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Abstract 
Molecular steric effects can strongly influence a variety of processes. In the area of 

environmental research, they are especially relevant for partitioning processes between a 

homogeneous phase, e.g., water, and a heterogeneous matrix, e.g., proteins. There is no sharp 

distinction between a homogenous phase on the one side and a complex heterogeneous matrix 

on the other side (whose physiochemical properties are position-dependent and thus shows an 

influence of the molecular steric properties) but rather a gradual transition. Depending on the 

progress of this transition, it is not always necessary to consider the molecular steric effects 

for a successful modeling of the partition systems. Examples for partitioning systems, in 

which the influence of the molecular steric effects are typically neglected for the modeling, 

are the partitioning between natural organic matter and water and between mineral surfaces in 

soils and water. 

The aim of this work was i) to perform partitioning experiments and quantify partitioning 

coefficients, which are influenced by molecular steric effects and ii) to model the investigated 

partition processes. The partition system α-cyclodextrin (αCD)-water was chosen, because the 

3D-structure of αCD, is well-defined. CDs are used in various areas (e.g., as pharmaceutical 

excipients, as additives in cosmetics and food, and for the remediation of contaminated soils). 

Two experimental methods, both of which are mass balance based, were applied for the 

determination of αCD binding constants: a head space and a passive sampling method. The 

measured 70 neutral organic chemicals have binding constants in a range of 1.08 to 4.97 log 

units. The selection of the chemicals included chemicals with different functional groups and 

several homologous series. This selection enables a good comparability of the different 

binding constants. The results show that the binding to αCD is clearly influenced by steric 

effects, e.g., constitutional isomers have differences in their binding constants of up to 1.2 log 

units, which are caused by the different positions of the functional groups. Moreover the 
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dataset reveals that the spatial restrictions of the αCD cavity are responsible for the binding 

strength of differently sized, hydrophobic, aromatic chemicals. 

The αCD-water partitioning system was then described with three different modeling 

approaches, which were evaluated in regard to the quality of their predictions, especially 

focusing on the respective description of the steric effects. The three modeling approaches 

were a) a poly-parameter linear free energy relationship, b) a comparative molecular field 

analysis, and c) a 3D quantitative structure activity relationship (QSAR). The COSMO 

(conductor like screening model) based 3D-QSAR resulted in the best predictions (Rtest²=0.70, 

RMSEtest=0.45, n=15) and it was the only modeling approach that was able to reproduce the 

molecular steric effects. In addition, the COSMO based 3D-QSAR gave good predictions for 

88 αCD-binding data from the literature (Rtest²=0.64, RMSEtest=0.59). Hence, we concluded 

that this modeling approach can be used for the prediction of unknown αCD binding constants 

and it should be applicable to comparable partitioning processes.  

The further applicability of the 3D-QSAR method was tested with a prominent 

toxicokinetic/pharmacokinetic example, the partitioning between bovine serum albumin 

(BSA) and water. This process is relevant for the distribution of chemicals in all vertebrates, 

because all vertebrates express the highly conserved protein serum albumin. This work 

revealed that the partitioning between BSA and water is influenced by molecular steric 

effects, particularly for organic anions. The COSMO based 3D-QSAR predicted experimental 

BSA-water partition coefficients (KBSA/water) not only with an overall satisfying accuracy 

(Rtest²=0.52, RMSEtest=0.63, n=32) but it also captured the molecular steric effects, which are 

responsible for differences in the partitioning coefficients of up to 2 log units for charged 

isomers. The domain of applicability of this empirical model is largely determined by the used 

calibration (42 anions und 88 neutral chemicals). Thus, an extension and diversification of the 

calibration dataset, especially by including organic cations and zwitterions, would be useful to 

allow a broader applicability of the model. The COSMO based 3D-QSAR model can now be 
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used for an estimation of the distribution of anionic and neutral chemicals in vertebrates and 

thus enables an improved assessment of the toxicokinetics of negatively charged chemicals, as 

long as it is used within the domain of applicability. 
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Zusammenfassung 

Molekulare sterische Effekte haben einen großen Einfluss auf eine Vielzahl von Prozessen. 

Im Bereich der Umweltforschung sind sie insbesondere relevant bei Verteilungsprozessen 

zwischen einer homogenen Phase, z.B. Wasser, und einer heterogenen Matrix, z.B. Proteinen. 

Der Übergang zwischen der homogenen Phase und der heterogenen Matrix (bei der die 

physiochemischen Eigenschaften ortsabhängig sind und die deshalb einen Einfluss von 

molekularen sterischen Effekten zeigt) ist hierbei fließend und muss, je nach Ausmaß des 

Effektes, nicht unbedingt für eine erfolgreiche Modellierung des Verteilungssystems 

berücksichtigt werden. Beispiele für Verteilungssysteme, bei denen der Einfluss der 

molekularen sterischen Effekte bei der Modellierung typischerweise vernachlässigt wird, sind 

die Verteilungen zwischen Huminstoffen und Wasser, und zwischen mineralischen 

Oberflächen in Böden und Wasser.  

Das Ziel dieser Arbeit war es i) Verteilungsexperimente durchzuführen, die es ermöglichen 

Verteilungskoeffizienten, welche durch molekulare sterische Effekte beeinflusst sind, zu 

quantifizieren und ii) die untersuchten Verteilungsprozesse erfolgreich zu modellieren. 

Experimentell bestimmt wurde hierbei das Verteilungssystem α-Cyclodextrin (αCD)-Wasser, 

da die 3D-Struktur von αCD, die eine entscheidende Rolle für die molekularen sterischen 

Effekte innehat, sehr gut bekannt ist. CDe werden in verschiedensten Bereichen verwendet, 

z.B. als Hilfsstoffe in der Kosmetik, in Lebensmitteln, und bei Pharmaka, oder auch als 

Extraktionsmittel bei der Sanierung von belasteten Böden. Zwei experimentelle 

Messmethoden, die beide auf dem Prinzip der Massenbilanz basieren, wurden für die 

Bestimmung von αCD-Bindungskonstanten etabliert: eine „head space“ und eine „passive 

sampling“ Methode. Die insgesamt vermessenen 70 neutralen organischen Chemikalien 

zeigen Bindungskonstanten in einem Bereich von 1,08 bis 4,97 log-Einheiten. Es wurden 

Chemikalien mit unterschiedlichen funktionellen Gruppen und mehrere homologe Reihen 
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ausgewählt. Diese Auswahl ermöglichte eine gute Vergleichbarkeit der verschiedenen 

Bindungskonstanten. Die Resultate zeigten, dass der Bindungsprozess zu αCD deutlich von 

molekularen sterischen Effekten beeinflusst ist, z.B. haben Konstitutionsisomere einen 

Unterschied in der Bindungskonstante von bis zu 1,2 log-Einheiten, der durch die 

verschiedenen Positionen der funktionalen Gruppe in den Isomeren verursacht wird. 

Außerdem sind die räumlichen Begrenzungen der αCD-Kavität ausschlaggebend für die 

Bindungsstärke von unterschiedlich großen, hydrophoben, aromatischen Chemikalien. 

Das αCD-Wasser Verteilungssystem wurde anschließend mit drei Modellierungsansätzen 

beschrieben, die hinsichtlich ihrer Vorhersagequalität, mit besonderem Fokus auf die 

molekularen sterischen Effekte, evaluiert wurden. Die drei Modellierungsansätzen waren a) 

eine Polyparameter lineare Freie Energie Beziehung, b) eine „comparative molecular field 

analysis“, und c) eine 3D quantitative Struktur Aktivität Beziehung (QSAR). Das COSMO 

(conductor like screening model) basierte 3D-QSAR Modell lieferte die beste Vorhersage 

(Rtest²=0,70, RMSEtest=0,45, n=15) und schloss als einzige Methode die molekularen 

sterischen Effekte hinreichend mit ein. Außerdem war es in der Lage weitere 88 

Literaturdaten erfolgreich vorherzusagen (Rtest²=0,64, RMSEtest=0,59). Die COSMO 3D-

QSAR Methode kann also zur Vorhersage von unbekannten αCD-Bindungskonstanten 

verwendet werden und sollte sich auch auf analoge Verteilungsprobleme anwenden lassen. 

Die weitere Anwendbarkeit der 3D-QSAR Methode wurde mit einem prominenten 

Verteilungsprozess aus dem Bereich der Toxikokinetik/Pharmakokinetik getestet, der 

Verteilung zwischen bovinem Serumalbumin (BSA) und Wasser. Dieser Prozess ist für die 

Verteilung von Chemikalien im Körper von allen Wirbeltieren relevant, da alle Wirbeltiere 

das stark konservierte Protein Serumalbumin exprimieren. Die Verteilung zwischen BSA und 

Wasser ist insbesondere für organische Anionen stark durch molekulare sterische Effekte 

beeinflusst. Die COSMO 3D-QSAR konnte erfolgreich experimentelle 

Verteilungskoeffizienten zwischen BSA und Wasser (KBSA/Wasser) vorhersagen (Rtest²=0,52, 
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RMSEtest=0,63, n=32) und umfasste auch die molekularen sterischen Effekte, die für 

Unterschiede von bis zu 2 log-Einheiten bei den Verteilungskoeffizienten von geladenen 

Isomeren verantwortlich sind. Die Applikationsdomäne dieses empirischen Models hängt 

weitgehend von der zugrunde liegenden Kalibrierung ab (42 Anionen und 88 neutrale 

Chemikalien). Daher wäre eine Erweiterung der Kalibrierung hilfreich um eine breitere 

Anwendbarkeit zu ermöglichen, z.B. durch die Inklusion von organischen Kationen und 

Zwitterionen. Das COSMO 3D-QSAR Modell kann folglich, im Bereich der 

Applikationsdomäne, für eine Abschätzung der Verteilung von anionischen und neutralen 

Chemikalien in Wirbeltieren genutzt werden und damit zu einer verbesserten Einschätzung 

der Toxikokinetik von negativ geladenen organischen Chemikalien beitragen. 
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1 Summary: Influence of molecular steric factors on the sorption and 

partitioning of organic chemicals 

1.1 Introduction 

Information about the partitioning and binding behavior of organic chemicals is necessary for 

a broad range of fields. In environmental sciences, the distribution of chemicals and their 

environmental fate is largely determined by the partitioning of the chemicals between several 

phases like water, air, and soil; in toxicology, the distribution of chemicals and hence their 

effect concentration (freely dissolved concentration) is determined through their partitioning 

in lipids and membranes, where in simple models octanol is often used as a surrogate phase; 

and in medical science, the binding to macromolecules plays a crucial role for plasma protein 

binding and drug formulation. These examples can be divided in to two cases, the first case is 

partitioning between two phases (e.g., air-water, octanol-water, lipid-water) and the second 

case is the partitioning between a macromolecule and water. For the first case the 

3D-structure of the solute and the solvent is of minor concern for the interaction energy, 

because steric hindrance is negligible and the solute and the solvent can interact in all possible 

ways. This results in prediction models, so called poly-parameter linear free energy 

relationship (pp-LFER), that use descriptors that characterize the interaction properties of the 

whole molecule without considering the molecular geometry1-3 and they can theoretically be 

used to predict all cases of partitioning between two phases. 

For the second case, the 3D-structure of the solute and the solvent and steric effects influence 

the partitioning or binding but the effects are not always clearly distinguishable from the 

partitioning between phases if the binding to the macromolecule was not investigated 

systematically. A deeper understanding of the influence of molecular steric factors on the 

sorption and partitioning of organic chemicals can be achieved best by starting with a good 
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test system like cyclodextrins (CDs) and use it for a systematic investigation. Cyclodextrins 

are ideal candidates for such a test system because their 3D-structure is well investigated and 

they are known to form inclusion complexes (host-guest complexes) with many chemicals. 

CDs are conic ring oligosaccharides and in the common cyclodextrin family (i.e., α-, β-, γ-) 

αCD may be the most suitable starting material for studying 3D-effects on binding, as it has 

the smallest cavity and thus the highest restriction for host-guest complexation. αCD is built 

of six 1-4-linked glucopyranose units that form a conic ring with a diameter of 5 Å. In water, 

all hydroxyl groups are positioned on the outside of the αCD ring, resulting in a hydrophobic 

cavity inside4, which enables αCD to form host-guest complexes. Formation of CD 

complexes5 can improve the solubility of chemicals6, construct supramolecular polymers7, or 

mask taste and odor compounds8, underpinning the vast application areas of cyclodextrins. 

Apart from the qualitative understanding of the effects that influence the binding to αCD, a 

successful development of a model is necessary, first, for the prediction of unknown binding 

constants but more importantly as a general possible solution to other binding problems that 

are influenced by molecular steric effects. For the evaluation of the model, pp-LFER can be 

used as a good reference model that helps to distinguish factors that do not appear in the 

partitioning between phases. A modeling approach that seems promising for the description of 

molecular steric effects is 3D quantitative structure activity relationship (3D-QSAR) which 

establishes a correlation between a macroscopic property (e.g., receptor affinity, binding 

constant) and 3D-structural features of the solute molecules. A widely used 3D-QSAR tool is 

comparative molecular field analysis (CoMFA)9. CoMFA uses 3D-discretized molecular field 

properties, called molecular interaction fields (MIFs), as descriptors for a statistical method 

(e.g., partial least square, PLS). Recently, Klamt et al. proposed the COSMOsar3D method10, 

which uses 3D-gridded COSMO surface polarization charge densities as a new set of MIFs. 

This extension of CoMFA emerges from the quantum mechanically-based COSMO-RS 
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(conductor-like screening model for real solvent) method2,11, which predicts the properties of 

a chemical by using the surface polarization charge densities (called sigma surface) of the 

molecule calculated quantum mechanically in a virtual conductor. For each molecule, the 

calculated sigma surface can be condensed into a sigma profile, a histogram of all the ‘partial’ 

charges (or charge-patches) of the molecule. The sigma surface and the sigma profile of a 

chemical appear to accurately describe the abilities of the molecule to undergo intermolecular 

interactions including electrostatic, hydrogen-bond, and van der Waals interactions12 and are 

typically used to predict the partitioning between two phases. To extend this concept to 3D-

QSARs, COSMOsar3D computes the sigma profiles at grid points within the 3D space to give 

the local sigma profiles (LSPs)13. The LSP is thus a 4-dimensional histogram that contains 

information about the sigma surface of a specific part of the molecule. Considering the 

theoretical basis and the proven accuracy of COSMO-RS for partitioning between liquids, it is 

anticipated that the LSPs are ideal MIFs for 3D-QSAR modeling of the binding free energy 

that is strongly influenced by the molecular geometry of solutes. 

Another more advanced and for the field of ecotoxicology more relevant example of the 

second case (the partitioning between a macromolecule and water) is the binding to serum 

albumin. Serum albumin is of major importance for the toxicokinetic behavior of organic 

chemicals because it is the most abundant blood protein of mammals and often a 

predominating sorption phase in blood.14 Additionally, fetal bovine serum is the most 

commonly used serum supplement for cell culture assays, where bovine serum albumin 

(BSA) has a strong impact on the freely dissolved concentration of the test chemical in the 

assays.15 Apart from neutral organic chemicals that bind to BSA16, Henneberger et al. 

published BSA/water partition coefficients (KBSA/water) for a broad set of ionogenic chemicals 

measured in a consistent condition17. These reported ionic partition data show specific 

molecular steric effects, which cannot easily be described by common methods for the 
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prediction of partition coefficients such as pp-LFERs18. This highly relevant example would 

be an ideal candidate for another application of the tested 3D-QSAR modeling approach. 

1.2 Objective of this study 

The aim of this study was to identify, understand, and describe molecular steric effects that 

influence the binding to αCD and then develop an appropriate model that is capable of 

covering these effects and ideally is applicable to similar problems. For this goal, a consistent 

experimental data set for αCD binding of neutral organic chemicals was measured. Two 

approaches for the determination of αCD binding constants and binding mode (i.e., 1:1 or 2:1 

binding) were tested: a) headspace and b) passive sampling. The binding constants of several 

isomers and homologous series were measured, which should enable a useful comparison of 

the chemicals and the respective binding constants and thus a good identification of molecular 

steric effects. Several modeling approaches like correlations with log KOW, pp-LFER, and 

different 3D-QSARs were tested for the most thorough description of the binding to αCD. A 

particular emphasis of the model evaluation was the inclusion of the detected molecular steric 

effects. 

Finally, the most successful modeling approach was applied to the partitioning of neutral and 

anionic organic chemicals to BSA. Again, the inclusion of molecular steric effects, which 

were responsible for log KBSA/water differences between structural isomers of up to two log 

units, were the main focus of the model evaluation. 
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1.3 Experimental identification of molecular steric effects that influence the binding to 

αCD 

The 1:1 binding constants (Ka1 [M-1]) of organic chemicals were determined with the help of 

the thermodynamic cycle. Ka1 can be expressed as, 

𝐾𝑎1 =  
[𝑆𝑆𝑆𝑆 ]

[𝑆][𝑆𝑆𝑆]
    (1) 

where S is the substrate (guest) and SαCD is the 1:1 complex. Two methods were applied to 

the αCD test system. In both methods, the unbound, freely dissolved concentration of the 

chemical was determined via the measurement of a third phase, either air (headspace 

approach, see Fig. 1) or a polyacrylate (PA) or poly(dimethylsiloxane) (PDMS) fiber (passive 

sampling approach). All binding experiments were performed at 30 °C, which was the lowest 

possible temperature that the sample tray of the GC autosampler was able to control. 

 

Figure 1 Experimental setting for the headspace approach. The reference phase is air, in case of 

the passive sampling approach the reference phase was a fiber (PDMS or PA) and no air phase 

was present. 

 Headspace approach 1.3.1

Air was the common third phase (reference phase) for this approach19. Two groups of 

weighed 20 mL vials were prepared with four vials per group. One group was filled with 5 

mL water and the other was filled with 5 mL αCD solution (2 - 15 g/L). The vials were spiked 
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with 10 or 25 µL of methanolic stock solution of the selected chemicals and were 

immediately closed with a PTFE- or aluminum-lined silicone septum to prevent loss of the 

chemicals. From the experience of preliminary experiments, the equilibrium time was set to a 

minimum of four hours: first three hours on a horizontal shaker at 30 °C with 300 rpm and 

then at least one hour on the GC-sample tray at 30 °C with low shaking speed. Then the 

headspace was probed with a 100 µL sampling loop or a 250 µL syringe and injected into the 

GC and measured with GC-FID/ECD or GC-MS. 

 Passive sampling approach 1.3.2

The passive sampling approach was used for chemicals which are not volatile enough for the 

headspace approach. PA or PDMS fiber is the common reference phase for this approach20,21. 

The experimental setting was similar to that with the headspace approach except for the 

following changes. The volume of the solutions and the vials was 10 mL, each vial received 5 

or 10 cm of PA- or PDMS-coated fiber and the equilibrium time was 72 hours at 30 °C. 

Previous studies22,23 confirmed that this equilibrium time is sufficient for a wide range of 

chemicals. After equilibrium was reached, the fibers were removed from the vials and 

carefully wiped with a clean tissue. Then the fibers were extracted overnight on a roller mixer 

using 200 µL of cyclohexane (for PDMS) or ethyl acetate (for PA). The concentrations of the 

extracts were quantified with a GC-MS system using an external calibration. 

 Detected molecular steric effects 1.3.3

The Ka1 values of 70 chemicals were determined in batch experiments. The chemical set 

comprises: 19 alcohols, 19 ketones, 9 polycyclic aromatic hydrocarbons (PAHs), 6 

chlorobenzenes, 5 alkylbenzenes, 4 ethers, 4 nitroalkanes, and 4 phosphates/phosphonates. 

These chemicals have various functional groups but relatively simple molecular structures, 

which facilitates interpretation of the results. Moreover, the data set includes multiple series 

of chemicals with increasing number of structural units (i.e., -CH2-, Cl-, aromatic ring), 
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enabling the assessment of incremental effects on the binding behavior. The measured log Ka1 

values span over a wide range, from 1.08 (pentachlorobenzene) to 4.97 (1-dodecanol). For 10 

chemicals, Ka1 was too small to be measured with the applied method. 

The logarithmic octanol-water partition coefficient (log KOW) is often related to log KCD/water
24-

27 and was even proposed as a descriptor for predictions25. In Fig. 2 the log Ka1 values 

measured in this study are compared to log KOW. The correlation between log KOW and log Ka1 

is weak (R² of 0.19). Correlation is particularly weak in the high KOW range (i.e., log KOW > 

3). For example, 1-dodecanol and pentachlorobenzene have similar log KOW values (5.13 and 

5.17, respectively) but differ more than 3 log units in their Ka1 values (4.96 and 1.08, 

respectively). Conversely, nitroethane and phenanthrene have > 4 log units difference in log 

KOW values (0.18 and 4.46, respectively) but the respective log Ka1 values are both < 1.3. This 

shows that log KOW is neither useful for the understanding of the specific binding processes to 

αCD, nor for estimating log KCD/water if different chemical classes are considered. 

 

Figure 2 Experimental 1:1 αCD binding coefficients versus octanol/water partition coefficients. 
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An interesting finding is that the position of the functional group has a high influence on the 

log Ka1 values. In general, log Ka1 increases linearly with the number of carbon atoms within 

each homologous group: (1) linear aliphatic compounds with the polar functional group at the 

end of the molecule, i.e., R-OH, R-C(=O)CH3, and R-NO2, where R is a linear alkyl chain of 

differing lengths, (2) aliphatic compounds with the polar functional group in the middle of the 

molecule, i.e., R-C(OH)-R’, R-C(=O)-R’, and R-O-R, where R’ = R or R-CH2- (i.e., one unit 

longer), and (3) trialkyl phosphates (i.e., PO4-RRR). But chemicals with the functional group 

at the end of the molecule have generally higher Ka1 than chemicals with the same functional 

group in the middle, when compared at the same number of carbon atoms and there is a 

substantial difference in the slopes between end-substituted and middle-substituted classes 

(0.40 and 0.26 log units/C on average, respectively). Such a differential increase per C does 

not occur with solvent-water partition coefficients such as KOW and thus has to be caused by 

steric effects. We hypothesize that this occurs mainly because the polar functional group of 

the bound guest molecule stays outside the hydrophobic cavity and interacts with the 

surrounding water or with one of the hydroxyl groups of the αCD rims. Thus, the polar 

functional group restricts the location and the orientation of the guest relative to αCD and can 

thereby hinder the optimal interactions of the alkyl chain(s) with the αCD cavity. It is 

plausible that the polar functional group stays outside the cavity, because the polar functional 

group of the free, unbound chemical can undergo strong hydrogen bonding interactions with 

water molecules, whereas hydrogen bonds cannot be formed inside the hydrophobic cavity of 

αCD. Thus, the polar functional group could enter the cavity only if that leads to a free energy 

gain that is larger than the free energy loss due to the breakup of hydrogen bonds with water. 

Assuming that the polar functional group has to be outside the cavity, end-substituted 

chemicals may still fully insert their alkyl chain into the cavity, whereas middle-substituted 

chemicals may not insert both chains well in the cavity. 



Summary  9 

Furthermore, the interaction with αCD is highest if the alkyl chain of a chemical is linear and 

non-branched as can be seen by the comparison of several isomers (Fig. 3, 1-octanol, 2-ethyl-

1-hexanol, 4-octanol, 3-ethyl-3-hexanol, and 4-ethyl-3-hexanol). While Ka1 of a chemical with 

an ethyl-branched alkyl chain is lower than that of its non-branched isomer, the energetic 

contribution of the additional ethyl group is always positive. Hence, log Ka1 is higher for 2-

ethyl-1-hexanol (2.81) than for 1-hexanol (2.62), and log Ka1 of 3-ethyl-3-hexanol and 4-

ethyl-3-hexanol is higher than that of 3-hexanol. It is thus apparent that the branched ethyl 

group can also interact with CD and has a significant contribution to Ka1. 

 

Figure 3 Comparison of Ka1 for 2 C6-alcohols and 5 C8-alcohols. 

The aromatic chemicals studied in this work are nine PAHs, six chlorobenzenes, and five 

alkylbenzenes and show a different behavior than the aliphatic chemicals discussed above. 

The alkylbenzenes contain one linear alkyl chain of increasing length, but log Ka1 is not a 

simple linear function of the number of C atoms, in contrast to the polar aliphatic compounds 

shown above. The benzene ring does not form a strong H-bond with water and thus can 
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favorably enter the hydrophobic cavity of αCD. As the benzene ring occupies a fraction of the 

cavity, alkylbenzenes possessing an alkyl chain with three or more carbon atoms appear to 

experience a steric effect that lowers the log Ka1 increase per carbon atom. Chlorobenzenes 

represent an even more pronounced example of the influence of steric restriction. The log Ka1 

values are above two for chemicals possessing one to three chlorine atoms after which log Ka1 

starts to decrease with an increasing number of chlorine atoms. Mono and 

1,3-dichlorobenzenes appear to fit into the cavity, whereas 1,2,4-trichlorobenzene already 

experiences a negative steric effect. The log Ka1 for 1,2,4,5-tetrachlorobenzene is even lower 

than that of monochlorobenzene, suggesting that the three additional chlorine-substitutions 

hinder the interactions of the benzene ring and the original chlorine atom with αCD. Due to 

the summarized results, we decided to model the binding to αCD with a modeling approach 

that includes the 3D information of the chemicals, namely 3D-QSARs. 
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1.4 3D-QSAR modeling of the binding to αCD 

We evaluated the predictive performance of two different modeling approaches focusing on 

the detected molecular steric effects on the binding to αCD: I) pp-LFER28,29 and II) 3D-

QSAR. The performance of the 3D-QSAR modeling approach was thoroughly investigated in 

a way that we performed a standard CoMFA9 and then extended it with two methods, 

COSMOsim3D13 and COSMOsar3D10. 

 Methods 1.4.1

1.4.1.1 Selection procedures for training and test sets 

For generation and evaluation of each model (i.e., pp-LFER and 3D-QSARs), the used data 

set was split into training and test sets. The training set was used for model calibration and 

selection, while the performance of the resulting model was validated with regard to the 

prediction of the test set. Prediction of data that were not part of the training set is essential as 

a control and should be considered the more important quality feature for 3D-QSARs30.  

For the general model evaluation, the training and test sets were generated with the log Ka1 

hierarchic bin system31 (procedure 1). This classifies 25% chemicals of the data set to the test 

set. The rest of the chemicals formed the training set. The procedure was repeated five times, 

resulting in five random training sets and the corresponding test sets. 

In order to evaluate varying steric effects within homologous series of chemicals and isomers, 

the following modified procedure was used to generate constructed test sets (procedure 2). As 

in the first procedure, the chemicals were sorted by log Ka1 and four chemicals in a row were 

grouped into one bin. Then, the numbers 1 to 4 were given randomly to the four chemicals of 

a bin. In the first run of chemical selection, the chemicals with the number 1 embodied the 

test set, while the rest of the chemicals were used as the training set. In the second run, the 

chemicals with the number 2 were the test set, and so forth. In comparison to procedure 1, the 
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randomness of the selection is reduced, whereas each chemical is part of a test set once and 

the other three times it belonged to the training set. 

1.4.1.2 pp-LFER 

The pp-LFER is among the most accurate and robust models to describe solute partitioning 

between liquids or liquid and gas phases, where molecular interactions are not sterically 

restricted. In a practical sense, a 3D-QSAR model may be considered meaningful only if it 

gives better predictions than the pp-LFER model, which is simple and quick as long as the 

solute descriptors are known. The pp-LFER used here appears, 

log𝐾𝑎1 = 𝑐 + 𝑠𝑆 + 𝑎𝑎 + 𝑏𝑏 + 𝑣𝑣 + 𝑙𝑙    (2) 

where S is the polarizability/dipolarity parameter, A the solute H-bond acidity, B the solute H-

bond basicity, V the McGowan characteristic volume (cm³ mol-1/100) and L the logarithm of 

the hexadecane-air partitioning coefficient. In this work, the pp-LFER solute descriptors 

(capital letters in eq. 1) were obtained from the UFZ-LSER database32 and the system 

parameters (lower case letters in eq. 1) were fitted with multiple linear regression analysis 

using the experimental data for log Ka1 of training chemicals. 

1.4.1.3 3D-QSAR 

The 3D-QSAR modeling followed the workflow shown in Fig. 4. Modeling generally takes 

the following steps: 3D-structure generation, alignment, MIFs generation, model calibration 

with PLS, and model evaluation using the test set. There are multiple options for each step, as 

explained below, and different combinations were tested in this work for comprehensive 

evaluation of the methods. 
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Figure 4 3D-QSAR modeling workflow. Each colored line indicates one specific model variant. 

1.4.1.3.1 3D structure generation 

The 3D structures of all chemicals were generated with Tinker or COSMOconfX13. Tinker33 

is a molecular modeling package implemented in Open3Dalign v. 2.3 (O3A)34. 

COSMOconfX13 is a tool box that uses Turbomole35 for the quantum mechanics calculations 

of COSMO files. 

1.4.1.3.2 Alignments 

The 3D structures of chemicals need to be aligned in the 3D space before performing 

statistical analysis. Ideally, the resulting position and orientation of a chemical in the 3D 

space corresponds to the optimal interaction possibility between the chemical and αCD. In a 

target-based approach, the structure or a substructure of αCD is used as the template to which 

all molecules are aligned. In a ligand-based approach, the template is generated with the help 

of chemicals that bind strongly to αCD (i.e., with high log Ka1 values). For all approaches, up 



Summary  14 

to ten conformers of each chemical were considered and the conformer with the highest 

alignment score and, if there are multiple conformers with the highest score, then that with the 

lowest energy was chosen for the model. In this study, the following three alignment 

procedures were applied.  

1. The O3A alignment maximizes the overlap of atoms of the template chemicals and of 

the remaining chemicals. This is a ligand-based method and a standard alignment for 

CoMFA approaches and was performed here by using O3A v. 2.334. The seven 

chemicals with the largest log Ka1 values of this study, namely 1-dodecanol, 1-

undecanol, 1-decanol, 1-nonanol, 2-undecanone, 2-decanone, and hexylbenzene were 

used as template chemicals. 

2. The COSMOsim3D alignment13 maximizes the overlap between the sigma surfaces of 

the chemical and the template. Hereby, the template is an averaged sigma profile of 

the template chemicals. The template chemicals used were the same as in the previous 

alignment method.  

3. The COSMOsim3D receptor alignment is a target-based approach that maximizes the 

overlap between the inverted sigma surface of αCD (which is the sigma charge value 

of each surface patch multiplied with -1) and the sigma surface of the chemicals of the 

data set. The sigma surface of αCD needs to be inverted because the alignment 

algorithm maximizes the overlap of like sigma charges in a ligand-based approach. 

The inversion therefore places the chemicals in a position where greatest interaction 

energies between both αCD and the respective chemical occur, as the interaction 

energy is greatest when the difference between the sigma charges of two interacting 

surface segments is maximal. This alignment already considers the steric restrictions 

of the αCD cavity because the chemicals cannot be placed at the same position as the 

αCD. Two sources for an input structures, the αCD and an exemplary ligand, were 

used in our approach to test the dependence of the COSMOsim3D receptor alignment 
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on the input structure: a) X-ray measurement36 and b) molecular dynamics simulation 

(MDsim). 

1.4.1.3.3 MIFs 

Two sets of MIFs were used as independent variables for the partial least squares (PLS) 

regression analysis.  

1. The van der Waals (vdW) and the electrostatic (ele) fields are the two standard 

CoMFA variables. Molecular mechanics calculations using the Merck force field 

(MMFF94) were performed with Open3DQSAR v. 2.337 to derive the vdW and ele 

fields. A sp³ carbon atom was used as the probe. A grid spacing of 1 Å was used with 

a 5 Å gap, i.e., the minimal distance to the box, around the chemicals. 

2. LSPs were derived from the cosmo files by COSMOsar3D10. For the 3D-QSAR model 

used here the LSPs were split into several consecutive profiles, each covering a range 

of 0.006 e/Å². Thus, MIFs 1, 2, …, and 7 cover sigma values from -0.024 to -0.018 e/ 

Å², -0.018 to -0.012 e/ Å², …, and, 0.012 to 0.018 e/ Å², respectively. In the end, the 

LSPs, thus the amount of the surface area within a certain sigma charge interval and 

a space interval, serves as the value for the independent variable. A grid spacing of 2 

Å was used in a box that leaves at least a 5 Å gap around the chemicals. 

1.4.1.3.4 Statistical tool 

The independent variables, i.e., the MIFs, of the training set chemicals were correlated with 

the log Ka1 values using PLS regression analysis. Prior to PLS regression analysis, the number 

of independent variables was reduced in a way that potential meaning less variables were 

excluded. PLS analysis was performed to derive one to five PLS components. Leave-two-out 

cross validation was performed with each model and then the model with the minimum of the 

root mean square error (RMSE) value was selected for further evaluation against the test set. 
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 Internal validation of the modeling approaches methods 1.4.2

The general performance of the modeling approaches were evaluated using the αCD data set 

described above (called Linden data set in the following), which data is of high quality and 

consistency, and the test set selection procedure 1. Table 1 shows the statistical results for 

evaluation of the modeling approaches. RMSE and R² calculated with the test sets are 

considered more important evaluation criteria than q². 

 
Table 1. Comparison of the statistical results of the different modeling approaches for the 

prediction of log Ka1 of the Linden data set. 

Modeling 

approach 

Method Alignment Field q² ± SD RMSE ± SD R² ± SD 

M1 pp-LFER    0.52 ± 0.05 0.68 ± 0.07 

M2 3D-QSAR O3A LSP 0.63 ± 0.03 0.54 ± 0.08 0.56 ± 0.17 

M3 3D-QSAR O3A vdW ele 0.58 ± 0.08 0.53 ± 0.11 0.53 ± 0.11 

M4 3D-QSAR COSMOsim3D LSP 0.83 ± 0.02 0.45 ± 0.06 0.70 ± 0.08 

M5 3D-QSAR COSMOsim3D vdW ele 0.70 ± 0.01 0.56 ± 0.06 0.53 ± 0.12 

M6a 3D-QSAR COSMOsim3D 

receptor X-ray 

LSP 0.66 ± 0.06 0.51 ± 0.06 0.61 ± 0.09 

M6b 3D-QSAR COSMOsim3D 

receptor MDsim 

LSP 0.71 ± 0.04 0.49 ± 0.04 0.64 ± 0.07 

M7 3D-QSAR COSMOsim3D 

receptor X-ray 

vdW ele 0.51 ± 0.08 0.55 ± 0.08 0.56 ± 0.13 

O3A means open3DALIGN, q² is the coefficient of determination for the leave-two-out cross 

validation using the training set, RMSE is the root mean square error of the test set in log units, 

and R² is the coefficient of determination of the test set. LSP, vdW, and ele indicate the usage of 

local sigma profiles, van der Waals interaction field, and electrostatic interaction field as 

molecular interaction field, respectively, SD is standard deviation, and MDsim is molecular 

dynamics simulation. 

1.4.2.1 pp-LFER 

First, the pp-LFER equation (eq. 2) was fitted to all experimental αCD binding constants of 

the αCD Linden data set (i.e., no test and training set selection) to have an idea to what extent 

the 2D model can describe the whole data set. The fit of the pp-LFER equation usually results 
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in a standard deviation of 0.1 to 0.2 log units for homogeneous solvent-water partition 

systems, which are not influenced by steric effects, and a larger standard deviation for 

partitioning or binding to heterogeneous materials such as serum albumin and natural organic 

matter23,38. The RMSE for predicted binding to αCD is 0.48, being comparable to fits for 

other heterogeneous materials38. 

The pp-LFER fits for training sets extracted from the Linden data set resulted in system 

parameters similar to those for the complete data set. The predictions for the corresponding 

test sets (Table 1, M1) were surprisingly accurate (RMSE = 0.52 ± 0.05 and R² = 0.68 ± 

0.07). This result was unexpected because the experimental results do suggest strong steric 

effects, whereas the pp-LFER model does not capture such effects39. A closer examination of 

the results revealed that systematic prediction errors do exist for binding constants, e.g., log 

Ka1 values for end-substituted chemicals were systematically underestimated and those for 

middle-substituted chemicals were overestimated. In addition, chemicals that are not expected 

to fit into the αCD cavity due to the steric hindrance were over-predicted by the pp-LFER, 

e.g., the log Ka1 value of 1-chloronaphthalene is predicted as 2.13, while the experiment 

suggests that it is < 1.339. 

1.4.2.2 3D-QSARs 

Seven 3D-QSAR model variants were constructed using different combinations of structure 

generation, alignment, and MIF methods and evaluated with the Linden data set, as explained 

in the method section (Fig. 4, Table 1). The results show the following trends: (i) RMSE and 

R² of the 3D-QSAR model variants for test set predictions were 0.45–0.56 and 0.53–0.70, 

respectively. While the best 3D-QSAR model (M4) performed slightly better than the pp-

LFER, the statistics were similar on average. (ii) The models that used the LSPs10 as 

independent variables tended to result in better predictions than those using the vdW and ele 

MIFs for a given alignment (i.e., O3A, COSMOsim3D, or COSMOsim3d receptor). These 

outcomes suggest that LSPs are more suitable descriptors to describe the binding to αCD than 
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the tested CoMFA variables. This interpretation is in line with the claim that LSPs are 

theoretically more relevant for linear regression models, like PLS, to describe the interaction 

energy10. 

Of the 3D-QSARs tested, the model that uses the COSMOsim3D alignment with the LSP 

variables (M4, Table 1) was the best model variant (i.e., with the lowest RMSE). No 

improvement was observed for the use of the 3D-structure of αCD as the template for the 

alignment (compare M6a and M6b to M4). The fact that no improvement was observed by the 

use of the target-dependent alignment suggests that the selected seven template chemicals 

were sufficient for aligning the 60 chemicals in the Linden data set. This result, however, may 

not be general; alignments with a binding site structure are expected to be advantageous 

particularly if the data availability is limited. 

1.4.2.2.1 Predictions of specific molecular steric effects 

To evaluate the performance of the 3D-QSAR modeling approaches for predicting particular 

types of chemicals, four training and test sets were generated from the Linden data set 

according to test set selection procedure 2 (see the method section) and all prediction 

procedures were redone. Model approaches M3, M4, M5, and M6b were evaluated here 

because they performed best in the random evaluation above and allow comparison of the 

classical CoMFA approach and the new COSMO-based approach. The resulting statistics 

(i.e., q2, RMSE, R2) were similar to those obtained above with test set selection procedure 1 

(Table 1), except for M3, for which the test set selection procedure 2 resulted in worse 

predictions. Fig. 5 compares the experimental data and the predictions by the best model 

variant (M4, with COSMOsim3D + LSPs) for individual chemicals. 
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Figure 5 Prediction of log Ka1 of 60 chemicals with COSMOsim3D alignment and local sigma 

profiles as variables 

Many trends of the data that are related to steric effects were quantitatively described in the 

best 3D-QSAR model variant we found (M4). For example: experimental data show relatively 

large differences in log Ka1 between isomeric chemicals with the functional group at the 

terminal and the middle positions such as 1-heptanol and 4-heptanol. These chemicals are 

predicted successfully by M4, e.g., 1-heptanol (log Ka1 exper. 3.08, pred. 2.75) and 4-heptanol 

(log Ka1 exper. 2.16, pred. 2.36). Also, elongation of the alkyl chain in only one direction 

resulted in a higher increase of log Ka1 than elongation in two or more directions (Fig. 6), 

correctly reproducing the findings of the experimental data. The 3D-QSAR model variants 

M3, M5, and M6b were not able to describe the differences between these alcohols so well as 

M4 (Fig. 6). The comparison between M4 and M5 shows that the use of LSPs instead of vdW 

and ele not only minimizes the overall prediction errors but helps distinguish structural 

isomers of alcohols. The standard CoMFA model (M3) underestimates most of these alcohols 

and is not able to capture the molecular steric effects. M6b uses LSPs as variables, but it 
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appears that the target-based alignment cannot as accurately reproduce the trend of alcohol 

data as the ligand-based alignment in this case. 

 

Figure 6 Experimental and predicted log Ka1 for αCD binding of two C6-alcohols and five C8-

alcohols. 

 External validation of the modeling approaches 1.4.3

For an external evaluation of each modeling approach, models were generated using all self-

measured data (Linden data set) as the training set and evaluated with a literature data set 

(Suzuki data set) as an external test set. The Suzuki data set40 includes 87 neutral aliphatic and 

aromatic chemicals (range of log Ka1: -0.09–3.81, mean: 1.95, SD: 0.81). The prediction of 

the Suzuki data by the pp-LFER calibrated with the Linden data (Table 2, M1) was 

substantially worse (RMSE = 1.08, R² = 0.16), as compared to the test set predictions of the 

Linden data set (Table 1, M1). This RMSE is even greater than the SD of the Suzuki data. It is 

notable that the pp-LFER, which does not include steric terms, does show promising statistics 

when evaluated with the Linden set alone (Table 1, M1), whereas the model calibrated with 

the Linden set does not extrapolate well to the external Suzuki set.  
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The 3D-QSAR models handled the external prediction better than the pp-LFER model, but 

RMSE values for the predictions of the Suzuki data set (Table 2, M2-M7) were 0.13-0.19 log 

units higher than the test set predictions for the Linden data set. The model variant that uses 

the COSMOsim3D alignment and LSPs (Table 2, M4) achieved an RMSE of 0.59 and an R² 

of 0.61, while all other models had RMSE > 0.68 and R² < 0.5. For a given alignment, LSPs 

resulted in better or equivalent statistics as compared to vdW and ele. These results are in line 

with the findings we obtained from the model evaluation with the Linden data set only. 

Table 2 Comparison of the statistical results for the prediction of the Suzuki data set. All Linden 

data were used as the training set. 

Modeling 
approach Method Alignment Field q² RMSE R² 

M1 pp-LFER   
 

1.09 0.19 
M2 3D-QSAR O3A LSP 0.8 0.69 0.44 
M3 3D-QSAR O3A vdW ele 0.69 0.72 0.39 
M4 3D-QSAR COSMOsim3D LSP 0.83 0.59 0.61 
M5 3D-QSAR COSMOsim3D vdW ele 0.71 0.72 0.32 
M6b 3D-QSAR COSMOsim3D 

receptor 
MDsim 

LSP 0.58 0.68 0.48 

M7 3D-QSAR COSMOsim3D 
receptor 
MDsim 

vdW ele 0.73 0.68 0.49 

O3A is open3Dalign, MDsim is molecular dynamics simulation, q² is the coefficient of 

determination for the leave-two-out cross validation using the training set, RMSE is the root 

mean square error of the test set in log units, and R² is the coefficient of determination of the test 

set. LSP, vdW, and ele indicate the use of local sigma profiles, van der Waals interaction field, 

and electrostatic interaction field, respectively, as molecular interaction fields. 
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1.5 3D-QSAR modeling of the binding to BSA 

The modeling approach that performed best with the prediction of the αCD binding 

(COSMOsim3D + COSMOsar3D) was applied to another partitioning example that is 

influenced by steric effect: the partitioning between BSA and water16,17. Especially, anionic 

chemicals show distinct steric effects that are responsible for up to two log units differences 

in log KBSA/water ([Lwater/kgBSA]) between structural isomers. The partition coefficient is defined 

as  

𝐾𝐵𝐵𝐵/𝑤𝑎𝑤𝑤𝑤 =  
𝑐𝐵𝐵𝐵
𝑐𝑓𝑤𝑤𝑤

    (3) 

where cBSA is the concentration of the chemical bound to BSA [mol/kgBSA] and cfree is the 

freely dissolved concentration of the chemical in water [mol/Lwater]. Depending on the field, 

partitioning or binding to BSA is also reported as a binding constant Ka [M-1], again defined 

for the 1:1 binding as 

𝐾𝑎1 =  
[𝑆 − 𝑏𝑆𝑎 ]
[𝑆][𝑏𝑆𝑎]

    (4) 

where S is the substrate and S-BSA is the 1:1 complex. Thus the binding constant can be 

derived from the partition coefficient using the following equation: 

𝐾𝑎1 =  𝐾𝐵𝐵𝐵/𝑤𝑎𝑤𝑤𝑤𝑀𝑀𝐵𝐵𝐵    (5) 

where MWBSA is the molecular weight of albumin (~67 kg/mol). 

It is important to notice that prior to building a model, we had to generate a common binding 

hypothesis, i.e., a common 3D alignment, between the solutes and BSA. The exact position 

and orientation of the solute is of minor influence in case of solvent partitioning because 

steric effects do not hinder the possible interactions between small solvent molecules and a 

solute. In contrast, the sorption to proteins, like BSA, is influenced by the spatial structure of 

the sorption sites and any possibly resulting steric hindrance. This means that a modeling 

approach needs to represent the spatial structure and the chemical environment of the sorption 

sites. Because we wanted to construct a model that is as generally applicable as possible, we 
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chose an approach that assumes that the different reported sorption sites of BSA are alike and 

their spatial structure and interaction possibilities can be expressed through one characteristic 

binding site41. To identify the optimal alignment in the characteristic binding site, we used 

those five chemicals from the experimental data sets with the strongest binding to BSA (so 

called template chemicals) and a rigid structure, assuming that they would represent a nearly 

optimal positioning at the binding site. The software COSMOsim3D13 generated an averaged 

sigma surface (including the 3D information) from the sigma surfaces of the template 

chemicals, benzo[g,h,i]perylene, chrysene, pyrene, naphthalene-2-sulfonate, and 

2-naphthaleneacetate, which represents the characteristic binding site and which was used for 

the optimal alignment of the chemicals of the data set. These five chemicals are a reasonable 

choice for the template because a high partition coefficient corresponds to a good interaction 

with BSA and rigid structure helps to delineate the binding site better than flexible structure. 

Obviously, choice of template chemicals is always limited through the data availability of 

binding chemicals, which may partially limit the domain of applicability of the resulting 

model. The 3D similarity between the averaged sigma surface of the five template chemicals 

and the sigma surface of each chemical was maximized through the translation and rotation of 

the 3D-COSMOfiles of each chemical in the 3D space; this corresponds to an optimization of 

the best possible interaction with BSA. This optimization procedure was carried out using a 

grid with a 0.5 Å spacing. Analog to the modeling procedure of the binding to αCD, the 

conformer with the highest alignment score was selected for further modeling and if there 

were multiple conformers with the same alignment score, then the conformer with the lowest 

internal energy was used. 

 Results 1.5.1

Five 3D-QSAR models were calibrated from different subsets of the available experimental 

data to describe the partitioning to BSA and to predict the respective test sets. Again, we 
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decided to use several combinations of training and test sets to account for the dependency of 

the statistical results of 3D-QSAR modeling on the combination of training and test sets. Fig. 

7 gives examples of the test set predictions that resulted from different combinations of 

training and test sets. The prediction of the five random test sets resulted in an RMSE of 0.63 

± 0.10 and an R² of 0.52 ± 0.15 (the values represent the mean ± standard deviation). The 

neutral chemicals (n=21) of the test set were predicted with an RMSE of 0.59 ± 0.04 while 

anionic chemicals (n=11) were predicted with an RMSE of 0.68 ± 0.23. In general, the neutral 

chemicals are better predicted compared to the anionic chemicals, which might be caused by 

the disproportion of the training sets (62 neutral chemicals and 32 anionic chemical). 

However, the neutral chemicals in the calibration set appear to improve the description of the 

partitioning of anionic chemicals to BSA, as modeling using solely the anionic chemicals was 

less successful than that with the combined data set. Reasons for this outcome could be the 

small number of anionic chemicals that is not enough to calibrate the model, and the higher 

diversity of the neutral data set that helps also to predict log KBSA/water of less diverse, and 

even anionic, chemicals as long as the 3D-structures of the anionic chemicals are similar to 

those of the neutral chemicals. The binding mechanism behind the 3D-QSAR model can be 

examined with the help of the contributions of the different LSPs/MIFs to the overall model. 

The positive influence of anionic partial charges on the partitioning to BSA, which is 

expressed in the experimental data, is captured in the model. Other important interactions 

identified by the model are van der Waals interactions and the hydrophobic effect. 
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Figure 7 (A) Best and (B) worst prediction of log KBSA/water of 21 neutral and 11 anionic chemicals 

of five random test sets. The blue diamonds indicate the neutral chemicals and the red triangles 

indicate the anionic chemicals. The solid line indicates the 1:1 line and the dashed lines indicate 

a deviation of 1 log unit from the 1:1 line. 

 Prediction of molecular steric effects 1.5.2

The important steric effects in the anionic data were investigated separately using the 

comparison of the prediction of different isomers. In experimental data, several isomer pairs 

show similar steric effects: an ortho-substitution of benzoate decreases log KBSA/water 

substantially compared to a para- or meta-substitution (2-chlorobenzoate vs. 

4-chlorobenzoate, 2,6-dichlorobenzoate vs. 3,4-dichlorobenzoate, 2-methylbenzoate vs 

4-methylbenzoate) and a substitution at the alpha-position of naphthalene decreases log 

KBSA/water while a substitution at the beta-position increases log KBSA/water, particularly if the 

substitution group is negatively charged (1-naphthoic acid anion vs. 2-naphthoic acid anion, 

1-naphthalenacetic acid anion vs. 2-naphthalenacetic acid anion). The steric hindrance of the 

ortho-position results in a twist of the carboxylate group17, which was speculated as a possible 

reason for the observed specificity. The relative sorption behavior of these isomer pairs with 

steric effects was predicted correctly by the models (Fig. 8). Even quantitative predictions 

(errors < 0.8) were achieved for three of the five isomer pairs. The other two had relatively 

large prediction errors: log KBSA/water of 3,4-dichlorobenzoate is underestimated (1.26 log 

units) and log KBSA/water of 4-methylbenzoate is overestimated (0.85 log units).  
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Figure 8 Experimental and the average predicted log KBSA/water values of the modified test sets for 

several isomer pairs. The black line in the graphs indicates the 1:1 line, the red squares indicate 

the ortho- or alpha-substituted isomer, and the blue squares indicate the para- or 

beta-substituted isomer. The green lines in the pictures show the alignment chemicals/templates 

while the blue sticks show the ortho- or alpha-substituted isomer and the red sticks show the 

para- or beta-substituted isomer. The teal (LSP 7) and the violet (LSP 8) area indicate the space 

where the models identified a positive interaction of an anionic partial charge with BSA. The 

alignment figures were generated using Pymol42. 

The alignment of the chemicals was an important factor for the distinction of the isomer pairs. 

The green lines in the pictures of Fig. 8 show the five alignment chemicals while the sticks 

show the respective isomers. The alignments of the five template chemicals resulted in 

superimposed atoms and bonds and hereby in stacked aromatic π-systems. In addition, the 

anionic groups of naphthalene-2-sulfonate and 2-naphthaleneacetate are located at the same 

position, which could represent a possible interaction with a positively charged or electron-

withdrawing group of BSA.43 Indeed, all isomers of Fig. 8 with the higher log KBSA/water value 

have their charged group located close to this position (this interaction space is indicated in 

Fig. 8 by the teal and violet areas as it is expressed in the model). The isomers of Fig. 8 with 

the lower log KBSA/water value (marked with red squares) have their anionic group at different 

positions, which seems to be inevitable for maximizing the overlapping of the rest of the 

structure to the template but seems to lead to omission of the interaction between the charged 

group of the chemical and BSA in the model. This difference in the positions of the anionic 

groups, which is caused by the twist of the carboxylate group, can explain the different log 

KBSA/water values of the isomers. 

Another pair of chemicals that is of interest is 2,4,6-trimethylbenzene sulfonate and 2,4,6-

trimethylbenzoate, which have a 2.3 log units difference between their experimental log 

KBSA/water values. This difference is also predicted correctly but it might not be solely caused 

by the steric hindrance of the carboxylate group. In comparison to the superimposition of the 

other aromatic chemicals, 2,4,6-trimethylbenzene sulfonate has a shifted position in the 
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alignment. This could be a hint for a different binding mode of 2,4,6-trimethylbenzene 

sulfonate (log KBSA/water exper.: 4.23 pred.: 3.52) caused by: A closer inspection of the sigma 

surface of 2,4,6-trimethylbenzene sulfonate shows: a) its aromatic ring exhibits a lower 

electron density than that of 2,4,6-trimethylbenzoate (log KBSA/water exper.: 1.99 pred.: 2.00) 

and b) the C-SO3– bond (1.8 Å) is longer than the C-CO2– bond (1.5 Å).42 The latter structural 

feature might allow 2,4,6-trimethylbenzene sulfonate to undergo an interaction with the 

charged group even in the presence of the steric hindrance of the neighboring methyl groups. 

Furthermore, the sulfonate group has more interaction possibilities than the carboxylate group 

because the sulfonate group has an additional oxygen atom and the C-SO3
– bond is better 

rotatable than the C-CO2
– bond. Thus, the positions and interactions of the sp² orbitals of the 

oxygens are more flexible in case of the 2,4,6-trimethylbenzene sulfonate. These flexibilities 

of 2,4,6-trimethylbenzene sulfonate in the positioning and the interaction possibilities may 

result in a higher experimental and predicted log KBSA/water value compared to 

2,4,6-trimethylbenzoate. 

These results show that the 3D-QSAR model with LSPs as descriptors is capable of 

describing and predicting log KBSA/water for anionic and neutral chemicals. The steric effects, 

especially for the anionic chemicals, are successfully captured by the model. Thus, the model 

may be used for the prediction of unknown KBSA/water for neutral and anionic chemicals, which 

is helpful for a qualified environmental and toxicological assessment of these chemicals. 

 Domain of applicability 1.5.1

The domain of applicability was assessed with the help of the Tanimoto indices. Tanimoto 

indices44 calculate the similarity of a test chemical against the training set. For the LSPs of 

two different chemicals (X and Y), the Tanimoto index is calculated as: 

𝑇𝑗(𝑥, 𝑦) =  
∑𝑋𝑖𝑗 𝑌𝑖𝑗

 ∑𝑋𝑖𝑗2 +  ∑𝑌𝑖𝑗2 −  ∑𝑋𝑖𝑗𝑌𝑖𝑗
    (6) 
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with Xij and Yij, the j-th field values at the i-th grid point. The arithmetic mean of the 

Tanimoto indices of the LSP 1 to 10 (i.e., the j-th field value in eq. 1) of a test chemical was 

calculated against each of the chemicals in the training set. Then, the mean of the five highest 

values was calculated (Tanimoto index mean). Data were grouped for every Tanimoto index 

mean value of 0.1 (called Tanimoto groups) and compared in regard to the prediction errors of 

the different Tanimoto groups. The statistical difference between the variances of two 

Tanimoto groups was determined with a Brown-Forsythe analysis45 and the statistical 

difference between the medians of two Tanimoto groups was determined with a Mann-

Whitney U analysis46. These statistical tests were selected because the data are, most likely, 

not normally distributed. 

The median of the prediction errors for the five random test sets apparently decreases with 

increasing Tanimoto index mean (Fig. 9). This may suggest that the reliability of the 

prediction rises with increasing Tanimoto index mean. For statistical evaluation, we chose the 

second highest range of Tanimoto index mean (0.60-0.70) as the reference group and tested 

the differences in prediction errors of all the other groups from it. We did not consider the 

group 0.70-0.80 because it comprises only four chemicals. Compared to the reference group, 

the median of the prediction errors is only significantly larger for the Tanimoto group of 0.30-

0.40. No group has a significantly different variance than the reference group. Note, however, 

that the prediction error depends strongly on the combination of test and training sets.  

Three anions (1-bromo-2-naphthoic acid anion, bromoxynil, pentachlorophenolate) that 

were not part of the model calibration set were used as additional validation chemicals. The 

prediction is accurate for 1-bromo-2-naphthoic acid anion (prediction error 0.08 log units) 

despite a relatively small Tanimoto index mean of 0.34. In contrast, bromoxynil anion and 

pentachlorophenolate were predicted with 2.47 and 2.33 log units off, respectively. Both 

chemicals have a Tanimoto index mean value of 0.16, which indicates a higher chance for a 

large prediction error. The large prediction errors for these two phenolates can be expected 
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because the training set does not contain any phenolate, and their low Tanimoto index means 

reasonably explain the outlying behavior of these chemicals. In the alignment, bromoxynil 

anion and pentachlorophenolate are displaced compared to the other aromatic chemicals, 

which might be caused by the different nature of the anionic groups of the template chemicals 

and of these two phenolates. For a future successful prediction of log KBSA/water for phenolates 

more experimental data for phenolates and thus a better calibration through phenolates in the 

training set of the 3D-QSAR model appear to be needed. Moreover, template chemicals may 

also need to include at least one phenolate. 

Other chemicals that are expected to be out of the domain of applicability of the presented 

model are zwitterions and cations because they have no representation in the training set. 

Multiply charged anions may also be difficult to predict because the effect of the second 

charged group is probably not covered by the model. Other examples of chemicals that should 

be out of the domain of applicability are big bulky chemicals (e.g., monensin Tanimoto index 

mean 0.07, perfluorononanoic carboxylate Tanimoto index mean 0.09) including 

oligosaccharides (e.g., maltotriose Tanimoto index mean 0.12), long tertiary and quaternary 

organic chemicals (e.g., 4-butyl-4-pentylnonanal Tanimoto index mean 0.14), because they 

are not part of the current calibration set and might bind to BSA through another mechanism. 

The same holds true for fatty acids, which bind to a specific binding site of BSA47 (e.g., 

undecane carboxylate Tanimoto index mean 0.19). 
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Figure 9 Prediction errors of the 3D-QSAR model plotted against the Tanimoto index range of 

the five most similar chemicals of the training set. The boxes outline the 25th to 75th percentiles, 

the lines through the centers represent the median, the whiskers indicate the 90th and 10th 

percentiles, and the dots indicate outlying points. The results for all five random test sets are 

plotted. 

1.6 Conclusions 

In this work, we determined αCD binding constants for systematically selected neutral 

organic chemicals to gain more insight into the influence of 3D steric effects on the binding to 

αCD. Based on the acquired data set, we established a new method for the determination of 

CD binding constants. The obtained results show clear steric restrictions which influence the 

binding process to αCD. Particularly, hydrophobic aromatic chemicals indicated clear size 

limitations. Another strong effect on the binding constant is caused by the position of the 

functional group, which restricts the length of the alkyl chain that interacts with the αCD 

cavity. This insight might be helpful for practical applications of CD, e.g., high affinity of 

αCD for linear aliphatic compounds relative to branched, inflexible compounds could be used 

for selective binding and separation of these chemicals. 

Modeling the binding to αCD was the next step after the results of an often (over)used 

approach, a correlation with log KOW, were less than convincing. Thus, a thorough evaluation 

of three different modeling approaches was done. As assumed, the description of the binding 
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to αCD needs to include the 3D-structure of the solutes because the 3D-QSAR model worked 

much better than the simple correlation with log KOW and better than the 2D-QSAR model 

(pp-LFER) considered here. Because the COSMO 3D-QSAR performed also better than 

tested standard CoMFA, it can be concluded that the LSPs are more suitable variables for 3D-

QSAR modeling of the binding process to αCD and probably for other binding processes as 

well, e.g., binding to other types of cyclodextrin with a different application range. The 

positive results, especially the coverage of the steric effects, suggested an applicability of the 

successful modeling approach to similar problems, i.e., binding processes that are also highly 

influenced by steric effects and not appropriately describable with other modeling approaches 

(log KOW, pp-LFER).  

An example is the partitioning between BSA and water for organic chemicals, which is 

strongly influenced by steric effects particularly for anionic organic chemicals. The applied 

3D-QSAR successfully captured the steric effects that are responsible for up to two log units 

differences in log KBSA/water between structural isomers. The assumptions behind the generated 

characteristic binding site (i.e., several localized binding sites with similar chemical 

environments and the interaction possibilities of the sites can be expressed as an averaged 

characteristic binding site) appear to be adequate for the 3D-QSAR modeling approach. The 

discrimination between different binding sites was not necessary for successful modeling for 

the data set used in this work. Thus, the obtained model may be used for the prediction of 

unknown KBSA/water for neutral and anionic chemicals, which is helpful for a qualified 

environmental and toxicological assessment of these chemicals. Possible examples are the 

assessment of the freely dissolved concentration of chemicals in typical cell assays and the 

estimation of the bioaccumulation potential of organic anions, provided that other sorption 

phases such as phospholipid membranes are considered as well. The presented work is the 

first application of COSMO-based 3D-QSARs for binding/partitioning problems and could be 

the basis for applications to similar or even more advanced problems.  
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1.8  Abbreviations 

3D-QSAR 3D quantitative structure activity relationship 

αCD  alpha-cyclodextrin 

BSA  bovine serum albumin 

CDs  cyclodextrins 

CoMFA comparative molecular field analysis 

COSMO conductor like screening model 

COSMO-RS conductor-like screening model for real solvent 

ele  electrostatic 

log KOW logarithmic octanol-water partition coefficient 

LSPs  local sigma profiles 

MIFs  molecular interaction fields 

O3A  Open3Dalign 

PA  polyacrylate 

PAHs  polycyclic aromatic hydrocarbons 

PDMS  poly(dimethylsiloxane) 

PLS  partial least square 

pp-LFER poly-parameter linear free energy relationship 

QSAR  quantitative structure activity relationship 

RMSE  root mean square error 

vdW  van der Waals 
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Binding of solutes to macromolecules is often influenced by steric effects caused by the 3D structures of
both binding partners. In this study, the 1:1 a-cyclodextrin (aCD) binding constants (Ka1) for 70 organic
chemicals were determined to explore the solute-structural effects on the aCD binding. Ka1 was mea-
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chain is favorable for binding. These results suggest that only one alkyl chain can enter the binding cavity.
Relatively small aromatic chemicals such as 1,3-dichlorobenzene bind to aCD well, while larger ones like
tetrachlorobenzene and 3-ring aromatic chemicals show only a weak interaction with aCD, which can be
explained by cavity exclusion. The findings of this study help interpret cyclodextrin binding data and
facilitate the understanding of binding processes to macromolecules.
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1. Introduction

The binding of small molecules to macromolecules is important
in numerous processes such as enzymatic reactions, receptor bind-
ing, plasma protein binding, and drug formulation with excipients.
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While partitioning of small molecules between various homoge-
nous phases such as solvents are well understood and quantified
according to the contributions of specific molecular interactions
[1], this is yet not the case for the binding to macromolecules. In
contrast to homogeneous partitioning systems, the influence of
the three-dimensional (3D) structure plays a decisive role in the
sorption process to macromolecules. Generally, a good fit between
the small molecule and the macromolecule is important for the
efficiency of the binding process [2].

An example of macromolecules that are used to bind smaller
chemicals are cyclodextrins (CDs). CDs are conic ring oligosaccha-
rides and are also present naturally. CDs are usually made of 6, 7,
and 8 glucopyranose units, which are named a-, b-, and c-CD,
respectively. The conic ring structure of CD generates a cavity. Its
surface is mostly formed by the hydrophobic parts of the molecule
[3]. The molecular structure of CDs can also be modified to increase
their particular applicability, e.g., six modified CDs are widely used
as excipients for clinical purposes [4]. Here, one advantage of CD as
excipient is its low toxicity [4]; orally applied, CDs have shown low
absorption to the blood circulation and therefore exerted no toxic
effect [5].

In solution, CDs commonly form inclusion complexes (host–
guest complexes) with many chemicals. Typically studied guests
are drugs whose molecular mass ranges from 100 to 400 Da [6].
The specificity of CD binding appears to be relatively low, and
the association constants (K [M�1]) vary widely across different
guest molecules: for example, protonated aniline has a log K of
0.36 for the association with a-CD [7] while decyltrimethylammo-
nium bromide has a log K of 3.57 [8], and nucleotides can have log
KP 6 for the association with aminocyclodextrins [7]. While CDs
are sometimes considered like a normal, homogeneous phase [9],
the 3D structure of the small molecules appears to play a critical
role for the formation of the host–guest complex with CD [10] as
for other macromolecular binding.

Energetics associated with the formation of the host–guest
complex with CD are discussed in the literature based on two con-
cepts: (a) Direct intermolecular interactions between host and
guest via van der Waals forces and hydrogen bonding which are
influenced by the fit between the guest and the CD cavity, and
(b) additional positive energy gains through the formation of the
host–guest complex. The latter includes mechanisms such as: the
release of bound water from the cavity to bulk water, and the relief
of conformational stress of the cyclodextrin [11]. The relative
importance of the different factors on the partition process should
depend on the guest molecule.

In addition to the beneficial use for clinical and other industrial
purposes, CD is often considered a model macromolecule to study
host–guest complexation. An advantage of using CD for studying
molecular steric effects on binding behavior is its well-
investigated 3D structure. The binding is flexible to some degree
but restricted in the conic main structure [12]. The angles between
the glucopyranose units vary depending on the solvation medium,
the host–guest complex, and the aggregate state. Binding coeffi-
cients of CD give direct indications of the strength of binding, but
experimental data found in the literature (e.g., [10,13]) are derived
from many sources that use different methods. Thus, the data are
not always comparable and the composition of the data set might
not be designed to answer specific questions regarding the influ-
ence of the 3D structure.

In this study we experimentally determined a large, consistent
dataset of binding constants for aCD with 70 aliphatic and aro-
matic chemicals such as alcohols, ethers and chlorobenzenes. The
aim of this study was to identify the 3D-structural features of guest
molecules that influence the binding affinity to aCD. Particularly,
we sought for explanations for substantially different binding con-
stants that we found for apparently similar chemicals.
2. Materials and methods

2.1. Materials

The chemicals were purchased from various providers- and
their purity was at least 94% and mostly >98%, as listed in the sup-
porting information (SI). There were some chiral chemicals, the
chirality of which was not specified. All test chemicals used for
binding experiments were first dissolved in methanol to make
stock solutions. Three to five chemicals of one compound class
were mixed into one stock solution. Only those chemicals that
were distinctly separated through the gas-chromatographic (GC)
system (see below) were mixed together. The concentration of
each chemical in methanol stock solution did not exceed 10% of
the water solubility so that the final concentration after dilution
in water was well below the solubility limit. For all experiments
pure water produced by a MilliQ Gradient A10 system (Millipore)
was used. Polyacrylate (PA, coating thickness 36 lm, volume of
the coating 16.5 lL/m)- and poly(dimethylsiloxane) (PDMS, coat-
ing thickness 30 lm, volume of the coating 13.2 lL/m)-coated
glass fibers produced by Polymicro Technologies Inc. (Phoenix,
AZ) were purchased from Optronics GmbH (Kehl, Germany). aCD
was obtained from Wacker Chemie AG with a purity of at least
98.0% and a maximum residual complexant (1-decanol) of
20 ppm. aCD (0.5–2 g) was weighed into a 100 mL volumetric flask
and dissolved with MilliQ water to prepare CD stock solution,
which was diluted further before the binding experiment.

2.2. Instruments

The following equipment was used for the quantitative analy-
sis: Hewlett Packard GC System HP 6890 series gas-
chromatographs with a flame ionization detector (FID) or an elec-
tron capture detector (ECD), both systems connected to an HP 7694
Headspace Sampler; an Agilent 7890A GC System equipped with a
5975C inert MSD Triple Axis Detector and a Gerstel Multi Purpose
Sampler (MPS 2XL). The chemicals were analyzed on either of the
following two columns from Agilent Technologies: HP-1
(30 m � 0.32 mm i.d., 4 lm film thickness), or HP-5MS
(30 m � 0.25 mm i.d., 0.25 lm film thickness).

2.3. Binding experiments

Binding constants for 70 chemicals were measured in batch sys-
tems. The used methods have been described in detail previously
[14] and are briefly explained below. In both methods, the
unbound, freely dissolved concentration of the chemical was deter-
mined via the measurement of a third phase, either air (headspace
approach) or a PA or PDMS fiber (passive sampling approach). All
binding experiments were performed at 30 �C, which was the low-
est possible temperature that the sample tray of the GC autosam-
pler was able to control.

2.3.1. Headspace approach
Air was the common third phase (reference phase) for this

approach [15]. Two groups of weighed 20 mL vials were prepared
with four vials per group. One group was filled with 5 mL water
and the other was filled with 5 mL aCD solution (2–15 g/L). The
vials were spiked with 10 or 25 lL of methanolic stock solution
of the selected chemicals and were immediately closed with a
PTFE- or aluminum-lined silicone septum to prevent loss of the
chemicals. From the experience of preliminary experiments, the
equilibrium time was set to a minimum of four hours: first three
hours on a horizontal shaker at 30 �C with 300 rpm and then at
least one hour on the GC-sample tray at 30 �C with low shaking



Table 1
Ka1 and Ka2 derived from the concentration dependent measurement.

Chemical Ka1 (M�1) Standard
error

Ka2 (M�1) Standard
error

6-Undecanone 8.13 � 102 0.24 � 102 7.6 � 101 0.5 � 101

2-Undecanone 6.31 � 103 0.46 � 103 9.7 � 101 1.8 � 101

Dihexylether 2.55 � 103 0.28 � 103 1.28 � 102 0.27 � 102

Dipentylether 4.65 � 102 0.61 � 102 1.10 � 102 0.25 � 102

Dibutylether 2.09 � 102 0.19 � 102 4.4 � 101 1.4 � 101

5-Decanone 5.24 � 102 0.62 � 102 4.5 � 101 1.6 � 101

2-Decanone 3.86 � 103 0.03 � 103 6.7 � 101 0.2 � 101

Chlorobenzene 1.25 � 102 0.24 � 102 0.9 � 101 1.5 � 101

1,3-Dichlorobenzene 4.69 � 102 0.14 � 102 0.6 � 101 0.2 � 101

Pentachlorobenzene 1.2 � 101 0.4 � 101 0
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speed. Then the headspace was probed with a 100 lL sampling
loop or a 250 lL syringe and injected into the GC and measured
with GC–FID/ECD or GC–MS.

2.3.2. Passive sampling approach
The passive sampling approach was used for chemicals which

are not volatile enough for the headspace approach. PA or PDMS
fiber is the common reference phase for this approach [16,17].
The experimental setting was similar to that with the headspace
approach except for the following changes. The volume of the solu-
tions and the vials was 10 mL, each vial received 5 or 10 cm of PA-
or PDMS-coated fiber and the equilibrium time was 72 h at 30 �C.
Previous studies [18,19] confirmed that this equilibrium time is
sufficient for a wide range of chemicals. After equilibrium was
reached, the PA/PDMS fibers were removed from the vials and
carefully wiped with a clean tissue. Then the fibers were extracted
overnight on a roll mixer using 200 lL of cyclohexane (for PDMS)
or ethyl acetate (for PA). The concentrations of the extract were
quantified with the GC–MS system using external calibration.

2.4. Data analysis

The results of GC analyses were evaluated using the same
approach as Geisler et al. [14]. Thus, the partition coefficient
between the aCD solution and water (KCD solution/water [Lwater/LCD
solution]) was determined from the relative GC peak areas of vials
with and without aCD. In cases where partitioning of the chemical
into air or the fiber contributed substantially to the mass balance,
this was considered in the calculation of KCD solution/water based on
known air–water or fiber–water partition coefficient of the chem-
ical [14]. The resulting KCD solution/water was used to derive the par-
tition coefficient between aCD and water (KCD/water [Lwater/kgCD])
according to:

KCD solution=water ¼ KCD=watercCD þ fwater ð1Þ
cCD is the concentration of aCD in the aCD solution [kgCD/LCD solution]
and fwater is the volume fraction of water in the aCD solution [Lwater/
LCD solution]. As cCD was only up to 0.015 kg/L in this work, fwater was
considered unity.

2.5. Stoichiometry of the complexes

The stoichiometry of the CD host–guest complexes can differ
depending on the types and concentrations of CD and guest [20–
22]. The common stoichiometry is 1:1 and 2:1 but other kinds of
complexes can be found in the literature [8,23–27]. Previous stud-
ies show that smaller chemicals tend to form only 1:1 complexes,
while larger ones can also form 2:1 complexes [28]. For studying
interactions of CD with various guest molecules, it is advantageous
to compile consistent data for 1:1 complexes.

Complexation constants for 1:1 and 2:1 binding can be
expressed as,

Ka1 ¼ ½SaCD�
½S�½aCD� ð2Þ

Ka2 ¼ ½SðaCDÞ2�
½SaCD�½aCD� ð3Þ

Ka1Ka2 ¼ ½SðaCDÞ2�
½S� aCD½ �2

ð4Þ

where Ka1 and Ka2 [M�1] are the formation constants for the 1:1 and
2:1 complexes, respectively. S is the substrate (guest), and SaCD
and S(aCD)2 are the 1:1 and 2:1 complexes, respectively. Assuming
that 1:1 and 2:1 binding is dominant, the partition coefficient intro-
duced in Eq. (1) has the following relationship with the binding
constants:

KCD solution=water ¼ fwater Ka1½aCD� þ Ka1Ka2 aCD½ �2 þ 1
� �

ð5Þ

If Ka2 is very small, then the second term in the parentheses and
therefore 2:1 binding become negligible and KCD solution/water

depends linearly on the concentration of aCD. This implies that a
linear relationship between KCD solution/water and [aCD] indicates a
dominance of 1:1 binding. The relative importance of 2:1 binding
becomes higher with higher [aCD], as indicated by the squared
concentration in the second term of Eq. (5). We experimentally
tested the influence of the aCD concentration (0.5, 1, 5, 10, 15,
20 g/L) on KCD solution/water for chemicals with a long linear alkyl
chain (i.e., 6-undecanone, 2-undecanone, 5-decanone, 2-
decanone, dihexylether, dipentylether, dibutylether), because they
are more likely to form 2:1 complexes with aCD than their shorter
analogues [29]. Also, we tested the influence of [aCD] on the bind-
ing of three aromatic chemicals of different sizes (chlorobenzene,
1,3-dichlorobenzene, pentachlorobenzene) to ensure 1:1 binding.
Eq. (5) was fitted to these concentration dependent data for KCD

solution/water to obtain Ka1 and Ka2. For the other chemicals, single
concentration data for KCD solution/water were measured and used
to derive Ka1, assuming no significant 2:1 binding (i.e., Ka2 = 0 in
Eq. (5)).

3. Results and discussion

3.1. Measurements of Ka1

The concentration dependent measurements (Table 1; also see
figures in SI) show that KCD solution/water increases linearly with
[CD] for chlorobenzene, 1,3-dichlorobenzene, and pentachloroben-
zene, suggesting dominant 1:1 binding. For 6-undecanone,
2-undecanone, dihexylether, dipentylether, dibutylether, 5-
decanone, and 2-decanone, the relationship was nonlinear to vary-
ing degree. Nevertheless, these chemicals also form mostly 1:1
complexes if the aCD concentration is smaller than 5 g/L (i.e.,
5 mM), as suggested by Eq. (5) in combination with Ka1 and Ka2

obtained by fitting. At [CD] 6 2 mM, the second term in Eq. (5)
has only a small contribution, and Ka1 could also be derived from
a single concentration measurement with an error below 0.15 log
units. For these reasons, we conclude that it is valid to assume a
dominance of 1:1 binding for the studied aromatic chemicals in
the [CD] range we used and for the tested aliphatic chemicals in
the low [CD] range, which allows the use of Eq. (5) with Ka2 = 0
to derive Ka1. This assumption is consistent with the literature,
where it is reported that short chain surfactants (C8) do not form
2:1 complexes to a considerable degree [30] and that long chain
surfactants (C10 and C12) form mostly 1:1 complexes with some
contributions from 2:1 complexes [8,31,32].
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The Ka1 values of 70 chemicals were determined in batch exper-
iments. The chemical set comprises: 19 alcohols, 19 ketones, 9
polycyclic aromatic hydrocarbons (PAHs), 6 chlorobenzenes, 5
alkylbenzenes, 4 ethers, 4 nitroalkanes, and 4 phosphates/phos-
phonates. These chemicals have various functional groups but rel-
atively simple molecular structures, which should facilitate
interpretation of the results. Moreover, the data set includes mul-
tiple series of chemicals with increasing number of structural units
(i.e., ACH2A, ClA, aromatic ring), enabling the assessment of incre-
mental effects on the binding behavior. We avoided measuring
complex chemicals like drugs, because they have many different
chemical features which could cause indistinguishable effects on
the binding to aCD. The measured log Ka1 values span over a wide
range, from 1.08 (pentachlorobenzene) to 4.97 (1-dodecanol). For
10 chemicals, Ka1 was too small to measure with the applied
method (denoted with log Ka1 < 1.3 in Table 2).

3.2. Correlation with the octanol–water partition coefficient

The log octanol–water partition coefficient (Kow) is often related
to log KCD/water [33–36] and was even proposed as a descriptor for
predictions [34]. The log Ka1 values measured in this study are
compared to log Kow in Fig. 1. The experimental log Kow values
were taken from the EPIsuite 4.1 database [37] if available, and
otherwise, KOWWIN was used to estimate log Kow.

As shown in Fig. 1, the correlation between log Kow and log Ka1

is weak, with R2 of 0.19. Correlation is particularly weak in the high
Kow range (i.e., log Kow > 3). For example, 1-dodecanol and pen-
tachlorobenzene have similar log Kow values (5.13 and 5.17,
respectively) but differ more than 3 log units in their Ka1 values
(4.96 and 1.08, respectively). Conversely, nitroethane and phenan-
threne have >4 log units different log Kow values (0.18 and 4.46,
respectively) but log Ka1 values are both <1.3. As has been demon-
strated by others, the correlation between log Kow and log KCD/water

can be higher if only one chemical class is considered [35,38].
However, log Kow is not useful for the understanding of the specific
binding process to aCD, nor for estimating log KCD/water if different
classes are considered. Obviously, log Kow does not account for the
3D structure effects. Therefore, in the following sections, we ana-
lyze the data further and try to identify the specific steric factors
influencing the binding process to aCD.

3.3. Aliphatic compounds

The experimentally derived binding coefficients of chemicals
with one or more linear alkyl chains (14 alcohols, 14 ketones, 4
nitroalkanes, 4 ethers, and 3 phosphates) are plotted in log units
against the number of carbon atoms (Fig. 2). More specifically,
we include here (1) linear aliphatic compounds with the polar
functional group at the end of the molecule, i.e., RAOH, RAC(@O)
CH3, and RANO2, where R is a linear alkyl chain of differing lengths,
(2) aliphatic compounds with the polar functional group in the
middle of the molecule, i.e., RAC(OH)AR0, RAC(@O)AR0, and
RAOAR, where R0 = R or RACH2A (i.e., one unit longer), and (3) tri-
alkyl phosphates (i.e., PO4-RRR). The log Ka1 values within each
homologous group increase linearly with the number of carbon
atoms. It is remarkable that log Ka1 of n-alkan-1-ols (R-OH)
increase linearly from 1-butanol to 1-decanol. The torus of aCD
has a height of 8 Å [11], whereas the distance between the atomic
nuclei of C1 and C10 of decanol is around 11.5 Å for the stretched
conformer [39]. Theoretically, around 3 Å of the stretched 1-
decanol molecule should stick out of the aCD cavity and experi-
ence water as the surrounding phase, from which there is no
energy gain to be expected for the sorption process. Thus, the lin-
ear increase of log Ka1 for n-alkan-1-ols suggests that the alkyl
chain or aCD–or both–adapt their conformation, which enables
optimal interactions between the alkyl chain and aCD for mole-
cules that are too long to fit into the cavity in their stretched con-
formation. Comparable data have been published for surfactants
(alkyltrimethylammonium bromide/chloride) in regard to the
chain length; Ka1 values larger than 104 M�1 are reported for 12
carbon atoms [8]. The Ka1 values of 1-undecanol and 1-dodecanol
measured in this study are even higher than that of 1-decanol
but the stoichiometry might not be solely 1:1, as the concentration
dependent measurements in this study do not cover chemicals
with a linear alky chain length >9. We were not able to perform
these experiments with 1-undecanol and 1-dodecanol because
the GC peak shapes were too distorted. A similar trend for alcohols
has been reported also in the literature (see SI) but with 1-nonanol
as the largest chemical.

Chemicals with the functional group at the end of the molecule
have generally higher Ka1 than chemicals with the same functional
group in the middle, when compared at the same number of C
(Fig. 2). Moreover, the slopes of the three end-substituted chemical
classes are similar, and so are the slopes of the three middle-
substituted classes. However, there is a substantial difference in
the slopes between end-substituted and middle-substituted
classes (0.40 and 0.26 log units/C on average, respectively). That
means that elongation of the molecule in one direction increases
Ka1 more than elongation in two directions, per carbon atom. Tri-
alkyl phosphates (elongation in three directions) exhibit an even
smaller slope (0.1 log units/C). Such a differential increase per C
does not occur with solvent–water partition coefficients such as
Kow and thus has to be caused by steric effects.

The observations above are consistent with the concept avail-
able in the literature [40,41] that the polar functional group of
the bound guest molecule stays outside the hydrophobic cavity
and interacts with the surrounding water or with one of the hydro-
xyl groups of the CD rims. Thus, the polar functional group restricts
the location and the orientation of the guest relative to CD and can
thereby hinder the optimal interactions of the alkyl chain(s) with
the CD cavity. It is plausible that the polar functional group stays
outside the cavity, because the polar functional group of the free,
unbound chemical can undergo strong hydrogen bonding interac-
tions with water molecules, whereas hydrogen bonds cannot be
formed inside the hydrophobic cavity of CD. Thus, the polar func-
tional group could enter the cavity only if that leads to a free
energy gain that is larger than the free energy loss due to the
breakup of hydrogen bonds with water. Assuming that the polar
functional group has to be outside the cavity, end-substituted
chemicals may still fully insert their alkyl chain into the cavity,
whereas middle-substituted chemicals may not insert both chains
well in the cavity.

It is also worth noting that the regression lines for end- and
middle-substituted chemicals intersect at 2 and 3 carbon atoms
for alcohols and ketones, respectively (Fig. 2). These intersections
correspond to ethanol and acetone. This is reasonable, as the struc-
tural difference between end- and middle substitutions diminishes
with decreasing number of carbon atoms.

To obtain more insights into the binding mechanisms of alipha-
tic compounds to aCD, we estimated the number of carbon atoms
within the cavity based on the following, very simple assumptions:
1. The polar functional group cannot enter the cavity. 2. Only one
alkyl chain per molecule can enter the cavity, and the number of
encapsulated carbon atoms is not restricted by the height of the
CD torus. 3. If there are two chains or more with differing lengths,
then the longest one enters the cavity (see Fig. 3; only the num-
bered carbon atoms are assumed to be in the cavity). In Fig. 4,
log Ka1 is plotted against the number of encapsulated carbon atoms
estimated this way.

There are several findings in Fig. 4. First, plots for end-
functionalized alcohols, ketones and nitroalkanes overlap each



Table 2
Experimental aCD/water binding coefficients of the measured chemicals.

Class Chemical log Ka1 SD or SE

End-substituted alcohols 1-Butanol 1.64 0.09
1-Pentanol 2.22 0.04
1-Hexanol 2.63 0.03
1-Heptanol 3.08 0.04
1-Octanol 3.29 0.08
1-Nonanol 3.83 0.21
1-Decanol 4.32 0.06
1-Undecanol 4.72 0.06
1-Dodecanol 4.97 0.07

Middle-substituted alcohols 3-Hexanol 1.83 0.07
4-Heptanol 2.16 0.05
4-Octanol 2.35 0.04
5-Nonanol 2.48 0.04
5-Decanol 2.86 0.12

Branched alcohols 2-Methyl-2-propanol <1.3
3-Ethyl-3-pentanol 1.62 0.11
2-Ethyl-1-hexanol 2.82 0.06
3-Ethyl-3-hexanol 2.21 0.05
4-Ethyl-3-hexanol 2.10 0.05

End-substituted ketones 2-Pentanone 1.50 0.02
2-Hexanone 2.01 0.01
2-Heptanone 2.46 0.01
2-Octanone 2.89 0.01
2-Nonanone 3.26 0.06
2-Decanonea 3.59 0.01
2-Undecanonea 3.80 0.03

Middle-substituted ketones 3-Pentanone <1.3
3-Hexanone 1.71 0.08
4-Heptanone 2.05 0.06
4-Octanone 2.35 0.05
5-Nonanoe 2.55 0.06
5-Decanonea 2.72 0.05
6-Undecanonea 2.91 0.01

Branched and cyclic ketones 3-Methyl-2-butanone <1.3
4-Methyl-2-pentanone 1.31 0.09
Cyclopentanone <1.3
Cyclohexanone <1.3
Cycloheptanone 1.36 0.38

Nitroalkanes Nitroethane <1.3
1-Nitropropane 1.49 0.05
1-Nitrobutane 1.94 0.03
1-Nitrohexane 2.68 0.04

Ethers Dipropyl ether 1.88 0.31
Dibutyl ethera 2.32 0.04
Dipentyl ethera 2.67 0.05
Dihexyl ethera 3.41 0.04

Trialkyl phosphates Triethyl phosphate 1.69 0.15
Tri-n-propyl phosphate 1.88 0.09
Tri-n-butyl phosphate 2.30 0.07
Diethyl ethylphosphonate 2.01 0.17

Alkylbenzenes Toluene 1.68 0.05
Ethylbenzene 2.28 0.02
n-Propylbenzene 2.93 0.01
n-Butylbenzene 3.08 0.05
n-Hexylbenzene 3.48 0.13

Chlorobenzenes Chlorobenzenea 2.10 0.08
1,3-Dichlorobenzenea 2.67 0.01
1,2,4-Trichlorobenzene 2.19 0.03
1,2,4,5-Tetrachlorobenzene 1.25 0.07
Pentachlorobenzenea 1.08 0.12
Hexachlorobenzene 1.40 0.26

PAHs Naphthalene 1.59 0.07
Acenaphthylene <1.3
Acenaphthene <1.3
Biphenyl 1.67 0.16
1-Chloronaphthalene <1.3
Fluorene 1.85 0.25
Phenanthrene <1.3
Dibenzothiophene 2.79 0.10
Fluoranthene 1.69 0.21

a Data are derived from the concentration dependent measurement. The error presented is SE for these data. For the other data, the error shown is SD.
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Fig. 1. Experimental 1:1 aCD binding coefficients versus octanol/water partition
coefficients. The log Ka1 values were determined at 30 �C and the log Kow values
were from the EPIsuite 4.1 database or predicted with KOWWIN. The white circles
indicate chemicals with log Ka1 < 1.3. The solid line indicates the linear regression of
the black circles.

Fig. 2. Experimental Ka1 for aCD versus number of carbon atoms. The lines indicate
the linear regressions. The dashed lines are the regressions for end- and middle-
substituted alcohols which are extrapolated to the intersection. The grey lines are
the regressions for end- and middle-substituted ketones which are extrapolated to
the intersection. The data points for ethanol and acetone were derived by
extrapolation and have not been measured.

Fig. 3. Scheme for estimating the number of encapsulated carbon atoms by the aCD
cavity. The numbered carbon atoms are assumed to be in the CD cavity, which is
represented as the dotted circle.

Fig. 4. Experimental Ka1 versus estimated number of encapsulated carbon atoms.
The lines indicate the linear regressions. The linear regressions for middle-
substituted alcohols and ketones are omitted for clarity.
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other; that is, end-functionalized linear chemicals from different
classes have similar log Ka1 when the estimated number of carbon
atoms in the cavity is identical. This shows that the functional
group influences Ka1 similarly for alcohols, ketones and nitroalka-
nes. If the functional group interacts with water in both bound
and unbound states, its net energy contribution to the binding is
close to zero, and thus the type of functional group has only a lim-
ited influence on Ka1, agreeing with the data in Fig. 4. Note that the
functional groups considered here are all polar and can form
hydrogen bonds with water. Second, slopes and positions of
middle-functionalized chemicals and trialkyl phosphates are now
close to those of end-functionalized chemicals. Third, log Ka1 of
the middle-substituted chemicals are consistently higher than
those of the end-substituted chemicals when compared at the
same number of estimated C. This shift is roughly between 0.2–
0.5 log units and smaller than the increment per C for the end-
functionalized chemicals. This supports the assumption that only
one alkyl chain enters the cavity. The shift itself may be explained
by some additional energy gain from the alkyl chain that is
assumed outside the cavity or the carbon atom that is designated
as CX in Fig. 4. Perhaps, these carbon atoms can still interact with
the rim or the outside of the CD molecule. But energy gain from
the non-encapsulated carbon atoms appears to be much less than
that of the encapsulated ones.

It has to be repeated that the middle-substituted alcohols and
ketones plotted in Fig. 4 are not all symmetric but include those
chemicals with one chain that is one CH2 unit longer than the other
chain. The middle-substituted alcohols and ketones do show linear
increase depending on the encapsulated number of carbon atoms
in the cavity but the data scatter more than end-substituted chem-
icals. This also suggests some interactions between the non-
encapsulated alkyl group and aCD.

Overall, the concept that polar functional group stays outside
the cavity and only one alkyl chain enters the cavity can explain



Fig. 6. Experimental Ka1 versus molecular weight for alkylbenzenes (circles) and
chlorobenzenes (triangles). The molecular structures show the corresponding
chlorobenzenes.
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the data trends of mono-functional, linear aliphatic chemicals very
well, but additionally, aCD seems to interact with the parts of the
guest molecule that are not considered encapsulated in the cavity.

3.4. Aliphatic chemicals with branched alkyl chain

We measured five alcohols with 8 carbon atoms: 1-octanol, 2-
ethyl-1-hexanol, 4-octanol, 3-ethyl-3-hexanol, and 4-ethyl-3-
hexanol. The log Ka1 values decrease in this order (Fig. 5) and also
the length of the longest linear, non-branched alkyl chain within
the molecule. These data also imply a favorable interaction
between aCD and a linear alkyl chain, although not excluding pos-
sible interactions of the rest of the molecule with aCD.

While Ka1 of a chemical with an ethyl-branched alkyl chain is
lower than that of its non-branched isomer, the energetic contribu-
tion of the additional ethyl group is always positive. Hence, log Ka1

is higher for 2-ethyl-1-hexanol (2.81) than for 1-hexanol (2.62),
and log Ka1 of 3-ethyl-3-hexanol and 4-ethyl-3-hexanol is higher
than that of 3-hexanol. It is thus apparent that the branched ethyl
group can also interact with CD and has a significant contribution
to Ka1.

3.5. Aromatic chemicals

The aromatic chemicals studied in this work are nine PAHs, six
chlorobenzenes, and five alkylbenzenes. The alkylbenzenes contain
one linear alkyl chain of increasing length, but log Ka1 is not a sim-
ple linear function of the number of C atoms (Fig. 6), in contrast to
the polar aliphatic compounds shown above. The increment in log
Ka1 is 0.62 per additional methylene unit from toluene to propyl-
benzene, which is higher than the mean increment of 0.40 for
the end-substituted linear aliphatic compounds. From propylben-
zene to hexylbenzene the increment in log Ka1 per additional
methylene unit is 0.19. The benzene ring does not form a strong
H-bond with water and thus can favorably enter the hydrophobic
cavity of aCD. As the benzene ring occupies a fraction of the cavity,
alkylbenzenes possessing an alkyl chain with three or more carbon
atoms appear to experience a steric effect that lowers the log Ka1

increase per C.
Chlorobenzenes represent an even more pronounced example

of the influence of steric restriction. The log Ka1 values are above
2 for chemicals possessing one to three chlorine atoms; 1,3-
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Fig. 5. Experimental Ka1 for aCD binding of 2 C6-alcohols and 5 C8-alcohols.
dichlorobenzene has the highest log Ka1 (2.66), after which log
Ka1 starts to decrease with an increasing number of chlorine atoms.
The 1,2,4-trichlorobenzene has a log Ka1 (2.19) that is around 0.8
log units higher than the log Ka1 of 1,2,4,5-tetrachlorobenzene,
pentachlorobenzene, and hexachlorobenzene. Mono and 1,3-
dichlorobenzenes appear to fit into the cavity, whereas 1,2,4-
trichlorobenzene already experiences a negative steric effect. The
log Ka1 for 1,2,4,5-tetrachlorobenzene is even lower than that of
monochlorobenzene, suggesting that the three additional
chlorine-substitutions hinder the interactions of the benzene ring
and the original chlorine atom with aCD.

PAHs also exhibit clear steric restriction. Toluene (1.68), biphe-
nyl (1.67) and naphthalene (1.59) have similar log Ka1 values, even
though the latter two molecules are much larger, indicating that
more than one aromatic six-ring cannot fully fit into the aCD cavity
(Table 2). Moreover, naphthalene has a higher log Ka1 value than 1-
chloronaphthalene, acenaphthene, acenaphthylene, and phenan-
threne. This suggests that there is no room left in the cavity for
an element other than hydrogen around the naphthalene structure.

Dibenzothiophene, an aromatic three-ring system with a sulfur
atom, exhibits the highest log Ka1 (2.79) of all PAH-related com-
pounds tested. It is interesting that its log Ka1 value is 0.94 log units
higher than that of fluorene (1.85), the structural analogue of
dibenzothiophene with S being replaced by C. It is unknown why
there is such a large difference in Ka1 between dibenzothiophene
and fluorene. The 3D structure and the electron distribution appear
similar, as indicated by the sigma profiles and the COSMO files gen-
erated by quantum chemical software Turbomole [44]. Our exper-
imental observation is consistent with the literature data for bCD
binding constants of fluorene (log KbCD = 3.08 [42]) and dibenzoth-
iophene (log KbCD = 3.48 [43]). The difference is smaller than that of
aCD but the trend is similar. We also tried to measure the binding
constants of pyrene, chrysene, benzo[a]pyrene and benzo[b]fluo-
ranthene, but the binding to aCD was too weak to measure (pyr-
ene) or concentrations in the PDMS fiber were below our
detection limit.
4. Conclusions

In this study, we observed clear steric restrictions which influ-
ence the binding process to aCD. Particularly, hydrophobic aro-
matic chemicals indicated clear size limitations. The width of
the aCD cavity may be represented by 1,3-dichlorobenzene or
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naphthalene, and any bulkier chemicals do not fit well into the cavity.
Considering this clear size effect on aromatic compounds, it is sur-
prising that linear aliphatic chemicals with an alkyl chain longer
than nine carbon atoms still exhibit high binding coefficients.
The question remains: how is the long alkyl chain able to fit into
the cavity or how else is the high interaction energy explainable?
There should be an adaption of the alkyl chain to the cavity as well
as some other parts of the aCD. This would require some bending
of the alkyl chain. Crystallographic data or molecular dynamics
simulations would be needed to obtain a better insight into this
phenomenon.

Another finding is that the binding of polar aliphatic chemicals
strongly depends on the position of the functional group which
restricts the length of the alkyl chain interacting with the aCD cav-
ity. In general, a long unhindered alkyl chain appears to act as an
anchor on a bigger molecule and should be able to bind to aCD.
The general trends identified in this data set of organic chemicals
should provide useful information for practical applications of
aCD. For example, high affinity of aCD for linear aliphatic com-
pounds relative to branched, inflexible compounds could be used
for selective binding and separation of these chemicals.

The experimental data of this work are highly consistent and
diverse and thus are useful in a quantitative modeling approach
for log Ka1. The simple correlation with log Kow was found to be
too low to be useful for prediction purposes. Our results strongly
indicate that any modeling approach should consider the 3D struc-
ture of the aCD and the guest molecule. We are currently working
on the use of 3D quantitative structure activity relationships for
modeling of the binding data presented above, which will be
reported in an upcoming article.
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a b s t r a c t

Binding of organic chemicals to a-cyclodextrin (aCD) is a typical example for host-guest complexation
that is influenced by the 3D-structure of both the binding site (host) and the solute (guest). Prediction of
the binding constant is challenging and requires a successful representation of the binding site-solute
interactions in the 3D-space. In this study, we tested if a 3D quantitative structure activity relation-
ship (3D-QSAR) model with quantum mechanically based local sigma profiles (LSPs) derived from the
COSMOsar3D method is capable of predicting aCD binding constants from the most recent literature and
how the model performs in comparison to a standard comparative molecular field analysis and to a
reference 2D-QSAR. The results showed that the new 3D-QSAR model was more predictive than both
reference models (RMSE 0.45 vs 0.53/0.52, R2 0.70 vs 0.53/0.68). Furthermore, only the new model
captured the differences in the binding constants between structural isomers of aliphatic alcohols and
allowed an extrapolation of the prediction to another literature data set. The high performance of the 3D-
QSAR model with LSPs tested in this study and its theoretical robustness suggest that this modeling
approach should be applicable to other binding processes including protein binding.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Binding of organic chemicals to macromolecules is of high
tative structure activity rela-
uctor-like screening model;
molecular interaction fields;
screening model for real sol-
-LFER, poly-parameter linear
, molecular dynamics simu-

n Research Plaza & Graduate
ku, 558-8585 Osaka, Japan.
ac.jp (S. Endo).
relevance in environmental science and related fields. For example,
binding to macromolecular sorbents such as cyclodextrins (CDs)
can be utilized for remediation of contaminated materials. More-
over, binding to proteins including binding proteins, enzymes,
transporters, and receptors has strong impacts on toxicity of
chemicals. Prediction of binding coefficients poses a major chal-
lenge, as the three-dimensional (3D) structure of both the solute
and the binding site strongly influences the binding free energy,
thus the binding constant (Herrmann, 2014). This is in contrast to
the partition coefficients between liquids, for which the free energy
is sufficiently well predicted by descriptors that characterize the
interaction properties of the whole molecule without considering
the molecular geometry (Karickhoff et al., 1991; Klamt, 1995;
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Abraham et al., 2004; Endo and Goss, 2014).
3D quantitative structure activity relationships (3D-QSARs)

attempt to establish a correlation between a macroscopic property
(e.g., binding constant, receptor affinity) and 3D-structural features
of the solutemolecules. Awidely used 3D-QSAR tool is comparative
molecular field analysis (CoMFA) (Cramer et al., 1988). CoMFA uses
3D-discretized molecular field properties, called molecular inter-
action fields (MIFs), as descriptors for a statistical method (e.g.,
partial least square, PLS). Recently, Klamt et al. proposed the COS-
MOsar3D method (Klamt et al., 2012), which uses 3D-gridded
COSMO surface polarization charge densities as a new set of MIFs.
This extension of CoMFA emerges from the quantummechanically-
based COSMO-RS (conductor-like screening model for real sol-
vents) method (Klamt, 1995; Klamt et al., 1998), which predicts the
properties of a chemical by using the surface polarization charge
densities (called sigma surface) of the molecule calculated quan-
tum mechanically in a virtual conductor. For each molecule, the
calculated sigma surface can be condensed into a sigma profile, a
histogram of all the ‘partial’ charges (or charge-patches) of the
molecule. The sigma surface and the sigma profile of a chemical
appear to accurately describe the abilities of the molecule to un-
dergo intermolecular interactions including electrostatic,
hydrogen-bond, and van der Waals interactions (Klamt, 2011). To
extend this concept to 3D-QSARs, COSMOsar3D computes the
sigma profiles at grid points within the 3D space to give the local
sigma profiles (LSPs) (Thormann et al., 2012). The LSP is thus a
histogram that contains information about the sigma surface of a
specific part of the molecule. Considering the theoretical basis and
the proven accuracy of COSMO-RS for partitioning between liquids,
it is anticipated that the LSPs are ideal MIFs for 3D-QSAR modeling
of the binding free energy that is strongly influenced by the mo-
lecular geometry of solutes. Nevertheless, the COSMOsar3D
method has only been tested against standard sets of enzymatic
inhibition activities by the developers and there has been no
attempt to apply this method to equilibrium binding constants.

In this study, COSMOsar3D is used to model data sets of a-
cyclodextrin (aCD) binding constants. aCD is built of six 1-4-linked
glucopyranose units that form a conic ringwith a diameter of 5 Å. In
water, all hydroxyl groups are positioned on the outside of the aCD
ring, resulting in a hydrophobic cavity inside (Cox et al., 1984),
which enables aCD to form host-guest complexes. Formation of CD
complexes (Connors, 1997) can improve the solubility of chemicals
(Hedges, 1998), clean waste gas streams (Blach et al., 2008),
remediate contaminated soils (Villaverde et al., 2005; Flaherty
et al., 2013), and mask taste and odor compounds (Del Valle,
2004). Further, CDs can be used to enhance the bioavailability of
organic pollutants (Liu et al., 2013), remove them from aqueous
media (Sawicki and Mercier, 2006), and extract dyes from sand (De
Lisi et al., 2007). CDs are also considered a useful test material for
investigating macromolecular binding because of their relatively
simple and well-studied structure as well as evidences of sub-
stantial molecular steric effects on the binding constants (Tabushi,
1982; Ishiwata and Kamiya, 1999; Schneider, 2009). In the common
cyclodextrin family (i.e., a-, b-, g-), aCD may be the most suitable
starting material for studying 3D-effects on binding, as it has the
smallest cavity and thus the highest restriction for host-guest
complexation.

The purpose of this study is to evaluate the LSP-based 3D-QSAR
(i.e., COSMOsar3D) for predicting aCD binding constants in com-
parison to a standard CoMFA model that uses steric and electro-
static fields as MIFs. In addition, these 3D-QSARs are compared to a
well-established 2D-QSAR, namely the linear solvation energy
relationship (LSER), which is a polyparameter linear free energy
relationship (pp-LFER) model using Abraham's descriptors
(Abraham et al., 1994; Goss, 2005). Since the LSER does not
explicitly include descriptors that describe molecular geometry,
this comparison serves to evaluate whether taking into account the
molecular 3D geometry improves the accuracy of predictions for
aCD binding constants.

2. Methods

2.1. Data sets

Two data sets of 1:1 aCD binding constants (Ka1) [M�1] were
considered in this study. The first has been measured in our labo-
ratory under a consistent experimental condition, as reported
previously (Linden et al., 2016). This data set, referred to as the
“Linden data set”, was used for the calibration and the first evalu-
ation of the modeling approaches, because we consider these data
of high quality and consistency. The second data set was from
Suzuki (2001), who assembled literature data for aCD binding
constants. The Suzuki data set was used for an additional external
validation of the modeling approaches.

The Linden data set (Linden et al., 2016) consists of 60 neutral
aliphatic and aromatic chemicals (range of log Ka1: 1.25e4.97,
mean: 2.42, standard deviation (SD): 0.83). It contains several
groups of isomers, e.g., 1-hexanol (i.e., end-substituted alcohol) and
3-hexanol (i.e., middle-substituted alcohol) as well as homologous
series of chemicals (e.g., alcohols, ketones, ether, chlorobenzenes).
The Suzuki data set (Suzuki, 2001) includes 87 neutral aliphatic and
aromatic chemicals (range of log Ka1: �0.09e3.81, mean: 1.95, SD:
0.81). Ionic or partly ionic chemicals were not considered here to
avoid uncertainty associated with the actual charge state of the
bound molecule (i.e., ionic or neutral) and different descriptions of
ionic molecules between MIFs. The chemicals and the respective
log Ka1 values are listed in Table SI 1 and Table SI 2. Five alcohols,
namely 1-butanol, 1-pentanol, 1-heptanol, 1-hexanol, and 1-
octanol exist in both data sets. Their reported log Ka1 values are
0.28e0.51 log units higher in the Suzuki data set than in the Linden
data set. The difference in log Ka1 might be, in part, caused by the
different experimental temperatures (Suzuki data 25 �C, Linden
data 30 �C). Linden data were measured at 30 �C which was the
lowest adjustable temperature in the experimental setting. This
minor difference in temperature should be borne in mind when the
results are evaluated (see below).

2.2. Selection procedures for training and test sets

For generation and evaluation of each model (i.e., 2D- and 3D-
QSARs), the Linden data set was split into training and test sets. The
training set was used for model calibration and selection, while the
performance of the resulting model was validated with regard to
the prediction of the test set. Prediction of data that were not part of
the training set is essential as a control and should be considered
the more important quality feature for 3D-QSARs (Gramatica,
2007).

For the general model evaluation, the training and test sets were
generated with the log Ka1 hierarchic bin system (Kauffman and
Jurs, 2001) (procedure 1, see Fig. SI 3 for a scheme). In this sys-
tem, the data set was sorted according to the log Ka1 values of the
chemicals and then, from highest to lowest, four consecutive
chemicals were placed in one bin. One chemical from each bin was
selected randomly and placed in the test set. This classifies 25%
chemicals of the data set to the test set. The rest of the chemicals
formed the training set. The procedure was repeated five times,
resulting in five random training sets and the corresponding test
sets.

In order to evaluate varying steric effects within homologous
series of chemicals and isomers, the following modified procedure
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was used to generate constructed test sets (procedure 2). As in the
first procedure, the chemicals were sorted by log Ka1 and four
chemicals in a rowwere grouped into one bin. Then, the numbers 1
to 4 were given randomly to the four chemicals of a bin. In the first
run of chemical selection, the chemicals with the number 1
embodied the test set, while the rest of the chemicals were used as
the training set. In the second run, the chemicals with the number 2
were the test set, and so forth. This procedure resulted in four test
and training set combinations. In comparison to procedure 1, the
randomness of the selection is reduced, whereas each chemical is
part of a test set once and the other three times it belonged to the
training set.

2.3. 3D-QSARs

The 3D-QSAR modeling followed the workflow shown in Fig. SI
1. Modeling generally takes the following steps: 3D-structure
generation, alignment, MIFs generation, model calibration with
PLS, and model evaluation using the test set. There are multiple
options for each step, as explained below, and different combina-
tions were tested in this work for comprehensive evaluation of the
methods.

2.3.1. 3D structure generation
The 3D structures of all chemicals were generatedwith Tinker or

COSMOconfX13. Tinker (Marinescu and Bols, 2009) is a molecular
modeling package implemented in Open3DALIGN v. 2.3 (O3A)
(Tosco et al., 2011) and generates the structure-data files of the
conformers for the O3A alignment. The quenched molecular dy-
namics conformational search of Tinker was performed with an
implicit solvent calculation and a dielectric constant of 24, which is
the dielectric constant of bCD (Yu et al., 2002), while for the rest of
the parameters the default setting was chosen.

COSMOconfX13 is a tool box that uses Turbomole (Sijm et al.,
2000) for the quantum mechanics calculations of COSMO files.
The default COSMOconf procedure was modified so that it creates
more conformers than usual (see SI). That is to say, the total number
of possible conformers was increased, the energetic distance be-
tween conformers was reduced, and the clustering steps were
loosened. These modifications were intended to account for the
flexibility of the chemicals, which is more important for the aCD
binding than for bulk phase partitioning.

2.3.2. Alignments
The 3D structures of chemicals need to be aligned in the 3D

space before performing statistical analysis. Ideally, the resulting
position and orientation of a chemical in the 3D space corresponds
to the optimal interaction possibility between the chemical and
aCD. In a target-based approach, the structure or a substructure of
aCD is used as the template to which all molecules are aligned. In a
ligand-based approach, the template is generated with the help of
chemicals that bind strongly to aCD (i.e., with high log Ka1 values).
For all approaches, up to ten conformers of each chemical were
considered and the conformer with the highest alignment score
and, if there are multiple conformers with the highest score, then
that with the lowest energywas chosen for themodel. In this study,
the following three alignment procedures were applied.

1. The O3A alignment maximizes the overlap of atoms of the
template chemicals and of the remaining chemicals. This is a
ligand-based method and a standard alignment for CoMFA ap-
proaches and was performed here by using O3A v. 2.3 (Tosco
et al., 2011). The seven chemicals with the largest log Ka1
values of the Linden data set, namely 1-dodecanol, 1-undecanol,
1-decanol, 1-nonanol, 2-undecanone, 2-decanone, and
hexylbenzene were used as template chemicals. These chem-
icals were pre-aligned against each other and then each
conformer of the remaining chemicals was aligned against the
pre-aligned conformers of each template chemical. In the end,
the position of the chemical/conformer with the highest score
against any of the template chemicals was chosen.

2. The COSMOsim3D alignment (Thormann et al., 2012)maximizes
the overlap between the sigma surfaces of the chemical and the
template. Hereby, the template is an averaged sigma profile of
the template chemicals. The template chemicals used were the
same as in the previous alignment method.

3. The COSMOsim3D receptor alignment is a target-based
approach that maximizes the overlap between the inverted
sigma surface of aCD (which is the sigma charge value of each
surface patch multiplied with �1) and the sigma surface of the
chemicals of the data set. The sigma surface of aCD needs to be
inverted because the alignment algorithm maximizes the
overlap of like sigma charges in a ligand-based approach. The
inversion therefore places the chemicals in a position where
greatest interaction energies between both aCD and the
respective chemical occur, as the interaction energy is greatest
when the difference between the sigma charges of two inter-
acting surface segments is maximal. This alignment already
considers the steric restrictions of the aCD cavity because the
chemicals cannot be placed at the same position as the aCD. The
input structure for the COSMOsim3D receptor alignment is the
3D structure of aCD and the position of an exemplary ligand, the
latter defines the starting position in the alignment procedure
for all chemicals that need to be aligned. Two input structures
were used in our approach to test the dependence of the COS-
MOsim3D receptor alignment on the input structure:
(3a) The 3D structure of aCD and the position of a ligand (poly-

p-phenylene rotaxane) were obtained from an X-ray
measurement (Stanier et al., 2001) (three different views of
the complex are shown in Fig. SI 4). The cosmo file of the
aCD structure was derived with a single point calculation
using COSMOconfX13.

(3b) The 3D structure of aCD and the position of a ligand (1-
dodecanol) were estimated by a molecular dynamics
simulation (MDsim), which was kindly provided by Sven
Jakobtorweihen at Hamburg University of Technology. The
complex with the smallest distance between the center of
mass of aCD and that of 1-dodecanol was chosen as the
template for the alignment (Fig. SI 5). The cosmo file for the
resulting aCD structure was derived with a single point
calculation using COSMOconfX13.
2.3.3. MIFs
Two sets of MIFs were used as independent variables for the PLS

regression analysis.

1. The van derWaals (vdW) and the electrostatic (ele) fields are the
two standard CoMFA variables. Molecular mechanics calcula-
tions using the Merck force field (MMFF94) were performed
with Open3DQSAR v. 2.3 (Tosco and Balle, 2011) to derive the
vdW and ele fields. A sp3 carbon atom was used as the probe. A
grid spacing of 1 Å was used with a 5 Å gap, i.e., the minimal
distance to the box, around the chemicals.

2. LSPs were derived from the cosmo files by COSMOsar3D (Klamt
et al., 2012). For the 3D-QSAR model used here the LSPs were
split into several consecutive profiles, each covering a range of
0.006 e/Å2. Thus, MIFs 1, 2, …, and 7 cover sigma values
from�0.024 to�0.018 e/Å2, -0.018 to�0.012 e/Å2,…, and, 0.012
to 0.018 e/Å2, respectively (Fig. SI 2). In the end, the integral of
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each LSP serves as the value for the independent variable. A grid
spacing of 2 Å was used in a box that leaves at least a 5 Å gap
around the chemicals.
2.3.4. Statistical tool
The independent variables, i.e., the MIFs, of the training set

chemicals were correlated with the log Ka1 values using PLS
regression analysis. Prior to PLS regression analysis, the number of
independent variables was reduced as following. An energy cutoff
was set at ± 30 kcal/mol (Kim, 1995), and variables that have a SD
below a level of 0.1 among all training chemicals were excluded.
The different MIFs were scaled before the PLS procedure using
block unscaled weighting (Kastenholz et al., 2000). Moreover,
fractional factorial design selection (Baroni et al., 1992, 1993) was
used to reduce the number of variables.

PLS analysis was performed to derive one to five PLS compo-
nents. Thus, each run resulted in five differentmodels that used one
to five PLS components. Leave-two-out cross validation was per-
formed with each model and then the model with the minimum of
the root mean square error (RMSE) value was selected for further
evaluation against the test set.

2.3.5. pp-LFER
The pp-LFER is among the most accurate and robust models to

describe solute partitioning between liquids or liquid and gas
phases, where molecular interactions are not sterically restricted.
In a practical sense, a 3D-QSAR model may be considered mean-
ingful only if it gives better predictions than the pp-LFER model,
which is simple and quick as long as the solute descriptors are
known. The pp-LFER used here appears,

log Ka1 ¼ cþ sSþ aAþ bBþ vV þ lL (1)

where S is the polarizability/dipolarity parameter, A the solute H-
bond acidity, B the solute H-bond basicity, V the McGowan char-
acteristic volume (cm3 mol�1/100) and L the logarithm of the
hexadecane-air partitioning coefficient. In this work, the pp-LFER
solute descriptors (capital letters in Eq. (2)) were obtained from
the UFZ-LSER database (Endo et al., 2015) and the system param-
eters (lower case letters in Eq. (2)) were fitted with multiple linear
regression analysis using the experimental data for log Ka1 of
training chemicals.

3. Results & discussion

Table 1 shows the statistical results for evaluation of the
modeling approaches using the Linden data set. RMSE and R2

calculated with the test sets are considered more important
Table 1
Comparison of the statistical results of the different modeling approaches for the predicti
approach written in bold performed best of all investigated modeling variants.

Modeling approach Method Alignment

M1 pp-LFER
M2 3D-QSAR O3A
M3 3D-QSAR O3A
M4 3D-QSAR COSMOsim3D
M5 3D-QSAR COSMOsim3D
M6a 3D-QSAR COSMOsim3D receptor X-ray
M6b 3D-QSAR COSMOsim3D receptor MDsim
M7 3D-QSAR COSMOsim3D receptor X-ray

O3Ameans open3DALIGN, q2 is the coefficient of determination for the leave-two-out cro
in log units, and R2 is the coefficient of determination of the test set. LSP, vdW, and ele
trostatic interaction field as molecular interaction field, respectively, SD is standard dev
evaluation criteria than q2. Each value in the table represents the
mean (± standard deviation) of five runs with five different training
and test sets generated by test set selection procedure 1. In the
following, the results of the pp-LFER approach are discussed first
and then the results of the 3D-QSAR approach.

3.1. pp-LFER

First, the pp-LFER equation (Eq. (2)) was fitted to all experi-
mental aCD binding constants of the Linden data set (i.e., no test
and training set selection) to have an idea to what extent the 2D
model can describe the whole data set (Fig. SI 4). This fit resulted in
the equation

log Ka1 ¼ �0:32ð± 0:44Þ þ 2:04ð± 0:63ÞSþ 3:15ð± 0:63ÞA
� 3:01ð± 0:50ÞBþ 6:01ð± 0:88ÞV � 1:10ð± 0:21ÞL

(2)

The fit of the pp-LFER equation usually results in a standard
deviation of 0.1e0.2 log units for homogeneous solvent-water
partition systems, which are not influenced by steric effects, and
a larger standard deviation for partitioning or binding to hetero-
geneous materials such as serum albumin and natural organic
matter (Bronner and Goss, 2011; Endo and Goss, 2011). The RMSE
for the binding to aCD (Fig. SI 4) is 0.48, being comparable to fits for
other heterogeneous materials (Bronner and Goss, 2011).

The pp-LFER fits for training sets extracted from the Linden data
set resulted in system parameters similar to those for the complete
Linden data set (Table SI 3). The predictions for the corresponding
test sets (Table 1, M1) were surprisingly accurate
(RMSE ¼ 0.52 ± 0.05 and R2 ¼ 0.68 ± 0.07). This result was unex-
pected because the experimental results do suggest strong steric
effects, whereas the pp-LFER model does not capture such effects
(Linden et al., 2016). A closer examination of the results revealed
that systematic prediction errors do exist for binding constants, e.g.,
log Ka1 values for end-substituted chemicals were systematically
underestimated and those for middle-substituted chemicals were
overestimated, which is an indication that the pp-LFERmodel is not
able to cover the underlying steric effects. In addition, chemicals
that are not expected to fit into the aCD cavity due to the steric
hindrance were over-predicted by the pp-LFER, e.g., the log Ka1

value of 1-chloronaphthalene is predicted as 2.13, while the
experiment showed that it is < 1.3 (Linden et al., 2016).

3.2. 3D-QSARs

Seven 3D-QSARmodel variants were constructed using different
combinations of structure generation, alignment, and MIF methods
and evaluated with the Linden data set, as explained in the method
on of log Ka1 of the Linden data set using test set selection procedure 1. The modeling

Field q2 ± SD RMSE ±SD R2 ± SD

0.52 ± 0.05 0.68 ± 0.07
LSP 0.63 ± 0.03 0.54 ± 0.08 0.56 ± 0.17
vdW ele 0.58 ± 0.08 0.53 ± 0.11 0.53 ± 0.11
LSP 0.83 ± 0.02 0.45 ± 0.06 0.70 ± 0.08
vdW ele 0.70 ± 0.01 0.56 ± 0.06 0.53 ± 0.12
LSP 0.66 ± 0.06 0.51 ± 0.06 0.61 ± 0.09
LSP 0.71 ± 0.04 0.49 ± 0.04 0.64 ± 0.07
vdW ele 0.51 ± 0.08 0.55 ± 0.08 0.56 ± 0.13

ss validation using the training set, RMSE is the root mean square error of the test set
indicate the usage of local sigma profiles, van der Waals interaction field, and elec-
iation, and MDsim is molecular dynamics simulation.



Fig. 1. Prediction of log Ka1 of 60 Linden's chemicals with COSMOsim3D alignment and
local sigma profiles as variables (M4). Test sets were selected with test set selection
procedure 2. The solid line indicates the 1:1 line and the dashed lines indicate a de-
viation of 0.5 log units from the 1:1 line.
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section (Fig. SI 1, Table 1). The results show the following trends: (i)
RMSE and R2 of the 3D-QSARmodel variants for test set predictions
were 0.45e0.56 and 0.53e0.70, respectively. While the best 3D-
QSAR model (M4) performed slightly better than the pp-LFER, the
statistics were similar on average. (ii) Themodels that used the LSPs
(Klamt et al., 2012) as independent variables tended to result in
better predictions than those using the vdW and ele MIFs for a
given alignment (i.e., O3A, COSMOsim3D, or COSMOsim3d recep-
tor). These outcomes suggest that LSPs are more suitable de-
scriptors to describe the binding to aCD than the tested CoMFA
variables. This interpretation is in line with the claim that LSPs are
theoretically more relevant for linear regressionmodels, like PLS, to
describe the interaction energy (Klamt et al., 2012).

Of the 3D-QSARs tested, the model that uses the COSMOsim3D
alignment with the LSP variables (M4, Table 1) was the best model
variant (i.e., with the lowest RMSE). No improvement was observed
for the use of the 3D-structure of aCD as the template for the
alignment (compare M6a and M6b to M4). Moreover, no difference
was observed between the use of the two aCD structures (M6a (X-
Ray) vs. M6b (MDsim)) for the target-dependent alignment. The
fact that no improvement was observed by the use of the target-
dependent alignment suggests that the selected 7 template
chemicals were sufficient for aligning the 60 chemicals in the
Linden set. This result, however, may not be general; alignments
with a binding site structure are expected to be advantageous
particularly if the data availability is limited. Note that, in principle,
MDsim could directly calculate binding coefficients (Gebhardt and
Hansen, 2016; Sancho et al., 2016) but such calculations would be
time consuming for a larger number of chemicals, although these
calculations are more and more automated and routinely
performed.

The possibility of a chance correlation for the best modeling
approach (M4) was evaluated by scrambling of the dependent log
Ka1 values in two sorted bins (this means each chemical got a
permuted log Ka1 value) (Tropsha et al., 2003; Rücker et al., 2007),
which resulted in non-predictive models (Rtraining

2 ¼ 0.40,
qLTO2 ¼ �0.0030, the mean of 10 times evaluation).

To infer binding mechanisms, the contributions of the MIFs
(vdW and ele, or LSPs) to the PLS components are examined. The
percentage contributions of the seven LSPs to theM4 PLSmodel are
shown in Fig. SI 6. MIF 4 (�0.012 to 0 e/Å2, Fig. SI 2) had the highest
contribution to the PLS components. This is an indication for the
importance of vdW interactions and the hydrophobic effect for the
binding to aCD (Marques, 2010). The contribution of MIF 4 de-
creases slightly with increasing PLS component number, whereas
the contributions of the other MIFs rather increased with
increasing PLS component number. The PLS component 1 in this
example already explained 70% of the variance in the log Ka1 data,
while the other four PLS components added up to an explained
variance of 27%, i.e., the PLS components 2e5 serve for fine tuning
of the model. The field contributions of model variants that used
vdW and ele variables support the mechanistic interpretation ob-
tained from the LSPs; the contribution of the vdW field is around
90% for the models.

3.2.1. Predictions of specific molecular steric effects
To evaluate the performance of the 3D-QSAR modeling ap-

proaches for predicting particular types of chemicals, four training
and test sets were generated from the Linden data set according to
test set selection procedure 2 (see the method section) and all
prediction procedures were redone. Model approaches M3, M4,
M5, and M6b were evaluated here because they performed best in
the random evaluation above and allow comparison of the classical
CoMFA approach and the new COSMO-based approach. The
resulting statistics (i.e., q2, RMSE, R2) were similar to those
obtained above with test set selection procedure 1 (Table 1), except
for M3, for which the test set selection procedure 2 resulted in
worse predictions (see Table SI 5). Fig. 1 compares the experimental
data and the predictions by the best model variant (M4, with
COSMOsim3D þ LSPs) for individual chemicals.

Many trends of the data that are related to steric effects were
quantitatively described in the best 3D-QSAR model variant we
found (M4). For example: experimental data show relatively large
differences in log Ka1 between isomeric chemicals with the func-
tional group at the terminal and the middle positions such as 1-
heptanol and 4-heptanol. These chemicals are predicted success-
fully by M4, e.g., 1-heptanol (log Ka1 exper. 3.08, pred. 2.75) and 4-
heptanol (log Ka1 exper. 2.16, pred. 2.36). Also, as is the case in the
experimental data, elongation of the alkyl chain in only one di-
rection resulted in a higher increase of log Ka1 than elongation in
two or more directions (Fig. 2). The 3D-QSAR model variants M3,
M5, and M6b were not able to describe the differences between
these alcohols as well as M4 (Fig. 2). The comparison between M4
and M5 shows that the use of LSPs instead of vdW and ele not only
minimizes the overall prediction errors but helps distinguish
structural isomers of alcohols. The standard CoMFA model (M3)
underestimatesmost of these alcohols and is not able to capture the
steric effects. M6b uses LSPs as variables, but it appears that the
target-based alignment cannot as accurately reproduce the trend of
alcohol data as the ligand-based alignment in this case.

Experimental data for chlorobenzenes showed a distinct sub-
stitution effect on the aCD binding constant. Ka1 increases with
chlorine substitution up to two chlorine atoms, whereas a further
substitution decreases Ka1, which can be explained by the size
limitation of the cavity. This effect is not well described by any 3D-
QSAR model tested here. For example, 1,2,4,5-tetrachlorobenzene
and 1,3-dichlorobenzene showed a prediction error larger than
0.6 log units with the best model variant, M4. The use of the aCD
target structure (COSMOsim3D receptor alignment, M6b), the
CoMFAvariables vdWand ele (M5), and the standard CoMFAmodel
(M3) did not improve the prediction of chlorobenzenes. A reason
for the inaccurate predictions for chlorobenzenes could be the



Fig. 2. Experimental and predicted log Ka1 for aCD binding of two C6-alcohols and five
C8-alcohols.
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small number of calibration data that showed strong effects of
steric restrictions. As shown in the previous work (Linden et al.,
2016), Ka1 for chemicals that undergo strong steric restrictions
tend to have Ka1 values that are too low to measure and thus such
chemicals cannot be included in the data set for model calibration.

The end-substituted chemical 1-dodecanol was the biggest
outlier in all predictions. A reason could be that 1-dodecanol has
the longest alkyl chain and the largest Ka1 in the data set. Therefore,
the positive interaction between the long alkyl chain and aCD may
not be covered by the models. Additionally, the 3D-QSAR models in
this work only consider one selected conformer of each chemical,
which neglects the influence of different binding modes for pre-
dictions of flexible molecules like 1-dodecanol. Furthermore, a
recent MDsim study showed that 1-dodecanol interacts substan-
tially with the water surrounding aCD and that the explicit
consideration of the water molecules is necessary for a successful
prediction of long chain alcohols (Gebhardt and Hansen, 2016).
Note that, while the data we considered are for 1:1 binding con-
stants, 2:1 binding can become more important for chemicals with
long alkyl chain(s).
3.3. Predictions of the Suzuki data set

For a further evaluation of each modeling approach, models
were generated using all Linden data as the training set and eval-
uated with the Suzuki data as an external test set. The prediction of
the Suzuki data by the pp-LFER calibrated with the Linden data
(Table SI 6, M1) was substantially worse (RMSE¼ 1.09, R2¼ 0.13), as
compared to the test set predictions of the Linden data set (Table 1,
M1). This RMSE is even greater than the SD of the Suzuki data. It is
notable that the pp-LFER, which does not include steric terms, does
show promising statistics when evaluated with the Linden
set alone (Table 1, M1), whereas the model calibrated with the
Linden set does not extrapolate well to the external Suzuki set. We
have tried the reversed evaluation (i.e., using the Suzuki set as the
training set and the Linden set as the test set, Table SI 6) and ob-
tained similar statistics but substantially different regression
coefficients.

The 3D-QSAR models handled the external prediction better
than the pp-LFER model, but RMSE values for the predictions of the
Suzuki data set (Table SI 6, M2-M7) were 0.13e0.19 log units higher
than the test set predictions for the Linden data set. The model
variant that uses the COSMOsim3D alignment and LSPs (Table SI 6,
M4) achieved an RMSE of 0.59 and an R2 of 0.61, while all other
models had RMSE > 0.68 and R2 < 0.5. For a given alignment, LSPs
resulted in better or equivalent statistics as compared to vdW and
ele. These results are in line with the findings we obtained from the
model evaluation with the Linden data set only. Note that sys-
tematic under-predictions for the Suzuki datawere not found; thus,
the temperature difference is not a significant reason for the
increased RMSE. We obtained similar statistics for the reversed
evaluation (i.e., using the Suzuki set as training set and the Linden
set as test set, Table SI 6). We also found that, if both Linden and
Suzuki sets are combined and split to training and test sets, sta-
tistics for the test set prediction improves (RMSE, R2), which sug-
gests that there are significant differences in the chemical domains
that are covered by the two data sets (Table SI 6). As an example, the
Suzuki data set includes phenols and phenyl acetates, which are
chemical classes not included in the Linden data set. On the other
hand, only the Linden data set includes ethers and ketones.
Moreover, the Suzuki data set is predominated by aromatic
chemicals while the proportion of aromatic and aliphatic chemicals
is comparable in the Linden data set.

We further tested if the steric restriction through the cavity can
correctly be described by the model variant M4. The binding co-
efficients were predicted for the ten chemicals for which we were
able to determine only the upper limit of log Ka1 (<1.3) in the
previous work (Linden et al., 2016). These chemicals are most likely
too large to fit into the aCD cavity. Eight of the ten chemicals had
predicted log Ka1 values of 1.3 ± 0.4, which is in a semi-quantitative
agreement with our experiments. Log Ka1 values for 1-chlor-
onaphthalene (predicted log Ka1 2.67) and acenaphthene (predicted
log Ka1 2.42) were overestimated by > 1 log unit. In contrast, the
prediction of a similar chemical, acenaphthylene resulted in a
predicted log Ka1 of 1.7. The COSMOsim3D alignment placed ace-
naphthene and acenaphthylene in different positions, which likely
explains the deviation in the predictions.
4. Conclusions

A 3D-QSAR model with COSMOsim3D (Thormann et al., 2012)
for alignment and LSPs for independent variables in PLS regression
analysis was capable of predicting aCD binding constants for
organic chemicals with an RMSE of 0.45 log units. This model can
be used for the prediction of unknown aCD binding constants for
neutral organic chemicals and covers the most important steric
effects that influence the binding to aCD (Linden et al., 2016). As
assumed, the description of the binding to aCD needs to include the
3D-structure of the solutes because the 3D-QSAR model worked
much better than the simple correlationwith log KOW (Linden et al.,
2016) and better than the 2D-QSAR model (pp-LFER) considered
here. Hence, it can be concluded that the LSPs are more suitable
variables for 3D-QSAR modeling of the binding process to aCD and
probably for other binding processes as well, e.g., binding to other
types of cyclodextrinwith a different application range. Use of 7 out
of 60 chemicals as templates for the alignment appeared to be
sufficient, also with regard to the prediction for 84 external data
(Suzuki, 2001). Consequently, the combination of COSMOsim3D
and COSMOsar3D may be applicable to similar binding systems
with an unknown or flexible target-structure, as far as data for
some strongly binding chemicals are available. In an upcoming
study, we will apply the 3D-QSAR modeling approaches tested in
this study to model the binding to serum albumin, which also
showed specific 3D effects.
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tions for bovine serum albumin–
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Lukas Linden,a Kai-Uwe Gossab and Satoshi Endo*ac

Ionic organic chemicals are a class of chemicals that is released in the environment in a large amount from

anthropogenic sources. Among various chemical and biological processes, binding to serum albumin is

particularly relevant for the toxicokinetic behavior of ionic chemicals. Several experimental studies

showed that steric effects have a crucial influence on the sorption to bovine serum albumin (BSA). In this

study, we investigated whether a 3D quantitative structure–activity relationship (3D-QSAR) model can

accurately account for these steric effects by predicting the BSA–water partition coefficients (KBSA/water)

of neutral and anionic organic chemicals. The 3D-QSAR tested here uses quantum mechanically derived

local sigma profiles as descriptors. In general, the 3D-QSAR model was able to predict the partition

coefficients of neutral and anionic chemicals with an acceptable quality (RMSEtest set 0.63 � 0.10, Rtest set
2

0.52 � 0.15, both for log KBSA/water). Particularly notable is that steric effects that cause a large difference

in the log KBSA/water values between isomers were successfully reproduced by the model. The prediction

of unknown KBSA/water values with the proposed model should contribute to improved environmental

and toxicological assessments of chemicals.
Environmental impact

Ionic and ionogenic chemicals are used in a substantial amount in our daily life and thus released in the environment. Accurately assessing their partitioning
and distribution behaviour in organisms is necessary for a qualied assessment of their toxicological and bioaccumulation potential. Serum albumin is an
important target for the partitioning of anionic organic chemicals in blood. The results of this work demonstrate that the constructed 3D-QSAR model can be
used to predict unknown bovine serum albumin (BSA)–water partitioning coefficients for both neutral and anionic chemicals. The used modelling approach
should be applicable to other partitioning processes that are also highly inuenced by steric effects.
Introduction

Ionic organic chemicals are common types of chemicals in
industry and our daily life. They are, among others, used as
pesticides; e.g., 2,4-dichlorophenoxyacetic acid (2,4-D) and
methylchlorophenoxypropionic acid (mecoprop) are among
the most widely used herbicides1,2 and both are anionic at
typical environmental and physiological pH. Many pharma-
ceuticals are also ionic; e.g., ibuprofen is an anionic chemical
under neutral pH and is one of the most commonly taken
nonsteroidal anti-inammatory drugs.3 The wide spread of
ch UFZ, Permoserstr. 15, D-04318 Leipzig,
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aza & Graduate School of Engineering,
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tion (ESI) available. See DOI:

Chemistry 2016
ionic chemicals is also reected in the general statistics, e.g.,
under REACH (the Registration, Evaluation, Authorization and
Restriction of Chemicals) around 50% of the preregistered
chemicals are estimated to be ionogenic.4 Nevertheless, the
ecotoxicological and environmental assessment of organic
chemicals (including modeling of their fate) has its focus on
neutral species and usually treats the ionic species in
a simplistic manner, i.e., with the assumption that ionic
species only occur in aqueous phases and do not partition into
other phases. However, a number of experimental studies
demonstrate that even a rather strong sorption of organic
cations to natural organic matter and mineral surfaces in
soils5 and of both cations and anions to phospholipids and
proteins in biological tissues may occur.6–10

A biological phase particularly relevant for the toxicokinetic
behavior of ionic chemicals is serum albumin, the most abun-
dant blood protein of mammals and oen a predominating
sorption phase in blood.11 Through its relatively low specicity
and strong binding for many chemicals, serum albumin inu-
ences the transport and the distribution of many organic ions
Environ. Sci.: Processes Impacts
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in organisms. Particularly, anionic chemicals including per-
uorinated alkyl acids12,13 and nonsteroidal anti-inammatory
drugs14 are known to bind strongly to serum albumin. It is also
noted that fetal bovine serum is the most commonly used
serum supplement for cell culture assays, where bovine serum
albumin (BSA) has a strong impact on the freely dissolved
concentration of the test chemical in the assays.15 Recently,
Henneberger et al. published BSA/water partition coefficients
(KBSA/water [Lwater kgBSA

�1]) for a broad set of ionic chemicals
measured under consistent conditions.7 KBSA/water data help to
assess the chemical distribution in organisms and bioassay
systems.16 The reported ionic partition data to serum albumin
show specic steric effects, which cannot easily be described by
common methods for the prediction of partition coefficients
such as polyparameter linear free energy relationships (pp-
LFERs).17 Prediction of KBSA/water may become even more chal-
lenging when one aims for a model that can be used both for
neutral18 and ionic organic chemicals. In this study, we aim to
construct a model that (i) is capable of predicting log KBSA/water

of neutral and ionic chemicals, (ii) can cover the specic 3D
effects that inuence the binding to BSA, and (iii) can be used to
estimate log KBSA/water for the (eco)toxicological and environ-
mental assessment of organic chemicals.

A modeling tool that is conceptually capable of predicting
steric effects on sorption is the 3D quantitative structure–
activity relationship (3D-QSAR), which correlates 3D-struc-
tural features of the chemicals with the property of interest.
This approach has been developed since the late 80s19 and is
a well-established ligand-based approach to generate
a predictive model.20 Recently, Klamt et al. combined an
existing 3D-QSAR method with quantum chemically based
molecular descriptors, the local sigma proles (LSPs).21 The
LSPs emerge from a solid theoretical basis, the COSMO-RS
(conductor-like screening model for real solvents)
method.22,23 The COSMO-RS method uses the COSMO surface
polarization charge densities (also called the sigma surface)
to calculate, among others, partition coefficients and was
successfully applied to numerous partition systems.24,25 The
sigma surface describes the abilities of a molecule to undergo
intermolecular interactions including electrostatic, hydrogen
bond, and van der Waals interactions with its neighboring
molecules.26 The COSMOsim3D method discretizes the sigma
surface into LSPs. The LSPs are 4-dimensional histograms
describing the amount of surface area within a certain sigma
interval in a specic part of the molecule.21 Klamt et al. sug-
gested that LSPs are theoretically more suitable for a linear
regression model than the standard comparative molecular
eld analysis (CoMFA) descriptors,21 the latter use a van der
Waals and an electrostatic potential derived from a molecular
mechanics calculation.27 LSPs were already applied by us to
predict the binding to a-cyclodextrin,28 which is also inu-
enced by 3D effects29 and is a typical test system that shows
specic binding.30,31 LSPs resulted in a better prediction than
the standard CoMFA descriptors for a-cyclodextrin binding
data.28 In this study, we test whether steric effects that
inuence the partitioning to BSA7 can also be modeled by the
LSPs.
Environ. Sci.: Processes Impacts
Methods
Dataset

Two datasets of KBSA/water were combined in our study: the
dataset from Endo et al.18 with 83 neutral chemicals (log KBSA/water
1.48–4.76) and the dataset from Henneberger et al.7 with 43
anionic chemicals (log KBSA/water 1.65–5.03). The dataset from
Henneberger et al. includes many benzoic acid anions and
naphthoic acid anions with different substitutions and is thus
suitable for investigating 3D structural effects on BSA binding.
The four cationic chemicals from the Henneberger dataset were
not used in this work, because their number is too small for
meaningful evaluation.
3D-QSAR

The sorption to binding proteins such as BSA is inuenced by
the spatial structure of the sorption sites and any possible steric
hindrance. This means that a modeling approach needs to
represent the spatial structure and the chemical environment of
the sorption sites. It should be noted that BSA has multiple
binding sites and that the most favorable binding site may
depend on the solutes. Thus, to apply 3D-QSARs for BSA
binding constants, we have to set the working hypothesis that
the different reported sorption sites of BSA are alike and that
their spatial structure and interaction possibilities can be
expressed through one characteristic binding site.32

In general, 3D-QSAR modeling takes the following steps: (1)
3D-structure generation for the sorbing chemicals, (2) align-
ment, (3) generation of independent variables, (4) training and
test set selection in the experimental dataset, (5) model gener-
ation by the training set with partial least square (PLS) regres-
sion analysis, and (6) model evaluation using the test set. Here,
we used the method combination that performed the best in
terms of the overall statistics and the qualitative descriptions in
the previous publication for a-cyclodextrin binding.28
Local sigma proles

The LSPs are a spatial representation of the surface polarization
charge densities and thereby of the interaction possibilities of
a chemical (for a graphical explanation see Fig. SI1†). The LSPs
are derived from the 3D-COSMO les of the chemicals. The LSPs
can be used for the alignment of the chemicals and for the PLS
regression model as independent variables. Each LSP was split
into sections of 0.006 e Å�2 to capture the spatial distribution of
surface segments with similar charge densities. LSP 1 starts
with the most negative sigma value (in this work, �0.024 to
�0.018 e Å�2) (note that a negative sigma charge value corre-
sponds to a positive partial charge and vice versa) and the LSP
with the highest index (in this work, 10) represents the most
positive sigma charge values of the molecular surface (0.030–
0.036 e Å�2).
Alignment

Prior to building a model, we had to generate a common
binding hypothesis, i.e., a common 3D alignment, between the
This journal is © The Royal Society of Chemistry 2016
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solutes and BSA. For this purpose, we chose those ve chem-
icals from the experimental datasets with the strongest binding
to BSA and the most rigid structure, i.e., chemicals with at least
one conjugated two-ring aromatic structure, which reduces the
degrees of freedom for the alignment. These ve chemicals are
referred to as template chemicals. 3D structures of one to ten
conformers of all chemicals were generated with COSMO-
confX15 in combination with Turbomole (v. 7.0)33 that performs
the quantum mechanics calculations generating 3D-COSMO
les. For more details, see ref. 28. The soware COSMOsim3D34

generated an averaged sigma surface (including the 3D infor-
mation) from the sigma surfaces of the ve template chemicals,
namely benzo[g,h,i]perylene, chrysene, pyrene, naphthalene-2-
sulfonate, and 2-naphthaleneacetate. This averaged sigma
surface is assumed to describe the 3D interaction requirements
of the BSA binding site and was used for the alignment of the
chemicals of the dataset. These ve chemicals are a reasonable
choice for the template because a high partition coefficient
corresponds to a good interaction with BSA and a rigid structure
helps to delineate the binding site better than a exible struc-
ture. Obviously, the choice of template chemicals is always
limited through the data availability of binding chemicals,
which may partially limit the domain of applicability of the
resulting model. The 3D similarity between the averaged sigma
surface of the ve template chemicals and the sigma surface of
each chemical was maximized through the translation and
rotation of each chemical in the 3D space; conceptually, this
corresponds to a search for the chemical's relative position that
is optimal for interactions with BSA. This optimization proce-
dure was carried out using a grid with a 0.5 Å spacing. All
conformers generated for each chemical were aligned. The
conformer with the highest alignment score was selected for
further modeling and if there were multiple conformers with
the same alignment score, then the conformer with the lowest
internal energy was used.

Independent variables

The independent variables for the model are the LSPs, i.e., the
amount of the surface area within a certain sigma charge
interval and a space interval. The LSPs were derived at each grid
point of a box with a grid spacing of 2 Å and a size that includes
a 5 Å space around the chemicals. In the end, there were ten LSP
intervals and 2730 grid points, which gave 27 300 independent
variables but on average 2910 active independent variables
(variables whose values are unequal to zero). The number of
independent variables was then further reduced by an exclusion
of variables that have a SD below a level of 0.1 among all
training chemicals and by a fractional factorial design
selection.35,36

Selection procedures for training and test sets

The quality and the predictive power of the 3D-QSAR models
were assessed with the test sets whose chemicals were not part
of the respective training sets and thus did not inuence the
construction of the respective model. The statistical results of
3D-QSAR modeling depend highly on the combination of
This journal is © The Royal Society of Chemistry 2016
training and test sets. We decided to use several combinations
of training and test sets (see the next paragraph) to capture this
dependency and to obtain statistical results that represent the
entire dataset. The two phenolates in Henneberger's set, namely
pentachlorophenolate and bromoxynil anion were used as
additional validation chemicals, because we wanted to test how
the model performs with the extrapolation to external data that
are not represented in the training set in terms of the ionic
functional group. In addition, 1-bromo-2-naphthoic acid was
also used for additional model validation in order to evaluate
the model performance for an external test chemical that has
the same ionic functional group as some of the test chemicals. It
is worth noting that the critical settings of the alignment, i.e.,
the grid dimension and the choice of template chemicals, were
dened before the selection of test and training sets.

The test sets included eleven anionic and 21 neutral chem-
icals. These correspond to 25.6% and 25.3%, respectively, of the
data available. The dataset was sorted according to the charge
state, i.e., neutral or anionic, and to the log KBSA/water values of
the chemicals.37 Then, four consecutive chemicals with the same
charge state were placed in one bin – the last bin of the ions
contained ve chemicals and the last bin of the neutral chem-
icals contained three chemicals (due to the fact that the total
numbers of anionic and neutral chemicals were not multiples of
four). A random chemical from each bin was selected and placed
in a test set and the rest of the chemicals were put in the training
set; this was repeated until ve test and training sets were
generated. In addition to these random sets, modied test sets
were generated by placing some structurally interesting chem-
icals (e.g., both chemicals from a pair of isomers) always in the
test set while the rest of the test sets were selected randomly.
This was also performed ve times. Modied test sets were
prepared to study specic structural effects on log KBSA/water.
Statistical tool

PLS regression analysis correlates the independent variables,
i.e., the LSPs, with the dependent variables, i.e., the log KBSA/

water values, of the training set. For the PLS regression analysis
the program Open3DQSAR38 was used, see ref. 28. Models with
one to ve PLS components (PCs) were generated and leave-two-
out cross-validation was used to select the best model in terms
of predictive power and least chance of overtting. This selected
model is then used to predict the test set.
Domain of applicability

Tanimoto indices39 were applied to calculate the similarity of
a test chemical to the training set. For the LSPs of two different
chemicals (X and Y), the Tanimoto index is calculated as:

Tjðx; yÞ ¼
X

Xij YijX
Xij

2 þ
X

Yij
2 �

X
XijYij

(1)

with Xij and Yij, the j-th eld values at the i-th grid point. The
arithmetic mean of the Tanimoto indices of the LSP 1 to 10 (i.e.,
the j-th eld value in eqn (1)) of a test chemical was calculated
against each of the chemicals in the training set. Then, the
Environ. Sci.: Processes Impacts
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mean of the ve highest values was calculated (Tanimoto index
mean). Data were grouped for every Tanimoto index mean value
of 0.1 (called Tanimoto groups). We then compared the
prediction errors of the different Tanimoto groups. The statis-
tical difference between the variances of two Tanimoto groups
was determined with a Brown–Forsythe analysis40 and the
statistical difference between the medians of two Tanimoto
groups was determined with a Mann–Whitney U analysis.41

These statistical tests were selected because the data are, most
likely, not normally distributed.
Fig. 2 Contribution of the local sigma profiles for the different PLS
components of the 3D-QSAR model.
Results and discussion
General performance of the models for log KBSA/water

Five 3D-QSAR models were generated from different subsets of
the available experimental data to describe the partitioning to
BSA and to predict the respective test sets (using on average 230
independent variables). Fig. 1 gives examples of the test set
predictions that resulted from different combinations of
training and test sets. Panel A of Fig. 1 shows the best of the ve
predictions, while panel B shows the worst. All chemicals lay
closer to the 1 : 1 line in panel A than in panel B. The biggest
outlier of all predictions was ufenamic acid anion with
a prediction error of 1.9 log units (shown in panel B). The
prediction of the ve random test sets resulted in an RMSE of
0.63 � 0.10 and an R2 of 0.52 � 0.15 (the values represent the
mean � standard deviation). The neutral chemicals (n ¼ 21) of
the test set were predicted with an RMSE of 0.59 � 0.04 while
anionic chemicals (n ¼ 11) were predicted with an RMSE of
0.68 � 0.23. In general, the neutral chemicals are better pre-
dicted compared to the anionic chemicals, which might be
caused by the disproportion of the training sets (62 neutral
chemicals and 32 anionic chemicals). However, the neutral
chemicals in the calibration set appear to improve the
description of the partitioning of anionic chemicals to BSA, as
modelling using solely the anionic chemicals was less
successful (data not shown) than that with the combined
dataset. Reasons for this outcome could be the small number of
anionic chemicals that is not sufficient to calibrate the model,
and the higher diversity of the neutral dataset that helps also to
predict log KBSA/water of less diverse, though anionic, chemicals.
Fig. 1 (A) Best and (B) worst prediction of log KBSA/water for 21 neutral
indicate the neutral chemicals and the red triangles indicate the anionic
indicate a deviation of 1 log unit from the 1 : 1 line.

Environ. Sci.: Processes Impacts
A chance correlation of the models can be excluded based on
the results of ten scrambling runs42,43 using two log KBSA/water

sorted bins, i.e., the log KBSA/water values of the chemicals of
each bin were permuted in the respective bin prior to each run.
The resulting statistics of leave one out cross-validation indicate
non-predictive models (mean R2 ¼ 0.44, mean qLOO

2 ¼ 0.002).
The binding mechanism behind the 3D-QSAR model can be

examined with the help of the contributions of the different
LSPs to the overall model. Fig. 2 shows the percentage contri-
butions of the LSPs 2 to 9 to the PCs that were generated with
the training set of the best prediction (Fig. 1A). The LSPs 1 and
10 contributed to the PCs only to a negligible degree and thus
are not shown. The LSP 8 (representing a part of the anionic
interactions) contributes 20% to the PC 1, which explains 48.7%
of the variance in log KBSA/water. Thus, the positive inuence of
anionic partial charges on the partitioning to BSA, which is
apparent in the experimental data, is captured in the model.
Other important interactions identied by the model are van
der Waals interactions and the hydrophobic effect (LSPs 4, 5).
and 11 anionic chemicals in five random testsets. The blue diamonds
chemicals. The solid line indicates the 1 : 1 line and the dashed lines

This journal is © The Royal Society of Chemistry 2016

http://dx.doi.org/10.1039/C6EM00555A


Paper Environmental Science: Processes & Impacts

View Article Online
Prediction of molecular steric effects

For further evaluation of the modeling approach, model
performance was investigated for isomer pairs using the
modied test sets. In experimental data, several isomer pairs
show similar steric effects: an ortho-substitution of benzoate
decreases log KBSA/water substantially compared to a para- or
meta-substitution (2-chlorobenzoate vs. 4-chlorobenzoate, 2,6-
dichlorobenzoate vs. 3,4-dichlorobenzoate, 2-methylbenzoate
vs. 4-methylbenzoate) and a substitution at the alpha-position of
naphthalene decreases log KBSA/water while a substitution at the
beta-position increases log KBSA/water, particularly if the substi-
tution group is negatively charged (1-naphthoic acid anion vs.
2-naphthoic acid anion, 1-naphthaleneacetic acid anion vs.
2-naphthaleneacetic acid anion). The steric hindrance by the
ortho-substitution results in a twist of the carboxylate group,7

which was speculated as a possible reason for the observed
specicity. The relative sorption behavior of these isomer pairs
with steric effects was predicted correctly by the models (Fig. 3).
Even quantitative predictions (errors < 0.8) were achieved for
three of the ve isomer pairs. The other two had relatively large
prediction errors: log KBSA/water of 3,4-dichlorobenzoate is
underestimated (by 1.26 � 0.22 log units) and log KBSA/water of
4-methylbenzoate is overestimated (by 0.85 � 0.04 log units).
Another pair of chemicals that is of interest is 2,4,6-trime-
thylbenzene sulfonate and 2,4,6-trimethylbenzoate, the former
has a 2.3 log units higher log KBSA/water value than the latter.
This difference is also predicted correctly but it might not be
solely caused by the steric hindrance of the carboxylate group,
which is explained in the following.

The alignment of the chemicals had an important role in the
distinction of the isomer pairs (Fig. 3). The green lines in the
pictures of Fig. 3 show the ve chemicals used as alignment
templates (see Methods, Alignment) while the sticks show the
respective isomers. In addition, the anionic groups of naph-
thalene-2-sulfonate and 2-naphthaleneacetate are located at the
same position, which could represent a possible interaction
with a positively charged or electron-withdrawing group of
BSA.45 Indeed, all isomers of Fig. 3 with the higher log KBSA/water

value have their charged group located close to this position
(this interaction space is indicated in Fig. 3 by the teal and violet
areas as it is expressed in the model). The isomers of Fig. 3 with
the lower log KBSA/water value (marked with red squares) have
their anionic group at different positions, which seems to be
inevitable for maximizing the overlapping of the rest of the
structure to the template but seems to lead to omission of the
interaction between the charged group of the chemical and BSA
in the model. This difference in the positions of the anionic
groups, which is caused by the twist of the carboxylate group,
can explain the different log KBSA/water values of the isomers (see
Fig. SI9–11† for conformations of the isomers).

In comparison to the superimposition of the other aromatic
chemicals, 2,4,6-trimethylbenzene sulfonate has a shied
position in the alignment (Fig. SI3†). This could be a hint for
a different binding mode of 2,4,6-trimethylbenzene sulfonate
(log KBSA/water exper.: 4.23 pred.: 3.52). A closer inspection of the
sigma surface of 2,4,6-trimethylbenzene sulfonate shows that:
This journal is © The Royal Society of Chemistry 2016
(a) its aromatic ring exhibits a lower electron density than that
of 2,4,6-trimethylbenzoate (log KBSA/water exper.: 1.99 pred.: 2.00)
(Fig. SI12 and 13†) and (b) the C–SO3� bond (1.8 Å) is longer
than the C–CO2� bond (1.5 Å).44 The latter structural feature
might allow 2,4,6-trimethylbenzene sulfonate to undergo an
interaction with the charged group even in the presence of the
steric hindrance of the neighboring methyl groups.44 Further-
more, the sulfonate group has higher interaction possibilities
than the carboxylate group because the sulfonate group has an
additional oxygen atom and the C–SO3

� bond is better rotatable
than the C–CO2

� bond. Thus, the positions and interactions of
the sp2 orbitals of the oxygens are more exible in the case of
2,4,6-trimethylbenzene sulfonate. These exibilities of 2,4,6-
trimethylbenzene sulfonate in the positioning and the interac-
tion possibilities may result in a higher experimental and
predicted log KBSA/water value as compared to 2,4,6-trime-
thylbenzoate. These inferences are based on the alignment
results, which led to successful modeling, but additional insight
from further experimental data or direct modeling tools, like
molecular dynamics simulation,46 would be desirable.
Domain of applicability

The domain of applicability was assessed with the help of the
Tanimoto indices. The median of the prediction errors for the
ve random test sets apparently decreases with increasing
Tanimoto index mean (Fig. 4). This may suggest that the reli-
ability of the prediction rises with increasing Tanimoto index
mean. For statistical evaluation, we chose the second highest
range of Tanimoto index mean (0.6–0.7) as the reference group
and tested the differences in prediction errors of all the other
groups from it (Table SI1†). We did not consider the group 0.7–
0.8 because it comprises only four chemicals. Compared to the
reference group, the median of the prediction errors is only
signicantly larger for the Tanimoto group of 0.3–0.4. No group
has a signicantly different variance than the reference group.
Note, however, that the prediction error depends strongly on the
combination of test and training sets. We also compared
prediction errors and Tanimoto index means using test and
training sets generated by a slightly less random procedure.
This procedure (see the ESI† for details) uses each chemical
once as a test set chemical. Although the resulting plot appears
comparable to that presented in Fig. 4, the medians of the
prediction errors are signicantly larger for all Tanimoto groups
<0.50 than for the reference group (Table SI2†), showing that
the Tanimoto index means could indicate the domain of
applicability. We do not know why Tanimoto index works in one
case but not the other. Possible reasons include: the data size is
not sufficiently large to show a statistical signicance, and the
Tanimoto index mean calculated in this study (i.e., the mean of
the top ve Tanimoto indices) is not suitable.

The three anions that were not part of the model calibration
set, nor included in Fig. 4, were used as additional validation
chemicals. The prediction is accurate for 1-bromo-2-naphthoic
acid anion (prediction error 0.08 log units) despite a relatively
small Tanimoto index mean of 0.34. In contrast, bromoxynil
anion and pentachlorophenolate were predicted with 2.47 and
Environ. Sci.: Processes Impacts
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Fig. 3 Experimental and the average predicted log KBSA/water values of the modified test sets for several isomer pairs. The black line in the graphs
indicates the 1 : 1 line, the red squares indicate the ortho- or alpha-substituted isomer, and the blue squares indicate the para- or beta-
substituted isomer. The error bars indicate the respective standard deviation of the averaged predicted log KBSA/water values (mostly not visible).
The green lines in the pictures show the alignment of the template chemicals while the blue sticks show the ortho- or alpha-substituted isomer
and the red sticks show the para- or beta-substituted isomer. The teal (LSP 7) and the violet (LSP 8) areas indicate the space where the models
identified a positive interaction of an anionic partial charge with BSA. The alignment figures were generated using Pymol.44
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Fig. 4 Prediction errors of the 3D-QSAR model plotted against the
mean of Tanimoto indices of the five most similar chemicals of the
training set. The boxes outline the 25th to 75th percentiles, the lines
through the centers represent the median, the whiskers indicate the
90th and 10th percentiles, and the dots indicate outlying points. The
results for all five random test sets are plotted.
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2.33 log units off, respectively. Both chemicals have a Tanimoto
index mean value of 0.16, which indicates a higher chance for
a large prediction error. The large prediction errors for these
two phenolates can be expected because the training set does
not contain any phenolate, and their low Tanimoto indexmeans
reasonably explain the outlying behavior of these chemicals. In
the alignment, bromoxynil anion and pentachlorophenolate are
displaced compared to the other aromatic chemicals, which
might be caused by the different nature of the anionic groups of
the template chemicals and of these two phenolates. For
a future successful prediction of log KBSA/water for phenolates
more experimental data for phenolates and thus a better cali-
bration through phenolates in the training set of the 3D-QSAR
model appear to be needed. Moreover, template chemicals may
also need to include at least one phenolate.

Other chemicals that are expected to be out of the domain of
applicability of the presented model are zwitterions and cations
because they have no representation in the training set.
Multiply charged anions may also be difficult to predict because
the effect of the second charged group is probably not covered
by themodel. Other examples of chemicals that should be out of
the domain of applicability are big bulky chemicals (e.g., mon-
ensin, Tanimoto index mean 0.07, peruorononanoic carbox-
ylate, Tanimoto index mean 0.09) including oligosaccharides
(e.g., maltotriose, Tanimoto index mean 0.12), long tertiary and
quaternary organic chemicals (e.g., 4-butyl-4-pentylnonanal,
Tanimoto index mean 0.14), because they are not part of the
current calibration set and might bind to BSA through another
mechanism. The same holds true for fatty acids, which bind to
a specic binding site of BSA47 (e.g., undecane carboxylate,
Tanimoto index mean 0.19).
This journal is © The Royal Society of Chemistry 2016
Conclusions

The 3D-QSAR model with LSPs as descriptors is capable of
describing and predicting log KBSA/water for anionic and neutral
chemicals. The assumptions behind the generated character-
istic binding site (i.e., several localized binding sites with
similar chemical environments and the interaction possibilities
of the sites can be expressed as an averaged characteristic
binding site) appear to be adequate for the 3D-QSAR modelling
approach. The discrimination between different binding sites
was not necessary for successful modeling for the dataset used
in this work. The steric effects that are responsible for up to two
log units differences in log KBSA/water between structural isomers
are successfully captured by the model. Thus, the model may be
used for the prediction of unknown KBSA/water for neutral and
anionic chemicals, which is helpful for a qualied environ-
mental and toxicological assessment of these chemicals. As an
example, in an upcoming study the 3D-QSAR model developed
in this work will be used to assess the freely dissolved concen-
tration of chemicals in a typical cell assay.16 Furthermore, the
model could contribute to an estimation of the bio-
accumulation potential of organic anions, provided that other
sorption phases such as phospholipid membranes are consid-
ered as well. Whereas serum albumin appears not to be the
most important plasma binding protein for many cationic
chemicals,48 an extension of the model with more cationic
chemicals is still desirable because there are cations that bind
strongly to serum albumin.11 An inclusion of zwitterions is
another interesting example of possible extensions of the model
applicability domain. The availability of accurately and consis-
tently measured data will be the key to such future work.
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