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Abstract
The spectral flow is a well-known quantity in spectral theory that measures the
variation of spectra about 0 along paths of selfadjoint Fredholm operators. The
aim of this work is twofold. Firstly, we consider homotopy invariance properties
of the spectral flow and establish a simple formula which comprises its classi-
cal homotopy invariance and yields a comparison theorem for the spectral flow
under compact perturbations. We apply our result to the existence of non-trivial
solutions of boundary value problems of Hamiltonian systems. Secondly, the
spectral flowwas axiomatically characterised by Lesch, and byCiriza, Fitzpatrick
and Pejsachowicz under the assumption that the endpoints of the paths of selfad-
joint Fredholm operators are invertible. We propose a different approach to the
uniqueness of spectral flow which lifts this additional assumption. As applica-
tion of the latter result, we discuss the relation between the spectral flow and the
Maslov index in symplectic Hilbert spaces.
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1 INTRODUCTION

The spectral flow is a homotopy invariant for paths of selfadjoint Fredholm operators that was invented by Atiyah, Patodi
and Singer in their famous study of spectral asymmetry and index theory in [1]. Selfadjoint Fredholm operators are either
invertible or 0 is an isolated eigenvalue of finite multiplicity. Roughly speaking, if =

{
𝜆

}
𝜆∈[0,1]

is a path of selfadjoint
Fredholm operators, then the spectral flow of  is the net number of eigenvalues of 0 that become positive whilst the
parameter 𝜆 travels along the unit interval. In this paper, we are dealing with paths of (generally) unbounded operators
which are continuous with respect to the gap-metric. The spectral flow was introduced in this setting by Booß-Bavnbek,
Lesch and Phillips in [5]. Every norm-continuous path of bounded operators is continuous with respect to the gap-metric,
and there are various works which had considered this case previously (see, e.g., [8, 18]).
As indicated by the title, this paper falls naturally into two parts. The homotopy invariance of the spectral flow has been

stated in various forms. For example, a common property of the spectral flow is that it is invariant under homotopies of
paths having invertible endpoints (see e.g. [8]). A more general observation is the invariance under homotopies where
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the dimensions of the kernels of the endpoints are constant (see e.g. [5]). We obtain a general formula for the change
of the spectral flow under gap-continuous homotopies of selfadjoint Fredholm operators which comprises all previously
known results. As a corollary, we show that the spectral flow is invariant under free homotopies of closed paths which
was noted for paths of bounded operators in [8]. After this digression about homotopies, we focus on our first aim of
this paper and consider relatively compact perturbations of paths of selfadjoint Fredholm operators. Our main theorem
in this part is a comparison principle for the spectral flow of paths of relatively compact perturbations of a given path of
gap-continuous selfadjoint Fredholm operators. We pay particular attention to the gap-continuity of the perturbed path,
which requires a generalisation of a well-known theorem from [14]. The comparison principle finally follows from our
previous investigation of the homotopy invariance and a method for computing the spectral flow from [22] that is based
on previous work by Robbin and Salamon from [19]. As an application of the comparison principle, we consider paths of
boundary value problems for linear Hamiltonian systems and obtain an estimate for the number of parameter values of
the path where the Hamiltonian systems have non-trivial solutions.
The spectral flow is uniquely characterised by some of its properties, which is known as the uniqueness of spectral flow.

For paths of bounded operators, this was independently observed by Ciriza, Fitzpatrick and Pejsachowicz in [7] and by
Lesch in [15]. Lesch also showed that the same result is true in the case of paths of unbounded operators that are continuous
in the gap-topology. However, all these theorems assume that the paths of operators have invertible endpoints. The second
aim of this paper is to establish a uniqueness of spectral flow theorem which lifts the assumption on the invertibility of the
endpoints. As an application of the latter result we consider symplectic Hilbert spaces as in [10] and recall that the graphs
of gap-continuous paths of selfadjoint Fredholm operators yield paths of Lagrangian subspaces in this setting. We show
that the spectral flow is theMaslov index of the path of graphs as a rather simple consequence of our uniqueness theorem.
This fact might be considered as folklore, but we are not aware of a proof in the literature.
Our paper is structured as follows. We recall the definition of the spectral flow in the next section. In Section 3, we

firstly discuss the homotopy invariance. Afterwards we show an estimate that allows to prove the continuity of paths of
unbounded operators in broad generality. The following main theorem of this part of the paper is a comparison result for
the spectral flow thatwe then apply to paths of boundary value problems ofHamiltonian systems. The fourth section of our
paper is devoted to the uniqueness of the spectral flow. We firstly recall Lesch’s Uniqueness Theorem from [15], where we
in particular introduce the axioms which uniquely characterise the spectral flow. Afterwards we state and prove our main
theorem, which is a uniqueness theorem for the spectral flow that, in contrast to [15], does not require the invertibility of
the endpoints of the paths. Finally, we consider symplectic Hilbert spaces and show that the spectral flow of a path can
be obtained as Maslov index of its associated path of graphs.

2 THE SPECTRAL FLOW

2.1 Definition and first properties

The aim of this section is to recall the construction of the spectral flow and some of its basic properties, where we follow
[18] and [5].
Let 𝐻 be a real or complex separable Hilbert space. We denote by (𝐻) the set of all densely defined closed operators

on𝐻. The gap-metric on (𝐻) is defined by

𝑑𝐺(𝑇, 𝑆) = ‖‖𝑃𝑇 − 𝑃𝑆‖‖, 𝑇, 𝑆 ∈ (𝐻), (2.1)

where 𝑃𝑇, 𝑃𝑆 are the orthogonal projections onto the graphs of 𝑇 and 𝑆. As every selfadjoint operator is closed, these
operators form a subset of (𝐻) which we denote by sa(𝐻). Further, we let (𝐻) ⊂ (𝐻) be the set of all Fredholm
operators and we set  sa(𝐻) = sa(𝐻) ∩ (𝐻) which is the set of all selfadjoint Fredholm operators. Let us mention
for later reference that, when restricted to the bounded operators(𝐻) ⊂ (𝐻), the gap-metric induces the same topology
as the metric induced by the operator norm (see [14, Rem. IV.2.16]).
The spectrum of 𝑇 ∈ 

sa
(𝐻) is the (generally non-disjoint) union of the point spectrum and the essential spectrum.

Moreover, 0 is either in the resolvent set or it is an isolated eigenvalue of finite multiplicity (see, e.g., [23, Lemma 13]).
We denote for 𝑎, 𝑏 ∉ 𝜎(𝑇) by 𝜒[𝑎,𝑏](𝑇) the spectral projection of 𝑇 with respect to the interval [𝑎, 𝑏]. Note that if 𝜎𝑒𝑠𝑠(𝑇) ∩
[𝑎, 𝑏] = ∅, then 𝜒[𝑎,𝑏](𝑇) is the orthogonal projection onto the direct sum of the eigenspaces for eigenvalues in [𝑎, 𝑏]. The
proof of the following lemma can be found in [5, Lemma 2.9].
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Lemma 2.1. Let 𝑇0 ∈ 
sa
(𝐻) and 𝑎 > 0 such that ±𝑎 ∉ 𝜎

(
𝑇0

)
and [−𝑎, 𝑎] ∩ 𝜎𝑒𝑠𝑠

(
𝑇0

)
= ∅. Then there is an open neigh-

bourhood𝑁𝑇0,𝑎 of 𝑇0 in 
sa
(𝐻) such that ±𝑎 ∉ 𝜎(𝑇), [−𝑎, 𝑎] ∩ 𝜎𝑒𝑠𝑠(𝑇) = ∅ for all 𝑇 ∈ 𝑁𝑇0,𝑎, and

𝑁𝑇0,𝑎 ∋ 𝑇 ↦ 𝜒[−𝑎,𝑎](𝑇) ∈ (𝐻)

is continuous and of constant finite rank.

The construction of the spectral flow of a path  =
{
𝜆

}
𝜆∈𝐼

is now as follows, where we denote by 𝐼 the unit inter-
val. For every 𝜆 ∈ 𝐼 there is an open neighbourhood 𝑁𝜆,𝑎 ⊂ 

sa
(𝐻) of 𝜆 as in the previous lemma. The preimages of

these neighbourhoods define an open covering of the compact interval 𝐼. Consequently, there is a partition of the interval
0 = 𝜆0 < 𝜆1 < … < 𝜆𝑁 = 1 and numbers 𝑎𝑖 > 0 such that

±𝑎𝑖 ∉ 𝜎
(
𝜆

)
,

[
− 𝑎𝑖, 𝑎𝑖

]
∩ 𝜎𝑒𝑠𝑠

(
𝜆

)
= ∅, 𝜆 ∈

[
𝜆𝑖−1, 𝜆𝑖

]
as well as [

𝜆𝑖−1, 𝜆𝑖
]
∋ 𝜆 ↦ 𝜒[−𝑎𝑖,𝑎𝑖]

(
𝜆

)
∈ (𝐻)

is continuous, 𝑖 = 1, … ,𝑁. The spectral flow of the path is the integer

sf () =

𝑁∑
𝑖=1

(
dim

(
im

(
𝜒[0,𝑎𝑖]

(
𝜆𝑖

)))
− dim

(
im

(
𝜒[0,𝑎𝑖]

(
𝜆𝑖−1

))))
. (2.2)

A careful analysis of the continuity of the spectral projections in Lemma 2.1 shows that this is indeed a well-defined index
of the path. This was done in [18] for paths of bounded operators, and it was mentioned in [5] that the same argument
works in the setting we are considering. We include a proof of this fact for the sake of the reader.

Lemma 2.2. The spectral flow is well defined, i.e., (2.2) neither depends on the partition 0 = 𝜆0 < … < 𝜆𝑁 = 1 nor on the
numbers 𝑎1, … , 𝑎𝑁 .

Proof. As announced above, our argument follows [18]. Firstly, we add a 𝜆∗ to the partition 0 = 𝜆0 < 𝜆1 < … < 𝜆𝑁 = 1,
say 𝜆𝑖 < 𝜆∗ < 𝜆𝑖+1. Then the only amendment in (2.2) is that

dim
(
im

(
𝜒[0,𝑎𝑖]

(
𝜆𝑖

)))
− dim

(
im

(
𝜒[0,𝑎𝑖]

(
𝜆𝑖−1

)))
is replaced by

dim
(
im

(
𝜒[0,𝑎𝑖]

(
𝜆𝑖

)))
− dim

(
im

(
𝜒[0,𝑎𝑖]

(
𝜆∗

)))
+ dim

(
im

(
𝜒[0,𝑎𝑖]

(
𝜆∗

)))
− dim

(
im

(
𝜒[0,𝑎𝑖]

(
𝜆𝑖−1

)))
,

which does not affect (2.2).
Secondly, let us consider the case that we have 𝑏𝑖 ≠ 𝑎𝑖 for some 𝑖 such that ±𝑏𝑖 ∉ 𝜎

(
𝜆

)
and

[
− 𝑏𝑖, 𝑏𝑖

]
∩ 𝜎𝑒𝑠𝑠

(
𝜆

)
= ∅

for 𝜆 ∈
[
𝜆𝑖−1, 𝜆𝑖

]
. We assume without loss of generality that 𝑏𝑖 > 𝑎𝑖 and note that by the continuity of isolated parts of

spectra [11, Thm. I.4.2]

dim
(
im

(
𝜒[𝑎𝑖,𝑏𝑖]

(
𝜆𝑖

)))
= dim

(
im

(
𝜒[𝑎𝑖,𝑏𝑖]

(
𝜆𝑖−1

)))
,

whichwas shown for the gap-topology in [5, Prop. 2.10]. Thus, as im
(
𝜒[0,𝑎𝑖]

(
𝜆𝑖

))
and im

(
𝜒[𝑎𝑖,𝑏𝑖]

(
𝜆𝑖

))
intersect trivially,

we obtain

dim
(
im

(
𝜒[0,𝑏𝑖]

(
𝜆𝑖

)))
− dim

(
im

(
𝜒[0,𝑏𝑖]

(
𝜆𝑖−1

)))
= dim

(
im

(
𝜒[0,𝑎𝑖]

(
𝜆𝑖

))
⊕ im

(
𝜒[𝑎𝑖,𝑏𝑖]

(
𝜆𝑖

)))
− dim

(
im

(
𝜒[0,𝑎𝑖]

(
𝜆𝑖−1

))
⊕ im

(
𝜒[𝑎𝑖,𝑏𝑖]

(
𝜆𝑖−1

)))
= dim

(
im

(
𝜒[0,𝑎𝑖]

(
𝜆𝑖

)))
− dim

(
im

(
𝜒[0,𝑎𝑖]

(
𝜆𝑖−1

)))
,

which shows that (2.2) does not depend on the choice of the 𝑎𝑖 .
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Finally, assume that we have two different partitions 0 = 𝜆0 < 𝜆1 < … < 𝜆𝑁 = 1 and 0 = 𝜂0 < 𝜂1 < … < 𝜂𝑀 = 1 with
corresponding numbers 𝑎𝑖 , 𝑖 = 1, … ,𝑁 and 𝑏𝑖 , 𝑖 = 1, … ,𝑀. We merge them to obtain a finer partition for which we can
use either the 𝑎𝑖 or the 𝑏𝑖 to compute (2.2). In both cases this does not affect (2.2) by the first step of our proof. As (2.2) is
independent of the 𝑎𝑖 and 𝑏𝑖 by the second step, we obtain in both cases the same integer. Thus (2.2) is well defined. □

In what follows we denote by1 ∗ 2 the concatenation of two paths1,2 in 
sa
(𝐻)which is defined if1

1
= 2

0
,

i.e. if the initial point of2 is the endpoint of1.Wenote the following property of the spectral flow,which is an immediate
consequence of its definition.

(C) If1 and2 are two paths in 
sa
(𝐻) such that1

1
= 2

0
, then

sf
(
1 ∗ 2

)
= sf

(
1

)
+ sf

(
2

)
.

A further property of the spectral flow that has often been used in the literature is that it vanishes for paths of invert-
ible operators. This is clear from its interpretation and also not difficult to prove by using the continuity of the spectral
projections in Lemma 2.1. Here we show a slightly more general version of this assertion which will be important in later
sections.

Lemma 2.3. If ∶ 𝐼 → 
sa
(𝐻) is such that dimker

(
𝜆

)
is constant for all 𝜆 ∈ 𝐼, then

sf () = 0.

Proof. Let 𝜆0 ∈ 𝐼. As 0 is an isolated eigenvalue of 𝜆0 , there is 𝜀 > 0 such that the rank of the spectral projection
𝜒[−𝜀,𝜀]

(
𝜆0

)
is the dimension of the kernel of 𝜆0 . As projections of norm-distance less than one have equal ranks (see

[11, Lem. II.4.3]), it follows from Lemma 2.1 that there is 𝛿 > 0 such that

dim im
(
𝜒[−𝜀,𝜀]

(
𝜆

))
= dim im

(
𝜒[−𝜀,𝜀]

(
𝜆0

))
= dimker

(
𝜆0

)
, 𝜆0 − 𝛿 ≤ 𝜆 ≤ 𝜆0 + 𝛿.

Now dimker
(
𝜆

)
= dimker

(
𝜆0

)
for all 𝜆 by assumption, and so

dim im
(
𝜒[−𝜀,𝜀]

(
𝜆

))
= dimker

(
𝜆

)
, 𝜆0 − 𝛿 ≤ 𝜆 ≤ 𝜆0 + 𝛿.

As ker
(
𝜆

)
⊂ im

(
𝜒[−𝜀,𝜀]

(
𝜆

))
, this shows that im

(
𝜒[−𝜀,𝜀]

(
𝜆

))
= ker

(
𝜆

)
for 𝜆0 − 𝛿 ≤ 𝜆 ≤ 𝜆0 + 𝛿. Hence we obtain

from the definition of the spectral flow that

sf
(
 ∣[𝜆0−𝛿,𝜆0+𝛿]

)
= dim im

(
𝜒[0,𝜀]

(
𝜆0+𝛿

))
− dim im

(
𝜒[0,𝜀]

(
𝜆0−𝛿

))
= dimker

(
𝜆0+𝛿

)
− dimker

(
𝜆0−𝛿

)
= 0,

where we have used that im
(
𝜒[0,𝜀]

(
𝜆

))
is the direct sum of the eigenspaces of 𝜆 for eigenvalues in [0, 𝜀],

𝜆 ∈
[
𝜆0 − 𝛿, 𝜆0 + 𝛿

]
.

Now the assertion follows from the concatenation property (C). □

The previous lemmawill only be needed in its full generality for discussing the homotopy invariance in the next section.
For the uniqueness of the spectral flow, we will use instead the following weaker statement:

(Z) If =
{
𝜆

}
𝜆∈𝐼

is a path in 
sa
(𝐻) such that𝜆 is invertible for all 𝜆 ∈ 𝐼, then sf () = 0.

3 A COMPARISON THEOREM FOR THE SPECTRAL FLOW

3.1 A review of the homotopy invariance

Before we begin our discussion of the homotopy invariance, we note the following important though elementary fact
about the spectral flow (see [18]).
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Lemma 3.1. Let 𝑎 > 0 and𝑁 ⊂ 
sa
(𝐻) be an open set such that±𝑎 ∉ 𝜎(𝑇), [−𝑎, 𝑎] ∩ 𝜎𝑒𝑠𝑠(𝑇) = ∅ for all 𝑇 ∈ 𝑁 and such

that

𝑁 ∋ 𝑇 ↦ 𝜒[−𝑎,𝑎](𝑇) ∈ (𝐻)

is continuous. If1 and2 are two paths in𝑁 having the same initial and endpoint, i.e.1
0
= 2

0
and1

1
= 2

1
, then

sf
(
1

)
= sf

(
2

)
.

Proof. By the definition of the spectral flow, we see that

sf
(
1

)
= dim

(
im

(
𝜒[0,𝑎]

(
1
1

)))
− dim

(
im

(
𝜒[0,𝑎]

(
1
0

)))
= dim

(
im

(
𝜒[0,𝑎]

(
2
1

)))
− dim

(
im

(
𝜒[0,𝑎]

(
2
0

)))
= sf

(
2

)
,

where we have used that the initial and endpoints of the paths coincide. □

Let us point out that the proof of the following theorem closely follows the proof of the homotopy invariance property
in [18].

Theorem 3.2. Let ℎ ∶ 𝐼 × 𝐼 → 
sa
(𝐻) be a homotopy of selfadjoint Fredholm operators. Then

sf (ℎ(0, ⋅)) = sf (ℎ(⋅, 0)) + sf (ℎ(1, ⋅)) − sf (ℎ(⋅, 1)). (3.1)

Proof. As ℎ(𝐼 × 𝐼) ⊂ 
sa
(𝐻) is compact, we can find by Lemma 2.1 an open covering of this set by finitely many open

sets𝑁𝑖 , 𝑖 = 1, … , 𝑛, which are as in Lemma 3.1. Now let 𝜀 be a Lebesgue number of the open covering of 𝐼 × 𝐼 made by the
𝑛 preimages ℎ−1

(
𝑁𝑖

)
, i.e. each subset of 𝐼 × 𝐼 of diameter less than 𝜀 is contained in one of the ℎ−1

(
𝑁𝑖

)
.

We choose a partition 0 = 𝜆0 ≤ … ≤ 𝜆𝑚 = 1 such that ||𝜆𝑖 − 𝜆𝑖−1|| ≤ 𝜀√
2
for 1 ≤ 𝑖 ≤ 𝑚. Then for each 1 ≤ 𝑖, 𝑗 ≤ 𝑚, the

image ℎ
([
𝜆𝑖−1, 𝜆𝑖

]
×
[
𝜆𝑗−1, 𝜆𝑗

])
is contained in one of the sets 𝑁𝑘. Let us now consider the four paths obtained from the

boundary of the square
[
𝜆𝑖−1, 𝜆𝑖

]
×
[
𝜆𝑗−1, 𝜆𝑗

]
, i.e. the two horizontal paths

ℎℎ
𝑖−1,𝑗
(𝜆) = ℎ

(
𝜆𝑖−1, 𝜆

)
, 𝜆 ∈

[
𝜆𝑗−1, 𝜆𝑗

]
, ℎℎ

𝑖,𝑗
(𝜆) = ℎ

(
𝜆𝑖, 𝜆

)
, 𝜆 ∈

[
𝜆𝑗−1, 𝜆𝑗

]
and the two vertical paths

ℎ𝑣
𝑖,𝑗−1
(𝜆) = ℎ

(
𝜆, 𝜆𝑗−1

)
, 𝜆 ∈

[
𝜆𝑖−1, 𝜆𝑖

]
, ℎ𝑣

𝑖,𝑗
(𝜆) = ℎ

(
𝜆, 𝜆𝑗

)
, 𝜆 ∈

[
𝜆𝑖−1, 𝜆𝑖

]
.

If we denote by
(
ℎ𝑣
𝑖,𝑗

)′
the reverse path of ℎ𝑣

𝑖,𝑗
, then it readily follows from the definition of the spectral flow that

sf
((
ℎ𝑣
𝑖,𝑗

)′)
= −sf

(
ℎ𝑣
𝑖,𝑗

)
. Moreover, ℎ𝑣

𝑖,𝑗−1
∗ ℎℎ
𝑖,𝑗
∗
(
ℎ𝑣
𝑖,𝑗

)′
is a path in 𝑁𝑘 having the same initial and endpoint as ℎℎ𝑖−1,𝑗 .

Consequently, by Lemma 3.1 and (C),

sf
(
ℎℎ
𝑖−1,𝑗

)
= sf

(
ℎ𝑣
𝑖,𝑗−1

∗ ℎℎ
𝑖,𝑗
∗
(
ℎ𝑣
𝑖,𝑗

)′)
= sf

(
ℎ𝑣
𝑖,𝑗−1

)
+ sf

(
ℎℎ
𝑖,𝑗

)
+ sf

((
ℎ𝑣
𝑖,𝑗

)′)
= sf

(
ℎ𝑣
𝑖,𝑗−1

)
+ sf

(
ℎℎ
𝑖,𝑗

)
− sf

(
ℎ𝑣
𝑖,𝑗

)
.

(3.2)

Now,

sf (ℎ(0, ⋅)) =

𝑚∑
𝑗=1

sf
(
ℎℎ
0,𝑗

)
=

𝑚∑
𝑗=1

(
sf
(
ℎ𝑣
1,𝑗−1

)
+ sf

(
ℎℎ
1,𝑗

)
− sf

(
ℎ𝑣
1,𝑗

))

= sf
(
ℎ𝑣
1,0

)
− sf

(
ℎ𝑣
1,𝑚

)
+

𝑚∑
𝑗=1

sf
(
ℎℎ
1,𝑗

)
.
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As, again by (3.2),

𝑚∑
𝑗=1

sf
(
ℎℎ
1,𝑗

)
=

𝑚∑
𝑗=1

(
sf
(
ℎ𝑣
2,𝑗−1

)
+ sf

(
ℎℎ
2,𝑗

)
− sf

(
ℎ𝑣
2,𝑗

))
= sf

(
ℎ𝑣
2,0

)
− sf

(
ℎ𝑣
2,𝑚

)
+

𝑚∑
𝑗=1

sf
(
ℎℎ
2,𝑗

)
,

we obtain

sf (ℎ(0, ⋅)) = sf
(
ℎ𝑣
1,0

)
+ sf

(
ℎ𝑣
2,0

)
− sf

(
ℎ𝑣
1,𝑚

)
− sf

(
ℎ𝑣
2,𝑚

)
+

𝑚∑
𝑗=1

sf
(
ℎℎ
2,𝑗

)
.

If we continue this procedure until we arrive at 𝑖 = 𝑚, we get

sf (ℎ(0, ⋅)) =

𝑚∑
𝑖=1

sf
(
ℎ𝑣
𝑖,0

)
−

𝑚∑
𝑖=1

sf
(
ℎ𝑣
𝑖,𝑚

)
+

𝑚∑
𝑗=1

sf
(
ℎℎ
𝑚,𝑗

)
= sf(ℎ(⋅, 0)) − sf (ℎ(⋅, 1)) + sf (ℎ(1, ⋅)),

where we have used (C) in the last equality. This is the claimed equation. □

Remark 3.3. There is an alternative way to obtain Theorem 3.2. One can show at first the homotopy invariance for closed
paths, which we below obtain as a corollary of (3.1). Then, given a general homotopy ℎ ∶ 𝐼 × 𝐼 → 

sa
(𝐻), the spectral

flow of the path obtained by restricting ℎ to the boundary of 𝐼 × 𝐼 vanishes. Now (3.1) readily follows from (C), (Z) and the
fact that the spectral flow changes its sign if we reverse the orientation of a path. However, the homotopy invariance for
closed paths is hardly easier to prove than (3.1).

The following corollary is an immediate consequence of Theorem 3.2 and (Z). It can be considered as the most general
form of the homotopy invariance property of the spectral flow.

Corollary 3.4. Let ℎ ∶ 𝐼 × 𝐼 → 
sa
(𝐻) be a homotopy of selfadjoint Fredholm operators such that sf (ℎ(⋅, 0)) = sf (ℎ(⋅, 1)).

Then

sf (ℎ(0, ⋅)) = sf (ℎ(1, ⋅)).

As a first consequence of Corollary 3.4, we obtain from Lemma 2.3 the homotopy invariance property stated in [5].

Corollary 3.5. Let ℎ ∶ 𝐼 × 𝐼 → 
sa
(𝐻) be a homotopy of selfadjoint Fredholm operators such that dimker(ℎ(𝑠, 0)) and

dimker(ℎ(𝑠, 1)) are constant. Then

sf (ℎ(0, ⋅)) = sf (ℎ(1, ⋅)).

Let us note two immediate consequences of the previous corollary that we will need in Section 4 in our discussion of
the uniqueness of the spectral flow.

(H) Let ℎ ∶ 𝐼 × 𝐼 → 
sa
(𝐻) be a homotopy of selfadjoint Fredholm operators such that ℎ(𝑠, 0) and ℎ(𝑠, 1) are constant

for all 𝑠 ∈ 𝐼. Then

sf (ℎ(0, ⋅)) = sf (ℎ(1, ⋅)).

(HI) Let ℎ ∶ 𝐼 × 𝐼 → 
sa
(𝐻) be a homotopy of selfadjoint Fredholm operators such that ℎ(𝑠, 0) and ℎ(𝑠, 1) are invertible

for all 𝑠 ∈ 𝐼. Then

sf (ℎ(0, ⋅)) = sf (ℎ(1, ⋅)).
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A further consequence of Corollary 3.5 is that the spectral flow is invariant under homotopies of based loops, i.e.
sf (ℎ(0, ⋅)) = sf (ℎ(1, ⋅)) if ℎ ∶ 𝐼 × 𝐼 → 

sa
(𝐻) is such that ℎ(𝑠, 0) = ℎ(𝑠, 1) = 𝑇0 for all 𝑠 ∈ 𝐼 and some 𝑇0 ∈ 

sa
(𝐻). We

conclude this section by noting that, as a consequence of Theorem 3.2, the spectral flow actually is invariant under free
homotopies of loops, which was shown by a different argument for bounded operators in [8, Prop. 3.8].

Corollary 3.6. Let ℎ ∶ 𝐼 × 𝐼 → 
sa
(𝐻) be a homotopy of selfadjoint Fredholm operators such that ℎ(𝑠, 0) = ℎ(𝑠, 1) for all

𝑠 ∈ 𝐼. Then

sf (ℎ(0, ⋅)) = sf (ℎ(1, ⋅)).

As an application of the previous corollary, we show in the following section that the spectral flow of closed paths in

sa
(𝐻) is invariant under compact perturbations.

3.2 A comparison theorem under compact perturbations

In this section we study perturbations of gap-continuous paths in 
sa
(𝐻) by paths of relatively compact selfadjoint

operators on 𝐻. First of all, we need to pay attention to the question whether the pointwise sum of two gap-continuous
paths of closed operators is gap-continuous. Note that this question does not even make sense in this generality as the
sum of two closed operators is not necessarily closed, however, the following theorem is sufficient for our purposes. Let
us recall that we denote by (𝐻) the set of all closed operators on 𝐻, which canonically is a metric space with respect to
the gap-metric (2.1).

Theorem 3.7. Let 𝑇, 𝑆 ∈ (𝐻) and 𝐴, 𝐵 ∈ (𝐻). Then 𝑇 + 𝐴, 𝑆 + 𝐵 ∈ (𝐻) and

𝑑𝐺(𝑇 + 𝐴, 𝑆 + 𝐵) ≤ 2
√
2
√
1 + ‖𝐴‖2√1 + ‖𝐵‖2(𝑑𝐺(𝑇, 𝑆) + ‖𝐴 − 𝐵‖). (3.3)

Proof. We first note that the set of all closed operators is invariant under additive perturbations of bounded operators ([14,
Prob. III.5.6] or [14, Thm. IV.1.1]), which shows the first assertion.
Before we begin the proof of (3.3), we recall an alternative way to compute the gap-metric on (𝐻). For 𝑇, 𝑆 ∈ (𝐻), we

set

𝛿(𝑇, 𝑆) = sup
𝑢∈𝑆𝑇

𝑑(𝑢, graph(𝑆)),

where 𝑆𝑇 denotes the unit sphere in graph(𝑇) and 𝑑(𝑢, graph(𝑆)) = inf 𝑣∈graph(𝑆) ‖𝑢 − 𝑣‖. By [14, IV.2],
𝑑𝐺(𝑇, 𝑆) = max{𝛿(𝑇, 𝑆), 𝛿(𝑆, 𝑇)}. (3.4)

Let now 𝑇, 𝑆, 𝐴, 𝐵 be as in the assertion of the theorem and consider some 𝜑 ∈ graph(𝑆 + 𝐵), ‖𝜑‖ = 1. Then there exists
𝑢 ∈ (𝑆) such that 𝜑 = (𝑢, (𝑆 + 𝐵)𝑢) and

‖𝑢‖2 + ‖(𝑆 + 𝐵)𝑢‖2 = ‖𝜑‖2 = 1.
We set 𝑟2 ∶= ‖𝑢‖2 + ‖𝑆𝑢‖2 > 0 and note for later reference the inequality

𝑟2 = ‖𝑢‖2 + ‖(𝑆 + 𝐵)𝑢 − 𝐵𝑢‖2 ≤ ‖𝑢‖2 + 2‖(𝑆 + 𝐵)𝑢‖2 + 2‖𝐵𝑢‖2
≤ 2

(‖𝑢‖2 + ‖(𝑆 + 𝐵)𝑢‖2) + 2‖𝐵‖2‖𝑢‖2 ≤ 2(1 + ‖𝐵‖2), (3.5)

where we have used that ‖𝑢‖2 + ‖(𝑆 + 𝐵)𝑢‖2 = 1 and so in particular ‖𝑢‖ ≤ 1.
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As 𝑟−1(𝑢, 𝑆𝑢) ∈ 𝑆𝑆 we see by (3.4) that for all 𝛿′ > 𝑑𝐺(𝑆, 𝑇)

𝑑
(
𝑟−1(𝑢, 𝑆𝑢), graph(𝑇)

)
≤ sup
𝑤∈𝑆𝑆

𝑑(𝑤, graph(𝑇)) ≤ 𝑑𝐺(𝑆, 𝑇) < 𝛿
′.

Consequently, 𝑑((𝑢, 𝑆𝑢), graph(𝑇)) < 𝑟𝛿′ and so there is 𝑣 ∈ (𝑇) such that

‖𝑢 − 𝑣‖2 + ‖𝑆𝑢 − 𝑇𝑣‖2 < 𝑟2𝛿′2. (3.6)

Let now 𝜓 = (𝑣, (𝑇 + 𝐴)𝑣) ∈ graph(𝑇 + 𝐴). Then

‖𝜑 − 𝜓‖2 = ‖(𝑢, (𝑆 + 𝐵)𝑢) − (𝑣, (𝑇 + 𝐴)𝑣)‖2
= ‖𝑢 − 𝑣‖2 + ‖𝑆𝑢 − 𝑇𝑣 + 𝐵𝑢 − 𝐴𝑣‖2
≤ ‖𝑢 − 𝑣‖2 + 2‖𝑆𝑢 − 𝑇𝑣‖2 + 2‖𝐵𝑢 − 𝐴𝑣‖2
≤ 2

(‖𝑢 − 𝑣‖2 + ‖𝑆𝑢 − 𝑇𝑣‖2) + 2‖𝐵𝑢 − 𝐴𝑣‖2.
By (3.6) and as ‖𝑢‖ ≤ 𝑟 by the definition of 𝑟, we get

‖𝜑 − 𝜓‖2 ≤ 2𝑟2𝛿′2 + 2‖𝐵𝑢 − 𝐴𝑣‖2
≤ 2𝑟2𝛿′2 + 2(‖𝐴𝑣 − 𝐴𝑢‖ + ‖𝐴𝑢 − 𝐵𝑢‖)2
≤ 2𝑟2𝛿′2 + 4‖𝐴‖2‖𝑣 − 𝑢‖2 + 4‖𝐴 − 𝐵‖2‖𝑢‖2
≤ 2

(
1 + 2‖𝐴‖2)𝑟2𝛿′2 + 4‖𝐴 − 𝐵‖2‖𝑢‖2

≤ 2
(
1 + 2‖𝐴‖2)𝑟2𝛿′2 + 4𝑟2‖𝐴 − 𝐵‖2,

which implies by (3.5)

‖𝜑 − 𝜓‖2 ≤ 4(1 + 2‖𝐴‖2)(1 + ‖𝐵‖2)𝛿′2 + 8(1 + ‖𝐵‖2)‖𝐴 − 𝐵‖2
≤ 8

(
1 + ‖𝐴‖2)(1 + ‖𝐵‖2)𝛿′2 + 8(1 + ‖𝐴‖2)(1 + ‖𝐵‖2)‖𝐴 − 𝐵‖2

≤ 8
(
1 + ‖𝐴‖2)(1 + ‖𝐵‖2)(𝛿′2 + ‖𝐴 − 𝐵‖2)

≤ 8
(
1 + ‖𝐴‖2)(1 + ‖𝐵‖2)(𝛿′ + ‖𝐴 − 𝐵‖)2.

Consequently,

‖𝜑 − 𝜓‖ ≤ 2
√
2
√
1 + ‖𝐴‖2√1 + ‖𝐵‖2(𝛿′ + ‖𝐴 − 𝐵‖), (3.7)

which shows that

𝑑(𝜑, graph(𝑇 + 𝐴)) = inf
�̃�∈graph(𝑇+𝐴)

‖𝜑 − �̃�‖ ≤ ‖𝜑 − 𝜓‖
≤ 2

√
2
√
1 + ‖𝐴‖2√1 + ‖𝐵‖2(𝛿′ + ‖𝐴 − 𝐵‖)

for any 𝜑 ∈ graph(𝑆 + 𝐵), ‖𝜑‖ = 1. Thus
𝛿(graph(𝑆 + 𝐵), graph(𝑇 + 𝐴)) = sup

�̃�∈𝑆𝑆+𝐵

𝑑(�̃�, graph(𝑇 + 𝐴))

≤ 2
√
2
√
1 + ‖𝐴‖2√1 + ‖𝐵‖2(𝛿′ + ‖𝐴 − 𝐵‖).
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As 𝛿′ is an arbitrary number greater than 𝑑𝐺(𝑆, 𝑇), we obtain

𝛿(graph(𝑆 + 𝐵), graph(𝑇 + 𝐴)) ≤ 2
√
2
√
1 + ‖𝐴‖2√1 + ‖𝐵‖2(𝑑𝐺(𝑆, 𝑇) + ‖𝐴 − 𝐵‖).

Finally, since the right hand side of this inequality is symmetric in 𝑇 + 𝐴 and 𝑆 + 𝐵, we see by (3.4) that

𝑑𝐺(𝑇 + 𝐴, 𝑆 + 𝐵) ≤ 2
√
2
√
1 + ‖𝐴‖2√1 + ‖𝐵‖2(𝑑𝐺(𝑆, 𝑇) + ‖𝐴 − 𝐵‖),

which is the claimed inequality (3.3). □

Let us point out that the argument in the proof of Theorem 3.7 is based on [14, Thm. IV.2.17], where (3.3) is obtained in
the case that 𝐴 = 𝐵 with the constant 2 instead of 2

√
2.

Before coming to our comparison theory for the spectral flow, we briefly want to recall the notion of relative compactness
for operators. Let 𝑇 ∶ (𝑇) ⊂ 𝐻 → 𝐻 and 𝐴 ∶ (𝐴) ⊂ 𝐻 → 𝐻 be operators such that (𝑇) ⊂ (𝐴). Then 𝐴 is called
𝑇-compact if for every bounded sequence

{
𝑢𝑛

}
𝑛∈ℕ
⊂ (𝑇) with

{
𝑇𝑢𝑛

}
𝑛∈ℕ

bounded,
{
𝐴𝑢𝑛

}
𝑛∈ℕ

contains a convergent
subsequence. Let us also recall that for every 𝑇 ∶ (𝑇) ⊂ 𝐻 → 𝐻, the domain(𝑇) canonically becomes a normed linear
space with respect to the graph norm

‖𝑢‖2𝑇 = ‖𝑢‖2 + ‖𝑇𝑢‖2, 𝑢 ∈ (𝑇).

In what follows we write (𝑇)𝐺 when we regard (𝑇) as a normed linear space with respect to the graph norm. It is
readily seen that (𝑇)𝐺 is a Hilbert space if and only if 𝑇 ∈ (𝐻). Finally, the operator 𝐴 is 𝑇-compact if and only if
𝐴 ∶ (𝑇)𝐺 → 𝐻 is compact.
Now let =

{
𝜆

}
𝜆∈𝐼

be a gap-continuous path in  sa(𝐻) and let =
{
𝜆

}
𝜆∈𝐼

be a norm-continuous path of selfad-
joint operators in(𝐻) such that each𝜆 is𝜆-compact. We set + =

{
𝜆 +𝜆

}
𝜆∈𝐼

which is a gap-continuous path
in (𝐻) by Theorem 3.7. As𝜆 +𝜆 is also selfadjoint and Fredholm by well known perturbation theory (see [14, Thm.
V.4.3] and [14, Thm. IV.5.26]), it follows that  + actually is a path in 

sa
(𝐻) and so has a spectral flow. Note that it

is easy to construct examples of this type with a non-trivial spectral flow. For example, let𝜆 = 𝑇 ∈ 
sa
(𝐻) be constant

and such that 𝑇 has a compact resolvent. Then the spectrum of 𝑇 consists of isolated eigenvalues of finite multiplicity (see
[14, Thm. III.6.29]). Moreover, it is easy to see that𝐾𝜆 = 𝛼𝜆𝐼𝐻 is 𝑇-compact for any 𝛼 > 0. Finally, it follows from (2.2) that
the spectral flow of + is the number of eigenvalues of 𝑇 in [−𝛼, 0). On the other hand, we next see as a consequence
of Corollary 3.6 that non-trivial relatively compact perturbations can equally well make no contribution to the spectral
flow.

Corollary 3.8. If0 = 1 and0 = 1, then

sf ( +) = sf ().

Proof. We set ℎ ∶ 𝐼 × 𝐼 → 
sa
(𝐻), ℎ(𝜆, 𝑠) = 𝜆 + 𝑠𝜆 which is a gap-continuous homotopy by Theorem 3.7. Now the

assertion follows from the invariance of the spectral flowunder free homotopies of closed paths stated inCorollary 3.6. □

The previous corollary was recently obtained by the second author in [21] as a consequence of a rather technical
𝐾-theoretic description of the spectral flow for unbounded selfadjoint Fredholm operators. Corollary 3.8 shows that this
property can also be derived in a more direct way from the definition of the spectral flow.
We now come to the main theorem of this section which is a Comparison Principle for the spectral flow of compact

perturbations. Let us first recall that there is a partial order on the set of all selfadjoint bounded operators sa(𝐻) on 𝐻,
which is defined by

𝐴 ≥ 𝐵 if ⟨(𝐴 − 𝐵)𝑢, 𝑢⟩ ≥ 0, 𝑢 ∈ 𝐻.
The main theorem of this section now reads as follows.
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Theorem 3.9. Let  =
{
𝜆

}
𝜆∈𝐼

and ′ =
{
′
𝜆

}
𝜆∈𝐼

be two paths of operators in sa(𝐻) and let  =
{
𝜆

}
𝜆∈𝐼

be gap-
continuous and such that𝜆 and′𝜆 are𝜆-compact for any 𝜆 ∈ 𝐼. If

′
0
≥ 0, 1 ≥ ′

1
,

then

sf ( +) ≥ sf ( +′).

Proof. We define a homotopy ℎ ∶ 𝐼 × 𝐼 → 
sa
(𝐻) by ℎ(𝑠, 𝜆) = 𝜆 + (1 − 𝑠)𝐾𝜆 + 𝑠𝐾

′
𝜆
and note that ℎ is continuous by

Theorem 3.7. It follows from Theorem 3.2 that

sf ( +) = sf (ℎ(⋅, 0)) + sf ( +′) − sf (ℎ(⋅, 1)),

and so the theorem is proved if we show that

sf (ℎ(⋅, 0)) ≥ 0 and sf (ℎ(⋅, 1)) ≤ 0. (3.8)

To show (3.8), we need to recall a method for computing the spectral flow that was introduced by Robbin and Salamon
in [19] and generalised in [22] to the setting that is needed here. Assume that 𝑊 ⊂ 𝐻 is a dense subset which is also a
Hilbert space in its own right with a continuous embedding𝑊 ↪ 𝐻. Let  =

{
𝜆

}
𝜆∈𝐼

be a path in the normed space of
bounded operators(𝑊,𝐻), which we assume to be continuously differentiable with respect to the operator norm on the
latter space. We also assume that each 𝜆 is selfadjoint and Fredholm when considered as operator on 𝐻 with the dense
domain 

(
𝜆

)
= 𝑊. It follows from [15, Prop. 2.2] that  is gap-continuous and thus the spectral flow of  is defined.

A parameter value 𝜆∗ is called a crossing of  if ker𝜆∗ ≠ {0}, and the crossing form of a crossing is the quadratic form
defined by

Γ(, 𝜆∗)[𝑢] = ⟨̇𝜆∗𝑢, 𝑢⟩, 𝑢 ∈ ker𝜆∗ ,

where ̇𝜆∗ denotes the derivative of the path  at 𝜆 = 𝜆∗. A crossing is called regular if Γ(, 𝜆∗) is non-degenerate. It was
shown in [22] that, if  has only regular crossings, then there are only finitely many of them, and the spectral flow of  is
given by

−𝑚−(Γ(, 0)) +
∑
𝜆∈(0,1)

sgn(Γ(, 𝜆)) + 𝑚−(−Γ(, 1)) (3.9)

where 𝑚− denotes the Morse index and sgn the signature of a quadratic form. Moreover, there is 𝜀 > 0 such that the
perturbed path 𝛿 ∶=

{
𝜆 + 𝛿𝐼𝐻

}
𝜆∈𝐼

has only regular crossings for almost every |𝛿| < 𝜀. Finally, it is not difficult to see
that sf () = sf

(
𝛿

)
for any sufficiently small 𝛿 > 0 (see Corollary 3.4 and (N) in Section 4.2).

We now use crossing forms to show (3.8). Let us first note that ℎ(⋅, 0) and ℎ(⋅, 1) are both differentiable paths of selfad-
joint Fredholm operators as above, where the spaces𝑊 are 

(
0

)
and 

(
1

)
with the graph norms of these operators.

Therefore we can use (3.9) to compute their spectral flows. Let us consider ℎ(⋅, 0) first. As explained above, we can perturb
ℎ to obtain a path ℎ𝛿(⋅, 0) which has the same spectral flow and only regular crossings. If 𝑠∗ is a crossing of ℎ𝛿(⋅, 0), then
the crossing form is

Γ
(
ℎ𝛿(⋅, 0), 𝑠∗

)
[𝑢] =

⟨(
′
0
−0

)
𝑢, 𝑢

⟩
, 𝑢 ∈ ker

(
ℎ𝛿(𝑠∗, 0)

)
,

which is non-negative by assumption, and thus positive definite as it is non-degenerate. Hence it follows from (3.9) that
sf (ℎ(⋅, 0)) = sf

(
ℎ𝛿(⋅, 0)

)
≥ 0. For ℎ(⋅, 1) we use the same perturbation method and obtain from

Γ
(
ℎ𝛿(⋅, 1), 𝑠∗

)
[𝑢] =

⟨(
′
1
−1

)
𝑢, 𝑢

⟩
, 𝑢 ∈ ker

(
ℎ𝛿(𝑠∗, 1)

)
,
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that Γ
(
ℎ𝛿(⋅, 1), 𝑠∗

)
is negative definite at every crossing 𝑠∗. Hence it follows from (3.9) that sf (ℎ(⋅, 1)) = sf

(
ℎ𝛿(⋅, 1)

)
≤ 0,

and so the theorem is shown. □

3.3 Application: estimating the spectral flow for Hamiltonian systems

The aim of this section is to apply the comparison theorem to boundary value problems of linear Hamiltonian systems of
the form {

𝐽𝑢′(𝑡) + 𝑆𝜆(𝑡)𝑢(𝑡) = 0, 𝑡 ∈ 𝐼,

𝑢(0) ∈ Λ1(𝜆), 𝑢(1) ∈ Λ2(𝜆),
(3.10)

where

𝐽 =

(
0 −𝐼𝑛
𝐼𝑛 0

)
(3.11)

is the standard symplectic matrix,
{
𝑆𝜆(𝑡)

}
(𝜆,𝑡)∈𝐼×𝐼

is a family of symmetric 2𝑛 × 2𝑛 matrices and Λ1, Λ2 are paths of
Lagrangian subspaces of ℝ2𝑛. Let us recall that a subspace 𝐿 ⊂ ℝ2𝑛 is called Lagrangian if 𝐽𝐿 = 𝐿⟂, where the latter
denotes the orthogonal complement with respect to the standard scalar product on ℝ2𝑛. The set of all Lagrangian sub-
spaces of ℝ2𝑛 is a 1

2
𝑛(𝑛 + 1)-dimensional submanifold of the Grassmannian 𝐺𝑛

(
ℝ2𝑛

)
of all 𝑛-dimensional subspaces of

ℝ2𝑛. Roughly speaking, theMaslov index 𝜇𝑀𝑎𝑠
(
Λ1, Λ2

)
of a pair of paths

(
Λ1, Λ2

)
∶ 𝐼 → Λ(𝑛) × Λ(𝑛) is an integer-valued

relative homotopy invariant that counts the dimensions of non-trivial intersections ofΛ1(𝜆) andΛ2(𝜆)whilst the parame-
ter 𝜆 travels along the unit interval. As this invariant has been studied in numerous references, we will not provide further
details and refer to [6] and [12]. Let us note, however, that there are different non-equivalent approaches to the Maslov
index and here we will always consider 𝜇𝑀𝑎𝑠

(
Λ1, Λ2

)
as constructed in the previous references.

In what follows we write 𝑆𝜆 ≥ 0 if ⟨𝑆𝜆(𝑡)𝑢, 𝑢⟩ ≥ 0 and 𝑆𝜆 ≤ 0 if ⟨𝑆𝜆(𝑡)𝑢, 𝑢⟩ ≤ 0 for all 𝑢 ∈ ℝ2𝑛 and all 𝑡 ∈ 𝐼. The aim of
this section is to prove the following theorem.

Theorem 3.10. If either

(i) 𝜇𝑀𝑎𝑠
(
Λ1, Λ2

)
> 0, 𝑆0 ≤ 0 and 𝑆1 ≥ 0, or

(ii) 𝜇𝑀𝑎𝑠
(
Λ1, Λ2

)
< 0, 𝑆0 ≥ 0 and 𝑆1 ≤ 0,

then there are at least ⌈|𝜇𝑀𝑎𝑠(Λ1, Λ2)|
𝑛

⌉
parameter values 𝜆 for which (3.10) has a non-trivial solution.

We will obtain Theorem 3.10 from Theorem 3.9 in the remainder of this section. Let us consider on𝐻 = 𝐿2
(
𝐼, ℝ2𝑛

)
the

differential operators

𝜆𝑢 = 𝐽𝑢
′

on the domains

(𝜆) =
{
𝑢 ∈ 𝐻1

(
𝐼, ℝ2𝑛

)
∶ 𝑢(0) ∈ Λ1(𝜆), 𝑢(1) ∈ Λ2(𝜆)

}
.

It is well known that 𝜆 are selfadjoint Fredholm operators (see, e.g., [6]). Moreover, the path  =
{
𝜆

}
𝜆∈𝐼

is gap-
continuous by [12, Thm. 1.1]. As the embedding 𝐻1

(
𝐼, ℝ2𝑛

)
↪ 𝐿2

(
𝐼, ℝ2𝑛

)
is compact by Rellich’s Theorem, it follows
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that the multiplication operators (
𝜆𝑢

)
(𝑡) = 𝑆𝜆(𝑡)𝑢(𝑡)

define a path of operators in sa(𝐻) such that 𝜆 is 𝜆-compact. Hence the spectral flow of  + is defined.
Note that a non-vanishing spectral flow of  + implies that there is some 𝜆 ∈ 𝐼 for which (3.10) has a non-trivial
solution.
It was shown by Cappell, Lee and Miller in [6] (see also [12, Thm. 1.1]) that

sf () = 𝜇𝑀𝑎𝑠
(
Λ1, Λ2

)
.

As either 0 ≥ 0, 1 ≤ 0 and 𝜇𝑀𝑎𝑠
(
Λ1, Λ2

)
< 0, or 0 ≤ 0, 1 ≥ 0 and 𝜇𝑀𝑎𝑠

(
Λ1, Λ2

)
> 0 by the assumption of Theo-

rem 3.10, it follows from Theorem 3.9 that

| sf ( +)| ≥ | sf ()| = ||𝜇𝑀𝑎𝑠(Λ1, Λ2)||. (3.12)

To finish the proof of Theorem 3.10, we need the following lemma about the spectral flow.

Lemma 3.11. If 𝜆 = 𝜆∗ ∈ (0, 1) is the only parameter 𝜆 for which ker
(
𝜆 +𝜆

)
≠ {0}, then

| sf ( +)| ≤ dimker(𝜆∗ +𝜆∗
)
.

Proof. Let 𝜀 > 0 and 𝛿 > 0 be such that

dim im𝜒[−𝜀,𝜀]
(
𝜆 +𝜆

)
= dimker

(
𝜆∗ +𝜆∗

)
, |𝜆 − 𝜆∗| ≤ 𝛿.

Then by (C), (Z) and the definition of the spectral flow (2.2)

| sf ( +)| = |||sf( + ∣[𝜆∗−𝛿,𝜆∗+𝛿]
)|||

=
|||dim im𝜒[0,𝜀](𝜆∗+𝛿 +𝜆∗+𝛿

)
− dim im𝜒[0,𝜀]

(
𝜆∗−𝛿 +𝜆∗−𝛿

)|||
≤ max

{
dim im𝜒[0,𝜀]

(
𝜆∗+𝛿 +𝜆∗+𝛿

)
, dim im𝜒[0,𝜀]

(
𝜆∗−𝛿 +𝜆∗−𝛿

)}
≤ max

{
dim im𝜒[−𝜀,𝜀]

(
𝜆∗+𝛿 +𝜆∗+𝛿

)
, dim im𝜒[−𝜀,𝜀]

(
𝜆∗−𝛿 +𝜆∗−𝛿

)}
= dimker

(
𝜆∗ +𝜆∗

)
,

where we have used that |𝑎 − 𝑏| ≤ max{𝑎, 𝑏} if 𝑎, 𝑏 ≥ 0. □

To prove Theorem 3.10, we can assume that there are only finitely many 0 ≤ 𝜆1 < … < 𝜆𝑁 ≤ 1 such that
ker

(
𝜆𝑖 +𝜆𝑖

)
≠ {0}. Let 𝜀 > 0 be sufficiently small such that 𝜆𝑖 is the only of these values in the interval

𝐼𝑖 ∶=
[
𝜆𝑖 − 𝜀, 𝜆𝑖 + 𝜀

]
∩ 𝐼 for 𝑖 = 1, … ,𝑁. It follows from (C) that

sf ( +) =

𝑁∑
𝑖=1

sf
(
 + ∣𝐼𝑖

)
,

and consequently by Lemma 3.11

| sf ( +)| ≤ 𝑁∑
𝑖=1

|||sf( + ∣𝐼𝑖
)||| ≤ 𝑁∑

𝑖=1

dimker
(
𝜆𝑖 +𝜆𝑖

)
.
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Now ker
(
𝜆 +𝜆

)
is the space of solutions of (3.10) and this space has at most dimension 𝑛 under the given boundary

conditions. Hence

| sf ( +)| ≤ 𝑁∑
𝑖=1

dimker
(
𝜆𝑖 +𝜆𝑖

)
≤ 𝑁𝑛,

or, in other words,

𝑁 ≥
| sf ( +)|

𝑛
≥

|||𝜇𝑀𝑎𝑠(Λ1, Λ2)|||
𝑛

,

where we have used (3.12). As 𝑁 is the number of parameter values 𝜆 for which ker
(
𝜆 +𝜆

)
≠ {0}, this shows Theo-

rem 3.10.

4 ON THE UNIQUENESS OF THE SPECTRAL FLOW

4.1 The uniqueness for admissible paths

In this section we recall Lesch’s uniqueness theorem for the spectral flow from [15]. Let 𝐻 be an infinite dimensional
separable complex Hilbert space and denote by  sa(𝐻) the set of all bounded selfadjoint Fredholm operators on𝐻 with
the norm topology. Atiyah and Singer showed in [2] that  sa(𝐻) consists of three path-components


sa
(𝐻) = 

sa
+ (𝐻) ∪ 

sa
− (𝐻) ∪ 

sa
∗ (𝐻).

An operator 𝑇 ∈ 
sa
(𝐻) is in 

sa
± (𝐻) if its essential spectrum is contained in the positive or the negative half-line,

respectively. The complement of these sets, above denoted by sa∗ (𝐻), are those operators which have positive and nega-
tive essential spectrum. The two components sa± (𝐻) are topologically trivial, whereas

sa
∗ (𝐻) is a classifying space for

the odd 𝐾-theory functor. Hence any homotopy invariant for paths on 
sa
± (𝐻) can only depend on the endpoints of the

paths. On the other hand, sa∗ (𝐻) has an infinitely cyclic fundamental group and Atiyah, Patodi and Singer constructed
in [1] the spectral flow as an isomorphism between 𝜋1(

sa
∗ (𝐻)) and the integers. Later Phillips gave in [18] an analytic

definition for general non-closed paths in sa∗ (𝐻) by using the formula (2.2) that was later generalised to gap-continuous
paths in [5].
There is a straightforward way to extend the definition of the spectral flow from bounded to unbounded operators by

using the Riesz transform

𝐹 ∶ 
sa
(𝐻) → 

sa
(𝐻), 𝐹(𝑇) = 𝑇

(
𝐼𝐻 + 𝑇

2
)−1
2 . (4.1)

If we require that 𝐹 is an isometric embedding, then we obtain a metric 𝑑𝑅 on 
sa
(𝐻) which is called the Riesz metric.

Now every path that is continuous with respect to this metric has a spectral flow defined by the spectral flow of the Riesz
transformof the path. It was shown byNicolaescu in [16] that the topology induced by the gap-metric 𝑑𝐺 is weaker than the
one induced by the Riesz-metric 𝑑𝑅. Lesch proved in [15, Thm. 5.10] that the natural inclusion

sa
(𝐻) ↪

(

sa
(𝐻), 𝑑𝑅

)
is a homotopy equivalence. Hence

(

sa
(𝐻), 𝑑𝑅

)
consists of three path components(


sa
(𝐻), 𝑑𝑅

)
= 

sa
+ (𝐻) ∪ 

sa
(𝐻)− ∪ 

sa
(𝐻)∗ (4.2)

of which 
sa
(𝐻)± are topologically trivial whereas 

sa
∗ (𝐻) has an infinitely cyclic fundamental group.

In the previous sections we only considered 
sa
(𝐻) with the gap metric 𝑑𝐺 . As this metric is weaker than 𝑑𝑅, we

see that it is a weaker assumption to require that a path is continuous with respect to 𝑑𝐺 . Lesch proved in [15, Prop.
5.8] the remarkable result that

(

sa
(𝐻), 𝑑𝐺

)
is path-connected, and so there is no division into paths components as in

(4.2). Joachim showed in [13] that the whole space
(

sa
(𝐻), 𝑑𝐺

)
is a classifying space for the odd K-theory functor. In

particular, the fundamental group 𝜋1
(

sa
(𝐻)

)
is infinitely cyclic.
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Let now 𝐺sa(𝐻) denote the set of all invertible elements of sa(𝐻), and 𝐺𝐬𝐚(𝐻) be the set of all invertible elements
of sa(𝐻). In what follows we want to treat all the above topologically non-trivial operator sets simultanously. Therefore,
we let the topological space pair (𝑋, 𝑌) be either

(

sa
(𝐻), 𝐺sa(𝐻)

)
with the gap topology, or

(

sa
∗ (𝐻), 𝐺

sa(𝐻) ∩


sa
∗ (𝐻)

)
with the Riesz topology, or

(


sa
∗ (𝐻), 𝐺

sa(𝐻) ∩ 
sa
∗ (𝐻)

)
with the norm topology. We first note for later

reference the following important theorem.

Theorem 4.1. The set 𝑌 is path-connected.

Proof. Thiswas proved in [15, Prop. 5.8] for𝐺sa(𝐻)with the gap topology, and it is an easy exercise for𝐺sa(𝐻) ∩  sa∗ (𝐻)
with the norm topology. The remaining case then follows from the already mentioned fact that the inclusion 

sa
(𝐻) ↪(


sa
(𝐻), 𝑑𝑅

)
is a homotopy equivalence [15, Thm. 5.10]. □

In what follows Ω(𝑋) stands for the set of all paths in 𝑋 and Ω(𝑋,𝑌) denotes the set of those elements in Ω(𝑋) which
have endpoints in 𝑌. We will below consider maps 𝜇 ∶ Ω(𝑋) → ℤ or 𝜇 ∶ Ω(𝑋,𝑌) → ℤ with the following properties:

(Z) If =
{
𝜆

}
𝜆∈𝐼
∈ Ω(𝑋) is such that𝜆 ∈ 𝑌 for all 𝜆 ∈ 𝐼, then 𝜇() = 0.

(C) If1 and2 are in Ω(𝑋) such that1
1
= 2

0
, then

𝜇
(
1 ∗ 2

)
= 𝜇

(
1

)
+ 𝜇

(
2

)
.

(H) Let ℎ ∶ 𝐼 × 𝐼 → 𝑋 be a homotopy of selfadjoint Fredholm operators such that ℎ(𝜆, 0) and ℎ(𝜆, 1) are constant for all
𝜆 ∈ 𝐼. Then

𝜇(ℎ(0, ⋅)) = 𝜇(ℎ(1, ⋅)).

(HI) Let ℎ ∶ 𝐼 × 𝐼 → 𝑋 be a homotopy of selfadjoint Fredholm operators such that ℎ(𝜆, 0), ℎ(𝜆, 1) ∈ 𝑌 for all 𝜆 ∈ 𝐼. Then

𝜇(ℎ(0, ⋅)) = 𝜇(ℎ(1, ⋅)).

Note that we have seen in Section 2.1 and Section 3.1 that the spectral flow has all these properties. Before we state
Lesch’s Theorem, let us introduce a further property.

(NP) There is a bounded selfadjoint operator 𝑇0 such that 𝜎(𝑇0) = 𝜎𝑒𝑠𝑠
(
𝑇0

)
= {−1, 1}, and a rank one orthogonal projec-

tion 𝑃 such that (𝐼 − 𝑃)𝑇0(𝐼 − 𝑃) ∶ ker(𝑃) → ker(𝑃) is invertible and

𝜇
(
𝑁𝑃

)
= 1,

where𝑁𝑃
𝜆
=
(
𝜆 −

1

2

)
𝑃 + (𝐼 − 𝑃)𝑇0(𝐼 − 𝑃) ∶ 𝐻 → 𝐻.

Note that (NP) is satisfied by the spectral fow. Indeed, we let 𝑃+, 𝑃− and 𝑃0 be three complementary orthogonal pro-
jections such that 𝑃+ and 𝑃− have infinite dimensional kernel and image, dim(im𝑃0) = 1 as well as 𝑃+ + 𝑃− + 𝑃0 = 𝐼𝐻 .
Then we have for 𝑇0 = 𝑃0 + 𝑃+ − 𝑃− and 𝑃 = 𝑃0(

𝜆 −
1

2

)
𝑃 + (𝐼 − 𝑃)𝑇0(𝐼 − 𝑃) =

(
𝜆 −
1

2

)
𝑃0 + 𝑃+ − 𝑃−,

and it is readily seen from (2.2) that this path has a spectral flow of 1.
Now Lesch’s Uniqueness Theorem reads as follows.

Theorem 4.2. Every map

𝜇 ∶ Ω(𝑋,𝑌) → ℤ

that satisfies (C), (HI) and (NP) is the spectral flow (2.2).
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Let us finally mention that Ciriza, Fitzpatrick and Pejsachowicz obtained in [7] a uniqueness theorem for the spectral
flow on all of sa(𝐻), where as in Theorem 4.2 only paths with invertible endpoints were considered. They used instead
of the concatenation a direct sum axiom and showed that every path in 

sa
(𝐻) is homotopic to the direct sum of a path

on a finite dimensional subspace of 𝐻 and a path having vanishing spectral flow. As normalisation they required that
the spectral flow on a finite dimensional Hilbert space is given by the difference of the number of negative eigenvalues
at the endpoints of a path. The reader can easily check that this is in accordance with (2.2). More general, this is even
true for paths in 

sa
+ (𝐻), which was shown in [8] by a different approach to the spectral flow and under the additional

assumption that the endpoints of the paths are invertible. Our final aim of this section is to show that this can also be
obtained directly from (2.2) and without the invertibility of the endpoints.

Lemma 4.3. For ∶ 𝐼 → 
sa
+ (𝐻),

sf () = 𝜇𝑀𝑜𝑟𝑠𝑒
(
0

)
− 𝜇𝑀𝑜𝑟𝑠𝑒

(
1

)
, (4.3)

where 𝜇𝑀𝑜𝑟𝑠𝑒
(
𝜆

)
∶= dim𝜒(−∞,0)

(
𝜆

)
is theMorse Index of𝜆.

Proof. The proof falls into three steps. Let us firstly assume that there is [𝑐, 𝑑] ⊂ 𝐼 and some 𝑎 > 0 such that ±𝑎 ∉ 𝜎
(
𝐿𝜆

)
and such that there is no essential spectrum in [−𝑎, 𝑎] ∩ 𝜎

(
𝐿𝜆

)
for all 𝜆 ∈ [𝑐, 𝑑]. Then 𝜒[−𝑎,𝑎]

(
𝑑

)
and 𝜒[−𝑎,𝑎]

(
𝑐

)
are of

the same rank by the continuity of isolated parts of spectra [11, Thm.I.4.2]. Consequently,

0 = dim
(
im

(
𝜒[−𝑎,𝑎]

(
𝑐

)))
− dim

(
im

(
𝜒[−𝑎,𝑎]

(
𝑑

)))
= dim

(
im

(
𝜒[0,𝑎]

(
𝑐

)))
+ dim

(
im

(
𝜒[−𝑎,0)

(
𝑐

)))
− dim

(
im

(
𝜒[0,𝑎]

(
𝑑

)))
− dim

(
im

(
𝜒[−𝑎,0)

(
𝑑

)))
which means that

dim
(
im

(
𝜒[0,𝑎]

(
𝑑

)))
− dim

(
im

(
𝜒[0,𝑎]

(
𝑐

)))
= dim

(
im

(
𝜒[−𝑎,0)

(
𝑐

)))
− dim

(
im

(
𝜒[−𝑎,0)

(
𝑑

)))
. (4.4)

Secondly, as 𝜇𝑀𝑜𝑟𝑠𝑒
(
𝜆

)
< ∞ for all 𝜆 ∈ [𝑐, 𝑑], there exists𝑚 ≥ 𝑎 > 0 such that

(−∞,−𝑚] ∩ 𝜎
(
𝜆

)
= ∅. (4.5)

As −𝑎 ∉ 𝜎
(
𝜆

)
and (−∞, 0) ∩ 𝜎𝑒𝑠𝑠

(
𝜆

)
= ∅ for all 𝜆 ∈ [𝑐, 𝑑], 𝜒[−𝑚,−𝑎]

(
𝑑

)
and and 𝜒[−𝑚,−𝑎]

(
𝑐

)
are of the same rank,

where we once again use [11, Thm.I.4.2]. Hence it follows from (4.4) that

dim
(
im

(
𝜒[0,𝑎]

(
𝑑

)))
− dim

(
im

(
𝜒[0,𝑎]

(
𝑐

)))
=dim

(
im

(
𝜒[−𝑎,0)

(
𝑐

)))
− dim

(
im

(
𝜒[−𝑎,0)

(
𝑑

)))
+ dim

(
im

(
𝜒[−𝑚,−𝑎]

(
𝑐

)))
− dim

(
im

(
𝜒[−𝑚,−𝑎]

(
𝑑

)))
=dim

(
im

(
𝜒[−𝑚,0)

(
𝑐

)))
− dim

(
im

(
𝜒[−𝑚,0)

(
𝑑

)))
=𝜇𝑀𝑜𝑟𝑠𝑒

(
𝑐

)
− 𝜇𝑀𝑜𝑟𝑠𝑒

(
𝑑

)
,

where we have used (4.5) in the final step.
Finally, we consider a partition 0 = 𝜆0 < … < 𝜆𝑁 = 1 of 𝐼 and numbers 𝑎𝑖 > 0, 𝑖 = 1, … ,𝑁, as in (2.2). We obtain

sf () =

𝑁∑
𝑖=1

(
dim

(
im

(
𝜒[0,𝑎𝑖]

(
𝜆𝑖

)))
− dim

(
im

(
𝜒[0,𝑎𝑖]

(
𝜆𝑖−1

))))

=

𝑁∑
𝑖=1

(
𝜇𝑀𝑜𝑟𝑠𝑒

(
𝜆𝑖−1

)
− 𝜇𝑀𝑜𝑟𝑠𝑒

(
𝜆𝑖

))
= 𝜇𝑀𝑜𝑟𝑠𝑒

(
0

)
− 𝜇𝑀𝑜𝑟𝑠𝑒

(
1

)
,

where we have used that the last sum is telescoping. □
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4.2 The uniqueness theorem

The aim of this section is to show the uniqueness of the spectral flow on the bigger set Ω(𝑋) of all paths in 𝑋. In our
uniqueness theorem, we will need the following normalisation property. Let us recall that 0 is either in the resolvent set
of a selfadjoint Fredholm operator or it is an isolated eigenvalue of finite multiplicity.

(N) Let 𝑇 ∈ 𝑋 and set 𝛿(𝑇) = 1
2
min{|𝜆| ∶ 0 ≠ 𝜆 ∈ 𝜎(𝑇)}. Consider the path

0𝑡 = 𝑇 + 𝑡𝐼𝐻, 𝑡 ∈ [−𝛿(𝑇), 𝛿(𝑇)].

Then

𝜇(0) = dimker(𝑇), 𝜇
(
0 ∣[0,𝛿(𝑇)]

)
= 0.

Note that (N) holds for the spectral flow, which follows immediately from the definition (2.2). The following theorem
is our main result of this section.

Theorem 4.4. Let 𝜇 ∶ Ω(𝑋) → ℤ be a map such that (C), (H), (Z) and (N) hold. Then

𝜇() = sf (),  ∈ Ω(𝑋).

Proof. Let 𝑇 ∈ 𝑋 be an operator having a one-dimensional kernel and let0 be the corresponding path in (N). To simplify
notation, we set 𝑇0 ∶= 0

−𝛿(𝑇)
= 𝑇 − 𝛿(𝑇)𝐼𝐻 .

By (C) and (H) it is clear that 𝜇 and sf induce homomorphisms

𝜇, sf ∶ 𝜋1
(
𝑋, 𝑇0

)
→ ℤ. (4.6)

Let us recall from the previous section that the fundamental group 𝜋1
(
𝑋, 𝑇0

)
is infinitely cyclic. By Theorem 4.1, there is

a path 1 in 𝑌 connecting 0
𝛿(𝑇)

to 𝑇0. Now the concatenation 0 ∗ 1 is an element in 𝜋1
(
𝑋, 𝑇0

)
and we obtain from

(C) and (Z)

𝜇
(
0 ∗ 1

)
= 𝜇

(
0

)
+ 𝜇

(
1

)
= 𝜇

(
0

)
= dimker(𝑇)

= sf
(
0

)
+ sf

(
1

)
= sf

(
0 ∗ 1

)
.

As dimker(𝑇) = 1, this firstly shows that 0 ∗ 1 is a generator of the infinitely cyclic group 𝜋1
(
𝑋, 𝑇0

)
, and secondly

that 𝜇 and sf have the same value on it. Hence the maps in (4.6) coincide.
Let now ∈ Ω(𝑋) be an arbitrary path in 𝑋. Let us first consider the endpoints0 and1. We set

𝑡 = 0 + 𝑡𝐼𝐻, 𝑡 ∈
[
−𝛿

(
0

)
, 0
]
, 𝑡 = 1 + 𝑡𝐼𝐻, 𝑡 ∈

[
0, 𝛿

(
1

)]
.

It follows from (N) that sf () = 𝜇() = 0, and by using (N) and (C), that sf () = 𝜇() = dimker
(
0

)
.

Let now1 be a path in 𝑌 connecting 𝑇0 to the initial point of  and let2 be another path of this type connecting the
endpoint of  to 𝑇0. It follows from the first part of our proof, (C) and (Z) that

𝜇() = 𝜇( ∗  ∗ ) − dimker
(
0

)
= 𝜇

(
1 ∗  ∗  ∗  ∗ 2

)
− dimker

(
0

)
= sf

(
1 ∗  ∗  ∗  ∗ 2

)
− dimker

(
0

)
= sf( ∗  ∗ ) − dimker

(
0

)
= sf(),

and so the claim is shown. □
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The reader may have noticed that, apart from a different normalisation property, we have replaced (HI) in Lesch’s
Theorem by (H) and (Z). The following lemma shows that the normalisation property actually is the only difference in
the assumptions of the theorems.

Lemma 4.5. If 𝜇 ∶ Ω(𝑋) → ℤ is a map such that (C) and (N) hold, then (HI) is satisfied if and only if (H) and (Z) hold.

Proof. We below use without further reference that if ∈ Ω(𝑋) is a constant path, then by (C)

𝜇() = 𝜇( ∗ ) = 𝜇() + 𝜇(),

showing that 𝜇() = 0.
Let us first assume that (HI) is satisfied and let be a path of invertible operators. Then 𝜇() = 𝜇

(
𝐴
)
, where 𝐴𝑡 = 0

for all 𝑡 ∈ 𝐼. Hence 𝜇() = 0 and (Z) is satisfied. Let now ℎ ∶ 𝐼 × 𝐼 → 𝑋 be a homotopy such that ℎ(𝑠, 0) and ℎ(𝑠, 1) are
constant. By (N), we can concatenate ℎ(𝑠, 0)with a path and ℎ(𝑠, 1)with a path such that ∗ ℎ(𝑠, ⋅) ∗  has invertible
endpoints for all 𝑠 and

𝜇() = dimker ℎ(𝑠, 0), 𝜇() = 0.

Hence by (HI) and (C)

𝜇(ℎ(0, ⋅)) = 𝜇( ∗ ℎ(0, ⋅) ∗ ) − dimker(ℎ(𝑠, 0)) = 𝜇( ∗ ℎ(1, ⋅) ∗ ) − dimker(ℎ(𝑠, 0)) = 𝜇(ℎ(1, ⋅)),

which shows (H).
For the converse, let us first note that 𝜇() = −𝜇(′), where ′ denotes the reverse path. Indeed, this follows as

 ∗ ′ is homotopic to a constant path by a homotopy with fixed endpoints. Then (C) implies that 0 = 𝜇( ∗ ′) =
𝜇() + 𝜇(′). Let now ℎ ∶ 𝐼 × 𝐼 → 𝑋 be a homotopy such that ℎ(𝑠, 0), ℎ(𝑠, 1) ∈ 𝑌 for all 𝑠 ∈ 𝐼. As ℎ(0, ⋅) ∗ ℎ(⋅, 1) ∗
ℎ(1, ⋅)′ ∗ ℎ(⋅, 0)′ is homotopic to a constant path by a homotopy with fixed endpoints, we obtain from (H), (C) and (Z)

0 = 𝜇
(
ℎ(0, ⋅) ∗ ℎ(⋅, 1) ∗ ℎ(1, ⋅)′ ∗ ℎ(⋅, 0)′

)
= 𝜇

(
ℎ(0, ⋅)) + 𝜇(ℎ(⋅, 1)) + 𝜇(ℎ(1, ⋅)′

)
+ 𝜇

(
ℎ(⋅, 0)′

)
= 𝜇

(
ℎ(0, ⋅)) + 𝜇(ℎ(1, ⋅)′

)
= 𝜇(ℎ(0, ⋅)) − 𝜇(ℎ(1, ⋅))

which shows (HI). □

4.3 Application: spectral flow andMaslov index

4.3.1 The Maslov index in symplectic Hilbert spaces

We begin this section by giving a brief introduction into symplectic Hilbert spaces, where we refer for further details to
Furutani’s review [10].
In this section we let 𝐸 be a real separable Hilbert space with scalar product ⟨⋅, ⋅⟩𝐸 , and we assume that there is a

bounded linear operator 𝐽 ∶ 𝐸 → 𝐸 such that 𝐽2 = −𝐼𝐸 and 𝐽∗ = −𝐽, where 𝐽∗ denotes the adjoint of 𝐽. We call the pair
(𝐸, 𝐽) a symplectic Hilbert space and we set 𝜔0(𝑢, 𝑣) = ⟨𝐽𝑢, 𝑣⟩𝐸 , 𝑢, 𝑣 ∈ 𝐸, which is a non-degenerate skew-symmetric
bounded bilinear form. A subspace 𝐿 ⊂ 𝐸 is called Lagrangian if 𝐿⟂ = 𝐽𝐿, where 𝐿⟂ denotes the orthogonal complement
of 𝐿 with respect to the scalar product on 𝐸. The set Λ(𝐸) of all Lagrangian subspaces in 𝐸 is a smooth Banach manifold.
Note that every Lagrangian subspace is closed and so there is a unique orthogonal projection 𝑃𝐿 ∶ 𝐸 → 𝐸 onto 𝐿. The
topology of 𝐸 is also induced by the metric

𝑑
(
𝐿1, 𝐿2

)
=
‖‖‖𝑃𝐿1 − 𝑃𝐿2‖‖‖(𝐻×𝐻), 𝐿1, 𝐿2 ∈ Λ(𝐸).

Let us recall that the idea of the Maslov index for paths of Lagrangian subspaces of ℝ2𝑛 is to count the dimensions of
their intersections. Note that this obviously cannot be done in the above setting as here the intersection of two Lagrangian
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subspaces can be of infinite dimension. Two closed subspaces 𝐿1, 𝐿2 ⊂ 𝐸 are called a Fredholm pair if

dim
(
𝐿1 ∩ 𝐿2

)
< ∞ and codim

(
𝐿1 + 𝐿2

)
< ∞.

It is often required in addition that 𝐿1 + 𝐿2 is closed which, however, is redundant as explained, e.g., in [4]. We now fix a
Lagrangian subspace Λ0 ∈ Λ(𝐸) and set

𝐿0(𝐸) =
{
𝐿 ∈ Λ(𝐸) ∶

(
𝐿, 𝐿0

)
Fredholm

}
.

It was shown by Booss-Bavnbek and Furutani in [3] that there is a Maslov index 𝜇𝑀𝑎𝑠
(
Λ, 𝐿0

)
for paths Λ = {Λ(𝜆)}𝜆∈𝐼 in

𝐿0(𝐸)which has the interpretation that it counts the dimensions of intersections of Λ(𝜆) and 𝐿0 whilst 𝜆 travels alomg
the interval 𝐼. Moreover, the Maslov index has the following properties (see [10]):

(i) If Λ(𝜆) ∩ 𝐿0 = {0} for all 𝜆 ∈ 𝐼, then 𝜇𝑀𝑎𝑠
(
Λ, 𝐿0

)
= 0.

(ii) The Maslov index is additive under the concatenation of paths, i.e.

𝜇𝑀𝑎𝑠
(
Λ1 ∗ Λ2, 𝐿0

)
= 𝜇𝑀𝑎𝑠

(
Λ1, 𝐿0

)
+ 𝜇𝑀𝑎𝑠

(
Λ2, 𝐿0

)
if Λ1, Λ2 ∶ 𝐼 → 𝐿0(𝐸) are two paths such that Λ1(1) = Λ2(0).

(iii) If Λ ∶ 𝐼 × 𝐼 → 𝐿0(𝐸) is a homotopy such that Λ(𝑠, 0) and Λ(𝑠, 1) are constant for all 𝑠 ∈ 𝐼, then

𝜇𝑀𝑎𝑠
(
Λ(0, ⋅), 𝐿0

)
= 𝜇𝑀𝑎𝑠

(
Λ(1, ⋅), 𝐿0

)
.

Finally, let us recall from [10, §3.4] that the Maslov index for differentiable paths Λ = {Λ(𝜆)}𝜆∈𝐼 in 𝐿0(𝐸) can easily be
computed in cases when there is only one single parameter value 𝜆0 for which Λ

(
𝜆0
)
∩ 𝐿0 ≠ {0}. Let 𝐿 ∈ Λ(𝐸) be such

that 𝐿 ∩ Λ
(
𝜆0
)
= {0}. Then Λ(𝜆) ∩ 𝐿 = {0} for all 𝜆 which are sufficiently close to 𝜆0 and there is a differentiable path of

bounded linear operators 𝜙𝜆 ∶ Λ
(
𝜆0
)
→ 𝐿 such that

Λ(𝜆) =
{
𝑢 + 𝜙𝜆(𝑢) ∶ 𝑢 ∈ Λ

(
𝜆0
)}
.

The Maslov index of Λ is given by the signature of

 ∶ Λ
(
𝜆0
)
∩ 𝐿0 → ℝ, [𝑢] =

𝑑

𝑑𝜆
∣𝜆=𝜆0 𝜔

(
𝑢, 𝜙𝜆(𝑢)

)
(4.7)

if this quadratic form is non-degenerate. Moreover, if (4.7) is positive definite, then

𝜇𝑀𝑎𝑠
(
Λ ∣[0,𝜆0], 𝐿0

)
= sgn = dim

(
Λ
(
𝜆0
)
∩ 𝐿0

)
, 𝜇𝑀𝑎𝑠

(
Λ ∣[𝜆0,1], 𝐿0

)
= 0. (4.8)

4.3.2 Spectral flow via the Maslov index

Let now 𝐻 be a complex separable Hilbert space with scalar product ⟨⋅, ⋅⟩. The realification 𝐻ℝ of 𝐻 is a real Hilbert
space with scalar product ⟨⋅, ⋅⟩ℝ = Re⟨⋅, ⋅⟩. We set 𝐸 = 𝐻ℝ × 𝐻ℝ which is a symplectic Hilbert space with respect
to

𝐽 =

(
0 −𝐼𝐻ℝ
𝐼𝐻ℝ 0

)
.

Note that the norms of𝐻 and𝐻ℝ coincide, and so the topologies of 𝐸 and𝐻 ×𝐻 are the same.

Lemma 4.6. If 𝑇 ∈ sa(𝐻), then graph(𝑇) ∈ Λ(𝐸).



STAROSTKA andWATERSTRAAT 803

Proof. We have to show that 𝐽 graph(𝑇) = graph(𝑇)⟂, where the orthogonal complement is with respect to the scalar
product of 𝐸. As

𝐽 graph(𝑇) = {(−𝑇𝑢, 𝑢) ∈ 𝐻 × 𝐻 ∶ 𝑢 ∈ (𝑇)},

and

⟨(−𝑇𝑢, 𝑢), (𝑣, 𝑇𝑣)⟩𝐻×𝐻 = −⟨𝑇𝑢, 𝑣⟩ + ⟨𝑢, 𝑇𝑣⟩ = 0, 𝑢, 𝑣 ∈ (𝑇),

it follows that

⟨(−𝑇𝑢, 𝑢), (𝑣, 𝑇𝑣)⟩𝐸 = −Re(⟨𝑇𝑢, 𝑣⟩) + Re(⟨𝑢, 𝑇𝑣⟩) = 0, 𝑢, 𝑣 ∈ (𝑇),

and so 𝐽 graph(𝑇) ⊂ graph(𝑇)⟂. Conversely, if (𝑣, 𝑤) ∈ graph(𝑇)⟂, then

Re(⟨𝑣, 𝑢⟩) + Re(⟨𝑤, 𝑇𝑢⟩) = 0, 𝑢 ∈ (𝑇),

which also shows that

Im(⟨𝑣, 𝑢⟩) + Im(⟨𝑤, 𝑇𝑢⟩) = Re(⟨𝑣, 𝑖𝑢⟩) + Re(⟨𝑤, 𝑖𝑇𝑢⟩) = 0, 𝑢 ∈ (𝑇),

and so

⟨𝑣, 𝑢⟩ + ⟨𝑤, 𝑇𝑢⟩ = 0, 𝑢 ∈ (𝑇). (4.9)

Thus, 𝑢 ↦ ⟨𝑤, 𝑇𝑢⟩ is bounded on(𝑇) and so 𝑤 ∈ (𝑇∗) = (𝑇). Hence, by (4.9),

⟨𝑣 + 𝑇𝑤, 𝑢⟩ = 0, 𝑢 ∈ (𝑇),

which shows that 𝑣 = −𝑇𝑤. Consequently, (𝑣, 𝑤) = (−𝑇𝑤,𝑤) = 𝐽(𝑤, 𝑇𝑤) ∈ 𝐽 graph(𝑇). □

In what follows, we set Λ0 = 𝐻ℝ × {0} which is an element of Λ(𝐸).

Lemma 4.7. If 𝑇 ∈ 
sa
(𝐻), then graph(𝑇) ∈ Λ0(𝐸).

Proof. As graph(𝑇) ∩ Λ0 = ker(𝑇) × {0}, we see that this intersection is of finite dimension as 𝑇 is Fredholm. Moreover, if
𝑉 ⊂ 𝐻 is such that im(𝑇) ⊕ 𝑉 = 𝐻, then for any 𝑣 ∈ 𝐻, there are 𝑤 ∈ (𝑇) and 𝑣1 ∈ 𝑉 such that 𝑣 = 𝑇𝑤 + 𝑣1. Conse-
quently, if (𝑢, 𝑣) ∈ 𝐻 × 𝐻, then

(𝑢, 𝑣) = (𝑢 − 𝑤, 0) + (𝑤, 𝑇𝑤) +
(
0, 𝑣1

)
∈ ((𝐻 × {0}) + graph(𝑇)) ⊕ ({0} × 𝑉)

showing that dim𝑉 is the codimension of Λ0 + graph(𝑇), which is finite as 𝑇 is Fredholm. Hence
(
graph(𝑇), Λ0

)
is a

Fredholm pair and so the assertion is shown by the previous lemma. □

Note that if
{
𝜆

}
𝜆∈𝐼

is a gap-continuous path in sa(𝐻), then
{
graph

(
𝜆

)}
𝜆∈𝐼

is continuous inΛ(𝐸) by the definition

of the metric on the latter space. Consequently, the Maslov index of
{
graph

(
𝜆

)}
𝜆∈𝐼

with respect to Λ0 is well-defined
by Lemma 4.7. The following theorem is the main result of this section.

Theorem 4.8. For any path =
{
𝜆

}
𝜆∈𝐼

in 
sa
(𝐻),

sf () = 𝜇𝑀𝑎𝑠
({
graph

(
𝜆

)}
𝜆∈𝐼
, Λ0

)
.
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Proof. We define a map

𝜇 ∶ Ω
(

sa
(𝐻)

)
→ ℤ,

{
𝜆

}
𝜆∈𝐼
↦ 𝜇𝑀𝑎𝑠

({
graph

(
𝜆

)}
𝜆∈𝐼
, Λ0

)
and our aim is to show the properties (C), (H), (Z) and (N) in Theorem 4.4. We note at first that (C) is an immediate
consequence of (ii) from above. Moreover, (H) follows from (iii) and the fact that any gap-continuous homotopy of two
paths in  sa(𝐻) induces a continuous homotopy inΛ(𝐸) by the definition of themetric on the latter space. To see (Z), we
just need to note that the intersection graph

(
𝜆

)
∩ (𝐻 × {0}) = ker

(
𝜆

)
× {0} is isomorphic to the kernel of 𝜆. Hence

graph
(
𝜆

)
∩ (𝐻 × {0}) = {0} if ker

(
𝜆

)
= {0} and so (Z) holds by (i).

Finally, let us show (N). We set for 𝑇 ∈ 
sa
(𝐻) as in (N)0

𝜆
= 𝑇 + 𝜆𝐼𝐻 which is a path in 

sa
(𝐻). Moreover, we set

Λ(𝜆) = graph
(
0
𝜆

)
and note that {0} × 𝐻 is transversal to Λ(𝜆) for all 𝜆. Set

𝜙𝜆 ∶ graph
(
0
0

)
= graph(𝑇) → {0} × 𝐻, (𝑢, 𝑇𝑢) ↦ (0, 𝜆𝑢),

which is a path of bounded operators. Note that

graph
(
0
𝜆

)
=
{
(𝑢, 𝑇𝑢) + 𝜙𝜆(𝑢, 𝑇𝑢) ∶ 𝑢 ∈ (𝑇)

}
,

and so 𝜙𝜆 can be used to compute the Maslov index of
(
graph

(
0⋅

)
, Λ0

)
at 𝜆 = 0. The crossing form is

((𝑢, 𝑇𝑢), (𝑣, 𝑇𝑣)) =
𝑑

𝑑𝜆
∣𝜆=0 𝜔0

(
(𝑢, 𝑇𝑢), 𝜙𝜆(𝑣, 𝑇𝑣)

)
=
𝑑

𝑑𝜆
∣𝜆=0 ⟨(−𝑇𝑢, 𝑢), (0, 𝜆𝑣)⟩ = ⟨𝑢, 𝑣⟩, 𝑢, 𝑣 ∈ (𝑇).

Hence the signature of the restriction of  to

graph(𝑇) ∩ (𝐻 × {0}) = {(𝑢, 0) ∈ graph(𝑇) ∶ 𝑢 ∈ ker(𝑇)}

is the dimension of ker(𝑇), and we see from (4.8)

𝜇
(
0

)
= dimker(𝑇), 𝜇

(
 ∣[0,𝛿(𝑇)]

)
= 0,

where we use that graph
(
𝜆

)
∩ (𝐻 × {0}) = {0} for 0 < |𝜆| < 𝛿(𝑇). Hence all assumptions of Theorem 4.4 are shown and

so 𝜇() = sf () for all paths in 
sa
(𝐻). □

5 FINAL REMARKS

A different approach to the spectral flow for paths of unbounded selfadjoint Fredholm operators on a fixed domain can be
found in the comprehensive preprint [9] of Fitzpatrick, Pejsachowicz and Stuart. They use quadratic forms to transform
unbounded operators to bounded operators on their form domain and then define the spectral flow by the construction of
[8]. This opens up the use of the spectral flow in bifurcation theory of critical points of functionals to important examples
that cannot be treated by the previous theory from [8]. Some of our results can also be found in [9], like the properties (C),
(Z), (HI) in Section 3.1 and Theorem 3.9 under the additional assumption that the operators have a common domain, as
well as a nonlinear version of Theorem 3.10.
Lesch compared in [15] several metrics on spaces of unbounded selfadjoint Fredholm operators (cf. also [20]). We have

used throughout the gap-metric, which induces the weakest topology among the metrics considered in [15], i.e., the topol-
ogy in which most paths are continuous. We do not knowwhere the metric in [9] has to be placed in Lesch’s classification
[15, §2], but it is shown in [09] that all their paths are continuous in the gap-metric. Thus our results are at least as general
as the ones in [09].
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