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1. Introduction

While a magnetic field is shielded by a conventional supercon-
ductor (SC), a type-II SC responds to an external magnetic field
by forming vortices or fluxons.[1,2] These are localized filaments
in the SC in which the supercurrent js swirls around a normal
conducting core.[3,4] In an extended system, they interact and
form a lattice. Under an electric bias fluxons may cause a finite
resistance and therefore efforts are made to control their
motion.[5–13] js, which is intimately related to variations in the
phase φs of the SC order parameter, can also be induced by
an electric bias applied to Ohmic contacts to the SC. The question
of interest here is whether we can act directly and in a time-
resolved way on φs without magnetic fields or wiring to diffusive
contacts. To address this issue, we recall that within the
Ginzburg–Landau formulation of SC, the free-energy density
contains a Lifshitz-type invariant that is proportional to
Tvs ∝

P
i T i ∂riφs, where vs is the superfluid velocity.[14,15] T is an

externally applied toroidal moment.[16–20]

We note that it is well feasible to realize
charge and current distributions that gen-
erate only T with the associated vector
potential AT being quasi-stationary and
curl free, that is, no electric or magnetic
fields (only T) are radiated and felt by
charges and currents. Thus, in an SC sam-
ple, only phase-sensitive carriers would
respond coherently to AT . To achieve a time
resolution on the picosecond time scale, we
need to realize a correspondingly fast toroi-
dal switch, meaning we have to be able to
trigger AT on a picosecond time scale,
which would allow a time-resolved control
on φs and vs and can be useful for devices

that functionalize φs.
How to generate a steady-state AT within picoseconds? In a

recent study,[21] it was shown that a toroidal moment can be trig-
gered in a nanoscopic normal-state (semiconductor) torus (typi-
cal dimensions are shown in Figure 1a,b) upon the applications
of two time-delayed THz pulses. One of the pulses is radially
polarized[22] with a propagation direction piercing the torus (cho-
sen as ez, cf. Figure 1b), whereas the second pulse is spatially
homogeneous and linearly polarized along ez. The frequency
of both pulses is resonant with electronic transition within the
semiconductor torus. As evidenced by quantum dynamic simu-
lations, the THz fields drive a poloidal charge current density KT
(marked green in Figure 1b) in the torus, meaning KT has only a
φ component (cf. Figure 1a). In total, the THz pulses generate a
poloidal charge current I. The generated magnetic flux density
BT (with a corresponding magnetic flux ΦT ) is fully confined
to within the semiconductor torus and vanishes outside it.
Outside the torus, the curl-free (gauge invariant) vector potential
AT (with BT ¼ ∇� AT ) signals the existence of a toroidal
moment T hosted by the semiconductor torus and launched
by the THz irradiation;[21] typical field lines of AT , which we
use later in the numerical SC dynamics simulations are shown
by Figure 1c. The torus geometry of the semiconductor is essen-
tial to support eigenstates that carry a poloidal current. The type
of excitation sketched in Figure 1b is also important to be able to
excite these states resonantly from the ground state. The level
space of the state involved in the THz excitation determines
how fast we can switch on AT . From material science point of
view, hybrid superconductor–semiconductor structure and devi-
ces are well feasible (as mentioned by Frasca and Charbon and
Vaitiekėnas et al.[23–26] and references therein). Later, we present
simulations for the response of Type-II SC to AT , that is, a SC for
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which the ratio κ between the magnetic field penetration depth
λGL and the coherence length of the superconducting state ξGL is
larger than 1=

ffiffiffi
2

p
. The THz pulses in the frequency range dis-

cussed later have no significant direct effects on the SC param-
eters. The results are generic and reply on geometry, topology,
the polarization, and frequency properties of the exciting fields.

2. Theoretical Modeling

For a quantification of the sketched ideas, we consider the struc-
ture shown schematically in Figure 1. The semiconductor-based
torus hosting the poloidal current density (emanating the vector
potential) is covered by a SC layer with a spacer layer separating
the semiconducting and the SC torus. We note that the frequency
of the THz fields is chosen to match transitions to states in the
semiconducting torus that carry a poloidal current (generating

AT). The spectrum of the semiconductor is independent of
the SC material parameters that determine for example the
SC gap. Thus, the THz fields can be tuned such that they affect
the semiconductor torus only and the toroidal moment acts on
the SC. Outside the semiconductor torus, a classical charge does
not experience any Lorentz force. As shown by Wätzel and
Berakdar,[21] the THz-excited toroidal state is an eigenstate of
the semiconductor torus, that is, it is only pumped by the
THz pulse and persists in a quasi-static manner after the pulse
has gone (this is due to the torus geometry). In fact, the time
structure of the toroidal moment is such that it rises linearly
at short times when applying the THz pulses and stabilizes at
a fixed value, which persists after the pulses are over.[21] This
time behavior is adopted for AT in the calculations later. The
strength of AT is quantified by the magnetic flux enclosed within
the torus ΦT , measured in units of flux quantum Φ0 ¼ h=qs. The
magnetic flux density associated with ΦT is confined to within

Figure 1. The considered system consists of a nanoscale semiconductor torus (orange) covered by an insulating spacer layer followed by a SC layer (not
to scale). a) A cross-sectional view. b) Two crossed time-delayed THz pulses with radial polarization ê1 and linear polarization ê2 trigger within pico-
seconds resonant electronic transitions in the semiconductor ring generating a stationary poloidal charge current (green arrows).[21] The associated
magnetic field is enclosed within the semiconductor. No electric or magnetic fields are generated outside the orange torus. The associated curl-free
vector potential AT is, however, finite due to the torus toroidal moment. c) Typical field lines in the x–z plane (orange circles indicate the positions of the
orange torus). We study the SC dynamics in response to the buildup of AT.
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the torus limb and after the buildup, it can be well-modeled by
BT ¼ AT0eφ=ρ,

[21] with AT0 ¼ μ0I=2π.
[27] Thus, for convenience,

we may write

ΦT ¼ aξμ0I
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p
ξ2

(1)

where ξ ¼ a=b and a ¼ 13 nm and b ¼ 222 nm are theminor and
major radii of the torus, respectively. We calculated the current I
from the THz-driven quantum dynamics. Equation (1) follows
from classical electrodynamics. For the details on how AT (or
ΦT) rises in time and stabilizes and on how to control its strength
via the THz pulses and for information on the semiconductor
torus parameters, we refer to work by Wätzel and Berakdar,[21]

to avoid repetition and concentrate here on the SC part of the
study. To simulate the dynamics of the order parameter Ψ, we
solve for the time-dependent Ginzburg–Landau (TDGL) equa-
tions.[28]

γ ℏ
∂Ψ
∂t

þ iqsϕΨ
� �

þΨðβjΨj2 þ αÞ þ 1
2ms

ℏ
i
∇� qsA

� �
2
Ψ ¼ 0

(2)

Here, the standard boundary condition for superconductor–
insulator interfaces

ℏ
i
∇Ψ� qsAΨ

� �
⋅ n ¼ 0 (3)

is applied, ensuring that the supercurrent has no component per-
pendicular to the sample boundary. The constants qs and ms are
the charge and mass of a single Cooper pair and γ, α, and β are
temperature-dependent material parameters. To simplify the
solution of Equation (2), we apply the vanishing electric potential
gauge ϕ ¼ 0 to the scalar potential.[29] From the SC order param-
eter Ψ, we obtain the local density of Cooper pairs ns ¼ jΨj2. In
our case, the wave function is normalized by its bulk value Ψ∞.
This means ns ¼ 1 corresponds to fully superconducting behav-
ior and ns ¼ 0 signals normal conductance. In what follows, we
assume A ¼ AT (i.e., the toroidal-moment vector potential AT
that we use in the simulations is assumed to be much larger than
the induced vector potential in SC). We note that including the
vector potentials associated with the THz pulses in the calcula-
tions (or including them alone in the GL equations) leads only to
fast minor variations in Ψ that average to zero. AT is stabilized in
time, and hence can act markedly on the SC, because the associ-
ated quantum states in the semiconductor are eigenstates.

The toroidal field AT in the full space is calculated from
Ampéres law

1
μ0

∇� ∇� AT ¼ ∇� BT (4)

with open boundary conditions, that is, AT ! 0 for r ! ∞. The
solution of Equation (4) is used as input for the first TDGL equa-
tion. From previous quantum simulations,[21] we infer that the
time (t) dependence of the toroidal vector potential can be
assumed as AT ¼ AT0t. The initial field AT0 follows
Equation (4) with an initial value of AT0 ¼ 88.572mTnm. We
neglect the interaction of the SC with its own magnetic field

Bs ¼ ∇� As. Although, the eddy current flow and the self-field
interaction can, in principle, be taken into account by solving the
full set of TDGL equations.[5] In our case, setting As to zero is a
reasonable approximation since the superconducting layer is
much thinner than the magnetic penetration depth. When
additional external magnetic fields Be are applied to the SC,
we write A ¼ AT þ Ae. For the external vector potential, the sym-
metric gauge Ae ¼ 0.5Beρef is chosen, leading to the magnetic
flux density Be ¼ Beez, meaning that the field is parallel to the
torus central axis. The numerical simulations are performed
for Nb3Sn with the following parameters: λLðT ¼ 0Þ ¼ 65 nm,
λLðT ¼ 0.9TCÞ ¼ 111 nm, and κ ¼ 30.[30] Thus, the SC layer
thickness is well below the London penetration depth.
Here, the generally accepted two-fluid model[31] for the
temperature dependence of λL was used, where
λLðTÞ ¼ λLð0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðT=T cÞ4

p
. The diffusion constant γ is

assumed to be similar to that of Nb.[10] For the numerical imple-
mentation, the system shown in Figure 1a is enclosed in a cubic
box of the side length a ¼ 2.74 μm. The box is necessary to
approximate the open boundary conditions imposed on AT. A
standard Galerkin finite-element (FEM)[32] method with conven-
tional Lagrange elements for Ψ and first-order Nédelec elements
for AT is used and the calculations are performed with the FEM
software Fenics. The Generation of the FEMmesh has been done
with the software Gmsh.[33]

3. Numerical Results

3.1. Vortex Ring Formation

To investigate how the SC reacts to the current flow in the torus,
we ramped up the corresponding magnetic flux ΦT with a rate
ΔΦ=Δt ¼ 0.312Φ0=ps. For this rate of increase in the toroidal
vector potential, the SC behaves non-adiabatically. This means
the SC reacts transiently and cannot relax to an equilibrium state
within the time in which ΦT is almost constant. Instead, at each
instance of time, the magnetic flux in the semiconducting torus
is increased incrementally changing the transient state of the SC.
The simulations capture the dynamic evolution of the supercon-
ducting state and the results can potentially be assessed in real
experiments. The rise up of AT (orΦT) drives a supercurrent js in
the SC (cf. Figure 2) that also affects the Cooper pair density jΨj2
(cf. Figure 3). Of interest here is the behavior of js.

The effect that AT has on the SC can be understood by writing
the order parameter in its amplitude-phase form
Ψ ¼ Ψ0ðr, tÞeiφsðr, tÞ. The supercurrent density can be written as
a gauge-invariant phase gradient

js ¼
qs
ms

Ψ2
0ðℏ∇φs � qsAÞ ¼ nsqsvs (5)

For small fields, the order-parameter amplitude is only slightly
affected and we have Ψ0 ¼ 1. For solenoidal fields, the supercur-
rent density increases linearly with the applied vector potential.
The phase evolves such that the boundary condition Equation (3)
is always fulfilled. For higher field values, the order parameter is
locally suppressed and the relation between the supercurrent and
field becomes nonlinear. In our case, BT ¼ ∇� AT ¼ 0 in the SC
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and naturally one would expect js ¼ 0 since the phase and the
vector potential compensate for each other. However, the field
lines of AT are still solenoidal and the topology dictates thatH
Γ AT ⋅ dl ¼ ΦT, even if ∇� AT ¼ 0 locally. Γ here is a path
which encloses the magnetic flux completely. The superconduct-
ing phase cannot compensate such a field and therefore a finite

supercurrent flows. This is only possible if there exists a path Γ in
the SC, which encloses the magnetic flux ΦT. Otherwise, the vec-
tor potential can be written as A ¼ ∇u and the earlier argument
fails.[27] If we integrate Equation (5) along the path Γ which enc-
loses the magnetic flux of the torus, we obtain the fluxoid quan-
tization condition (see, e.g., ref. [30]):

ms

qs

I
Γ
vs ¼ kΦ0 �ΦT, k ∈ ℤ (6)

The quantity on the left is the fluxoid taking values that are
multiples of the magnetic flux quantum Φ0. Essentially,
Equation (6) is a condition for energy minimization. With an
increasing amplitude of the vector potential, the superfluid veloc-
ity increases as well and the kinetic energy of the system rises.
For sufficiently strong fields, the system can relax by expelling
one flux quantum from its interior. In the course of this process,
the phase winding number k increases by one increment. The
corresponding phase jump is accompanied by the emergence
of a vortex. Increasing further the strength of the toroidal
moment more vortices are expelled from the SC and the energy
of the system oscillates with the applied field. The behavior
resembles the Little–Parks oscillations in thin-walled supercon-
ducting cylinders.[2] However, in our case, the SC has a different
topology and the applied field is highly inhomogeneous in space.
Therefore, the current flow due to AT and the conditions for the
vortex entry are changed as well, since they both depend on the
geometry of the system.[34–36] We note that the vortices in our SC
torus appear as closed rings. The emergence of such vortex loops
is typical in systems where the field lines of the applied magnetic
field form closed paths inside the SC material,[37,38] but vortex
loops were also proposed to be realizable in Josephson
Junctions[39] and in current-driven SCs.[40]

As the toroidal field is ramped up, jΨj2 decreases gradually, as
shown in Figure 2. When a critical value ΦT ¼ 3.954Φ0 is
reached, jΨj2 admits a minimum which correlates with the for-
mation of a vortex ring at the inner side of the SC and in the
proximity to the semiconductor torus (there, AT is largest, as seen
from Figure 1c). As we do not include any pinning or external
magnetic fields, the vortex ring diffuses toward the torus center
along a path of decreasing AT and eventually collapses (within �
66ps for the simulations shown in Figure 2). The behavior of jΨj2
indicates an SC phase jump from�π=2 to π=2. This is confirmed
by Figure 3, which also shows the spatial structure of the corre-
sponding superconducting density. The normal conducting core
heals after the vortex ring diffuses and disappears. For higher
critical values ΦT, vortex rings are again formed when quantized
phase jumps are met, similarly as in Figure 3.

Generally, the behavior of js on the external vector potential is
more involved than in the case of a 2D system with a flat geome-
try. This is because of the SC torus topology and also due to the
fact that AT is inhomogeneous, as illustrated by the example in
Figure 4 and 5. The supercurrent flows around the torus limb
counteracting the external vector potential, as can be seen from
Equation (5). For small fields, we have jΨj2 � 1 and the maxi-
mum value of js appears at the inner side of the torus, where
AT is maximal. As the vector potential is increased, the SC den-
sity decreases and the supercurrent density is suppressed as well
(see Figure 5). Prior to the emergence of the vortex ring, jΨj2 and

Figure 2. Typical behavior of the rise (top) and decay (middle and bottom)
(within 66ps) of a vortex ring structure in the torus (shown are full vortex
rings, but only the torus cross sections are depicted). The vortex rings
build up in the inner region of the SC torus in proximity to the semicon-
ductor torus. There, AT is largest. The vortex rings wander then toward the
center of the SC donut and diminish at the boundary. ΦT ¼ 3.954Φ0.

Figure 3. Superconducting density jΨj2 (top) and its phase φs (bottom).
In this particular case, the vortex ring is formed when the toroidal vector
potential rises to a value corresponding to ΦT ¼ 3.954Φ0.
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js both vanish at inner side of the torus. As the vortex ring devel-
ops fully, the phase field of the vortex requires the supercurrent
to flow around the normal conducting core, in a way that obeys
Equation (6). After the vortex is expelled, the order parameter
recovers and js flows along its original direction. However, the
phase field of the vortex is still present and screens the external
vector potential to some extent. The appearing vortex ring signals

the transition of the system into a state of reduced current density
and lower energy (see Figure 4).

The irregular structures in jjsjmax, shown in Figure 4, can be
partially traced to the vortex ring formation. In addition, the inho-
mogeneity in the SC phase and current is not restricted to the
vortex region. With increasing ΦT, the SC current becomes inho-
mogeneous with the largest value being where the external vector

Figure 4. Left: The change in the magnitude of the supercurrent js with increasing strength of the toroidal vector potential and the associated magnetic
flux ΦT, which is fully enclosed within the semiconductor ring. Right: Ginzburg–Landau (GL)-free energy of the SC. The numbering corresponds to the
states shown in Figure 5.

Figure 5. Left: Spatial distribution of the supercurrent density js (arrows indicate the directions) in a cross section of the torus for 1)ΦT ¼ 2.069Φ0. Right:
Magnitude of the supercurrent density on a slice through the torus limb for 2) ΦT ¼ 3.912Φ0, 3) ΦT ¼ 4.015Φ0, and 4) ΦT ¼ 4.221Φ0.
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potential is strongest, namely at the inner side of the torus. Here,
the SC order parameter experiences the strongest suppression,
which in return affects js. The amplitude and the position of
the supercurrent maximum may therefore change with increas-
ing the external field strength, leading to the involved behavior in
Figure 4. The suppressed density also affects the entry condition
for fluxons via a modification of the corresponding energy bar-
rier.[35,36] This is the reason why a vortex ring forms affecting
locally jΨj, and why this interplay between jΨj and js, while evolv-
ing in time (according to Equation (2)), results in the involved
structures in Figure 4.

3.2. Helical Supercurrent

From Figure 2, it is clear that the induced vortex ring eventually
diminishes in absence of external stabilization. In contrast, we
expect that an external magnetic flux piercing the torus should
lead to a persistent Aharonov–Bohm current jθs around the torus
(θ direction).[1,2] Thus, we anticipate that applying, in addition to
AT, a magnetic flux density BE ¼ BEez should lead to a stable
helical structure of the current and superconducting phase.
The corresponding numerical results are shown in Figure 6
for the superconducting phase. The uniqueness of phase entails
the existence of a topological number counting the smooth cur-
rent windings along the φ and θ directions. Recalling the relation
to the supercurrent velocity and considering the localized nature
of the structures in the supercurrent, we also may quantify the
helical current with two components of the orbital angular
momentum vector of the superconducting density. From the spa-
tial structure of φs (and the associated superconducting current
density), we may also infer on the formation of a finite toroidal
moment in the superconducting layer. We note that supercon-
ducting toroidal moments were discussed as interesting candi-
dates for SC-based information processing.[41]

4. Conclusions

This work presents a proposal for driving and structuring the
superconducting dynamic in a torus via field-free vector potential

that can be induced by THz radiation in a nearby semiconducting
structure. We performed full numerical simulations that show
the formation and motion of vortex rings. The rings can be mod-
ulated to a helical-phase texture extending over the entire torus
and forming a helical current by applying an additional homoge-
neous external magnetic flux density.
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