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Abstract 
Several research works have focused on Berth 

Allocation Problem (BAP) with the consideration of 

transshipment of ship-to-ship. However, to the 

most of our knowledge, there are no studies, that 

decide whether direct transshipment service 

should be made according to vessel’s berthing time 

in the continuous (BAP) variant where vessels can 

berth anywhere alongside quays. To fill this gap, 

this study introduces the continuous (BAP) and 

formulates a novel mathematical model, which 

deals with the question of direct transshipment. 

The aim is to minimize the dwell times and the 

penalty accrued by tardy vessels [1]. Firstly, a 

mixed integer linear program is implemented to 

schedule incoming vessels to berthing positions 

and decide the transshipment method needed for 

each couple of vessels. Secondly, a genetic 

algorithm is proposed to solve large-scale problem 

instances. Numerical experiments were conducted, 

and the results are analysed and compared on a 

set of randomly generated instances. The designed 

solution approach provides near optimal solutions 

for comparable real size problems in a reasonable 

amount of time. 

 Introduction:  
Optimizations of berth allocation and 

transshipment activities have received so far, a 

larger attention in the scientific literature in the 

last few years (Zhen et al. 2011 [2], 2016 [3]; Lee 

and Jin 2012 [4]; Tao and Lee 2015 [5], Schepler et 

al. 2017 [6]). [2] integrate both the berth allocation 

problem and container storage space allocation 

problem (SSAP) including the assignment of quay 

cranes at the tactical level in transshipment hubs. 

[3] focused on the terminal assignment problem 

considering fuel consumption, ITT, and storage 

cost. [4] schedule template for feeder vessels to 

reduce workload congestion in transshipment 

terminals. A memetic heuristic was developed to 

solve large instances. [5] studied the berth and 

yard allocation problem for transshipment hubs to 

minimize the total distance of exchanging 

containers between mother vessels and feeders. 

[6] used restrict-and-fixed heuristics to solve 

terminal allocation problem (TAP) for multi-

terminal systems and minimize weighted 

turnaround times. In the literature, although there 

are many papers that applied continuous berth 

layout approach (Ganji et al. 2010 [7]; Lee et al. 

2010[8]; Park and Kim 2002[9]), few of them 

consider a berth allocation problem with direct 

transshipment consideration. In their model, Liang 

et al. (2012) [10] assumed that the direct 

transshipment is only used between two vessels 

berthed at the same berth. However, they raised 

additional requirements for the berthing positions 

of the involved vessels and the operations of the 

QCs. They proposed a Genetic Algorithm (GA) and 

the solution of an example instance confirmed that 

direct transshipment can accelerate the service 

process. [9] studied a BAPC with an objective that 

minimizes the costs of delayed departures of ships 

due to the undesirable service order and those of 

additional complexity in handling containers when 

ships are served at non-optimal mooring locations 

in port. Their work is more practical than the 

aforementioned BAPC research works in that the 

factors assessed in the objective depend on the 

quay locations of ships. [7] proposed a GA-based 

heuristic which found near optimal solutions for 

small-sized instances with 3 vessels and was able 
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to solve larger instances with 30 vessels in 6 min. In 

[8] two greedy randomized adaptive search 

procedures (GRASP) are developed for the BAPC. 

Finally, in [11], a bi-objective optimization 

integration model of tactical and operational 

planning in container terminal operations is 

presented. It consists of tactical berth allocation 

problem, specific quay crane assignment problem, 

tactical yard allocation planning and quay crane 

scheduling problem.  

In this paper, a novel mono-objective integration 

model is proposed to deal with the continuous 

variant of BAP and the direct and indirect 

transshipment tasks. We extend the relative 

position formulation of [1]. An exact method and 

an adapted (GA) are proposed to solve the 

problem. In our model, the transshipment 

consideration is similar to [10], however the 

authors dealt with a discrete variant and used a 

different modelling strategy. 

 Model and resolution approach 
In this section, we present a mixed linear 

programming formulation to solve the berth 

allocation problem with the consideration of 

transshipment of ship-to-ship. Before that, we 

introduce some terminology and sets, which will 

be used in all the formulation later. 

 

2.1. Problem Description 

Arriving at the terminal, a ship must fulfil several 

tasks. Generally, part of its goods must be 

transferred directly to another ship, another part 

must be stored temporarily in the terminal yard 

while the rest of the cargo can be unloaded and 

stored without transshipment. The proposed 

mathematical model extends the research done by 

[1]. We assume quay is partitioned into a 

determined number 𝐵 of equal sized docks. Each 

position can be occupied by at most one ship at a 

time. In addition, since the number of containers 

carried by a mega-ship is high, the processing time 

required to process such a ship may exceed one 

day. Therefore, we choose to discretize time using 

relatively long periods of 3 or 4 hours. We are 

interested in a set of ships whose arrival dates are 

known in advance, with V = M ∪ F where M and F 

represent respectively all mother and feeder ships. 

For each ship i ∈ V, We define: li length of the ship i, pi: processing time of the ship i, ai : arrival date 

of vessel i and di: estimated departure date of 

vessel i. Given the information vector {li , pi, ai , di} 
of a ship i arriving at the terminal, the optimization 

problem then consists of to determine the berthing 

position bi of this vessel (1 ≤ bi ≤  B − 1) where B is the set of berths), the date of berthing ti, 
develop the duty order sequence and assign the 

start time of each handling operation for each 

vessel i. The problem is suitable under the 

following assumptions: 

 

• The vessel must be serviced without disruption 

from its arrival at the terminal until its 

departure. 

• Container transshipment operations between 

ships only exist between mother ships and 

"feeder" ships and they can be carried out 

between several ships at the same time. Thus, 

mother ships can trade containers with up to 

six "feeder" ships, while "feeder" ships can be 

assigned to up to three mother ships. 

• Incoming ships can dock at the quay without 

any physical restrictions. 

 

The sets, parameters and decision variables used 

to build the two models are as follows: ci: the earliest time that vessel i can depart  di: due time of vessel i (where di ≤ ti + pi). fi: lateness penalty of vessel i. hi: length of vessel i measured in number of 

required berth sections. 

 wij {1  if there is a transshipment operation between vessel i and vessel j 0 otherwise                                          

 xij {1  if vessel j berths after vessel i departs 0 otherwise                                           

 

yij {1  if vessel j berths completely above vessel i on the time − space diagram 0 otherwise                                          

 

 

Dij {1  if there is a direct transshipment between vessel i and vessel j 0 otherwise                                          

 

 

Iij {1  if there is an indirect transshipment between vessel i and vessel j 0 otherwise                                          
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2.2. Mixed integer linear formulation 
 

Min f =  ∑ (ci − ai) + ∑ fi. (ci − di)+i∈F∪Mi∈F∪M  (1) 

 

xij + xji + yij + yji ≥ 1 ∀ i, j ∈ F ∪ M i < j (2) 

xij + xji ≤ 1   ∀ i, j ∈ F ∪ M  i < j             (3) 

yij + yji ≤ 1    ∀ i, j ∈ F ∪ M  i < j             (4) 

tj ≥ ci + (xij − 1).M  ∀ i, j ∈ F ∪ M i≠j         (5) 

bj ≥ bi + hi + (yij − 1).M  ∀ i, j ∈ F ∪ M  i ≠j   (6) 

ti ≥ ai               ∀ i ∈ F ∪ M              (7) 

ci ≥ ti + pi           ∀ i ∈ F ∪ M              (8) 

bi ≤ B − (hi + 1)      ∀ i ∈ F ∪ M             (9) 

bi ≥ 1               ∀ i ∈ F ∪ M             (10) 

 Dij + Iij = 1 ∀ i ∀ j ∈ F ∪ M wij = 1, i ≠ j      (11) 

| ti − tj |≥ Iij  ∀ i ∀ j ∈ F ∪ M wij = 1  i≠j     (12) 

| ti − tj |≤ Iij.M ∀ i ∀ j ∈ F ∪ M wij = 1 i ≠ j   (13) 

xij, yij, Dij, Iij ∈ {0, 1} ∀ i ∀ j ∈ F ∪ M i≠j     (14) 
 

Constraints (2)-(4) ensure that no vessel rectangles 

overlap. Constraints (5) and (6) ensure that the 

selected berthing times and berthing positions are 

consistent with the definitions of xij and yij, where 

M is a large positive scalar. Constraint (7) and (8) 

force berthing time to occur no earlier than arrival 

time, and departure time to occur no earlier than 

service completion time. Constraints (9) and (10) 

guarantee that all vessels fit on the berth. 

Constraint (11) ensures that a couple of incoming 

vessels must work with only one handling 

operation including non-transshipment or 

transshipment containers. Constraints (12) and 

(13) ensure that only the couple of vessels arriving 

at the same time should have a direct 

transshipment.  

 

2.3.  Genetic algorithm  

Our BAP variant is clearly NP-hard [1]; To validate 

the model we used CPLEX to find optimal solutions 

for small instances. To solve large size instances, 

we adapted a Genetic Algorithm (GA) by combining 

it with techniques based on the 2D collision 

detection problem to select feasible solutions. We 

choose the GA approach since our problem 

structure is suitable for this metaheuristic, 

therefore its implementation is much easier. The 

first decision to make while implementing a GA is 

to properly define each individual. This step 

associates to each point of the search space a 

specific data structure, called chromosome. It has 

been observed that improper representation of 

solutions, having an improper definition of the 

mappings between the phenotype and genotype 

can lead to poor performance of the GA. In this 

problem, each solution is represented by a artificial 

chromosome (row) composed of a set of genes 

indicating the coordinates of each ship on a time-

space diagram as well as their transshipment 

relationships. A binary representation is used for 

the binary variables xij, yij, Dij and Iij where the 

genotype consists of a bit strings of 4 ×  (N1 +N2)2 elements, where the 𝑘𝑡ℎ element indicates 

whether the decision 𝑘 is chosen (=1) or not (=0). 

For continuous variables (namely bi, ti andci), the 

genes are defined using a real valued 

representation of 3 × (N1 + N2) elements. In Fig 

1, we illustrate an explanatory example of the 

proposed coding. Such a representation offers 

certain facilities. Indeed, the genotype becomes 

structured and can be broken down into different 

identifiable parts, thus allowing its exploitation by 

crossbreeding and mutation operators. 

 

Figure 1: Representation of an individual’s 
chromosome (genotype). 

In our algorithm, the population is defined as a 

two-dimensional array of – size population, having 

two main properties: the position in the search 

space and the cost. The diversity of the population 

should be maintained otherwise it might lead to 

premature convergence. For this purpose, we 

populate the initial population with completely 

random solutions. We note that the population 

size was decided by trial. GA strongly depends on 

the step of selecting parents. However, when the 

problem has several constraints, it becomes 

difficult to find a randomly feasible solution. For 

this reason, we have designed technique based on 

the 2D collision detection problem [12] to select 

feasible parents. A feasible solution of the BAP is 

called a berth schedule x. Any such x can be 

depicted on a time-space diagram where the 

horizontal axis measures time and the vertical axis 

represents berth sections [1]; see Fig 2. A vessel i is 

modeled by a rectangle whose length is its 

processing time pi and height is its length hi. To 

determine berthing section bi and berthing time 

period ti for each vessel i, we select pairs of known 

solutions as parents from the current population 

and we ensure there is no gap between any of the 

4 sides of the rectangles. Any gap means a collision 

does not exist  
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Figure 2: Representation of a berth schedule on a 

time-space diagram. Figure taken from [1] and 

readjusted. 

 

 Crossover operators 

In the proposed problem, the resulting vessel and 

container transshipment scheduling plans may not 

be feasible if the crossover operator is not properly 

designed. In our model, two main types of 

variables are used: the binary and the continuous 

variables. For each type different crossover 

operators have been used to deal with the 

proposed problem. For the binary variables one of 

these 3 operators is randomly chosen: 

 

• Single- Point Crossover: a random crossover 

point is selected and the tails of the two 

parents are swapped to get new off-springs. 

• Double- Point Crossover: 2 random crossover 

points are selected, and the middle segments 

are swapped to get new off-springs. 

• Uniform Crossover: treats each gene separately 

and decides which genes are inherited from the 

first parent, and which one are inherited from 

the second parent.  

Let 𝑥1  =  (𝑥11, 𝑥12, 𝑥13, . . . , 𝑥1𝑛) and 𝑥2  =  (𝑥21, 𝑥22, 𝑥23, . . . , 𝑥2𝑛)  

be two parents and  𝑦1  =  (𝑦11, 𝑦12, 𝑦13, . . . , 𝑦1𝑛) and  𝑦2  =  (𝑦21, 𝑦22, 𝑦23, . . . , 𝑦2𝑛)be the two offsprings 

of this crossover. We use the following formulae  𝑦1𝑖  =  𝛼𝑖  . 𝑥1𝑖  +  (1 − 𝛼𝑖). 𝑥2𝑖  𝑦2𝑖  =  (1 − 𝛼𝑖). 𝑥1𝑖  +  𝛼𝑖 . 𝑥2𝑖  
Where 𝛼 = (𝛼1, 𝛼2, 𝛼3, . . . , 𝛼𝑛) & 𝛼𝑖 ∈  {0, 1}.  

The crossover process practiced in GA for the 

continuous variables is similar to the binary 

uniform crossover process. Let 𝑥1  =  (𝑥11, 𝑥12, 𝑥13, . . . , 𝑥1𝑛) and 𝑥2  =  (𝑥21, 𝑥22, 𝑥23, . . . , 𝑥2𝑛) be two parents and 𝑦1  =  (𝑦11, 𝑦12, 𝑦13, . . . , 𝑦1𝑛) and  𝑦2  =  (𝑦21, 𝑦22, 𝑦23, . . . , 𝑦2𝑛)be the two 

offspringsobtained in this crossover operation. This 

works by taking a set 𝛽 = (𝛽1, 𝛽2, 𝛽3, . . . , 𝛽𝑛) 

where 𝛼𝑖 ∈  {0, 1} and by using the following 

formulae 𝑦1𝑖  =  𝛼𝑖  . 𝑥1𝑖 +  (1 – 𝛼𝑖). 𝑥2𝑖  𝑦2𝑖  = 𝛼𝑖  . 𝑥2𝑖  +  (1 − 𝛼𝑖). 𝑥1𝑖  
 

  Individual Feasibility Check  

The crossover operation may result in solutions or 

chromosomes that are not feasible. It is therefore 

necessary to check and correct them. The basic 

verification rules are: 

• no vessel rectangles overlap. 

• all vessels fit on the berth. 

 

Thereby, we propose 2D collision detection 

algorithm [12].  

 

 Mutation operators 

A reproduction using only the crossover operator 

can be trapped in local optima. The genes of the 

children are limited by the genes of the parents, 

and if a gene is not present in the initial population 

(or if it disappears due to reproductions), it can 

never develop in the descendants. It consists of 

modify one or more genes of an individual selected 

by the selection operator. In this problem, we 

propose two mutation strategies for each kind of 

variables: 

 

 
Figure 3: The figure show (from top to bottom) the 

single point crossover, the double point crossover 

and the uniform crossover process. 

 

 Mutation M1 (for binary variables) 

Given the chromosome 𝑥 =  (𝑥1, . . . , 𝑥𝑛). A 

random gene 𝑥𝑖  (∈ {0,1}) is selected from 𝑥 , and 

a uniform random value is assigned to it. Let j be a 
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random integer index ∈  {1, . . . , 𝑛}. Mutation is 

carried out by 

 xi′ = {xi        if i ≠ j   i = 1, … , n1 − xi            if i = j      

 

 Mutation M2 (for continuous variables) 

Given the chromosome 𝑥 =  (𝑥1, . . . , 𝑥𝑛). A 

random gene 𝑥𝑖  (∈ {0,1}) is selected from 𝑥. Let 𝑗 be a random integer index ∈  {1, . . . , 𝑛}. The main 

mechanism of M2 consists of changing value by 

adding random noise drawn from normal 

distribution. M2 requires two parameters: the 

mean 𝜉 and the standard deviation 𝜎. Mutations 

then are realised by adding some 𝛥𝑥𝑖 to each 𝑥𝑖, 
where the 𝛥𝑥𝑖 values are randomly drawn using 

the given 𝑁(0, 𝜎2) distribution, with the 

corresponding probability density function. 𝑥𝑖′ =  𝑥𝑖  +  𝑁(0, 𝜎2)  

The mean of 𝛥𝑥𝑖 is equal to zero and the standard 

deviation is equal to σ2 which represents the 

mutation step size. 

 Results and Discussion 
To test the quality and performance of the GA and 

the proposed model, we consider two types of 

instances. The first type consists of a set of 

instances small random numbers that can be 

solved exactly by the optimization software CPLEX. 

Small instances are considered in this chapter to 

compare the results obtained by the GA method 

with those provided by CPLEX. The second type is 

based on a set of medium and large size randomly 

generated. 

 

3.1. Experimental environment and setting 

parameters 

The used approaches for the resolution of the 

small instances of this problem have been 

implemented with Java using NetBeans IDE 8.2. For 

large scale instances, GA has been implemented 

using MATLAB. By default, all experiments were 

conducted on a Intel® Core ™ i5-4570 CPU @ 3.20 

GHz, RAM 4 GB. The final adjustment of the 

parameters of the proposed algorithm is shown in 

Table 1. The values presented in this chart are the 

result of several intensive studies we conducted to  

refine the GA. We note that the population size is 

set alternately at 25, 50, 100 and 150, which is an 

appropriate size for decision-makers to exchange 

solutions among the population. In our preliminary 

experiments, we tried to tune different 

combinations of probability of crossing (pc) and 

probability of mutation (pm) on a set of instances, 

while keeping the other parameters. For each 

instance and each combination, 20 independent 

analyses were performed. We can confirm that the 

effects of the mutation probability show that a 

small (pm) is likely to improve the values of the 

solutions obtained when (pc) is large. Therefore, 

we set pc= 0.9 and pm = 0.05 as final parameters. 

 

Table 1: Parametric configuration of GA 

 

3.2. Instance generation 

First, we report, in Table 3 (in Appendix), the 

parameters relating to the set of vessels V considered in this work. For each instance "DG" 

indicated in the first column, a number N of mixed-

size vessels must be transported (N = N1 + N2, 

where N1 indicates the number of mother vessels 

and N2 the number of feeder vessels). The set of 

berths B, N1 and N2 are displayed in the second 

column. The third column indicates the values of ai,di, fi,hi,pi. The transshipment ship pairs in each 

instance are reported in the last column. Six sets of 

test problems were used, each containing 4 

different generated instances. The first three of 

these sets include relatively small problems for a 

terminal with B = 12, and N = 10; 12; and 14 vessels 

respectively. The next three problem sets contain 

larger instances with B = 20 and with N = 20; 25; 

and 30 vessels. The same ranges of parameter 

values from [1] are used to control the generation 

of independent random parameter sets in the 

computational experiments (Table 2).  

 

Parameter description  Values 

 

Population size (nPop) 

Crossover Percentage 

(pc) 

Extra Range Factor for 

Crossover (gamma) 

Mutation Percentage 

(pm) 

Mutation Rate 1 (mu) 

Mutation Rate 2 (mub) 

Maximum Number of  

Iterations 

 

  ∈ {25,50,100,150} 

0.9 

 

0.4 

 

0.05 

 

0.05 

 

0.02 

 

200 
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Table 2: Ranges of parameters used in the 

computational experiments 

 

3.3.  Results 

According to Table 4, we can confirm the validity of 

our mathematical model proposed for all the small 

instances studied. In fact, the values obtained by 

minimizing 𝑓 have reached the theoretical lower 

bound. We observe that CPLEX has enabled to 

optimize the majority of the cases of the small 

instances studied in a few seconds. Table 6 

contains the identifier of the instances studied 

“Inst”, the columns “CPLEX” & ”GA” represent, 
respectively, the results obtained by the exact 

method and the meta-heuristic applied on the 

instances of Table 5.. The values under the heading 

“Obj Val” indicate the best solution found by these 
two methods. The CPU corresponding to the 

execution of each instance in seconds is reported 

in the "CPU(s)" columns. The values under the 

"Dev" header indicate the deviation of CPLEX and 

GA results from the best solution. The value of the 

corresponding objective function indicated in the 

“Obj Val” represents the optimal solution, or the 
best bound found within 3600 seconds. The results 

in Table 6 confirm the performance of the GA 

adapted to the proposed model. They clearly show 

the effectiveness of this approach in relation to 

small instances size, thus offering optimal 

solutions.  

 Conclusion and future work 
This paper deals with a new mathematical model for 

the integration, of the Berth Allocation Problem 

(BAP) and the container transshipment problem. A 

mixed integer linear program is implemented in 

Netbeans (using Java language and CPLEX library) to 

schedule incoming feeders and mother vessels 

along the terminal quay to berthing sections and 

decide the best transshipment method to use 

(direct/indirect) for each couple of vessels. A 

MATLAB implementation of a genetic algorithm is 

also proposed to solve large-scale problem 

instances. Numerical experiments were accrued on 

a set of randomly generated instances. The 

numerical results are analyzed and compared. The 

designed solution approaches provides optimal 

solutions for small and medium size problems in a 

reasonable amount of time. Encouraging results 

have been obtained. There is still more work to be 

done: an application of the proposed genetic 

algorithm on large size instances of this problem 

must also be provided. An analytical comparison 

between the single point, double point and the 

uniform crossover will be encountered in the future 

as well. Finally, we intend to extend the model by 

considering multiple objectives. It would be 

worthwhile to integrate another decision problem 

such as the Yard Allocation Problem (YAP) or the 

Quay Crane Assignment Problem (QCAP) and to use 

other resolution strategies and metaheuristic 

approaches. 
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Appendix  
  

Instance 

name & 

no 

(N1- N2- 

B) 

Parameters values Transshipment vessels pairs 

DG1 

 

(4-6-12) 𝑎𝑖 = [1, 1, 1, 7, 7, 10, 10, 8, 10, 8] ℎ𝑖 = [2,6,3,4,4,5,6,3,3,2] 𝑝𝑖 = [3,6,4,3,3,5,3,5,5,3] 𝑓𝑖 = [3,5,3,4,4,4,5,3,3,3] 𝑑𝑖 = [7,13,13,10,10,15, 16, 18, 20,14] 

(1,2) , (1,3) , (2,3) , (4,5) , (6,9) 

 

DG2 (4-6-12) 𝑎𝑖 =  [1, 3, 2, 1, 7, 10, 7, 7, 10, 10] ℎ𝑖 = [3,4,2,2,4,6,5,4,4,5]                                 𝑝𝑖 = [5,5,3,4,5,4,6,5,2,4] 𝑓𝑖 = [5,5,3,4,4,5,5,5,3,4] 𝑑𝑖 = [6855,12,14,13,12,12,14] 

(1,3) , (7,8) 

DG3 

 

(4-6-12) 𝑎𝑖 =  [1,1,3,1,3,5,7,10,10,10] ℎ𝑖 = [2,3,4,6,6,6,5,6,2,5] 𝑝𝑖 = [3,2,4,2,2,5,5,6,2,6] 𝑓𝑖 = [3,3,3,3,3,4,4,5,3,5]                                  𝑑𝑖 = [4,3,7,3,5,10,12,16,12,16] 

(1,2) 

 

DG4 (4-6-12) 𝑎𝑖 =  [1,2,4,1,1,4,6,9,9,8] ℎ𝑖 = [2,2,2,5,2,6,4,5,3,3] 𝑝𝑖 = [2,2,2,3,3,4,3,3,3,2] 𝑓𝑖 = [3,3,3,4,3,5,4,5,3,4]                                   𝑑𝑖 = [7,4,6,4,7,8,9,15,12,10] 

(1,2) , (1,3) , (1,5) , (2,3) , (2,4) , 

(3,6) , (3,7) , (4,5) , (4,6) , (5,6) , 

(6,8) , (6,10) , 

(7,9) , (8,9) 

DG5 (4-8-12) 𝑎𝑖 =  [1,1,1,7,7,10,10,8,10,8,5,5] ℎ𝑖 = [2,6,3,4,4,5,6,3,3,2,4,5] 𝑝𝑖 = [3,6,4,3,3,5,3,5,5,3,5,6] 𝑓𝑖 = [3,5,3,4,4,4,5,3,3,3,4,5]                                   𝑑𝑖 = [7,13,13,10,10,15,16,18,20,14,10,11] 

(1,2) , (1,3) , (1,11) , (1,12) , (2,3) , 

(4,5), (6,9) , (12,6) , (8,1) , (9,1) 

 

DG6 (4-8-12) 𝑎𝑖 =  [1,3,2,1,7,10,7,7,10,10,5,5] ℎ𝑖 = [3,4,2,2,4,6,5,4,4,5,4,5] 𝑝𝑖 = [5,5,3,4,5,4,6,5,2,4,5,6] 𝑓𝑖 = [5,5,3,4,4,5,5,5,3,4,4,5]                                   𝑑𝑖 = [6,8,5,5,12,14,13,12,12,14,10,11] 

(1,2) , (1,3) , (1,11) , (1,12) , (2,3) , 

(4,5), (6,9) , (12,6) , (8,1) , (9,1) 

 

DG7 (4-8-12) 𝑎𝑖 =  [1,1,3,1,3,5,7,10,10,10,3,7] ℎ𝑖 = [2,3,4,6,6,6,5,6,2,5,6,5] 𝑝𝑖 = [3,2,4,2,2,5,5,6,2,6,4,3] 𝑓𝑖 = [3,3,3,3,3,4,4,5,3,5,5,5]                                   𝑑𝑖 = [4,3,7,3,5,10,12,16,12,16,7,10] 

(1,2) , (1,3) , (1,11) , (1,12) , (2,3) , 

(4,5), (6,9) , (12,6) , (8,1) , (9,1) 

 

DG8 (5-9-12) 𝑎𝑖 =  [1,1,1,7,7,10,10,8,10,8,5,5,1,1] ℎ𝑖 = [2,6,3,4,4,5,6,3,3,2,4,5,2,6 ] 𝑝𝑖 = [3,6,4,3,3,5,3,5,5,3,5,6,3,6] 𝑓𝑖 = [3,5,3,4,4,4,5,3,3,3,4,5,3,5]                              𝑑𝑖 =[7,13,13,10,10,15,16,18,20,14,10,11,7,13] 

(1,2) , (1,3) , (1,11) , (1,12) , (2,1) , 

(2,3), (4,5) , (4,13), (6,9) 

DG9 (5-9-12) 𝑎𝑖 =  [1,3,2,1,7,10,7,7,10,10,5,5,2,1] ℎ𝑖 = [3,4,2,2,4,6,5,4,4,5,4,5,2,2] 𝑝𝑖 = [5,5,3,4,5,4,6,5,2,4,5,6,3,4] 𝑓𝑖 = [5,5,3,4,4,5,5,5,3,4,4,5,3,4]                              𝑑𝑖 = [6,8,5,5,12,14,13,12,12,14,10,11,5,5] 

(1,2) , (1,3) , (1,11) , (1,12) , (2,1) , 

(2,3), (4,5) , (4,13), (6,9) 

 

 

DG10 (5-9-12) 𝑎𝑖 =  [1,1,3,1,3,5,7,10,10,10,3,7,3,5]                      ℎ𝑖 = [2,3,4,6,6,6,5,6,2,5,6,5,6,6] 𝑝𝑖 = [3,2,4,2,2,5,5,6,2,6,4,3,2,5] 𝑓𝑖 = [3,3,3,3,3,4,4,5,3,5,5,5,3,4]                              𝑑𝑖 = [4,3,7,3,5,10,12,16,12,16,7,10,5,10] 

(1,2) , (1,3) , (1,11) , (1,12) , (2,1) , 

(2,3), (4,5) , (4,13), (6,9) 

 

 

 

Table 3: Description of small sized instances 
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Instan

ce 

name 

Total 

(root+branch

&cut) 

 

Soluti

on 

status 

Optimal value Continuous variables Direct 

Transship

ment 

vessel 

pairs 

Indirect 

Transship

ment 

vessel 

pairs 

DG1 0.14 sec. 

(56.33 ticks) 

 

Optim

al 

 

 

68.9999999999

9639 

𝒃𝒊 =[9,1,7,5,1,1,1,6,8,9] 𝒕𝒊 =[5,1,1,7,710,15,10,15,8] 𝒄𝒊 = [𝟖,7,5,10,10,15,18,15,20,11] 

 

(9,7) (1,3), (1,4), 

(2,4), (3,2) 

(4,6), 

(6,10) 

DG2 0.72 sec. 

(280.89 ticks) 

 

Optim

al 

168.0 𝒃𝒊 =[1,5,9,9,1,5,6,1,7,1] 𝒕𝒊 =[1,3,5,1,16,16,8,7,14,12] 𝒄𝒊 =[6,8,8,5,21,20,14,12,16,16] 

(1,4) (2,3 ), (7,9) 

DG3 0.16 sec. 

(78.49 ticks) 

Optim

al 

128.000000000

00216 

𝒃𝒊 =[9,7,7,3,1,1,1,1,1,6] 𝒕𝒊 =[1,4,6,1,3,5,12,17,10,10] 𝒄𝒊 = [𝟒,6,10,3,5,10,17,23,12,16] 

 

(10,9) 

 

 

 

(1,3), (2,4), 

(2,6), (3,8), 

(3,9), (4,6), 

(4,7), (5,3), 

(5,7), 

(5,10), 

(6,5), (6,8), 

(6,9), (7,3), 

(7,6), (8,4), 

(8,7), 

(8,10), 

(9,6) 

DG4 0.14 sec. 

(72.23 ticks) 

 

 

Optim

al 

 

37.0 

 

𝒃𝒊 =[3,9,1,1,7,5,1,1,8,5] 𝒕𝒊 =[5,2,4,1,1,4,7,10,9,8] 𝒄𝒊 = [𝟕,4,6,4,4,8,10,13,12,10] 

 

 

 (1,3), (1,4), 

(1,6), (2,4), 

(2,5), (3,2), 

(3,7), (3,8), 

(4,3), (4,6), 

(4,7), (5,2), 

(5,7), (6,4), 

(6,5) , 

(6,9), (7,4), 

(7,10), 

(8,7), 

(8,10), 

(9,8), 

(10,7) 

 

DG5 26.95 sec. 

(21775.71 

ticks) 

 

 

Optim

al 

 

206.000000000

00023 

 

𝒃𝒊 =[5,1,8,1,1,1,5,1,8,4,7,6] 𝒕𝒊 =[7,1,1,10,7,18,10,13,19,13,5,13] 𝒄𝒊 =[10,7,5,13,10,23,13,18,24,16,10,19] 

 

(2,3) (1,3), (1,4), 

(1,12), 

(2,4), (4,6), 

(6,10), 

(9,7), 

(11,2), 

(12,2) 

DG6 93.52 sec. 

(66906.63 

ticks) 

Optim

al 

 

330.000000000

00114 

𝒃𝒊 =[1,7,5,5,7,1,1,7,7,2,1,6,1,3,2,5] 𝒕𝒊 =[15,11,19,8,13,15,6,20,15,11,19,

8,13,15,6,20] 𝒄𝒊 =[𝟔,8,5,9,20,1525,13,15,19,11,26] 

 

 (1,3), (1,4), 

(1,12), 

(2,3) , 

(2,4), (4,6), 

(6,10), 

(9,7), 

(11,2), 

(12,2) 

DG7 0.72 sec. 

(425.34 ticks) 

Optim

al 

 

268.0 𝒃𝒊 =[9,1,7,5,1,1,1,1,9,6,1,1] 𝒕𝒊 =[3,1,6,1,3,18,12,23,10,12,5,9] 𝒄𝒊 =[6,3,10,3,5,23,17,29,12,18,9,12] 

 

 (1,3), (1,4), 

(1,12), 

(2,3) , 

(2,4), (4,6), 

(6,10), 

(9,7), 

Table 4: Numerical results of the adaptation of the exact method to solve small size instances of the Table 3 
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(11,2), 

(12,2) 

DG8 2196.97 sec. 

(1903801.18 

ticks) 

Optim

al 

334.000000000

0016 

𝒃𝒊 =[7,1,8,1,5,6,5,8,8,9,1,1,9,2] 𝒕𝒊 =[1,1,4,7,8,14,11,19,24,8,10,15,1,

21] 𝒄𝒊 =[𝟒,7,8,10,11,19,14,24,29,11,15,21,4,

27,] 

 

(1,13) 

 

(1,3) , (1,4) 

, (1,12), 

(2,4), (3,2), 

(4,6), 

(4,14), 

(6,10), 

(9,7), 

(11,2), 

(12,2), 

(14,5) 

DG9 3205.16 sec. 

(2548575.38 

ticks) 

Optim

al 

383.000000000

00153 

𝒃𝒊 =[1,5,5,9,6,5,1,1,7,1,1,6,7,9] 𝒕𝒊 =[1,5,2,5,22,12,20,11,10,16,2,1] 𝒄𝒊 =[𝟔,10,5,9,27,16,26,16,12,20,11,22,5,

5] 

 

(2,4) 

 

(1,3), (1,4), 

(1,12), 

(1,13), 

(3,2) , (4,6) 

, (4,14) , 

(6,10) , 

(9,7) , 

(11,2) , 

(12,2) , 

(14,5) 

 

DG10 3.17 sec. 

(1777.45 

ticks) 

Optim

al 

452.999999999

9999 

𝒃𝒊 =[7,1,7,4,1,5,1,1,9,6,1,1,1,5 ] 𝒕𝒊 =[3,1,6,1,3,30,14,24,10,12,7,11,5,

19] 𝒄𝒊 =[𝟔3,10,3,5,35,19,30,12,18,11,14,7,24

] 

 

(2,4) (1,3), (1,4), 

(1,12), 

(1,13), 

(3,2) , (4,6) 

, (4,14) , 

(6,10) , 

(9,7) , 

(11,2) , 

(12,2) , 

(14,5) 

 

Instan

-ce  

(N1, 

N2, 

B) 

Parameters values Transshipme

nt vessels 

pairs 

Inst1 

 

 

(9, 11, 

20) 

𝑎𝑖 = [1,6,7,2,1,6,1,4,9,10,12,13,9,17,17,17,17,20,20,20]                                          ℎ𝑖 =[4,5,3,2,6,4,6,6,3,4,6,4,3,4,3,55,5,3] 𝑝𝑖 = [4,5,3,4,5,5,3,5,3,5,5,4,4,3,3,5,3,6,6,5]                                                      𝑓𝑖 =[3,4,3,3,5,4,3,4,3,4,5,4,4,3,3,4,4,4,4,3]                                                      𝑑𝑖 =[5,11,10,6,6,12,4,9,12,16,17,17,13,20,20,22,20,26,26,26] 
(2,4) , (2,6) , 

(14,15), (15,16), 

(16,13) 

Inst2 

 

(13,12

, 

20) 

𝑎𝑖 = [1,1,1,1,1,1,4,4,4,4,4,4,7,7,7,7,7,7,10,10,10,10,10,10,13]                                      ℎ𝑖 =[3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3] 𝑝𝑖 = [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3]                                                𝑓𝑖 =[4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4]                                              𝑑𝑖 =[10,10,10,10,10,10,7,7,7,7,7,7,10,10,10,10,10,10,13,13,13,13,13,13,16, ] 

(1,7) , (2,3) 

Inst3 

 

(17,13

, 

20) 

𝑎𝑖 = [1, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7 ,7 ,7, 10, 10, 10, 10, 10 ,10 ,13, 13, 13, 13, 13, 13]                    ℎ𝑖 = [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, ] 𝑝𝑖 = [3, 3 ,3 ,3 ,3 ,2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ,3 ,3 ,3, 3, 3, 3, 3, 3]                             𝑓𝑖 = [4 ,4, 4, 4, 4, 4, 4, 4, 4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4 ,4, 4, 4, 4, 4, 4, 4, 4]                              𝑑𝑖 =[10, 10, 10 ,10, 10, 10, 7, 7, 7, 7 ,7 ,7 ,10, 10, 10, 10, 10, 10, 13, 13, 13, 13, 13, 13, 16, 16, 16, 16, 16, 16]
(1,7) , (2,3) 

Inst4 

 

(17,13

, 

20) 

𝑎𝑖 = [ 1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,9,9,9,9,9,9,9,9,9,13,13,13]                    ℎ𝑖 = [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] 𝑝𝑖 = [ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]                                       𝑓𝑖 =[ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ]                                      𝑑𝑖 =[5,3,3,3,3,3,3,3,3,7,7,7,7,7,7,7,7,7,11,11,11,11,11,11,11,11,11,15,15,15] 

(1,20) 

Table 5: Description of medium sized instances 
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Table 6: Numerical results of the adaptation of the exact method and the GA on the instances of the Table 5 

Instance 

no & 

name 

CPLEX 

 

Obj Val    CPU(s)    Dev 

GA 

 

Obj Val    CPU(s)    Dev 

Inst1 

 

87.0         0.98        0 87      5.609928    0 

Inst2 

 

90.0          0.16        0 90      1.149060    0 

Inst3 

 

75.0         0.16         0 75      0.607894    0 

Inst4 

 

60         0.17          0 64.2296     2.996758   4.2296 


