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1  |  INTRODUC TION

Urbanization is one of the major drivers of global change (Grimmond, 
2007; Ren, 2015). It causes fragmentation, isolation, and degrada-
tion of natural habitats (Pickett et al., 2001; Zipperer et al., 2000) 

in addition to creating warmer and drier conditions for both plants 
and animals (Chai et al., 2019; Taha, 1997; Wang et al., 2017). As 
a consequence, urbanization results in simplification of ecological 
communities and alteration of ecosystem processes, such as biotic 
interactions (Bang & Faeth, 2011; Fenoglio et al., 2020; Magura 
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Abstract
Urbanization is an important driver of the diversity and abundance of tree-associated 
insect herbivores, but its consequences for insect herbivory are poorly understood. 
A likely source of variability among studies is the insufficient consideration of intra-
urban variability in forest cover. With the help of citizen scientists, we investigated the 
independent and interactive effects of local canopy cover and percentage of impervi-
ous surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout 
most of its geographic range in Europe. We found that the damage caused by chew-
ing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbi-
vores consistently decreased with increasing impervious surface around focal oaks. 
Herbivory by chewing herbivores increased with increasing forest cover, regardless 
of impervious surface. In contrast, an increase in local canopy cover buffered the 
negative effect of impervious surface on leaf miners and strengthened its effect on 
gall inducers. These results show that—just like in non-urban areas—plant–herbivore 
interactions in cities are structured by a complex set of interacting factors. This high-
lights that local habitat characteristics within cities have the potential to attenuate or 
modify the effect of impervious surfaces on biotic interactions.
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citizen science, impervious surface, insect herbivory, leaf gallers, leaf miners, local canopy 
cover, Quercus robur
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et al., 2010; McDonnell & Hahs, 2015). Understanding how the na-
ture and strength of species interactions change along urbanization 
gradients contributes toward unravelling the mechanisms driving 
changes in species distribution and composition, which remain in-
sufficiently known (but see Kozlov et al., 2015; Moreira et al., 2019; 
Turrini et al., 2016).

Plant–herbivore interactions play a pivotal role in ecosystems 
and consequently are one of the most studied biotic interactions 
(Jamieson et al., 2012; Stam et al., 2014). Analyses of insect herbivory 
patterns on woody and herbaceous plants along urban–rural gradi-
ents have received increasing attention in recent decades (Dreistadt 
et al., 1990; Kozlov et al., 2017; Moreira et al., 2019; Raupp et al., 
2010). Several studies measured the response of a single herbivore 
species (Dale & Frank, 2014a; Long et al., 2019; Meineke et al., 2013; 
Parsons & Frank, 2019; Shrewsbury & Raupp, 2000; Turrini et al., 
2016), responses of different herbivore feeding guilds (Cuevas-
Reyes et al., 2013; Kozlov et al., 2017; Moreira et al., 2019), or diver-
sity and abundance of herbivores (Fenoglio et al., 2020; Rickman & 
Connor, 2003; Shrewsbury & Raupp, 2006; Youngsteadt et al., 2015) 
in urban compared to rural environments (but see Parsons & Frank, 
2019). Although there seems to be a general tendency toward re-
duced insect abundance and diversity in urban settings compared to 
rural environments (Baldock, 2020; Blair & Launer, 1997; Fenoglio 
et al., 2020), there is no consensus on whether insect herbivory 
is higher (Christie & Hochuli, 2005; Moreira et al., 2019) or lower 
(Kozlov et al., 2017; Moreira et al., 2019; Nuckols & Connor, 1995) 
in urban compared to rural habitats. Given these mixed findings, a 
better understanding of the underlying ecological factors driving ur-
banization effects on insect herbivory is needed.

Several factors may explain the inconsistent effects of urban-
ization on insect herbivory reported in the literature. First, insect 
herbivore species vary markedly in their susceptibility to changing 
abiotic conditions (van der Putten et al., 2010; Zvereva & Kozlov, 
2006) and might therefore exhibit different patterns of abundance 
and damage on focal host plants in urban vs rural areas (Kozlov et al., 
2017; Moreira et al., 2019). In this sense, urban habitats are often as-
sociated with stressful climatic conditions (i.e., cities are warmer and 
drier than surrounding rural environments; Calfapietra et al., 2015; 
Dale & Frank, 2014b; Meineke & Frank, 2018) where endophagous 
herbivore guilds, e.g., leaf-mining and leaf-galling herbivores, could 
outperform exophagous herbivores, e.g., leaf chewers (Koricheva 
et al., 1998). Second, cities differ greatly in the amount of vegetation 
they harbor. The local tree cover (i.e., both overall tree density and 
potential host tree abundance) is a strong driver of urban biodiver-
sity and trophic interactions between trees, insect herbivores, and 
their enemies (Herrmann et al., 2012; Long & Frank, 2020; Meyer 
et al., 2020; Stemmelen et al., 2020). More isolated trees frequently 
offer fewer resources to insect herbivores (Chávez-Pesqueira 
et al., 2015), leading to a decrease in insect herbivory (Long & Frank, 
2020). Isolated trees are also key (micro) habitats having a dispropor-
tionate importance for foraging predators, especially bats and birds 
(DeMars et al., 2010; Fischer et al., 2010; James Barth et al., 2015; 
Le Roux et al., 2018). At the same time, climatic conditions also vary 

with local tree cover resulting in high temperature and light intensity 
in more isolated trees, which may also influence insect herbivores 
(Dale & Frank, 2014b; Shrewsbury & Raupp, 2000). In this way, the 
amount and distribution of green areas—and in particular that of 
trees—could interfere with the effect of urbanization on leaf herbiv-
ory. Thus, the relative importance of these explanatory mechanisms 
needs to be confirmed along an urbanization gradient ranging from 
‘green islands’ with high tree density to almost fully paved areas with 
only a few isolated trees.

In this study, we investigated the independent and interactive 
effects of impervious surface and local canopy cover on insect 
herbivory on the pedunculate oak (Quercus robur Linnaeus, 1753) 
throughout most of its geographic range in Europe. To this end, we 
quantified herbivory as the proportion of leaf area consumed or 
impacted by chewing and leaf-mining herbivores as well as the in-
cidence of leaf-mining and gall-inducing herbivores in leaf samples 
collected by professional scientists and schoolchildren in European 
countries between 2018 and 2020. We specifically predicted that: 
(a) insect herbivory decreases with impervious surface and increases 
with canopy cover; (b) the effects of impervious surface and canopy 
cover on leaf herbivory vary among the herbivore guilds; and (c) im-
pervious surface and local canopy cover have an interactive effect 
on insect herbivory that vary among herbivore guilds. Overall, this 
work provides one of the most comprehensive studies to test for 
effects of impervious surface on plant–herbivore interactions and 
shed light on potential mechanisms underlying such effects.

2  |  MATERIAL S AND METHODS

2.1  |  Study system

The pedunculate oak is one of the most common dominant decidu-
ous tree species in European forests. It is also a popular ornamen-
tal tree in European urban areas (Eaton et al., 2016). Its distribution 
range spans from central Spain (23°N) to southern Fennoscandia 
(63°N) (Eaton et al., 2016). Quercus robur is associated with a large 
community of generalist and specialist herbivorous insects belong-
ing to different feeding guilds (chewers, gall inducers, leaf miners, 
suckers, and xylophagous) (Marković & Stojanović, 2011; Moreira 
et al., 2018; Southwood et al., 2005). These ecological character-
istics make the pedunculate oak a suitable object for measuring the 
effects of impervious surface and forest cover on plant–herbivore 
interactions.

2.2  |  Sampling network

The present study is a part of an ongoing citizen science project 
that involves to date a total of 93 participants, including 41 scien-
tists and 52  school teachers and their classes from 17 European 
countries (Castagneyrol et al., 2019; Valdés-Correcher et al., 
2021), thereby covering most of the native geographical range of 
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the pedunculate oak (Figure 1a). Partner scientists were instructed 
to sample three oaks in a wood or forest larger than 1 ha (which in-
cluded large forests as well as small urban and peri-urban forests), 
whereas schoolteachers were free to select one oak at their con-
venience. No particular criteria drove oak selection, except that 
trees had branches within easy reach from the ground and were re-
productive (i.e., productive acorns). Subsequently, the dataset was 
mostly opportunistic in terms of the environments in which the 
oak trees were found, which included schoolyards, streets, parks, 

urban, and rural forests. We did not attempt to precisely charac-
terize the surroundings of selected oaks.

We surveyed and geolocalized a total of 298 reproductive oak 
trees in forest and urban areas during 2018 (n = 132), 2019 (n = 56), 
and 2020 (n = 113), three of them been sampled twice in 2019 and 
2020 (Figure 1). Pairwise distances between any two oak trees within 
a given site ranged from 4 to 2,359 m and was on average 185 m 
(median: 68  m), whereas the distance between the sites ranged 
from 947 to 3,696,375 m and was on average 629,770 m (median: 

F I G U R E  1 A map showing the location of trees sampled in 2018 (yellow circles), 2019 (blue circles), and 2020 (brown circles) by scientists 
and partner schools (a). Panels b–e show examples of 200 m radius buffers centered on sampled oak trees, with varying percentages of local 
canopy cover (in a buffer of 20 m radius) and impervious surface (in a buffer of 200 m radius). Panel b has 100% of local canopy cover and 
0% of impervious surface; panel c has 50% of local canopy cover and 40% of impervious surface; panel d has 5% of local canopy cover and 
65% of impervious surface; and panel e has 30% of local canopy cover and 10% of impervious surface. An interactive version of this map (a) 
is also included in the supplementary material as Figure S1. The aerial images (b, c, d, and e) are based on images from Bing maps 2021 and 
the map (a) was produced using Leaflet (Cheng et al., 2021)

(a)

(b) (c) (d) (e)
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946,733 m). Scientists and schoolchildren applied the same protocol 
(Castagneyrol et al., 2019) to collect leaf material, from which her-
bivory data were acquired by one observer (YK, see below).

2.3  |  Leaf herbivory

In early summer (about 10–12 weeks after oak budburst at each lo-
cation), scientists and partner schools haphazardly selected four low 
hanging branches per tree facing approximately compass directions. 
They haphazardly collected 30 leaves per branch (total: 120 leaves 
per tree). Then, 60 leaves were drawn blindly to reduce unconscious 
bias in leaf sampling. Scientists oven-dried leaves for at least 48 h at 
45°C right after collection (n = 203 oaks). Leaves collected by part-
ner schools (n = 98 oaks) were oven-dried when received by the pro-
ject coordinators, to warrant optimal preservation prior to herbivory 
assessment (see Castagneyrol et al., 2019).

Three response variables were used to characterize leaf herbiv-
ory (Valdés-Correcher et al., 2021): leaf damage (i.e., the percentage 
of leaf area removed or impacted by herbivores, including chewing 
and leaf-mining herbivores), leaf-miner incidence (i.e., the proportion 
of leaves with leaf-mines), and leaf-gall incidence (i.e., the proportion 
of leaves with galls). Herbivory was visually scored by assigning each 
leaf to one of the following classes: 0, 0.1–5.0, 5.1–10.0, 10.1–15.0, 
15.1–25.0, 25.1–50.0, 50.1–75.0, or >75%, where the percentage 
represented the proportion of leaf surface removed by chewing her-
bivores or mined by leaf miners. We then used the midpoint of each 
class to average herbivory at the tree level (see Valdés-Correcher 
et al., 2021 for details). We did not assess damage caused by sucking 
insects because punctures vary widely among species and for some 
species are not very visible (Schaefer & Panizzi, 2000). To minimize 
unconscious bias, herbivory was scored by a single trained observer 
(YK) who was unaware of leaf origin.

2.4  |  Landscape characteristics and climatic data

We defined the degree of impervious surface around focal trees as 
the percentage of impervious surface (including roads and build-
ings) in a buffer with a radius of 200 m centered on the focal oaks 
based on oak coordinates as retrieved from Google Maps by project 
partners (Meyer et al., 2020; Parsons & Frank, 2019). We chose the 
distance of a buffer of 200 m based on previous estimates of insect 
herbivore dispersal on the pedunculate oak (Barr et al., 2021; Zheng 
et al., 2015). We also calculated the percentage of local canopy cover 
within a 20 m buffer (excluding open areas and grasslands, and in-
cluding the focal tree). We used this buffer size of local canopy cover 
because the local abundance of trees is a strong driver of urban bio-
diversity (Herrmann et al., 2012; Long & Frank, 2020; Meyer et al., 
2020; Parsons & Frank, 2019; Stemmelen et al., 2020). To that aim 
we used the High Resolution Layers of the CORINE land cover data-
sets with 10-m resolution and with reference year 2018 (±1 year) 
(Cover, 2018). Tree Cover Density extracted from the CORINE 

dataset ranges from 0 to 100%, while the impervious surface ex-
tracted from the CORINE dataset consists of artificially sealed areas 
(imperviousness ranging from 0 to 100%); variables were obtained 
using R 4.0.5 (R Core Team, 2020). We assumed that landscape char-
acteristics did not change during the survey period (2018–2020).

To control for variability in herbivory that is influenced by local 
climatic conditions (Valdés-Correcher et al., 2021), we extracted 
spring temperature and precipitation (mean temperature and precipi-
tation in April–June) data from the WorldClim database with a spatial 
resolution of 5 min about 9 km at the equator (Fick & Hijmans, 2017) 
on the basis of the oak coordinates. Spring temperature and precipi-
tation correspond to the period when most of the partners collected 
the leaves and also the main period of activity of insect herbivores on 
oak. Impervious surface and local canopy cover were slightly nega-
tively correlated (Pearson r = −.38, p < .001, n = 298 trees), and were 
independent of latitude (Impervious surface: Pearson r = .02, p = .709; 
Local canopy cover: Pearson r = .04, p = .482) and climate (tempera-
ture and impervious surface: Pearson r = −.02, p =  .800; tempera-
ture and local canopy cover: Pearson r = −.12, p = .037; Precipitation 
and impervious surface: Pearson r  =  .03, p  =  .594; Precipitation 
and local canopy cover: Pearson r  =  .01, p  =  .876). Although lati-
tude was negatively correlated with temperature (Pearson r = −.76, 
p < .001) and precipitation (Pearson r = −.70, p < .001) which could 
have caused collinearity issue, a previous study found that climatic 
variables were better predictors of variation in herbivory, and there-
fore we decided to only include climatic variables in the models 
(Valdés-Correcher et al., 2021).

2.5  |  Statistical analysis

All analyses were conducted in the R 4.0.5 (R Core Team, 2020) with 
packages MuMIn (model.avg and dredge functions) (Bartoń, 2020) 
and lme4 (lmer and glmer functions) (Bates et al., 2018). We analyzed 
each of the response variables separately with generalized linear 
mixed-effects models. We tested the effects of impervious surface, 
local canopy cover and their interaction, climatic variables, and year 
of sampling on leaf damage with Gaussian error distribution and 
identity link (the results were the same with a beta-distribution and 
log-link), and on the incidence of leaf miners and gall inducers with 
binomial error distribution and logit-link in separate models. The 
data were not overdispersed, visual inspection of raw data did not 
call for zero-inflated models, and the distribution of residuals met 
model assumptions.

In each model, Impervious surface (%), Local canopy cover (%), 
Impervious surface ×Local canopy cover, Year (as a factor), Spring 
temperature (°C), and Spring precipitation (mm) were included as 
fixed effects; and Partner ID as a random factor to account for the 
fact that some partners surveyed multiple trees and/or several years 
(note that each tree was only sampled once, and we thus did not 
account for Tree ID in the models).

We analyzed the data in the framework of information theory 
(Burnham & Anderson, 2002). We first built three models, one for 
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each response variable separately (leaf damage, gall-inducer, and 
leaf-miner incidences). We scaled and centered all continuous pre-
dictor variables prior to modelling to make their coefficients compa-
rable, and verified that uncontrolled correlations among explanatory 
variables were unlikely to bias model coefficient parameter esti-
mates (all variance inflation factors lower than 2) (Zuur et al., 2009). 
We then applied a procedure of parsimonious model selection based 
on the Akaike's Information Criterion corrected for small sample 
sizes (AICc) and considered every model in a range of 2 units of AICc 
to the best model as equally likely (Arnold, 2010). We calculated the 
AIC weight (wi)—i.e., the probability that a given model is the best 
model within the set of candidate models—and also the relative vari-
able importance (RVI), which reflects the importance of a particular 
variable in relation to all other variables, as the sum of wi of every 
model including this variable. When multiple models were compet-
ing with the best model (i.e., when several models with ΔAICc <2), 
we implemented a multi-model inference approach, constructing a 
consensus model that comprised the selected variables from the set 
of best models. We subsequently averaged their effect sizes over all 
models in the set of best models, utilizing wi as the weighting param-
eter (i.e., model averaging). A certain predictor was deemed to have 
a statistically significant effect on the response variable if its 95% 
confidence interval (CI) did not bracket zero (Koricheva et al., 2013).

3  |  RESULTS

Impervious surface in a buffer of 200 m radius was on average 9.72 
± 0.91% (±SE, n = 298 trees) and ranged from 0 to 70%. Local can-
opy cover in a buffer of 20 m radius centered on focal oaks was on 
average 46.51 ± 1.90% and ranged from 0 to 100% cover.

Leaf damage was on average 7.72 ± 0.33% (17,880 leaves). Model 
selection retained models that included the percentage of impervi-
ous surface and local canopy cover, year, and spring precipitation as 
predictors explaining variability in leaf damage (Figure 2a, Table S1). 
Although model coefficient parameters averaged across the range 
of competing best models (i.e., with Δ AICc <2) were statistically 
significantly different from zero (Figure 2a), the relative importance 
of the variables retained was low, with the exception of the effect of 
the sampling year (Figure S2A). However, there was no clear thresh-
old to decide whether a variable is important or not. Temperature 
was not retained and had a low relative importance (RVI <  0.25, 
Figure S2A). Specifically, leaf damage significantly decreased with 
increasing impervious surface (from 8.23 to 5.59% along the range 
of impervious surface, Figure S3A) and increased with local canopy 
cover (from 7.16 to 8.71% along the range of local canopy cover, 
Figure S3D). Leaf damage varied across years and was significantly 
greater in 2019 and lower in 2020 as compared to 2018 (Figure 2a). 
Leaf damage decreased significantly with increasing spring precipi-
tation (Figure 2a).

Insect galls were present on 6.34 ±  0.01% of the inspected 
leaves. Model selection retained the percentage of impervious 
surface and local canopy cover, their interaction, year, spring 

temperature, and spring precipitation as important predictors 
explaining variability in leaf-gall incidence (Table S1). The most 
important variables (RVI =  1) were local canopy cover, sampling 

F I G U R E  2 Standardized parameter estimates averaged across 
the best competing models testing the effects of percentage 
of impervious surface and local canopy cover, their interaction, 
year, mean spring temperature and/or mean spring precipitation 
(n = 298) on leaf damage (a), the incidence of gall-inducing (b), 
and leaf-mining (c) herbivores. Circles and error bars represent 
standardized parameter estimates and corresponding 95% CI. The 
vertical dashed line centered on zero indicates the null hypothesis. 
Black and grey circles indicate significant and non-significant 
effect sizes, respectively. The year 2018 is the intercept and was 
contrasted with the years 2019 and 2020
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year, and average spring temperature (Figure S2B). In particular, 
gall-inducer incidence significantly decreased with increasing im-
pervious surface (from 6.30% to 5.00% along the impervious sur-
face range, Figure 2b, Figure S3B) and with increasing local canopy 
cover (from 8.00% to 0.06% along the range of local canopy cover, 
Figure 2b, Figure S3E). The effect of impervious surface on gall-
inducer incidence was, however, contingent on local canopy cover 
(significant impervious surface ×local canopy cover interaction; 
Figures 2b and 3a): the negative effect of impervious surface on 
gall-inducer incidence was more pronounced when there was a 
greater canopy cover around focal oaks. The incidence of gall in-
ducers was significantly lower in 2019 and 2020 as compared to 
2018, and significantly increased with increasing spring tempera-
ture (Figure 2b). Spring precipitation had no consistent effect on 
gall-inducer incidence (Figure 2b) and also had the lowest relative 
importance (RVI < 0.60, Figure S2B).

Leaf miners were present in 17.98 ± 0.01% of the sampled leaves. 
Model selection retained the percentage of impervious surface, 
local canopy cover, their interaction, year, and spring precipitation 
as important predictors explaining variability in leaf-miner incidence 
(Table S1). The most important variables (RVI = 1) were the percent-
age of impervious surface, local canopy cover, their interaction, and 
the sampling year (Figure S2C). Specifically, leaf-miner incidence 
significantly decreased with increasing impervious surface (from 
21.33% to 1.00% along the range of impervious surface, Figure 2c, 
Figure S3). The effect of impervious surface on leaf-miner incidence 
was, however, contingent on local canopy cover (significant imper-
vious surface ×local canopy cover interaction; Figures 2c and 3b): 
the negative effect of impervious surface on leaf-miner incidence 
was more pronounced when there was a lower canopy cover around 
focal oaks. It was significantly lower in 2019 and 2020 as compared 
to 2018 (Figure 2c). Spring precipitation and local canopy cover had 

no consistent effect on leaf-miner incidence (Figure 2c, Figure S3) 
whereas spring temperature was not retained and had the lowest 
relative importance (RVI < 0.26, Figure S2C).

4  |  DISCUSSION

Our study revealed that impervious surfaces can consistently reduce 
insect herbivory on the pedunculate oak throughout its geographic 
range. The effect of impervious surface was partially modulated 
by the percentage of canopy cover around oaks, with differences 
among herbivore feeding guilds. Specifically, we found that impervi-
ous surface and local canopy cover had independent and opposite 
effects on overall leaf damage. In contrast, effects of impervious 
surface on gall-inducer and leaf-miner incidence depended on local 
canopy cover, with a more pronounced negative effect of impervi-
ous surface on gall-inducer and leaf-miner incidence when there was 
a greater and lower local canopy cover, respectively. These results 
show that—just like in non-urban areas—plant–herbivore interac-
tions in cities are structured by a complex set of interacting factors. 
This highlights that local habitat characteristics within cities have 
the potential to attenuate or modify the effect of impervious sur-
faces on biotic interactions.

4.1  |  Effect of impervious surface on herbivory

The incidence of both gall-inducing and leaf-mining herbivores de-
creased with increasing impervious surface. Given that due to the 
sampling design of our study, the percentage of impervious surface 
around oak trees was generally low, it is possible that our findings 
underestimate the importance of this factor. Thus, we acknowledge 

F I G U R E  3 Interactive effect of percentage of impervious surface and of local canopy cover (measured as the cover of impervious surface 
and local canopy cover within a buffer of 200 and 20 m radius, respectively) on the incidence of gall-inducing (a) and leaf-mining herbivores (b)
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that the percentage of impervious surface may not reflect the com-
plexity of urbanization, as some of the oak trees included in this 
study may have been in green areas embedded within large cities, or 
in small towns within larger forests. Still, this result aligns with previ-
ous reports that have shown that urbanization reduces the abun-
dance and diversity of several guilds of insect herbivores (Barr et al., 
2021; Dobrosavljević et al., 2020; Fenoglio et al., 2020; Herrmann 
et al., 2012; Kozlov et al., 2017; Moreira et al., 2019) with the no-
ticeable exception of sap-feeding herbivores (de Andrade & Rivkin, 
2020; Dale et al., 2016; Parsons & Frank, 2019; Raupp et al., 2010). 
For instance, Herrmann et al. (2012) found lower species richness of 
galler communities on the valley oak (Quercus lobata) in urban areas 
than in natural areas. Similarly, Dobrosavljević et al. (2020) found 
lower richness, abundance, and diversity of leaf-miner communities 
on the pedunculate oak in urban areas than in natural areas.

We also found that leaf damage decreased with increasing im-
pervious surface around focal oaks. Although this result aligns with 
the observation that the incidence of gall-inducing and leaf-mining 
herbivores decreased with increasing impervious surface, it is im-
portant to consider that leaf damage (i.e., the amount of biomass 
consumed by chewing herbivores and/or by leaf miners) may not 
scale proportionally with the abundance and diversity of insect 
herbivores. Several other ecological factors that are influenced by 
impervious surface may determine the amount of damage caused 
by herbivores. They include the top-down control of herbivore pop-
ulations by their enemies (Kozlov et al., 2017; Planillo et al., 2021; 
Turrini et al., 2016) as well as plant defenses and quality (Moreira 
et al., 2019; Thompson et al., 2016). The correlative nature of our 
data does not allow further robust inferences on the mechanisms 
underlying the observed patterns.

4.2  |  Effect of local canopy cover on herbivory

Herbivory varied with canopy cover in the immediate vicinity of 
oaks, but this effect was guild specific: there was an independent 
positive effect of local canopy cover on herbivory, a negative effect 
on gall-inducing herbivores, and no effect on leaf-mining herbivores. 
Several studies have compared herbivore abundance or diversity, 
and sometimes herbivory, between urban and forested environ-
ments (Herrmann et al., 2012; Kozlov et al., 2017; Moreira et al., 
2019), while others have addressed the effect of urban tree density 
on insect herbivores (Barr et al., 2021; Christie et al., 2010; Christie 
& Hochuli, 2005; Herrmann et al., 2012; Long & Frank, 2020; Meyer 
et al., 2020; Raupp et al., 2010). However, findings were contradic-
tory with reports of both higher (Christie & Hochuli, 2005) and lower 
(Herrmann et al., 2012; Long & Frank, 2020) herbivory in isolated 
trees as compared to trees growing in larger forest patches. This ef-
fect of local canopy cover also mirrors variability in the response of 
herbivory to the size of forest fragments (De La Vega et al., 2012; 
Kaartinen & Roslin, 2011; Simonetti et al., 2007; Valdés-Correcher 
et al., 2019). We, therefore, refrain from putting forth any particu-
lar mechanism that may underlie the patterns we observed. An 

important reason is that the diversity of herbivores—in particular 
that of specialist herbivores such as leaf miners and gallers—as well 
as the damage they cause to a tree are strongly influenced by fac-
tors that we could not control in this study, such as the size of the 
tree and its external appearance, the identity and diversity of oak 
neighbors, or the distance between focal oaks, other oaks, and non-
oak species or more generally their location within forest patches 
(Guyot et al., 2019; Jactel et al., 2021; van Schrojenstein Lantman 
et al., 2018; Smilanich et al., 2016). However, we speculate that 
denser tree canopies may have buffered microclimatic variations 
(Coley & Barone, 1996; Dale & Frank, 2014b; Yamasaki & Kikuzawa, 
2003; Ziter et al., 2019), which may have been particularly favorable 
to chewing herbivores that are external feeders (Savilaakso et al., 
2009) and at the same time unfavorable to leaf-galling herbivores 
which benefit from high temperatures (Valdés-Correcher et al., 
2021; but see Price et al., 1998). Alternatively, top-down forces also 
vary with local canopy cover and may consequently influence insect 
herbivory. For instance, predation activity of birds (Stemmelen et al., 
2020) and the abundance of birds (Valdés-Correcher et al., 2019) in-
crease with increasing local canopy cover. However, if the observed 
negative association between herbivory and forest cover is medi-
ated by bird predation, the opposite pattern would be expected.

4.3  |  Interactive effect of impervious surface and 
local canopy cover on herbivory

Canopy cover in cities varies widely. The design of our study al-
lowed us to partially disentangle the response of herbivory to the 
joint variation in impervious surface and local canopy cover. We 
found that increasing local canopy cover modulated the effect of 
impervious surface on some herbivores. Specifically, the negative 
effect of impervious surface on gall-inducing herbivores strength-
ened with increasing local canopy cover, whereas increasing local 
canopy cover annulled the effect of impervious surface on leaf-
mining herbivores. Impervious surface and local canopy cover have 
antagonistic effects on the microclimate and enemy pressure. Cities 
are warmer than the surrounding rural areas as a result of the “heat 
island effect” (Kalnay & Cai, 2003; Parker, 2010; Roth et al., 1989; 
Ziter et al., 2019), which is locally buffered by the presence of trees 
(Loughner et al., 2012; Nuruzzaman, 2015; Ziter et al., 2019). Forest 
patches in urban environments serve as habitats for both herbivores 
and predators, which is likely to modify the strength of horizontal 
(herbivore–herbivore) and vertical (herbivore–predator) interactions 
in urban trees (Long et al., 2019; Long & Frank, 2020). Endophagous 
herbivores such as gall inducers and leaf miners are more sheltered 
from the environment than ectophagous herbivores. Thus, ec-
tophagous herbivores may be more sensitive to local environmental 
conditions than endophagous herbivores. For instance, we found a 
positive relationship between the incidence of gall-inducing herbi-
vores and temperature. It is possible that by buffering the heat island 
effect, the presence of a denser canopy reduced the incidence of 
gall inducers on oaks. However, this interpretation needs to be taken 
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with caution because local canopy cover and temperature were not 
correlated. On the contrary, leaf-mining herbivores were found to 
be favored by lower (Gaston et al., 2004) or intermediate tempera-
tures (Valdés-Correcher et al., 2021). For these herbivores, a denser 
canopy could have negated the heat island effects, creating more 
favorable habitats. We cannot exclude that the interactive effect of 
impervious surface and canopy cover was partially dependent on 
differential predation rates, but this could not be investigated in the 
present study.

4.4  |  Effect of climate on insect herbivory

Climatic variables were included in the analyses to take into account 
that oaks were sampled along a latitudinal gradient. Climate had a 
significant effect on insect herbivory and this effect varied among 
feeding guilds. Consistent with previous studies (Kozlov et al., 2016; 
Valdés-Correcher et al., 2021), we found that precipitation had 
a negative effect on leaf damage (Castagneyrol et al., 2018; but 
see Kozlov et al., 2015), temperature had a positive effect on gall-
inducer incidence (Price et al., 1998), whereas leaf-miner incidence 
did not vary with climate (Leckey et al., 2014). The differences in the 
effect of climate among feeding guilds may be due to differences in 
insect herbivore strategies to survive different climatic conditions, 
which was discussed extensively in a previous paper (see Valdés-
Correcher et al., 2021).

5  |  CONCLUSIONS

Our consideration of the effect of impervious surface and local can-
opy cover on insect herbivory provides novel insights into plant–
herbivore interactions. We found that insect herbivory responds 
simultaneously to both impervious surface and local canopy cover 
in the pedunculate oak in the major part of its geographic range. 
Importantly, our results highlight that impervious surface has a 
negative effect on insect herbivory across the three feeding guilds. 
However, local canopy cover as well as its interaction with impervi-
ous surface influenced insect herbivory of different feeding guilds 
differently. Thus, local canopy cover within cities has the capac-
ity to mitigate or modify the effect of impervious surface on biotic 
interactions, as it differentially influences the effect of impervious 
surface on herbivores. Important insights will be gained by investi-
gating the mechanisms driving these patterns, in particular by de-
ciphering the interactive effects of impervious surface and canopy 
cover on the microclimate and natural enemy pressures herbivores 
are exposed to.
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