Logistics planning: procedures and rules

Tasks,

Prof. h. c. Dr.-Ing. Dr. h. c. (UCLV) Elke Glistau

Institute of Logistics and Material Handling Systems, Otto von Guericke University Magdeburg, Germany, elke.glistau@ovgu.de

Prof. Dr.-Ing. Sebastian Trojahn

Anhalt University of Applied Sciences Bernburg, Germany; Institute of Logistics and Material Handling Systems, Otto von Guericke University Magdeburg, Germany

Prof. Dr.-Ing. Dr. h.c. Prof. h.c. Norge Isaias Coello Machado

Department of Mechanical Engineering, Universidad Central "Marta Abreu" de Las Villas, Cuba

DOI: http://dx.doi.org/10.25673/85945

Abstract

Logistics planning is a main discipline of the science of logistics. New trends and developments change requirements, approaches and solutions of logistics planning. The scientific problem is to check, identify, generate and document new and updated knowledge in this field. In this respect, the paper focuses on logistics planning tasks, on procedures, on trends and their effects, and on new or adapted rules of logistics planning.

1. Introduction

The identified research gap is in the knowledge of logistics planning. To this end, the research addresses and answers the following research questions:

- 1. Which logistics planning tasks can be distinguished?
- 2. Which approaches exist in logistics planning?
- 3. Which new trends and developments exist? How do they change and influence logistics planning?
- 4. What new knowledge on logistics planning can be derived from (3.)?
- 5. Which research questions regarding logistics planning need to be answered?

2. Methodology

The research is based on a comprehensive literature review combined with the authors' many years of expertise in the field of logistics planning and the evaluation of current research projects and trends. Well-known methods are applied. These are the morphological box, process description methods for the procedures of logistics planning, profiles for the trends and selected evaluation methods.

3. Results and Discussion

Overall, the following research results were obtained:

- 1. Morphological box for the characterization of logistics planning tasks.
- 2. Collection of established procedures of logistics planning.
- 3. Profiles of trends and definition of their impact on logistics planning.
- 4. Documented knowledge on new planning rules.

5. New research questions on logistics planning. These research findings are excerpted and briefly explained below.

3.1. Result 1: Morphological box for characterization of logistics planning tasks

Logistics is a large scientific field and includes many tasks and new tasks are constantly added. This raises the question of a suitable systematization. A complete and consistent classification of all logistics planning tasks according to their content and subject matter is hardly possible and not known.

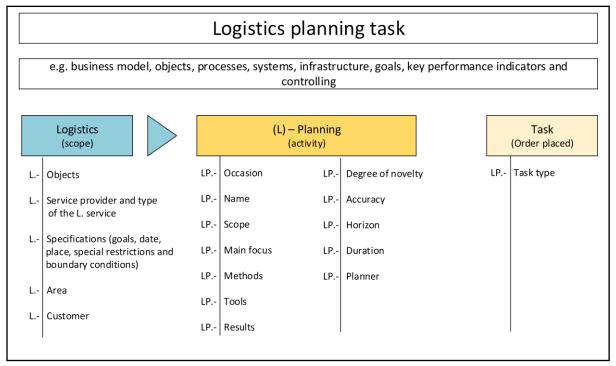


Figure 1: Logistics planning task

Existing scientific works work with exemplary task catalogues, e.g. Gudehus [1], with structuring models e. g. Pfohl [2] and Ziems [3] or limit the considered area first e.g. tasks of logistics planning in the automotive industry along the product development process e.g. Schneider [4], Schedlbauer [5]. In this paper (cf. Figure 1) the term "Logistics planning task" is subdivided into its three subwords: "Logistics" stands for the application area, "Planning" for the activity to be performed, and "Task" for the difficulty of the problem to be solved. Table 1 contains an attribute listing for the basic characterization of logistics planning tasks. Multiple entries in one row are also possible.

Table 1: Attribute Listing for logistics planning tasks	;
(open list)	

(Open list)	Dessible shaws stavistics
Attribute	Possible characteristics
	(examples)
Logistics	General logistics goods
objects	Persons as log. objects
(Type of	Information as log.
goods	objects
	General cargo; bulk cargo
	Dangerous Goods
	Art and museum goods
	Refrigerated cargo
	Heavy cargo
	Special cargo
	Express cargo
Logistics	1PL, 2PL, 3PL, 4PL, 5PL
service	Type and scope of
provider and	logistics activities
logistics	
service	

Specifications	Goals
of the logistics	Places and dates
provider	Requirements
	Restrictions
	Trends
Relevant	Supply Chain Management
Logistics part	Information logistics
area	Corporate logistics
(cf. [6], [7],	(Industry, Trade, Service)
[8])	Procurement logistics
	Production logistics
	Distribution logistics and sale
	Reverse Logistics & Disposal
	Logistics
	Warehouse logistics and buffer
	Traffic logistics
	Transport logistics
	Spare parts logistics and
	service
	Inbound logistics
	Intra logistics
	Outbound logistics
	City logistics
	Military logistics
	Hospital logistics
	Space logistics
Logistics	Customer
customer	characteristics
Planning	Innovation
occasion	Technological leaps
(Reference to	Market change
the life cycle	Product changes
of a planning	(logistic objects)
solution)	New construction
	New design
	Modernization,

	Hazard protection/
	plant safeguarding
	Rationalization
	Reconstruction, change of use
	Requirements (authorities)
	Organization
	Malfunction
	Expansion
	Insourcing/outsourcing
	Structural change
	(e.g. relocation)
	Operation
	Deconstruction Dismantling, demolition,
	_
Dianning	redevelopment
Planning name	Network planning Site planning
(Designation	General development plan
of the	Structure plan
planning task	Material flow planning
(concrete	Business process planning
designation of	Facility planning
the object of	Layout planning
planning,	Sequence planning
logistical	Route planning
problem)	
Planning	Preparatory analyses
scope	Task definition (specifications)
-	Concept (functional
	specification)
	Comparison and
	-selection
	Testing
	Feasibility study
	Implementation planning
	Accompanying realization
	Start-up planning
	Evaluation
	Remediation
	Utilization
Planning	Business model
focal points	Logistics object (goods,
(planning	packaging, logistics equipment,
area)	loading unit)
	Logistics processes (material,
	information, <i>financial and</i>
	energy flows; technologies)
	Logistics system (CPS, MFS, IFS,
	FFS, EFS; network, factory to
	individual workstation) Logistics infrastructure
	(Technical, social, green, blue)
Planning	Key figure project planning
methods	Model project planning
and tools	Modular project planning
(defaults)	Catalogue project planning
	Planning software (algorithms
	(also AI, Big Data Analytics ,
	APS), MIS, BI, CAD, databases,

r	
	project management,
	simulation, VR, AR),
	Digital twin
Planning	Documentation
result	(according to planning scope)
(specifi-	Calculation results
cations)	key figures
	2D plan/drawing
	3D model
	Functional model
	Animation
	Simulation model
	VR, AR
	Video
	Digital twin
Planning	Base technology
degree of	Improvement based on actual
novelty	Benchmarking (best practice)
	Completely new target
Planning-	Rough (study)
accuracy	Medium (standard plan)
	Fine (Detailed plan,
	execution)
Planning	Futurology
horizon	(science)
	Normative, value-based
	Long-term, strategic
	Medium-term, tactical
	Short-term, operational
Planning	long
duration	medium (standard)
(defaults)	short
	Real time
Planner	mainly internal
(specifi-	internal and external
cations)	mainly external
Task type	Routine planning task
(cf. [9],	analytical problem
[10])	synthetic problem
	dialectic problem

Legend:

• Highlighted in *italics* = what is new.

• **Bold highlighted** = what is particularly important.

3.2. Result 2: Collection of established logistics planning procedures

There are various published approaches to logistics planning or approaches that are also relevant and useful for logistics planning.

Some important examples, recorded in an open list without claim to completeness, are:

- Material flow planning (7-step planning system according to [11].
- Transportation planning (4-step approach according to [12])
- Site planning (according to [13])
- Product development (design)
 Problem solving cycle (according to Ehrenspiel [14]
 - VDI guideline 2221 (see [15])
- Software planning (computer science)
 - V-model (cf. [16])
 - Waterfall model [16]
 - Spiral model [16]
 - Scrum [16]
 - Kanban [16]
- Packaging planning 5 steps [17]
- Investment planning
 - 5 phases according to Olfert [18]
 - structured approach Ziems [19]
- Factory planning
 - 5 phases (based on [20]
 - Planning levels of factory planning (based on [21])
 - Procedure according to VDI 5200, sheet 1 [22]
- Production planning (production program planning, procurement planning, sales planning, scheduling and dispatching of operating resources, labour, material, tools and auxiliary materials; planning of lot sizes, throughput and capacity scheduling, sequence planning, detailed scheduling; dispatching and disturbance control)

- task-oriented [23], [24], [25].

- Project management (project structuring, sequence planning, scheduling, resource planning, cost planning).
 - 4-phases (based on [26], [27], [28]
 - according to DIN 69901 [29], [30]
 - according to DIN 69909 [31]
- Supply chain management (cf. e.g. [32]) integrative and hierarchical approaches e.g. SC configuration, SC planning (sales planning, network planning, procurement planning, production planning, distribution planning, disposal planning, SC execution (scheduling and disruption management)
- Logistics 4.0 (cf. [33], [34], [35))
 Planning of logistics solutions according to the Smart Logistics Zone (business model, object, process, system and infrastructure)
- Sustainability planning (cf. [36], [37])

e.g., planning and optimization of compliance with laws and regulations, planning of waivers, planning of efficiency improvement, planning of new solutions, planning of compensatory measures.

Further examples are e.g. target planning, planning of analyses including forecasts, dimensioning (number planning), structure planning, warehouse planning, planning of digital factories, planning of order picking, financial planning and cost calculations, area planning, planning of function testing, batch size planning, planning of machine set-up and overall layout, scheduling, sequence planning, route planning, planning of collective runs, round trips and distribution runs as well as organizational planning.

Without reference to a specific planning task and its specifics, the logistics planning process can be generally described, for example, as follows:

- Planning impulse
- Problem definition
- Specifying the task
- Target planning
- Planning and execution of analyses (Determine and prepare planning data, elicit solution options)
- Planning of the target solution, if necessary in variants

 Planning of business models, logistics objects, processes, structures, systems, infrastructures and organizations

- Establishment and exclusion of alternatives
- Evaluation and decision-making regarding the best alternative
- Detailed planning
- Implementation planning
- Planning implementation support
- Planning in operation
- Accompanying and final evaluation

Due to the diversity and complexity, the formulation of a general, standardized procedure for every logistics planning task is not feasible. In this sense, the described procedure should only provide a basic orientation. Details and the individual approach as well as the methods and tools used have to be adapted specifically to each individual case.

3.3. Result 3: Fact Sheets for Trends and Impacts on Logistics Planning

To answer the research question: What new trends and developments exist? these were first researched in the literature. (cf. among others [38], [6]).

In this paper, the so-called DHL trends are used for the sake of clarity. (cf. [38])

Then, the question was investigated: How do the trends and developments change and influence

logistics planning? For the evaluation of the influence an evaluation scheme was established. Figure 2 shows the relevant evaluation aspects. The upper part of the picture (marked in orange) shows the components of the logistics solution. The left side of the picture (marked in yellow) illustrates important input variables of the planning. In the middle part (marked in grey), the actual planning is characterized on the basis of five formative aspects. The right part of the picture (marked in turquoise) is dedicated to the planning results and the evaluation.

Tables 2 and 3 show results and contain important current trends and their impact on logistics planning using the systematics of Fig. 2. The symbols in tables 2 and 3 have the following meaning:

- * = noticeable influence
- X = great influence
- **X** = determining influence

Note: The evaluation of the influence on logistics planning in tables 2 and 3 corresponds to the subjective opinion of the authors and their scientific environment. This evaluation is hereby put forward for broad scientific discussion. After individual evaluation and ordering of the trends, the following patterns and thus groups become visible. They have been marked in color. In addition, the corresponding changes can be read off column by column. The influences should be considered in order to generally meet the changed requirements and opportunities (effectiveness), but also to make planning efficient. This concerns the reduction of the planning effort, the improvement of the planning quality and the increase of the planning speed. From the tables 2 and 3 the influences on logistics planning can be read out and verbally summarized.

A few examples will be given:

- (1) With regard to the logistics object, it can be seen that it is becoming more intelligent and autonomous. One example is smart containerization. Another important trend is Rethinking Packaging.
- (2) Infrastructure is becoming more important for finding solutions. For example, the presence of 5 G networks is crucial for certain logistics solutions based on image processing or Big Data analytics.
- (3) Energy aspects should increasingly be considered. For example, decentralized solutions such as cargo bike depots or autonomous conveyor technology also require a functioning energetic solution.
- (4) The boundaries between material, informational, organizational and energetic solutions are becoming blurred and cannot be clearly assigned in some cases. Examples include cyber-physical systems where, for example, sensors serve multiple flows.
- (5) There are some new target and evaluation categories for logistics that complement the classic parameters such as cost, time and

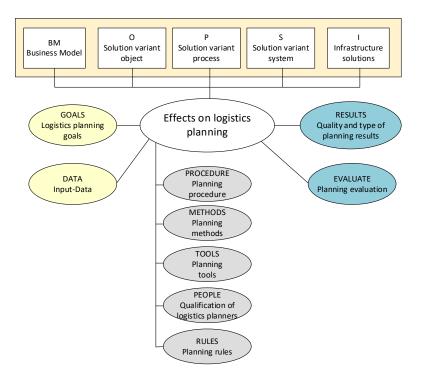


Figure 2: Relevant effects on logistics planning

			Influ			logis	tics	plan	-			ork)			
Social & Business Trends [38]	11	N		SOI	LUTI	ЛС			PLA	NNI	NG		οι	JT	
[30] Own work: clustering	GOALS	DATA	B-MODEL	OBJECT	PROCESS	SYSTEM	INFRA	PROCEDURE	METHODS	TOOLS	PEOPLE	RULES	RESULTS	EVALUATE	
Supergrid Logistics			х												
Logistics Marketplaces			х												
Sharing Economy			х												
Servitization			х												
Silver Economy			х												
Space Logistics			Х												
Multisourcing					х										
Omnichannel Logistics					х										
Mass Personalization	*	Х	Х	х	х	х						х		х	
Fresh Chain			*		х	*									
Smart Containerization				х	х										
Rethinking Packaging	*			х		*								*	
Sustainable Logistics	Х	*	*	*	*	*	*	*	х	*	*	*		x	
Next-Generations Security	Х	Х	*		*	х		Х	Х	Х	Х	Х		x	
Future of Work	*					*					х			*	

Table 2: Influence of social & business trends according [38] on logistics planning

Table 3: Influence of technology trends according [38] on logistics planning

Technology Trends	11		nflu		e on UTI	-	stics	plan	-	g (ow NNI		ork)	οι	JT
[38] Own work: clustering	GOALS	DATA	B-MODEL	OBJECT	PROCESS	SYSTEM	INFRA	PROCEDURE	METHODS	TOOLS	PEOPLE	RULES	RESULTS	EVALUATE
Self-Driving Vehicles		х	*		Х	Х	х	х			*			
Unmanned Aerial Vehicles		х	Х		Х	Х	х				х			
Robotics & Automation		х	*			х	х			*				Х
Bionic Enhancement	х	*	Х			х	*		х		х	х	Х	Х
3D Printing			*		Х	Х								
Artificial Intelligence		х	*			х		х	х	х	х			
Big Data Analytics		х	*					Х	Х	х	х			
Augmented & Virtual Reality			*					Х	Х	х	Х		X	Х
Internet of Things			*	*	Х	Х	Х		Х	х	Х	Х	Х	Х
Next-Generation Wireless						Х	Х							
Blockchain			*	*		Х		Х	Х	*	Х	Х	Х	
Cloud & APIs						*	*	Х		х				
Digital Twins	*	Х	*			Х		Х	*	х	*	*	Х	Х
Quantum computing										х				

quality. These are e.g. sustainability and safety, but also scalability and adaptability.

(6) The use of digital technologies is changing the planning process. This concern, for example, the use of techniques such as virtual reality (VR), augmented reality (AR), data storage in the cloud or distributed project work. Engineering takes place in the cloud, including simulations. At the same time, the requirements for the qualification of logistics planners are changing.

3.4. Result 4: Documented knowledge of planning rules

There are already rules for logistics planning processes in the literature. (e.g. [39], [40]) The updated knowledge includes, for example, current recommendations for logistics planning. (cf. Table 4). Table 4 contains some examples for the business model, for logistics objects and for logistics processes to illustrate changed rules.

Table 4: Examples of new recommendations for
logistics planning (business model, logistics objects
and logistics processes only)

Planning	Explanation
focus	
Business	Consider new business models
model	Define the logistics portfolio
	e.g. driven by innovation and
	opportunities (expand, adapt
	or redefine business models).
Logistics	Form purposeful units
objects	(e.g. procurement unit =
	production unit = transport unit
	= storage unit = packaging unit
	= shipping unit = trading unit)
	or plan a minimal effort order
	picking.
Logistics	Classify logistics objects
objects	to simplify and reduce the
	planning effort.
Logistics	Decide on the intelligence of
objects	objects and test the use of
	intelligent objects
	(Identification, Localization,
	Data Collection, Data
	Processing, Data Storage,
	Communication skills, Making
	decisions).
Logistics	Pay attention to sustainability
objects	and security of logistics
	objects.
	Use, protect, secure and design
	sustainably according to
	requirements, processes and
	systems (part, product,
	packaging, loading unit,
	service).

Logistics	Define a new ideal of the
processes	process: effective, efficient, safe
	and sustainable.
Logistics	Plan material, information,
processes	financial and energy flows
	equally.
Logistics	Test all four approaches to
processes	process planning if possible:
	Known basic processes, Kaizen
	(improve as-is), Business
	Reengineering (new to-be) or
	Benchmarking (reuse best
	performance).
Logistics	Question new solutions for
processes	processes with regard to goals
	trends, sustainability, value and
	waste, freedom from errors,
	automation, digitalization and
	networking, potentials,
	weaknesses, ergonomics, focus
	Corporate culture and
	controlling.
Logistics	Define clear and consistent
processes	process goals, standards, rules
	measurement points and
	metrics.
Logistics	Pay attention to disruptions
processes	and risks in planning, "normal
	operation" is always also
	subject to disruptions and
Laciation	latent risks.
Logistics	Tests process structures and
processes	sub-processes (e.g. bundling,
	integration, parallelization,
	splitting, extending, shortening
	eliminating, differentiating,
Logistics	swapping).
Logistics processes	Define clear processes (e.g. fetch, bring, control centres,
PIOCESSES	decentralized control, stations
	or <i>allow decentralized degree</i>
	of unow decentruized degree.
Logistics	Set up measurement points for
processes	tracking and tracing.
Logistics	Design main processes
processes	(material) and secondary and
h10063362	integrating processes (e.g.
	waste products) in an equally
	attactive atticient cate and
	effective, efficient, safe and sustainable manner.

Highlighted in *italics* = what is new. ٠

Bold highlighted = what is particularly important.

4. Conclusion

The research work will contribute to basic research in the field of logistics planning. It will subsequently be used in education and training and as a basis for various research projects in logistics. New research questions will be raised.

For example, there is still a considerable need for research in the area of delimitation, definition and classification of planning tasks. Furthermore, the question arises, which new planning rules can be established?

5. References

- [1] Gudehus, T. (2010): Logistik. Grundlagen -Strategien – Anwendungen. 4. updated edition. Springer publishing house. Berlin, p.61.
- [2] Pfohl, H.-C. (2004): Logistikmanagement. Konzeption und Funktionen. 2. Completely revised and expanded edition. Berlin, p. 23 and p. 31.
- [3] Ziems, D. (2012): Kapitel 3: Planung logistischer Systeme. In Krampe, H.; Lucke, H.-J.; Schenk, M. (2012): Grundlagen der Logistik: Theorie und Praxis logistischer Systeme. 4. Edition. Huss. München, pp. 59/60.
- [4] Schneider, M. (2008): Logistikplanung in der Automobilindustrie. Konzeption eines Instruments zur Unterstützung der taktischen Logistikplanung vor "Start of Production" im Rahmen der Digitalen Fabrik. Gabler. Edition Wissenschaft. Wiesbaden, p. 51.
- [5] Schedlbauer, M. J. (2008): Adaptive Logistikplanung auf Basis eines standardisierten, prozessorientierten Bausteinkonzepts. München. TU München. Lehrstuhl für Fördertechnik Materialfluss Logistik. Dissertation, p. 16.
- [6] Glistau, E.; Coello Machado, N.; Trojahn, S. (2021): Logistics 4.0 in the manufacturing company - goals, processes and solutions. In: III Convención Científica Internacional de Ciencia, Tecnología y Sociedad UCLV 2021 [online] -[Santa Clara, Cuba]: Editorial Feijóo. - 2021, total 21 pp.
- [7] Illés, B.; Glistau, E.; Coello Machado, N. I.
 (2012): Logística y Gestión de la Calidad. 1.
 Edition. Universidad de Miskolc, p. 2.
- [8] Schedlbauer, M. J. (2008): Adaptive Logistikplanung auf Basis eines standardisierten, prozessorientierten Bausteinkonzepts. München. TU München. Lehrstuhl für Fördertechnik Materialfluss Logistik. Dissertation, p. 8.
- [9] Dörner, D. (1987): Problemlösen als Informationsverarbeitung. 3rd edition.
 Stuttgart et al. Kohlhammer, p. 11, p. 77 ff, p. 95 ff.

- [10] Sell, R.; Schimweg, R. (1998): Probleme lösen: in komplexen Zusammenhängen denken. 5th revised and expanded edition Berlin. et al. Springer, p. 15 ff.
- [11] ten Hompel, M.; Schmidt, T.; Dregger, J.(2018): Materialflusssysteme, Berlin: Springer, p. 347.
- [12] Wendt et al (2006) Transportplanung der Zukunft: Prozess- und Kostenanalyse,
 Optimierungspotenziale und Outsourcing.
 Books on Demand, Norderstedt, p. 11.
- [13] Burggräf, P.; Schuh, G. (2019): Fabrikplanung, Berlin: Springer Vieweg, p. 82.
- [14] Ehrlenspiel, K. (2003): Integrierte Produktentwicklung – Methoden für Prozessorganisation, Produkterstellung und Konstruktion. München, Hanser
- [15] VDI 2221 Blatt 1 (2019): Entwicklung technischer Produkte und Systeme - Modell der Produktentwicklung. VDI-Gesellschaft Produkt- und Prozessgestaltung.
- [16] ScienceSoft USA Corporation: "8 Vorgehensmodelle der Softwareentwicklung," (2022). [Online]. [Accessed on 05 01 2022].
- [17] Waaden, T. (2022): Nachhaltige Verpackungslogistik: Optimierung von Transportkartons entlang globaler Lieferketten. [Online]. Available: https://link.springer.com/chapter/10.1007%2F 978-3-662-63570-4_10. [Accessed on 15.03 2022].
- [18] Olfert, K.; Reichel, C. (2012). Investition. Herne: kieh, pp. 60 ff.
- [19] Ziems, D. (2012): Kapitel 3: Planung logistischer Systeme. In Krampe, H.; Lucke, H.-J.; Schenk, M. (2012): Grundlagen der Logistik: Theorie und Praxis logistischer Systeme. 4. Edition. Huss. München, p. 65.
- [20] Grundig, C.-G. (2015): Fabrikplanung:
 Planungssystematik Methoden Anwendungen. 5. updated edition. München:
 Hanser, p. 16.
- [21] Schenk, M.; Wirth, S.; Müller, E. (2014):Fabrikplanung und Fabrikbetrieb, Berlin:Springer. Vieweg, p. 165 ff.
- [22] VDI-Fachbereich Fabrikplanung und -betrieb. VDI 5200 Blatt 1 (2011): Fabrikplanung -Planungsvorgehen. Englischer Titel: Factory planning - Planning procedures. VDI-Gesellschaft Produktion und Logistik.
- [23] Schuh, G. (2006): Produktionsplanung und -steuerung: Grundlagen, Gestaltung und Konzepte. 3. Edition. Berlin, Heidelberg: Springer, p. 28 ff.
- [24] Domschke, W.; Scholl, A. (2003): Grundlagen der Betriebswirtschaftslehre: Eine Einführung aus entscheidungsorientierter Sicht. 2. improved edition. Berlin: Springer, (Springer-Lehrbuch), pp. 109 ff.

- [25] Schulte, C. (2016): Logistik: Wege zur Optimierung der Supply Chain. 7. Edition.
 München: Verlag Franz Vahlen, (Vahlens Handbücher der Wirtschafts- und Sozialwissenschaften), pp. 612 ff.
- [26] Heagney, J. (2016): Fundamentals of project management. Fifth edition. New York: AMACOM; American Management Association, p. 13-14.
- [27] Drews, G.; Hillebrand, N. (2007): Lexikon der Projektmanagement-Methoden. 1. Edition. München: Haufe; Rudolf Haufe Verlag GmbH & Co. KG, p. 14.
- [28] Hartel, D. H. (2019): Projektmanagement. In Logistik und Supply Chain Management: Praxisleitfaden. 2. Ed.: Gabler, pp. 48 ff.
- [29] DIN 69901-1 (2009-01) Projektmanagement-Projektmanagementsysteme - Teil 1: Grundlagen Englischer Titel. Project management - Project management systems -Part 1: Fundamentals, 10 p.
- [30] DIN 69901-2:(2009-01):
 Projektmanagement Projektmanagementsysteme Teil 2: Prozesse,
 Prozessmodell. Englischer Titel
 Project management Project management
 systems Part 2: Processes, process mode.
 52 p.
- [31] DIN 69909-1 (2013): Multiprojektmanagement

 Management von Projektportfolios,
 Programmen und Projekten Teil 1:
 Grundlagen, 12 p. Englischer Titel
 Multi Project Management Management of
 project portfolios, programmes and projects Part 1: Fundamentals.
- [32] Kuhn, A.; Hellingrath, B. (2002): Supply Chain Management: Optimierte Zusammenarbeit in der Wertschöpfungskette. Heidelberg. Springer Verlag Berlin Heidelberg, p.142.
- [33] Behrendt, F.; Poenicke, O.; Schmidtke, N., Richter, K. (2018) The Smart Logistics Zone as an enabler of Value-added services in the

context of Logistics 4.0. ISSL Symposium der BVL 2018.

- [34] Behrendt, F.; Schmidtke, N.; Glistau, E., Wagner, M. (2019) Der Intelligente Logistikraum - neue Gestaltungsformen im Kontext der digitalen Transformation. In: Industrie 4.0 Management - Berlin: GITO mbH Publ., Vol. 35.2019, 4, pp. 35-38.
- [35] Schmidtke, N.; Glistau, E.; Behrendt, F. (2019): Magdeburg Logistics Model - The Smart Logistics Zone as a Concept for Enabling Logistics 4.0 Technologies. X International Conference on Mechanical Engineering. "COMEC 2019".
- [36] Glistau, E.; Brinken, J.; Coello Machado, N. I.; Lich, E. (2021): Logistics - climate protection measures for small and medium-sized enterprises. In: III Convención Científica Internacional de Ciencia, Tecnología y Sociedad UCLV 2021 [online] - [Santa Clara, Cuba]: Editorial Feijóo.
- [37] Assmann, T.; Schenk, M. [AkademischeR BetreuerIn] (2021): Integrierte
 Planungssystematik für nachhaltige urbane Logistik. In: Barleben: docupoint GmbH.
- [38] DHL: The Logistics Trend Radar 5th Edition. (2020): https://www.dhl.com/globalen/home/insights-andinnovation/insights/logistics-trend-radar.html Accessed on 22.2.2022.
- [39] Gudehus, T. (2006): 10 Goldene Regeln der Logistikplanung, in Logistikjahrbuch 2006, pp. 250-253, 2009, (free beratung Gesellschaft für Kommunikation im Marketing mbH).
- [40] Glistau, E.; Coello Machado, N. I.; Illés, B.
 (2014): Logistics planning process and Kanban.
 In: 8. Conferencia Internacional de Ingeniería Mecánica, COMEC 2014: 17 al 20 de Noviembre de 2014; CD memorias - Editorial Freijóo, 2014, Paper C 1.11.pdf, total 10 pp.; Kongress: COMEC 2014 8 (Villa Clara, Cuba: 2014.11.17-20); [Paper on CD-ROM].