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Abstract

This thesis focuses on the optimization of low-impact hydropower devices in general,
and free-stream water wheels in particular.
A theoretical analysis of the achievable performance in floating or bypass hydropower
installations is first carried out. A model is developed by which to quantify the maximum
available hydraulic power, and measure efficiency. Its use is demonstrated with a
practical example, where the performance of a small-scale power plant is benchmarked
against reference values anchored in physical principles. These results are obtained at a
very low computational cost.
Computational fluid dynamics (cfd) simulations of free-stream water wheels are then
set up. A two-dimensional model is exploited to describe their most important power
characteristics in a systematic study. Two conflicting performance requirements are
identified: generating high power per unit submerged frontal area (CP wet), and high
power unit frontal rotor area (CP rotor). The decomposition of the net power output in
terms of the contribution of individual blades allows for an improved understanding of
the dynamics of the machine.
Two sets of experimental measurements are used, by which the adequacy of the numerical
simulations can be assessed.
Finally, two optimizations steered by a genetic algorithm are carried out in order to
optimize the design of the free-stream water wheel on the basis of two-dimensional
simulations. The first features extremely wide ranges of parameters; as a result, it is
shown that operators constrained in installation width or area should adopt high-radius,
high-depth wheels, while operators constrained in rotor size or installation depth should
deploy low-radius, low-depth wheels. The second optimization focuses on improving
the quality of power delivery; the resulting design recommendation features shortened
blades. After the investigation of 2 400 different wheel configurations, the results indicate
that the optimal free-stream water wheel design features fully-immersed blades which
produce power in a continuous fashion for most of the power stroke. This shows that
lift, in addition to drag, contributes to energy conversion mechanism for these machines.
Last, a preliminary assessment of three-dimensional effects is finally given, highlighting
areas where further research is needed.
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Zusammenfassung

Diese Arbeit konzentriert sich auf die Optimierung von Wasserkraftanlagen, die sich
gering auf die Flussfauna auswirken, und schwimmende Wasserrädern im Besonderen.
Eine theoretische Analyse der erreichbaren Leistung in schwimmender oder Bypass
Wasserkraftanlage wird zuerst durchgeführt. Ein Modell wird entwickelt, das eine
Quantifizierung der maximal verfügbaren Hydraulikleistung und die Messung des
Wirkungsgrades ermöglicht. Seine Verwendung wird an einem Praxisbeispiel erläutert,
in welchem die Leistung eines Kleinwasserkraftwerks mit in physikalischen Prinzipien
verankerten Referenzwerten verglichen wird. Diese Ergebnisse werden mit sehr geringem
Rechenaufwand erreicht.
Anschließend werden numerische Strömungssimulationen (cfd) von schwimmenden
Wasserrädern erstellt. Ein zweidimensionales Modell wird genutzt, um ihre wichtigsten
Leistungseigenschaften in einer systematischen Studie zu beschreiben. Es werden zwei
widersprüchliche Leistungsanforderungen identifiziert: Erzeugung einer hohen Leistung
pro Einheit untergetauchter Stirnfläche (CP wet) und einer hohen Leistung pro Einheit
Rotorstirnfläche (CP rotor). Die Zerlegung der Nettoleistung in den Beitrag einzelner
Schaufeln ermöglicht ein besseres Verständnis der Dynamik der Maschine.
Es werden zwei experimentelle Messreihen verwendet, mit denen die Angemessenheit
der numerischen Simulationen beurteilt werden kann.
Abschließend werden zwei durch einen genetischen Algorithmus gesteuerte Optimierun-
gen durchgeführt, um die Auslegung des Freilaufwasserrades auf Basis zweidimensionaler
Simulationen zu optimieren. Der erste bietet extrem breite Parameterbereiche. Als
Ergebnis wird gezeigt, dass Betreiber, die mit einer begrenzten Installationsbreite oder
-fläche arbeiten müssen, Räder mit großem Radius und großer Tiefe verwenden sollten,
während Betreiber, die mit einer begrenzten Rotorgröße oder Eintauchtiefe arbeiten
müssen, Räder mit geringem Radius und geringer Tiefe einsetzen sollten. Die zweite
Optimierung konzentriert sich auf die Verbesserung der Qualität der Leistungsabgabe;
die daraus resultierende Designempfehlung weist verkürzte Schaufeln auf. Nach der
Untersuchung von 2 400 verschiedenen Radkonfigurationen zeigen die Ergebnisse, dass
das optimale schwimmende Wasserraddesign vollständig eingetauchte Schaufeln aufweist,
die für den größten Teil des Arbeitshubs kontinuierlich Leistung erzeugen. Dies zeigt,
dass der Auftrieb zusätzlich zum Strömungswiderstand zum Energieumwandlungsmech-
anismus dieser Maschinen beiträgt. Schließlich wird eine vorläufige Bewertung der
dreidimensionalen Effekte gegeben, die Bereiche aufzeigen, in denen weitere Forschung
erforderlich ist.
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11



12



Introduction

It is now widely accepted that the exploitation of air and water flows in the environment
must be part of the solution to our current global energy production challenge. Currently,
the bulk of this contribution comes from high-head hydraulic installations and axial wind
turbines. Nevertheless, research is also being carried out to optimize unconventional
devices in air or water (for example Wells, Savonius or Darrieus turbines) suited to
small-scale electrical production. These are relevant not only because they give access
to untapped potential (in Germany, all sites with large hydroelectric potential are
exploited already, and onshore wind power is no longer growing steadily), but also
because they allow for decentralized, low-impact production of electricity.
The topic of this thesis concerns the exploitation of water currents with low-power,
low-footprint devices. Conventional micro-hydro (< 100 kW) and pico-hydro (< 5 kW)
installations are associated with high global sustainability ratings [23, 47]. In particular,
devices operating without additional damming or modification to channel beds have
an extremely low impact on fauna and flora and are most likely to meet the most
stringent environmental regulations in Europe or even Germany. Because they feature
high availability and can be installed with relative ease near populated areas, machines
installed in floating installations may make a valuable contribution towards increasing
electrification or decentralizing existing power networks.
The work in this thesis was carried out in large part with funding from project Fluss-
Strom, financed by the German Federal Ministry of Education and Research, which
supported research in this area. The laboratory for fluid dynamics of the University of
Magdeburg took up the task of optimizing the configuration of a floating water wheel,
building on prior experience acquired optimizing related devices [25, 32, 48].
The present thesis thus focuses on the optimization of low-impact hydropower devices
in general, and free-stream water wheels in particular. It is divided in four parts.
Chapter 1 focuses on the power potential of low-density hydropower devices. Indeed,
these machines are designed to operate in flows significantly larger than themselves,
at the surface of river flows or in bypass channels. Exploiting this energy potential to
its fullest requires careful consideration of the boundary conditions, and a model is
presented accordingly, by which to quantify the available power and measure efficiency.
Chapter 2 introduces computational fluid dynamics (cfd) simulations of free-stream
water wheels. The challenges associated with calculating the flow in these machines are
presented, before a two-dimensional model is exploited to describe their most important
power characteristics.
Chapter 3 presents two sets of experimental measurements, by which the adequacy of
the numerical simulations can be assessed.
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Finally, chapter 4 is focused on optimizing the design of free-stream water wheels
to maximize their power output. Two optimizations covering a very large range of
parameters are presented, guided by genetic algorithms; they result in the publication
of broadly-applicable design guidelines. A first assessment of three-dimensional effects
is finally given, highlighting areas where further research is needed.
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Energy budget for low-density
hydropower
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1.1 Introduction

This thesis focuses on the performance of low-power, low-density hydraulic devices:
machines of relatively small size, capable of producing hydropower without radically
altering their environment. These machines would typically include vertical- and
horizontal-axis turbines immersed below floating structures in rivers, or operating as
bypasses to the main river flow.
The complex nature of fluid flows within these machines (three-dimensional, turbulent,
featuring free surfaces) makes it difficult to predict a priori their power potential.
The final stages of the design of such turbomachines are in practice carried out using
Computational Fluid Dynamics (cfd) simulations and experimental measurements.
For such flows involving moving parts and free surfaces, considerable computational
resources and time budgets are required. In addition, models accounting for two
interacting phases (air and water), and especially the inherent uncertainties associated
with the Reynolds-averaging (rans) of the momentum equations in cfd, require
devoting additional resources to calibration and validation of simulation results. These
challenges will be amply demonstrated in chapters 2 and following.
While these advanced methods provide detailed descriptions of fluid flow, they are not
easily used to obtain insight needed for a fist, broad scientific and engineering study.
In the field of wind turbine design, for example, any preliminary work will begin with
the use of the actuator theory popularized by Betz, Joukowski and contemporaries, in
order to obtain estimates for power potential and later quantify efficiency. In the case
of small-scale hydraulic installations with an unrestricted outlet, equivalent tools are
available in the literature, as covered later in section 1.3. This chapter purposes to do
the same for the case of hydraulic devices operating in free-stream flows significantly
larger than themselves.
In this way, tools will be proposed to quantify the performance of machines expected to
harvest both hydrokinetic and potential energy from flowing water. For example, given
one installation site, how to quantify the energy potential using the minimum possible
amount of information? What fundamental characteristics of the installation and of
the machine affect this potential? At which rotor operating speed would it be fulfilled?
Answering those questions leads first to distinguish between the notions of efficiency
and power non-dimensionalization through coefficients. Then, a comparatively simple
analytical model will be proposed, which allows for fast computations of the energy
budget in all types of free-stream installations. Finally, in section 1.5, a worked-out
example will be given to demonstrate usage of the model in practice.
Sections 1.2 to 1.4 of this chapter were published in a peer-reviewed journal article
(reference [63]): O. Cleynen, S. Hoerner, and D. Thévenin. “Characterization of
hydraulic power in free-stream installations”. In: International Journal of Rotating
Machinery 2017 (2017). doi: 10.1155/2017/9806278.
Section 1.5 of this chapter was published in a peer-reviewed journal article between the
submission and the publication of this Thesis (reference [109]): O. Cleynen, D. Powalla,
S. Hoerner, and D. Thévenin. “An efficient method for computing the power potential of
bypass hydropower installations”. In: Energies 15.9 (2022). doi: 10.3390/en15093228.
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1.2 Parameters for hydropower performance evaluation

Several approaches can be taken for quantifying the performance of hydraulic power
devices. The following criteria and notation, illustrated in figure 1.1, are used in the
present analysis:

gh1

gΔz gh2

hydraulic device

u∞=u1

u2

½ α1u1²

½ α2u2²
Heff
g

Figure 1.1: Notation for describing an arbitrary hydraulic installation, including the effective head
Heff introduced by P. F. Pelz [33] and described in section 1.3 of this paper.

Figure previously published in [63]

Hydraulic power Ẇhydraulic is the time rate at which water affected by the machine is
losing or gaining specific mechanical energy e:

Ẇhydraulic ≡
∫

(∆e) dṁ (1.1)

in which the integral is performed over the surface of a control volume enclosing the device;
where the sign of ∆e is measured from the reference frame of the fluid (and thus usually
negative – a loss);
and where ṁ stands for mass flow (kg s−1).

In the case of a machine with uniform inlet and outlet properties, ∆e can be evaluated as

∆e = ∆
[
g(z + h) + 1

2u
2
]

(1.2)

where g is the gravitational acceleration (m s−2);
z is the local altitude of the river bed, positive upwards (m);
h is the height of the water surface relative to the bed, positive upwards (m);

and u is the local flow velocity (m s−1).

In that case, and when the mass flow through the machine ṁ is easily identified,
hydraulic power (1.1) is simply evaluated as

Ẇhydraulic = ṁ ∆
[
g(z + h) + 1

2u
2
]

(1.3)

Nevertheless, in the case of a device operating within a wide channel (such as a tidal
turbine), it may be impossible to identify a single mass flow rate ṁ corresponding
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to a streamtube with uniform properties, and Ẇhydraulic needs to be evaluated with
integral (1.1), which requires extensive knowledge of the velocity field.
The hydraulic power transmitted to or from the device can have an extremum value
for a given set of constraints. The existence and value of this maximum or minimum
depend on the parameters which are assumed given, i.e. on the chosen operational
scenario. The purpose of the present chapter is to study and determine best design and
operating conditions.
The energy flow through a hydraulic machine can be conceptualized as shown in
figure 1.2. The performance of a hydraulic machine is then evaluated using the following
three efficiencies.

(∫Δe dm)max

(∫Δe dm)lost heat heat

WusableWhydraulic Wshaft
ηhyd. ηgen.ηload

Figure 1.2: A conceptual representation of the energy flow through a machine operating in arbitrary
conditions. The usable power Ẇusable is maximized when the three efficiencies ηgenerator, ηhydraulic and
ηload are equal to one. The definition of what constitutes the maximum value of

∫
∆e dṁ depends on

the operating constraints, as discussed later.
Figure previously published in [63]

When there exists an extremum hydraulic power (see later discussion), then a device’s
ability to reduce the energy of the water is measured with the load efficiency ηload:

ηload ≡
Ẇhydraulic

Ẇhydraulic max.
(1.4)

The hydraulic power extracted from the water is in part converted to (useful) mechanical
shaft power, while viscous effects cause the other part to be washed down the flow,
ultimately translating into heat. A measure of the conversion effectiveness is already
known as the hydraulic efficiency ηhydraulic:

ηhydraulic ≡
Ẇshaft

Ẇhydraulic
(1.5)

Because of the high specific heat capacity of water, losses converted into heat do not
translate into easily-measurable temperature changes, in particular for free surface flows
and for such low-power installations. In practice a direct experimental measurement of
the hydraulic efficiency of such an installation is therefore very difficult.
Lastly, the shaft power is converted into usable form, usually electricity, in a process
whose effectiveness is measured with the generator efficiency ηgenerator:

ηgenerator ≡
Ẇusable

Ẇshaft
(1.6)
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Therefore, the usable power developed by a hydraulic installation can be expressed as
follows:

Ẇusable = ηgenerator ηhydraulic ηload Ẇhydraulic max. (1.7)

Differing definitions for the efficiency may be constructed; for example a different
turbine efficiency may be devised to relate the shaft power to the flow wake impact [26].
Nevertheless, this thesis focuses on the energy conversion process. The three efficiencies
in eq. 1.7 are independent but may be affected together. For instance, the rotating
speed of the impeller would impact both ηgenerator and ηhydraulic. In this chapter, the
focus is on hydrodynamics and ηgenerator is not further considered.
Power, be it hydraulic, shaft or useful power, can be non-dimensionalized by comparing it
to a partly arbitrary reference power: this ratio is named power coefficient CP (sometimes
named “harvesting factor” in the literature). A commonly-accepted definition [29], used
as well in this thesis, is:

CP ≡
Ẇ

1
2 ρ S U3

∞
(1.8)

where ρ is the fluid density (kg m−3);
S is a reference surface area, as discussed below (m2);

and U∞ is the free-stream (faraway) velocity (m s−1).

Typically, the reference area S in eq. 1.8 is the frontal inlet area of the device, although,
as will be seen in chapter 2, other definitions are sometimes more suitable. In this
manner, CP hydraulic, CP shaft and CP useful designate the power coefficients associated to
each of the powers defined in figure 1.2.
Other selections of reference powers for the denominator of eq. 1.8 can be used, such
as those proposed by Y. Li [41], M. Denny [14], or that put forth by P. F. Pelz [33],
discussed below and re-written here with our notation:

CP ≡
−Ẇ

4
5ṁ

(
gh1 + α1

2 u
2
1 − g∆z

) (1.9)

At this point, it is important to stress out that the efficiency values η introduced
previously have an unambiguous definition and fulfill the condition η ≤ 1. On the
other hand, the power coefficient is merely a non-dimensional parameter with a partly
arbitrary character. As a result, the value of CP might well exceed 1. A given machine
may be attributed different values for the maximum power coefficient CP max., either
because the underlying assumption in defining the optimum case, or the definition of CP,
may differ. These are the only reasons why Pelz’s limit described later in eq. 1.11 does
not converge towards the 16/27 classical result (see remarks p. 24) when g → 0 m s−2

and ∆z → 0 m.
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1.3 Optimum for flatbed installations by Pelz

In order to connect our new developments with established results from the literature,
the analysis starts by considering an obstructed channel. P. F. Pelz first developed (2011,
[33]) an expression for an extremum hydraulic power Ẇhydraulic max. with the following
constraints:

1. A full obstruction of the upstream fluid flow;

2. An entirely unobstructed downstream flow;

3. A limited outlet width.

Thus, in this model, condition 2 turns the outlet water height h2 into a control variable,
while condition 1 sets the mass flow ṁ, and condition 3 the outlet width b2, as input
constants. The whole mass flow ṁ always passes through the device.
To analyze the system, Pelz defines an energy budget termed effective head Heff. ≡ h1 +
α1u

2
1/2g−∆z, using the notations shown in figure 1.1 and in the nomenclature. Pelz then

shows that the hydraulic power available to an installation fed with rectangular ducts
can be maximized if two conditions are met. They constrain the Froude number at exit
[Fr]2 ≡ u2, av./

√
gh2, and the volume flow per unit width at exit q2 ≡ V̇2/b2 = u2, av.h2,

leading to following conditions:

q2,opt. =
(
g

α2

) 1
2
[2
5Heff.

] 3
2

(1.10a)

[Fr]2,opt. = 1 (1.10b)

The maximum hydraulic power that may be extracted from a flow of given Heff. when
ηhydraulic = 1 is then, written in our notation:

Ẇhydraulic max, Pelz = −ρb2

(
g3

α2

) 1
2 [2

5Heff.

] 5
2

(1.11)

This optimum, which can be re-written as Ẇhydraulic max, Pelz = −ṁg 2
5Heff., is a bench-

mark by which to evaluate the performance of hydraulic machines working with a
fully-controlled stream, i.e. in installations where the fluid is guaranteed to enter the de-
vice, and where the outlet flow can be discharged with any chosen water level height h2.
Indeed, during performance evaluations of such devices the mass flow rate ṁ is a direct
input variable [53].
The removal of condition 1 (full flow obstruction, with the entire stream passing through
the device) has been later explored by Pelz & Metzler [37]: a model is then obtained
for the performance of channel hydraulic devices installed on the bottom of channels
and with lateral flow bypass.
Even if these theoretical findings are useful in specific settings, many hydraulic devices
exist for which conditions 2 and 3, necessary for the derivation of the above optimum, do
not apply. Such devices may include floating installations operating in wide and/or deep
channels e.g. operated away from navigation lanes or where the tidal power potential is
highest [43]. In that case:
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• The mass flow ṁ flowing through the device is not readily known because it is a
function of the operating conditions;

• It cannot be assumed that an unobstructed, steeply-sloped bed at altitude z2
is available at the outlet to receive the water leaving the machine. Instead, the
outlet boundary condition will be conditioned by the water level altitude {z2 +h2}
of an existing body of water (e.g. a reservoir) independent of the device operation.

A machine operating in such conditions would therefore attain a maximum hydraulic
power different from that quantified in eq. 1.11. For such a case, constraining the
value of ṁ as input variable, as in [18], would result in grossly over-estimated power
calculations. The purpose of the next section is to determine a realistic prediction of
optimal operation.

1.4 Efficiency and optimal speed of surface-constrained
installations

1.4.1 Maximum power in unobstructed channel flow

A model is developed here to evaluate the performance of a hydraulic power device
operating in a wide channel and constrained by a given outlet water altitude {z2 + h2}.
This model is based on the classical actuator disk models developed by Froude, Betz,
Joukowski and other scientists (described e.g. by van Kuik et al. in 2014 [50]). Building
on top of this classical theory, the effects of altitude change and duct pressure loss will
be included in the analysis. This model assumes uniform inlet and outlet velocities,
however advances made in the modeling of wakes [51] and wall effects [39] may lift this
restriction in the future.
In the most general case a hydraulic machine can be described as shown in figure 1.3; wa-
ter incoming at 1 and leaving at 2 sees its momentum changed by the three forces ~Factuator
(by the power-producing moving parts modeled by an actuator surface), ~F∆palt. (due to
altitude change), and ~Floss (due to internal friction effects):

~Factuator + ~F∆palt. + ~Floss = ṁ (~u2 − ~u1) (1.12)

u1

u2

FΔp alt.

Factuator

Floss

Figure 1.3: A hydraulic machine in the most generic case: the fluid momentum is altered by the
combined action of forces ~Factuator, ~F∆palt. and ~Floss.

Figure previously published in [63]
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When one considers the machine as a “black box”, the hydraulic power production
can be described as a one-dimensional phenomenon. Here for clarity, the machine is
arranged so that all forces and velocities are aligned with the horizontal direction, x.
In an ideal machine designed for this environment, water would be guided to and from
an actuator surface, across which hydraulic power is extracted from the fluid (figure 1.4).
The velocity changes of the fluid are matched with cross-sectional area changes along
the flow, so that the pressure distribution within the device can be traced as in figure 1.5
and quantified as follows.

gh1

gΔz gh2

ideal hydraulic device

u1=u∞

u2

½ u1²

½ u2²

AAA1 A2

side view

top view

Figure 1.4: Cross-section of an arbitrary ideal hydraulic installation. The water streamtube expands
from cross-sectional area A1 to AA, with a corresponding increase in pressure. The actuator surface of
area AA extracts hydraulic power from the fluid with a resulting pressure drop; the streamtube then
expands again so the outlet pressure reaches p2. The altitude of the inlet, outlet and actuator surface
do not affect the machine’s performance and are never specified. In this model, neither h1 nor h2 are
affected by the power extracted by the device, since it occupies only a small part of the channel.

Figure previously published in [63]

The force exerted by the ideal actuator can be expressed in two different ways, one as a
function of the rate of change of momentum of the water:

Factuator = ṁ (u2 − u1)− F∆palt. − Floss

= ρuAAA(u2 − u1) + ρgAA∆(z + h)− Floss (1.13)

where u1 and u2 are the inlet and outlet velocities (m s−1);
uA is the flow velocity through the actuator (m s−1);

and AA is the frontal area of the actuator surface (m2).

and the other as a function of the kinetic energy change across the actuator surface:

Factuator = AA (p+ − p−)

= ρAA

[1
2
(
u2

2 − u2
1

)
+ g∆(z + h)

]
− Floss (1.14)

where p+ and p− are the pressures upstream and downstream of the actuator surface, as shown
in figure 1.5 (Pa).
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Figure 1.5: Pressure distribution within the arbitrary ideal machine described in figure 1.4. The
pressure p1 of the inlet water is raised twice; first as its velocity is reduced from u1 to uA, then as the
altitude is varied by z1 − zA. Similarly, downstream of the actuator, the fluid pressure is raised twice
so that flow conditions 2 at the outlet may be attained. The pressure drop across the actuator surface
A, described in eq. 1.14, corresponds to the lumped contributions of net water level altitude change
∆(z + h), velocity change 1

2∆u2, and losses due to drag Floss.
Figure previously published in [63]

In this analysis the sign convention is as described in figure 1.3, i.e. ∆(z + h) < 0 when
the water level drops, and Floss is always negative; thus, whenever hydraulic power is
produced by the device, Factuator < 0.
Equating eqs. (1.13) and (1.14) gives an expression of uA as a function of u1 and u2;
this allows to express the hydraulic power as:

Ẇhydraulic = ρAA
1
2 (u2 + u1)

[
1
2
(
u2

2 − u2
1

)
+ g∆(z + h)− Floss

ρAA

]
(1.15a)

Ẇhydraulic = ρAAuA

[
2u2

A − 2uAu1 + g∆(z + h)− Floss

ρAA

]
(1.15b)

This expression reduces as expected to that of Betz et al. in the case where either ∆(z+h)
or g tend to zero. Similarly, when u1=u2, i.e. no kinetic energy is withdrawn from
water, the power tends towards Ẇhyd.=ρAAu1g∆(z + h), as expected of a high-head
hydropower installation.
In order to maximize power, a compromise must be made at the actuator surface:
higher actuator velocities increase the mass flow, but reduce kinetic energy harvest;
while lower actuator velocities increase kinetic energy recovery at the cost of decreased
mass flow. This compromise is additionally affected by the (usually negative) potential
energy term g∆(z + h) and the losses Floss due to friction.
In this paper, the optimum is determined according to following constraints:

1. A known device actuator surface area;
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2. A known water surface altitude drop independent of the device.

Here, condition 1 constrains the actuator surface area AA, while condition 2 constrains
the water level drop ∆(z + h) as input variables; therefore, the main control variable
becomes the cross-actuator velocity uA. Alternative boundary conditions describing e.g.
a bypass flow [20] may be added in the future.
In the view of these restrictions, eq. 1.15b is non-dimensionalized by using the power
coefficient defined in eq. 1.8 and the ratio uA/U∞, which is equal to uA/u1 in our case.
Additionally, a non-dimensional drop coefficient KD is defined to express the effect of
both the water level drop and the friction losses, lumped together:

KD ≡ −
ρg∆(z + h)− Floss

AA
1
2ρU

2
∞

(1.16)

In this manner, the hydraulic power equation is obtained as:

CP hydraulic = 4
(
uA

U∞

)3
− 4

(
uA

U∞

)2
−KD

(
uA

U∞

)
(1.17)

The solution of eq. 1.17 is plotted in figure 1.6, in which it is seen that unfavorable
(negative) values of KD decrease not only the maximum hydraulic power attainable
by the machine (this was obviously expected), but also the optimum actuator speed
needed to attain it. For KD < −1, the power coefficient is always positive (the device
turns into a pump and does not extract any energy from the fluid); for KD < −4/3, the
power curve no longer features an extremum outside of the standing condition (uA = 0).
The value of uA/U∞ that produces extremum values for the hydraulic power (i.e.
setting ηload = 1), as well as an explicit expression for this extremum, can be found
by differentiating eq. 1.17 with respect to uA/U∞ and selecting the roots relevant to
this study. For clarity, those are expressed as a function of a factor T ≡ 1

3

[
1 + 3

4KD
] 1

2 ,
obtaining:

uA opt.

U∞
= 1

3 + T (1.18)

CPhydraulic extremum = − 8
27 + 4T 3 − 4

3T −
(1

3 + T
)
KD (1.19)

In the case where there is neither altitude drop nor friction loss, the drop coefficient KD
is brought to zero and T → 1/3: then, uA opt. → 2

3U∞; and the absolute value of the
power coefficient tends towards 16/27, a classical value known as the Betz-Joukowski
limit [50], and from hereon simply referred to as the Betz limit.1

The relationship between the optimum actuator velocity and the drop coefficient value
(eq. 1.18) is plotted in figure 1.7. An optimum only exists for KD > −4/3, since standing

1Bergey [8] and van Kuik in 2006 [17] propose attributing this result to F. W. Lanchester as well.
Van Kuik et al. in 2014 [50], however, show that although he expanded Froude’s work to reach the
result |CP extremum| = 16/(27Q2), Lanchester failed to conclude definitely on the value of the factor
Q that he introduced [3]. The author of the present thesis adds that those considerations focus only
on the name given to the end result. Actuator theory and the search for associated optimal velocity
predate Betz and his contemporaries by two centuries — for example, Parent implicitly obtained
uA/U∞|opt.=2/3 in 1704 [1].
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Figure 1.6: Power curves for an ideal actuator surface machine, for different values of the drop
coefficient KD. The case KD = 0 corresponds to the well-known solution for an actuator surface
without any loss, now associated with Betz & Joukowski. Positive values of KD correspond to increased
pressure drop across the device; increasingly negative values of KD may occur due to increasing pressure
losses. Note that negative CP hyd. values (or −CP hyd. ≥ 0, above the straight horizontal line in this
figure) correspond to hydraulic power being extracted by the device, which is obviously the objective.

Figure previously published in [63]

conditions are found to be best when KD ≤ −4/3. The machine can only extract
hydraulic power when KD > −1. The optimum value uA opt. increases monotonically
with KD: more favorable drop coefficients always shift the optimum velocity ratio
upwards. This remains true even in the hypothetical case where uA opt. > U∞, as the
energy expenditure required to accelerate the flow through the device (in eq. 1.15a,
ṁ(u2

2 − u2
1) > 0) is compensated by the resulting increase in mass flow. In a free-

stream unchanneled installation (e.g. a floating or bed-bound tidal or river turbine),
it is expected that ∆(z + h) = 0 and such devices will therefore always operate at
−1 < KD ≤ 0.
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Figure 1.7: Optimum non-dimensional actuator velocity uA opt./U∞ ≡ uA/U∞|ηload=1 as a function of
the drop coefficient KD. The curve colormap is matched to that of figure 1.6. For values below -1, the
hydraulic power coefficient becomes positive, and no energy can be extracted; below -4/3, an optimum
actuator velocity no longer exists, since the best efficiency is obtained for standing conditions.

Figure previously published in [63]

1.4.2 Performance improvements through ducting

The developed model can now be expanded to account for the effect of ducting around
a free-stream device. A suitable stationary duct positioned around a power-producing
device can result in three distinct benefits:

1. An increase in ηhydraulicηgenerator, through the optimization of the flow velocity
distribution or rotation speed;

2. An increase in power density, obtained through the reduction in the size of the
moving parts for a given volume footprint of the device;

3. An increase of power, obtained through the increase of the frontal area by the use
of a stationary duct.

The first of those cannot be described in general terms for a generic hydraulic machine,
and is best studied with the help of experimental and cfd techniques. The last two,
however, can be examined by extending the model described above, in order to obtain
tentative quantitative descriptions based on sensible hypotheses, and especially a broad
qualitative characterization of the phenomenon.
A duct may increase the flow velocity locally, but will always impede the overall flow
through and around the device; thus, in order to determine the optimal duct size (that
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which will maximize power or power density), its effectiveness must be coupled back
with the drop coefficient KD.
A very simple duct drag model, in the line of classical hydrodynamic theory, links net
drag force Floss to the frontal area S=Af and to the square of the actuator flow velocity uA
(a more complex duct drag model is also described in [63]). The proportionality constant
is termed loss coefficient KD2:

KD2 ≡
−Floss

1
2 ρ u

2
A S

(1.20)

In turn the effect of altitude drop is described with a static drop coefficient KD0:

KD0 ≡
−ρg∆(z + h)

1
2 ρ U

2
∞

(1.21)

An underlying expectation in defining those terms is that for a device of known geometry,
neither KD0 nor KD2 are significantly affected by the device scale, the actuator speed
or the hydraulic power.
The drop coefficient KD of eq. 1.16 can now be re-written as:

KD = KD0 −KD2
Af

AA

(
uA

U∞

)2
(1.22)

The actuator speed ratio that maximizes the load efficiency, uA opt./U∞, can now be
described as a function of KD0 and KD2. The case where Af=AA (corresponding to the
central case, R = 1, in figure 1.9 further down) is presented in figure 1.8, where it is
seen, as expected, that increases in the value of the loss coefficient lead to a decrease in
the optimum velocity ratio and inevitably reduce the power output.
In a final effort to describe more realistic configurations, the geometry of the duct is
parametrized using a size ratio parameter R comparing the frontal area Af of the device
to that of the actuator, AA (see also figure 1.9):

R ≡ AA

Af
(1.23)

Then, eq. 1.17 can be re-formulated using eqs. (1.22) and (1.23) as:

CP hydraulic =
[
4 + KD2

R2

] (
R
uA

U∞

)3
− 4

(
R
uA

U∞

)2
−KD0

(
R
uA

U∞

)
(1.24)

Since only the factor
(
R uA
U∞

)
appears in eq. 1.24 when the loss coefficient KD2 is zero,

any increase in uA generated by ducting is exactly compensated by a decrease in the
size ratio R, so that the power coefficient is unaffected. In practice however, KD2 > 0
and losses to friction are a function not merely of the free-stream velocity U∞, but also
of the actuator operating velocity uA.
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increased altitude drop

increased duct drag

Figure 1.8: The optimum velocity ratio uA opt./U∞ ≡ uA/U∞|ηload=1 as a function of the static drop
coefficient KD0 and loss coefficient KD2 in a device for which Af=AA. Isocurves for various values of
CP hyd. are also shown; the area highlighted in red, where the hydraulic power is positive (i.e. received
by the water), is merely of theoretical interest. This diagram presents the solutions to eq. 1.24 in which
eq. 1.25 is inserted, when R=1.

Figure previously published in [63]

Expression (1.24) is maximized, yielding ηload=1, when the adjusted actuator velocity
ratio R uA

U∞
reaches the value:

(
R
uA

U∞

)
opt.

=
4 +

[
16 + 12KD0 + 3KD0

KD2
R2

] 1
2

12 + 3KD2
R2

(1.25)

This optimum reduces to that of eq. 1.18 when KD2=0, and to the value 2
3 predicted by

Betz when both KD0=0 and KD2=0. Inserting this eq. 1.25 into eq. 1.24 gives us an
expression for the optimum power coefficient CP hyd. opt. as a function of the size ratio
for any given duct.
We are now able to characterize and visualize the effect of ducting on free-stream
hydropower installations. This is perhaps best done by differentiating between two
cases, illustrated in figure 1.9. Compared to the reference configuration (a duct without
any change in cross-section) shown in the middle (R = 1):

• In case 1, a duct with known characteristic loss coefficient KD2 is used in the
design phase to reduce the actuator size AA for a given inlet frontal area Af. In
this case, R is reduced with the intent of increasing the power density 1

R
CP hyd;
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• In case 2, a duct with known KD2 is added on an existing device with fixed
actuator area AA. In that case, 1/R is increased with the intent of increasing the
overall power Ẇhydraulic.

reference
R = 1

case 2
1/R > 1

case 1
R < 1

u∞ u∞ u∞

Figure 1.9: Conceptual schematic to describe the ducting of an actuator device. A duct can be used
either to reduce the size of the actuator for a given frontal surface (case 1, left), or to increase the
frontal area of a machine with an existing actuator (case 2, right). Both processes are described
mathematically by reducing the value of parameter R below 1.

Figure previously published in [63]

The effect of both modifications, which amount to the same physical effect, can be
observed in figures 1.10 & 1.11, which represent how the power coefficient and power
density evolve as R is varied, for various values of KD2.

Figure 1.10: The ratio of maximum power coefficient CP hyd. max. to a reference value
CP hyd. max. ref.=CP hyd. max.|R=1, shown as a function of the duct size ratio. The abscissa repre-
sents R from values 0 to 1, and 1/R from 1 onward.
The curves are drawn for various values of KD2 when KD0=0.25.

Figure previously published in [63]
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Figure 1.11: The ratio of maximum power density 1
RCP hyd. max. to its reference value 1

RCP hyd max.|R=1,
shown as a function of the duct size ratio. The abscissa represents R from values 0 to 1, and 1/R
from 1 onward.
The curves are drawn for various values of KD2 when KD0=0.25.

Figure previously published in [63]

It is readily seen from these figures that low loss coefficients are associated to a high
increase in power density through the use of ducting; the ratio R (size of actuator relative
to frontal surface) then features an optimum value plotted in figure 1.11. Nevertheless,
high KD2 values result in cases where adding a duct results in neither power nor power
density increase (i.e. Ropt.=1) in that configuration. As expected, unless the frontal
area is increased, the use of ducting can only result in a power coefficient decrease.
The geometrical features of the power and power density curves displayed in figures 1.10
& 1.11 are also affected by the value of the drop coefficient KD0. This dependence can
be visualized in figure 1.12, in which the value Ropt. of the size ratio which maximizes
the power density 1

R
CP hyd. max./CP hyd. ref. is plotted as a function of KD0 and KD2.

From figure 1.12 it is seen that for any one value of KD0 (a property of the operating
environment), increasing values of the loss coefficient increase the optimum size ratio,
i.e. the relative size of the actuator that will maximize power density. For each value
of KD0, there exists a loss coefficient value above which Ropt.=1: in that case, the
ducting can only reduce performance.
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Figure 1.12: The optimum actuator size ratio Ropt. (that will result in maximum hydraulic power
density 1

RCP hyd max./CP hyd. ref.), plotted as a function of the loss coefficient KD2 for various values
of the static drop coefficient KD0.

Figure previously published in [63]

1.5 Example: application to a water vortex power plant

An example demonstrating the use of the model developed in this chapter is now
given, focusing on a water vortex power plant (wvpp), a small-scale hydropower device
designed for installation along rivers.

1.5.1 Context

Water vortex power plants are hydropower devices which use a Francis turbine (radial
inlet, vertical outlet), but without the use of any guide vanes; instead, their turbine
inlet consists of an open-air, spiral-shaped basin. This type of device is suited for
combinations of modest flow rates (in the order of 1 m3 s−1) and modest hydraulic head
(in the order of 1 m). Recent research interest in this type of device has focused on
their compatibility with fish river migration.
As part of the research project Fluss-Strom which has funded most of the work presented
in this thesis, the dynamics of a 26 m-long wvpp have been investigated. The constructor
of the device markets it as the “Fisch-Freundliches Wehr”, for use as fish migration
corridors bypassing dams and large weirs. Work has gone towards erecting a full-scale
laboratory installation at the Teschnische Universität Dresden (fig. 1.13), suited to
biological investigations with live fish [76, 77, 91, 95]. Numerical investigations have
also been carried out, as presented further below.
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Figure 1.13: Left: photograph of the wvpp installation in the laboratory of the Teschniche Universität
Dresden. The water flows from the background towards the viewer, with the blue turbine basin visible
in the center. Right: computer drawing of the device with its main dimensions. The flow is from top
left to bottom right, with the turbine basin in the center. The settling tank at inlet is depicted in
yellow, and the turbine itself is displayed in dark blue.
Drawing reproduced from Powalla et al. 2021 [106], with geometry provided by Ecoligent GmbH. Figure later published

in [109]

In the Dresden laboratory, water is picked up by pumps whose discharge goes through
a settling tank before being fed to the wvpp. Water then flows through the free-
surface installation, before overflowing an outlet weir, back into the inlet of the pumps.
Observation of the dynamics of the installation in Dresden during testing reveals that
its behavior is not simple. The system is controlled by prescribing the volume flow
(provided by the pumps) and turbine rotation speed; the water levels in the inlet and
outlet channels are part of the response.
The need for a model by which to analyze the installation’s behavior can be prompted
with the following observation. The plant in Dresden is first operated with a given
volume flow and turbine rotation speed. Then, the turbine speed is reduced. This
increased restriction to the flow causes the water in the upstream channel to “back up”,
and within the following minute, the water level there has increased significantly. As a
result, the turbine’s load increases, which, together with the change in rotation speed,
causes the power output to change.
From the point of view of the experimental scientist, and of the device’s future operator,
is this change desirable? Is more hydraulic power now available to the turbine? Can the
former power output (which occurred for a higher turbine speed and identical volume
flow) be meaningfully compared with the new one? Is the turbine more efficient in
one of the two cases? Should the expression for efficiency take the increase in inlet
cross-sectional area into account?
In the literature, the turbine power of such devices is sometimes non-dimensionalized
as an “efficiency”, formulated as Ẇshaft/(ṁg∆h), as would be done with a high-head
cross-flow installation. In this case however, the device is intended for use as a bypass
to the main river flow; the mass flow that is not captured by the wvpp is lost and will
pass through the main river flow instead. The denominator in the expression above
(the power that corresponds to an “efficiency” of 100 %) is therefore a fleeting amount
that is affected by the device’s operation, making comparison of different operating
points difficult.
These introductory questions prompted by observation of the Dresden laboratory
installation can be answered by addressing two more general questions: against which
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maximum may we compare the measured performance of the installation? And, to
this purpose, how to express power and efficiency in a meaningful way, so they may be
compared across different scales and operating conditions?

1.5.2 Limitations of full flow simulations

As part of the same Fluss-Strom research project, a series of numerical investigations of
the same wvpp have been carried out at the University of Magdeburg; these include
Bachelor’s and Master’s theses mentored by the author [66, 72, 92, 108], as well as
conference talks [57, 67] and journal articles co-authored by the author [78, 106]. The
main focus of this research is the device’s compatibility with fish migration (further
work currently underway in the laboratory to develop increasingly capable fish behavior
models using these simulations), but a secondary objective, of concern in the present
work, is the quantification of its hydropower potential.

Figure 1.14: Views from complete simulations of the flow in the wvpp. Top: the device has been
sectioned longitudinally so as to display the water level and turbine position in the wvpp. A few
streamlines colored according to velocity are visible in the outlet of the turbine. Bottom: view of the
mesh structure in the turbine basin. The cells are colored according to velocity; local refinement is
implemented in areas where high gradients are expected. Full details of this simulation are published
in Powalla et al. 2021 [106].

Simulations prepared by Dennis Powalla as part of [106],
and run by Sergei Sukhorukov as part of [108]. Figure later published in [109]

A family of numerical fluid flow simulations is now available to reproduce the flow in the
wvpp (figure 1.14). These simulations are based on a Reynolds-averaged Navier-Stokes
(rans) approach and have been validated with experimental measurements in the
Dresden laboratory. The properties of the simulations are detailed in [78, 106] and are
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not discussed here (numerical simulations of comparable flows are extensively described
in the following chapter of this thesis); nor are the ethohydraulic properties of the device,
which are not of concern for the present work. Instead, the emphasis is here placed
on the computational costs involved in running those simulations: obtaining a single
reading for the turbine power in [106] uses up 19 000 cpu-hours. The reasons for this
high cost are, firstly, that the inherent physics of the flow are challenging to describe
numerically (an account of those is given in section 2.2 p. 45 of the next chapter), and
secondly, that the simulations must be run for long periods of simulated time (of the
order of 45 s) in order to account for the device’s long response times, allowing for the
volume flows or water levels to stabilize.
It therefore follows that a three-dimensional, two-phase cfd simulation accounting for
the plant’s complete geometry cannot currently be used to map out the behavior of the
wvpp across a large range of volume flows, inlet heights, and outlet heights. Instead, a
simpler model is needed in order to evaluate the potential power available to the plant,
by which its efficiency can be quantified across many conditions.

1.5.3 Model for the energy budget of a water vortex power
plant

Here, the wvpp is analyzed with the lens of the model presented in section 1.4, in order
to quantify the available power at various regimes. The underlying hypothesis is that
the machine is installed a a bypass to a weir or traditional hydraulic dam, as depicted
in figure 1.15; it is assumed the inlet and outlet water heights h1 and h2 are unaffected
by its operation. The mass flow rate ṁ is a priori unknown.

Figure 1.15: Drawing of the wvpp in the type of installation it has been designed for: as the bypass to
the main flow of a river. The hypotheses used to quantify its hydraulic power potential are that heights
h1 and h2 remain independent of its operation. These heights are formally described in figure 1.4 p. 22.

Figure later published in [109]

In order to quantify and non-dimensionalize power, reference values are chosen. The
cross-section of the wvpp’s inlet is used as a reference area Af=Lwidth inleth1, and a
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representative upstream river velocity U∞ is used as a reference velocity. The turbine
power is non-dimensionalized as the power coefficient from definition 1.8, which, together
with definitions 1.4 & 1.5, becomes:

CP hydraulic = Ẇhydraulic
1
2ρAfU3

∞
= 1

1
2ρAfU3

∞
ηload Ẇhydraulic, max (1.26)

CP shaft = Ẇshaft
1
2ρAfU3

∞
= 1

1
2ρAfU3

∞
ηhydraulic ηload Ẇhydraulic, max (1.27)

In these equations 1.26 & 1.27, the reference power in the denominator, 1
2ρAfU

3
∞, is a

partly arbitrary quantity, so that CP is not expected to reach any value in particular.
Nevertheless, for any given inlet boundary condition, higher power coefficient values
unambiguously indicate higher power. When h1 is increased, the reference power grows
in proportion, reflecting the device’s increased ability to capture mass flow ṁ in the
inlet. The device’s performance is quantified separately, using ηload and ηhydraulic.
Now, the hydraulic power available to the device is quantified using eq. 1.24, which is
reproduced here:

CP hydraulic =
[
4 + KD2

R2

] (
R
uA

U∞

)3
− 4

(
R
uA

U∞

)2
−KD0

(
R
uA

U∞

)
(1.28)

In this equation, the two parameters which must be quantified to assess the power
potential are KD0 and KD2 from eqs. 1.21 & 1.20, reproduced here:

KD0 ≡
−ρg∆(z + h)

1
2ρU

2
∞

(1.29)

KD2 ≡
−Floss

1
2ρu

2
AAf

(1.30)

The static drop coefficient KD0 is already known, since it is determined entirely by the
device’s installation settings. The loss coefficient KD2, however, is the result of the flow:
some reference measurement or numerical simulation is needed in order to estimate its
value, and thus predict the device’s internal losses during operation.
To this purpose, a cfd simulation is prepared, based on the simulations presented in
Powalla et al. 2021 [106]. The full details of the flow are not of interest here; instead,
what is needed is only a measure of the device’s internal energy losses. The simulation
is therefore greatly simplified, as shown in figure 1.16. The global inlet and outlet
are set to total pressure boundaries with a static pressure distribution. The modeling
of two-phase flow is abandoned, prescribing instead a perfectly flat slip wall for each
of the upstream and downstream channel ceilings. The turbine is removed and is
replaced with a cylindrical outlet in the upstream channel, and a disc-shaped inlet in
the downstream channel. Coupling of mass flow and total pressure between these two
surfaces is implemented, with some under-relaxation for increased stability.
The resulting, highly-simplified simulation features 2.6 million cells; after a crude
initialization, a stable flow field is obtained after 52 s of simulated time, marching with
a time step of 0.02 s. This is obtained at the expense of only 550 cpu-hours, making
the computation well within reach of an ordinary desktop computer.
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Figure 1.16: Main features of a simplified simulation for the wvpp, based on the family of simulations
depicted in figure 1.14, but with much of the sophistication removed: the flow is now water only,
and the turbine is no longer present. Top: a cross-section of the weir is shown, with plane sections
colored according to velocity. Bottom: coupling mechanism between the upper and lower parts of the
weir. Water exits the top part of the weir in the yellow cylinder-shaped “top outlet”, a surface with a
prescribed mass flow boundary condition. The mass-flow-averaged total pressure is read out from this
surface, and in turn, this value is prescribed as a boundary condition for the “bottom inlet” (purple
disc in the throat of the device). The resulting mass flow in this “bottom inlet” is read out and serves
to prescribe the mass flow in the “top outlet”.

Figure later published in [109]

In this simulation, since the flow is unobstructed by the presence of a turbine, the mass
flow is governed by the dissipation losses associated with the transit of water through
the complete installation. The mass flow ṁ is the only output from the simulation
required to quantified Flosses, the force representative of all such losses in the model, by
quantifying the difference between the fluid’s momentum at inlet and outlet (eq. 1.13
p. 22). With Flosses, the loss coefficient KD2 is quantified, and with it, the power curve of
the installation can be drawn, quantifying the hydraulic power available to the turbine
as a function of the mass flow.
For the case of the wvpp installed in the laboratory in Dresden, the performance is quan-
tified as follows. The machine features ∆z=−0.875 m and Lwidth inlet=Lwidth outlet=2 m.
The upstream reference velocity is chosen as U∞=1.2 m s−1. In the outlet of the turbine
chamber leading to the outlet channel, a cross-section is selected arbitrarily as an
actuator surface, with area AA=0.817 m2. The choice of that “abstracted turbine”
cross-section is a simple matter of convenience and does not affect results. Here, it is
expected that this section will likely remain unaffected by modifications of interest in
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later studies, such as changes to the turbine basin geometry or to the diameter of the
throat.
The operating boundary conditions are chosen as h1=0.825 m and h2=0.7 m. These
values result in an inlet area Af=1.65 m2 and a corresponding actuator-to-inlet area
ratio R=0.495. The static drop coefficient is then given, before the simulation is run,
as KD0=13.625.
The simulation is run until the flow has stabilized to a satisfactory level. The mass flow
then reaches a value of 953 kg s−1 (this is the sole output of the simulation).
The effect of all momentum losses in the system is summed up as the single force
Floss=−16.09 kN (eq. 1.13 p. 22). In this manner, the loss coefficient (eq. 1.20) is finally
obtained as KD2=14.329. Using the mass flow, the relative actuator velocity (adjusted
for relative area) is computed as R uA/U∞=0.481 (the fastest the water can ever flow
through the device given these boundary conditions). The available power curve, plotted
using the obtained KD0 and KD2 values, is plotted in figure 1.17.
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Figure 1.17: Power coefficient of the wvpp when h1=0.83 m & h2=0.7 m, as predicted using a single,
simplified cfd simulation. The vertical axis is the power coefficient CP based on the frontal area Af
(eq. 1.26), and the horizontal axis is the adjusted actuator velocity (non-dimensional inlet velocity,
directly proportional to the mass flow). A single dot on the zero-y axis stands for the value read out
from the simplified cfd simulation, while the power curve is the solution to equation 1.24, calibrated
with the KD2 value obtained from the simulation.

Figure later published in [109]

In this figure 1.17, a single point is shown for the single simulation used to generate the
curve. A discrepancy between that point and the corresponding prediction according
to the power curve is observed. This difference is attributed to non-uniformities in
the flow (particularly at the outlet), which are neglected in the intentionally simple
post-processing of the simulation.
The power curve in figure 1.17 features a maximum of CP hydraulic=2.76 at an adjusted
speed (R uA/U∞)opt=0.29 (corresponding to ṁCP hydraulic max=574 kg s−1). This infor-
mation, available before any detail about the turbine is specified, already provides
information useful for its design, for example in determining velocity triangles or sizing
mechanical components.
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In order to check the validity of the model, further simplified simulations are run, in
which the coupling between the upper and lower regions of the simulations is modified:
each time, only a specified fraction of the total pressure read out in the top outlet is
prescribed in the bottom outlet. The mass flow is therefore reduced by the (fictive) force
exerted by the actuator. The result of these simulations are displayed in figure 1.18
together with the previously-obtained power curve. Additionally, the turbine shaft power
coefficient obtained from a complete, moving-turbine simulation of a corresponding case
is displayed as a single, orange-colored point.
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Figure 1.18: Modeled power curve for the wvpp. The right-most data point and the blue curve are
these from figure 1.17. The other green points are generated using further simplified simulations
from which energy is extracted summarily in the main basin. The orange cross indicates the turbine
shaft power coefficient obtained in a complete cfd simulation for conditions very close (h1=0.85 m,
h2=0.74 m) to those used when plotting the power curve.

Figure later published in [109]

In figure 1.18, the agreement between the values obtained in the actuator simulations
and the curve prediction built on a single, unobstructed-flow simulation is, for the
purposes of this work, deemed excellent. The curve plotted is not a best-fit model, but
indeed the solution of equation 1.24, built on the assumption that the losses internal to
the wvpp can be well-described using a single, constant loss coefficient.
In this same figure, the single data point corresponding to a complete simulation (two-
phase cfd with rotating turbine) falls well below the curve, at 71 % of CP hydraulic max.
In this case, the product of the load and hydraulic efficiencies, which account together
for the not-quite-optimal mass flow, free-surface effects in the device, and dissipation
losses within and around the turbine, is ηloadηhydraulic=71 %.
The same model can be used to evaluate performance in different situations. For
example, in recent work, a series of four complete simulations of the wvpp were run,
with boundary conditions adjusted so that the inlet and outlet heights would be set to
respectively h1=0.64 m and h2=0.56 m. Each time, the rotation speed ω of the turbine
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is varied, and the power of the turbine is extracted. These two properties are presented
together in figure 1.19.
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Figure 1.19: Four turbine shaft power readings carried out in full cfd calculations of the wvpp, with
h1=0.64 m and h2=0.56 m. Both axes are dimensional (power in W and rotation speed in revolutions
per minute). In these four simulations, the mass flow decreased steadily as the turbine speed was
increased.

Data post-processed from simulations prepared by Dennis Powalla as part of [106],
and run by Sergei Sukhorukov as part of [108]. Figure later published in [109]

The model developed in this chapter allows for the non-dimensionalization of these
values, and their comparison to a maximum theoretical reference point. For this, a
new, simplified (single-phase, turbine-less) simulation is run. The changed inlet height
modifies the value of R to 0.641 and the boundary conditions to KD0=13.03. Using the
mass flow obtained in the simulation, the loss coefficient is quantified as KD2=16.23.
These results make it possible to transform the figure 1.19 above into the two figures 1.20
& 1.21, which present the power coefficient and product of efficiencies for each of the
simulations, together with the theoretical limit for these.
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Figure 1.20: The turbine shaft power readings from figure 1.19, this time non-dimensionalized as per
the model developed in this chapter (orange crosses). In addition, a single simplified simulation has
been run (rightmost circle data point), and the corresponding power curve has been drawn.

Figure later published in [109]
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Figure 1.21: The data from figure 1.20, this time presented so that the efficiency of the power extraction
(the product of the load efficiency ηload and hydraulic efficiency ηhydraulic) is quantified; the reference
power for this is the maximum of the power curve.

Figure later published in [109]
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Finally, the model can be used to answer the questions formulated at the start of
this section pp. 32-33 in a quantitative manner. The simulations in figure 1.20 were
subjected to an inlet height of 0.825 m; what happens if this height is raised to 1.2 m?
The answer is obtained by running one additional simplified cfd simulation. Once the
property fields are have been initialized with values from the previous case, a converged
flow state is obtained after 12 s of simulated time and an expense of 190 cpu-hours. The
resulting available power curve is plotted together with that from fig. 1.20 in figure 1.22.
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Figure 1.22: Power curves of the wvpp for two cases: the blue curve, already plotted in figure 1.20, is
for when h1=0.825 m; while the green curve is for the same installation when h1=1.2 m. Each curve is
based on a single reading from a simplified cfd simulation.

Figure later published in [109]

Using the information in figure 1.22, the answers are summarized as follows. The inlet
height has been increased by 45 %, and the available power has increased almost in
proportion (the maximum power coefficient is decreased by only 5 %), by 38 %. In order
to have access to this additional power, the turbine must operate so that the inlet velocity
is strongly reduced (from 0.35U∞ down to 0.21U∞). A quick re-dimensionalization of
these results indicates that the maximum available power Ẇhydraulic max goes from 4.54
to 6.25 kW, while the corresponding mass flow ṁopt reduces from 571 down to 512 kg s−1;
these new values become the reference point by which to quantify the installation’s
efficiency.
It is therefore seen that the model developed in the first part of this chapter can be used
to answer questions that, although simple, have no obvious immediate answer. In this
case, increasing the inlet height increases the load on the turbine, but also the internal
dissipative losses in the plant; if the inlet velocity were to be kept constant, these losses
and the increased momentum abandoned in the outlet (where velocity would increase by
virtue of mass conservation) would reduce the power available to the turbine. From the
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point of view of the operator, the change in conditions is only desirable if the turbine
and generator are able to operate efficiently at a reduced flow rate.
If the power characteristics of the wvpp were of further interest, models better suited
to predicting its losses could naturally be developed, using more sophistication. Here,
the approach was voluntarily kept as simple as possible, focusing on illustrating the
capabilities of a model which was developed to cover a much more general class of
devices — including turbomachines such as these described in the upcoming chapters,
operating in floating installations.

1.6 Conclusions

This chapter has presented a theoretical analysis of the achievable performance in
floating or bypass hydropower installations, a first, essential step towards developing
high-efficiency systems.
A one-dimensional model describing the fluid flow through hydraulic devices was
presented: a tool able to characterize the performance of machines operated in conditions
where the mass flow rate is a control variable and the outlet water height cannot be
controlled. This corresponds for instance to a small turbine or water wheel installed in a
large river, or to a machine operating in a cascading flow alongside a dam. In the model,
the device operating speed required to attain full load efficiency, and the corresponding
maximum hydraulic power, can be quantified independently of the hydraulic efficiency.
The model is able to account for the effects (both desirable and undesirable) of ducting,
i.e. the use of deflectors to increase the frontal area of devices. When adding a duct to
a machine of given frontal area operating at 100 % load efficiency, the model specifies
the conditions required to generate an increase in power density.
Usage of the model is demonstrated with the case of a mid-scale hydropower device, a
26 m-long water vortex power plant (wvpp). In order to characterize the installation’s
power budget, two properties need to be quantified: the static drop coefficient KD0, a
function of the boundary conditions only, and the loss coefficient KD2, a measure of the
device’s hydraulic flow resistance. It is shown that a simplified cfd simulation with a
single output (the mass flow rate) is sufficient to obtain a useful value for KD2.
In this manner, the power available to the machine can be quantified given any set of
boundary conditions. It becomes possible to evaluate the device’s real-life performance,
benchmarking it against reference values anchored in physical principles. The model
can be used to provide design guidance, and compare sets of boundary conditions one
against the other easily, providing answers that are not easily obtained using intuition
or even experiments. These results are obtained for a computing cost several orders
of magnitude smaller than those associated with a full description of the flow using
cfd methods, which also require experimental validation to provide reliable results, as
discussed next.
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Chapter 2

Computational simulation of a
free-stream waterwheel
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2.1 Introduction

From this chapter onward, this thesis focuses on the study of one specific kind of
hydropower device: the free-stream water wheel, a wheel operated at the surface of a
tidal or river flow, on a floating installation.
From an engineering point of view, a water wheel possesses undeniably appealing
characteristics: it may be thought as a drag-based turbomachine, similar to a horizontal-
axis Savonius turbine, in which the blade return path takes place in a fluid 800 times
less dense than water. Nevertheless, closer examination of a typical such machine
in operation also reveals striking weaknesses: blade entry and exit from the water
bring strong disturbances, the fluid flow within the machine is highly unsteady and to
some degree chaotic, and the power delivery features high-amplitude, high-frequency
oscillations.
In breastshot water wheels, operated with a sizable water height difference between
inlet and outlet, the incoming and outgoing flow conditions are well controlled. This
type of machine eventually dominated water wheel technology at the start of the 20th

century [2, 4]; recent guidelines and updated theory regarding their design were recently
obtained using modern techniques [53, 69].
Free stream water wheels, however, operate in uncontrolled, un-dammed free-surface
flows; they represent a puzzling design for which classical techniques in turbomachine
theory, such as velocity triangles, do not always help. For example, because of the
unconstrained movement of the free surface it is difficult to determine a priori or
sometimes even control the fluid velocity at given positions in the vicinity of the rotor,
which complicates the search for a blade geometry which would facilitate entry and exit
from the water.
The literature concerning free-stream water wheels is much sparser than for their
breastshot counterparts [81]. Experimental work has already been carried out to
quantify the performance of one specific, simple stream wheel as part of the Hylow
project [19, 28], but without the search for an optimum design.
Numerical studies have also been published; unfortunately many are missing critical
information [30, 34], are not reproducible [38, 93], or even feature inconceivable flow
fields [83]. Some studies present simplified models featuring single-phase flow, with the
water surface arbitrarily “flattened” as a slip-wall boundary condition [24, 35, 44, 45,
62, 94].
In spite of this, it is clear that computational fluid dynamics (cfd) tools are able to
capture the full complexity of hydrokinetic devices operating near the free surface [49,
58, 61]. Reynolds-averaged Navier-Stokes (rans) models backed by experimental
measurements were already used to study Dethridge wheels [59, 60] as well as breastshot
wheels [70, 79], perhaps most successfully by Nishi et al. [42, 52, 68, 100, 101].
A potential therefore exists to approach the problem of free-stream waterwheel design
with numerical tools, enabling a systematic exploration of the effect of design parameters
on their performance.
The aim of this chapter is to describe a method by which the performance of free-stream
water wheels can be not only evaluated as a whole, but also understood in terms of the
fluid mechanics occurring at the blade level. For this, a series of 30 cfd simulations will
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be carried out, showing how the influence of selected design parameters and operating
conditions can be characterized. The methods described here will later be used to
optimize and describe broad design guidelines for this type of machine.
Sections 2.4 and 2.5 of this chapter were published in a peer-reviewed journal article (ref-
erence [73]): O. Cleynen, E. Kerikous, S. Hoerner, and D. Thévenin. “Characterization
of the performance of a free-stream water wheel using computational fluid dynamics”.
In: Energy 165 (2018), pp. 1392–1400. doi: 10.1016/j.energy.2018.10.003

2.2 Numerical models for simulation of hydrokinetic power
devices

2.2.1 Fluid flow physics

The physics of the fluid flow through low-impact hydropower devices, and in particular
hydrokinetic devices, have the following main properties:

Turbulent River flow, which serves as incoming flow for such machines, is always
turbulent ([Re]river width ≈ 108). Yokosi (1967, [5]), shows that the Kolmogorov
power laws apply well to river flow, with length scales covering 100 m down
to 1 mm in the horizontal plane (20 m to 1 mm in the vertical plane), based on
measurements in a 100 m-wide river.
The flow patterns in such machines is also turbulent, at the very least in their
wakes. Water wheel blades with 0.5 m depth are likely to generate large-scale
vortices at [Re]blade depth=5 · 105, which will dissipate down to structures less than
0.1 mm in size.

Low energy density Water flowing in a typical river possesses low amounts of specific
kinetic energy (ek ≈ 2 J kg−1); rivers in plains feature low gradients (on the order
of 0.3 %). Those make for feeble energy conversion potentials, and make low-
impact hydropower devices particularly sensitive to dissipation losses.

Two-phase Describing water flow near the surface involves predicting movement of
both water and atmospheric air, even if only the flow of water (being 800 times
more dense) is of practical importance for the operation of the machine. The
atmosphere above the river essentially acts as a flexible isopressure boundary
condition for the water, the position of which varies in time.
The degree of freedom brought by the air-water interface translates into the
possibility for surface wave propagation. This propagation features very little
dissipation; however, it can affect the spatial distribution of available hydraulic
energy as a function of time. It may also interact with the dynamics of the
machine (e.g. synchronizing with characteristic frequencies, as observed later in
sec. 4.2.3 p. 90).
Given the size of the devices of interest here, the influence of surface tension is
insignificant; compressibility effects are likewise negligible.
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Unsteady The movement of a rotor obviously translates into some form of unsteady
boundary condition for the flow. The movement of the free surface, especially
when affected by the entry and exit of solid blades, also translates into significant
unsteadiness.

Large-scale Hydrokinetic devices operated in a free stream affect river flow in a
spatial domain many times larger than themselves (with the water diverting
its path upstream, to the sides and below the device, as resistance is added
to the flow through the machine). Correctly predicting performance for such
machines requires reproducing boundary conditions adequately, in order not to
create artificially high blockage ratios. Correspondingly, settling times in the
order of several seconds at least are required for the flow to develop, before proper
analysis can be conducted.

2.2.2 Main numerical models

In this work, cfd simulations of free-stream water wheels are carried out. The resources
of the laboratory for fluid dynamics of the University of Magdeburg, where this research
is carried out, include access to the industrial simulation software package Star-ccm+
by Siemens, and to a share of a high-performance computing cluster (106 tflops).
In the scope of this work, a tentative objective was that a three-dimensional simulation
run on ∼100 cores complete with a computing time in the order of one week. With this
in mind, and with consideration of the physics of the problem described above, a series
of choices is made for models with which to simulate the flow, presented below.
The velocity field ~V at some point in time is calculated incrementally, with its change
over each timestep computed by solving a discretized form of a momentum balance
equation, while respecting the constraint of a mass balance equation. The momentum
equation here is the incompressible version of the Reynolds-averaged Navier-Stokes
(rans) equation,

ρ
D~V
Dt = ρ~g − ~∇p+ (µ+ µT )~∇2~V (2.1)

where µT is the turbulent (or eddy) viscosity, which lumps together all the effects of
turbulence (fluid movement in time and spatial scales too small to be captured by the
simulation) as one local dissipative, viscous-like effect. The distribution of µT is calcu-
lated indirectly using two turbulence models, which solve for k, the turbulent specific
kinetic energy (in J kg−1), and either ε, the turbulent dissipation rate (in J kg−1 s−1) ,
or ω, the specific turbulent dissipation rate (ω ≡ ε/k, in s−1).
The equations for these three variables take a form similar to the Navier-Stokes equations:
an advective term is equated to other terms (here all terms are generically named T )
whose values are calculated according to local flow properties, with the help of partly-
arbitrary constants calibrated with experiments. The k-ε model, summarized in 1972
by Jones and Launder [6], and well presented by Leschziner [56], solves for two scalar
equations in the form of:
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Dk
Dt = Tmean diffusion + Tturbulent diffusion + Tgeneration − ε (2.2)
Dε
Dt = Tgeneration by mean strain + Tgeneration by turbulent straining + Tdiffusive transport + Tdestruction

(2.3)

In turn, the k-ω model, formulated by Wilcox in 1988 [10] and again well presented in
Leschziner [56], solves for eq. 2.2 as well as an equation for ω with two partly-arbitrary
constants C in the form of:

Dω
Dt = C1 ω + C2 ω

2 + Tmean diffusion + Tturbulent diffusion (2.4)

From both k, and either ε or ω, the turbulent viscosity is then recovered by these models
with the help of a partly-arbitrary constant Cµ as:

µT = ρ Cµ
k2

ε
= ρ Cµ

k

ω
(2.5)

In all simulations presented in this thesis, use is made of the sst model (formulated by
Menter in 1994 [11] and again well presented by Leschziner [56]), which blends both
turbulence models. The k-ω model is used near walls up to y+ ≈ 70, and the k-ε model
is used beyond that. Both models are blended with a weighted function; some limiters
are applied, and wall functions are used where wall meshing is too coarse to resolve wall
gradients. This approach has progressively become the state-of-the-art standard for
engineering simulations with the scale and purpose of these in this work, and indeed,
has been used with success to describe turbulent flows near free surfaces in machines
similar to these studied in this chapter [49, 61]. The adequacy of the models, and of the
default values for the constants that were used throughout this thesis, are from here on
no longer discussed.
In principle, two interacting fluids (water and air) are flowing through the domain
of interest and so two sets of equations could be solved simultaneously for the entire
domain. However, liquid water is 800 times denser than atmospheric air, and the two
fluids do not mix significantly in the applications of interest here. Therefore, a single
set of flow equations is solved for both fluids, using the volume-of-fluid method (vof,
formulated in 1976 by Noh & Woodward [7] and 1981 by Hirt & Nichols [9]). In this
method, in each cell, the share of volume occupied by water is quantified with a fraction
Owater (ranging from 0 to 1), and used as a weight function to quantify the density and
viscosity used in eqs. 2.1-2.4:

ρ = Owaterρwater + (1−Owater)ρair (2.6)
µ = Owaterµwater + (1−Owater)µair (2.7)

In turn, the volume fraction of water is simply convected through the domain in a
conservative manner:

DOwater

Dt = 0 (2.8)
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Using this model greatly reduces the required computational cost. It has the disad-
vantage that in cells where a mix of air and water is present, only the dynamics of an
“average” fluid are computed. This is not only formally incorrect; it also prevents the
description of surface waves, drops and bubbles at a scale smaller or equal to the local
cell size. To mitigate those effects, the mesh is refined near the interface (cf. upcoming
paragraphs).
To summarize, in the main flow field, six main coupled, non-linear equations are solved
for every time step: the three components of the rans (eq. 2.1), a mass conservation
equation (~∇ · ~V = 0), and two turbulence property equations (two among eqs. 2.2-2.4).
In addition, the vof equation (2.8), the blending function of the sst model, wall models,
as well as accessory linking equations (e.g. eqs. 2.5-2.7), are solved, at a comparatively
lower cost. The details of the numerical implementation, such as discretization schemes,
coupling techniques, and multigrid approaches, are not described here.

2.2.3 Spatial discretization

A final important set of choices in the numerical tools concerns meshing. Given the
physics described above in section 2.2.1, in particular the range of length scales to be
covered, a coarse structured mesh is used for the faraway field, with local refinements
near the interface and in the regions of interest (e.g. near the blade tips and along the
surface of the blades).
The rotation of the rotor brings in additional challenges. Since a re-meshing of the
complete field for each time step would be prohibitively expensive, some form of
mesh rotation (together with the rotor) relative to a static background is required.
One approach is to use a direct interface, in which the faces of cells at the edges of
two disjointed meshes communicate with one another; nevertheless, this could not be
implemented reliably in Star-ccm+ 11.04 and 12.02. Instead, the overset method is used
in all simulations presented here. In this method, the rotating mesh is superimposed on
a background mesh, and several rows of cells on the edges of each overlap one another;
the software solves flow equations for both groups, and interpolates between them.
In the simulations presented in this thesis, some of the most important considerations
regarding the implementation of the mesh movement are as follows:

• Some information loss due to interpolation occurs continuously in the overlap
zone, and across time steps in cells where the flow motion does not align with the
mesh motion. These losses increase with mesh size.

• Since the rotating mesh crosses the horizon plane, it carries with its rotation the
locally-refined areas surrounding the air-water interface. This calls for regular
re-meshing; a time-intensive process (in Star-ccm+ 12.02, the meshing is a largely
serial process) which again results in losses of information through interpolation.

• In order to avoid numerical divergence, the edge layers of each mesh, across which
exchange of information takes place during the flow equation solving, must have
sizes with same order of magnitude. At the same time, to reduce computational
costs, a finer mesh is desirable in the water than in the air (where not only the
fluid movement is of little interest, but the velocities are also typically higher).

48



The combination of these factors leads to numerical divergence issues in areas
where finer cells are moved together with the rotor over coarse background cells.

• Another requirement to avoid numerical divergence is to maintain low cell-to-cell
velocities (in other words, to maintain low cell Courant numbers). This tends to
favor small time steps and large overlap cell sizes in cases where the tip speed
ratio, the free stream velocity or the radius of the wheel are relatively large.

• In simulations which are limited by the number of cells, such as three-dimensional
simulations, an interesting technique is to only model wheel blades in the lower
rotor region, where they interact with water. To achieve this, the mesh is reset
in its original position at time intervals equal to the time interval separating the
passing of two blades. In turn, this means the blade-passing time interval must
correspond to an integer number of solver time steps — and so the choice of a
time step is again affected.

Most of these considerations translate into contradicting requirements, with various
compromises to be made as the radius, depth, tip-speed ratio and free-stream velocity
of simulations is varied: trial and error is used to determine practical combinations of
mesh size distribution and time steps. The regular re-meshing of simulations according
to flow field properties, and resetting of mesh positions when needed, is implemented
during the simulation runs through Java macros (Java being the language in which the
Star-ccm+ graphical user interface is written).

2.3 Three-dimensional cfd model of a water wheel

The first numerical simulation of a free-stream water wheel undertaken in this work
investigates the performance of a wheel whose geometry was proposed by the company
Sibau Genthin GmbH, a partner in the research project Fluss-Strom which funded
part of this work. The wheel has twelve blades, a diameter of 2.4 m, a width of 3.5 m,
and a depth of 0.5 m. The design is intended for electrical production, installed on an
anchored, floating twin-hull structure.
As a first exploratory investigation, the rotor of the wheel is modeled in Star-ccm+.
It is placed at the center of a large (30 m long, 3.7 m deep) domain, as shown in
figure 2.1. The hulls of the floating installation are not simulated. Because the wheel
is positioned perfectly perpendicular to the incoming flow, the flow is expected to be
largely symmetrical. For this reason, only one half of the domain is simulated, with a
symmetry plane set-up across the rotation axis, in the middle of the rotor.
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Figure 2.1: Left: the complete simulated flow domain (with flow from the foreground to the background).
The flow field has been mirrored along the symmetry plane which is setup across the center of the axis
of the wheel, so that the flow is only solved for one half of the domain showed here. The water surface
is colored according to velocity, with the color scale centered around the inlet velocity, U∞=1.2 m s−1

(white color).
Right: close-up view of the flow field in the wheel, with flow from left to right. Only the right half of
the wheel (the half of the domain for which the flow is solved) is shown. Under the water surface, on
an x-y plane longitudinal with the flow, magnitude of the vorticity in the z-direction (along the axis of
the wheel) is shown.

The simulation is configured according to the considerations listed in sections 2.2.2
& 2.2.3 above. A structured mesh is used as a stationary background, on top of which
a rotating cylindrical mesh containing the wheel is rotated. Figures 2.2 & 2.3 display
the mesh structure in longitudinal and cross-flow planes. The “overset” technique
implemented in Star-ccm+ activates the cells of one mesh or the other, depending
on location; it automatically defines an overlap region in which information exchange
occurs. The meshes are refined near the water-air interface, near the blades’ tips
(where high velocity gradients are expected), in the water immediately surrounding the
rotor, and all along the mesh overlap region (where uniform mesh sizes are required for
numerical stability). Regular re-meshing of the rotating mesh is implemented, ensuring
that highly-refined regions (conducive to high computational costs) are not carried out
of the water with the movement of the rotor. In order to reduce the total number of
cells in the simulation, only six of the rotor’s twelve blades are modeled; every time the
rotor has completed 30° of rotation (the angle separating any two blades), the rotor is
reset back into its original position. Ultimately, the number of cells attained 4.2 million.
As per the considerations listed in section 2.2.2 above, an unsteady, incompressible,
implicit segregated rans solver was used, with Volume-of-Fluid (vof) and k-ω-sst
solvers. The discretization was first-order in time, and the time step (selected so that 30°
of mesh rotation would be covered by an integer number of time steps) was 1.7 · 10−3 s.
Boundary conditions were set to mass flow inlet & outlet, slip walls along the domain
floor, side wall and ceiling, and a symmetry plane midway across the wheel’s axis.
The simulation, run on the high-performance cluster Neumann of the University of
Magdeburg, progressed at a cost of 2 800 cpu-hours per simulated second. The power
curve stabilized after 11 s at a value of 5.3 kW (for the complete wheel), corresponding
to a wet-area power coefficient (def. 1.8) of 0.34.
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Figure 2.2: The mesh structure of the three-dimensional simulation in the longitudinal plane.
Top: longitudinal cross-section along the complete, 30 m-long domain, showing the different levels of
refinement applied near the free surface, in sections where high gradients are expected, and in the area
of overlap between the static and rotating meshes.
Bottom: close-up view of the longitudinal section through mesh, near the blades of the wheel. Close to
the blades, the size of the cells is approximately 6 mm; at the periphery of the rotating mesh, cells are
approximately 16 mm wide. In addition, prism layers of cells are applied to the surface of the blades.
The water surface in between the plane and the viewer is represented with a light semi-transparent
surface.

Figure 2.3: A plane section through the mesh, in a plane perpendicular to the main flow direction and
passing through the axis of the wheel. Visible are the refinement areas near the free surface, near the
blades, and in the overlap region between the static and the rotating meshes.
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Because of this extremely high computational cost (obtaining a single reading for power
with this setup involves approximately three weeks of waiting and computing time
on the Neumann cluster), it is clear that this approach, based on a three-dimensional
description of the flow in a full-scale machine, is unsuited to the systematic study of
parameters that is needed to characterize, for the first time, the performance of free-
stream water wheels. For this reason, and because the mechanism of power production
in such machines is predominantly two-dimensional, most of the numerical work carried
out on this thesis is henceforth built on 2D simulations, which involve computational
resources that are several orders of magnitude smaller. Once a characterization of power
(in section 2.4) and a full optimization (in sections 4.2 & 4.3) will have been carried out
in 2D, three-dimensional effects will be chiefly studied again in section 4.5 p. 123.

2.4 Two-dimensional cfd model of a water wheel

The two-dimensional simulation setup that constitutes the basis for much of the
numerical results obtained in this thesis made of a longitudinal plane through the
three-dimensional simulation presented above.
From here on, the mesh consisted of a trimmed, 35 m-long 115k-cell static part, and a
35k-cell rotating component. In an effort to reproduce free-stream conditions despite
the limitations of two-dimensional flow, the water depth was set to 12.5 m, so that the
blockage brought by the wheel (diameter 2.4 m) never exceeded 4 % of the water inlet
cross-sectional area. Boundary conditions were set to velocity inlet (with steady inlet
water height), mass flow outlet, and slip-wall at the channel bed floor. In order to
reduce the Courant number and kinematic instabilities within the air phase, and after
verifying that this in no way affected the wheel power nor the behavior of the water
phase, the viscosity of the air was arbitrarily increased by a factor 10 (this restriction
could later be abandoned in simulations presented in the following chapters). All other
settings were carried over from the three-dimensional simulations. A view of the flow
in such a simulation, centered on the region near the wheel, is presented in figure 2.4.
Observation of the flow shows that separation occurs immediately at the tip of the
blades, with a shear layer appearing in the wake of the wheel. The vortical patterns
shed periodically by the wheel are clearly revealed by displaying the vorticity field in
figure 2.4.
In order to assess mesh size dependence, the mesh density of a single simulation was
increased by a factor 1.33, 1.67 and 2.22 relative to the reference case; this work was
performed by Rohit Patil under mentorship of the author. The time-averaged shaft
power over one cycle —the main parameter of interest in this study— was observed to
vary by respectively −3 %, −2.2 %, and −0.1 % relative to the case with the coarsest
mesh. The grid convergence index of the coarsest mesh with 95 % confidence interval,
calculated according Richardson Extrapolation methodology described by Roache [12],
was 5 %; this coarsest mesh resolution was used for the rest of the study. The time
step (1.1 · 10−3 s on average) was adjusted to allow an integer number of steps per blade
period, and small enough to prevent divergence at the interface between meshes; its
influence over the results was not further investigated.
Java macros (an interface standard to the Star-ccm+ software) were used to configure
and control the 30 different simulations investigated in this chapter, and re-mesh them
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Figure 2.4: Vorticity field in the water phase of the simulated water wheel, for nb=12, λ=0.6,
U∞=2 m s−1, fwet=0.25. The interface between two fluids is represented by a red isoline of 0.9 volume
fraction of water, and shows air entrainment below the departing blade. The magnitude of vorticity
in the field (in the direction across the 2D plane) is shown as a scalar field, with blue and red
indicating clockwise and anticlockwise rotation respectively (the color scale is saturated at ±25 s−1).
The mesh structure is displayed in the background. A video of this unsteady simulation is provided as
supplementary material to reference [73].

Figure previously published in [73]

at appropriate intervals. The main output of each simulation –the power developed by
each blade as a function of time– was exported automatically and post-processed with
Python scripts. With two cpu cores of an ordinary desktop computer attributed to
each simulation, the progress rate reached approximately 5 s per week.
In spite of the low blockage effect, the very large fluid volume, and the subcritical
([Fr]∞=0.2) inflow, the altitude of the water surface was in every case observed to
rise slowly during the simulation throughout the entire domain, at a rate increasing
with the wheel shaft power. As a result, the water wheel immersion depth was not
a fully-controlled input. The output of the simulations thus had to be extracted late
enough that enough blades had passed through the water to provide a realistic operating
environment, but early enough that the water level rise was still insignificant. In practice
it was determined that analyzing data along the full stroke of the third to fifth blades
to enter the water was the compromise which yielded the most realistic results. In
work that followed the publication of the present results in [73], ultimately leading to
running thousands of further simulations (as detailed later in chapter 4), this problem
was completely solved by prescribing velocity rather than mass flow in the simulation
outlet boundary.
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2.5 Performance analysis of the two-dimensional free-stream
water wheel

2.5.1 Parameters for quantifying water wheel performance

The most important performance characteristic of a water wheel is obviously its power
output, typically non-dimensionalized as the power coefficient CP (eq. 1.8 p. 19).
In maximizing power, two competing objectives may be pursued. One may attempt to
maximize wet-area performance, i.e. power per unit area exposed to water. This may
lead towards wheels with very large diameters and numerous blades that are only lightly
immersed in the water, translating into very low power densities. Conversely, one may
attempt to maximize power per unit area of the rotor, thus obtaining compact machines
featuring lower power-specific production costs, perhaps at the cost of decreased wet-area
performance. The two metrics of interest are therefore:

• Wet-area performance. This is measured using the wet-area (or simply “wet”)
power coefficient, in which S is the area exposed to water (immersed depth times
rotor width):

S ≡ Swet = Lwet Lwidth (2.9)

CP wet ≡
Ẇ

1
2ρSwetU3

∞
(2.10)

CP shaft, wet ≡
Ẇshaft

1
2ρSwetU3

∞
(2.11)

In zero-height-drop installations, as considered here, the upper limit to CP wet is
16/27, the Betz limit (other cases are studied extensively in chapter 1 and are
henceforth no longer discussed);

• Rotor-area performance. This is measured using the rotor-area (or simply “rotor”)
power coefficient, in which S is the projected frontal area of the rotor (rotor
diameter times rotor width):

S ≡ Srotor = 2 R Lwidth (2.12)

CP rotor ≡
Ẇ

1
2ρSrotorU3

∞
(2.13)

CP shaft, rotor ≡
Ẇshaft

1
2ρSrotorU3

∞
(2.14)

The upper limit to CP rotor in zero-drop cases is 2(Lwet/R)(16/27).

In chapter 1, energy transfers had been measured from the point of view of the fluid,
resulting in negative power coefficient values when power was extracted. From hereon,
since the focus is on the design of only one kind of machine, the sign convention is
inverted, with positive Ẇ and CP values indicating power production by the machine
(the desirable outcome, as per common language conventions).
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Figure 2.5: Nomenclature for basic dimensions used in the paper. The position and stroke angles α
and θ, as well as the immersion depth Lwet, are measured relative to the horizon line, independently of
the local water surface height.

Figure previously published in [73]

The rotation velocity ω is non-dimensionalized as the classical tip-speed ratio:

λ ≡ ωR/U∞ (2.15)
where ω is the rotor rotational speed (rad s−1).

The blade geometry is characterized as shown in figure 2.5. Three values for the blade
tip angle β are considered; the pivot point for this angle is positioned at R1 = 0.9R for
this entire study. Other aspects of the blade geometry are not further considered.
The maximum immersion depth at which the wheel enters the water relative to the
free-stream water height, named Lwet, can be non-dimensionalized as the wet radius
fraction fwet:

fwet ≡
Lwet

R
(2.16)

The wet radius fraction, in turn, influences the length of the power stroke (the path
along which a blade may deliver power to the shaft). This parameter can be described
using the stroke angle θ, measured in the reference case where the water surface remains
entirely undisturbed by the wheel (as U∞ → 0). From geometry (see figure 2.5), one
rapidly obtains:

θ ≡ 2 cos−1(1− fwet) (2.17)

Using this angle, the position of a blade tip within the stroke path can be tracked with
the non-dimensional stroke angle α?:

α? ≡ α

θ
(2.18)

The specific flow characteristics, such as upstream water build-up or turbulent wake,
will in practice cause the blade to leave and enter the water at different positions;
nevertheless, the points at which α?=0 and α?=1 always correspond to landmark
positions regardless of the duration and path length associated to the blade power
stroke.
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The single-blade wet power coefficient is here written CPb; when averaged over several
blades it is noted with a tilde: C̃Pb.
Finally, it is proposed that the number of blades nb be parametrized as the equivalent
blade number ne, which represents the average number of blades which dip below the
horizon at any given time:

ne ≡
nb θ

2π (2.19)

Using these parameters, the power developed by any free-stream water wheel can be
deconstructed in terms of the contribution of a single blade as it sweeps through the
stroke angle, and non-dimensionalized for critical comparison. A single curve displaying
neC̃Pb as a function of α? is then enough to represent not only the power dynamics at
the blade level, but also the net power produced by the entire wheel. The time-averaged
wheel power coefficient, noted with a bar as CP rotor wet, is then recovered as the net
area below the curve:

CP rotor, wet =
∫ 2π

0
nb C̃Pb

1
2π dθ (2.20)

=
∫ 2π

θ

0
ne C̃Pb dα? (2.21)

2.5.2 Results and analysis

Procedure

The effect of four main parameters was investigated across a series of 30 simulations:
the immersion depth, the free-stream velocity, the blade tip angle, and the number of
blades of the wheel.
From each of the simulations, the power curves of the third to fifth blades to enter the
water were extracted, synchronized (overlaid) and averaged out, as shown in figure 2.6.
The resulting blade-averaged power curve was then filtered with a low-pass 30 Hz filter
in order to suppress non-meaningful artifacts resulting from the averaging, such as
multiple peaks appearing instead of a single one. The averaged curve obtained in this
manner, non-dimensionalized in a neC̃Pb vs. α? graph, is produced systematically for
analysis in the later sections.
Furthermore, for each case, this blade-averaged power curve was repeated several times
at a time interval corresponding to the time ∆tδ ≡ 2π/ωnb separating two blades. The
sum of all these repeated curves (a net power curve with characteristic period ∆tδ) was
used as the basis signal for computing the time-averaged net power and the amplitude
of its oscillations.
The idealized net power curve reconstructed in this manner features slight differences
when compared to the net power curve extracted directly from the simulation, as shown
in figure 2.6 (compare top and bottom). However, it features a unique frequency –unlike
the original signal–, so that the power developed over one period can be extracted
reproducibly across all simulations for systematic comparison. After the issues with
boundary conditions were solved in later work (the results of which are presented in
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chapter 4), this procedure was no longer needed, and the wheel power output was
considered directly.

Figure 2.6: Power curves are extracted directly from the simulation (a and b). These curves are
synchronized (c) and averaged-out (d). A final equivalent power curve is finally obtained by repeating
this blade-averaged power curve with a determined frequency (e and f). Data shown here corresponds
to a case configured with λ = 0.5, fwet = 0.33, U∞ = 2 m s−1 and nb = 12. Since the simulations are
two-dimensional, the power values are per unit width. After resolving the dissatisfactory behavior
of the outlet boundary conditions in later work, the results of which are presented in chapter 4, this
method was no longer necessary.

Figure previously published in [73]

Immersion depth

The power characteristics of the simulated wheel were first monitored for three different
immersion depths, at fwet =0.17, 0.25 and 0.33. For each depth, a simulation was
run for each of three tip speed ratios, the values of which (λ=0.5, 0.6 and 0.65) favor
relatively high rotation speeds, a generally positive characteristic for electrical power
generation.
The time-averaged power characteristics are plotted in figure 2.7. It is readily observed
that greater immersion depths lead to higher power outputs; however, the power increase
is not proportional to the increase in the wet area (CP wet ultimately decreases). Also,
an increase in the amplitude of the power oscillations is observed.
An analysis at the blade level, with the help of figure 2.8, provides insights as to the
mechanisms underlying these trends. Generally, blade power curves display a negative
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Figure 2.7: Time-averaged rotor-area power coefficient (top) and time-averaged wet-area power
coefficient (bottom) for each of the nine cases, all running with 12 blades, U∞=2 m s−1. Round points
stand for the time-averaged power coefficient developed, while the crosses indicate the mean deviation
of the instantaneous power during the power cycle, above and below of the average.

Figure previously published in [73]
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power peak in the vicinity of α?=0 which is from here on termed entry splash, a positive
contribution in the first two thirds of the power stroke, and a negative power phase
in the final stage of the stroke, in which momentum is transferred from the blade to
the water. Within the range of parameters explored here, when an increase in the
immersion depth or a decrease in the tip speed ratio occur, it can be observed that:

• the entry splash is stronger and occurs earlier in the power stroke —even before
the blade tip crosses the horizon line, which is the symptom of water building up
ahead of the wheel;

• the power-producing phase has larger amplitude, occurs earlier in the stroke, and
is more unsteady;

• as fwet reaches 0.33, a negative power phase occurs in the last quarter of the
stroke.

These traits are the symptoms of a change in the environment in which the blades are
operating: within the range of parameters studied here, a deeper, slower wheel globally
results in a higher water build-up immediately upstream of the wheel, and a higher
dynamic pressure in the first third of the stroke.

Free-stream velocity

The second parameter of interest was the free-stream velocity: for each of three different
incoming flow velocities (U∞=2 m s−1, 2.5 m s−1 and 3 m s−1), a simulation was run at
each of the same three tip speed ratios (λ=0.5, 0.6 and 0.65).

Figure 2.8: Blade power coefficient as a function of the non-dimensional stroke angle α?, for three
different depths. The three cases shown here were configured with λ=0.5, nb=12 and U∞=2 m s−1.
It is worth noting again that the reference α?=0 is measured relative to the faraway horizon: water
build-up immediately upstream of the wheel can be seen when the power curve starts at negative
values of α?.

Figure previously published in [73]
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The time-averaged power output characteristics are presented in figure 2.9. The shaft
power increases with the free-stream velocity; however the increase is not proportional
to the increase in the cube of the velocity (CP wet steadily decreases). The amplitude of
the oscillations in the power curves also increases sharply.
At the blade level (figure 2.10), the increase in free-stream velocity results in two trends
similar to these observed above when the immersion depth was increased:

• the entry splash is stronger and occurs earlier in the stroke;

• the power phase has greater amplitude, occurs earlier, and is more unsteady.

Additionally, it is noted that at high tip speed ratios, negative power occurs beyond
α?=1 (after the blade tip has risen above the horizon). Overall, those effects are the
symptoms of the following trend observed within the range of parameters studied here:
for a given tip speed ratio, as the incoming velocity is increased, the drop in the water
surface altitude which takes place in between blades occurs both faster (in time) and
sooner (within the stroke path).

Blade tip angle

Three different blade geometries were compared across experiments, varying the tip
angle β from −20° (the default angle on all other experiments) to 0° (straight, flat
blades) and ultimately +20° (as if the wheel had been flipped around). Since the
intended objective was to reduce entry splash effects at high rotation velocities, for each
value of β, a simulation was run at each of two tip speed ratios (λ=0.6 and 0.65).
The time-averaged power curves (figure 2.11) show an immediate, unmistakable detri-
mental effect of these geometrical modifications on the power coefficient compared to
the baseline case, β=−20°.
At the blade level (figure 2.12) it can be observed that the increase in the tip angle
results in:

• a shorter and much weaker entry splash;

• a noticeable drop in power during the main stroke, and especially,

• a pronounced negative power phase in the late part of stroke extending well
beyond α?=1 (the point at which the blade tip rises above the horizon line).

This last characteristic, which becomes more pronounced as the tip speed ratio is
increased, allows for the visualization and the quantification of the energy cost of the
pick-up of water by the departing blade. It is seen that with this particular set-up, this
cost largely exceeds the benefit brought by the smoother entry into the water.
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Figure 2.9: Power (time-averaged and per unit width) and time-averaged wet power coefficient for
nine cases running at different rotation speeds and incoming velocities, all configured with nb=12 and
fwet=0.33. Round points stand for the time-averaged power coefficient developed, while the crosses
indicate the mean deviation of the instantaneous power during the power cycle, above and below of
the average.

Figure previously published in [73]
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Figure 2.10: Blade power coefficient curves for three free-stream velocities. The three cases shown here
were configured with λ=0.6, nb=12 and fwet=0.33.

Figure previously published in [73]

Number of blades

The final set of simulations focused on the effect of the number of blades. Four wheels
with nb=6, 8, 10, and 12 respectively were simulated in identical flow conditions. For
each wheel, simulations were run at three different immersion depths (again, fwet=0.17,
0.25 and 0.33).
The time-averaged power outputs for this experiment are gathered in figure 2.13. It
can be seen that at low depth, an increase in number of blades leads to a smoother,
higher power delivery. Nevertheless, this effect becomes lower as depth is increased,
and ultimately, it reverses.
A precise description of the involved phenomenon can be found at the blade level. As nb
is increased, the power contributed by each blade is uniformly decreased over the entire
stroke (figure 2.14a). At low depth, this decrease is more than compensated by the
increase in the number of blades (figure 2.14b). However, an optimum is reached that
depends on the depth. With too many neighbors, the blade power begins to feature a
negative power phase in the late part of the stroke (figure 2.15a). Ultimately, the increase
in ne is unable to compensate the decrease in the average value of C̃Pb (figure 2.15b)
and the net wet power coefficient decreases. An interesting side phenomenon observed
here is that the strength of the entry splash always increases with ne, for all the depths
investigated in this experiment.
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Figure 2.11: Time-averaged wet power coefficient for three values of blade tip angle β, each run for
two values of tip speed ratio λ. All cases were configured with nb=12 and fwet=0.33 at U∞=2 m s−1.
Round points stand for the time-averaged power coefficient developed, while the crosses indicate the
mean deviation of the instantaneous power during the power cycle, above and below of the average.

Figure previously published in [73]

Figure 2.12: Blade power coefficient curves for three values of the tip angle β. All cases were configured
with nb=12, fwet=0.33, U∞=2 m s−1 and λ=0.65.

Figure previously published in [73]
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Figure 2.13: Time-averaged wet power coefficient for increasing number of blades at three different
depths. All cases displayed were configured at U∞=2 m s−1 and λ=0.5.

Figure previously published in [73]

64



(a)

(b)

Figure 2.14: Blade power coefficient curves for increasing number of blades nb, for constant wet radius
fwet=0.25. All cases displayed were configured with U∞=2 m s−1 and λ=0.5.

Figure previously published in [73]
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(a)

(b)

Figure 2.15: Blade power coefficient curves for increasing number of blades nb, for constant wet radius
fwet=0.33. All cases displayed were configured with U∞=2 m s−1 and λ=0.5. The reduced interaction
between blades and smoother water flow between blades that are spaced further apart (for low values
of nb) translates as smoother curves on both graphs.

Figure previously published in [73]
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2.6 Conclusions

This second chapter has provided insights on the challenges and opportunities associated
with the numerical description of fluid flow in free-stream water wheels.
An account was first given of the complexity of the fluid flow physics, their modeling in
cfd simulations, and of the need for relatively large simulation domains. These explain
why three-dimensional simulations, at the time of writing of this thesis, constitute
high-investment endeavors that remain too computationally expensive to carry out
parametric studies.
Consequently, this systematic study —the first in literature, to the knowledge of the
author— of the power characteristics of the free-stream water wheel was carried out using
two-dimensional simulations. In these, the decomposition of the net power output of a
free-stream water wheel in terms of the contribution of individual blades allows for an
improved understanding of the dynamics of the machine. In particular, the parametrized
neC̃Pb vs. α? curves are a useful tool for the analysis of the key mechanisms occurring
at the blade level, and their systematic comparison across operating conditions. With
this method, it is possible to pick up the effect on the blade mechanics of phenomena
such as:

• blade entry splash and departure water pickup;

• shift in both entry splash and power stroke due to water build-up;

• interference between blades as a function of stroke distance.

With this tool, within the range of parameters studied in this chapter, the following
phenomena could be identified, quantified, and better explained:

• deeper wheels, slower wheels, and wheels operating in faster flows feature higher
power delivery (higher CP rotor), at the cost of decreased efficiency (lower CP wet)
and higher oscillations in power delivery;

• increased depth and decreased tip speed ratios result in water build-up immediately
upstream of the wheel, with generally detrimental effects on the power output;

• the energetic cost of water pickup by the departing blade largely exceeds the
benefit of a smoother entry into the water brought by tilting the blade tip in the
direction of rotation;

• an increased number of blades results in higher, smoother power delivery, up until
interference effects reverse the trend.

The methodology detailed here constitutes an excellent basis for carrying out an
optimization, using automated toolchains to manipulate well-parametrized simulations.
After experimental validation of simulations is carried out in chapter 3, two such
optimization studies will be presented in chapter 4.
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Chapter 3

Experimental validation of
simulations
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3.1 Introduction

As with any research involving cfd simulations, a need exists to assess results obtained
numerically against experimental measurements; this process should ideally involve the
very same physical phenomena as in the original simulations.
In the literature, two experimental studies have been reported in conference proceedings
on a free-stream water wheel, with focus on the geometry of its ducting apparatus [27,
28]. Further reports on similar experiments lack information about blockage ratio or
ducting geometry [19, 36, 46], while numerous additional studies (e.g. [40, 55, 98]) are
reported which lack even more essential information, making them wholly irreproducible.
A need therefore exists for an experimental data set by which to assess the validity of
the simulations presented in chapter 2.
In the present chapter, two series of experiments are presented, and then reproduced
numerically for comparison. The first involves a purpose-built small-scale model operated
in the channel of the University of Magdeburg. The second involves measurements on a
mid-scale wheel carried out internally by project partner company Sibau GmbH, and
post-processed independently for the purposes of this thesis.
The main results of section 3.2 of this chapter were published as part of a peer-
reviewed journal article (reference [73]): O. Cleynen, E. Kerikous, S. Hoerner, and
D. Thévenin. “Characterization of the performance of a free-stream water wheel
using computational fluid dynamics”. In: Energy 165 (2018), pp. 1392–1400. doi:
10.1016/j.energy.2018.10.003

3.2 Comparison with small-scale laboratory device

Any experiment involving a free-stream water wheel must feature a flow of water with
a free surface. In the lss laboratory of the University of Magdeburg, a water channel
designed by Stefan Hoerner was built specifically for such purposes (figure 3.1 left).
It is able to deliver a 10 m-long stretch of free-surface water flow with cross-section
1.2×0.6 m and mean surface velocity 0.53 m s−1. A 0.3 m-diameter, 0.25 m-wide wheel
model with 10 blades was positioned near the surface using a traverse rail (figure 3.1
right).
Mechanical power was subtracted from the wheel using an electrical generator connected
through reduction gearing (figure 3.2 left), and controlled with a chipboard and graphical
user interface on a desktop computer. The torque exerted by the wheel on the shaft as
well as its rotational speed were measured with a torque transducer with a frequency
of 500 Hz. Frictional losses from the shaft leading to the transducer, measured by
turning the wheel in reverse without water (with the generator running as a motor),
were found to be insignificant.
Prior to the experimental measurements on the wheel, the distribution of velocity at
the inlet of the test section was measured with a two-component Laser-Doppler (lda)
system, across the complete cross-section of the flow (figure 3.2 right), in order to provide
accurate boundary conditions for the cfd simulations. During the power measurements,
the lda system was positioned upstream of the wheel, 0.1 m below the surface; it
yielded two-component velocity measurements with a frequency of approximately 10 Hz.
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Figure 3.1: Left: the water channel of the lss laboratory of the University of Magdeburg. Water from
an underground pool enters the channel through the orange piping in the background. It then flows in
an open, 10 meter-long stretch before returning to the pool (semi-cylindrical outlet in the foreground).
Right: a 30-centimeter-diameter water wheel model operated in the water channel, positioned using a
traverse rail system.

Right photo previously published in [73]

Figure 3.2: Left: apparatus used to measure the power produced by the model water wheel. Mechanical
power is transmitted from the wheel (far right), through a torque transducer (center, green), a
reduction gearbox (center left), and into an electrical motor (far left) operated as a generator. Right:
Two-component lda measurement device positioned below the channel. The four laser beams are
visible through diffraction in the water passing above the glass window.

Measurements carried out jointly with Emeel Kerikous, co-author of publication [73]

Measurement values of shaft torque, rotational velocity and flow velocity were combined
to produce power coefficient curves as a function of time. Runs at different rotation
speeds, as well as runs with an empty water channel (with the generator operated as a
motor, forcing the wheel to turn) allowed for the identification of four narrow frequency
ranges added on top of the signal by the variable generator torque and flexible couplings.
During the post-processing of measurement data, those frequencies were filtered out of
the time-dependent data in order to reduce noise (reaching up to ±35 % amplitude).
Challenges encountered during the measurements were all related to the relatively small
size of the test wheel. The water channel is powered by four pumps with nominal power
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8 kW each, whose 600 L s−1 output is discharged into a settling chamber, before flowing
into the test section. By contrast, the mechanical power developed by the wheel is in
the order of 0.5 W (0.6 % of the power as kinetic energy which is discharged into the
channel inlet). Additionally, the incoming flow has nominal depth 60 cm; a 1 % change
in this height subjects the wheel to a 12 % change in immersed depth. Oscillations in
water velocity, related for example to the highly-turbulent flow in the settling chamber
or to variations induced by the pump control system, therefore have a tremendous
effect on the measurement of interest in this experiment. Careful calibration of the
pump control systems and modifications carried out to the settling chamber outlet, in
particular thanks to the work of lss colleagues Emeel Kerikous and Stefan Hoerner,
mitigated those issues. The final measurement uncertainty on the power coefficient
values was calculated as ±5 %.
Parallel to the experiments, a three-dimensional simulation was set up. The simulation
configuration was principally the same as these described in section 2.3 p. 49. An
unsteady, incompressible, implicit segregated rans solver was used in the Star-ccm+
software, with Volume-of-Fluid (vof) and k-ω-sst solvers. The discretization was first-
order in time, and the time step, chosen for each simulation so that the blade-passing
period would be covered by an integer number of iterations, was 1.1 · 10−3 s on average.
The domain (figure 3.3) reproduced a half (with a longitudinal symmetry mid-plane)
2 m-long section of the Magdeburg laboratory channel, meshed with 300k cells. This
domain was joined through an overset interface to a polygonal, 450k-cell component
containing the wheel blades and rotating together with them (figure 3.4). In order to
increase accuracy while keeping the cell number under control, the mesh was refined
dynamically at the phase interface five times for every blade-passing period, and only six
of the blades (those in or close to the water surface) were actually modeled (the wheel
position being reset at regular intervals). Close to the blades, the size of the cells was
approximately 2 mm. The channel walls were set as no-slip surface boundaries, while
the inlet velocity and turbulence intensity distributions were interpolated from cross-
sectional measurements conducted with lda in the channel (figure 3.3 right). Relative
residuals were dropped to a satisfactory level (continuity <5 · 10−3, vof <2 · 10−2, all
others <10−4) within 150 inner iterations per time step. A complete description of the
flow was thus obtained (figure 3.5). The simulation, ran across 112 cpu cores, advanced
at a rate of 15 s per week.
The measured and simulated power output of the wheel are compared as non-
dimensionalized values in figure 3.6. The amplitude of the velocity oscillations could
not be exactly reproduced in the cfd, due in particular to the steady boundary condi-
tions. In three series of experiments and measurements, the best-fit polynomial curves
displayed identical trends, with the simulated values on average 9 to 12 % below the
measured values. Considering the complexity and the limitations of the procedure, this
is a very satisfactory range.
After the above results were published in [73], a further comparison was carried out
between flow field velocities obtained with two-component particle image velocimetry
(in the horizontal and vertical planes) and those obtained in the same cfd simulations,
in collaboration with Emeel Kerikous and Saketh Bharadwaj Kopparthy. At the time of
writing, these results, which show excellent agreement, are in preparation for publication.
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Figure 3.3: 3D numerical simulation of the water wheel tested in the water channel. Left: the simulation
domain in whole, with the discretization grid visible on the channel walls. Water flows from left to
right. Only one half of the channel is simulated, with the plane closest to the viewer configured as
a symmetry plane. Right: the inlet of the domain (with water flowing from the foreground into the
background). The plane is colored according to velocity; the magnitude of two components of the
vectors was set according to the lda measurements carried out at the entry of the channel.

Figure 3.4: Close-up view of the mesh structure near the blades of the 30-centimeter diameter wheel
model in the simulation. A vertical plane is laid along the flow direction, displaying the mesh structure.
The rotating polygonal mesh is visible in the center, surrounded by the background structured mesh.
The smallest cells in this view are 2 mm across. The water surface in a simulation with fwet=0.33 is
shown after 15 s of time has elapsed.
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Figure 3.5: Velocity distribution on the free surface of the water after 15 s of physical time has elapsed.
The color scale is set so that white corresponds to the nominal free-stream velocity (0.6 m s−1), with
lower and higher velocities denoted using blue and red respectively.
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Figure 3.6: Wet-area shaft power coefficient of the 30-cm diameter water wheel model, as measured
experimentally and as predicted by the 3D simulation, for 10 blades (nb=10), incoming velocity
U∞=0.67 m s−1. On the left, 33 % of the wheel radius is immersed in the water (fwet=0.33), while on
the right, fwet=0.5. A second-order polynomial best-fit model is applied to each family of measurements.

Left figure previously published in [73]
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3.3 Comparison with mid-scale device

3.3.1 The measurement campaign and its context

A series of experimental measurements were carried out around a mid-size (1.5 m-
diameter) free-stream water wheel by the company Sibau Genthin GmbH in 2017. The
raw results of this measurement campaign were made available to the author, and they
provide an additional source of information with which to compare the numerical results
obtained in the present work.
The measurement campaign was a project internal to Sibau Genthin GmbH. A 1.5 m-
diameter, 1.4 m-wide wheel constructed out of steel was operated in between the hulls
of a catamaran boat designed and built for such purposes (the Vector 1, figure 3.7), in
a canal. The wheel construction was so that the blades’ angle relative to the horizon
could be easily modified. The campaign was carried out in order to investigate the
blade angle which would maximize power, for purposes internal to the company. The
measurements were never intended for comparison or publication; but access to raw
measurement data was kindly granted to the author of this thesis one year later.

Figure 3.7: Photos of the Vector 1 research catamaran. Left, the berthed boat; Right, installation of
the mid-size free-stream waterwheel using a crane.

Both photos courtesy of Sibau Genthin GmbH, 2017

3.3.2 Procedure

The 1.5-by-1.4 m wheel was suspended at the center of the boat Vector 1, whose twin
hulls are separated by a width of 5 m. The 12 blades of the wheel were all positioned at
an angle β relative to the horizon; β was varied in four steps of 15° from 0° to 60°. For
each angle β, the boat was operated at several speeds, ranging from 0.6 to 2.4 m s−1, as
measured with a submerged nautical speedometer. For each speed, the wheel rotation
speed was varied in 8 steps on average, resulting in tip speed ratios ranging from 0.1
to 1.
The wheel was connected through a chain (translation ratio 65.55) to a generator, whose
characteristic was assumed constant at 3.45 N m A−1. The generator shaft rotation rate
and electrical current were recorded, giving an indication of the power absorbed.

75



Overall, data was collected for 349 unique runs lasting about a dozen seconds each. For
each of these, a record was made for the current, generator shaft rotation rate, water
speed, as well as the wheel’s geometrical configuration (two such records are shown in
table 3.1 for illustration purposes). When grouped together according to free-stream
velocity, these 349 runs result in 37 power curves. Videos captured with an action
camera positioned between the hulls were available for approximately half of the runs.

Blade angle (β) Current (Igenerator) Rotation speed (ωshaft) Water speed (U∞)
deg A rpm m s−1

30 0.47 168 1.29
30 0.54 260 1.29

Table 3.1: An extract from the raw data from the experiments carried out on the Vector 1, as they
were made available to the author. Here, two records (out of a total of 349) are given, expressed in
their original units and with the original significant digits.

3.3.3 Analysis

The mechanical design of the blade support is so that the tip radius R is changed when
the angle β is varied, as shown in figure 3.8. During the experiment, an attempt was
made to maintain the immersed depth approximately constant, at Lwet ≈ 0.125 m, by
varying the altitude of the wheel rotation axis accordingly.

Figure 3.8: Diagram showing the different blade positions tested on the water wheel mounted on the
Vector 1, using a segment of the wheel for a single blade (there are 12 blades in total). The flow is
from left to right. The numbers indicate, in degrees, the value of the angle β between the blade tip
segment and the zenith direction (as per fig. 2.5 p. 55)

Diagram created by the author, reverse-engineered from information provided by Sibau Genthin GmbH

Analysis of video footage from the measurement campaign reveals that the rotor axis
altitude was not always adapted according to the blade angle. Post-processing of video
stills allows for an estimation of the effective depth Lwet, albeit with relatively high
uncertainty. The values for R and Lwet adopted henceforth for analysis are listed
together with the corresponding wet radius fractions fwet in table 3.2.
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Blade angle (β) Blade tip radius (R) Immersed depth (Lwet) Corresponding fwet
deg m cm –
0 0.79 14.5 0.183
15 0.777 13.1 0.169
30 0.759 10.1 0.133
45 0.737 10.8 0.146
60 0.712 6.6 0.093

Table 3.2: Geometrical properties of the wheel used in the experiments, when the blade angle β is
varied. Values for radius were obtained through analysis of retro-engineered cad drawings. Values for
immersed depth were obtained using graphical analysis of video footage.

The rotation speed of the shaft, ωshaft, is used to calculate the tip-speed ratio λ:

λ = B ωshaft R

U∞
(3.1)

where B is the translation ratio (here given as B=65.55);
and ωshaft is the generator shaft rotation speed (rad s−1).

No measurement of mechanical torque was carried out during the experiment; the
power output of the wheel is instead recovered using the electrical characteristics of the
generator, and non-dimensionalized according to the definition 1.8 p. 19 as follows:

CP shaft, wet = Cuseful, wet

ηtrans. ηel.
= ωshaft Kgenerator Igenerator

ηtrans. ηel.
1
2 ρ Lwidth Lwet U3

∞
(3.2)

where Kgenerator is the generator constant (here given as K=3.45 N m A−1);
Igenerator is the measured electric current (A);
ηtrans. is the mechanical efficiency of the transmission (–);
ηel. is the conversion efficiency of the generator (–);

and Lwidth is the width of the wheel (m).

The rotor-area based power coefficient (def. 2.13 p. 54) is finally recovered as:

CP shaft, rotor = CP shaft, wet
Lwet

2 R (3.3)

In this manner, non-dimensionalized power curves can be created for each of the 37
configurations. All available curves for the four lowest velocities (the cases most relevant
for comparison with numerical results, as explained further down) are plotted in
figure 3.9, where the individual measured points are shown together with a second-order
least-squares trend curve.
It is visible in figure 3.9 that with the exception of the cases where β=0°, which
consistently under-perform, the power output of the wheel is only very moderately
affected by the blade angle. This moderate dependency is not consistent across flow
velocities. The peak power occurs near CP rotor=0.035 and λ=0.4 in most cases.
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Figure 3.9: Power curves for 15 of the 37 configurations studied in the experimental campaign of
company Sibau Genthin GmbH (non-dimensionalized as CP shaft, rotor). The four diagrams stand for
four broad groups of free-stream velocities. Each data point is post-processed according to eqs. 3.1-3.3
using the corresponding source data, so that velocity is not kept perfectly constant within each diagram.
Data is colored according to the value of the blade tip angle β, with color matching the diagram 3.8
p. 76. Trend curves are built with a least-squares second-order approximation.

Post-processing by author based on raw data provided by Sibau Genthin GmbH
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3.3.4 Challenges in conducting experiments

Analysis of the raw measurement data, of the video footage made available to the
author, and of the curves resulting from post-processing the data, reveals that significant
challenges must be overcome when conducting such measurements. Weak points in the
measurements and their post-processing can be listed as follows.
First, the water flow that feeds the wheel is not always uniform. The placement of
the wheel in between of the two hulls of the Vector 1 catamaran exposes it to the
two symmetrical bow waves that they generate. Since the Froude number of the hulls
remains below 0.2, those waves spread at an angle close to the Kelvin angle γKelvin=19.5°
from the bows. They therefore meet ahead of the wheel, and interfere with a wavelength
which changes according to the speed. The bow waves not only influence the velocity
distribution in the water incoming to the wheel blades, but also the height of the water
surface, critically affecting the immersion depth Lwet and with it the mass flow of water
directly available to the wheel. Review of video footage (available for 15 of the 37
configurations) reveals that the bow wave height is less than 1 cm for the lowest-speed
cases, and of the order of 7 cm in the fastest cases. In some of these high-speed runs,
the wheel is sometimes operating in the trough between waves, as shown in figure 3.10;
in others, it is exposed to the crest.

Figure 3.10: Still from a video recording carried out using an action camera during the experiment
campaign. The camera is hoisted on the boat’s port hull, pointing starboard; the flow relative to the
wheel is from left to right in this image. In this case, the velocity is 2.1 m s−1. A large-amplitude
stationary wave is visible immediately ahead of the wheel, while the wheel itself is operating in the
stationary trough that follows the wave.

still image extracted from raw video footage provided by Sibau Genthin GmbH, 2017

Secondly, independently of bow wave effects, it is difficult to precisely set and control
the immersed depth Lwet. This length was measured during installation (since the
altitude of the rotation shaft must be suited to the blade position, as per table 3.2),
but not monitored during the runs. Review of video footage, for example, indicates
that the height of the rotation shaft was not changed when the blades’ angle β was
changed from 0° to 15°, resulting in an error of 1.3 cm in the depth (11 % of the nominal
Lwet). In addition to manipulation and measurement errors, an error also likely arises
from dynamic effects on the Vector 1, whose hulls displace 23 t of water; changes in
water level at the wheel are possible if the boat squats into the water when underway
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(increasing draft), and if thrust from the engine (which must compensate for the very
strong changes in the drag exerted by the wheel) results in changes in pitch angle.
Finally, the power measurement is complicated by the lack of information about the
direct mechanical power provided by the wheel. Instead, the electrical current delivered
by the generator is the primary measure of output. The power delivered by the wheel
is recovered using two assumptions: first, that the generator has constant characteristic
(here given as K=3.45 N m A−1) and constant efficiency (here assumed to be ηel.=90 %).
This is unlikely to be true, especially when running far below speeds usually expected for
generators (in this experiment, generator speeds as low as ωshaft=58 rpm were recorded).
The other assumption is that the chain transmission also has constant efficiency (here
assumed to be ηtrans.=95 %); this is also very unlikely. For example, when the wheel
operates at high tip-speed ratios, the chain runs at normal speed but carries very little
torque; mechanical losses may no longer meaningfully be expressed using an efficiency
term in this regime.
In order to appreciate how these challenges influence the measurement results, an
estimation of uncertainty is carried out in the following subsection. The hypotheses of
constant generator and transmission characteristics are however not challenged, likely
resulting in under-estimations of error at the lowest and highest tip-speed ratios.

3.3.5 Uncertainty estimation

The uncertainty in the power coefficient values obtained during the measurement
campaign is estimated as per the jcgm’s Guide to the expression of uncertainty in
measurement [13] (henceforth called gum), a long-established, well-documented, broadly-
accepted set of guidelines.1 The uncertainty (i.e. the estimation of the error) associated
with each measurand, here written φmeasurand, is expressed as a level of confidence,
typically in terms of a standard deviation σ. This standard deviation can be calculated
on the basis of repeated measurements (type a evaluation), or using engineering and
physical insight about the experience (type b evaluation). In the end, the combined
uncertainty on the final measurand (here the power coefficient) is expressed not as a
min-to-max range, but in terms of a standard deviation which allows for the formulation
of confidence intervals (e.g. the 95 % confidence interval is bound by ±1.96 σ).
Here, the individual measurements for properties xi conducted on the Vector 1 are all
assumed to be independent, and they combine to provide values for CP wet and λ through
known functions f (equations 3.1 & 3.2). The propagation of the individual uncertainties
φmeasurand on each final measurand is calculated, using a first-order approximation, using
the following expression for the final combined uncertainty φcombined (gum 5.1.2):

φ2
combined =

N∑
i=1

(
∂f

∂xi

)2

φ2
xi

(3.4)

The corresponding expressions for each term are therefore derived using derivatives of
eqs. 3.2 & 3.1. As an example, the influence of the uncertainty φU∞ which is associated

1The gum was prepared by a joint working group nominated by seven organizations, including the
iso and the bipm. It was published in 1995 [13]; a lightly-updated version was prepared in 2008 and is
available online [21].
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with the velocity measurement on the power coefficient is:(
∂f

∂xi

)2

φ2
xi

∣∣∣∣∣∣
xi=U∞

=
(
ωshaft Kgenerator Igenerator

ηtrans. ηel.
1
2 ρ W Lwet

−3
U4
∞

)2

φ2
U∞ (3.5)

The uncertainty for each term contributing to CP wet is quantified using the author’s
most reasonable engineering appraisal. They are listed in table 3.3.

measurand xi value uncertainty φxi

ηtrans. 0.95 95 % confidence interval: 0.05 ηtrans. 9.8 · 10−2 ηtrans.

ηel. 0.9 95 % confidence interval: 0.1 ηel. 0.196 ηel.

Kgen 3.45 N m A−1 95 % confidence interval: 0.1 Kgen 0.196 Kgen

ωshaft reading Systematic rounding error 1 rpm &
95 % confidence interval: 0.02 ωshaft

2π
60

0.5
30.5 + 1.02 · 10−2 ωshaft

Igen reading Systematic rounding error 0.01 A &
95 % confidence interval: 0.02 Igen

0.005
30.5 + 1.02 · 10−2 Igen

U∞ reading Systematic rounding error 0.01 m s−1 &
95 % confidence interval: 0.05 U∞

0.005
30.5 + 2.55 · 10−2 U∞

Lwet Table 3.2 95 % confidence interval: 2 cm 1.02 · 10−2 m

R Table 3.2 95 % confidence interval: 0.005 R 2.55 · 10−3 R

Table 3.3: Uncertainties associated with each measurement involved in the computation of the power
coefficient and tip-speed ratio using the raw data communicated to the author

Using the expressions for φ listed in table 3.3, the uncertainty φCP wet is obtained as
a function, using equation 3.4. In the six most relevant runs (used for comparison in
the following section), the uncertainty on the wet power coefficient when the wheel
was developing power was 0.054 on average (expressed in same quantity as the power
coefficient itself). This uncertainty represented, on average, 15.4 % of the value of the
power coefficient. This means that the 95 % confidence interval for CP wet is ±0.3 CP wet
on average.

3.3.6 Comparison with two-dimensional simulations

In order to carry out a comparison between experimental and numerical results, the
cases where the experimental data was deemed to be the most reliable were selected.
High velocities and extreme values of β were avoided, leaving two geometries and three
velocities (six power curves) for a total of 53 data points. The configuration for each
was reproduced in a two-dimensional simulation with the exact same characteristics
as the family of simulations developed in section 2.4 p. 52 and later in chapter 4. The
mesh and vorticity field for one such simulation is shown in figure 3.11. For each group
of points, the velocity varied slightly from point to point; every time the recorded value
was reproduced in the cfd simulation.

81



Figure 3.11: Flow field in one of the 53 two-dimensional simulations set up to mirror the conditions
in the experiments on the Vector 1. In this case, the simulation is configured with β=45°, λ=0.16,
U∞=1.04 m s−1. The simulation’s physical and numerical setup is identical to these detailed in
section 2.4. Color indicates vorticity in the water (color scale saturated at ±24 s−1); the water surface
is shown with a red line. In the background, the computation mesh (refined dynamically) is visible.

The results of both the simulations and the experiments are plotted together in fig-
ure 3.12, for a total of six power curves each. Trend curves (built using second-order
polynomial models obtained with a least-squares algorithm) are shown for each group
of points, and the experimental curves are plotted together with a shaded interval
representing the 95 % confidence interval.
It can be seen in figure 3.12 that in the experiment, the angle β has a large effect on
performance: peak power is decreased by 29 % on average when β is increased from 30
to 45°. Free-stream velocity also affects the experimentally-obtained power coefficient
strongly, with peak performance increasing with free-stream velocity (relative increases
approximately proportional to half of the increases in velocity). In the cases where
β=30°, as the velocity is increased, multiple experimental measurement points distinctly
exceed the Betz limit, suggesting that the generator efficiency or blade depth were
underestimated. The optimal tip-speed ratio is everywhere close to λ=0.4.
By contrast, the power curves obtained in the two-dimensional simulations are insensitive
to the blade angle β. Peak power coefficient decreases with increasing velocity (relative
decreases approximately proportional to half of the increases in velocity). The optimal
tip-speed ratio is everywhere close to λ=0.5.
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Figure 3.12: Power curves for both experimental measurements carried out onboard the Vector 1,
and for two-dimensional cfd simulations corresponding to the same cases (all non-dimensionalized
as the wet-area rotor power coefficient). The 95 % confidence interval on the experimental values for
CP shaft, wet and λ (calculated according to the procedure detailed in sec. 3.3.5) is shown as a gray
area in the background. The six diagrams cover three free-stream velocities and two geometrical
configurations. In every diagram, a horizontal line is drawn at the Betz limit (CP wet=16/27).
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3.4 Conclusions

In the two attempts which have been presented in this chapter, the challenges of
producing reliable measurements by which to assess the effectiveness of the models used
in cfd simulations of water wheels are well illustrated.
One experiment was carried out in the laboratory for fluid mechanics of the University
of Magdeburg. In order to provide a truly free-stream, free-surface flow, the blockage
ratio must be minimized; in spite of the scale of the channel used in Magdeburg (a
15 m-long machine delivering 600 kg s−1), this strongly constrains the size of the testing
model. It follows that the power output of a laboratory device becomes extremely
sensitive to small variations in flow conditions. Consequently, the experiment requires
sensitive measurement equipment (lda, high-frequency torque & velocity measurement)
and careful post-processing.
An important benefit of this small scale, however, is that it becomes possible to
simulate the fluid flow using three-dimensional models with satisfactory mesh resolution.
Comparison of numerical and experimental results indicates that the three-dimensional
cfd simulations under-estimate the power output by approximately 10 %. This validates
the methods used to describe fluid flow and power output in the numerical simulations
developed in this thesis.
A completely different opportunity for comparison was presented to the author in the
form of set of data from measurements carried out on a mid-scale (1.5 m-diameter)
wheel by company Sibau Genthin GmbH. These measurements were never intended
for publication; instead, they were conducted within Sibau for purposes internal to
the company (determining the wheel configuration which would maximize electrical
power in a given installation). In this sense, they constitute an independent source of
information, tailored to the company’s needs in research and development, and not to
any need to demonstrate suitability or performance.
Measurements carried out in this context also come with drawbacks. The first is that it
becomes difficult to assess a wheel’s performance independently of the structure that
supports it — in this case a 23-ton catamaran whose bow waves interact significantly
with the dynamics of the wheel. Secondly, the experiment’s original output (the electrical
power directly produced by the generator, which is the one true output of interest to
the company), when non-dimensionalized to enable comparison of the hydrodynamic
properties of the wheel, becomes extremely sensitive to the quality of measurements.
In this case, the generator’s characteristics, wheel immersed depth, and water velocity
dramatically affect values of the hydraulic power coefficient, which are of interest for
comparison when considering the wheel’s fluid dynamics. Much of the corresponding
uncertainty could not be adequately evaluated during post-processing because of lack
of information, and indeed, the results indicate unphysical performance in some places.
Finally, the third drawback is the scale of the device, which renders three-dimensional
simulations of the corresponding flow prohibitively expensive. Only two-dimensional
simulations of the wheel were carried out in this case.
The result is that once the non-dimensional power curves are plotted together for
both simulation and experiment (in figure 3.12), it is challenging to assess one against
the other. On the one hand, experimental curves are presented, surrounded with a
±30 % uncertainty zone. While this confidence interval could easily be reduced with
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higher-quality information about the experimental apparatus, it cannot account for
much more subtle effects such as bow wave interference or draft changes due to the
boat’s squat. On the other hand, the absence of uncertainty values around the cfd
curves must not be falsely interpreted: while the raw accuracy of the solver calculations
is extremely high, the selection of each of the many physical and numerical models
at hand (see sections 2.2.2 & 2.2.3) involves considerable uncertainty, not the least
of which comes from the reduction to two-dimensional physics. Those uncertainties
however cannot be calculated in a straightforward manner. As a result, the fact that the
two sets of results agree only in broad, general terms, must not be considered worrying,
considering the very satisfactory agreement found in figure 3.6. The numerical methods
developed until here are therefore adopted for the rest of the work in this thesis.
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Chapter 4

Optimal design for the free-stream
waterwheel
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4.1 Introduction

In chapter 2, a two-dimensional cfd model describing the power dynamics of the
free-stream water wheel had been presented; this model and an associated methodology
for analyzing performance were then used to carry out a parametric study involving 30
cases. In the present chapter, the same tools are put to use in two much larger-scale
investigations, seeking to identify the free-stream wheel design(s) which will maximize
power output.
To this effect, use is made of the laboratory’s experience in studying hydraulic devices of
various configurations [78, 84, 88, 99, 104, 105], and in their optimization [31, 32, 74, 89,
90]. Two major improvements are carried out, building on top of the tools developed in
chapter 2. Firstly, the simulations are fully-parametrized, and a computational toolchain
is set up so that they can be configured, sent to a distant cluster for computation, their
output retrieved and post-processed in an automatic manner — this enabled over 2 400
cfd simulations to be investigated in this chapter. Second, the toolchain is coupled to
an optimizer using a genetic algorithm. Instead of carrying out a systematic exploration
of the complete domain (all combinations of input parameters), an attempt is made
to travel intelligently through it, abandoning poorly-performing combinations, and
investigating new evaluations derived from the top-performing ones. Although this
method does not guarantee that the end-results truly constitute global optima in the
mathematical sense, it allows for the exploration of much larger parameter ranges than
a straight parameter study or manual optimization would.
Two distinct optimizations are carried out in this chapter. The first (sections 4.2 & 4.3)
is a very large-scale study covering a broad range of radii, pointing towards not just
one but a family of optimal wheels, depending on operator requirements. This work
was published as a peer-reviewed journal article (reference [103]): O. Cleynen, S. Engel,
S. Hoerner, and D. Thévenin. “Optimal design for the free-stream water wheel: a
two-dimensional study”. In: Energy (2021), p. 118880. doi: 10.1016/j.energy.2020.
118880
The second optimization features reduced scope, investigating a modification to the op-
timized wheels that improves the quality of their power delivery. This work (section 4.4)
was performed by Abhishekkumar Shingala as part of his Master’s thesis under the
mentorship of the author [107]; at the time of writing, a journal article presenting the
results is undergoing review (ref. [111]).
Finally, a brief, preliminary investigation is conducted which peers into the three-
dimensional aspects of the fluid flow in two optimal-geometry wheels, pointing towards
research questions to be answered in future work in order to overcome limitations
associated with 2D simulations.

4.2 Setup for a computational optimization

4.2.1 Scope and objectives of optimization

A parametrized cfd model is used to optimize the design of a free-stream water wheel,
with the objective of maximizing the generated shaft power. In installations operating
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with significant blockage ratios, water height differences, or bed altitude differences,
the efficiency should be measured according to flow properties both upstream and
downstream of the machine, as has been covered in chapter 1. In the present case, the
upstream conditions are sufficient to determine the power potential of the machine,
using the shaft power coefficient CP shaft.
In maximizing power, two competing objectives may be pursued, as already detailed in
§2.5.1 p. 54. These are:

• Maximizing the wet shaft power coefficient, def. 2.11, repeated here:

CP shaft, wet ≡
Ẇshaft

1
2ρSwetU3

∞
(4.1)

• Maximizing the rotor-area power coefficient, def. 2.14, repeated here:

CP shaft, rotor ≡
Ẇshaft

1
2ρSrotorU3

∞
(4.2)

Here, these two objectives are pursued simultaneously; an attempt will be made in the
next section to identify a Pareto front, and to describe which design parameter changes
can be carried out to trade off between the two objectives.

4.2.2 Numerical models

The cfd model used in the present work has been extensively described in chapter 2
and validated against experimental data in chapter 3, as published in Cleynen et al.
2018 [73]. The 2D unsteady simulation contains a fully-parametrized description of a
water wheel for automatic generation of cases; a picture of a representative simulation
is displayed in figure 4.1.
The domain extends 13 m below the surface, 15 m upstream, and 20 m downstream of
the wheel, in order to minimize boundary influence. The water height and velocity are
monitored and averaged over six locations upstream of the wheel; these time-dependent
values are used as input to eqs. 4.1 & 4.2 to evaluate the power coefficients. The
moment resulting from shear and pressure on each blade is recorded at each time step
and exported to enable post-processing.
A method was implemented to dynamically adjust the altitude of the wheel axis, as a
function of the water level immediately upstream of the wheel, imitating in this manner
the behavior of a real wheel installed on a floating installation. It was then observed
that an unstable feedback loop was able to develop, whereby waves resulting from the
upward and downward movement of the wheel would affect the water level measurement,
in turn amplifying the movement in a self-reinforcing manner. In the light of the very
large range of wheel diameters to be studied, it was not certain whether this issue could
be reliably solved (e.g. using under-relaxation in the wheel movement specification) in
all cases in an automated manner. The method was thus abandoned, and the wheel
axis altitude remains fixed in all forthcoming simulations.
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Figure 4.1: Fluid flow in one of the free-stream water wheels studied, with flow from left to right.
Color stands for the local vorticity in the water, in the direction perpendicular to the plane (color scale
saturated at ±24 s−1). The interface between water and air is shown in red, and the horizon line is
shown as a gray straight line. The locally-refined mesh is shown in the background. The flow domain
extends far beyond the scene shown in the vertical and horizontal directions; and the diameter of this
particular wheel (one among 1 900 studied in the optimization) is 2.4 m. Details about the cfd setup
are given in chapter 2 and ref. [73].

Figure previously published in [103]

4.2.3 Parametrization of the free-stream water wheel

The design of the wheel is parametrized with five parameters:

• The radius R, which is varied in the range 0.4 m to 3 m;

• The number of blades nb, which is varied in the range 5 to 32;

• The wet radius fraction fwet, which is varied in the range 0.1 to 1 (an upper
practical limit on fwet is reached at 1, when the rotation axis sits at the water
level);

• The blade geometry is defined based on a skeleton with angles β1 and β2, varied
in the range −30° to +30°. These angles are defined as shown in figure 4.2,
with β1 at the blade tip and β2 at half-depth (the angle β1 is the average of the
angle between blade edge and horizon line during entry and during exit; β2 is
the equivalent at mid-depth). The blade itself is constructed with a 5 mm-thick
relaxed spline joining the nodes of the skeleton.

Sensible value ranges for these parameters were determined in collaboration with project
partner company Sibau Genthin GmbH, which is accumulating experience designing
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and operating full-scale prototypes of such devices in Germany. The parameter ranges
allow for an extremely varied population of designs (see e.g. fig. 4.3); this deliberately
wide input parameter domain is deemed appropriate for a first optimization.
The water incoming velocity U∞ is set at 1.2 m s−1 throughout the optimization (this
value corresponds to the first quartile of the distributions of velocities on the river Elbe
in Magdeburg, where this study was carried out). The tip-speed-ratio λ is fixed at 0.5,
a value shown to be appropriate for this type of machine in chapters 2 and 3.
Three constraints are imposed on combinations of parameters, to avoid clearly imprac-
tical designs:

• The immersed depth Lwet is constrained in the range 0.2 m to 1 m;

• The altitude of the rotation axis (relative to the horizon line) is constrained to
remain below 2 m, in order to limit the height of the rotor’s center of gravity;

• The blade root is normally set above the water surface (at an altitude equal to
20 % of the immersed depth, as shown in figure 4.2); however, the root radius is
constrained to never be below 0.2 m, in order to prevent entrapment or constriction
of air in between blades, leading to a strong performance reduction. In low-radius,
high-depth wheel configurations, this constraint has the effect of making blades
fully immersed (this effect is further investigated in section 4.4).

Several arbitrarily-selected examples of the geometries considered by the optimizer
during the optimization process, all drawn according to the parametrization and
constraints described above, are displayed in figure 4.3.

Figure 4.2: Schematic diagram detailing the geometry of a generic water wheel blade, as used in all
simulations. The flow is from left to right. The blade itself (plotted in red) is a 5 mm-thick relaxed
spline joining three nodes. The nodes are linked together by a skeleton (plotted in black) consisting of
two straight segments, the position of which is determined by the angles β1 and β2. The upper node is
positioned at an altitude of 0.2fwetR above the horizon line, unless this brings it within 0.2 m of the
wheel center, as explained in the text.

Figure previously published in [103]
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Figure 4.3: Some arbitrarily-selected geometries considered by the genetic optimizer, displayed at
identical scale. The flow is from left to right; the thickness of the blades has been exaggerated in this
diagram, for clarity. As per the constraints of the optimization, the diameters of the studied wheels
ranged from 0.8 m to 6 m.

Figure previously published in [103]

4.2.4 Optimization process

The search for wheel configurations which maximize the wet- and the rotor-area power
coefficients is carried out with an optimizer software distinct from the cfd simulation
software. The Dakota 6.10 open-source toolbox [85] is configured with the moga genetic
multi-objective algorithm to propose design parameters of candidate wheel designs in
successive batches, based on the performance of previously-evaluated candidates. Since
the objective is to produce practical, easily-implementable guidelines, the five input
parameters are discretized with finite steps. The radius is varied in steps of 0.2 m, the
wet radius fraction in steps of 0.05, the number of blades in steps of 1, and the two
angles in steps of 5°. After constraints are applied, this results in 348 816 possible
configurations.
The optimization is initialized with 200 designs spread uniformly in the input parameter
space using a latin-hypersquare algorithm. A few configurations known to perform
relatively well in previous investigations are also added to the initial population.
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In each generation, the moga algorithm performs mutative parameter variations based
on randomly-selected candidates; crossover is also performed on randomly-chosen groups
of parent candidates. After the newly-created candidates are evaluated, individuals
furthest from the Pareto front are rejected, and a new generation is started. The logic
of the algorithm involved in creating each new generation from the previous one is
described graphically in figure 4.4. It is further documented, together with a “sandbox”
example case and lessons drawn from experience, on the author’s website [87].
The principal settings of the moga algorithm used to obtain the first generation are
listed in table 4.1. As the search progressed, separate optimizations were started with
focus in specific areas of the parameter domain space, with less aggressive mutation
parameters.
Each cfd computation ran on a 16-cpu node of a remote high-performance cluster
(the Neumann cluster of the University of Magdeburg), until 15 seconds of physical
time had been simulated. The computation time is contingent on the number of cells
(itself strongly affected by the radius and number of blades), and varied between 9 and
36 hours. The two power coefficients were then averaged over the time period 3 s to
15 s and returned to the optimizer.
The optimization proper was run from a relatively low-power Linux desktop computer.
Each evaluation was governed by a series of bash scripts, themselves configuring and
launching in-house Python pre- and post-processing scripts, sending and retrieving files
from the remote cluster, and submitting jobs to the cluster’s queue system (Slurm) one
at a time on a rolling basis, thereby minimizing total waiting time and optimizing the
attribution of computing resources at a university-wide level. The excellent documenta-
tion and engineering insight provided by Sebastian Engel, from the laboratory for fluid
mechanics of the University of Magdeburg, were instrumental in building this setup.

crossover type shuffle random
num parents 2
num offspring 2
crossover rate 0.5

mutation type offset normal
mutation scale 0.2
mutation rate 0.5

fitness type layer rank
replacement type below limit = 5
shrinkage fraction 0.75

Table 4.1: Main settings used to configure the moga genetic algorithm implemented in Dakota 6.10 in
the first generation of the optimization. More conservative settings were used with reduced mutation
amplitude as the optimization progressed.
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generation i

generation i+1

mutation crossover

n = num_parents

ncross = [(ngen i / num_parents) × num_children
        × crossover_rate ] – nduplicates

n = num_children

nmut = ngen i × mutation_rate
      — nduplicates

evaluation

selection

n = num_children

below_limit
ngen i+1 > ngen i × shrinkage_factor

all individuals within Pareto fronts,

ngen i

then increase number of fronts until

n = num_parents

Figure 4.4: Structure of the main optimization loop of the moga genetic algorithm of Dakota 6.10.
Beginning with generation i, the algorithm creates new individuals through two separate mechanisms:
mutation and crossover. These are then sent for evaluation (in the present case, a series of scripts that
submit a job request for the cfd computation on a distant cluster, then retrieve and post-process the
results). The evaluated results are added to the group of individuals; the selection operation reduces
this to a subset of high-performing individuals, that become the i+1 generation.

Figure CC-by-sa by the author, previously published in [86, 87]
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4.3 Optimized family of 2D free-stream wheels

The optimization process described in the former section was brought to an end after
1939 evaluations were carried out, consuming a total of 432 000 cpu-hours over three
months.

4.3.1 Resulting population

A map of the performance of all evaluated individuals is presented in figure 4.5. The wet
radius fraction fwet arithmetically determines the ratio between the wet and rotor power
coefficients; since it was studied in discrete steps, the candidates are gathered in radial
lines corresponding to individual values of fwet. In this figure, multiple individuals with
negative power output are not represented.

Figure 4.5: Performance of individual wheel configurations studied during the optimization, with the
wet power coefficient on the vertical axis, and the rotor power coefficient on the horizontal axis. The
power output of each individual was averaged over the time period 3 s to 15 s. Multiple individuals
with negative power output stand outside the area displayed in the diagram. A horizontal line at
y=0.593 denotes the Betz limit. Since fwet was studied in discrete steps, individuals are clustered along
diagonal lines, colored according to the corresponding values of fwet. A group of rejected individuals,
top right (see explanation in the text), is represented with gray crosses. The group highlighted in blue
served as the basis for the determination of standard design rules, as detailed in section 4.3.3. The raw
data presented in this figure, together with the corresponding geometrical configuration of individuals,
is shared as supplementary material to ref [103].

Figure previously published in [103]

From the distribution of individuals in figure 4.5, it can be seen that the maximization
of wet and rotor-area based efficiencies are clearly distinct and sometimes competing
objectives. Individuals in the top left of the figure already feature relatively high wet-area
performance, with their wet power coefficient approaching the Betz limit. Nevertheless,
towards the right of the figure, individuals match that level of performance together
with a five-fold increase of the rotor power coefficient.
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In this figure 4.5, a number of high-performing individuals with fwet ranging from 0.55 to
0.65 are represented with crosses. For those individuals, a particular effect is observed:
the period of upstream-bound surface wave resulting from the entry of one blade is
equal to the period separating two blades, so that the following blade always enters the
water in the resulting trough. This strongly reduces the energy losses associated with
the blades’ entry in the water, and results in high performance; however, it is judged
that this effect is unlikely to occur reliably in practice in real-world conditions, and so
this group of individuals is arbitrarily removed from the population.
In the interest of facilitating further research, the dataset plotted in figure 4.5 is shared
in a commented csv table as supplementary material to ref [103].

4.3.2 Design trends

Broad trends can be identified in the population covered by the optimizer in its search
for optimal configurations. For each combination of radius and depth, several wheels
of various blade geometry and blade number were evaluated; the best-performing
wheel among these is selected. The results are plotted in figure 4.6, which presents a
radius-depth design parameter map in which the performance is coded as color.
Broad performance trends can be extracted from the maps; in particular the following:

• Wet-area performance is best maximized using large wheels with high depths,
but these depths are small relative to the radius. Depth-to-radius fractions (fwet)
below approximately 0.3 correspond to best wet-area performance;

• Rotor-area performance is best maximized using very small wheels with high
relative depth (high fwet values).
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Figure 4.6: Design parameter map of the study. Both diagrams map radius (horizontal axis) against
depth (vertical axis). For each combination, the best-performing candidate among all of the individuals
evaluated during the optimization is selected, and its wet-area power coefficient (top) or rotor-area
power coefficient (bottom) is coded as color. These individual points do not represent local maxima,
because the optimizer was configured to search for global optima combining two objectives; nevertheless,
broad trends can be extracted from the map. Radial lines in the background represent individual
values of fwet. The domain is limited by five constraints, clockwise from the top: maximum depth,
maximum altitude of center of gravity, minimum depth, minimum radius, and maximum wet radius
fraction. The superimposed parabola represents the solution to equation 4.6 presented in section 4.3.3
below.

Figure previously published in [103]
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4.3.3 Design guidelines drawn from Pareto front

In an effort to combine best performance regarding both objectives simultaneously,
those individuals highlighted in the blue area in figure 4.5 (a total of 118 individuals)
are extracted. They correspond to the parameter range fwet= 0.35 to 0.85 and are
closest to the final Pareto front.
From here on, the focus is set on the characteristics and performance of this nearly
Pareto-optimal group of individuals. In particular, an attempt is made to generalize
their characteristics, and their performance is evaluated using stricter criteria, over a
larger range of flow conditions.
The characteristics of the nearly Pareto-optimal individuals extracted previously are
now examined in order to draw broad design guidelines. For each of the 11 wet radius
fraction values of interest, a parallel coordinates plot of the corresponding individuals
is derived; one example of such a diagram is shown in figure 4.7.

Figure 4.7: Parallel coordinates plot showing the combination of parameters corresponding to each
individual of wet radius fraction 0.45 in the extracted Pareto group. The lines’ thickness and color are
coded according to performance, with thicker and lighter colors indicating higher values of rotor power
coefficient, as evaluated during the optimization. The color map corresponds to that of figure 4.6b.

Figure previously published in [103]

The fact that in figure 4.7, lines remain grouped together, with little crossing, suggests
that for this value fwet = 0.45, there corresponds a single optimal value of each of the
four remaining parameters. The trend is identical for the other ten values of fwet, where
each time the combinations of parameters corresponding to individuals remain broadly
similar. These results suggest that it is possible to draw design guidelines with the wet
radius fraction fwet as the sole input parameter.
In a following step, the relationship between each of the four remaining parameters (R,
nb, β1, β2) and the wet radius fraction is examined. These relationships are plotted in
figure 4.8. For each value of fwet, the average value of the corresponding parameter in
the extracted Pareto-optimal population is plotted, with a weight proportional to the
rotor power coefficient. An area is also plotted in blue in the background, displaying the
upper and lower median deviations of this parameter. The area surrounding fwet=[0.6-
0.65] is highlighted in red; following the arbitrary deletion of individuals there late in
the optimization process (see sec. 4.3.1), this space features relatively few individuals.

98



The distribution of points in figure 4.8 suggests that broad guidelines can be drawn from
the results, linking each of the parameters to fwet. Trends are therefore drawn from the
points in figure 4.8 and displayed there as orange lines. Since this type of machine is
most likely to be used in low-budget, low-complexity applications, an attempt is made to
extract trends that are mathematically as simple as possible. The guidelines produce a
standard-optimal family of wheels, which is tentatively named the “Magdeburg” family
of wheels, as follows:

Blade tip angle The angle β1 is expressed in degrees as:

β1 =
{
− 68 fwet + 44 for fwet < 0.5
10 for fwet ≥ 0.5

(4.3)

Blade mid-depth angle The angle β2 should remain around 25° for low values of
fwet, and around −10° for high values of fwet. A third-order polynomial model
produces, in degrees:

β2 = 1 476 f 3
wet − 2 694 f 2

wet + 1 488 fwet − 231 (4.4)

Number of blades The number of blades is parametrized as the equivalent number
of blades ne ≡ nb [2 cos−1(1− fwet)]−1 (the average number of blades in contact
with water, def. 2.19 p. 56): its value should be kept around 2.5. A guideline for
the optimal value of ne is expressed with one straight line and one third-order
polynomial:

ne =


5.56 fwet + 1.04 for fwet < 0.5
−198.3 f 3

wet + 438.6 f 2
wet

−317.5 fwet + 77.7 for fwet ≥ 0.5
(4.5)

Wheel radius The optimal value of the radius, in meters, is expressed with the model:

R = max [4.4− 5.2 fwet; 0.4] (4.6)

These four models are plotted as orange curves in figure 4.8. Additionally, solutions to
eq. 4.6 are plotted as a blue line in figure 4.6.
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Figure 4.8: Distribution of the four parameters β1, β2, R and ne (individual vertical axes) as a
function of the parameter fwet (horizontal axis), for the extracted Pareto-optimal population. The
blue dots indicate the average of all the corresponding values in the population, weighted according
to performance. The blue area is included between the upper and lower median deviations for each
population. The zone highlighted in red indicates an area where relatively few individuals are available
for analysis. Orange curves are trendlines corresponding to eqs. 4.3-4.6.

Figure previously published in [103]
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4.3.4 Performance of optimal free-stream water wheel family

The performance of the wheels designed according to the “Magdeburg” model above is
then evaluated, with an additional 39 000 cpu-hours invested. For this, cfd models for
11 wheels with fwet ranging from 0.35 to 0.85 are created (with angles rounded to the
nearest 5° and radii to the nearest 0.2 m, see fig. 4.9). To measure performance, instead
of averaging the output power over 12 seconds, as was done during the optimization for
computational cost reasons, higher standards are used, in order to ensure that the flow
is well established. The power output is measured once the first 5 blades have passed
through the water, and until the completion of the simulation, which is after 15 more
blades have passed through the water. This standard for measuring power is kept for
all remaining calculations in this work, resulting in simulations durations ranging from
16 to 86 s of physical time.

Figure 4.9: Eleven wheels constructed from the standard-optimal “Magdeburg” model, displayed at the
same scale, ranging from fwet=0.35 (top left, R=2.6 m, nb=11) to fwet=0.85 (bottom right, R=0.4 m,
nb=6). The flow is from left to right. In order to match realistic practical-world constraints, angles
are rounded to the nearest 5° and the radii to the nearest 0.2 m.

Figure previously published in [103]

The performance of the newly-evaluated wheels is plotted in figure 4.10. Two features
are immediately noticeable: first, the power output of low-fwet wheels is markedly lower
than that of similar wheels evaluated during the optimization (see figure 4.5). This is
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due to the much more severe criteria used for measuring power output, which tend to
affect deeper wheels. The second feature is that wheels with 0.55<fwet<0.75 perform
very poorly. This disappointing result indicates that the model described above fails to
provide a satisfying proposal in this region.

Figure 4.10: Performance of 11 wheels built after the “Magdeburg” standard-optimal model, as
evaluated using criteria more thorough than during the optimization. Diagonal lines are once again
plotted in the background, corresponding to individual values of fwet.

Figure previously published in [103]

In order to assess the wheels’ performance in operating conditions surrounding their
design point, the tip-speed ratio λ and the incoming speed U∞ are varied for four
designs with fwet=[0.35, 0.50, 0.65, 0.80]. The power curves obtained as a result are
shown in figure 4.11.
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Figure 4.11: Performance of four standard-optimal “Magdeburg” wheels, each operated for three
incoming water velocities and four tip-speed ratios. The wet power coefficient is plotted left, while the
rotor power coefficient for the same cases is plotted right. The horizontal axes depict the tip-speed
ratio λ. Four wheel configurations with fwet=[0.35, 0.50, 0.65, 0.80] are studied (colored according to
fwet). The free-stream velocity U∞ is 1.2 m s−1 in the top graphs, 1.4 m s−1 in the center graphs, and
1.8 m s−1 in the bottom graphs. Trend curves are plotted with second-order polynomials fitted with a
regression algorithm.

Figure previously published in [103]
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In figure 4.11, the trend lines were obtained using a regression second-order polynomial
model. The point of maximum performance on these curves is extracted for each curve,
and the resulting values are plotted in figure 4.12.
In figure 4.12, the main performance tradeoffs resulting from the proposed “Magdeburg”
model are summarized at once. The trends are unequivocal: low-fwet wheels feature
higher wet-area performance and markedly higher power per unit width. One may
consider the two extreme solutions proposed in that figure according to the model.
Using predictions from the two-dimensional cfd simulations, averaged over the three
studied velocities, these edge cases are as follows:

• Operators seeking to maximize power per unit of exposed area in the flow or
per unit width of rotor (for example, those assigned a geographical installation
area or a channel width in a given river with no limit on depth) should opt for
a low-fwet wheel. This translates into high-diameter, high-depth wheels with
numerous blades. A large (5.2 m diameter, 11-blade) wheel immersed 91 cm into
the river would feature high power per unit width (CP shaft, wetLwet=0.45 m), and
a wet-area power coefficient of 0.5, at the cost of a relatively low rotor-area power
coefficient of 0.085.

• Operators seeking to maximize power per unit area of the rotor (for example, those
with a strong constraint on the diameter of the wheel or on cost of materials) should
opt for a high-fwet wheel. This translates into low-diameter, low-depth wheels
with few blades. A compact (0.8 m diameter, 7-blade) wheel immersed 32 cm into
the river would feature very low power per unit width (CP shaft, wet Lwet=0.1 m)
and a reduced wet-area power coefficient of 0.3, but feature a higher rotor-area
power coefficient of 0.13.
These operators would therefore accept a four-fold (78 %) reduction in power per
unit width and 40 % reduction in wet power coefficient, in order to secure a 53 %
increase in power per unit rotor area. This is obtained because as one follows the
model guidelines and the associated cfd predictions, the rotor diameter reduces
more sharply than the developed power.

It must be stressed that these predictions are entirely based on two-dimensional fluid
flow computations. An implicit assumption in those models is that no flow occurs in the
third dimension (along the axis of rotation of the wheel). However, it is to be expected
that edge losses occur, with flow deflected to the sides of the rotor; those losses are
more likely to affect narrow, high-depth wheels. Additionally, surface disturbances
associated with the floating structures supporting the rotor, also not reproducible in
two-dimensional simulations, are likely to most affect the heaviest wheels. Both of
those factors (discussed later in section 4.5) together suggest that in practice, as the
wet radius fraction is reduced, the measured increase in power per unit width may be
lower than predicted in figure 4.12.
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Figure 4.12: Performance of the “Magdeburg” standard-optimal family of wheels. Data points
represent the best-efficiency point of each configuration, evaluated over four tip-speed ratios; data
sets are grouped and colored according to free-stream velocity. The top graph shows the wet power
coefficient CP shaft, wet; in the center is the rotor power coefficient CP shaft, rotor, and in the bottom
graph shows the power per unit width, CP shaft, wetLwet.

Figure previously published in [103]
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4.3.5 Performance mechanisms

Power stroke curves

The main mechanisms underlying the performance characteristics of the family of wheels
presented above can be explored using blade power curves. Following the methodology
established in chapter 2 (see §2.5.1 p. 54 & ref. [73]), it is possible to plot diagrams
featuring non-dimensionalized expressions of the power developed by single blades along
their stroke phase. The stroke angle α is non-dimensionalized as α∗, and the wet rotor
power coefficient is recovered as the area under the curve of a neC̃P b vs. α∗ diagram
(eq. 2.21 p. 56 repeated here):

CP wet =
∫ 2π

θ

0
neC̃Pb dα∗ (4.7)

CP rotor =
∫ 2π

θ

0

1
2fwetneC̃Pb dα∗ (4.8)

Such a diagram is plotted for selected configurations in the “Magdeburg” family of
wheels, and shown in figure 4.13.

Figure 4.13: Blade power coefficient as function of the non-dimensional stroke angle α∗, for four
different relative depths in the “Magdeburg” family. Each curve is constructed with average data
resulting from 15 blades passing through the water. The net area under each curve in this diagram is
equal to the rotor-based power coefficient CP rotor of the wheel.

Figure previously published in [103]
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The following trends are observed in figure 4.13:

• Low-fwet wheels feature relatively smooth entry and exit from the water, with
peak power occurring at one third of the stroke;

• As the wet radius fraction is increased and the radius is decreased, the energy losses
associated with the entry and exit from the water rapidly increase. The power
per unit rotor area increases as well, with a more pronounced, high-amplitude,
wide peak;

• As the wet radius fraction is further increased towards smaller wheels, the delivery
of power per unit rotor area becomes more uniform over the stroke, and features
decreased cost of entry and exit. As fwet=0.8 is reached, the blades provide power
over more than 80 % of the stroke, and the cost of exit becomes very small.

Effect of blade root radius change

When designing parametrized rules for the design of the free-stream waterwheel (see
sec. 4.2.3 p. 90), the root of the blade was positioned above the horizon, at an altitude
equal to 20 % of the depth. It was observed that in deep wheels with numerous
blades, this resulted in gaps between the roots so narrow that they would obstruct the
movement of water between blades. Consequently, a limit was imposed on the height
of the blade root (see fig. 4.2), so that an empty core of diameter 40 cm would always
be present within each wheel. In some studied configurations, this restriction had the
effect of making the blades fully-immersed at the nadir position, and this remains true
in high-fwet configurations of the “Magdeburg” model presented above.
Here, the effect of blade immersion is investigated for the first time. To this effect, the
standard-optimal wheel with fwet=0.5 is modified in four successive steps, with the
radius of the blade root increased until it reaches mid-depth. The power characteristics
of the modified wheels are then compared; they are presented in the following figures.
Figure 4.14 displays, as a function of blade root radius, first the wet power coefficient,
and then the work ratio rntg, defined as the ratio of net to gross power produced by the
blades:

rntg ≡
∫ 2π

θ
0 C̃P b dα∗∫ 2π
θ

0 |C̃P b| dα∗
(4.9)

The work ratio, much like its equivalent in engine cycle design in thermodynamics, and
similarly to the notion of margin in economics, is a measure of performance of a process;
high work ratios indicate little work must be invested and spent internally for net work
to be produced, and tend to translate into lighter, more reactive machines.
The two curves in figure 4.14 indicate that as the size of the blades is reduced, a
slight decrease in power output and a strong increase in work ratio are observed. The
wheel with the shortest blades features Lroot/Lwet=0.5: compared to the reference
standard-optimal configuration, this translates in a 58 % reduction in blade area, yet
the power decreases by only 10 %, and the work ratio is increased by 80 % up to a value
of 0.9. These results suggest that the immersed-blade design has tremendous potential,
as it points towards lighter rotors subjected to reduced structural stresses.
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Figure 4.14: Performance of the “Magdeburg” wheel with fwet=0.5, modified progressively (from left
to right) as the radius of the blade root is increased. The bottom axis measures the depth Lroot of the
root of the blade (positive downwards), non-dimensionalized according to depth Lwet.

Figure previously published in [103]

A better understanding of this phenomena can be obtained from figure 4.15, where
the blade power curves of the five wheels of interest are plotted together. There, it
is seen that as the blade root radius is increased, the energy losses associated with
both entry and exit from the water are reduced. The maximum torque is reduced, but
the torque distribution over the stroke of the blade is widened. In fact, on the wheel
with the shortest blades, maximum torque occurs at 75 % of the stroke (at this point,
the blade operates in the wake of two blades further upstream), directly challenging
the commonly-accepted notion that free-stream water wheels should necessarily be
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drag-based machines. This trend calls for further investigation and suggests that blade
root radius be included as an input parameter in further optimization studies.

Figure 4.15: Blade power curves for each of the five cases displayed in figure 4.14. The plot displays
non-dimensional power neC̃P b as a function of non-dimensional stroke angle α∗, so that the wet power
coefficient CP wet is recovered as the net area below each curve. Lighter color denotes increased blade
root radius.

Figure previously published in [103]

This concludes this first exploration of the design parameter domain for the free-stream
water wheel, which indicates that performance responds very strongly to changes in
radius and relative depth. The broad trends are now clear that well-performing wheels
feature either high radius and low relative depth, or low radius and high relative
depth. A narrower optimization will be carried next, focusing on the “shortened-blade”
modification that was proposed here.
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4.4 Second 2D optimization: towards wheels with immersed
blades

Following the optimization work presented in the section above and its publication
in a peer-reviewed journal article [103], research was carried out in order to further
study the effect of shortening the wheel’s blades. Work towards this objective was
performed by Abhishek Shingala as part of his Master’s thesis under the mentorship
of the author [107]. The present section is based on a journal article co-authored by
the author (reference [111]), A. Shingala, O. Cleynen, A. Jain, S. Hoerner, and D.
Thévenin. “Genetic optimization of a free-stream water wheel using 2D computational
fluid dynamics simulations points towards design with fully-immersed blades”. In:
Energies (submitted) , which is, at the time of writing, undergoing peer review.

4.4.1 Setup of second optimization

The free-stream water wheel geometry considered in this work is largely similar to the
geometry studied in section 4.2, and is shown in fig. 4.16. Notably, the altitude of
the blade root (measured with Lroot, the vertical distance from horizon line to root of
the blade; positive downwards), is now a variable. The ratio of Lroot to Lwet, already
introduced in section 4.3.5, is now named the cut radius fraction Zcut, and made one of
the variables of interest:

Zcut ≡
Lroot

Lwet
(4.10)

𝛽2

0.5 Lwet

R
horizon line

𝛽1

𝛼*=
0 𝛼*=1

Lwet

Lroot

𝜔

Figure 4.16: Schematic diagram of the parametrized water wheel geometry studied in this work, in
which one blade is shown with a red thick spline (the number of blades is a variable in this study).
This spline connects three points positioned using two angles β1 and β2, as in the optimization in the
previous section (compare with figure 4.2 p. 91). In this new optimization, the altitude of these points
is not modified, but the blade is “cut” (shortened) so that its root is located at a variable distance
Lroot from the horizon line. Water flows from left to right with free-stream velocity U∞ and the wheel
rotates in the anti-clockwise direction with angular velocity ω.

Figure from Shingala et al. submission [111]

This new, secondary optimization study has a much narrower focus than the one
presented above, and aims at reducing internal energy losses associated with blade
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entry and exit from the water. It considers a wheel with a given radius and depth; thus,
the wet and rotor power coefficients vary monotonically together, and do not need to
be considered both at once. By contrast, the quality of the power delivery is of great
interest here. Therefore, the two objectives pursued simultaneously in this work are:

• Maximizing the work ratio rntg (def 4.9 p. 107);

• Maximizing the wet power coefficient CP shaft, wet (def 4.1 p. 89).

The parametrized cfd simulation used to evaluate candidates is only lightly modified
compared to that used in section 4.2. The parametrization is modified so as to allow
shortening the blades, refining the mesh at the root of the blade in the same way as at
its tip, as shown in figure 4.17.

Figure 4.17: Flow field from an arbitrarily-selected simulation case in the optimization, displaying the
rotating polygonal mesh rotating relative to the fixed trimmed background mesh after 15 s have been
simulated. Water flows from left to right, and air is above the water surface (red line). Color denotes
vorticity (with the color scale saturated at ±24 s−1). Closer visuals of the wheel and its immersed
blades are also depicted.

Simulation run and figure prepared by Abhishek Shingala under mentorship by author [107],
reproduced from Shingala et al. submission [111]

Results and experience gathered from the previous optimization are used to inform
the choice of parameter ranges considered here. The wet radius fraction fwet and the
tip radius R, are kept constant at 0.5 and 1.8 m respectively, mechanically setting the
wheel depth at Lwet=0.9 m. The free-stream inlet velocity U∞ and tip-speed ratio are
set to 1.2 m s−1 and 0.5 throughout the optimization study. Values of Zcut are taken in
intervals of 0.1 from −0.2 (with the root of the blade protruding above the horizon, as
with most conventional designs) to 0.9 (for which the blade occupies only 10 % of the
wet frontal area), for a total of 12 discrete values. This range and those of the other
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Parameter Range Interval
Number of blades (nb) [6, 15] 1

Beta1 (β1), degrees [0°, 25°] 5°
Beta2 (β2), degrees [10°, 30°] 5°

Cut radius fraction (Zcut) [-0.2, 0.9] 0.1
Tip radius (R), m 1.8 –

Wet radius fraction (fwet) 0.5 –

Table 4.2: Range of input parameters for the present study, selected partly based on the results
presented in section 4.2

input parameters, are summarized in table 4.2. Finally, after constraints were applied,
the domain included 3 600 possible design configurations.
The software selected to carry out the optimization proper is, again, the moga genetic
optimization module of Dakota 6.10 [85]. The chain of computing operations enabling
the optimization is the same as described in section 4.2.
The optimization loop was initialized with a first generation of 100 candidates, 12 of
which were based on geometries known to perform well in the previous study, while the
other 88 were constructed using Dakota’s latin-hypersquare algorithm (lhs).
The optimization was interrupted several times in order to adjust crossover and mutation
settings, so as to keep the instantaneous Pareto front uniformly populated, a requisite
for the genetic optimization to converge meaningfully. Details of the settings used for
the optimization are listed in ref. [111]. When the present study completed, a total of
392 unique designs had been explored. The evaluation of these designs took a total of
66 000 cpu-hours over three months.

4.4.2 Results and analysis

Best-performing individuals

The performance of all candidates in each of the six generations is plotted in figure 4.18,
where the horizontal and vertical axes respectively represent rntg and CP wet, the two
objective functions to be maximized. There, candidates of later generations are depicted
with smaller, lighter-colored dots. It can be observed from the figure that after the
fourth generation, two groups of candidates, each favoring one objective, emerge. As the
optimization reached the sixth generation, the performance of the selected individuals
converged towards the top right of the figure.
Before the performance of the Pareto-optimal individuals is further analyzed, the
dependence of individuals on the parameter Zcut can be visualized; this is done in
figure 4.19, where the data from figure 4.18 is shown colored according to values of Zcut.
Two groups of candidates, named as P1 and P2, are selected manually, based on their
performance. Trends can be identified in the combination of input parameters possessed
by each of these groups. Candidates from group P1 feature maximum CP wet; in general,
wheels of group P1 feature fewer, long and inclined blades. By contrast, individuals
from group P2 featured maximum work ratio and their blades are shorter, straighter
and in greater number. Wheels of group P1 and P2 are displayed in figure 4.20.
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Figure 4.18: Performance of all cases evaluated during the optimization, colored according to generation,
with wet-area power coefficient on the vertical axis and work ratio on the horizontal axis. A horizontal
line at y = 0.593 indicates the Betz limit.

Figure from Shingala et al. submission [111]

Figure 4.19: Scatter plot of all 392 evaluations, colorized with respect to their cut radius fraction
(Zcut). Two groups are identified manually, according to their performance and geometry. Group P1
features individuals with relatively high wet-area power coefficient, and also large blades (low values of
Zcut). In group P2, individuals have lower wet-area power coefficient and higher work ratio; they also
feature short blades (high values of Zcut).

Data reproduced from Shingala et al. submission [111]
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Figure 4.20: Geometries of water wheels from the broader Pareto front of the optimization. Shown on
the left are four geometries from group P1; on the right, four geometries are depicted from P2 group.
In this figure, blade thickness is slightly exaggerated for a clearer representation.

Figure reproduced from Shingala et al. submission [111]

In the present case, the outer-most layer of individuals from the Pareto optimal group
is considered for further investigation. This Pareto front consists of five individuals
(from here on designated f.1 to f.5), which are depicted together with their geometry in
figure 4.21. There, the scale of both axes is so that only high-performing individuals
are shown. From here on, these five Pareto-optimal candidates are further investigated,
in order to converge towards one optimal design.

Detailed evaluation of top candidates

The analysis method described in section 4.3.4 is repeated here. During the optimization,
power values had been extracted from cfd simulations after 3 s had elapsed (allowing
the flow to settle down after initialization), and until 15 s had been simulated. In order
to describe with even better accuracy the performance of the best candidates in the
optimization, an additional 3 600 cpu-hours were invested by running these simulations
over a longer duration of physical time. First, the power output is ignored until five
blades have entered and left the water. Then, the power is extracted during a duration
corresponding to 15 blades passing through the water. Time intervals obtained in this
way vary according to the number of blades for each design configuration; cases with
fewer blades require a longer amount of physical time. The durations considered to
analyze power extraction in this study ranged from 16 to 71 s. The performance of
the wheels evaluated in this detailed manner is plotted along with the results of initial
evaluations into figure 4.22, where blue and green dots indicate initial and detailed
evaluations, respectively.
It can be observed from figure 4.22 that the wet power coefficient and work ratio
decreased noticeably for all designs, particularly so for design f.1: the average change
in power is −4.8 %, except for case f.1, for which the change is −12.2 %. This detailed
analysis suggests that the robustness of the evaluations in group P1 is lower in that
group, due to very strong interactions with the free surface, with the formation of
large waves and strong near-surface vortices, making accurate cfd evaluations very
challenging. On the other hand, changes in rntg are much smaller, meaning that an
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Figure 4.21: The top five best evaluations (Pareto front) of the optimization, connected with a thick
blue line. The respective geometries are also depicted. Dots indicate evaluations, with their color
and size indicating the generation they were produced in. The scales of both axes is such that only a
portion of evaluated candidates are represented.

Figure prepared by Abhishek Shingala under mentorship by author [107],
reproduced from Shingala et al. submission [111]

evaluation based on maximizing rntg leads to robust designs, highlighting the superiority
of group P2 for practical applications.
The five top-performing simulations are then run for various values of tip-speed ratio λ,
and their performance is then analyzed using non-dimensional blade stroke curves, a tool
introduced in section 2.5.1 p. 54 and used already in § 2.5.2 & 4.3.5. The corresponding
plots are shown in figure 4.23, sorted according to tip-speed ratio.
It can be observed from figure 4.23 that the power stroke curves of wheels f.2 to f.5 are
largely similar. In contrast, for the f.1 water wheel, as visible from the dark blue line,
the energy loss at entry and exit is distinctly larger, and it increases with tip-speed
ratio. At the same time, peak blade power is also largest for design f.1. Therefore,
this particular wheel induces much stronger fluctuations on the generator shaft, which
translates as structural stresses.
At their optimal tip-speed ratio (figure 4.23(b)), the wheels with short blades, f.2 to
f.5, produced power for 92 % of the stroke duration on average. Power is delivered in a
regular manner, growing rapidly at first, and then maintaining a value close to the mean
power delivery up until late in the stroke. At optimal rotation speed (λ=0.4), power is
delivered up until α?=0.9 (at which point the blade is 48° past the nadir point), when
the blade is operating in the wake of two other blades further upstream. This is evidence
that, as had been tentatively suggested in sec. 4.3.5, the optimum free-stream water
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Figure 4.22: Performance of the top five designs (Pareto front) evaluated once with a standard duration
of physical time (15 s, as with all individuals during the optimization), and once with thorougher
criteria (as detailed in the text).

Figure prepared by Abhishek Shingala under mentorship by author [107],
reproduced from Shingala et al. submission [111]

wheel is clearly not a purely drag-based machine. The optimization clearly indicates
that for this radius and depth, wheels with fully-immersed blades (Zcut=0.5) perform
best, both from the point of view of net power output, and quality of mechanical power
delivery.
Among the five wheels selected as part of the Pareto front, the three wheels f.2, f.3 and
f.4 showed better performance compared to f.1 and f.5. Since these three wheels have
very similar geometry and performance, the configuration with the lowest number of
blades is selected, reducing construction cost and maximizing simplicity: therefore, the
wheel f.4 is designated as the optimal design in this study.
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Figure 4.23: Non-dimensional blade power curves (neC̃P,b) as a function of non-dimensional stroke
angle (α?) for the five Pareto-optimal wheels, plotted in separate diagrams for different tip-speed ratios.
The part of the curves below the zero-line corresponds to energy transferred from the wheel to the
water, which should obviously be avoided. In part a), the simulation corresponding to configuration f.1
could not be completed in time for publication.

Figure reproduced from Shingala et al. submission [111]

117



Comparison of optimized designs between different studies

A comparison of the best evaluations obtained here with those obtained previously in
section 4.3 is carried out below.
The previous optimization study had considered a much larger domain, with wheel
diameters ranging from 0.4 to 6 m in diameter, and 0.2 to 1 m in depth; the work ratio
had not been considered. To address this very broad domain, a family of Pareto-optimal
wheels (named “Magdeburg”) had been proposed in section 4.3.3 p. 98. Within this
family, the design configuration corresponding to fwet=0.5 and R =1.8 m (the same
input parameters as those of the study presented here) is presently considered, in order
to compare its performance with result from the second optimization.
The geometries of the wheel selected from the previous optimization study and of the
optimal wheel from the current study are shown in figure 4.24. The previous study
constrained the geometry so that at this radius, the root of blades would remain above
the water surface; while the current study finally recommends an immersed root blade.

(a) Wheel from previous optimal family (b) Newly-optimized wheel

Figure 4.24: Sketch of the geometry of the optimal wheel selected out of the former optimization
results for the given radius and depth (left), and the optimal wheel from the current study (right)

Figure prepared by Abhishek Shingala under mentorship by author [107],
reproduced from Shingala et al. submission [111]

The performance of each wheel was evaluated at its respective optimum tip-speed ratio;
the results are summarized in table 4.3.
It is observed from the results in table 4.3 that the work ratio of the optimized wheel
obtained from the new study is 113 % higher than the wheel suggested by the guidelines
in the previous optimization. Moreover, the wet- and rotor-area power coefficients are
improved by 8 % and 8.2 % respectively. This improvement in the power output has the
same order of magnitude as the uncertainty associated with carrying shorter evaluations
during the optimization proper, compared to more detailed evaluations (as visible in
figure 4.22 p. 116). Nevertheless, the improvement here is quantified by comparing two
wheels with the same, rigorous method.
The total blade surface area per unit width for the new optimal wheel is 7.25 m2/m,
which is 71 % less than the area of the wheel proposed by the model in the previous study
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Wheel selected out of previous
optimization

Current optimal wheel, design f.4

Input variables Input variables
nb = 11 nb = 8
β1 = 10° β1 = 0°
β2 = 25° β2 = 10°

Zcut = −0.2 Zcut = 0.5
λoptimal= 0.5 λoptimal = 0.4

Objective functions Objective functions
CP wet = 0.42 CP wet = 0.45
CP rotor = 0.10 (CP rotor = 0.11)
(rntg = 0.45) rntg = 0.96

Table 4.3: Comparison of the characteristics and performance of the two wheels shown in figure 4.24.
On the left, one design among a family of optimal designs obtained in the previous optimization
study (§4.3.4, ref. [103]), selected because its radius matches that of the new study. On the right, the
optimum design obtained in the new optimization study. The performance of each wheel is evaluated
at its optimum tip-speed ratio.

(25.1 m2/m). This translates into substantial material savings, as well as a reduction in
production cost and structural weight.
The performance of both wheels is compared in figure 4.25, using the approach introduced
in section 2.5.1. In this figure, the green and red areas under the curve represent positive
and negative contributions of power to the net shaft power, respectively.

(a) Wheel selected from previous optimization (b) Optimal wheel from new optimization

Figure 4.25: Blade power curves (neC̃P, b vs α? curves, see
2.5.1) for results of the previous (left) and new (right) optimization studies.

Figure prepared by Abhishek Shingala under mentorship by author [107],
reproduced from Shingala et al. submission [111]

It can be seen from figure 4.25a that in the wheel selected out of the previously-proposed
optimal family of designs, considerable energy loss occurs due to the entry splash and
blade exit. These occur for α? ∈ [0− 0.14] and α? ∈ [0.66− 1]. The maximum torque
occurs at around 35 % of the stroke, and large oscillations in power delivery are observed,
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which is not desirable. By contrast, in the case of the new optimal wheel, losses have
become almost insignificant (figure 4.25b). Power is produced consistently between α?

values ranging from 0.01 to 0.92.
Thus, the concept of the immersed blade design is proven to be beneficial when
maximizing performance of a free-stream water wheel with a radius of 1.8 m and a
depth of 0.9 m, at least for the free-stream velocity of 1.2 m s−1 considered here. This
suggests that the performance of wheel designs with other configurations may also be
improved by increasing the blade root radius. This hypothesis is investigated in the
following paragraphs.

Revised “Magdeburg” standard-optimal model

The optimization carried out in section 4.3 had led to proposed design guidelines
covering a wide range of designs, in an attempt to cover broadly the Pareto front that
appeared when maximizing simultaneously the pure wet-area performance (measured
using CP wet) and the power density of the device (measured using CP rotor). Eleven
wheel designs produced using these guidelines had then been evaluated in a detailed
manner in section 4.3.4, revealing that their performance was not fully Pareto-optimal
in this regard, especially for fwet values between 0.55 and 0.75. In the light of the results
obtained in this new optimization work while studying a more restricted parameter
range, results from the former optimization can be revisited. To this end, eleven wheels
built according to the “Magdeburg” guidelines were modified so that their blades were
shortened with Zcut=0.5. The flow through each of these wheels was simulated for five
values of λ, and their performance was evaluated according to the same detailed method
described in section 4.3.4 above, consuming a total of 29 000 cpu-hours.
The results from this new evaluation are described in figure 4.26. In fig. 4.26a, the vertical
and horizontal axes display respectively the wet- and rotor-area power coefficients (the
two objective functions that were to be maximized in §4.3). The gray dots are the
wheels from the previous “Magdeburg” family, evaluated at λ=0.5, as first obtained in
section 4.3. The blue dots indicate the performance of the modified wheels —identical
in all respects except for their shortened blades— operated at their optimal tip-speed
ratio (λopt=0.4 for most wheels). In this figure, it is seen that for all but the largest
and smallest wheels, the power output of the wheels is significantly increased when the
blades’ size is reduced so that Zcut=0.5.
In fig. 4.26b, the vertical axis again stands for the wet-area power coefficient, but the
horizontal axis represents the work ratio. The performance of the same wheels (from
both the first and the second optimizations) is displayed using the same color code. Since
the work ratio was not considered as an objective function in the former optimization, it
is not a surprise that neither curve resembles a Pareto front. Nevertheless, the effect of
shortening the blades is very clear: the work ratio of all wheels is drastically improved,
with eight of the short-bladed wheels reaching rntg>0.9.
These results make it unambiguous that reducing the length of the free-stream water
wheel’s blades, so that the blades become fully-immersed in the water during the power
stroke, increases the performance of wheels with diameters and depths far below and
above those of the wheel optimized in this second optimization. Even though this final
investigation only identifies local optima, in the wait for a further optimization, the
guidelines given in section 4.3.3 are hereby updated to add Zcut=0.5 for every wheel.
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Figure 4.26: Performance of wheels of the “Magdeburg” family of designs, constructed in section 4.3
(published in [103]), compared to the same wheels modified with their blades shortened at Zcut=0.5.
In these two series of simulations, the wheels range from 6 m diameter (wheels with best CP wet) down
to 0.4 m diameter (wheels with best CP rotor). Part a) displays the wheels’ power output performance
(wet- vs. rotor-area power coefficient), while part b) displays the wheels’ wet-area power coefficient vs.
work ratio rntg.

Figure reproduced from Shingala et al. submission [111]
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4.4.3 Two-dimensional simulations: further work

The promising results brought by “simply halving” the blade geometries which had
been obtained through the large-scale optimization in section 4.3.3 suggest that further
improvements may be obtained by considering the parameter Zcut and the objective
function rntg in yet another optimization. The set of all evaluations completed so far
(over 2 400) makes for an excellent database with which to suitably initialize a first
generation, and inform the selection of parameter ranges of interest. In this way, an
optimization with three simultaneous objectives (maximize CP wet, CP rotor and rntg)
could be run, searching across a still wider number of parameters (perhaps including
the tip-speed ratio λ), with a credible chance of finally producing a true Pareto front to
answer the water wheel design questions originally proposed in chapter 2.
On a less ambitious scale, the tools developed in the present chapter can be used to
investigate other modifications. A potentially effective and relatively simple method
for increasing the power output of free-stream water wheel is to use a deflector device;
optimal geometries for similar turbines have already been devised using numerical
tools [31, 89]. Work is underway which aims to identify an optimum deflector shape
for the free-stream waterwheel using the very methods presented in the present article
(figure 4.27).

Figure 4.27: A two-dimensional cfd simulation based on the current work, also steered with a genetic
optimizer, as part of the search for an optimal deflector shape to improve the power characteristics of
the free-stream waterwheel. The color scale and visualization match those of figure 4.17 p. 111.

Simulation prepared and run by Aman Jain under mentorship by the author,
reproduced from Shingala et al. submission [111]

Finally, it can be noted that the dynamics of the short-bladed wheel displayed in
figure 4.25 indicate that the blades are developing power continuously during their
stroke. This occurs as they deflect the flow upwards in the first third of their stroke,
and downwards in the last third. As noted before, this is evidence that lift and not just
drag contributes significantly to the power production. In turn, this suggests that a
thick body may perform better in this role than a low-thickness blade. As done in the
University of Magdeburg already for other types of turbines [90], a new optimization
could be run to search for an optimal “thick-body” blade geometry, over which flow
attachment and separation would occur at advantageous points in the power stroke,
further improving performance.
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4.5 Preliminary 3D models of free-stream wheels

The time span for the present thesis did not allow for in-depth numerical studies using
three-dimensional models. Nevertheless, the results of preliminary works are presented
in this final section. These include a simplified, porous-body model used for a first
assessment of floater interference, and two full moving-rotor simulations used to describe
three-dimensional flow around rotors.

4.5.1 Analysis

There are three main three-dimensional effects that affect the fluid flow around a free-
stream water wheel, which two-dimensional descriptions cannot completely describe.
These are, by order of decreasing importance:

Mass flow distribution The wheel blades exert a force on the water, decreasing its
momentum and thereby its velocity. By virtue of mass conservation, this decrease
velocity is compensated elsewhere by a velocity increase. In two-dimensional
descriptions of the flow, just like one would observe in a real-world installation
constrained by walls immediately left and right of the rotor, the water is accelerated
below the wheel, and the same mass flow is obtained at every cross-section of the
flow (per the mass balance equation solved in every cell). In a three-dimensional
installation, water is also deviated to the sides of the installation, thereby depriving
it of part of the available mass flow. In that sense, the two-dimensional simulations
used up to here “feed” the wheel with an exaggerated mass flow and likely
overestimate its power output.

Floater interference In a floating installation, the rotor, as well as the mechanical
and electrical equipment which it connects to, must be supported by a floater
system of some kind. A suitable position for those floaters is to each side of the
rotor, which make two-dimensional studies unable to take them into account.
Their displacement is expected to influence the power available to the wheel,
and may affect the blade power stroke dynamics, as already reported during
experimental investigations in section 3.3.

Wave propagation In two-dimensional descriptions, surface waves created by the
entry and exit from the water of the blades propagate only upstream and down-
stream; while in three-dimensional cases, they can spread laterally as well. This
likely translates into an exaggeration of the amplitude of those waves and their
influence on the power delivery in 2D simulations.

Preliminary studies of floater interference are presented in the following subsection;
while preliminary studies of the effect of mass flow distribution are carried out later in
section 4.5.3.

4.5.2 Floater interference and blockage ratio

An influence of the floater installation on the power delivery of the mid-scale experimental
installation mounted on the Vector 1 catamaran was already observed in the campaign
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described in section 3.3. There, the ship’s very large mass (23 ton) when considering
the modest size of the wheel (1.5 m diameter) and the high speeds pursued probably
exaggerated that influence compared to those to be found in a more realistic free-stream
installation.
In order to investigate this effect more closely, a series of three-dimensional simulations
was built, derived from the complete model presented in section 2.3. These were set up
and run by Farooq Hussain as part of his Master’s thesis under the mentorship of the
author: F. Hussain. “Numerical investigation of the ducting of free-surface hydraulic
devices”. Master’s thesis. University Otto von Guericke of Magdeburg, Germany,
Laboratory of fluid dynamics, 2018 (reference [75]). Results derived from selected parts
of this work are presented here.

(a) Ldraft floater=0.3 m (b) Ldraft floater=0.4 m

(c) Ldraft floater=0.5 m (d) Ldraft floater=0.6 m

Figure 4.28: Four of six floater geometries studied using the porous body family of three-dimensional
simulations. Seen each time are the domain edges, the water surface (water flows from foreground
towards the background), the yellow porous body and gray floaters. The representation of the bodies
is mirrored through the longitudinal center plane, which is set as a symmetry (zero-gradient) plane in
the simulation. The floater static buoyancy is maintained constant across simulations.

Simulations prepared and run by Farooq Hussain under mentorship from the author [75]

A family of 3D simulations was prepared to carry out parametric studies. Because of
the extremely high computational costs involved in describing the flow close to moving
blades, a simplified approach was adopted: the wheel’s hydraulic power subtraction was
modeled using a porous body (a set of mesh cells configured to act as a momentum sink).
The block of porous cells was sized so it would feature the same frontal area as the
blades it abstracted for. Its inertial and viscous resistance properties were adjusted to
15 · 103 kg/m4 and 5 · 103 kg m−3 s−1 respectively — these values ensured that velocity
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distributions 1 m upstream and downstream of the rotor axis were closest to those
extracted from the moving-blade simulation from section 2.3.
The domain was set to be 29 m long and 3.7 m deep, with a central plane of symmetry
splitting the installation in halves. The free-stream velocity was set as 1.5 m s−1. A
5.6 m-long floater was installed next to the porous body, its geometry parametrized so
that its draft (immersed depth) could be changed by modifying its width, while keeping
the static buoyancy constant. After mesh size independence of the main metrics of
interest (flow rate through and force exerted on the porous body) was observed, the
final mesh contained approximately one million cells.
The first investigation of interest quantifies the influence of floater draft on the extracted
hydraulic power. To this effect, the floater geometry was altered in several steps,
reaching up to Ldraft floater=0.6 m, as shown in figure 4.28. Each time, the hydraulic
power absorbed by the porous body was calculated (as multiple of the drag force and
surface-averaged axial velocity) and non-dimensionalized. The results are presented in
figure 4.29.
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Figure 4.29: The hydraulic (wet-area) power coefficient of the porous body, as a function of the floater
draft, for simulations illustrated in figure 4.28

Data from simulations prepared and run by Farooq Hussain under mentorship from the author [75]

From figure 4.29, it is observed that duct draft has a modest influence on the hydraulic
power extracted in the simulations. A decrease of 0.036 power coefficient (−11 %) is
observed as Ldraft floater is increased from 0.1 m (wide, “flat” shallow floaters) to 0.6 m
(narrow, deep-reaching floaters). This observation, which may run counter to intuition
(one might expect on the contrary that inhibition of three-dimensional flow structures
around the floater may lead to improved power extraction), must however be taken
with caution: the porous resistance properties were kept constant across simulations.
As has been discussed in chapter 1, changes in ducting may affect not just the available
power, but the relative flow velocity required to achieve it (see e.g. figure 1.7 p. 26).
To ensure that only a series of maxima is displayed in figure 4.29, an iterative process
varying porous resistance and seeking for maximum extracted power would be needed.
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In the second investigation, the duct with Ldraft floater=0.4 m (illustrated in figure 4.28b)
was selected, and the depth of the domain was varied, in order to vary the blockage
ratio (ratio of frontal area of device to water inlet area). In this way, the blockage ratio
was varied from 5 to 14 % in nine steps; each time, the extracted hydraulic power was
quantified and non-dimensionalized. These results are plotted in figure 4.30.
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Figure 4.30: The hydraulic (wet-area) power coefficient of the porous body, as a function of the
blockage ratio in the 3D simulation

Data from simulations prepared and run by Farooq Hussain under mentorship from the author [75]

In figure 4.30, it is seen that even low values of blockage ratio affect the hydraulic power
extracted by the porous body. As the blockage ratio is reduced from 13.6 % down to
4.5 %, the power coefficient drops by 0.087 (−23 %) — a considerable decrease.
Again, in these two relatively simple investigations, the cautionary remarks written
above apply: the porous body properties should be iteratively adapted in order to seek
local maxima. Nevertheless, results suggest that the combined effects of blockage ratio
and volume distribution of the floaters is substantial, warranting their investigation in
future work.

4.5.3 Three-dimensional flow around rotors

In the final investigation of this thesis, two preliminary, three-dimensional simulations
of wheels are presented. The geometry for these two wheels is taken from the updated
“Magdeburg” family from section 4.4. Wheel “A” is a 0.8 m-diameter wheel with depth
0.32 m, maximizing power per unit rotor area. Wheel “B” on the contrary is designed
to maximize power per unit of wet area, and features a 4 m-diameter with a depth
of 0.94 m. As shown in figure 4.31, the two wheels are modeled in 3D simulations
similar to those described in section 2.3 p. 49, with only the blades in their lower section
actually taken into account for fluid flow calculations.
The mesh is refined in three successive phases, allowing for the flow to settle progressively,
in order to decrease computational costs. A view of the mesh structure for case B
is provided in figure 4.32. In their finest configuration, the simulations for cases A
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Figure 4.31: Overview of the final two three-dimensional simulations carried out in this work, represented
together in a single image for comparison. The flow is from the foreground towards the background,
with water colored according to its velocity (the color scale is centered around the free-stream velocity
U∞=1.2 m s−1, in white). On the left, case A (designed to maximize power per unit rotor area). On
the right, case B (designed to maximize power per unit of wet area).

Figure 4.32: Mesh structure of the simulation for case B (left: overview; right, close-up view). A
cross-flow block of cells encompassing one blade is shown, revealing the structure of the static and
rotating meshes used to compute the flow. The surface of the cells and of the water is colored according
to velocity.

and B feature 1.4 and 3.2 million cells respectively. All numerical settings are otherwise
identical to these presented in section 2.3.
Unfortunately, after over 7 100 cpu-hours invested in both calculations in three successive
mesh refinement steps, the main metrics in the simulations (velocities near the rotor,
moments exerted on blades) fail to exhibit mesh size independence. While the wet-area
power coefficients reach realistic values (0.23 and 0.35 for cases A and B respectively), the
uncertainty associated with those values is too high to make any meaningful comparison
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with those obtained in the two-dimensional simulations. Instead, in the scope of the
time available for the work in this thesis, a brief outlook into the three-dimensionality
of the flow is given below.
The first investigation quantifies the mass flow in a series of vertical, cross-flow planes,
all positioned 2 m downstream of one another, as shown in figure 4.33. These planes
reach down to the channel bed surface, but are only exactly as wide as the rotor.

Figure 4.33: A series of 14 cross-flow sections positioned in the simulated domain, for case A. The
mass flow through each of these planes, as a fraction of the mass flow in the first plane, is plotted in
figure 4.34.

For each of the planes, the mass flow is extracted after the simulation has stabilized.
The values are expressed as a fraction of the mass flow in the plane in the most upstream
position. This data, for both cases A and B, is reported as a function of the planes’
flow-wise position in figure 4.34.
In figure 4.34, it is visible that mass deficit occurs already 2 to 4 m upstream of the
rotors, and is never really recovered in the following 16 m downstream. As expected,
the effect is much pronounced for wheel B, which not only extracts 4.5 times more
power, but also results in higher blockage ratio.
The two curves indicate how much of the mass flow in the path of each wheel is affected
by its presence, and deviated to the sides. In a way, they indicate how much of the
mass flow in the two-dimensional simulations ought to be “removed” from the domain
at different flow-wise positions if a strict equivalence with three-dimensional simulations
were to be kept.
A further visualization of the mass balance issue associated with two-dimensional
simulations is provided with figure 4.35. There, a longitudinal plane is seen slicing
through the two 3D simulations, with flow from left to right, just like in the 2D
simulations from the sections above. In this plane, the mass flux in the direction of
the rotor axis —towards and away from the viewer— is plotted as a scalar field. The
values in these two images are by definition zero in the 2D simulations, so that again
the three-dimensionality of the flow is highlighted.
In figure 4.35, it becomes apparent that the spatial resolution of the mesh used is largely
insufficient to properly account for the flow. Indeed, very high gradients of the mass
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Figure 4.34: The mass flow passing through each of the planes displayed in figure 4.33, expressed as
a fraction of the mass flow in the plane furthest upstream. On the horizontal axis is the flow-wise
position relative to the rotor axis (positive downstream). Data for the planes immediately in the wake
of the rotor B displayed significant oscillation in time, and time-averaged values were adopted for
display here.

Figure 4.35: For case B (top) and case A (bottom), the mass flux in the direction of the wheel axis is
plotted in a plane positioned 10 cm away from the symmetry plane of the wheels. The flow is from left
to right. The color scale (saturated at ±50 kg m−2 s) is so that red color (positive values) indicates
flow away from the viewer, while blue color (negative values) towards the viewer.

fluxes are observed, not just in regions that bear little influence over the power dynamics
(in the far wake of the wheels), but also within moderate distance upstream and below
the rotors. This highlights the need for careful investment of further computational
resources into finer spatial discretization.
Figure 4.36 provides a final opportunity to visualize the three-dimensional effects at
play in free-stream water wheel flows. There, isosurfaces of vorticity are shown, viewed
from below and downstream of the rotor. Only vorticity in the x- (streamwise) and y-
(vertical) directions is considered. Vorticity in the direction of the wheel axis, which is
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associated with the power production, is ignored: it is already very well accounted for
by two-dimensional simulations (and z-vorticity was indeed often used to describe flow
in these simulations in the last three chapters). The result is that the flow patterns
that cannot be captured in the 2D simulations are singled out in this figure.

Figure 4.36: Isosurfaces of vorticity in the water immediately below the wheel for case A (top) and
case B (bottom), with both images at exactly the same scale. Flow is from left to right. Here, only
vorticity in the x and y directions is shown; vorticity in the z-direction (parallel to the axis of the
wheel), which is associated with the power production, is omitted. For clarity, only vorticity between 6
and 24 s−1 is visualized.

The flow patterns in figure 4.36 indicate complex cross-plane flow, in particular for
wheel B. As expected, sheets of vorticity are visible along and in the wake of the flat
surface boundary layers. Large vortices, with their axis chiefly in the flow direction,
appear near the tip and side edges of the blade at the nadir point. Interaction with
the z-direction vortices emanating at the blade root and tip (rendered invisible in the
figure) seems to break these up into multiple smaller structures. In videos created
from multiple instances of the view during the transient simulations, numerous smaller
structures appear and dissipate as the blades travel.
Again, a concern stemming figure 4.36 is that the spatial discretization (presented
earlier in figure 4.32) is still deemed insufficient to correctly describe water flow around
the blades: several relatively large structures in this figure stretch across areas with
large mesh size gradients. Nevertheless, the patterns revealed in this figure are evidence
that non-trivial flow occurs in the third, axis-wise dimension, very close the blades.
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4.5.4 Open research questions

As evidenced in the section above, there is a pressing need for the development of
a three-dimensional cfd model for a free-stream water wheel in which the mesh is
everywhere fine enough to capture flow patterns relevant to power production. These
are, in particular, flow in the direction parallel to the wheel axis far upstream, below
and downstream of the rotor, as well as three-dimensional flow below and immediately
behind the blades.
If this model is well parametrized and computational resources are available to run
these simulations with acceptable rate of progress, the following open questions could
be investigated:

• How do the power curves of the wheels compare to those obtained in 2D simula-
tions? If there are significant differences, do they depend on the wheel geometry?

• Are the hydraulic power predictions which are carried out using porous-body
models accurate? If so, can they be calibrated and further developed to run an
optimization of floater geometry using comparatively inexpensive 3D simulations?
In this way, can the geometry of the floaters be adapted so as to increase power
by channeling more flow towards the rotor?

• How does blade geometry in the direction of the wheel axis influence the power
output? Can the smoothness of the power delivery be increased by using helically-
shaped rotor geometries? Can increases in power be obtained by varying the
blade tip angle β or even the depth of the blade root Lroot along the rotor axis
direction?

4.6 Conclusions

This last chapter has tackled the problem of optimizing the design of the free-stream
water wheel. For this, based on the work carried out in the former chapters, a first
optimization —the first in the literature, to the best knowledge of the author— was
carried out. Steered by the genetic algorithm of an optimizer, this optimization was
deliberately driven across extremely wide ranges of parameters; for example, the
diameter was allowed to grow from 0.8 to 6 meters. After nearly 2000 iterations and
three months of computations, a wealth of data had been returned (configurations for
many different Pareto-optimal or near-Pareto-optimal wheels) requiring careful analysis.
An attempt to abstract away this complexity was made by constructing a family to
address the two conflicting objectives of the optimization, only with limited success.
Despite this, the results allows to quantitatively quantify the conundrum associated
with the design of the optimum wheel. Operators constrained in installation width or
area should adopt high-radius, high-depth wheels; while operators constrained in rotor
size or installation depth should deploy low-radius, low-depth wheels. Compared to the
former, the latter will concede to a four-fold decrease in power per unit width and a
40 % reduction in wet-area performance in order to gain a 50 % increase in power per
unit rotor area. This trade-off is well visualized using blade-level graphical descriptions
of performance developed in previous work.
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A second optimization was then conducted, based on the very same computing toolchain
and infrastructure. In addition to featuring slightly different objectives, it was much
purposefully narrower in scope. Predictably, it converged much more easily, delivering a
configuration for a single optimal individual: a wheel whose blade geometry maximizes
both power output and smoothness of power delivery. This design features fully-
immersed blades and results in a 113 % increase in work ratio, while still improving
the wet and rotor power coefficients by 8 %, compared to the wheel suggested by
the previously-established design guidelines. Its configuration translates into a 71 %
reduction in total blade area, corresponding to significant reduction in weight, bulk,
and material usage.
Applying the same immersed-blade modification to the complete set of wheel designs
obtained in the former optimization reveals that performance is markedly improved in
nearly every case, whether measured in terms of wet-area power coefficient, rotor power
coefficient, or work ratio. In this manner, the two-dimensional work presented in this
chapter, after half of a million cpu-hours of computational time invested, unambiguously
indicates that the optimal free-stream water wheel design has fully-immersed blades,
which produce power for most of the power stroke in a continuous fashion. This shows
that lift, in addition to drag, contributes to energy conversion mechanism for these
machines. Future work should make further use of the tools presented, seeking to
identify the configuration of blades with thicker geometry that take the best advantage
of these mechanics.
Finally, preliminary investigations are carried out with three-dimensional simulations.
Clearly, these simulations are still in their infancy: the local coarsening of the mesh
required to carry these out given the time and resources available for this thesis prevents
the accurate quantification of the phenomena of interest here. Nevertheless, they
account well for lateral mass flow deflection, blade edge losses, and floater-induced
disturbances. They thus point the way forward for further research, which will need to
rise beyond the simplifications inherent to two-dimensional cfd computations.
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Conclusion

This thesis has covered four main aspects of the optimization of free-stream water
wheels.
In the first chapter, a theoretical analysis of the achievable performance in floating or
bypass hydropower installations was carried out. The one-dimensional model describing
the fluid flow through hydraulic devices presented there is able to quantify the device
operating speed required to attain full load efficiency, and the corresponding maximum
hydraulic power. It was shown that it allows both to evaluate any device’s real-life
performance, benchmarking it against reference values anchored in physical principles,
and to provide design guidance. These results are obtained at a computing cost several
orders of magnitude smaller than those associated with full description of the flow using
cfd methods.
The second chapter has presented numerical models of the fluid flow in free-stream
water wheels. A systematic study of the power characteristics of this type of machine
was carried out using two-dimensional simulations. Two conflicting performance require-
ments were identified: generating high power per unit submerged frontal area (CP wet),
and high power unit frontal rotor area (CP rotor). It was shown the decomposition of
the net power output in terms of the contribution of individual blades allows for an
improved understanding of the dynamics of the machine, highlighting the influence
of key design parameters (relative depth, number of blades, blade geometry) on its
performance.
The third chapter has illustrated the challenges of producing reliable measurements
by which to assess the effectiveness of the models used in cfd simulations of water
wheels. One experiment was carried out on a small-scale wheel, necessitating sensitive
measurement equipment and careful post-processing. A simulation of the same flow
using a three-dimensional model with satisfactory mesh resolution under-estimated the
corresponding power output by only approximately 10 %, validating the methods used
to describe fluid flow and power output in the numerical simulations developed in this
thesis.
A different opportunity for comparison was presented to the author in the form of set
of data from measurements carried out on a mid-scale (1.5 m-diameter) wheel by an
external actor. The non-dimensionalization of those results for comparison translates
into large (±30 %) uncertainty. Additionally, only two-dimensional simulations were
carried out for comparison. Consequently, although the two sets of results agree only in
broad, general terms, this is not seen as a reason to distrust the numerical tools used in
this thesis.
The fourth and final chapter has tackled the problem of optimizing the design of the
free-stream water wheel. For this, two optimizations steered by a genetic algorithm
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were carried out. The first was deliberately driven across extremely wide ranges of
parameters. As a result, the main design conundrum associated with the design of the
free-stream wheel was quantified as follows: operators constrained in installation width
or area should adopt high-radius, high-depth wheels; while operators constrained in
rotor size or installation depth should deploy low-radius, low-depth wheels. A four-fold
decrease in power per unit width and a 40 % reduction in wet-area performance must
be conceded in order to gain a 50 % increase in power per unit rotor area.
The second optimization was much narrower in scope and focused on improving the
quality of power delivery through the shortening of the blades. For the single wheel
radius considered, a 113 % increase in work ratio combined with a 71 % reduction in
total blade area (corresponding to significant reduction in weight, bulk, and material
usage) was obtained.
Overall, after the investigation of 2 400 different wheel configurations, the results
unambiguously indicate that the optimal free-stream water wheel design features fully-
immersed blades which produce power for most of the power stroke in a continuous
fashion. This shows that lift, in addition to drag, contributes to energy conversion
mechanism for these machines.
Finally, preliminary investigations were carried out with three-dimensional simulations.
While still insufficiently resolved to make accurate predictions, they allow for the
visualization of lateral mass flow deflection, blade edge losses, and floater-induced
disturbances. They point the way forward for further research, which will need to rise
beyond the simplifications inherent to two-dimensional cfd computations.
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Nomenclature

∆ net difference

α in chapter 1, kinetic energy correction factor [—]

α in chapters 2-4, angular position of blade along stroke (fig. 2.5) [rad]

α∗ non-dimensional stroke angle (fig. 2.5) [—]

β blade geometry angle, fig. 2.5 [°]

β1 blade angle at tip, fig. 4.2 [°]

β2 blade angle at mid-depth, fig. 4.2 [°]

ε turbulent dissipation rate [J kg−1 s−1]

η efficiency, defs. 1.4-1.6 & 3.2 [—]

λ tip speed ratio, def. 2.15 [—]

µ viscosity [Pa s]

µT turbulent viscosity, see §2.2.2 [Pa s]

ω in §2.2.2 only: specific turbulent dissipation rate [s−1]

ω rotor rotational speed [rad s−1]

φ uncertainty, expressed as standard deviation (as per the gum, see ref. [13])

ρ density [kg m−3]

σ standard deviation

θ stroke angle, def. 2.17, fig. 2.5 [rad]

AA actuator frontal area [m2]

Af device frontal area [m2]

Aref Reference area for power coefficient [m2]

B chain translation ratio [—]

b width of rectangular channel [m]
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CP power coefficient (def. eq. 1.8) [—]

CP dry Power coefficient based on the rotor area [—]

CPb single-blade wet power coefficient [—]

CP wet Power coefficient based on the immersed area [—]

C̃Pb single-blade wet power coefficient averaged over several blades [—]

e specific mechanical energy [J kg−1]

ek specific kinetic energy [J kg−1]

[Fr] Froude number [—]

fwet wet radius fraction, def. 2.16 [—]

g gravitational acceleration [m s−2]

h height from bed to water surface, positive upwards [m]

Heff. effective head (def. in section 1.3) [m]

Igenerator measured electric current [A]

k turbulent specific energy [J kg−1]

KD drop coefficient (def. 1.16) [—]

Kgenerator generator constant [N m A−1]

KD0 static drop coefficient (def. 1.21) [—]

KD2 loss coefficient, def. 1.20 [—]

Lroot depth of root of blade, positive downwards (figure 4.16) [m]

Lwet immersion depth of rotor (figure 2.5) [m]

Lwidth width of rotor [m]

ṁ mass flow [kg s−1]

nb number of blades on rotor [—]

ne equivalent number of blades on rotor, def. 2.19 [—]

Owater volume fraction of water (eq. 2.6) [—]

p pressure [Pa]

Q Lanchester correction factor (cf. footnote p. 56 & [50]) [—]

q volume flow per unit width [m2 s−1]

[Re] Reynolds number [—]

141



R in chapter 1, size ratio (def. 1.23) [—]

R in chapters 2-4, wheel radius (figure 2.5) [m]

R1 radial position of pivot point for blade tip in fig. 2.5 [m]

rntg work ratio (“net to gross”)), def. 4.9 [—]

S Reference area for power coefficient [m2]

T generic parameter used for clarity

u local fluid velocity [m s−1]

U∞ free-stream velocity [m s−1]

V̇ volume flow rate [m3 s−1]

~V fluid velocity vector field [m s−1]

Ẇ mechanical or electrical power [W]

xi generic measurand

Zcut cut radius fraction, def 4.10 [—]

y+ non-dimensional distance away from wall [—]

z altitude of bed, positive upwards [m]

Subscripts
A actuator
alt. due to altitude
av. averaged in space
hydraulic refers to mechanical energy lost by water
hyd. abbreviation for hydraulic
max. maximum
opt. optimum
loss integral effect of pressure losses
rotor reference area is frontal area of rotor
shaft refers to mechanical energy transferred in the rotor shaft
wet reference area is frontal area exposed to water
+ immediately upstream of actuator surface
- immediately downstream of actuator surface
∞ far-field incoming conditions

Superscripts
bar average in time
arrow vector
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Sign conventions
Lengths are measured positive upwards and downstream.

Numbers
The decimal separator of numbers is a dot; the thousand separator is a thin space;
exponents are separated with a median dot. For example, 1.23456 · 105 = 12 345.6
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analysis of the compromise between power output and fish-friendliness in a
vortex power plant”. In: Journal of Ecohydraulics (2018), pp. 86–98. doi: 10.
1080/24705357.2018.1521709.

[79] M. H. Nguyen, H. Jeong, and C. Yang. “A study on flow fields and performance
of water wheel turbine using experimental and numerical analyses”. In: Science
China Technological Sciences 61.3 (2018), pp. 464–474. doi: 10.1007/s11431-
017-9146-9.

[80] L. Orunova. “Experimental investigation of the fluid dynamics of a Rubens
tube”. Master’s thesis. University Otto von Guericke of Magdeburg, Germany,
Laboratory of fluid dynamics, 2018.

[81] E. Quaranta. “Stream water wheels as renewable energy supply in flowing water:
theoretical considerations, performance assessment and design recommendations”.
In: Energy for Sustainable Development 45 (2018), pp. 96–109. doi: 10.1016/j.
esd.2018.05.002.

[82] J. Wahrlich. “Entwicklung eines Optimierungskonzeptes für schwimmende
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[84] S. Abbaszadeh, S. Hoerner, T. Mâıtre, and R. Leidhold. “Experimental in-
vestigation of an optimised pitch control for a vertical-axis turbine”. In: IET
Renewable Power Generation 13.16 (2019), pp. 3106–3112. doi: 10.1049/iet-
rpg.2019.0309.

[85] B. M. Adams, L. Bauman, W. Bohnhoff, K. Dalbey, M. Ebeida, J. Eddy, M.
Eldred, P. Hough, K. Hu, J. Jakeman, J. Stephens, L. Swiler, D. Vigil, and
T. Wildey. Dakota, a multilevel parallel object-oriented framework for design
optimization, parameter estimation, uncertainty quantification, and sensitivity
analysis: version 6.10 user’s manual (Sandia Technical Report SAND2014-4633).
2019. url: https://dakota.sandia.gov//sites/default/files/docs/6.
10/Users-6.10.0.pdf.

[86] O. Cleynen. File:Dakota genetic optimization.svg. Dec. 2019. url: https://
commons.wikimedia.org/wiki/File:Dakota_genetic_optimization.svg.

150

https://doi.org/10.3850/978-981-11-2731-1_282-cd
https://doi.org/10.1080/24705357.2018.1521709
https://doi.org/10.1080/24705357.2018.1521709
https://doi.org/10.1007/s11431-017-9146-9
https://doi.org/10.1007/s11431-017-9146-9
https://doi.org/10.1016/j.esd.2018.05.002
https://doi.org/10.1016/j.esd.2018.05.002
https://doi.org/10.1109/ICSTC.2018.8528714
https://doi.org/10.1109/ICSTC.2018.8528714
https://doi.org/10.1049/iet-rpg.2019.0309
https://doi.org/10.1049/iet-rpg.2019.0309
https://dakota.sandia.gov//sites/default/files/docs/6.10/Users-6.10.0.pdf
https://dakota.sandia.gov//sites/default/files/docs/6.10/Users-6.10.0.pdf
https://commons.wikimedia.org/wiki/File:Dakota_genetic_optimization.svg
https://commons.wikimedia.org/wiki/File:Dakota_genetic_optimization.svg


[87] O. Cleynen. Genetic optimization with Dakota 1/3: The optimization loop.
Dec. 2019. url: https://ariadacapo.net/blog/2019- 12- 18- genetic-
optimization-with-dakota-1-3-the-optimization-loop/.

[88] S. Hoerner, S. Abbaszadeh, T. Mâıtre, O. Cleynen, and D. Thévenin. “Charac-
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