties of the Fermi surfaces of topological semimetals, will be proposed.

The Fermi surface, as well known, governs transport properties of metals, but for semimetals,

where the Fermi surface consists of both electron and hole pockets, the theory works only on the

assumption, that pockets don’t intersect with each other. Otherwise, the intersection leads to a

so-called magnetic breakdown, at the intersection of the corresponding Fermi surface orbits and

it results in quantum tunneling. The point of the intersection corresponds to an intersection of

the bands, known as a Dirac or a Weyl point and its effect on transport can be described in terms

of the Berry curvature. However, as will be discussed in this work, the intersection in the Fermi

surface orbits can happen within one band pocket, without an intersection of different bands,

which can also lead to quantum transport effects. The properties of the Fermi surface orbits

as being self-intersecting, independently of how many bands they have been formed by, can be

traced using the tangent planes distribution on the Fermi surface. This allows for the possibility

of making a local classification of the Fermi surface in the geometrical types corresponding to the

different orbit properties. Then, capturing the degeneracies in the Fermi surface orbits should

be a more accurate estimation of quantum transport effects, with respect to the Berry curvature

formalism, capturing pairwise intersections of bands due to the topological connectivity. The

comparison of the Berry curvature based approach and the local Fermi surface geometry approach

will be shown with the example of the AHE and SHE. The local geometry concept can then be

extended and used similarly to the bandstructure, which leads to the complete classification of not

just metals, having the Fermi surface, but also insulators and semiconductors. This classification

is known as the parametrization conjecture, whose proof famously resulted in the solution of one

of the millennium problems. The possibility to use this mathematical theory for bandstructures

as 3D manifolds, will also be briefly discussed as an application of geometrical methods.

The results, presented in this work, are based on an interplay between semiclassical quan-

tum transport theory for electrons in a periodic potential and the framework of topology and

differential geometry. The basic concepts from quantum material science will be recalled in the

12



Introduction

first chapter.The goal of this chapter is to introduce the notation and classification of semimetals

and their degeneracies in the bandstructure as a common language used in topological quantum

physics. In the second chapter, computational methods of quantum material science will be

presented starting with DFT calculations for the electronic eigenstates. Then, a semiclassical

approach to quantum transport will be considered, focusing on different foundations to introduce

the continuous connection between the eigenstates (e.g. non-equilibrium temperature effect or

quasiparticles formation), which naturally brings up a discussion of the Green functions as a

possible mathematical tool to handle it. Continuity of disconnected objects is a main subject

of topology and will be introduced in chapter three. It gives a mathematical formalism to build

differential calculus needed for semiclassical transport using the construction of a tangent bundle

on a manifold. When the electronic eigenstates in the crystal are treated as a manifold, their

study can be carried out using special quantities, such as the Berry phase, the Berry curvature,

Chern numbers etc., which will be discussed in the fourth chapter. These quantities have been

used to analyze the connectivity of the eigenstates, however a direct full derivation of an alterna-

tive to the semiclassical approach to the electron transport, based on calculus on the eigenstates’

manifold, using the tangent bundle, hasn’t been done yet. Instead, the semiclassical transport

equation was modified by the additional Berry curvature term, which leads to the possibility to

calculate AHC and SHC, using Green’s function, which is known as the Kubo formalism.

The fifth chapter discusses the use of geometrical features in the bandstructures to predict

transport properties. First, as an example, the SHC the A15 family of superconductors calculated

from the Berry curvature based formalism, will be related to the geometrical flag feature in the

semimetallic bandstructure: the gapped anti-crossings. These geometrical features are related

to the crystallographic symmetries and thus can be analyzed algorithmically on the databases.

However, calculations of SHC are still needed, since location of the flag feature with respect to

the Fermi level is significant for the total SHC. The Berry curvature based calculations cannot be

carried out automatically, therefore the flag feature based symmetry analysis is just a preliminary

step in the SHE materials search. On the other hand, this geometrical feature is related to the

shape of the FS, as will be shown in chapter six, however, it’s not a one-to-one correspondence.

The shape of the Fermi surface around a point , i.e. the Fermi surface local geometry, can

be studied using the tangent planes, and classified into three types: elliptic, hyperbolic and

Euclidean. The hyperbolic case is related to the SHE and AHE and it shows a striking correlation

with the 15 experimentally observed AHE compounds. The HF index will be introduced as a
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Introduction

numerical quantifier of hyperbolicity of the FS and based on the HF predictions will be compared

with the experimentally obtained values of AHC as well as with numerical predictions of AHC

and SHC based on the Berry curvature. In the seventh chapter, the idea to use tangent bundle

for transport properties analysis will be extended to the whole bandstructure.
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Chapter 1

Electronic eigenstates in semimetals

Bandstructure or electronic structure is one of the most powerful tools to analyze quantum

transport in crystalline solids. Such a way to represent eigenvalues of a many-body crystalline

Hamiltonian as ”pseudofunctions” will be the main focus of this chapter. The chapter will intro-

duce the consistent notation of the electronic structure properties (like anti-crossing, Weyl/Dirac

points etc.) for semimetallic crystalline solids, that will be used later in this work.

The formal construction of the bandstructure and definitions related to the quantum trans-

port, including a construction of the Fermi surface, will be recalled in the first section. Particu-

larly, the discussion on the dimensionality of the crystals and the corresponding bandstructure’s

properties will be elaborated. In the second section, the effect of the electrons’ spin on the

bandstructure and time reversal symmetry will be discussed. In the third section degeneracies

in the bandstructure will be introduced and classified for different dimensionalities of the band-

structures. In the end, there will be an illustration of a connection between degeneracies in the

bandstructure and the Fermi surface degeneracies. Details and ramifications of this connection

are the main subject of this work and will be discussed in the later chapters.

1.1 Bandstructure

The dynamics of an electron with the wavefunction ψ(x) is defined by the time-dependent

Schrödinger equation:

i~
dψ(x, t)

dt
= Hψ(x, t), (1.1)

15



Chapter 1. Electronic eigenstates in semimetals

where H is the Hamiltonian and consists of all possible physical interactions (ideally) that

the particle can be involved in. The wavefunction can be determined by solving this equation.

If ε is an eigenvalue of the Hamiltonian, then the solution of the equation (1.1) is the following

ψ(t, x) = e
− i

~

t́

0

dt′ε(t′)
ψ(0, x). (1.2)

For a free electron, H consists only of the kinetic energy term − ~2

2m∇
2. If the electron is

moving in a crystal, an external periodic potential V , formed by the average potential of all of

the other electrons and nuclei on the lattice, must be included, i.e.

H = − ~2

2m
∇2 + V. (1.3)

In this case, due to Bloch theorem [13] the eigenfunctions of the Hamiltonian can be written

as,

ψ(0, x) = ϕk(x) = eikxuk(x), uk(x+R) = uk(x). (1.4)

The parameter k represents the crystal momentum and is associated with an electron in the

lattice.

If the lattice consists of N atoms and every atom has n electrons, and the eigenvalue problem

is solving for every electron in the lattice, then the equation 1.1 transforms to the system of Nn,

or equivalently an equation with a Nn×Nn Hamiltonian matrix, linearized, as the following

H =



ε1(k1) 0 ... 0

0 ε1(k2) ... 0

...

0 ... ε2(k1)... 0

...

0 0 ... εn(kN )


(1.5)

applied to the many-electron wavevector φT = (ϕk11 (x), ..., ϕNn(x)) instead of a one-electron

wavefunction. Then the space Φcrystal can be introduced

Φcrystal = span(ϕ1(x), ..., ϕNn(x)) (1.6)
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Chapter 1. Electronic eigenstates in semimetals

as the domain of the total Hamiltonian.

Working with such high dimensional objects is not convenient. Therefore, the wavefunctions

are categorized into bands {ϕi(k)}k=1..N according to the local symmetry of the wavefunction,

which is described by the orbital momentum quantum number. After Fourier transformation,

ψi becomes a function represented in a new basis of functions, depending on crystal momentum

(schematically it is shown in figure 1.1 (a)).

Definition 1. All together {εi(k)}=1..n, considered as functions of momentum k, comprise the

electronic structure of the material, a.k.a. bandstructure.

The bandstructure is a convenient representation of the total lattice Hamiltonian, compared

with matrix notation. The band in reciprocal space, however, is not really a function; it consists

of discrete points and is neither smooth nor continuous as it is shown in figure 1.1 (b). However,

this band structure contains the information about the original function ψ(x): if the momentum

is fixed in the value k0 , the function ϕi(k0) is an eigenfunction of the localized Hamiltonian in

form 1.4 known as a Bloch wavefunction for the corresponding eigenvalue εi(k) 1.1

Overall energies in the bandstructure there is a special value known as the Fermi level. It is

a hypothetical energy level of an electron in given crystal potential, such that at thermodynamic

equilibrium this energy level would have a 50 % probability of being occupied at any given time.

The location of bands with respect to the Fermi level dictates the transport properties of the

compound. All the parts of the bandstructure laying above the Fermi level are refereed to, as

the conduction bands and laying below as the valence bands, and electrons and holes as are the

carrier types respectively. If the Fermi level crosses a band then the compound is metallic. If the

Fermi level does not cross any band, then then compound is either semiconductor or insulator.

Definition 2. All the momentum k in the bandstructure, where the Fermi level crosses any band,

comprise the Fermi surface.

However in the case of 1D bandstructure it’s not a truly surface, but just few points (schemat-

ically shown in figure 1.2 (a)). A 1-D bandstructure can be thought of as the cross-section of

a higher dimensional picture. In the 2D case the Fermi surface is a line (green ring in figure

1.2 (b)) and in the 3D case the Fermi surface can be thought as a surface and plotted already

in momentum rather then energy-momentum space ( like in figure 1.2 (c)). This surface sep-

arates momentum space into two zones: Fermi sea, which is a volume enclosed by the Fermi
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Chapter 1. Electronic eigenstates in semimetals

Figure 1.1: Representation of a function in the Fourier space. (a) Duality between momentum

coordinates k and spacial coordinates x: at every fixed x a value of the wavefunction ψ(x) can

be expressed as a sum of the basic functions (harmonics), depending on k and drawn in the top

panel in different colors. (b) Distribution of the Hamiltonian’s eigenvalues in the momentum

space. The vertical colored lines represents the hidden x axis for the different harmonics shown

in (a).

surface, where the electrons affected by the crystal potential V are tied to the ion cores and its

complimentary, where electrons behave like a free electron gas.

Definition 3. If the Fermi surface consists of sheets from both the conduction and the valence

bands then the compound is referred to as a semi-metal ,and the sheets are called electron and

hole pockets correspondingly.

For semimetals, due to the presence of both types of pockets, the Fermi sea can have a non-

trivial structure. This is illustrated on an example in figure 1.2 (c). For the electron pocket the

Fermi sea is located outside of the Fermi surface ( the right green ”sphere” in the figure), but for

the hole pocket ( the left green ”sphere” in the figure), the Fermi sea is inside. Thus, at the point

where these two pockets are connected to each other, the Fermi sea should make a twist to get

from the outside to inside. This twist relates to the topological connection between eigenstates,
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Chapter 1. Electronic eigenstates in semimetals

Figure 1.2: Dimensionality of the momentum space and corresponding FS. (a) 1D momentum

space shown as a horizontal line demands 0D FS, shown as green points. (a) 2D momentum space

shown as a horizontal plane demands 1D FS, shown as green circle. (c) 3D momentum space

demands the FS to be a 2D surface, which is a boundary of the Fermi sea formed by occupied

states. Two components of the Fermi surface represents electron pocket, where the Fermi sea

remains outside of the pocket, and hole pocket, where the Fermi sea is inside. Thus, to smoothly

pass from outside to inside though the FS, the Fermi sea makes a particular geometrical feature

at the passing point on the FS.

that will be discussed in detail during chapter 4, which results in non-trivial transport properties

of the compound. As one can see from the example in figure1.2 (c), the twist of the Fermi sea

affects the shape of the Fermi surface locally around the point of the twist, and therefore the

connection between two green spheres in figure1.2 (c) would be spiky, if it was a continuous

surface. Study of the connection between such local geometrical properties of the Fermi surface

and transport effects will be the main focus of this work.
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Chapter 1. Electronic eigenstates in semimetals

1.2 Spin-orbit coupling

In the simple case, relativistic motion of the electrons is not taken into account in the equation

1.1. However, as the number of protons in the ion cores increases, the electrons can move with

a speed. that is close to the speed of light. For these cases, the Hamiltonian H can be modified

in the following way:

HDirac = cα
~2

2m
∇2 + βmc2 + V, (1.7)

where V is the potential, α and β are the following matrices

β =

I 0

0 −I

 , αi =

 0 σi

σi 0

 , (1.8)

where σ are the Pauli matrices:

σx =

0 1

1 0

σy =

0 −i

i 0

σz =

1 0

0 −1

 . (1.9)

The Pauli matrices together with I2x2 form a basis for the real vector space of 2 x 2 Hermitian

matrices. σ can be considered as an additional variable for ψ = ψ(x, σ). For a 1
2 spin particle,

the Pauli matrices σ are related to the spin operator in the following way:

S =
1

2
σ. (1.10)

The two-component wavefunction ψ(x) =

ψ1(x)

ψ2(x)

 in this case can be interpreted as ψ = ψ1 = ψ(x, 1
2 )

ψ2 = ψ(x,− 1
2 )

. One of the components can be turned to zero by the choice of coordinate

system ( assume then it’s ψ2 ). Then the equation 1.7 implies:

(
p2

2m
+ V − p4

8m3c2
+

~
4im2c2

(∇V · p) +
~

4m2c2
(∇V × p) · σ)ψ1 = (E −mc2)ψ1, (1.11)
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Chapter 1. Electronic eigenstates in semimetals

where p = ~∇ is the momentum operator. The third term gives first order relativistic

correction and can be neglected[14]. The fourth terms give a small correction to the energy

of states, whose eigenfunctions are non-zero at singularities of V . It has the same symmetry

properties as V and does not change the form of the Hamiltonian and can therefore be neglected

[14]. Then then the remaining equation is known as the Schrodinger form of Dirac equation :

(
p2

2m
+ V +

~
4m2c2

(∇V × p) · σ)ψ1 = Ekψ1. (1.12)

The additional term here includes momentum of the electron together with its spin repre-

sented by the Pauli matrices σ and therefore it’s known as spin-orbit coupling (SOC).

The spin in the system is closely related to time reversal symmetry, i.e. invariance of

the equation 1.1 with respect to the transformation t → −t. According to Kramer’s theorem

[15], in the presence of time reversal symmetry (i.e. without magnetic field), both components

ψ1(x), ψ2(x) of a spin 1
2 wavefunction corresponds the same energy eigenvalue ε. The eigenstates

and corresponding bands in this case are called degenerate. In the absence of time reversal

symmetry, the SOC term in the Hamiltonian makes the band corresponding to the eigenstates

ψ(k) split.

The breaking of time reversal symmetry and splitting of the bands can happen not only due

to SOC, but for other physical phenomena in the system related to the spin degree of freedom,

like ferromagnetic or antiferromagnetic spin splitting. When the wavefunction for every electron

on the lattice is assumed to have two components, then the corresponding bandstructure is called

spinful.

1.3 Semimetal classification

SOC is not the only addition to the potential V , that can be included in Hamiltonian. Other

terms will be discussed later in chapter 3. For now, let’s consider a general form of the Hamil-

tonian:

H = − ~2

2m
∇2 + (terms representing interactions). (1.13)

It is reasonable to assume that eigenstates of the electrons in the lattice do not differ strongly

from the eigenstates of the free electron Hamiltonian −~2

2 ∇
2 which are known as the s, p, d,
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f, etc orbitals. Thus we can represent the full lattice Hamiltonian as linear combinations of

atomic orbitals (LCAO) according to the space group symmetry, which is the basic logic of

molecular orbital theory [16]. If the space group for instance is nonsymmorphic then there is

also translation by a fraction of a lattice vector that generates additional eigenstates which, in

combination with other symmetries, giving rise to degeneracies in the bandstructure, i.e. such

points where εn(k) = εm(k). These degeneracies in the bandstructure are schematically shown in

the figure 1.3. A similar situation may happen due to other symmetries like rotation, inversion, or

mirror. Note that every point in the spinless band is always doubly degenerate due to Kramer’s

theorem. For now this degeneracy won’t be taken into account and the degeneracies are discussed

in the context of intersections of two bands with different symmetry characters. The presence

of such degeneracy at the Fermi level is a signature that the Fermi surface has both valence and

conduction components and thus the compound is a semimetal.

Figure 1.3: Degeneracies in the bandstructure of topological semimetals in one dimensional case.

The Dirac point type of degeneracy shown on the left is made off two double degenerate (with

Kramers degeneracy) bands crossing each other, whereas the Weyl point shown on the left is

made off non degenerate bands, e.g. spin-split by turning on SOC.

Definition 4. If the degenerate point in the bandstructure is made of an intersection of dou-
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Chapter 1. Electronic eigenstates in semimetals

bly degenerate bands, then it’s called a Dirac point and the corresponding compound is called

Dirac semimetal (DSM). If additional SOC removes the degeneracy the degenerate point can be

also called a Dirac anti-crossing or just anti-crossing. If the degenerate point is made of non-

degenerate, in Kramer’s sense, bands, it’s called a Weyl point and the corresponding compound

is called Weyl semimetal (WSM). This is schematically shown in figure 1.3 .

Figure 1.4: Classification of topological semimetals in two dimensional case.

The degenerate point can remain a point in higher dimensions, but may also be a line

or even surface in a 3-D space. In this case, the compound will be called Dirac nodal line

semimetal(DNLS) or Weyl nodal line semimetal(DNLS), depending on the symmetry of the

system. Finer detailed classification [17] for 2D semimetallic bandstructures is given in figure

1.4. The DNLS can be considered as a starting point for realizing many other topological states.

Starting from a spinless DNLS, SOC may lift the degeneracy along the crossing line, leading to

[17]

1. a spinful DNLS when the line of degeneracy is protected by a combination of time-reversal,

inversion, and nonsymmorphic symmetry (e.g. ZrSiS );
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Chapter 1. Electronic eigenstates in semimetals

2. a spinful WNLS (e.g. PbTaSe2) when mirror reflection within high-symmetry plane pro-

tects the nodal lines, but broken inversion symmetry (or broken time-reversal symmetry)

splits the spin component at the nodal line, giving rise to two Weyl lines;

3. a 3D DSM (e.g. Cd3As2 ) if, for example, certain symmetry-invariant points are protected

by rotation symmetry as well;

4. a WSM (e.g. TaAs) when, for example, the system has mirror reflection symmetry, or-

thogonal orbital component making up the electronic states, and proper strength of SOC;

5. a TI (e.g. Mackay-Terrones crystal) if , for example, the material has only inversion and

time-reversal symmetry.This would give rise to a gapped bulk state but linearly dispersed

projected surface states.

Starting from DSMs, breaking either inversion or time-reversal symmetry will lead to WSMs.

The symmetry of a crystal structure and the atomic orbitals making up the electronic states at

band crossings determine which topological state is realized under consideration of SOC: the

electronic states must be orthogonal to each other in order to not get hybridized with each other

and open a gap.

While for the 2D case we can still plot a 2D bandstructure and distinguish degenerate points

from a line just visually, in 3D it becomes quite complicated. The typical procedure is to project

full 3D bandstructure on various surfaces and analyze the series of projections. Another way to

analyze a 3D case is to consider constant energy isosurfaces and particularly isosurface at the

Fermi level, i.e. the Fermi surface. All the information about bandstructure in the energy range

(EF −δ, EF −δ) is kept in the Fermi surface. Thus a point in the 1D bandstructure, if it remains

a point in the 2D bandstructure, can be either a degenerate point on the Fermi surface or a

degenerate line on the surface. If a nodal line appeared in the 2D bandstructure, it can remain

a degenerate line on the Fermi surface or even become a full degenerate Fermi surface sheet. All

these possible degeneracies at the Fermi surface can be distinguished into two types: isolated

and irregular. Schematically this is shown in figure 1.5.

Definition 5. A degenerate point belonging to a bulk Fermi surface sheet of dimensionality less

than 3 will be referred as isolated. A degenerate point belonging a three dimensional Fermi surface

sheet will be referred as irregular.
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Chapter 1. Electronic eigenstates in semimetals

Figure 1.5: Degeneracy in three dimensional case appearing on the Fermi surface. The red

color represents degenerate points, blue points from the valence band, green points from the

conduction band.

The different types of degeneracies in the bandstructure and their effect on the Fermi surface

result into non-trivial transport properties of the electrons in the corresponding crystal potential.

Examples of the FS degeneracies in real semimetallic compounds [18, 19] are shown in figure 1.6.
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Chapter 1. Electronic eigenstates in semimetals

Figure 1.6: Degeneracies on the Fermi surface for ZrSiS, Mn3Sn, W3W . (a) Isolated degen-

eracies in ZrSiS FS. Calculated FS slice is top left, measured FS slice is bottom left At the

right side the measured bulk bandstructure confirming isolated type of degeneracy: the bulk

bandstructure remains 2D up to -1.4 eV and thus it’s slice at the Fermi level is 1D. (b) Isolated

and irregular degeneracies in Mn3Sn. The slice of the bandstructure is shown: the orange color

represents filled states, purple not filled and red color between them represents FS. The irregu-

lar degeneracies are marked as WP ( Weyl point) and isolated are marked as ”Fermi arc”. (c)

Irregular degeneracies in W3W .
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Chapter 2

Computational transport theory

The following chapter is a review of numerical methods used to calculate bandstructures and

predict transport proprieties of materials. The content of this chapter presents a theoretical base

for the main results of this work.

In the first section, the formalism of density functional theory (DFT), used to perform all

the bandstructure calculations in this work, will be introduced. In the following section, the

semiclassical approach to electrons’ transport will be shown. This approach gives a background

to study geometrical properties of the Fermi surface in relation to quantum transport. In the

final section of this chapter, a discussion on necessary for semiclassical calculation continuity

of the eigenvalues within a band will begin with the Green functions as a method to introduce

continuity of the bands.

2.1 Density functional theory

For the electrons in the crystal lattice the Hamiltonian H in the equation 1.1 can be split into

the following parts:

H = TN + Te + VNN + Vee + VNe, (2.1)

where TN is the kinetic energy of nuclei, Te is is the kinetic energy of electrons, VNN , Vee,

VNe represents nuclear-nuclear interactions, electron-electron interactions and electron-nuclear

interactions, respectively. If the {x̄i} electronic coordinates and the {R̄j} are nuclear coordinates
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plus mi and Mi are masses of electrons and nuclei respectively, then the Hamiltonian can be

written as following:

H = −
∑
i

~2

2Mi
∇2
i −

∑
i

~2

2mi
∇2
i +

e2

2

∑
I

∑
I 6=J

ZIZJ
|RI −RJ |

+
e2

2

∑
i

∑
j 6=i

1

|xi − xj |
− e2

2

∑
I

∑
j

ZI
|RI − xj |

.

(2.2)

To reduce dimensionality of the equation the Bohn-Oppenheimer (BO), approximation can

be used to split the electron and nuclei coordinates:

HBOψ
BO
R (x) = EBOψ

BO
R (x). (2.3)

So the total wavefunction ψ(R, x) = θ(R)ψBOR (x) can be obtained by minimizing the BO po-

tential EBO(R). Even in the BO approximation, the Schrodinger equation still requires massive

calculations to be solved.

In density functional theory instead of using the wavefunction, the ground-state electron

density can be used as the basic variable for the corresponding energy functional [20]:

E(n) =

ˆ
v(x)n(x)dx+

1

2

ˆ ˆ
n(x)n(x′)

|x− x′|
dxdx′ +G(n), (2.4)

where v(x) is the external potential from the nuclei and G(n) is a universal function of the

density.

It’s been proved by Hohenberg and Kohn [21] that: there’s one to one correspondence between

the external potential and the electron density and the ground state energy and density in a given

external potential can be simply determined by the minimization of a universal energy functional

of density.

The universal function of the density G(n) is not given in any particular form. For the

practical computational issues, the energy functional can be separated as the sum of the kinetic

energy of a non-interacting electron Ts(n), the classical static Coulomb repulsion energy of the

density, and the exchange and correlation (xc) energy of the interacting system Exc(n).

E(n) =

ˆ
v(x)n(x)dx+

1

2

ˆ ˆ
n(x)n(x′)

|x− x′|
dxdx′ + Ts(n) + Exc(n). (2.5)

The Exc(n) varies relatively slow and can be considered in the following simple form
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Exc(n) =

ˆ
n(x)εxcdx, (2.6)

where εxc is the xc energy density for a uniform electron gas. Taking into account the

stationary condition
´
δn(x) = 0 the variation of the energy functional will take the following

form, known as Kohn-Sham equation :

(−1

2
∇2 + (v(x) +

1

2

ˆ
n(x′)

|x− x′|
dx′ + uxc(n(x)))))ψi(x) = εiψi(x), (2.7)

where uxc = d(n(x)εxc)
dn is the xc potential of a uniform gas with density n(x). For the system

with N electron the density can be expressed as following:

n(x) =

N∑
i

|ψi(k)|2. (2.8)

Equation 2.7 can be used to find εi and obtain the bandstructure, however the xc potential

doesn’t have an exact explicit expression and needs to be approximated. In the limit of homo-

geneous electron gas with the xc energy density εhomxc , the Local Density Approximation (LDA)

can be used:

ELDAxc (n) =

ˆ
n(x)εhomxc dx. (2.9)

The exchange and correlation part can be considered separately. Then the spin degree of

freedom can be taken into account considering the exchange part in the following form known

as Local Spin Density Approximation(LSDA):

ELSDAx (nup, ndown) =
∑

σ=up,down

ˆ
εx(nσ)nσ(x)dx, (2.10)

where, the exchange energy density is the following:

εx(nσ) = −3

2
(

3

4π
)

1
3n

1
3
σ (x). (2.11)

The correlation part in 2.9 can be calculated using Monte-Carlo methods. All of the electronic

structure calculations used in this work later are done using DFT calculations with LDA(LSDA).

To generalize this method to magnetic systems, besides the knowledge of n(x), the determi-

nation of another ground-state variable, namely the magnetization density m(x).
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Assuming that the external magnetic potential only couples to the spin degrees of freedom

[22, 23], one has to regard in a non-relativistic theory a set of Kohn-Sham equation for two-

component spinors ψ = (ψup, ψdown), which have the form of Pauli equations. This treatment

leads to an additional contribution of the external potential

Vext(n,m) =

ˆ
(n(x)Vext(x)−B(x)m(x))dx, (2.12)

which is a functional of n(x) and m(x). The second term describes the coupling of a magnetic

field to the electron spins,

∑
n

Bnmn =
∑
i

< ψi|µ0Bσ|ψi >, (2.13)

where n = {x, y, z} represents the expectation values of the spin-operators. Since coupling

is assumed to be exclusively between the external magnetic field and the electron spins orbital

magnetism is not included within the spin-density-functional theory.

2.2 Semiclassical transport

When the bandstructure for a given crystal potential is obtained by any computational methods,

the dynamics of an independent (with no interaction to other electrons) electron belonging to

the n-th band traveling in the crystal potential ( for a crystal with lattice constants a,b,c) in

applied fields is described by the following equations [24]:

~
dka
dt

= eE(x) + eHab(k)
dxb

dt
, (2.14)

dxa

dt
=

1

~
∇aε(k), (2.15)

where E(x) is an applied electric field, H(x) is an applied magnetic field, and ∇a = ∂
∂ka

. This

equations approximate the dynamics only in relatively low fields, satisfying the conditions:

eEa�
E2
gap(k)

EF
, (2.16)

~ωc �
E2
gap(k)

EF
, (2.17)
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where Egap(k) = minm|εn(k) − εm(k)|, a is the lenght on the order of the lattice constant

and ωc = eH
mc is known as angular cyclotron frequency.

It follows from the equation 2.14 that an applied magnetic field changes electron’s momentum

along the Fermi surface cross-section with the plane perpendicular to the direction of the applied

field. This curve is known as cyclotron orbit or just orbit. Schematically all type of orbits are

shown in the figure 2.1. The orbits, which cross the first BZ boundary, are called open, otherwise,

they are called closed. For the closed orbits, the momentum really makes cycles (similar to the

cosmological orbits) and stays within the first BZ. For open orbits, this is not the case. It can

also happen that orbits are overlapping and this situation is known as a magnetic breakdown. At

the point of breakdown a field-induced quantum tunneling happens. If the intersection is made

off two different bands, then the point of breakdown is a Dirac or Weyl point [25]. Tunneling

then can be described in terms of the Berry phase for the corresponding eigenstates, as will be

explained in later chapters.

Figure 2.1: Orbits on the FS in the magnetic field. (a) Closed orbits. (b) Open orbits. (c)

Magnetic breakdown, when the orbits intersect.

Similarly from the equation 2.14 it follows that in an electric field the electron’s momentum

changes within the band along the direction of the applied field. This is schematically shown in
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the figure 2.2.

Figure 2.2: Dynamics in momentum space induced by the electric field. (a) change of momentum

within a band along the field direction. (b) Transformation of the FS as a shift along the field

direction.

This δk induced by the external fields results in the electron’s motion with velocity according

the equation 2.15. The electrical current in the a-direction then can be found by averaging the

velocity of the electron vn(k) = dxa

dt in the following way:

j = (−e)
ˆ
occupited

dk

4π3
vn(k). (2.18)

However, the band consists of discreet disconnected eigenvalues εn(k) and formally the the

derivative ∇aε(k) and thus velocity are not well defined. This can be resolved by the tempera-

ture effect and non-equilibrium function g of occupation of the eigenstates based on the Fermi

distribution f(ε) :

gn(x, k, t) ≡ f(εn(k)),

f(ε(k)) =
1

e(ε−µ)/kBT + 1
.

(2.19)
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where µ is the chemical potential, i.e. the Fermi level, corresponding to the equilibrium state.

For a non-equilibrium state the relaxation time τ(x, k) for collisions between two electron leads

to:

dgn(x, k, t) =
dt

τ(x, k)
g0
n(x, k),

g0
n(x, k) =

1

eεn(k)−µ(x)/kBT (x) + 1
.

(2.20)

In this case ε(k) can be considered to be quasicontinuous and the expression of the electrical

current transforms to:

j = (−e)
ˆ
BZ

dk

4π3
vn(k)g. (2.21)

Then since j = σE the conductivity σ can be expressed as the following:

σ = e2τ(εF )

ˆ
BZ

dk

4π3~
vn(k)fε(k)). (2.22)

For the case of AC current, when E(t) = Re(E(ωe−iωt), the conductivity expression trans-

forms to the following:

σn(ω) = e2

ˆ
BZ

dk

4π3~
vn(k)vn(k)(−∂f/∂ε)|ε=εn(k)

1/τn(εn(k))− iω
. (2.23)

Assume E-field is applied in the x-direction, then only vx(k) component of the velocity vn(k)

is non zero. Then the equation 2.22 can be represented also as the Fermi surface integral:

σx = e2

ˆ
FS

dkv2
x(k)

8π3~
vn(k)τ(k)df(ε). (2.24)

For the independent electron approximation ∂2vx(k) = m∗/∂k called the effective mass.

Thus the conduction depends only on relaxation time τ(εF ) and velocity v(εF ) at the Fermi

surface. The function ε(k) should be quadratic and differentiable up to 2nd order.

Assumption of connection of the points in the bands is based on the finite temperature non-

equilibrium effect and is not valid for the temperatures very close to the absolute zero. For
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extremely low temperatures a similar approach can be used, but the continuity of the points in

the band relies upon a non-equilibrium state due to interactions between electrons, i.e. the low

temperature theory can be constructed without the non-interacting approximation. The above

equations were derived for a single electron dynamics in the assumption it does not interact with

other electrons within the relaxation time. However, the interaction between electrons can have a

strong effect (like in case of superconductivity) on the electron transport and can’t be neglected.

One way to deal with it is the Fermi Liquid Theory. In this case, the many−electron dynamics

in the crystal potential can be described by the same equations, but applied to ”quasi-particles”

with re-normalized dynamical properties as compared to fermions in a Fermi gas. [24]. In this

case a quasi-particle consists of few interacting electrons with the momentum k1, k2, ..., kn, such

that the energies εi = ε(ki) of these electrons satisfy the following conditions:

ε1 < EF , ...εm < EF , εm1 > EF , ...εn > EF , (2.25)

ε1 + ...+ εm = εm1
+ ...+ εn. (2.26)

Those energies can be an arbitrary function of electron’s momentum ( unlike in the inde-

pendent electron approximation with quadratic functions), however the energy as a function of

quasiparticle position remains quadratic. As it follows from the condition 2.26 the quasiparticle

occupied zero volume in momentum space and thus an electron in the quasi-particle exists at

the Fermi surface for an infinitely long time at T=0. This fact as will be shown later in the

work is important for the explanation of the intrinsic electron quantum transport phenomena,

i.e. effects occurring in between scattering events.

2.3 Green’s functions

Whilst the temperature effect or quasiparticles formation ”smooths” the k axis in the band-

structure and gives physical meaning to the ∂k of the ∇-operator the equation 2.15, the ∂ε as

infinitesimal quantity still needs additional clarifications. All the eigenvalues {εn(k)}n,k form a

spectrum of the Hamiltonian [26]. it remains discrete for the total crystalline Hamiltonian, since

it consists of a finite number of eigenvalues.

For the general Hamiltonian Hgeneral, i.e. Hgeneral is defined on whole space L2(R3,C) , this

is not the case and the spectrum is continuous since L2(R3,C) is an infinite-dimensional space
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[26]. For this case, the discrete spectrum of the crystalline Hamiltonian H can be ”smoothed

up” using the Green’s functions as eigenfunctions of general Hamiltonian.

The equation 1.1 for the stationary case can be represented in the operator form:

[ε−H]ψ = 0. (2.27)

Then a fucntion G(x, x′, ε) is called the Green’s fuction if it satisfy the follwoing condition

[27]:

[ε−H]G(x, x′, ε) = δ(x, x′). (2.28)

For ε 6= εn the Geen’s function can be calculated in the following way:

G(x, x′, ε) =
δ(x, x′)

ε−H
=

∑
n

φ∗n(x), φn(x′)

ε− εn
, (2.29)

where φn is an orthonormalized basis such that the
∑
i φi = ψn. When ε = εn, however, the

representation 2.29 is not well defined by the expression 2.29. In this case the following limits of

the expression 2.29 can be considered to obtain that value:

G∓(x, x′, ε) = lim
δ→0

G(x, x′, ε± δ) =
∑
n

φ∗n(x), φn(x′)

ε− εn ∓ δ
. (2.30)

The function G+(x, x′, ε) is called advanced Green’s function and the function G−(x, x′, ε)

is called retarded Green’s functions. They can be used to find the local density of state, D(ε) =

ε−1(k), in the following way:

D(ε) =
1

π
Tr(Im(G−(x, x′, ε)). (2.31)

This way the δε used in the equation 2.15 can be calculated and the operator ∇ε can be

formally applied. This approach will be used in chapter 4 for the calculation of orthogonal
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components of the velocity operator and AHC or SHC.
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Chapter 3

Introduction into topology

Referring to the previous chapter’s discussion, on continuity of the eigenvalues and momentum

within a band, more details will be explored, by recalling basic concepts of topology and dif-

ferential geometry. These mathematical theories have been developed to study internally made

continuity and build a differential calculus on the set of discrete objects, by grouping objects

into subsets introducing open neighborhoods.This process can be applied to the wavefunctions

as an alternative to Green’s functions approach to semiclassical transport.

The first section will focus on a formal way to introduce continuity of the eigenvalues in

bands (called topology), by dividing bands into subsets, and then build a differential calculus by

mapping these subsets to linear spaces, i.e. constructing a manifold. In the second section of the

chapter, a tangent bundle is used as the main tool to define the derivative on the manifold.

3.1 Topological spaces and manifolds

As was shown in the previous section, semiclassical transport is implicitly based on the assump-

tion, that the energy vs momentum relation can be described as a differentiable function ε(k).

At the same time, it was shown in chapter 1, that momentum is actually a discrete quantity.

Thermal, or other perturbations, in the formalism of Green’s functions, can be considered to

create the continuity between discreet eigenvalue, but these methods are in some sense artificial.

Another approach, based on a pure unperturbed state, can be applied as well.

This can be resolved, by the fact that the argument k in the contexts of electronic bandstruc-
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ture is not just momentum, but also the corresponding eigenfunction ψk(x). The wavefunction is

an element of an abstract Hilbert space, so in order to build differential calculus on an abstract

space, the subdivision into subsets, i.e. topology, needs to be introduced first.

Definition 6. Topology on a space A is a set of subsets {Ui ⊂ A}i=1 , called open, such that

[28]:

• Union of infinite number of subsets are in the set, i.e. ∪∞i=1Ui ⊂ A

• Intersection of finite number of subsets are in the set, i.e.∩Ni=1Ui ⊂ A

• Empty set belongs to {Ui ⊂ A}i=1 and is open

Then a function on A is continuous if it maps any open set Ai into the open interval.

Lets apply this idea to the Hilbert space Φcrystal ⊂ L2(R,C), corresponding to the energy

spectrum {εi}ni=1 of a Hamiltonian for crystalline material H : Φcrystal → Φcrystal.

Φcrystal = span(φ1(x, k), φ2(x, k)...φn(x, k)), (3.1)

where φn(x, k) are the Bloch wavefunctions. The subspaces φi(x, k) play the role of coordinate

axes for the Hilbert space Φcrystal. We can define open subsets as

UΦ
i (k0) = span{φi(x, k), such that < ϕ(k0), ϕ(k) >< δ}. (3.2)

The above topology introduced on Φcrystal is induced from the adiabatic theorem [29]: Bloch

electrons will remain in the eigenstate φi(x, k0) up to ”slow” perturbation. Topological effects in

electron transport are a consequence of the above topology on Φcrystal. Then ε(k) is contentious

if every set Ui defined by 3.2 is mapped to an open interval (ε1, ε2)

The next step to build a differential calculus on the abstract space is to map every open set to

a linear vector space. For practical reasons, it’s convenient to set up a map f to Rn. Importantly

the map f can vary from one set to another. Taken together maps covering all the open sets

form an atlas fi. Then the differential calculus can be traced back to the calculus on Rn [30].

The advantage of such a construction of differential calculus for an abstract Hilbert space it that

it has an observer-independent formulation.
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Figure 3.1: Sphere as 2D manifold: A degeneracy of the differentiation map for a sphere in 3D

space, B: football as example of an atlas on the sphere that resolve degeneracy of differentiation

map.

To illustrate this consider the Newtonian derivative (and correspondingly a velocity or mo-

mentum) as a local projection of a trajectory into a subspace of an ambient space is inconvenient

for describing motion on a sphere in 3D space. As shown in figure 3.1, the projections of the

North and South poles into the subspace are the same, and information is lost. Thus if a point

moves on the surface according to equation r(t) = r0 + vt, then without an implicit observer

keeping information of the initial position, the North and South poles can’t be defined with

certainty. To resolve this, instead of considering a sphere as a map of the ambient space we can

consider it as a union of separate maps from different copies of 2D planes, a.k.a. an atlas. This is

shown in figure 3.1, illustrated using the example of a football where the sphere is tiled together

from two maps made from curved hexagons and pentagons.

Here, the two maps and their tiling planes together with the map’s corresponding transforma-

tions are known as a manifold. This mathematical construction does not require any coordinate

system and all the properties of the sphere can be obtained from the tiled planes and correspond-

ing maps, allowing differential calculus to be extended onto a set of abstract objects.

Definition 7. A manifold is a topological space, i.e. a set M of open subsets Ui, M = {Ui},

and for every subset there is a homeomorphism φ to a linear space from this subset.
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Figure 3.2: Shematic diagram of the construction of manifold on a topological space.

Schematically it’s shown in figure 3.2 [31].The dimensionality of the manifold is defined by

the dimensionality of the linear space. If the atlas consists of maps to Rn, then the manifold is

respectively n-dimensional. In the earlier football example, all of the hexagons and pentagons

are 2D and thus the overall sphere is a 2D manifold.

The differentiation on the manifold can be defined via derivative in the corresponding Rn and

this is known as exterior derivative [32, 33] .

3.2 Tangent bundles

The derivative in Rn, in fact, has different approaches. For the sake of building a differential cal-

culus via external derivative on the manifold, the differential form approach is used. Differential

forms generalize the concept of derivatives for multivariable functions [34]. There are have two

ways of such a generalization: either full differential or directional derivatives. As an example,

consider a 2D band ( in a sense of energy function of momentum) as shown in the figure 3.3.

The surface of the 2D band in k-space can be represented as a family of 1D bands, which are

intersections of the 2D band with planes kx = const and ky = const respectively. In this case

Gâteaux derivatives at point (kx0
, ky0) are defined as the tangent vectors to the corresponding

1D bands, which is an intersection of the 2D band with the planes kx = kx0
for the derivative

in the ky direction and ky = ky0 for the derivative in the kx direction. In this way the 2D band

sets two vector fields on the (kx, ky) plane.
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Figure 3.3: Construction of the tangent space. (a) Tangent vectors for a 2D band as projected

into (kx, ky) plane (purple arrows) :the tangent vector to the FS in this coordinate system has

coordinates (∂x = ∂ε/∂kx, ∂y = ∂ε/∂ky). (b) Equivalence between normal and tangent vectors

for the 1D FS: one transforms to another by rotating 90 ◦. (3) Normal vectors distribution on

the 2D FS can be similarly replaced by the distribution of tangent place, a.k.a. tangent bundle.

We can also construct a plane spanned by these tangent vectors, called a tangent plane or

tangent space, denoted by TkM
2−dim
band .Thus we obtain a distribution of tangent planes in 2D

k-space, which is called Cartan distribution. Let us call the basis vectors in this plane dkx, dky

. We also can define the product of vectors from the tangent space, ∧, as the wedge product.

This is assumed to be antisymmetric, that means dkx ∧ dky = −(dky ∧ dkx), which causes

dkx ∧ dkx = 0 . Geometrically the result of such multiplication of vectors in tangent space can

be roughly understood as an ”oriented area”, which has the value of the area of the spanned

parallelogram and its sign corresponds to the orientation of the vectors. Now since we can sum

and multiply these vectors, we can write polynomial functions with those vectors. For example,

the wedge square of the vector (a, b) = adkx + bdky ∈ TkM2−dim
band is :

(adkx + bdky) ∧ (adkx + bdky) = (ab− ba) · dkx ∧ dky. (3.3)

These polynomial functions are called differential forms, or n-forms, where n is the number
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of factors in the product. This is a geometrical analog of high order derivatives.

We can also define a product of n-form, called the ”inner” product, as the multiplication of

polynomials. The space of all n-form with this ”inner” product generates an algebra called ,

exterior or Grassmann algebra of the Rn space, denoted by Λ(Rn). For the R2 space it is an

algebra made of 1- and 2-forms. Since we can also consider any n-from as a linear functional on

the tangent space, the n-forms can be also understood as space of functions L(TkM
n−dim
band ,R).

This space is called a cotangent space at point k and denoted by T ∗kM
n−dim
band .

Definition 8. The set of all {TkMn−dim
band }k and {T ∗kM

n−dim
band }k at every point of k-space are

called tangent and cotangent bundle respectively.

And thus any n-form on TkRn defines a function over Rn according to the following diagram:

Rn partial derivatives−−−−−−−−−−−−→ TkM
n−dim
band

n−from−−−−−→ T ∗kM
n−dim
band

value of n−from−−−−−−−−−−−−→ R. (3.4)

This defines distributions on k-space like the wavefunctions define a distribution on real space.

And, as it will be shown later, the properties of spinful real-space wavefunctions are connected

with these functions on the k-space.
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Topological properties of the eigenstates

In the previous chapter, the electronic eigenstates within a band have been considered as a

manifold. In this chapter, this approach to the bands will be applied to electron quantum

transport in crystals resulting in observable anomalous phenomena.

The chapter starts with the physical motivation (from gauge invariance), for introducing

topology on the eigenstates . As a consequence of it, the geometrical phases (and particularly

the Berry phase) will be introduced in section two. The indexes describing eigenstate properties

related to the geometrical phases, will be discussed in section three, inducing a brief overview of

the topological quantum chemistry approach. And in the fourth and final section, the computa-

tional formalism for semiclassical quantum transport for the topologically non-trivial structure

of the eigenstates will be discussed, with a focus on intrinsic anomalous and spin Hall effects.

4.1 Gauge invariance

Considering all possible transformations of the function, which preserve it as an eigenfunction

of the Hamiltonian with the same eigenvalue. Assume Hamiltonian has just one eigenstate ϕn.

For ϕn, the Hamiltonian acts as multiplication by the function εnϕn , i.e.

Hϕn =< εnϕn, ϕn >= εn < ϕn, ϕn >= εn‖ϕn‖2. (4.1)

Such a transformation will not change ‖ϕn‖2; if one wavefunction can be obtained from an-

other via such a transformation, those wavefunctions are not distinguishable through observation.
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The group of such transformations is called a gauge group [35, 36]. Since

∀a ∈ C, ‖aϕn(x)‖2 =| a |2 ·‖ϕn(x)‖2. (4.2)

Multiplication by complex numbers with | a |= 1 form the group of such transformations.

These numbers lie on a unit circle in the complex plane C and the group of multiplications by

such numbers is called U(1), or the group of unitary transformations of the complex plane. The

complex number a =| a | (cos(α) + i · sin(α)) can be represented as an exponential function in

the following way:

a =| a | eiα, (4.3)

| a |= 1→ a = eiα. (4.4)

Thus the action of the U(1) gauge is just a multiplication by the function eiα. If we represent

the complex plane as the Riemann sphere, we can illustrate the U(1) action as a rotation of the

sphere [37]. Schematically it is shown in Figure 4.1.

Figure 4.1: Action of the U(1) gauge on complex space.The complex plane is represented as a

sphere, by identifying poles on the sphere with zero and infinity on the complex plane. A point

on the sphere represents value of the wavefunction ψ(x). Multiplication by a complex number a

| a |= 1 rotates the spehre and thus the point ψ moves along a circle parallel to equator of the

sphere.
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If the wavefunction corresponds to a fermion, according to the Pauli principle only 2 fermions

with opposite sign spins can occupy the same energy state. So it is convenient to consider ψ(x)

as having two components ψ = (ψup, ψdown), i.e. ψ is acting to C2 = C × C. In this case the

transformation of the vector (ψup, ψdown) in the two-dimensional complex space C2 is described

by a 2× 2 complex matrix. For the same reasons as above, this matrix should be unitary, i.e it

has determinant 1. All such matrices form a group U(2). The eigenvalues of such matrices lie

on the unit circle that implies any matrix A from U(2) can be represented in the following form:

A =

eiα1 0

0 eiα2

 , (4.5)

Aψ =

eiα1 0

0 eiα2

 ψup

ψdown

 =

 eiα1ψup

eiα2ψdown

 . (4.6)

Thus if we represent (ψup, ψdown) as two different points on the Riemann sphere then the

action U(2) is a simultaneous rotation of the point ψup, by angle α1 and the point ψdown, by angle

α2. After the full circle rotation we arrive at the initial point making the space of parameters

(α1, α2) a torus. This is shown schematically Figure 4.2.

Figure 4.2: Action of the U(2) gauge on the complex space. The two components of spinfull

band (ψup, ψdown) are the points on two spheres. Then if each sphere rotates, the total parameter

space of angles of rotation is a torus.
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4.2 Gauge induced topology and Berry curvature

First consider a one dimensional case. As it was shown before, the U(1) gauge action can be

represented as multiplication by the factor eiα. For an electron in a crystal it has the following

form:

eiαϕ(x) = eiαeikxuk(x) = ei(kx+α)uk(x). (4.7)

Thus the action of the gauge can be considered as an additional phase factor or shift by α

in reciprocal space. So the gauge allows the change of parameter k in time and all geometrical

phases described above can be considered a result of the gauge symmetry. Schematically this is

shown in Figure 4.3

Figure 4.3: Gauge connection on the banstructure. Disconnection between momentum is resolved

due to geometrical phase represented as segment on the circle on the right.

If we consider k as a parameter changing in time then

dϕ(k(t), x)

dt
= − i

~
εu(x)

dk

dt
+ ∂ku(x)

dk

dt
. (4.8)

That gives rise to an additional phase factor to the solution of Schrodinger equation [38]:

ϕn(t) = eiγn(t)e
− i

~

t́

0

dt′εn(k(t′))
ϕn(k(0)), (4.9)
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γn(t) = i

ˆ

path C

dk < ϕn(k) | ∂
∂k
| ϕn(k) > . (4.10)

If the path C is closed then γn(t) is called the Berry phase. The expression

An(k) =< ϕn(k) | ∂
∂k
| ϕn(k) > (4.11)

is called the Berry connection and it is the vector field over all reciprocal space. We also can

define a curl of this vector field which is called the Berry curvature:

Ωni,j(k) = ∂kiA
n
j (k)− ∂kjAni (k). (4.12)

It can be rewritten in terms of the periodic part if the Bloch wavefunction in the following

way:

Ωn(k) = i < ∇kun(k)| × |∇kun(k) > . (4.13)

Figure 4.4: Gauge action on the reciprocal space.

Notice that if we change the direction of time t = −t, we change the route from counterclock-

wise to clockwise in the path integrals. If time reversal symmetry is broken and the clockwise

integral is not equal to the counterclockwise integral, it requires the Berry connection to have a

non-zero curl, i.e. non-zero Berry curvature.
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If time reversal symmetry is not broken the Berry curvature still can be non-zero due to

spacial symmetries. In this case, analysis can be done using topological indices resulting from

the band structure, as is typical, when analyzing anti-crossings. This numerical method can is

the basis for the algorithmic analysis of space group symmetry and its possibilities of yielding

varying topologically non-trivial bandstructures.

4.3 Topological indexes, EBR, and connectivity of the eigenstates

It turns out that the existence of non-ordinary Hall conductance is an intrinsic property of the

bands. The indicator that physicists use to identify this topological property of the bandstructure

is called the Chern number, which is the integral of the Berry curvature of the band over the

entire Brillouin zone [39].

Cnij =
1

2π

ˆ

BZ

Ωni,j(k)dkidkj . (4.14)

In this case the Hall conductance of the nth band is proportional to the Chern number,

quantized in units of e2

~ and can be calculated by the formula:

σnij =
e2

~
· Cnij . (4.15)

The Chern number is a very powerful tool, it can be used not only for calculation of the

Hall conductance but also to indicate a surface state. For example, the Chern number described

above is the ”first” Chern number and this non-zero number indicates surface conductance for

a 2-D bulk insulator. For a 3-D bulk insulator, higher Chern numbers can be used to indicate

surface states [39].

Another way to obtain a topological index is using the Wilson loop [40]:

W (l) = e

´
l

A(k)dl

, (4.16)

where l is a loop in k-space and Aij(k) =< ui,k,∇kuj,k > is a Berry-Wilczek-Zee connection

[39]. Note for this connection we need at least a two-band system, like (ψup, ψdown). The Wilson

loop describes a parallel transport of the gauge field along the closed loop.
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Mathematically a path between 2 points k1, k2 in k-space can be parametrized by an argument

t in the following way: kt = tk1 + (1− t)k2, t ∈ [0, 1], when loop k1 = k2. The Wilson loop shows

how the gauge varies with crystal momentum along a closed path in k-space; the final gauge

phase should be the same as the initial. For example the parameter space of the U(1) gauge is a

circle, thus moving along a loop in k-space the gauge phase can be either unchanged or equal to

an integer number of full circles (2πn). We can consider also the class of equivalent loops: loops

that give one circle of phase, two circles, etc. These classes of equivalent loops form a group,

called a fundamental group [28]. As it was shown before, the parameter space of the U(2) gauge

is a torus. The torus has two types of loops: one which shrinks into a point, and one which

does not. Basically, it distinguishes the loops surrounding the hole in the torus, which cannot

shrink, from the others. This is known as the fundamental group of the torus. The Wilson loop

distinguishes those cases and yields a Z2 topological classification.

The gauge symmetry is the conservation of the eigenvalues and eigenstates of the momen-

tum operator. The eigenstates of the momentum operator in a crystal are assumed to also be

eigenstates of the operator of translation by a lattice vector. Orthogonality of the eigenstates

implies that bands in the bandstructure should not intersect, i.e. not have identical E and k

values. If two bands intersect that means the corresponding eigenstates | ϕn >, | ϕn+1 > are

not orthogonal and the corresponding matrix representing the action of the Hamiltonian in the

basis of eigenfunctions of the translational operator has off-diagonal terms. This is contradictory

to the Hermitian rules of the Hamiltonian, i.e. its eigenstates should be orthogonal. This can

happen when the eigenstates of the translation operator are not a suitable set of functions to

form a basis. But how can this occur?

To understand this we can introduce Wannier functions as basis for representation of the

eigenstates of the Hamiltonian, instead of eigenstates of a translation operator. The Wannier

functions can be obtained from the Bloch eigenstates in the following way [41]:

φnR(x) =
V

2π3

ˆ

BZ

dke−ikRψnk (x), (4.17)

where V is the real space primitive cell volume, R is the mass-center position vector. The

Wannier functions essentially let one transform the band structure back from reciprocal space to

real space and calculate un(x)T in the following way:
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un,k(x) =
1√
N

N∑
l=1

e−ik(Rl−x)φn(x−Rl) (4.18)

This allows relatively easy application of symmetry and the calculation of real space properties

like the quantum spin Hall effect.

Figure 4.5: Connectivity of bands. Different colors of the bands represent different EBR corre-

sponding to the atomic positions schematically shown in the same color. The difference between

different topological materials is in the amount and location of the one EBR group of bands at

the Fermi level.

Recently, a monumental work of this field was carried out where topological analysis and

classification was done for all 230 crystallographic space groups that describe all possible ar-

rangements of atoms in space[12]. In their work, Bradlyn et al use the fact that bands can form

a connected group of bands in the bandstructure corresponding to Wannier functions centered at

maximal Wyckoff positions, those whose site-symmetry groups are not a proper subgroup of any

other site-symmetry group. This group of bands has the same elementary band representation

or EBR. If a real compound’s one EBR bands is connected but filled by only a fraction of the

number of electrons required to fully occupy the set of bands, the compound is a symmetry

enforced semimetal. If the bands have the same EBR, they should be connected and the set
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splits into a gaped state with the Fermi level inside the gap, the compound must be a topological

insulator and the bands become connected through surface states. Schematically this is shown

in figure 4.5.

4.4 Berry curvature and anomalous transport effects

In the topological semimetal defined above there must be points, where locally linearly dispersive

bands from one EBR intersect, i.e. topological semimetal must have Dirac or Weyl points

(depending on degeneracy). In these cases, ε(k) is non-smooth, meaning the derivative ∂ε/∂ka

is not well defined. Thus equation 2.14 cannot be applied and the Fermi liquid quasi-particle

approximation is no longer valid. A plethora of work in the last decade has dealt with the

ramifications of this, with Dirac/Weyl points resulting in the creation of ”Dirac/Weyl quasi-

particles”’ and the AHE/SHE due to uncompensated Berry curvature arising around a Dirac

type degeneracy in the bulk band structure [42]. The Berry curvature then is involved in the

semiclassical equation of motion of the particle in the following way: [43]

dxi
dt

=
∂εn(k)

~ · ∂ki
− dkj

dt
· Ωi,jn (k). (4.19)

The way the Berry curvature is involved into this equation makes it fundamental to various

Hall effects, i.e. quantum (integer and fractional) Hall effects (QHE), the anomalous Hall effect

(AHE) and the spin Hall effect (SHE) [44], [45], [46]. The AHE is the current of conduction

electrons, which is created perpendicularly to an applied electrical current without application

of an external magnetic field in ferromagnetic metals due to the spins of the localized electrons

[45]. It’s schematically shown in figure 4.6. The AHE exists due to the magnetic interaction of

localized and conduction electrons. The SHE is a transport phenomenon predicted by Mikhail I.

Dyakonov and Vladimir I. Perel, consisting of the appearance of spin accumulation on the lateral

surfaces of an electric current-carrying sample, the signs of the spin directions being opposite on

the opposing boundaries [47]. It’s schematically shown in figure 4.6.

There are ways to avoid degeneracy, however. If we consider the spinful case with U(2)

gauge and include spin-orbit coupling(SOC) in the Hamiltonian, the 2 degenerate states become

one connected state in terms of the two-component wavefunction. In this case the Dirac point

becomes a source of Berry curvature and thus gives nontrivial spin dependent transport properties

like AHE and SHE.
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Figure 4.6: Spin and anomalous Hall effects. The applied voltage Vin results into spin accumu-

lation on the sides of the sample for SHE or into perpendicular volatage VHall.

In the modern theory of Hall effects (SHE, AHE) there are several different mechanisms by

which the AHE/SHE can be achieved but they can be generally grouped into two camps: extrin-

sic mechanisms and intrinsic mechanisms [48],[49]. Extrinsic mechanisms refer to the methods

by which a spin acquires a transverse velocity from the scattering of electrons due to spin-orbit

coupling. Impurity and defect scattering are the most common causes. Specifically, two impor-

tant mechanisms are closely looked at today; skew scattering (where the electron’s momentum is

tied to its spin after a scattering event) and side-jump (where an electron’s displacement from a

scattering event was dependent on its spin)[44]. Thus the total SHC can be split in the following

way.

σHxy = σH−intxy + σH−skewxy + σH−sjxy . (4.20)

Only the intrinsic mechanism depends mostly on the electronic structure and so is more easily

understood from the symmetry and material perspective. In the intrinsic mechanism the spin

current is created in between scattering events rather than during them[50, 49]. The intrinsic

contribution is directly proportional to the integration, over the Fermi sea, of the Berry curvature

of each occupied band.

First let’s consider AHE. The Berry curvature of the band, having degeneracy, is related to

the antisymmetric behavior of the changing energy around the degenerate point and, particularly,

demands the rotational component of the group velocity vector field over reciprocal space. The

effect of the Berry curvature Ωxy,n on the AHCσzxy can be expressed in the following way [46],

[51]:
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σzxy = e2~
ˆ
BZ

1

2π
Ωzxy,nfn(k)dk3. (4.21)

The calculation of Berry curvature is carried out in practice using the Kubo formalism based

on inter-band exchange [42]:

Ωzxy,n(k) = −~2
∑
m6=n

Im[< ψnk | vx | ψmk > × < ψmk | vy | ψnk >]

(εnk − εmk)2
, (4.22)

where Ωzxy,n(k) was defined earlier in and v is the velocity operator and can be defined in the

following way via Green’s functions:

v = − 1

i~
(x, (G±(x, ε)−1). (4.23)

This approach for calculation of the AHC has been applied to a variety of known AHE

compounds and has shown good estimations of the experimentally measured intrinsic component

of AHC. The calculated and experimental values are summarized in the table 4.1 [52, 53, 54, 55,

56, 57, 58, 59, 60].

Table 4.1: Calculated and measured AHC

Compound Predicted AHC, S/cm− 1 Meausred AHCS/cm− 1

Mn3Ge 330 500

Fe 751 1000

Co 480 500

Mn5Ge3 964 860

SrRuO3 100 200

Ni 2073 550

Co3Sn2S2 1050 1200

Mn3Sn 133 100

Co2MnGa 1242 870

Co2MnAl 1200 1800

KV3Sb5 450 350

Similar to how normal conductance was expressed as the FS integral instead of the integration

over occupied states, the AHC is derived to be the FS property. According to the work [43],
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the main contributor in AHE is the adiabatic motion of quasiparticles on FS. For the following

parametrization of intrinsic Hall conductivity

σab0 = (e2/~)εabc(Kc/(2π)2), (4.24)

εabcKc =
1

2π

∑
n−occupited

ˆ
d3kΩabn PBZ(k)n0

n(k,EF ), (4.25)

where the function PBZ(k) is defined as 1 inside the BZ, 0 outside it and n0
n(k,EF ) is the

ground state occupation at the Fermi level. Using the Fermi distribution function fn(k) the

AHC can be expressed as the following integral:

σzxy = e2~
ˆ
BZ

1

2π
Ωzxy,nfn(k)dk3. (4.26)

This formula 4.24 can be rewritten as an expression depending only on Fermi-surface integrals

Kα instead of Kc

Kα =
1

2π

ˆ

Sα

d2ΩkF +
1

4π

∑
i

Gαi

ˆ

∂Siα

dA, (4.27)

where d2ΩkF = Ωµν(s)dsµ ∧ dsν is the Berry curvature 2-form, dA = Aµ(s)dsµ is the con-

nection 1-form for some surface parametrization kF (s) of corresponding sheet Kα and ∂Siα are

the 1-manifolds where Sα intersects the Brillouin zone boundary, across which kF (s) jumps by

Gαi. The second term includes gauge dependent quantities, but for non-chiral Sα the BZ can be

chosen so that all Sα are closed paths and then the the integrals in the second term contribute

to the quantum Hall effect.

The first term in the 4.27 is an integer Chern number Cα. If some sheet of the Fermi surface

has non-zero Chern number it must enclose a Dirac point, which is in this case is a source of

Berry curvature. Since the total sum of the Chern numbers of all Fermi surface sheets must

vanish due to gauge invariance, there must be another sheet with the opposite sign non-zero

Chern number and a ”spectral flow” mixing the eigenstates within the corresponding two bands.

Similarly the SHC can be calculated also using a linear-response approach in the Streda

formalism [61]. In this case, the SHC is split into two parts:[62, 63]

σzIxy =
1

2πN

∑
k

Tr[ĴSx Ĝ
RĴCy Ĝ

A]ω=0, (4.28)
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σzIIxy =
−1

4πN

∑
k

ˆ 0

−∞
Tr[ĴSx

∂ĜR

∂ω
ĴCy Ĝ

R − ĴSx ∂ĜRĴCy
ĜR

∂ω
− < R↔ A >], (4.29)

where ĴSx is a sz-spin current operator ( J ij = 1
2 (Si, vj)), Ĵ

C
y is a charge current operator,

ĜR, ĜA are retarded and advanced Green functions. In presence of anti-crossing bands (i.e.

Dirac crossings) σzIxy = 0 and the main contribution to the SHC comes from the σzIIxy . When the

quasiparticle damping rate is equal to 0 (i.e. pure intrinsic regime), the σzIIxy can be reduced to

the following expression:

σzIIbxy =
1

N

∑
k,l

f(Elk)Ωl(k), (4.30)

where f(Elk) is a Fermi distribution function and Ωl(k) is called spin Berry curvature defined by

the expression:

Ωl(k) =
∑
m 6=l

2 Im{(JSx )ml(JCy )lm}
(Elk − Emk )2

. (4.31)

The spin Berry curvature, Ωl(k), is modulated by the SOC magnitude and diverges around

Dirac/Weyl points appearing in the (ki, kj) plane in the 3D bandstructure of the unperturbed

electron state [64]. This divergence for degenerate bands is numerically simulated with a finite

broadening, γ2 [65]. However, the ingredients to this finite broadening do not fully represent a

physical picture at finite temperature.
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Chapter 5

Prediction of topologically driven spin Hall

effect from first principles calculation

Chapter 5 is related to the search of high SHC compounds using the earlier described compu-

tational formalism for SHE. In the opening section a crystalline symmetry based mechanism

of generation anti-crossing in the bandstructure will be considered. In the following section,

the symmetry demanded anti-crossing will be considered as generators of the Berry curvature

hotspots around the crossing points.

Section 3 will look at the A15 superconductors, having the required symmetries for anti-

crossings, which will be analyzed for high SHE. The anti-crossings in W3W , a compound with

the highest SHC in the family (around 1900 ~
e (Ωcm)−1), will be analyzed in comparison with

calculated SHC as a function of energy. The spin Berry distribution around anti-crossing points

will be also shown. The discussion on the orbital symmetry will be brought in and analysis

of the band characters contributing in the anti-crossings for W3W will be done. A possibility

that crossings result into surface states as well as SHE will be shown on the example of Ta3Sb.

Other superconductors from the family (W3Si, Ta3Sn , Cr3Os , Ta3Os) will be also shown to

have peaks of SHC aligned with the gaped anti-crossings in the bandstructure, however, these

peaks are located away from the Fermi level. Therefore in section 4, the Fermi level adjustment

discussion will be brought in as a strategy to maximize SHC. As an application of such an

approach a novel compound W3Ta, as chemical adjustment of W3W with maximal SHC, will be

suggested and shown to have experimental confirmation. Finally, a discussion on anti-crossings in
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the bandstructures as a flag feature for a preliminary algorithmic search of high SHC candidates

will be the conclusion of this chapter.

5.1 Crystal symmetries and gapped anti-crossings

Assume we have a point x ∈ R3 and we have a group Gx = {g1, g2...gm} , where gi is a linear

transformation of space that leaves x fixed. The group Gx is called a point group. Now if we act

on the point x by translating by a lattice vector R

TR(x) = x+R, x ∈ R3,

we obtain the set of points

OTR(x) = {y ∈ R3 : y = gx, ∀g ∈ TR},

which is called the orbit of the action of the group of translations TR on the element x.

If then we act by every element gi on the point y ∈ OTR we obtain a crystal lattice, i.e. the

set of points in space that remain unchanged under the action of the group G = Gx × TR. In

this case G is called a symmorphic space group. It means the quotient space

R\TR = {x ∈ R3 : y = gx,∀g ∈ TR,∀y ∈ R3}

has a point, x, with site group symmetry that is isomorphic to the original point group Gx

[66].

Figure 5.1: Symmorphic and nonsymmorphic symmetry.

Otherwise, if the lattice is invariant under the action of the group of linear transformations

of a space that cannot be decomposed into G = Gx × TR at least for one point x inside the unit
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cell, G is called nonsymmorphic. In this case, some operations of the group G are not separable

into a combination of rotation and translation by lattice vectors, i.e. they should be complex

operations such as glide or skew operations. Examples of nonsymmorphic symmetry are shown

in figure 5.1. The converse, in general, is not true, because some particular combinations of

glides or screws can leave one point inside the unit cell fixed.

Figure 5.2: Bandstructure folding mechanism for non-symmorphic symmetry.

The band structures of nonsymmorphic symmetric crystals can be simply generated by the

folding back procedure. Given the two unit cells in figure 5.2(a,b), one can construct the corre-

sponding BZ as shown in figure 5.2(c), where the BZ of the symmorphic square lattice is shown

in green and that of non-symmorphic square lattice is shown in red. The green shaded area I

can be translated back to the green shaded area II, which is equal to the red shaded area by

TRS because TRS implies En(k) = En(−k). Since X lies exactly at the midpoint of Γ-M’ and

M-X’, when folding the Γ-X’-M’-M square in half across the M-X’ diagonal like a sheet of paper,

X-M’ folds directly onto Γ-X. Similarly, X’-M’ folds onto X’-Γ. In addition, Γ-X’ is equivalent

to Γ-M, thus explaining the band structure in figure 5.2(e) as a simple folding of figure 5.2(d)

[67]. In particular, Γ-X of the non-symmorphic square can be constructed by folding Γ-M’ of the

symmorphic square lattice in half, and Γ-M (which is equivalent to Γ-X’) of the nonsymmorphic

square can be constructed by the superposition of Γ-X’ and X’-M’ of the symmorphic square
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lattice [67].

5.2 Topologically driven spin Hall Effect

The spin Hall effect has become an important topic in recent years not just from a funda-

mental physics aspect, but also in regards to near future technological application. This is due

to a combination of Moore’s law limits on traditional Si-based devices and the concurrent rise

of spintronics; creating logic and storage devices based on manipulating both spin and current

[4]. Spintronics has become the next evolution in computing technology and is already seeing

wide-spread technological adoption. In particular, the study of spin transfer phenomena, where

the magnetization of a ferromagnet is manipulated through the transfer of spin angular momen-

tum from a spin current, is considered a promising direction[5]. However, the creation of large

spin currents, ideally at low power, room temperature, and using materials amenable to facile

device fabrication, is still a challenge. The three major routes to achieving these criteria are

a.) using heterostructures of ferromagnetic metals and nonmagnetic semiconductors, b.) using

ferromagnetic semiconductors, or c.) using non-magnetic metals and the spin Hall effect. The

direct conversion of charge current to spin current via the spin Hall effect is highly appealing for

device design since it simplifies device heterostructures and reduces fabrication steps. However,

the magnitude of the SHE in non-magnetic metals has been low; simple 3d, 4d, and 5d, elements

have SHCs calculated to be less than a few hundred ~
e (Ωcm)−1 with the notable exceptions of

Ta (BCC), W (BCC), and Pt (FCC) [68, 62, 69]. However, only Pt and recently β-W are known

to host very large spin Hall angle’s (SHA), which is the ratio of spin current generated to the

charge current passed through a material, at room temperature, and larger SHE’s could help

result in the larger SHA’s needed for applications[70, 71, 72].

The wavefunction, ψn(k) is heavily influenced by the crystalline symmetries, which drive

orbital hybridization and thus directly influence the Berry curvature and, correspondingly, the

intrinsic SHC. Bands that create anti-crossings and then also form a hybridization gap with the

inclusion of SOC will give rise to a large Berry curvature. This is because the Berry curvature is

opposite for bands on either side of the hybridization gap, but when the EF lies inside the gap,

the oppositely signed contributions are not compensated[49]. This is well known as the cause of

the large intrinsic SHE in Pt, where the Fermi level lies inside gaped anticrossings near the L and

X points in the Brillouin zone (Figure 5.3 ) [62, 50, 63] When the Berry curvature of all occupied
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bands is integrated over the entire BZ, Pt naturally has a peak in its SHC vs energy spectrum.

Importantly, the magnitude of the SHE is inversely proportional to the size of the SOC-induced

band gap; too large of a gap results in a low SHE but also a narrow peak in the SHC. In order to

create a large SHA for use in spintronics, large SHE’s are desired, and both extrinsic and intrinsic

effects can contribute significantly to the overall magnitude of the generated spin current. Ideally,

maximizing the SHE will be a combined effort of first picking a material with a large intrinsic

effect and then maximizing extrinsic effects through interfaces, doping, defect control, etc. Few

materials are known with large intrinsic effects, especially materials, that are amenable to large

scale thin film fabrication through sputtering. However, if considering a strategy to search for

or design new SHE materials, we propose the following approach: maximize intrinsic SHE by

maximizing Berry curvature by having EF inside as many small-gaped anti-crossings as possible.

The recent search for topological insulators (TI’s), Dirac semimetals, Weyl semimetals, and

now Dirac/Weyl Nodal Line semimetals has relied on an understanding of the effects of crystal

symmetry on the electronic structure. The symmetry of a crystal structure and the orbitals

making up the electronic states when bands are crossed determine which topological state is

realized under consideration of SOC: the electronic states must be orthogonal to each other

in order to not hybridize with each other and open a gap. The various symmetry operations

(time reversal, inversion, mirror, rotation, screw, and glide) all can create degeneracies in the

band structure at the special points or along the special directions. Some of these symmetries, or

combinations of them, can create and protect a degeneracy from being gapped by the inclusion of

SOC. For example, the C2v point group (without spin) has four irreducible representations, but

the C2v double group (including spins) only has one irreducible representation. Since two bands

with the same irreducible representation hybridize (meaning they are not orthogonal), spinful

bands with only C2v symmetry gap in the presence of SOC[73]. However a glide mirror G, for

example, has a translation operation t which is a fraction of a primitive unit vector meaning

that for spinless systems G2 = e−ik·t for Bloch states at k, and therefore the glide eigenvalues

are ±e−ik·t. In spinful systems, the glide eigenvalues are ±ie−ik·t. Either with or without SOC,

the glide mirror, which is a nonsymmorphic symmetry operation, yields two distinct eigenvalues,

therefore the bands are protected from being hybridized and opening up a gap.

If one analyzes the crystallographic symmetry, it is possible to determine if a system must

have unprotected and protected crossings and even along which k-paths they lay. Recently, there
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Figure 5.3: Schematic of the ”Failed TI” bandstructure for the spin Hall purposes.

has been an intense effort to use symmetry and group theory to create a complete analysis of all

topological classes possible in the 230 space groups[12, 74]. It turns out protected crossings are

not extremely rare and unprotected crossings are actually commonplace. The possibility for SOC-

driven gap openings is extremely frequent since even single, low symmetry rotation operations

like C2 can demand a degeneracy without SOC. However, unlike the usual aim of material

scientists working in the topological field, where the goal has been typically to put the protected

crossings at the Fermi level, here the material scientist’s goal, for spin and anomalous Hall effect

(in the case of time-reversal symmetry breaking) purposes, is to put the unprotected crossings

at the Fermi level. Good SHE and AHE materials (from a SOC perspective and not using the

recent work in non-collinear magnetism[75, 76]) will have enough symmetry to demand crossings,

but not the right symmetries to protect those crossings against SOC, at the EF . This means

that many of the materials which were once investigated as potential Dirac/Weyl semimetals

but had SOC driven gap openings, or were investigated as potential topological insulators but

had additional metallic bands, are worth re-examining for their spin and anomalous hall effects.

Figure 1a shows a simple schematic of a ”failed” TI band structure which, like Pt, results in a

peak in the intrinsic SHC.
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5.3 Symmetries demanded anti-crossing and spin Hall conductivity in

the A15 superconductors family

Figure 5.4: Crystal structure (a) and Brillouin zone(BZ) (b) for W3W and A15 family (SG 223).

β-W, particularly when doped with small amounts of oxygen (few percent), is also known

to have an enormous SHA as large as 0.45 which has been successfully used in spin transfer

torque devices[77, 71]. To the best of our knowledge, no explanation has been given for its large

SHC and correspondingly large SHA. However, it can be understood with the concepts outlined

above; β-W has a large intrinsic SHE due to several unprotected crossings near the Fermi level

resulting in a net large spin Berry curvature. Figure 5.4 (a) shows the crystal structure of β-W,

a.k.a W3W, the prototype of the A15 structure type (A3X) in space group 223 (Pm-3n), which

is famous for hosting high critical current superconductors like Nb3Sn which are still the most

widely used superconductors in technological applications today [78]. This is a Frank-Kasper

phase where the metal center is in a high coordination environment (CN = 12). The structure

has two distinct crystallographic sites (6a and 2c) and can be thought of as a BCC lattice made

by the X atom with 2 A atoms in each face of the cube (evidenced by the different colored atoms)

as shown in figure 5.4. This results in orthogonal infinite chains (denoted by the red arrows)
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being formed by the A atoms. The BZ for this system is shown in figure 5.4 (b) with several key

high symmetry points listed.

Figure 5.5: Electronic structures of W3W without (a) and with(b) SOC, respectively. Dirac

crossings are visible (without SOC) along the Γ-X-M lines, both at and below the EF . Panel (c):

spin Hall conductivity versus energy plot of W3W .

The electronic structures of β-W, both with and without SOC, are shown in figure 5.5,

respectively. Shown in red are bands that, without SOC, create several Dirac crossings very

close to the Fermi level along the Γ - X - M lines, as well as below the EF . These crossings are

created by C2-rotation and inversion symmetries: for example, the crossing along Γ-X at the

EF , is protected by C2 rotations along (010) and (001) x inversion. However, the symmetries

protecting these crossings all belong to the C2v point group, which, as described earlier, can

create degeneracies without SOC but gap due to SOC. As expected, with the inclusion of SOC in

figure 5.5, these bands gap out and the Fermi level lies almost within those gaps. Correspondingly

a broad peak in the Energy vs SHC calculation (figure 5.5) straddles the energies where the

gapped anti-crossings lie, but the maximum SHC actually lies approximately 0.5 eV below the

EF at the intersection of several more gapped crossings.

This creates ”hotspots” of spin Berry curvature, indicated by the intense red and blue areas,
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Figure 5.6: spin Berry curvature distribution in the the 001 and 110 planes of the BZ of W3W

where red and blue areas represent positive and negative regions.

in figure 5.6 in the BZ precisely where the anti-crossings were. If the EF were lowered by hole

doping without significantly altering the band dispersion characteristics, it is expected that the

SHC could be maximized.

Figure 5.7 shows the electronic structure without SOC of β-W broken apart by the site and

orbital contributions to the bands. The 2a site contributes almost exclusively to the degeneracy

at Γ via the t2g orbitals while the 6c site mixes with orbitals from the 2a site to create the

crossings along Γ-X-M both near the EF and below it. Without SOC, β-W has highly dispersive

linear bands and Dirac crossings akin to a Dirac semimetal. Figures 5.7 (b) and (c) illustrate

the extent of the orbital hybridization when SOC is included which gaps the Dirac crossings.

The changing of color of the bands, particularly along the M-X direction below EF , indicates the

change of character from dx2−y2 to the eg and dz2 orbitals, respectively. This is similar to what

occurs in Pt, where strongly hybridized bands gap its Dirac crossing and result in mixed orbital

character as well.

Another A15 compound, Ta3Sb, also has an intriguing electronic structure, as shown in figure

5.8. The stoichiometric compound has a maximum SHC at EF of -1400 ~
e (Ωcm)−1 as well as an
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Figure 5.7: Panel a) The electronic structure of W3W near the Dirac crossings decomposed into

the various orbital and crystallographic site (2a and 6c) contributions. Thickness of the bands

indicates the extent of the orbital or orbital group contribution to a band. By symmetry, the

2a site’s orbitals group into the t2g and eg sets. The 6c site has lower degeneracy. The dxy is

not shown as it does contribute to the relevant bands. Panel b,c) The electronic structures with

SOC included, illustrating the orbital hybridization driven by SOC, opening gaps and generating

spin Berry curvature.

8-fold degenerate Dirac point at nearly at EF at the R-point [79]. When projected to the 001

face, Ta3Sb houses topologically non-trivial surface states, shown as the orange bands in figure

5.8 connecting the conduction bands and valence bands at X and M. Since this compound is also

known to superconduct at 0.7 K [80], future experimental studies on both the spin Hall effect

in this material as well the interplay of its topological surface states and superconductivity will

be of great interest. To explore non-trivial topological surface state the Z2 topological index has

been calculated. The result of calculations is shown in figure 5.8.

The calculations of SHC have been performed for other compounds in the A15 family. Due

to the appropriate combination of orbital and space group symmetries, many of them show large
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Figure 5.8: Panel a,b,c) Electronic structure of Ta3Sb without and with SOC as well as its SHC

versus energy plot. Ta3Sb’s has a peak in its SHC at its EF . Panel d) Zoomed in band structure

highlighting the 8-fold degeneracy near the EF . Panel d Topological protected surface states

(projected to the 001 face) in Ta3Sb connecting the conduction and valence bands along X-Γ-M.

SHE. The highest values of SHC are summarized in the table 5.1, the corresponding bandstruc-

tures and SHC vs energy plots can be found in the supplementary information.

The bandstructures of medium SHC W3Si and Ta3Sn are shown in figure 5.9. As it’s seen

from the SHC vs energy graph the SHC is not maximized for these compounds because either

unlike W3W the Fermi level lies too far away from the SHC maximum (W3Si) or even if SHC

maximum is close to the Fermi level the SHC is changing too fast as a function of energy (Ta3Sn).

Figures 5.9 (c) and (d) show bandstructure and SHC vs energy relation for low SHC compounds

Cr3Os and Ta3Os. Even in case of low SHC at the Fermi level the peak of SHC is located close

enough to the Fermi level and comparable with W3W in magnitude. Thus these compounds can

still be considered as good SHC candidates, taking into account
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Table 5.1: Calculated SHC for A15 compounds.

Compounds (Chemical formula SHC, S/cm−1

W3Ta -2070

Ta3Sb -1400

Cr3Ir 1209

Nb3Au -1060

Ta3Au -870

W3Re -780

Nb3Bi -670

W3Si -640

Ta3Sn -620

Nb3Os -460

Figure 5.9: Bandstructures and SHC of (a) W3Si (b) Ta3Sn (c) Cr3Os (d) Ta3Os. The red line

is without SOC and the black line is with.
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• The computational error of DFT calculation of the Fermi level.

• THe Fermi level can be chemically adjusted.

Since computational error can’t be controlled, the chemical adjustment for a SHC material

design strategy will be considered closely in the next section.

5.4 Chemical doping and design strategy to maximize spin Hall con-

ductivity

Figure 5.10: Adjustment of the Fermi level in the squar nets compounds CeBiTe .

The Fermi level separates occupied and unoccupied states, thus adding or extracting an

electron per unit cell can move the Fermi level up or down respectively. Figure ?? shows this

mechanism on the example of the square net compounds CeBiTe. By controlling the chemical

composition, the unit cell size can be tuned without changing the symmetry and the band

structure is engineered toward the topologically ideal case. Specifically, we find that CeBiTe,
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with a larger square net, has dramatically reduced the size of the trivial pocket while keeping

the Dirac crossing at X near the Fermi level. In addition, a heavily doped as close to as possible,

is expected to completely gap the trivial pocket and be an ideal nonsymmorphic topological

semimetal.

A similar doping strategy can be applied for β-W. Figure 5.11 shows the band structure of

Ta3Ta; a hypothetical A15 version of Ta where both crystallographic sites are occupied by Ta

instead of W. Due to the similarity of Ta and W, this can be thought of as β-W with 4 electrons

removed. Figures 5.11 (b) and (c) show the band structures for Ta3W and W3Ta, respectively,

also in the A15 structure type. In Ta3W only the 6c site has been replaced with Ta while in

the W3Ta calculation only the 2a site was replaced. As can be seen from the band structures,

the major features, including the Dirac crossings seen in β-W w/o SOC, are preserved although

they have shifted with respect to the EF by as much as 1.1 eV. This implies that Ta/W site

ordering is not critical to the manifestation of the Dirac crossings and that even in a disordered

thin film, as is expected from sputtered growth, the gapped crossings will persist. W3Ta has

shifted the Dirac crossings nearly exactly to the Fermi level and has a maximum calculated

SHC of 2250~
e (Ωcm)−1; one of the highest values for any known compound. Thin films of this

material, with interfacial spin transparency and conductivities similar to β-W, are expected to

have very large spin Hall angles when coupled in heterostructures with Co/CoFeB/Permalloy.

This confirms in the experimental realization and study of the spin Hall angle of this compound

[81]

Figure 5.11: Electronic structures of Ta3Ta, W3Re and W3Ta, without and with SOC included,

as well as their spin Hall conductivity versus energy plots.

The state of the art in searching for large spin Hall effect materials has been limited by a

70



Chapter 5. Prediction of topologically driven spin Hall effect from first principles calculation

lack of a rational design strategy and a difficult candidate screening process. Materials are ex-

perimentally investigated in a combinatorial, serendipity driven approach or from a computation

driven approach as follows:

• Material candidates are chosen based on containing heavy elements, Weyl points, or by the

ease of fabrication,

• Electronic structures are calculated,

• Wannier functions are calculated,

• SHC vs energy calculations using the Kubo formalism,

• Adjustment of the Fermi level.

If the final SHC calculation showed a large conductivity, the material is experimentally in-

vestigated. This method of screening materials using computation is, however, very time and

resource intensive primarily due to the requirement of finding good Wannier projections. De-

pending on the complexity of the crystal and electronic structures hundreds of projections need

to be attempted before a reasonable one is found and the SHC can be calculated, which is why

the search for large SHE materials has been largely dominated only by theoretical physicists.

However, since we know the ”flag” feature to look for (gapped Dirac crossings near the EF ) and

given that Dirac crossings can be generated by crystallographic and orbital symmetries, it is

possible to dramatically cut the screening time of SHC materials by

• choosing material candidates with high symmetry and heavy elements to generate gapped

Dirac crossings;

• simply calculating the electronic structures with and without SOC and comparing them to

look for the relevant feature.
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Only for candidates with the right features near EF does the Wannier projection and SHC

need to be calculated. With this simple search strategy, materials scientists, chemists, and exper-

imental physicists who don’t have expertise in the details of transport theory can make significant

contributions to the field. The calculations of SHC in the A15 family illustrate this strategy.

Fitting the pattern, these compounds have maxima in their SHC at energies commensurate with

their gapped anti-crossings.
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Fermi surface local geometry and Hall

effects

Even if flag features in the bandstructure for a good SHE candidate, described in the previous

chapter, reduce searching time, the key calculations of SHC remain time consuming, and, more

importantly, they can hardly be automatized, unlike the flag feature search. A similar problem

takes place for the prediction of other types of anomalous quantum transport, e.g. the AHE. The

roots of it, as was explained in sections 2.2 and 2.3, is that the operations of differentiation and

integration for semiclassical approach are handled externally via the use of Green’s functions.

Not only complexity of calculations is increased by this procedure, but accuracy as well, as can

be seen from the comparison of the predictions of AHE and measured values in the table 5.1.

The topological treatment began to solve this problem by including the Berry curvature term

in the semiclassical equations of motions, however, even for improved basic transport equation

the calculation of the conductivity has been approached similarly as before, i.e. via the Green’s

functions.

The Fermi Surface (FS) can be a good starting point to develop a novel approach as it

determines electron transport properties in metals, in the assumption that it is a differentiable

surface. Here, similar to how topology was introduced for Hamiltonian eigenstates, continuity

can be introduced for the points at the FS to make it differentiable. The FS of a topological

semimetal, however, has degenerate points, where either differentiability fails (irregular degen-

eracies), or dimensionality fails (isolated degeneracies), this makes the semiclassical approach
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inapplicable, even with Green’s functions formalism. Whilst for the isolated degeneracies, the

theory has been developed well and they were related to the different surface states (famously

on the example of TI), the effect of the irregular degeneracies on the quantum transport hasn’t

been derived explicitly. Whereas some studies were connecting irregular points with the topolog-

ical properties of the eigenstates via Berry curvature monopoles, which will be illustrated in the

first section; other studies were focused on the geometrical properties caused by irregular points,

connecting them with the global dynamics of electrons in the momentum space.

The important step towards local surface geometry effect on the electron transport has been

done by Ong [82], by moving consideration of the electron dynamics from the momentum space

to the space of the ”scattered path lengths”, which is {vkτk}. This construction is similar to

the construction of tangent space to the ε(k), however, the Fermi surface orbits were projected

only to one tangent plane T0EF and thus the tangent plane was used just for a different point of

view on the global dynamics. The difference between global dynamics in the momentum space

and local dynamics in the tangent space will be discussed in the second section. The tangent

bundle construction and Riemannian metrics will be introduced to study local dynamics. Then

the Fermi surface can be understood as a composition of local regions of these different types:

elliptic, hyperbolic and Euclidean.

The main result of this approach, which is the investigation of locally hyperbolic regions of

the Fermi surface and its relationship to the intrinsic anomalous and spin Hall effects, will be

presented in section three. The metric, HF ,is used for measuring the hyperbolicity of the Fermi

surface and correlates extremely well with experimentally measured values of intrinsic anomalous

Hall conductivity (AHC) (R2 = 0.97). This is shown for 16 different real materials that broadly

range from conventional ferromagnets to Weyl semimetals, including cases like Ni and Co2MnAl,

where the Berry phase approach (via the Kubo formalism) does not represent a complete picture

of the transport. This Fermi Surface local geometry effect also works consistently with the recent

formulation of topological quantum chemistry [12]: 13 of the compounds have FSs generated

from bands with a single elementary band representation (EBR) and that the limit of the AHC

for a single EBR FS is ≈1570 ~
e (Ωcm)−1. Two of the materials examined here, CrPt3 and

Co2MnAl, have cooperative multi-EBR Fermi surfaces and subsequently break the apparent

AHC limit, which will be discussed in section four. The HF index enables an inexpensive and

rapid computational prediction of AHE/SHE materials and can be implemented with existing

density functional theory (DFT) methods and databases.
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6.1 Anti-crossings and non-differentiable Fermi surface orbits

As was defined earlier, Dirac points at the Fermi level in the 3D bandstructure of topological

semimetals form irregular degeneracy at the FS. At this point the band ε(k) is not differentiable

in the direction where the Dirac anticrossing appeared. Since, as it was shown in chapter 3, the

directional derivatives define the tangent vectors of the Fermi surface at this point, the tangent

vectors in the corresponding directions of the FS are also not well defined.

Figure 6.1: Connection of a Dirac point to a irregular Fermi surface orbit.

Assume the Dirac point, appeared in the kx direction, stays a Dirac point in the (kx, ky) plane

(see fig. 6.1). Then the tangent vectors to the FS cross-section (i.e. FS orbit) at the kz = 0 ,

are not well defined. Indeed, the Fermi surface in this case just a point, and thus the tangent

vectors can’t be defined. In order to obtain the total 2D Fermi surface for 3D bandstructure two

other cross-sections ( at ky = 0 and kx = 0 ) should be lines and tangent vectors, that then can

be defined at the Dirac point. Then the bandstructure at these planes should look like in fig.

[?]. However, passing through the Dirac point tangent vector turns back, and thus the ∂kε(k)

is discontinuous function at the Dirac point. This means the effective mass cannot be defined

at the Dirac point. This can be resolved by introducing a quasiparticle at this point, then the

ε(k) doesn’t have to be a smooth function. These quasiparticles are referred to as massless Dirac
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fermions, since around the Dirac point the bands are linear and thus the effective mass is zero.

The tangent vector to the FS can be represented via ∂kε(k), therefore the turn of the ∂kε(k)

must correspond to the turn of the tangent vector to the Fermi surface orbit (i.e. cross-section).

If we look at the corresponding FS orbits ( purple and pink lines in the figure) then at the Dirac

point they are self-intersected and the tangent vector, in fact, does the turn at the point of

self-intersection. This type of orbit is called irregular.

The shown above example raise up the question: what is causing the anomalous transport

phenomena ( like SHE or AHE) - the irregularity of the orbits or degeneracy in the bandstructure?

Of course, as is shown in figure 6.1 the Dirac points can generate irregular orbits if they appear

as irregular degeneracy at the Fermi surface. However, is there a scenario when the irregular

orbits appear independently from Dirac points and will they still result in anomalous intrinsic

transport? To answer this question the tangent bundle will be considered closely in the next

section.

6.2 Local properties of the Fermi surface

The Fermi surface orbits discussed before only as a line enclosing the whole surface (or an

isolated sheet of the surface). These types of orbits will be referred to later in the text as global

orbits. However, there’s another type of the orbits: the local orbits, i.e. orbits defined as cross-

sections of the FS with the tangent plane at point TkEF . Notice that locality means that they

depend on the choice of the point k. Schematically it’s shown in figure 6.2.

The local orbit can be also classified as open and close, but for local orbits open means

prolongation into the next tangent plane, whereas for global it’s a prolongation into the next

reciprocal unit cell. Then the global orbits ( both open and close) can be made out of the locally

open orbits. This way the semiclassical dynamic along the global orbits (e.g. in case of magnetic

field) can be rewritten as dynamics along the locally open orbits: the dynamics in the external

field defines the transition of a particle from one k point to another and thus it also generates a

map between corresponding tangent planes:

BT : TkEF → Tk+δkEF ,

ET : TkEk → Tk+δkEk+δk.
(6.1)
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Figure 6.2: Relation between local and global Fermi surface paths.

The local orbits can be used to classify the local geometry of the Fermi surface. The First

and the Second Fundamental Forms forms are used. In order to do this classification. [83]:

I =

g11 g12

g21 g22

 , gij =< dki, dkj >, (6.2)

where δki is the tangent vector to the FS in the i direction. The scalar product, gij , in the

tangent plane TKEF at every point K defines a Riemannian metric on the Fermi surface. Hence

the Fermi surface can be considered as a 2D Riemannian manifold [84].

II =

L M

M N

 , kl = L
dki

2

2
+Mdkidkj +N

dkj
2

2
+ ..., (6.3)

where kl = f(ki, kj), a parametrization of surface.

The Gaussian curvature is then defined by the ratio K = detII/detI and used as classifying

invariant of the local geometry of the surface in the following way: K > 0 corresponds to

elliptic; K = 0 to Euclidean, and K < 0 corresponds to hyperbolic ( figure 6.3 ) [85, 86]. In

fact, Euclidean geometry is particularly hard to distinguish from hyperbolic or elliptic since

numerical simulation of the FS always gives a small computation error which results in a very
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Figure 6.3: (a) Schematic representation of a typical Fermi surface where the green plane (TKEF )

represents the tangent plane at point K on the Fermi surface and vF is the group velocity. (b)

A locally elliptic cut of a Fermi surface with tangent plane and velocity vectors drawn as green

arrows. (c) A locally Euclidean cut and (d) A locally hyperbolic cut. E. Illustration of anomalous

Hall (AHE) and spin Hall (SHE) measurement geometries.

small positive or negative K; hence numerical determination of Euclidean regions are heavily

dependent on practical tolerance factors.

Every type of geometry also results in dimensionality of the intersection between the FS

and the tangent plane: a center and a point for elliptic, a saddle and lines for hyperbolic, as

schematically shown in figure 6.3 in black color on the green square representing TKEF , and the

solid line is the intersection of the FS and TKEF . Thus local orbit exists only in hyperbolic and

Euclidean case.

The local orbits corresponds to the global orbits, if the magnetic is field applied in the direction

of the normal vector to the tangent plane. In case of AHE or SHE there’s no external magnetic

field, however, there’s an internal magnetic field related to the spins of electrons. Consider now

a spinful system. For the spin - 1
2 system it means the FS can fit two electrons. We can equip

the k-space with a quadratic form.
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Qm,n(k) =< ψm,k;ψn,k > . (6.4)

If the band is degenerate like in case of Kramers degeneracy (with pure electric field Ex), then

the form Qm,m+1 is zero at every point in the R3 k-space. In this case the Grassman algebra

of the R3 k-space is isomorphic to the Clifford algebra Cl(R3, Qm,m+1), which is isomorphic

to the algebra generated by Pauli matrices σx, σy, σz. Since the tangent space of the band

TkMm,m+1 band is isomorphic to R3, we have the following diagram of equivalence:

Λ(TkMm,m+1 band) ' Λ(R3) ' Cl(R3, Qm,m+1) ' Alg(σx, σy, σz). (6.5)

The algebra of Pauli matrices is used in the spin projection operator Si = ~
2σi and spin current

operator J ij = 1
2 (Si, vj) for the electric field in the i-direction and the spin Hall conductivity

formula 4.31.

6.3 Hyperbolicty and anomalous orthogonal transport

Let us assume that the tangent plane is parallel to the AHE plane. The black arrows in the

figure 6.3 b,c,d (bottom) then represent the in-plane component of the group velocity vxyF , i.e.

the projection of vF to the AHE plane. As one can see for the elliptic case, the electron can have

a vxyF in any direction on TKEF but for the Euclidean case there is no in-plane component of the

vF and thus dynamics may happen only out of plane. For the hyperbolic case, however, TKEF

is split into two regions; vxyF pointing towards K, where quasi-particle doesn’t leave the tangent

plane unless it moves into the other region, vxyF pointing away from K. Around an infinitesimal

neighborhood of K, vxyF is demanded to be in a single direction, for example, the y direction.

Even if we consider a particle moving on the plane, the real particle is still moving in 3D

space and we need to consider the 2D Fermi surface for the full analysis of the particle’s dynam-

ics. Assuming that the Fermi surface is parametrized as kF = (kx, ky, kz(kx, ky)), allows us to

include the z-direction into the 2D model implicitly. In this case the equation (2.15) becomes

the following:

vn(kF ) =
1

~
(
∂εn
∂kx

+
∂εn
∂kz

∂kz
∂kx

,
∂εn
∂ky

+
∂εn
∂kz

∂kz
∂ky

). (6.6)
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For the hyperbolic regions of the Fermi surface sign∂kz∂kx
6= sign∂kz∂ky

, assume ∂kz
∂kx

< 0, ∂kz∂ky
> 0

. Then we can rewrite (6.6) as the following:

vn(kF ) =
1

~
(I2×2∇kεn(k) +

2

~
Szvz(k)∇k|kz|). (6.7)

For a spinless system the second term vanishes, but for spin 1
2 electron Sz 6= 0 . As we can see

from (6.6) vx component of the velocity decreases and vy increases by the term 2
~Szvz(k)∇k|kz|).

This means around the hyperbolic point the electron gains velocity in the y-direction due to

non-zero component Sz without any applied fields. However, as it can be seen from the figure

6.3, this velocity can be self-compensated due to the symmetry around the point. Thus, the

condition of hyperbolicity of the FS is not enough to be manifested as SHE or AHE. The

anomalous contribution to the Hall effect is related to discontiniouty of the band and generation

of quasiparticles to resolve it, which results into self-intersection of the FS orbit. The orbits

passing the hyperbolic point are self-intersecting and can be:

• locally closed

• locally open and globally closed

• locally open and globally open.

The locally open and globally open class result in QHE. Locally open and globally closed orbits

are a signature of AHE/SHE as they are related to the flag feature discussed in the previous

chapter. The quasiparticles, however, are considered only around the Dirac point and thus the

locally closed self-intersection orbits primarily contribute to the for AHE/SHE. However not only

Dirac quasiparticles can be generated as it’s illustrated in the figure 6.4. Around he singular

point of a self-intersecting orbit, the deformation of this singular point can give information

about form of the function ε(ki, kj). If we consider kj as a parameter then in the case of locally

closed self-intersecting orbits the function ε(ki) is

• not continious in case of Dirac degeneracy
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• order of k3
i or more in other cases [87]

In the second case the independent electrons approximation is also not valid ( the condition

off constant effective mass fails) then this type of orbits also involves quasiparticle genesis and

thus contribution to AHE/SHE.

Figure 6.4: Deformation of singularity for a hyperbolic point on the Fermi surface.

To explore this further, we plot the distribution of hyperbolic regions on the FS for a few

well known AHE/SHE compounds by carrying out the Gaussian curvature evaluation for ev-

ery point on the k-mesh. The FS of Fe (figure 6.5), well known for its large intrinsic AHE of

1000 ~
e (Ωcm)−1 (experimentally determined, [53]), clearly shows a preponderance of hyperbolic

points compared with non-hyperbolic points comprising its FS. There is also a clear majority

of negatively contributing hyperbolic points compared with positively contributing hyperbolic

points (decided by the sign of the local curvature of the electronic band at the Brillouin zone

boundary (BZB)). Co2FeSi, another known AHE compound, but with a much lower experimen-

tally measured intrinsic AHE ( 200 ~
e (Ωcm)−1) [58], also has many hyperbolic points comprising

its FS, but is highly compensated: positive and negative contributions are nearly equal. In

analogy to Berry curvature compensation, explained in the work [8], oppositely signed regions
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contribute with opposite sign to the AHE, thus for Fe the large magnitude of AHE can be the

result of an uncompensated hyperbolic FS. Also in figure 6.6, the FS of Pt, having SHC around

2000 ~
e (Ωcm)−1, clearly shows a majority of hyperbolic points, whereas TaGa3, with much lower

SHC, has a much lower percentage of hyperbolic points comprising its FS.

Figure 6.5: Schematic distribution of the hyperbolic and non-hyperbolic regions of the Fermi

surface in the reciprocal unit cell for the AHE compounds of varying magnitude.

It is also important to consider the case where TKEF is not exactly parallel but instead tilted

with respect to the AHE plane; the tangent plane will still have similar behavior as described

above, but the magnitude of the vxyF should now be proportional to the angle φ between TKEF

and AHE plane. Then to estimate the contribution of the hyperbolic points we need to consider

the projection of the unit vector of the tangent plane (vector e in the plane TKEF , figure 6.3)

in the direction of the expected AHE current in the AHE plane (FHall) as shown in figure 6.7.
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Figure 6.6: Schematic distribution of the hyperbolic and non-hyperbolic regions of the Fermi

surface in the reciprocal unit cell for the SHE compounds of varying magnitude.

6.4 H-index for the Fermi surface showing fundamental correlations

with AHC and SHC

To more rigorously quantify the correlation between hyperbolic points on the FS and AHE/SHE

we introduce the index of “hyperbolicity” of the FS, which we denote by HF and define as the

following:

HF =

∑
FS In|FHall(K is hyperbolic)|∑
FS |FHall(K is arbitrary)|

, (6.8)

where FHall, is orthogonal to the applied current, and In is the sign of the ∂2εn/∂
2k at the

BZ boundary in the Hall current direction (see figure 7.16 in the supplementary information for

the details). As defined, HF can have a maximum of “1” which means that the entire FS would

be hyperbolic, except for the points where the tangent plane is orthogonal to the AHE plane.

We performed unperturbed DFT calculations of 16 compounds for which intrinsic AHC values

were rigorously experimentally determined[52, 53, 54, 55, 56, 57, 58, 59, 60], covering a variety of

structural families (perovskites, Heuslars, Kagome lattices, FCC lattices, etc.) and topological

classes (Dirac/Weyl/Trivial metals and semimetals). We compared those experimental AHC
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Figure 6.7: Definition of the vector FHall as a projection of unit vector from the FS tangent

plane.

values to our calculated HF (taking care to align the directions of calculation with the directions

of measurement for each material in the various experiments). Since, for now, the HF parameter

is defined for a 2D conductance, we made a comparison of the calculated HF with the measured

values for thin films or layered structures where the contribution of the third dimension to the

total effect is relatively weak.

The result, shown in figure 6.8, shows an extraordinary linear correlation of the hyperbolicity

of the FS with the experimentally measured AHC values with an R2 value of 0.97, for the

compounds, regardless of structural family or topological class. Importantly, we also plot the

experimentally measured intrinsic AHC values versus the calculated AHC values using the Kubo

formalism (based on Berry curvature [52, 56, 55, 57, 58, 9, 59]) for the same compounds (Figure

3d). The R2 drops down to only 0.52, with a few exceptionally inaccurate cases like Co2MnAl

or Ni, where the error is large and the reason is still under investigation [88]. Even without
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Figure 6.8: Correlation graph left: experimentally determined intrinsic AHC vs HF for various

materials ((l) identifies layered structures). Right: experimentally determined intrinsic AHC vs

predicted values of AHC via the Kubo formalism.

taking those two compounds into account, the R2 from the Kubo calculated AHCs only rises

to 0.87; significantly worse than the HF -dependence. We made a similar calculation for SHE

compounds, but due to a paucity of experimental data, we are forced to plot the comparison of

the Kubo predicted SHC values for Pt, W3W[42, 64] and TaGa3 at different EF -levels against

their corresponding HF -values in the figure 6.9. This graph also shows a strong correlation of

the hyperbolicity with the Kubo calculated SHCs with an R2 of about 0.95, implying that the

Kubo approach and the hyperbolicity match well in the case of highly uncompensated FS’s [49];

a direction of future investigation.

6.5 Geometrical treatment for breaking limit of anomalous Hall con-

ductivity: example of CrPt3

From the correlation in figure 6.8, it can be seen that in the limit of HF = 1, the intrinsic AHC

is expected to reach a maximum value of 1570 ~
e (Ωcm)−1. However, there are two compounds

(Co2MnAl and CrPt3) that have HF and intrinsic AHCs greater than this maximum. While
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Figure 6.9: Correlation graph of the predicted SHC values via the Kubo formalism vs HF , as

defined in the text.

at first this appears to be an inconsistency, the limit on HF can be broken if we take into

account the EBR (elementary band representation) for the bands forming FS. Recently it was

shown that all bands can be grouped into sets that correspond to distinct EBRs; topological

semimetal behavior can be understood as a property of a partially occupied set of such bands

(see supplement sections 1 and 2 for more on manifolds and EBRs). Also, the non-quantized

contribution to AHE, as shown by Haldane et al[43], is expected to be a pure Fermi surface

property. Combining these two ideas, a part of the FS that is comprised of multiple pockets

created by the bands belonging to a single EBR, can be considered distinctly from another part

of the FS similarly corresponding to the bands from another EBR.

In the common case where there is a continuous gap disconnecting sets of bands contributing

to the FS, HF can be calculated separately using formula 6.8 for parts of the surfaces arising

from distinct sets of bands (bands with differing EBRs), essentially dividing the manifold into

submanifolds by EBR, and subsequently summed together in order to characterize the entire FS.

This is exactly the case for Co2MnAl, CrPt3 and KV3Sb5. For the case of KV3Sb5, it can be

seen that the contributions of the distinct EBRs are not cooperative, resulting in a relatively

low HF of 0.14. However, for Co2MnAl and CrPt3, both have cooperative contributions and
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correspondingly have HF values larger than 1 as well as AHC values larger than 1570 ~
e (Ωcm)−1;

but they still correlate extremely well with the overall trend in Figure 6.8. Figure 6.10 showcases

the detailed bandstructure for CrPt3 with each distinct set of bands colored (blue and yellow)

with the continuous gap shaded in gray. The insets clarify the almost-degeneracies near Gamma

which are actually gapped. In the Berry curvature approach, the states from the different EBRs

are mixed in the total calculation in the Kubo formula. Figure 6.10 shows the energy dependent

AHC calculated from the Kubo formalism as well as the energy dependent AHC (using the AHC

vs HF correlation σ = mHF + σ0 to convert HF to a numerical AHC value). The results from

the two methods are qualitatively similar, but the HF result has a slightly better quantitative

match to experiment.

Figure 6.10: (a) Bandstructure of CrPt3. Blue and yellow colors represent two topologically

disconnected (having different EBRs) sets of bands crossing the Fermi level. These sets are

disconnected by the continuous gap present between them; i.e. true semimetallic behavior.

(b)Graph of energy resolved AHC predicted in two different ways: red dashed line is the Kubo

based prediction, black dashed line stems from the linear correlation between HF and AHC

calculated separately for FS contributions from each set of bands, then summed together for

total HF .

Why do the FSGE and HF method appear to fare better than the Kubo approach for these

materials and properties? This is a wide area of future investigation, however, there are least

four important considerations we elaborate on here. Firstly, the Kubo formalism looks at the

Berry curvature in a point-wise fashion without consideration of their connections to each other,

and a fictitious broadening parameter that does not fully capture finite temperature effects to
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the electronic structure. Looking at independent points in momentum space means that if a

particular point of importance is missed (because of, for example, a very sharp feature or a too

low resolution k-mesh grid), its entire contribution is missed and the calculation can become

inaccurate. This is fundamentally different than the path-wise FSGE method which looks at

points and their connection to each other because it is approximating trajectories. This is likely

related to the HF plateaus (see figure 7.17 , supplementary information) at relatively sparse

K-meshes of ≈30 x 30 x 30, unlike the typical >150 x 150 x 150 k-mesh grids used in the Kubo

analysis (where the k-mesh must also increase for tightening the broadening factor). Secondly,

the HF calculations rely purely on the first principles calculation of the Fermi Surface and not an

interpolated/tight-binding representation of the first principles calculation as in Kubo. This (i)

eliminates the need for Wannier/tight-binding Hamiltonians which loses the gauge invariance in

the convergence process, and (ii) HF calculations are not restrained by the quality of the Wannier

fit which are localized functions that will always have trouble capturing the completely de-

localized topological states present in some systems. Thirdly, a popular approach in the modern

application of the Kubo method, particularly to deal with the irregular points that are often major

sources of Berry curvature, as earlier explained, is to use an adaptive k-mesh. These are locally

enlarged around irregular points which have to be identified a priori. Incomplete identification

of all irregular points will again lead to missing contributions to the Berry curvature and make

the final AHC calculation inaccurate. In the FSGE method, there is no a priori identification

followed by piecewise treatment required, as it is similar to a conjugate gradient method, and

doesn’t require any such k-meshes. Finally, as mentioned previously, the Kubo formalism looks

at two-band transitions, not multiband transitions, meaning it ignores higher order transitions

that can also result in anomalous transport contribution. The FSGE method inherently looks at

n-band transitions since it is a pure Fermi Surface analysis method and the Fermi Surface (and

its features) is made up of any number of bands crossing EF .

When compared with the current Berry curvature driven method for AHE/SHE prediction

via the Kubo formalism, the HF index is also, computationally, a much simpler metric as it

requires just basic DFT calculation without Wannier projection, and thus can be carried out at

a significant reduction in time and cost. Importantly, this analysis method can easily be fully

automated and implemented into material databases, and can enable artificial intelligence and

machine learning based searches of large repositories of compounds for materials with desirable

traits for technological applications. For now the HF index is still a relatively rough estimation;
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it does not separate the effect of locally open orbits vs irregular orbits around hyperbolic points,

shown in figure 6.4 and is limited to the cases of 2D AHE/SHEs. However, the numerical

correlation of the AHE/SHE with HF of R2 = 0.97 proves that the concept of using the geometric

classification of electronic structure manifolds is not just a ”‘blue-sky”’ theoretical research effort;

it has immediate applications to outstanding questions in condensed matter physics. The results

may extend to the anomalous Nernst effect and the non-linear Hall effect as well, due to their

similarity in origin to the AHE/SHE.

89



Chapter 6. Fermi surface geometry and Hall effects

90



Chapter 7

Towards geometrical classes of the

bandstructures

As was shown in the previous chapter, the FS can be thought as a continuous set of points,

and the operations of differentiation and integration on the FS in the semiclassical way, can be

treated via the tangent bundle construction. In this chapter, extending this idea, a continuity

between energies in the Hamiltonian’s spectrum can be introduced. This can lead to geometrical

re-understanding of the semilcassical transport equation, via re-interpretation of differentiation

used in it.

Similar to the earlier division of Φcrystal into open subsets, the energy spectrum can also be

divided into open subsets in the following way:

Uεi (ε0) = {εi(k) such that |ε0 − εi(k)| < kbT}. (7.1)

Thus, a topology is introduced on εi(k) from the quasiparticle approach to the electron

transport in crystals: as was shown in chapter 3, the interaction between electrons with different

momenta allows the use of a collective quasiparticle, which is considered to behave like a single

particle [24]. This can change the point of view on the bandstructure, as is schematically shown

in figure 7.1.

This topological space can be turned into a manifold if we equip it with the following maps:

fεi (ε0(k)) =< φi(x, k),∇kH,φ†i (x, k) > . (7.2)
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Figure 7.1: Schematic representation of topology on the Hamiltionian’s domain and spectrum of

the corresponding Hamiltonian.

Then the linear spaces, in this case, are R3 and the spectrum, ε, of the Hamiltonian can be

thought of as a 3D energy manifold, E.

Since an electron can have two possible spin orientations, the energy manifold can naturally

be oriented according to the spin orientation. However, this manifold is not compact; due to the

Pauli exclusion principle, two electrons (spinless) from different bands εi(k) andεj(k) with the

same momentum k cannot have the same energy. That implies that E does not satisfy conditions

of the geometerization conjecture.

In order to overcome this, we can split the energy manifold, E, into compact submanifolds Ei

of the ith band. Then each submanifold is closed in the above topology and has no boundaries

since the energy is defined, without restriction, for all possible momenta in a band. Thus an

electronic band can be re-thought of as a manifold (rather than a function, as has always be done)

and the methods of modern geometry applied, including classification into one the 8 Thurston

geometries. [89]

Most real materials have more symmetries, in addition to translation, and thus the eigen-

states of their Hamiltonians may differ from only the Bloch wavefunction φn(x, k). How-
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ever, it was shown that these eigenstates can be obtained from the group of Bloch states

φn(x, k), φn+1(x, k)...φn+k(x, k) (the details of this process and derivation can be found in the

work of Bradlyn [12]). The collective eigenstate is known as the Elementary Band Representation

(EBR). Now for Φcrystal, the EBRs are the subspaces that play the role of the coordinate axes

for the Hilbert space, instead of φi(x, k) for the Bloch wavefunctions. Schematically this is shown

in figure 7.2; in the top row, the individual Bloch wavefunctions of Φcrystal result in individual

bands in the E vs k spectrum. In the bottom row, due to symmetry demanded degeneracies, the

Bloch wavefunctions can be grouped into different EBRs depending on those degeneracies.

Figure 7.2: Relation between the structure of Hamiltonian’s domain and the spectrum of Hamil-

tonian (a.k.a. bandstructure) and Φcrystal for Bloch bands and EBR.

If the Fermi level lays within the energy window of one EBR, then the compound is defined

to be a topological semimetal and will have nontrivial transport properties resulting from those

bands (which may or may not be measurable depending on a variety of real-life factors). At the

crossing point of the bands, the Fermi velocity is not well defined in the typical understanding

of the derivative of ε(k) over reciprocal space. However this situation can be handled in the

manifold construction (schematically shown in the figure 7.3).
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Figure 7.3: Construction of an atlas of maps fi on the bandstructure (for 1D bandstructure).

An EBR must have at least one momentum k where different Bloch states are degenerate [12].

Assuming the EBR consists of two bands corresponding to the eigenstates φ1(x, k) and φ2(x, k),

and that they intersect at point k0, then around k0 the EBR can be split into two subsets, U1 and

U2 corresponding two different bands containing the point ε(k0). Then for U1 we can define the

homeomorphism similar as in the equation (4), but as the action of the Hamiltonian on φ1(x, k)

and for U2 as the action on φ2(x, k). This idea can be extended for any n-fold degenerate point

within an EBR containing n-bands. Then a full analysis of the dynamics of an electron belonging

to an EBR can be carried out using a variety of geometrical tools developed for manifolds (like

geodesic or Ricci flow equations etc.) instead of the typical group velocity concept. However,

a full investigation of these concepts and connections is beyond scope of this thesis and is a

promising area of future work.

As it was shown an electronic energy band or bandset from one EBR is, fundamentally, a 3

dimensional orientable, closed manifold, over the reciprocal (k) space. For these types of mani-

folds, the geometrical structures which are possible to exist were first theorized by Thurston[89]

and proved recently by Perelman[90]. This famously led to the proof of the Poincare Conjecture
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Figure 7.4: Diagram of the classes of local geometries in different dimensions. The left column

shows the 8 Thurston geometries for 3D manifolds, like band structures, presented schemati-

cally and with their symbols of geometry. The middle column shows the three smooth (and

non-smooth) classes for 2D manifolds like Fermi surfaces. The right hand column shows the clas-

sifications of 1D paths, like Fermi surface paths, resulting from further reduction of dimension.

Arrows illustrate the connection between certain higher dimension geometrical classes and their

lower dimensional counterparts; green arrows showcase how hyperbolic 2D manifolds can result

in all types of 1D paths.

(one of Millennium Prize Problems and one of the most important questions in topology) where

Perelman combined ideas from Hamilton and Thurston and used the entropy of the Ricci flow

on 3D manifolds. According to his work, a 3D manifold, like an electronic energy band, can

be split into regions, where each region can be classified into one of the 8 Thurston geometri-

cal classes (schematically described in figure 7.4). Since the electronic structure fundamentally

governs intrinsic (not scattering driven) electron transport phenomena in crystalline materials,

the geometrical classes (or combinations of them as well as the boundaries between them) must

also correspond to intrinsic transport phenomena. Similar to how topology has been used to
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classify band structures and relate them to transport phenomena, a geometrical understanding

of band structures, with classification and relation to transport, can be carried out. In doing

so, one of the most fundamental results in modern mathematics may be found to have a direct

practical application – not only to condensed matter physics and material science, but also to

device technologies. However, developing the complete theory of Electronic Structure Geometry,

with transport equations derived from geodesic flow analysis, is highly challenging and beyond

the authors’ current abilities and the scope of this work.

Figure 7.5: Visual analogy between curved by mass real space and curved by the crystal potential

momentum space.

s

The concepts outlined here may alter the current paradigm of understanding the non-trivial

transport regimes (like AHE/SHE) moving it to include geometrical properties of the band

structure and FS, rather than just topological properties of the eigenstates of the Hamiltonian.

This way semi-classical transport equations can be developed using the idea of a quasi-particle

moving along a trajectory described by the geodesic equation of the curved energy-momentum

manifold (a Riemannian manifold), rather than a free particle moving with group velocity vF , in

direct analogy to the theory of general relativity for a traveler moving along the geodesics of a
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curved space-time manifold (also a Riemannian manifold where Ricci curvature is used to relate

the space-time geometry to the stress-energy tensor). See figure 7.5 for a visual demonstration

of this analogy. Describing the smooth deformation of the Riemannian metric for the manifold

(e.g. geodesic flow) is one route to connecting the Thurston geometries to quasi-particle dynamics

and transport phenomena. An immediate direction of future work is to attempt re-conceptualize

a particle’s spin as a geometrical construction of symplectic form on the energy-momentum

manifold, which is a natural property of any odd dimensional manifolds. This may lead to the

fundamental understanding of other exotic effects, but is beyond the scope of this work, which is

introducing the use of modern geometrical methods to the electronic structure theory. Some of

the important open questions stemming from these ideas are: can the other geometrical invariants

aside from the Gaussian curvature be applied to identification of the transport properties in

crystals? Can a full derivation of the FSGE on quasi-particles in reciprocal space be translated

into real-space electron transport equations through the use of Born reciprocity relations? Are

there other obvious correlations between geometrical classes of FS regions and other non-fermi

liquid transport phenomena (e.g. Euclidean and, say, electron correlation)? How do boundaries

between FS regions interact and do they result into effectively turbulent quasi-particle dynamics

on an energy-momentum manifold, and in what limits? What are the consequences of this in

real-space?
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Summary

In summary, motivated by Perlman, Hamilton, and Thurston’s works, we have introduced the

general concept of using modern geometry of multi-dimensional manifolds to characterize elec-

tronic structures and predict non-trivial transport phenomena. Using the current Berry curvature

based approach, the anti-crossings in bandstructure were shown to result in large SHE on the

examples of A15 compounds. The anti-crossings at the Fermi level were analyzed in the context

of the Fermi surface’s degeneracies and non-smooth orbits leading to the Fermi Surface Geometry

Effect, through the use of tangent bundles and Gaussian curvature, that relates the hyperbolicity

of the Fermi surface with anomalous and spin Hall effects. This concept has been applied to

develop an index, HF , for describing the ”hyperbolicity’ of the FS and showed a universal correla-

tion (R2 = 0.97) with experimentally measured intrinsic AHE values for 16 different compounds

spanning a wide variety of crystal, chemical, and electronic structure families. An apparent max-

imum value, at HF = 1, of 1570 ~
e (Ωcm)−1 was determined for materials with an FS created

by bands belonging to a single EBR; materials with multi-EBR FS’s can, and do, break this

limit as evidenced by CrPt3 and Co2MnAl. Use of the HF index allows direct calculation of the

AHE/SHE at a much lower computational cost, than current methods by eliminating the need

for Wannier projection and can be implemented with existing DFT methods and databases. This

work highlights the importance of, and opportunities laying ahead for, developing a complete

theory of geometrical understanding of electronic structure manifolds beginning with Fermi sur-

faces. Also, these ideas can be extended to bosonic (e.g. magnonic) band structures as well. In

analogy to the broad impact that topological understanding of these structures had, a theory of

the Fermi Surface Geometry Effect and eventual extension to other dimensional manifolds, will

lead to a deeper understanding of at least electron transport and have far reaching consequences

in condensed matter physics.
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Figure 7.6: Electronic structure without and with SOC included as well as the SHC vs energy

plot for Nb3Os
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Figure 7.7: Electronic structure without and with SOC included as well as the SHC vs energy

plot for Nb3Al
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Figure 7.8: Electronic structure without and with SOC included as well as the SHC vs energy

plot for Nb3Au
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Figure 7.9: Electronic structure without and with SOC included as well as the SHC vs energy

plot for Nb3Bi
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Figure 7.10: Electronic structure without and with SOC included as well as the SHC vs energy

plot for Ta3Au
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Figure 7.11: Electronic structure without and with SOC included as well as the SHC vs energy

plot for Ta3Ir
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Figure 7.12: Electronic structure without and with SOC included as well as the SHC vs energy

plot for Cr3Ir
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Figure 7.13: Electronic structure without and with SOC included as well as the SHC vs energy

plot for Ti3Ir
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Figure 7.14: Electronic structure without and with SOC included as well as the SHC vs energy

plot for Ti3Pt
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Figure 7.15: Electronic structure without and with SOC included as well as the SHC vs energy

plot for V3Pt
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Figure 7.16: Schematic plot of negatively and positively contributing bands to the HF . The

red circle highlights the band habit at the BZB (Brillouin zone boundary) where the sign of the

curvature (second derivative of the band) is used for identification of the contribution type. A

consistent choice of BZB is used for analysis of all bands.

Figure 7.17: HF dependence of k-mesh density for Fe and Co2FeSi. y-axis is the calculated total

HF , and the x-axis is k-points cubed.
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