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An efficient semi-analytical solution of the Reynolds equation
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A numerically efficient, semi-analytical solution of the Reynolds equation for hydrodynamic journal bearings is developed
based on the Scaled Boundary Finite Element Method. The pressure field is discretized along the circumferential coordinate
of the lubrication gap, while an analytical formulation is used in the axial direction. A system of inhomogeneous ordinary
differential equations is obtained, which is solved under consideration of the boundary conditions. The solution is verified,
and its numerical efficiency is investigated in comparison to an FEM solution.
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1 Introduction

The dynamic properties of rotor systems with hydrodynamic journal bearings crucially depend on the nonlinear bearing
characteristics. The bearing forces acting on the shaft result from the hydrodynamic pressure generation in the lubrication
gap, which is described by the Reynolds equation (RE) [1]. In transient rotordynamic simulations, the bearing forces need to
be calculated in every time step, which is performed either by solving the RE or by use of look-up tables. A disadvantage of
the look-up tables is that the interpolation effort increases with every considered physical effect if the grid of data points is
maintained sufficiently fine to guarantee a low interpolation error. Hence, the solution of the RE is becoming more practically
relevant. Since closed-form analytical solutions are known for special cases only [2, 3], numerical methods such as the Finite
Element Method (FEM) [4] or the Finite Volume Method (FVM) [5] are used. The numerical effort to solve the RE dominates
the computational cost of the rotordynamic simulation, which is why in this study, an efficient solution based on the Scaled
Boundary Finite Element Method (SBFEM) [6] is developed. The SBFEM is a semi-analytical approach, which was designed
to model wave propagation in unbounded domains [7] and has been extended to solve problems in various fields. The SBFEM
formulation of the RE, which is later referred to as the SBFEM equation, is derived and solved in Section 2. In Section 3, the
solution is verified and its numerical efficiency is investigated in comparison to an FEM solution.

2 Derivation and solution of the SBFEM equation

The RE for hydrodynamic journal bearings with a rotating shaft and a fixed shell can be written as
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in which p is the pressure, h is the gap function, ω is the rotational velocity, µ is the dynamic viscosity, and D is the bearing
diameter. The bearing geometry and the coordinates θ and y are defined in Figure 1. The SBFEM requires a weak formulation
of the governing equilibrium equation, which is achieved by applying the Galerkin method to Equation (1). The residual is
multiplied by a test function w, integrated over the solution domain and set equal to zero
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dθ dy = 0 . (2)

The solution domain is represented by the unwinded lubrication gap depicted in Figure 2. It is assumed that the pressure
distribution is symmetric in the axial direction y, which means that only half of the bearing needs to be considered. This
assumption requires that the shaft tilting is neglected, i.e., h,y = 0, which moreover facilitates the SBFEM equation. On the
considered bearing half, a superelement [6] is defined which consists of rectangular sectors (grey) and finite line elements
(green) on its axial boundaries. A set of dimensionless local coordinates (blue), η and ξ, is defined for each sector. Equation
(2) is transformed into the local coordinate system, and the pressure distribution within a sector e is described by the semi-
analytical ansatz pe(η, ξ) = NT(η) · pe(ξ). In this ansatz, N(η) is a vector of linear shape functions, and pe(ξ) is a vector
of nodal pressure solutions in the axial direction, which is determined later by solving the SBFEM equation. An analogous
ansatz is defined for the test function we(η, ξ) = wT

e (ξ) · N(η). Since the derivation of the SBFEM equation is performed
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Fig. 1: Draft of a hydrodynamic
radial journal bearing.
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Fig. 2: Definition of a superele-
ment on the unwinded gap.
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Fig. 4: Computational time
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analogously to the SBFEM literature [6], the subsequent steps are not presented in this proceeding. A system of ordinary
differential equations is obtained, which is then assembled over all sectors to yield the SBFEM equation

E0 · p,ξξ (ξ)− E2 · p(ξ) = x . (3)

In this, E2 and E0 are the coefficient matrices resulting from the first and the second term of the RE (1), while x is the
right-hand side vector resulting from the third and the fourth term. The solution of Equation (3) can be written as the sum of
a homogeneous solution phom(ξ) and a particular solution ppar
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which satisfy the symmetry boundary condition (BC) at the axial bearing center. λi and qi are the eigenvalues and eigenvectors
obtained from the generalized eigenvalue problem given in Equation (5a), and a = [a1 a2 ... am]T is a set of integration
constants that depends on the ambient pressure BC p(ξ = 1) = pamb and is calculated using Equation (5b)

E2 · q = λE0 · q , (a) a = Q−1 ·
(
pamb − ppar

)
with Q = [q1 q2 ... qm] . (b) (5)

The supply pressure BCs are enforced by eliminating the nodes within the circumferential range of the oil supply groove from
Equation (3) before the equation is solved. This enforces the supply pressure BCs across the full axial bearing length L, which
is a simplification of the groove geometry.

3 Verification and investigation of the numerical efficiency

To verify the SBFEM solution, the bearing forces obtained from the calculated pressure field are compared to those of a
converged FEM solution, which results in a relative error δF . This error is calculated for different circumferential node
numbers nθ so that a convergence curve is obtained (Figure 3). This convergence study is performed also for an FEM solution
with linear shape functions and an approximately square element geometry, which is one of the standard numerical solutions
of the RE. It is observed that both solutions converge to the same result at an almost identical convergence rate.

To evaluate the efficiency of the SBFEM solution, the computational time Tcomp required to solve the RE once is compared
to that of the FEM solution for different node numbers. The results are illustrated in Figure 4. It is observed that for fine
discretizations, the SBFEM is significantly faster than the FEM. However, it should be noted that the current SBFEM model
has some disadvantages over the numerical solutions, since these solutions are able to consider shaft tilting and an oil supply
groove of arbitrary axial length. In the SBFEM solution, an arbitrary groove length requires an additional superelement, which
will be investigated in detail in further studies.
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