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Groups of p-rank 2 containing an isolated element of order p
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Abstract. Let p be an odd prime and G be a finite group with Op′(G) = 1
of p-rank at most 2 that contains an isolated element of order p. If x /∈
Z(G), we show that F ∗(G) is simple and we describe the structure of a
Sylow p-subgroup P of F ∗(G) as well as the fusion system FP (F

∗(G))
without using the classification of finite simple groups.
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1. Introduction. An element x of a finite group G is called isolated if and only
if xG ∩CG(x) = {x}. In 1966, George Glauberman [5] showed that G = O(G) ·
CG(x) if x is an isolated involution. A generalisation of his result for elements
of odd prime order is a consequence of the classification of the finite simple
groups. But there is still no proof revealing conceptual reasons or a deeper
understanding of finite groups in terms of the subgroup structure. Even for the
prime 3 the influence of isolated elements on finite groups is not understood.
Together with Rebecca Waldecker, the author studied in [11] isolated elements
of order 3. Under specific assumptions, they have been able to prove a version
of the so-called Z∗

3 -Theorem. One of these assumptions was the existence of
an elementary abelian subgroup of order 27.

In this paper, we study a finite group G with Op′(G) = 1 for an odd
prime p such that G has an isolated element x of order p but does not contain
any elementary abelian subgroup of order p3. We will first show that either
x ∈ Z(G) or that F ∗(G) is nonabelian simple and investigate the case where
a Sylow p-subgroup of F ∗(G) is abelian.

Then we assume that a Sylow p-subgroup P of F ∗(G) is not abelian. The
restriction on the p-rank of G implies that every subgroup of order p3 is gen-
erated by two elements. This allows to apply a theorem of Norman Blackburn
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[2] to obtain a list of possible isomorphism types for P . Most of the cases
can be eliminated by more arguments regarding p-fusion and p-transfer in G.
Assuming that P is not extraspecial of order p3 and exponent p, we deduce
that P is a 3-group of maximal class and determine the possible isomorphism
types of P with help of Chris Parker’s and Jason Semeraro’s results in [9].
More precisely we will prove the following theorem:

Theorem. Let G be a finite group and p be an odd prime such that Op′(G) = 1.
Suppose that G does not have an elementary abelian subgroup of order p3 and
that there is some isolated element x ∈ G of order p such that x /∈ Z(G).

Then F ∗(G) is nonabelian simple and for every Sylow p-subgroup P of
F ∗(G), either xG ∩ P = ∅ and P is cyclic or xG ∩ P �= ∅ and one of the
following holds:
(a) P is extraspecial of order p3 and exponent p.
(b) p = 3, P = 〈s, s1, ..., s2k | ∀i ∈ {2, ..., 2k} : si = [si−1, s], [s1, si] = 1,∀i ∈

{2, ..., 2k − 1} : s3i−1s
3
i = s−1

i+1 and s3 = s32k−1 = s32k = 1〉 is of maximal
class and of order 32k+1 for some integer k ≥ 2.

We further use the classification of fusion systems on finite 3-groups of
maximal class and rank 2 of [4] and [9] to see that P is normal in the fusion
system induced by F ∗(G) on P or that case (b) of the above theorem holds and
the fusion system induced by F ∗(G) on P is isomorphic to the fusion system
of SLε

3(q) for some ε ∈ {1,−1} and some prime power q such that 3k | q − ε
but 3k+1

� q − ε on a Sylow 3-subgroup.
The notation used is given in [10] or [3].

2. Preliminaries.

Definition 2.1. Let G be a finite group, p be a prime, and n ∈ N.
(a) An element x ∈ G is called isolated in G if and only if xG ∩CG(x) = {x}.
(b) If G has an elementary abelian subgroup of order pn but does not contain

any of order pn+1, then G has p-rank n. We write rp(G) = n. We further
say that G has rank n and write r(G) = n if G is a p-group.

(c) A proper subgroup U of G is strongly p-embedded in G if and only if
p | |U | but p � |U ∩ Ug| for all g ∈ G \ U .

Lemma 2.2. Let G be a finite group and p be a prime. Suppose that x ∈ G is
an isolated element of order p in G. Then x is isolated in H for every subgroup
H of G such that x ∈ H. If further x ∈ P ∈ Sylp(G), then x ∈ Z(P ) and if P
is cyclic, then G has a normal p-complement.

Proof. The assertions follow from [11, Lemma 3.2 and 3.4]. �

Lemma 2.3. Let P be a p-group for an odd prime p and α be an automorphism
of P of coprime order. Then the following hold:
(a) P/P ′ = [P, α]P ′/P ′ × CP (α)P ′/P ′.
(b) If α centralises Ω1(P ), then α centralises P .
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Proof. Part (a) follows from [10, 8.2.2 and 8.4.2] and (b) is [6, 5.3.10]. �

Lemma 2.4. Suppose that G is a finite group, p is an odd prime, P is a Sylow
p-subgroup of G of rank 2 containing an isolated element x of order p. Then
for all R ≤ P the group (NG(R)/CG(R))/Op(NG(R)/CG(R)) is cyclic of order
dividing p−1 or R has a subgroup that is extraspecial of order p3 and exponent
p.

Proof. Let R ≤ P such that R does not have an extraspecial subgroup of order
p3 and exponent p and set

OUT G(R) := (NG(R)/CG(R))/Op(NG(R)/CG(R)).

[1, Corollary 14.4] provides a characteristic subgroup T of R of exponent p
and class at most 2 such that every nontrivial p′-automorphism of R induces
a nontrivial automorphism of T . Our assumption on R and r(T ) ≤ r(P ) = 2
imply that T does not have a subgroup of order p3 and so T is elementary
abelian of order at most p2.

If T is cyclic, then [10, 2.2.5] yields that OUT G(T ) is cyclic of order dividing
p − 1. In the other case, if T is not cyclic, then from r(P ) ≤ 2 and x ∈ CP (T ),
by Lemma 2.2, we see that x ∈ T . Hence we deduce that NG(T )/CG(T ) is
isomorphic to a subgroup of Cp � Cp−1, as x is isolated in G. So in both
cases OUT G(T ) is cyclic of order dividing p − 1. Since every nontrivial p′-
automorphism of R induces a nontrivial automorphism of T , we conclude that
also OUT G(R) is cyclic of order dividing p − 1. �

Proposition 2.5. Let G be a finite group and p be an odd prime such that
Op′(G) = 1. Suppose that rp(G) ≤ 2 and that x ∈ G is isolated of order p such
that x /∈ Z(G).
Then F ∗(G) is nonabelian simple.

Proof. First Lemma 2.2 yields that x centralises a Sylow p-subgroup P of G
and so x centralises Op(G).

Suppose for a contradiction that x centralises F ∗(G). Then x ∈ Z(F ∗(G))
and so xG ⊆ Z(F ∗(G)) ≤ CG(x). From xG ∩ CG(x) = {x}, we see that
x ∈ Z(G), a contradiction showing that x does not centralise F ∗(G).

By Op′(G) = 1, we obtain a component K of G such that [K,x] �= 1 and
p | |K|. Let R := P ∩ K ∈ Sylp(K), then 1 �= R ≤ P ≤ CG(x) and Lemma 2.2
gives that R〈x〉 is not cyclic.

Suppose for a contradiction that Z(K) �= 1 and set Z0 := Ω1(Z(K)). Then
Z(K) = Op(G)∩K ≤ R and x /∈ Z(K) ≤ Z(F ∗(G)). From r(R〈x〉) ≤ rp(G) ≤
2 and x ∈ Z(R〈x〉), we deduce that Ω1(R〈x〉) = Z0 ×〈x〉 is elementary abelian
of order p2. Moreover, Frobenius’s p-complement theorem [10, 7.2.4] provides
a subgroup T ≤ R such that NK(T )/CK(T ) is not a p-group. It follows that
NK(Ω1(T ))/CK(Ω1(T )) is not a p-group by Lemma 2.3 (b). On the other hand,
NK(Ω1(T )) ≤ K ≤ CG(Z0). We conclude that Ω1(T ) is not equal to Z0 but
contained in Ω1(R〈x〉) = Z0×〈x〉. Let g ∈ NK(Ω1(T ))\CK(Ω1(T )) ⊆ CG(Z0).
Then there is some t ∈ Ω1(T ) ≤ Z0 × 〈x〉 such that tg �= t and t /∈ Z0. We
may choose t such that t = yx for some y ∈ Z0. Then yx �= (yx)g = yxg
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implies that x �= xg. Since xg = y−1t ∈ Ω1(T )Z0 ≤ Z0 × 〈x〉 ≤ CG(x), this is
a contradiction showing that K is simple.

Suppose for a final contradiction that K �= F ∗(G). Then there is a subgroup
E ≤ F ∗(G) such that E × K = F ∗(G) and E �= 1 is subnormal in G. We set
S := E ∩P and observe S �= 1. Additionally SR = S ×R and from rp(G) ≤ 2,
we deduce that S and R have rank 1 and so R and S are cyclic, as p is odd
and by [10, 5.3.7]. Moreover, x ∈ CG(R × S) and so rp(G) ≤ 2 gives that
x ∈ R × S. Hence there are elements a ∈ R and b ∈ S such that x = ab.
Since x /∈ CG(K) ≥ S, we see that a �= 1. As R is cyclic and a Sylow p-
subgroup of the simple group K, Burnside’s p-complement theorem (see [10,
7.2.1]) provides an element g ∈ NK(R) ≤ CG(E) that has order coprime to p
and does not centralise R. Lemma 2.3 (b) then gives that g does not centralise
a. Thus xg = agb ∈ RS ≤ CG(x) but xg �= x. This is a contradiction. �

Definition 2.6. Let p be a prime, G a finite group, P ∈ Sylp(G), and F :=
FP (G) the fusion system of G on P . Let further Q be a subgroup of P .
(a) Q is called fully F-normalised if and only if NP (Q) ∈ Sylp(NG(Q)).
(b) Q is called F-centric if and only if CG(Q) = Z(Q) × Op′(CG(Q)).
(c) Q is called F-essential if and only if NG(Q)/QCG(Q) contains a strongly

p-embedded subgroup and Q is F-centric.
(d) Q is called F-radical if and only if Op(NG(Q)/QCG(Q)) = 1.
(e) Q is called F-Alperin if and only if Q is fully F-normalised, F-centric,

and F-radical.

Lemma 2.7. Let G be a finite group, p be a prime, and P be a Sylow p-subgroup
of G. If [D,NG(D)] ≤ [P,NG(P )] for all FP (G)-essential subgroups D of G,
then we have P ∩ G′ = [P,NG(P )].

Proof. By Alperin’s fusion theorem [3, 4.51] and the focal subgroup theorem
[10, 7.1.3], the group P ∩G′ is generated by [P,NG(P )] and [D,NG(D)] where
D runs through all FP (G)-essential subgroups. Thus P ∩ G′ = [P,NG(P )] by
the assumptions. �

3. The structure of a Sylow p-subgroup.

Proposition 3.1. Let G be a finite group and p be an odd prime such that
Op′(G) = 1. Suppose that rp(G) ≤ 2 and that x ∈ G is isolated of order p
such that x /∈ Z(G). Then x /∈ F ∗(G) if and only if F ∗(G) has abelian Sylow
p-subgroups if and only if F ∗(G) has cyclic Sylow p-subgroups.

Proof. We set K := F ∗(G). Then K is nonabelian simple by Proposition 2.5.
Let further S be a Sylow p-subgroup of K〈x〉 containing x. Then P := S ∩ K
is a Sylow p-subgroup of K and P 〈x〉 = S.

Suppose first that x /∈ K. Then S = P × 〈x〉, as x centralises every Sylow
p-subgroup of G that contains x by Lemma 2.2. Since rp(G) ≤ 2, we see that
P does not contain an elementary abelian subgroup of order p2 and so P is
cyclic. If P is cyclic, then P is abelian.
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Let finally P be abelian. Then again Lemma 2.2 shows that S is abelian. We
choose an element u ∈ S of maximal order. Then [10, Lemma 2.1.2] provides
a subgroup R of S such that S = 〈u〉 × R. As r(P 〈x〉) ≤ 2, we see that R is
cyclic. In particular, S/〈u〉 and S/R are cyclic groups. Since 〈u〉∩R = 1, there
is some Q ∈ {〈u〉, R} such that x /∈ Q. Then x is an element of S \ Q of order
p. In addition every G-conjugate of x in S is equal to x since x is isolated in
G. We apply [7, Lemma 15.18] to conclude that x /∈ Op(K〈x〉) = K. �

Lemma 3.2. Let P be a finite p-group for an odd prime p such that r(P ) ≤ 2.
Then one of the following holds:
(a) P is a 3-group of maximal class,
(b) Ω1(P ) is extraspecial of order p3 and exponent p and P/Ω1(P ) is cyclic,
(c) P is metacyclic, or
(d) |P | ≤ p4.

Proof. We may suppose that |P | ≥ p5 and let R be a normal subgroup of
P of order p3. Then R is not elementary abelian and so Φ(R) �= 1. Thus
|R/Φ(R)| < |R| = p3 and we deduce from [10, 5.2.5] that R is generated by
two elements.
Altogether we may apply [2, Theorem 4.1]. �

Hypothesis 3.3. Let G be a finite nonabelian simple group and p be an odd
prime. Suppose that rp(G) ≤ 2 and that x ∈ G of order p is isolated in G. Let
further P ∈ Sylp(G) be such that x ∈ P and assume that P is not extraspecial
of order p3 and exponent p.

Lemma 3.4. Assume Hypothesis 3.3 and let Q be an extraspecial normal sub-
group of P of order p3 and exponent p. Then P/Q is not cyclic.

Proof. From Hypothesis 3.3, we see that P �= Q and Lemma 2.2 as well as
r(P ) ≤ 2 imply that 〈x〉 = Z(Q). Moreover, [1, Lemma 1.4] provides a normal
subgroup V of P that is contained in Q and is elementary abelian of order p2.
Then Q � CP (V ) and from |Aut(V )|p = p, we see that CP (V ) is a maximal
subgroup of P = QCP (V ).

We suppose for a contradiction that P/Q is cyclic and choose w ∈ CP (V )\V
such that wp ∈ Q. From r(P ) ≤ 2 and w ∈ CP (V ) \ V , we get that w does
not have order p. We conclude that 1 �= wp ∈ CP (V ) ∩ Q = V . Moreover,
〈w〉V is a maximal and hence normal subgroup of 〈w〉Q. So Φ(〈w〉V ) = 〈wp〉
is 〈w〉Q-invariant. Now wp ∈ Q implies that 〈wp〉 is normal in Q and so
〈wp〉 = Z(Q) = 〈x〉.

We may assume that wp = x. Since x is isolated in G, no G-conjugate of a
power of wp lies in P \Q. Further wg /∈ Q for all g ∈ G, as w does not have order
p and Q has exponent p. From w ∈ G = Op(G) and [7, Proposition 15.15], we
obtain an element g ∈ G such that wg = wkz for some z ∈ Q and k ∈ N such
that p does divide neither k nor k − 1 and such that CP (wg) ∈ Sylp(CG(wg)).

If we had [wk, z] = 1, then xk = (wp)k = wkpzp = (wkz)p = xg ∈ CG(x) ∩
xG = {x} would be a contradiction. Hence w ∈ CP (V ) \ CP (z) and so Q =
〈z, V 〉. We further deduce that CP (z) = CQ(z) from 〈w〉Q/Q = Ω1(P/Q) and
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so CP (Q) = CP (z) ∩ CP (V ) ≤ CQ(z) ∩ CP (V ) = Z(Q). Now [12] gives that
|NG(Q)/QCG(Q)| divides p(p2 − 1), as Z(Q) = 〈x〉 is centralised by NG(Q).
Consequently P/Q = NP (Q)/QCP (Q) has order p and so P = Q〈w〉 has
order p4. By [12], the element w does not normalise 〈x, z〉. Altogether we have
〈wg, w〉 = 〈z, w〉 = Q〈w〉 = P , implying that CP (w) ∩ CP (wg) ≤ Z(P ) = 〈x〉.
This shows that |P : CP (wg)| ≥ |CP (w) : CP (w) ∩ CP (wg)| = |V 〈w〉 : 〈x〉| =
p2, entailing that CP (wg) has order p2. But CP (wg) ∈ Sylp(CG(wg)) and so
|CP (wg)| ≥ |(CP (w))g| ≥ |(V 〈w〉)g| = p3. This is a contradiction. �
Lemma 3.5. Assume Hypothesis 3.3. Then P has a unique elementary abelian
normal subgroup of order p2.

Proof. As in the lemma before, [1, Lemma 1.4] provides a normal elementary
abelian subgroup V of P of order p2. Let W � P be elementary abelian of
order p2 and suppose for a contradiction that V �= W . From r(P ) ≤ 2 and
[V,W ] ≤ V ∩ W , we see that V � V ∩ W �= 1 and so |V W | = |V |·|W |

|V ∩W | = p3

by [10, 1.1.6]. We set Q := V W . Then Q = Ω1(V W ) and so r(Q) ≤ r(P ) = 2
implies that Q is not abelian. Thus Q is extraspecial of order p3 by [8, I.14.10]
and of exponent p, as Q = Ω1(V W ). Every y ∈ P normalises Q, V , and W
and so y normalises every maximal subgroup of Q. In particular, y centralises
the elementary abelian group Q/Φ(Q) = Q/Z(Q) and hence [P,Q] ≤ Z(Q).
Thus [12] implies that P = Q · CP (Q).

For all z ∈ CP (Q) of order p, we see that 〈V, z〉 and 〈W, z〉 are elemen-
tary abelian. Then r(P ) = 2 yields that z ∈ V ∩ W ≤ Z(Q). Thus CP (Q)
has a unique minimal subgroup and is consequently cyclic, as p is odd. This
contradicts Lemma 3.4. �
Lemma 3.6. Suppose that Hypothesis 3.3 holds and that P does not have an
extraspecial subgroup of order p3 and exponent p. Then there is some element
a ∈ NG(P ) with ap−1 ∈ Op′(CG(P )) that induces a fixed-point-free automor-
phism on P/P ′; moreover CP (a) is cyclic.

Proof. We investigate the fusion system FP (G) and let D be an FP (G)-radical
subgroup. Then Op(NG(D)/CG(D)) = DCG(D)/CG(D), our assumption and
Lemma 2.4 imply that |NG(D)/DCG(D)| divides p − 1.

If D is FP (G)-essential subgroup of P , then D is also FP (G)-radical (see [3,
p. 119]) and FP (G)-centric. It follows that NP (D) ≤ DCG(D) =
DZ(D)Op′(CG(D)) = DOp′(CG(D)) and hence D = P . This is a contra-
diction. In particular, there does not exists any FP (G)-essential subgroup
of P . From Lemma 2.7, we deduce that P = P ∩ G′ = [P,NG(P )] and so
H := NG(P ) �= CG(P )P .

As P is FP (G)-radical, the above argument provides some a ∈ H\Op′(H)P
of order prime to p such that H = Op′(H)P 〈a〉 and ap−1 ∈ Op(PCG(P )) =
Op′(H). We conclude that P = [P,H] = P ′ · [P, a] and hence that a acts
fixed-point-freely on the abelian group P/P ′ by Lemma 2.3 (a).

Let now V be the unique normal elementary abelian subgroup of order p2

of P which exists by Lemma 3.5. Then Ω1(CP (V )) = V , as r(P ) ≤ 2, and
CP (V ) is a maximal subgroup of P . We conclude that CP (a) ≤ P ′

� CP (V )
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and so Ω1(CP (a)) ≤ Ω1(CP (V )) = V . If CP (a) was not cyclic, then a would
centralise Ω1(CP (V )) = V and from Lemma 2.3 (b), we would deduce that
CP (V ) ≤ CP (a), a contradiction. �

Lemma 3.7. Suppose that Hypothesis 3.3 holds. Then P is not metacyclic.

Proof. Suppose for a contradiction that P is metacyclic. Then P does not
have an extraspecial subgroup of order p3 and exponent p and so Lemma 3.6
provides some a ∈ NG(P ) with ap−1 ∈ CG(P ) that acts fixed-point-freely on
P/P ′ and hence on Ω1(P/P ′) of order p2. Thus [8, Satz II 3.10] and o(a) | p−1
provide at least one a-invariant subgroup of order p of Ω1(P/P ′). In addition
Maschke’s theorem (see for example [10, 8.4.6]) gives a second one. The full pre-
images of these a-invariant subgroups are maximal subgroups of the full pre-
image U of Ω1(P/P ′). As P is metacyclic, U has a maximal cyclic subgroup.
Hence by [1, Theorem 1.2 (a)], all but at most one maximal subgroups of U are
cyclic, as p is odd. Altogether U has a maximal subgroup R, that is a-invariant,
cyclic, and contains P ′.

Since a acts fixed-point-freely on P/P ′, a does not centralise R/P ′ and
hence not R. From Lemma 2.3 (b), we see that a does not centralise Ω1(R) =
Ω1(P ′) and so CP (a) ≤ CP ′(a) = 1. This contradicts x ∈ CP (a), as x is
isolated in G. �

Lemma 3.8. Suppose that Hypothesis 3.3 holds. Then |P | ≥ p5.

Proof. From Lemma 3.7 and Hypothesis 3.3, it firstly follows that |P | ≥ p4.
Suppose for a contradiction that |P | = p4. If P contained an extraspecial
subgroup Q of order p3 and exponent p, then Q would be a maximal subgroup
of P and hence normal in P with cyclic factor group, contradicting Lemma 3.4.
We conclude that every proper subgroup R of P is metacyclic. It follows from
[2, Theorem 3.2] that P is a 3-group of class 3 and order 34, as P itself is
not metacyclic by Lemma 3.7. In particular, we have p = 3. If V is a normal
elementary abelian subgroup of P of order 9, that exists by Lemma 3.5, then
P/V has order 9 and so P ′ ≤ V . It follows that P ′ is elementary abelian of
order 9, as P has class 3.

In addition Lemma 3.6 provides an element a ∈ NG(P ) that induces a
fixed-point-free automorphism of order 2 on P/P ′ and such that CP (a) is
cyclic. Since x is isolated in P , we see that x ∈ CP (a) ≤ P ′ = V and
hence CP (a) = 〈x〉 = Z(P ) � P . Altogether a induces a fixed-point-free au-
tomorphism of order 2 on the nonabelian group P/Z(P ) = P/CP (a). This
contradicts [10, 8.1.10]. �

Lemma 3.9. Suppose that Hypothesis 3.3 holds and that P is a 3-group of
maximal class. Then NG(P ) = CG(P )P 〈a〉 where a2 ∈ CG(P ) and a acts
fixed-point-freely on P/P ′ and |P | = 32k+1 for some integer k ≥ 2.

Proof. Let |P | = 3n. Then Lemma 3.8 implies that that n ≥ 5. As P has
maximal class, we see that 〈x〉 = Z(P ) by Lemma 2.2. Now, [9, Proposition
3.3] describes Aut(P ). Let a ∈ NG(P ), then the proposition provides e, f ∈
{1, 2} such that xa = xen−2f by [9, Lemma 3.4]. As x is isolated in G, we see
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1 ≡ en−2 · f mod 3. So if n is even, then en−2 ≡ 1 mod 3 and so f = 1. If n is
odd, then en−2 ≡ e mod 3 and so f = e. In both cases, we conclude again from
[9, Proposition 3.3] that |NG(P )/CG(P )|2 ≤ 2 and hence that NG(P )/PCG(P )
is cyclic of order at most 2. Let a ∈ NG(P ) be a possibly trivial 2-element such
that NG(P ) = CG(P )P 〈a〉 and a2 ∈ CG(P ). We want to apply Lemma 2.7.
Therefore we first observe that [P,NG(P )] = [P,CG(P )P 〈a〉] = P ′[P, a].

Suppose now that D is an FP (G)-essential subgroup. Then NG(D)/DCG(D)
contains a strongly 3-embedded subgroup and so D has a subgroup that is ex-
traspecial of order 27 and exponent 3 by Lemma 2.4. Thus [9, Lemma 4.1 and
Lemma 4.2] yield that D itself is extraspecial of order 33 and exponent 3 and
determine NG(D)/DCG(D). From r(P ) ≤ 2 and x ∈ Z(P ), by Lemma 2.2, we
have x ∈ Z(D) and so NG(D)/DCG(D) is isomorphic to Sp2(3) = SL2(3), as
x is isolated in G. By Lemma 3.5, the group P has a unique normal elementary
abelian subgroup V of order 9. Then CP (V ) is a maximal subgroup of P and
from V = Ω1(CP (V )), we deduce that V ≤ D.

Let b ∈ NG(D) be such that b induces an automorphism of order 2 on D.
Then b acts on D such that it normalises but does not centralise any elementary
abelian subgroup of order 9. It follows that b ∈ NG(V ) \ CG(V ) and so that
NG(V )/CG(V ) ∼= S3. By a Frattini argument, we have NG(V ) = CG(V )P ·
NG(P ), so we get that CG(P )P 〈a〉 = NG(P ) � CG(V )P . In particular, a
does not centralise but normalise the characteristic subgroup V of P . Since
|NG(V )/CG(V )P | = 2, there is some c ∈ CG(V )P such that b = ca.

From the Frobenius normal p-complement theorem [10, 7.2.4], we get V =
Ω1(CP (V )), and Lemma 2.3 (b), we see that CG(V ) has a normal 3-complement.
So CG(V )P ≤ O3′(CG(V ))P and it follows that [P, c] ≤ [P, PO3′(CG(V ))] ≤
P ′O3′(CG(V )). As a ∈ NG(P ) ≤ NG(V ), we further see that a normalises
P ′O3′(CG(V )) and hence [P, b] = [P, ca] = [P, a][P, c]a ≤ [P, a]P ′O3′(CG(V )).
By [10, 1.1.11], we get

D=[D, b]≤ [P, b]∩P ≤ [P, a]P ′O3′(CG(V ))∩P =[P, a]P ′(O3′(CG(V ))∩P )=[P, a]P ′.

We summarise that [D,NG(D)] ≤ [P, a]P ′ ≤ [P,NG(P )] for every F-essential
subgroup D of P . Hence Lemma 2.7 shows that P = G′ ∩ P = [P,NG(P )] =
P ′[P, a]. Since a acts coprimely, we infer that a acts fixed-point-freely on P/P ′.

Altogether a inverts P/P ′ and the parameters e and f in [9, Proposition
3.2] for a are both equal to 2. Finally our argument at the beginning of this
proof shows that n is odd. �

Lemma 3.10. If Hypothesis 3.3 holds and P is a 3-group of maximal class,
then P = 〈s, s1, ..., s2k | ∀i ∈ {2, ..., 2k} : si = [si−1, s], [s1, si] = 1,∀i ∈
{2, ..., 2k − 1} : s3i−1s

3
i = s−1

i+1 and s3 = s32k−1 = s32k = 1〉 has order 32k+1 for
some k ≥ 2.

Proof. Let |P | = 3n. Then Lemma 3.9 implies that n = 2k+1 for some integer
k ≥ 2. From [9], we obtain some β, γ, δ ∈ {0, 1, 2} such that P := 〈s, s1, ..., s2k |
R1, R2, R3, R4, R5, R6〉, where the relations are as follows:
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R1: ∀i ∈ {2, ..., 2k} : si = [si−1, s];
R2: ∀i ∈ {3, ..., 2k} : [s1, si] = 1;
R3: ∀i ∈ {2, ..., 2k} : s3i s

3
i+1si+2 = 1, where s2k+1 = s2k+2 = 1 by definition;

R4: [s1, s2] = sβ
2k; R5: s31s

3
2s3 = sγ

2k; and R6: s3 = sδ
2k.

To prove the assertion, we need to verify that β = γ = δ = 0.
With regard to Lemma 3.9, let a ∈ NG(P ) be such that a2 ∈ CG(P ) and

such that a induces a fixed-point-free automorphism on P/P ′. In particular,
a inverts P/P ′. Then [9, Lemma 2.1] states that P ′ = [〈s1, ..., s2k〉, P ] and
Z(P ) = 〈s2k〉 = 〈x〉.

For all d ∈ {0, 1, 2}, we see that ssd
1 /∈ P ′ and so there is some z ∈ P ′ such

that (ssd
1)

a = (ssd
1)

−1z. As (ssd
1)

−1 /∈ 〈s1, ..., s2k〉, [9, Lemma 2.4] provides
some y ∈ P such that ((ssd

1)
−1z)y = (ssd

1)
−1. A calculation before [9, equation

(3.3)] gives that (ssd
1)

3 = sd2β+δ+dγ
2k . Altogether we obtain that

(sd2β+δ+dγ
2k )ay = ((ssd

1)
3)ay = ((ssd

1)
ay)3 = (((ssd

1)
−1z)y)3 = ((ssd

1)
−1)3

= ((ssd
1)

3)−1 = (sd2β+δ+dγ
2k )−1.

But s2k ∈ 〈x〉 is isolated in G and so d2β + δ +dγ is divisible by 3. This is true
for all d ∈ {0, 1, 2} and so δ is divisible by 3, which gives δ = 0. In addition we
get that β + γ and β − γ are divisible by 3 and so is their sum 2β and their
difference 2γ. From β, γ ∈ {0, 1, 2}, we obtain that β = γ = 0. �

Proof of the main Theorem. We investigate K := F ∗(G) and let P ∈ Sylp(K).
Then K is nonabelian simple by Proposition 2.5 and does not contain any ele-
mentary abelian subgroup of order p3, as G does not. In particular, P satisfies
the hypothesis of Lemma 3.2.

If x /∈ K, then xG ∩ P = ∅ and Proposition 3.1 implies that P is cyclic. So
we may suppose that x ∈ K. Then x is isolated in K by Lemma 2.2.

If K does not have extraspecial Sylow p-subgroups of order p3 and exponent
p, then Hypothesis 3.3 holds and so Lemma 3.2 yields together with Lemma 3.4,
Lemma 3.7, and Lemma 3.8 that P is a 3-group of maximal class. Finally
Lemma 3.10 provides the assertion. �

4. The fusion system induced by G.

Theorem 4.1. Let G be a finite group and p be an odd prime such that Op′(G) =
1. Suppose that G does not have an elementary abelian subgroup of order p3

and that there is some isolated element x ∈ G of order p such that x /∈ Z(G).
Then every Sylow p-subgroup P of F ∗(G) is normal in FP (F ∗(G)) or part (b)
of the main Theorem is true and FP (F ∗(G)) is isomorphic to FP (H), where
H ∼= SLε

3(q) for some ε ∈ {1,−1} and some prime power q such that 3k | q − ε
but 3k+1

� q − ε.

Proof. Let P ∈ Sylp(F ∗(G)) and set F := FP (F ∗(G)). If P is cyclic, then it
follows from a result of Burnside (see [10, 7.1.5]) that P is normal in F .
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From now on, we may suppose that x ∈ P . In particular, Proposition 3.1 gives
that P is not abelian. Further [3, Theorem 5.39 (v)] implies that P is normal in
F if and only if P is the only F-Alperin subgroup. Let R ≤ P be abelian, then
P �= R. Using Lemma 2.4, we see that (NG(R)/CG(R))/Op(NG(R)/CG(R)) is
cyclic of order dividing p − 1. If R is F-radical and F-centric, then we deduce
from Op(NG(R)/CG(R)) = RCG(R)/CG(R) = 1 that NP (R) ≤ CP (R) ≤ R,
so that R = P , which is a contradiction. This shows that R is not F-Alperin.

If case (a) of the main Theorem holds, then P is extraspecial of order p3

and exponent p. So every proper subgroup of P is abelian. We deduce that P
is the only F-Alperin subgroup, whence P is normal in F .
Consequently, if P is not normal in F , then we see that part (b) of the main
theorem holds. In addition P has a proper F-Alperin subgroup R. We check
the possibilities of F in [4, Table 6 of Theorem 5.10] which is correct in our
case by [9, Theorem 1]. We already saw that abelian subgroups of P are not
F-Alperin and so the groups denoted by V0, V1, V−1, and γ1 are not F-Alperin.
Finally if R ≤ P is extraspecial of order p3 and exponent p, then x ∈ Z(R),
as R has rank 2. So we see from [12] that AutF (R) is a subgroup of SL2(3).
Since F is not exotic, we see that only the third row may occur and so our
theorem is true. �
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