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An RVE-based investigation of thermoplastic vulcanizates exemplified by
EPDM/PP
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In this contribution, the material behaviour of thermoplastic vulcanizate is investigated using the example of ethylene-
propylene-diene monomer rubber (EPDM) and polypropylene (PP). For modelling of viscoelastic effects, the generalized
Maxwell element is applied, whereby the isochoric stresses of parallel Maxwell elements are determined via evolution equa-
tions. In order to take the morphological composition of TPV into account, a representative volume element (RVE) consisting
of PP as matrix and EPDM as included material is considered. In a following numerical example, a cyclic shear test is
presented, where the resulting force and stress distribution is evaluated. Thus, the results show the macroscopic material
behaviour under the consideration of microstructure.
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1 Introduction

Thermoplastic vulcanizates (TPV) are used in a wide range of applications such as medical technologies, automotives and
consumer goods. They are characterized by a good combination of the individual material properties. Furthermore, existing
manufacturing technologies can be used to produce goods. TPV belongs to the group of thermoplastic elastomers (TPE).
With respect to the morphological composition, a soft cross-linked elastomer phase (dispersed phase) is embedded in a hard
thermoplastic phase (matrix). The morphology has a significant influence on the macroscopic material behaviour, which can
be seen for example by the appearance of hysteresis responses under cyclic load. In this context, the macroscopic material be-
haviour is investigated under the consideration of microstructure using the representative volume element technique consisting
of EPDM/PP.

2 Governing Equations

In this section, the fundamentals for the phenomenological description of viscoelastic effects of thermoplastic vulcanizates
are described. For modelling of the component material behaviour, an incompressible hyperelastic Neo-Hooke material is
assumed, so the strain energy Ψ can be additively decomposed into a volumetric U and isochoric Ŵ part according to
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Therein K and µ are equal to the compression modulus and shear modulus, J = det (F ) is the determinant of deformation
gradient F and IĈ = tr

(
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)
is the first invariant of isochoric right Cauchy-Green tensor. With knowledge of the strain

energy, the constitutive law
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can be determined, where S is the second Piola-Kirchhoff stress with its volumetric Svol and isochoric Siso parts.
Afterwards, the rheological model for modelling of viscoelastic effects is discussed. The generalized Maxwell element,

according to Fig. 1, is applied, which consists of a single spring with parallel Maxwell elements. The corresponding stresses
and evolution equations are summarized in Eq. 3 - 5.
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2 of 2 Section 8: Multiscales and homogenization

Fig. 1: Generalized Maxwell element

S = Svol
eq + ν∞Siso

eq + Σn
i=1ν

iQiso
neq,i (3)

Q̇neq,i +
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τi
Qneq,i = Ṡ

iso

eq (4)
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Eq. 3 describes the viscoelastic material behaviour, where the influence of parallel Maxwell elements is weighted by the
factor νi and superimposed to the equilibrium stress Siso

eq . Within the evolution equation, see Eq. 4, Qneq,i represents the

isochoric stress at Maxwell element, τi the corresponding relaxation parameter and Ṡ
iso

eq the time derivation of the isochoric
second Piola-Kirchhoff stress of single spring. The time derivative is achieved by using a backward difference scheme.

3 Results

The investigated RVE is shown in Fig. 2 and the corresponding material properties are summarized in Tab. 1. The filling
material is located at the corners and out of centre of the element. Thus the RVE has non-symmetrical mass distribution.
With respect to the boundary conditions, it is assumed that the lower end of the RVE is fixed and cyclic displacements are
predefined at the upper end. Furthermore, periodic boundary conditions are applied at the lateral edges.

Fig. 2: RVE-model

Property Name value

Bulk modulus PP KPP 1190.5 MPa
Shear modulus PP GPP 174.8 MPa
Relaxation time PP τPP 0.5

Bulk modulus EPDM KEPDM 26.3 MPa
Shear modulus EPDM GEPDM 2.7 MPa
Relaxation time EPDM τEPDM 0.5

Table 1: Summary of material properties

The evaluation of the material response contains the resulting horizontal force component at upper end of RVE, see Fig. 3.
Futhermore, the Cauchy shear stress distribution at maximum deformation is shown at time t = 4.5s, see Fig. 4. Within
the force-displacement diagram, the hysteresis effect can be seen after each cyclic load, whereby only slight changes can be
observed after the fourth load cycle. The shear stresses are mainly present in the matrix, due to the higher stiffness compared
to the filler material.
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Fig. 3: Material behaviour of EPDM/PP Fig. 4: Shear stress distribution at t = 4.5s
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