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Abstract
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Fakultät für Mathematik

On Adaptivity in Active Sequential Learning

by Andrea Locatelli

In this thesis, we address several problems in active and sequential learning. Using
the frameworks of the stochastic multi-armed bandit problem and nonparametric
statistics, we make several contributions in active learning and zeroth order stochastic
optimization. We are particularly interested in the problem of designing adaptive
algorithmic strategies, in the sense that they do not require the careful tuning of
parameters that are out of reach for practitioners. This is particularly important in
the context of active sequential learning, as the careful selection of which data to label,
in the abundance of unlabeled data, depends on these tuning parameters. Therefore,
sub-optimal learning may incur avoidable labeling costs or lead to poor performance.
In some settings, we design such adaptive algorithms and show their optimality. In
others, we prove impossibility theorems that preclude their existence.

In dieser Dissertation beschäftigen wir uns mit verschiedenen Problemen des aktiven
und sequentiellen Maschinenlernens. Unter Verwendung der Rahmenbedingungen des
stochastischen mehrarmigen Banditenproblems und der nichtparametrischen Statis-
tik leisten wir verschiedene Beiträge zum aktiven Lernen und zur stochastischen
Optimierung nullter Ordnung. Wir sind besonders an dem Problem interessiert, adap-
tive algorithmische Strategien zu entwerfen, in dem Sinne, dass sie keine sorgfältige
Abstimmung von Parametern erfordern, die für Praktiker unerreichbar sind. Dies
ist besonders wichtig im Zusammenhang mit aktivem sequentiellem Lernen, da die
sorgfältige Auswahl der zu kennzeichnenden Daten in der Fülle nicht beschrifteter
Daten von diesen Abstimmungsparametern abhängen kann. Daher kann suboptimales
Lernen vermeidbare Kennzeichnungskosten verursachen oder zu einer schlechten Leis-
tung führen. In einigen Einstellungen entwerfen wir solche adaptiven Algorithmen
und zeigen ihre Optimalität. In anderen beweisen wir Unmöglichkeitssätze, die ihre
Existenz ausschließen.
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Chapter 1

Introduction

1.1 Passive statistical learning for Hölder smooth regres-
sion functions

In this section we expose a basic motivating setting and review important results from
the statistical learning literature. Let us consider the problem of classification. Let
(X,Y ) be a random pair taking values in [0, 1]d × {0, 1} with some joint distribution
P . The conditional distribution of Y for X = x is characterized by the regression
function:

η(x)
.
= E[Y |X = x], ∀x ∈ [0, 1]d.

In the usual statistical learning problem of binary classification, the learner is given a
training dataset (X1, Y1), . . . , (Xn, Yn) of size n where (Xi, Yi) are independent samples
drawn from the distribution P . We refer to this setup as the passive setting. For the
sake of simplicity, let us consider in the rest of this introduction the case where PX
the marginal distribution of X is the uniform distribution over [0, 1]d.
In classification, the goal is to be able to properly predict Yn+1 given a new sample
Xn+1, that is, produce a classifier f(Xn+1) such that on average the risk

R(f)
.
= P (Yn+1 6= f(Xn+1))

is as small as possible. A true minimizer of the risk is the Bayes classifier f∗(x) =
1{η(x) ≥ 1/2}. This classifier is out of reach in practice, as its construction is
predicated on the knowledge of the regression function η, which is in general un-
known. A classification strategy is a random mapping that takes as input a dataset
(X1, Y1), . . . , (Xn, Yn) of size n and outputs a classifier f̂n. A good strategy is such
that the excess risk:

E(f̂n)
.
= E[R(f̂n)]−R(f∗) (1.1)

is as small as possible, where the expectation is taken with respect to the training
dataset. Under suitable assumptions and for appropriate classification strategies, this
excess risk should vanish to 0 as n grows. Let us examine the case where η(x) belongs
to the class of Hölder smooth functions with parameter α ≤ 1. This belongs to the
more general class of results where assumptions on the complexity of the regression
function are made, as in (Yang and Barron, 1999).

Definition 1.1. For α such that 0 < α ≤ 1, we say that g belongs to the Hölder class
Σ(α, λ, d) if for all x, y ∈ [0, 1]d, we have:

|g(x)− g(y)| ≤ λ||x− y||α∞.

Assumption 1.1 (Hölder smoothness). The regression function η belongs to the
Hölder class Σ(α, λ, d).
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Figure 1.1: Illustration of Assumption 1.2 for d = 1. In both figures,
η is plotted. On the left, a regression function with small β, as there
are only two regions of the space close to 1/2. On the right, a regression
function with large β, with a sizeable region of the space where η takes
values close to 1/2.

We also introduce a simple margin assumption, which roughly describes how
difficult a classification problem is, as we show in Figure 1.1. Margin assumptions have
been used to characterize problem complexity in nonparametric statistics (Mammen,
Tsybakov, et al., 1999; Tsybakov, 2004; Massart, Nédélec, et al., 2006). Intuitively, for
classification problems, the more regions are close to the decision threshold 1/2, the
more likely the learner is to make a mistake in its prediction.

Assumption 1.2 (Margin condition). There exist c > 0, β ≥ 0 such that ∀∆ > 0:

PX(|η(X)− 1/2| ≤ ∆) ≤ c∆β.

This setting was studied in (Audibert and Tsybakov, 2007) under more general
assumptions, and the minimax rate was established by matching upper and lower
bounds. They show the existence of an optimal plug-in strategy. A plug-in strategy in
the classification setting is a two-step procedure, where the learner tries to emulate the
optimal Bayes classifier. To do so, an estimator η̂n(x) of the regression function η is
constructed. This induces a classifier f̂n(x) = 1{η̂n(x) ≥ 1/2} by simply thresholding
this estimator, as if it were the true regression function. These results are thus heavily
related to the setting of regression in sup-norm, where minimax rates were established
in (Stone, 1982). They prove the following theorem:

Theorem 1.1. For any classification problem characterized by a regression function
η that satisfies Assumptions 1.1 and 1.2, there exists a plug-in classification rule f̂n
based on a kernel estimator with window tuned as h = n−1/(2α+d) such that:

E(f̂n) ≤ Cn−α(1+β)/(2α+d),

where C > 0 depends only of λ, c.

Importantly, this result also holds for adaptive plug-in rules, which do not have
access to α nor β as tuning parameters. One way to achieve this is to use a cross-
validation scheme in some regimes of α, β. For a review, let us mention the work
of (Arlot, Celisse, et al., 2010). In other regimes, one may use other model selec-
tion procedures such Lepski’s method (Lepski and Spokoiny, 1997), or aggregation
techniques as in (Maillard, Arlot, and Lerasle, 2017), where the same setting is fully
investigated under the angle of adaptivity.
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Moreover, they show a matching lower bound which proves the optimality of the
rate of convergence obtained in Theorem 1.1.

Theorem 1.2. For all β ≥ 0, α ∈ (0, 1] such that αβ ≤ d, and for any classifica-
tion rule f̂n, there exists a classification problem characterized by η which satisfies
Assumptions 1.1 and 1.2 such that we have:

E(f̂n) ≥ cn−α(1+β)/(2α+d).

The proof of this lower bound is based on Assouad’s lemma, adapted for classifica-
tion problems as in (Tsybakov, 2009b).

Part of this thesis’ goal is to produce an analogue of these results in the setting of
active learning. In this setting, instead of receiving a training dataset, the learner may
choose its training dataset sequentially after observing each new requested training
point. Importantly, the question of adaptive active learning is of particular interest,
as we will see in the next subsection. Moreover, we want to investigate interesting
extensions, such as:

• We explore the case αβ > d, which is excluded in the previous lower bound.

• We also consider the case of Hölder smoothness with α > 1, which was already
done in the passive setting by (Audibert and Tsybakov, 2007), in particular for
lower bounds and establish minimax optimal rates in that case.

• We introduce a new aggregation technique particularly suited for active learning
in settings that involve nested classes, such as Hölder smoothness classes.

• We consider a different setting where a complexity assumption is made on the
decision boundary, as in (Tsybakov, 2004) in the passive setting, and in (Castro
and Nowak, 2007) for active learning. This way, we unify techniques used for
upper bounds in active learning under nonparametric assumptions.

1.2 Adaptive Nonparametric Regression and Confidence
Bands

In this section we define confidence bands and recall a number of seminal results that
are of particular interest to our problem. We also fix d = 1, such that the random
variable X takes values in [0, 1] - this will help us to gain proper intuition on confidence
bands. First, recall that in the context of plug-in classification strategies, optimal
estimation of η in sup-norm is a natural problem to examine. For our purpose, let us
consider the following histogram estimator.

Definition 1.2. For j ∈ N, consider the dyadic partition of [0, 1] with M = 2j bins:

B1 =

[
0,

1

M

)
, B2 =

[
1

M
,

2

M

)
, . . . , BM =

[
M − 1

M
, 1

]
.

The histogram estimator η̂j of η is defined as

η̂j(x) =

∑n
i=1

∑M
m=1 Yi · 1{Xi ∈ Bm} · 1{x ∈ Bm}∑n

i=1

∑M
m=1 1{Xi ∈ Bm} · 1{x ∈ Bm}

,

and η̂j(x) = 1/2 when both the numerator and denominators are zero.
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We remark that this just reduces to the empirical average of the labels over the
bins. For j∗ = blog2(n)1/(2α+1)c, the resulting estimator is optimal in L∞:

Theorem 1.3. For any η satisfying Assumption 1.1, the histogram estimator tuned
with j∗ = blog2(n)1/(2α+1)c is such that with probability at least 1− δ:

||η − η̂j∗ ||∞
.
= sup

x∈[0,1]
|η(x)− η̂j∗(x)| ≤ CL

(
log(n/δ)

n

)α/(2α+1)

,

for some CL > 0 that depends only on α, λ.

An empirical confidence band CB on η can be represented by a pair of random
functions (as they depend on the observations): U(·) the upper limit and L(·) the
lower limit such that L(x) ≤ U(x), ∀x ∈ [0, 1]. Ideally, we’d like to find a procedure
that returns with high probability a confidence band such that for all x ∈ [0, 1],
η(x) ∈ [L(x), U(x)] with high probability, with a small width that we shall define as
|CB|∞ = maxx(U(x)−L(x)). In the case where α is specified, we may easily construct
a fixed width confidence band, simply centered on η̂j∗ as follows:

U(x) = η̂j∗(x) + CL

(
log(n/δ)

n

)α/(2α+1)

,

L(x) = η̂j∗(x)− CL
(

log(n/δ)

n

)α/(2α+1)

.

We may deduce from the previous theorem that this confidence band is honest in the
following sense.

Definition 1.3. We say that a confidence band CB is honest at level δ for η if with
probability at least 1− δ, we have:

L(x) ≤ η(x) ≤ U(x),

for all x ∈ [0, 1].

By construction its width is 2CL

(
log(n/δ)

n

)α/(2α+1)
. It turns out this is the minimax

optimal rate for this problem.

Adaptation to unknown regularity has been a major topic in nonparametric statis-
tics. Let us first investigate the case of adaptation over a known set of competing
hypotheses. We consider the indexed set: 0 < α1 < · · · < αk < · · · < αK ≤ 1 for
some integer K ≥ 2, and assume that there exists some index ` ∈ {1, ...,K} such that
α = α`. The goal is to design a procedure that can adapt to the unknown smoothness
α ∈ {αk}k and returns a good estimator of η in sup-norm.

Theorem 1.4. For any η satisfying Assumption 1.1, the procedure given in Algorithm 1
requires no prior knowledge of α, yet it is such that with probability at least 1− δ:

||η − η̂j∗ ||∞ ≤ w(n, α)
.
= CL

(
log(n/δ)

n

)α/(2α+1)

,

for some CL > 0 that depends only on α, λ.

Algorithm 1 iteratively uses confidence bands to build a trust region within which
any function is a good estimator. This iterative procedure hinges on the fact that
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Algorithm 1 Adapting to unknown smoothness α over a grid
Input: Data-set {(Xi, Yi)}i∈[n], δ, λ, {αk}k∈[K]

Initialization: U(x)
.
= 1, L(x)

.
= 0

for i = 1, ...,K do
Let δ0 = δ

K , jk = blog2(n)1/(2α+1)c
• Compute histogram estimator η̂k for Mk = 2jk

• Compute confidence bands at smoothness αk:

Uk(x) = η̂k(x) + Ck

(
log(n/δ0)

n

)αk/(2αk+1)

Lk(x) = η̂k(x)− Ck
(

log(n/δ0)
n

)αk/(2αk+1)

• Refine confidence region:
U(x) = min(U(x),max(Uk(x), L(x)))
L(x) = max(L(x),min(Lk(x), U(x)))

end for
Output: Estimator η̂(x)

.
= U(x)+L(x)

2

the smoothness classes Σ(αk, λ, 1) are nested for increasing values of the smoothness,
that is Σ(αk+1) ⊂ Σ(αk), for all k ∈ {1, · · · ,K}. With high-probability, all the
confidence bands CBk for k ∈ {1, · · · , `} contain η, albeit their width may be too
large. As such, the refinement step is only shrinking the confidence region until its

width reaches the optimal size of 2C`

(
log(n/δ0)

n

)α`/(2α`+1)
. Beyond that, for k > `, we

have no guarantees on the performance of the estimator, as we are overestimating the
smoothness of η. Thus, the confidence bands are not honest anymore, but thanks to
the manner in which the upper and lower limits of the confidence region are updated,
it can only shrink within the optimal confidence band. This way, any function within
the confidence region by the final upper and lower limits attains the minimax optimal
rate adaptively to the unknown smoothness level α`, and in particular our choice for
η̂(x). This procedure can easily be generalized to obtain an adaptive estimator over a
range α ∈ [ν, 1], for some ν > 0. For example, one may use a grid with αk = k

blognc
with K = blog nc and ν = 1/blog nc, as we do in Section 2.2 of Chapter 2, and the
price we pay for undersmoothing by 1/blog nc is negligible. Indeed, the discretization
will ensure that we run the procedure with a smoothness α− 1/blog nc ≤ αk ≤ α.

We just showed one procedure to obtain an adaptive estimator in L∞, using
confidence bands. However, the question remains open whether adaptive confidence
bands can be constructed. For example, we’d like to have a procedure that returns
a fixed width confidence band centered on the adaptive estimator η̂ such that its
width ŵ is a data-dependent estimator of the quantity w(n, α) defined in Theorem 1.4.
Unfortunately, this is impossible, as the following lower bound shows.

Theorem 1.5 ((Giné and Nickl, 2016), Theorem 8.3.1). Let α2 > α1 be two smoothness
parameters in (0, 1]. Given a confidence level δ > 0, any procedure that returns a
confidence band CB(n) satisfying:

lim inf
n

inf
f∈Σ(α1)

P(f ∈ CB(n)) ≥ 1− δ

cannot also satisfy
sup

f∈Σ(α2)
P(|CB(n)|∞ > w(n, α2)) ≤ δ′
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for every n large enough and every δ′ > 0 at any rate such that

w(n, α2) = o

((
log n

n

)α1/(2α1+1)
)
,

where f(n) ∈ o(g(n)) if and only if for any k > 0, there exists n0 such that for all
n > n0, 0 ≤ f(n) ≤ kg(n).

This theorem shows that adaptation is not possible even over just two classes
Σ(α2) ⊂ Σ(α1). In fact, the penalty to pay is maximal, as the slowest rate associated
with Σ(α1), the largest model, has to be paid for any subclass Σ(α2). A similar result
already appeared in (Low et al., 1997) for the problem of density estimation. Their
result is actually stronger, although it is concerned with the pointwise loss, in the sense
that this worst-case scenario can happen at any given function within the smoother
subclass Σ(α2).

Our work draws inspiration from this literature to make a number of contributions
in the fields of active learning in Chapter 2 and zeroth order optimization in Chapter 3.
Interestingly, the nature of these results does not change when going from a passive
(batch) learning setting to the active case. In a very different statistical setting, wherein
matrices of different ranks are considered, adaptive confidence sets do in fact exist, as
proven in (Carpentier et al., 2017). In Chapter 4, we formulate a new active learning
setting, in which a fully adaptive strategy, that takes advantage of adaptive and honest
confidence bands, exists.

1.3 Nonparametric Active learning

We now expose the main prior results in active learning under smoothness and margin
assumptions. This allows us to highlight the lack of adaptive strategies in these settings
(or their reliance on unnatural assumptions), and our main contributions in this domain.

We call active learning the following learning procedure. At each (discrete) time
t ≤ n, the learner may pickXt anywhere in the domain [0, 1]d and receives Yt distributed
as a Bernoulli random variable of parameter η(Xt). We remark that this learning
setting is a generalization of the passive setting that we considered previously, as the
learner may pick Xt uniformly at random over [0, 1]d. Therefore, upper bounds in the
passive setting also hold here. However, we expect there to be some advantage granted
by the active setting, as the learner may focus its attention on areas where classification
is particularly difficult, that is, where it takes values close to the decision threshold 1/2.

An important difference with respect to the passive setting is that the sampled
locations depend on each other. However, the risk of the classifier returned at the
end of the training procedure is still calculated with respect to a new sample coming
from the joint distribution P . In our restricted introductory case, the risk is still
computed with respect to the uniform distribution, that is, Xn+1 ∼ Unif([0, 1]d),
for which the learner has to make a recommendation Ŷn+1, which is compared to
Yn+1 ∼ Bernoulli(η(Xn+1)). As we are interested in the expectation of this quantity,
this is precisely the definition of the excess risk from Equation 1.1.

The first important results in nonparametric active learning came in (Hanneke,
2017) as well as (Koltchinskii, 2010), where the authors operate in a setting comparable



1.3. Nonparametric Active learning 7

to that of (Tsybakov, 2004), with the caveat that these results only apply for problems
with a bounded disagreement coefficient. As it was recently shown in (Wang, 2011),
the settings we are concerned here have unbounded disagreement coefficient, and those
general results do not apply. For a more involved review of these results, we refer the
reader to Chapter 2, Section 2.2.1.

1.3.1 Active learning with a smooth regression function

In (Minsker, 2012b), the author undertakes the task of extending the results of (Au-
dibert and Tsybakov, 2007) to the active learning setting. In addition to the Assump-
tions 1.1 and 1.2, however, an extra assumption is required for the procedure to be
adaptive with respect to the smoothness α. In order to precisely characterize this
assumption, we will need to define a few simple objects.

Definition 1.4. Let Hm be the depth m dyadic partition of [0, 1]d, and let Fm be the
linear span of the first 2dm Haar basis functions over the unit cube. We define η̄m as
the L2-projection of η on Fm.

Functions in Fm are simply constant by part functions over the depth m dyadic
partition of [0, 1]d. We can now state the self-similarity assumptions as in (Minsker,
2012a), simplified for α ≤ 1, our introductory setting.

Assumption 1.3 (Self-similarity, (Minsker, 2012a)). The regression function η satisfies
one of the two following conditions:

• η is a constant function over [0, 1]d,

• η ∈ Σ(α, λ) and there exists a constant B such that for all m ≥ 1,

||η − η̄m||∞ ≥ B12−mα. (1.2)

This assumption is rather unnatural as it is motivated by conditions that appear
directly in the proof of the main result. In particular, as η is a smooth function, we
also have thanks to the Littlewood-Paley theory (see for example Corollary 2.5.3 in
(Minsker, 2012a)):

||η − η̄m||∞ ≤ B22−mα, (1.3)

for some constant B2 > B1. The combination of both inequalities makes it such that
the smoothness level α may be estimated on-the-fly such that with high probability
the estimator α̂ satisfies α− 1/ log(n) ≤ α̂ ≤ α. Thus, it becomes possible to plug an
upper-bound on α in a fixed width confidence band centered on η̂.

Under this extra assumption, the author extends the results to the active setting,
and shows the following.

Theorem 1.6 (Upper bound for Algorithm 2, (Minsker, 2012a)). For any classification
problem characterized by a regression function η satisfying Assumptions 1.1, 1.2 and 1.3,
there exists an adaptive (with respect to α, β) active learning strategy which samples at
most n pairs (Xt, Yt) and outputs a classification rule f̂n such that:

E(f̂n) ≤ C log(n)pn−α(1+β)/(2α+d−(α∧1)β),

where C > 0 depends only of λ, c and p is a constant that depends only on the dimension
d, and the expectation in the excess risk is taken with respect to the samples and the
randomness in the strategy itself.
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Algorithm 2 Active learning strategy in (Minsker, 2012a)
Input: Budget of evaluations n
Initialization: k = 0, A0 = X , t0 = 2blog2(

√
n)c, T = t0

while n− T > 0 do
Request tk new samples Dk = (Xt, Yt)t≤tk with Xt ∼ Unif(Ak)
Construct estimator η̂k over Ak using Dk
Estimate smoothness α̂k of η over Ak based on Equations 1.2 and 1.3
Build confidence band CBk around η̂k of width w(tk, α̂k − C

logn)
k ← k + 1
tk := 2tk−1

T ← T + tk
Ak := Ak−1 ∩ {x : CBk(x) ∩ 1/2}
η̂(x) := η̂k(x), ∀x ∈ Ak \Ak−1

end while
η̂(x) := 1/2, ∀x ∈ Ak
Output: plug-in classifier f̂n(x) = 1{η̂(x) ≥ 1/2}

The core idea of this active learning procedure (Algorithm 2) is to iteratively build
adaptive confidence bands around an estimator η̂k of the regression function, and
request additional samples in regions where this confidence band intersects the decision
threshold 1/2 such that a finer estimator η̂k+1 may be constructed. We illustrate this
in Figure 1.2. This iterative procedure is repeated until the budget runs out, resulting
in very fine estimation of η in regions where it takes values close to 1/2. Crucially, for
such adaptive confidence bands to exist, the self-similarity assumption is necessary,
as we saw in the previous section. We will show in this thesis that this technical
assumption is in fact not required to get adaptive estimation results in active learning.

A lower bound is also proven which matches the previous upper bound in some
(but not all) regimes. As this result also holds for extensions of the Hölder smoothness
to α > 1 and an interesting rate transition appears, we cite it without introducing
formally the tools associated with Hölder classes of smoothness α ≥ 1. This is done
properly in Chapter 2.

Theorem 1.7 (Lower bound, (Minsker, 2012a)). For all β ≥ 0, α ∈ (0, 1] such that
αβ ≤ d, and for any active learning strategy which outputs a classifier f̂n, there exists
a classification problem characterized by η which satisfies Assumptions 1.1 and 1.2
such that we have:

E(f̂n) ≥ Cn−α(1+β)/(2α+d−αβ),

where the expectation in the excess risk is taken with respect to the samples and the
randomness in the strategy itself

We see immediately that for α ≤ 1 the two bounds coincide up to logarithmic
terms, and thus the minimax optimal rate for active learning is always faster than its
passive counterpart for β > 0. Essentially, as soon as there is a disparity in difficulty
over the domain [0, 1]d, the active learning strategy takes advantage of it, which allows
it to beat the passive minimax rate.
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Figure 1.2: Illustration of the strategy in (Minsker, 2012a) for d = 1.
More samples are required to make a decision in x2, as the confidence
band on η intersects the decision threshold 1/2 in this point. However,
x1 and x3 can confidently be labeled as class 1 and 0 respectively, since
the confidence band in these points is away from 1/2.

1.3.2 Active learning with a smooth decision boundary

A second important setting in nonparametric active learning is exposed in the work
of (Castro and Nowak, 2008). The decision boundary is considered, that is, the level
set {x : η(x) = 1/2} of the regression function. The authors instead parametrize this
decision boundary and the behavior of the regression function in its vicinity. This
parametrization involves again a smoothness level α and a margin parameter κ. In
this setting, the problems are parametrized such that the space is bisected along the
last coordinate by the decision boundary. We define x̃ .

= (x1, ..., xd−1) for x ∈ [0, 1]d.

Assumption 1.4. There exists a function g ∈ Σ(α, λ, d− 1) such that:

{x : η(x) = 1/2} = {x : xd = g(x̃)}.

Under this assumption, the decision boundary of η is fully characterized by a
smooth function g. Furthermore, an assumption on how fast η takes off from this level
set is made.

Assumption 1.5. There exists constants C2 > C1 > 0 and κ ≥ 1 such that:

|η(x)− 1/2| ≥ C1|xd − g(x̃)|κ−1 (1.4)

|η(x)− 1/2| ≤ C2|xd − g(x̃)|κ−1. (1.5)
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Figure 1.3: Illustration of Assumptions 1.4 and 1.5. On the left, the
decision boundary is represented, with the space bisected along the
last dimension into two regions with label 1 and 0. On the right, we
show different examples of Assumption 1.5 for different values of κ.

This assumption on η can be thought of as a geometric version of Assumption 1.2
with the corresponding β = 1

κ−1 . However, it is a lot more restrictive, as it is a
two-sided condition.

Under these assumptions, which we illustrate in Figure 1.3, they show matching
upper and lower bounds, which we summarize in the following result.

Theorem 1.8 (Minimax rate for smooth boundary, (Castro and Nowak, 2008)).
The minimax optimal rate for the excess risk of active learning procedures over the
class of problems satisfying the smooth boundary assumptions 1.4 and 1.5 is of order1

Θ̃
(
n−κ/(2κ+ρ−2)

)
, where ρ = (d− 1)/α.

Again, this is always faster than the corresponding passive minimax rate, which
can be deduced from (Tsybakov, 2004) and is of order Θ̃

(
n−κ/(2κ+ρ−1)

)
. The lower

bound in this paper is the first of its kind for active learning, and it introduces a
new technique which is an adaptation of Assouad’s method to the active sampling
setting. Importantly, to distinguish between multiple hypothesis, one has to consider
that all the samples may be requested in regions where those hypothesis disagree.
In the passive setting, samples are scattered around in [0, 1]d, and only a fraction
of those help the learner to make a good decision. In the active setting, this is not
the case, and this fact has to be reflected in the lower bound technique. A very
important takeaway from this work is that the strategy achieving the upper bound
needs to be tuned with knowledge of both κ and α. The algorithmic strategy operates
in two steps. First, the space is discretized along the first (d − 1) coordinates in
M ≈ n1/(2α(κ−1)+d−1) hypercubes. Then, a one-dimensional sub-procedure is used
along the last coordinate to locate the boundary. In their work, this sub-procedure
requires the knowledge of κ. Finally, all the estimates of the boundary are fed into a
last fitting procedure that produces an estimator of smoothness α (and thus requires
the knowledge of this parameter) of the boundary. On the algorithmic side, a lot of

1We say that f(n) ∈ Θ̃(g(n)) if and only if there exists some p ≥ 0 and positive constants n0, c1, c2
such that 0 ≤ c1g(n) ≤ f(n) ≤ c2 logp(n)g(n) for all n > n0.
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Figure 1.4: Strategy in (Castro and Nowak, 2007) for d = 2. On
the left, the discretized space with the decision boundary g(x1). On
the right, an illustration of Assumption 1.5 for κ = 3. The line-search
solves the one dimensional active learning problem of estimating g(x1)
along x2 for some fixed x1.

room is left to improve, as adaptivity to both α and κ remained an open question,
with this procedure using the knowledge of both parameters in at least 3 different steps.

A first step towards an adaptive procedure can be found in the work of (Yan,
Chaudhuri, and Javidi, 2016), where they consider this problem in the probably
approximately correct setting, where the learner has to reach a given precision ε
with probability at least 1 − δ. To solve the one-dimensional line-search problem
in this scenario, they adapt the well-known bisection method to this noisy setting,
thus producing a parameter-free strategy. In this thesis, we instead consider the fixed
budget setting, where the learner is instead given a budget of label evaluations. We
adapt this procedure to the fixed budget setting, and extend the fully adaptive results
to the original setting considered by (Castro and Nowak, 2007).

We also bridge the two active learning settings of smooth regression function and
smooth decision boundary, and make the following contributions in Chapter 2:

• In Section 2.2, we show a fully adaptive strategy for the smooth η setting of
Section 1.3.1. It does not require extra assumptions with respect to the passive
setting of (Audibert and Tsybakov, 2007), while achieving the same upper bound
as in (Minsker, 2012a). This shows that the self-similarity assumption therein is
unnecessary. We do this by leveraging the nested nature of the Hölder smoothness
classes.

• Moreover, we improve constructions for the lower bound in this setting and
match the upper bound in some cases that involve the rate transition for α > 1.
This shows that there indeed exists a rate transition in a minimax optimal sense.
This is the first result of this kind in this literature.

• In Section 2.3, we again show a fully adaptive strategy for the smooth decision
boundary setting of Section 1.3.2, that is, it does not require access to neither α
nor κ and achieves the same minimax optimal rate of Theorem 1.8.
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1.4 Stochastic multi-armed bandit and X -armed bandit

Let us now turn our attention to the stochastic multi-armed bandit problem. Our
algorithmic strategies to solve the active learning problems are inspired from this
literature, in which we also make a number of contributions. In its most general form,
the stochastic multi-armed bandit problem can be formulated in the following way.
Amongst a known set X , the learning agent is tasked with finding the best alternative
(or arm) x∗ ∈ arg maxx∈X f(x), for some unknown function f(x) - and its aim is to
either identify this arm with the highest degree of confidence possible, or exploit it
as much as possible. To do so, the learner is given a budget of n evaluations, and at
each time t ≤ n, it may pick any Xt ∈ X . Then, it receives a noisy observation Yt of f
in Xt such that E[Yt|X = Xt] = f(Xt) for some unknown function f : X → Y. For
simplicity, we may assume that Yt ∈ [0, 1] and f : X → [0, 1], for some set X to be
specified. There are two canonical objectives in this setting. The first is called the
cumulative (pseudo) regret, as the learner’s goal is to minimize the following difference:

Rn = nf(x∗)−
n∑
t=1

f(Xt) (1.6)

The second objective is called the simple regret. In this case, the learner’s goal is
to recommend a point Jn+1 ∈ X the following quantity is minimized:

rn = f(x∗)− f(Jn+1).

The main difference between the two objectives is that for the simple regret, the learner
pays no price for exploration, as only the quality of the final recommendation matters.
When the learner’s task is to minimize its cumulative regret, the classical dilemma
between exploration and exploitation appears. While it is possible in a lot of settings
to show that a strategy with good cumulative regret performance implies a small
simple regret (for example, by recommending a point chosen uniformly at random
between all visited points), the converse is usually not true.

1.4.1 The multi-armed bandit problem, X = {1, ..., K}

We now recall a number of semantic results for the classical multi-armed bandit setting
where X = {1, ...,K}, and f(k) = µk for some unknown fixed values µk ∈ [0, 1], and
assume that there exists a unique k∗ = arg maxk∈[K] µk. We now define the quantities
∆k = µk∗ − µk and H =

∑
k 6=k∗ ∆−2

k , which will be useful when looking at results in
this setting.

For the case of cumulative regret, this problem has a rich history dating back
to (Thompson, 1933) as well as (Robbins, 1952). First optimality results were given
in (Lai and Robbins, 1985; Katehakis and Robbins, 1995; Auer et al., 1995b), with
more recent results in (Audibert and Bubeck, 2010a) as well as (Lattimore, 2015). For a
review of these results, see (Bubeck, Cesa-Bianchi, et al., 2012) Section 2, or (Lattimore
and Szepesvári, 2020), Part II.

The simple regret has only been studied more recently, with two main lines of
research. One is concerned with finding the optimal arm under a fixed probability
error constraint, while minimizing the number of samples used to do so. This is called
the fixed confidence setting. It was first studied in (Even-dar, Mannor, and Mansour,



1.4. Stochastic multi-armed bandit and X -armed bandit 13

Figure 1.5: Lower bound strategy by (Kaufmann, Cappé, and Gariv-
ier, 2016). When arm k is flipped, it becomes the best arm. By
considering all such K problems, we are able to make a statement on
at least one of them.

2002) and (Mannor and Tsitsiklis, 2004). A review of more recent results can be found
in (Jamieson and Nowak, 2014) and (Kaufmann, Cappé, and Garivier, 2016). In the
fixed budget setting, the learner’s goal is to minimize its probability of error after
querying at most n points. This setting was first studied in the work of (Audibert,
Bubeck, and Munos, 2010). While the fixed confidence setting has been studied
extensively, and gaps between upper and lower bounds are very well understood, the
fixed budget setting has received less attention. A large gap subsisted between the
performance of the best known algorithms and the known lower bounds.

Theorem 1.9 (Lower bound, (Kaufmann, Cappé, and Garivier, 2016)). For any H >
0, and for any learning algorithm A that receives at most n samples, and recommends
an arm Jn+1 ∈ {1, ...,K}, there exists an instance of the best arm identification problem
with complexity at least H such that we have:

P (Jn+1 6= k∗) ≥ m exp (−cn/H) ,

where c and m are constants and the probability is taken with respect to the samples
and the decisions made by the sampling strategy.

This lower-bound can be formulated in multiple different ways, but in particular it
holds if we consider the class of problems with complexity at most H, for any value
of H. Simply put, the arms are fixed up to a single flipping which changes the value
at the optimal arm, and its identity, as illustrated in Figure 1.5. This defines a class
of K problems, and the lower bound tells us that there exists at least one problem
amongst those where the algorithm errs in a quantifiable manner. Another lower
bound technique is given in (Audibert, Bubeck, and Munos, 2010), but it yields a
worse bound, with a very intricate proof. As this technique is based on a permutation
of the arms, the complexity H of the problem is fixed, and may be used a priori by
the learner. This second technique cannot be improved to yield a better bound than
prescribed by Theorem 1.9, as there exists a strategy (UCB-E in (Audibert, Bubeck,
and Munos, 2010)) that takes as input H and matches the lower bound of Theorem 1.9.

This result has to be contrasted with the best procedure for this setting by (Audibert,
Bubeck, and Munos, 2010) (Algorithm 3) which proceeds by eliminating the arms one
by one, after phases of predefined length.
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Algorithm 3 Successive Reject strategy in (Audibert, Bubeck, and Munos, 2010)
Input: Budget of evaluations n, number of arms K
Initialization: A1 = {1, ...,K}, logK = 1

2 +
∑K

i=2
1
i , n0 = 0

for k = 1, ...,K − 1 do
nk = d 1

logK
e n−K
K+1−k

Select each arm in Ak for nk − nk−1 rounds
Update mean estimator µ̂i for i ∈ Ak
Remove the worst arm from Ak: Ak+1 = Ak \ arg mini∈Ak µ̂i

end for
Output: Jn+1 = AK

Theorem 1.10 (Upper bound, (Audibert, Bubeck, and Munos, 2010)). The successive-
reject strategy (Algorithm 3) enjoys a probability of error upper bounded as:

P (Jn+1 6= k∗) ≤M exp (−Cn/(log(K)H2)),

where c and C are constants that only depend on the number of arms K, and H2 is a
problem dependent quantity such that H2 ≤ H ≤ log(2K)H2.

We immediately notice a gap between both bounds, as an extra logK factor
appears in the upper-bound. At the time, it was conjectured that the upper-bound
should be improvable to exp(−Cn/H), for some C ≥ c - although directions for a new
algorithmic procedure were very uncertain. This conjecture was partly based on the fact
that the fixed budget and fixed confidence settings should be equivalent, and the well
understood minimax rate in the fixed confidence setting, if inverted, yields this bound.
On the other hand, Algorithm 3 was conjectured to be suboptimal for all instances, as
it operates on a predetermined schedule, which we knew to be suboptimal for some
instances - for example if all the suboptimal arms are separated from the one opti-
mal arm by a constant gap ∆, in which case the optimal allocation ought to be uniform.

1.4.2 The continuum-armed bandit problem, X = [0, 1]d

Algorithmic strategies based on upper confidence bounds have been extended to the
continuous setting in (Kleinberg, 2004; Auer, Ortner, and Szepesvári, 2007) for the
one-dimensional case, and under more general assumptions in (Kleinberg, Slivkins, and
Upfal, 2008; Bubeck et al., 2011). This setting is also often referred to as zeroth order
stochastic optimization. Under assumptions of smoothness on the pay-off function, that
is f ∈ Σ(α, λ) for some known parameters α and λ, the algorithm HOO (for hierarchical
optimistic optimization) from (Bubeck et al., 2011) is able to adapt to the unknown
margin parameter β. We summarize their result under the set of nonparametric
assumptions we are concerned with in this introduction, as their results do in fact hold
under smoothness assumptions more general than our Assumption 1.1. For a more
in-depth review of these results, see Section 3.2.

Theorem 1.11 (Upper bound, (Bubeck et al., 2011)). For any f that satisfies As-
sumptions 1.1 and 1.2, HOO tuned with knowledge of the smoothness class Σ(α, λ) is
such that its cumulative regret is upper bounded as:

E[Rn] ≤ C log(n)n
1− α

2α+d−αβ ,

where C is a constant that may depend on α, λ, d but not on n.
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The main take-away from this bound is that HOO adapts to the effective dimension
(d−αβ) (or near-optimality dimension d−αβ

α ) of the optimization problem. In particular,
if αβ = d, which is the case e.g. for functions with a well separated2 global maximum
x∗ such that f(x∗)−f(x) = Θ(||x−x∗||α∞), then the expected cumulative regret grows
as
√
n and is independent of the dimension, up to constants that do not depend on

n. They also prove a matching lower bound, which shows the minimax optimality of
HOO. An important corollary is that HOO can readily be adapted (as it is explained
in Bubeck, Munos, and Stoltz, 2011, Section 3) into a pure-exploration algorithm
with the recommendation Jn+1 = Unif(X1, ..., Xn), and its simple regret is upper
bounded as E[rn] ≤ E[Rn]

n . One of the major drawbacks of this algorithmic strategy is
its dependence on the knowledge of the smoothness α to attain optimal performances.
It is thus natural to ask the question of adaptivity to this parameter.
A partial result is given in (Grill, Valko, and Munos, 2015a), where the author design
an adaptive pure-exploration strategy. Their strategy, POO (for parallel optimistic
optimization), comes with the following guarantee:

Theorem 1.12 ( Adaptive upper bound on simple regret, (Grill, Valko, and Munos,
2015a)). For any f that satisfies Assumptions 1.1 and 1.2, POO, after requesting at
most n samples, makes a recommendation Xn+1 such that:

E[rn] ≤ C
(

log n

n

)α/(2α+d−αβ)

,

where C is a constant that may depend on α, λ, d but not on n.

In order to get to this adaptive result, the idea is to run multiple instances of HOO
in parallel, and cross-validate their outputs, such that the best of those instances is
identified up to a O(1/

√
n) error. Importantly, there are no cumulative regret guaran-

tees for this strategy, as running multiple instances of HOO comes with a double price.
For instances where the smoothness level is underestimated by some α′ < α, we pay a
larger price than is prescribed by the minimax optimal rate as f ∈ Σ(α, λ) ⊂ Σ(α′, λ).
Worse yet, when the smoothness level of f is overestimated by some α′ > α, there
are no guarantees at all on the performance of such instances - and in fact one can
show that they grow linearly with the number of calls to each of these instances almost
surely. Therefore, the overall cumulative regret of POO grows linearly with n. A natural
question that was not answered in this literature is whether smoothness adaptive
algorithms that target the cumulative regret may exist.

Our contributions on these problems are in Chapter 3 and are the following:

• In Section 3.1, we improve the best known lower bound for the best-arm iden-
tification problem under a budget constraint. We show that the best known
algorithm (based on successive reject) is optimal in some precise sense, which
was not conjectured before.

• In Section 3.2, we prove an impossibility result on the existence of adaptive
strategies that target the cumulative regret for the X -armed bandit problem.
There exists no algorithm that achieves the minimax optimal rate of Theorem 1.11
over just two smoothness classes Σ(α, λ) ⊂ Σ(α′, λ) adaptively. To the best of
our knowledge, this is the first result of this kind in this line of work.

2In this context, we say that f ∈ Θ(g) around x∗ if there exists positive constants δ, c1, c2 such
that 0 ≤ c1g(x) ≤ f(x) ≤ c2g(x) for all x such that ||x− x∗||∞ ≤ δ, where δ does not depend on n.
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• Moreover, we identify sufficient conditions for adaptivity, and produce optimal
strategies to tackle these problems. In particular, if the learner knows that f
has one well behaved global optimum with f(x∗)− f(x) = Θ(||x− x∗||α∞), but
α is unknown, there exists an optimal adaptive strategy with regret scaling as
Õ(
√
n).

• Finally, we make a connection between nonparametric active learning and the
continuum-armed bandit problem. Our algorithmic strategy to solve the ac-
tive learning problem is inspired by hierarchical partitioning and optimistic
exploration.
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Chapter 2

Adaptive active classification

In this Chapter, we tackle the problem of adaptive active classification in various
settings. First, we introduce a new pure-exploration bandit problem that we call
thresholding. This can be seen as a case of discrete classification, where the learner’s
goal is to classify each arm of a multi-armed bandit with respect to a known threshold
τ . We will see that the complexity of these problems can be characterized, and there
exists an adaptive algorithm, which does not have access to the complexity of the
problem, which solves this problem in an optimal way. This directly leads us to
consider the related contextual problem, with a continuum of arms for x ∈ [0, 1]d

and a smooth regression function η(x), which we wish to classify with respect to a
threshold (τ = 1/2 in the case of classical binary classification). This setting was
first introduced by (Audibert and Tsybakov, 2007) in the passive case, and in active
learning by Minsker, 2012b. The smoothness of η is not known to the learner, and the
objective of our adaptive strategy is to perform as well (up to logarithmic factors) as
the best algorithm which has access to the smoothness. In this Chapter, we give the
first fully adaptive algorithm that solves this active learning problem. Finally, insights
from solving that problem allowed us to resolve an open problem in a related active
learning setting introduced by Castro and Nowak, 2007, in which the classification
boundary itself is characterized by an unknown smoothness. Previous state of the
art algorithms in that setting required the knowledge of two parameters, while our
strategy is parameter-free. The first section of this Chapter is based on (Locatelli,
Gutzeit, and Carpentier, 2016), and already appeared in my M.Sc. Thesis at ENS
Paris-Saclay. It is joint work with Maurilio Gutzeit and my advisor. The other two
sections are based on the following publications (Locatelli, Carpentier, and Kpotufe,
2017; Locatelli, Carpentier, and Kpotufe, 2018), and it is joint work with Samory
Kpotufe and my advisor.
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2.1 Discrete classification: thresholding bandit problem

2.1.1 Introduction

In this Section, we study a specific combinatorial, pure exploration, stochastic bandit
setting. More precisely, consider a stochastic bandit setting where each arm has mean
µk. The learner can sample sequentially T > 0 samples from the arms and aims at
finding as efficiently as possible the set of arms whose means are larger than a threshold
τ ∈ R. In this paper, we refer to this setting as the Thresholding Bandit Problem
(TBP), which is a specific instance of the combinatorial pure exploration bandit setting
introduced in (Chen et al., 2014). A simpler "one armed" version of this problem is
known as the SIGN-ξ problem, see (Chen and Li, 2015).

This problem is related to the popular combinatorial pure exploration bandit
problem known as the Top-M problem where the aim of the learner is to return the
set of M arms with highest mean (Bubeck, Wang, and Viswanathan, 2013; Gabillon,
Ghavamzadeh, and Lazaric, 2012; Kaufmann, Cappé, and Garivier, 2015; Zhou, Chen,
and Li, 2014; Cao et al., 2015) - which is a combinatorial version of the best arm
identification problem (Even-Dar, Mannor, and Mansour, 2002; Mannor and Tsitsiklis,
2004; Bubeck, Munos, and Stoltz, 2009; Audibert and Bubeck, 2010b; Gabillon,
Ghavamzadeh, and Lazaric, 2012; Jamieson et al., 2014; Karnin, Koren, and Somekh,
2013; Kaufmann, Cappé, and Garivier, 2015; Chen and Li, 2015). To formulate this
link with a simple metaphor, the Top-M problem is a "contest" and the TBP problem
is an "exam": in the former, the learner wants to select the M arms with highest
mean, in the latter the learner wants to select the arms whose means are higher than
a certain threshold. We believe that this distinction is important and that in many
applications the TBP problem is more relevant than the Top-M, as in many domains
one has a natural "efficiency", or "correctness" threshold above which one wants to use
an option. For instance in industrial applications, one wants to keep a machine if its
production’s value is above its functioning costs, in crowd-sourcing one wants to hire a
worker as long as its productivity is higher than its wage, etc. In addition to these
applications derived from the Top-M problem, the TBP problem has applications in
dueling bandits and is a natural way to cast the problem of active and discrete level set
detection, which is in turn related to the important applications of active classification,
and active anomaly detection - we detail this point more in Subsection 2.1.3.1.

As mentioned previously, the TBP problem is a specific instance of the combinatorial
pure exploration bandit framework introduced in (Chen et al., 2014). Without going
into the details of the combinatorial pure exploration setting for which the paper (Chen
et al., 2014) derives interesting general results, we will summarize what these results
imply for the particular TBP and Top-M problems, which are specific cases of the
combinatorial pure exploration setting. As it is often the case for pure exploration
problems, the paper (Chen et al., 2014) distinguishes between two settings:

• The fixed budget setting where the learner aims, given a fixed budget T , at
returning the set of arms that are above the threshold (in the case of TBP) or
the set of M best arms (in the case of Top-M), with highest possible probability.
In this setting, upper and lower bounds are on the probability of making an error
when returning the set of arms.

• The fixed confidence setting where the learner aims, given a probability δ of
acceptable error, at returning the set of arms that are above the threshold (in
the case of TBP) or the set of M best arms (in the case of Top-M) with as few
pulls of the arms as possible. In this setting, upper and lower bounds are on
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the number of pulls T that are necessary to return the correct set of arm with
probability at least 1− δ.

The similarities and dissemblance of these two settings have been discussed in the
literature in the case of the Top-M problem (in particular in the case M = 1),
see (Gabillon, Ghavamzadeh, and Lazaric, 2012; Karnin, Koren, and Somekh, 2013;
Chen et al., 2014). While as explained in (Audibert and Bubeck, 2010b; Gabillon,
Ghavamzadeh, and Lazaric, 2012), the two settings share similarities in the specific
case when additional information about the problem is available to the learner (such as
the complexity H defined in Table 2.1), they are very different in general and results
do not transfer from one setting to the other, see (Bubeck, Munos, and Stoltz, 2009;
Audibert and Bubeck, 2010b; Karnin, Koren, and Somekh, 2013; Kaufmann, Cappé,
and Garivier, 2015). In particular we highlight the following fact: while the fixed
confidence setting is relatively well understood in the sense that there are constructions
for optimal strategies (Kalyanakrishnan et al., 2012; Jamieson et al., 2014; Karnin,
Koren, and Somekh, 2013; Kaufmann, Cappé, and Garivier, 2015; Chen and Li, 2015),
there is an important knowledge gap in the fixed budget setting. In this case, without
the knowledge of additional information on the problem such as e.g. the complexity
H defined in Table 2.1, there is a gap between the known upper and lower bounds,
see (Audibert and Bubeck, 2010b; Gabillon, Ghavamzadeh, and Lazaric, 2012; Karnin,
Koren, and Somekh, 2013; Kaufmann, Cappé, and Garivier, 2015). This knowledge gap
is more acute for the general combinatorial exploration bandit problem defined in the
paper (Chen et al., 2014) (see their Theorem 3) - and therefore for the TBP problem
(where in fact no fixed budget lower bound exists to the best of our knowledge). We
summarize in Table 2.1 the state of the art results for the TBP problem and for the
Top-M problem with M = 1.

Problem Lower Bound Upper Bound

TBP (FC) H log
(

1
δ

)
H log

(
1
δ

)
TBP (FB) No results K exp

(
− T

log(K)H2

)
Top-M (FC) H log

(
1
δ

)
H log

(
1
δ

)
Top-M (FB) exp

(
− T

H

)
K exp

(
− T

log(K)H2

)
Table 2.1: State of the art results for the TBP problem and the
Top-M problem with M = 1 with fixed confidence ∆ for δ small enough
(FC) and fixed budget (FB) - for FC, bound on the expected total
number of samples needed for making an error of at most δ on the set
of arms and for FB, bound on the probability of making a mistake on
the returned set of arms. The quantities H,H2 depend on the means
µk of the arm distributions and are defined in (Chen et al., 2014) (and
are not the same for Top-M and TBP). In the case of the TBP problem,
set ∆k = |τ − µk| and set ∆(k) for the ∆k ordered in increasing order,
we have H =

∑
i ∆−2i and H2 = mini i∆

−2
(i) . For the Top-M problem

with M = 1, the same definitions holds with ∆k = maxi µi − µk.

The summary of Table 2.1 highlights that in the fixed budget setting, both for
the Top-M and the TBP problem, the correct complexity H∗ that should appear in
the bound, i.e. what is the problem dependent quantity H∗ such that the upper and
lower bounds on the probability of error is of order exp(−n/H∗), is still an open
question. In the Top-M problem, Table 2.1 implies that H ≤ H∗ ≤ log(2K)H2. In
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the TBP problem, Table 2.1 implies 0 ≤ H∗ ≤ log(2K)H2, since to the best of our
knowledge a lower bound for this problem exists only in the case of the fixed confidence
setting. Note that although this gap may appear small in particular in the case of
the Top-M problem as it involves "only" a log(K) multiplicative factor, it is far from
being negligible since the log(K) gap factor acts on a term of order exponential minus
T exponentially.

In this work we close, up to constants, the gap in the fixed budget setting for the
TBP problem - we prove that H∗ = H. In addition, we also prove that our strategy
minimizes at the same time the cumulative regret, and identifies optimally the best
arm, provided that the highest mean of the arms is known to the learner. Our findings
are summarized in Table 2.2. In order to do that, we introduce a new algorithm for
the TBP problem which is entirely parameter free, and based on an original heuristic.
In Section 2.1.2, we describe formally the TBP problem, the algorithm, and the results.
In Section 2.1.3, we describe how our algorithm can be applied to the active detection
of discrete level sets, and therefore to the problem of active classification and active
anomaly detection. We also describe what are the implications of our results for the
Top-M problem. Finally Section 2.1.4 presents some simulations for evaluating our
algorithm with respect to the state of the art competitors. The proofs of all theorems
are in Section 2.1.5, as well as additional simulation results.

Problem Results

TBP (FB) : UB exp
(
− T

H + log
(

log(T )K
))

TBP (FB) : LB exp
(
− T

H − log
(

log(T )K
))

Top-M (FB) : UB exp
(
− T

H + log
(

log(T )K
))

(with µ∗ known)

Table 2.2: Our results for the Top-M and the TBP problem in the
fixed budget setting - i.e. upper and lower bounds on the probability
of making a mistake on the set of arms returned by the learner.

2.1.2 The Thresholding Bandit Problem

2.1.2.1 Problem formulation

Learning setting Let K be the number of arms that the learner can choose from.
Each of these arms is characterized by a distribution νk that we assume to be R-sub-
Gaussian.

Definition 2.1 (R-sub-Gaussian distribution). Let R > 0. A distribution ν is R-sub-
Gaussian if for all t ∈ R we have

EX∼ν [exp(tX − tE[X])] ≤ exp(R2t2/2).

This encompasses various distributions such as bounded distributions or Gaussian
distributions of variance R2 for R ∈ R. Such distributions have a finite mean, let
µk = EX∼νk [X] be the mean of arm k.

We consider the following dynamic game setting which is common in the bandit
literature. For any time t ≥ 1, the learner chooses an arm It from [K] = {1, ...,K}. It
receives a noisy reward drawn from the distribution νIt associated to the chosen arm.
An adaptive learner bases its decision at time t on the samples observed in the past.
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Set notations. Let u ∈ R and [K] be the finite set of arms. We define Su as the set
of arms whose means are over u, that is Su := {k ∈ [K], µk ≥ u}. We also define SCu
as the complimentary set of Su in [K], i.e. SCu = {k ∈ [K], µk < u}.

Objective. Let T > 0 (not necessarily known to the learner beforehand) be the
horizon of the game, let τ ∈ R be the threshold and ε ≥ 0 be the precision. We define
the (τ, ε) thresholding problem as such : after T rounds of the game described above,
the goal of the learner is to correctly identify the arms whose means are over or under
the threshold τ up to a certain precision ε, i.e. to correctly discriminate arms that
belong to Sτ+ε from those in SCτ−ε. In the rest of the Section, the sentence "the arm is
over the threshold τ" is to be understood as "the arm’s mean is over the threshold".

After T rounds of the previously defined game, the learner has to output a set
Ŝτ := Ŝτ (T ) ⊂ [K] of arms and it suffers the following loss:

L(T ) = I(Sτ+ε ∩ ŜCτ 6= ∅ ∨ SCτ−ε ∩ Ŝτ 6= ∅).

A good learner minimizes this loss by correctly discriminating arms that are outside of
a 2ε band around the threshold: arms whose means are smaller than (τ − ε) should
not belong to the output set Ŝτ , and symmetrically those whose means are bigger
than (τ + ε) should not belong to ŜCτ . If it manages to do so, the algorithm suffers
no loss and otherwise it incurs a loss of 1. For arms that lie inside this 2ε strip,
mistakes on the other hand bear no cost. If we set ε to 0 we recover the exact TBP
thresholding problem described in the introduction, and the algorithm suffers no loss
if it discriminates exactly arms that are over the threshold from those under.

Let E be the expectation according to the samples collected by an algorithm, its
expected loss is:

E[L(T )] = P(Sτ+ε ∩ ŜCτ 6= ∅ ∨ SCτ−ε ∩ Ŝτ 6= ∅),

i.e. it is the probability of making a mistake, that is rejecting an arm over (τ + ε) or
accepting an arm under (τ − ε). The lower this probability of error, the better the
algorithm, as an oracle strategy would simply rightly classify each arm and suffer an
expected loss of 0.

Our problem is a pure exploration bandit problem, and is in fact, shifting the means
by −τ , a specific case of the pure exploration bandit problem considered in (Chen
et al., 2014) - namely the specific case where the set of sets of arms that they callM
and which is their decision class is the set of all possible set of arms. We will comment
more on this later in Subsection 2.1.2.4.

Problem complexity We define ∆τ,ε
i the gap of arm i with respect to τ and ε as:

∆i := ∆τ,ε
i = |µi − τ |+ ε. (2.1)

We also define the complexity Hε of the problem as

H := Hτ,ε =

K∑
i=1

(∆τ,ε
i )−2. (2.2)

We call H complexity as it is a characterization of the hardness of the problem. A
similar quantity was introduce for general combinatorial bandit problems (Chen et
al., 2014) and is similar in essence to the complexity introduced for the best arm
identification problem, see (Audibert and Bubeck, 2010b).
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2.1.2.2 Lower bound for thresholding

In this section, we exhibit a lower bound for the thresholding problem. More precisely,
for any sequence of gaps (dk)k, we define a finite set of problems where the distributions
of the arms of these problems correspond to these gaps and are Gaussian of variance 1.
We lower bound the largest probability of error among these problems, for the best
possible algorithm.

Theorem 2.1. Let K,T ≥ 0. Let for any i ≤ K, di ≥ 0. Let τ ∈ R, ε > 0.
For 0 ≤ i ≤ K, we write Bi for the problem where the distribution of arm j ∈

{1, . . . ,K} is N (τ + di + ε, 1) if i 6= j and N (τ − di − ε, 1) otherwise. For all these
problems, H := Hτ,ε =

∑
i(di + 2ε)−2 is the same by definition.

It holds that for any bandit algorithm

max
i∈{0,...,K}

EBi(L(T )) ≥ exp
(
− 3T/H−

4 log(12(log(T ) + 1)K)
)
,

where EBi is the expectation according to the samples of problem Bi.

This lower bound implies that even if the learner is given the distance of the mean
of each arm to the threshold and the shape of the distribution of each arm (here
Gaussian of variance 1), any algorithm still makes an error of at least exp(−3T/H −
4 log(12(log(T ) + 1)K)) on one of the problems. This is a lower bound in a very strong
sense because we really restrict the set of possibilities to a setting where we know all
gaps and prove that nevertheless this lower bounds holds. Also it is non-asymptotic
and holds for any T , and implies therefore a non-asymptotic minimax lower bound.
The closer the means of the distributions to the threshold, the larger the complexity
H, and the larger the lower bound. The proof is to be found in Section 2.1.5.

This theorem’s lower bound contains two terms in the exponential, a term that
is linear in T and a term that is of order log((log(T ) + 1)K) ≈ log(log(T )) + log(K).
For large enough values of T , one has the following simpler corollary.

Corollary 2.1. Let H̄ > 0 and R > 0, τ ∈ R and ε ≥ 0. Consider BH̄,R the set of
K-armed bandit problems where the distributions of the arms are R-sub-Gaussian and
which have all a complexity smaller than H̄.

Assume that T ≥ 4H̄R2 log(12(log(T )+1)K). It holds that for any bandit algorithm

sup
B∈BH̄,R

EB(L(T )) ≥ exp
(
− 4T/(R2H̄)

)
,

where EB is the expectation according to the samples of problem B ∈ BH̄,R.

2.1.2.3 Algorithm APT and associated upper bound

In this section we introduce APT (Anytime Parameter-free Thresholding algorithm),
an anytime parameter-free learning algorithm. Its heuristic is based on a simple
observation, namely that a near optimal static strategy that allocates Tk samples to
arm k is such that Tk∆2

k is constant across k (and increasing with T ) - see Theorem 2.1,
and in particular the second half of Step 3 of its proof in Section 2.1.5 - and that
therefore a natural idea is to simply pull at time t the arm that minimizes an estimator
of this quantity. Note that in this work, we consider for the sake of simplicity that
each arm is tested against the same threshold, however this can be relaxed to (τk)k at
no additional cost.
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Algorithm 4 APT algorithm
Input: τ , ε
Pull each arm once
for t = K + 1 to T do
Pull arm It = arg min

k≤K
Bk(t) from Equation (2.5)

Observe reward X ∼ νIt
end for
Output: Ŝτ = {k : µ̂k(T ) ≥ τ}

Algorithm: The algorithm receives as input the definition of the problem (τ, ε).
First, it pulls each arm of the game once. At time t > K, APT updates Ti(t), the
number of pulls up to time t of arm i, and the empirical mean µ̂i(t) of arm k after
Ti(t) pulls. Formally, for each k ∈ [K] it computes Ti(t) =

∑t
s=1 I(Is = i) and the

updated means

µ̂i(t) =
1

Ti(t)

Ti(t)∑
s=1

Xi,s, (2.3)

where Xi,s denotes the sample received when pulling i for the s-th time. The algorithm
then computes:

∆̂i(s) := ∆̂τ,ε
i (s) = |µ̂i(t)− τ |+ ε, (2.4)

the current empirical estimate of the gap associated with arm i. The algorithm then
computes:

Bi(t+ 1) =
√
Ti(t)∆̂i(t). (2.5)

and pulls the arm It+1 = arg min
i≤K

Bi(t+ 1) that minimizes this quantity. At the end of

the horizon T , the algorithm outputs the set of arms Ŝτ = {k : µ̂k(T ) ≥ τ}.
The expected loss of this algorithm can be bounded as follows.

Theorem 2.2. Let K ≥ 0, T ≥ 2K, and consider a problem B. Assume that all arms
νk of the problem are R-sub-Gaussian with means µk. Let τ ∈ R, ε ≥ 0

Algorithm APT’s expected loss is upper bounded on this problem as

E(L(T )) ≤ exp

(
− 1

64R2

T

H
+ 2 log((log(T ) + 1)K)

)
,

where we remind that H =
∑

i(|µi− τ |+ ε)−2 and where E is the expectation according
to the samples of the problem.

The bound of Theorem 2.2 holds for any R-sub-Gaussian bandit problem. Note
that one does not need to know R in order to implement the algorithm, e.g. if the
distributions are bounded, one does not need to know the bound. This is a desirable
feature for an algorithm, yet e.g. all algorithms based on upper confidence bounds need
a bound on R. This bound is non-asymptotic (one just needs T ≥ 2K so that one can
initialize the algorithm) and therefore Theorem 2.2 provides a minimax upper bound
result over the class of problems that have sub-Gaussian constant R and complexity
H.

The term in the exponential of the lower bound of Theorem 2.2 matches the lower
bound of Theorem 2.1 up to a multiplicative factor and the log((log(T ) + 1)K) term.
Now as in the case of the lower bound, for large enough values of T , one has the
following simpler corollary.
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Corollary 2.2. Let H̄ > 0 and R > 0, τ ∈ R and ε ≥ 0. Consider BH̄,R the set of
K-armed bandit problems where the distributions of the arms are R-sub-Gaussian and
whose complexity is smaller than H̄.

Assume that T ≥ 256H̄R2 log((log(T ) + 1)K). For Algorithm APT it holds that

sup
B∈BH̄,R

EB(L(T )) ≤ exp
(
− T/(128R2H)

)
,

where EB is the expectation according to the samples of problem B ∈ BH̄,R

This corollary and Corollary 2.1 imply that for T large enough - i.e. of larger order
than HR2 log((log(T ) + 1)K) - Algorithm APT is order optimal over the class of
problems whose complexity is bounded by H̄ and whose arms are R-sub-Gaussian.

2.1.2.4 Discussion

A parameter free algorithm: An important point that we want to highlight for
our strategy APT is that it does not need any parameter, such as the complexity H, the
horizon T or the sub-Gaussian constant R. This contrasts with any upper confidence
based approach as in e.g. (Audibert and Bubeck, 2010b; Gabillon, Ghavamzadeh, and
Lazaric, 2012) (e.g. the UCB-E algorithm in (Audibert and Bubeck, 2010b)), which
need as parameter an upper bound on R and the exact knowledge of H, while the
bound of Theorem 2.2 will hold for any R and any H, and our algorithm adapts
to these quantities. Also we would like to highlight that for the related problem of
best arm identification, existing fixed budget strategies need to know the budget T in
advance (Audibert and Bubeck, 2010b; Karnin, Koren, and Somekh, 2013; Chen et al.,
2014) - while our algorithm can be stopped at any time and the bound of Theorem 2.2
will hold.

Extensions to distributions that are not sub-Gaussian as opposed to adap-
tation to sub-models: It is easy to see in the light of (Bubeck, Cesa-Bianchi, and
Lugosi, 2013) that one could extend our algorithm to non sub-Gaussian distributions by
using an estimator other than the empirical means, as e.g. the estimators in (Catoni et
al., 2012) or in (Alon, Matias, and Szegedy, 1996). These estimators have sub-Gaussian
concentration asymptotically under the only assumption that the distributions have a
finite (1+v) moment with v > 0 (and the sub-Gaussian concentration will depend on v).
Using our algorithm with a such estimator will therefore provide a result that is similar
to the one of Theorem 2.2 - and that without requiring the knowledge of v, which
means that our algorithm APT modified for using these robust estimators instead of
the empirical mean will work for any bandit problem where the arm distributions have
a finite (1 + v) moment with v > 0.
On the other hand, if we consider more specific, e.g. exponential, models, it is possible
to obtain a refined lower bound in terms of Kullback- Leibler divergences rather than
gaps following (Kaufmann, Cappé, and Garivier, 2015). However, an upper bound of
the same order clearly comes at the cost of a more complicated strategy and holds in
less generality than our bound.

Optimality of our strategy: As explained previously, the upper bound on the
expected risk of algorithm APT is comparable to the lower bound on the expected risk
up to a log

(
(log(T ) + 1)K

)
term (see Theorems 2.2 and Theorems 2.1) - and this term

vanishes when the horizon T is large enough, namely when T ≥ O(HR2 log
(
(log(T ) +

1)K
)
), which is the case for most problems. So for T large enough, our strategy is
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order optimal over the class of problems that have complexity smaller than H and
sub-Gaussian constant smaller than R.

Comparison with existing results: Our setting is a specific combinatorial pure
exploration setting with fixed budget where the objective is to find the set of arms that
are above a given threshold. Settings related to ours have been analyzed in the literature
and the state of the art result on our problem can be found (to the best of our knowledge)
in the paper (Chen et al., 2014). In this paper, the authors consider a general pure
exploration combinatorial problem. Given a setM of subsets of {1, . . . ,K}, they aim
at finding a subset of arms M∗ ∈M such that M∗ = arg maxM∈M

∑
k∈M∗ µk. In the

specific case whereM is the set of all subsets of {1, . . . ,K}, their problem in the fixed
budget setting is exactly the same as ours when ε = 0 and the means are shifted by
−τ . Their algorithm CSAR’s upper bound on the loss is (see their Theorem 3):

E(L(T )) ≤ K2 exp
(
− T −K

72R2 log(K)HCSAR,2

)
,

where HCSAR,2 = maxi i∆
−2
(i) . As HCSAR,2 log(K) ≥ H by definition, there is a gap

for their strategy in the fixed budget setting with respect to the lower bound of
Theorem 2.1, which is smaller and of order exp(−T/(HR2)). Our strategy on the
contrary does not have this gap, and improves over the CSAR strategy. We believe
that this lack of optimality for CSAR is not an artefact of the proof of the paper (Chen
et al., 2014), and that CSAR is sub-optimal, as it is a successive reject algorithm
with fixed and non-adaptive reject phase length. A similar gap between upper and
lower bounds for successive reject based algorithms in the fixed budget setting was also
observed for the best arm identification problem when no additional information such
as the complexity are known to the learner, see (Audibert and Bubeck, 2010b; Karnin,
Koren, and Somekh, 2013; Kaufmann, Cappé, and Garivier, 2015; Chen et al., 2014).
It is therefore an interesting fact that there is a parameter free optimal algorithm for
our fixed budget problem.

The paper (Chen et al., 2014) also provides results in the fixed confidence setting,
where the objective is to provide an ε optimal set using the smallest possible sample size.
In these results such a gap in optimality does not appear and the algorithm CLUCB
they propose is almost optimal, see also (Kalyanakrishnan et al., 2012; Jamieson et al.,
2014; Karnin, Koren, and Somekh, 2013; Kaufmann, Cappé, and Garivier, 2015; Chen
and Li, 2015) for related results in the fixed confidence setting. This highlights that
the fixed budget setting and the fixed confidence setting are fundamentally different
(at least in the absence of additional information such as the complexity H), and that
providing optimal strategies in the fixed budget setting is a more difficult problem than
providing an adaptive strategy in the fixed confidence problem - adaptive algorithms
that are nearly optimal in the absence of additional information have only been
exhibited in the latter case. To the best of our knowledge, all strategies except ours
have such an optimality gap for fixed budget pure exploration combinatorial bandit
problems, while there exists fixed confidence strategies for general pure exploration
combinatorial bandits that are very close to optimal, see (Chen et al., 2014).

Now in the case where the learner has additional information on the problem, as
e.g. the complexity H, it has been proved in the Top-M problem that a UCB-type
strategy has probability of error upper bounded as exp(−T/H), see (Audibert and
Bubeck, 2010b; Gabillon, Ghavamzadeh, and Lazaric, 2012). A similar UCB type
of algorithm would also work in the TBP problem, implying the same upper bound
results as APT. But we would like to highlight that the exact knowledge of H is needed
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by these algorithms for reaching this bound - which is unlikely in applications. Our
strategy on the other hand reaches, up to constants, the optimal expected loss for the
TBP problem, without needing any parameter.

2.1.3 Extensions of our results to related settings

In this section we detail some implications of the results of the previous section to
some specific problems.

2.1.3.1 Active level set detection : classification and anomaly detection

Here we explain how a simple modification of our setting transforms it into the setting
of active level set detection, and therefore why it can be applied to active classification
and active anomaly detection. We define the problem of discrete, active level set
detection as the problem of deciding as efficiently as possible, in our bandit setting,
whether for any k the probabilities that the samples of arms νk are above or below
a given level L are higher or smaller than a threshold τ up to a precision ε, i.e. it is
the problem of deciding for all k whether µ̃k(L) := PX∼νk(X > L) ≥ τ , or not up to a
precision ε.

This problem can be immediately solved by our approach with a simple change
of variable. Namely, for the sample Xt ∼ νIt collected by the algorithm at time t,
consider the transformation X̃t = 1Xt>L. Then X̃t is a Bernoulli random variable
of parameter µ̃It(L) (which is a 1/2-sub-Gaussian distribution) - and applying our
algorithm to the transformed samples X̃t solves the active level set detection problem.
This has two interesting applications, namely in active binary classification and in
active anomaly detection.

Active binary classification. In active binary classification, the learner aims at
deciding, for k points (the arms of the bandit), whether each point belongs to the class
1 or the class 0.

At each round t, the learner can request help from a homogeneous mass of experts
(which can be a set of previously trained classifiers, where one wants to minimize
the computational cost, or crowd-sourcing, when one wants to minimize the costs of
the task), and obtain a noisy label for the chosen data point It. We assume that for
any point k, the expert’s responses are independent and stochastic random variables
in {0, 1} of mean µk (i.e. the arm distributions are Bernoulli random variables of
parameter µk). We assume that the experts are right on average and that the label lk
of k is equal to lk := 1{µ̃k > 1/2}. The active classification task therefore amounts
to deciding whether µk > τ := 1/2 or not, possibly up to a given precision ε. Our
strategy therefore directly applies to this problem by choosing τ = 1/2.

Active anomaly detection. In the case anomaly detection, a common way to
characterize anomalies is to describe them as naturally not concentrated (Steinwart,
Hush, and Scovel, 2005). A natural way to characterize anomalies is thus to define
a cutoff level L, and classify the samples e.g. above this level L as anomalous. Such
an approach has already received attention for anomaly detection e.g in (“Selecting
Among Heuristics by Solving Thresholded k-Armed Bandit Problems”), albeit in a
cumulative regret setting.
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Here we consider an active anomaly detection setting where we face K sources of
data (the arms), and we aim at sampling them actively to detect which sources emit
anomalous samples with a probability higher than a given threshold τ - this threshold
is chosen e.g. as the maximal tolerable amount of anomalous behavior of a source.
This illustrates the fact that as described in (Steinwart, Hush, and Scovel, 2005), the
problem of anomaly detection is indeed a problem of level set detection - and so the
problem of active anomaly detection is a problem of active level set detection on which
we can use our approach as explained above.

2.1.3.2 Best arm identification and cumulative reward maximization with
known highest mean value

Two classical bandit problems are the best-arm identification problem and the cu-
mulative reward maximization problem. In the former, the goal of the learner is to
identify the arm with the highest mean (Bubeck, Munos, and Stoltz, 2009). In the
latter, the goal is to maximize the sum of the samples collected by the algorithm up
to time T (Auer et al., 1995a). Intuitively, both problems should call for different
strategies - in the best arm identification problem one wants to explore all arms
heavily while in the cumulative reward maximization problem one wants to sample
as much as possible the arm with the highest mean. Such intuition is backed up by
Theorem 1 of (Bubeck, Munos, and Stoltz, 2009), which states that in the absence of
additional information and with a fixed budget, the lower the regret suffered in the
cumulative setting, expressed in terms of rewards, the higher the regret suffered in
the identification problem, expressed in terms of probability of error. We prove in
this section the somewhat non intuitive fact that if one knows the value of best arm’s
mean, its possible to perform both tasks simultaneously by running our algorithm
where we choose ε = 0 and τ = µ∗ := maxk µk. Our algorithm then reduces to the
GCL∗ algorithm that can be found in (Salomon and Audibert, 2011).

Best arm identification. In the best arm identification problem, the game setting
is the same as the one we considered but the goal of the learner is different: it aims at
returning an arm JT that with the highest possible mean. The following proposition
holds for our strategy APT that runs for T times, and then returns the arm JT that
was the most pulled.

Theorem 2.3. Let K > 0, R > 0 and T ≥ 2K and consider a problem where the
distribution of the arms νk is R-sub-Gaussian and has mean µk. Let µ∗ := maxk µk
and Hµ∗ =

∑
i:µi 6=µ∗(µ

∗ − µi)−2.
Then APT run with parameters τ = µ∗ and ε = 0, recommending the arm JT =

arg max
k∈[K]

Tk(T ), is such that

P(µJT 6= µ∗) ≤ exp
(
− T

36R2Hµ∗
+ 2 log(log(T ) + 1)K

)
.

If the complexity H is also known to the learner, algorithm UCB-E from (Audibert
and Bubeck, 2010b) would attain a similar performance.

Remark 2.1. This implies that if µ∗ is known to the learner, there exists an algorithm
such that its probability of error is of order exp(−cT/H). We will see that in Chapter 3
actually that the knowledge of µ∗ is actually key here, since without this information,
the probability of error is at least of order exp(−cT/(log(K)H)) in a minimax sense.
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Cumulative reward maximization. In the cumulative reward maximization prob-
lem, the game setting is the same as the the one we considered but the aim of the
learner is different : if we write Xt for the sample collected at time t by the algorithm,
it aims at maximizing

∑
t≤T Xt. The following proposition holds for our strategy APT

that runs for T times.

Theorem 2.4. Let K > 0, R > 0 and T ≥ 2K and consider a problem where the
distribution of the arms νk is R-sub-Gaussian.

Then APT run with parameters τ = µ∗ and ε = 0 is such that

Tµ∗ − E
∑
t≤T

Xt ≤ inf
δ≥1

[ ∑
k 6=k∗

4R2 log(T )δ

µ∗ − µi

+ (µ∗ − µi)(1 +
K

T 2δ−2
)
]
.

This bound implies both the problem dependent upper bound of order
∑

i ∆−1
i log(T )

and the problem independent upper bound of order
√
TK log(T ), and this matches

the performance of algorithms like UCB for any tuning parameter. A similar result
can also be found in (Salomon and Audibert, 2011).

Discussion. Propositions 2.3 and 2.4, whose proofs are provided in Section 2.1.5,
imply that our algorithm APT is a good strategy for solving at the same time both
problems when µ∗ is known. As mentioned previously, this is counter intuitive since
one would expect a good strategy for the best arm identification problem to explore
significantly more than a good strategy for the cumulative reward maximization
problem. To convince oneself, it is sufficient to look at the two-armed case, for which
in the fixed budget it is optimal to sample both arms equally, while this strategy has
linear regret in the cumulative setting. This intuition is formalized in (Bubeck, Munos,
and Stoltz, 2009) where the authors prove that no algorithm can achieve this without
additional information. Our results therefore imply that the knowledge of µ∗ by the
learner is a sufficient information so that Theorem 1 of (Bubeck, Munos, and Stoltz,
2009) does not hold anymore and there exists algorithms that solve both problems at
the same time, as APT does.

Top-M problem. An extension of the best arm identification problem is known
as Top-M arms identification problem, where one is concerned with identifying the
set of the M arms with the highest means (Bubeck, Wang, and Viswanathan, 2013;
Gabillon, Ghavamzadeh, and Lazaric, 2012; Kaufmann, Cappé, and Garivier, 2015;
Zhou, Chen, and Li, 2014; Chen et al., 2014; Cao et al., 2015). If the learner has
some additional information, such as the mean values of the arms with Mth and
(M + 1)th highest means, then it is straightforward that one can apply our algorithm
APT, setting τ in the middle between the Mth and (M + 1)th highest means. The set
Ŝτ would then be returned as the estimated set of M optimal arms. The upper bound
and proof for this problem is a direct consequence of Theorem 2.2, and granted one
has such extra-information, outperforms existing results for the fixed budget setting,
see (Bubeck, Wang, and Viswanathan, 2013; Kaufmann, Cappé, and Garivier, 2015;
Chen et al., 2014; Cao et al., 2015). If the complexity H were also known to the
learner, the strategy in (Gabillon, Ghavamzadeh, and Lazaric, 2012) would attain a
similar performance.
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Figure 2.1: Results of Experiments 1-3 with Bernoulli distributions.
The average error of the specified methods is displayed on a logarithmic
scale with respect to the horizon.

2.1.4 Experiments

We illustrate the performance of algorithm APT in a number of experiments. For
comparison, we use the following methods which include the state of the art CSAR
algorithm of (Chen et al., 2014) and two minor adaptations of known methods that
are also suitable for our problem.

Uniform Allocation (UA): For each t ∈ {1, 2, . . . , T}, we choose It ∼ U[K]. This
method is known to be optimal if all arms are equally difficult to classify, that is in
our setting, if the quantities ∆τ,ε

i , i ∈ [K], are very close.

UCB-type algorithm: The algorithm UCBE given and analyzed in (Audibert and
Bubeck, 2010b) is designed for finding the best arm - and its heuristic is to pull the
arm that maximizes a UCB bound - see also (Gabillon, Ghavamzadeh, and Lazaric,
2012) for an adaptation of this algorithm to the general Top-M problem. The nat-
ural adaptation of the method for our problem corresponds to pulling the arm that
minimizes ∆̂k(t)−

√
a

Tk(t) . From the theoretical analysis in the paper (Audibert and

Bubeck, 2010b; Gabillon, Ghavamzadeh, and Lazaric, 2012), it is not hard to see
that setting a ≈ (T −K)/H minimizes their upper bound, and that this algorithm
attains the same expected loss as ours - but it requires the knowledge of H. In the
experiments we choose values ai = 4i T−KH , i ∈ {−1, 0, 4}, and denote the respective
results as UCBE(4i). The value a0 can be seen as the optimal choice, while the two
other choices give rise to strategies that are sub-optimal because they respectively
explore too little or too much.



30 Chapter 2. Adaptive active classification

CSAR: As mentioned before, this method is given in (Chen et al., 2014). In our
specific setting, via the shift µ̃i = µi − τ , the lines 7-17 of the algorithm reduce to
classifying the arm i that maximizes |µ̃i| based on its current mean. The set At
corresponds to Ŝτ at time t. In fact in our specific setting the CSAR algorithm is
a successive reject-type strategy (see (Audibert and Bubeck, 2010b) where the arm
whose empirical mean is furthest from the threshold is rejected at the end of each phase.

Figure 2.1 displays the estimated probability of success on a logarithmic scale with
respect to the horizon of the six algorithms based on N = 5000 simulated games with
τ = 1

2 , ε = 0.1, K = 10, and T = 500.

Experiment 1 (3 groups setting): K Bernoulli arms with means µ1:3 ≡ 0.1,
µ4:7 = (0.35, 0.45, 0.55, 0.65) and µ8:10 ≡ 0.9, which amounts to 2 difficult relevant
arms (that is, outside the 2ε- band), 2 difficult irrelevant arms and six easy relevant
arms.

Experiment 2 (arithmetic progression): K Bernoulli arms with means µ1:4 =
0.2 + (0 : 3) · 0.05, µ5 = 0.45, µ6 = 0.55 and µ7:10 = 0.65 + (0 : 3) · 0.05, which amounts
to 2 difficult irrelevant arms and eight arms arithmetically progressing away from τ .

Experiment 3 (geometric progression): K Bernoulli arms with means µ1:4 =
0.4 − 0.21:4, µ5 = 0.45, µ6 = 0.55 and µ7:10 = 0.6 + d5−(1:4), which amounts to 2
difficult irrelevant arms and eight arms geometrically progressing away from τ .

The experimental results confirm that our algorithm may only be outperformed by
methods that have an advantage in the sense that they have access to the underlying
problem complexity and, in the case of UCBE(1), an additional optimal parameter
choice. In particular, other choices for that parameter lead to significantly less accurate
results comparable to the naive strategy of uniform allocation.

2.1.5 Proofs of Section 2.1

2.1.5.1 Proof of Theorem 2.1

Proof. In this proof, we will prove that on at least one instance of the problem, any
algorithm makes a mistake of order at least exp(−cT/H).

Step 0: Setting and notations. Let us consider K real numbers ∆i ≥ 0, and
let us set τ = 0, ε = 0. Let us write νi := N (∆i, 1) for the Gaussian distribution of
mean ∆i and variance 1, and ν ′i := N (−∆i, 1) for the Gaussian distribution of mean
−∆i and variance 1. Note that this construction is easily generalised to cases where
τ 6= 0 or ε 6= 0 by translation or careful choice of the ∆i.

We define the product distributions Bi where i ∈ {0, ...,K} as νi1 ⊗ ...⊗ νiK where
for k ≤ K, νik := νi1k 6=i + ν ′i1k=i is νi if k 6= i and ν ′i otherwise. We also extend this
notation to B0, where none of the arms is flipped with respect to the threshold (∀k,
ν0
k := νi). It is straightforward that the gap ∆i of arm i with respect to the threshold
τ = 0 does not depend on Bi and is equal to ∆i. It follows that all these problems
have the same complexity H as defined previously (with ε = 0 and τ = 0).

We write for i ≤ K, PiB for the probability distribution according to all the samples
that a strategy could possibly collect up to horizon T , i.e. according to the samples
(Xk,s)k≤K,s≤T ∼ (Bi)⊗T . Let (Tk)k≤K denote the numbers of samples collected by the
algorithm on arm k.
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Let k ∈ {0, ...,K}. Note that

KLk := KL(ν ′k, νk) = 2∆2
k,

where KL is the Kullback Leibler divergence. Let T ≥ t ≥ 0. We define the quantity:

K̂Lk,t =
1

t

t∑
s=1

log(
dν ′k
dνk

(Xk,s)) = −1

t

t∑
s=1

2Xk,s∆k.

Step 1: Concentration of the empirical KL. Let us define the event:

ξ =
{
∀k ≤ K,∀t ≤ T, |K̂Lk,t −KLk| ≤ 4∆k

√
log(4(log(T ) + 1)K)

t

}
.

Since K̂Lk,t = −1
t

∑t
s=1 2Xk,s∆k and KLk = 2∆2

k, by Gaussian concentration (a peel-
ing and the maximal martingale inequality), it holds that for any i that PBi(ξ) ≥ 3/4.

Step 2: A change of measure. We will now use the change of measure introduced
previously for a well chosen event A. Namely, we consider Ai = {i ∈ Ŝτ}, the event
where the algorithm classified arm i as being above the threshold. We have by doing a
change of measure between Bi and B0 (since they only differ in arm i and only the Ti
first samples of arm i by the algorithm):

PBi(Ai) = EB0

[
1Ai exp

(
− TiK̂Li,Ti

)]
≥ EB0

[
1Ai∩ξ exp

(
− TiK̂Li,Ti

)]
≥ EB0

[
1Ai∩ξ exp

(
− 2∆2

iTi − 4∆i

√
Ti
√

log((4 log(T ) + 1)K)
)]
,

by definition of ξ and KLi.

Step 3: A union of events. We now consider the event A =
K⋂
i=1
Ai, i.e. the

event where all arms are classified as being above the threshold τ = 0. We have:

max
i∈{1,...,K}

PBi(Ai) ≥
1

K

K∑
i=1

PBi(Ai) (2.6)

≥ 1

K

K∑
i=1

PBi(Ai ∩ ξ)

≥ 1

K

K∑
i=1

EB0

[
1Ai∩ξ exp

(
− 2Ti∆

2
i − 4∆i

√
Ti
√

log(4(log(T ) + 1)K)
)]

≥ EB0

[
1A∩ξ

1

K

K∑
i=1

exp
(
− 3Ti∆

2
i − 4 log(4(log(T ) + 1)K)

)]
≥ exp

(
− 4 log(4(log(T ) + 1)K)

)
EB0

[
1A∩ξS

]
, (2.7)

where the fourth line comes from using 2ab ≤ a2 + b2 with a = ∆i

√
Ti and where:

S =
1

K

K∑
i=1

exp
(
− 3Ti∆

2
i

)
.



32 Chapter 2. Adaptive active classification

Since
∑

i Ti = T and all Ti are positive, there exists an arm i such that Ti ≤ T
H∆2

i
.

This yields:

S ≥ 1

K
exp

(
− 3T

H

)
= exp

(
− 3T

H
− log(K)

)
.

This implies by definition of the risk:

max
i∈{0,...,K}

EBi(L(T )) ≥ max
(

max
i∈{1,...,K}

PBi(Ai), 1− PB0(A)
)

≥ 1

2
exp

(
− 3T

H
− 4 log(4(log(T ) + 1)K)

)
− log(K)EB0

[
1A∩ξ

]
+

1

2
(1− PB0(A))

=
1

2
exp

(
− 3T

H
− 4 log(4(log(T ) + 1)K − log(K))

)
PB0

[
A ∩ ξ

]
+

1

2
(1− PB0(A))

≥ 1

8
exp

(
− 3T

H
− 4 log(4(log(T ) + 1)K)− log(K)

)
≥ exp

(
− 3T

H
− 4 log(12(log(T ) + 1)K)

)
,

The fourth line comes from P(ξ) ≥ 3/4, and we consider two cases PB0(A) ≥ 1/2 and
PB0(A) ≤ 1/2. The first leads directly to the condition as the intersection is at least
of probability 1/4; in the latter case, we have the same bound via

max
i∈{0,...,K}

EBi(L(T )) ≥ EB0(L(T )) = PB0(AC) ≥ 1/2.

This concludes the proof.

2.1.5.2 Proof of Theorem 2.2

Proof. In this proof, we will show that on a well chosen event ξ, we classify correctly
the arms which are over τ + ε, and reject the arms that are under τ − ε.

Step 1: A favorable event. Let δ = (4
√

2)−1. Towards this goal, we define the
event ξ as follows:

ξ =
{
∀i ∈ [K],∀s ∈ {1, ..., T} : |1

s

s∑
t=1

Xi,t − µi| ≤
√
Tδ2

Hs

}
.

We know from Sub-Gaussian martingale inequality that for each i ∈ [K] and each
u ∈ {0, ..., blog(T )c}:

P
(
∃v ∈ [2u, 2u+1], {|1

v

v∑
t=1

Xi,t − µi| ≥
√
Tδ2

Hv
}
)
≤ exp(− Tδ2

2R2H
).

ξ is the union of these events for all i ≤ K and s ≤ blog(T )c. As there are less than
(log(T ) + 1)K such combinations, we can lower-bound its probability of occurrence
with a union bound by:

P(ξ) ≥ 1− 2(log(T ) + 1)K exp(− Tδ2

2R2H
).

Step 2: Characterization of some helpful arm. At time T , we consider an arm
k that has been pulled after the initialization phase and such that Tk(T )− 1 ≥ (T−K)

H∆2
k
.
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We know that such an arm exists otherwise we get:

T −K =
K∑
i=1

(Ti(T )− 1) <
K∑
i=1

T −K
H∆2

i

= T −K,

which is a contradiction. Note that since T ≥ 2K, we have that Tk(T )− 1 ≥ T
2H∆2

k

We now consider t ≤ T the last time that this arm k was pulled. Using Tk(t) ≥ 2 (by
the initialisation of the algorithm), we know that:

Tk(t) ≥ Tk(T )− 1 ≥ T

2H∆2
k

. (2.8)

Step 3: Lower bound on the number of pulls of the other arms. On ξ, at
time t as we defined previously, we have for every arm i:

|µ̂i(t)− µi| ≤

√
Tδ2

HTi(t)
. (2.9)

From the reverse triangle inequality and Equation (2.4), we have:

|µ̂i(t)− µi| = |(µ̂i(t)− τ)− (µi − τ)|
≥ ||µ̂i(t)− τ | − |µi − τ ||
≥ |(|µ̂i(t)− τ |+ ε)− (|µi − τ |+ ε)|

≥ |∆̂i(t)−∆i|.

Combining this with (2.9) yields the following:

∆k −

√
Tδ2

HTk(t)
≤ ∆̂k(t) ≤ ∆k +

√
Tδ2

HTk(t)
. (2.10)

By construction, we know that at time t we pulled arm k, which yields for every
i ∈ [K]:

Bk(t) ≤ Bi(t). (2.11)

We can lower bound the left-hand side of (2.11) using (2.8):

(
∆k −

√
Tδ2

HTk(t)

)√
Tk(t) ≤ Bk(t)

(
∆k −

√
2δ∆k

)√ T

2H∆2
k

≤ Bk(t)

( 1√
2
− δ
)√ T

H
≤ Bk(t), (2.12)
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and upper bound the right hand side using (2.10) by:

Bi(t) = ∆̂i

√
Ti(t)

≤
(

∆i +

√
Tδ2

HTi(t)

)√
Ti(t)

≤ ∆i

√
Ti(t) + δ

√
T

H
. (2.13)

As both ∆̂i and ∆i are positive by definition, combining (2.12) and (2.13) yields
the following lower bound on Ti(T ) ≥ Ti(t):(

1− 2
√

2δ
)2 T

2H∆2
i

≤ Ti(T ). (2.14)

Step 4: Conclusion. On ξ, as ∆i is a positive quantity, combining (2.9) and
(2.14) yields:

µi −∆i

√
2δ

1− 2
√

2δ
≤ µ̂i(T ) ≤ µi + ∆i

√
2δ

1− 2
√

2δ
, (2.15)

where
√

2δ
1−2
√

2δ
simplifies to 1/2 for δ = (4

√
2)−1.

For arms such that µi ≥ τ + ε, then ∆i = µi − τ + ε and we can rewrite (2.15):

µi − τ −
1

2
∆i ≤ µ̂i(T )− τ

(µi − τ)(1− 1

2
)− ε

2
≤ µ̂i(T )− τ

0 ≤ µ̂i(T )− τ,

where the last line uses µi ≥ τ + ε. One can easily check through similar derivations
that µ̂i(T )− τ < 0 holds for µi < τ − ε. On ξ, arms over τ + ε are all accepted, and
arms under τ − ε are all rejected, which means the loss suffered by the algorithm is 0.
As 1− P(ξ) ≤ 2(log(T ) + 1)K exp(− 1

64R2
T
H ), this concludes the proof.

2.1.5.3 Proof of Theorem 2.3

Proof. We will prove that on a well defined event ξ, sub-optimal arms are pulled at
most T

2∆2
kH
− 1 times, which translates to the best arm being chosen at the end of the

horizon as it was pulled more than half of the time.
Step 1: A favorable event. Let δ = 1/18. We define the following events

∀i ∈ [K]:

ξi = {∀s ≤ T : |µ∗ − µ̂i(s)| ≤

√
Tδ

HTi(s)
},

We now define ξ as the intersection of these events:

ξ =
⋂
k∈[K]

ξk.

Using the same Sub-Gaussian martingale inequality as in the proof of Theorem 2.2,
we can lower bound its probability of occurrence with a union bound by:

P (ξ) ≥ 1− 2(log(T ) + 1)K exp(− T

36R2H
)
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Step 2: The wrong arm at the wrong time. Let us now suppose that a sub-
optimal arm k was pulled at least T−K

2∆2
kH

times after the initialization which translates

to Tk(T ) − 1 ≥ T−K
2∆2

kH
. Let us now consider the last time t ≤ T that this arm was

pulled. As it was pulled at time t, the following inequality holds:

Bk(t) ≤ Bk∗(t). (2.16)

On ξ, we can now lower bound the left hand side by:

(∆k −

√
Tδ

HTk(t)
)
√
Tk(t) ≤ Bk(t)

∆k

√
Tk(t)−

√
Tδ

H
≤ Bk(t), (2.17)

We also upper bound the right hand side of (2.16) by:

Bk∗(t) ≤
√
Tδ

H
. (2.18)

Combining both bounds (2.17) and (2.18) with (2.16), as well as rearranging the terms
yields:

∆k

√
Tk(t) ≤ 2

√
Tδ

H

Tk(t)∆
2
k ≤

4Tδ

H
. (2.19)

Using Tk(t) ≥ Tk(T )− 1 ≥ T−K
2∆2

kH
as well as T ≥ 2K, we have

Tk(t) ≥
T

4∆2
kH

. (2.20)

Plugging this in (2.19) brings the following condition:

T

4∆2
kH

∆2
k ≤

4Tδ

H
. (2.21)

which directly reduces to δ ≥ 1/16, which is a contradiction as we have set δ = 1/18.
As we have proved that for any sub-optimal arm i 6= k∗ it satisfies Ti(T ) < T

2∆2
iH

,
summing for all arms yields:

T − Tk∗(T ) =
∑
i 6=k∗

Ti(T )

<
T

2H

∑
i 6=k∗

1

∆2
i

=
T

2
. (2.22)

We conclude by observing that Tk∗(T ) > T/2, and as such will be chosen by the
algorithm at the end as being the best arm.
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2.1.5.4 Proof of Theorem 2.4

Proof. In this proof we will show that with high probability the sub-optimal arms
have been pulled at most at a logarithmic rate, and will then bound the expectation
of the number of pulls of these arms.

Step 1: A favorable event. We define the following events ∀s ≤ T :

ξk∗,s = {µ∗ − µ̂k∗(s) ≤ R

√
log(T )δ

Tk∗(s)
},

as well as for all arms i 6= k∗:

ξi,s = {µ̂k(s)− µk ≤ R

√
log(T )δ

Tki(s)
}.

By Hoeffding’s inequality, the complimentary ξ̄k of each of these events has proba-
bility at most T−2δ.
We now consider ξ the intersection of these events for all k ∈ [K]. By a union bound,
as there are T such events for each arm, we have:

P(ξ) ≥ 1− K

T 2δ−1
. (2.23)

We also have:
P(ξ̄) ≤ K

T 2δ−1
. (2.24)

We will now prove a bound on the number of pulls on ξ.
Step 2: Bound on pulls of sub-optimal arms. We now consider the last time

t that arm k 6= k∗ was pulled, under the assumption that it was pulled at least once
after the initialization. The decision rule of the algorithm yields:

Bk(t) ≤ Bk∗(t). (2.25)

On ξ, we can now lower-bound the left-side and upper-bound the right hand side,
which yields:

(∆k −R

√
log(T )δ

Tk(t)
)
√
Tk(t) ≤ R

√
log(T )δ

Tk∗(t)

√
Tk∗(t), (2.26)

which can be rearranged as such:

∆k

√
Tk(t) ≤ 2R

√
log(T )δ, (2.27)

and the following bound on Tk(T ):

Tk(T ) ≤ 4R2 log(T )δ

∆2
k

+ 1. (2.28)

Note that we here make the assumption that the arm was pulled at least once by
the algorithm after the initialization. If it has only been pulled during the initialization,
the bound still trivially holds as we have at least one pull.
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Step 3: Conclusion. We can thus upper-bound the expectation of Tk(t), as when
ξ does not hold we get at most T pulls:

E[Tk(T )] ≤ 4R2 log(T )δ

∆2
k

+ 1 +
K

T 2δ−2
, (2.29)

and we get the following bound on the pseudo-regret when ξ holds:

R̄T ≤
∑
k 6=k∗

4R2 log(T )δ

∆k
+ ∆k(1 +

K

T 2δ−2
). (2.30)

Plugging δ = 1 yields:

R̄T ≤
∑
k 6=k∗

4R2 log(T )

∆k
+ ∆k(1 +K), (2.31)

and we recover the classical bound of the UCB1 algorithm.
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2.2 Continuous classification: active learning with smooth
regression functions

2.2.1 Introduction

The nonparametric setting in classification allows for a generality which has so far
provided remarkable insights on how the interaction between distributional parameters
controls learning rates. In particular the interaction between feature X ∈ Rd and
label Y ∈ {0, 1} can be parametrized into label-noise regimes that clearly interpolate
between hard and easy problems. This theory is now well developed for passive learning,
i.e., under i.i.d. sampling, however for active learning – where the learner actively
chooses informative samples – the theory is still evolving. Our goals in this Section
are both statistical and algorithmic, the common thrust being to better understand
how label-noise regimes control the active setting and induce performance gains over
the passive setting.

An initial nonparametric result of (Castro and Nowak, 2008) considers situations
where the Bayes decision boundary {x : E[Y |X = x] = 1/2} is given by a smooth curve
which bisects the X space. The work yields nontrivial early insights into nonparametric
active learning by formalizing a situation where active rates are significantly faster
than their passive counterpart.

More recently, (Minsker, 2012c) considered a different nonparametric setting, also
of interest here. Namely, rather than assuming a smooth boundary between the classes,
the joint distribution of the data PX,Y is characterized in terms of the smoothness α
of the regression function η(x)

.
= E[Y |X = x]; this setting has the appeal of allowing

more general decision boundaries. Furthermore, following (Audibert and Tsybakov,
2007), the noise level in Y , i.e., the likelihood that η(X) is close to 1/2, is captured by
a margin parameter β. Restricting attention to the case α ≤ 1 (Hölder continuity) and
αβ ≤ d, (Minsker, 2012c) shows striking improvements in the active rates over passive
rates, including an interesting phenomenon for the active rate at the perimeter αβ = d.
More precisely, under certain technical conditions, the minimax rate (excess error
over the Bayes classifier) is of the form n−α(β+1)/(2α+d−αβ), where n is the number of
samples requested. In contrast, the passive rate is n−α(β+1)/(2α+d), i.e., the dependence
on dimension d is greatly reduced with large αβ, down to (nearly) no dependence1 on
d when αβ = d. For the case α > 1, quite interestingly, later work (Minsker, 2012a)
obtains a different upper-bound of the form n−α(β+1)/(2α+d−β), i.e., the dependence on
d is now only reduced by the noise term β rather than by αβ as when α ≤ 1. While
there was no matching lower-bound, both (Minsker, 2012c; Minsker, 2012a) conjecture
that this rate is tight, i.e., that there might indeed be a phase transition at α ≥ 1.
Nevertheless, the evolving picture is one where the interaction between α, β and d
seems essential in active learning.

Thus, many natural questions remain open in the present setting (of (Audibert
and Tsybakov, 2007) and (Minsker, 2012c)). First, statistical rates remain unclear in
various regimes: when Hölder smoothness α > 1, when αβ > d, or when the marginal
distribution PX is far from being uniform on [0, 1]d (this is required in (Minsker, 2012c)
and in the earlier setting of (Castro and Nowak, 2008)). Furthermore, a nontrivial
algorithmic problem remains: a natural active strategy is to query Y at x only when
we lack confidence in the label estimate at x, i.e., when η(x)

.
= E[Y |x] is deemed close

to 1/2; this seemingly requires tight assessments of the confidence in estimates of
η(x), however, such confidence assessment is challenging without a priori knowledge of
distributional parameters such as the smoothness α of η. In fact, this is a challenge in

1In a large sample sense, since rates are obtained for n > N0, where N0 itself might depend on d.
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any nonparametric setting, and (Castro and Nowak, 2008) for instance simply assume
knowledge of relevant parameters. In our particular setting, the only known procedures
of (Minsker, 2012c; Minsker, 2012a) have to resort to restrictive conditions 2 outside
of which adaptive and honest3 confidence sets do not exist (see negative results of
(Robins, Van Der Vaart, et al., 2006; Cai, Low, et al., 2006; Genovese and Wasserman,
2008; Hoffmann and Nickl, 2011; Bull and Nickl, 2013; Carpentier, 2013)). We present
a simple strategy that bypasses adaptive and honest confidence sets, and therefore
avoids ensuing restrictive conditions.

Statistical results. The present work expands on the existing theory of nonparametric
active learning in many directions, and confirms new interesting transitions in achievable
rates induced by regimes of interaction between distributional parameters α, β, d and
the marginal PX . We outline some noteworthy such transitions below. We assume as
in prior work that supp (PX) ⊂ [0, 1]d:

• For α > 1, PX nearly uniform, (Minsker, 2012c) conjectured that the minimax
rates for active learning changes to n−α(β+1)/(2α+[d−β]+), i.e., [d − β]+ should
appear in the denominator rather than by [d− αβ]+. We show that this rate is
indeed tight in relevant cases: the upper-bound n−α(β+1)/(2α+[d−β]+) is attained
by our algorithm for any α ≥ 1, β ≥ 0, while we establish a matching lower-
bound when β = 1; in other words, a better upper-bound is impossible without
additional assumptions on β. This however leaves open the possibility of a much
richer set of transitions characterized by β. We note that no such transition at
α > 1 is known in the passive case where the rate remains n−α(β+1)/(2α+d). Our
lower-bound analysis suggests that [d− (α ∧ 1)β]+ plays the role of degrees of
freedom in active learning - this is the case when α ≤ 1, β ≥ 0 and in the case
α ≥ 1, β = 1.

• For unrestricted PX , i.e., without the near uniform assumption, we prove that the
minimax rate is of the form n−α(β+1)/(2α+d), showing a sharp difference between
the regimes of uniform PX and unrestricted PX . This difference mirrors the case
of passive learning where the unrestricted PX rate is of order n−α(β+1)/(2α+d+αβ).
Again the key quantity in the rate-reduction from passive to active is the
interaction term αβ.

In the case α < 1 and PX nearly uniform, we recover the rate n−α(β+1)/(2α+[d−αβ]+)

of (Minsker, 2012c; Minsker, 2012a) - but while avoiding the restrictive assumptions
that are necessary therein to ensure that adaptive and honest confidence sets exist.
Algorithmic results. We present a generic strategy that avoids the need for honest
confidence sets but is able to adapt in an efficient way to the unknown parameters
α, β of the problem, simultaneously for all statistical regimes discussed above. Indeed
our algorithm does not take the oracle values of α, β as parameters and yet achieves
the oracle rate, over a large range of values of α, β (converging to any range of α with
sufficiently large n). The main insight is a reduction to the case where α is known:
iterating over α ≈ 0 to higher values, the procedure aggregates the estimates of a
non-adaptive subroutine taking α as a parameter. This reduction is made possible by
the nested structure of Hölder classes indexed by α: that is, η is α′-Hölder for any

2So-called self-similarity conditions (roughly upper and lower-bounds of similar order on smooth-
ness), which can be rather unnatural. Similarly restrictive, the earlier result (Minsker, 2012c) required
the equivalence of L2,PX and L∞,PX distances between η and certain piecewise approximations to η
(see Assumption 2 therein).

3A set of high confidence level (honesty) and of optimal size in terms of the unknown smoothness
α (adaptivity).
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α′ smaller than the true unknown α. Note that such nested class structure is also
harnessed for adaptation in the passive setting as in (Lepski and Spokoiny, 1997),
using techniques suited to passive sampling.

This reduction in active learning is perhaps of independent interest as it likely
extends to any hierarchy of model classes. The reduction takes care of adaptivity
to unknown α. What remains is to show that, for known α, there exists an efficient
subroutine that adapts to unknown noise level β; fortunately, adaptivity to β comes
for free once we have proper control of the bias and variance of local estimates of η(x)
(over a hierarchical partition of the feature space). Such control is easiest for α ≤ 1
and yields useful intuition towards handling the harder case α > 1. Our final solution
is a subroutine which, given α, actively labels the X space while requesting few Y
values over a hierarchical space partition; it is computationally efficient and easy to
implement.

Section outline. We start in Section 2.2.2 with a detailed discussion of related
work. We give the formal statistical setup in Section 2.2.3, followed by the main
results and discussion in Sections 2.2.5 (main results, i.e., adaptive upper bounds and
lower bounds). These results build on technical non-adaptive results presented in
Sections 2.2.4. Section 2.2.6 contains all detailed proofs.

2.2.2 Related Work in Active Learning

Much of the theory in active learning covers a range of distributional assumptions
which unfortunately are not always compatible or easy to compare with the present
setting. We give an overview below of the current theory, and compare rates at the
intersection of assumptions whenever feasible.

Parametric settings. Much of the current theory in active classification deals with
the parametric setting. Such work is concerned with performance w.r.t. the best
classifier over a fixed class F ≡ {f : Rd 7→ {0, 1}} of small complexity, e.g., bounded
VC dimension. It is well known that the passive rates in this case are of the form
n−1/2, i.e., have no dependence on d in the exponent; this is due to the relative small
complexity of such F , and corresponds4 roughly to infinite smoothness in our case
(indeed n−1/2 is the limit of the nonparametric rates n−α/(2α+d) as α→∞ and β = 0,
i.e., no margin assumption).

The parametric theory has developed relatively fast, yielding much insight as to
the relevant interaction between F and PX,Y . In particular, works such as (Hanneke,
2007a; Dasgupta, Hsu, and Monteleoni, 2007; Balcan, Hanneke, and Wortman, 2008;
Balcan, Beygelzimer, and Langford, 2009; Beygelzimer, Dasgupta, and Langford,
2009) show that significant savings are possible over passive learning, provided the
pair (F ,PX,Y ) has bounded Alexander capacity (a.k.a. disagreement-coefficient, see
(Alexander, 1987)). To be precise, the active rates are of the form5 ν ·n−1/2+exp(−n1/2)
where ν .

= inff∈F err(f); in other words the active rates behave like exp(−n1/2) when
ν ≈ 0 (low noise), but otherwise are O(n−1/2) as in the passive case. More recently,
(Zhang and Chaudhuri, 2014) shows similar rate regimes without requiring bounded
disagreement coefficient.

Such rates are tight as shown by matching lower-bounds of (Kääriäinen, 2006), and
(Raginsky and Rakhlin, 2011). This suggests that a refined parametrization of the noise
regimes is needed to better capture the gains in active learning. The task is undertaken
in the works of (Hanneke, 2009; Koltchinskii, 2010) where the active rates are of the

4To compare across settings, we view F as the set of classifiers I{η ≥ 1/2}, where η is α-smooth.
5Omitting constants depending on the disagreement-coefficient.



2.2. Continuous classification: active learning with smooth regression functions 41

form n−(β+1)/2, in terms of noise margin6 β, and clearly show gains over known passive
rates of the form n−(β+1)/(β+2). While this parametric setting is inherently different
from ours, interestingly, our rates coincide at the intersection where PX is unrestricted
and we let α→∞ (check that limα→∞ n

−α(β+1)/(2α+d) = n−(β+1)/2).

Nonparametric settings. Further results in (Hanneke, 2009) and (Koltchinskii,
2010) concern a setting where the class F is of larger complexity encoded in terms of
metric entropy. The active rates in this case are of the form n−(β+1)/(2+ρβ), where ρ
captures the complexity of F . These rates are again better than the corresponding
passive rate of n−(β+1)/(2+β+ρβ) shown earlier in (Tsybakov, 2004), but are only valid
for classes with a bounded disagreement coefficient.

The complexity term ρ can be viewed as describing the richness of the Bayes decision
boundary. This term becomes clear in the setting where the decision boundary is given
by a (d− 1)-dimensional curve of smoothness α′ (to be interpreted as the graph of an
α′-Hölder function Rd−1 7→ R), in which case ρ = (d− 1)/α′ (as shown in (Tsybakov,
2004)). While it has been shown in (Wang, 2011) that under these assumptions
the disagreement coefficient is unbounded and disagreement-based strategies lead to
suboptimal rates, the earlier work of (Castro and Nowak, 2008) shows that active rates
of the form n−(β+1)/(2+ρβ) are indeed tight in this nonparametric setting. Notice that
the earlier parametric rates above correspond to ρ = 0, i.e., α′ →∞.

Unfortunately such active rates are hard to compare across settings, since boundary
assumptions are inherently incompatible with smoothness assumptions on η: it is
not hard to see that smooth η does not preclude complex boundary, neither does
smooth boundary preclude complex η (as discussed in (Audibert and Tsybakov, 2007)).
However, smoothness assumptions on η seem to be a richer setting that displays a
variety of noise-regimes with different statistical rates, as shown here.

As discussed in the introduction, the closest work to ours is that of (Minsker,
2012c; Minsker, 2012a), as both works consider procedures that are efficient (unlike
that of (Koltchinskii, 2010)7) and adaptive (unlike that of (Castro and Nowak, 2008)).
However, our distinct algorithmic strategy yields interesting new insights on the effect
of noise parameters under strictly broader statistical conditions.

Other lines of work in Machine Learning are of a nonparametric nature given
the estimators employed. The statistical aims are however different from ours. In
particular (Dasgupta and Hsu, 2008; Urner, Wullf, and Ben-David, 2013; Kpotufe,
Urner, and Ben-David, 2015) are primarily concerned with the rates at which a fixed
sample {Xi}n1 might be labeled, rather than in excess risk over the Bayes classifier.
Interestingly, notions of smoothness and noise-margin (parametrized differently) also
play important roles in such problems. In (Kontorovich, Sabato, and Urner, 2016) on
the other hand, the main concern is that of sample-dependent rates, i.e., rates that
are given in terms of noise-characteristics of a random sample, rather than of the
distribution as studied here.

It is important to note that, a recent procedure of (Hanneke, 2017), which is yet
unpublished, concerns the same setting as ours, for the special case α ≤ 1, αβ ≤ d
and uniform PX , and achieves the minimax active rate of n−α(β+1)/(2α+d−αβ) without
requiring adaptive honest confidence sets; instead the procedure follows insights similar
to techniques presented in (Kontorovich, Sabato, and Urner, 2016).

Finally, we remark that active learning is believed to be related to other sequential
learning problems such as bandits, and stochastic optimization, and recent works such

6The rates are given in terms of a noise parameter κ = (β + 1)/β (see relation in Prop. 1 of
(Tsybakov, 2004)).

7The procedure requires inefficient book-keeping over F as it discards functions with large error.
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as (Ramdas and Singh, 2013) show that insights on noise regimes in active learning
can cross over to such problems.

2.2.3 Preliminaries

2.2.3.1 The active learning setting

Let the feature-label pair (X,Y ) have joint-distribution PX,Y , where the marginal
distribution according to variable X is noted PX and is supported on [0, 1]d, and where
the random variable Y belongs to {0, 1}. The conditional distribution of Y knowing
X = x, which we denote PY |X=x, is then fully characterized by the regression function

η(x)
.
= E[Y |X = x], ∀x ∈ [0, 1]d.

We extend the definition of η on Rd arbitrarily, so that we have η : Rd 7→ [0, 1] (although
we are primarily concerned about its behavior on [0, 1]d). It is well known that the
Bayes classifier f∗(x) = 1{η(x) ≥ 1/2} minimizes the 0-1 risk R(f) = PX,Y (Y 6= f(X))
over all possible f : [0, 1]d 7→ {0, 1}. The aim of the learner is to return a classifier f
with small excess error

E(f)
.
= EPX,Y (f)

.
= R(f)−R(f∗) =

∫
x∈[0,1]d:f(x)6=f∗(x)

|1− 2η(x)|dPX(x). (2.32)

Active sampling. At any point in time, the active learner can sample a label Y at
any x ∈ Rd according to a Bernoulli random variable of parameter η(x), i.e. according
to the marginal distribution PY |X=x if x ∈ [0, 1]d. The learner can request at most
n ∈ N∗ samples (i.e. its budget is n), and then returns a classifier f̂n : [0, 1]d 7→ {0, 1}.

Our goal is therefore to design a sampling strategy that outputs a classifier f̂n
whose excess risk E(f̂n) is as small as possible, with high probability over the samples
requested.

2.2.3.2 Assumptions and Definitions

We first define a hierarchical partitioning of [0, 1]d. This will come in handy in our
subroutines.

Definition 2.2. [Dyadic grid Gl, cells C, center xC , and diameter rl] We write Gl
for the regular dyadic grid on the unit cube of mesh size 2−l. It defines naturally a
partition of the unit cube in 2ld smaller cubes, or cells C ∈ Gl. They have volume
2−ld and their edges are of length 2−l. We have [0, 1]d =

⋃
C∈Gl C and C ∩ C ′ = ∅ if

C 6= C ′, with C,C ′ ∈ G2
l . We define xC as the center of C ∈ Gl, i.e. the barycenter of

C.
The diameter of the cell C is written :

rl
.
= max

x,y∈C
|x− y|2 =

√
d2−l, (2.33)

where |z|2 is the Euclidean norm of z.

We now state the following assumption on PX .

Assumption 2.1 (Strong density). There exists c1 > 0 such that for all l ≥ 0 and
any cell C of Gl satisfying PX(Cl) > 0, we have:

PX(Cl) ≥ c12−ld.
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This assumption allows us to lower bound the measure of a cell of the grid, and
holds for instance when PX is uniform or approximately so. This assumption is
slightly weaker than the one in (Minsker, 2012c). We obtain results for both when
Assumption 2.1 holds, and when it does not.

Definition 2.3 (Hölder smoothness). For α > 0 and λ > 0, we denote the Hölder
class Σ(λ, α) of functions g : Rd → [0, 1] that are bαc times continuously differentiable,
that are such that for any j ∈ N, j ≤ α

sup
x∈Rd

∑
s:|s|=j

|Dsg(x)| ≤ λ, and, sup
x,y∈Rd

∑
s:|s|=bαc

|Dsg(x)−Dsg(y)|
||x− y||α−bαc2

≤ λ,

where Dsf is the classical mixed partial derivative with parameter s. Note that for
α ≤ 1 and λ ≥ 1, we simply require supx,y∈Rd

|g(y)−g(x)|
||y−x||α2

≤ λ.

If a function is α-Hölder, then it is smooth and well approximated by polynoms of
degree bαc, but also by other approximation means, as e.g. kernels.

Assumption 2.2 (Hölder smoothness of η). η belongs to Σ(λ, α) with α > 0 and
λ ≥ 1.

We finally state our last assumption, which upper bounds the measure of the space
where it is not easy to determine which class is best fitted.

Assumption 2.3 (Margin condition). There exists nonnegative c3,∆0, and β such
that ∀∆ > 0:

PX(|η(X)− 1/2| < ∆0) = 0, and, PX(|η(X)− 1/2| ≤ ∆0 + ∆) ≤ c3∆β.

These parameters cover many interesting cases, including ∆0 = 0, β > 0 (Tsybakov’s
noise condition) and ∆0 > 0, β = 0 (Massart’s margin condition), which are common
in the literature. This assumption allows us to bound the measure of regions close to
the decision boundary (i.e. where η is close to 1/2). The case ∆0 > 0 is linked to the
cluster assumption in the semi-supervised learning literature (see e.g. (Chapelle and
Weston, 2003; Rigollet, 2007)), and can model situations where supp(PX) breaks up
into components each admitting one dominant class (i.e. |η − 1/2| ≥ ∆0 on each such
component and η does not cross 1/2 on supp(PX)).

Definition 2.4. We denote by P(α, β,∆0)
.
= P(α, β,∆0;λ, c3) the set of classification

problems PX,Y characterized by (η,PX) that are such that Assumptions 2.4 and 3.2 are
satisfied with parameters α > 0, β ≥ 0,∆0 ≥ 0, and some fixed λ ≥ 1, c3 > 0. Moreover,
we denote P∗(α, β,∆0) the subset of P(α, β,∆0) such that PX satisfies Assumption 2.1
(strong density).

We fix in the rest of the Section c3 > 0 and λ ≥ 1. These parameters will be
discussed in Section 2.2.5.4.

2.2.4 Non-Adaptive Subroutine

In this section, we construct an algorithm that is optimal over a given smoothness
class Σ(λ, α) - and that uses the knowledge of λ, α. This algorithm is non-adaptive, as
is often the case in the continuum-armed bandit literature that assumes knowledge of
a semi-metric in order to optimize (i.e. maximize or minimize) the sum of rewards
gathered by an agent receiving noisy observations of a function ((Auer, Ortner, and
Szepesvári, 2007), (Kleinberg, Slivkins, and Upfal, 2008), (Cope, 2009), (Bubeck et al.,
2011)).
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2.2.4.1 Description of the Subroutine

Algorithm 5 Non-adaptive Subroutine
Input: n, δ, α, λ
Initialisation: t = 2dt1,α∧1, l = 1, A1

.
= G1 (active space), ∀l′ > 1,Al′

.
= ∅,

S0 = S1 .
= ∅

while t+ |Al| · tl,α ≤ n do
for each active cell C ∈ Al do
Request tl,α∧1 samples (ỸC,i)i≤tl,α∧1

at the center xC of C

if
{
|η̂(xC)− 1/2| ≤ Bl,α

}
then

Al+1 = Al+1 ∪ {C ′ ∈ Gl+1 : C ′ ⊂ C} // keep all children C ′ of C
active

else
Let y .

= 1{η̂(xC) ≥ 1/2}
Sy = Sy ∪ C // label the cell as class y

end if
end for
Increase depth to l = l + 1, and set t .= t+ |Al| · tl,α∧1

end while
Set L = l − 1
if α > 1 then
Run Algorithm 9 on last partition AL

end if
Output: Sy for y ∈ {0, 1}, and f̂n,α = 1{S1}

We first introduce an algorithm that takes λ, α as parameters, and refines its
exploration of the space to focus on zones where the classification problem is the most
difficult (i.e. where η is close to the 1/2 level set). It does so by iteratively refining
a partition of the space (based on a dyadic tree), and using a simple plug-in rule to
label cells. At a given depth l, the algorithm samples the center xC of the active cells
C ∈ Al a fixed number of times tl,α∧1 with:

tl,α =


log(1/δl,α)

2b2l,α
if α ≤ 1

42d+1(α+ 1)2d log(1/δl,α)

b2l,α
if α > 1,

where bl,α = λd(α∧1)/22−lα and δl,α = δ2−l(d+1)(α∨1), and collects the labels (ỸC,i)i≤tl,α∧1
.

The algorithm then compares an estimate η̂(xC) of η(xC) with 1/2. The estimate is
simply the sample-average of Y -values at xC , i.e.:

η̂(xC) = t−1
l,α∧1

tl,α∧1∑
i=1

ỸC,i.

If |η̂(xC)− 1/2| is sufficiently large with respect to

Bl,α = 2
[√ log(1/δl,α∧1)

2tl,α∧1
+ bl,α∧1

]
,
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which is the sum of a bias and a deviation term, the cell is labeled (i.e. added to S1 or
S0) as the best empirical class, i.e. as

1{η̂(xC) ≥ 1/2},

and we refer to that process as labeling. If the gap is too small then the partition needs
to be refined, and the cell is split into smaller cubes. All these cells are then the active
cells at depth l + 1. The algorithm stops refining the partition of the space when a
given constraint on the used budget is saturated, namely when the used budget t plus
tl,α.|Al| is larger than n - this happens at depth L.

If α ≥ 1, we need to consider higher order estimators in active cells - we make
use of smoothing kernels to take advantage of the higher smoothness to estimate η
more precisely. This last step is described in Algorithm 9. For any l ≥ 1 and any cell
C ∈ Gl, we write C̃ for the inflated cell C, such that z

C̃ = {x ∈ Rd : inf
z∈C

sup
i≤d
|x(i) − z(i)| ≤ 2−l},

where x(i), z(i) are the ith coordinates of respectively x, z.
A number tL,α of samples (XC,i, YC,i)C∈AL,i≤tL,α is collected uniformly at random

in each inflated cell C̃ corresponding to any C ∈ AL. For any α > 0, let k̃α the
one-dimensional convolution kernel of order bαc+ 1 based on the Legendre polynomial,
defined in the proof of Proposition 4.1.6 in (Giné and Nickl, 2016). Consider the
d-dimensional corresponding isotropic product kernel defined for any z ∈ Rd as :

Kα(z) =
d∏
i=1

k̃α(z(i)).

The Subroutine then updates S0 and S1 in the active regions of AL using the kernel
estimator

η̂C(x) =
1

tl,α

∑
i≤tl,α

Kα((x−XC,i)2
l)YC,i.

Finally (both when α ≤ 1 and α > 1) the algorithm returns the sets S0, S1 of
labeled cells in classes respectively 0 or 1 and uses them to build the classifier f̂n - the
cells that are still active receive an arbitrary label (here 0).

Algorithm 6 Procedure for smoothness α > 1

for each cell C ∈ AL do
Sample uniformly tL,α points (XC,i, YC,i)i≤tL,α on C̃
for each cell C ′ ∈ GbLαc such that C ′ ⊂ C do
Set

η̂C(xC′) =
1

tL,α

∑
i≤tL,α

Kα((xC′ −XC,i)2
L)YC,i.

Set S0 = S0 ∪ C ′, if η̂C(xC′)− 1/2 < 4d+1λ2−αL

Set S1 = S1 ∪ C ′, if η̂C(xC′)− 1/2 > 4d+1λ2−αL

end for
end for
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2.2.4.2 Non-Adaptive Results

The first result is for the class P∗(λ, α, β,∆0), in particular under the strong density
assumption.

Theorem 2.5. Algorithm 5 run on a problem in P∗(λ, α, β,∆0) with input parameters
n, δ, α, λ is (δ,∆∗n,δ,α,λ, n)−correct, with

∆∗n,δ,α,λ =

12
√
d
(
c7λ

( dα∨β) log
(

2dλ2n
δ

)
(2α+[d−αβ]+)α n

) α
2α+[d−αβ]+ for α ≤ 1

4d+22α
(
c8λ(d∨β) log( 2dλ2n

δ
)

n

) α
2α+[d−β]+ otherwise,

with c7 = 2(d+ 1)c5, c8 = 42d+1(α+ 1)2α(d+ 1)c5 and c5 = 2(α∧1)β max( c3c1 8β, 1),
where c1 and c3 are the constants involved in Assumption 2.1 and 3.2 respectively.

The proof of this theorem is in Section 2.2.6.1.
An important case to consider is that if ∆0 > 0, then the excess risk of the classifier
output by Algorithm 5 is nil with probability 1−8δ as soon as ∆∗n,δ,α,λ < ∆0. Inverting
the bound on ∆∗n,δ,α,λ for n yields a sufficient condition on the budget, that we made
clear in Theorem 2.7.

We now exhibit another theorem, very similar to Theorem 2.5, but that holds for
more general classes, as we do not impose regularity assumptions on the density.

Theorem 2.6. Algorithm 5 run on a problem in P(λ, α, β,∆0) with input parameters
n, δ, α, λ is (δ,∆n,δ,α,λ, n)−correct, with

∆n,δ,α,λ =

12
√
dλd/(2α+d)

(
2(d+1) log

(
2dλ2n
δ

)
(2α+d)α n

) α
2α+d for α ≤ 1

4d+22αλd/(2α+d)
(

42d+1(α+1)2d(d+1) log( 2dλ2n
δ

)

n

) α
2α+d otherwise.

The proof of this theorem is in Section 2.2.6.1.

These results show that Algorithm 5 can be used by Algorithm 10 for any problem
PX,Y ∈ P∗(α, β,∆0) (respectively PX,Y ∈ P(α, β,∆0)), as it is (δ,∆∗n,δ,α,λ, n)−correct
(respectively (δ,∆n,δ,α,λ, n)−correct).

2.2.4.3 Remarks on Non-Adaptive Procedures

Optimism in front of uncertainty. The main principle behind our algorithm is
that of optimism in face of uncertainty, as we label regions thanks to an optimistic
lower-bound on the gap between η and its 1/2 level set, borrowing from well understood
ideas in the bandit literature (see (Auer, Cesa-Bianchi, and Fischer, 2002), (Bubeck,
Cesa-Bianchi, et al., 2012)), which translate naturally to the continuous-armed bandit
problem (see (Auer, Ortner, and Szepesvári, 2007; Kleinberg, Slivkins, and Upfal,
2008)). This allows the algorithm to prune regions of the space for which it is confident
that they do not intersect the 1/2 level set, in order to focus on regions harder to
classify (w.r.t. 1/2), naturally adapting to the margin conditions.

Hierarchical partitioning. Our algorithm proceeds by keeping a hierarchical par-
tition of the space, zooming in on regions that are not yet classified with respect to
1/2. This kind of construction is related to the ones in (Bubeck et al., 2011; Munos,
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2011) that target the very different setting of optimization of a function. It is also
related to the strategies exposed in (Perchet, Rigollet, et al., 2013), which tackles the
contextual bandit problem in the setting where α ≤ 1 - in this setting the learner does
not actively explore the space but receives random features.

2.2.5 Adaptive Results

We now give a presentation of our main adaptive strategy, Algorithm 10.

Algorithm 7 Adapting to unknown smoothness α
Input: n, δ, λ, and a black-box Subroutine
Initialization: s0

0 = s1
0 = ∅

for i = 1, ..., blog(n)c3 do
Let n0 = n

blog(n)c3 , δ0 = δ
blog(n)c3 , and αi = i

blog(n)c2

Run Subroutine with parameters (n0, δ0, αi, λ) and receive S0
i , S

1
i

For y ∈ {0, 1}, set syi = syi−1 ∪ (Syi \ s
1−y
i−1 )

end for
Output: S0 = s0

blog(n)c3 , S
1 = s1

blog(n)c3 and classifier f̂n = 1{S1}

Algorithm 10 aggregates the label estimates of a black-box (non-adaptive) Subrou-
tine over increasing guesses αi of the unknown smoothness parameter α. Algorithm 10
takes as parameters n, δ, λ, and the black-box Subroutine, and outputs a classifier f̂n.
Here n is the sampling budget, δ is the desired level of confidence of the algorithm, λ
is such that η is (λ, α)-Hölder for some unknown α; in practice λ is also unknown, but
any upper-bound is sufficient, e.g. log n for n sufficiently large.

In each phase i ∈ {1, 2, . . . , blog(n)c3}, the black-box Subroutine takes four param-
eters: a sampling budget n0, a confidence level δ0, and smoothness parameters αi, λ.
It then returns two disjoint subsets of [0, 1]d, Syi , y ∈ {0, 1}. The set S0

i corresponds
to all x ∈ [0, 1]d that are labeled 0 by the Subroutine (in phase i), and S1

i corresponds
to the label 1. The remaining space [0, 1]d \ S1

i ∪ S0
i corresponds to a region that the

Subroutine could not confidently label.
Algorithm 10 calls the Subroutine blog(n)c3 times, for increasing values of αi on the

grid {blog(n)c−2, 2blog(n)c−2, ..., blog(n)c}), and collects the sets Syi that it aggregates
into syi . For n sufficiently large, this grid contains the unknown α parameter to be
adapted to.

The main intuition behind the procedure relies on the nestedness of Hölder classes:
if η is α-Hölder for some unknown α, then it is αi-Hölder for αi ≤ α. Thus, suppose
the Subroutine returns correct labels Syi whenever η is αi-Hölder; then for any αi ≤ α
the aggregated labels remain correct. When αi > α, the error cannot be higher than
the error in earlier phases since the aggregation never overwrites correct labels. In
other words, the excess risk of Algorithm 10 is at most the error due to the highest
phase s.t. αi ≤ α. We therefore just need the Subroutine to be correct in an optimal
way formalized below.

Definition 2.5 ((δ,∆, n)-correct algorithm). Consider a procedure which returns
disjoint measurable sets S0, S1 ⊂ [0, 1]d. Let 0 < δ < 1, and ∆ ≥ 0. We call such a
procedure weakly (δ,∆, n)-correct for a classification problem PX,Y (characterized
by (η,PX)) if, with probability larger than 1− 8δ over at most n label requests:{

x ∈ [0, 1]d : η(x)− 1/2 > ∆
}
⊂ S1, and

{
x ∈ [0, 1]d : 1/2− η(x) > ∆

}
⊂ S0.



48 Chapter 2. Adaptive active classification

If in addition, under the same probability event over at most n label requests, we have

S1 ⊂
{
x ∈ [0, 1]d : η(x)− 1/2 > 0

}
, and S0 ⊂

{
x ∈ [0, 1]d : η(x)− 1/2 < 0

}
,

then such a procedure is simply called (δ,∆, n)-correct for PX,Y .

2.2.5.1 Main Adaptive Results

We now present our main results, which are high-probability bounds on the risk of the
classifier output by Algorithm 10, under different noise regimes. Our upper-bounds
build on the following simple proposition, the intuition of which was detailed above.

Proposition 2.1 (Correctness of aggregation). Let n ∈ N∗ and 1 > δ > 0. Let
δ0 = δ/(blog(n)c3) and n0 = n/(blog(n)c3) as in Algorithm 10. Fix β ≥ 0, ∆0 ≥ 0.
Suppose that, for any α > 0, the Subroutine in Algorithm 10 is (δ0,∆α, n0)-correct for
any PX,Y ∈ P∗(α, β,∆0), where 0 ≤ ∆α depends on n, δ and the class P∗(α, β,∆0).

Fix α ∈ [blog(n)c−2, blog(n)c], and let αi = i/blog(n)c2 for i ∈ {1, . . . , blog(n)c3}.
Then Algorithm 10 is weakly (δ0,∆αi , n0)-correct for any PX,Y ∈ P∗(α, β,∆0) for
the largest i such that αi ≤ α.

The same holds true for P(α, β,∆0) in place of P∗(α, β,∆0).

Remark 2.2. To see why the proposition is useful, suppose for instance that our
problem belongs to P∗(α, β, 0), and Algorithm 10 happens to be weakly (δ0,∆, n0)-
correct on this problem for some ∆

.
= ∆(n0, δ0, α, β). Then, by definition of correctness,

the returned classifier f̂n agrees with the Bayes classifier f on the set {x : |η(x)−1/2| >
∆}; that is, its excess error only happens on the set {x : |η(x)− 1/2| ≤ ∆}. Therefore
by Equation (2.32), with probability larger than 1− δ0

E(f̂n) ≤ 2∆ · PX ({x : |η(x)− 1/2| ≤ ∆}) ≤ 2c3∆1+β.

In other words, we just need to show the existence of a Subroutine which is
(δ0,∆, n0)-correct for any class P∗(α, β,∆0) (or respectively P(α, β,∆0)) with ∆

.
=

∆(n0, δ0, α, β,∆0) of appropriate order over ranges of α, β,∆0. The adaptive results
on the next sections are derived in this manner. In particular, we will show that
Algorithm 5 of Section 2.2.4 is a correct such Subroutine.

Our results show that the excess risk rates in the active setting are strictly faster
than in the passive setting (except for β = 0, i.e., no noise condition), in both cases
i.e. when PX is nearly uniform on its support (Assumption 2.1), and when it is fully
unrestricted. These two cases are presented in the next two sections.

2.2.5.2 Adaptive Rates for P∗(α, β,∆0)

We start with results for the class P∗(α, β,∆0), i.e. under the strong density condition
which encodes the usual assumption in previous work that the marginal PX is nearly
uniform.

Theorem 2.7 (Adaptive upper-bounds). Let n ∈ N∗ and 1 > δ > 0. Assume that
PX,Y ∈ P∗(α, β,∆0) with

(
3d

log(n)

)1/3 ≤ α ≤ blog(n)c.
Algorithm 10, with input parameters (n, δ, λ,Algorithm 5), outputs a classifier f̂n

satisfying the following, with probability at least 1− 8δ:
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• For any ∆0 ≥ 0,

E(f̂n) ≤ C

(
λ( d

α∧1
∨β) log3(n) log(λnδ )

n

) α(β+1)
2α+[d−(α∧1)β]+

,

where the constant C > 0 does not depend on n, δ, λ.

• If ∆0 > 0, then E(f̂n) = 0 whenever the budget satisfies

n

blog(n)c3
> C log

(λn
δ

)
·

(
λ( d

α∧1
∨β)

∆0

) 2α+[d−(α∧1)β]+
α

where C > 0 does not depend on n, δ, λ.

The above theorem is proved, following Remark 2.2, by showing that Algorithm
9 is correct for problems in P∗(α, β,∆0) with some ∆ = O(n−α/(2α+[d−(α∧1)β]+); for
∆0 > 0, correctness is obtained for ∆ ≤ ∆0, provided sufficiently large budget n. See
Theorem 2.5.

The rate of Theorem 2.7 matches (up to logarithmic factors) the minimax lower-
bound for this class of problems with α > 0, β ≥ 0 such that αβ ≤ d obtained
in (Minsker, 2012c), which we recall hereunder for completeness.

Theorem 2.8 (Lower-bound: Theorem 7 in (Minsker, 2012c)). Let α > 0, β ≥ 0 such
that αβ ≤ d and assume that c3, λ are large enough. For n large enough, any (possibly
active) strategy that samples at most n labels and returns a classifier f̂n satisfies :

sup
PX,Y ∈P∗(α,β,0)

EPX,Y [EPX,Y (f̂n)] ≥ Cn−
2α

2α+d−αβ ,

where C > 0 does not depend on n.

However, the above lower-bound turns out not to be tight for α > 1. We now
present a novel minimax lower-bound that complements the above, and which is always
tighter for α > 1, β = 1. To the best of our knowledge, it is the first lower bound
that highlights the phase transition in the active learning setting for α > 1 which was
conjectured in (Minsker, 2012c).

Theorem 2.9 (Lower-bound). Let α > 0, β = 1, and assume that c3, λ are large
enough. For n large enough, any (possibly active) strategy that samples at most n labels
and returns a classifier f̂n satisfies:

sup
PX,Y ∈P∗(α,1,0)

EPX,Y [EPX,Y (f̂n)] ≥ Cn−
2α

2α+d−1 ,

where C > 0 does not depend on n.

Proof. The proof follows information theoretic arguments from (Audibert and Tsy-
bakov, 2007), adapted to the active learning setting by (Castro and Nowak, 2008), and
to our specific problem by (Minsker, 2012c). The general idea of the construction is to
create a family of functions that are α-Hölder, and cross the level set of interest 1/2
linearly along one of the dimensions. First, we recall Theorem 3.5 in (Tsybakov, 2009a).
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Theorem 2.10 (Tsybakov). Let H be a class of models, d : H×H → R+ a pseudo-
metric, and {Pσ, σ ∈ H} a collection of probability measures associated with H. Assume
there exists a subset {η0, ..., ηM} of H such that:

1. d(ηi, ηj) ≥ 2s > 0 for all 0 ≤ i < j ≤M

2. Pηi is absolutely continuous with respect to Pη0 for every 0 < i ≤M

3. 1
M

∑M
i=1 KL(Pηi , Pη0) ≤ α log(M), for 0 < α < 1

8

then

inf
η̂

sup
η∈H

Pη
(
d(η̂, η) ≥ s

)
≥

√
M

1 +
√
M

(
1− 2α−

√
2α

log(M)

)
,

where the infimum is taken over all possible estimators of η based on a sample from Pη.

Let α > 0 and d ∈ N, d > 1. For x ∈ Rd, we write x = (x(1), · · · , x(d)) and x(i)

denotes the value of the i-th coordinate of x.
Consider the grid of [0, 1]d−1 of step size 2∆1/α, ∆ > 0. There are

K = 21−d∆(1−d)/α,

disjoint hypercubes in this grid, and we write them (H ′k)k≤K . For k ≤ K, let xk be
the barycenter of H ′k.

We now define the partition of [0, 1]d :

[0, 1]d =
K⋃
k=1

Hk =
K⋃
k=1

(H ′k × [0, 1]),

where Hk = (H ′k × [0, 1]) is an hyper-rectangle corresponding to H ′k - these are hyper-
rectangles of side 2∆1/α along the first (d− 1) dimensions, and side 1 along the last
dimension.

We define f for any z ∈ [0, 1] as

f(z) =
z

2
+

1

4
,

We also define g for any z ∈ [1
2∆1/α,∆1/α] as

g(z) =

Cλ,α4α−1
(

∆1/α − z
)α
, if 3

4∆1/α < z ≤ ∆1/α

Cλ,α

(
∆
2 − 4α−1

(
z − 1

2∆1/α
)α)

, if 1
2∆1/α ≤ z ≤ 3

4∆1/α,

where Cλ,α > 0 is a small constant that depends only on α, λ.
For s ∈ {−1, 1} and k ≤ K, and for any x ∈ Hk, we write

Ψk,s(x) =


f(x(d)) + s

Cλ,α∆
2 , if |x̃− x̃k|2 ≤ ∆1/α

2

f(x(d)), if |x̃− x̃k|2 ≥ ∆1/α

f(x(d)) + sg(|x̃− x̃k|), otherwise.

g is such that g(1
2∆1/α)) =

Cλ,α∆
2 , and g(∆1/α) = 0. Moreover, it is λ/αd, α Hölder

on [1
2∆1/α,∆1/α] (in the sense of the one dimensional definition of Definition 2.3) for

Cλ,α small enough (depending only on α, λ), and such that all its derivatives are 0 in
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Figure 2.2: Lower-bound construction
of η(x) illustrated for d = 2. The func-
tion changes slowly (linearly) in one di-
rection, but can change fast – at most
α smooth, in d − β directions (changes
at 2∆1/α intervals, for appropriate ∆).
The learner has to identify such fast
changes, otherwise incurs a pointwise er-
ror roughly determined by the margin of
η away from 1/2; this margin is O(∆)
(more precisely Cλ,α ·∆). The slower lin-
ear change in one direction ensures that
such margin occurs on a sufficiently large
mass of points.

1
2∆1/α, ∆1/α. Since by definition of Ψk,s all derivatives in x are maximized in absolute
value in the direction (x̃− x̃k, 1), it holds that Ψk,s is in Σ(λ, α) restricted to Hk.

For σ ∈ {−1, 1}K , we define for any x ∈ [0, 1]d the function

ησ(x) =
∑
k≤K

Ψk,σk1{x ∈ Hk}.

Such ησ is illustrated in Figure 2.2. Note that since each Ψk,s is in Σ(λ, α) restricted to
Hk, and by definition of Ψk,s at the borders of each Hk, it holds that ησ is in Σ(λ, α)
on [0, 1]d (and as such it can be extended as a function Σ(λ, α) on Rd). Finally note
that anywhere on [0, 1]d, ησ takes value in [1/5, 4/5] for ∆, Cλ,α small enough. So
Assumption 2.4 is satisfied with λ, α, and ησ is an admissible regression function.

Finally, for any σ ∈ {−1,+1}K , we define Pσ as the measure of the data in our
setting when PX is uniform on [0, 1]d and where the regression function η providing
the distribution of the labels is ησ. We write

H = {Pσ : σ ∈ {−1,+1}K}.

All elements of H satisfy Assumption 2.1.
Let σ ∈ {−1, 1}d. By definition of Pσ it holds for any k ≤ K and any ε ∈ [0, 1/2]

that

Pσ

(
X ∈ Hk, and |ησ(X)− 1/2| ≤ ε

)
≤ (4− 2Cλ,α)ε2d−1∆(d−1)/α.

As K = 21−d∆(1−d)/α, it follows by an union over all k ≤ K that

Pσ

(
X : |ησ(X)−1/2| ≤ ε

)
=

K⋃
k=1

Pσ

(
X ∈ Hk, and |ησ(x)−1/2| ≤ ε

)
≤ (4−2Cλ,α)ε,

and so Assumption 3.2 is satisfied with β = 1, ∆0 = 0 and c3 = (4− 2Cλ,α).

Proposition 2.2 (Gilbert-Varshamov). For K ≥ 8 there exists a subset {σ0, ..., σM} ⊂
{−1, 1}K such that σ0 = {1, ..., 1}, ρ(σi, σj) ≥ K

8 for any 0 ≤ i < j ≤ M and
M ≥ 2K/8, where ρ stands for the Hamming distance between two sets of length K.
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We denote H′ .= {Pσ0 , · · · , PσM } a subset of H of cardinality M ≥ 2K/8 with
K ≥ 8 such that for any 1 ≤ k < j ≤M , we have ρ(σk, σj) ≥ K/8. We know such a
subset exists by Proposition 2.7.

Proposition 2.3 (Castro and Nowak). For any σ ∈ H such that σ 6= σ0 and ∆ small
enough such that ησ, ησ0 take values only in [1/5, 4/5], we have:

KL(Pσ,n||Pσ0,n) ≤ 7n max
x∈[0,1]d

(ησ(x)− ησ0(x))2.

where KL(.||.) is the Kullback-Leibler divergence between two-distributions, and Pσ,n
stands for the joint distribution (Xi, Yi)

n
i=1 of samples collected by any (possibly active)

algorithm under Pσ.

This proposition is a consequence of the analysis in (Castro and Nowak, 2008)
(Theorem 1 and 3, and Lemma 1). A proof can be found in (Minsker, 2012c) page 10.

By Definition of the ησ, we know that maxx∈[0,1]d |ησ(x)− ησ0(x)| ≤ Cλ,α∆ (as for
any x, x′ ∈ [0, 1]d, ησ(x) − x(d)/2 + 1/4 ∈ [−Cλ,α∆

2 ;
Cλ,α∆

2 ]), and so Proposition 2.8
implies that for any σ ∈ H′:

KL(Pσ,n||Pσ0,n) ≤ 7n max
x∈[0,1]d

(ησ(x)− ησ0(x))2

≤ 7nC2
λ,α∆2.

So we have :

1

M

∑
σ∈H′

KL(Pσ,n||Pσ0,n) ≤ 7nC2
λ,α∆2 <

K

82
≤ log(|H′|)

8
,

for n larger than a large enough constant that depends only on α, λ, and setting

∆ = C2n
−α/(2α+d−1),

as K = c3∆(d−1)/α. This implies that for this choice of ∆, Assumption 3 in Theo-
rem 2.18 is satisfied.

Consider σ, σ′ ∈ H′ such that σ 6= σ′. Let us write the pseudo-metric:

D(Pσ, Pσ′) = PX(sign(ησ(x)− 1/2) 6= sign(ησ′(x)− 1/2)),

where sign(x) for x ∈ R is the sign of x.
Since for any x ∈ Hk, we have that ησ(x) = f(x(d))+σ(k)Cλ,α∆

2 if |x̃−x̃k|2 ≤ ∆1/α/2,
it holds that if σ(k) 6= (σ′)(k) for some k ≤ K

PX(X ∈ Hk and sign(ησ(x)− 1/2) 6= sign(ησ′(x)− 1/2)) ≥ C4∆(d−1)/α∆.

By construction of H′ we have ρ(σ, σ′) ≥ K/8, and it follows that:

D(Pσ, Pσ′) ≥ PX(X ∈ Hk and sign(ησ(x)− 1/2) 6= sign(ησ′(x)− 1/2))ρ(σ, σ′)

≥ K

8
C4∆(d−1)/α∆

≥ C5∆

≥ C6n
−α/(2α+d−1).
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And so all assumptions in Theorem 2.18 are satisfied and the lower bound follows , as
we conclude by using the following proposition from (Koltchinskii, 2009) (see Lemma
5.2), where we have β = 1 the Tsybakov noise exponent.

Proposition 2.4. For any estimator η̂ of η such that η ∈ P∗(α, β, 0) we have:

R(η̂)−R(η) ≥ CPX
(
sign(η̂(x)− 1/2) 6= sign(η(x)− 1/2)

) 1+β
β ,

for some constant C > 0.

In the case d = 1, the bound does not depend on α, and the previous information
theoretic arguments can easily be adapted by only considering f(z) - the problem
reduces to distinguishing between two Bernoulli distributions of parameters p− ∆

2 and
p+ ∆

2 for p ∈ [1/4, 3/4].

Remark 2.3. Under the strong density assumption, the rate is improved from
n−α(β+1)/(2α+d) to n−α(β+1)/(2α+[d−(α∧1)β]+). This implies that fast rates (i.e. faster
than n−1/2) are reachable for αβ > d/(2 + (α∧ 1)−1), improving from αβ > d/2 in the
passive learning setting. This rate matches (up to logarithmic factors) the lower-bound
in (Minsker, 2012c) for α ≤ 1.

It also improves on the results in (Minsker, 2012c), as we require strictly weaker
assumptions (see Assumption 2 in (Minsker, 2012c), which in light of the examples
given is rather strong). In the important case α > 1, our results match the rate
conjectured in (Minsker, 2012c), up to logarithmic factors. The conjectured rates of
(Minsker, 2012c) turns out to be tight, as our lower-bound shows for the case β = 1,
i.e. no better upper-bound is possible over all β. This highlights that there is indeed a
phase transition happening (at least when β = 1) when we go from the case α ≤ 1 to
the case α ≥ 1. Our lower-bound leaves open the possibility of even richer transitions
over regimes of the β parameter.

Our lower-bound analysis of Section 2.2.5.2 shows that, at least for β = 1, the
quantity d− β acts like the degrees of freedom of the problem: we can make η change
fast in at least d− β directions, and this is sufficient to make the problem difficult.

2.2.5.3 Adaptive Rates for P(α, β,∆0)

We now exhibit a theorem very similar to Theorem 2.7, but that holds for more general
classes, as we do not impose regularity assumptions on the marginal PX , which is thus
unrestricted.

Theorem 2.11 (Upper-bound). Let n ∈ N∗ and 1 > δ > 0. Assume that PX,Y ∈
P(α, β,∆0) with 1

blog(n)c ≤ α ≤ blog(n)c.
Algorithm 10, with input parameters (n, δ, λ,Algorithm 5), outputs a classifier f̂n

satisfying the following, with probability at least 1− 8δ:

• For any ∆0:

E(f̂n) ≤ Cλ
d(β+1)
2α+d

( log3(n) log(λnδ )

n

)α(β+1)
2α+d

,

where C > 0 does not depend on n, δ, λ.
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• If ∆0 > 0, then E(f̂n) = 0 whenever the budget satisfies

n

blog3(n)c
> Cλd/α log

(λn
δ

)( 1

∆0

) 2α+d
α

where C > 0 does not depend on n, δ, λ.

The above theorem is proved, following Remark 2.2, by showing that Algorithm
9 is correct for problems in P(α, β,∆0) with some ∆ = O(n−α/(2α+d)); for ∆0 >
0, correctness is obtained for ∆ ≤ ∆0, provided sufficiently large budget n. See
Theorem 2.6.

We complement this result with a novel lower-bound for this class of problems,
which shows that the result in Theorem 2.11 is tight up to logarithmic factors.

Theorem 2.12 (Lower-bound). Let α > 0, β ≥ 0 and assume that c3, λ are large
enough. For n large enough, any (possibly active) strategy that samples at most n labels
and returns a classifier f̂n satisfies:

sup
PX,Y ∈P(α,β,0)

EPX,Y [EPX,Y (f̂n)] ≥ Cn−
α(1+β)
2α+d ,

where C > 0 does not depend on n, δ.

The proof of this last theorem is given in Section 2.2.6.4.

Remark 2.5. The unrestricted PX case treated in this section is analogous to the
mild density assumptions studied in (Audibert and Tsybakov, 2007) in the passive
setting. Our results imply that even under these weaker assumptions, the active setting
brings an improvement in the rate - from n−α(β+1)/(2α+d+αβ) to n−α(β+1)/(2α+d). The
rate improvement is possible since an active procedure can save in labels by focusing
all samplings to regions where η is close to 1/2. However, this might not be possible
in passive learning since the density in such regions can be arbitrarily low and thus
yield too few training samples. To better appreciate the improvement in rates, notice
that the passive rates are never faster than n−1, while in the active setting, we can
reach super fast rates (i.e. faster than n−1) as soon as αβ > d. In fact, this rate is
similar to the minimax optimal rate in the passive setting under the strong density
assumption: in some sense the active setting mirrors the strong density assumption,
given the ability of the learner to sample everywhere.

2.2.5.4 General Remarks

Adaptivity to the unknown parameters. An important feature of Algorithm 10
is that it is adaptive to the parameters α, β,∆0 from Assumptions 2.4 and 3.2 - i.e. it
does not take these parameters as inputs and yet has smaller excess risk than the
minimax optimal excess risk rate over all classes P(α, β,∆0) (respectively P∗(α, β,∆0)
if Assumption 2.1 holds) to which the problem belongs to. A key point in the con-
struction of Algorithm 10 is that it makes use of the nested nature of the models. A
different strategy could have been to use a cross-validation scheme to select one of the
classifiers output by the different runs of Algorithm 5, however such a strategy would
not allow fast rates, as the cross-validation error might dominate the rate. Instead,
taking advantage of the nested smoothness classes, we can aggregate our classifiers
such that the resulting classifier is in agreement with all the classifiers that are optimal
for bigger classes - this idea is related to the construction in the totally different
passive setting (Lepski and Spokoiny, 1997). This aggregation method is an important
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feature of our algorithm, as it bypasses the calculation of disagreement sets or other
quantities that can be computationally intractable, such as optimizing over entire sets
of functions as in (Hanneke, 2009; Koltchinskii, 2010). It also allows us to remove a
key restriction on the class of problems in (Minsker, 2012c) - see Assumption 2 therein
required for the construction of honest and adaptive confidence sets. Our algorithm
moreover adapts to the parameter c3 of Assumptions 3.2, but takes as parameter λ of
Assumption 2.4. However, it is possible to use in the algorithm an upper bound on
the parameter λ - as e.g. log(n) for n large enough - and to only worsen the excess
risk bound by a λ at a bounded power - e.g. poly log(n).

Extended Settings. Note that our results can readily be extended to the multi-
class setting (see (Dinh et al., 2015) for the multi-class analogous of (Audibert and
Tsybakov, 2007) in the passive setting) through a small but necessary refinement of
the aggregation method (one has to keep track of eliminated classes i.e. classes deemed
impossible for a certain region of the space by bigger models). It is also possible to
modify Assumption 2.1 such that the box-counting dimension of the support of PX
is d′ < d (if for example PX is supported on a manifold of dimension d′ embedded
in [0, 1]d), and we would obtain similar results where d is replaced by d′, effectively
adapting to that smaller dimension.

2.2.6 Proofs of Section 2.2

2.2.6.1 Proof of Theorem 2.5 and Theorem 2.6

Proof of Theorem 2.5 Let us write in this proof in order to simplify the notations

tl = tl,α∧1, bl = bl,α∧1, δl = δl,α∨1, Bl = Bl,α∧1 and Nl = |Al|.

We will now show that on a certain event, the algorithm makes no mistake up to a
certain depth L, and that the error is controlled beyond that depth.
Step 1: A favorable event.
Consider a cell C of depth l. We define the event:

ξC,l =
{
|t−1
l

tl∑
u=1

1(ỸC,i = 1)− η(xC)| ≤

√
log(1/δl)

2tl

}
,

where the (ỸC,i)i≤tl are samples collected in C at point xC if C if the algorithm samples
in cell C. We remind that

η̂(xC) = t−1
l

tl∑
i=1

1(ỸC,i = 1).

We consider the following event ξ:

ξ =
{ ⋂
l∈N∗,C∈Gl

ξC,l

}
.

Lemma 2.1. We have
P(ξ) ≥ 1− 4δ.

Moreover on ξ
|η̂(xC)− η(xC)| ≤ bl. (2.34)
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Step 2: No mistakes on labeled cells.
For l ∈ N∗, let C ∈ Gl and write

k̂∗C = 1{η̂(xC) ≥ 1/2} and let us write, k∗C
.
= 1{η(xC) ≥ 1/2}.

Lemma 2.2. We have that on ξ,

∀y ∈ {0, 1},∀C ∈ Sy, ∀x ∈ C, 1{η(x) ≥ 1/2} = y. (2.35)

This implies that:

S1 ⊂ {x : η(x)− 1/2 > 0} and, S0 ⊂ {x : η(x)− 1/2 < 0}. (2.36)

Step 3: Maximum gap with respect to 1/2 for all active cells.

Now we will consider a cell C that is split and added to Al+1 at depth l ∈ N∗ by
the algorithm. As C is split and added to Al+1, we have by definition of the algorithm
and on ξ using Equation (3.11)

|η(xC)− 1/2| − bl ≤ |η̂(xC)− 1/2| ≤ 4bl,

which implies |η(xC)− 1/2| ≤ 5bl. Using Equation (3.12), this implies that on ξ for
any C that will be split and added to Al+1 and for any x ∈ C

|η(x)− 1/2| ≤ 6bl
.
= ∆l. (2.37)

Step 4: Bound on the number of active cells.

Set for ∆ ≥ 0

Ω∆ =
{
x ∈ [0, 1]d : |η(x)− 1/2| ≤ ∆

}
,

and let for l ∈ N∗, Nl(∆) be the number of cells C ∈ Gl such that C ⊂ Ω∆.

Lemma 2.3. We have on ξ

Nl+1 ≤ c3

c1
[∆l −∆0]β+r

−d
l+1

≤ c5λ
βr
−[d−(α∧1)β]+
l+1 1∆l>∆0 , (2.38)

Step 5: A minimum depth.

Lemma 2.4. We have on ξ the following results on L.

• Case a) : If α ≤ 1 : It holds that

L ≥ 1

2α+ [d− αβ]+
log2

((2α+ [d− αβ]+)2αn

c7λβ−2 log
(

2dλ2n
δ

) )
− 1, (2.39)

with c7 = 2c5(d+1), or the algorithm stops before reaching depth L and E(f̂n) = 0.

• Case b) : If α > 1 :

L ≥ 1

2α+ [d− β]+
log2

( n

c8λβ−2 log(2dλ2n
δ )

)
− 1, (2.40)
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where c8 = c542d+1(α+ 1)2d(d+ 1), or the algorithm stops before reaching depth
L and E(f̂n) = 0.

Step 6 : Conclusion.
From this point on, we write S0, S1 for the sets that Algorithm 5 outputs at the end
(so the sets at the end of the algorithm).

We write the following lemma.

Lemma 2.5. If S1 ∩ S0 = ∅ and if for some ∆ ≥ 0 we have on some event ξ′

{x ∈ [0, 1]d : η(x)−∆L ≥ 1/2} ⊂ S1, and {x ∈ [0, 1]d : η(x) + ∆L ≤ 1/2} ⊂ S0,

then on ξ′ it holds that

sup
x∈[0,1]d:f̂n,α 6=f∗(x)

|η(x)− 1/2| ≤ ∆L, and PX(f̂n,α 6= f∗) ≤ c3∆β
L1{∆ ≥ ∆0},

and

E(f̂n,α) ≤ c3∆1+β
L 1{∆L ≥ ∆0}.

Proof. The first conclusion is a direct consequence of the lemma’s assumption, the
second conclusions follows directly from the lemma’s assumption and Assumption 3.2,
and the third conclusion follows as

E(f̂n,α) ≤ PX(f̂n,α) 6= f∗) sup
x∈[0,1]d

|f̂n,α(x)− f∗(x)|.

CASE a) : α ≤ 1.

Note first that S1 ∩ S0 = ∅ by definition of the algorithm. By Equation (2.37) and
Equation (2.35), we know that on ξ (and so with probability larger than 1− 4δ)

{x ∈ [0, 1]d : η(x)−∆L ≥ 1/2} ⊂ S1, and, {x ∈ [0, 1]d : η(x) + ∆L ≤ 1/2} ⊂ S0,
(2.41)

where

∆L ≤ 6λdα/22α
( c7λ

β−2 log
(

2dλ2n
δ

)
(2α+ [d− αβ]+)2αn

)α/(2α+[d−αβ]+)

≤ 12λdα/2
( c7λ

β−2 log
(

2dλ2n
δ

)
(2α+ [d− αβ]+)2αn

)α/(2α+[d−αβ]+)

≤ 12
√
d
( c7λ

( d
α
∨β) log

(
2dλ2n
δ

)
(2α+ [d− αβ]+)2αn

)α/(2α+[d−αβ]+)

by Equation (2.39). This implies the first part of Theorem 2.5 for α ≤ 1.
So by Lemma 2.5, we have on ξ (and so with probability larger than 1− 4δ)

sup
x∈[0,1]d:f̂n,α 6=f∗(x)

|η(x)− 1/2| ≤ ∆L

≤ 12
√
d
( c7λ

( d
α
∨β) log

(
2dλ2n
δ

)
(2α+ [d− αβ]+)2αn

)α/(2α+[d−αβ]+)
,
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and also

PX(f̂n,α 6= f∗(x)) ≤ c3∆β
L1(∆L ≥ ∆0)

≤ c312β
√
d
( c7λ

( d
α
∨β) log

(
2dλ2n
δ

)
(2α+ [d− αβ]+)2αn

)αβ/(2α+[d−αβ]+)

and also that

E(f̂n,α) ≤ c3∆β+1
L 1(∆L ≥ ∆0)

≤ c312β+1
√
d
( c7λ

( d
α
∨β) log

(
2dλ2n
δ

)
(2α+ [d− αβ]+)2αn

)α(β+1)/(2α+[d−αβ]+)
.

CASE b) : α > 1.
Denote η̂C the estimator built in the second phase of the algorithm, described in
Lemma 2.6.

Let us write (XC,i, YC,i)u≤tl,α for the (not necessarily observed) samples that would
be collected in C̃ if cell C ∈ AL. For any x ∈ C and any cell C, we write

η̂C(x) =
1

tl,α

∑
i≤tl,α

Kα((x−XC,i)2
l)YC,i.

Note that η̂C is computed by the algorithm for any C ∈ AL (and η̂ is 1/2 everywhere
else).

The following proposition holds.

Proposition 2.5. Let l > 0, C ∈ Gl and assume that η ∈ Σ(λ, α). It holds for x ∈ C
that with probability larger than 1− δ

|η̂C(x)− η(x)| ≤ 4dλ2−lα + 2d+2(2α+ 2)d

√
log(1/δ)

tl,α
.

Let
ξ′ =

{
∀l ≥ 1,∀C ∈ Gblαc, |η̂C(xC)− η(xC)| ≤ λ

√
d2−lα

}
.

Since δl,α = δ2−lα(d+1), it holds by Proposition 2.5 and an union bound that this event
holds with probability at least 1− 4δ. By a union bound, the event (ξ ∩ ξ′) thus holds
with probability at least 1− 8δ.

By Proposition 2.5, and proceeding as in Step 3, we can bound on ξ′ the maximum
gap of the cells that are not classified i.e. cells C such that C ∩ (S0 ∪ S1) = ∅. Recall
that if α > 1 then by Assumption 2.4, η is λ-Lipschitz. For cells of side length 2−bLαc,
this yields for any x ∈ C such that |η̂C(xC)− 1/2| ≤ 4d+1λ2−Lα:

|η(x)− 1/2| ≤ (4d+3/2 + 3
√
d)λ2−Lα

≤ 4d+2λ2−Lα

On the other hand, for x ∈ C such that |η̂(xC)− 1/2| > 4d+1λ2−Lα, we have:

|η(x)− 1/2| > 4dλ2−Lα, (2.42)
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which implies that:

{x ∈ [0, 1]d : η(x)−∆L ≥ 1/2} ⊂ S1 ⊂ {x : η(x)− 1/2 > 0}

and
{x ∈ [0, 1]d : η(x) + ∆L ≤ 1/2} ⊂ S0 ⊂ {x : η(x)− 1/2 < 0}.

with:

∆L ≤ 4d+22α
(c8λ

(d∨β) log(2dλ2n
δ )

n

)α/(2α+[d−β]+)
, (2.43)

where we lower bound L using Equation (2.50). We conclude the proof by using
Lemma 2.5 as in the case α ≤ 1, and the result holds with probability at least 1− 8δ.

Proof of Theorem 2.6 The proof of this result only differs from the proof of
Theorem 2.5 in Step 4, Equation (2.38), where we can no longer use the lower bound
on the density to upper bound the number of active cells, and instead we have to use
the naive bound 2−ld at depth l such that all cells can potentially be active. The rest
of the technical derivations is similar to the case β = 0 in the proof of Theorem 2.5.

Proofs of the technical lemmas and propositions stated in the proof of
Theorem 2.5 and 2.6

Proof of Lemma 2.1. From Hoeffding’s inequality, we know that P(ξC,l) ≥ 1− 2δl.

We now consider
ξ =

{ ⋂
l∈N∗,C∈Gl

ξC,l

}
,

the intersection of events such that for all depths l and any cell C ∈ Gl, the previous
event holds true. Note that at depth l there are 2ld such events. A simple union bound
yields P(ξ) ≥ 1−

∑
l 2
ldδl ≥ 1− 4δ as we have set δl = δ2−l(d+1).

We define bl = λd(α∧1)/22−l(α∧1) for any l ∈ N∗. By Assumption 2.4, it is such that
for any x, y ∈ C, where C ∈ Gl, we have:

|η(x)− η(y)| ≤ bl. (2.44)

On the event ξ, for any l ∈ N∗, as we have set tl = log(1/δl)
2b2l

, plugging this in the bound
yields that at time tl, we have for each cell C ∈ Gl:

|η̂(xC)− η(xC)| ≤ bl.

Proof of Lemma 2.2. Using Equations (3.12) and (3.11), we have:

4bl < η̂
k̂∗C

(xC)− 1/2 < η
k̂∗C

(xC) + bl − 1/2,

which implies that η
k̂∗C

(xC) − 1/2 > 3bl > 0. So necessarily by definition of k∗C , we

have k∗C = k̂∗C .
Now using the smoothness assumption, we have for any x ∈ C :

|η(x)− η(xC)| ≤ λd(α∧1)/2|x− xC |α∧1
2 ≤ bl.
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Assume now without loss of generality that k̂∗C = 1. We have by the previous paragraph
that k̂∗C = k∗C = 1 and that η(xC)− 1/2 > 2bl. So for x ∈ C, ηk∗C (x)− 1/2 > 0, so k∗C
is the best class in the entire cell C and the labeling k̂∗C = k∗C is in agreement with
that of the Bayes classifier on the entire cell, bringing no excess risk on the cell. In
summary we have that on ξ,

∀y ∈ {0, 1},∀C ∈ Sy,∀x ∈ C, 1{η(x) ≥ 1/2} = y.

This implies that:

S1 ⊂ {x : η(x)− 1/2 > 0} and, S0 ⊂ {x : η(x)− 1/2 < 0}.

Proof of Lemma 2.3. Since by Assumption 3.2 we have PX(Ω) ≤ c3(∆−∆0)β1{∆ ≥
∆0}, we have by Assumption 2.1 that

Nl(∆) ≤ c3

c1
(∆−∆0)βr−dl 1{∆ ≥ ∆0}. (2.45)

Let us write L for the depth of the active cells at the end of the algorithm. The
previous equation implies with Equation (2.37) that on ξ, for l ≤ L, the number of
cells in Al is bounded as Equation (2.45) brings

Nl+1 ≤ Nl+1(∆l) ≤
c3

c1
[∆l −∆0]β+r

−d
l+1

≤ c3

c1
8βλβ2(α∧1)βr

(α∧1)β−d
l+1 1∆l>∆0 ≤ c5λ

βr
−[d−(α∧1)β]+
l+1 1∆l>∆0 ,

where Nl+1 is the number of active cells at the beginning of the round of depth
(l + 1) and [a]+ = max(0, a) and c5 = 2(α∧1)β max( c3c1 8β, 1). This formula is valid for
L− 1 ≥ l ≥ 0.

Proof of Lemma 2.4. CASE a): α ≤ 1.
At each depth 1 ≤ l ≤ L, we sample these active cells tl = log(1/δl)

2b2l
times. Let us first

consider the case ∆0 = 0. We will upper-bound the total number of samples required
by the algorithm to reach depth L. We know by Equation (2.38) that on ξ:

L∑
l=1

Nltl +NLtL ≤ 2
L∑
l=1

(c5λ
βr
−[d−αβ]+
l )

log(1/δl)

2λ2r2α
l

≤ 2c5λ
β−2 log(1/δL)

L∑
l=1

r
−(2α+[d−αβ]+)
l

≤ 2c5d
−(2α+d−αβ)/2λβ−2 log(1/δL)

2L(2α+[d−αβ]+)

22α+[d−αβ]+ − 1

≤ 4c5

d(2α+d−αβ)/2
λβ−2 log(1/δL)

2L(2α+[d−αβ]+)

2α+ [d− αβ]+
,

as 2a − 1 ≥ a/2 for any a ∈ R+. This implies that on ξ

L∑
l=1

Nltl +NLtL ≤ 4c5λ
β−2 log(1/δL)

2L(2α+[d−αβ]+)

2α+ [d− αβ]+
. (2.46)
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We will now bound L by above naively, as tL itself has to be smaller than n
(otherwise, if there is a single active cell - which is the minimum number of active cells
- the budget is not sufficient). This yields:

log(1/δL)

2λ2r2α
L

≤ n,

which yields immediately, using δL < δ ≤ e−1:

L ≤ 1

2α
log2

(
2dλ2n

)
.

We can now bound log(1/δL):

log(1/δL) = log(2L(d+1)/δ)) ≤ d+ 1

2α
log
(
2dλ2n

)
+ log(1/δ)

≤ d+ 1

2α
log
(2dλ2n

δ

)
. (2.47)

Combining equations (2.47) and (2.46), this implies that on ξ the budget is sufficient
to reach the depth

L ≥
⌊ 1

2α+ [d− αβ]+
log2

((2α+ [d− αβ]+)2αn

c7λβ−2 log
(

2dλ2n
δ

) )⌋
,

with c7 = 2c5(d + 1), or the algorithm stops before reaching the depth L with
S1 ∪ S0 = [0, 1]d, and the excess risk is 0.

CASE b): α > 1.
We will proceed similarly as in the previous case. We have set tl,α = 42(d+1)(α +

1)2d log(1/δl,α)

b2l,α
with bl,α = λ

√
d2−lα and δl,α = δ2−lα(d+1). By construction of the

algorithm, L is the biggest integer such that
∑L

l=1Nltl +NLtL,α ≤ n. We now bound
this sum by above:

L∑
l=1

Nltl +NLtL,α ≤
L∑
l=1

(c5λ
βr
−[d−β]+
l )

log(1/δl)

2λ2r2
l

+ (42d+1(α+ 1)2dc5λ
βr
−[d−β]+
L )

log(1/δL,α)

λ2d22Lα

≤ c5λ
β−2d−

2+[d−β]+
2 (log(1/δL)2L(2+[d−β]+) + 42d+1(α+ 1)2d log(1/δL,α)2L(2α+[d−β]+)

≤ 2c5λ
β−242d+1(α+ 1)2d log(1/δL,α)2L(2α+[d−β]+) (2.48)

As in the previous case, we can upper bound L by remarking that tL,α has to be
smaller than the total budget n, which yields:

L ≤ 1

2α
log2(2dλ2n).

In turn, this allows to bound log(1/δL,α):

log(1/δL,α) = log(2αL(d+1)/δ) ≤ d+ 1

2
log
(2dλ2n

δ

)
(2.49)
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Now combining Equations (2.48) and (2.49), it follows that on ξ, the budget is sufficient
to reach a depth L such that:

L ≥
⌊ 1

2α+ [d− β]+
log2

( n

c8λβ−2 log(2dλ2n
δ )

)⌋
,

where c8 = c542d+1(α+ 1)2d(d+ 1), or this depth is not reached as the algorithm stops
with S1 ∪ S0 = [0, 1]d and the excess risk is 0.

Proof of Proposition 2.5. The following Lemma holds regarding approximation prop-
erties of the Kernel we defined, see (Giné and Nickl, 2016).

Lemma 2.6 (Properties of the Legendre polynomial product Kernel K). It holds that
:

• Kα is non-zero only on [−1, 1]d.

• Kα is bounded in absolute value by (2α+ 2)d

• For any h > 0 and any PX-measurable f : Rd → [0, 1],

sup
x∈Rd

|Kα,h(f)(x)− f(x)| ≤ 4dλhα, where Kα,h(f)(x) =
1

hd

∫
u∈Rd

Kα(
x− u
h

)f(u)du.

Proof. The first and second properties follow immediately by definition of the Legendre
polynomial Kernel k̃α (see the proof of Proposition 4.1.6 from (Giné and Nickl, 2016)).
The last property follows from the second result in Proposition 4.3.33 in (Giné and
Nickl, 2016), which applies as Condition 4.1.4 in (Giné and Nickl, 2016) holds for k̃α
(see Proposition 4.1.6 from (Giné and Nickl, 2016) and its proof).

We bound separately the bias and stochastic deviations of our estimator.
Bias : We first have for any x ∈ xC + [−h, h]d

Eη̂C(x) = E
[
2dK((x−Xi)2

l)η(Xi)|Xi uniform on C̃
]

= 2ld
∫
K((x− u)2l)η(u)du,

since Xi is uniform on C̃, and x ∈ C, and K(x−.h ) is 0 everywhere outside
∏
i[xi −

2−l, xi + 2−l] (by Lemma 2.6). So by Lemma 2.6 we know that

|K2−l(ηC)(x)− η(x)| ≤ 4dλ2−lα.

Deviation : Consider Zi = K((x−Xi)2
l)Yi = K((x−Xi)2

l)f(Xi) +K((x−Xi)2
l)εi.

Since by Lemma 2.6 |K| ≤ (2α + 2)d, supx |η(x)| ≤ 1 and |εi| ≤ 1, we have by
Hoeffding’s inequality that with probability larger than 1− δ:

|Eη̂C(x)− η̂C(x)| ≤ 2d+2(2α+ 2)d

√
log(1/δ)

tl,α
.

This concludes the proof by summing the two terms.
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2.2.6.2 Proof of Proposition 2.6

Set
n0 =

n

blog(n)c3
, δ0 =

δ

blog(n)c3
, and αi =

i

blog(n)c2
.

In Algorithm 10, the Subroutine is launched blog(n)c3 times on blog(n)c3 inde-
pendent subsamples of size n0. We index each launch by i, which corresponds to the
launch with smoothness parameter αi. Let i∗ be the largest integer 1 ≤ i ≤ blog(n)c3
such that αi ≤ α.

Since the Subroutine is strongly (δ0,∆α, n0)-correct for any α ∈ [blog(n)c−2, blog(n)c],
it holds by Definition 2.8 that for any i ≤ i∗, with probability larger than 1− δ0{

x ∈ [0, 1]d : η(x)− 1/2 ≥ ∆αi

}
⊂ S1

i ⊂
{
x ∈ [0, 1]d : η(x)− 1/2 > 0

}
and {

x ∈ [0, 1]d : η(x)− 1/2 ≤ −∆αi

}
⊂ S0

i ⊂
{
x ∈ [0, 1]d : η(x)− 1/2 < 0

}
.

So by an union bound we know that with probability larger than 1−blog(n)c3δ0 = 1−δ,
the above equations hold jointly for any i ≤ i∗.

This implies that with probability larger than 1− δ, we have for any i′ ≤ i ≤ i∗,
and for any y ∈ {0, 1}, that

Syi ∩ s
1−y
i′ = ∅,

i.e. the labeled regions of [0, 1]d are not in disagreement for any two runs of the
algorithm that are indexed with parameters smaller than i∗. So we know that just
after iteration i∗ of Algorithm 10, we have with probability larger than 1− δ, that for
any y ∈ {0, 1} ⋃

i≤i∗
Syi ⊂ s

y
i∗ .

Since the sets syi are strictly growing but disjoint with the iterations i by definition
of Algorithm 10 (i.e. ski ⊂ ski+1 and ski ∩ s

1−k
i = ∅), it holds in particular that with

probability larger than 1− δ and for any y ∈ {0, 1}⋃
i≤i∗

Syi ⊂ s
y
blog(n)c3 and syblog(n)c3 ∩ s

1−y
blog(n)c3 = ∅.

This finishes the proof of Proposition 2.6.

2.2.6.3 Proof of Theorem 2.7, 2.11

The previous equation and Theorem 2.5 imply that with probability larger than 1− 8δ

Syi∗ ⊂ s
y
blog(n)c3 and syblog(n)c3 ∩ s

1−y
blog(n)c3 = ∅.

So from Theorem 2.5, and Lemma 2.5, we have that with probability larger than 1−8δ

E(f̂n) ≤ c3∆β+1
αi∗

1(∆αi∗ ≥ ∆0).

By definition of αi∗ , we know that it is such that:

α− 1

log2(n)
≤ αi∗ ≤ α. (2.50)



64 Chapter 2. Adaptive active classification

In the setting of Theorem 2.7 for α ≤ 1 and α > max(
√

d
2 log(n) ,

(
3d

log(n)

)1/3
), this yields

for the exponent if αi∗β ≤ d:

− αi∗(1 + β)

2αi∗ + d− αi∗β
≤ − α(1 + β)

2α+ [d− αβ]+
+

(1 + β)(2α+ d)

log2(n)(2α+ [d− αβ]+)2
.

The result follows by remarking that:

n
(1+β)(2α+d)

log2(n)(2α+d−αβ)2 = exp
( (1 + β)(2α+ d)

log(n)(2α+ [d− αβ]+)2

)
,

and thus the extra additional term in the rate only brings at most a constant multi-
plicative factor, as the choice of α >

(
3d

log(n)

)1/3 allows us to upper-bound the quantity
inside the exponential, using α− log−3(n) > α/2:

(1 + β)(2α+ d)

log(n)(2α+ [d− αβ]+)2
≤ 3d

log(n)α3
≤ 1.

In the case α > 1 and β < d, first notice that αi∗ ≥ 1, as αblog(n)c2 = 1 < α. Thus,
the rate can be rewritten:

− αi∗(1 + β)

2αi∗ + [d− β]+
≤ − α(1 + β)

2α+ [d− β]+
+

1 + β

log2(n)(2α+ [d− β]+)
,

and the result follows.

In the case (αi∗ ∧ 1)β > d, we immediately get −1+β
2 , which is the desired rate.

For Theorem 2.11, we have instead:

−αi
∗(1 + β)

2αi∗ + d
≤ −αi

∗(1 + β)

2α+ d
≤ −α(1 + β)

2α+ d
+

1 + β

log2(n)(2α+ d)
,

which yields the desired rate.

The second part of the theorems is obtained by inverting the condition ∆αi∗ < ∆0

for ∆0 > 0.

2.2.6.4 Proof of Theorem 2.12

Proof. The proof is very similar to the proof of Theorem 2.9, and thus we only make
the construction explicit. Let α > 0 and β ∈ R+.

Consider the grid of [0, 1/2]d of step size 2∆1/α, ∆ > 0. There are

K = 4−d∆(−d)/α,

disjoint hypercubes in this grid, and we write them (Hk)k≤K . They form a partition
of [0, 1/2]d that is [0, 1/2]d =

⋃
k≤K Hk. Let xk be the barycenter of Hk.
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We also define g for any z ∈ [1
2∆1/α,∆1/α] as

g(z) =

Cλ,α4α−1
(

∆1/α − z
)α
, if 3

4∆1/α < z ≤ ∆1/α

Cλ,α

(
∆
2 − 4α−1

(
z − 1

2∆1/α
)α)

, if 1
2∆1/α ≤ z ≤ 3

4∆1/α,

where Cλ,α > 0 is a small constant that depends only on α, λ.
For s ∈ {−1, 1} and k ≤ K, and for any x ∈ Hk, we write

Ψk,s(x) =


1
2 + s

Cλ,α∆
2 , if |x− xk|2 ≤ ∆1/α

2
1
2 , if |x− xk|2 ≥ ∆1/α

1
2 + sg(|x− xk|), otherwise.

Note that g is such that g(1
2∆1/α)) =

Cλ,α∆
2 , and g(∆1/α) = 0, and Cλ,α is chosen

such that Ψk,s is in Σ(λ, α) restricted to Hk.
Denote X1 = (1, ..., 1) the d-dimensional vector with all coordinates equal to 1.

For σ ∈ {−1, 1}K , we define for any x ∈ [0, 1]d the function

ησ(x) =
∑
k≤K

Ψk,σk1{x ∈ Hk}+ 1{x = X1}.

Note that since each Ψk,s is in Σ(λ, α) restricted to Hk, and by definition of Ψk,s at
the borders of each Hk, it holds that ησ is in Σ(λ, α) on [0, 1/2]d (and as such it can be
extended as a function Σ(λ, α) on Rd with η(X1) = 1). So Assumption 2.4 is satisfied
with λ, α, and ησ is an admissible regression function.

We now define the marginal distribution PX of X. We define pk for x ∈ Rd, where
we recall that xk is the barycenter of hypercube Hk:

pk(x) =


w

KVol
(
B(xk,

∆1/α

2
)
) if |x− xk|2 ≤ ∆1/α

2

0 otherwise,

where Vol
(
B(xk,

∆1/α

2 )
)
denotes the volume of the d-ball of radius ∆1/α

2 centered in xk.
This allows us to define the density:

p(x) =

K∑
k=1

pk(x) + (1− w)δx(X1),

where δx(X1) is the Dirac measure in X1. Note that
∫
x∈[0,1]d dp(x) =

∫
x∈[0,1/2]d dp(x) +

1− w = 1 as we have by construction
∫
x∈[0,1/2]d dp(x) = w.

Finally, for any σ ∈ {−1,+1}K , we define Pσ as the measure of the data in our setting
when the density of PX is p as defined previously and where the regression function η
providing the distribution of the labels is ησ. We write

HK = {Pσ : σ ∈ {−1,+1}K}.

All elements of H satisfy Assumption 2.1. Note that the marginal of X under Pσ does
not depend on σ.
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Let σ ∈ {−1, 1}d. By definition of Pσ it holds that for any Cλ,α∆
2 ≤ ε < 1:

Pσ

(
X : |ησ(X)− 1/2| ≤ ε

)
=

K⋃
k=1

Pσ

(
X ∈ Hk, and |ησ(x)− 1/2| ≤ ε

)
≤ w.

and for any ε < Cλ,α
∆
2 :

Pσ

(
X : |ησ(X)− 1/2| ≤ ε

)
= 0.

Thus, in order to satisfy Assumption 3.2, it suffices to set w appropriately i.e. w =
O(∆β). The rest of the proof is similar to that of Theorem 2.9, where we proceed
with K = O(∆−d/α), n∆2 < O(K) which brings ∆ = O(n−α/(2α+d)) and D(σ, σ′) ≥
O(w) = O(n−αβ/(2α+d)) with σ, σ′ belonging to an appropriate subset of H.
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2.3 Continuous classification: active learning with smooth
decision boundaries

2.3.1 Introduction

In active learning (for classification), the learner can actively request Y labels at any
point x in the data space to speedup learning: the goal is to return a classifier with low
error while requesting as few labels as possible. Previous work (see e.g. (Freund et al.,
1993; Castro and Nowak, 2007; Hanneke, 2009; Koltchinskii, 2010; Minsker, 2012b;
Balcan, Beygelzimer, and Langford, 2009)) showed that under various distributional
settings, active learning offers a significant advantage over passive learning (the usual
classification setting with i.i.d. labeled data).

An important such setting is the one studied in the seminal work of (Castro and
Nowak, 2007), known as the boundary fragment setting, where the feature space
X = [0, 1]d is bisected along the d-th coordinate by a smooth curve which characterizes
the decision boundary {x : E[Y |x] = 1/2}. The essential error measure in this setting is
the distance from the estimated decision boundary to the true decision boundary; such
error metric can readily serve to bound the usual 0-1 classification error under additional
distributional assumptions, e.g.,assuming that the marginal PX is uniform as done
in (Castro and Nowak, 2007) (we will relax such assumptions). They show that the
minimax optimal rate (in terms of excess 0-1 error over the Bayes classifier) achievable
by an active strategy is strictly faster than in the passive setting of (Tsybakov,
2004). While their strategy is minimax optimal, it is unfortunately non-adaptive,
i.e., it requires full knowledge of key distributional parameters. Namely, there are
two important such parameters: α, which captures the smoothness of the decision
boundary, and κ, which controls the noise rate, i.e. how fast E[Y |x] grows away from
1/2 near the decision boundary. These parameters interpolate between hard and easy
problems (rough or smooth decision boundary, high or low noise), and are never known
in practice. Therefore, a minimax adaptive strategy – i.e., one which attains optimal
rates but does not require a priori knowledge of such parameters – is highly desirable.
Such optimal adaptive strategy has unfortunately remained elusive for the general case
of data in Rd.

For univariate data (d = 1), it is known ((Hanneke, 2009; Ramdas and Singh,
2013)) that this limitation can be overcome, and minimax optimal strategies (such
as the A2 algorithm in (Balcan, Beygelzimer, and Langford, 2009), further studied in
(Hanneke, 2007b)) exist, which adapt to unknown noise rate κ on the line (there is
no notion of smoothness α in the line setting since the boundary is just a threshold).
Recently, earlier results of (Koltchinskii, 2010; Hanneke et al., 2011) – meant for
settings with bounded disagreement coefficients – were extended in (Wang, 2011) to
obtain an adaptive procedure for the boundary fragment class of (Castro and Nowak,
2007), including the case of data in Rd; unfortunately that strategy yields suboptimal
rates for the setting.

We present the first adaptive and optimal strategy for the setting, by combining
insights from various recent work on related problems, and original insights from
(Castro and Nowak, 2007).

Combining insights from related work. The original strategy of (Castro,
2007) consists of a clever reduction of active learning in Rd to active learning on R:
since the boundary is the curve of function g : [0, 1]d−1 7→ [0, 1], (a) first partition
[0, 1]d−1 into a finite number of cells, and do active learning on each cell as follows:
(b) pick a line on the cell, and estimate the threshold at which the decision boundary
crosses this line; (c) extrapolate the estimated threshold to the whole cell using the fact
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Figure 2.3: Comparing strategies (for known α ≤ 1). On the left,
the strategy in (Castro and Nowak, 2007; Yan, Chaudhuri, and Javidi,
2016). Both strategies operate on fixed grids with cells of side-length r,
and perform a line search in each cell (dotted line). A threshold (the
red dot) guaranteed to be close to the decision boundary is returned,
and then extrapolated to the entire cell (estimated boundary). The
strategy needs to operate on an optimal value of r = r(α, κ). On the
right (our strategy), the line search returns an interval of size O(rα),
guaranteed to intersect the decision boundary; the interval is then
extended by O(rα) to create an abstention region of the right size (in
terms of known α). To adapt to unknown κ, the strategy is repeated
over dyadic values of r → 0.

that the boundary is smooth. Unfortunately step (a) required knowledge of both κ and
α to pick an optimal cell size, while steps (b) and (c) respectively required knowledge
of noise margin κ and smoothness α. This strategy is illustrated in Figure 2.3 (left
box).

A key step in our work, is to temporarily assume knowledge of α and to aim for
a procedure that is adaptive to κ, while following the above strategy of (Castro and
Nowak, 2007). Clearly, given recent advances on adaptive active learning on R, step
(a) above is readily made adaptive to κ. This is for instance done in the recent work
of (Yan, Chaudhuri, and Javidi, 2016), which however leaves open the problem in (a)
of choosing a partition of optimal cell-size in terms of unknown κ (their work and this
issue is discussed in more detail in Section 2.3.3). We show that we can resolve this
issue by proceeding hierarchically over decreasing cell sizes. Furthermore, in order
to eventually adapt to unknown α, we also require a small but crucial change to the
interpolation in step (c) above (the same essential interpolation strategy is used in
both (Castro and Nowak, 2007; Yan, Chaudhuri, and Javidi, 2016). The reason for
more careful interpolation is described next.

In order to adapt to unknown smoothness α, we build on recent insights from (Lo-
catelli, Carpentier, and Kpotufe, 2017) which concerns a separate classification setting
with smooth regression function η(x)

.
= E[Y |x] rather than smooth decision boundary.

Their work presents a generic adaptive strategy that exploits the nested structure of
smoothness classes, namely the fact that an α-smooth function is also α′ -smooth for
any α′ < α. Their strategy consists of aggregating the classification estimates returned
by a subroutine taking increasing smoothness values α′ as a parameter. The subroutine
in our case is that described in the last paragraph – which takes in the smoothness
as a parameter. As it turns out, for the aggregation to work, the subroutine has to
be correct in a sense that is suitable to our setting, namely, for any α′ < α, it must
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only label points that are at an optimal distance away from the decision boundary and
abstain otherwise (see Figure 2.3). In other words, the interpolation step (c) discussed
above, must produce an abstention region of optimal radii in terms of κ and α.

Thus, the bulk of our analysis is in constructing a sub-procedure that takes in α
as a parameter, is fully adaptive to κ, and properly abstains in regions of optimal
size in terms of α and unknown κ. Our construction readapts the line-search in (Yan,
Chaudhuri, and Javidi, 2016) to our particular needs and constraints.

2.3.2 Setting

In this section, we describe formally the problem of active learning under nonparametric
assumptions in the membership query setting.

2.3.2.1 The Active Learning Setting

Binary Classification. We write PX,Y for the joint-distribution of feature-label pairs
(X,Y ). PX denotes the marginal distribution according to variable X, supported on
[0, 1]d. The random variable Y belongs to {0, 1} as usual in the binary classification
setting. The conditional distribution of Y knowing X = x, which we denote PY |X=x,
is characterized by the regression function

η(x)
.
= E[Y |X = x], ∀x ∈ [0, 1]d.

The Bayes classifier is defined as f∗(x) = 1{η(x) ≥ 1/2}. It minimizes the 0-1 risk
R(f) = PX,Y (Y 6= f(X)) over all possible f : [0, 1]d 7→ {0, 1}. The aim of the learner
is to return a classifier f with small excess error

E(f)
.
= R(f)−R(f∗) =

∫
x∈[0,1]d:f(x)6=f∗(x)

|1− 2η(x)|dPX(x). (2.51)

Active sampling. At each time t ≤ n, the active learner can sample a label Y at
any xt ∈ [0, 1]d drawn from the conditional distribution PY |X=xt . In total, it can sample
at most n ∈ N∗ labels - we will refer to n as the sampling budget - known to the learner.
At the end of the budget, the active learner returns a classifier f̂n : [0, 1]d 7→ {0, 1}.

In this work, our goal is to design an adaptive sampling strategy that outputs
a good estimate of the decision boundary, with high probability over the samples
requested and labels revealed, without prior knowledge of distributional parameters,
i.e., smoothness and noise margin parameters. This is formalized in Section 2.3.2.2
below.

2.3.2.2 The Nonparametric Setting

In this section, we expose our assumptions on PX,Y , which are nonparametric in nature,
and similar to the setting introduced in (Castro and Nowak, 2007). From now on, we
assume that d ≥ 2.

Definition 2.6 (Hölder smoothness). We say that a function g : [0, 1]d−1 7→ [0, 1]
belongs to the Hölder class Σ(λ, α) if g is bαc8 times continuously differentiable and
for all x, y ∈ [0, 1]d−1, and any β ≤ α we have:

|g(x)−TPy,bβc(x)| ≤ λ||x− y||β∞, (2.52)

8bαc denotes the largest integer strictly smaller than α.
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where TPy,bβc is the Taylor polynomial expansion of degree bβc of g in y and ||z||∞
.
=

max1≤i≤d |zi| is the usual infinity norm for d dimensional vectors.

For any g ∈ Σ(λ, α), consider the set epi(g) .
= {x = (x̃, xd) ∈ [0, 1]d−1 × [0, 1] :

xd ≥ g(x̃)}, which is the epigraph of the function g. We define the boundary fragment
class G(λ, α)

.
= {epi(g), g ∈ Σ(λ, α)}.

Assumption 2.4 (Smoothness of the boundary). There exists constants α > 0 and
λ ≥ 1 such that {x : η(x) ≥ 1/2} ∈ G(λ, α).

In other words, there exists g∗ ∈ Σ(λ, α) such that {x : η(x) ≥ 1/2} = 1{epi(g∗)}
and the Bayes classifier is equivalent to 1{epi(g∗)}. This means that the decision
boundary for the classification problem is fully characterized by g∗ ∈ Σ(λ, α). Impor-
tantly, for any α′ ≤ α, we also have g∗ ∈ Σ(λ, α′), as the classes Σ(λ, α) ⊂ Σ(λ, α′)
are nested for λ fixed.

We also assume a one-sided noise condition on the behavior of the regression
function close to the decision boundary characterized by g∗ ∈ Σ(λ, α), which can be
seen as a geometric variant of the popular Tsybakov noise condition (TNC)( (Tsybakov,
2004)).

Assumption 2.5 (Geometric TNC). There exists constants c > 0 and κ ≥ 1 such
that for any x = (x̃, xd) ∈ [0, 1]d−1 × [0, 1]:

|η(x)− 1

2
| ≥ c|xd − g∗(x̃)|κ−1.

This assumption characterizes how "flat" the regression function η is allowed to be
in the vicinity of the decision boundary: the larger κ the noise parameter, the harder
it is to locate the decision boundary precisely. In particular, for κ = 1, η "jumps" at
the decision boundary, going from 1/2− c to 1/2 + c.

In this work, our main objective is to devise an adaptive algorithm that returns
an estimate ĝ of the true decision boundary g∗, such that ||ĝ − g∗||∞ is small and
of optimal size in a minimax sense. Under additional assumptions (which relax
original assumptions in (Castro, 2007)), we will show that the resulting classifier
x = (x̃, xd)→ 1{xd ≥ ĝ(x̃)} also attains optimal excess risk guarantees.

Definition 2.7. We denote P(α, κ)
.
= P(λ, α, κ, c) the set of classification problems

PX,Y characterized by (PX , η) such that Assumption 1 is satisfied for some g∗ ∈ Σ(λ, α)
and Assumption 2 is satisfied with constants κ ≥ 1, c > 0.

For the rest of the Section we will consider c > 0 to be fixed, and λ ≥ 1 to be fixed
and known to the learner - we discuss the relevance of this assumption in Section 2.3.4.1.
Now, considering κ to be fixed as well as λ, we remark that the nested structure of the
smoothness classes straightforwardly implies the same property for the classes P(α, κ).

2.3.3 Analysis

2.3.3.1 A κ-Adaptive Procedure for the Boundary Fragment Class

We now introduce an algorithm that is fully adaptive with respect to κ the noise
parameter, and takes as input α, λ the smoothness parameters of the decision boundary
such that g∗ ∈ Σ(λ, α). The strategy uses as a subroutine another adaptive procedure
that solves the unidimensional problem of finding a threshold x∗d such that for x̃ ∈
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[0, 1]d−1 fixed g∗(x̃) = x∗d, we will refer to this univariate problem as the line-search
problem in our context. In this section, we assume that we have access to a line-search
procedure such that when it is called with a certain confidence δ and precision ε, it
returns a threshold estimate T such that |T − x∗d| ≤ ε with probability at least 1− δ
using at most Õ(ε−2(κ−1)) samples9. Such a procedure was proposed in the recent
work of (Yan, Chaudhuri, and Javidi, 2016). In their work, they use this procedure as
a subroutine in the setting where one wants to estimate the boundary with a ĝ such
that ||ĝ− g∗|| ≤ ε with high probability. Assuming knowledge of the smoothness α and
given a target error ε, they can guarantee a number n = n(ε) of label requests optimal
and adaptive in terms of unknown κ. Interestingly, given the goal of fixed target error
ε, the problem of adaptive cell size as exposed in Section 2.3.1 seems to disappear: it’s
sufficient to partition [0, 1]d−1 into cells of size ε1/α. The procedure they use is the
same as the one exposed in (Castro and Nowak, 2007), as both strategies rely on a
discretization of [0, 1]d−1, launch a number of line-searches on a grid that covers the
feature space, and then use the threshold estimates on this grid to construct a smooth
approximation of the boundary such that ||g∗ − g∗|| ≤ ε. However, in our setting (and
that of (Castro, 2007)) we instead fix a labeling budget n and aim to achieve an error
ε = ε(n) adaptive to unknown κ; in other words, to use the algorithmic strategy of
(Yan, Chaudhuri, and Javidi, 2016) we need knowledge of the optimal ε (which depend
on unknown κ) in order to define an optimal partition cell size. Indeed, in this fixed
budget setting, the strategy in (Castro and Nowak, 2007) uses both κ and α to find
the right step-size for the discretization which is of order bn−α/(2α(κ−1)+d−1)c. Our
strategy bypasses this issue by proceeding hierarchically over a dyadic partition of
[0, 1]d−1. Our stopping criterion for the line-search procedure only depends on α, λ
and the cell size, and allows our procedure to fully adapt to κ. As a last step, we
carefully select the regions to label – and hence the abstention region – so as to make
the procedure correct in the sense of Definition 2.8.

Algorithm 8 κ-adaptive procedure in d-dimension
Input: n, δ, λ, α
Initialisation: l = 1, t = 0
while {t < n} do
Ml = max(1, bαc)2l
εl = λ2−lα

δl = δ(max(1, bαc)2l(d+1))−1

for each ã in {0, ...,Ml}d−1 do
Run Subroutine 9 on the line Lã with parameters εl, δl
Receive threshold estimate Tl,ã and budget used Nl,ã

end for
Compute total budget used at depth l: Nl =

∑
ãNl,ã

t = t+Nl
l = l + 1

end while
l∗

.
= l − 1 (final completed depth)

Fit bαc-degree tensor-product Lagrange polynomial approximation of boundary using
(Tl∗,ã)ã
bl∗

.
= λdαeddαeM−αl∗ (bias term)

S0 .
= {x : xd ≤ P̂ (x̃)− 4bl∗}

S1 .
= {x : xd ≥ P̂ (x̃) + 4bl∗}

Output: Sy for y ∈ {0, 1}

9we use Õ to hide logarithmic factors in 1
δ
and 1

ε



72 Chapter 2. Adaptive active classification

Our procedure, Algorithm 8, takes as input n the maximum sampling budget,
δ a confidence parameter, as well as λ and α the smoothness parameters such that
g∗ ∈ Σ(λ, α). While we assume here that λ is known to the learner, it is sufficient to call
the procedure with a known upper-bound on the true parameter. This follows from the
nested nature of the smoothness we consider here, as we have Σ(λ, α) ⊂ Σ(λ′, α) for any
λ′ ≥ λ. Our analysis reveals that λ only has a multiplicative effect on the rate, therefore
setting λ .

= log(n) for n large enough only worsens the rate by a logarithmic factor. At
each depth l, the algorithm launches (Ml+1)d−1 line-searches withMl = max(1, bαc)2l,
on a grid of step M−1

l . Precisely, for each ã ∈ {0, ...,Ml}d−1 it launches a line-
search instance using Algorithm 9 on the line segment Lã

.
= {(M−1

l ã, xd), xd ∈ [0, 1]}
with confidence parameter δl = δ(max(1, bαc)2l(d+1))−1 and precision εl = λ2−lα.
Importantly, the precision with which the line-search procedure is called depends
only on the step-size of the grid and the smoothness parameters λ and α, and not
on κ. Heuristically, the precision of the line-search need not be greater than the
precision of the nonparametric approximation of degree bαc of the boundary fit with
the estimated thresholds on the grid of step size M−1

l , which motivates our choice
for εl. After each run indexed by ã, it receives the estimated threshold Tl,ã and the
budget used Nl,ã. While the total budget used is less than the maximum allowed
budget n, the discretization is refined and line-searches are initialized with a higher
precision parameter. Once the budget has run out, we use the estimated thresholds
(Tl∗,ã)ã at the last depth l∗ such that all the line-searches have terminated to construct
a polynomial interpolation of degree bαc of the boundary, as in the original strategy
of (Castro and Nowak, 2007). In the case of α ≤ 1, we simply use in each cell a
constant approximation that takes the value of the estimates (Tl∗,ã)ã, the details of
which can be found in the proof of Theorem 2.13. In what follows, we assume α > 1
and describe the approximation method for higher order smoothness.

To that effect, we will use the tensor-product Lagrange polynomials as in (Castro
and Nowak, 2007) on slightly larger cells, to ensure that the number of estimated
thresholds (coming form the line-searches) in those cells is enough to fit a bαc-degree
polynomial approximation. Let q̃ ∈ {0, ..., Ml∗

bαc − 1}d−1 index the cells:

Iq̃
.
=
[
q̃1bαcM−1

l∗ , (q̃1 + 1)bαcM−1
l∗

]
× ...×

[
q̃d−1bαcM−1

l∗ , (q̃d−1 + 1)bαcM−1
l∗

]
.

These cells partition [0, 1]d−1 entirely, as we have Ml∗ = bαc2l∗ . We use the tensor-
product Lagrange polynomial basis as in (Castro and Nowak, 2007), defined as follows:

Qq̃,ã(x̃)
.
=

d−1∏
i=1

∏
0≤j≤bαc
j 6=ãi−bαcq̃i

x̃i −M−1
l∗ (bαcq̃i + j)

M−1
l∗ ãi −M

−1
l∗ (bαcq̃i + j)

.

Importantly, this polynomial basis has the following property maxx̃∈Iq̃ |Qã,q̃(x̃)| ≤
bαc(d−1)bαc. We define the estimated polynomial interpolation of g∗ for x̃ ∈ Iq̃:

P̂q̃(x̃)
.
=

∑
ã∈{0,..,Ml∗}d−1

ã:M−1
l∗ ã∈Iq̃

Tl∗,ãQq̃,ã(x̃).

This polynomial interpolation scheme is such that for any ã ∈ {0, ..,Ml∗}d−1 with
M−1
l∗ ã ∈ Iq̃, we have P̂q̃(M−1

l∗ ã) = Tl∗,ã i.e. we can control exactly the value of
the interpolation on the grid. We also define for the entire feature space: P̂ (x̃)

.
=
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∑
q̃ P̂q̃(x̃)1{x̃ ∈ Iq̃}.Finally, we define bl∗ = λdαeddαeM−αl∗ which is a bias term related

to the interpolation method we use. Points that are far away enough from the estimate
P̂ of the boundary with respect to this bias term are then labeled by the algorithm, as
we assign S0 .

= {x : xd ≤ P̂ (x̃)− 4bl∗} and S1 .
= {x : xd ≥ P̂ (x̃) + 4bl∗} to the labels

0 and 1 respectively. This careful labeling is crucial for the Subroutine to have the
desired properties to be used in the aggregation procedure.

The following theorem shows that Algorithm 8 is an acceptable subroutine for the
adaptive procedure, as it is correct in the sense of Definition 2.8.

Theorem 2.13. Algorithm 8 run on a problem in P(α, κ) with parameters n, δ, λ, α
is (δ,∆n, n)-correct with ∆n such that:

∆n ≤ 7dαeddαe2αλ
d−1

2α(κ−1)+d−1

( log(n/δ)

c1n

) α
2α(κ−1)+d−1

,

where c1 = (κ−1)c2

400(2dαe)d−1α log(1/c)κ82(κ−1)
, and where c is the constant involved in Assump-

tion 3.2.

The proof of this result can be found in Section 2.13.

2.3.3.2 Learning One-Dimensional Thresholds

In this section, we briefly describe the procedure (derived from recent advances in (Yan,
Chaudhuri, and Javidi, 2016)) whose objective is to actively find a threshold in the
one dimensional problem (see (Castro and Nowak, 2006; Hanneke, 2009; Ramdas and
Singh, 2013)). This procedure, Algorithm 9 is adaptive with respect to κ, and is used
as a Subroutine for the more involved d dimensional procedure. Fix x̃ ∈ [0, 1]d−1,
and assume that there exists g∗ such that η satisfies Assumptions 2.4 and 3.2. In the
line-search problem, the goal is to find x∗ = (x̃, x∗d) such that g∗(x̃) = x∗d, which is
equivalent to finding x∗d such that η(x∗) ≥ 1/2 and for any xd < x∗d, η((x̃, xd)) < 1/2.
The objective of the Subroutine is to return an interval of length at most ε such that
the threshold x∗d is contained in this interval with high-probability, using as few samples
as possible.

This procedure is a natural adaptation of the famous bisection method for root-
finding of deterministic monotone functions in one-dimension. In the deterministic
setting, a simple strategy is to query the middle point of the active segment, and
depending on the label returned by the query, continue the procedure with one of
the two subintervals - effectively dividing by two the length of the active region with
each epoch. In the stochastic setting, the intuition is similar, however, at epoch k,
we query successively three active points - the three quartiles of the active segment
[Lk, Rk], until we know with a certain confidence δk the label of some of these active
points. This is done by comparing the empirical mean of the labels observed in each
point, with the threshold 1/2 and a confidence term that depends on the number of
times we have queried the active points. By stopping either when Mk or both Uk and
Vk can be labeled confidently, this reduces the active segment’s size by a factor of 2
at each epoch. The algorithm terminates when it reaches the depth K = dlog2( 1

2ε)e
and outputs a final threshold estimate TK and N the total labeling budget used. The
following theorem gives a bound on the number of samples required to return an
interval of length at most ε such that with high probability the true threshold x∗d is in
this interval.
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Algorithm 9 Univariate κ-adaptive procedure (line-search) - (Yan, Chaudhuri, and
Javidi, 2016)

Input: ε, δ
Initialisation: [L1, R1]← [0, 1], k = 0, N = 0, K = dlog2( 1

2ε )e
while {k < K − 1} do
k ← k + 1, tk = 0, δk = δ

K2k

Mk ← Lk+Rk

2 , Uk ← Rk−Lk

4 + Lk, Vk ← Rk−Lk

4 +Mk

while true do
tk = tk + 1; N = N + 3
Request labels in Mk, Uk, Vk, receive Ytk(Mk), Ytk(Uk), Ytk(Vk)
Estimate η for Z ∈ {Uk,Mk, Vk}: η̂tk(Z) = t−1k

∑tk
i=1 Yi(Z)

if |η̂tk(Mk)− 1/2| ≥ 2
√

log(tk/δk)
2tk

then
if η̂tk(Mk) > 1/2 then

[Lk+1, Rk+1]← [Lk,Mk]; break
else

[Lk+1, Rk+1]← [Mk, Rk]; break
end if

end if
if η̂tk(Vk)− 1/2 ≥ 2

√
log(tk/δk)

2tk
and 1/2− η̂tk(Uk) ≤ 2

√
log(tk/δk)

2tk
then

[Lk+1, Rk+1]← [Uk, Vk]; break
end if

end while
end while
Output: LK , RK , TK = RK−LK

2 (threshold estimate), N ≤ n (budget used)

Theorem 2.14. Fix x̃ ∈ [0, 1]d−1 and let x∗d = g∗(x̃) and assume that g∗ and η satisfy
Assumption 3.2. Algorithm 9 run with precision ε and confidence δ terminates with
probability at least 1− δ and returns a threshold estimate TK such that |TK − x∗d| ≤ ε
using at most N samples with

N ≤


64
(

log(1
δ ) + log(1

ε )
) log(1/c)

c2
log(1

ε ), if κ = 1

200
(

log(1
δ ) + log(1

ε )
)
κ log(c−1)82(κ−1)

(κ−1)c2

((
1
ε

)2(κ−1) − 1
)
, if κ > 1,

where c is the constant involved in Assumption 3.2.

2.3.3.3 Remarks on the Procedures

Optimistic classification. Both Subroutines make optimistic guesses on the labels
of the queried points. This is inspired from techniques in the bandit literature (in
particular UCB strategies (Auer, Cesa-Bianchi, and Fischer, 2002)). In the classification
setting, the quantity of interest for a point x is how far this point is from the decision
boundary g∗(x), or how far η(x) is from 1/2. By using a confidence term, it is possible
to determine with a certain confidence the label of x, or avoid making a potentially
wrong guess. In our setting, this observation naturally leads to efficient algorithms that
are able to find the decision boundary (up to a certain precision). These optimistic
guesses are crucial to show the correctness property required by the aggregation
strategy adapted from (Locatelli, Carpentier, and Kpotufe, 2017).
Hierarchical zooming. In order to adapt to the noise parameter κ, we keep a
hierarchical partitioning of the space which becomes more and more refined. This is
related to ideas in the continuous bandit literature, in which the goal is to optimize an
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unknown function over the domain (see e.g. (Kleinberg, Slivkins, and Upfal, 2013)).
A similar idea was used in (Perchet, Rigollet, et al., 2013) in the contextual bandit
setting and in (Locatelli, Carpentier, and Kpotufe, 2017) for active learning, where it
is shown that zooming strategies naturally adapt to a Tsybakov noise condition.
Improving sample efficiency. We now briefly explain how to modify our procedures
to improve the sample efficiency of the adaptive meta-strategy. A key property of
our Algorithm 8 is its correctness as demonstrated by Theorem 2.13. However, our
meta-procedure currently only harnesses this property as it aggregates the correct
labels output by the different runs of Algorithm 8 which are run independently from
one another, leading to potentially wasteful exploration. Instead, Algorithm 8 (run
with smoothness parameter αi+1) should only request new labels in points which are
within the unlabeled region after the previous aggregation step of the meta-procedure.
This can be done efficiently by modifying Subroutine 9 such that it first queries
whether the active points Mk, Uk, Vk at round k belong to the aggregated labeled
sets syi (for y ∈ {0, 1}) of the meta-procedure. If some these points have already
been confidently labeled, this correct label can be re-used directly. Otherwise, the
univariate Subroutine requests new labels. Similarly, sample efficiency can be improved
within Algorithm 8 itself, by fitting an αi-smooth boundary at the end of each round
indexed by l, correctly labeling points on either side of this fitted boundary (with an
abstention margin), and aggregating these correct labels (as in the meta-procedure)
at each depth. Combined with the previous modification, this ensures that all the
information acquired (in the form of correctly labeled sets) is re-used on-the-fly by
the non-adaptive procedures. A final modification to improve sample efficiency is to
use confidence intervals in Algorithm 9 which exploit the parametric nature of the
label distribution Y (X) ∼ Ber(η(X)) (see e.g. (Garivier and Cappé, 2011; Kaufmann,
Cappé, and Garivier, 2015)). Even though these changes would not improve the rate
of convergence of the adaptive meta-procedure in our setting, they should greatly
improve its sample efficiency.

2.3.4 Adaptive Results for Smooth Decision Boundaries

In this section, we show our main adaptive results, assuming we have access to the
previously analyzed Subroutine with some correctness property. We first formalize this
notion of correctness, and deduct from this a property of the aggregation procedure,
which allows us to then state our main adaptive results.

2.3.4.1 Adaptive Algorithm

A first component of our adaptive strategy is a meta-procedure (Algorithm 10) that
aggregates the classification estimates of a subroutine that takes α as a parameter
(but must adapt to unknown noise margin κ). While much of our analysis concerns
this Subroutine, this section introduces the meta-procedure whose definition is needed
for stating the main result of Theorem 2.6. Note that this is essentially the same
aggregation strategy as in Section 2.2, but slightly adapted to the specifics of the
smooth boundary setting.

The meta-procedure implements original ideas from the recent work of (Locatelli,
Carpentier, and Kpotufe, 2017) (which itself adapts ideas in (Lepski and Spokoiny, 1997)
to the active setting), which considers a different distributional setting (smoothness
of η rather than smoothness of the boundary g∗) but with a similar nested structure
as in this work. The conditions on the Subroutine for the meta-procedure to work
in our setting are different, as we will see, and designing a suitable such subroutine
constitutes the bulk of our efforts.
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Algorithm 10 Adapting to unknown boundary smoothness α
Input: n, δ, λ, and a black-box Subroutine
Initialization: s00 = s10 = ∅
for i = 1, ..., blog(n)c2 do

Let n0 = n
blog(n)c2 , δ0 = δ

blog(n)c2 , and αi = i
blog(n)c

Run Subroutine with parameters (n0, δ0, αi, λ) and receive S0
i , S

1
i

For y ∈ {0, 1}, set syi = syi−1 ∪ (Syi \ s
1−y
i−1 )

end for
Output:

• Confidently labeled sets S0 = s0blog(n)c2 , S
1 = s1blog(n)c2 ,

• Estimated Boundary: ĝn(x̃)
.
= min{xd : (x̃, xd) ∈ S1}

• Classifier f̂n(x)
.
= 1{x ∈ S1} = 1{xd ≥ ĝ(x̃)}

The subroutine is called over increasing guesses αi of the unknown smoothness
parameter α of the boundary, taking advantage of the nested nature of the Hölder
classes: if g∗ is α-Hölder for some unknown α, then it is αi-Hölder for αi ≤ α. Crucially,
the subroutine labels only part of the space, and abstains otherwise. Now, suppose
that the subroutine, called on αi, guarantees correctly labeled sets S0

i , S
1
i whenever

g∗ is αi-Hölder; then for any αi ≤ α the aggregated labels remain correct. When
αi > α, the Subroutine might return incorrect labels. However, this is not a problem
since the aggregation procedure never overwrites previously assigned labels, and thus
misclassification only occurs in the abstention region returned by previous calls with
αi ≤ α. Thus, as long as these abstention regions are of optimal size w.r.t. αi ≤ α,
the final error of the aggregation procedure will be of optimal order (provided some
αi ≈ α).

Following the above intuition, we now formally define correctness in a sense suited
to our particular setting and implicit goal of estimating the decision boundary. This is
different from the notion of correctness in (Locatelli, Carpentier, and Kpotufe, 2017)
where the goal is to achieve a correct margin ∆ w.r.t. the regression function η, i.e.
finding x s.t. |η(x) − 1/2| > ∆, rather than finding x that are ∆ distant from the
boundary {x : η(x) = 1/2} as in our case.

Definition 2.8 ((δ,∆, n)-correct algorithm). Consider a procedure which returns
disjoint measurable sets S0, S1 ⊂ [0, 1]d. Let 0 < δ < 1, and ∆ ≥ 0. We call such
a procedure weakly (δ,∆, n)-correct for a classification problem PX,Y ∈ P(α, κ) if,
with probability larger than 1− 2δ using at most n label requests:{

x = (x̃, xd) ∈ [0, 1]d : xd − g∗(x̃) > ∆
}
⊂ S1{

x = (x̃, xd) ∈ [0, 1]d : g∗(x̃)− xd > ∆
}
⊂ S0.

If in addition, under the same probability event over at most n label requests, we have

S1 ⊂
{
x = (x̃, xd) ∈ [0, 1]d : xd > g∗(x̃)

}
S0 ⊂

{
x = (x̃, xd) ∈ [0, 1]d : xd < g∗(x̃)

}
then such a procedure is simply called (δ,∆, n)-correct for PX,Y .

In the boundary fragment setting, correctness is defined in terms of distance to the
decision boundary, which is a major difference with respect to the smooth regression
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function (see (Locatelli, Carpentier, and Kpotufe, 2017) and the different notion of
correctness therein). Importantly, a correct procedure returns labeled sets with the
following key properties (with high probability): first, points are always labeled in
agreement with their true class (and thus, bring no excess risk). Second, it abstains in
a region of width at most ∆ around the true decision boundary.

2.3.4.2 Main Adaptive Results

In this Section we present our main adaptive result in the smooth boundary setting,
Theorem 2.15, which bounds the distance from our estimated boundary to the true
boundary. As a corollary, the excess 0-1 risk of the estimated classifier can be bounded
under additional distributional assumptions that relax the original setting of (Castro,
2007).

We start with the following simple proposition, stating (as in the intuition detailed
above) that Algorithm 10 correctly aggregates estimates whenever the subroutine calls
return correct estimates.

Proposition 2.6 (Correctness of aggregation). Let n ∈ N∗ and 1 > δ > 0. Let
δ0 = δ/(blog(n)c2) and n0 = n/(blog(n)c2) as in Algorithm 10. Fix κ ≥ 1. Suppose
that, for any α > 0, the Subroutine in Algorithm 10 is (δ0,∆α, n0)-correct for any
PX,Y ∈ P(α, κ), where ∆α > 0 depends on n, δ and the class P(α, κ).

Fix α ∈ [blog(n)c−1, blog(n)c], and let αi = i/blog(n)c for i ∈ {1, . . . , blog(n)c2}.
Then Algorithm 10 is weakly (δ0,∆αi , n0)-correct for any PX,Y ∈ P(α, κ) for the
largest i such that αi ≤ α.

The proof of this proposition follows can be found in Section 2.3.6.3, and follows
from arguments in Section 2.2. The main difference in the interpretation of this result
with respect to the result in (Locatelli, Carpentier, and Kpotufe, 2017), in which
correctness is defined in terms of distance between η and 1/2, is that we are interested
here in locating the decision boundary g∗. This makes Proposition 2.6 very simple to
visualize in our setting. For any run with αi ≤ α, the decision boundary is estimated
within a margin ∆αi such that no regions are mislabeled. As αi ≤ α grows, this margin
decreases, until it reaches the largest i∗ such that αi∗ ≤ α. For any i > i∗, we cannot
characterize the behavior of the non-adaptive Subroutine; fortunately, the misclassified
regions are confined to the set

{
x = (x̃, xd) ∈ [0, 1]d : |xd − g∗(x)| < ∆αi∗

}
.

We now state our main adaptive result (Theorem 2.15). Following Proposition 2.6,
the main work in obtaining Theorem 2.15 consist of producing a Subroutine that is
correct in the sense of Definition 2.8. This is done in Theorem 2.13 of Section 2.3.3.

Theorem 2.15. Let n ∈ N∗ and δ > 0. Assume that PX,Y ∈ P(α, κ) with α ∈
[blog(n)c−1, blog(n)c]. Algorithm 10 run with parameters (n, δ, λ) and using Algo-
rithm 8 as the black-box Subroutine outputs an approximation of the decision boundary
ĝn such that with probability at least 1− 2δ:

||ĝn − g∗||∞ ≤ Cλ
(d−1)

2α(κ−1)+d−1

(
log3(n/δ)

n

)α/(2α(κ−1)+d−1)

,

where C > 0 is a constant that does not depend on λ, n, δ.

The proof of this Theorem can be found in Section 2.3.6.3. By setting δ =
n− log(n)/(d−1) in Theorem 2.15, we also get a rate in expectation of order Õ

(
n−α/(2α(κ−1)+d−1)

)
,

matching (up to logarithmic factors) the minimax lower bound derived in (Castro and
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Nowak, 2007).

So far, we have made no assumption on PX . In order to relate this bound on the
distance between ĝn and g∗ to a guarantee on the risk of the classifier f̂n, we now state
a third assumption, which bounds the risk incurred by regions that are close to g∗.

Assumption 2.6. There exists C > 0, ∆0 > 0 and κ′ > 0 such that ∀∆ ∈ [0,∆0]:∫
x∈[0,1]d:|xd−g∗(x̃)|≤∆

|1− 2η(x)|dPX(x) ≤ C∆κ′

This assumption relaxes the setting introduced in (Castro and Nowak, 2007), as we
will see in Example 2.1(in particular there, κ′ = κ which can be strong). Assumption 2.6
and Theorem 2.15 directly lead to the following corollary, which bounds the excess
risk of the classifier with high probability.

Corollary 2.3. Under the assumptions of Theorem 2.15 and Assumption 2.6, for
n ≥ N = N(α, λ, κ, δ), Algorithm 10 run with (n, δ, λ) outputs a classifier f̂n such that
with probability at least 1− 2δ its excess risk is bounded as:

E(f̂n) ≤ Cλ
κ′(d−1)

2α(κ−1)+d−1

(
log3(n/δ)

n

)ακ′/(2α(κ−1)+d−1)

,

where C > 0 is a constant that does not depend on λ, n, δ.

From the corollary we see that larger values of κ′ and lower values for κ improve
the rate; this can be a source of tension under the restriction that κ′ = κ as in the first
example below. The first example below is the exact setting of (Castro and Nowak,
2007).

Example 2.1. ((Castro and Nowak, 2007)). Consider PX uniform over [0, 1]d and η
such that:

c|xd − g∗(x̃)|κ−1 ≤
∣∣∣∣η(x)− 1

2

∣∣∣∣ ≤ C|xd − g∗(x̃)|κ−1.

It is clear that Assumption 2.6 is satisfied with κ′ = κ. Under these assumptions, the
minimax rate in expectation for the excess risk is of order Ω(n−ακ/(2α(κ−1)+d−1)) as
shown by (Castro and Nowak, 2007). Our procedure is the first adaptive and optimal
(up to logarithmic factors) strategy in this setting. Notice that in this case, both low
and large values of κ seem to improve the rate.

In fact, for α > (d − 1)/2 we get fast rates (below n−1/2) and lower values of κ
improve the rate. On other hand, when α ≤ (d− 1)/2, greater values of κ improve the
rate. This tension comes from the fact that lower values of κ on the one hand make it
easier to locate the decision boundary as there is a sharper jump close to g∗; yet for large
values of κ = κ′, misclassifying a large region close to the boundary bears less risk. As-
sumption 2.6 decouples the effect of κ and κ′, which is evident in the following example.

Example 2.2. (Hard and soft margin in PX). Consider situations where PX has little
or no mass near the decision boundary. First consider the extreme of no mass near
the boundary (hards margin), i.e. there exists ∆0 such that

PX(x : |xd − g∗(x̃)| ≤ ∆0) = 0.
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In this case κ′ = ∞ in Assumption 2.6, and the classifier attains 0 error with high
probability (equivalently, exponentially small error in expectation). More generally
(soft-margin), Assumption 2.6 holds if PX decreases sufficiently fast near the boundary:
for instance, suppose we have ∀ 0 < ∆ ≤ ∆0,

PX(x : |xd − g∗(x̃)| ≤ ∆) ≤ ∆κ′−κ0+1,

where κ0 ≤ κ ∧ (κ′ + 1) satisfies the upper-bound
∣∣η(x)− 1

2

∣∣ ≤ c|xd − g∗(x̃)|κ0−1.

We complete this result with the following lower bound, which shows that the rate
in Corollary 2.3 is tight up to logarithmic factors, at least for κ′ > κ− 1, and strictly
faster than the passive rate under the same assumptions.

Theorem 2.16 (Active Lower Bound). Let α > 0, κ > 1 and κ′ > κ − 1. Consider
P(α, κ, κ′) the subset of P(α, κ) such that Assumption 2.6 is satisfied with κ′. For n
large enough, any (possibly active) strategy An that collects at most n samples before
returning a classifier f̂n satisfies:

inf
An

sup
PX,Y ∈P(α,κ,κ′)

E[E(f̂n)] ≥ Cn−ακ′/(2α(κ−1)+d−1),

where C > 0 does not depend on n and the expectation is taken with respect to both the
samples collected by the strategy An and PX,Y .

Finally, we derive a lower bound in the passive setting, in terms of κ′ (previous
lower-bounds for related settings do not consider κ′, see for example (Tsybakov, 2004)).
The lower-bound below highlights the gains in active learning, as the rate of Corollary
2.3 and Theorem 2.16 is strictly faster than the passive-learning lower-bound obtained
below.

Theorem 2.17 (Passive Lower Bound). Under the Assumption of Theorem 2.16, for
n large enough, any classifier f̂n trained on at most n i.i.d. samples satisfies:

inf
f̂n

sup
PX,Y ∈P(α,κ,κ′)

E[E(f̂n)] ≥ Cn−ακ′/(α(κ+κ′−1)+d−1),

where C > 0 does not depend on n.

For κ = κ′, the lower-bound recovers known rates for passive learning see e.g.
(Tsybakov, 2004; Castro, 2007).

The proofs of these Theorems can be found in the Section 2.3.6.4 and 2.3.6.5 It is
based on general information theoretic arguments (Fano’s method) as exposed in a
suitable form by (Tsybakov, 2009a) and adapted to active learning by (Castro and
Nowak, 2007). The geometric construction builds on lower-bound constructions in
(Locatelli, Carpentier, and Kpotufe, 2017) for the separate setting of smooth regression
functions.

2.3.5 Conclusion

We presented in this Section the first adaptive strategy for active learning in the
boundary fragment setting, resolving a problem that was open since the formulation
of this setting in (Castro and Nowak, 2007), as all known strategies required the
knowledge of the characteristic parameters of the problem, which are in general out of
reach for practitioners.
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2.3.6 Proofs of Section 2.3

2.3.6.1 Proof of Theorem 2.14

Proof. Fix x̃ ∈ [0, 1]d−1. In this proof, with a slight abuse of notation, we write
η(Z)

.
= η((x̃, Z)). Our goal is to find the unique threshold x∗d ∈ [0, 1] such that we

have for any xd ≥ x∗d, η((x̃, xd)) ≥ 1/2, and η((x̃, xd)) < 1/2 for any xd < x∗d where η
is such that Assumption 3.2 is satisfied for some κ ≥ 1. We will first write the event
under which all average estimates used by the algorithm concentrate around their
means. For Z ∈ [0, 1] sampled t ≥ 1 times by the algorithm with η̂t(Z) =

∑t
i=1 Yt(Z)

where Yt(Z) is the t-th observation collected in (x̃, Z), consider the event:

|η̂t(Z)− η(Z)| ≤
√

log(1/δ)

2t
.

By Chernoff-Hoeffding, this event holds with probability at least 1− δ. We denote Gk
the dyadic grid of [0, 1] with step size 2−k, i.e. Gk = { i

2k
, i ∈ {1, ..., 2k − 1}}. Note

that there are 2k − 1 points in Gk. Let K = dlog2

(
1
2ε

)
e, δk = δ

K2k+1 . We define the
event ξ:

ξ
.
=
{
∀t, k, i s.t. t ≥ 1, k ≤ K,Zi,k ∈ Gk : |η̂t(Zi,k)− η(Zi,k)| ≤

√
log( t

2

δk
)

2t

}
,

By a union bound, we have:

P(ξ̄) ≤
∑
k≤K

∑
Zi,k∈Gk

∑
t≥1

δk
t2

≤ π2

6

∑
k≤K

∑
Zi,k∈Gk

δ

K2k+1

≤ δ,

where we use
∑

t≥1 t
−2 = π2

6 ≤ 2 and the definition of δk. This shows that P(ξ) ≥ 1−δ.
Assume that at the beginning of epoch k, we have ∆k

.
= Rk−Lk = 2−k+1, and Rk and

Lk are such that x∗d ∈ [Lk, Rk]. As the points Uk,Mk, Vk divide the interval [Lk, Rk] in
four subintervals of equal length, and there exists a unique threshold x∗d ∈ [Lk, Rk], it
implies that there is at most a single point Z ∈ {Uk,Mk, Vk} such that |Z − x∗d| <

∆k
8 .

Consider the case |Uk − x∗d| <
∆k
8 - the other cases are handled similarly. We thus

have |Mk − x∗| ≥ ∆k
8 . This implies by Assumption 3.2:

|η(Mk)−
1

2
| ≥ c

(∆k

8

)κ−1
. (2.53)

Without loss of generality, assume that η̂tk(Mk) > 1/2 when the epoch ends for the

smallest tk such that |η̂tk(Mk)− 1/2| ≥ 2
√

log(tk/δk)
2tk

. On ξ, we have:

η(Mk)−

√
log(tk/δk)

2tk
≤ η̂tk(Mk) ≤ η(Mk) +

√
log(tk/δk)

2tk
(2.54)
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Epoch k ends as soon as η̂tk(Mk)− 1/2 ≥ 2
√

log(tk/δk)
2tk

. Combining this condition with
Equation (2.54) brings on ξ:

2

√
log(tk/δk)

2tk
≤ η̂tk(Mk)− 1/2

≤ η(Mk)− 1/2 +

√
log(tk/δk)

2tk
,

which implies that η(Mk) ≥
√

log(tk/δk)
2tk

+ 1/2 > 1/2, and we have correctly labeled the
pointMk i.e. on ξ, 1{η̂tk(Mk) ≥ 1/2} = 1{η(Mk) ≥ 1/2}. Equations (2.54) and (2.53)
together yield that the epoch stops if tk is such that:

3

√
log(tk/δk)

2tk
≤ η(Mk)− 1/2, (2.55)

implying the following sufficient condition for epoch k to end: tk ≥ 9 log(tk/δk)

2(η(Mk)−1/2)2 .
Thus, when the epoch ends we have at most:

tk ≤
5 log(tk/δk)

(η(Mk)− 1/2)2 .

Denote for now u = (η(Mk)− 1/2) ≤ 1/2 as η is bounded in [0, 1] and assume that
tk ≤ 17 log(1/(u2δk))

u2 . Injecting this in Equation (2.55) brings that the epoch ends if:

tk ≥
5 log(17 log(1/(u2δk))

u2δk
)

u2
. (2.56)

We now check that 5 log(17 log(1/(u2δk))/(u2δk))
u2 ≤ 17 log(1/(u2δk))

u2 . This is true if 5 log(log(1/(u2δk)))+
5 log(17) ≤ 12 log(1/(u2δk)). As we have δk ≤ 1 and u ≤ 1/2, then w = 1/(u2δk) ≥ 4,
and one can easily check that 5 log(log(w)) + 5 log(17) ≤ 12 log(w) for any w ≥ 4.

Using Equation (2.53), we thus have the following upper-bound on tk:

tk ≤


17c−2 log

(
1

c2δk

)
, if κ = 1,

17c−2 log

((
8

∆k

)2(κ−1)
1

c2δk

)(
8∆−1

k

)2(κ−1)
, if κ > 1.

Similarly, we can show that on ξ, we make no mistake in the case η̂tk(Mk) < 1/2
when the epoch stops, and obtain the same bound on tk. Thus on ξ when epoch k ends,
we have identified an interval [Lk+1, Rk+1] of size ∆k

2 such that x∗ ∈ [Lk+1, Rk+1]. By
recurrence, this shows that on ξ, we have for any k ≤ K, x∗ ∈ [Lk, Rk] and ∆k = 2−k+1.
We now bound the total budget required for all epochs k ≤ K to end on ξ. When the
algorithm terminates we have requested N labels with the following upper-bound on
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N for κ > 1:

N = 3

K∑
k=1

tk

≤ 51c−2
K∑
k=1

log

((
8

∆k

)2(κ−1) 1

c2δk

)(
8∆−1

k

)2(κ−1)

≤ 51c−282(κ−1) log

(
(8∆−1

K )2(κ−1)K2K+1

c2δ

) K∑
k=1

22k(κ−1) (2.57)

≤ 100c−282(κ−1)κ log

(
log2(1/ε)

c2δε

) K∑
k=1

22k(κ−1)

≤ 100κ log

(
log2(1/ε)

εδ

)
log

(
1

c

)
c−282(κ−1)(κ− 1)−1(22K(κ−1) − 1) (2.58)

≤ 200
(

log(
1

δ
) + log(

1

ε
)
)
κ log

(
1

c

)
c−282(κ−1)(κ− 1)−1

((1

ε

)2(κ−1) − 1
)
(2.59)

and for κ = 1:

N ≤ 16 log(1/(c2δK))c−2K

≤ 64

(
log

(
1

δ

)
+ log

(
1

ε

))
log

(
1

c

)
c−2 log

(
1

ε

)
. (2.60)

2.3.6.2 Proof of Theorem 2.13

Proof. We first define the event ξ on which all the calls to the Subroutine 9 are
successful. Let δl = δ(max(1, bαc)2l(d+1))−1.

ξ
.
=
{
∀l ≥ 1,∀ã ∈ {0, ...,Ml}d−1, |Tl,ã − g∗(M−1

l ã)| ≤ εl
}
,

At depth l ≥ 1, we launch (Ml + 1)d−1 ≤ max(1, bαc)2ld line-search instances with
confidence parameter δl and precision εl. Each run, indexed by ã ∈ {0, ...,Ml}d−1

returns a correct threshold Tl,ã along the line segment Lã
.
= {(M−1

l∗ ã, xd), xd ∈ [0, 1]}
such that |Tl,ã − g∗(M−1

l ã)| ≤ εl with probability at least 1 − δl and using at most
O
(

(log(1/εl) + log(1/δl)) ε
−2(κ−1)
l

)
samples (see Theorem 2.14).

By a union bound, we have P(ξ̄) ≤ δ
∑

l≥1 2−l ≤ 2δ, which implies that P(ξ) ≥
1− 2δ.
At depth l, the algorithm performs (max(1, bαc)2l + 1)d−1 ≤ (2dαe)d−1 2l(d−1) line-
searches. By Equation (2.58) in the proof of Theorem 2.14, we can upper bound on ξ
the total budget that Algorithm 8 uses at depth l, with εl = λ2−αl ≥ 2−αl as λ ≥ 1:

Nl ≤ (2dαe)d−1 2l(d−1) log(
2lα

δ
)200 log(1/c)c−2(8/λ)2(κ−1) κ

κ− 1
22lα(κ−1)(2.61)

≤ (2dαe)d−1 200 log(1/c)c−2(8/λ)2(κ−1) κ

κ− 1
log(

2lα

δ
)2l(2α(κ−1)+d−1)(2.62)

We are now ready to bound the minimal depth l∗ reached by the algorithm. We also
upper-bound naively l∗ by log2(n), as the budget is insufficient to query all cells once
at this depth for d ≥ 2. We bound the number of samples required to reach depth l∗
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on ξ:

l∗∑
l=1

Nl ≤
l∗∑
l=1

(2dαe)d−1 log(
2lα

δ
)200 log(1/c)c−2(8/λ)2(κ−1) κ

κ− 1
2l(2α(κ−1)+d−1)

≤ 200 (2dαe)d−1 log(1/c)c−2(8/λ)2(κ−1) κ

κ− 1
log

(
2l
∗α

δ

) l∗∑
l=1

2l(2α(κ−1)+d−1)

≤ 400 (2dαe)d−1 log(1/c)c−2(8/λ)2(κ−1) κα

κ− 1
log
(n
δ

)
2l
∗(2α(κ−1)+d−1).(2.63)

As the algorithm is limited by a maximum budget of n samples, the depth reached on
ξ is lower-bounded by the biggest l∗ such that:

2l
∗(2α(κ−1)+d−1) ≤ (κ− 1)c2λ2(κ−1)

400 (2dαe)d−1 α log(1/c)κ82(κ−1)

( n

log(n/δ)

)
,

which implies that a minimum depth:

l∗ ≥ 1

2α(κ− 1) + d− 1
log2

(
(κ− 1)c2λ2(κ−1)

400 (2dαe)d−1 α log(1/c)κ82(κ−1)

( n

log(n/δ)

))
− 1

(2.64)
is reached by the algorithm on ξ. Let c1 = (κ−1)c2

400(2dαe)d−1α log(1/c)κ82(κ−1)
.

Let ã ∈ {0, ...,Ml∗}d−1. On ξ, we have:

|Tl∗,ã − g∗(M−1
l∗ ã)| ≤ λ

(
Ml∗

max(1, bαc)

)−α
Note that Ml∗ is a quantity accessible to the algorithm to construct the confidence
bands for the estimation of the boundary, as it is simply the step size of the last
completed epoch.
In what follows, we will consider the threshold estimates (Tl∗,ã)ã and construct a
polynomial approximation of the boundary.

Case 1: α > 1. As in (Castro and Nowak, 2007), we make use of the tensor-product
Lagrange polynomials. Let q̃ ∈ {0, ..., Ml∗

bαc − 1}d−1 index the cells:

Iq̃
.
=
[
q̃1bαcM−1

l∗ , (q̃1 + 1)bαcM−1
l∗

]
× ...×

[
q̃d−1bαcM−1

l∗ , (q̃d−1 + 1)bαcM−1
l∗

]
.

These cells partition [0, 1]d−1 entirely, as we have Ml∗ = bαc2l∗ . The tensor-product
Lagrange polynomials are defined as follows:

Qq̃,ã(x̃)
.
=

d−1∏
i=1

∏
0≤j≤bαc
j 6=ãi−bαcq̃i

x̃i −M−1
l∗ (bαcq̃i + j)

M−1
l∗ ãi −M

−1
l∗ (bαcq̃i + j)

.

It is easily shown that ((Castro and Nowak, 2007; Castro, 2007)):

max
x̃∈Iq̃
|Qã,q̃(x̃)| ≤ bαc(d−1)bαc. (2.65)
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The tensor-product Lagrange polynomial interpolation of g∗ for x̃ ∈ Iq̃ is:

Pq̃(x̃) =
∑

ã:M−1
l∗ ã∈Iq̃

g∗(M−1
l∗ ã)Qq̃,ã(x̃) (2.66)

and we define the polynomial interpolation of g∗ for x̃ ∈ Iq̃:

P̂q̃(x̃) =
∑

ã:M−1
l∗ ã∈Iq̃

Tl∗,ãQq̃,ã(x̃). (2.67)

On ξ, since εl∗ =
(
Ml∗
bαc

)−α
:

|Tl∗,ã − g∗(M−1
l∗ ã)| ≤ λ

(Ml∗

bαc

)−α
. (2.68)

For any x̃ ∈ Iq̃, the previous equation brings on ξ:

|P̂q̃(x̃)− Pq̃(x̃)| =
∣∣ ∑
ã:M−1

l∗ ã∈Iq̃

(
Tl∗,ã − g∗(M−1

l∗ ã)
)
Qq̃,ã(x̃)

∣∣
≤

∑
ã:M−1

l∗ ã∈Iq̃

λ
(Ml∗

bαc

)−α∣∣Qq̃,ã(x̃)
∣∣

≤
∑

ã:M−1
l∗ ã∈Iq̃

λ
(Ml∗

bαc

)−α
bαc(d−1)bαc

≤ dαed−1bαc(d−1)bαcbαcαλM−αl∗
≤ dαeddαeλM−αl∗ , (2.69)

where we use Equation (2.65) in line 4, and upper-bound the number of terms in the
sum by dαed−1.
We now turn our attention to the approximation properties of Pq̃ with respect to g∗,
which do not depend on ξ. For any x̃ ∈ Iq̃ and g∗ ∈ Σ(λ, α), we have:

|Pq̃(x̃)− g∗(x̃)| = |Pq̃(x̃)− TPq̃bαcM−1
l∗

(x̃) + TPq̃bαcM−1
l∗

(x̃)− g∗(x̃)|

≤ |Pq̃(x̃)− TPq̃bαcM−1
l∗

(x̃)|+ |TPq̃bαcM−1
l∗

(x̃)− g∗(x̃)|

≤ |Pq̃(x̃)− TPq̃bαcM−1
l∗

(x̃)|+ λ
(Ml∗

bαc

)−α
, (2.70)

where TPx is the Taylor polynomial expansion of g in x of degree bαc. As the Taylor
polynomial expansion is of degree bαc, it is also possible to write TPq̃bαcM−1

l∗
in the
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tensor-product Lagrange polynomials basis, bringing:

|Pq̃(x̃)− TPq̃bαcM−1
l∗

(x̃)| =
∣∣ ∑
ã:M−1

l∗ ã∈Iq̃

(
g∗(M−1

l∗ ã)− TPq̃bαcM−1
l∗

(M−1
l∗ ã)

)
Qq̃,ã(x̃)

∣∣
≤

∑
ã:M−1

l∗ ã∈Iq̃

|g∗(M−1
l∗ ã)− TPq̃bαcM−1

l∗
(M−1

l∗ ã)||Qq̃,ã(x̃)|
∣∣

≤
∑

ã:M−1
l∗ ã∈Iq̃

λ
(Ml∗

bαc

)−α∣∣Qq̃,ã(x̃)
∣∣

≤
∑

ã:M−1
l∗ ã∈Iq̃

λ
(Ml∗

bαc

)−α
bαc(d−1)bαc

≤ dαed−1bαc(d−1)bαcbαcαλM−αl∗
≤ dαeddαeλM−αl∗ ,

where the third line is obtained by using Assumption 2.4 as g∗ is α-smooth. Combining
this with Equation (2.70) yields the following inequality:

|Pq̃(x̃)− g∗(x̃)| ≤ 2dαeddαeλM−αl∗ . (2.71)

We are now ready to conclude the proof. Combining Equations (2.69) and (2.71) allows
us to write:

|P̂q̃(x̃)− g∗(x̃)| ≤ |P̂q̃(x̃)− Pq̃(x̃)|+ |Pq̃(x̃)− g∗(x̃)|
≤ 3dαeddαeλM−αl∗ ,

which brings immediately with bl∗ = dαeddαeλM−αl∗ as defined in the algorithm:

0 < bl∗ ≤ (P̂q̃(x̃) + 4bl∗)− g∗(x̃) ≤ 7bl∗ .

This implies directly the following inclusions on ξ:

{x : xd ≥ g∗(x̃) + 7bl∗} ⊂ S1 ⊂ {x : xd > g∗(x̃)}

Through similar considerations, it is easily shown that on ξ, we also have:

{x : xd ≤ g∗(x̃)− 7bl∗} ⊂ S0 ⊂ {x : xd < g∗(x̃)}.

This shows that the procedure is (n, δ,∆l∗)-correct with:

∆l∗ ≤ 7dαeddαe2αλ
d−1

2α(κ−1)+d−1

( log(n/δ)

c1n

) α
2α(κ−1)+d−1

.

Case 2: α ≤ 1. We simply use a constant approximation directly on the cells:

Ch̃
.
=
[
h̃1M

−1
l∗ , (h̃1 + 1)M−1

l∗

]
× ...×

[
h̃d−1M

−1
l∗ , (h̃d−1 + 1)M−1

l∗

]
,

indexed by h̃ ∈ {0, ...,Ml∗ − 1}. For α ≤ 1, the assumption on the smoothness of the
boundary simply yields for any h̃ ∈ {0, ...,Ml∗ − 1} and any x̃, ỹ ∈ Ch̃:

|g∗(x̃)− g∗(ỹ)| ≤ λ||x̃− ỹ||α∞ ≤ λM−αl∗ . (2.72)
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Note that for α ≤ 1, we have bl∗ = λM−αl∗ , as we have dαe = 1. Equation (2.68) and
Equation (2.72) yield for any x̃ ∈ Ch̃:

0 < bl∗ ≤ Tl∗,h̃ + 2bl∗ − g∗(x̃) ≤ 4bl∗ ,

which shows the (n, δ,∆l∗) correctness of the procedure with:

∆l∗ ≤ 2α5λ
d−1

2α(κ−1)+d−1

( log(n/δ)

c1n

) α
2α(κ−1)+d−1

2.3.6.3 Proof of Proposition 2.6 and Theorem 2.15

Proof. The proof follows from arguments in Section 2.2, adapted to this different
notion of correctness.

Set as in Algorithm 10:

n0 =
n

blog(n)c2
, δ0 =

δ

blog(n)c2
, and αi =

i

blog(n)c
.

In Algorithm 10, the Subroutine is launched blog(n)c2 times on blog(n)c2 inde-
pendent subsamples of size n0. We index each launch by i, which corresponds to the
launch with smoothness parameter αi. Let i∗ be the largest integer 1 ≤ i ≤ blog(n)c2
such that αi ≤ α.

Since the Subroutine is strongly (δ0,∆α, n0)-correct for any α ∈ [blog(n)c−1, blog(n)c],
it holds by Definition 2.8 that for any i ≤ i∗, with probability larger than 1− δ0{

x ∈ [0, 1]d : xd − g∗(x̃) > ∆αi

}
⊂ S1

i ⊂
{
x ∈ [0, 1]d : xd − g∗(x̃) > 0

}
and {

x ∈ [0, 1]d : g∗(x̃)− xd > ∆αi

}
⊂ S0

i ⊂
{
x ∈ [0, 1]d : g∗(x̃)− xd > 0

}
.

So by an union bound we know that with probability larger than 1−blog(n)c2δ0 = 1−δ,
the above equations hold jointly for any i ≤ i∗.

This implies that with probability larger than 1− δ, we have for any i′ ≤ i ≤ i∗,
and for any y ∈ {0, 1}, that

Syi ∩ s
1−y
i′ = ∅,

i.e. the labeled regions of [0, 1]d are not in disagreement for any two runs of the
algorithm that are indexed with parameters smaller than i∗. So we know that just
after iteration i∗ of Algorithm 10, we have with probability larger than 1− δ, that for
any y ∈ {0, 1} ⋃

i≤i∗
Syi ⊂ s

y
i∗ .

Since the sets syi are strictly growing but disjoint with the iterations i by definition
of Algorithm 10 (i.e. ski ⊂ ski+1 and ski ∩ s

1−k
i = ∅), it holds in particular that with

probability larger than 1− δ and for any y ∈ {0, 1}⋃
i≤i∗

Syi ⊂ s
y
blog(n)c2 and syblog(n)c2 ∩ s

1−y
blog(n)c2 = ∅.
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This finishes the proof of Proposition 2.6.

By Proposition 2.6, Algorithm 10 is weakly-(δ0,∆αi , n0) correct for the largest i
such that αi ≤ α, with ∆αi bounded as:

∆αi ≤ 7dαieddαie2αiλ
( log3(n/δ)

c1n

) αi
2αi(κ−1)+d−1

,

with c1 = (κ−1)c2

400(2dαe)d−1α log(1/c)κ82(κ−1)
.

By definition of αi, which is on a grid of step blog(n)c−1, we have:

α− 1

blog(n)c
≤ αi ≤ α.

This yields for the exponent in the rate:

− αi
2αi(κ− 1) + d− 1

≤ − α

2α(κ− 1) + d− 1
+

blog(n)c−1

2α(κ− 1) + d− 1
.

The result follows by noticing that:

n
1

blog(n)c(2α(κ−1)+d−1) ≤ exp

(
log(n)

blog(n)c(d− 1)

)
and thus this term only affects the rate as a multiplicative constant that does not
depend on n, δ and λ.

2.3.6.4 Proof of Theorem 2.16

Proof. The basic argument is based on standard applications of Fano’s inequality, in
particular on a useful form given in Theorem 2.5 in (Tsybakov, 2009a) (which we recall
hereunder). The main work is in constructing a suitable family of problems satisfying
the conditions of Theorem 2.18 and matching our distributional requirements.

Theorem 2.18 (Tsybakov). Let H be a class of models, d : H×H → R+ a pseudo-
metric, and {Pη, η ∈ H} a collection of probability measures associated with H. Assume
there exists a subset {η0, ..., ηM} of H such that:

1. d(ηi, ηj) ≥ 2s > 0 for all 0 ≤ i < j ≤M

2. Pηi is absolutely continuous with respect to Pη0 for every 0 < i ≤M

3. 1
M

∑M
i=1 KL(Pηi , Pη0) ≤ α log(M), for 0 < α < 1

8

then

inf
η̂

sup
η∈H

Pη
(
d(η̂, η) ≥ s

)
≥

√
M

1 +
√
M

(
1− 2α−

√
2α

log(M)

)
,

where the infimum is taken over all possible estimators of η based on a sample from Pη.

Let α > 0 and d ∈ N, d > 1. For x ∈ Rd, we write x = (x(1), · · · , x(d)) and x(i)

denotes the value of the i-th coordinate of x. As previously, for x ∈ [0, 1]d, we use the
notation x̃ = (x(1), . . . , x(d−1)).

Consider the grid of [0, 1]d−1 of step size 2∆1/α, ∆ > 0. There are

K = 21−d∆(1−d)/α,
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disjoint hypercubes in this grid, and we write them (H ′k)k≤K . For k ≤ K, let x̃k be
the barycenter of H ′k.

We now define the partition of [0, 1]d :

[0, 1]d =
K⋃
k=1

Hk =
K⋃
k=1

(H ′k × [0, 1]),

where Hk = (H ′k × [0, 1]) is an hyper-rectangle corresponding to H ′k - these are hyper-
rectangles of side 2∆1/α along the first (d− 1) dimensions, and side 1 along the last
dimension.

We define f for any z ∈ [1
2∆1/α,∆1/α] as

f(z) =

Cλ,α4α−1
(

∆1/α − z
)α
, if 3

4∆1/α < z ≤ ∆1/α

Cλ,α

(
∆
2 − 4α−1

(
z − 1

2∆1/α
)α)

, if 1
2∆1/α ≤ z ≤ 3

4∆1/α,

where Cλ,α > 0 is a small constant that depends only on α, λ.
For k ≤ K, and for any x̃ ∈ H ′k, we write

Ψk(x̃)


Cλ,α∆

2 , if |x̃− x̃k|2 ≤ ∆1/α

2

0, if |x̃− x̃k|2 ≥ ∆1/α

f(|x̃− x̃k|), otherwise,

which we use to define gks over the same domain, for s ∈ {−1, 1}:

gk,s(x̃) =
1

2
+ sΨk(x̃)

f is such that f(1
2∆1/α)) =

Cλ,α∆
2 , and f(∆1/α) = 0. Moreover, it is (λ, α)-Hölder

on [1
2∆1/α,∆1/α] for Cλ,α small enough (depending only on α, λ), and such that all its

derivatives are 0 in 1
2∆1/α, ∆1/α. By definition of Ψk,s, it holds that gk,s is in Σ(λ, α)

restricted to H ′k.
We now define ηk,s for x ∈ Hk:

ηk,s(x) =

{
c|xd − gk,s(x̃) + 2Ψk(x̃)|κ−1 if s(xd − gk,s(x̃)) > 2Ψk(x̃)

c|xd − gk,s(x̃)|κ−1 otherwise.

We see immediately by definition of ηk,s that it satisfies Assumption 3.2, and that
ηk,−1(x) = ηk,1(x) for {x : |xd − 1/2| ≥ Ψk(x̃)} (i.e. ηk,s only depends on s in a small
band around the decision boundary).

For σ ∈ {−1, 1}K , we define for any x̃ ∈ [0, 1]d−1 the function

g∗σ(x̃) =
∑
k≤K

gk,σk(x̃)1{x̃ ∈ H ′k}.

Note that since each gk,s is in Σ(λ, α) restricted to H ′k, and by definition of gk,s at the
borders of each H ′k, it holds that g

∗
σ is in Σ(λ, α) on [0, 1]d−1.

We now define the marginal distribution PX of X. To simplify notations, we
first define for any x ∈ Hk: Dk(x) = min(|xd − gk,1(x̃)|, |xd − gk,−1(x̃)|) and D(x) =∑K

k=1Dk(x)1{x ∈ Hk}. This is simply the distance from x to the closest possible
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location of the boundary, and it does not depend on s ∈ {−1, 1}. We define pk for
x ∈ Hk for κ′ > κ− 1:

pk(x) =

{
C1Dk(x)κ

′−κ if Dk(x) ≤ ∆0

C2 otherwise.

This allows us to define the density:

p(x) =

K∑
k=1

pk(x)1{x ∈ Hk},

where the constants C1 and C2 are chosen such that Assumption 2.6 is satisfied and p
integrates to 1 over [0, 1]d.

Finally, for any σ ∈ {−1,+1}K , we define Pησ as the measure of the data in our
setting when the density of PX is p, and where the regression function PY |X providing
the distribution of the labels is ησ. By a slight abuse of notation, we write Pσ = Pησ .
We write

H = {ησ : σ ∈ {−1,+1}K}.

For any element ησ of H, Pσ satisfies Assumptions, 2.4, 3.2 and 2.6 by construction.

We define Pσ,n the joint distribution (Xi, Yi)
n
i=1 of samples collected by any

(possibly active) fixed sampling strategy Πn under Pσ, where Πn = {πi}i≤n, and
πt(x, {(Xi, Yi)}i<t) is the sampling strategy at time t that depends on the samples
collected up to time t. πt defines the sampling rule πt(x, {(Xi, Yi)}i<t) = Pπ,σ(Xt =
x|(X1, Y1), . . . , (Xt−1, Yt−1)), for any x ∈ [0, 1]d. We remark here that this sampling
mechanism may depend on PX , which is why we have constructed PX such that it
does not depend on σ. This is crucial for Proposition 2.8 (from (Castro and Nowak,
2007)) to hold. As PX does not depend on σ, we have immediately that ∀i ≤M , Pσi,n
is absolutely continuous with respect to Pσ0,n.

Proposition 2.7 (Gilbert-Varshamov). For K ≥ 8 there exists a subset {σ0, ..., σM} ⊂
{−1, 1}K such that σ0 = {1, ..., 1}, ρ(σi, σj) ≥ K

8 for any 0 ≤ i < j ≤ M and
M ≥ 2K/8, where ρ stands for the Hamming distance between two sets of length K.

We denote H′ .= {ησ0 , · · · , ησM } a subset of H of cardinalityM ≥ 2K/8 with K ≥ 8
such that for any 1 ≤ k < j ≤M , we have ρ(σk, σj) ≥ K/8. We know such a subset
exists by Proposition 2.7.

Proposition 2.8 (Castro and Nowak). For any σ ∈ H such that σ 6= σ0 and ∆ small
enough such that ησ, ησ0 take values only in [1/5, 4/5] and PX does not depend on σ,
we have:

KL(Pσ,n||Pσ0,n) ≤ 7n max
x∈[0,1]d

(ησ(x)− ησ0(x))2.

where KL(.||.) is the Kullback-Leibler divergence between two-distributions, and Pσ,n
stands for the joint distribution (Xi, Yi)

n
i=1 of samples collected by any (possibly active)

fixed sampling strategy under Pσ.

This proposition is a consequence of the analysis in (Castro and Nowak, 2008)
(Theorem 1 and 3, and Lemma 1). A proof can be found in (Minsker, 2012b).



90 Chapter 2. Adaptive active classification

By Definition of the ησ, we know that maxx∈[0,1]d |ησ(x)− ησ0(x)| ≤ c(2Cλ,α∆)κ−1,
and so Proposition 2.8 implies that for any σ ∈ H′:

KL(Pσ,n||Pσ0,n) ≤ 7n max
x∈[0,1]d

(ησ(x)− ησ0(x))2

≤ 7nc2(2Cλ,α)2(κ−1)∆2(κ−1).

So we have :

1

M

∑
σ∈H′

KL(Pσ,n||Pσ0,n) ≤ 7nc2(2Cλ,α)2(κ−1)∆2(κ−1) <
K

82
≤ log(|H′|)

8
,

for n larger than a constant that depends only on α, λ, and setting

∆ = C3n
−α/(2(κ−1)α+d−1),

as K = C4∆(1−d)/α. This implies that for this choice of ∆, the third condition in
Theorem 2.18 is satisfied.

Finally, we define the pseudo-metric as follows:

d(η, η′) =

∫
x∈[0,1]d

1{sign(η(x)− 1/2) 6= sign(η′(x)− 1/2)}D(x)κ−1p(x)dx.

For σ, σ′ ∈ H′, we have:

d(ησ, ησ′) =

∫
x∈[0,1]d

1{sign(ησ(x)− 1/2) 6= sign(ησ′(x)− 1/2)}D(x)κ
′−1dx.

= C5ρ(σ, σ′)

∫
x̃∈H′1

(∫
|xd−1/2|≤Ψ1(x̃)

min(|xd − g1,1(x̃)|, |xd − g1,−1(x̃)|)κ′−1dxd

)
dx̃

= 2C5ρ(σ, σ′)

∫
x̃∈H′1

(∫ 1/2+Ψk(x̃)

1/2
|xd − g1,1(x̃)|κ

′−1 dxd

)
dx̃

≥ 2C5ρ(σ, σ′)

∫
|x̃−xk|2≤∆1/α

2

∫ 1/2+
Cλ,α∆

2

1/2

∣∣∣∣xd − Cλ,α∆

2
+

1

2

∣∣∣∣κ′−1

dxd

 dx̃

≥ C6ρ(σ, σ′)∆(d−1)/α∆κ′

≥ C7∆κ′ ,

where we use the definition of p in the first line, the definition of ησ and ρ(σ, σ′) and
Fubini’s theorem in the second line, and the lower bound on ρ(σ, σ′) by definition of
H′ in the last line.

All assumptions in Theorem 2.18 are thus satisfied with s = C7∆κ′ and ∆ =
C3n

−α/(2(κ−1)α+d−1). For any ησ ∈ H′, and any η̂ : [0, 1]d → [0, 1]:

d(η̂n, ησ) =

∫
x∈[0,1]d

1{sign(η̂n(x)− 1/2) 6= sign(ησ(x)− 1/2)}D(x)κ−1p(x)dx

≤ c−1

∫
x∈[0,1]d

1{sign(η̂n(x)− 1/2) 6= sign(ησ(x)− 1/2)}|1− 2ησ(x)|p(x)dx

≤ RPσ(η̂n)−RPσ(ησ)

c
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where we use in the second line the fact that ησ satisfies Assumption 3.2 with constant
c, and thus under Pσ, we have d(η̂, ησ) ≤ c−1EPσ(η̂). We can now apply Theorem 2.18,
which yields for any fixed sampling strategy πn as defined previously:

inf
η̂n

sup
ησ∈H

Pσ,n

(
E(η̂n) ≥ C8n

−κ′α/(2α(κ−1)+d−1)
)
≥ C9,

where C9 is a small universal constant. We conclude by applying Markov’s inequality,
and taking the infimum over (possibly active) sampling strategies Πn (as this holds for
any strategy Πn).

2.3.6.5 Proof of Theorem 2.17 (passive lower bound)

Proof. In the passive setting, the proof is the same but we need a different bound on
the quantity:

KL(Pσ,n||Pσ0,n) = n

∫
x:ησ(x) 6=ησ0 (x)

dKL(ησ(x), ησ0(x))p(x)dx,

where dKL(p, q) stands for the Kullback-Leibler divergence between two Bernoulli
distributions of parameters p, q. Instead, we bound it as:

KL(Pσ,n||Pσ0,n) ≤ nC10∆κ′+κ−1,

using dKL(ησ(x), ησ0(x)) ≤ C11∆2(κ−1) by Pinsker’s inequality for η(x) ∈ [1/5, 4/5],
and the definition of p(x). We conclude by setting ∆ = C12n

−α/(α(κ+κ′−1)+d−1) to
satisfy the assumptions of Theorem 2.18.
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Chapter 3

Adaptive active optimization

In this Chapter, we are interested in the problem of optimization, that is, finding the
maximum among a set (which may be discrete or continuous) of unknown alternatives.
We consider the active setting where the learner is able to make decisions based on the
path of previously asked for (i.e. which arm was pulled) and collected samples (i.e. the
reward associated with the arm). Using the framework of the previous chapter, this
problem can be seen as finding the maximal level-set of unknown value, as this value
also needs to be learned. At a high level, this problem seems intrinsically harder than
the classification problem, and we shall see in this Chapter the differences between these
two settings. In the first section, we tackle the best arm identification problem, which
is a discrete optimization problem. Our main result in this section is an impossibility
result which shows that there exists no agnostic algorithm that performs as well as the
best algorithm that has access to the value of the maximum over the set of arms. This
is in sharp contrast with the results of the previous chapter, where we constructed
adaptive optimal algorithms. In the second section, we take on the same course of
action as in the previous chapter by looking at the corresponding continuous problem,
that is, optimization of a function with noise in the measurement. This function is
characterized by a smoothness which is not known to the learner, and our goal is
to adapt to this unknown smoothness. In this setting, our main result is a sharp
distinction between the two main objectives studied in the literature. For the simple
regret, we summarize previous results and show that there exists optimal adaptive
strategies. However, for the cumulative regret, we show the following impossibility
result: there exists no agnostic algorithm that performs as well as the optimal strategy
with access to the unknown smoothness of the function. The first section is based
on (Carpentier and Locatelli, 2016), and already appeared in my M.Sc. thesis at ENS
Paris-Saclay. The second section was published in (Locatelli and Carpentier, 2018).
All of it is joint work with my advisor.
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3.1 Discrete optimization: best arm identification with a
fixed budget setting

In this Section, we consider the problem of best arm identification with a fixed budget
T , in the K-armed stochastic bandit setting, with arms distribution defined on [0, 1].
We prove that any bandit strategy, for at least one bandit problem characterized by a
complexity H, will misidentify the best arm with probability lower bounded by

exp
(
− T

log(K)H

)
,

where H is the sum for all sub-optimal arms of the inverse of the squared gaps. Our
result disproves formally the general belief - coming from results in the fixed confidence
setting - that there must exist an algorithm for this problem whose probability of error
is upper bounded by exp(−T/H). This also proves that some existing strategies based
on the Successive Rejection of the arms are optimal - closing therefore the current gap
between upper and lower bounds for the fixed budget best arm identification problem.

3.1.1 Introduction

We consider the problem of best arm identification with a fixed budget T , in the
K-armed stochastic bandit setting. Given K distributions (or arms) that take value
in [0, 1], and given a fixed number of samples T > 0 (or budget) that can be collected
sequentially and adaptively from the distributions, the problem of the learner in this
setting is to identify the set of distributions with the highest mean, denoted A∗. This
setting was introduced in (Bubeck, Munos, and Stoltz, 2009; Audibert and Bubeck,
2010b), and is a variant of the best arm identification problem with fixed confidence
introduced in (Even-Dar, Mannor, and Mansour, 2002; Mannor and Tsitsiklis, 2004).

The best arm identification problem is an important problem in practice as well as in
theory, as it is the simplest setting for stochastic non-convex and discrete optimization.
It was therefore extensively studied, see (Even-Dar, Mannor, and Mansour, 2002;
Mannor and Tsitsiklis, 2004; Bubeck, Munos, and Stoltz, 2009; Audibert and Bubeck,
2010b; Gabillon, Ghavamzadeh, and Lazaric, 2012; Kalyanakrishnan et al., 2012;
Jamieson and Nowak, 2014; Jamieson et al., 2014; Karnin, Koren, and Somekh, 2013;
Chen and Li, 2015) and also the full literature review in Section 3.1.3 for more references
and a presentation of the existing results.

Although this problem has been extensively studied, and the results in the fixed
confidence setting (see see Section 3.1.3 for a definition and for a presentation of
existing results in this setting) have been refined to a point where the optimality gap
between best strategies and known lower bounds is really small, see (Chen and Li,
2015), there is to the best of our knowledge a major gap between upper and lower
bounds in the fixed budget setting. In order to recall this gap, let us write µk for
the means of each of the K distributions, µ(k) for the mean of the arm that has k-th
highest mean and µ∗ for the highest of these means. Let us define the quantities
H =

∑
k 6∈A∗(µ

∗−µk)−2 and H2 = supk>|A∗| k(µ∗−µ(k))
−2. The tightest known lower

bound for the probability of not identifying an arm with highest mean after using the
budget T is of order

exp
(
− T

H

)
,
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while the tightest known upper bounds corresponding to existing strategies for K ≥ 3
are either

exp
(
− T

18a

)
or exp

(
− T

2 log(K)H2

)
,

depending on whether the learner has access to an upper bound a on H (first bound) or
not (second bound). Since H2 ≤ H ≤ 2 log(K)H2, this highlights a gap in the scenario
where the learner does not have access to a tight upper bound a on H. See (Audibert
and Bubeck, 2010b) for the seminal paper where these state of the art results are
proven, and (Gabillon, Ghavamzadeh, and Lazaric, 2012; Jamieson et al., 2014; Karnin,
Koren, and Somekh, 2013; Chen et al., 2014) for papers that propose among other
results (generally in the fixed confidence setting) alternative strategies for this fixed
budget problem, and (Kaufmann, Cappé, and Garivier, 2015) for the lower bound.

In this Section, we close this gap, improving the lower bound and proving that
the strategies developed in (Audibert and Bubeck, 2010b) are optimal, in both cases
(i.e. when the learner has access to an upper bound a on H or not). Namely, we
prove that there exists no strategy that misidentifies the optimal arm with probability
smaller than

exp
(
− T

a

)
,

uniformly over the problems that have complexity a, and that there exists no strategy
that misidentifies the optimal arm with probability smaller than

exp
(
− T

log(K)H

)
,

[
and note that exp

(
− T

log(K)H

)
≥ exp

(
− T

log(K)H2

)]
uniformly over all problems. The first lower bound of order exp(−T

a ) is not surprising
when one considers the lower bounds results in the fixed confidence setting by (Even-Dar,
Mannor, and Mansour, 2002; Mannor and Tsitsiklis, 2004; Gabillon, Ghavamzadeh,
and Lazaric, 2012; Kalyanakrishnan et al., 2012; Jamieson and Nowak, 2014; Jamieson
et al., 2014; Karnin, Koren, and Somekh, 2013; Chen and Li, 2015), and was already
implied by the results of (Kaufmann, Cappé, and Garivier, 2015), but the second
lower bound of order exp(− T

log(K)H ) is on the other hand quite unexpected in light of
the results in the fixed confidence setting. In fact it is often informally stated in the
fixed confidence literature that since the sample complexity in the fixed confidence
setting is H, the same should hold for the fixed budget setting, and that therefore the
right complexity should be H and not H log(K), i.e. it is often conjectured that the
right bound should be exp(− T

H ) and not exp(− T
log(K)H ). In this Section, we disprove

formally this conjecture and prove that in the fixed budget setting, unlike in the fixed
confidence setting, there is an additional log(K) price to pay for adaptation to H in
the absence of knowledge over this quantity. Moreover, our lower bound proofs are
very simple, short, and based on ideas that differ from previous results, in the sense
that we consider a class of problems with different complexities.

In Section 3.1.2, we present formally the setting, and in Section 3.1.3, we present
the existing results in a more detailed fashion. Section 3.1.4 contains our main results
and Section 3.1.5 their proofs.

3.1.2 Setting

Learning setting. We consider a classical K armed stochastic bandit setting with
fixed horizon T . Let K > 1 be the number of arms that the learner can choose from.
Each of these arms is characterized by a distribution νk that we assume to be defined
on [0, 1]. Let us write µk for its mean. Let T > 0. We consider the following dynamic
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game setting with horizon T , which is common in the bandit literature. For any time
t ≥ 1 and t ≤ T , the learner chooses an arm It from A = {1, ...,K}. It receives a noisy
reward drawn from the distribution νIt associated to the chosen arm. An adaptive
learner bases its decision at time t on the samples observed in the past. At the end of
the game T , the learner returns an arm

k̂T ∈ {1, . . . ,K}.

Objective. In this Section, we consider the problem of best arm identification,
i.e. we consider the learning problem of finding dynamically, in T iterations of the
game mentioned earlier, one of the arms with the highest mean. Let us define the set
of optimal arms as

A∗ = arg max
k

µk,

and µ∗ = µk∗ with k∗ ∈ A∗ as the highest mean of the problem. Then we define the
expected loss of the learner as the probability of not identifying an optimal arm, i.e. as

P
(
k̂T 6∈ A∗

)
,

where P is the probability according to the samples collected during the bandit game.
The aim of the learner is to follow a strategy that minimizes this expected loss.

This is known as the best arm identification problem in the fixed budget setting,
see (Audibert and Bubeck, 2010b). As was explained in (Audibert and Bubeck, 2010b),
it is linked to the notion of simple regret, where the simple regret is the expected
sub-optimality of the chosen arm with respect to the highest mean, i.e. it is E(µ∗−µk̂T ),
where E is the expectation according to the samples collected during the bandit game.

Problem dependent complexity. We now define two important problem depen-
dent quantities, following e.g. (Even-Dar, Mannor, and Mansour, 2002; Mannor and
Tsitsiklis, 2004; Audibert and Bubeck, 2010b; Gabillon, Ghavamzadeh, and Lazaric,
2012; Kalyanakrishnan et al., 2012; Jamieson and Nowak, 2014; Jamieson et al., 2014;
Karnin, Koren, and Somekh, 2013; Chen and Li, 2015). We will characterize the
complexity of bandit problems by the quantities

H =
∑
k 6∈A∗

1

(µ∗ − µk)2
and H2 = sup

k>|A∗|

k

(µ∗ − µ(k))2
, (3.1)

where for any k ≤ K, µ(k) is the k-th largest mean of the arms. As noted in (Au-
dibert and Bubeck, 2010b), the following inequalities hold H2 ≤ H ≤ log(2K)H2 ≤
2 log(K)H2.

3.1.3 Literature review

The problem of best arm identification in the K armed stochastic bandit problem
has gained wide interest in the recent years. It can be cast in two settings, fixed
confidence, see (Even-Dar, Mannor, and Mansour, 2002; Mannor and Tsitsiklis, 2004),
and fixed budget, see (Bubeck, Munos, and Stoltz, 2009; Audibert and Bubeck, 2010b),
which is the setting we consider in this Section. In the fixed confidence setting, the
learner is given a precision δ and aims at returning an optimal arm, while collecting as
few samples as possible. In the fixed budget setting, the objective of the learner is to
minimize the probability of not recommending an optimal arm, given a fixed budget
of T pulls of the arms. The links between these two settings are discussed in details
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in (Gabillon, Ghavamzadeh, and Lazaric, 2012; Karnin, Koren, and Somekh, 2013):
the fixed confidence setting is a stopping time problem and the fixed budget setting is
a problem of optimal resource allocation. It is argued in (Gabillon, Ghavamzadeh, and
Lazaric, 2012) that these problems are equivalent. But as noted in (Karnin, Koren,
and Somekh, 2013; Kaufmann, Cappé, and Garivier, 2015), this equivalence holds only
if some additional information e.g. H is available in the fixed budget setting, otherwise
it appears that the fixed budget setting problem is significantly harder. This fact is
highlighted in the literature review below.

Fixed confidence setting. The fixed confidence setting has been more particularly
investigated, with papers proposing strategies that are more and more refined and
clever. The papers (Even-Dar, Mannor, and Mansour, 2002; Mannor and Tsitsiklis,
2004) introduced the problem and proved the first upper and lower bounds for this
problem (where & and . are ≥ and ≤ up to a constant)).

• Upper bound : There exists an algorithm that returns, after T̂ number of pulls,
an arm k̂T̂ that is optimal with probability larger than 1− δ, and is such that
the number of pulls T̂ satisfies

ET̂ . H
(

log(δ−1) + log(K) + log
(
(max
k 6∈A∗

(µ∗ − µk)−1)
))
.

• Lower bound : For any algorithm that returns an arm k̂T̂ that is optimal with
probability larger than 1− δ, the number of pulls T̂ satisfies

ET̂ & H
(

log(δ−1)
)
.

These first results already showed that the quantity H plays an important role
for the best arm identification problem. These results are tight in the multiplicative
terms H but are not tight in the second order logarithmic terms - and there were
several interesting works on how to improve both upper and lower bounds to make
these terms match, see (Gabillon, Ghavamzadeh, and Lazaric, 2012; Kalyanakrishnan
et al., 2012; Jamieson and Nowak, 2014; Jamieson et al., 2014; Karnin, Koren, and
Somekh, 2013; Kaufmann, Cappé, and Garivier, 2015; Chen and Li, 2015). To the
best of our knowledge, the most precise upper bound is in (Chen and Li, 2015), and
the most precise lower bound in the case of the two armed problem is in (Kaufmann,
Cappé, and Garivier, 2015). These bounds, although not exactly matching in general,
are matching up to a multiplicative constant for δ small enough with respect to H,K,
i.e. for δ small enough with respect to H,K, it holds that both upper and lower bounds
on ET̂ are of order

H log(δ−1).

Note that this can already be seen from the two bounds reported in this Section, i.e. for
δ smaller than min

(
K−1,maxk 6∈A∗(µ

∗ − µk)
)
.

Fixed budget setting.;;;;; The fixed budget has also been studied intensively,
but to the best of our knowledge, an important gap still remains between upper
and lower bound results. The best known (up to constants) upper bounds are in
the paper (Audibert and Bubeck, 2010b), while the best lower bound can be found
in (Kaufmann, Cappé, and Garivier, 2015), and they are as follows.



98 Chapter 3. Adaptive active optimization

• Upper bound : Assume that an upper bound a on the complexity H of the
problem is known to the learner. There exists an algorithm that, at the end of
the budget T , fails selecting an optimal arm with probability upper bounded as

P
(
k̂T 6∈ A∗

)
≤ 2TK exp

(
− T −K

18a

)
.

Even if no upper bound on the complexity H is known to the learner, there
exists an algorithm that, at the end of the budget T , fails selecting an optimal
arm with probability upper bounded as

P
(
k̂T 6∈ A∗

)
≤ K(K − 1)

2
exp

(
− T −K

log(2K)H2

)
.

• Lower bound : Even if an upper bound on H,H2 is known to the learner, any
algorithm, at the end of the budget T , fails selecting an optimal arm with
probability lower bounded as

P
(
k̂T 6∈ A∗

)
≥ exp

(
− 4T

H

)
.

Several papers exhibit other strategies for the fixed budget problem (in general
in combination with a fixed confidence strategy), see e.g. (Gabillon, Ghavamzadeh,
and Lazaric, 2012; Jamieson et al., 2014; Karnin, Koren, and Somekh, 2013), but their
theoretical results do not outperform the ones recalled here and coming from (Audibert
and Bubeck, 2010b). Note that these results highlight a gap between upper and lower
bounds. In the case where an upper bound a on the complexity H is known to the
learner, the gap is related to the distance between a and H. Beyond the fact that H2

is always smaller than H, we would like to emphasize here that if the upper bound a
on H is not tight enough, the algorithm’s performance will be sub-optimal compared
to the hypothetical performance of an oracle algorithm that has access to H - as the
non-oracle algorithm will over explore. Now in the case where one does not want to
assume the knowledge of H, the gap between known upper and lower bounds becomes
even larger and is related to the distance between H and log(2K)H2. Unlike in the
fixed confidence setting, this gap remains also for T large (which corresponds to δ
small in the fixed confidence setting).

We would like to emphasize that although this gap is often belittled in the literature,
as it is “only" a a gap up to a log(K) factor, this log(K) factor has an effect in the
exponential, and in some sense it is much larger than the gap that was remaining in
the fixed confidence setting after the seminal papers (Even-Dar, Mannor, and Mansour,
2002; Mannor and Tsitsiklis, 2004), and over which many valuable works have further
improved. Indeed, in order to compare the bounds in the fixed confidence setting with
the bounds in the fixed budget setting, one can set δ := P

(
k̂T 6∈ A∗

)
, and compute

the fixed budget T for which a precision of at least δ is achieved for both upper and
lower bounds. Inverting the upper bounds in the fixed budget setting, one would get
the upper bounds on T

T . a log(KT/δ), or T . H2 log(K) log(K/δ)),

when respectively an upper bound a onH is known by the learner or when no knowledge
of H is available. Conversely, the lower bound in the fixed budget setting yields that
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the fixed budget T must be of order higher than

T & H log(1/δ).

As mentioned, this gap also remains for δ small. This highlights the fact that
the gap in the fixed budget setting is much more acute than the gap in the fixed
confidence setting, and that this log(K) factor is not negligible if one looks at the
fixed budget setting problem from the fixed confidence setting perspective. This
knowledge gap between the fixed confidence and fixed budget setting was underlined
in the papers (Karnin, Koren, and Somekh, 2013; Kaufmann, Cappé, and Garivier,
2015) where the authors explain that closing the gap in the fixed budget setting is a
difficult problem that goes beyond known techniques for the fixed confidence setting.

We close this review of literature by mentioning related works on the more involved
TopK bandit problem, where the aim is to find k arms that have the highest means,
see (Bubeck, Wang, and Viswanathan, 2013; Gabillon, Ghavamzadeh, and Lazaric,
2012; Kaufmann, Cappé, and Garivier, 2015; Zhou, Chen, and Li, 2014; Cao et al.,
2015), and also the more general pure exploration bandit setting introduced in (Chen
et al., 2014). These results apply to the best arm identification problem considered in
this Section, which is a special case of their settings, but they do not improve on the
mentioned results for the best arm identification problem.

3.1.4 Main results

We state our results in two parts. First, we provide a weaker version of our results in
Subsection 3.1.4.1, which has the advantage of not requiring the introduction of too
many additional technical notations We then propose in Subsection 3.1.4.2 a technical
and stronger formulation of our results.

3.1.4.1 First formulation of our results

We state the following lower bound for the bandit problem introduced in Section 3.1.2.

Theorem 3.1. Let K > 1, a > 0. Let Ba be the set of all bandit problems with
distributions in [0, 1] and complexity H bounded by a. For G ∈ Ba, we write A∗(G) for
the set of arms with highest mean of problem G, and H(G) for the complexity defined
in Equation (3.1) as H (first quantity) and associated to problem G.

If T ≥ a2
(
4 log(6TK)

)
/(60)2, for any bandit strategy that returns arm k̂T at time

T , it holds that

sup
G∈B(a)

PG⊗T (k̂T 6∈ A∗(G)) ≥ 1

6
exp

(
− 120

T

a

)
.

If in addition a ≥ 11K2 and if K ≥ 2, then for any bandit strategy that returns
arm k̂T at time T , it holds that

sup
G∈B(a)

[
PG⊗T (k̂T 6∈ A∗(G))× exp

(
400

T

log(K)H(G)

)]
≥ 1

6
.

This theorem implies what we described in the introduction:

• Even when an upper bound a on the complexity H of the target bandit problem
is known, any learner will misidentify the arm with highest mean with probability
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larger than
1

6
exp

(
− 120

T

a

)
,

on at least one of the bandit problems with complexity H bounded by a.

• For T, a,K large enough - T of larger order than a2 log(K), a of larger order
than K2 and K larger than 2 - any learner will misidentify the arm with highest
mean with probability larger than

1

6
exp

(
− 400

T

log(K)H(G)

)
,

on at least one of the bandit problems G ∈ Ba which is associated to some
complexity H(G) bounded by a.

The first result is expected when one looks at the lower bounds in the fixed confidence
setting, see (Even-Dar, Mannor, and Mansour, 2002; Mannor and Tsitsiklis, 2004;
Gabillon, Ghavamzadeh, and Lazaric, 2012; Kalyanakrishnan et al., 2012; Jamieson
and Nowak, 2014; Jamieson et al., 2014; Karnin, Koren, and Somekh, 2013; Kaufmann,
Cappé, and Garivier, 2015; Chen and Li, 2015). On the other hand, the second result
cannot be conjectured from lower bounds in the fixed confidence setting. We remind
that in order to obtain a precision δ > 0 in the fixed confidence setting, even if the
learner does not know H, it only requires

O(H log(δ−1)),

samples for δ small enough. The natural conjecture following from this is that the
probability of error in the fixed budget setting is

exp(−T/H),

for T large enough. We proved that this does not hold and that the probability of error
in the fixed budget setting is lower bounded for any strategy in at least one problem
by

exp(−T/(log(K)H)),

for T large enough - which corresponds to a higher sample complexity

H log(K) log(1/δ),

in the fixed confidence setting. This lower bound highlights a fundamental difference
between the fixed confidence setting - where one does not need to know H in order to
adapt to it - and the fixed budget setting - where in the absence of the knowledge of
H, one pays a price of log(K) for the adaptation. Moreover, this lower bound proves
that the Successive Reject strategy introduced in (Audibert and Bubeck, 2010b) is
optimal, as its probability of error is upper bounded by a quantity of order

exp(−T/(log(K)H2)),

which is always smaller in order than our lower bound of order

exp(−T/(log(K)H)).

This might seem contradictory as the lower bound might seem higher than the upper
bound. It is of course not and this only highlights that the problems on which all
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strategies won’t perform well are problems such that H2 is of same order as H -
problems having many sub-optimal arms close to the optimal ones. These problems are
the most difficult problems in the sense of adapting to the complexity H, and for them,
a log(K) adaptation price is unavoidable. This kind of phenomenon, i.e. the necessity
of paying a price for not knowing the model (here the complexity H), is not very much
studied in the bandit literature, but arises in many fields of high dimensional statistics
and non-parametric statistics, see e.g. (Lepski and Spokoiny, 1997; Bunea, Tsybakov,
Wegkamp, et al., 2007).

3.1.4.2 Technical and stronger formulation of the results

We will now present the technical version of our results. This is a lower bound that
will hold in the much easier (for the learner) problem where the learner knows that the
bandit setting it is facing is one of only K given bandit settings (and where it has all
information about these settings). This lower bound ensures that even in this much
simpler case, the learner, however good it is, will nevertheless make a mistake.

Before stating the main technical theorem, let us introduce some notations about
these K settings. Let (pk)2≤k≤K be (K − 1) real numbers in [1/4, 1/2). Let p1 = 1/2.
Let us write for any 1 ≤ k ≤ K, νk := B(pk) for the Bernoulli distribution of mean pk,
and ν ′k := B(1− pk) for the Bernoulli distribution of mean 1− pk.

We define the product distributions Gi where i ∈ {1, ...,K} as νi1 ⊗ ...⊗ νiK where
for 1 ≤ k ≤ K,

νik := νi1{k 6= i}+ ν ′i1{k = i}.

The bandit problem associated with distribution Gi, and that we call “the bandit
problem i" is such that for any 1 ≤ k ≤ K, arm k has distribution νik, i.e. all arms
have distribution νk except arm i that has distribution ν ′i. We write for any 1 ≤ i ≤ K,
Pi := P(Gi)⊗T for the probability distribution of the bandit problem i according to all
the samples that a strategy could possibly collect up to horizon T , i.e. according to
the samples (Xk,s)1≤k≤K,1≤s≤T ∼ (Gi)⊗T .

We define for any 1 ≤ k ≤ K the quantities dk := 1/2 − pk. Set also for any
i ∈ {1, ...,K} and any k ∈ {1, ...,K}

∆i
k = di + dk, if k 6= i and ∆i

i = di.

In the bandit problem i, as the arm with the best mean is i (and its mean is 1− pi =
1/2 + di), one can easily see that the (∆i

k)k are the arm gaps of the bandit problem i.
We also define for any 1 ≤ i ≤ K the quantity

H(i) :=
∑

1≤k≤K,k 6=i
(∆i

k)
−2,

with H(1) = max1≤i≤K H(i). The quantities H(i) correspond to the complexity H
computed for the bandit problem i and introduced in Equation (3.1) (first quantity).
We finally define the quantity

h∗ =
∑

K≥k≥2

1

d2
iH(i)

.

We can now state our main technical theorem - we remind that there is only one
arm with highest mean in the bandit problem i, and that this arm is arm i, so Pi(k̂T 6= i)
is the probability under bandit i of not identifying the best arm and recommending a
sub-optimal arm.
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Theorem 3.2. For any bandit strategy that returns the arm k̂T at time T , it holds
that

max
1≤i≤K

Pi(k̂T 6= i) ≥ 1

6
exp

(
− 60

T

H(1)
− 2
√
T log(6TK)

)
,

where we remind that H(1) = maxiH(i) and also

max
1≤i≤K

[
Pi(k̂T 6= i)× exp

(
60

T

H(i)h∗
+ 2
√
T log(6TK)

)]
≥ 1/6.

The proof of this result is different from the proof of other lower bounds for best
arm identification in the fixed budget setting as in (Audibert and Bubeck, 2010b). Its
construction is not based on a permutation of the arms, but on a flipping of each arm
around the second best arm - see Subsection 3.1.5.1. A similar construction can be
found in (Kaufmann, Cappé, and Garivier, 2015). However, similarly to (Audibert
and Bubeck, 2010b), in this Section, a single complexity H is used in the proof, while
our proof involves a range of complexities. The idea of the proof is that for any bandit
strategy there is at least one bandit problem i among the K described where an arm
will be pulled less than it should according to the optimal allocation of the problem i -
and when this happens, the algorithm makes a mistake with probability that is too
high with respect to the complexity H(i) of the problem. This Theorem is a stronger
version of Theorem 3.1 since it states than even if the learner knows that the bandit
problem he faces is one of K problems fully described to him, he will nevertheless
make an error with probability lower bounded by problem dependent quantities that
are much larger than the ones in (Audibert and Bubeck, 2010b; Kaufmann, Cappé,
and Garivier, 2015).

A version of this theorem that is easier to read and that holds for T large enough,
is as follows.

Corollary 3.1. Assume that T ≥ max
(
H(1), H(i)h∗

)2
4 log(6TK)/(60)2. For any

bandit strategy that returns the arm k̂T at time T , it holds that

max
1≤i≤K

Pi(k̂T 6= i) ≥ 1

6
exp

(
− 120

T

H(1)

)
=

1

6
exp

(
− 120

T

maxiH(i)

)
,

and also

max
1≤i≤K

[
Pi(k̂T 6= i)× exp

(
120

T

H(i)h∗

)]
≥ 1/6.

Note that both Theorems 3.2 and Corollary 3.1 hold for any p2, . . . , pk that belong
to [1/4, 1/2) and are therefore quite general.

3.1.5 Proof of the theorems

3.1.5.1 Proof of Theorem 3.2

Step 1: Definition of a high probability event where empirical KL diver-
gences concentrate For two distributions ν, ν ′ defined on R and that are such that
ν is absolutely continuous with respect to ν ′, we write

KL(ν, ν ′) =

∫
R

log
( dν(x)

dν ′(x)

)
dν(x),

for the Kullback leibler divergence between distribution ν and ν ′.
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Let k ∈ {1, ...,K}. Let us write

KLk := KL(ν ′k, νk) = KL(νk, ν
′
k) = (1− 2pk) log

(1− pk
pk

)
,

for the Kullback-Leibler divergence between two Bernoulli distributions νk and ν ′k of
parameter pk and 1− pk. Since pk ∈ [1/4, 1/2), the following inequality holds:

KLk ≤ 10d2
k. (3.2)

Let 1 ≤ t ≤ T . We define the quantity:

K̂Lk,t =
1

t

t∑
s=1

log(
dνk
dν ′k

(Xk,s))

=
1

t

t∑
s=1

1{Xk,s = 1} log(
pi

1− pi
) + 1{Xk,s = 0} log(

1− pi
pi

),

where by definition for any s ≤ t, Xk,s ∼i.i.d νik.
Let us define the event

ξ =
{
∀1 ≤ k ≤ K,∀1 ≤ t ≤ T, |K̂Lk,t| −KLk ≤ 2

√
log(6TK)

t

}
.

We now state the following lemma, i.e. a concentration bound for |K̂Lk,t| that holds
for all bandit i with 1 ≤ i ≤ K.

Lemma 3.1. It holds that
Pi(ξ) ≥ 5/6.

Proof. If k 6= i (and thus νik = νk) then EGiK̂Lk,t = KLk and if k = i (and thus
νik = ν ′k) then EGiK̂Lk,t = −KLk. Moreover note that since pk ∈ [1/4, 1/2)

| log(
dνk
dν ′k

(Xk,s))| = |1{Xk,s = 1} log(
pi

1− pi
) + 1{Xk,s = 0} log(

1− pi
pi

)| ≤ log(3).

Therefore, K̂Lk,t is a sum of i.i.d. samples that are bounded by log(3), and whose
mean is ±KLk depending on the value of i. We can apply Hoeffding’s inequality to
this quantity and we have that with probability larger than 1− (6KT )−1

|K̂Lk,t| −KLk ≤
√

2 log(3)

√
log(6TK)

t
.

This assertion and an union bound over all 1 ≤ k ≤ K and 1 ≤ t ≤ T implies that
PGi(ξ) ≥ 5/6, as we have

√
2 log(3) < 2.

Step 2: A change of measure Let now Alg denote the active strategy of the
learner, that returns some arm k̂T at the end of the budget T . Let (Tk)1≤k≤K denote
the numbers of samples collected by Alg on each arm of the bandits. These quantities
are stochastic but it holds that

∑
1≤k≤K Tk = T by definition of the fixed budget

setting. Let us write for any 0 ≤ k ≤ K

tk = E1Tk.

It holds also that
∑

1≤k≤K tk = T
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We recall the change of measure identity (see e.g. (Audibert and Bubeck, 2010b))
which states that for any measurable event E and for any 2 ≤ i ≤ K :

Pi(E) = E1

[
1{E} exp

(
− TiK̂Li,Ti

)]
, (3.3)

as the product distributions Gi and G1 only differ in i and as the active strategy only
explored the samples (Xk,s)k≤K,s≤Tk .

Let 2 ≤ i ≤ K. Consider now the event

Ei = {k̂T = 1} ∩ {ξ} ∩ {Ti ≤ 6ti},

i.e. the event where the algorithm outputs arm 1 at the end, where ξ holds, and where
the number of times arm i was pulled is smaller than 6ti. We have by Equation (3.3)
that

Pi(Ei) = E1

[
1{Ei} exp

(
− TiK̂Li,Ti

)]
≥ E1

[
1{Ei} exp

(
− TiKLi − 2

√
Ti log(6TK)

)]
≥ E1

[
1{Ei} exp

(
− 6tiKLi − 2

√
T log(6TK)

)]
≥ exp

(
− 6tiKLi − 2

√
T log(6TK)

)
P1(Ei), (3.4)

since on Ei, we have that ξ holds and that Ti ≤ 6ti, and since E1K̂Li,t = KLi for any
t ≤ T .

Step 3 : Lower bound on P1(Ei) for any reasonable algorithm Assume that
for the algorithm Alg that we consider

E1(k̂T 6= 1) ≤ 1/2, (3.5)

i.e. that the probability that Alg makes a mistake on problem 1 is less than 1/2. Note
that if Alg does not satisfy that, it performs badly on problem 1 and its probability of
success is not larger than 1/2 uniformly on the K bandit problems we defined.

For any 2 ≤ k ≤ K it holds by Markov’s inequality that

P1(Tk ≥ 6tk) ≤
E1Tk
6tk

= 1/6, (3.6)

since E1Tk = tk for algorithm Alg,
So by combining Equations (3.5), (3.6) and Lemma 3.1, it holds by an union bound

that for any 2 ≤ i ≤ K

P1(Ei) ≥ 1− (1/6 + 1/2 + 1/6) = 1/6.

This fact combined with Equation (3.4) and the fact that for any 2 ≤ i ≤ K Pi(k̂T 6=
i) ≥ Pi(Ei) implies that for any 2 ≤ i ≤ K

Pi(k̂T 6= i) ≥ 1

6
exp

(
− 6tiKLi − 2

√
T log(6TK)

)
≥ 1

6
exp

(
− 60tid

2
i − 2

√
T log(6TK)

)
, (3.7)

where we use Equation (3.2) for the last step.



3.1. Discrete optimization: best arm identification with a fixed budget setting 105

Step 4 : Conclusions. Since
∑

2≤k≤K d
−2
k = H(1), and since

∑
1≤k≤K tk = T ,

then there exists 2 ≤ i ≤ K such that

ti ≤
T

H(1)d2
i

,

as the contraposition yields an immediate contradiction. For this i, it holds by
Equation (3.7) that

Pi(k̂T 6= i) ≥ 1

6
exp

(
− 60

T

H(0)
− 2
√
T log(6TK)

)
.

This concludes the proof of the first part of the theorem (note that H(1) = maxiH(i)).
Since h∗ =

∑
2≤k≤K

1
d2
kH(k)

and since
∑

1≤k≤K tk = T , then there exists 2 ≤ i ≤ K
such that

ti ≤
T

h∗d2
iH(i)

.

For this i, it holds by Equation (3.7) that

Pi(k̂T 6= i) ≥ 1

6
exp

(
− 60T

h∗H(i)
− 2
√
T log(6TK)

)
.

This concludes the proof of the second part of the theorem.

3.1.5.2 Proof of Theorem 3.1

The proof of the first equation in this theorem follows immediately from Corollary 3.1
since H(1) = maxiH(i).

The proof of the first equation in this theorem follows as well from Corollary 3.1 by
taking dk = 1

4(k/K) for k ≥ 2 (and therefore pk = 1/2− 1
4(k/K) ∈ [1/4, 1/2)). Note

first that this problem belongs to Ba with a = 11K2, since H(i) ≤ H(1) ≤ 11K2. In
this case, for any 1 ≤ i ≤ K, we have

d2
iH(i) = d2

i

∑
k 6=i

1

(di + dk)2
≤ d2

i

( i
d2
i

+
∑
k>i

1

d2
k

)
≤ i+i2

∑
K≥k≥i

1

k2
≤ i+i2(

1

i
− 1

K
) ≤ 2i.

This implies that

h∗ ≥
K∑
k=2

1

2i
≥ 1

2
(log(K + 1)− log(2)) ≥ 3

10
log(K).

This concludes the proof.

3.1.6 An α−parametrization

Building on the ideas exposed in the very last part of the proof, we now consider
dαk = 1

4(k/K)α for k ≥ 2, α ≥ 0. A such construction was already considered for the
fixed confidence setting in (Jamieson et al., 2013). First, let us state that for any α,
we have the following inequalities: H(1) ≥ H(i) ≥ H(K), with H(K) (the easiest
problem) of order K for all α. The hardest problem on the other hand, has complexity
of order

H(1) '


1

1−2αK, for α < 1/2

log(K)K, for α = 1/2
1

2α−1K
2α, for α > 1/2

.
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For α < 1/2, both the easiest and hardest problems in our restricted problem class
have a similar complexity up to a constant. On the other hand, for α > 1/2, we have
H(1) of order H(K)2α, spanning a range of problems with varying complexities. One
can easily check that for α > 1/2, we have h∗ of order at least log(K) (as we did for
α = 1 in the previous section). On the other hand, for α < 1/2, we can upper bound
h∗ as follows:

h∗ =
K∑
i=2

1

d2
iH(i)

≤ 1

H(K)

K∑
i=2

1

d2
i

=
H(i)

H(K)
,

and this ratio is upper bounded by a constant, as both terms are of order K. As such,
this construction does not imply that a log(K) adaptation price is unavoidable in all
cases, and the question remains open on whether there exists an algorithm that can
effectively adapt to these easier problems.

3.1.7 Conclusion

In this Section, our main result states that for the problem of best arm identification
in the fixed budget setting, if one does not want to assume too tight bounds on the
complexity H of the bandit problem, then any bandit strategy makes an error on some
bandit problem G of complexity H(G) with probability at least of order

exp

(
− T

log(K)H(G)

)
.

This result formally disproves the general belief (coming from results in the fixed
confidence setting) that there must exist an algorithm for this problem that, for any
problem of complexity H, makes an error of at most

exp

(
− T
H

)
.

This highlights the interesting fact that for this fixed budget problem and unlike what
holds in the fixed confidence setting, there is a price to pay for adaptation to the
problem complexity H. This kind of “adaptation price phenomenon" can be observed
in many model selection problems as e.g. sparse regression, functional estimation,
etc, see (Lepski and Spokoiny, 1997; Bunea, Tsybakov, Wegkamp, et al., 2007) for
illustrations in these settings where such a phenomenon is well known. This also proves
that strategies based on the Successive Rejection of the arms as the Successive Reject
of (Audibert and Bubeck, 2010b), are optimal. Our proofs are simple and we believe
that our result is an important one, since this closes a gap that had been open since
the introduction of the fixed confidence best arm identification problem by (Audibert
and Bubeck, 2010b).
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3.2 Continuous optimization: adaptivity to smoothness
in X -armed bandits

In this Section, we study the stochastic continuum-armed bandit problem from the
angle of adaptivity to unknown regularity of the reward function f . We prove that there
exists no strategy for the cumulative regret that adapts optimally to the smoothness of
f . We show however that such minimax optimal adaptive strategies exist if the learner
is given extra-information about f . Finally, we complement our positive results with
matching lower bounds.

3.2.1 Introduction

In the classical multi-armed bandit problem, an online algorithm (the learner) attempts
to maximize its gains by sequentially allocating a portion of its budget of n pulls among
a finite number of available options (arms). As the learner starts with no information
about the environment it is facing, this naturally induces an exploration/exploitation
trade-off. The learner needs to make sure it explores sufficiently to perform well in
the future, without neglecting immediate performance entirely. In this setting, the
performance of the learner can be measured by its cumulative regret, which is the
difference between the sum of rewards it would have obtained by playing optimally
(i.e. only choosing the arm with the highest expected reward), and the sum of rewards
it has collected.
Continuum-armed bandit problems. In this work, we operate in a setting with
infinitely many arms, which are embedded in X a bounded subset of Rd, say [0, 1]d.
Each arm x ∈ X is associated to a mean reward f(x) through the reward function f . At
each time t, the learner picks Xt ∈ [0, 1]d, and receives a noisy sample Yt = f(Xt) + εt
with E(Yt) = f(Xt). This continuous setting is very relevant for practitioners: for
example, if a company wishes to optimize the revenue associated with the price of a
new product, it should consider the continuum R+ of possible prices. While it is known
(see for example (Bubeck, Munos, and Stoltz, 2011)) that in the absence of additional
assumptions that link X and the reward function, there exists no universal algorithm
that achieves sub-linear regret in this setting with infinitely many arms, under some
additional structural assumptions on the reward function (such as unimodality), it is
possible to optimize this price online to achieve non-trivial regret guarantees. When
X is a metric space, a common assumption in the literature is to consider smooth
reward functions ((Agrawal, 1995; Kleinberg, 2004)). This smoothness of the reward
function can either be local ((Auer, Ortner, and Szepesvári, 2007; Grill, Valko, and
Munos, 2015b)) or global ((Kleinberg, Slivkins, and Upfal, 2008; Cope, 2009; Bubeck
et al., 2011; Minsker, 2013)). In most of these works, the smoothness of the reward
function is known to the learner: for example, if f such that for any x, y ∈ X , we have
|f(x)− f(y)| ≤ L||x− y||α∞ 1, then the learner has access to L and α (see e.g. (Auer,
Ortner, and Szepesvári, 2007; Bubeck et al., 2011)). Furthermore, in this work we will
use a parametrization akin to the popular Tsybakov noise condition (see e.g. (Tsybakov,
2004; Audibert and Tsybakov, 2007)). As in (Auer, Ortner, and Szepesvári, 2007;
Minsker, 2013), we will assume that the volume of ∆-optimal regions decreases as
O
(
∆β
)
for some unknown β ≥ 0. Under these assumptions, there exists strategies as

e.g. HOO in (Bubeck et al., 2011)2, that enjoy nearly optimal cumulative regret bounds
1In fact, as in (Bubeck, Munos, and Stoltz, 2011), we will only assume f to be weakly-Lipschitz,

allowing us to consider α > 1 - see Definition 3.1
2In (Bubeck et al., 2011) problems are parametrized with the near-optimality dimension D. Under

our smoothness assumptions, these two parametrizations are equivalent with D = d−αβ
α

.
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of order Õ
(
n(α+d−αβ)/(2α+d−αβ)

)3, if they are tuned optimally with α. Importantly,
these strategies naturally adapt to β, which controls the difficulty of the problem (with
the hardest case β = 0). However, it is argued in (Bubeck, Stoltz, and Yu, 2011) that
this perspective is flawed, as one should instead consider strategies that can adapt
to multiple different environments - and not strategies that are adapted to a specific
environment.
Adaptivity in continuum-armed bandit. While the problem of adaptivity to
unknown Lipschitz constant L (with α = 1 known to the learner) for cumulative
regret minimization has been studied in (Bubeck, Stoltz, and Yu, 2011), adaptivity
to unknown smoothness exponent α remains a very important open question, which,
to the best of our knowledge, has only been studied in optimization. In optimization,
the learner’s goal is to recommend a point x(n) ∈ X such that its simple regret
rn = supx∈X f(x)− f(x(n)) is as small as possible. It has first been shown in (Valko,
Carpentier, and Munos, 2013) (which is an extension from (Munos, 2011) that operates
in a deterministic setting) that when αβ = d i.e. if the function is easy to optimize4,
there exists adaptive strategies with optimal simple regret of order Õ(n−1/2). These
results were later extended in (Grill, Valko, and Munos, 2015b) to the more general
setting αβ ≤ d, in which case their adaptive algorithm POO has an expected simple regret
upper-bounded as Õ

(
n−α/(2α+d−αβ)

)
, without prior knowledge of the smoothness. This

leaves open two questions. First, is this bound minimax optimal for the simple regret?
And, more importantly, outside of very restrictive technical conditions on f such (e.g.
self-similarity as in (Minsker, 2013)), is there a smoothness adaptive strategy such its
cumulative regret can be upper-bounded as Õ

(
n(α+d−αβ)/(2α+d−αβ)

)
for all α and β?

Adaptivity in statistics. Even though the concept of smoothness adaptive proce-
dures is still fairly unexplored in the continuum-armed bandit setting, it has been
studied extensively in the statistics literature under the name of adaptive inference.
The first question in this field is the one of constructing estimators that adapt to the
unknown model at hand (e.g. to the smoothness), i.e. adaptive estimators (see among
many others (Golubev, 1987; Birgé and Massart, 1997; Lepski and Spokoiny, 1997;
Tsybakov, 2004)). The main takeaway is that adaptivity to unknown regularity for
estimation is possible under most standard statistical models using model selection
or aggregation techniques. These adaptive strategies were later adapted to sequential
settings such as active learning by (Hanneke, 2009; Koltchinskii, 2010; Minsker, 2012c;
Locatelli, Carpentier, and Kpotufe, 2017) or nonparametric optimization (Grill, Valko,
and Munos, 2015b), where they use a cross-validation scheme. These approaches
however are not suited for cumulative regret minimization, as they typically trade-
off exploitation in favor of exploration. Another fundamental question in adaptive
inference is the construction of adaptive and honest confidence sets. Importantly,
such confidence sets would naturally give rise to an upper-confidence bound type of
strategy with optimal adaptive cumulative regret guarantees. However a fundamental
negative result is the non-existence of adaptive confidence sets in L∞ for Hölder smooth
functions (Juditsky and Lambert-Lacroix, 2003; Cai, Low, et al., 2006; Hoffmann
and Nickl, 2011). Interestingly, adaptive confidence sets for regression do exist under
additional assumptions on the model, such as shape constraints (see e.g. (Cai, Low,
Xia, et al., 2013; Bellec, 2016)).
Learning with Extra-information. In the classical multi-armed bandit problem,
this shape constrained setting was introduced in (Bubeck, Perchet, and Rigollet, 2013).

3We use the Õ notation to hide logarithmic factors n or δ−1

4This assumption corresponds to the fact that the near-optimality dimension D from (Bubeck
et al., 2011) is 0, i.e. roughly functions that have a unique maximum x∗ and depart from it faster
than ||x− x∗||α∞.
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They show that if the learner is supplied with the mean reward µ∗ of the best arm,
and ∆ the gap between µ∗ and the second best arm’s mean reward, then there exists
a strategy with bounded regret. Recently, it was shown in (Garivier, Ménard, and
Stoltz, 2016) that only the knowledge of µ∗ is necessary to achieve bounded regret.
Outside of the very important and studied convexity constraint, such questions remain
unexplored in our nonparametric setting, with the exception of (Kleinberg, Slivkins,
and Upfal, 2013). In this work, they consider the case where supx∈X f(x) ≈ 1 and
the noisy rewards Yt are bounded in [0, 1] (i.e. the noise decays close to the maxima).
Under these assumptions, they obtain faster rates for the cumulative regret in the case
where f is Lipschitz. This leaves open the question whether shape constraints could
facilitate adaptivity to unknown smoothness when the cumulative regret is targeted.
Finally, we remark that the case αβ = d, which can be thought of as a shape constraint
as well, has been partially treated in (Bull et al., 2015) for the special class of zooming
continuous functions (first studied in (Slivkins, 2011)). In this setting, (Bull et al.,
2015) introduced an adaptive strategy such that its expected cumulative regret is
bounded as Õ (

√
n). However, it was shown in (Grill, Valko, and Munos, 2015b) (see

Section E therein) that the class of functions we consider here is more general than the
one in (Slivkins, 2011; Bull et al., 2015), making these two lines of work not directly
comparable. In a one-dimensional setting equivalent to ours for αβ = 1 but with the
additional constraint that f is unimodal, (Yu and Mannor, 2011) and (Combes and
Proutiere, 2014) also get an adaptive rate for the cumulative regret of order Õ (

√
n).

Extending these results to our entire class of functions is a relevant question in this
canonical setting.

3.2.1.1 Contributions and Outline

We now state our main contributions.

• Our main result Theorem 3.5 proves that no strategy can be optimal simultane-
ously over all smoothness classes for cumulative regret minimization.

• We show that under various shape constraints, adaptivity to unknown smooth-
ness becomes possible if the learner is given this extra-information about the
environment. In particular, we show that in the case αβ = d, there exists a
smoothness adaptive strategy whose regret grows as Õ (

√
n) i.e. independently

of α and d, without access to α.

• Finally, we show lower bounds for the simple and cumulative regret that match
the known upper-bounds. Importantly, these bounds also hold in the shape-
constrained settings.

In Section 3.2.2, we introduce our setting formally and show a high-probability result
for a simple non-adaptive Subroutine (SR). In Section 3.2.3, we prove a lower-bound
for the simple regret that matches the best known upper-bound for adaptive strategies
(such as POO in (Grill, Valko, and Munos, 2015b)) in the optimization setting. We
then prove our main result on the non-existence of adaptive strategies for cumulative
regret minimization. In Section 3.2.4, we study the shape constrained settings and
introduce an adaptive Meta-Strategy, which relies on SR and our high-probability result
of Section 3.2.2.
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3.2.2 Preliminaries

3.2.2.1 Objective

We consider the d-dimensional continuum-armed bandit problem. At each time
step t = 1, 2, . . . , n, the learner chooses Xt ∈ [0, 1]d and receives a return (or re-
ward) Yt = f(Xt) + εt. We will further assume that εt is independent from(
(X1, Y1), . . . (Xt−1, Yt−1)

)
conditionally on Xt, and it is a zero-mean 1-sub-Gaussian5

random variable. Finally we assume that f takes values in a bounded interval, say
[0, 1] and we denote M(f)

.
= supx∈[0,1]d f(x). In optimization, the objective of the

learner is to recommend at the end of the game a point x(n) ∈ [0, 1]d, such that the
following loss

rn = M(f)− f(x(n))

is as small as possible, under the constraint that it can only observe n couples (Xt, Yt)
before making its recommendation. In the rest of the Section, we will refer to rn as
the simple regret. This objective is different from the typical bandit setting, where
the cumulative regret R̂n = nM(f)−

∑n
t=1 Yt is instead targeted. As a proxy for the

cumulative regret, we will study the cumulative pseudo-regret :

Rn = nM(f)−
n∑
t=1

f(Xt).

By the tower-rule, E(Yt) = E(E(Yt|Xt)) = E(f(Xt)), and thus we have E(R̂n) = E(Rn),
where the expectation is taken with respect to the samples collected by the strategy
and its (possible) internal randomization. Our primary goal will be to design sequential
exploration strategies, such that the next point to sample Xt may depend on all the
previously collected samples (Xi, Yi)i<t, in order to optimize one of these two objectives.
We note here that one can easily show that a strategy with good cumulative regret
gives rise naturally to a strategy with good simple regret (for example, by choosing
x(n) uniformly at random over the points visited). However, the converse is obviously
not true.

3.2.2.2 Assumptions

In this section, we state our assumptions on the mean reward function f : [0, 1]d → [0, 1].
Our first assumption characterizes the continuity, or smoothness of f .

Definition 3.1. We say that g : [0, 1]d → [0, 1] belongs to the class Σ(λ, α) if there
exists constants λ ≥ 1, α > 0 such that for any x, y ∈ [0, 1]d:

g(x)− g(y) ≤ max{M(g)− g(x), λ||x− y||α∞},

where ||z||∞ = maxi≤d z
(i) and z(i) denotes the value of the i-th coordinate of the vector

z, with M(g)
.
= supx∈[0,1]d g(x).

For completeness, we also define the Hölder smoothness classes for α ∈ (0, 1].

Definition 3.2. We say that g : [0, 1]d → [0, 1] belongs to the Hölder smoothness class
Σ∗(λ, α) if there exists constants λ ≥ 1, 0 < α ≤ 1 such that for any x, y ∈ [0, 1]d:

|g(x)− g(y)| ≤ λ||x− y||α∞.
5We say that a random variable Z is σ-sub-Gaussian if for all t ∈ R, we have E[exp(tZ)] ≤ exp(σ

2t2

2
)
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Assumption 3.1. There exists constants λ ≥ 1, α > 0 such that f ∈ Σ(λ, α).

This assumption forbids the function f from jumping erratically close to its
maximum, which would render learning extremely difficult. Indeed, for any x∗ such
that f(x∗) = M(f), the condition simply rewrites for any x ∈ [0, 1]d:

M(f)− f(x) ≤ λ|x∗ − x|α∞.

For α ≤ 1, it is weaker than assuming that f belongs to the Hölder class Σ∗(λ, α),
which is the case for example in (Kleinberg, 2004; Minsker, 2013) (it is important to
note that in (Minsker, 2013) a second assumption related to the notion of self-similarity
is required to allow adaptivity to unknown smoothness α). Moreover, it allows us to
consider α > 1, without forcing the function to be constant.
Our second assumption is similar to the well known margin assumption (also called
Tsybakov noise condition) in the binary classification framework.

Assumption 3.2. Let X (∆)
.
= {x : M(f)−f(x) ≤ ∆}. There exists constants B > 0,

β ∈ R+ such that ∀∆ > 0:

µ(X (∆)) = µ ({x : M(f)− f(x) ≤ ∆}) ≤ B∆β,

where µ stands for the Lebesgue measure of a set S ⊂ [0, 1]d.

This assumption naturally captures the difficulty of finding the maxima of f : if β
is close to 0, there is no restriction on the Lebesgue measure of the ∆-optimal set - on
the other hand, if β is large, there are less potentially optimal regions in the space, and
we hope that a good algorithm will take advantage of this to focus on these regions
more closely, by discarding the many sub-optimal regions quicker.
Intuitively, the smoother f is around one of its maxima x∗, the harder it is for it to
"take-off" from x∗, and thus higher values for β are geometrically impossible. The
following proposition (its proof is in Section 3.2.5.1) formalizes this intuition, and
characterizes the interplay between the different parameters of the problem, α, β and
d.

Proposition 3.1. If f is such that Assumptions 3.1 and 3.2 are satisfied for α >
0, β ∈ R+, then αβ ≤ d.

In the rest of this Section, we will fix B > 0 as well and λ = 1. This can be relaxed
to λ ≥ 1 or a known upper bound on λ, such as log(n) for n large enough, being known
to the learner. We make this choice as our goal in the present work is to fundamentally
understand adaptivity with respect to the smoothness α.

Definition 3.3. We say that f ∈ P(α, β)
.
= P(λ, α, β,B, [0, 1]d) if f is such that

Assumptions 3.1 and 3.2 are satisfied for α > 0, β ≥ 0.

3.2.2.3 A simple strategy for known smoothness

The main building block on which our adaptive results are built is a non-adaptive
Subroutine (SR), which takes α as input and operates on the dyadic partition of [0, 1]d.
Importantly, our results depend on bounds that hold with high-probability, whereas to
the best of our knowledge, the analysis of the HOO in (Bubeck et al., 2011) yields results
in expectation. For completeness, we introduce and analyze this simple Subroutine.
We first define a dyadic hierarchical partitioning of [0, 1]d, on which our strategy bases
its exploration of the space.
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Definition 3.4. We write Gl for the regular dyadic grid on the unit cube of mesh
size 2−l. It defines naturally a partition of the unit cube in 2ld smaller cubes, or
cells C ∈ Gl with volume 2−ld and edge length 2−l. We have [0, 1]d =

⋃
C∈Gl C and

C ∩C ′ = ∅ if C 6= C ′, with C,C ′ ∈ G2
l . We define xC as the center of C ∈ Gl, i.e. the

barycenter of C.
We write rl

.
= maxx,y∈C ||x− y||∞ = 2−l for the diameter of cells C ∈ Gl.

Algorithm 11 Non-adaptive Subroutine (SR)
Input: n, δ, α
Initialization: t , 2dt1,α, l , 1, A1 , G1 (active space), ∀l′ > 1,Al′ , ∅
while t ≤ n do
M̂l , 0
for each active cell C ∈ Al do
Perform tl,α function evaluations in xC the center of C
f̂(xC)← 1

tl,α

∑tl,α
i=1 YC,i

M̂l ← max(M̂l, f̂(xC))
end for
Al+1 , ∅
for each active cell C ∈ Al do
if
{
M̂l − f̂(xC) ≤ Bl,α

}
then

Al+1 ← Al+1 ∪ {C ′ ∈ Gl+1 ∩ C} // keep all children C ′ of C active
end if

end for
Increase depth to l← l + 1, and set t← t+ |Al| · tl,α

end while
L , l − 1 // the final completed depth
Sample any x ∈ AL+1 until budget expires
Output: AL+1 // return active set after final depth L

The Subroutine takes as input parameter α the smoothness parameters, n the
maximum sampling budget, and δ a confidence parameter. In order to find the maxima
of f , it refines a dyadic partition of the space, starting with 2d hypercubes to sample
from, and zooming in on regions that are close (in function value) to the optima. At
depth l, the active cells in Al are sampled tl,α

.
= 0.5 log(1/δl)b

−2
l,α times, where bl,α

.
= rαl

and δl
.
= δ2−l(d+1). After collecting tl,α noisy evaluations (YC,i)i≤tl,α , it computes a

simple average to estimate f(xC):

f̂(xC) =
1

tl,α

tl,α∑
i=1

YC,i.

Once all the cells at depth l have been sampled, the Subroutine computes a current
estimate of the maximum M̂l = maxC∈Al f̂(xC). Then, for each cell C in the active set

Al, it compares M̂l− f̂(xC) with Bl,α = 2
(√ log(1/δl)

2tl,α
+bl,α

)
, where we set tl,α such that

the variance term is of the same magnitude as the bias term bl,α. If M̂l− f̂(xC) ≥ Bl,α,
this cell is eliminated, as the Subroutine rules it unlikely that there exists x ∈ C
such that f(x) = M(f). On the other hand, if M̂l − f̂(xC) is smaller than Bl,α,
then C is kept active, and all its children {C ′ : C ∩ Gl+1} are added to Al+1. This
process is repeated until the budget is not sufficient to sample all the cells that are
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still active at depth L+ 1, and the Subroutine returns AL+1 the last active set, and
the recommendation x(n) can be any point chosen in AL+1.

We now state our main result for this non-adaptive Subroutine.

Proposition 3.2. Let n ∈ N∗. The Subroutine run on a problem characterized by
f ∈ P(α, β) with input parameters α, n and 0 < δ < e−1 is such that with probability
at least 1− 4δ:

• X (0) ⊂ AL+1 ⊂ X
(
C
(

n
log(n

δ
)

)−α/(2α+d−αβ)
)
, where C > 0 does not depend on

n, δ.

• For any recommendation, x(n) ∈ AL+1, we have: M(f)−f(x(n)) ≤ C
(

n
log(n

δ
)

)−α/(2α+d−αβ)

• For all T ≤ n, we have RT ≤ D log(nδ )α/(2α+d−αβ)T (α+d−αβ)(2α+d−αβ), where
D > 0 is a constant that does not depend on T, n, δ, α.

The proof of this result can be found in Section 3.2.5.2. The second conclusion
of Proposition 3.2 is a direct implication of the first conclusion, and shows that with
high-probability, as we recover an entire level set of optimal size, recommending any
point in the active set AL+1 leads to optimal simple regret. This will prove handy
for adaptivity to unknown smoothness for the simple regret objective. The third
conclusion will be used in Section 3.2.4, where we show that if the learner is provided
with extra-information, adaptivity to unknown smoothness is possible for cumulative
regret.

3.2.3 Adaptivity to unknown smoothness in optimization and regret
minimization

In this section, we explore the problem of adaptivity to unknown smoothness α for both
the simple regret and cumulative regret objectives. We show that for optimization,
adaptivity is possible without sacrificing minimax optimality: there exists an agnostic
strategy that performs almost as well as the optimal strategy that has access to the
smoothness. For cumulative regret, we show that there exists no adaptive minimax
optimal strategy.

3.2.3.1 Adaptivity for optimization

We start by proving a lower bound on the simple regret over the class of functions
P(α, β), which holds even for strategies that have access to both α and β.

Theorem 3.3 (Lower bound on simple regret). Fix d ∈ N∗. Let α > 0 and β ≥ 0
such that αβ ≤ d. For n large enough, for any strategy that samples at most n noisy
function evaluations and returns a (possibly randomized) recommendation x(n), there
exists f ∈ P (α, β), where M(f) is fixed and known to the learner, such that:

E[rn] ≥ Cn−α/(2α+d−αβ),

where C > 0 is a constant that does not depend on n, and the expectation is taken with
respect to both the noise in the sampling process and the possible randomization of the
strategy.
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The proof of this result can be found in Section 3.2.5.3. It shows that even over
a set of functions that all belong to known class P(α, β), this is the best possible
convergence rate for the simple regret that one can hope for. An important takeaway
from the proof of this result is that it also holds in the easier setting where M(f) the
maximum of f is known to the learner. A direct corollary of this result is a lower
bound on the cumulative regret for any strategy.

Corollary 3.2 (Lower bound on cumulative regret). Fix d ∈ N∗. Let α > 0 and β ≥ 0
such that αβ ≤ d. For n large enough, any strategy with access to at most n noisy
function evaluations suffers a cumulative regret such that:

sup
f∈P(α,β)

E[Rn] ≥ Cn(α+d−αβ)/(2α+d−αβ),

where C > 0 is a constant that does not depend on n, and the expectation is taken with
respect to both the noise in the sampling process and the possible randomization of the
strategy.

This result follows directly from Theorem 3.3, by remarking that any strategy
with a good cumulative regret in expectation can output a recommendation x(n)

such that E[rn] ≤ E[Rn]
n (see Section 3 in (Bubeck, Munos, and Stoltz, 2011)). There-

fore, any strategy with a cumulative regret that’s strictly smaller than the rate in
Corollary 3.2 would have an associated simple regret in contradiction with Theorem 3.3.

We now exhibit adaptive strategies that are minimax optimal (up to log factors)
for the simple regret. Importantly, these strategies perform almost as well as the best
strategies that have access to α and β.

Theorem 3.4 (Adaptive upper-bound for simple regret). Let n ∈ N∗. Assume that
α ∈ [1/ log(n), log(n)] and β ≥ 0 such that αβ ≤ d, both unknown to the learner.
There exists adaptive strategies such that for any f ∈ P(α, β) with maximum M(f):

M(f)− E[f(x(n))] ≤ C
(

logp(n)

n

)α/(2α+d−αβ)

,

where C > 0 is a constant that does not depend on n and p is a universal constant.

In order to match the rate in Theorem 3.3 for the simple regret, a natural strategy
is to aggregate different recommendations output by a non-adaptive (i.e. that takes
the smoothness α as input) strategy, run with a diversity of smoothness parameters.
We exhibit two such strategies that rely on this scheme.

Strategy 1 (Cross-validation): (Grill, Valko, and Munos, 2015b) introduces a
strategy (POO) that adapts to unknown smoothness for the simple regret. It launches
several HOO(i) ((Bubeck et al., 2011)) instances in parallel according to a logarithmic
schedule over the smoothness parameters αi (indexing the instances). The final recom-
mendation of the Meta-Strategy is made by first choosing the instance HOO(i∗) with
the best average empirical performance. The final recommendation is then drawn
uniformly at random over the points {Xi∗(t)}t visited by HOO(i∗). An important
technical remark is that the fastest attainable rate in this setting is O (1/

√
n), which

is is of the same order as the stochastic error induced by the final cross-validation
scheme. For this strategy, we have p = 2 in Theorem 3.4.
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Strategy 2 (Nested Aggregation): The first conclusion of Proposition 3.2
shows that our Subroutine recovers with high-probability an entire level-set of optimal
size. As the smoothness classes Σ(1, α) are nested for increasing values of α, this allows
us to use directly the nested aggregation scheme (Algorithm 1) in (Locatelli, Carpentier,
and Kpotufe, 2017) by splitting the budget among several SR instances indexed by
smoothness parameters αi over a grid that covers the range [1/blog(n)c, blog(n)c]. Im-
portantly, the final recommendation x(n) output by this nested aggregation procedure
comes with high-probability guarantees which is an improvement over POO.

A common caveat of these adaptive strategies is that their exploration of the
space crucially depends on a covering of the possible smoothness parameters. This is
necessary to ensure that there is a Subroutine run with a smoothness parameter which
is very close to the true smoothness of the function. However, Subroutines (either our
Subroutine 11 or HOO) run with smoothness parameters αi � α incur a high-regret as
they explore at a too small scale, while subroutines run with αi > α come with no
regret guarantee. As the budget is split equally among the Subroutines run in parallel,
the total cumulative regret of these adaptive exploration strategies cannot be bounded
and is provably sub-optimal. This naturally leads to the following question: is there
an adaptive strategy that enjoys a minimax optimal cumulative regret over classes
P(α, β)?

3.2.3.2 Impossibility result for cumulative regret

In this section, we answer the previous question negatively, and show that designing
an adaptive strategy with minimax optimal cumulative regret is a hopeless quest. We
first state this result in a general theorem and then instantiate it in multiple settings
to show its implications.

Theorem 3.5. Fix γ ≥ α > 0 and β ≥ 0 such that γβ ≤ d. Consider a strategy such
that for any f ∈ P(γ, β), we have E[Rn] ≤ Rγ,β(n) with Rγ,β(n)(2α+d−αβ)/(α+d−αβ) ≤
0.008n. Then this strategy is also such that:

sup
f∈P(α,β)

E[Rn] ≥ 0.008nRγ,β(n)−α/(α+d−αβ),

where the expectations are taken with respect to the strategy and the samples collected.

The proof of this result uses the same techniques as in the proof of Theorem 3.3,
but with the following twists: the value of the maximum across the set of problems
we consider is not fixed, nor is the value of the smoothness, which can be either be α
or γ, depending on the presence of a rough peak of smoothness α. This construction
forces any strategy into an exploration exploitation dilemma parametrized by Rγ,β(n).

Proof. Let γ > α > 0 be two smoothness parameters and β ≥ 0 such that γβ ≤ d.
Define K = d∆

αβ−d
α e ≥ 2, and ∆ such that:

∆ =
K

Rγ,β(n)
,

with Rγ,β(n) such that Rγ,β(n)(2α+d−αβ)/(α+d−αβ) ≤ n
16 exp(−2). Importantly, we will

consider strategies such that for any problem in P(γ, β), their expected regret is smaller
than Rγ,β(n). Consider the grid G which partitions [0, 1/2]d into N = d∆−d/αe disjoint
hypercubes. We index the cells of G as (Hk)k≤N as in the proof of Theorem 3.3. We
also define H0 the hypercube [1−∆1/γ , 1]× ...× [1−∆1/γ , 1].
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In what follows, we will write

S =
⋃

0≤k≤K
Hk.

Fix M ∈ [1/2, 1]. We define the function φs(x) for 0 ≤ s ≤ K and x ∈ [0, 1]d.

φs(x) =


max{M −∆,M −∆/2− ||x− xi||γ∞}, if x ∈ H0

max{M −∆,M − |x− xi|α∞}, if x ∈ Hi, i = s

M −∆, if x ∈ Hi, i 6= s

max{0,M −∆− dist∞(x,S)γ}, if x ∈ SC ,

where dist∞(x,S)
.
= inf{||x − z||∞, z ∈ S}. It is clear that for s = 0, we have

φ0 ∈ Σ(1, γ). By the nestedness of the smoothness classes for any 1 ≤ s ≤ K we have
φs ∈ Σ(1, α) as α ≤ γ.
We will now show that Assumption 3.2 for some B > 0 is satisfied for φs, ∀s ≤ K. For
any 0 < ε < ∆ < 1, we have:

µ(X (ε)) ≤ εd/γ ≤ εβ,

as we have γβ ≤ d. Now considering ε = ∆:

µ(X (ε)) ≤ K∆d/α + ∆d/γ ≤ 2∆β,

as we have set K = d∆(αβ−d)/αe ≤ 2∆(αβ−d)/α. Finally, we consider ε ∈]∆, 1/2], and
we have:

µ(Ω(ε)) ≤ µ(X (∆)) + µ({x : ∆ < M − φs(x) ≤ ε})
≤ 2∆β + εd/γ

≤ 3εβ.

So we have by construction :

• For s = 0, φ0 ∈ P(γ, β) and M(φ0) = M −∆/2

• For any 1 ≤ s ≤ K, φs ∈ P(α, β).

• for any s, t ≤ K, and any x ∈ AC , φs(x) = φt(x) (one cannot distinguish problem
i from problem j in SC)

• for any 1 ≤ s ≤ K, the maximum of φs is attained only in xs and we have
φs(xs) = M . In particular, for any s 6= 1, we have M(φs) = M .

• ∀x 6∈ Hs, φs(x) = φ0(x): one cannot distinguish problem s from problem 0
outside of a small neighborhood around xs.

• For any s ≤ K, ∀x 6∈ Hs,Ms − φs(x) ≥ ∆/2

We now define HK the set of problems such that for any 0 ≤ s ≤ K, the problem
s is characterized by the mean-pay off function φs, with zero-mean Gaussian noise
of variance 1, such that the observations are, conditionally on Xt = x, i.i.d. with
distribution Yt ∼ N (φs(x), 1). Let us fix a strategy (algorithm): it defines a (possibly
randomized) sampling mechanism, which characterizes the next sampling point Xt

based on the previous observations {(Xi, Yi)}i<t, for all t ≤ n. We write Ps, Es, for
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the probability and expectation under the problem s (uniquely characterized by the
function φs), when the previously mentioned strategy is used. This strategy is such
that for any problem in P(γ, β), we have E[Rn] ≤ Rγ,β(n). This assumption will be
used to encode the fact the strategy is nearly minimax optimal over the class P(γ, β),
and that any such strategy is strictly suboptimal over the larger class P(α, β).

As in the proof of Theorem 3.3, for a sample {(Xi, Yi)}i≤n collected by the previously
introduced algorithm under problem 0, we consider the log-likelihood ratio Ln,s

.
=

Ln,s({(Xi, Yi)}i≤n) for 1 ≤ s ≤ K:

Ln,s =
n∑
t=1

log

(
P0(Yt|Xt)

Ps(Yt|Xt)

)
=

n∑
t=1

1

2

(
(Yt − φs(Xt))

2 − (Yt − φ0(Xt))
2
)

=
n∑
t=1

(φs(Xt)− φ0(Xt))(φs(Xt)− Yt);

which yields as in the proof of Theorem 3.3:

E0(Ln,s) ≤ E0(Ts(n))∆2, (3.8)

where E0(Ts(n)) is the expected number of samples in cell Hs collected by the sampling
strategy under problem 0 at the end of the game.
By definition of Rγ,β(n) which bounds the expected regret of the strategy, there exists
a cell Hm and an index m such that:

E0(Tm(n)) ≤
2Rγ,β(n)

∆K
,

otherwise the strategy has an expected regret strictly greater than Rγ,β(n). Combined
with Equation (3.8), this yields:

E0(Ln,m) ≤
2Rγ,β(n)∆

K
= 2,

by definition of ∆ = K
Rγ,β(n) .

Consider a realization of the samples {(Xi, Yi)}i≤n. We define ρ0, ρm as the
distribution of Tm(n) (here X in Lemma 3.3 corresponds to {0, ..., n}) under problems
0 and m respectively. Finally, we define the test function τ : T → 1{T ≥ n/2}. Under
this choice of ρ0, ρm and τ , Lemma 3.3 yields:

P0(Tm(n) ≥ n/2) + Pm(Tm(n) < n/2) ≥ 1

2
exp

(
−KL(ρ0, ρm)

)
.

By the tower rule and Lemma 3.2:

E0(Ln,s) =

n∑
k=0

E0(Ln,s|Tm(n) = k)P0(Tm(n) = k)

≥
n∑
k=0

log

(
P0(Tm(n) = k)

Ps(Tm(n) = k)

)
P0(Tm(n) = k),
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which is precisely KL(ρ0, ρm) for our choice of ρ0, ρm. As E0(Ln,m) ≤ 2, we get:

P0(Tm(n) ≥ n/2) + Pm(Tm(n) < n/2) ≥ 1

2
exp(−2). (3.9)

We now remark that P0 (Tm(n) ≥ n/2) ≤ P0

(
Rn ≥ n∆

4

)
, which can be bounded by

Markov’s inequality:

P0

(
Rn ≥

n∆

4

)
≤

4Rγ,β(n)

n∆
(3.10)

≤
4Rγ,β(n)(2α+d−αβ)/(α+d−αβ)

n

≤ 1

4
exp(−2),

as we have set R(2α+d−αβ)/(α+d−αβ)
γ,β ≤ exp(−2)n

16 . Intuitively, Equation (3.9) tells us
that the strategy suffers a regret of order O (n∆) with constant probability either
under problem 0 or problem m. In order to satisfy the bound Rγ,β(n) on the regret of
the strategy when it is facing problem 0, the probability of suffering regret of order
O (n∆) under problem 0 cannot be too big (and in fact, for γ > α, it vanishes), and
thus, the strategy errs with constant probability under problem m. In other words,
combining Equations (3.9) and (3.10), we just showed that:

Pm
(
Rn >

n∆

4

)
≥ Pm(Tm(n) < n/2) ≥ 1

4
exp(−2),

which implies directly, as Rn is a non-negative random variable:

sup
f∈P(α,β)

E[Rn] ≥ Em[Rn] ≥ n∆

16
exp(−2) =

n

16
exp(−2)Rγ,β(n)−α/(α+d−αβ)

Theorem 3.5 can be understood in the following way: for any strategy, performing
at a certain rate Rγ,β(n) uniformly over all problems in a subclass P(γ, β) ⊂ P(α, β)
comes with a price: on at least one problem that belongs to the class P(α, β), it has
to suffer an expected regret that depends inversely on Rγ,β(n). This directly leads
to our claim that adaptivity to the smoothness for the cumulative regret objective
is impossible. Consider strategies such that Rγ,β(n) ≤ O

(
n1−γ/(2γ+d−γβ)+ε

)
for any

ε > 0 (we showed in Proposition 3.2 that such strategies exist). Then its regret
over the class P(α, β) is necessarily lower bounded as O

(
n1−α/(2α+d−αβ)+ν

)
, where

ν =
(
α+d−αβ
2α+d−αβ −

γ+d−γβ
2γ+d−γβ − ε

)
α

α+d−αβ . As soon as α < γ, we have ν > 0 for ε small
enough, which implies that the strategy considered is strictly sub-optimal over the
class P(α, β). We remark that by plugging α = γ in Theorem 3.5, we recover the
lower-bound of Corollary 3.2. We now illustrate our impossibility result in a very
simple one-dimensional setting with β = 1.

Example 3.1. Fix γ = 1 and α = 1/2, as well as d = 1 and β = 1. The minimax
optimal rate for the cumulative regret over P(1, 1) is of order O (

√
n). One can easily

check that the minimax optimal rate for the class P(1/2, 1) is of order O
(
n2/3

)
. The

previous Theorem tells us that any strategy that achieves a regret of order O
(
n1/2

)
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over P(1, 1) incurs a regret of order at least O
(
n3/4

)
on a problem in P(1/2, 1), which

is strictly sub-optimal.

Another setting of interest (see (Kleinberg, 2004; Auer, Ortner, and Szepesvári,
2007)) is the case β = 0. This corresponds to the hardest possible setting if the
smoothness is itself fixed.

Example 3.2 (β = 0). Fix γ > α and β = 0. Theorem 3.5 simply says that for any
strategy that achieves optimal regret of order O

(
n1−γ/(2γ+d)

)
over P(γ, 0), it incurs a

regret of order at least O
(
n1−(α(γ+d))/((2γ+d)(α+d))

)
on at least one problem that belongs

to the class P(α, 0). One can check immediately that this is strictly slower than the
minimax optimal rate O

(
n1−α/(2α+d)

)
over P(α, 0), as we have α+d

2α+d >
γ+d
2γ+d .

Finally, we show how to recover the bound in Corollary 3.2 by instantiating
Theorem 3.5 with α = γ.

Example 3.3 (Lower bound for P(α, β)). Fix γ = α and β ≥ 0 such that αβ ≤
d. We can recover the lower bound for the cumulative regret immediately, by set-
ting Rα,β(n)(2α+d−αβ)/(α+d−αβ) = 0.008n, which yields 0.008nRα,β(n)−α/(α+d−αβ) =
(0.008n)(α+d−αβ)/(2α+d−αβ), and this quantity is precisely Rα,β(n). Therefore, for any
strategy whose regret is bounded by Rα,β(n) uniformly over the class P(α, β), this bound
is tight.

3.2.3.3 Discussion

This result shows that for the problem of adaptivity to unknown smoothness, there
exists a fundamental difference between optimization and cumulative regret minimiza-
tion. In optimization, adaptivity to unknown smoothness is possible (at the price
of a logarithmic factor), while Theorem 3.5 rules out the existence of strategies that
are minimax optimal simultaneously for two smoothness classes. This fundamental
difference is related to the adaptive inference paradox in statistics: while adaptive
estimation is usually possible, adaptive and honest confidence sets usually do not exist
over standard models (Cai, Low, et al., 2006; Hoffmann and Nickl, 2011). The problem
of simple regret minimization is akin to adaptive estimation, as it is a pure exploration
problem. Model selection techniques (as e.g. cross validation or Lepski’s methods) can
be safely employed to aggregate the output of several Subroutines run in parallel and
corresponding to different values of α, enabling thus adaptivity to α. In a sense, there
is no price to pay if one over-explores, which is akin to over-smoothing in adaptive
estimation. On the other hand, the problem of cumulative regret minimization requires
a careful trade-off between exploration and exploitation. Since this trade-off should
depend on the unknown α exactly, this leaves no room for over-exploration. This bears
strong similarities with model testing and adaptive uncertainty quantification, i.e. the
problem of constructing adaptive and honest confidence sets, and as such it is not
possible to adapt to the smoothness for the problem of cumulative regret minimization.
This is particularly interesting in light of (Bubeck, Munos, and Stoltz, 2011), where
it is remarked that any strategy with good cumulative regret naturally gives rise to
a strategy with good simple regret. We show here that in this adaptive setting, the
minimax optimal attainable rates are not identical (up to a factor n). The proof of this
result crucially depends on the fact that the value of the maximum over the class of
functions we consider is not fixed and depends on the smoothness of f , which forces any
strategy into an exploration and exploitation dilemma. We also remark here that β is
fixed in our construction: this shows that even for known β, minimax optimal adaptive
strategies over the classes ∪α>0P(α, β) do not exist, and the intrinsic difficulty in the
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problem of adaptivity is tied to the unknown smoothness. Interestingly, despite β
being fixed, the minimax rate itself is not fixed as it depends on the smoothness which
can take values α and γ. Finally, we remark that this rate is tight in the sense that
there exists a strategy that takes Rγ,β(n) and α, γ, β as inputs and incurs the regret
on P(α, β) and P(γ, β) prescribed by Theorem 3.5. This strategy is simply to use
Rγ,β(n)(2α+d−αβ)/(α+d−αβ) samples with SR(α), and afterwards to play SR(γ) within
the confidence set output by SR(α).

Even though adaptivity to the unknown smoothness for cumulative regret minimiza-
tion is impossible in general, an interesting open problem is to find natural conditions
under which adaptivity becomes possible, which we explore in the next section. This
course of research was also taken in the problem of constructing adaptive and honest
confidence sets, and while they mostly do not exist in all generality, it is well known
that under some specific shape constraints, they do exist (Cai, Low, Xia, et al., 2013;
Bellec, 2016). We refer to these settings as learning with extra-information. First,
we will show that adaptivity is possible over the subclass ∪α>0P(α, β,M(f)) where
M(f) denotes the fixed value of f at its maxima. Next, we will show that adaptivity
is possible over classes ∪α>0P(α, β(α)) for β(α) = (2r − 1)/(r − 1) + d/α for some
fixed r ∈ [1/2, 1).

3.2.4 Learning in the presence of extra-information

In this section, we investigate two settings where the learner is given extra-information
and show that adaptivity to unknown smoothness is possible for the cumulative regret.
We explore two conditions: the case where M(f) the value at the maxima is known
to the learner and the known rate setting, which we describe later. To solve these
problems, we introduce meta-strategies which act on a set of subroutines (Subrou-
tine 11, SR) initialized with different smoothness parameters. Specifically, different
runs of Subroutine 11 are kept active in parallel, and at each round the Meta-Strategy
decides online to further allocate a fraction

√
n of the total budget n to Subroutines

that exhibit good early performances, in a sense we shall make clear later. Each time
a Subroutine is given a fraction of the budget to perform new function evaluations,
learning resumes for this Subroutine where it was halted: we stress here that the
information acquired by Subroutines is never thrown.

Known M(f) setting. At the beginning of the game, the learner is given M(f)
the value of f at its maxima, allowing for more efficient exploitation. In light of our
the proof of Theorem 3.5 (which does not cover this setting), we see intuitively that
the exploitation exploration dilemma leading to the impossibility result arose from the
two different values that M(f) could take in our class of functions. Here, as soon as
the strategy has identified a region where f is close in value to M(f), it can exploit
aggressively and keep track on-the-fly of the regret it incurs. By being aware of its
own performance, the learner can adjust its exploration/exploitation trade-off optimally.

Known rate setting. The learner is provided with extra-information R∗(n, δ)
that we call the rate. R∗(n, δ) is a high-probability bound on the pseudo-regret of
one of the Subroutines used by the Meta-Strategy, had it been run in isolation with a
budget n of function evaluations. Although it is more general, this covers the canonical
case αβ = d. A similar setup was explored in the recent work (Agarwal et al., 2017),
where they come up with a meta-strategy to aggregate bandit algorithms that also
works under adversarial settings.
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3.2.4.1 Description of the Meta-Strategy

We first describe the initialization phase of the Meta-Strategy and notations, and then
explain how it operates in each setting.

Algorithm 12 Extra-information Meta-Strategy
Initialization
Input: n, δ, M(f) or R∗(n, δ) and SR
δ0 , δ

blog(n)c2 , T , 0

for i = 1, ..., blog(n)c3 do
αi , i

blog(n)c3

Initialize SR(i) with δ0, n, αi
Ti(T ) , 0, ŜT (i) , 0

end for
Case 1 (M(f) known):
while T < n do
k = arg mini

[
Ti(T )M(f)− ŜT (i)

]
Perform

√
n function evaluations with SR(k)

Tk(T )← Tk(T ) +
√
n, T ← T +

√
n

ŜT (k)←
∑Tk(T )
t=1 Yk(t)

end while

Case 2 (R∗ known):
A1 , {1, ..., blog(n)c3} (set of active SR(i))
T , |A1|

√
n, N , 1 (round)

while T < n do
for i ∈ AN do

Perform
√
n function evaluations with SR(i)

Ti(T )← Ti(T ) +
√
n

ŜT (i) =
∑Ti(T )
t=1 Yi(t)

end for
k = arg maxi∈AN

ŜT (i)
AN+1 , AN
for i ∈ AN do

if ŜT (k)− ŜT (i) > R∗(n, δ) +
√
Ti(t) log(nblog(n)c3/δ) then

Eliminate SR(i), AN+1 ← AN+1 \ {i}
end if

end for
N ← N + 1, T ← T + |AN |

√
n

end while
Spend rest of the budget with SR(i) for i ∈ AN

Initialization: The Meta-Strategy has three parameters: the maximum budget n,
which we assume for simplicity to be of the form m2 for some m ∈ N∗, and a confidence
parameter δ, as well as an extra-information parameter M(f) or R∗(n, δ). It uses mul-
tiple instances of Subroutine 11, which are run in parallel with smoothness parameters
αi over the grid {i/blog(n)c2} with i ∈ {1, ..., blog(n)c3}. First, each Subroutine is
initialized with a smoothness parameter αi, a confidence parameter δ0 = δ/blog(n)c3,
and we refer to this Subroutine as SR(i). Ti(T ) is the number of function evaluations
performed by SR(i) from time t = 1 to T . Each time SR(i) performs a function
evaluation in a point Xi(t) (where Xi(t) for t ≤ Ti(T ) corresponds to the t-th function
evaluation performed by SR(i)) it receives Yi(t), which is passed to the Meta-Strategy.
In both settings, the Meta-Strategy updates the quantity ŜT (i) =

∑Ti(t)
t=1 Yi(t) each
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time SR(i) performs new function evaluations. We will also consider the empirical
regret R̂T (i) = Ti(T )M(f)− ŜT (i).

Case 1 (M(f) known): The Meta-Strategy is called with parameter M(f) =
maxx∈X f(x). After the initialization, the Meta-Strategy operates in rounds of length√
n. At the beginning of each round at time T = u

√
n for some u ∈ {0, ...,

√
n},

the next batch of
√
n function evaluations are allocated to the Subroutine which has

accumulated the smallest empirical regret up to time T . More precisely, the index
k = arg mini R̂T (i) is chosen, and SR(k) resumes its learning where it was halted,
performing

√
n more function evaluations. The number of samples allocated to SR(k)

and its empirical regret R̂T (k) are then updated. As the heuristic is to allocate new
samples to the Subroutine that has currently incurred the smallest regret, this ensures
that the regret incurred by each of the Subroutines grows at the same rate and is of the
same order at time n. Therefore, we expect the Meta-Strategy to perform almost as
well as the best Subroutine it has access to, up to a multiplicative factor that depends
on the total number of Subroutines.

Case 2 (R∗ known): Here, the Meta-Strategy is called with parameter R∗(n, δ).
It proceeds in rounds and performs a successive elimination of the Subroutines. At
round N , we call AN the set of active Subroutines, with A1 = {1, ..., blog(n)c3}. The
rate R∗(n, δ) is such that there exists i∗ ∈ A1 for which for all T ∈ {

√
n, ..., n} we

have: TM(f) −
∑T

t=1 f(Xi∗(t)) ≤ R∗(n, δ) with probability at least 1 − δ. For any
i ∈ AN , the Meta-Strategy allocates

√
n function evaluations to be performed by SR(i),

and the Meta-Strategy updates: ŜT (i) =
∑Ti(T )

t=1 Yi(t). At the end of a round, the
Meta-Strategy keeps computes the index k = arg maxi∈AT ŜT (i) of the best performing
(active) Subroutine. Any active SR(i) that meets the following condition is eliminated :

ŜT (k)− ŜT (i) > R∗(n, δ) + 2
√
Ti(t) log(nblog(n)c3/δ).

Heuristically, the Meta-Strategy uses SR(k) as a pivot to eliminate the remaining
active Subroutines, as the samples collected by SR(k) cannot be too far M(f), and
this difference depends on R∗(n, δ). This extra-information allows the Meta-Strategy
to eliminate Subroutines that perform poorly at the optimal rate. It is important to
note that this cannot be done in the general setting, as this rate depends on both α
and β, which are unknown to the learner.

3.2.4.2 Main Results for the Meta-Strategy

We now state our main adaptive results for these shape-constrained settings.

Theorem 3.6. Fix α ∈ [0.5
√
d/ log(n), blog(n)c] and β ≥ 0 such that αβ ≤ d, with

both parameters unknown to the learner. For any f ∈ P(α, β) such that f takes value
M(f) at its maxima, the Meta-Strategy 12 run with budget n, confidence parameter
δ = 1/

√
n and M(f) is such that its regret is bounded as:

E(Rn) ≤ C logp(n)n1−α/(2α+d−αβ),

where the expectation is taken with respect to the samples, C > 0 and p do not depend
on n.

This matches (up to log factors) the minimax optimal rate for the class of functions
f ∈ P(α, β) with M(f) fixed that we proved in Corollary 3.2.
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Theorem 3.7. Fix α, β as in Theorem 3.6. For any f ∈ P(α, β), the Meta-Strategy 12
run with budget n, confidence parameter δ and access to the parameter R∗(n, δ) is such
that with probability at least 1− 2δ, its pseudo-regret is bounded as:

Rn ≤ blog(n)c3
(

2R∗(n, δ) + 8
√
n log

(
nblog(n)c3

δ

)
+
√
n

)
,

where the expectation is taken with respect to the samples.

By Lemma 3.4 in the Section, which bounds the best attainable rate attainable by
the Subroutines run smoothness parameters αi over a grid of step-size blog(n)c2, we
know that there exists SR(i∗) such that with probability at least 1−δ, its pseudo-regret
is such that Rn(i∗) ≤ C logp

(
n
δ

)
n1−α/(2α+d−αβ) with p ≤ 1 and where C > 0 does not

depend on n and δ. This naturally leads to the following Corollary:

Corollary 3.3. Fix α, β as in Theorem 3.6. Let r = α+d−αβ
2α+d−αβ be known to the learner,

without direct access to α nor β. Then for any f ∈ P(α, β), the Meta-Strategy 12 run
with budget n, confidence parameter δ = n−1/2 and R∗(n) = log2(n)nr is such that for
n large enough its expected pseudo-regret is upper-bounded as:

E[Rn] ≤ blog(n)c3
(

2 log2(n)n1−α/(2α+d−αβ) + 8
√
n log

(
n3/2blog(n)c3

)
+
√
n
)
,

where the expectation is taken with respect to the samples.

This matches the minimax optimal rate (up to log factors) for the cumulative regret
that we proved in Corollary 3.2. In particular, if αβ = d, then our Meta-Strategy run
with budget n, confidence parameter δ = n−1/2 and R∗(n) = log2(n)

√
n, is such that

its expected pseudo-regret is of order Õ (
√
n). This extends the result of (Bull et al.,

2015) to our setting and interestingly, we also recover a result of (Yu and Mannor, 2011)
(Theorem 4.2 and Assumption 3.2) and (Combes and Proutiere, 2014) (Proposition 1
and Assumption 2) in the one-dimensional unimodal continuum-armed bandit setting,
but without assuming unimodality.

3.2.5 Proofs of Section 3.2

3.2.5.1 Proof of Proposition 3.1

Proof. Consider x∗ such that f(x∗) = M(f) and the L∞-ball of radius r centered in
x∗, r ∈ (0, 1]. By smoothness of f around x∗, for any x such that ||x− x∗||∞ ≤ r, we
have:

|f(x)−M(f)| ≤ λrα,

which brings µ(X (λrα)) ≥ rd. On the other hand, by Assumption 3.2, we have
µ(X (λrα)) ≤ Bλβrαβ . Combining both conditions, we have for all r ∈ (0, 1]:

1

Bλβ
≤ rαβ−d.

As this has to hold true for all r ∈ (0, 1], considering rl = 2−l yields αβ ≤ d.

3.2.5.2 Proof of Proposition 3.2

Let us write in this proof in order to simplify the notations

tl = tl,α, bl = bl,α, Bl = Bl,α and Nl = |Al|.
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Step 1: A favorable event.
Consider a cell C of depth l. We define the event:

ξC,l =
{
|t−1
l

tl∑
i=1

YC,i − f(xC)| ≤

√
log(1/δl)

2tl

}
,

where the (YC,i)i≤tl are samples collected in C at point xC if C if the algorithm samples
in cell C. We remind that

f̂(xC) =
1

tl

tl∑
i=1

YC,i.

As YC,i = f(xC) + εi where {εi}i≤n are zero-mean 1-sub-Gaussian independent ran-
dom variables, we know from Hoeffding’s concentration inequality that P(ξC,l) ≥ 1−2δl.

We now consider
ξ =

{ ⋂
l∈N∗,C∈Gl

ξC,l

}
,

the intersection of events such that for all depths l and any cell C ∈ Gl, the previous
event holds true. Note that at depth l there are 2ld such events. A simple union bound
yields P(ξ) ≥ 1−

∑
l 2
ldδl ≥ 1− 4δ as we have set δl = δ2−l(d+1).

On the event ξ, for any l ∈ N∗, as we have set tl = log(1/δl)
2b2l

, plugging this in the
bound implies that for each cell C ∈ Gl that has been sampled tl times we have:

|f̂(xC)− f(xC)| ≤ bl. (3.11)

Note that by Assumption 3.1, bl is such that for any x ∈ C, where C ∈ Gl, we
have:

|f(x)− f(xC)| ≤ max{M(f)− f(xC), bl}. (3.12)

Step 2: No mistakes.
For l ∈ N∗, let us consider C ∈ Gl such that ∃x∗ ∈ C, x∗ ∈ X (0) i.e. f(x∗) = M(f).
Let us assume that C ∈ Al. Then on ξ:

M̂l ≥ f̂(xC) ≥ f(xC)− bl
≥ f(x∗)− 2bl

≥ M(f)− 2bl (3.13)

Moreover, we have:
M̂l ≤M(f) + bl (3.14)

Equation (3.14) yields:

M̂l − f̂(xC) ≤ M(f) + bl − (M(f)− 2bl)

≤ 3bl < 4bl = Bl

This shows that on ξ any cell C ∈ Al that contains a global optimum x∗ is never
eliminated by the algorithm at depth l, and all its children are added to Al+1. As at
depth l = 1, all cells are active, by induction we have ∀l ≥ 1:

{X (0) ∩Gl} ⊂ Al (3.15)

Step 3: A maximum gap.
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Now consider an active cell at depth l: C ∈ Al such that all its children are added to
Al+1. If this cell is kept active at depth l + 1, then it is such that:

M̂l − f̂(xC) ≤ Bl = 4bl.

By Equations (3.13) and (3.11), we know that on ξ:

M̂l − f̂(xC) ≥M(f)− 2bl − (f(xC) + bl),

which brings that all cells kept active are such that:

M(f)− f(xC) ≤ 7bl

By Equation (3.12), we know that ∀x ∈ C : f(xC)−f(x) ≤ max{M(f)−f(x), bl} ≤ 7bl,
where we upper bound using the previous equation. This rewrites:

M(f)− f(x) ≤ 7bl +M(f)− f(xC),

which implies that for any x in C kept active at depth l + 1:

M(f)− f(x) ≤ 14bl, (3.16)

which implies:
Al+1 ⊂ X (14bl) (3.17)

Step 4: A bounded number of active cells.
By Assumption 3.2, we know that µ(X (14bl)) ≤ B14βbβl . As each cell of depth l has
an L∞-volume of rdl , this allows us to bound the number of remaining active cells Nl+1

on ξ for l ≥ 1:

Nl+1 ≤ B14βbβl r
−d
l+1

≤ 2αβB(14)βrαβ−dl+1 (3.18)

Define B′ = max(1, B)(14)β , then Nl ≤ 2dB′rαβ−dl for all l ≥ 1.

Step 5: A minimum depth.
We first bound L the maximal depth by above naively. Notice that tL itself has to
be smaller than n, otherwise the budget is insufficient to sample a single active times
tL times, and the algorithm stops. This yields L ≤ 1

2α log2(2n), which brings the
following bound:

log(1/δL) = log(2L(d+1)/δ) ≤ d+ 1

2α
log(

2n

δ
) (3.19)
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As we sample each active cell at depth l a number tl = log(1/δl)
2b2l

times, we can now
upper bound the total number of samples that the algorithm needs to reach depth L:

L∑
l=1

tlNl ≤ 2dB′
L∑
l=1

log(1/δl)

2r2α
l

rαβ−dl

≤ 1

2
2dB′ log(1/δL)

L∑
l=1

rαβ−d−2α
l

≤ 1

2
2dB′ log(1/δL)

L∑
l=1

2l(2α+d−αβ)

≤ 1

2
2dB′ log(1/δL)

2L(2α+d−αβ)

22α+d−αβ − 1

≤ 2dB′ log(1/δL)
2L(2α+d−αβ)

2α+ d− αβ
,

where we use 2c−1 ≥ c/2 for any c ∈ R+in the last line. Combined with Equation (3.19),
this yields:

L∑
l=1

tlNl ≤ 2dB′(d+ 1) log

(
2n

δ

)
2L(2α+d−αβ)

2α(2α+ d− αβ)
. (3.20)

This implies that for any T ≤ n, after T function evaluations, the following depth
L(T ) is reached:

L(T ) ≥ 1

2α+ d− αβ
log2

(2α(2α+ d− αβ)T

D log(2n
δ )

)
, (3.21)

where D = 2dB′(d+ 1)
Step 6: Conclusion.
Using Equation (3.21) with T = n, we can now ready to bound the simple regret rn
with high probability, as we have on ξ by Equation (3.17)

AL+1 ⊂ X (8bL) (3.22)

with
bL ≤

(2α(2α+ d− αβ)n

D log(2n
δ )

)− α
2α+d−αβ

.

This shows that by recommending any x(n) ∈ AL+1, we have: M(f)− f(x(n)) ≤
8bL.

Step 7: Bound on the cumulative regret.
We can now bound with high-probability the pseudo-regret up to time T ≤ n: RT =
TM(f)−

∑T
t=1 f(Xt). Define ∆l = 8bl−1, and recall that ∀x ∈ C such that C ∈ Al,

we have M(f)− f(x) ≤ 8bl−1. We can naively bound the regret by splitting the regret
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before the reaching depth L(T ) and beyond this depth:

RT = TM(f)−
T∑
t=1

f(Xt)

≤ 2d(M(f)−m(f))t1 +

L(T )∑
l=2

tlNl∆l + T∆L(T )

≤ A+ 2dB′28 log(1/δL(T ))

L(T )∑
l=1

2l(α+d−αβ) + T∆L(T )

≤ A+ 2dB′28 log(1/δL(T ))
2L(T )(α+d−αβ)

α+ d− αβ
+ 8T

( D log(2n
δ )

2α(2α+ d− αβ)T

) α
2α+d−αβ

≤ A+ 2dB′28
(d+ 1)

2α(α+ d− αβ)
log(

2n

δ
)
(2α(2α+ d− αβ)T

D log(2n
δ )

) α+d−αβ
2α+d−αβ

+14
( D log(nδ )

2α(2α+ d− αβ)

) α
2α+d−αβ

T
α+d−αβ
2α+d−αβ

≤ A+ 2dB′14(d+ 1)D

(
log(2n

δ )

2α(α+ d− αβ)

) α
2α+d−αβ

T
α+d−αβ
2α+d−αβ ,

with A ≤ (M(f) −m(f))(d + 1)22α+d log(2/δ) and m(f) = infx f(x). Importantly,
this holds on ξ for all T ≤ n.

Setting T = n, we can also get a bound in expectation:

E(Rn) ≤ A+2dB′14(d+1)D

(
log(2n

δ )

2α(α+ d− αβ)

) α
2α+d−αβ

n
α+d−αβ
2α+d−αβ +4(M(f)−m(f))nδ,

and setting δ = 1/
√
n yields the result. As we assumed that f takes values in [0, 1],

we can upper bound M(f)−m(f) ≤ 1.

3.2.5.3 Proof of Theorem 3.3

Proof. Let α > 0, β ≥ 0 such that αβ < d. The case αβ = d corresponds to the usual
O
(
n−1/2

)
bound, which can easily be obtained using classical techniques with two

hypothesis. Define K = d∆
αβ−d
α e, and ∆ such that:

∆ =

√
K

n
,

with n large enough such that K ≥ 16 exp(2)
3 . One can easily check that we have

∆ = O
(
n
− α

2α+d−αβ
)
and K = O

(
n

d−αβ
2α+d−αβ

)
which grows with n.

Consider the grid G which partitions [0, 1]d into N = d∆−d/αe disjoint hypercubes,
and let us index the cells arbitrarily (for example using Cantor’s pairing argument in
d dimensions). In what follows, we will write

S =
⋃
k≤K

Hk.
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Fix M ∈ [1/2, 1]. We define the function φs(x) for 0 ≤ s ≤ K and x ∈ [0, 1]d.

φs(x) =


max{M −∆,M − ||x− xi||α∞}, if x ∈ Hi, i = s,

M −∆, if x ∈ Hi, i 6= s

max{0,M −∆− dist∞(x,S)α}, if x ∈ SC ,

where dist∞(x,S)
.
= inf{||x − z||∞, z ∈ S}. It is clear that for any s ∈ {0, ...,K},

φs ∈ Σ(1, α).
We will now show that Assumption 3.2 for some B > 0 is satisfied for φs, ∀s ∈ {0, ...,K}.
For any 0 < ε < ∆ < 1 and any φs, we have:

µ(X (ε)) ≤ εd/α ≤ εβ,

as we have αβ ≤ d. Now considering ε = ∆:

µ(X (ε)) ≤ K∆d/α ≤ 2εβ,

as we have set K = d∆(αβ−d)/αe ≤ 2∆(αβ−d)/α. Finally, we consider ε ∈]∆, 1/2], and
we have:

µ(X (ε)) ≤ µ(X (∆)) + µ({x : ∆ < M − φs(x) ≤ ε})
≤ 2∆β + εd/α

≤ 3εβ.

So we have by construction :

• For any s ≤ K, φs ∈ P(α, β) with λ = 1 as the constant in Assumption 3.1.

• for any s, t ≤ K, and any x ∈ SC , φs(x) = φt(x) (one cannot distinguish problem
i from problem j in SC)

• for any s ∈ {1, ...,K}, the maximum of φs is attained only in xs with value
φs(xs) = M . This shows that the value at the maximum for φs for s ∈ {1, ...,K}
is fixed and known to the learner.

• ∀x 6∈ Hs, φs(x) = φ0(x): one cannot distinguish problem s from problem 0
outside of a small neighborhood around xs.

• For any 1 ≤ s ≤ K, ∀x 6∈ Hs,M − φs(x) ≥ ∆

We now define HK the set of recommendation problems such that for any s ∈
{0, ..,K}, the problem s is characterized by the mean-pay off function φs, with zero-
mean Gaussian noise of variance 1, such that the observations are, conditionally on
Xt = x, i.i.d. with distribution Yt ∼ N (φs(x), 1). Let us fix a strategy (algorithm) with
two components: a (possibly randomized) sampling mechanism, which characterizes
the next sampling point Xt based on the previous observations {(Xi, Yi)}i<t, and
a (possibly randomized) recommendation x(n) based on all the collected samples
{(Xi, Yi)}i≤n, which the algorithm outputs at the end of the game incurring the
simple regret M(φs)− φs(x(n)). We write Ps, Es, for the probability and expectation
under the problem s (uniquely characterized by the function φs), when the previously
mentioned strategy is used.

For a sample {(Xi, Yi)}i≤n collected under problem 0 by the previously introduced
algorithm, we consider the log-likelihood ratio Ln,s

.
= Ln,s({(Xi, Yi)}i≤n) for s ∈
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{1, ...,K}:

Ln,s =

n∑
t=1

log

(
P0(Yt|Xt)

Ps(Yt|Xt)

)
=

n∑
t=1

1

2

(
(Yt − φs(Xt))

2 − (Yt − φ0(Xt))
2
)

=
n∑
t=1

1

2
(φ0(Xt)− φs(Xt))(2Yt − φ0(Xt)− φs(Xt))

=

n∑
t=1

1

2
(φs(Xt)− φ0(Xt))(φs(Xt) + φ0(Xt)− 2Yt)

≤
n∑
t=1

1

2
(φs(Xt)− φ0(Xt))(2φs(Xt)− 2Yt)

≤
n∑
t=1

(φs(Xt)− φ0(Xt))(φs(Xt)− Yt), (3.23)

where we use: 0 ≤ φs(x)− φ0(x) ≤ ∆ for all x ∈ Hs in the fourth line.
We now consider E0(Ln,s):

E0(Ln,s) ≤
n∑
t=1

E0 ((φs(Xt)− φ0(Xt))(φs(Xt)− Yt))

≤
n∑
t=1

E0

(
E0

(
(φs(Xt)− φ0(Xt))(φs(Xt)− Yt)

∣∣Xt

))
≤

n∑
t=1

E0

(
(φs(Xt)− φ0(Xt))(φs(Xt)− E0

(
Yt
∣∣Xt

))
≤

n∑
t=1

E0

(
(φs(Xt)− φ0(Xt))

2
)

≤
n∑
t=1

E0

(
(φs(Xt)− φ0(Xt))

2
∣∣Xt ∈ Hs

)
P0(Xt ∈ Hs)

≤ max
x∈Hs

(φs(x)− φ0(x))2
n∑
t=1

P0(Xt ∈ Hs)

≤ ∆2
n∑
t=1

P0(Xt ∈ Hs)

≤ ∆2E0(Ts(n))

where we use the fact that the function evaluations Yt are independent and identi-
cally distributed as N (φ0(Xt), 1) conditionally on Xt, and we denote E0(Ts(n)) =∑n

t=1 P0(Xt ∈ Hs) the expected number of samples collected in Hs by the strategy
under problem 0.

We now state the two main technical lemmas we will use.

Lemma 3.2. For any event E ∈ Fn = σ(X1, Y1, ..., Xn, Yn) we have:

E0(Ln,s| E) ≥ log

(
P0(E)

Ps(E)

)
.
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Proof. Use the change of measure identity and conditional Jensen’s inequality (see (Kauf-
mann, Cappé, and Garivier, 2016), proof of Lemma 19).

Lemma 3.3. Let ρ0, ρ1 be two probability distributions supported on some set X ,
with ρ1 absolutely continuous with respect to ρ0. Then for any measurable function
τ : X → {0, 1}, one has:

PX∼ρ0(τ(X) = 1) + PX∼ρ1(τ(X) = 0) ≥ 1

2
exp

(
−KL(ρ0, ρ1)

)
.

The proof can be found in Tsybakov, 2009a (Chapter 2, Theorem 2.2, Conclusion
(iii)).

We now consider a realization of both the samples {(Xi, Yi)}i≤n and the recommen-
dation x(n) output by the strategy. We write g(x(n)) = arg mink≤K ||x(n) − xk||∞,
which simply maps the recommendation x(n) to the closest xk (which correspond to
the K possible maxima for our set of problems) in infinity norm. We define ρ0, ρs as
the distribution of g(x(n)) (here X in Lemma 3.3 corresponds to {1, ...,K}) under
problems 0 and s respectively. By definition of the fixed budget setting, we have∑K

k=1 E0(Ts(n)) ≤ n, so for K ≥ 2, there exists at least K/2 indices s ∈ {1, ...,K}
such that E0(Ts(n)) ≤ 2n

K . Moreover, there also exists 0.75K indices s ∈ {1, ...,K}
such that P0(g(x(n)) = s) ≤ 4

3K . The intersection of these two sets of indices cannot
be empty, and we fix i as one element of this intersection. Finally, we define the test
function τ : k → 1{k = i}. Under this choice of ρ0, ρ1 and τ , the previous lemma
rewrites to:

P0(g(x(n)) = i) + Pi(g(x(n)) 6= i) ≥ 1

2
exp

(
−KL(ρ0, ρi)

)
.

We now use the tower rule (its countable - finite - version) and Lemma 3.2:

E0(Ln,i) =

K∑
k=1

E0(Ln,i|g(x(n)) = k)P0(g(x(n) = k)

≥
K∑
k=1

log

(
P0(g(x(n) = k)

Pi(g(x(n) = k)

)
P0(g(x(n) = k),

and we remark that the quantity on right hand side of the last inequality is pre-
cisely KL(ρ0, ρi) for our choice of ρ0, ρi. Combining this with our previous bound in

Equation (3.23): E0(Ln,i) ≤ E(Ti(n))∆2 ≤ 2n
K ∆2, with ∆ =

√
K
n , we get:

Pi(g(x(n)) 6= i) ≥ 1

2
exp(−2)− 4

3K
.

with K ≥ 16 exp(2)
3 , this yields:

max
s∈{1,...,K}

Ps(g(x(n)) 6= i) ≥ 1

4
exp(−2).

Thus, with constant probability, it holds that g(x(n)) 6= i, and by definition of g(x(n))
we have x(n) 6∈ Hi. The simple regret associated with recommending x(n) can then
be bounded by using the definition of φi:

M − φi(x(n)) ≥ ∆.
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In the corresponding passive setting where the sampled locationsXt are independent,
identically distributed uniformly at random over [0, 1]d, we have instead for all s:
E(Ts(n)) ≤ O

(
n∆d/α

)
and setting instead ∆ = O

(
n−α/(2α+d)

)
we get the rate

O
(
n−α/(2α+d)

)
. Here, β plays no role in the rate, which shows that sampling actively

is very beneficial as soon as β > 0.

3.2.5.4 Proof of Theorem 3.6

Proof. Let αi = i/blog(n)c2 for i ∈ {1, ..., blog(n)c3}. We write SR(i) for the Subrou-
tine i run with parameter αi. We define Ti(T ) the number of samples allocated to
the SR(i) up to time T , and R̂T (i) = Ti(T )M(f)−

∑Ti(T )
t=1 Yi(t) the regret incurred by

SR(i) after it has performed Ti(T ) function evaluations. We write the corresponding
pseudo-regret RT (i) = Ti(T )M(f)−

∑Ti(T )
t=1 f(Xi(t)), where Xi(t) is the t-th sampling

location chosen by SR(i).

We have E(Yi(t)) = f(Xi(t)), and claim that R̂T (i)−RT (i) =
∑Ti(T )

t=1 (f(Xi(t))− Yi(t))
is a martingale with respect to the filtration FT = σ(X1, Y1, ..., XT−1, YT−1, XT ).
By standard concentration arguments and a union bound, we have for all i and all
T ≤ n with probability at least 1− δ:

|R̂T (i)−RT (i)| ≤ 2
√
Ti(t) log(nblog(n)c3/δ).

Fix k arbitrarily and consider the regret R̂n(k) that SR(k) has incurred up to time n.
Now consider j 6= k. The last time T that SR(j) was chosen by the Meta-Strategy, we
know that:

R̂T (j) ≤ R̂T (k)

≤ RT (k) + 2
√
Tk(T ) log(nblog(n)c3/δ)

≤ Rn(k) + 2
√
n log(nblog(n)c3/δ),

where we used the fact that the pseudo-regret is non-decreasing with T . Furthermore,
we know that once SR(j) is chosen for the last time, it performs

√
n function evaluations.

This brings R̂j(n) = R̂T+
√
n(j) ≤ R̂T (j) +

√
n, as f(X) is in [0, 1] for all X, so the

regret incurred between time T and T +
√
n is at most

√
n. If j is never chosen by the

Meta-Strategy after the initial exploration phase that allocates
√
n samples, the same

bound trivially holds.
This allows us to bound for all j 6= k:

R̂n(j) ≤ Rn(k) + 3
√
n log(nblog(n)c3/δ)

By definition of the regret, the regret of the Meta-Strategy can be decomposed as the
regret incurred by each SR(i) up to time n:

R̂n =
∑
i

R̂n(i)

≤ blog(n)c3
(
Rn(k) + 3

√
n log(nblog(n)c3/δ)

)
.
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We now consider i∗ such that: α− 1
blog2(n)c ≤ α

∗
i ≤ α. With probability at least 1− δ,

we have by Proposition 3.2:

Rn(i∗) ≤ D log(n/δ)n1−αi∗/(2αi∗+d−αi∗β),

where we use the fact that Ti∗(n) ≤ n in the fixed budget setting. We conclude by
using Lemma 3.4, which shows that our discretization over the smoothness parameters
does not worsen the rate.

Lemma 3.4. Let α > 0.5
√
d/ log(n) and consider f ∈ P(α, β) and αi such that:

α−blog(n)c−2 ≤ αi ≤ α. Then Subroutine 5 run with parameters αi, n, δ is such that
with probability at least 1− δ, we have:

Rn ≤ C log
(n
δ

)p
n1−α/(2α+d−αβ),

where p < 1 and C > 0 is a constant that does not depend on n, δ.

Proof. By Proposition 3.2 we have with probability at least 1− δ:

Rn ≤ D log
(n
δ

)p
n1−αi/(2αi+d−αiβ).

By considering the exponent αi
2αi+d−αiβ , we have:

− αi
2αi + d− αiβ

≤ − α− blog(n)c−2

2α+ d− αβ + βblog(n)c−2

≤ − α

2α+ d− αβ
+

2α+ d

blog(n)c2(2α+ d− αβ)2
,

for α ≥ 1
blog(n)c

√
d
2 and we conclude by remarking that:

n
2α+d

blog(n)c2(2α+d−αβ)2 ≤ exp

(
log(n)(2α+ d)

blog(n)c2(2α+ d− αβ)2

)
,

and thus for α ≥ 1
2

√
d

log(n) , this extra factor only worsens the rate by a constant.

3.2.5.5 Proof of Theorem 2.15

Proof. The proof relies on the same notations and technical tools as in the proof of
Theorem 3.6. We assume that on the event ξ, we have for all i, T ≤ n:

|R̂T (i)−RT (i)| ≤ 2
√
Ti(t) log(nblog(n)c3/δ).

with P(ξ) ≥ 1− δ.
We denote i∗ the index of the Subroutine such that with probability at least 1− δ, we
have for all T ≤ n:

TM(f)−
T∑
t=1

f(Xi∗(t)) ≤ R∗(n, δ).

R∗(n, δ) is the maximum pseudo-regret for SR(i∗) if it had been allocated the entire
budget of n of function evaluations. We denote the event where this holds ξ′. We first
show that with probability 1 − 2δ, SR(i∗) is never eliminated by the Meta-Strategy.
Let AN be the set of active Subroutines at the beginning of round N . Assume that
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i∗ ∈ AN at the beginning of round N . We consider k = arg maxi∈AN ŜT (i) where
ŜT (i) =

∑Ti(T )
t=1 Yi(t) and ST (i) =

∑Ti(T )
t=1 f(Xi(t)). We know that on ξ, we have:

Tk(T )∑
t=1

Yk(t) ≤
Tk(T )∑
t=1

f(Xk(t)) + 2
√
Tk(t) log(nblog(n)c3/δ)

≤ Tk(T )M(f) + 2
√
Tk(t) log(nblog(n)c3/δ),

where we use f(Xk(t)) ≤M(f) for any Xk(t).
We also have on ξ ∩ ξ′:

Ti∗ (T )∑
t=1

Yi∗(t) ≥
T∑
t=1

f(Xi∗(t))− 2
√
Ti∗(t) log(nblog(n)c3/δ)

≥ Ti∗(T )M(f)−R∗(n, δ)− 2
√
Ti∗(t) log(nblog(n)c3/δ).

For any i ∈ AN , SR(i) has performed the same number of function evaluations
TN

.
= N

√
n up to time T at the end of round N . Therefore on ξ ∩ ξ′ the following

holds:

ŜT (k)− Ŝi∗(k) ≤ R∗(n, δ) + 4
√
TN log

(
nblog(n)c3

δ

)
,

and i∗ ∈ AN+1. As i∗ ∈ A1, by induction i∗ is never eliminated on ξ ∩ ξ′.
We now consider i such that SR(i) is eliminated at round N + 1, that is:

ŜT (k)− Ŝi(k) ≥ R∗(n, δ) + 4
√
TN+1 log

(
nblog(n)c3

δ

)
.

On ξ ∩ ξ′, we know that at round N we had for k = arg maxi∈AN ŜT (i):

ŜT (k) ≥ ŜT (i∗)

≥ TNM(f)−R∗(n, δ)− 2
√
TN log

(
nblog(n)c3

δ

)
,

where we used the fact that i∗ is never eliminated on ξ ∩ ξ. Since SR(i) was eliminated
at round N + 1, it implies that at round N we had:

Ŝi(k) ≥ ŜT (k)−R∗(n, δ)− 4
√
TN log

(
nblog(n)c3

δ

)
≥ TNM(f)− 2R∗(n, δ)− 6

√
TN log

(
nblog(n)c3

δ

)
,

and on ξ this yields immediately:

TNM(f)−
TN∑
t=1

f(Xi(t)) ≤ 2R∗(n, δ) + 8
√
TN log

(
nblog(n)c3

δ

)
.
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As SR(i) is allocated another
√
n samples before being eliminated at round N + 1,

we can therefore bound its regret on ξ ∩ ξ′ before being eliminated:

TN+1M(f)−
TN+1∑
t=1

f(Xi(t)) = TNM(f)−
TN∑
t=1

f(Xi(t)) +
√
nM(f)−

TN+
√
n∑

TN

f(Xi(t))

≤ 2R∗(n, δ) + 8
√
TN log

(
nblog(n)c3

δ

)
+
√
n

≤ 2R∗(n, δ) + 8
√
n log

(
nblog(n)c3

δ

)
+
√
n.

Similarly, for i such that SR(i) is never eliminated, we have:

Ti(n)M(f)−
Ti(n)∑
t=1

f(Xi(t)) ≤ 2R∗(n, δ) + 8
√
Ti(n) log

(
nblog(n)c3

δ

)
≤ 2R∗(n, δ) + 8

√
n log

(
nblog(n)c3

δ

)
.

Finally, we can decompose the pseudo-regret of the Meta-Strategy as the sum of the
pseudo-regret of each SR(i), which yields on ξ ∩ ξ′:

Rn =
∑
i

Ri(n)

≤ |A1|
(

2R∗(n, δ) + 8
√
n log

(
nblog(n)c3

δ

)
+
√
n

)
.

By a union bound we have P(ξ ∩ ξ′) ≥ 1− 2δ, which concludes the proof.
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Chapter 4

Adaptive online matrix completion

In this Chapter, we look at a different active learning problem that arises in a setting
where, in stark contrast with the previous settings we studied, adaptive confidence sets
do exist. We formulate a new multi-task active learning setting in which the learner’s
goal is to solve multiple matrix completion problems simultaneously. At each round,
the learner can choose from which matrix it receives a sample from an entry drawn
uniformly at random. Our main practical motivation is market segmentation, where
the matrices represent different regions with different preferences of the customers.
The challenge in this setting is that each of the matrices can be of a different size and
also of a different rank which is unknown. We provide and analyze a new algorithm,
MALocate that is able to adapt to the unknown ranks of the different matrices. We then
give a lower-bound showing that our strategy is minimax-optimal and demonstrate
its performance with synthetic experiments. This chapter is based on the following
publication (Locatelli, Carpentier, and Valko, 2019), and it is joint work with Michal
Valko and my advisor.
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4.1 Active multiple matrix completion with adaptive con-
fidence sets

4.1.1 Introduction

In this chapter, we consider the setting of completing multiple matrices in a sequential
and active way, under a budget constraint on the number of observations the learner
may request. The learner’s objective is to estimate each of these matrices well (in
some precise sense that we define later) and is akin to the pure exploration problems
considered in the multi-armed bandits (Bubeck, Munos, and Stoltz, 2011; Gabillon
et al., 2011). As the learner is trying to solve multiple learning problems simultaneously,
a decent strategy should naturally allocate a larger portion of the observational budget
to harder problems. Such challenge is for example considered in a very different
model by (Riquelme, Ghavamzadeh, and Lazaric, 2017). Of course, since knowing the
hardness or complexity of each instance is typically out of reach in practice, a good
strategy should be adaptive to the different complexity scenarios, without requiring
any tuning. This is in contrast with previous results for regret minimization with a
low-rank structure (Katariya et al., 2017b; Katariya et al., 2017a), where the learner
explicitly takes advantage of the rank-1 structure of the setting.

We consider matrix completion in the trace-regression model (Klopp, 2014; Rohde
and Tsybakov, 2011; Koltchinskii, Lounici, and Tsybakov, 2011; Negahban and Wain-
wright, 2012). There are important reasons regarding this choice as opposed to the
Bernoulli model (Candès and Recht, 2009; Chatterjee, 2015), another common model
for the matrix completion. In particular, in the trace-regression model it is possible
that some of the matrix entries are sampled multiple times. In the Bernoulli model,
this cannot happen, as each entry is observed either never or once with probability p
in the simplest model. The implication of this multi-sampling is fundamental as it
allows, in the trace-regression model, to construct honest confidence sets that adapt
to the rank of the matrix, even if the level of noise is unknown. On the other hand,
it has been shown that in the Bernoulli model such confidence sets provably do not
exist (Carpentier et al., 2017). This is very important, as we will see that our adaptive
strategy crucially depends on the existence of these adaptive confidence sets: Consider
for example the problem of minimizing the maximum of the losses across multiple
matrix completion problems. A good strategy should roughly equalize the diameter
of the confidence sets across instances when the budget expires, as it pays the price
for the largest diameter by definition of the maximum loss. In order to do that, it is
important to leverage adaptive confidence sets.

The main application domain we target is market segmentation (Wedel and Ka-
makura, 2000) and polling. However, being able to multi-sample decides the situations
where exactly this model applies. For example, for music recommendations in music
streaming services, it is possible that the users listen to the same song twice or more
and we can get multiple samples of their appreciations, either by rating or by not-
skipping. For movie or product ratings, multi-sampling is much less applicable. Yet it
possible to ask the customer for a second opinion later in time. In other situations, the
multi-sampling happens by design. For example, in tasting experiments, the human
subjects are sometimes given same two samples, that they have to taste and evaluate
with a week-long break in between. Our algorithm and results apply to these situations,
whether the multiples-sample for the same entry are possible because of the nature of
the setting or by design.

In this chapter, we introduce the active multiple matrix completion problem and
propose an anytime algorithm (MALocate) that solves this problem adaptively to the
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unknown ranks of each sub-problem. For the max loss, which corresponds to the case
where the learner pays the price of the largest loss on the set of matrix completion
problems it has to solve, we show that our strategy is optimal by deriving a matching
lower bound. Finally, we show that MALocate indeed performs well with a synthetic
experiment.

4.1.2 Multiple matrix completion setting

We start by defining the single matrix completion problem and state the known results
that we build on. Then, we introduce our active setting, which can be thought of as
solving K matrix completion problems simultaneously (as the objective is to optimize
the loss when the budget n expires) and sequentially as we may decide where to
allocate our budget at round t ≤ n.

4.1.2.1 Single matrix completion setting

We first introduce the matrix completion setting and a matrix lasso estimator. Let
M0 ∈ Rd1×d2 be an unknown matrix. The task of matrix completion is that of
estimating M0 accurately in some precise sense, that we define later, by an estimator
M̂ given n independent random pairs (Xi, Yi)i≤n such that

Yi , Tr(XT
iM0) + σεi,

where the εi are centered independent random variables with unit variance.1 We
consider the matrix completion setting where XT

i are i.i.d. uniformly distributed on
the set

X ,
{
ei (d1) eTj (d2) , i ∈ [d1], j ∈ [d2]

} ,
where ei(d) are the canonical basis vectors in Rd. Typically, in this setting, we do not
observe the entire matrix of size d1×d2 as we have n� d1d2, and we consider matrices
of low rank r, with respect to min(d1, d2), for which completion is still possible despite
the low number of observations. Let d , max(d1, d2) and ‖M‖F is the Frobenius norm
of a matrix M = (Mij) ∈ Rd1×d2 defined as

‖M‖2F ,
d1∑
i=1

d2∑
j=1

M2
ij = Tr(MTM).

For this problem, it is possible to construct good estimators M̂n such that

‖M̂n −M0‖2F
d1d2

≤ ρ(r, n, d),

where ρ(r, n, d) � ‖M0‖∞ for r � min(d1, d2) and n ≥ rd. Intuitively, the higher
the rank r of M, the harder the problem should be, as there are more parameters
to estimate. A good estimator should be adaptive to the rank of the matrix without
requiring it as an input to allow the tuning of hyperparameters.

1In this chapter, we will restrict ourselves to the case of bounded noise, but our results can be
extended to sub-exponential noise as in the work of (Klopp, 2014).
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4.1.2.2 Square-root lasso estimator

In this chapter, we consider the matrix square-root lasso estimator, which has been
shown to have favorable properties (Candès and Tao, 2006; Klopp, 2014; Gaïffas and
Lecué, 2011; Koltchinskii, Lounici, and Tsybakov, 2011). We define the nuclear norm
of a matrix

‖M‖? , Tr
(√

MTM
)

=
r∑
i=1

σi,

where σi are the singular values of M. The matrix square-root lasso estimator is
defined as

M̂n(λ)∈arg min
M∈Rd1×d2


√√√√ n∑

i=1

(Yi−〈Xi,M〉)2

n
+λ‖M‖?

 · (4.1)

Importantly, for this estimator (Klopp, 2014) showed that

ρ(r, n, d) = O
(
rd log d

n

)
for λ defined in the following proposition, that does not depend on r, the unknown
rank of matrix M. It also does not require the variance σ2 of the noise as an input to
tune λ, only an upper bound such that A ≥ σ.

Proposition 4.1 (upper bound, Klopp, 2014). There exist numerical constants c and
C such that with probability at least 1− 3/d− 2 exp(−cn), the matrix square-root lasso
estimator M̂n satisfies

‖M̂n −M‖2F
d2

≤ CA2 · rd log d

n
,

where M̂n is defined as the solution to the minimization problem in Equation 4.1 with
λ , C ′A

√
(log d)/(nd) where C ′ is a numerical constant.

We also restate a lower bound for the single matrix completion problem shown by
Koltchinskii, Lounici, and Tsybakov (2011, Theorem 5), which shows that the previous
procedure is minimax optimal up to an extra log dk factor.

Proposition 4.2 (lower bound, Koltchinskii, Lounici, and Tsybakov, 2011). For
any estimation procedure that outputs M̂n from n noisy observations corrupted with
independent noise εt ∼ N (0, A2), there exists a matrix M of size (d× d) and rank at
most r such that

E

[
‖M̂n −M‖2F

d1d2

]
≥ cA2rd

n
,

where c is a small numerical constant and the expectation is taken with respect to both
the distribution of the samples and the possible internal randomization of the estimation
procedure.

This result easily extends to the bounded noise case.

4.1.2.3 Adaptive confidence sets

An important theoretical result in the trace-regression model with uniform sampling
of the entries is the existence of adaptive and honest confidence bands on the error
||M̂−M||2F . Importantly, the knowledge of σ is again not necessary for this estimator.
This procedure, EstimateError, is described in Section 4.1.3, and makes use of the



4.1. Active multiple matrix completion with adaptive confidence sets 139

entries Xi that have been observed twice to compute an unbiased estimator of the
error. This procedure comes with the following guarantee.

Proposition 4.3 (concentration bound for R̂N estimator, Carpentier et al., 2017).
Let N be the number of entries that have been observed twice in the second half of the
sample and R̂N be the (unbiased) estimation procedure (sub-procedure EstimateError)
of ‖M̂−M‖2F , for some M̂. Then with probability at least 1− 2

d
, we have∣∣∣∣∣∣∣R̂N −

∥∥∥M̂−M
∥∥∥2

F

d2

∣∣∣∣∣∣∣ ≤ 8A2

√
log d

N
·

For minimax-optimal estimation procedures, such as the square-root lasso, we can
show (by bounding both the estimation error as above and N ≥ Cn2/d2 for some
numerical constant C, on a favorable event) that with high probability,

R̂N + 8A2

√
log d

N
≤ O

(
rd log d

n

)
,

which shows that this quantity is an adaptive (as it does not require the rank as an
input) and honest (as it upper bounds the true error with high probability) confidence
band on ‖M̂−M‖2F .

4.1.2.4 Active multiple matrix completion

In the active multiple matrix completion, the learner’s goal is to complete multiple
matrices {Mk}k simultaneously, by actively choosing from which matrix it should ask
for a new observation in a sequential and adaptive manner. For ease of notation, we
restrict this setting to square matrices of dimension dk, but our techniques directly
extend to non-square matrices. At each round the active learner has to choose an action
kt ∈ [K] and receives a pair (Xkt

t , Y
kt
t ) such that Xkt

t corresponds to the location of the
entry (ikt,t, jkt,t) of the kt-th data matrix Mkt = (Mkt

ij ) ∈ Rdkt×dkt chosen uniformly
at random such that ikt,t ∈ [dkt ] and jkt,t ∈ [dkt ], and

Y kt
t , Tr(eikt,t(dkt)e

T
jkt,t

(dkt)M
kt) + εkt,t

= Mikt,tjkt,t
+ εkt,t,

where the ei(d) are the canonical basis vectors of Rd. Here, Xkt
t = eikt,t(dkt)e

T
jkt,t

(dkt).
Informally, the learner chooses to observe one of the K matrices, and receives a noisy
observation of one of the entries (corrupted by εkt,t) chosen uniformly at random from
that matrix. The goal of the learner is to adaptively choose which matrix Mkt to
sample based on the observations collected so far up to round t− 1,{

(Xk1
1 , Y

k1
1 ), . . . , (X

kt−1

t−1 , Y
kt−1

t−1 )
}
·

At the end of the game, once it has collected at most n pairs (Xkt
t , Y

kt
t ), the learner

has to output estimates M̂k
n of each matrix Mk to suffer the following loss,

Lpn ,

∑
k∈[K]

‖M̂k
n −Mk‖2pF

1/p

,
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where p characterizes the objective and is decided as part by the learner at the start
of the game. As special and interesting cases, for p = 1, we recover the unnormalized
squared Frobenius norm if the sub-problems were the blocks of a block-diagonal matrix,
and for p =∞ the max loss maxk∈[K] ‖M̂k

n −Mk‖2F .

Remark 4.1. As an extension, we can consider the re-weighted loss, characterized
by a given weight vector w = (w1, ..., wK), where wi ∈ R+ for i ∈ [K] is a parameter
given to the learner along with p,

Lpn(w) =

(
K∑
k=1

wk‖M̂k
n −Mk‖2pF

)1/p
.

Taking wk = d−2
k allows to consider the normalized Frobenius norm for each matrix,

which is particularly interesting in combination with p =∞ as it is simply the maximum
average loss per entry within each sub-problem, regardless of the dimension.

For each matrix Mk, k ∈ [K], we denote by rk, the rank of Mk. We further assume
that all the observations Y kt

t and the entries of Mk are bounded by some known
constant A. The first condition is |Y k

t | ≤ A for any k, t and the second condition is
simply ‖Mk‖∞ ≤ A. This is a mild assumption in applications such as recommendation
systems, where ratings are bounded.

4.1.3 MALocate algorithm

We now describe our active strategy MALocate for the active multiple matrix completion
given as Algorithm 13. The input for MALocate is the maximum budget input n and
the loss parameter p. This parameter defines which loss Lpn the strategy is should
optimize for. We shall see that p governs the exploration. During the initialization,
while Bk(t) =∞, the strategy requests for each Mk a dataset Dkt of size O(dk log dk).
MALocate uses the requested samples for two goals: computing the estimators and
adaptively estimating their error. In particular, the first half of the requested sample
is used to compute an estimator M̂k

t of Mk using the square-root lasso estimator. The
second half of the sample is used by the EstimateError (M̂k

t ,Dkt ) sub-procedure to
construct an estimator of the error R̂Nt

k
and an upper-bound on this error Bk(t), using

the double-sampled entries. After the initialization, at round t, the strategy allocates
the next samples to the matrix

m , arg max
k

d2
kBk(t)Tk(t)

−1/p,

where Tk(t) is the number of samples allocated to matrix k up to round t. The previous
estimator M̂m for matrix m is then replaced by M̂m

t only if the upper bound on the
error has decreased. The strategy operates on a doubling schedule: Each round an
index m is chosen, a new dataset Dmt of size Tm(t) (and thus, a total budget of 2Tm(t)

is spent on m) is used to construct a new estimator M̂m
t , and estimate its error.

In this case, Bm(t) is also updated to the new (smaller) upper bound on the error.
This ensures that the estimation error is non-increasing with t for every matrix. This is
a crucial ingredient for the proof of Theorem 4.1, which characterizes the performance
of MALocate. The loop is repeated until the budget has been used, at which point the
algorithm stops and outputs estimator M̂k for each matrix k.

Computing the estimator As explained previously, we use the square-root lasso
estimator. Notice that we perform a splitting of the sample Dkt , where the first half



4.1. Active multiple matrix completion with adaptive confidence sets 141

Algorithm 13 MALocate algorithm
Input: n, {dk}k∈[K], p {loss parameter}

Dkt ← ∅ ∀k ∈ [K]
Initialization:
t← 0
for k ∈ [K] do
Tk(t)← 0
Bk(t)←∞

end for
while t ≤ n do
m← arg maxk∈[K] d

2
kBk(t)Tk(t)

−1/p

Tm ← max (Tm(t), 4d(dk log(dk) + 1)/2e)
t← t+ Tm
Tm(t)← Tm(t) + Tm
Dmt ← NewSamples

(
m,Tm

)
M̂m

t ← GetEstimator
(
m,Dmt

)
Nm
t , R̂Nm

t
← EstimateError

(
M̂m

t ,Dmt
)

Bk(t)← Bk(t− Tm) ∀k ∈ [K]
if R̂Nt

m
+ 8A2

√
log(dm)/Nm

t ≤ Bm(t) then
M̂m ← M̂m

t

Bm(t)← R̂Nm
t

+ 8A2
√

log(dm)/Nm
t

end if
Tk(t)← Tk(t− Tm) ∀k 6= m

end while
Output: {M̂k}k∈[K]

Algorithm 14 NewSamples (k, T )

Input: k, T
Sample uniformly at random
T new observations {(Xi, Yi)}i≤T from Mk

Output: New dataset {(Xi, Yi)}i≤T

is used to compute the estimator, and the second half is used to estimate its error.
In practice, we propose instead to split the sample between entries that have been
sampled only once to compute the estimator, and the other entries to estimate the
error. While this introduces a small dependence (as we may only estimate the error
for entries on which the estimator was not trained) which is difficult to analyze, in
practice, this greatly improves the power of the estimator.

Estimating the error The sub-procedure EstimateError uses the second half of
a dataset Dkt to build an estimator of the error for some estimator M̂k of the matrix
Mk. It proceeds as the estimator of (Carpentier et al., 2017) by finding entries (Xi, Yi)
and (Xj , Yj) such that Xi = Xj to form the triplet (Xi, Yi, Yj), and the dataset D′
of double-sampled entries with Nk

t , |D′|. D′ is then used to compute the unbiased
estimator of the error,

R̂N ,
1

N

N∑
i=1

(
Yi − 〈Xi, M̂〉

)(
Y ′i − 〈Xi, M̂〉

)
,
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which does not require the variance of the noise as an input to the estimation procedure.
We can then deduce an upper bound on R̂N that holds with high probability Bk(t) ,

R̂Nk
t

+ 8A2
√

log(dk)/N
k
t . Importantly, this upper bound on the error is honest and

adaptive to the unknown rank rk as proved by (Carpentier et al., 2017) and is upper
bounded as O

(
rkd

3
k log(dk)/Tk(t)

)
, as R̂Nk

t
dominates the stochastic error term.

Algorithm 15 GetEstimator (k,D)

Input: k,D
T ← |D|/2, λ← C

√
log(dk)/dkT

M̂← arg min
‖M‖∞≤A

√
1
T

∑T
i=1(Y − 〈Xi,M〉)2 + λ ‖M‖?

Output: Estimator M̂

The sampling criterion The exploration crucially depends on the interplay between
the loss parameter p, Tk(t), and the upper bound on the error Bk(t) rescaled by d2

k.
For p = 1 (sum loss), the chosen index is

arg max
k

d2
kBk(t)Tk(t)

−1,

and can be interpreted as the index that maximizes the error per sample, which is a
rough approximation of ∂Bk(t)/∂Tk(t). The idea behind this heuristic is that since we
expect the sum loss to decrease the most for this matrix, the next sample is allocated
to this index. On the other hand, for p =∞, the index chosen is simply the one that
currently suffers the largest upper bound on the rescaled error.

Algorithm 16 EstimateError (M̂,D)

Input: M̂,D
T = |D|/2
Find double-sampled entries
D′ ← {(Xi, Yi, Y

′
i )}i=1,...,N in DT+1,...,2T

R̂N ← 1
N

∑N
i=1

(
Yi − 〈Xi, M̂〉

)(
Y ′i − 〈Xi, M̂〉

)
Output: Number of double-sampled entries N and

error estimate R̂N

More generally, by plugging the upper bound given by Proposition 4.1 into the loss
Lpn, we see that a good allocation is one that minimizes

∑
k

(
rkd

3
k log dk
Tk(n)

)p
under the constraint

∑
k Tk(n) = n. By solving the corresponding optimization

problem, we see that this good allocation should be such that

Tk(n)1+1/p = (rkd
3
k log dk)C(n),

where C(n) is a constant that does not depend on k. Note however, that this good
allocation is de facto out of reach for the learner, which does not have access to the
underlying ranks {rk}k∈[K] of the matrices. Now, as d2

kBk(t) can be upper bounded
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as O
(
rkd

3
k log dk/Tk(t)

)
, it is clear that our strategy, which picks the index that

maximizes d2
kBk(t)Tk(t)

−1/p mimics the good allocation that keeps the quantity

rkd
3
k log(dk)Tk(n)−(1+1/p)

constant across the arms.

Remark 4.2. An important algorithmic particularity of our strategy is that it operates
on a doubling schedule. Namely, when index k is picked, the number of observations for
Mk is doubled from Tk(t) to 2Tk(t), as a new dataset of size Tk(t) is generated. This
allows us to analyze MALocate without considering correlations between the different
estimators, as each estimator is trained on a fresh sample Dkt . This also has the benefit
of greatly reducing the computational complexity, as we only need to train a logarithmic
number of estimators, while recomputing estimators at each round t would be too costly.
However, if there is an empirical need to recalculate the estimator every round we
received a new observation, the proofs for the guarantee that we provide in the next
section can be modified to reflect it.

4.1.4 Analysis

In this section, we give guarantees on the performance of MALocate for general p, and
prove a lower bound in the case p =∞, showing that our strategy is optimal for the
max loss, up to logarithmic factors.

4.1.4.1 Upper bound on the loss of MALocate

We start with upper bounding the loss of MALocate that holds with high probability.

Theorem 4.1. After n sample requests, MALocate started with loss parameter p outputs
K estimators, such that with probability at least 1−

∑
k 16 log(dk)/dk,

Lpn ,

∑
k∈[K]

∥∥∥M̂k
n −Mk

∥∥∥2p

F

1/p

≤ O


(∑K

k=1(rkd
3
k log dk)

p
p+1

)p+1
p

n

 ·
We prove this result in Appendix 4.1.7.1. It relies on a careful bounding of the

estimation error of M̂n directly, as it is not possible2 to prove bounds on Tk(n), the
number of times that each arm has been sampled at the end of the horizon, as opposed
to many regret analyses used for bandit settings. In particular, the proof proceeds by
showing that the following bounds on the error hold with high probability. First, using
the sampling criterion we prove that for all k a bound of the form∥∥∥M̂k −Mk

∥∥∥2

F

≤ O

Tk(n)
1
p

(∑
k

(rkd
3
k log dk)

p
p+1)

)p+1
p

n
− p+1

p

 .

2For example, if one of the estimators of Mk is by chance very good despite having been given few
samples, then it is possible that it will not be given more samples.
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Importantly, this grows with Tk(n). On other hand, Proposition 4.1 yields that∥∥∥M̂k −Mk
∥∥∥2

F
≤ O

(
rkd

3
k log dk
Tk(n)

)
,

which decreases with Tk(n). By balancing both bounds with respect to Tk(n), we get
an upper bound on the estimation error that does not depend on Tk(n).

This result shows that the complexity of the problem crucially depends on the
interaction between both the intrinsic difficulty of each sub-problem associated withMk,
characterized by rk and dk, and the loss parameter p. Namely, if we set

ck , rkd
3
k log(dk)

for the complexity of problem k, and c = (c1, . . . , cK), then the complexity of the
active problem is ‖c‖ p

p+1
i.e., the loss is upper bounded as

O
(
‖c‖ p

p+1
n−1

)
.

On the other hand, it is easy to see that the uniform strategy suffers a loss of order
K
n ‖c‖p, which is always larger3 than 1

n ‖c‖ p
p+1

. This shows that our active strategy,
MALocate, adapts on-the-fly to the difficulty of the problem at hand, without requiring
any input parameter that depends on this complexity.

We now rewrite the previous theorem for the important case p =∞.

Corollary 1. (upper bound for max loss) After n sample requests, MALocate started
with loss parameter p = ∞ outputs K estimators, such that with probability at least
1−

∑
k 16 log(dk)/dk,

max
k∈[K]

∥∥∥M̂k
n −Mk

∥∥∥2

F
≤ O

(∑K
k=1 rkd

3
k log dk

n

)
·

This result is a direct corollary of our main upper bound. It shows that interestingly,
even in the case p =∞, the complexity of each individual problem comes into play.
Namely, in this setting, the total complexity is simply the sum of the complexities for
each sub-problem.

Remark 4.3. While our results are stated in the fixed-budget setting, our strategy can
easily be adapted to the (ε, δ)-correct setting, by slightly modifying the estimators, in
particular by replacing log dk terms by log(1/δ) and re-deriving the bounds on their
performance. The sample complexity would be of order Õ(‖c‖ p

p+1
ε−1). Interestingly, in

this setting, it is also possible to design a stopping rule, as we have adaptive confidence
bands on the estimates of εt, the error at round t.

4.1.4.2 Lower bound

We now show a lower bound for the active multiple matrix completion problem in the
case p = ∞. The offline part of our lower bound proof is inspired by (Koltchinskii,
Lounici, and Tsybakov, 2011). The challenge of our proof is the active setting as
we have to consider strategies that may actively spread their observations over the
different matrices.

3as we have ‖x‖q1 ≤ K
1/q1−1/q2 ‖x‖q2 for 0 < q1 < q2
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Theorem 4.2. For any active strategy S, there exists a problem P = (M1, . . . ,MK),
where Mk is of rank at most rk and dimension (dk × dk), such that after S (actively)
collects at most n observations corrupted with N (0, A2) noise and outputs K estimators
(M̂1, . . . , M̂K), we have

EP,S
[

max
k∈[K]

(∥∥∥M̂k −Mk
∥∥∥2

F

)]
≥ A2

2048

∑K
k=1 rkd

3
k

n
·

We prove this theorem in Appendix 4.1.7.2. The main argument is that for any
active strategy S, for any fixed problem P , there exists one index m ∈ [K] such that

EP,S [Tk(n)] ≤ rmd
3
m∑

k rkd
3
k

n.

Then, we carefully adapt the arguments of the lower bound for K = 1 to our active
setting.

This shows that our active strategy is minimax-optimal (up to logarithmic factors)
over the class of problems with dimension {dk}k∈[K] and ranks at most {rk}k∈[K], fully
adaptive to the unknown ranks of the sub-problems. Importantly, the lower bound
also holds for strategies that have apriori knowledge of {rk}k∈[K].

Remark 4.4. Notice, that while Algorithm 15 uses a particular square-root lasso
estimator with associated guarantees, our approach straightforwardly extends to other
estimators. For example, Klopp (2015) provides sharp bounds in the Bernoulli model,
i.e., without the extra log dk factor. Therefore, this or any other result, that provides
a sharper estimator could be used instead in Algorithm 15. This would improve the
overall complexity of our active strategy by removing the extraneous log dk factors in
the complexity, matching exactly the lower bound for p =∞.

4.1.5 Synthetic experiments

We now support our analysis MALocate with synthetic experiments. To create a square
matrix of rank r and dimension d, we generate two matrices U ∈ Rd×r and V ∈ Rr×d
with entries distributed as N (0, σ2

r , r−1/2). The standard deviation σr is chosen
such that the entries of M = UV have the same scaling, regardless of the rank of
the matrix. Observations are corrupted with Gaussian white noise N (0, σ , 0.1). We
consider both objectives Lp for p = 1 and p = ∞, on which we run MALocate also
with both parameters p = 1 and p = ∞. We also compare MALocate to the naïve
uniform strategy, and for the max loss also with the oracle strategy that has access
to the true Frobenius error of the estimators and allocates the next samples to the
index arg maxk ‖M̂k

t −M‖2F . Note that this strategy (for a fixed estimation procedure)
is optimal for p = ∞, as the max loss may only decrease if the worst estimator is
improved.

As our goal is to study the active advantage of MALocate, all the strategies have
access to the same estimator SoftImpute, tuned with the same parameters. Moreover,
we discretize time in a similar fashion for all the strategies: The initialization phase of
each estimator is done with 8dk samples and after that, the budget is divided evenly in
approximately 100 sub-samples. This allows to bypass the negative effects associated
with a doubling schedule. As our strategy is naturally anytime, we plot the results
as the time horizon grows from the initialization up to n = Kd2/2. At each round t
where a new estimator has been trained, we use the knowledge of Mk to compute Lpt



146 Chapter 4. Adaptive online matrix completion

for p ∈ {1,∞}. For both experiments, we draw and fix the problem, and average the
results over 15 runs.

First experiment We fix dk , d , 200, K , 10, and the ranks are such that
rk , 10 for all k besides r1 = 40. We choose this instance as it forces the strategy into
a tradeoff with respect to the loss parameter p. Heuristically, to optimize the sum loss
(p = 1), reaching a good error on each of the easy problems is very important. On
the other hand, to optimize the max loss, it is necessary to spend a large portion of
the budget on the hardest instance. In Figure 4.1, we see that our strategies perform
favorably in the setting they are designed for. We also see that the uniform strategy
only catches up when the number of samples is high enough such that the careful
sample allocation has little effect on the performance.

Figure 4.1: Results for the first experiment

Second experiment We fix dk , d , 200 and K , 15. The ranks rk are given by
rk , 18 + 0.0015k4. Note that the hardest instance is such that r15 = 76 and half of
the sub-problems have rank at most 22. This set of problems is more varied than the
previous one and shows the adaptivity of our strategy (Figure 4.2).

Implementation of MALocate As we discuss in Remark 4.4, our generic strategy
can be used for any estimator, which may be chosen appropriately with respect to
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Figure 4.2: Results for the second experiment

the exact noise setting. For performance reasons, we used the SoftImpute estimator
(Mazumder, Hastie, and Tibshirani, 2010) from the python package fancyimpute,
which we tweak to have a warm-start heuristic that fills missing entries with the
previous estimator M̂k. This allows us to speed-up the running time. More generally,
online matrix completion results such as the ones by (Dhanjal, Gaudel, and Clémençon,
2014; Lois and Vaswani, 2015; Jin, Kakade, and Netrapalli, 2016) fit in our active and
sequential framework. We tune the confidence intervals on the error in a conservative
way. As we use a time discretization instead of a geometric grid, we also re-use samples
throughout the run. Finally, as explained in Section 4.1.3, instead of splitting the
entire sample, we use entries that have been observed once to train the estimator, and
the other entries (sampled at least twice) to estimate the error.

Across the experiments, we see that MALocate run with the proper loss parameter
p indeed performs better on the associated loss Lp. For the max loss, we also see
that MALocate with p = ∞ performs only slightly worse than the optimal oracle
strategy in this setting. On the other hand, the uniform strategy performs poorly
across the problems. We see that for the max loss, the loss peters out when the hardest
matrix to estimate has been sampled d2

k times, as we cap the number of observations
for each matrix to d2

k. We remark however that we are interested in settings with
smaller n� Kd2

k, where we see that MALocate with p =∞ performs very favorably.
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4.1.6 Conclusion and discussion

We presented a new active matrix completion setting and provided MALocate, an
active strategy that is able to adapt to the different complexities of the problems
and proved that up to log factors, it achieves minimax-optimal guarantees. We also
showed that empirically, it performs in accordance with its theoretical guarantees
for two loss settings. We see our work as the first step towards a more systematic
understanding of the links between adaptive confidence sets (in any statistical setup)
and the corresponding active learning setting.

We considered the high-dimensional regime where the number of samples n satisfies
d ≤ n� d2. The number of doubly-sampled entries scales (w.h.p.) by Proposition 4.6
as n2/d2 for any n in this interval. This remains true for n � d2 and generally our
results would also hold in this regime. However, we do not address this case here at
all, as from an algorithmic point of view, much simpler estimation strategies solve this
problem, for example, least squares with a projection on the set of rank r matrices
coupled with Lepski’s method to adapt to the rank). Finally it is, unfortunately, not
possible to extend our approach to datasets where entries are not observed twice,
because it is provably impossible (Carpentier et al., 2017) to obtain a good estimator
of the error.
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4.1.7 Proofs of Section 4.1

4.1.7.1 Upper bound for MALocate

As explained in Section 4.1.2, in order to simplify the analysis, we only consider square
matrices of dimension dk or d below when we restate results for K = 1.

Proposition 4.4 (bound on estimation error, Klopp, 2014). Consider the estimation
problem in Frobenius norm for a matrix M of rank r with n observations in the
trace-regression model. M is such that its entries, as well as the noisy observations
of its entries are bounded by some (known) constant A. Then, there exist numerical
constants c and C such that the square root matrix lasso estimator M̂n satisfies with
probability at least 1− 3/d− 2 exp(−cn)

‖M̂n −M‖2F
d2

≤ CA2 · rd log d

n
,

where M̂n is defined as the solution to the following minimization problem,

M̂n , arg min
‖M‖∞≤A


√√√√ 1

n

n∑
i=1

(Yi − 〈Xi,M〉)2 + λ ‖M‖∗

 ,

with λ , C ′
√

log(d)/(dn) and C ′ is a numerical constant.

Proposition 4.5 (concentration bound for R̂N estimator, Carpentier et al., 2017).
Let R̂N be the estimation procedure (sub-procedure EstimateError) of ‖M̂ −M‖2F ,
for some M̂. Then, with probability at least 1− 2

d
, we have∣∣∣∣∣R̂N − ||M̂−M||2F

d2

∣∣∣∣∣ ≤ 8A2

√
log d

N
·

Proposition 4.6 (Lower bound on the number of the entries sampled twice, Carpentier
et al., 2017). For n ≤ d2, we have with probability at least 1− exp(−n2/(372d2)) that
the number of entries sampled twice in a dataset of size n/2 is at least

N ≥ n2

64d2
·

We now define favorable events for which the estimators are within their confidence
bounds for all datasets Dkt , estimators M̂k

t , and errors R̂Nk
t
for well chosen rounds t,

where Nk
t is the number of entries sampled twice in the second half of the sample Dkt .

For dk log dk ≤ t ≤ d2
k, we write ξ1(t, k) for the event when these three bounds hold

simultaneously,

(1)
‖M̂k

t −Mk‖2F
d2
k

≤ CA2 · rkdk log dk
t

,

(2) Nk
t ≥

t2

64d2
k

,

(3)

∣∣∣∣∣R̂N − ‖M̂k
t −Mk‖2F
d2
k

∣∣∣∣∣ ≤ 8A2

√
log dk

Nk
t

·
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The we consider the following event ξ2(k),

ξ2(k) =
⋂

s∈[2 log2(dk)]

ξ1(2sT Ik , k), where T Ik , 2ddk log(dk) + 1

2
e·

Lemma 4.1. For any k ∈ [K], ξ2(k) does not hold with probability at most

2 log2(dk)

(
5

dk
+ 2 exp(−cdk log(dk)) + exp

(
− log2 dk

372

))
Proof. The claim is consequence of a union bound using the claims in Propositions 4.4,
4.5, 4.6, together with 2dk log dk ≤ t ≤ d2

k.

Proof. We consider ξ3 =
⋂
k∈[K] ξ2(k), which holds with probability at least

1− 2
∑
k

log2(dk)

(
5

dk
+ 2 exp(−cdk log dk) + exp

(
− log2 dk

372

))
.

The rest of the proof is conditioned on the fact that ξ3 holds. The initialization phase,
when Bk(t) =∞ and each matrix sampled for the first time by the algorithm, is such
that Mk is sampled 2T Ik times, where T Ik is set such that it is the smallest even integer
strictly greater than dk log dk. By definition, we have 2dk log dk ≤ 2T Ik ≤ 4dk log dk.
We remark here that 2T Ik ≥ 2dk log dk ensured that on ξ3, there is at least one double
entry in the second half of the sample after the first time that matrix k is sampled,
since

(2T Ik )2

64d2
k

≥ log(dk)
2

16
≥ 1

for dk ≥ 55. This ensures that the B-values are finite as soon as the matrices have
been sampled 2T Ik times during the initialization.

For n ≥ 48
∑

k∈[K] dk log dk = 12
∑

k T
I
k , there necessarily exists (by the pigeonhole

principle) m ∈ [K] such that Tm(n) the total budget spent on matrix m by the
algorithm satisfies:

Tm(n)− 6T Im ≥
(rmd

3
m log dm)

p
p+1∑

k∈[K](rkd
3
k log dk)

p
p+1

n− 6
∑
k∈[K]

T Ik

 ≥ (rmd
3
m log dm)

p
p+1∑

k∈[K](rkd
3
k log dk)

p
p+1

(n
2

)
·

As the first two times that k is chosen contribute 6T Ik ≤ 12dm log dm to Tm(n), we
know that m is picked at least twice by the algorithm, and not just only during the
initialization. For this m, we have Tm(n) ≥ cm∑

k ck

(
n
2

)
, where we write for simplicity

ck , (rkd
3
k log dk)

p
p+1 with rk , rank(Mk).

We denote t1 < n, the last round that the matrix m was chosen by the algorithm.
Since t1 is the last round that matrix m is chosen, and the algorithm operates on
a doubling schedule, we have Tm(t1) = Tm(n)

2 ≥ cm∑
k ck

(
n
4

)
. As we have established

that matrix m has been chosen at least twice by the algorithm, let us denote t2 the
penultimate round that matrix m was chosen by the algorithm. By the same doubling
reasoning, we have Tm(t2) ≥ cm∑

k ck

(
n
8

)
, and M̂m

t2 is such that the B-value for m at
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round t1 (which is non-increasing due the the definition of the algorithm) satisfies

d2
mBm(t1) = d2

mBm(t2 + Tm(t2)) ≤ d2
m

(
R̂
N
t2
m

+ 8A2

√
log dm

N t2
m

)

≤ d2
m

(∥∥∥M̂m
t2 −Mm

∥∥∥2

F
+ 16A2

√
log dm

N t2
m

)

≤ d2
m

(
CA2 · rmdm log dm

Tm(t2)
+ 128A2dm

√
log dm

Tm(t2)

)
≤ A2 max(C, 128)

(
rmd

3
m log dm
Tm(t2)

)
, (4.2)

where we use that on ξ3, we have

R̂
N
t2
m
≤
∥∥∥M̂m

t2 −Mm
∥∥∥2

F
+ 8A2

√
log dm

N t2
m

(in the second line) and N t2
m ≥

Tm(t2)2

64d2
m

(in the third line). Finally, we use rm ≥ 1 to
get the ultimate line, as rmdm log dm always dominates dm

√
log dm. Now, plugging

the lower bound on Tm(t2) ≥ cm∑
k ck

(
n
8

)
brings

d2
mBm(t1)

Tm(t1)1/p
≤ A2 max(C, 128)

(
rmd

3
m log dm

Tm(t2)Tm(t1)1/p

)
= 21/pA2 max(C, 128)

(
rmd

3
m log dm

Tm(t2)
p+1
p

)

≤ 21/p64A2 max(C, 128)

(∑
k ck
n

) p+1
p

(4.3)

At t1, when matrix m was chosen for the ultimate round, we had for all i 6= m,

d2
iBi(t1)

Ti(t1)
1
p

≤ d2
mBm(t1)

Tm(t1)
1
p

<∞,

therefore all matrices i had already been pulled at least once during the initialization.
Combined with (4.3), this yields

d2
iBi(t1) ≤ 21/p64A2 max(C, 128)Ti(t1)

1
p

(∑
k ck
n

) p+1
p

· (4.4)

As i has been sampled at least once, let us denote ti− Ti(t1)
2 the last round it was sampled

before the round t1. The following also holds, as the B-values are non-increasing with
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time (by design of the algorithm), and we have Ti(t1) = 2Ti(ti),

Bi(t1) ≤ Bi(ti) ≤ R̂Nti
i

+ 8A2

√
log di

N ti
i

≤
∥∥∥M̂ti

i −Mi
∥∥∥2

F
+ 16A2

√
log di

N ti
i

≤ CA2

(
ridi log(di)

Ti(ti)

)
+ 16A2

√
log(di)

N ti
i

≤ CA2

(
ridi log(di)

Ti(ti)

)
+ 128A2di

√
log(di)

Ti(ti)

≤ 2A2 max(C, 128)

(
ridi log(di)

Ti(t1)

)
· (4.5)

Finally, it is easy to see that as Bi(t) cannot increase with t and since the estimator M̂i

is only updated if the error decreases, then for all t we have
∥∥∥M̂i

n −Mi
∥∥∥2

F
≤ d2

iBi(t)

where we denote the final estimator output at round n by the algorithm as M̂i
n.

Combined with (4.5) this yields∥∥∥M̂i
n −Mi

∥∥∥2

F
≤ 2A2 max(C, 128)

(
rid

3
i log(di)

Ti(t1)

)
,

which decreases with Ti(t1), and on the other hand, (4.4) brings

∥∥∥M̂i
n −Mi

∥∥∥2

F
≤ 21/p64A2 max(C, 128)Ti(t1)

1
p

(∑
k ck
n

) p+1
p

,

which increases with Ti(t1). By combining both bounds, we get

∥∥∥M̂i
n −Mi

∥∥∥2

F
≤ 21/p64A2 max(C, 128) min

(
rid

3
i log(di)

Ti(t1)
, Ti(t1)

1
p

(∑
k ck
n

) p+1
p

)
,

and by maximizing this bound with respect to Ti(t1), we get

∥∥∥M̂i
n −Mi

∥∥∥2p

F
≤ 2

(
64A2 max(C, 128A2)

)p (rid
3
i log(di))

p
p+1 (

∑
k ck)

p

np
·
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By (4.2) this bound also holds for m, and by summing the errors we get

Lpn =

∑
k∈[K]

∥∥∥M̂k
n −Mk

∥∥∥2p

F

1/p

≤ O

(
∑

k ck)

n

(
K∑
k=1

ck

)1/p


≤ O

(
(
∑

k ck)
p+1
p

n

)

≤ O


(∑

k(rkd
3
k log(dk))

p
p+1

) p+1
p

n


4.1.7.2 Lower bound for max loss (p =∞)

Proof. The purpose of this lower bound is to show that for any active and possibly
randomized strategy, there exists a problem on which it errs with constant probability,
and that this error is of the same order as the upper bound we proved in Theorem 4.1
for p =∞. We begin by pointing out that although this lower bound holds for any
strategy, the construction hereunder depends on first fixing the strategy S. Our goal
is to prove a lower bound over the class of problems denoted P such that for any
P = (M1, . . . ,MK) ∈ P, Mk is of dimension (dk × dk) and rank(Mk) ≤ rk. At each
round t ≤ n, the strategy picks an index kt ∈ [K] and collects a noisy observation
Yt = 〈Mkt , Xkt

t 〉 + εt where εt ∼ N (0, A2) and Xkt
t is taken uniformly at random.

Although this is not exactly the noise model in which our upper-bound is stated, we
use this for ease of notation, as all our results can be written instead with mean 1/2
and 1/2 + δ. In particular, the centering in 0 we use hereunder can be modified to
A/2 to fit the bounded noise assumption by considering the distributions 0.5AB(1/2)
and 0.5AB(1/2 + δ).

Let M0
k be the null matrix of size (dk × dk). We refer to problem 0 as the problem

characterized by (M1
0, . . . ,M

K
0 ). For the fixed strategy S, we define the quantity

τk = E0,S [Tk(n)], where Tk(n) is the number of observations from Mk collected by
strategy S at the end of the active game. By definition of the fixed budget setting, we
have

∑
k τk = n.

We now define a set of problems for each matrix Mk. We write:

Rk =

{
M̃k = (mk

i,j) ∈ Rdk×rk : mk
i,j ∈

{
0, cA2

√
rkdk
τk

}}
,

where c is a small numerical constant to be specified later. Importantly, any element
of Rk is of rank at most rk. We now define

Mk =
{
Mk =

(
M̃k | · · · | M̃k | O

)
∈ Rdk×dk , M̃k ∈ Rk

}
,

where each matrix Mk is just M̃k duplicated bdkrk c times, and the last few columns
are completed by 0 entries to make the matrix square of dimension dk × dk. By
construction, this matrix has rank at most rk, since the repeated pattern has rank at
most rk itself.
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By the Gilbert-Varshamov bound (Gilbert, 1952; Varshamov, 1957), we know that
there exists a subset Bk ⊂ Mk, containing Mk

0, with cardinality at least 2rkdk/8 + 1
such that its elements are well separated. Namely, for any two elements Mk

i ,M
k
j of Bk,

we have ∥∥∥Mk
i −Mk

j

∥∥∥2

F
≥ c2A2

16
·
rkd

3
k

τk
·

We consider the set of problems Pk =
{

(M1
0, . . . ,M

k, . . . ,MK
0 ),Mk ∈ Bk

}
. We now

define the distribution of the data (actively) collected under problem i belonging to
Pk by strategy S as Pni,S = {(Xki

i , Y
ki
i )}i≤n and write KL(Pnj,S ,Pni,S) for the Kullback-

Leibler divergence between two such distributions. Using standard active learning
arguments as used by Castro and Nowak (2008, proof of Theorem 1), we have (using
the sampling uniformly at random in the first line)

KL
(
Pn0,S ,Pni,S

)
= 1

A2

∑
k∈[K]

∥∥Mk
i −Mk

0

∥∥2

F
E0,S(Tk(n))

≤ c2rkdk
τk

E0,S(Tk(n))

≤ c2rkdk

≤ c2

2 log (|Pk|) ,

where we use in the second line that problems i and 0 in the class Pk only differ on
the k-th matrix. Taking c = 1/2, we have 1

|Pk|
∑

i≤|Pk|KL(Pn0,S ,Pni,S) ≤ α log(|Pk|) for
α = 1/8. We can thus use Theorem 2.5 by (Tsybakov, 2009b) on each set of problems
Pk with s =

A2rkd
3
k

128τk
, where we write P̂ = (M̂1, . . . , M̂K) for an estimator output by

the active strategy S on problem P = (M1, . . . ,MK):

inf
P̂

sup
P∈P

EP
(

max
k

(
||M̂k −Mk||2F

))
≥ inf

P̂
max
k∈[K]

sup
P∈Pk

EP
(

max
i

(||M̂i −Mi||2F )

)
≥ inf

P̂
max
k∈[K]

sup
P∈Pk

EP (||M̂k −Mk||2F )

≥ max
k∈[K]

A2

2048
·
rkd

3
k

τk
,

where we lower bound
√
|Pk|

1+
√
|Pk|

(
1− 2α−

√
2α

log |Pk|

)
by 0.08 for |Pk| ≥ 2.

Finally, by the pigeonhole principle, we know that for any (fixed) strategy S there
exists some index m such that E0,S(Tm) = τm ≤ rmd3

mn∑
k rkd

3
k

, so we can lower bound:

max
k∈[K]

A2

2048
·
rkd

3
k

τk
≥ A2

2048
·
∑

k rkd
3
k

n
·
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