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Overview

The present thesis deals with the investigation of ultrafast quantum mechanical processes
accessed by structured optical probes with a focus on two main aspects:
At first, we will study the time delay in photoionization which describes the delayed pho-
toemission following the absorption of an exciting photon. It was predicted theoretically
more than half a century ago [1, 2] and confirmed thanks to recent experimental advances
in measurements of the electron dynamics on the attosecond time scale [3]. The reported
existence of the time delay in photoionization triggered large activities in the field of attosec-
ond physics. In addition to measurements in atoms [3–5] as well as in condensed matter
[6], several theoretical results and interpretations within the frameworks of both the time-
dependent [7–11] and time-independent [12–17] picture complemented the experiments.
However, the theoretical attempts to reproduce the experimental results with a broad range
of models and techniques have not yet converged to the experimental findings. A more
detailed introduction of the time delay will be presented in the first chapter of this thesis.
Here, we will discuss the dependence of the time delay on the emission angle for different
atomic systems. Most of the theoretical results deliver the time delay in the forward
direction, i.e. the photoelectron is detected along the laser polarization axis. Therefore, we
will address the question to which extent the angular dependence influences the measured
time delay with reference to its value in the forward direction and demonstrate that the
angular characteristics are strongly influenced by the choice of the theoretical model and
the accurate description of the electronic structure.
A second big topic is dedicated to the inspection of the possibility of structuring the light
beam. In particular, we will employ light carrying orbital angular momentum, also called
an optical vortex. This class of light waves was predicted in the 1990s [18–23] and revealed
interesting applications [24–36]. For our purpose, the outstanding feature is the capability
of transferring orbital angular momentum to charge carriers allowing for a new class of
photo-induced non-dipolar transitions. This opens the door to interesting effects and a vast
number of possible utilizations in different fields of physics.
We will discuss how an optical vortex pulse interplays with the time delay. Therefore, we
will demonstrate that applying such a light beam allows discerning the atomic time delay
from magnetic sub-levels even for completely spherically symmetric targets.
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Another investigation is focused on the generation of a magnetic pulse inside a C60 molecule
by irradiating it with an optical vortex pulse. The subsequent interaction initiates non-dipolar
transitions from the occupied radial bands to virtual bound states. As a consequence, a
current loop on the sphere of the molecule will be generated which produces a measurable
magnetic field in the regime of mT.
An impressive application of the optical vortex light is the possibility to generate a directed
photo-current by irradiating a semiconductor-based quantum ring which is attached to a
straight conducting channel. The light-matter interaction leads to an effective enhancement
of the repulsive centrifugal potential which causes a charge imbalance between the ring
boundaries. We will demonstrate that the accompanied photocurrent can be tuned effectively
by the parameters of the optical vortex laser pulse.
A summary and outlook conclude this thesis.



Chapter 1

Angular resolved time delay in
photoionization

1.1 Introduction

The development of attosecond light sources [37–39] opened the door to exciting new
opportunities for studying ultrafast phenomena and proving well-established theoretical
models developed 30 - 40 years ago [40]. A broad class of different atomic, molecular and
condensed matter systems can be explored with these techniques, and the theoretical results
are confirmed by experiments on the electron dynamics [6, 14, 41–46].
For instance, a generated photoelectron can be deflected by an intense laser pulse which
can be recorded by the attosecond streaking technique. A typical streaking metrology for
measurements to trace photoelectron dynamics is in principle a pump-probe setup consisting
of an extreme ultraviolet (XUV) pulse of a few hundred attoseconds serving as the pump,
while a phase-coherent few-cycle infrared (IR) pulse plays the role of the probe pulse. The
physics behind this streaking setup is the following: photoelectrons, which are liberated
from the atomic core while interacting with the pump XUV pulse, are (de-)accelerated in
the presence of the probe IR field to different final momenta. The corresponding kinetic
energy depends on the value of the vector potential at the moment of the release. Classically
the final momenta can be described by

p f = p0 −AIR(t0), (1.1)

where t0 is the moment of ionization and p0(t0) =
√

2(ωXUV − εi) is the free-field asymp-
totic momentum of the photoelectron originating from a valence shell i with the energy
level εi while interacting with an XUV-pulse with the photon energy h̄ωXUV. The temporal
characteristic of the vector potential of the probing field is given by AIR(t). Thus, varying
the delay time between the maximum of the XUV pulse and IR pulse leads to different final
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momenta and the time information of the electron dynamics can be accessed by momentum
measurements [3, 6]. First applications and proofs were the measurement of the Kr(3d−1)
hole lifetime due to the Auger decay [47] and the detecting of the time-dependent electric
field of an IR light wave [48].
The XUV field in the streaking setup is generally in the weak-field high-frequency regime,
which allows us to treat the photoionization process with the perturbation theory. Thus,
the ratio between the intensity and the frequency IXUV/ωXUV ≪ 1. As a consequence, for
photon energies in the XUV regime, an intensity IXUV ≤ 1014 W/cm2 is sufficiently weak.
In contrast, the typical intensity of the IR-field is high enough (IIR ≈ 1010 −1012 W/cm2,
ωIR = 0.057 a.u.) that the continuum state of the liberated photoelectron is heavily perturbed
with the consequence that a perturbative description is not possible. Nevertheless, the
field strength is not in the regime that tunnel ionization processes are dominant. A well-
established method is the so-called "soft photon approximation" for the ionization of atoms
with the help of a weak XUV pulse in the presence of an IR laser field [49–52]. The condition
of this approximation is that the frequency of the IR-photon is small in comparison to the
energy of the photoelectron.
However, this method implies that the interaction between the liberated photoelectron and
the residual ion is neglected. Consequently, the influence of the Coulomb potential and
correlation effects have no impact on the calculation. In the literature, the motion of the
photoelectron in the combined Coulomb and IR laser field is often called Coulomb-laser
coupling and can be studied analytically within the Coulomb-Volkov approximation (CVA)
[53, 54], which can be applied to the soft photon approximation [52].
Usually, it is assumed that emission of a photoelectron from an atom which absorbs an
energetic photon leads to a wave packet which follows the temporal variation of the incident
laser field instantly. In the 1950s it was suggested that the response of the wave packet to
the light field is delayed [1, 55]. The temporal shift between the arrival of the XUV laser
field and the departure of the wave packet is called the time delay in photoionization τ .
The time delay was measured and therefore confirmed 2010 by the pioneer experiment
of Schultze et al. [3] who found a relative time delay in photoemission τ2p−2s between
photoelectrons originating from 2s and 2p valence shells in neon. The experimentally
obtained time delay with the help of the attosecond streaking metrology is 21±5 as. We
call this experimentally obtained time delay in the following the streaking delay τS because
the IR field has a substantial influence on the time delay. The experimental result triggered
a tremendous interest of the scientific community in this topic and was the beginning of
a series of theoretical and experimental works and publications. Schultze et al. tried to
reproduce the time delay theoretically with various models. A multi-configurational Hartree-
Fock (MCHF) calculation neglecting the influence of the IR field resulted in a relative time
delay of 4.0 as. Correlation effects like interchannel coupling were included with the help of
the state-specific expansion approach (SSEA), leading to a delay of 6.4 as. The influence of
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the IR field was modeled with the aid of the CVA whereas correlation effects were neglected.
An analysis of the photoelectron wave packets yielded a time delay of 4.5 as. Consequently,
the computed time delay is around 15 as smaller than the measured value [3].
Other theoretical groups tried to resolve this controversy between experimental and theoret-
ical results. Time-independent and time-dependent approaches were utilized to calculate
the time delay. The time-independent one concentrates on the accurate calculation of the
dipole matrix element of the photoionization process, which is directly connected with the
time delay as the group delay of the photoelectron wave packet. In this direction Kheifets
and Ivanov calculated a relative time of 8.4 as by using the Hartree-Fock (HF) and random
phase approximation (RPAE) method for the absorption of a single XUV photon [12, 16].
The two-color case, i.e. the combined XUV and IR field, was discussed by Dahlström
et al. within a diagrammatic approach [17, 56], while another method uses an MCHF
close-coupling ansatz [57]. Time-dependent approaches aimed at the accurate simulation of
the streaking spectra, i.e. by incorporating the IR field. The disadvantage is the incomplete
description of electron-electron correlation effects within the photoionization process. The
group of Nagele et al. calculated the time delay including the effect of the IR-field in
simulations for one or two active electrons in model systems [7, 8]. Moore et al. used the
time-dependent R-Matrix method for neon with a limited basis size and obtained a relative
time delay of 10.3±1.5 as [13]. Generally, all theoretical efforts led to computed delays
more than a factor of 2 shorter than the experimentally obtained value. The up to date
most complete quantum mechanical simulation of the streaking setup by Feist et al. [11]
using a B-Spline R-Matrix method led to a relative time delay of 10.0 as. Furthermore, the
calculation reveals the trend that the time delay decreases with increasing photon energies
of the corresponding XUV-field, which is not precisely reproducible in the experiment.
In general, the dividing of the streaking time delay τS into a sum of two terms is accepted:

τS = τat + τCLC. (1.2)

The first contribution is the atomic time delay τat originating from the pure photoionization
process initiated by the XUV pulse. The second term τCLC arises from the interaction
between the IR field and the photoelectron which moves in the Coulomb field of the residual
ion. The combination of both is called Coulomb-laser coupling (CLC) [4, 7, 8, 15, 56].
For all Coulombic systems, we will show that the atomic time delay as a system-dependent
quantity can be identified with the Eisenbud-Wigner-Smith time delay τW [1, 58], i.e.
τat ≡ τW, whose characteristics play an integral role in this thesis. The validity of the
Eq. (1.2) is proofed for photoelectrons in the continuum originating from noble gas atoms
[56]. However, it is expected that Eq. (1.2) is not correct in the case of autoionizing
resonances that lead to slow delay structures in the Coulomb field of the residing ion
[57]. The τCLC shows some remarkable characteristics as the phase corresponding to the
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delay is universal, i.e. it depends only on the final momentum of the photoelectron, the
probe frequency ωIR of the dressing IR-field and the charge of the residual ionic core.
Consequently, it is independent of the considered atomic system. Some compact equations
in various approximation for calculating the CLC delay are available [9, 10, 15]. In contrast,
the atomic time delay contribution τW is not universal and reflects the scattering properties
of the atomic system directly .
Lately, the studies of the time delay moved to another noble gas system. Argon was
predestined because interesting phenomena occur at energies around the Cooper minimum
[4, 5]. The Cooper minimum characterizes a minimum of the ionization rate for different
photon energies when at least two final ionization channels exist, and the interference
between those channels induces a change of the sign of the phase of the excited state wave
function. In this case, the ionization probability can be zero or reach a minimum at a certain
energy [59]. Klünder et al. [4] measured a relative time delay between photoemissions from
the 3p and 3s valence shells in argon for photon energies of the XUV pulse in the range
of 34-40 eV. Guénot et al. [5] revisited this experiment, and their results confirmed the
earlier measurements, except for the highest photon energy at 40 eV, where a significant
discrepancy occurs. The time delay was computed theoretically with the help of the RPAE
model and diagrammatic approaches [4, 5, 16, 17, 57]. Recently, it was recalculated with the
time-dependent density functional (TDDFT) theory as a conceptionally different approach
to the many-body problem [60, 61].
Rarely discussed is the angular dependence of the time delay in photoionization, especially
for the both experimental target systems neon and argon. In the case of hydrogen, a strong
variation of the atomic time delay was calculated for angles around ±90◦ relative to the
laser polarization axis [62]. The angular properties of the time delay corresponding to the
photoionization of the H2 molecule were also discussed theoretically [63, 64] and measured
in a two-color experiment [65]. Very recently, the angular dependence of the time delay
of a photoelectron liberated from the 3p subshell in argon was confirmed indirectly due to
angle-integrated measurements [66].
In the experimental setup, the time-of-flight (TOF) detector collects all contributions from
photoelectrons within a certain solid angle Ωmax. Here we introduce the angle ϑkkk between
the asymptotic direction of the momentum of the photoelectron and the laser polarization
axis, which is parallel to the z-axis. We will discuss to which extent the resulting time delay
is influenced by the effect of the angular dependence since most available calculations only
concentrated on the computation in the forward direction, i.e. ϑkkk = 0◦. To address this point
we consider all possible propagation directions of the photoelectrons.
Unless otherwise stated, atomic units (a.u.) will be used throughout this chapter.
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1.2 The time delay for Coulomb potentials

In the following section the equivalence between the atomic time delay τat and the Wigner
time delay τW will be derivated. Therefore, to depict the individual scattering properties
of the considered atomic system only the calculation of the Wigner time delay is needed.
This statement is correct for short-range potentials as well as for the long-range Coulomb
potential. Further, this emphasizes the validity Eq. 1.2 in the case of the attosecond streaking
of an atomic target. An analytic result for the universal and system-independent CLC
contribution to the streaking time delay is derived.
Following Ref. [9] let us introduce formally the differential operator (which we will refer to
as the time operator)

t̂ =−i
∂

∂ t
. (1.3)

Conceptionally we are facing some problems with this definition, since the spectrum of the
Hamilton operator, Ĥ, is bounded [67]. By restricting the domain to the continuum, i.e. to
scattering states, an expectation value of the time operator can be found [1, 2, 58]:

⟨t⟩=−iS†(εk)
∂

∂εk
S(εk), (1.4)

where S(εk) is the well-known scattering matrix which depends on the kinetic energy
εk = k2/2 of the particle. Consequently, we can identify the expectation value ⟨t⟩ as the
time delay of the particle due to the scattering process. The quantity describes the delayed
departure of the outgoing wave packet relative to the incoming particle after passing the
scattering region. For a short-range potential and in case of spherical symmetry the S-Matrix
is diagonal in the angular momentum representation and we find a simple expression [68]:

Sℓ = ei2δℓ(εk). (1.5)

Here δℓ(εk) describes the energy dependent scattering phase shift of the scattering potential.
Now we can introduce the formal expression of the expectation value

⟨t⟩= 2
∂

∂εk
δℓ(εk), (1.6)

which is simply the energy-derivative of the scattering phase shift depending on the angular
momentum characterized by ℓ.
In the case of photoionization we consider a half-scattering process, because the incident
channel is a bound state and only the outgoing final channel resides in the continuum.
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Consequently, we introduce the Wigner time delay τW in such a scenario [1, 9]:

τW =
∂

∂εk
δℓ(εk). (1.7)

In general, the final state f is a superposition of several exit channels with different final
angular momenta ℓ. In such a case the atomic time delay is defined with the help of the
dipole matrix element Di(kkk) which characterizes the transition from the initial state |Ψi⟩ to
the final state |Ψ f ⟩:

τW(εk,θkkk) =
∂

∂εk
arg [Di(kkk)] =

∂

∂εk
arg
[
⟨Ψ f |ẑ|Ψi⟩

]
, (1.8)

where ẑ is the dipole operator. In principle, this formal introduction of the Wigner time
delay represents only the one-color photoionization process, i.e. only the XUV pulse is
considered, in a short range potential. In this case, we can immediately state that τat ≡ τW

is valid [9, 10].
We consider now a photoelectron in a Coulomb field and the presence of the IR field.
Revisiting the streaking metrology and keeping in mind the nature within the streaking
time delay τS, which characterizes the delayed (positive value) or advanced (negative value)
emission relative to the center of the XUV pulse, the final momentum distribution of the
streaked photoelectron is given by

p f (∆tXUV−IR) = p0 −αAIR(∆tXUV−IR + τS). (1.9)

Here, ∆tXUV−IR is the delay time between the XUV and IR pulses. The α is a correction
factor for the amplitude, which is shifted due to the action of the IR streaking field AIR(t).
In the case, the transition from the bound state to the asymptotic continuum state happens
instantaneously, the streaking delay τS = 0 and Eq. 1.9 reduces to the standard equation
Eq. (1.1).
In the case of a long-range potential, we are facing significant problems in finding a good
definition of a finite atomic time delay τat. The reason is that for the spherically symmetric
Coulomb potential V (r) =−Z/r the scattering matrix S(εk) can be introduced as a sum of
two terms [69]:

S(εk) = SC(εk)+Scor(εk). (1.10)

The first contribution is the pure Coulomb scattering operator SC(εk) = ei2σℓ(εk) (in angular
momentum representation) where σℓ(εk) represent the scattering phases of the Coulomb po-
tential. The second term is the remaining part Scor(εk) due to the long-range characteristics.
The resulting atomic time delay in the case of our photoionization process by following the
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0 50

τS

Fig. 1.1 Streaking spectrogram corresponding to the photoionization of the hydrogen 1s
ground state by an XUV pulse with a photon energy h̄ωXUV = 27.211 eV. The photoelectron
is probed by an 800 nm IR laser field with a duration of 6 fs and an intensity of 1012 W/cm2.
The red color means here the largest ionization probability while violet corresponds to no
photoionization. The electron momentum distribution is depicted for various values of
the delay time ∆XUV−IR between the maxima of the XUV and IR field. The solid white
line shows the center of energy (COE) and therefore the peak position of the final electron
momentum distribution. The small inset reveals the streaking delay τS.

Eq. (1.4) would then be given by [69, 70]:

τat(εk) =−iSC†(εk)
∂

∂εk
SC(εk)+

Z
(2εk)3/2

[
1− ln(2

√
2εkr)

]
, (1.11)

where we can identify the first term as the conventional Wigner time delay of the Coulomb
phase shift, i.e. τCoul

W (εk) =
∂

∂εk
σℓ(k) (cf. Eq. (1.7)). The second term in Eq. (1.11) incorpo-

rates the logarithmic distortion of the wavefront and is characteristic for all Coulomb type
potentials. Interesting is the aspect that the time delay as a form of a time expectation in the
asymptotic limit value depends on the propagation time tprop (r ≈ ktprop):

tCoul
cor (εk,r) =

Z
(2εk)3/2

[
1− ln(2

√
2εkr)

]
≈ Z

(2εk)3/2

[
1− ln(4εktprop)

]
. (1.12)

Thus, according to the correction tCoul
cor a finite atomic time delay value τat is not defined for

the Coulomb potential and further we would come to the conclusion that τat ̸= τW. However,
one should keep in mind that the correction is a universal contribution and depends neither
on the initial state i nor the final state characterized by the angular momentum ℓ.
In Fig. 1.1 we show a typical streaking spectrogram corresponding to the photoionization
of the hydrogen 1s state initiated by an XUV pulse with a photon energy h̄ωXUV = 27.211
and a probing 800 nm IR field. It reveals a finite streaking time delay τS =−34.5 as. The
relation τS = τat + τCLC with the two finite contributions τat and τCLC is not in line with the
Coulomb correction tCoul

cor that would depend on the propagation time according to Eq. (1.12).
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Therefore, we checked carefully that the streaking time delay did not change for different
propagation times tprop > dIR where dIR is the duration of IR pulse. Consequently, due to the
action of the IR field, the dependence on the propagation time tprop according to Eq. (1.12)
somehow disappears. Looking at the structure of the Coulomb correction delay and taking
into account the independence on the initial and final states it is natural to associate tCoul

cor

with the CLC contribution τCLC to the streaking delay.
We consider now a streaking process with a particular delay time ∆XUV−IR between the
maxima of the XUV and IR fields and assume photoionization at t0 = 0, i.e. the photo-
electron in the continuum is immediately driven by the IR field with a value of the vector
potential AIR(∆XUV−IR).
Let now introduce a time interval t ∈ [∆XUV−IR,∆XUV−IR + tstr] where the action of the IR
field can be seen adiabatically, i.e. AIR(t)≈ AIR(∆XUV−IR). Consequently, tstr ≪ TIR where
TIR = 2π/ωIR is the period of the IR laser field. For different XUV photon energies between
20 eV and 140 eV, an IR photon energy h̄ωIR = 1.54 eV, and a typical intensity IIR = 5×1011

W/cm2 we find in a numerical way that the CLC correction τCLC = τS(tprop > dIR)− τCoul
W

is independent on the propagation time tprop. It is given by the compact equation

τCLC(εk)≈ tCoul
cor (εk,r = ktstr) =

Z
(2εk)3/2 [1− ln(0.36TIR)] . (1.13)

By fitting, we conclude tstr ≈ 0.089TIR. How can we interpret this result?
The delay correction tCoul

cor , which according to Eq. (1.12) depends on the propagation time, is
mapped into the CLC delay contribution τCLC which is independent of the propagation time.
However, only the interval ∆t = tstr which covers only a small portion of TIR is captured
and therefore a limited contribution to the time delay is accumulated. This statement was
confirmed (in a numerical way) by Pazourek et al. [9, 10]. The direct consequence is that
the attosecond streaking method is probing only a limited part of the ionic potential, i.e.
the coupling between the Coulomb potential and the IR laser field (therefore CLC) is only
effective close to the core, while there is no contribution to the delay at the asymptotic
region. For a conventional streaking setup the effective distance in the ionic force field,
which can be addressed, is typical below 30 a.u..
This circumstance underlines the correctness of Eq. (1.2) also for the Coulomb potential
since due to the interaction with the streaking field, the propagation time dependent correc-
tion tCoul

cor is mapped onto the CLC contribution τCLC which is independent of the propagation
time. All characteristics of the atomic system, i.e. the information about the initial state
|Ψi⟩ or the final state |Ψ f ⟩, as well as the angular dependence, are fully incorporated in
the Wigner time delay τW which is finite. Therefore, this legitimates our above definition
of the atomic time delay also for long-ranged Coulomb potentials. As a consequence, the
strict definition of τat according to Eq. (1.11) has to be corrected and we can conclude that
τat ≡ τW .
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1.3 Calculation of the atomic time delay

In this section, we focus on a proper introduction and calculation of the atomic time delay
which is equivalent to the Wigner delay τW and represents the unique scattering properties of
the considered atomic system. Therefore, the photoionization amplitude as an integral part
of the time delay definition and its angular characteristics will be derived from a perturbative
treatment. The CLC contribution provides no further information since it is essentially the
same for every target [15] and will be not taken into account.
The wave function representing a photoelectron can be expressed as a superposition of
several final partial waves:

Φ(rrr, t) =
∫

dkkk a(kkk, t)ϕ f
kkk (rrr)e

−iεkt , (1.14)

where ϕ
f

kkk (rrr) is a set of appropriate continuum wave functions of the considered atomic
system, and a(kkk, t) are the corresponding projection coefficients, which can be evaluated as
[71]

ai(kkk, t) =−i
∫ t

−∞

dt ′ ⟨ϕ f
kkk |Ĥint(t ′)|Ψi⟩ei(εk−εi)t ′. (1.15)

The label i signals the photoionization process from the bound state |Ψi⟩ with the energy
eigenvalue εi. The kinetic energy is given by εk = k2/2. The time-dependent interaction
Hamiltonian Ĥint(t) in the dipole approximation describes the interaction with the XUV
field, which is linearly polarized in the z-direction and is characterized by the temporal
envelope E(t). It can be given either in the length or the velocity gauges:

Ĥint(t) =

ẑE(t)

p̂zA(t), where A(t) =−
∫ t
−∞

E(t ′)dt ′.
(1.16)

Inserting the length gauge form of Eq. (1.16) in Eq. (1.15) and considering a field which
vanishes for |t| → ∞ we find a simple expression for the projection coefficients:

ai(kkk) =−iDi(kkk)Ẽ(εk − εi), (1.17)

which is the product of the dipole matrix element Di(kkk) = ⟨ϕ f
kkk |ẑ|Ψi⟩ and the Fourier

transform Ẽ(ω) of the XUV field. Di(kkk) describes the transition from the initial state |Ψi⟩
to the final continuum state |ϕ f

kkk ⟩ and has all information about the atomic time delay τW.
Considering spherical symmetry the wave function of the initial state |Ψi⟩ has a well-defined
angular momentum and can be expressed as Ψi(rrr) = Rni,ℓi(r)Yℓimi(Ωrrr). Here Rni,ℓi(r)
describes the radial part of the wave function, characterized by the principal quantum
number ni, the angular quantum number ℓi, and the number of nodes ni− li−1. The angular
part is given by the spherical harmonic Yℓimi(Ωrrr) and has the well-defined orbital angular
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momentum and magnetic quantum numbers ℓi and mi. The corresponding bound state
energy is characterized by εi ≡ εniℓi . Therefore, the magnetic substates within a subshell
are degenerated concerning the energy. The partial wave expansion of the final continuum
states is [15, 68]:

ϕ
f

kkk (rrr) = (8π)3/2
∞

∑
ℓ

ℓ

∑
m=−ℓ

iℓe−iδℓ(k)Rkℓ(r)Y ∗
ℓm(Ωkkk)Yℓm(Ωrrr). (1.18)

The scattering phases are given by δℓ(k) = ηℓ(k) + σℓ(k) and represent a sum of two
contributions. The influence of the long-range Coulomb field of the residing ion on the
outgoing photoelectron is characterized by the analytically known Coulomb phase shift
σℓ(k) = arg[Γ(ℓ+1− i/k)] [68], where Γ(x) =

∫
∞

0 dt tx−1e−t is the complex Gamma func-
tion. The contribution ηℓ(k) is a correction due to the short range deviation of the ionic
potential from the pure Coulomb potential. It characterizes the unique scattering properties
of the atomic system. Obviously in the case of hydrogen ηℓ(k) = 0.
Furthermore, the scattering phases have to fulfill the Levinson-Seaton theorem, i.e. ηℓ(k →
0) = νℓ(∞)π [72, 73]. Here νℓ(∞) is the quantum defect due to the presence of occupied
bound states with a given orbital angular momentum ℓ which perturb the energy level
sequence. For a pure short-range potential the scattering phase at the zero energy is related
to the number of occupied subshells with a particular ℓ and is given by ηℓ(k → 0) = Nℓπ

(regular Levinson-theorem [74]). For example, in the absence of the Coulomb potential tail,
the phase contribution ηℓ=1(k) (belonging to the transition ns to kp) would tend to π for the
zero energy in the case of neon because there is one np subshell occupied (n = 2). In the
same vein for argon ηℓ=1(k) would tend to 2π for k → 0 because two p subshells (2p and
3p) are occupied. When the Coulomb potential is taken into account the sequence of energy
levels with a specific orbital angular momentum ℓ can be fitted to εnℓ =−(n−νℓ(n))−2 to
find the quantum defect νℓ(∞).
The Rkℓ(r) are the radial wave functions corresponding to the set of the final continuum states
|ϕ f

kkk ⟩. They are normalized to the energy by the condition ⟨Rk,ℓ|Rk′,ℓ⟩= δ (εk−εk′). Although
no exact analytical solution for Rkℓ(r) can be derived, the behavior in the asymptotic limit
is characterized by

lim
r→∞

Rk,ℓ(r) =
Nk

r
sin [kr+Φℓ(r,k)] , (1.19)

where the phase of the wave function is given by

Φℓ(r,k) = log(2kr)/k− ℓπ/2+δℓ(k). (1.20)

This phase also includes the logarithmic divergence, which is characteristic for the Coulomb
potential of the ionic core in the asymptotic region. Nk =

√
2/πk stands here for the

normalization constant.
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In the next step, we find an expression for the transition matrix element Di(kkk) in the
case of the linearly polarized laser pulse. The corresponding dipole operator is given by
ẑ =

√
4π/3rY10(Ωrrr). Using the partial wave expansion in Eq. (1.18) and performing the

angular integration in the r-space we obtain:

Di(kkk) = (8π)3/2
∑

ℓ=ℓi±1
i−ℓeiδℓ(k)Yℓmi(Ωkkk)

(
ℓ 1 ℓi

−mi 0 mi

)
dℓ,niℓi(k). (1.21)

Here we introduce the reduced radial matrix elements in length form [40, 75]:

dℓ,niℓi(k) = ⟨kℓ||d(r)||niℓi⟩=
√
(2ℓ+1)(2ℓi +1)

(
ℓ 1 ℓi

0 0 0

)∫
∞

0
dr r3Rkℓ(r)Rni,ℓi(r).

(1.22)
This formula results from the angular integration [76]:

∫
dΩrrr Y ∗

ℓ1m1
(Ωrrr)Yℓ2m2(Ωrrr)Yℓ3m3(Ωrrr) =

√
(2ℓ1 +1)(2ℓ2 +1)(2ℓ3 +1)

4π

(
ℓ1 ℓ2 ℓ3

0 0 0

)

×

(
ℓ1 ℓ2 ℓ3

−m1 m2 m3

)
,

(1.23)
where the Wigner 3 j symbols are zero unless −m1 +m2 +m3 = 0 and |ℓ1 − ℓ2| ≤ ℓ3 ≤
ℓ1 + ℓ2 [76]. In our particular case, this leads to the well-known dipole selection rules for
linearly polarized light and the final state f , i.e. ℓ f = ℓi ±1 and m = mi. That means the
photoionization process does not change the magnetic state.
Let µi(εk,Ωk) be the phase of the transition matrix element Di(kkk) corresponding to the
respective subshell i, i.e. µi(εk,Ωk) = arg [Di(kkk)] ≡ arg [ai(kkk)]. According to Eq. (1.8)
the Wigner time delay τW (and therefore the atomic time delay) derives from the energy
derivative of the phase µi(εk,Ωk). It is immediately obvious that the delay is dependent
on the momentum kkk of the photoelectron and therefore is an angular dependent quantity.
In the case, the final state f is characterized by only one partial wave Eq. (1.8) reduces to
Eq. (1.7). Note that the definition of the time delay in Eq. (1.8) is also valid for the velocity
form of the matrix element, i.e τ

(∇)
W (kkk) = ∂

∂εk
arg
[
⟨ϕ f

kkk |p̂z|Ψi⟩
]
.

We can write the spherical harmonics Ylm(Ωkkk) as Nm
ℓ Pm

ℓ (cosϑkkk)eimϕkkk , where Ωkkk ≡ (ϑkkk,ϕkkk)

and Pm
ℓ (x) are the associated Legendre polynomials. Introducing the real amplitudes

Sℓi±+1(εk,ϑkkk) =

(
ℓi ±1 1 ℓi

−mi 0 mi

)
dℓi±1,niℓi Nmi

ℓi±1Pmi
ℓi±1(cos(ϑkkk)) (1.24)
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and the phase factors

φℓi±1(εk,ϕkkk) = δℓi±1(k)− (ℓi ±1)π/2+miϕkkk (1.25)

we find an equation for the phase of the transition matrix element:

µi(εk,Ωkkk) = atan
[

∑ℓ=ℓi±1 Sℓ(εk,ϑkkk)sin(φℓ(εk,ϕkkk))

∑ℓ=ℓi±1 Sℓ(εk,ϑkkk)cos(φℓ(εk,ϕkkk))

]
. (1.26)

Equation (1.26) reveals that the phase of the transition matrix elements strongly depends on
the scattering phases δℓi±1 of the exit channels with the quantum numbers ℓ= ℓi ±1 and
the ratio of the amplitudes Sℓi+1(εk,ϑkkk)/Sℓi−1(εk,ϑkkk). A closer inspection of the energy
derivative of µi(εk,Ωkkk) at a particular energy shows that the time delay only depends
on the angle ϑkkk between the asymptotic momentum of the photoelectron and the laser
polarization axis, but not on the polar angle ϕkkk which reflects the cylindrical symmetry of
the photoionization process.
In the special case for photoionization from the initial state with ℓi = mi = 0 we find
only one final exit channel characterized by ℓ = 1 and m = 0. Thus, the phase of the
transition matrix element is given by µℓi=0,mi=0(εk,Ωkkk) = φℓ=1(εk,ϕkkk) = δ1(k)−π/2 and
is independent of the whole solid angle. The corresponding time delay can be computed by
τ
ℓi=0,mi=0
W = ∂

k∂k δ1(k), which reflects the primary definition of the time delay in Eq. (1.7))
and shows that it strongly depends on the properties of the scattering phases. The same
arguments work for the case of the initial states with ℓi = 1 and mi =±1 where we also find
only one final partial wave channel and therefore no angular modulation.
An effective dependence of the time delay on the angle ϑkkk occurs only in the case when
we find an interference between two different final states, i.e. ℓi > 0. Within this pertur-
bative treatment, the phase factor miϕkkk has no impact on the resulting time delay of the
photoionization process. Therefore, we can state τ

ℓi,mi
W (εk,Ωkkk)≡ τ

ℓi,mi
W (εk,ϑkkk).

The time delay is, in general, a function of the energy. The characteristic (and measured)
time delay corresponding to the photon energy h̄ωXUV can be found by averaging over the
ionization probability wi(εk,ϑkkk) = |ai(kkk)|2. The ionization probability shows an intrinsic
angular dependence due to the directional dependence of the projection coefficients ai(kkk).
These probabilities are peaked around the so-called center of energy (COE) εCOE = h̄ωXUV+

εi, which is a consequence of the energy conversion. The peaks are not sharp because they
represent the spectral width of the short pulse (cf. (1.17)). Furthermore, it is reasonable
to sum over all possible initial states due to the degeneracy with respect to the magnetic
quantum number mi:

τ
i
W(ϑkkk) =

∫
dεk ∑

occ.
mi

wℓi,mi(εk,ϑkkk)τℓi,mi(εk,ϑkkk)∫
dεk ∑

occ.
mi

wℓi,mi(εk,ϑkkk)
. (1.27)



1.4 Numerical extraction of the time delay 15

1.4 Numerical extraction of the time delay

In addition to the approximate analytical solution of the Schrödinger equation via the
perturbation theory, we want to employ a numerical method to extract the time delay
information. The following equation has to be solved:

i
∂

∂ t
Ψ(rrr, t) = Ĥ(t)Ψ(rrr, t)

=
[
Ĥ0 + Ĥint(t)

]
Ψ(rrr, t),

(1.28)

where the possible interaction Hamiltonians are given in Eq. (1.16). The field-free Hamilto-
nian Ĥ0 incorporates the atomic potential V (r). The TDSE is discretized on a spatial grid
with a step size h = 0.02 a.u. and a maximal box size Rmax = 1000 a.u., while the temporal
grid is also equidistant. For every time step tn the full wave function corresponding to an
initial state i can be represented as

Ψ(rrr, tn) =
Lmax

∑
ℓ=0

ℓ

∑
m=−ℓ

fℓ(r, tn)Yℓ,m(Ωrrr). (1.29)

Here the functions fℓ(r, tn) represent the radial part defined on the points of the radial grid.
For t →−∞ we define that Ψ(rrr, t) = Ψi(rrr).
The choice of the gauge within interaction Hamiltonian Ĥint has a significant impact on
the convergence properties which are characterized by maximal number Lmax of needed
partial waves. Although both gauges deliver the same results, a much smaller number of
partial waves is needed when using the velocity gauge [77, 78]. For the moderate intensities
used below Lmax = 8 in the case of the velocity gauge is sufficient while we need 13 partial
waves for the length gauge.
To propagate the wave function in Eq. (1.29) numerically the so-called Matrix iteration
method (MIM) was employed [78]. The method was already successfully used for the
effective solution of the TDSE in strong fields [79] as well as for time delay calculations
[62, 80].
The key point for developing the MIM procedure is the expression of the wave function at
the time step tn+1 with the help of the Crank-Nicolson (CN) propagator [81]:

Ψ(rrr, tn+1) =
1− iĤ(tn +∆t/2)∆t/2
1+ iĤ(tn +∆t/2)∆t/2

Ψ(rrr, tn), (1.30)

where ∆t is the step size of the temporal grid. Now, the denominator in Eq. (1.30) can be
separated:

1+ iĤ(tn +∆t/2)∆t/2 = Â+ B̂, (1.31)
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where Â = 1+ Ĥ0∆t/2 is the time-independent part and B̂ = iĤint(tn +∆t/2)∆/2 incorpo-
rates the time-dependent interaction. Using the Neumann expansion

(Â+ B̂)−1 = Â−1 − Â−1B̂Â−1 + Â−1B̂Â−1B̂Â−1..., (1.32)

we avoid the problem of computing the matrix inverse of the operator 1+ iĤ(tn+∆t/2)∆t/2
in the expression of the Crank-Nicolson propagator. In fact, the computing of the matrix
inverse at every time step tn is substituted by the repeated multiplication of the static matrix
inverse Â−1 by the time-dependent operator B̂. For the radial wave functions fℓ(r, tn) this
matrix inversion of Â is very simple since the free-field Hamiltonian Ĥ0 is discretized on
the radial grid by using the three-point finite difference formula for the first and second
spatial derivatives [82]. Therefore, the operator Â is diagonal in ℓ and tridiagonal in space.
Consequently, we find the inverse of Â by computing the inverse of a tridiagonal matrix
which has to be performed only one time and can be stored.
We consider now an XUV pulse which is switched on for times t ∈ [−TXUV,TXUV]. To obtain
the time delay information, every initial state i with Ψ(rrr, t →−∞) = Ψi(rrr) corresponding
to the considered subshell is propagated from t =−TXUV to t = TXUV in the presence of the
ionizing XUV field which enters the interaction Hamiltonian Ĥint. After the photoelectron
wave packet is fully formed, the solution Ψ(rrr, t > TXUV) is projected on a set of appropriate
continuum wave functions ϕ

f
kkk (rrr). Consequently, we obtain the projection coefficients ai(kkk, t)

corresponding to the photoionization of an electron originating from an initial state i of a
subshell [cf. Eq. (1.15)]. By computing now the phase µi(kkk) = arg [ai(kkk)] we can extract the
time delay information with the aid of the energy derivative. This propagation procedure has
to be repeated for every possible initial state within the considered subshell. The evaluation
of Eq. (1.27) delivers then the full time delay corresponding to the photoionization of a
particular subshell.
The atomic potential used for the description of the neon atom below is a parametrized
optimized effective potential [83]. The coefficients of the parametrization are determined in
a way to match the experimental energy eigenvalues of corresponding atoms. The influence
of the electronic restructuring of the remaining ion due the electron emission cannot be
addressed within this scheme. This effective single-particle potential was already used in
the theoretical description of the Wigner time delay [12] and yielded to reasonable results.

1.5 Influence of multielectron effects on the time delay

After introducing the time delay as a quantity consisting of two contributions we can include
correlation effects on the time-independent level for the atomic (Wigner) time delay τW.
Especially in the case of the argon atom, it becomes apparent that multielectron effects play
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a crucial role in the accurate description of the photoionization and the corresponding time
delay [4, 5, 16, 17].
For an atom of the charge Z and the number of N electrons interacting via the Coulomb
interaction we have to solve the stationary Schrödinger equation with the Hamiltonian

Ĥ =−
N

∑
j

(
∇2

j

2
+

Z
r j

)
+

1
2

N

∑
j=1

N

∑
j ̸=k

1
|rrr j −rrrk|

(1.33)

and the N-body wave function Ψ. Here rrr j denotes the position of the j-th individual
electron.
Within the Hartree-Fock (HF) approximation, it is assumed that all N electrons move in a
self-consistent field according to [40, 75]

ĤHF
Ψ(x1, ...,xN)≡

N

∑
j=1

[
−

∇2
j

2
− Z

r j
+UHF(x j)

]
Ψ(x1, ...,xN)

= EHF
Ψ(x1, ...,xN)

(1.34)

where the wave function Ψ(x1, ...,xN) is the Slater determinant formed out of one-particle
wave functions ϕ j(x j):

Ψ(x1, ...,xN) =

∣∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ1(x2) . . . ϕ1(xN)

ϕ2(x1) ϕ2(x2) . . . ϕ2(xN)
...

... . . .
...

ϕN(x1) ϕN(x2) . . . ϕN(xN)

∣∣∣∣∣∣∣∣∣∣
. (1.35)

The variable x j ≡ (rrr j,σ j) incorporates the coordinates of space and spin of the electron
state j. Due to the requirements of the Pauli principle, the wave function is asymmetric with
respect to an interchange between two electron state positions, i.e.

Ψ(x1,x2, . . . ,xi, . . . ,x j, . . . ,xN) =−Ψ(x1,x2, . . . ,x j, . . . ,xi, . . . ,xN). (1.36)

The self-consistent potential UHF(x j) as a non-local operator is characterized by the single-
particle wave functions ϕ j of all atomic states and can be found through the minimization
of the atom energy. The total energy of the ground state is given by

EHF
0 =

⟨ΨHF
0 |ĤHF|ΨHF

0 ⟩
⟨ΨHF

0 |ΨHF
0 ⟩

. (1.37)

Small variations with respect to the wave function ϕ j under the condition of the minimal en-
ergy lead to a set of equations for the electronic wave functions ϕ j(rrr) with the corresponding
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spin projections σ j, called the Hartree-Fock equations:(
−∇2

2
− Z

r

)
ϕ j(rrr)+

N

∑
k=1

∫
drrr′

ϕ∗
k (rrr

′)

|rrr′−rrr|
×
[
ϕk(rrr′)ϕ j(rrr)−ϕ j(rrr′)ϕk(rrr)

]
= E jϕ j(rrr). (1.38)

The left side consists of four terms. The first and the second characterize the kinetic energy
contribution and the electron-ion potential. The third contribution is called Hartree term and
describes the electrostatic potential due to the charge cloud of the N electrons. However,
it includes also the unphysical self-interaction of electrons in the case of k = j which is
canceled by the exchange term, i.e. the last term of the left-hand side. The E j on the
right-hand side is the HF-energy of the electron state.
This approximate mean-field description of the atom by the HF-hamiltonian together with
the wave function Ψ(x1, ...,xN) does not contain the whole interaction between the electrons
because

∑
j

UHF(x j) ̸=
1
2

N

∑
j

N

∑
k ̸= j

1
|rrr j −rrrk|

. (1.39)

and therefore ĤHF ̸= Ĥ. Consequently, the Hartree-Fock approximation does not account
fully for correlation between the electron states by assuming a single-determinant form for
the many-body wave function. This is reflected in some shortcomings in describing the
electronic structure [40, 75].
By introducing the Fermi level E f as the filled level with the highest energy, we introduce
the class of bound states for all electronic states ϕ j(rrr) with energies E j ≤ E f . For atoms,
the electron energy E j is characterized by the principal quantum number n j and the orbital
angular quantum number ℓ j. The number of nodes of the radial part of the wave function is
determined by n− ℓ−1. The one-particle wave functions are orthogonal and normalized
according to ∫

drrr ϕ
∗
j (rrr)ϕk(rrr) = δ jk. (1.40)

The solutions of Eq. (1.38) for E j > E f characterize the excited states, i.e. in that case
ϕ j describes the wave function of the surplus electron state in the field of N −1 residual
electrons of the atom. We call it frozen-core approximation when the remaining electrons
are unaffected by the excitation (a hole-electron pair is created) and form a fixed field.
Furthermore, we can distinguish between the discrete (E j < 0) and continuous (E j > 0)
spectrum. The discrete solutions are normalized in accordance with Eq. (1.40) and have a
well-defined energy. In contrast, in the case of E j > 0 solutions exist for any value. For large
distances from the atom, the corresponding wave functions oscillate and are normalized
according to ∫

drrr ϕ
∗
E(rrr)ϕE ′(rrr) = δ (E −E ′). (1.41)
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The wave functions of both the ground and the excited states for a given spin projection
σ j and E j < 0 can be represented as a product of a radial part and an angular part, i.e.
ϕ j(rrr) = Rn jℓ j(r)Yℓ jm j(Ωrrr). In the case of the continuum states the representation of the
spectrum is given by the partial wave expansion (cf. Eq. (1.18)).
Interactions with an electromagnetic field can now be described by matrix elements as
introduced in Eq. (1.15) by just replacing the single particle wave functions with HF wave
functions. In this thesis the HF wave functions of the bound and excited spectra were
computed with the methods of Chernysheva et al. [84, 85].
The first step to introduce correlation effects in the HF scheme is the Random Phase
Approximation with Exchange (RPAE). In principle, it is a generalization of the Hartree-
Fock approximation in a weak non-stationary field with the assumption that the many-body
wave function in the presence and absence of the field is always a Slater determinant built
by one-particle wave functions ϕ j. The second assumption is that the temporal variation
due the action of the electromagnetic field is small, i.e. |ϕ j(t)−ϕ j| ≪ ϕ j. Under these
conditions, the RPAE equations are derived from the HF equations [40].
To describe the photoionization process more accurate, the reduced matrix element dℓ,niℓi(k)
(cf. Eq. (1.22)), which describes the transition from a bound state |Ψi⟩ to a final state in
the continuum |ϕ f

kkk ⟩ due to the action of the XUV pulse, has to be replaced by the screened
matrix element Dℓ,niℓi(k). This reduced RPAE matrix element accounts for the correlation
process between the various valence subshells to the first order. It is defined by the following
self-consistent equation:

Dℓ,niℓi(k) = dℓ,niℓi(k)+ lim
ε→0+

occ.

∑
n jℓ j

∑
l′

∫
∑dk′ k′×

[
Dℓ′,n jℓ j(k

′)⟨n jℓ j,kℓ||V ||k′ℓ′,niℓi⟩
ωXUV − εk′ + ε j + iε

+
Dn jℓ j,ℓ′(k

′)⟨k′ℓ′,kℓ||V ||n jℓ j,niℓi⟩
ωXUV + εk′ − ε j

]
.

(1.42)

The indices i and j denote for valence orbitals and the sum/integral sign stands for the
summation over all discrete excited states with energies εk = εn′ℓ′ as well as integration over
the continuum states with the energy εk = k2/2. All used single particle wave functions are
in the HF approximation. The whole process is depicted graphically in Fig. 1.2.
The first term of Eq. (1.42) is the reduced dipole matrix dℓ,niℓi(k), which describes the
transition from the bound state i to the continuum in the HF approximation. The second
term of Eq. (1.42) describes the time-forward process and is characterized by the reduced
Coulomb matrix elements ⟨njℓj,kℓ||V ||k′ℓ′,niℓi⟩ which is the difference between the direct
and exchange Coulomb matrix elements. The direct Coulomb interaction matrix is given by
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Fig. 1.2 Illustration of RPAE equations. The straight lines with an arrow to the right
represent a continuum state, while an arrow to the left stands for a bound (hole) state. The
curly line displays the Coulomb interaction while a dashed line exhibits a photon with the
energy h̄ω . The filled circle represents the correlated matrix element while the bare reduced
matrix element is displayed by the bifurcation. The time axis goes from left to right.

[40]:

⟨n jℓ jkℓ||U ||k′ℓ′niℓi⟩=
√
(2ℓ+1)(2ℓ′+1)(2ℓi +1)(2ℓ j +1)

(
ℓ 1 ℓi

0 0 0

)

×

(
ℓ′ 1 ℓ j

0 0 0

)
Rℓ,ℓ′,ℓi,ℓ j(εk,εk′,ni,n j),

(1.43)

where Rℓ,ℓ′,ℓi,ℓ j(εk,εk′,ni,n j) is the radial Slater integral:

Rℓ,ℓ′,ℓi,ℓ j(εk,εk′,ni,n j) =
∫

∞

0
dr Rkℓ(r)Rk′ℓ′

∫ r

0
dr′

r<
r2
>

Rniℓi(r)Rniℓ j(r). (1.44)

In the exchange Coulomb matrix element simply the states |kℓ⟩ and |n jℓ j⟩ have to be
swapped. In principle in the time forward process after absorption of a photon, the following
interelectron interaction leads to a creation of a virtual hole-electron pair in the neighboring
subshell. The process is shown in the second graph of Fig. 1.2.
The third term of the RPAE equation (1.42) represents the time-reversed process [the third
graph of Fig. 1.2] where the virtual hole-electron pair creation due interelectron interaction
takes place before the photon is absorbed. It is characterized by the reduced Coulomb matrix
element ⟨k′ℓ′,kℓ||V ||n jℓ j,niℓi⟩ and Dn jℓ j,ℓ′(k

′) = ⟨n jℓ j||D||k′ℓ′⟩. The time-forward process
is the dominant contribution to the photoionization process since it conserves the energy
of the system while the time-reversed process is virtual [16, 40]. The system of integral
equations in Eq. (1.42) was solved with the methods of Ref. [75].
The energy integration in the time-forward term contains a pole with the consequence that
the whole reduced RPAE matrix element is complex. Thus, Dℓ,niℓi(k) can be expressed
as |Dℓ,niℓi(k)|eiδ RPAE

ℓ (k) and we find an additional spectral phase. The whole RPAE dipole
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matrix element has the form (cf. Eq. (1.21))

DRPAE
i (kkk) =

√
(2π)3

k ∑
ℓ=ℓi±1

i−ℓei(δ HF
ℓ (k)+δ RPAE

ℓ (k))

×

(
ℓ 1 ℓi

−mi 0 mi

)
Yℓmi(Ωkkk)|Dℓ,niℓi(k)|.

(1.45)

All the steps from Eq. (1.24) to Eq. (1.27) can be repeated and we obtain the angular
characteristics of the Wigner time delay τ i

W(ϑkkk) corresponding to the photoionization from
a subshell i in the RPAE.

1.6 Angular dependence of the atomic time delay

1.6.1 Neon

Neon was chosen as a first system to investigate the angular dependence of the time delay. It
is a natural choice since the corresponding relative time delay between the photoionization
of the 2s and 2p subshell was measured by Schultze et al. [3] and triggered a large research
interest because up to date it can not be reproduced by theoretical methods.
Most theoretical results were computed in the forward direction, i.e. ϑ = 0◦. Kheifets et al.
[12, 16] obtained 8.4 as with the help of the RPAE method and therefore a similar treatment
as used in this thesis. The aim is to analyze whether the angular dependence has some
influence on the resulting time delay since in the measurement the incoming signal is an
average over all contributions of photoelectrons within the detection (acceptance) angle
ϑmax. The linearly polarized XUV field which ionizes the target atom is modeled as

EXUV(t) = E0 cos2
(

πt
2TXUV

)
cos(ωXUVt) (1.46)

for all times within the interval [−TXUV,TXUV] and zero otherwise. To mimic the experiment
[3] suitable parameters were chosen such that the pulse has a full width at half maximum
(FWHM) of 182 as. The amplitude of the electric field is 0.12 a.u. which gives us a peak
intensity of 5×1014 W/cm2 and justifies the perturbative treatment.
In Fig. 1.3 the explicit angular dependence of the time delays corresponding to the 2s
and the three possible 2p initial states of neon is shown. The used photon energy of
106 eV is in agreement with the experiment [3]. We compare here the results within the
RPAE with the time delays obtained by numerical simulations of the 3D Schrödinger
equation with the aid of the MIM technique introduced in the fourth section of this chapter.
Although the RPAE has a more advanced theoretical background because it treats correlation
effects to a first order, this comparison is justified. Previous studies showed that in neon
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Fig. 1.3 Angular dependence of the time delays corresponding to photoelectrons liberated
from the different initial states of the 2s and 2p subshells in neon. The photon energy
h̄ωXUV = 106 eV. Results within the RAPE and numerical calculations are shown.

the correction due to the intershell correlation effects has only a minor impact on the
description of the photoionization process of the 2p subshell but a significant contribution
to the 2s photoionization [12, 16]. Nevertheless, from Eq. (1.26) we know that any angular
dependence of the relative time delay τ

2p−2s
W ≡ τ

2p
W −τ2s

W originates from the photoionization
of the 2p subshell since only in that case two photoionization channels can be found.
Therefore, it is reasonable to compare both methods qualitatively.
The RPAE results indicate a pronounced angular modulation with ϑkkk of the time delay
corresponding to a photoelectron liberated from the initial state of the 2p subshell with
mi = 0. However, the time delays corresponding to mi =±1 show no dependence on the
angle because they are missing the second ionization channel (only 2p → Ed is possible
for mi =±1). Due to the same circumstance the time delay of the 2s subshell is constant.
These results are confirmed by the full numerical simulation of the photoionization process.
Small differences occur around ϑ =±90◦ where the time delays corresponding to {ℓi =

0,mi = 0}(2s) and {ℓi = 1,mi =±1}(2p) show small variations on the angle. The reason
is that the associated dominating final ionization channels {ℓ = 1,m = 0} (2s → kp) and
{ℓ= 2,m=±1} (2p→ kd) vanish because Y10(90◦,ϕkkk)=Y2±1(90◦,ϕkkk)= 0. Consequently,
ionization channels with higher orbital angular momentum become decisive which cannot
be captured by the RAPE but by the full numerical treatment.
The time delay of the photoionization process which liberates an electron from the 2p
initial state with {ℓi = 1,mi = 0} shows substantial variations. Typically, the time delay is
characterized by the dominating photoionization channel with ℓ= 2 which is underpinned
by Fano’s propensity rule [86], that means the total phase of the scattering amplitude
µi(kkk) ≈ δℓ=2(k) = δ HF

ℓ=2(k)+ δ RPAE
ℓ=2 (k). The phases are depicted in Fig. 1.4(a) and in the

case of ℓ = 2 they both have a positive slope and lead therefore to a positive time delay
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Fig. 1.4 (a) Scattering phases of the different ionization channels within HF approximation
and RPAE. Both enter the evaluation of the time delay according to Eq. (1.45). (b) Angular
dependence of the relative delay τ

2p−2s
W at a photon energy h̄ωXUV = 106 eV as an average

of the contributions of all possible initial states. The inset shows the β -parameter β2p of
the 2p subshell calculated on the basis of the pseudopotential and the RPAE model. The
crosses represent the experimental data given in Ref. [87].

which is the energy derivative of µi(kkk). Furthermore, as an additional feature δ HF
ℓ=2 fulfills

the Levinson-Seaton theorem [73] since δ HF
ℓ=2(k → 0)−σℓ=2(k → 0) = 0 which can be

explained because in neon no d-orbital is occupied.
The very pronounced sharp delay structures around an angle ϑkkk =±57◦ can be explained by
the vanishing contribution of the typically dominating ionization channel with ℓ f = 2 [86].
The consequence for the sign of the time delay is evident. According to Eq. (1.26) the full
phase µi(kkk) in this regime is now completely characterized by δℓ=0(k) = δ HF

ℓ=0(k)+δ RPAE
ℓ=0 (k)

which reveals a negative slope in Fig. 1.4(a) collectively. The direct consequence is a
locally negative time delay τ

ℓi=1,mi=0
W . In that case, we encounter the Levinson-Seaton

theorem again. The difference δ HF
ℓ=0(k → 0)−σℓ=0(k → 0) = 1.28π , i.e. the quantum

defect µℓ=0(∞) = 1.28 which resonates well with the HF energy eigenvalue of the 2s-orbital
εHF

2s =−1.93 a.u..
The explicit plot of the scattering phases reveals that for the dominating ionization channel
with ℓ= 2 the additional RPAE phase δ RPAE

ℓ=2 (k) is hardly distinguishable from zero (and
very flat). Therefore, the correction induced by the RPAE for τ

2p
W is subtle, and a qualitative

comparison of the resulting angular dependence with the single particle description (via HF
or numerical solution) is permissible.
While the effect of the RPAE on the specific time delays related to the photoionization of
the 2p subshell is subsidiary [16], we find that the energy derivative of the additional phase
δ RPAE
ℓ=1 has a significant influence on the resulting delay corresponding to the photoionization

process of the 2s subshell. In this case, the total scattering phase µi(kkk) is according to
Eq. (1.26) fully characterized by δℓ=1(k) = δ HF

ℓ=1(k)+δ RPAE
ℓ=1 (k). Both the HF phase and the

RPAE phase for ℓ= 1, depicted in Fig. 1.4(a), have a negative slope leading therefore to a
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Fig. 1.5 The relative time delay τ
2p−2s
W within the RPAE in dependence on the photon energy

h̄ωXUV for different angles ϑkkk.

negative time delay. The resulting quantum defect gathered from δ HF
ℓ=1(k → 0)−σℓ=1(k →

0) = 0.91π is µℓ=1(∞) = 0.91 which is ín line with the literature [16]. By comparing the
RPAE results with the full numerical simulation, we observe a visible discrepancy which is
explained by the additional RPAE phase for ℓ= 1 which is not as flat as δ RPAE

ℓ=2 .
In Fig. 1.4(b) the angular dependence of the full averaged (over all possible initial states)
relative time delay τ

2p−2s
W is shown. It is remarkable that the formerly strong angular

variation of τ
mi=1,ℓi=0
W is nearly compensated by the constant time delays belonging to

{mi = 1, ℓi =±1} leading so to a relatively smooth angular dependence of the relative time
delay. The discrepancy between RPAE results and full numerical simulation is explained
by τ2s

W which is significantly influenced by intershell electron correlation captured by the
RPAE.
By looking at Eq. (1.27) in case of the photoionization of the 2p subshell, we can express the
sum in the denominator as ∑

1
mi=−1 wℓi=1,mi(εk,ϑkkk) ∝ 1+β2p(εk)P2(cosϑkkk). Here β2p is the

angular asymmetry parameter [40, 88] and P2(x) = (3x2 −1)/2 the Legendre polynomial
of the second order. In principle, it describes the angular dependence of the photoionization
process. The calculation of the β2p-parameter provides another good test for the accurateness
of the description of the 2p photoionization process by the RPAE and the full numerical
simulation. Together with a comparison with the experimental measurement [87], it is
shown in the inset of Fig. 1.4(b). We see practically no difference between measurement,
calculation with the RPAE and the full numerical simulation which demonstrates that
the description of the electronic structure by the model potential [83] is accurate. At the
photon energy h̄ωXUV = 106 eV the beta parameter has the value β2p = 1.5 meaning that
1/(1+β2pP2(cosϑkkk)) has two maxima at ϑkkk =±90◦. Therefore, it is explained why the
relative time delay τ

2p−2s
W increases slowly when approaching larger angles. Consequently,

the numerator of Eq. (1.27) which is determined by ∑
1
mi=−1 wℓi=1,mi(εk,ϑkkk)τ

ℓi=1,mi
W (εk,ϑkkk)
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shows no significant angular dependence which underpins the attenuation of the pronounced
angular modulation of τ

ℓi=1,mi=0
W due to the averaging with τ

ℓi=1,mi=±1
W .

In Fig. 1.5 the dependence of the relative time delay τ
2p−2s
W on the photon energy is depicted

for different asymptotic directions ϑkkk of the photoelectron. Two characteristics can be
observed. Generally, the time delay decreases with an increasing photon energy which can
be explained by the behavior of the scattering phases. For large energies, the HF phases, as
well as the RPAE phases, tend to become very flat (cf. Fig. 1.4(a)) leading to very small
time delays. More important is the observation that the angular dependence is very subtle
yielding a negative answer regarding the question whether any angular modulation of the
time delay could have an impact on the experimental measurement.
In forward direction (i.e. ϑkkk = 0◦) we find a relative RPAE time delay τ

2p−2s
W = 8.19 as

which is in good agreement with the results of Kheifets et al. [12, 16]. An averaging of the
relative time delay within a large acceptance angle, i.e. over all angles ϑkkk ∈ [−45◦,45◦] at a
photon energy of 106 eV leads to a relative time delay of τ

2p−2s
W = 8.51 as while a smaller

acceptance angle of ϑmax = 20◦ results in a time delay of τ
2p−2s
W = 8.24 as. Thus, in the

case of neon effects on the measurements due to the angular dependence of the time delay
can be neglected, and it does not serve as an explanation for the discrepancy between the
experimental and all theoretical results.

1.6.2 Argon

In the case of argon, the same shape and field amplitude of the electromagnetic perturbation
was used. To improve the RPAE approximation we substitute the HF energy eigenvalues
with the experimental ionization thresholds [16]. Therefore, the energy difference between
the 3s and 3p subshells is 13.48 eV [83]. To avoid some accidental photoionization of both
initial subshells (3s and 3p), we have to adjust the spectral width which has to be narrower.
Therefore, we use an XUV pulse with a longer duration in comparison to the neon case.
The FHWM of 300 as is sufficient.
The partial cross sections corresponding to the photoionization process of the 3s and 3p
subshells are depicted in Fig. 1.6(a). Theoretically, they are calculated for a specific subshell
with the quantum numbers ni, ℓi according to

σniℓi(ω) = 2.689
ωNi

2ℓi +1 ∑
ℓ=ℓi±1

|dℓ,niℓi(k)|
2, (1.47)

where k =
√

2(ω + εniℓi). Some integral features can be observed. First, the 3p partial
cross section reveals a Cooper minimum, i.e. a minimum of the photoionization probability
around 50 eV, while it does not exist in the case of the nodeless 2p orbital of neon [89].
Second, the correlation correction due to the RPAE changes the shape of the 3s partial cross
section completely and evidencing a deep Cooper minimum around 42 eV which cannot
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Fig. 1.6 (a) Photoionization cross sections corresponding to the 3s and 3p subshells in argon.
(b) Scattering phases of argon of the different ionization channels within HF approximation
and RPAE.

be captured by the HF approximation or other single-active electron approximations. In
the case of both partial cross sections, the RPAE calculations reproduce the experimental
measurement to a fair agreement. Therefore, we forgo the full numerical simulations for
argon.
A look at the scattering phases in Fig. 1.6(b) reveals strong differences in comparison with
neon. According to the Levinson theorem in the absence of the Coulomb potential the HF
phase corresponding to the transition 3s → kp would tend to 2π at k → 0 because two p
subshells are occupied. Taking the Coulomb potential into account the quantum defect is
characterized by δ HF

ℓ=1(k → 0)−σℓ=1(k → 0) = 1.75π , i.e. µℓ=1(∞) = 1.75. The RPAE
phases are very different in comparison to neon because the phase δ RPAE

ℓ=1 (k) makes a jump
of π when the cross section goes through the Cooper minimum at 42 eV. The explanation
is very simple: Imagine the photoionization amplitude µi(εk,Ωkkk) is real and had a node
(Cooper minimum). In this case, it would change the sign which is similar to adding a
phase factor of π in the complex number representation [46]. A similar situation can be
observed in the case of the 3p subshell. For the transition 3p → kd we find the quantum
defect µℓ=2(∞) = 0 since for argon no d orbital is occupied. The corresponding RPAE
phase δ RPAE

ℓ=2 (k) as well as δ RPAE
ℓ=0 (k) (3p → ks transition) also make a substantial jump of

−π and π , respectively, when the partial cross section passes the Cooper minimum at 50 eV.
The prominent features in the RPAE phases have a significant impact on the resulting time
delays. In panel Fig. 1.7(a) the time delay corresponding to the photoionization process
of the 3s subshell is shown. It is not surprising that the τ3s

W shows no angular dependence
since we have only one photoionization channel (3s → kp). The comparison between the
results in HF approximation and within RPAE show the large impact of the correction due
to intershell correlation effects. While the HF result is relatively flat and is comparable to
the characteristics of 2s time delay of neon, we find a very pronounced peak of the RPAE
time delay for photon energies around the Cooper minimum. The explanation is given by
δ RPAE
ℓ=1 (k) which makes a sudden jump of π at h̄ωXUV = 42 eV. Therefore, according to
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Fig. 1.7 (a) Time delay corresponding to the photoionization process of the 3s subshell in
argon. (b) Time delay τ

3p
W for different asymptotic directions ϑkkk of the liberated photoelec-

tron. The inset shows the angular dependence of the full averaged delays in the case of three
different photon energies around the Cooper minimum.

Eq. (1.26) the time delay τ3s
W = ∂

∂εk

[
δ HF
ℓ=1(k)+δ RPAE

ℓ=1 (k)
]

shows a very distinctive positive
peak at the π-jump of the RPAE scattering phase.
In Fig. 1.7(b) the whole time delay of the photoionization of the 3p subshell is depicted.
The contributions of all magnetic substates are included according to Eq. (1.27). Substantial
variation with the photon energy h̄ωXUV can be observed. Furthermore, in contrast to the
results for neon, we find a pronounced angular modulation around 50 eV which is correlated
with the Cooper minimum. The origin is the angular dependence of τ

ℓi=1,mi=0
W due to

the existence of two ionization channels (3p → ks and 3p → kd). The time delays of the
other magnetic substates τ

ℓi=1,mi=±1
W ≡ ∂

∂εk

[
δ HF
ℓ=2(k)+δ HF

ℓ=2(k)
]

do not show any angular
modulation since only the transition 3p → kd is possible.
At an angle of ϑkkk = 0◦ the probability of the photoionization processes corresponding to
the initial states ℓi = 1,mi = ±1 are zero, i.e. in this case τ

3p
W = τ

ℓi=1,mi=0
W . The negative

sign of τ
3p
W around the Cooper Minimum despite the positive energy derivative of the HF

scattering phase δ HF
ℓ=2 corresponding to the dominant transition 3p → kd can be explained

by the RPAE phase δ RPAE
ℓ=2 , which makes a sudden jump of −π . However, the peak of the

corresponding time delay at the Cooper minimum is not as pronounced and sharp as in
the case of the photoionization of the 3s subshell. The reason is the interference between
both possible photoionization channels which on the other hand, leads to the substantial
angular dependence. The usually weak transition 3p → ks becomes stronger near the
Cooper minimum, i.e. it is of the same magnitude as the otherwise dominant transition
3p → kd. As a consequence, the negative delay peak induced by the RPAE phase δ RPAE

ℓ=2

is damped by the 3p → ks transition where the corresponding RPAE phase δ RPAE
ℓ=0 makes a

positive jump of π (cf. Fig. 1.6(a)). Therefore, the resulting time delay does not fall below
−100 as. Nevertheless, we can observe a local and pronounced negative time delay due to
the intershell correlation correction.
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Fig. 1.8 (a) Comparison of the angle-integrated time delay τ
3p
W corresponding to the photoion-

ization of the 3p subshell calculated within the RPAE with the experimental measurement
[66]. (b) Full relative time delay τ

3s−3p
W in dependence on the photon energy and different

asymptotic directions ϑkkk of the photoelectron. For comparison, the experimental results by
the RABBIT method are included (closed circles, Ref. [5]; open squares, Ref. [4]).

For angles ϑkkk > 0◦ and photon energies around the Cooper minimum, the transition 3p → ks
begins to dominate the photoionization process. Now, it marks the primary contribution to
τ
ℓi=1,mi=0
W with the consequence that the resulting full time delay τ

3p
W (with contributions

from all possible initial magnetic substates) tending to increase due to the positive π-jump
of the RPAE phase δ RPAE

ℓ=0 . The reason is that the Legendre polynomial P0
2 (cosϑkkk) decreases

for larger angles ϑkkk while P0
0 (cosϑkkk) is constant (cf. Eq. (1.24)). For photon energies far

away from the Cooper minimum, the effect due to angular dependence becomes very subtle.
In this regime, the photoionization process is entirely dominated by the transition 3p → kd
[86] and the same characteristics as for neon can be observed. In addition, the RPAE phase
δ RPAE
ℓ=2 becomes very flat which means the angular dependence of the time delay is of the

same magnitude as in the case of neon.
The small inset of Fig. 1.7(b) shows the time delay of the 3p photoionization process angle-
resolved for three different photon energies. Again large differences between the atomic
systems neon and argon can be observed due to the existence of the Cooper minimum in
the second case. The time delay corresponding to photoionization of neon shows nearly
no angular modulation in the range between −45◦ and 45◦ while in the case of argon,
we find a substantial variation with the angle for photon energies around the Cooper
minimum. Especially for the photon energy h̄ωXUV = 51 eV, a strong dependence of τ

3p
W up

to ϑkkk =±45◦ can be observed.
Recently, the angular dependence of the time delay was addressed experimentally [66].
The comparison between the angle-integrated measurement of the 3p time delay τ

3p
W and

the RPAE result in Fig. 1.8(a) reveals a reasonably well agreement. Therefore, the RPAE
prediction regarding the angular dependence of the time delay seems to be qualitatively
correct. However, a more accurate angle-resolved experimental measurement is needed
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to verify the theoretically predicted angular modulation of the time delay for asymptotic
directions of the photoelectron far away from the polarization axis.
In Fig. 1.8(b) the full relative time delay τ

3s−3p
W between the photoionization process of the

3s and 3p subshells are shown. By varying the photon energy h̄ωXUV the otherwise very
flat course of the time delay is interrupted at the Cooper minima of the 3s and 3p subshells.
The first peak at 42 eV originates from the very pronounced peak of the 3s time delay τ3s

W .
Characteristic for this feature is the quasi non-existent angular dependence. At larger photon
energies around 50 eV, we find the second peak originating from the 3p contribution and a
large dependence on the asymptotic direction ϑkkk of the photoelectron. The results in the
forward direction (ϑkkk = 0◦) are in good agreement with other RPAE results [16, 56] as
well as other theoretical approaches like TDLDA [61] or MCHF [57]. The photon energies
corresponding to sideband frequencies (SB) of the titanium:sapphire laser at 800 nm used in
two-photon interferometric experiments [4, 5] are marked. The corresponding measurements
confirm the trend of our theoretical results. However, the RPAE and the measured time
delays agree not very well, except for the lowest experimental energy, i.e. furthest away
from the 3s Cooper minimum. Since the theoretically calculated 3p time delay τ

3p
W is in

good agreement with the experiments [66, 90] the correlation correction for the 3s subshell
does not seem to be entirely accurate. Furthermore, no significant angular modulation occurs
at these photon energies which could influence the experimental results. Consequently, a
measurement of the time delay τ3s

W corresponding to the photoionization of the 3s subshell
could give a more detailed insight into this theory-experiment discrepancy.
In contrast to the investigation of neon, the strong angular dependence of the relative time
delay around the 3p Cooper minimum of argon has a significant impact on the experimental
measurement emphasizing the importance of the acceptance angle ϑmax of the used TOF
detector. At a photon energy h̄ωXUV = 51 eV in the forward direction, τ

3s−3p
W amounts to

105 as, while an acceptance angle of 20◦ results in an angle-integrated relative time delay of
92 as. A larger acceptance angle ϑmax = 45◦ leads to a relative time delay, averaged over all
possible asymptotic photoemission directions, of 68 as.

1.7 Conclusion

Using several theoretical methods, the angular dependence of the Wigner time delay for the
two atomic systems neon and argon was calculated. The preliminary considerations show
that the whole time delay measured in an attosecond streaking experiment can be divided
into two parts: τS = τat + τCLC. Here, the atomic time delay τat is equivalent to the Wigner
time delay τW. While τW represents the individual scattering characteristics of the atomic
system, the CLC delay is a universal quantity and can be calculated analytically according
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to Eq. (1.13). Therefore, information about the angular dependence of the time delay is
embedded in the Wigner time delay τW.
The study of the time delay endorses its angular dependence as general effect whenever
transitions to two photoionization channels are accessible leading to interference, e.g.
τ
ℓi=1,mi=0
W for neon or argon. That means in principle, the angular dependence of the time

delay can be accessed with SAE calculations. In the case that only one photoionization
channel exists, we find no angular modulation of the time delay.
Our calculations for neon for the relative time delay τ

2p−2s
W confirm this and show a weak

angular dependence for high photon energies. Therefore, we obtained a negative answer
regarding the question whether the angular modulation of the time delay has a significant
impact on the measurement by Schultze et al. [3] and helps to resolve the discrepancy
between theory and experiment.
In the case of argon, the observation is different. The SAE methods are not capable of
describing the electronic structure and the photoionization process accurately since the
Cooper minimum can not be reproduced correctly. Within the RPAE, which adds intershell
correlation correction, the minima in the photoionization amplitudes for both subshells 3s
and 3p can be evaluated more precisely, and we find a substantial angular modulation of the
time delay τ

3p
W corresponding to the photoionization of the 3p subshell in this regime. The

explanation is given by the strengths of the usually weak and dominating photoionization
channels, i.e. 3p → ks and 3p → kd, which are of the same magnitude around the Cooper
minimum. Our theoretical results are in accord with other theoretical models and show a
reasonable agreement with the experimental measurements, although discrepancies persist.
Indirectly, the pronounced angular dependence of the time delay is confirmed by the angle-
integrated measurement [66].
The angular dependence in the regime of the 3p Cooper minimum would have a significant
impact on the measurements and emphasize the importance of the acceptance angle ϑmax of
the TOF detector used in the corresponding experiment.



Chapter 2

Ultrafast processes with light carrying
orbital angular momentum

2.1 Introduction

Light carrying orbital angular momentum (OAM) [18–23, 91], also called optical vortex,
has found exciting applications in photonics and electronics but also gave new impulses
in chemistry, life sciences, quantum information, astronomy or optical telecommunication
[24–36]. Other examples involve the trapping, rotating and manipulating of microscopic
objects [92–94], atoms and molecules [95–97] as well as Bose-Einstein condensates [98].
As an exciting utilization, an OAM beam may drive currents in quantum rings [99, 100] and
semiconductor stripes [101].
The phase front of such an OAM beam has the shape of a helix. In cylindrical coordinates
with the z-axis parallel to the propagation direction of the light beam this helical shape
as part of the field spatial distribution is characterized by exp(iℓOAMϕ) where ϕ is the
azimuthal angle in the xy-plane and ℓOAM is the topological charge of the optical vortex. It
was shown by Allen et al. [18] that helically shaped beams carry OAM with respect to the
z-axis. They are, for instance, mathematically described by Laguerre-Gaussian (LG) modes
which are solutions of the paraxial approximation of the Helmholtz equation. Each photon
of such an LG beam carries a quantized amount of OAM of ℓOAMh̄. Here we introduce
the topological charge ℓOAM, also called winding number, as an integer number which
characterizes the amount of twists of the phase in one wavelength. The higher ℓOAM, the
faster the light is spinning around the propagation axis. Characteristic for the class of optical
vortices is the phase singularity in the center which means that the intensity of the beam
vanishes at the optical axis and rises to larger radii. Thus, in case of LG modes the spatial
profile has the shape of a donut whose radius is determined by the beam’s waist and the
topological charge ℓOAM.
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Several methods and techniques exist to produce OAM beams. A big advantage is that they
can be created from usual light sources [18, 102, 103]. The different approaches involve
computer-generated holograms screened on a spatial light modulator (SLM) [104–106], the
generation with the aid of astigmatic mode converters [19] or spiral phase plates [107] as
well as the conversion of spin angular momentum to OAM in inhomogeneous anisotropic
plates [108]. However, there exists no perfect method since all have several limitations.
For instance, the creation of OAM beams with the help of an SLM is not very efficient
while the overall quality is limited by the pixel size of the nematic liquid crystal cells. The
other methods, although more efficient, are static approaches and cannot be dynamically
controlled. Recently, a very new method to generate and manipulate OAM beams rests on a
ring resonator based geometry [109]. Fascinating for future research is the possibility to
generate optical vortices with radii independent on the topological charge with a method
which bases on the width pulse approximation of Bessel functions [110, 111].
A key element of using this type of light beams is the opportunity to transfer effectively
orbital angular momentum when interacting with matter [94, 112–116]. Therefore, a torque
is exerted on the charge carriers which points to exciting new ways of the optically induced
controlling and steering of the orbital motion of charged particles. As a demonstration the
numerical simulations in Ref. [101] reveal that an electron wave packet in a semiconductor
bar which is irradiated with an OAM light spot attains such a torque. As a consequence,
it begins to drift transversely to the propagation direction. Furthermore, the direction and
magnitude of this drift can be controlled effectively by the parameters of the optical vortex
which emphasizes the enormous flexibility by using this type of light.
Within this thesis, we want to show three fundamentally different applications of the optical
vortices and the capability of OAM light to reveal exciting and new effects.
i) OAM beams open the way to initiate unprecedented optical excitations to different
magnetic sublevels. To demonstrate this effect, the atomic time delay which was already
introduced in the first chapter of this thesis will be revisited using optical vortex beams. For
a linearly polarized light the photoionization probabilities of the initial states with mi =±m
are equal and so are their contributions to the time delay. They also show the same angular
dependence (cf. with chapter 1 of this thesis). Let us consider the photoionization process of
an argon atom with an XUV, OAM carrying LG beam [117–120] which are experimentally
feasible [121, 122]. Note that high-intensity LG beams are also available [123].
We show that employing an optical vortex for photoionization initiates transitions involving
the change of the magnetic quantum number by an amount set by the topological charge
ℓOAM. Thus, the symmetry between the magnetic sublevels will be broken. As a conse-
quence, we find certain asymptotic directions of the photoelectron where the photoionization
process and the corresponding time delay are totally dominated by a magnetic sublevel.
Furthermore, the calculation shows that the time delay also depends strongly on the po-
sition of the atom in the beam spot. This is connected to the strong dependence of the
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photoionization probabilities on the atomic-scale distance of the atom from the optical axis
of the twisted photon beam which is already theoretically predicted [124, 125]. The reason
is the characteristic of the phase structure which changes drastically on the atomic scale
[126, 127]. Therefore, it is possible to use the time delay measurements as a tool to identify
the origin of the photoelectron in energy, magnetic sublevel, and space.
ii) Endohedral molecular magnets are auspicious candidates for molecular electronics and
quantum information processing. Possible realizations with interesting applications are
fullerenes containing nitrogen [128, 129] or DySc2N [130]. The reason is that the carbon
cage acts as a shield for the magnetic properties of the nanoparticles inside. Thus, they
exhibit relatively long spin relaxation times. However, for a proper functionalization, an
ultrafast control of the local magnetization is favorable. From fundamental electrodynamics,
it is known that a charge current loop generates an equally localized magnetic field which is
capable of steering the properties of magnetic nanoparticles.
We will consider irradiating a C60 molecule with a fs OAM beam [131]. The abovemen-
tioned capability to transfer of OAM to the particle initiates transitions from the bound
degenerative states to the so-called super atomic molecular orbitals (SAMOs) which were
revealed experimentally [132] and theoretically [133–140]. They are in principle diffuse, un-
occupied but still bound (by the central molecular cage potential) orbitals with well-defined
orbital angular momenta. Hence, the SAMOs extend way beyond the occupied π orbitals
(second radial band) and an influence due to modification of the geometry or doping is not
pronounced. Therefore ab− initio calculations show that they also exist in the case of larger
or doped fullerenes like N@C60.
We will demonstrate that for the transition from a bound state of the π-band to the SAMO
due to the interaction with the optical vortex pulse the magnetic quantum number m also
changes. The change ∆m is set by the topological charge ℓOAM. Therefore, a charge current
loop on the surface of the carbon cage, as well as a magnetic orbital moment, is generated
for moderate intensities. The advantage is that by using an OAM beam one is not restricted
to the conventional optical selection rules, and the current can be effectively increased by
increasing the topological charge ℓOAM. We evaluate then the magnetic field inside the
fullerene cage which can be tuned in sign and amplitude by varying the parameters of the
optical vortex, such as the topological charge, the waist, the intensity or the frequency.
iii) As a third application, we explore the effect of an optical vortex beam which is focused
on a GaAs-AlGaAs-based quantum ring. Due to the interaction with the light wave and the
corresponding transfer of OAM conduction band transitions are caused which leads to a
centrifugal drift of the charge carriers. Thus, a time-dependent imbalance between the inner
and outer ring boundaries is shown, i.e. a charge separation can be found. This process
leads to a useable voltage and a directed photocurrent whose magnitude can be controlled
by the parameters of OAM beam. Most important it can be increased by enlarging the light
topological charge ℓOAM at a fixed frequency and intensity, i.e. without additional heating.
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In a further step, a mechanism to generate currents induced by light carrying OAM is
demonstrated. A full-fledged numerical simulation emphasizes that this photovoltaic effect,
i.e. generation of a charge current from light sources, is systematically controllable and
tuneable by changing the properties of light as well as by appropriate nanostructuring
of the system. Therefore, the quantum ring acts as a charge reservoir for the generated
current [141, 142]. We propose a wiring network of several quantum rings with spiral phase
plates on top. The mechanism is clear: a conventional (Gaussian) light beam traversing the
phase plates would be transformed in an optical vortex, which transfers OAM to the charge
carriers due to subsequent light-matter interaction. With every additional quantum ring in
this network of charge wheels, the resulting current in an attached wire will be increased.
The theoretical findings gain further importance in the view of recent experiments on an
n-doped bulk GaAs, which is irradiated with OAM pulses [143]. It was measured that the
semiconductor sample indeed acquires OAM due to the interaction with the optical vortex.
Unless otherwise stated, atomic units (a.u.) will be used throughout this chapter.

2.2 Mathematical description of OAM beams

The vector potential of a vortex beam, used in the investigations below, in cylindrical
coordinates with the z-axis parallel to the light propagation is given by [18]

AAA(rrr, t) = ε̂A0 f p
ℓOAM

(rrr)ei(ℓOAMϕ ′(rrr)−ωt)
Ω(t)eiqzz + c.c.. (2.1)

Here ε̂ is the polarization vector and Ω(t) the pulse temporal envelope which can be further
characterized while the amplitude of vector potential is given by A0. The angle ϕ ′(rrr) is the
angle in the xy-plane of the considered object relative to the optical axis of the light beam.
In all our studies the dynamics transversal to qz is of interest. For photon energies h̄ω in
the (X)UV regime and the size of the considered objects (argon and the C60 molecule) we
deduce that qzz ≪ 1, i.e. the dipole approximation is very acceptable along the z-axis. The
radial structure is described by the functions

f p
ℓOAM

(ρ ′(rrr)) =CℓOAM,pe
− ρ ′(rrr)2

w2
0

(√
2ρ ′(rrr)
w0

)|ℓOAM|

L|ℓOAM|
p

(
2ρ ′(rrr)2

w2
0

)
, (2.2)

where ρ ′(rrr) describes the vector in the xy-plane and relative to the optical axis of the
beam. The parameter p indexes the number of radial nodes of the spatial distribution of the
light field. The functions L|ℓOAM|

p (x) are the associated Laguerre polynomials while CℓOAM,p

describes the normalization factor. In all investigations we assume p = 0, i.e. L|ℓOAM|
p=1 = 1.

The case p ̸= 0 implicates no further complications but adds no further qualitative infor-

mation. Highest intensities are reached at ρmax =
√

ℓOAM
2 w0 with the maximal amplitude



2.2 Mathematical description of OAM beams 35

ρ0

ρ ρ'

φ'φ

OAM x

y

Fig. 2.1 A general schematic representation of the coordinate system corresponding to the
investigations below. The considered object (in this particular case the C60 molecule) in the
xy-plane has the distance ρ0 to the optical axis of the vortex beam. The vector ρ = r sin(ϑ)
marks the position of the electron relative to the center of mass of the object, while ρ ′

is relative to the optical axis. The shaded area indicates the donut-shaped high-intensity
regime of the optical vortex.

AℓOAM
max = |ℓOAM|

|ℓOAM|
2 e

|ℓOAM|
2 . Thus, for a reasonable comparison for different values of the

topological charge ℓOAM the normalization factor is given by CℓOAM,p = 1/AℓOAM
max .

In Fig. 2.1 a schematic representation of the coordinate system is presented. In the general
case the optical axis and the center of mass of the considered object (origin of ordinates)
do not coincide and therefore, ρ ′(rrr) or ϕ ′(rrr) (relative to the optical axis) are functions of rrr.
For a fixed distance ρ0 between the object and the vortex beam the angle ϕ ′(rrr) is related to
ϕ according to:

sin(ϕ ′(rrr))
sin(ϕ)

=
ρ

ρ ′(rrr)
(2.3)

while
ρ
′(rrr) =

√
ρ2 +ρ2

0 −2ρρ0 cos(ϕ). (2.4)

Note that ρ = r sin(ϑ) where the angle ϑ is relative to propagation direction (and optical
axis) of the vortex beam. In the special case where the optical axis and the center of mass
coincide, i.e. ρ0 = 0, the relation applies that ρ ′ ≡ ρ and ϕ ′ ≡ ϕ . Otherwise, we have to
calculate ρ ′(rrr) or ϕ ′(rrr) (which are relative to the optical axis) according to the Eq. (2.3) and
(2.4).
The total amount of transferable angular momentum of the light beam defined in Eq. (2.1) is
then given by (ℓOAM +σz)h̄ where σz is the helicity which is connected to the polarization
vector ε̂ . In the case of linearly polarized light σz = 0 while for circularly polarized light
σz =±1.
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2.3 Time delay in atomic photoionization with optical vor-
tex beams

2.3.1 Photoionization amplitude

We consider here the photoionization process of the argon atom with a circularly polarized
XUV OAM beam. For extracting the information about the angular dependence and the
time delay we follow the steps introduced in the first chapter of this thesis. In the gauge
where the scalar potential disappears the interaction Hamiltonian with the optical vortex
beam is given by

Ĥint =−1
2
[p̂pp ·AAA(rrr, t)+AAA(rrr, t) · p̂pp] . (2.5)

The momentum operator is represented by p̂pp. Since we consider very moderate intensities
we neglect the A2 term of the vector potential AAA(rrr, t).
The atomic potential of the argon atom is incorporated into the field free Hamiltonian Ĥ0

and is given by the single-particle potential from Muller [144]. Originally, it was designed
for strong-field physics with low-frequency laser fields. Later, the potential was used for
analyzing XUV attosecond pulses within a RABBIT scheme [145]. As a single-particle
potential, the weak point is the relatively poor agreement with the experimental data close
to the ionization threshold of the one-photon XUV photoionization process which can
be explained by the absence of correlation effects [146]. Nevertheless, significant for
our investigation is the reasonable sound reproduction of the energetic position of the 3p
Cooper minimum in comparison to the experimental measurement and the existing RPAE
calculations [17].
The temporal envelope of the XUV OAM pulse is characterized by Ω(t) = cos[πt/nT ]2

where T = 2π/ω is the cycle duration, and n characterizes the number of optical cycles.
The beam waist in the calculations below is chosen as w0 = 100 nm (940 a.u.) and is much
larger than the atomic scale. Obviously, due to the donut-shaped intensity distribution,
the object in the middle experiences only a very weak electric field which justifies the
perturbative treatment even for high intense fields. In an experimental realization, the atoms
would be in a gas phase and therefore distributed over the whole beam profile. However,
the photoionization probabilities depend strongly on the position of the atom relative to the
optical axis [124, 125]. We demonstrate below that it is sufficient to place the atom 10 a.u.
away from the center of the optical vortex with the consequence that the captured time
delays (and photoionization amplitudes) already show no dependence of the topological
charge. This relation can be explained since the transferable OAM refers to the optical
axis and decreases rapidly even on the atomic scale. As a consequence, these two types of
atoms (in the center of the beam and far away from the optical axis) are distinguishable by
measurements of the time delay or photoelectron momentum distribution. In the calculations
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below the considered electric field starts with a zero amplitude at the optical axis of the
vortex reaching a peak amplitude of 1 a.u. at a distance of 10 a.u., which amounts to an
intensity at ρmax of 5.6×1019 W/cm2 in the case of ℓOAM = 1.
In addition to the full numerical treatment with the MIM technique, introduced in the first
chapter, an analytical model of the photoionization process with optical vortex beams is
favorable to understand the influence of the transferred OAM. Therefore, we consider the
special case of circularly polarized light characterized by ε̂ = (1, i)T and a strict positive
topological charge ℓOAM. The argon atom is positioned at the center of the vortex beam,
and consequently, the vector rrr refers to the optical axis, i.e. ρ ′(rrr) = ρ and ϕ ′(rrr) = ϕ . For
a short attosecond XUV pulse the captured distance of the photoelectron is much smaller
than the waist w0 of the beam, i.e. exp−ρ2/w2

0 = 1. Thus, the angular and radial parts in
Eq. (2.1) can be decoupled and the whole photoionization can be described analytically.
Furthermore, under these assumptions one can show that in this particular case ∇ ·AAA(rrr, t) = 0.
Therefore, using then the identity p̂pp =

[
Ĥ0,rrr

]
− the transition matrix elements can be

computed according to

⟨ϕ f
kkk |Ĥint(t)|Ψi⟩= i(εi − εk)⟨ϕ f

kkk |rrr ·AAA(rrr, t)|Ψi⟩. (2.6)

They describe the transition from the initial bound electron state |Ψi⟩ into the continuum
which is represented by |⟨ϕ f

kkk ⟩ due to the action of the OAM XUV beam. Now by inserting
the matrix element into Eq. (1.15) we obtain access to the information about the angular
characteristics and the time delay. The calculation of the projection coefficients within the
single active electron approximation leads to the following analytic expression:

ai(kkk) =(εi − εk) ∑
ℓ=0

m=ℓ

∑
m=−ℓ

i−ℓeiδℓ(k)dℓOAM
ℓ,niℓi

Yℓm(Ωkkk)×

[
E−(εk − εi)

(
ℓ ℓOAM +1 ℓi

−m ℓOAM +1 mi

)

+E+(εk − εi)

(
ℓ ℓOAM +1 ℓi

−m −ℓOAM −1 mi

)]
,

(2.7)
where E∓(ε) = E0

∫
∞

−∞
dt Ω(t)ei(ε∓ω)t describe the absorption and emission coefficients.

The amplitude is characterized by E0 = A0CℓOAM,p=0. The reduced matrix elements are in
accordance with Eq. (1.22) and are given by

dℓOAM
ℓ,niℓi

=

√
(2ℓ+1)(2ℓOAM +3)(2ℓi +1)

3

×

(
ℓ ℓOAM +1 ℓi

0 0 0

)∫
dr r3+ℓOAMRkℓ(r)Ri(r).

(2.8)

The projection coefficients in (2.7) are in general angular dependent while the corresponding
photoionization probability wi(εk,Ωkkk) = |ai(kkk)|2 of the photoionization process of the
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Fig. 2.2 (a) Reduced radial matrix elements for the partial wave functions with the orbital
angular momenta ℓ= 1 and ℓ= 3. (b) Photoionization probabilities for the three different
initial states of the 3p subshell in argon.

initial state indexed by i is peaked around the center of energy (COE) εCOE = ω + εi [with
kCOE =

√
2εCOE]. For adiabatic pulses, we find that the emission coefficient E+(εCOE)≡ 0.

For photoionization from the various possible initial states of the 3p subshell, we obtain
then the analytical expressions:

a(kCOE ,Ωkkk) =



SℓOAM+2,ℓOAMYℓOAM+2,ℓOAM(Ωkkk)

+SℓOAM+2,ℓOAMYℓOAM,ℓOAM(Ωkkk)
mi =−1

SℓOAM+2,ℓOAM+1YℓOAM+2,ℓOAM+1(Ωkkk) mi = 0

SℓOAM+2,ℓOAM+2YℓOAM+2,ℓOAM+2(Ωkkk) mi = 1

, (2.9)

where

Sℓ,m = E−(εCOE)d
ℓOAM
ℓ,niℓi

i−ℓeiδℓ(kCOE)

(
ℓ ℓOAM +1 1

−m ℓOAM +1 mi

)
. (2.10)

The equation applies for a photoelectron originating from a magnetic sublevel with mi

and a considered topological charge ℓOAM. The information on the dependence on the
emission angle Ωkkk = (ϑkkk,ϕkkk) of the photoelectron emission is encapsulated in the spherical
harmonics. The OAM light leads to new selection rules which are dependent on the
considered topological charge ℓOAM. We find that ∆ℓ≤ ℓOAM +1 (ℓi + ℓ+ ℓOAM odd) and
∆m = ℓOAM +1. It is immediately obvious that no photoelectrons originating from mi = 0
are emitted in the xy plane (i.e. ϑkkk = π/2) since the spherical harmonics Yλ ,λ−1(Ωkkk) have a
node at ϑkkk = π/2. Furthermore, The emission probability |ai(kkk)|2 exhibits no dependence
on the angle ϕkkk since for a particular mi the involved spherical harmonics have the same
phase exp(i(ℓOAM +1+mi)ϕkkk) which cancels out by taking the absolute square.
From the considerations in the first chapter of this thesis, we learnt that the usually dominant
transition to a higher orbital angular momentum is of the same magnitude as the generally
weak transition to a lower orbital momentum around the Cooper minimum. However, the
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energetic position of the minimum in the photoionization probability depends strongly
on the angular momentum of the perturbative field. Fig. 2.2(a) shows the two relevant
radial matrix elements (Eq. (2.8)), which correspond according to the scheme (2.9) to the
transitions ℓi = 1 → ℓ= 3 and ℓi = 1 → ℓ= 1, in the case of ℓOAM = 1. The figure reveals
that around a laser frequency corresponding to h̄ω = 95 eV we find that dℓOAM

ℓ=3,ℓi=1 = 1 is of

a comparable magnitude as dℓOAM
ℓ=1,ℓi=1 = 1. Thus, the photoionization minimum is shifted in

comparison to the case of using an unstructured laser beam where we found the 3p Cooper
minimum at 51 eV. Consequently, the influence of the topological charge is emphasized. The
regime of the photon energies around h̄ω = 95 eV is the starting point of our investigation
because from our insights, gathered in the first chapter of this thesis, we expect there the
most pronounced angular dependence of the time delays and photoionization amplitudes.
In Fig. 2.2(b) the photoionization probabilities w(ϑkkk) in dependence on the photoelectron
emission angle ϑkkk for the different initial states mi are shown in the case of h̄ω = 100 eV.
For the considered topological charge ℓOAM = 1 the photoelectron originating the mi = 1
initial state, upon absorbing a photon from the XUV-OAM field, ends up in the f -partial
wave channel with m = 3. In contrast, the counter-rotating photoelectron is characterized
by the superposition state of the p- and f -partial wave channels with a magnetic quantum
number m = 1. The photoelectron ionized from the initial 3p state with mi = 0 is described
by the f -partial wave channel with m = 2. Consequently, the node of the spherical harmonic
Y3,2(Ωkkk) at ϑkkk = π/2 (xy-plane) leads to the vanishing emission probability in this direction,
i.e. the electron with a zero magnetic quantum number does not escape in this direction.
Here the co-rotating photoelectron with mi = 1 relative to the circularly polarized OAM-
field is dominant over the counter-rotating one with mi =−1. Interestingly, this situation
is completely different in other directions. At ϑkkk = 150◦ the counter-rotating electrons
has the largest photoionization probability. Consequently, the two types of electrons are
predominantly emitted in different directions allowing thus a discrimination via angular
resolved photoelectron detection. This is a big contrast to the usage of conventional
and unstructured linearly polarized light beams where we find a symmetry between the
photoelectrons originating from initial states with mi =±m meaning, in that case, they have
the same angular dependence and photoionization probability.
In Fig. 2.3 the photoelectron momentum distributions corresponding to the asymptotic
directions, where either the co-rotating (ϑkkk = 90◦) or the counter-rotating (ϑkkk = 150◦)
photoelectrons dominates the photoionization process, are shown. They reveal the typical
ring structure with the maximum at the radius kCOE =

√
2εCOE in the case of photoionization

with circularly polarized light [80]. The width of the ring is influenced by the duration of
the pulse, i.e. by the number of optical cycles n. A longer pulse is accompanied by a sharper
structure in momentum space and therefore, the ring will become narrower. Furthermore, the
structure of the photoelectron momentum distribution demonstrates the independence of the
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Fig. 2.3 The photoelectron momentum distributions corresponding to (a) mi = 1 at ϑkkk = 90◦

and (b) mi = −1 at ϑkkk = 150◦. The number of optical cycles n = 10. The other pulse
parameters are given in the text.

photoionization probabilities of the angle ϕkkk for both photoelectrons. These characteristics
are confirmed by the full-numerical simulation which yielded the same results.

2.3.2 Evaluation of the time delay

By following the steps of the first chapter, the Wigner time delay in photoionization is
defined as the energy derivative of the spectral phase of the photoionization amplitude, i.e.

τ
i
W(εk,Ωkkk) =

∂

∂εk
µi(εk,Ωkkk), (2.11)

where µi(εk,Ωkkk) = arg [ai(kkk)]. An alternative and more practical expression for the evalua-
tion of the time delay is provided by [16]:

τ
i
W(εk,Ωkkk) = ℑ

[
1

ai(kkk)
∂ai(kkk)

∂εk

]
. (2.12)

Taking into account that ∂E−/∂εk = 0 (absorption coefficient) while ∂E+/∂εk ̸= 0 (emission
coefficient) at εk = εCOE , we find the following expression for the energy derivative of the



2.3 Time delay in atomic photoionization with optical vortex beams 41

amplitude in case of mi = 1

∂a(k,Ωkkk)

∂εk

∣∣∣∣
εk=εCOE

=
∂SℓOAM+2,ℓOAM+2

∂εk
YℓOAM+2,ℓOAM+2(Ωkkk)

+FℓOAM,−ℓOAMYℓOAM,−ℓOAM(Ωkkk)

+FℓOAM+2,−ℓOAMYℓOAM+2,−ℓOAM(Ωkkk)

(2.13)

where the contribution of the absorption process changes the magnetic quantum number
by ∆m = ℓOAM + 1. The part which incorporates the energy derivative of the emission
coefficient and changes the magnetic quantum number by ∆m =−ℓOAM −1 is described by
the functions

Fℓ,m =
∂E+

∂εk
dℓOAM
ℓ,niℓi

i−ℓ(k)eiδℓ(k)

(
ℓ ℓOAM +1 1

−m −ℓOAM −1 mi

)∣∣∣∣∣
εk=εCOE

. (2.14)

In the same manner we obtain for mi = 0

∂a(k,Ωkkk)

∂εk

∣∣∣∣
εk=εCOE

=
∂SℓOAM+2,ℓOAM+1

∂εk
YℓOAM+2,ℓOAM+1(Ωkkk)

+FℓOAM+2,−ℓOAM−1YℓOAM+2,−ℓOAM−1(Ωkkk)

(2.15)

and for mi =−1

∂a(k,Ωkkk)

∂εk

∣∣∣∣
εk=εCOE

=
∂SℓOAM+2,ℓOAM

∂εk
YℓOAM+2,ℓOAM(Ωkkk)

+
∂SℓOAM,ℓOAM

∂εk
YℓOAM,ℓOAM(Ωkkk)

+FℓOAM+2,−ℓOAM−2YℓOAM+2,−ℓOAM−2(Ωkkk).

(2.16)

Due to the terms which are proportional to ∂E+/∂εk|εk=εCOE
a dependence on the azimuthal

angle ϕkkk to the time delay is induced. Evaluating (2.12) on the energy shell εk = εCOE reveals
that this angular modulation depends on exp[i(2ℓOAM +2)ϕ] and reflects the influence of the
topological charge. The energy derivative ∂E+/∂εk|εk=εCOE

is very sensitive to the pulse
length and decreases very fast with an increasing number n of optical cycles. Therefore, we
expect that the variation on ϕkkk also declines rapidly with a longer pulse duration.
The time delay associated with the photoionization of the complete subshell is a superposi-
tion of all contributions from photoelectrons originating from different magnetic subshells
with the quantum numbers mi:

τ
niℓi
W (Ωkkk) =

∑
ℓi
mi=−ℓi

wℓimi(εCOE,Ωkkk)τ
ℓimi
W (εCOE,Ωkkk)

∑
ℓi
mi=−ℓi

wℓimi(εCOE,Ωkkk)
. (2.17)
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Fig. 2.4 Wigner Time delays as a function of the azimuthal angle ϕkkk for different directions
ϑkkk with respect of to optical axis of the optical vortex. The left column belongs to the
photoionization process for ϑkkk = 90◦ where the photoelectron with mi =+1 is dominant,
while the right column is associated with ϑkkk = 150◦ (photoelectron with mi =−1 dominates).
Here a short pulse is considered, i.e. n = 3.

In addition to this quasi-analytical model, the 3DSE was solved numerically with the MIM
technique and the time delays were extracted from the numerically obtained projection
coefficients ai(kkk) at a propagation time after the vortex pulse is off.
In Fig. 2.4 the time delays in dependence on the emission angle are shown. They reveal a
large difference between the photoionization processes from the initial magnetic substates
with mi = 1 or mi =−1. The photon energy h̄ω = 100 eV and the considered topological
charge ℓOAM = 1. The photoionization probabilities in Fig. 2.2(b) evidence that for the
angle ϑkkk = 90◦ the photoelectron originating from the magnetic subshell with mi = 1
dominates while at ϑkkk = 150◦ the counter-rotating electron (mi =−1) delivers the strongest
contribution.
By investigating the corresponding time delays, the gathered trend is confirmed. In the case
of photoionization in the xy-plane, i.e. ϑkkk = 90◦, we find that the full 3p time delay (includes
the contributions from all magnetic substates) is nearly identical to the individual time delay
τ
ℓi=1,mi=1
W of the initial magnetic sublevel with mi = 1. On the contrary, the time delay

τ
ℓi=1,mi=−1
W related to the counter-rotating electron has a different number and provides only

a minor contribution to the full subshell delay due to the lower photoionization probability.
The electron ionized from the initial state with mi = 0 has no influence on the resulting
time delay since there is no observable photoionization probability in the equatorial plane.
Summarizing, the measured full time delay τ

3p
W is dominated by one photoelectron in this

particular direction. The vanishingly small differences between the analytical model and
the numerical propagation method give further credibility to the analytical explanations.
At the asymptotic direction ϑkkk = 150◦ the situation changes. The negative full time delay of
the 3p subshell is nearly completely characterized by the individual time delay τ

ℓi=1,mi=−1
W

corresponding to the counter-rotating electron which is also reflected by the photoionization
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Fig. 2.5 Wigner Time delays as a function of the azimuthal angle ϕkkk for different directions
ϑkkk with respect to the optical axis of the optical vortex. The situations where either
(a) the co-rotating photoelectron or (b) the counter-rotating photoelectron dominates the
photoionization process are shown. The long pulse duration is characterized by n = 10.

probability (cf. Fig. 2.2(b)). The other contributions from the initial sublevels with the
magnetic quantum numbers mi = 0 and mi = 1 play a minor role.
In the Wigner time delay also the influence of the pulse duration in encapsulated. The
results in Fig. 2.4 based on a short pulse characterized by the number of optical cycles n = 3
showed a pronounced variation on the azimuthal angle ϕkkk. The number of oscillations within
2π depends according to Eq. (2.13) and (2.12) on exp [i(2ℓOAM +2)ϕkkk] and is therefore
four for ℓOAM = 1. The results in Fig. 2.5 represent the same situations as illustrated in
Fig. 2.4 for a longer pulse, i.e. the number of optical cycles is n = 10. It is immediately
obvious that the angular modulation regarding the angle ϕkkk disappeared and now the time
delays follow a straight line. This can be explained because the derivative of the emission
coefficient ∂E+/∂εk|εk=εCOE

rapidly decreases with an increasing number of optical cycles

n. In the equatorial plane [Fig. 2.5(a)] we find the full 3p time delay τ
3p
W = 10.7 as which

coincides almost with the value of the, in that case, dominating photoelectron contribution
τ

mi=1
W = 8.7 as. In contrast at the asymptotic direction ϑkkk = 150◦ [Fig. 2.5(b)] the subshell

time delay τ
3p
W amounts to -23.5 as is therefore mainly characterized by τ

mi=−1
W =−27 as

while the contributions of the co-rotating electron (τmi=+1
W = 3.0 as) and the photoelectron

ionized from the initial magnetic substate with mi = 0 (τmi=0
W = 4.0 as) have a minor role.

Experimentally advantageous is the significant difference between both cases where either
the co-rotating or the counter-rotating electrons dominate the photoionization process. We
find a large difference ∆τ

3p
W of 34.2 as which gives the opportunity to track back the origin of

the photoelectrons via time delay measurements. More precisely, it is useful to identify the
initial magnetic sublevel photoionized by the optical vortex beam. Furthermore, from the
analytical considerations which are supported by the numerical results, it is foreseeable that
these OAM light-induced effects are of a general nature and are not restricted to a particular
system as long as spherical symmetry exists.
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Fig. 2.6 The 3p time delays τ
3p
W corresponding to the situations where either the co-rotating

or the counter-rotating electron dominates the photoionization process in dependence on the
distance ρ0 between the optical axis and the center of the argon atom. A long optical vortex
laser pulse is considered, i.e. n = 10.

2.3.3 Dependence on the distance to the optical axis

Crucial for an experimental realization is the dependence of the resulting time delay on
the distance ρ0 (in the xy-plane) between the atom and the optical axis of the XUV optical
vortex beam. It was already shown theoretically that the photoionization amplitude shows
a substantial variation when the atom will be positioned away from the center of the light
beam [124, 125]. The explanation is given by the transfer of the OAM which is maximal
when the atom is inside the donut-shaped intensity distribution (ρ0 = 0), i.e. the angle with
respect to optical axis ϕ ′(rrr)≡ ϕkkk [126] [cf. Eq. 2.3 and 2.4]. Once the atom is positioned
away from the center, ϕ ′(rrr) ̸= ϕkkk and only a fraction of the full 2π-interval is captured
with the consequence that the transfer of OAM is limited. At the maximum of the intensity,
i.e. at ρmax = w0/

√
2, only the local spatial structure of the light beam is relevant. Here a

Gaussian beam is resembled, and a further analyse reveals the well-known dipole selection
rules ℓi → ℓi ±1 and mi = mi +1 as in the case of the linearly polarized light. The transfer
of angular momentum is then only associated with the photon spin which depends on the
polarization vector and not on the spatial structure. Therefore, far away from the optical
axis, the whole process resembles the photoionization of the subshell with conventional
circularly polarized light.
For the case the atom is not positioned at the optical axis of the vortex beam, the time delay
can not be captured analytically. Therefore, a full numerical solution will be presented. In
Fig. 2.6 we present the Wigner time in dependence on the distance ρ0 between the atom and
the optical axis of the OAM beam. The two situation where either the co-rotating (ϑkkk = 90◦)
or the counter-rotating photoelectron (ϑkkk = 150◦) dominates the photoionization process are
reflected by the numbers for ρ0 = 0 which are in good agreement with the analytical results
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depicted in Fig. 2.5. Surprisingly, even at small distances ρ0 ≈ 1 a.u., i.e. on the atomic
scale, the difference between both time delays rapidly decreases which can be explained
by the diminishing transfer of OAM. At a distance ρ0 = 10 a.u., the time delays are nearly
indistinguishable and therefore, the identification of the origin of the photoelectron via time
delay measurements is not possible anymore. Here, the photoionization process can be
described by using conventional circularly polarized light [80]. As another consequence,
one could argue that measurements of the time delay using optical vortex beams allow the
access to the magnetic information with an atomic-size resolution which does not violate
the diffraction limit because all the information are delivered by the photoelectron and not
obtained by optical microscopy methods.

2.3.4 Conclusion

The time delay in photoionization induced by light carrying orbital angular momentum was
analyzed analytically and numerically. As a typical example, we considered Argon. The
analytical results reveal that the effect due to the transfer of OAM is of a general nature and
not restricted to a particular system as long as spherical symmetry exists. In contrast to using
conventional laser beams, the angular distribution of the photoionization probability shows
a substantial dependence on the magnetic quantum number mi, i.e. the initial magnetic
substate of the photoelectron has a decisive role. Asymptotic directions can be identified
where the photoionization process, including all contribution of the possible initial states, is
totally dominated by one magnetic sublevel. Thus, for the time delay a substantial difference
between the situations where either the co-rotating or the counter-rotating electron (relative
to the optical vortex) dominates can be found. As a consequence, time delay measurements
are an interesting tool to identify the origin of the photoelectron. Furthermore, a strong
dependence of the time delay on the position of the atom relative to beam spot can be found
which allows measurements with an atomic-scale resolution.

2.4 Driving current loops in C60 by optical vortex beams

2.4.1 Theoretical model

We consider here a linearly polarized, monochromatic Laguerre-Gaussian OAM pulse with
a topological charge ℓOAM and a frequency ω which irradiates a C60 molecule. The distance
ρ0 between the fullerene and the optical axis is variable. The whole initial situation is
resembled in Fig. 2.1. The vector potential in cylindrical coordinates is given by Eq. (2.1)
where all used approximations are described in section 2.2 of this chapter. We employ
a diffraction limited beam implying 2w0 ≈ λ where w0 is the waist of the beam which
determines the radial extent of the optical vortex. The frequency is in the UV regime and
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photon energies h̄ω between 8 eV and 20 eV are considered, i.e. we need a waist size
w0 = 50 nm. The pulse length used in the calculations below is 10 fs while the intensity is
moderate and amounts to I = 3×1013 W/cm2.
The correct choice of the pulse parameters was decisive for our considerations. The intensity
has to be low to legitimize a perturbative description of the whole process. Therefore, I/ω

is small, so that we avoid strong field or tunneling effects and expect only single-photon
transitions. Furthermore, as we are interested in the photo-induced magnetic field, the pulse
duration should be shorter than the relaxation time of the associated current loop but has to
allow for a few optical cycles. The special electronic structure of the C60 molecule is the
key element of the observed effects. Fullerenes are characterized by the quasi-spherical
Ih point symmetry, and the coordinates of the inequivalent carbon atoms are well-known
[133, 134, 136]. The single-particle states of the molecule are characterized by the principal
quantum number n and have a well-defined angular quantum number ℓ. In addition to the
quantum numbers, they are further specified by pℓ which discriminates between the different
representations of the Ih symmetry group with the same orbital angular quantum number ℓ.
The λ marks the element of the multi-dimensional representation pℓ. The bound state i with
the quantum numbers ni and ℓi is represented by the real wave function

Ψi(rrr) = Rni,ℓi(r)
ℓi

∑
m=−ℓi

C
pℓi ,λ
ℓi,m

Yℓi,m(Ωrrr). (2.18)

The coefficients C
pℓi ,λ
ℓi,m

corresponding to the pℓi representation within the Ih-symmetry point
group are tabulated in Ref. [147]. The radial wave functions Rni,ℓi(r) and the corresponding
energy eigenvalues εi ≡ εni,ℓi,pℓi

were calculated with the aid of the HF method implemented
in GAUSSIAN 03 quantum chemistry package [148].
The electron states occupy two radial bands (σ and π band) which are characterized by the
principal quantum number n. Taking the electron spin into account, the σ band (n = 1) is
occupied by 180 electronic states whereas the maximal angular quantum number is given
by ℓmax = 9. The corresponding orbital for ℓ= 9 is only filled with 9 electrons. Thus, only
the gu and hu representation groups are occupied [134]. The second radial band (π-band) is
filled with 60 electronic states (including the spin degeneracy) leading to a maximal orbital
quantum number ℓmax = 5. Again, the HOMO orbital with ℓ= 5 is only partly occupied, i.e.
only the hu representation group is filled [149]. Astonishingly, we find a nearly perfectly
parabolic dispersion curve εi = εni=2,ℓ=0 + ℓi(ℓi +1)/2R2 for ℓ < 3 where R = 6.745 a.u. is
the averaged radius of the C60 molecule. The reason is that the S,P,D orbitals transform as
ag, t1u and hg, respectively, in the Ih point symmetry. A small splitting can be found for
larger ℓ because of the SO(3)→ Ih symmetry-break. However, in the case of the π band,
this splitting is smaller than 0.5 eV [133].
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Fig. 2.7 (a) The energy spectrum and (b) the corresponding normalized wave functions of
the second and third radial band of the C60 molecule.

In addition to the two occupied radial bands, we find a group of virtual but still bound (by
the central molecular potential) states with a well-defined angular character which are called
super atomic molecular orbitals (SAMOs). This special group of virtual states occupy a third
radial band and are characterized by the principal quantum number n = 3. A very important
feature is the well-defined angular character of the SAMOs. Thus, the corresponding
wave functions can also be represented by Eq. (2.18) with the energy eigenvalues εn=3,ℓ,pℓ .
However, due to the correlation effects, it is very difficult to capture their exact energetic
position theoretically [133, 134, 136, 138–140]. The calculation of the corresponding wave
functions and corresponding energy eigenvalues were again performed with the aid of the
GAUSSIAN 03 quantum chemistry package [126]. We sought for 248 excited states of C60

in the active window of (121,366) molecular orbitals while using the experimental geometry
with the bond lengths dC=C = 1.402 Å between two hexagons and dC−C = 1.462 Å between
a hexagon and a pentagon. The abovementioned well-defined angular character applies only
for low angular quantum numbers ℓ. Therefore, the maximal angular momentum is restricted
to ℓmax = 3. Consequently, we expect a small split of the energy levels due to SO(3)→ Ih

symmetry-break because the F-orbital transforms into the t2u and gu representation classes.
Indeed, this separation is smaller than 0.05 eV [133].
In the investigation below, we consider only transitions between the π band and the SAMOs.
The corresponding energy scheme and the involved radial wave functions are shown in
Fig. 2.7. Therefore, the frequency regime is restricted to photon energies h̄ω between 8 eV
and 20 eV. The temporal envelope of the optical vortex pulse is modeled as Ω(t) = e−δ t2

where δ = 2.5×10−5 a.u. for the considered duration of 10 fs.
For the considered low intensities of the vortex beam, single-photon processes dominate
the light-matter interaction. Therefore, we can describe the time-dependent wave function
Ψi(rrr, t) which evolves from the initial state i (characterized by the eigenvalue εi, the quantum
numbers ni and ℓi as well as the parameters pℓi and λ ) in the framework of the perturbation
theory. The deviation δΨi(rrr, t) from the ground state i due to the action of Ĥint(t), described
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by Eq. (2.5), can be treated, to the first order in |A(rrr, t)|, as an expansion over the unperturbed
and unoccupied eigenstates of the system:

δΨi(rrr, t) = ∑
j

C j(t)e−iε jtΨ j(rrr). (2.19)

The time-dependent interaction Hamiltonian can further be divided into two parts: Ĥint(t) =
HInt(rrr)Ω(t)e−iωt +H∗

Int(rrr)Ω(t)eiωt . Using the standard techniques of the perturbation the-
ory, the projection coefficients are evaluated as

C j(t) = i
[
G−

ε j,εi
(t)⟨Ψ j|HInt|Ψi⟩+G+

ε j,εi
(t)⟨Ψ j|H∗

Int|Ψi⟩
]
. (2.20)

Here the absorption and emission coefficients are defined as the Fourier transforms of the
temporal envelope of the OAM beam:

G∓
ε j,εi

(t) =
∫ t

−∞

dτ Ω(τ)ei(ε j−εi∓ω)τ . (2.21)

The matrix element M ji = ⟨Ψ j|HInt|Ψi⟩ describes the transition from the occupied state i
to the unoccupied state j due to the interaction with the optical vortex pulse. It can only
be derived analytically for the special case when the distance ρ0 between the center of
the molecule and the optical axis of the vortex beam is zero. Otherwise, a full numerical
calculation is needed because ϕ ′ and ρ ′ (relative to the OAM pulse) become functions of
rrr (relative to the molecule) and has to be translated according to Eq. (2.3) and (2.4). In
principle, the case of ρ0 = 0 is already demonstrated in section 2.3 of this thesis where we
derived the optical selection rule ∆L ≤ ℓOAM +1 analytically.
Now we introduce the time Toff where the laser pulse is truly off. For final times t f > Toff we
find that G∓

ε j,εi
(t f ) = G∓

ε j,εi
(Toff) which means that the time-dependence of the coefficients

C j disappears. Furthermore, one can show that G−
ε j,εi

(t f )≫ G+
ε j,εi

(t f ). Therefore, we are
able to neglect the part of C j which describes the emission process and find that

C j(t f ) = iG−
ε j,εi

(Toff)M ji. (2.22)

Henceforth, G−
ε j,εi

≡ Gε j,εi .
For our purpose, the photo-induced current density after the interaction with the pulse, i.e.
for t f > Toff, has to be evaluated according to jjj(rrr) = ∑

occ.
i ℑ

{
Ψ∗

i (rrr, t f )∇Ψi(rrr, t f )
}

. The
current density has fast oscillating and slowly decaying (DC) elements. We introduce now
the time scale Tobs where the current can be observed, i.e. Tobs is comparable to the typical
lifetime of the excited SAMO states. Therefore, Tobsη ≃ 1 where η is the effective decay
constant of excited states. Consequently, the DC component of the current density can be
extracted by time-averaging over the fast oscillating contribution. The evaluation yields to
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the following analytical result:

jjj(rrr) =
occ.

∑
i

ℑ

{
1

Tobs

∫ Toff+Tobs

Toff

unocc.

∑
j,k

⟨ψi|Hint|ψ j⟩⟨ψk|Hint|ψi⟩

×G∗
ε j,εi

Gεk,εie
i(ε j−εk)tψ∗

j (rrr)∇ ·ψk(rrr)dt
}
.

(2.23)

Introducing the decay by the exponential factor e−ηt we obtain immediately that the time
integral 1

Tobs

∫ Toff+Tobs
Toff

ei(ε j−εk)te−η(t−Toff) preferentially picks up the contributions of the
states which fulfill |ε j − εk|< η . In other words, the cases where ε j = εk yield the largest
contributions to the current density. Therefore, the obtained current density can be further
simplified to

jjj(rrr) =
occ.

∑
i

ℑ

{
unocc.

∑
ℓ,pℓ

∑
λ ,λ ′

M∗
nℓpℓλ ,nuℓi pℓiλi

Mnℓpℓλ ′,niℓi pℓiλi

×
∣∣∣Gεnℓpℓ ,εi

∣∣∣2 ψ
∗
nℓpℓλ

(rrr)∇ ·ψnℓpℓλ ′(rrr)
}
.

(2.24)

The sums of the elements λ ,λ ′ within the representation group pℓ are present because the
energy eigenvalues are degenerated with respect to λ .
The current density can be expressed as jjj(rrr) = jr(rrr)êr + jϑ (rrr)êϑ + jϕ(rrr)êϕ , where jr(rrr),
jϑ (rrr) and jϕ(rrr) describe the densities in radial, orbital and azimuthal directions. Extensive
numerical calculations reveal that for single photon processes the radial and orbital con-
tributions current density disappear, i.e. jr(rrr) = jϑ (rrr) = 0 since the ionization channel is
closed.

2.4.2 Photo-induced magnetic moment

The magnetic moment induced by a ring current can be evaluated by [150]

mmm =
1
2

∫
drrr [rrr× jjj(rrr)] . (2.25)

In our case the magnetic moment points in the z direction because only the angular compo-
nent jϕ contributes to the total current density.
In Fig. 2.8 the photo-induced magnetic moment in the z-direction in dependence on the
photon energy h̄ω and the molecule’s position relative to the optical axis of the vortex beam
is presented where the cases with topological charges ℓOAM = 1 and ℓOAM = 2 are shown.
A linearly polarized Gaussian pulse, which is resembled for ℓOAM = 0, would not generate
any DC current because the degeneracy of the magnetic substates can not be rescinded.
Therefore, the visible magnetic moments are solely the result of the transfer of OAM due to
the interaction of the molecule with the optical vortex.



2.4 Driving current loops in C60 by optical vortex beams 50

0.001 0.01 0.1 1.0
6
8
10
12
14
16
18

ρ0/ρmax

ℏ
ω
[e
V
]

(a) ℓOAM=1

-15.

15.

m
[10

-
4×
μ
B ]

0.001 0.01 0.1 1.0
6
8
10
12
14
16
18

ρ0/ρmax

ℏ
ω
[e
V
]

(b) ℓOAM=2

-35.

28.

m
[10

-
4×
μ
B ]

Fig. 2.8 The magnetic moment in dependence on the distance between the optical axis and
the center of the molecule (characterized by the ratio ρ0/ρmax) and the photon energy h̄ω

for (a) ℓOAM = 1 and (b) ℓOAM = 2.

The multiple peaks of the magnetic moment in dependence on the photon energies can be
explained by the variety of possible resonant transitions between electronic states within
the π band and the SAMOs [cf. the energy scheme Fig. 2.7(a)]. More surprising and
probably unexpected is the smooth dependence of the magnetic moment on the position of
the molecule relative to the optical axis which is given by the ratio ρ0/ρmax. It shows the
same order of magnitude for the fullerene at different positions in the laser beam.
This behavior is not generic but due to the mechanism of the OAM transfer. The topological
charge ℓOAM, which characterizes the amount of transferable OAM, is defined relative to
the optical axis of the vortex beam. The optimal setting is reached when the symmetry axis
of the fullerene coincides with the center of the optical vortex, i.e. ρ0/ρmax = 0. In that
case ϕ ′ (which enters the vector potential according to Eq. (2.1)) is equivalent to ϕ which
is relative to the center of the molecule. This is also emphasized by the optical selection
rules for different topological charges ℓOAM. For the ratio ρ0/ρmax = 0, the photo-induced
transitions are governed by the selection rule ∆ℓ ≤ ℓOAM + 1 (∆ℓ+ ℓOAM odd) which is
similar to our investigation in section 2.2, as well as to the results given in Ref. [127, 151].
Since the magnetic quantum number m is no adequate quantum number for describing the
electronic structure of the C60 molecule the selection rule is restricted to the orbital angular
quantum number ℓ.
However, since the average radius R of the system is small in comparison to the waist w0 of
the beam, i.e. R ≪ w0, the electronic states are only weakly excited due to the low intensity
in the center of the optical vortex. The situation is totally different for ρ0 = ρmax, i.e. for
positioning the molecule at the maximum of intensity of the OAM beam. Here the angle ϕ ′

is a function of the vector rrr and only a tiny fraction of the whole 2π-interval is covered, and
therefore, the transfer of OAM with respect to the fullerene cage center is limited. However,
the intensity is very high which leads to photo-induced transitions between the π band
and the third radial band. The transitions are governed by the dipole selection rule ∆ℓ= 1
since the whole process resembles now the interaction of the molecule with a conventional
Gaussian beam. The interplay between both extreme situations, i.e. low intensity/maximal
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Fig. 2.9 The various possible transitions in dependence on the topological charge ℓOAM for
(a) ρ0/ρmax = 0 and (b) ρ0 = ρmax.

transfer of OAM at ρ0/ρmax = 0 and maximal intensity/weak transfer of OAM at ρ0 = ρmax,
leads to the relatively smooth dependence of the magnetic moment on the position of the
molecule relative to the optical axis.
The selection rules, which can be revealed by contrasting with the energy scheme, are
emphasized in the transition schemes in Fig. 2.9. The both extreme situations ρ0 = 0 and
ρ0 = ρmax are presented. Thick arrows mark here the dominant transitions, which are
directly visible in the spectra of the magnetic moments in Fig. 2.8.
In the case of ℓOAM = 1 for ρ0/ρmax = 0 (molecule is in the center of the beam), we find two
pronounced positive peaks at 7.6 eV and 8.8 eV which belong to the interband transitions
(ni = 2, ℓi = 5)→ (n f = 3, ℓ f = 3) and (ni = 2, ℓi = 4)→ (n f = 3, ℓ f = 2). The final states
belong here to the third radial band with the orbital angular momenta ℓ f = ℓi +∆ℓ. Another
prominent peak is at 11.3 eV which marks the (ni = 2, ℓi = 3)→ (n f = 3, ℓ f = 1) transition,
while a negative magnetic moment can be found at 16.7 eV which is characterized by
(ni = 2, ℓi = 1) → (n f = 3, ℓ f = 3). The condensed selection rules are reflected in the
transition scheme shown in Fig. 2.9(a) by comparing with the thick arrows. In general
transitions from larger orbital angular momenta ℓi to smaller momenta ℓ f yield to a positive
magnetic moment while we observe a negative quantity for the opposite.
In the case of ℓOAM = 2 (Fig. 2.8(b)) for ρ0/ρmax = 0, the spectrum reveals nearly the
same positions of pronounced magnetic momentum peaks although a detailed look at the
prominent positive peak leads to a spot at 9.3 eV. This maximum is characterized by the
transition (ni = 2, ℓi = 4) → (n f = 3, ℓ f = 3) which confirms the selection rule ∆ℓ ≤ 3
(∆ℓ+2 odd). Another pronounced dominant peaks can be found at 12 eV corresponding
to the transition (ni = 2, ℓi = 3)→ (n f = 3, ℓ f = 2), while the negative magnetic moments
at 15 eV and 16.3 eV are characterized by (ni = 2, ℓi = 1)→ (n f = 3, ℓ f = 2) and (ni =

2, ℓi = 2)→ (n f = 3, ℓ f = 3). Again, these transitions are represented nicely in the form of
the thick arrows in the corresponding scheme which is shown in Fig. 2.9(a).
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Fig. 2.10 (a) Transition scheme for ρ0/ρmax = 0.2. (b) The over a homogeneous gas-phase
averaged photo-induced magnetic moment in dependence on the photon energy h̄ω for
different topological charges ℓOAM.

Despite the different optical selection rules in dependence on the topological charge ℓOAM,
we find only small discrepancies between the corresponding spectra of the magnetic mo-
ments. The explanation is given by the small energy differences between the various SAMOs
states. Taking into account that the transitions to virtual states with ℓ f = 0 deliver no current,
we find an energy difference lesser than 1.2 eV between the SAMO states with l f = P,D,F.
The energy level splitting of 0.08 eV for l f = 3 due to the SO(3)→ Ih symmetry breaking
is already included. For a better resolution of the corresponding spectra and to emphasize
the different optical selection rules stronger, the duration of the pulse has to be much longer
which comes along with much sharper magnetic moment peaks.
At larger distances between the optical axis of the vortex beam and the center of the
fullerene, up to ρ0/ρmax > 0.01, the discrepancies between the different transitions for
varying values of the topological charge ℓOAM vanish completely. Henceforth, all optical
transitions initiated by the interaction with the OAM beam are fully characterized by the
same selection rules. As a consequence, all magnetic moment peaks can be found at
the same photon energies which can be explained by the reduced transferred OAM when
translated to the fullerene cage. The reason is the phase structure of the optical vortex which
changes drastically even on the atomic scale [127].
The dipole selection rule ∆L = 1, which characterizes the transitions when the molecule
is placed at the maximum of intensity, i.e. ρ0/ρmax = 1, can be identified in the spectra
in Fig. 2.8 and the corresponding transition schema in Fig. 2.9(b). The prominent positive
peaks at the photon energies 9.3 eV and 12.1 eV correspond to the transitions (ni = 2, ℓi =

4)→ (n f = 3, ℓ f = 3) and (ni = 2, ℓi = 3)→ (n f = 3, ℓ f = 2) for all ℓOAM which are also
emphasized by the thick arrows in the transition scheme.
In Fig. 2.10(a) we show the intermediate transition scheme for ρ0/ρmax = 0.2 which lies
between both extreme situations mentioned above. It reveals that the transitions are de-
termined by non-dipolar contributions, i.e. ∆L = 0 and ∆L = 2, but independent of the
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considered topological charge. Therefore, also in this case, the vanishing transfer of OAM
for large distances between the molecule and the optical axis is underlined. By contrasting
with the magnetic moment spectra in Fig. 2.8 we can explain the peak at 7.6 eV by the
transition (ni = 2, ℓi = 5)→ (n f = 3, ℓ f = 3), while the pronounced magnetic moment at
8.9 eV belongs to (ni = 2, ℓi = 4) → (n f = 3, ℓ f = 2). The prominent positive peak is
characterized at 16.7 eV is characterized by (ni = 2, ℓi = 1)→ (n f = 3, ℓ f = 3) transition.
Nevertheless, the resulting magnetic moments are not completely independent of the topolog-
ical charge ℓOAM although they reveal the same photo-induced transitions for ρ0/ρmax > 0.01.
This circumstance is emphasized by the averaging the magnetic moment in the range from
ρ0 = 0 to ρ0 = ρmax which is presented in Fig. 2.10(b). Here, also the case of the topological
ℓOAM = 3 is shown. In an experimental realization, the fullerenes are in a dilute gas phase
which is irradiated by the optical vortex pulse. Therefore, the C60 molecules are distributed
over the whole beam spot and the corresponding individual photo-induced magnetic mo-
ments vary in sign as well as in magnitude. Nevertheless, the averaging demonstrates that
the individual signals do not cancel each other and a substantial total magnetic moment can
be observed.
Furthermore, two characteristics are noticeable: First, the dependence of the averaged
magnetic moment on the photon energy h̄ω exploits the electronic structure of the fullerenes
because several transitions between π-band and the SAMOs are involved and visible.
Second, it is revealed that the magnitude of comprehensive magnetic moment depends on
the topological charge ℓOAM. A higher winding number delivers a higher current and a more
distinct magnetic moment. The condition is that appropriate highly degenerate states for the
photo-induced transitions are available. This effect can be explained by the factor eiℓOAMϕ ′(rrr)

in Eq. (2.1). Although the covered ϕ ′(rrr), when translated to the system, is small for large
distances ρ0 of the molecule to the optical axis, it produces additional non-dipolar transitions
to states within the representation pℓ f with the same energy εn f ℓ f pℓ f

. A larger ℓOAM delivers

contributions C
pℓ f ,λ

ℓ f ,m
Yℓ,m with larger m (cf. Eq. (2.18)), which are encapsulated in the matrix

elements ⟨Ψ f |HInt|Ψi⟩, to the current density and therefore, higher magnetic moments can
be achieved.

2.4.3 Magnetic field

In Fig. 2.10 we show explicitly the current densities corresponding to the positive peak of
the magnetic moment at 8.8 eV when the molecule is positioned at the intensity maximum of
the vortex beam, i.e. ρ0 = ρmax. The choice of the topological charge is subsidiary because
the position of the peak is independent on ℓOAM. Therefore, we show the current density in
the case of ℓOAM = 1.
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Fig. 2.11 The current density jϕ(rrr) for a photon energy h̄ω = 8.8 eV and a topological
charge ℓOAM = 1 in (a) the xy-plane and (b) the xz-plane.

The presentation in the xy-plane reflects the structure of SAMOs nicely since the current
density forms three intensive intercalated ring structures. They can be explained by the radial
wave functions of the SAMOs [cf. Fig. 2.2(a)] which have two nodes and therefore three
extrema. Furthermore, jϕ(rrr) is nearly independent of the angle ϕ which is characteristic
for spherical objects [151]. The presentation in the xz-plane reveals that the current density
forms an onion-like structure with the maximal values in the equatorial plane.
The photo-induced circulating current is located around the shell of the C60 molecule and
induces a similarly localized magnetic field which can be calculated with the aid of the
Biot-Savart law [150]:

BBB(rrr) =
µ

4π

∫
drrr jjj(rrr′)× rrr−rrr′

|rrr−rrr′|3
. (2.26)

In contrast to the current density, the high influence of the topological charge ℓOAM is
revealed by inspecting the generated magnetic field inside the center, i.e. for r = 0. In
Fig. 2.12 we show the two extreme situations ρ0 = 0 and ρ0 = ρmax which unveil partly
different characteristics.
The case of ρ0 = 0 in Fig. 2.12(a) belongs to the photon energy h̄ω = 8.8 eV and the
corresponding magnetic field shows a substantial dependence on the topological charge.
At ℓOAM = 0 we find no generated magnetic field which can be explained because in that
case a conventional linearly polarized Gaussian beam is resembled. Therefore, no OAM is
transferred, and the degeneracy of the states can not be lifted. The maximal transferable
OAM is restricted by ℓOAM = 7 which is a consequence of the selection rule ∆ℓ≤ ℓOAM +1
and the underlying electronic structure of C60. The maximal orbital angular quantum
number of the third radial band is ℓmax = 3. Therefore, i.e. the highest possible transition is
given by εni=2,ℓi=5 → εn f=3,ℓ f=3. The magnitude of the generated magnetic field is in the
regime of µT.
The situation changes in the case of ρ0 = ρmax shown in Fig. 2.12(b). The used photon
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Fig. 2.12 The photo-induced magnetic fields in the center of the C60 molecule in dependence
on the topological charge mOAM for (a) ρ0 = 0 and (b) ρ0 = ρmax.

energy h̄ω = 9.3 eV which corresponds to the positive peak of the magnetic moment in
the spectra showed in Fig. 2.8. It is immediately obvious that we observe no restriction on
the topological charge. Consequently, higher topological charges can be used for a more
pronounced current generation as long as ℓOAM < 10. For small winding numbers, the photo-
induced magnetic field shows a strong dependence, e.g., be changing the ℓOAM from 1 to 2
the amplitude is doubled. In the case of ℓOAM = 0, no magnetic field can be found which can
be explained with the same arguments as for ρ0 = 0. Nevertheless, the underlying electronic
structure has a substantial effect since for ℓOAM > 10 the magnetic field does not increase
further. Therefore, we find a saturation effect which can be explained by the limited number
of degenerate unoccupied states in the third radial band of the fullerene. Consequently, the
amount of maximal transferrable OAM is determined by the band structure.
In Fig. 2.13 an illustration of the field lines corresponding to the photo-induced magnetic
field is shown. In that case, the C60 molecule is positioned at the maximum of intensity of
the vortex beam. The strongest field can be observed in the center of the fullerene while
it decreases very fast outside the fullerene. As expected, inside the carbon cage, the field
lines point in the z-direction which is explained due to the circulating current on the sphere
which has its maximum in the equatorial plane. Outside the molecule, the photo-induced
magnetic field decreases rapidly which means that the effect is very localized.

2.4.4 Conclusion

The possibility of generating circulating charge currents on the sphere of a C60 molecule
was demonstrated theoretically by using light carrying orbital angular momentum. The
capability of transferring OAM to the irradiated the molecule enables resonant non-dipolar
transitions from the occupied states to the recently discovered super atomic molecular virtual
orbitals. We calculated a photo-induced current loop which generates a magnetic pulse
inside the carbon cage in the range of µT. Furthermore, we demonstrated that the current
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Fig. 2.13 Photo-induced magnetic field for a C60 molecule positioned at the maximum of
intensity and a optical vortex beam with a photon energy h̄ω = 9.3 eV. The color scale
characterizes the amplitude: red arrows mark the strongest contribution while the blue color
reveals a weak field.

could be controlled in sign and magnitude by changing the topological charge ℓOAM of the
optical vortex while the pulse duration and intensity are fixed.
A very smooth dependence of the photo-induced magnetic moment on the distance between
the center of the molecule and the optical axis of the OAM beam is found. The characteristics
of the photo-induced magnetic field inside the fullerene demonstrate that the electronic band
structure sets the maximal amount of transferrable OAM. As a consequence, much larger
photo-induced current loops should be generated by considering larger objects which possess
highly degenerate SAMOs. Hence, the usage of OAM beams for generating magnetic pulses
gives the full potential when on the one hand the topological charge ℓOAM is very high, and
one the other hand a large number of virtual states exist.

2.5 Centrifugal photovoltaic effect induced by optical vor-
tex beams

2.5.1 Details of the investigation

In the following investigation, we consider an experimentally feasible circularly OAM laser
with a moderate intensity driving intraband dynamics of the conduction band carriers in a
ballistic GaAs-AlGaAs-based nano-size ring. Such quantum ring structures are experimen-
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tally reported in Refs. [141, 142]. The time evolution of the charge carriers under the action
of the optical vortex beam is computed and reveals strong effects due to the ongoing transfer
of OAM. Furthermore, we will also calculate the OAM-laser driven charge current in wires
which are attached to the ring structure. We restrict our consideration to the xy-plane by
choosing a very small thickness of the ring and the wires. Therefore, no dynamics occur
along the propagation direction of the laser beam due to quantum confinement.
As a radial confinement potential we employ the confinement potential of Ref. [152], i.e.
V (r) = a1

r2 +a2r2 −V0, where r =
√

x2 + y2 and V0 = 2
√

a1a2. The key parameters a1 and
a2 can be determined by choosing the average radius of the ring r0 = (a1/a2)

1/4 and the

width of the ring ∆r ≈
√

8εF/m∗ω2
0 at the Fermi energy εF while ω0 =

√
8a2/m∗ and

m∗ is the electron effective mass. The potential of the ring becomes parabolic when r is
approaching r0. In that case V (r)≈ 1

2m∗ω2
0 (r− r0)

2. Taking a1 ≈ 0 then V (r) describes a
quantum dot.
In our case of the considered GaAs-AlGaAs-based ballistic ring, we assume a uniform
effective mass m∗ = 0.067me. For the average radius we choose as r0 = 150 nm with
a width ∆r = 50 nm and the Fermi energy εF = 8 meV. The numerical solution of the
stationary two-dimensional Schrödiner equation Ĥ0Ψl0,m0(x,y) = El0,m0Ψl0,m0(x,y), where
the field-free hamiltonian Ĥ0 incorporates the above-described confinement potential, reveals
the stationary, unperturbed energy eigenvalues El0,m0 and wave functions Ψl0,m0(x,y) of
the electron states. The corresponding local density of states (LDOS) can be calculated
according to

D(x,y) = ∑
l0,m0

f 0(l0,m0)|Ψl0,m0(x,y)|
2, (2.27)

where f 0(l0,m0) = 1/[1+ exp
(
(El0,m0 − εF)/kBT

)
] is the equilibrium Fermi-Dirac distri-

bution for a given temperature T and Fermi energy εF .
The initial energy levels El0,m0 , shown in Fig. 2.14(a), form subbands and are classified by the
two quantum numbers l0 and m0, where l0 = 1,2,3, ... characterizes the radial motion in the
ring while angular motion is described by the angular momentum m0. The energy spectrum
reveals the expected degeneration of the initial states with respect to the clock-wise and
anti-clock-wise angular motion, i.e. El0,m0 = El0,−m0 . The consequence of that symmetric
behavior is that the whole ring system carries no current. The LDOS in Fig. 2.14(b) reveals
an independence of the angle ϕ in the xy-plane and a radial symmetry with respect to the
average radius r0. Important for the validity of our consideration is that we will be interested
in non-invasive excitations in the near the Fermi energy due to the moderate intensity of
the laser pulse. Therefore, the independent effective single particle picture is still feasible
[152–156].
In the following, the weak monochromatic circularly polarized laser pulse carrying OAM
irradiates the quantum ring and initiates the dynamics of the corresponding charge carriers.
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Fig. 2.14 (a) The energy levels El0,m0 of the ring structure where the corresponding Fermi
energy εF is marked by the horizontal dashed line. (b) Initial LDOS of the considered
2D-system.

We consider the plane z = 0 because no dynamics occur along the propagation direction of
vortex beam which is focused vertically on the ring structure. The dynamics is described by
the time propagation of the single-particle wave functions Ψl0,m0(x,y, t) corresponding to
the individual electron states with the quantum numbers l0 and m0. They can be obtained by
solving the time-dependent two-dimensional Schrödinger equation in the presence of the
confinement potential V (x,y) and the vector potential A⃗(x,y, t) of the optical vortex:

ih̄∂tΨl0,m0(x,y, t) =
{
− h̄2

2m∗ ∇⃗
2 +

ieh̄
2m∗

(
2A⃗(x,y, t) · ∇⃗

+∇⃗ · A⃗(x,y, t)
)
+

e2

2m∗A2(x,y, t)+V (x,y)
}

Ψl0,m0(x,y, t).
(2.28)

The full numerical solution was performed with the aid of a Runge-Kutta propagation
scheme. The considered electron state evolves than from the stationary state at the time
t = 0 characterized by the quantum numbers l0 and m0. The vector potential of the OAM
beam in cylindrical coordinates is further described by Eq. (2.1). Note that because we
investigate a 2D system ρ ≡ r. We use the simplest form of the LG modes with the
radial index p = 0 in which case the intensity profile is donut-shaped around z = 0. Since
the optical axis and the center of the ring coincide, we consider the special case where
r = r′ and ϕ ′ = ϕ = arctan(x/y). The polarization vector of the laser beam is given by
ε̂ =

√
1/2(⃗ex − i⃗ey). The moderate peak intensity IOAM is 1010 W/cm2 while we use a

photon energy of h̄ω = 5 meV. The corresponding wave length is (λ = 247 µm). The pulse
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duration is exactly two optical cycles, i.e. τ = 1.65 ps. For an effective numerical simulation,
the total radial intensity profile should not be larger than 200 nm, i.e. we choose a beam
waist w0 = 55 nm.
The most important feature is the capability of transferring the orbital angular momentum
carried by the optical vortex when interacting with a dielectric particle, i.e. it delivers
a torque to charge carriers when absorbing photons [94, 112–116]. Within the paraxial
approximation, this total torque can be found by the photon flux multiplied by the total
angular momentum of the beam. In our case of LG modes, (ℓOAM +σz)h̄ characterizes the
total amount of angular momentum where σz is the handedness of the circularly polarized
OAM light.

2.5.2 Photo-induced charge drift

We consider in the following a topological charge ℓOAM =−10. Together with the helicity
σz = −1 due to the polarization state, the total amount of transferrable OAM to the ring
is −11h̄. The torque associated with the accompanied change of the OAM of the charge
carriers has its origin not only in the vector potential of the optical vortex beam but equally
important is the confinement potential V (x,y) that hinders the charge density to escape and
must not be overcome. Therefore, we have a system-dependent limitation factor for the
used intensity and topological charge ℓOAM.
In Fig. 2.15(a) we demonstrate the dynamical LDOS at a time t = 2 ps, i.e. after the
two cycle pulse is off. It can be calculated in the same vein as in Eq. (2.27), i.e. by

∑l0,m0 f (l0,m0, t)|Ψl0,m0(x,y)|2. Here, we introduce the non-equilibrium distribution func-
tion f (l0,m0, t) which can be evaluated by solving the Boltzmann equation. We used here
the relaxation time approximation [157] where the whole class of relaxation processes like
electron-phonon scattering, simultaneous scattering by impurities and phonons or electron-
electron scattering is condensed phenomenologically in the relaxation time τrel as single
(averaged) quantity. Within this approximation we have to solve the following equation:

∂ f (l0,m0, t)
∂ t

=− f (l0,m0, t)− f 0(l0,m0,εF)

τrel
. (2.29)

We emphasize again that we are considering relatively weak, low-energy excitations around
the Fermi energy εF which legitimizes the approximation. An averaged relaxation time
of 25 ps is assumed [156] at a constant Fermi energy. The evolution of the energy of
the particle that develops from the initial stationary state l0,m0 due to the action of the
optical vortex can be obtained by evaluating the time-dependent matrix elements El0,m0(t) =
ih̄⟨Ψl0,m0(t)|

∂

∂ t |Ψl0,m0(t)⟩. On the one hand, these time-dependent energies enter Eq. (2.29)
and on the other hand, they reveal the involved electron states.
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Fig. 2.15 (a) LDOS of the system after a propagation time of t = 2 ps. (b) Inner and outer
density QIn/Out of the ring structure in dependence of the propagation time.

From the inspection of the dynamical LDOS after the optical vortex pulse one can conclude
that the initial angular symmetry between the states with m0 = ±m, as well as the radial
symmetry with respect to the radius r0 of the ring are totally broken. This is evidenced by
the 11 nodal angular structures which are explainable by the optical selection rules since
the total amount of OAM transferred to the charge carriers is −11h̄. As a consequence, the
orbital angular momentum is conserved. Furthermore, the shape and the direction of the
whirls corresponding to the nodal structures hint the radial accumulation of the charge at
the outer ring boundaries and therefore the generation of a charge current loop. This can
be easily understood by the enhancement of the effective centrifugal potential due to the
abovementioned transfer of OAM. The direction of the whirls can be inverted by changing
the sign of the topological charge, as well as, the polarization direction. We checked this
relation carefully with a second propagation which is not shown for brevity.
This hinted radial drift of the charge density from the initial equilibrium state to outer
radii while the ring structure is irradiated by the OAM beam is evidenced by the time-
dependent charge densities in the inner and outer area shown in Fig. 2.15(b). For an
individual initial state with the quantum numbers l0 and m0 they are given by QIn

l0,m0
(t) =∫ 2π

0 dϕ
∫ r0

0 dr r|Ψl0,m0 (r,ϕ) |2 for the inner area, and QOut
l0,m0

(t)=
∫ 2π

0 dϕ
∫

∞

r0
dr r|Ψl0,m0 (r,ϕ) |2

for the outer ring area. In the case of the whole conduction subbands, these quantities are
again defined as a weighted sum over all time-dependent contributions from the individual
single-particle states. Therefore, they are found as

QIn/Out(t) = ∑
l0,m0

f (l0,m0, t)Q
In/Out
l0,m0

(t). (2.30)
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Fig. 2.16 A proposed scheme for an open circuit voltage generation driven by an optical
vortex beam. The irradiated ring structure (with a spiral phase plate on the top) is separated
by two thin tunneling barriers (blue) from two electrodes which gather the charge carriers.

At a time t = 0 when the propagation starts, the initial radial symmetry with respect to r0 is
nicely reflected by both quantities because QIn(t = 0) = QOut(t = 0). This situation changes
completely for times when the ring structure is irradiated by the focused optical vortex beam.
The light-matter interaction initiates a redistribution of the charge over the course of time
(cf. Fig. 2(a)) in a way that the density flows to the outer ring boundary. The explanation is
the repulsive centrifugal force which is effectively increased by the accompanied transfer
of OAM. Therefore, we have a direct influence on this photovoltaic effect by tuning the
topological charge ℓOAM. As we mentioned above, the only restriction is that the centrifugal
potential must not overcome the confinement which would immediately lead to electron
emission. Since we are looking at times t well below the relaxation time, the evolution is
unitary. Therefore, the frequencies of the oscillations of the time-dependent charge densities
QIn/Out(t) are explained by the frequencies of the photo-induced transitions between levels
near the Fermi level εF which are governed by the selection rules.
A possible experimental realization of the whole scenario is depicted in Fig. 2.16. An
appropriate spiral phase plate is deposited on the quantum ring, and a conventional Gaussian
beam irradiates the entire construction. The light wave transverses the plate and is converted
into an optical vortex carrying OAM, which is transferred to the charge carriers of the
quantum ring. For this purpose, a strong focusing of the light beam on the ring structure
is necessary. Indeed, through recent achievements in the development of metamaterial-
based lenses [158, 159] such a focusing is realizable and does not prohibit the described
photovoltaic effects. The reason is that the topological charge is conserved while such a
lens arrangement may modify the spatial profile of the electric field. Therefore, the transfer
of the OAM is still possible after the focusing. In the proposed scheme the photo-induced
charge imbalance with respect to the ring boundaries which produces a voltage drop is
accumulated at the electrodes.
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2.5.3 Photovoltaic current generation

In a next step, we want to utilize the observed charge accumulation at the outer boundary of
the ring to generate a directed current. Therefore, we wire the ring to a conductive straight
channel at one of the sides (cf. Fig.2.17(a)). The system is arranged in a way that the
optical vortex does not irradiate the conducting bar, i.e. the light is focused solely on the
ring structure. The whole initial situation is shown in Fig.2.17(b). Therefore, the wire is
unaffected by the action of the vortex beam. As a consequence, the initial radially symmetric
confinement potential V (x,y) has to be modified drastically. From an experimental point of
view, such a specific potential landscape has already been fabricated and could be modified
as required by appropriate gating [160, 161]. The ring structure and the wire are constructed
of the same material and have the same chemical potential. The confinement potential
V (x,y) which enters the Schrödiner equation in Eq.(2.28) has to be changed in a way that
the charge carriers populate the ring and the conducting bar equally.
The technical modifications of the potential are described in the following: The average
ring radius r0 is still 150 nm, i.e. V (x,y) is characterized for x ≤ 200 nm by [152]. At
x = 200 nm we attach a 100 nm wide conducting wire, i.e. V (x > 200nm,y) = 0. The
effective tunneling barrier region between the quantum ring and the conduction bar is
around 25 nm wide since we consider an effective width of the ring ∆r = 50 nm. As a
consequence of the modification, the potential V (x,y) has no radial symmetry anymore.
Therefore, we have to change the characterization of the single particle states and will
describe them henceforth by the quantum numbers n with the energy En. The calculation
of these state in the equilibrium shows that the shape of the LDOS in the ring region, i.e.

∑n f 0(n)|Ψn(x < 200 nm,y, t = 0)|2, is not significantly different in comparison to the case
without the wire (cf. Fig. 2.17(b)).
In Fig. 2.17(a) the effect of the new potential landscape is demonstrated nicely. We show
here the LDOS at a propagation time of 2.4 ps, i.e. the OAM pulse is off. The action of
the optical vortex, which interacts solely with the quantum ring, affects the corresponding
charge density in a way that a charge imbalance with respect to the ring boundaries is
produced. Furthermore, it acquires a twisted which can be identified by the direction of
the whirls of the nodal structures. Due to the small thickness, the charge carriers tunnel
through the barrier region to the conducting bar where they crash on the outer boundary
at x = 300 nm. The subtle interference pattern which is formed by the reflected and the
incoming waves emphasizes this process. The whole density distribution is now completely
asymmetric with respect to the center of the ring and therefore current carrying. The
direction of the flux reflects the direction of the whirls of the nodal structures. In our case,
the incoming charge density flows mainly in the negative y-direction which can be tuned by
the sign of the topological charge ℓOAM. We carefully checked this symmetric behavior by
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Fig. 2.17 (a) The LDOS of the ring structure which is connected with a conducting bar after
a propagation time of t = 2.4 ps, i.e. after the optical vortex pulse is off. The thick horizontal
line at yd =−140 nm marks a detector to record the photo-induced current whose direction
is shown by the arrow. The vertical dashed lines indicate the wire potential boundaries.
(b) The initial ring LDOS together with the OAM beam intensity profile. The wire is not
affected by the optical vortex beam. (c) Time-dependent total currents (cf. (2.33)) through
the detector for different topological charges ℓOAM.

adjusting the parameters, i.e. that a change of the polarization direction and the sign of the
topological charge leads to a positively directed flow of density of the same magnitude.
In addition to the dynamical change of LDOS, one should record the current flow within the
wire to quantify this photovoltaic effect. Therefore, a detector is positioned in the conducting
bar far enough from the irradiated ring structure at yd =−140 nm. The time-dependent flux
of the charge carrier density associated with the photo-induced dynamics of a single particle
state characterized by quantum number n can be obtained by calculating the corresponding
time-dependent probability current density in the y-direction as

jy
n(x,y, t) =− 1

m∗
Re
{

Ψ
∗
n(x,y, t) [ih̄∂y + eAy(x,y, t)]Ψn(x,y, t)

}
. (2.31)

The time-dependent current of the specified single-particle state which flows through the
detector is then evaluated by

In(t) =
∫ x2

x1

dx jy
n(x,yd, t), (2.32)
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where the bounds of the integration are the borders of the wire at x1 = 200 nm and x2 =

300 nm. The detector is marked by the black horizontal line in Fig. 2.17(a). The total
photovoltaic current is the weighted sum over all partial current contributions In(t) generated
by the individual particles which are classified by the quantum numbers n. It can be
calculated by

I(t) = ∑
n

f (n, t)In(t), (2.33)

where f (n, t) is the abovementioned non-equilibrium distribution function which can be
evaluated according to Eq. (2.29).
In Fig. 2.17(c) we show the time dependence of the total current for different topological
charges explicitly. The several curves reveal the general trend that a higher topological
charge |ℓOAM| leads to a higher current. Therefore, the photovoltaic effect which is accom-
panied by the enlarged centrifugal force can be increased by considering a larger winding
number of the vortex beam. By comparing the results depicted in Fig. 2.17(c) with the
charge densities QIn/Out(t) in Fig.2.15(b) it becomes evident that the voltage drop due to
the charge accumulation at the ring boundaries does not build up immediately as the optical
vortex starts to interact with the ring structure. This inertia is related to the finite effective
mass of the carriers. Therefore, the current in the wire is generated later in a "transport"
time which is characterized by the effective velocities of the various current carrying states
which are heavily influenced by the permanent tunneling, rescattering and interfering pro-
cesses. The "transport" time can be tuned by increasing the frequency ω or using a higher
topological charge. This behaviour is emphasized by the time-dependent total currents for
ℓOAM = −15 and ℓOAM = −20. It is clearly evident that the currents merge faster in the
attached wire for larger |ℓOAM|. The small oscillations of the time-dependent currents in the
wire can be easily explained by the related oscillations of the charge densities QIn/Out(t) in
Fig. 2.15(a). A maximum of the currents can be found for times around t = 1.7 ps which is
the moment where the laser pulse is turned off. Henceforth, the recorded currents decrease
rapidly in time due to the weakening flux of the charge density out of the ring.
The underlying effect can be extended to a waterwheel-like mechanism by attaching a
second wire on the other side of the ring structure which optimizes the photo-induced
current generation. Such a scenario is depicted in Fig. 2.18(a) where we used the same
pulse parameters as mentioned above and a topological charge ℓOAM =−10. The LDOS
reveals two currents of the same magnitude flowing in opposite directions which can be
controlled by the considered topological charge ℓOAM. The wires can now be connected to
produce a larger useable total current generated by the ring structure. Another possibility to
enhance the photo-induced current effectively is the fabrication of several and well-defined
ring structures which will be attached in series to a conducting bar. On each of the rings, an
appropriate spiral phase plate is deposited which generates locally an optical vortex from an
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Fig. 2.18 (a) LDOS of the ring structure which is attached to two conducting bars. The
considered topological charge ℓOAM =−10 and the propagation time is t = 1.3 ps, i.e. the
applied OAM pulse is still on. The used parameters are the same as in the simulation
shown in Fig.(2.17). (b) A schematic device for generating a photo-induced current based
on the mechanism described in the text. On each of the quantum ring structures, a spiral
phase plate is placed that produces an optical vortex (indicated by the red arrows) from an
incoming unstructured light wave. The subsequent interaction with the charge carriers leads
to a directed current in the wires which is enhanced with every additional ring in the device.

conventional Gaussian beam. Therefore, each ring will be irradiated by an individual OAM
pulse and delivers a contribution to the total current.
Both possibilities to enhance the photo-induced current, i.e. on the one hand by clamping the
rings between two wires and on the other hand by attaching them in series to the conducting
bar, can be condensed to an effective scheme for the current generation which is shown in
Fig. 2.18(b). From the considerations above, it is clear that we can steer and enhance this
photo-induced current at will both in direction and magnitude by tuning the topological
charge ℓOAM and placing or removing quantum rings from the device.

2.5.4 Conclusion

We demonstrated a photovoltaic effect by irradiating a quantum ring structure with a
focused laser pulse carrying orbital angular momentum. With the aid of a full-fledged
quantum dynamical simulation on the basis of the single-particle picture, we showed that
the light-matter interaction caused a radial drift of the charge carriers which is accompanied
by a charge accumulation at the outer ring boundary. The explanation is the effective
enhancement of the effective repulsive centrifugal potential due to the transfer of orbital
angular momentum to the ring. The corresponding photo-induced voltage drop between the
inner and outer boundaries can be utilized to generate a directed photocurrent by attaching
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a conductive bar to the structure. Therefore, the accumulated charge density at the outer
ring boundary tunnels through a thin barrier region into the wire. The directed flow of
the OAM-driven photocurrent, as well as, the magnitude could be tuned by changing the
topological charge at a fixed intensity and frequency. A possible experimental realization
was proposed and demonstrated where this photovoltaic effect can be steered and controlled
effectively.



Summary

The major goal of this thesis was the demonstration of fascinating effects brought about by
the optical vortex light.
The first chapter of this thesis dealt with the angular dependence of the time delay and
revealed the large impact of the description of the electronic structure on the accuracy of
the calculations. While the investigation based on the usage of a conventional laser beam,
one aspect of the second chapter were the new features in the time delay in photoionization
which are introduced by applying an optical vortex pulse. Our results showed that a new
class of photo-induced non-dipolar transitions has a significant impact on the time delay
which reveals a strong dependence on the initial magnetic substate within the considered
subshell even from spherically symmetric targets. Furthermore, it depends very strongly on
the position of the target within the vortex beam. Thus, time delay measurements allow the
accessing of magnetic information with an atomic size spatial resolution.
In another part of this thesis, we showed how a useable magnetic pulse could be generated
by irradiating a C60 with an optical vortex pulse. The effective transfer of orbital angular
momentum to the molecule initiated non-dipolar transitions from the occupied π-band
to the super atomic molecular orbitals which generate a current loop on the sphere. The
optical selection rules could be extracted by contrasting with the corresponding frequency-
dependent photo-induced magnetic moment spectra. We found a smooth dependence of
the molecule’s position relative to optical vortex beam, i.e. even for a dilute gas phase of
randomly distributed fullerenes a distinctive magnetic field could be generated which is ef-
fectively tuneable by the parameters of the used optical vortex beam. The strong dependence
on the underlying electronic structure and the considered topological charge endorses that
the observable effect could be enlarged by considering larger objects with highly degenerate
SAMOs. The vast potential for this proposed photo-induced magnetic pulse generation in
matter is underlined by the fact that SAMOs seem to exist [133–140, 162] for large molecu-
lar structures, as well as, very high topological charges up to 300 are realizable [18–24, 91].
These results point to an innovative way of ultrafast optical manipulation and steering of
magnetically active endohedrals because the generated magnetic pulse Zeeman-couples to
the well-isolated spin active states associated with the carbon cage structure.
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As the last example, we investigated the capability of an optical vortex laser pulse to generate
a directed and useable current. Indeed, we demonstrated on the basis of a full numerical
simulation that a directed flux of charge density could be produced in a conductive straight
channel while an attached irradiated quantum ring acts as a charge reservoir. This effect can
be explained intuitively by the effective enhancement of the repulsive centrifugal force due
to the transfer of the orbital momentum to the ring. Subsequently, the charge will be pressed
to the outer ring boundary and splashes into the attached wire generating so a directed
flux. This photovoltaic mechanism could be optimized by clamping the ring structure
between two conducting bars which produced two photocurrents in opposite directions. We
proposed schematically a device where several ring structures produce a highly controllable
photo-induced current. Groundbreaking is the observation that the photovoltaic effect could
be enhanced by solely increasing the topological charge of the optical vortex beam while the
frequency and the moderate intensity remain fixed. The promising potential of this proposed
photovoltaic effect is emphasized by the possibility to generate optical vortex pulses with a
topological charge up to 300. The limitation factor of a strong confinement potential of the
quantum ring is achievable by appropriate nanostructuring.



References

[1] E. P. Wigner, “Lower limit for the energy derivative of the scattering phase shift,”
Physical Review, vol. 98, no. 1, p. 145, 1955.

[2] F. T. Smith, “Lifetime matrix in collision theory,” Physical Review, vol. 118, no. 1,
p. 349, 1960.

[3] M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter,
S. Neppl, A. L. Cavalieri, Y. Komninos, T. Mercouris, et al., “Delay in photoe-
mission,” Science, vol. 328, no. 5986, pp. 1658–1662, 2010.

[4] K. Klünder, J. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot,
P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, et al., “Probing single-photon
ionization on the attosecond time scale,” Physical Review Letters, vol. 106, no. 14,
p. 143002, 2011.

[5] D. Guénot, K. Klünder, C. Arnold, D. Kroon, J. Dahlström, M. Miranda, T. Fordell,
M. Gisselbrecht, P. Johnsson, J. Mauritsson, et al., “Photoemission-time-delay mea-
surements and calculations close to the 3 s-ionization-cross-section minimum in ar,”
Physical Review A, vol. 85, no. 5, p. 053424, 2012.

[6] A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath,
B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, et al., “Attosecond spectroscopy in
condensed matter,” Nature, vol. 449, no. 7165, pp. 1029–1032, 2007.

[7] S. Nagele, R. Pazourek, J. Feist, K. Doblhoff-Dier, C. Lemell, K. Tőkési, and
J. Burgdörfer, “Time-resolved photoemission by attosecond streaking: extraction of
time information,” Journal of Physics B: Atomic, Molecular and Optical Physics,
vol. 44, no. 8, p. 081001, 2011.

[8] S. Nagele, R. Pazourek, J. Feist, and J. Burgdörfer, “Time shifts in photoemission
from a fully correlated two-electron model system,” Physical Review A, vol. 85, no. 3,
p. 033401, 2012.

[9] R. Pazourek, S. Nagele, and J. Burgdörfer, “Time-resolved photoemission on the
attosecond scale: opportunities and challenges,” Faraday Discussions, vol. 163,
pp. 353–376, 2013.

[10] S. Nagele, R. Pazourek, M. Wais, G. Wachter, and J. Burgdörfer, “Time-resolved
photoemission using attosecond streaking,” in Journal of Physics: Conference Series,
vol. 488, p. 012004, 2014.

[11] J. Feist, O. Zatsarinny, S. Nagele, R. Pazourek, J. Burgdörfer, X. Guan, K. Bartschat,
and B. I. Schneider, “Time delays for attosecond streaking in photoionization of
neon,” Physical Review A, vol. 89, no. 3, p. 033417, 2014.



References 70

[12] A. Kheifets and I. Ivanov, “Delay in atomic photoionization,” Physical Review Letters,
vol. 105, no. 23, p. 233002, 2010.

[13] L. Moore, M. Lysaght, J. Parker, H. Van Der Hart, and K. Taylor, “Time delay
between photoemission from the 2 p and 2 s subshells of neon,” Physical Review A,
vol. 84, no. 6, p. 061404, 2011.

[14] J. Dahlström, A. L’Huillier, and A. Maquet, “Introduction to attosecond delays in
photoionization,” Journal of Physics B: Atomic, Molecular and Optical Physics,
vol. 45, no. 18, p. 183001, 2012.

[15] J. M. Dahlström, D. Guénot, K. Klünder, M. Gisselbrecht, J. Mauritsson, A. L’Huillier,
A. Maquet, and R. Taïeb, “Theory of attosecond delays in laser-assisted photoioniza-
tion,” Chemical Physics, vol. 414, pp. 53–64, 2013.

[16] A. Kheifets, “Time delay in valence-shell photoionization of noble-gas atoms,” Phys-
ical Review A, vol. 87, no. 6, p. 063404, 2013.

[17] J. M. Dahlström and E. Lindroth, “Study of attosecond delays using perturbation
diagrams and exterior complex scaling,” Journal of Physics B: Atomic, Molecular
and Optical Physics, vol. 47, no. 12, p. 124012, 2014.

[18] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital
angular momentum of light and the transformation of laguerre-gaussian laser modes,”
Physical Review A, vol. 45, pp. 8185–8189, 1992.

[19] M. Beijersbergen, L. Allen, H. van der Veen, and J. Woerdman, “Astigmatic laser
mode converters and transfer of orbital angular momentum,” Optics Communications,
vol. 96, no. 1–3, pp. 123 – 132, 1993.

[20] M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-
wavefront laser beams produced with a spiral phaseplate,” Optics Communications,
vol. 112, no. 5, pp. 321–327, 1994.

[21] H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation
of transfer of angular momentum to absorptive particles from a laser beam with a
phase singularity,” Physical Review Letters, vol. 75, no. 5, p. 826, 1995.

[22] N. Simpson, K. Dholakia, L. Allen, and M. Padgett, “Mechanical equivalence of spin
and orbital angular momentum of light: an optical spanner,” Optics Letters, vol. 22,
no. 1, pp. 52–54, 1997.

[23] M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological
charge and angular momentum of light beams carrying optical vortices,” Physical
Review A, vol. 56, no. 5, p. 4064, 1997.

[24] G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nature Physics,
vol. 3, pp. 305–310, 2007.

[25] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular
momentum states of photons,” Nature, vol. 412, no. 6844, pp. 313–316, 2001.

[26] J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for
linear photonic superdense coding,” Nature Physics, vol. 4, no. 4, pp. 282–286, 2008.



References 71

[27] R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier,
“Quantum key distribution in a high-dimensional state space: exploiting the transverse
degree of freedom of the photon,” in SPIE OPTO, pp. 79480L–79480L, International
Society for Optics and Photonics, 2011.

[28] M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photonics, vol. 5, no. 6,
pp. 343–348, 2011.

[29] S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,”
Optics Letters, vol. 30, no. 15, pp. 1953–1955, 2005.

[30] M. Woerdemann, C. Alpmann, and C. Denz, “Self-pumped phase conjugation of
light beams carrying orbital angular momentum,” Optics Express, vol. 17, no. 25,
pp. 22791–22799, 2009.

[31] J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital
Angular Momentum. Wiley-VCH, Weinsheim, 2011.

[32] D. L. Andrews, Structured light and its applications: An introduction to phase-
structured beams and nanoscale optical forces. Academic Press, 2011.

[33] G. Foo, D. M. Palacios, G. A. Swartzlander Jr, et al., “Optical vortex coronagraph,”
Optics Letters, vol. 30, no. 24, pp. 3308–3310, 2005.

[34] H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with
higher-order doughnut beams produced using high efficiency computer generated
holograms,” Journal of Modern Optics, vol. 42, no. 1, pp. 217–223, 1995.

[35] H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle
of longitudinally polarized light in vacuum using binary optics,” Nature Photonics,
vol. 2, no. 8, pp. 501–505, 2008.

[36] S. W. Hell, “Far-field optical nanoscopy,” Science, vol. 316, no. 5828, pp. 1153–1158,
2007.

[37] P. Agostini and L. F. DiMauro, “The physics of attosecond light pulses,” Reports on
Progress in Physics, vol. 67, no. 6, p. 813, 2004.

[38] M. F. Kling and M. J. Vrakking, “Attosecond electron dynamics,” Annual Review of
Physical Chemistry, vol. 59, pp. 463–492, 2008.

[39] F. Krausz and M. Ivanov, “Attosecond physics,” Reviews of Modern Physics, vol. 81,
no. 1, p. 163, 2009.

[40] M. Y. Amusia, Atomic Photoeffect. New York: Plenum, 1990.

[41] M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider,
P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,”
Science, vol. 291, no. 5510, pp. 1923–1927, 2001.

[42] J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosec-
ond streak camera,” Physical Review Letters, vol. 88, no. 17, p. 173903, 2002.

[43] F. Quéré, Y. Mairesse, and J. Itatani, “Temporal characterization of attosecond xuv
fields,” Journal of Modern Optics, vol. 52, no. 2-3, pp. 339–360, 2005.



References 72

[44] G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto,
P. Villoresi, C. Altucci, R. Velotta, et al., “Isolated single-cycle attosecond pulses,”
Science, vol. 314, no. 5798, pp. 443–446, 2006.

[45] V. S. Yakovlev, F. Bammer, and A. Scrinzi, “Attosecond streaking measurements,”
Journal of Modern Optics, vol. 52, no. 2-3, pp. 395–410, 2005.

[46] V. S. Yakovlev, J. Gagnon, N. Karpowicz, and F. Krausz, “Attosecond streaking
enables the measurement of quantum phase,” Physical Review Letters, vol. 105, no. 7,
p. 073001, 2010.

[47] M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi,
T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved
atomic inner-shell spectroscopy,” Nature, vol. 419, no. 6909, pp. 803–807, 2002.

[48] E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi,
T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, et al., “Direct
measurement of light waves,” Science, vol. 305, no. 5688, pp. 1267–1269, 2004.

[49] N. M. Kroll and K. M. Watson, “Charged-particle scattering in the presence of a
strong electromagnetic wave,” Physical Review A, vol. 8, no. 2, p. 804, 1973.

[50] A. Maquet and R. TaÏeb, “Two-colour ir+ xuv spectroscopies: the “soft-photon
approximation”,” Journal of Modern Optics, vol. 54, no. 13-15, pp. 1847–1857,
2007.

[51] Á. J. Galán, L. Argenti, and F. Martín, “The soft-photon approximation in infrared-
laser-assisted atomic ionization by extreme-ultraviolet attosecond-pulse trains,” New
Journal of Physics, vol. 15, no. 11, p. 113009, 2013.

[52] I. Ivanov and A. Kheifets, “Extraction of the attosecond time delay in atomic pho-
toionization using the soft-photon approximation,” Physical Review A, vol. 87, no. 6,
p. 063419, 2013.

[53] G. Duchateau, E. Cormier, and R. Gayet, “Coulomb-volkov approach of ionization
by extreme-ultraviolet laser pulses in the subfemtosecond regime,” Physical Review
A, vol. 66, no. 2, p. 023412, 2002.

[54] A. Kornev and B. Zon, “Testing of coulomb-volkov functions,” Journal of Physics B:
Atomic, Molecular and Optical Physics, vol. 35, no. 11, p. 2451, 2002.

[55] C. A. de Carvalho and H. M. Nussenzveig, “Time delay,” Physics Reports, vol. 364,
no. 2, pp. 83–174, 2002.

[56] J. M. Dahlström, T. Carette, and E. Lindroth, “Diagrammatic approach to attosecond
delays in photoionization,” Physical Review A, vol. 86, no. 6, p. 061402, 2012.

[57] T. Carette, J. Dahlström, L. Argenti, and E. Lindroth, “Multiconfigurational hartree-
fock close-coupling ansatz: Application to the argon photoionization cross section
and delays,” Physical Review A, vol. 87, no. 2, p. 023420, 2013.

[58] L. Eisenbud, Formal properties of nuclear collisions. dissertation, Princeton Univer-
sity, 1948.

[59] J. W. Cooper, “Photoionization from outer atomic subshells. a model study,” Physical
Review, vol. 128, no. 2, p. 681, 1962.



References 73

[60] G. Dixit, H. S. Chakraborty, and M. E.-A. Madjet, “Time delay in the recoiling
valence photoemission of ar endohedrally confined in C60,” Physical Review Letters,
vol. 111, no. 20, p. 203003, 2013.

[61] M. Magrakvelidze, M. E.-A. Madjet, G. Dixit, M. Ivanov, and H. S. Chakraborty,
“Attosecond time delay in valence photoionization and photorecombination of argon:
A time-dependent local-density-approximation study,” Physical Review A, vol. 91,
no. 6, p. 063415, 2015.

[62] I. Ivanov, “Time delay in strong-field photoionization of a hydrogen atom,” Physical
Review A, vol. 83, no. 2, p. 023421, 2011.

[63] I. Ivanov, A. Kheifets, and V. V. Serov, “Attosecond time-delay spectroscopy of the
hydrogen molecule,” Physical Review A, vol. 86, no. 6, p. 063422, 2012.

[64] V. V. Serov, V. L. Derbov, and T. A. Sergeeva, “Interpretation of time delay in the
ionization of two-center systems,” Physical Review A, vol. 87, no. 6, p. 063414, 2013.

[65] S. Heuser, Á. Jiménez-Gálan, C. Cirelli, M. Sabbar, R. Boge, M. Lucchini, L. Gall-
mann, I. Ivanov, A. Kheifets, J. Dahlström, et al., “Time delay anisotropy in pho-
toelectron emission from isotropic helium,” Journal of Physics: Conference Series,
vol. 635, no. 9, p. 092089, 2015.

[66] C. Palatchi, J. M. Dahlström, A. Kheifets, I. Ivanov, D. Canaday, P. Agostini, and
L. DiMauro, “Atomic delay in helium, neon, argon and krypton,” Journal of Physics
B: Atomic, Molecular and Optical Physics, vol. 47, no. 24, p. 245003, 2014.

[67] W. Pauli, “Die allgemeinen Prinzipien der Wellenmechanik,” Handbuch der Physik,
vol. 24, p. 83–272, 1933.

[68] C. J. Joachain, Quantum collision theory. New York: North Holland, 1975.

[69] F. Gesztesy, “On the structure of coulomb-type scattering amplitudes,” Journal of
Mathematical Physics, vol. 23, no. 1, pp. 74–82, 1982.

[70] D. Bollé, F. Gesztesy, and H. Grosse, “Time delay for long-range interactions,”
Journal of Mathematical Physics, vol. 24, no. 6, pp. 1529–1541, 1983.

[71] M. V. Fedorov, Atomic and free electrons in a strong light field, vol. 452. World
Scientific, 1997.

[72] M. Seaton, “Quantum defect theory,” Reports on Progress in Physics, vol. 46, no. 2,
p. 167, 1983.

[73] L. Rosenberg, “Levinson-seaton theorem for potentials with an attractive coulomb
tail,” Physical Review A, vol. 52, no. 5, p. 3824, 1995.

[74] R. G. Newton, Scattering theory of waves and particles. Springer Science & Business
Media, 2013.

[75] M. Y. Amusia and L. V. Chernysheva, Computation of atomic processes: a handbook
for the ATOM programs. Institute of physics, 1997.

[76] D. A. Varshalovich, A. Moskalev, and V. Khersonskii, Quantum theory of angular
momentum. World Scientific, 1988.



References 74

[77] E. Cormier and P. Lambropoulos, “Optimal gauge and gauge invariance in non-
perturbative time-dependent calculation of above-threshold ionization,” Journal of
Physics B: Atomic, Molecular and Optical Physics, vol. 29, no. 9, p. 1667, 1996.

[78] M. Nurhuda and F. H. Faisal, “Numerical solution of time-dependent schrödinger
equation for multiphoton processes: A matrix iterative method,” Physical Review A,
vol. 60, no. 4, p. 3125, 1999.

[79] A. N. Grum-Grzhimailo, B. Abeln, K. Bartschat, D. Weflen, and T. Urness, “Ioniza-
tion of atomic hydrogen in strong infrared laser fields,” Physical Review A, vol. 81,
no. 4, p. 043408, 2010.

[80] I. Ivanov and A. Kheifets, “Time delay in atomic photoionization with circularly
polarized light,” Physical Review A, vol. 87, no. 3, p. 033407, 2013.

[81] A. Goldberg, H. M. Schey, and J. L. Schwartz, “Computer-generated motion pictures
of one-dimensional quantum-mechanical transmission and reflection phenomena,”
American Journal of Physics, vol. 35, no. 3, 1967.

[82] W. H. Press, Numerical recipes 3rd edition: The art of scientific computing. Cam-
bridge university press, 2007.

[83] A. Kramida, Y. Ralchenko, and J. Reader, “Nist atomic spectra database (ver.
5.1). national institute of standards and technology, gaithersburg, md,” URL:
http://physics.nist.gov/asd, 2013.

[84] L. Chernysheva, N. Cherepkov, and V. Radojević, “Self-consistent field hartree-fock
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