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The application of generalized continuum mechanics is rapidly increasing in different fields of science and engineering. In
the literature, there are several theories extending the classical first-order continuum mechanics formulation to include size-
effects [1]. One approach is the strain gradient theory with the intrinsic features of regularizing singular stress fields occurring,
e.g., near crack tips. It is crucial to realize that using this theory, the strain energy density is still localized around the crack
tip, but does not exhibit any signs of a singularity. Therefore, these models seem to be appropriate choices for studying cracks
in mechanical problems. Over the past several years, the phase-field method has gathered considerable popularity in the
computational mechanics community, in particular in the field of fracture mechanics [2]. Recently, the authors have shown
that integrating the strain gradient theory into the phase-field fracture framework is likely to improve the quality of the final
results due to the inherent non-singular nature of this theory [3]. In the present work, we will focus on a general formulation
of the first strain gradient theory. To this end, the homogenization approach introduced in Ref. [4] is employed. It is based on
a series of systematic finite element simulations using different loading cases to determine the equivalent material coefficients
on the macro-scale (i.e., for a strain gradient elastic material) by taking the underlying micro-structure into account.
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1 Introduction

Employing the phase-field method in fracture mechanics facilitates tracking crack interfaces by defining an additional degree
of freedom, called the order-parameter, which distinguishes between damaged and intact material states. The total energy
of fracture in the phase-field formulation usually includes the quadratic strain energy density function of the classical linear
elasticity theory [2]. We have shown earlier that integrating the strain gradient theory in the phase-field modeling of fracture
may improve the quality of the final results due to the inherent non-singular nature of this theory [3]. The current work aims to
study the influence of using various strain gradient elasticity models on the performance of the enhanced phase-field fracture
model.

2 Strain gradient extended phase-field fracture model

Considering only small deformations, we define the symmetric part of the displacement gradient, the linear strain tensor,
Eij := 1

2 (ui,j + uj,i), and its gradient, Hijk := Eij,k, where (and henceforth) we use Einstein’s summation convention
over the repeated indices; u represents the displacement field, and the microscopic deformation gradient Hijk is a third-order
tensor that is symmetric with respect to its first two indices. Moreover, the stored elastic energy due to a specific displacement
field is given as

ψel =
1

2
EijCijklEkl +

1

2
HijkDijklmnHlmn . (1)

While the first term in the right-hand side of Eq. (1) denotes the stored energy in classical continuum mechanics, the second
term involves higher order derivatives of the displacement field, which corresponds to the so-called generalized continua (see
also [5]). For an isotropic and centro-symmetric1 material, the stiffness tensor,

Cijkl = c1δijδkl + c2 (δikδjl + δilδjk) , (2)

is given by Lamé constants, c1, c2, and the Kronecker delta. Moreover, the sixth-order material tensor,

Dijklmn = c3 (δijδklδmn + δinδjkδlm + δijδkmδln + δikδjnδlm) + c4δijδknδml

+ c5 (δikδjlδmn + δimδjkδln + δikδjmδln + δilδjkδmn) + c6 (δilδjmδkn + δimδjlδkn)

+ c7 (δilδjnδmk + δimδjnδlk + δinδjlδkm + δinδjmδkl) ,

(3)
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1 In crystallography, centro-symmetry means indistinguishability of crystal data in a direction and the opposite direction [6].
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2 of 2 Section 3: Damage and fracture mechanics

Fig. 1: Dimensions and boundary conditions of the problem (ū = 0.1mm) (left). Comparison between the effective strain energy density
(s2 ψel) values on the crack front when the crack reaches x = 0.40mm for the second-order (middle) and the fourth-order (right) phase-
field models for different values of ε and three different mesh sizes (� × � denotes the number of control points in each parametric
direction).

Table 1: Material properties used
in lattice structures

Type E(MPa) ν
Matrix 118000 0.26
Inclusion 10−30 10−30

Table 2: Material properties used in the simulations

C1111(MPa) C1122(MPa) C1212(MPa)
26252 2228 618
D111111(N) D111221(N) D111122(N) D221221(N) D221122(N) D122122(N)
5004 ε2 352 ε2 −274 ε2 5288 ε2 310 ε2 149 ε2

introduces additional five material parameters, c3 to c7, to the problem. In the present contribution, we use the method
introduced in Ref. [4] to determine individual components of the stiffness and material tensors.

As for the total energy of the phase-field fracture part, we use two common formulations, that are referred to as the second-
order and the fourth-order models, respectively

W̄frac =

∫

Ω

[
s2 ψel + Gc

(
(1− s)2

4κ
+ κ|∇s|2

)]
dV −

∫

Ω

b · u dV, (4)

W̄frac =

∫

Ω

[
s2 ψel + Gc

(
(1− s)2

4κ
+

1

2
κ|∇s|2+

1

4
κ3(∆s)

2

)]
dV −

∫

Ω

b · u dV. (5)

In Eqs. (4) and (5), s is the phase-field parameter (s = 1 : intact material), Gc represents the critical strain energy release
rate, κ is the length-scale parameter for the crack, and b denotes the vector of body forces. Calculating the first variations
of Eqs. (4) and (5) gives us the variational formulations of the problem at hand for both the models. Due to the need for
continuous derivatives of the shape functions between elements, we employ a NURBS-based isogeometric approach to solve
the governing equations.

3 Numerical results
The material properties for the strain gradient part are provided in Tables 1 and 2. In Table 2, ε represents the so-called
homothetic ratio [4]. Moreover, Gc = 2.0 N

mm , M = 2000.0 1
MPa·s and κ = 0.02 mm. The results are presented in Fig. 1. The

cut along path A-A′ is identical to the expected crack propagation path. The case ε = 0.00 recovers the classical continuum
mechanics theory. While refining the mesh results in an increase in the value of the strain energy density for the classical
theory. Increasing the homothetic ratio changes this behavior where the strain energy density is lower for the finer meshes.
Hence, if the stress field is not singular near the crack tip, convergence of the results is observed. Moreover, the difference
between the results of the second-order and fourth-order phase-field models is less significant for higher values of ε.
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