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Enhanced integration scheme for unfitted polygonal elements
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In this contribution a novel integration scheme, extending the conventional quadtree-decomposition-based approach by image
compression techniques, is investigated for unfitted polygonal meshes with a particular focus on the rational Wachspress
shape functions. It is shown that a meaningful reduction of integration points can be achieved without a significant loss in
accuracy. However, the full potential of the method in terms of time savings can only be leveraged when applied to higher
order polynomial elements. For more information on this topic see Enhanced Numerical Integration Scheme Based on Image
Compression Techniques: Application to Rational Polygonal Interpolants by Petö et al. [1].
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1 Fictitious domain approach with polygonal elements

Consider a fictitious domain setting where the original boundary value problem over a physical domain Ωphys is solved on a
domain Ω = Ωphys ∪Ωfict, where Ωfict is the fictitious domain such that Ωphys ∩Ωfict = ∅. In this contribution, the domain Ω
is discretized by polygonal elements which are occasionally intersected by the boundary ∂Ωphys. Then, for computation of
the element matrices, this formulation typically requires the evaluation of integrals of the form
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On the left hand side of Eq. (1), Ωpoly is the polygonal element domain with nv vertices, and α is a step function (indicator
function) with value 0 in the fictitious domain and 1 in the physical domain [2]. Furthermore R is a rational function due
to the typically rational nature of the polygonal shape functions which are based on generalized barycentric coordinates. In
this contribution we investigate the Wachspress poylgonal basis functions in particular [3, 4]. Although it is possible to derive
special quadrature rules for polygonal domains, it is common practice to decompose Ωpoly into nv quadrilateral domains for
which high-order quadrature rules are readily available. The discontinuity ∂Ωphys is considered by further partitioning each
quadrilateral domain into nsc sub-cells based on a quadtree-decomposition (QTD) [1,5]. The discontinuous integral in Eq. (1)
is then solved by integration over the individual sub-cells, where the determinants of Jacobian matrices Jζ→η , Jη→ξ, and
Jξ→x consider the change in integration parameters due to the geometry mappings Qζ→η , Qη→ξ and Qξ→x between the
different domains (see Fig. 1) [1].
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Fig. 1: Comparison of the integration sub-cells in cut a polygonal element with
and without compression (refinement level k = 3).
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Fig. 2: Error in computing the area of an intersected
element for various quadrature orders n.
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2 of 2 Section 4: Structural mechanics

2 Compression of the sub-cells

Although the QTD-based integration scheme enables a highly robust and fully automatic integration within the intersected
elements, the number of required integration points increases exponentially with the refinement level k. For tackling this
negative side effect, Petö et al. [6] proposed a novel approach using image compression techniques for reducing the number
of sub-cells and thus the integration time. In case of polynomial shape functions and Cartesian meshes, the compression does
not influence the integration quality, assuming, that the cut sub-cells (see yellow quadrilaterals in Fig. 1) are not compressed.
Due to its modular and simple structure, the compression algorithm can be straightforwardly embedded between the QTD
and numerical integration stages. This is also valid for intersected polygonal elements [1]. A visual comparison of the sub-
cells with and without compression is provided in Fig. 1. While the achievable reduction in integration points is the same
as in Ref. [6], due to the generally rational shape functions and distorted shape of the polygonal elements, the decreased
integration point density may lead to a deterioration of the accuracy of the Gaussian quadrature applied to non-polynomial
integrands. This loss of accuracy is depicted in Fig. 2 for the error in the area approximation eA of a given cut element for
various refinement levels k and quadrature orders using n× n integration points per sub-cell. For lower quadrature orders the
inaccurate integration of the rational integrand dominates the solution regardless of k and the results are indeed affected by the
compression. Once n of the Gaussian quadrature is high enough for the rational integrand, no loss of accuracy is introduced
by the compression and the results are dominated mainly by the error caused by the discontinuous nature of the integrand.

3 Numerical example

When embedded into an entire simulation, the compression in the polygonal elements results in negligible deterioration of
the solution quality, as demonstrated on a benchmark problem of linear elasticity depicted in Fig. 3. Due to the rather poor
convergence of the low order polygonal elements the approximation error dominates the solution and the accurate capturing of
the discontinuity plays a less significant role. Consequently, the theoretical convergence rate of the relative error in the energy
norm eE is obtained already for a refinement level of k = 3 and n = 2 in the entire range of investigated discretizations (see
Fig. 4). For these settings in the current example, only 55% of the original integration points were used when compared to the
QTD and only 5% of the computational time was saved during the generation of element matrices. While higher values of k
and n result in more significant time savings [1, 6], such settings are commonly associated with high-order shape functions
which are not yet robustly available for polygonal elements.
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Fig. 3: Problem setup with unfitted polygonal mesh. L = 4 mm,
r = 1 mm, E = 206900 MPa, ν = 0.29, t̂ = [0, 100] MPa.
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Fig. 4: Relative error in the energy norm during h-refinement using
n× n integration points per sub-cell and k = 3.
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