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We consider two systems of nonlinear first-order ordinary differential equations
proposed to describe Ca2+-levels in renal vascular smooth muscle cells and in
liver cells. Initially, we present the models and its assumptions. We next inves-
tigate an approach to local solvability by Picard–Lindelöf 's Theorem. Further,
we prove nonnegativity of the systems' possible solutions and we especially
conclude global unique existence of the models' solutions by Gronwall-type
arguments and the concept of trapping regions. After finishing our theoretical
part with some aspects of stability analysis, we provide evidence of our findings
by some numerical experiments.
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1 INTRODUCTION

In this article, we first examine the initial value problem of the system

⎧⎪⎨⎪⎩
x′(t) = −𝛽x(t) − 𝛾x(t) + k0 + ks𝑦(t) + 𝑓 (x(t)) 𝑦(t),
𝑦′(t) = 𝛾x(t) − ks𝑦(t) − 𝑓 (x(t)) 𝑦(t),
x(0) = x0,
𝑦(0) = 𝑦0

(1)
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of nonlinear first-order ordinary differential equations for Ca2+-levels in renal vascular smooth muscle cells as depicted
by Layton and Edwards.1 This model was first proposed by Somogyi and Stucki2 to describe hormone-induced calcium
oscillations in liver cells. Here, 𝛽, 𝛾 , k0, and ks are positive constants as model parameters and the scalar-valued function
𝑓 ∶ [0,∞) → [0, 1] is a suitable model transfer rate function as defined in Section 2. We assume nonnegative initial
conditions x0 and y0.

Additionally, we investigate the initial value problem of the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x′(t) = k1 + k2x(t) − k3
x(t)𝑦(t)
x(t)+k4

− k5
x(t)z(t)
x(t)+k6

,

𝑦′(t) = k7x(t) − k8
𝑦(t)

𝑦(t)+k9
,

z′(t) = k10x(t) − k11
z(t)

z(t)+k12
,

x(0) = x0,
𝑦(0) = 𝑦0,
z(0) = z0

(2)

of nonlinear first-order ordinary differential equations for Ca2+-levels in liver cells as proposed by Kummer and
co-authors.3 Here, kj for 𝑗 ∈ {1, … , 12} are positive constants as model parameters. We assume nonnegative initial
conditions x0, y0, and z0.

In both systems, we assume spatial homogeneity of signaling processes. For motivational purposes, we restrict our short
motivational introduction to System (1).

1.1 Motivation
Modeling with differential equations is a versatile tool in all natural sciences with a traditional history.1–22 Especially
in pharmacokinetics or systems biology, one often uses the tool of compartmental models for modeling different types
of systems.23 From a compartmental model approach, System (1) is derived under certain assumptions by Layton and
Edwards.1 We illustrate this compartmental approach for System (1) in Figure 1.

We follow the description by Layton and Edwards.1 x denotes Ca2+-concentration in the cytosol, and y denotes
Ca2+-concentration in the sarcoplasmic reticulum (SR). We abbreviate the plasma membrane Ca2+ pump by
PCMA (plasma membrane Ca2+) and the sarcoplasmic reticulum Ca2+ pump by SERCA (sarcoplasmic reticulum Ca2+).
We assume that the last two mentioned pumps pump Ca2+ at linear rates 𝛽 and 𝛾 . At the same time, there are two passive
Ca2+ fluxes into the cells of the cytosol. The one flux transports Ca2+ at a linear rate k0 from the extracellular compartment
into the cytosol, while the other flux transports Ca2+ at a linear rate ks from the SR into the cytosol. At last, we assume
that receptor-mediated Ca2+ release into the cytosol is given by a transfer rate function f(x). For further details, we refer
the reader to the book by Layton and Edwards1 or the work by Somogyi and Stucki.2

From a biological or medical viewpoint, transfer coefficients might be indicators of cell healthfulness. If some coeffi-
cients leave certain parameter ranges, medical scientists will be able to predict abnormalities that indicate need of medical

FIGURE 1 A simplified representation of intracellular calcium
signaling described through System (1). This illustration is modified
from Figure 6.4 by Layton and Edwards 1
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treatment. However, we restrict our work to mathematical aspects and discuss later some important implications which
can be drawn from our findings.

1.2 Contributions and outline
We often answer the following mathematical questions when dealing with nonlinear systems of first-order ordinary
differential equations:

• Does there exist a solution locally? Is this solution locally unique? Are there special properties?
• Are we able to extend a local solution globally in time? Is this solution unique for all time? Can we prove some special

properties like nonnegativity?
• Are stationary points of the right-hand side vector field stable or unstable?

Hereafter, we are going to answer these questions as they were not addressed by Layton and Edwards1 or by Somogyi
and Stucki.2 Answers to these questions are important for applications as some properties like nonnegativity of solutions
are essential for meaningfulness of mathematical models. For that reason, we give detailed analysis to both systems which
we investigate in this work.

Our article is structured as follows. After our introduction in Section 1, we carry out a detailed analysis of System (1)
in Section 2. Afterwards, we give a thorough analysis of System (2) in Section 3. Finally, we draw some similarities and
differences between those two systems by numerical experiments. We summarize our findings, draw conclusions from
them, and provide some further research directions regarding dynamical systems in biological systems in Section 4.

2 FIRST SYSTEM: Ca2+ LEVELS IN RENAL VASCULAR SMOOTH MUSCLE
CELLS

2.1 Mathematical preliminaries
Here, we recall Lipschitz continuity of a function.

Definition 1 (24, Definition 1). Let (X , dX ) and (Y , dY ) be two metric spaces with corresponding metrics dX and dY on the
sets X and Y . We call a function h : X→Y Lipschitz continuous if there exists a real constant L ≥ 0 such that

dY (h (x1) , h (x2)) ≤ LdX (x1, x2) (3)

holds for all x1, x2 ∈X. We refer to L as a Lipschitz constant for the function h. If there exists for every x∈X, a
neighborhood U of x such that h restricted to U is Lipschitz continuous, we call h locally Lipschitz continuous.

As we work on Euclidean spaces Rd with d ∈ N, we can restrict the aforementioned definition and inequality (3) to
this case.

Definition 2 (16, Subsection 3.2). Let d1, d2 ∈ N. If S ⊂ Rd1 , a function F ∶ S → Rd2 is called Lipschitz continuous on S if
there exists a nonnegative constant L ≥ 0 such that

||F (x) − F (y) ||Rd2 ≤ L||x − y||Rd1 (4)

holds for all x, y∈ S. Here, || · || denotes a suitable norm on the corresponding Euclidean space.
Let U ⊂ Rd1 be open, let F ∶ U → Rd2 . We shall call F locally Lipschitz continuous if for every point x0 ∈U there

exists a neighborhood V of x0 such that the restriction of F to V is Lipschitz continuous on V .

2.2 Model equations
As a reminder, our model equations read

⎧⎪⎨⎪⎩
x′(t) = −𝛽x(t) − 𝛾x(t) + k0 + ks𝑦(t) + 𝑓 (x(t)) 𝑦(t),
𝑦′(t) = 𝛾x(t) − ks𝑦(t) − 𝑓 (x(t)) 𝑦(t),
x(0) = x0,
𝑦(0) = 𝑦0,

(5)
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where we seek two continuously differentiable functions x ∶ [0,∞) → R and 𝑦 ∶ [0,∞) → R. System (5) consists of
two first-order nonlinear ordinary differential equations. Investigating properties of this system's solutions, we must take
additional assumptions into account.

Assumption 1. Let 𝛽, 𝛾 , k0, ks be positive real constants. Likewise, we assume x0, y0 > 0 for our initial conditions. Let
the function 𝑓 ∶ [0,∞) → [0, 1] be a continuously differentiable function with 𝑓 (0) = 0 and whose first derivative is
bounded, that is, there exists a positive real constant M ≥ 0 such that

||𝑓 ′(z)|| ≤ M (6)

holds for all z ∈ [0,∞).

If we follow Somogyi's work2 or Problem 6.5 from Layton's book,1 a suitable transfer rate function choice for f is

𝑓 ∶ [0,∞) → [0, 1] , z →
zn

𝛼n + zn (7)

for a positive real constant 𝛼 > 0 and an arbitrary n ∈ N. We summarize the following properties.

Lemma 1. The function defined in (7) fulfills Assumption 1.

Proof. By definition, we see 𝑓 ∶ [0,∞) → R. Obviously, 𝑓 (0) = 0 is satisfied. Additionally, we conclude that

0 ≤ 𝑓 (z) = zn

𝛼n + zn ≤ zn

zn = 1

holds for all z ∈ [0,∞). This shows boundedness of f.
Finally, we prove that (6) is valid. We have

𝑓 ′(z) = n𝛼nzn−1

(𝛼n + zn)2

for the first derivative. This means that f is monotonically increasing for all z ∈ [0,∞) and for every n ∈ N. The second
derivative depends on n ∈ N. If n = 1, we get

𝑓 ′′(z) = − 2𝛼
(𝛼 + z)3 ≤ 0

for all z ∈ [0,∞). For n≥ 2, the second derivative reads

𝑓 ′′(z) = n𝛼nzn−2 ((n − 1) 𝛼n − (n + 1)zn)
(𝛼n + zn)3

for all z ∈ [0,∞). Thus, f ′ is monotonically increasing on
[
0, n
√

n−1
n+1

𝛼
]
, whereas it is monotonically decreasing on[

n
√

n−1
n+1

𝛼,∞
)

. It immediately follows for every n ∈ N that there exists a real constant M(n)> 0 such that

||𝑓 ′(z)|| ≤ M(n)

holds for all z ∈ [0,∞) which finishes our proof.
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2.3 Local unique solvability
In this section, proof of local unique existence is provided by Picard–Lindelöf 's Theorem. We consider the initial value
problem {

z′(t) = G (z(t)) ,
z(0) = z0,

(8)

where we define z(t) = (x(t), 𝑦(t)) and G (z(t)) = (g1 (x(t), 𝑦(t)) , g2 (x(t), 𝑦(t))). Here, the functions

g1, g2 ∶ R
2 → R

are given by

g1 (x(t), 𝑦(t)) = −𝛽x(t) − 𝛾x(t) + k0 + ks𝑦(t) + 𝑓 (x(t)) 𝑦(t) (9)

and
g2 (x(t), 𝑦(t)) = 𝛾x(t) − ks𝑦(t) − 𝑓 (x(t)) 𝑦(t). (10)

System (8) is therefore a reformulation of System (5).
We state Picard–Lindelöf 's Theorem for proving local unique existence.

Theorem 1 (16, Theorem 3.2.1). Suppose that U ⊂ Rd is open and it holds z0 ∈U for our initial condition. Let G ∶ (−𝜀, 𝜀) ×
U → U be locally Lipschitz continuous. Then there exists a unique continuously differentiable function z ∶ (−𝜀, 𝜀) → Rd

which satisfies {
z′(t) = G (t, z) ,
z(0) = z0,

(11)

that is, satisfaction of our initial value problem in shortened notation.

We are now able to show that the initial value problem (8) has a unique local solution.

Lemma 2. We consider the initial value problem (8) with right-hand side functions (9) and (10). This initial value
problem possesses a unique local solution.

Proof. As our initial conditions x0 and y0 are nonnegative by Assumption 1 and both functions

g1 ∶ R × R
2 → R in (9) and g2 ∶ R × R

2 → R in (10)

are continuously differentiable as sums and products of continuously differentiable functions and locally Lipschitz
continuous by (16, Proposition 3.2.3), we are able to apply Picard–Lindelöf 's Theorem 1 and this yields the unique local
existence.

2.4 Boundedness and nonnegativity
We examine the behavior of System (8) with right-hand side functions (9) and (10), where Assumption 1 is fulfilled.

In order to provide boundedness, we have to state one variant of Gronwall's Lemma.

Theorem 2 (16, Lemma 3.3.1). Let g ∶ [0,T] → R be continuous and suppose that there are nonnegative real constants C
and K such that

g(t) ≤ C + K

t

∫
0

g(s)ds (12)

holds for all t ∈ R with 0 ≤ t ≤ T. This then implies

g(t) ≤ C exp(Kt) (13)

for all t ∈ R with 0 ≤ t ≤ T.
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Now, we prove a generalization of Gronwall's Lemma as it is only given as Exercise 8a in Subsection 3.5 of Schaeffer's
book.16

Lemma 3 (16, Subsection 3.5, Exercise 8a). Let g : [0, T]→ be continuous and suppose that there are nonnegative real constants
B, C, K such that

g(t) ≤ C + Bt + K

t

∫
0

g(s)ds (14)

holds for all t ∈ R with 0 ≤ t ≤ T. Then it holds

g(t) ≤ C exp(Kt) + B
exp(Kt) − 1

K
(15)

for all t ∈ R with 0 ≤ t ≤ T.

Proof. Define the function h ∶ [0,T] → R, t → g(t) + B
K

. Obviously, this function is continuous. We have

h(t) = g(t) + B
K

≤ C + Bt + K

t

∫
0

g(s)ds + B
K

= C + K
⎛⎜⎜⎝

t

∫
0

g(s) + B
K

ds
⎞⎟⎟⎠ + B

K
=
(

C + B
K

)
+ K

t

∫
0

h(s)ds.

from application of inequality (14). By the aforementioned version of Gronwall's Lemma, we get

g(t) + B
K

= h(t) ≤ (C + B
K

)
exp(Kt)

and this implies

g(t) ≤ C exp(Kt) + B
exp(Kt) − 1

K
which shows our assertion of inequality (15).

For boundedness, we need the following lemma. We consider the autonomous initial value problem{
z′(t) = F (z(t)) ,
z(0) = z0.

(16)

It is a consequence of the generalization of Gronwall's Lemma.

Lemma 4 (16, Theorem 4.2.1). If F ∶ Rd → Rd is locally Lipschitz continuous and if there exist nonnegative real constants B
and K such that ||F (z) ||Rd ≤ K||z||Rd + B (17)

holds for all z ∈ Rd, then the solution of the aforementioned initial value problem (16) exists for all time t ∈ R and
moreover, it holds ||z(t)||Rd ≤ ||z0||Rd exp (K |t|) + B

K
(exp (K |t|) − 1) (18)

for all t ∈ R.

Proof. As depicted in Theorem 4.2.1 of Schaeffer's book,16 this inequality is a direct consequence of Lemma 3.

We introduce the concept of trapping regions from Section 4.2 of Schaeffer's book16 in order to provide an alternative
approach to boundedness.
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Definition 3. Consider an initial value problem{
z′(t) = G (z(t)) ,
z(0) = z0,

where the right-hand side function G ∶ U → Rd is defined on an open set U ⊂ Rd. Let K⊂U be a compact set with a
piecewise smooth boundary 𝜕K. Let x∈ 𝜕K and Nx be an inward pointing normal to 𝜕K at x. We shall call K a trapping
region for the initial value problem if ⟨Nx,G (x)⟩Rd×Rd ≥ 0
holds for all x∈ 𝜕K. Here, ⟨·, ·⟩Rd×Rd denotes the inner product on Euclidean space Rd.

A consequence of this introduced concept is the following theorem.

Theorem 3 (16, Theorem 4.2.3). Suppose that G ∶ U → R2 is continuously differentiable on a domain U ⊂ R2 and that
K⊂U is a compact region with a piecewise smooth boundary such that

⟨Nx,G (x)⟩R2×R2 ≥ 0

holds for all x∈ 𝜕K that are regular points. If the initial data lie in the interior of K, then the solution x(t) to the initial
value problem x′(t) = G (x(t)) , x(0) = x0 exists for all nonnegative time and remains in K.

2.4.1 Nonnegativity
As nonnegativity is an important feature of biological systems such as in epidemiology21,25 or population dynamics,22 we
want to demonstrate that solutions to System (8) never leave the first quadrant, that is, that solutions are nonnegative.

Theorem 4. We consider system (8) under Assumption 1. If we have a solution in regard of Lemma 2, this solution
remains nonnegative.

Proof. Let us assume that there is a time t̂ > 0 such that x
(

t̂
)
= 0 or 𝑦

(
t̂
)
= 0. We have to distinguish three different

cases.

Case 1: Let x
(

t̂
)
= 0 and 𝑦

(
t̂
)
= 0. This yields

x′
(

t̂
)
= − 𝛽x

(
t̂
)
− 𝛾x
(

t̂
)
+ k0 + ks𝑦

(
t̂
)
+ 𝑓
(

x
(

t̂
))

𝑦
(

t̂
)

= k0

> 0

and
𝑦′
(

t̂
)
= 𝛾x
(

t̂
)
− ks𝑦

(
t̂
)
− 𝑓
(

x
(

t̂
))

𝑦
(

t̂
)

= 0.
Continuity of x′ implies that there exists a positive constant 𝛿1 > 0 such that x(t)> 0 for all t ∈ R with t̂ < t <
t̂ + 𝛿1. By the following, we are also going to notice that y(t) is positive.

Case 2: Let x
(

t̂
)
> 0 and 𝑦

(
t̂
)
= 0. This implies

x′
(

t̂
)
= − 𝛽x

(
t̂
)
− 𝛾x
(

t̂
)
+ k0 + ks𝑦

(
t̂
)
+ 𝑓
(

x
(

t̂
))

𝑦
(

t̂
)

= − 𝛽x
(

t̂
)
− 𝛾x
(

t̂
)
+ k0

and
𝑦′
(

t̂
)
= 𝛾x
(

t̂
)
− ks𝑦

(
t̂
)
− 𝑓
(

x
(

t̂
))

𝑦
(

t̂
)

= 𝛾x
(

t̂
)

> 0.
Continuity of x′ and y′ yields that there exists a positive constant 𝛿2 > 0 such that x(t)> 0 and y(t)> 0 for all
t ∈ R with t̂ < t < t̂ + 𝛿2.
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Case 3: Let x
(

t̂
)
= 0 and 𝑦

(
t̂
)
> 0. This gives

x′
(

t̂
)
= − 𝛽x

(
t̂
)
− 𝛾x
(

t̂
)
+ k0 + ks𝑦

(
t̂
)
+ 𝑓
(

x
(

t̂
))

𝑦
(

t̂
)

= k0 + ks𝑦
(

t̂
)

> 0

and
𝑦′
(

t̂
)
= 𝛾x
(

t̂
)
− ks𝑦

(
t̂
)
− 𝑓
(

x
(

t̂
))

𝑦
(

t̂
)

= − ks𝑦
(

t̂
)

< 0.

From continuity of x′ and y′, we conclude that there exists a positive constant 𝛿3 > 0 such that x(t)> 0 and y(t)> 0
for all t ∈ R with t̂ < t < t̂ + 𝛿3.

2.4.2 First approach to boundedness: Gronwall-type arguments
We start with local Lipschitz continuity of G defined in (8) by (9) and (10).

Lemma 5. The function G defined in (8) by (9) and (10) is locally Lipschitz on every compact set K with K ⊂ [0,∞) ×
[0,∞).

Proof. G ∶ [0,∞)×[0,∞) → R2 is continuously differentiable for every open set U ⊂ [0,∞)×[0,∞). Thus, G is locally
Lipschitz continuous on every compact set K with K⊂U by application of Proposition 3.2.2 from Schaeffer's book.16

Additionally, we state that G fulfills the assumed inequality in Lemma 4.

Lemma 6. The function G defined in (8) by (9) and (10) fulfills

||G (z(t)) ||∞ ≤ (1 + 𝛽 + 𝛾 + ks) ||z(t)||∞ + k0 (19)

for all z ∈ R2 and for all t ∈ R. Here, || · ||∞ denotes the maximum norm.

Proof. Denote z(t) = (x(t), 𝑦(t)). We remind ourselves that G is defined by (9) and (10) and the maximum norm is
given by || (x(t), 𝑦(t)) ||∞ ∶= max {|x(t)| , |𝑦(t)|} .
Consequently, we investigate

||G (x(t), 𝑦(t)) ||∞ = max {|g1 (x(t), 𝑦(t))| , |g2 (x(t), 𝑦(t))|} .
By applying the triangle inequality, we get

|g1 (z(t))| = |g1 (x(t), 𝑦(t))|
= |−𝛽x(t) − 𝛾x(t) + k0 + ks𝑦(t) + 𝑓 (x(t)) 𝑦(t)|
≤ 𝛽 |x(t)| + 𝛾 |x(t)| + k0 + ks |𝑦(t)| + |𝑦(t)|
≤ (1 + 𝛽 + 𝛾 + ks) || (x(t), 𝑦(t)) ||∞ + k0

= (1 + 𝛽 + 𝛾 + ks) ||z(t)||∞ + k0
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and |g2 (z(t))| = |g2 (x(t), 𝑦(t))|
= |𝛾x(t) − ks𝑦(t) − 𝑓 (x(t)) 𝑦(t)|
≤ 𝛾 |x(t)| + ks |𝑦(t)| + |𝑦(t)|
≤ (1 + 𝛾 + ks) || (x(t), 𝑦(t)) ||∞
≤ (1 + 𝛽 + 𝛾 + ks) ||z(t)||∞ + k0.

Thus, we conclude ||G (z(t)) ||∞ = ||G (x(t), 𝑦(t)) ||∞ ≤ (1 + 𝛽 + 𝛾 + ks) ||z(t)||∞ + k0

and this proves our assertion of inequality (19).

Finally, we are able to state our boundedness result.

Theorem 5. Solutions of system (8) are bounded for all times t ∈ R and fulfill the inequality

||z(t)||∞ ≤ ||z0||∞ · exp ((1 + 𝛽 + 𝛾 + ks) |t|) + k0 (exp ((1 + 𝛽 + 𝛾 + ks) |t|) − 1)
(1 + 𝛽 + 𝛾 + ks)

(20)

for all times t ∈ R.

Proof. By Lemmas 5 and 6, we know that all assumptions of Lemma 4 are fulfilled. This implies that

||z(t)||∞ ≤ ||z0||∞ exp ((1 + 𝛽 + 𝛾 + ks) |t|) + k0 (exp ((1 + 𝛽 + 𝛾 + ks) |t|) − 1)
(1 + 𝛽 + 𝛾 + ks)

holds for all t ∈ R which proves our assertion of (20).

2.4.3 Second approach to boundedness: Trapping regions
Alternatively, we can use the concept of trapping regions.

Theorem 6. Define the domain boundary

𝜕K ∶=
{
(x, 𝑦) ∈ R

2 ∶ 0 ≤ x ≤ N k0

𝛽

(
1 + 2 𝛾

ks

)
, 𝑦 = 0

}
∪
{
(x, 𝑦) ∈ R

2 ∶ x = 0 , 0 ≤ 𝑦 ≤ 2N 𝛾k0

ks𝛽

}
∪
{
(x, 𝑦) ∈ R

2 ∶ 0 ≤ x ≤ N k0

𝛽
, 𝑦 = 2N 𝛾k0

ks𝛽

}
∪
{
(x, 𝑦) ∈ R

2 ∶ x + 𝑦 = N k0

𝛽

(
1 + 2 𝛾

ks

)
,N k0

𝛽
≤ x ≤ N k0

𝛽

(
1 + 2 𝛾

ks

)}
= 𝜕K1 ∪ 𝜕K2 ∪ 𝜕K3 ∪ 𝜕K4

for an arbitrary N ∈ N. It follows that K is a trapping region for system (8).

Proof. By construction, K is compact. The domain K and an example of an inward pointing normal vector Nx are
shown in Figure 2. We have to check that ⟨Nx,G (x)⟩R2×R2 ≥ 0

holds for all x∈ 𝜕K. Thus, we distinguish four cases.
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FIGURE 2 A sketch of the trapping region K

Case 1: Let x∈ 𝜕K1. It holds

⟨Nx,G (x)⟩R2×R2 =
⟨(

0
1

)
,

(
x′(t)
𝑦′(t)

)⟩
R2×R2

= 𝑦′(t)
= 𝛾x(t)
≥ 0,

which proves our assertion in this case.
Case 2: Let x∈ 𝜕K2. We get

⟨Nx,G (x)⟩R2×R2 =
⟨(

1
0

)
,

(
x′(t)
𝑦′(t)

)⟩
R2×R2

= x′(t)
= k0 + ks𝑦(t)
≥ k0

> 0,

which finishes this case's proof.
Case 3: Let x∈ 𝜕K3. This implies

⟨Nx,G (x)⟩R2×R2 =
⟨(

0
−1

)
,

(
x′(t)
𝑦′(t)

)⟩
R2×R2

= − 𝑦′(t)
= − 𝛾x(t) + ks𝑦(t) + 𝑓 (x(t)) 𝑦(t)
≥ − 𝛾x(t) + ks𝑦(t)

≥ − 𝛾N k0

𝛽
+ 2ksN

𝛾k0

ks𝛽

= N𝛾
k0

𝛽

> 0

from which we conclude our assertion in this case.
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Case 4: Let x∈ 𝜕K4. This yields ⟨Nx,G (x)⟩R2×R2 =
⟨(

−1
−1

)
,

(
x′(t)
𝑦′(t)

)⟩
R2×R2

= −x′(t) − 𝑦′(t)
= 𝛽x(t) − k0

≥ 𝛽N k0

𝛽
− k0

= (N − 1) k0

≥ 0,
and our final case is proved.

As N ∈ N in our aforementioned theorem can be any arbitrary natural number, we are always able to define trapping
regions K for arbitrary nonnegative initial values x0 and y0.

2.5 Global unique solvability
All our foregoing results can be summarized in our main Theorem.

Theorem 7. We consider the initial value problem (8) where the functions g1, g2 ∶ R2 → R are given by (9) and (10).
Then, this initial value problem has a unique nonnegative solution which exists for all t ≥ 0 and is bounded above
according to (20).

2.6 Stability analysis
Again, we consider the initial value problem

z′(t) =
(

x′(t)
𝑦′(t)

)
=
(
−𝛽x(t) − 𝛾x(t) + k0 + ks𝑦(t) + 𝑓 (x(t)) 𝑦(t)

𝛾x(t) − ks𝑦(t) − 𝑓 (x(t)) 𝑦(t)

)
=
(

g1 (x(t), 𝑦(t))
g2 (x(t), 𝑦(t))

)
= G (z(t)) (21)

with initial conditions
z(0) =

(
x(0)
𝑦(0)

)
=
(

x0
𝑦0

)
. (22)

Now, we are interested in stationary points of the vector field G. This means that we want to find z⋆ =
(

x⋆, 𝑦⋆
)

such
that

G
(
z⋆
)
=
(

g1
(

x⋆, 𝑦⋆
)

g2
(

x⋆, 𝑦⋆
) ) =

(
0
0

)
(23)

holds.

Lemma 7. A stationary point of the vector field G is given by

zs =
(

xs
𝑦s

)
=
⎛⎜⎜⎝

k0
𝛽
𝛾k0

𝛽ks+𝛽𝑓
(

k0
𝛽

)
⎞⎟⎟⎠ . (24)

Proof. We have to investigate the nonlinear system

−𝛽xs − 𝛾xs + k0 + ks𝑦s + 𝑓 (xs) 𝑦s = 0,
𝛾xs − ks𝑦s − 𝑓 (xs) 𝑦s = 0

of equations from (23). The second equation implies

ks𝑦s + 𝑓 (xs) 𝑦s = 𝛾xs

and plugging this result into our first equation yields
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k0 − 𝛽xs = 0.

Thus, we infer

xs =
k0

𝛽
.

As it holds

𝑦s =
𝛾xs

ks + 𝑓 (xs)

from our second equation, we conclude that

𝑦s =
𝛾k0

𝛽ks + 𝛽𝑓
(

k0
𝛽

)
is valid. This proves (24).

We further follow the lines of Layton's book1 on pages 133–135. Let J denote the Jacobian of our system and I the identity
matrix. As the oscillatory behavior of the system depends on the eigenvalues 𝜆 of the Jacobian J at stationary points, we
consider the characteristic equation

det (J − 𝜆I) = 0.

Thus, we compute the Jacobian

J =
(

a11 a12
a21 a22

)
=

(
𝜕g1(x,𝑦)

𝜕x
𝜕g1(x,𝑦)

𝜕𝑦
𝜕g2(x,𝑦)

𝜕x
𝜕g2(x,𝑦)

𝜕𝑦

)

=
(
−𝛽 − 𝛾 + 𝑓 ′(x)𝑦 ks + 𝑓 (x)

𝛾 − 𝑓 ′(x)𝑦 −ks − 𝑓 (x)

)
and evaluating the Jacobian at (xs, 𝑦s) leads to

Js =
⎛⎜⎜⎜⎝
−𝛽 − 𝛾 + 𝑓 ′

(
k0
𝛽

)
𝛾k0

𝛽ks+𝛽𝑓
(

k0
𝛽

) ks + 𝑓
(

k0
𝛽

)
𝛾 − 𝑓 ′

(
k0
𝛽

)
𝛾k0

𝛽ks+𝛽𝑓
(

k0
𝛽

) −ks − 𝑓
(

k0
𝛽

) ⎞⎟⎟⎟⎠ .

Consequently, the matrix Js − 𝜆 · I reads

Js − 𝜆 · I =
⎛⎜⎜⎜⎝
−𝛽 − 𝛾 + 𝑓 ′

(
k0
𝛽

)
𝛾k0

𝛽ks+𝛽𝑓
(

k0
𝛽

) − 𝜆 ks + 𝑓
(

k0
𝛽

)
𝛾 − 𝑓 ′

(
k0
𝛽

)
𝛾k0

𝛽ks+𝛽𝑓
(

k0
𝛽

) −ks − 𝑓
(

k0
𝛽

)
− 𝜆

⎞⎟⎟⎟⎠ .

We get
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det (Js − 𝜆I) = det
⎛⎜⎜⎜⎝
−𝛽 − 𝛾 + 𝑓 ′

(
k0
𝛽

)
𝛾k0

𝛽ks+𝛽𝑓
(

k0
𝛽

) − 𝜆 ks + 𝑓
(

k0
𝛽

)
𝛾 − 𝑓 ′

(
k0
𝛽

)
𝛾k0

𝛽ks+𝛽𝑓
(

k0
𝛽

) −ks − 𝑓
(

k0
𝛽

)
− 𝜆

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝−𝛽 − 𝛾 + 𝑓 ′

(
k0

𝛽

)
𝛾k0

𝛽ks + 𝛽𝑓
(

k0
𝛽

) − 𝜆

⎞⎟⎟⎟⎠
(
−ks − 𝑓

(
k0

𝛽

)
− 𝜆

)

−
⎛⎜⎜⎜⎝𝛾 − 𝑓 ′

(
k0

𝛽

)
𝛾k0

𝛽ks + 𝛽𝑓
(

k0
𝛽

)⎞⎟⎟⎟⎠
(

ks + 𝑓

(
k0

𝛽

))
.

Summarizing all terms, we end up with the characteristic equation

det (Js − 𝜆I) = 𝜆2 + 𝜆

⎛⎜⎜⎜⎝𝛽 + 𝛾 + ks + 𝑓

(
k0

𝛽

)
− 𝑓 ′
(

k0

𝛽

)
𝛾k0

𝛽ks + 𝛽𝑓
(

k0
𝛽

)⎞⎟⎟⎟⎠
+
(
𝛽ks + 𝛽𝑓

(
k0

𝛽

))

= 𝜆2 − 𝜆

⎛⎜⎜⎜⎝𝑓
′
(

k0

𝛽

)
𝛾k0

𝛽ks + 𝛽𝑓
(

k0
𝛽

) − 𝛽 − 𝛾 − ks − 𝑓

(
k0

𝛽

)⎞⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶b

+
(
𝛽ks + 𝛽𝑓

(
k0

𝛽

))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶c

= 𝜆2 − 𝜆b + c
= 0.

(25)

The solutions for the eigenvalues 𝜆 read

𝜆 = b ±
√

b2 − 4c
2

.

As c> 0 in all cases, we have to distinguish the two cases b2 < 4c and b2 ≥ 4c.

• If b2 < 4c, we have a pair of complex conjugates. Its real part equals b
2

and thus, the system is stable if b< 0 and unstable
if b> 0.

• If b2 ≥ 4c, both solutions are real and have the same sign as b. Again, the system is stable if b< 0 and unstable if b> 0.

Finally, we can state our main Theorem regarding stability.

Theorem 8. The nonlinear system is stable if b< 0 and is unstable if b> 0.

2.7 Numerical experiments
We apply the function ode15s of GNU Octave Version 5.1.0.26 For further information on ode15s, we refer the reader to
the work of Shampine and Reichelt.27 Our short computation code reads
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and is given for completeness of presentation.

2.7.1 Example of a stable solution
In this example, our parameters are set by 𝛼 = 1.0, 𝛽 = 1.0, 𝛾 = 1.0, k0 = 1.0, ks = 1.0, and n = 2 with initial conditions
x0 = 10 and 𝑦0 = 2. Our final simulation time T is T = 50. We use the transfer rate function as defined in (7). The
corresponding vector field is plotted in Figure 3. The resulting solution can be seen in Figure 4.

FIGURE 3 A plot of the vector field G for the example in
Section 2.7.1 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 A plot of the stable solution components for the
example in Section 2.7.1 [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 5 A plot of the vector field G for the example in
Section 2.7.2 [Colour figure can be viewed at wileyonlinelibrary.com]

As the constant b in our characteristic Equation (25) is b = − 11
12

< 0, we expect the solution to be stable as shown in
Figure 4.

2.7.2 Example of an oscillatory solution
In this example, our parameters are set by 𝛼 = 2.5, 𝛽 = 1.0, 𝛾 = 2.0, k0 = 1.0, ks = 0.01, and n = 2 with initial conditions
x0 = 1 and 𝑦0 = 1. Our final simulation time T is T = 100. We use the transfer rate function as defined in (7). The
corresponding vector field is plotted in Figure 5. The resulting solution can be seen in Figure 6.

As the constant b in our characteristic Equation (25) is b = 0.0673 > 0, we expect an oscillatory solution as depicted in
Figure 6. Under a given trapping region K for nonnegative initial values x0 and y0, we can deduce by Bendixson's Theorem
that K must contain a closed orbit.
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FIGURE 6 A plot of the unstable solution components for the
example in Section 2.7.2 [Colour figure can be viewed at
wileyonlinelibrary.com]

3 SECOND SYSTEM: Ca2+ LEVELS IN LIVER CELLS

3.1 Model equations
Our model equations read ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x′(t) = k1 + k2x(t) − k3
x(t)𝑦(t)

x(t) + k4
− k5

x(t)z(t)
x(t) + k6

,

𝑦′(t) = k7x(t) − k8
𝑦(t)

𝑦(t) + k9
,

z′(t) = k10x(t) − k11
z(t)

z(t) + k12
,

x(0) = x0,

𝑦(0) = 𝑦0,

z(0) = z0,

(26)

where we seek three continuously differentiable functions x, 𝑦, z ∶ [0,∞) → R with positive model parameters k1, … , k12
and nonnegative initial conditions x0, y0, z0. Here, x denotes concentration of a certain G-protein, y represents concentra-
tion of phospholipase C (GLC), and z stands for Ca2+-concentrations. For further details, we refer interested readers to
Kummer's work.3

3.2 Local unique solvability
We define a vector-valued function H ∶ R3 → R3 by

H

(( x(t)
𝑦(t)
z(t)

))
=

( h1 (x(t), 𝑦(t), z(t))
h2 (x(t), 𝑦(t), z(t))
h3 (x(t), 𝑦(t), z(t))

)

with right-hand side functions

h1 (x(t), 𝑦(t), z(t)) = k1 + k2x(t) − k3
x(t)𝑦(t)

x(t) + k4
− k5

x(t)z(t)
x(t) + k6

, (27)

h2 (x(t), 𝑦(t), z(t)) = k7x(t) − k8
𝑦(t)

𝑦(t) + k9
, (28)

h3 (x(t), 𝑦(t), z(t)) = k10x(t) − k11
z(t)

z(t) + k12
. (29)
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As our model parameters k1, … , k12 are all positive and our initial conditions are nonnegative, there exists a small
neighborhood around the zero vector such that our vector-valued right-hand side function H restricted to this neighbor-
hood is locally Lipschitz continuous as a product and sum of continuously differentiable functions. As a result, we get
local unique solvability by Picard–Lindelöf 's Theorem.

Lemma 8. There exists a neighborhood around the zero vector such that H restricted to this neighborhood is locally
Lipschitz continuous. By Picard–Lindelöf 's Theorem, this yields local unique solvability of system (26).

3.3 Nonnegativity and boundedness
3.3.1 Nonnegativity
Analogously to Theorem 4, we achieve nonnegativity of solutions.

Theorem 9. Consider (26) under nonnegative initial values x0, y0, z0 and positive constants kj for all 𝑗 ∈ {1, 2, … , 12}.
With respect to Lemma 8, this solution remains nonnegative.

Proof. We have to distinguish three cases.

Case 1: Let x(0) = 0 and 0 ≤ y(0), z(0) ≤∞. This yields

x′(0) = k1 > 0,

𝑦′(0) = − k8
𝑦(0)

𝑦(0) + k9
,

z′(0) = − k11
z(0)

z(0) + k12
,

and we get a small time 𝜀> 0 such that x(t), y(t), z(t) remain nonnegative by continuously differentiability of
these functions for all t ∈ [0, 𝜀].

Case 2: Let 𝑦(0) = 0 and 0 ≤ x(0), z(0) ≤∞. This implies

x′(0) = k1 + k2x(0) − k5
x(0)z(0)
x(0) + k6

,

𝑦′(0) = k7x(0) ≥ 0,

z′(0) = k10x(0) − k11
z(0)

z(0) + k12

which results in the existence of a small time 𝜀> 0 such that x(t), y(t), z(t) remain nonnegative by continuously
differentiability of these functions for all t ∈ [0, 𝜀].

Case 3: Let z(0) = 0 and 0 ≤ x(0), y(0) ≤∞. We have

x′(0) = k1 + k2x(0) − k3
x(0)𝑦(0)
𝑦(0) + k4

,

𝑦′(0) = k7x(0) − k8
𝑦(0)

𝑦(0) + k9
,

z′(0) = k10x(0) ≥ 0.

We conclude the existence of a small time 𝜀> 0 such that x(t), y(t), z(t) remain nonnegative by continuously
differentiability of these functions for all t ∈ [0, 𝜀].

Hence, we conclude that these arguments can be established on sequent time intervals such that solutions remain
nonnegative for all times t ≥ 0. This finishes our proof.

We infer that the nonnegative orthant is a positively invariant set for system (26).
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3.3.2 Boundedness
We follow the lines of Lemma 6.

Lemma 9. The function H defined in (27)–(29) fulfills

||H (z(t)) ||∞ ≤ max {k2 + k3 + k5; k7; k10} ||z(t)||∞ + max {k1; k8; k11} (30)

for all z ∈ ([0,∞))3 and for all t ∈ R. Here, || · ||∞ denotes the maximum norm.

Proof. Denote z(t) = (x(t), 𝑦(t), z(t)). We remind ourselves that H is defined by (27)–(29), and the maximum norm is
given by || (x(t), 𝑦(t), z(t)) ||∞ ∶= max {|x(t)| , |𝑦(t)| , |z(t)|} .
Consequently, we investigate

||H (x(t), 𝑦(t), z(t)) ||∞ = max {|h1 (x(t), 𝑦(t), z(t))| , |h2 (x(t), 𝑦(t), z(t))| , |h3 (x(t), 𝑦(t), z(t))|} .
By applying the triangle inequality, we get

|h1 (z(t))| = |h1 (x(t), 𝑦(t), z(t))|
=
||||k1 + k2x(t) − k3

x(t)𝑦(t)
x(t) + k4

− k5
x(t)z(t)

x(t) + k6

||||
≤ k1 + k2 |x(t)| + k3 |𝑦(t)| + k5 |z(t)| ,|h2 (z(t))| = |h2 (x(t), 𝑦(t), z(t))|
=
||||k7x(t) − k8

𝑦(t)
𝑦(t) + k9

||||
≤ k7 · |x(t)| + k8

and |h3 (z(t))| = |h3 (x(t), 𝑦(t), z(t))|
=
||||k10x(t) − k11

z(t)
z(t) + k12

||||
≤ k10 · |x(t)| + k11.

Thus, we conclude ||H (z(t)) ||∞ ≤ max {k2 + k3 + k5; k7; k10} ||z(t)||∞ + max {k1; k8; k11}

and this finishes our assertion.

A direction consequence of this result is the following theorem on global boundedness by application of Gronwall's
Lemma.

Theorem 10. Solutions of system (26) are bounded according to the inequality

||z(t)||∞ ≤ ||z0||∞ exp (max {k2 + k3 + k5; k7; k10} |t|) + max {k1; k8; k11} (exp (max {k2 + k3 + k5; k7; k10} |t|) − 1)
max {k2 + k3 + k5; k7; k10}

. (31)

3.4 Global unique solvability
By applying Theorems 9 and 10, we conclude the following result.
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Theorem 11. We consider the initial value problem (26){
z′(t) = H (z(t)) ,
z(0) = z0

and define z(t) = (x(t), 𝑦(t), z(t)) and H (z(t)) = (h1 (x(t), 𝑦(t), z(t)) , h2 (x(t), 𝑦(t), z(t)) , h3 (x(t), 𝑦(t), z(t))). Here, the func-
tions h1, h2, h3 ∶ R3 → R are given by (27)–(29). Assume nonnegative initial values x0, y0, z0 and positive constants kj for
all 𝑗 ∈ {1, 2, … , 12}. Then, this initial value problem has a unique nonnegative solution which exists for all t ≥ 0.

3.5 Some results on stability analysis
We want to remark that stability analysis for higher-dimensional dynamical system becomes more delicate. We begin
with existence of equilibrium states of our system (26) with nonnegative initial values x0, y0, z0 and positive constants kj
for all 𝑗 ∈ {1, 2, … , 12}.

3.5.1 Existence and uniqueness of equilibrium states
We denote equilibrium states by zs = (xs, 𝑦s, zs). For these stationary points of our system (26), we obtain the system

⎧⎪⎨⎪⎩
k1 + k2xs − k3

xs𝑦s
xs+k4

− k5
xszs

xs+k6
= 0,

k7xs − k8
𝑦s

𝑦s+k9
= 0,

k10xs − k11
zs

zs+k12
= 0

(32)

of nonlinear equations. From the last two equations, we conclude

𝑦s =
k7k9xs

k8 − k7xs
(33)

and

zs =
k10k12xs

k11 − k10xs
. (34)

Plugging these results (33) and (34) into the first equation of (32), we have to investigate

k1 + k2xs −
k3k7k9x2

s

(xs + k4) (k8 − k7xs)
−

k5k10k12x2
s

(xs + k6) (k11 − k10xs)
= 0.

We define the function

q ∶ R∖
{

k8

k7
,

k11

k10

}
→ R , xs → k1 + k2xs −

k3k7k9x2
s

(xs + k4) (k8 − k7xs)
−

k5k10k12x2
s

(xs + k6) (k11 − k10xs)
. (35)

Theorem 12. Let all constants kj be positive for all 𝑗 ∈ {1, 2, … , 12} and all initial values x0, y0, z0 be nonnegative.
Then all equilibrium states of our system (26) can be written as

zs =

( xs
𝑦s
zs

)
=
⎛⎜⎜⎜⎝

xs
k7k9xs

k8−k7xs
k10k12xs

k11−k10xs

⎞⎟⎟⎟⎠ (36)

with xs ∈
(

0,min
{

k8
k7
,

k11
k10

})
.
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Proof. As our initial values are nonnegative, Theorem 9 implies nonnegativity of solutions for all times t ≥ 0 and we
conclude that xs ≥ 0 follows. Furthermore, it must hold xs < min

{
k8
k7
,

k11
k10

}
. If we assume xs > min

{
k8
k7
,

k11
k10

}
, we then

obtain ys < 0 or zs < 0 by (33) and (34). Hence, we conclude that all interesting equilibrium states for our system (26)
need to have xs ∈

(
0,min

{
k8
k7
,

k11
k10

})
. Finally, we prove that at least one xs ∈

(
0,min

{
k8
k7
,

k11
k10

})
exists such that

we obtain an equilibrium state of type (36). We consider our function q defined by (35). On the one hand, it holds
q(0) = k1 > 0. On the other hand, by denoting E ∶= min

{
k8
k7
,

k11
k10

}
in this proof, we notice that

lim
xs→E

q (xs) = −∞

is valid. By continuity of our function q defined by (35) and application of the intermediate value theorem, we conclude
existence of at least one xs ∈

(
0,min

{
k8
k7
,

k11
k10

})
such that the first equation of (32) is fulfilled. Hence, this proves our

assertion.

Furthermore, we can establish a sufficient condition for uniqueness of equilibrium states.

Theorem 13. Let all constants kj be positive for all 𝑗 ∈ {1, 2, … , 12} and all initial values x0, y0, z0 be nonnegative.
Then our system (26) has a unique equilibrium point.

Proof. Consider

k1 + k2xs − xs

{
k3k7k9xs

(xs + k4) (k8 − k7xs)
+ k5k10k12xs

(xs + k6) (k11 − k10xs)

}
= 0,

which is equivalent to

k1 + k2xs = xs

{
k3k7k9xs

(xs + k4) (k8 − k7xs)
+ k5k10k12xs

(xs + k6) (k11 − k10xs)

}
. (37)

We define

r ∶
[

0,min
{

k8

k7
,

k11

k10

})
→ R , r (xs) =

k3k7k9xs

(xs + k4) (k8 − k7xs)
+ k5k10k12xs

(xs + k6) (k11 − k10xs)
.

Obviously, r(0) = 0 and it holds lim
x→E

r(x) = +∞ for E ∶= min
{

k8
k7
,

k11
k10

}
. Differentiation of this function yields

r′ (xs) = k3k7k9((xs + k4) (k8 − k7xs))−1 + k3k7k9xs (−1) {(k8 − k7xs) − k7 (xs + k4)} ((xs + k4) (k8 − k7xs))−2

+ k5k10k12((xs + k6) (k11 − k10xs))−1 + k5k10k12xs (−1) {(k11 − k10xs) − k10 (xs + k6)} ((xs + k6) (k11 − k10xs))−2

=
k3k7k9

{
(xs + k4) (k8 − k7xs) +

(
2k7x2

s + k4k7xs − k8xs
)}

(xs + k4)2(k8 − k7xs)2

+
k5k10k12

{
(xs + k6) (k11 − k10xs) +

(
2k10x2

s + k6k10xs − k11xs
)}

(xs + k6)2(k11 − k10xs)2

=
k3k7k9

(
k7x2

s + k4k8
)

(xs + k4)2(k8 − k7xs)2 +
k5k10k12

(
k10x2

s + k6k11
)

(xs + k6)2(k11 − k10xs)2

> 0
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for all xs ∈
(

0,min
{

k8
k7
,

k11
k10

})
. At first, the second derivative of r reads

r′′ (xs) = k3k7k9 (2k7xs) (xs + k4)−2(k8 − k7xs)−2

+ k3k7k9
(

k7x2
s + k4k8

)
(−2) (xs + k4)−3(k8 − k7xs)−2

+ k3k7k9
(

k7x2
s + k4k8

)
(xs + k4)−2 (2k7) (k8 − k7xs)−3

+ k5k10k12 (2k10xs) (xs + k6)−2(k11 − k10xs)−2

+ k5k10k12
(

k10x2
s + k6k11

)
(−2) (xs + k6)−3(k11 − k10xs)−2

+ k5k10k12
(

k10x2
s + k6k11

)
(xs + k6)−2 (2k10) (k11 − k10xs)−3

= 2k3k7k9(xs + k4)−3(k8 − k7xs)−3 {k7xs (xs + k4) (k8 − k7xs)
−
(

k7x2
s + k4k8

)
(k8 − k7xs) + k7

(
k7x2

s + k4k8
)
(xs + k4)

}
+ 2k5k10k12(xs + k6)−3(k11 − k10xs)−3 {k10xs (xs + k6) (k11 − k10xs)
−
(

k10x2
s + k6k11

)
(k11 − k10xs) + k10

(
k10x2

s + k6k11
)
(xs + k6)

}
.

Some manipulations show

k7xs (xs + k4) (k8 − k7xs) −
(

k7x2
s + k4k8

)
(k8 − k7xs) + k7

(
k7x2

s + k4k8
)
(xs + k4)

= k2
4k7k8 + k2

7x3
s + 3k4k7k8xs − k4k2

8

and

k10xs (xs + k6) (k11 − k10xs) −
(

k10x2
s + k6k11

)
(k11 − k10xs) + k10

(
k10x2

s + k6k11
)
(xs + k6)

= k2
6k10k11 + k2

10x3
s + 3k6k10k11xs − k6k2

11.

Both results are confirmed by Mathematica through Simplify. Hence, we obtain

r′′ (xs) = 2k3k7k9(xs + k4)−3(k8 − k7xs)−3 (k2
4k7k8 + k2

7x3
s + 3k4k7k8xs − k4k2

8
)

+ 2k5k10k12(xs + k6)−3(k11 − k10xs)−3 (k2
6k10k11 + k2

10x3
s + 3k6k10k11xs − k6k2

11
)
.

Now, we define

v ∶
[

0,min
{

k8

k7
,

k11

k10

})
→ R , v (xs) = xsr (xs) .

It holds

v′′ (xs) = 2r′ (xs) + xsr′′ (xs)

= 2k3k7k9
(

k7x2
s + k4k8

)
(xs + k4)−2(k8 − k7xs)−2

+ 2k5k10k12
(

k10x2
s + k6k11

)
(xs + k6)−2(k11 − k10xs)−2

+ 2xsk3k7k9(xs + k4)−3(k8 − k7xs)−3 (k2
4k7k8 + k2

7x3
s + 3k4k7k8xs − k4k2

8
)

+ 2xsk5k10k12(xs + k6)−3(k11 − k10xs)−3 (k2
6k10k11 + k2

10x3
s + 3k6k10k11xs − k6k2

11
)

= 2k3k7k9(xs + k4)−3(k8 − k7xs)−3 {(k7x2
s + k4k8

)
(xs + k4) (k8 − k7xs)

+xs
(

k2
4k7k8 + k2

7x3
s + 3k4k7k8xs − k4k2

8
)}

+ 2k5k10k12(xs + k6)−3(k11 − k10xs)−3 {(k10x2
s + k6k11

)
(xs + k6) (k11 − k10xs)

+xs
(

k2
6k10k11 + k2

10x3
s + 3k6k10k11xs − k6k2

11
)}

.
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Again, some manipulations show

(
k7x2

s + k4k8
)
(xs + k4) (k8 − k7xs) + xs

(
k2

4k7k8 + k2
7x3

s + 3k4k7k8xs − k4k2
8
)

= k2
4k2

8 + k7k8x3
s + k4k7x2

s (3k8 − k7xs)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

>0

and

(
k10x2

s + k6k11
)
(xs + k6) (k11 − k10xs) + xs

(
k2

6k10k11 + k2
10x3

s + 3k6k10k11xs − k6k2
11
)

= k2
6k2

11 + k10k11x3
s + k6k10x2

s (3k11 − k10xs)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

>0

as k8 − k7xs > 0 and k11 − k10xs > 0 hold due to xs ∈
(

0,min
{

k8
k7
,

k11
k10

})
by applying Simplify from Mathematica. Thus,

v′′ (xs) > 0 is valid for all xs ∈
(

0,min
{

k8
k7
,

k11
k10

})
. This implies that the left-hand side function and right-hand side

function of (37) only intersect once on
(

0,min
{

k8
k7
,

k11
k10

})
due to convexity of v. Hence, our assertion is proven.

3.5.2 Computational stability analysis
Now, we consider our right-hand side function H of our system (26) which is defined by (27)–(29). For abbreviation, we
neglect time dependence of x(t), y(t), z(t) and simply write x, y, z. The Jacobian of H reads

JH(x, 𝑦, z) =
⎛⎜⎜⎜⎝

𝜕h1
𝜕x
(x, 𝑦, z) 𝜕h1

𝜕𝑦
(x, 𝑦, z) 𝜕h1

𝜕z
(x, 𝑦, z)

𝜕h2
𝜕x
(x, 𝑦, z) 𝜕h2

𝜕𝑦
(x, 𝑦, z) 𝜕h2

𝜕z
(x, 𝑦, z)

𝜕h3

𝜕x
(x, 𝑦, z) 𝜕h3

𝜕𝑦
(x, 𝑦, z) 𝜕h3

𝜕z
(x, 𝑦, z)

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
k2 −

k3k4𝑦

(x+k4)2 −
k5k6z

(x+k6)2 − k3x
x+k4

− k5x
x+k6

k7 − k8k9

(𝑦+k9)2 0

k10 0 − k11k12

(z+k12)2

⎞⎟⎟⎟⎟⎠
.

(38)

We seek eigenvalues of (38) at stationary points of type (36) computationally because it is difficult to prove or disprove
the hypothesis of negative real parts for all eigenvalues analytically. Our applied GNU Octave-code reads
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and is given for completeness of presentation.
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3.6 Numerical experiments
After computing the unique equilibrium state and all eigenvalues of the Jacobian, we apply the function ode15s of GNU
Octave Version 5.1.026 to solve our system (26). For further information on ode15s, we refer the reader to the work of
Shampine and Reichelt.27 Our short computation code reads

and is given for completeness of presentation.

3.6.1 Example with bounded solution for all time
In this example, our parameters are set by k𝑗 = 1.0 for all 𝑗 ∈ {1, … , 12} with initial conditions x0 = 0.1, 𝑦0 = 0.0
and z(0) = 0.0. Our final simulation time T is T = 50. The starting point for our root finding function fzero reads
0.8 min

{
k8
k7
; k11

k10

}
. We obtain stationary coordinates xs ≈ 0.6751, ys ≈ 2.0782 and zs ≈ 2.0782. Additionally, all real parts of

the Jacobian's eigenvalues are negative. The resulting solution can be seen in Figure 7.
This setting yields a solution which converges to a bounded equilibrium point.

3.6.2 Example with periodic orbit solution
In this example, our parameters are set by k1 = 1.0, k2 = 2.25 and k𝑗 = 1.0 for all 𝑗 ∈ {3, … , 12} with initial conditions
x0 = 0.1, 𝑦0 = 0.0 and z(0) = 0.0. Our final simulation time T is T = 400. The starting point for our root finding function
fzero reads 0.8 min

{
k8
k7
; k11

k10

}
. We obtain stationary coordinates xs ≈ 0.7583, ys ≈ 3.1375 and zs ≈ 3.1375. The resulting

solution can be seen in Figure 8.
This setting seems to give us a solution with a periodic orbit.
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FIGURE 7 A plot of the stable solution
components for the example in Section 3.6.1
[Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 8 A plot of the solution components
with periodic orbit for the example in
Section 3.6.2 [Colour figure can be viewed at
wileyonlinelibrary.com]

3.6.3 Example with unbounded solution as time approaches infinity
In this example, our parameters are set by k1 = 1.0, k2 = 5.0 and k𝑗 = 1.0 for all 𝑗 ∈ {3, … , 12} with initial conditions
x0 = 0.1, 𝑦0 = 0.0 and z(0) = 0.0. Our final simulation time T is T = 5. The starting point for our root finding function
fzero reads 0.8 min

{
k8
k7
; k11

k10

}
. We obtain stationary coordinates xs ≈ 0.8511, ys ≈ 5.7152 and zs ≈ 5.7152. The resulting

solution can be seen in Figure 9.
This setting results in an unbounded solution as t→+∞. This example indicates that convergence to stationary points

seems to hold only locally for this dynamical system.
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FIGURE 9 A plot of the unbounded solution
components for the example in Section 3.6.3
[Colour figure can be viewed at
wileyonlinelibrary.com]

4 CONCLUSIONS AND OUTLOOK

4.1 Conclusions
As noted in Section 1.2, we first established global unique existence of nonnegative solutions to our system (1) of first-order
nonlinear ordinary differential equations in time for Ca2+-concentrations in renal smooth muscle cells. We additionally
provided a stability analysis to predict stability of stationary points which depends on the sign of the constant b from
the characteristic equation. Finally, we gave two numerical examples which strengthen our theoretical findings from our
analytical observations as we investigated one stable and one oscillatory solution for system (1).

Later, we investigated System (26) and proved global unique existence of nonnegative solutions as well. However, as this
system is higher-dimensional in contrast to (1) system, we could also demonstrate by numerical examples that unbounded
solutions are possible as depicted in Section 3.6.3.

Summarizing our results, we state that a thorough detailed analysis of biological dynamical systems is of importance to
predict different solutions' behaviors. These findings further show that we need to careful choose our transfer parameters
in dynamical systems as a small change might lead to totally different solutions. If we want to estimate parameters for
those systems by experimental observations, this fact needs to be taken into consideration. For further details on parameter
estimation of dynamical systems, we refer interested readers to the book by Schittkowski.28

4.2 Outlook
Regarding our analytical findings, it might be of interest to investigate the behavior of our system (26) in further detail.
Especially, we think that a thorough analysis of stability points might give us insight into the system's dynamics. This can
be regarded as an interesting future research direction. In addition to that, higher-order time-stepping schemes might be
of practical interest as well.29

We further stress that an adaption of this system to fractional derivates would lead to a different analysis and might
provide further insight into the adapted system's dynamics.7,13,30,31 If we examine different numerical methods for our
nonlinear system or a variant with fractional derivates, this will eventually be a research topic in its own right.

Additionally, coupling our systems' dynamics with partial differential operators adds different effects like diffusion
through Laplacian operators or its fractional operators can introduce spatial inhomogeneities to these dynamics.

Concluding our remarks, investigations with respect to numerical methods might be an interesting research direction
in its own right as especially high-dimensional dynamical systems lack analytical results. Numerical observations might
help giving insights into systems and stimulate ideas for future analytical findings.
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