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GENERAL INTRODUCTION

General introduction

Barley (Hordeum vulgare ssp. vulgare) is one of the most important cereals
worldwide. With a total acreage of 49.4 million hectares and an average grain yield
of 2.9 t/ha it has been the world’s fourth-most grown cereal in 2014 (FAO 2016).
Due to its high adaptability and stress tolerance (Munns and Tester 2008; Nevo et
al. 2012) barley can be successfully grown in more extreme regions than any other
cereal crop (Baik et al. 2011). Thus, barley represents a globally important crop,

especially in harsh environments.

Most of the harvested barley grains serve as animal feed. Moreover, barley malt
provides the basis for beverages like beer and whisky. In recent years barley
retrieved importance also in human nutrition, since its valuable nutrient
composition may support reducing the risk for several widespread diseases like

type Il diabetes and cardiovascular disease (Baik et al. 2011).

Barley domestication

The domestication of barley began at least 10,000 years ago in the Fertile Crescent
(Zohary et al. 2012). However, barley domestication has been complex and difficult
to retrace. In this regard several further domestication centers have been proposed
(Negassa 1985; Molina-Cano et al. 1999; Badr et al. 2000; Morrell and Clegg 2007;
Dai et al. 2012). Although there is a wide range of potential domestication centers
there is no doubt that wild barley (Hordeum vulgare ssp. spontaneum) is the direct
progenitor of the cultivated form. As a typical characteristic wild barley grains
disperse from the spike at maturity to ensure effective grain spreading. The loss of
this function due to two independent deletion events at Btr1 or Btr2 can be seen as
the most important event during barley domestication since this enabled effective
harvesting and thereby increasing yields (Pourkheirandish et al. 2015). Cultivated
barley can be separated into two-rowed and six-rowed spike types. While in two-
rowed barley only the central spikelet of a rachis node is fertile, in six-rowed barley

also the two lateral spikelets are fertile, as a result of a mutated VRS1 gene
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(Komatsuda et al. 2007). The latter represented another crucial step in barley

domestication by tripling the yield potential (Sakuma et al. 2011).

Flowering time regulation in barley

Besides the discrimination of row-type barley can furthermore be separated in
winter and spring types, depending on the requirement of vernalization to initiate
the reproductive phase. Ninety-eight percent of wild barleys represent winter
barley (Cockram et al. 2011) that needs to be exposed to lower temperatures over
a certain time to initiate flowering. In several genomic studies the genetic
mechanisms underlying the development of different barley types could be
revealed during the last decades. Spring barley lacks the vernalization requirement
due to a natural deletion of the flowering repressor gene Vrn-H2 (Yan et al. 2004;
von Zitzewitz et al. 2005). In winter barley Vrn-H1 (Yan et al. 2003) captures the
cold signal (Oliver et al. 2013) by cis-regulatory elements in its promotor region
(Alonso-Peral et al. 2011). The resulting up-regulation of Vrn-H1 then causes a
deactivation of Vrn-HZ2, which in turn promotes flowering through the floral
integrator gene Vrn-H3/HvFT1 (Yan et al. 2006), likely corresponding to the mobile
signal ‘florigen’ (Chailakhyan 1937). Besides vernalization, also day length
(photoperiod) determines flowering time in barley. In this regard Ppd-H1 and Ppd-
HZ promote flowering under long days (Turner et al. 2005) and short days (Kikuchi
et al. 2009), respectively. In addition to photoperiod and vernalization, light quality
(Nishida et al. 2013; Pankin et al. 2014) circadian rhythms (Campoli et al. 2012;
Faure et al. 2012; Zakhrabekova et al. 2012; Campoli et al. 2013; Calixto et al. 2015),
phytohormones like gibberellic acid (GA) (Boden et al. 2014; Jia et al. 2015) and
cytokinins (Mrizova et al. 2013) also contribute to the induction of flowering in
barley. Most of these factors interact and the responsive genes can be integrated in
a complex pathway. Unravelling this pathway can be supported by comparing with

the model species Arabidopsis (Bliimel et al. 2015).

DNA markers and QTL analysis

A first step towards being able to identify the above mentioned genes was the

creation and screening of stable genetic mutants that were initially induced through
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X-rays in the 1920s (Lundqvist and Franckowiak 2003). With the advent of
molecular marker techniques in the early 1980s another crucial step to
systematically attribute specific phenotypes to certain genotypic characteristics
were made. The first DNA marker system was called RFLP (Restriction Fragment
Length Polymorphism, Botstein et al. (1980)) and is able to detect polymorphisms
that are based on different DNA fragment sizes resulting from restriction enzyme
digestion. After the invention of the PCR (polymerase chain reaction) technique a
multitude of other marker systems evolved. Simple Sequence Repeat markers
(SSRs, Weber and May (1989)) and Amplified Fragment Length Polymorphism
markers (AFLPs, Vos et al. (1995)) dominated the field in the 1990’s until the highly
abundant Single Nucleotide Polymorphism markers (SNPs, Landegren et al. (1998))
emerged. SNPs allowed the systematical characterization of thousands of markers
without the need of gel-based assays, which was an important step towards high-
throughput genotyping (Gupta et al. 2001). Nowadays, so-called SNP chips are
available that enable genotyping of ten thousands of SNPs at the same time in a

single assay.

Several methods have been developed to detect marker trait associations (MTAs)
and to define quantitative trait loci (QTL) in the genome. QTL are genomic regions
that concertedly affect a quantitative trait. According to Bernardo (2010)
conducting QTL studies to find genomic regions that influence the desired trait
basically comprises the following steps: 1) creating a segregating population; 2)
genotyping the population with molecular markers; 3) phenotyping the population
for traits of interest; and 4) applying statistical procedures to find markers linked

to QTL.

Classical segregating populations are created by crossing two parents that differ for
the trait of interest and subsequently selfing the Fi. The resulting F2 population
segregates at each marker locus in an expected ratio of 1 : 2 : 1 (homozygous parent
A : heterozygous : homozygous parent B). It can be directly used for QTL studies.
However, also enhanced populations are well-established for QTL mapping.
Doubled haploids (DHs) are created by in vitro regeneration of plants out of F1
anthers/microspores and have the advantage that they are homozygous
throughout the genome and, thus, represent a stable population for years of trials.

In contrast, a recombinant inbred line (RIL) population, resulting from subsequent

-3-
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selfing of F2 plants, still segregates at certain loci, depending on the selfing
generation. However, this harbors great potential for further fine-mapping
approaches of QTL via utilization of heterogeneous inbred families (HIFs) (Tuinstra
et al. 1997). HIFs are created through selfing a rare RIL that is heterozygous for the
marker of interest. As a result a typical segregation of 1:2:1 at this locus is
obtained, while the remaining genome is almost fixed and therefore not disturbing
the analysis. In a similar way, also backcross inbred lines (BILs) (Lin et al. 1998) can
be utilized. These result from repeated selfing of a backcross (BC1) population,

which is a product of crossing F1 plants back to one of the parents.

The basic concept of being able to identify a genomic region that affects a certain
trait is that molecular markers are genetically linked to the causative gene. They are
in linkage disequilibrium (LD) and inherited together. Initially, MTAs were defined
by simple approaches in single-factor models. Here, a simple mean difference
between two marker alleles was used to characterize differences with a t-test.
However, if the number of available markers is low it might be that the detection of
arelevant MTA is impeded. Lander and Botstein (1989) described interval mapping
as a method that was able to map the position of a QTL between two markers. This
method was enhanced by Zeng (1994), who combined interval mapping with
multiple regression by fitting other molecular markers outside the interval in the
model. This so-called composite interval mapping (CIM) method enabled higher
precision of QTL mapping by accounting for other QTL in the background.

Association mapping

Due to the complex and laborious process of developing a suitable mapping
population for QTL mapping and the emergence of affordable large SNP chips,
covering the whole genome with high density, a new approach of finding MTAs
evolved. The so-called (genome-wide) association mapping does not require an
artificially designed mapping population. Instead, it uses the diversity that is
present in nature, for instance by selecting a collection of highly diverse accessions
of the desired species in a world-wide scale. This way it makes use of historical
recombination events that occurred during evolution (Soto-Cerda and Cloutier

2012) enabling a higher potential to find allelic diversity in the population and
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increasing mapping resolution. These advantages, however, are accompanied by
lower marker efficiency and reduced statistical power compared to QTL mapping
(Flint-Garcia et al. 2003). Another major constraint of association mapping is that
undetected ‘cryptic’ population structure may lead to spurious, false-positive,
associations (Pritchard et al. 2000). Yu et al. (2006) developed a method that is able
to account for this problem by integrating measures of relatedness among
individuals in a linear mixed model. Nevertheless, doubts remain about the method,
since genetic background (i. e. other causative loci) is a more critical factor than
population structure (Vilhjalmsson and Nordborg 2013). Therefore, Segura et al.
(2012) developed a model integrating genetic background and relatedness in a

linear mixed model when testing a marker’s association with a specific trait.

Multi-parental association mapping designs

In parallel to the development of sophisticated models for association mapping, also
enhanced mapping populations have been developed as a way to overcome the
known problems. One example is the so-called nested association mapping (NAM)
design that was first developed in maize by Yu et al. (2008). In NAM, a diverse set
of founder lines is independently crossed with a reference parent. Out of these
crosses RIL families are generated through several rounds of selfing. It represents
a mixture of classical linkage mapping and association mapping and combines
advantages of both approaches (Yu et al. 2008). Due to the mating design, both
historical LD (within short segments of chromosomes) and LD resulting from
recombination in the designed population can be exploited (Guo et al. 2013). Due to
recombination also population structure is eliminated, since spurious long range LD
on a chromosome is diminished (Guo etal. 2010). The first NAM population in maize
(US-NAM) has successfully been applied to dissect, for instance, the genetic
architecture of flowering time (Buckler et al. 2009), leaf architecture (Tian et al.
2011) and plant height (Peiffer et al. 2014) with high precision. Besides US-NAM,
further NAM populations in maize (CN-NAM, Li et al. (2013)), sorghum (Jordan et
al. 2011) and wheat (Bajgain et al. 2016; Li et al. 2016b) have been developed. In
barley, currently two different forms of NAM populations are available (Maurer et

al. 2015; Nice et al. 2016), which are described in more detail later.
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Another multi-parental concept to combine allele richness, high resolution and
statistical power to detect MTAs is called multi-parent advanced generation inter-
cross (MAGIC, Cavanagh et al. (2008)). It also consists of several diverse founders
that are intermated. In the basic concept eight founders are combined over three
generations of single crosses, double crosses and a final quadruple cross so that
ultimately all resulting individuals harbor different mixes of genome segments from
all eight founders. In contrast to a NAM population no family sub-structure is
available in MAGIC, which impedes an exact tracing back of founder alleles in the
final MAGIC lines. In barley, Sannemann et al. (2015) developed a MAGIC population
out of one elite barley cultivar (Barke) and seven old landraces that are considered
to be the founders of German barley breeding. Further MAGIC populations are
available for the cereal crops maize (Dell’Acqua et al. 2015), wheat (Huang et al.
2012; Mackay et al. 2014; Milner et al. 2015; Thépot et al. 2015) and rice (Bandillo
et al. 2013; Meng et al. 2016), as well as faba bean (Sallam and Martsch 2015),
tomato (Pascual et al. 2015) and cotton (Li et al. 2016a).

Liller et al. (2017) developed a barley population that represents a mixture of NAM
and MAGIC. Here, four different founders have been crossed with the recurrent
parent Morex and subsequently Fis were backcrossed once with Morex. BC1
generations were then intercrossed with each other at every possible combination,

resulting in six independent subpopulations.

Strategies to identify favorable exotic alleles

One of the most important challenges of future agricultural research is to find ways
to achieve higher yields on a reduced area of available arable land in times of climate
change and global population growth. Plant breeding is supposed to play a major
role to meet this target. Domestication and breeding efforts in the past centuries led
to a severe depletion of the allele richness of important crop species, known as the
bottleneck effect (Tanksley and McCouch 1997). A recent study revealed a ~50%
reduction of genetic diversity in domesticated compared to wild barley (Pankin et
al. 2016). It is obvious that this causes a reduced adaptability to changing climates.
Stagnating yields of barley, especially in Southern Europe, might be a direct

consequence of this allele depletion (Dawson et al. 2015). Therefore, there is need
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to replenish the elite breeding material with new exotic alleles to cope with
upcoming agronomic challenges (Ellis et al. 2000; Zamir 2001; Gur and Zamir 2004;
Zamir 2008; Ma et al. 2012; McCouch et al. 2013; Zhang et al. 2017).

Since exotic material harbors a multitude of undesired negative effects, direct
crosses with elite material are no option for a fast development of superior breeding
lines. Even if a favorable exotic allele can be crossed into a well-adapted background
there are plenty of linked unfavorable alleles introgressed at the same time (so-
called linkage drag). For this purpose advanced backcross (AB)-QTL analysis has
been established (Tanksley and Nelson 1996). Here, several rounds of backcrossing
with the elite parent are performed, while at the same time negative selection
reduces the frequency of disadvantageous donor alleles. After identifying favorable
QTL linkage maps can assist to select lines for breeding that contain recombinant
chromosomes, which break linkage drag (Tanksley and Nelson 1996). AB-QTL
analysis has successfully been applied to barley (Pillen et al. 2003; Pillen et al. 2004;
von Korff et al. 2005; von Korff et al. 2006; von Korff et al. 2008; Saal et al. 2011).

Introgression lines (ILs) represent another concept similar to AB-QTL. Here the aim
is that the whole donor genome is represented in a so-called IL library. This library
consists of a multitude of lines each carrying only a single segment of the respective
donor (Zamir 2001). This is achieved by recurrent backcrossing with the elite
parent and simultaneous marker-assisted selection (MAS). In a relatively simple
statistical approach a specific phenotype can then be attributed to a single defined
chromosomal region, which is for instance achieved by a Dunnett multiple
comparison test (Dunnett 1955). Here, least squares means (LSMEANS) of each IL
are compared with the recurrent parent as a control. In case of significance the
difference can then be explained by the introgression, since the remaining genome
is shared across the IL and the elite parent control. This also increases the ability to
statistically identify small phenotypic effects, since epistasis is largely removed
(Zamir 2001). The IL concept has been established in tomato by Eshed et al. (1992)
and has been applied to a multitude of plant species. In barley Schmalenbach et al.
(2008) developed a set of ILs by crossing the Israeli wild barley accession ISR42-8
and the German elite cultivar Scarlett. This so-called S42IL population has been
subjected to a multitude of trials and several QTL for agronomic traits could be

defined (Schmalenbach et al. 2008; Schmalenbach et al. 2009; Schmalenbach and
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Pillen 2009; Wang et al. 2010; Schmalenbach et al. 2011; Hoffmann et al. 2012;
Schnaithmann and Pillen 2013; Honsdorf et al. 2014a; Honsdorf et al. 2014b; Naz et
al. 2014; Reuscher et al. 2016). ILs carrying an advantageous QTL allele can be used
directly for breeding, since they already harbor a magnitude of desirable elite

genome and therefore also reduce potential sterility problems (Zamir 2001).

In principle, also NAM populations can serve as a useful tool to evaluate exotic
germplasm. Therefore a multitude of exotic accessions can be crossed with the
recurrent elite parent. However, disadvantageous exotic alleles might complicate
mechanical processing (in barley mainly caused by brittleness and bad
threshability) and impede direct usability for plant breeders. Therefore, to get rid
of these problems backcrossing with the recurrent parent or selection against
unfavorable phenotypes is performed. In the classical NAM concept of Yu et al.
(2008) no backcross step was included, leading to an exotic allele frequency of 50%
in each RIL. In barley, there are currently only backcross-based NAM populations
available. Nice et al. (2016) for instance developed a so-called Advanced Backcross
(AB)-NAM population, where each F1 plant has been backcrossed twice with the
recurrent elite barley cultivar Rasmusson. This leads to an exotic allele frequency

of 12.5% for each BIL.

The present thesis is based on another backcross-derived NAM population. The so-
called Halle Exotic Barley 25 (HEB-25) population is the result of initial crosses of
25 highly divergent wild barley accessions (hereafter called donors) with the
recurrent elite barley cultivar Barke. The donors were selected to maximize the
genetic diversity in HEB-25 and originate from Afghanistan, Iran, Iraq, Israel,
Lebanon, Syria and Turkey (Hordeum vulgare ssp. spontaneum) as well as Tibet,
China, (Hordeum vulgare ssp. agriocrithon (Aberg)). F1 plants were backcrossed
once with Barke, resulting in an exotic allele frequency of 25%. After three
subsequent selfing steps the final population consists of 1,420 BCiS3 lines,

subdivided into families of 22-75 individual BlLs.
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Objectives

In the present thesis the NAM population HEB-25 was utilized for the first time to
detect QTL for important agronomic traits via genome-wide association studies
(GWAS). This way the potential of exotic alleles for future barley breeding should
be defined. Since there has been no preliminary experience about how to handle a
backcross-based NAM population this can be seen as an iterative process where
different models for GWAS were applied. The work was split in the following

sections:

1. Establishing a model to reliably detect QTL for flowering time.
This trait is well-studied and many genes are already known so that it is
perfectly suited as a proof of concept and to evaluate the power of GWAS in
HEB-25. Furthermore, since flowering time is of major importance with
regard to climate change, the question should be answered whether there is
useful variation among wild barley to improve future breeding progress

(Chapter 1).

2. Dissecting the genetic control of flowering time in more detail to fine-tune
plant development with regard to yield components.
Since not only flowering time itself but also other developmental stages like
maturity have a major impact on final grain yield the question was whether
different developmental stages are under independent genetic control. This
should be achieved by comparing GWAS results of several developmental
traits and showing their impact on the yield component thousand grain
weight. Finally, conclusions should be drawn about an optimal strategy for
timing of developmental phases to increase thousand grain weight (Chapter

2).

3. Comparing methods to estimate donor-specific QTL allele effects.
Since HEB-25 is a multi-parental population, theoretically up to 26 different
alleles could be present at one QTL. The arising question was whether this
issue can be addressed in GWAS without losing statistical power (Chapter

3).



MODELLING THE GENETIC ARCHITECTURE OF FLOWERING TIME CONTROL
IN BARLEY THROUGH NESTED ASSOCIATION MAPPING

Chapter 1

Modelling the genetic architecture of flowering time control in barley
through nested association mapping’

The aim of the presented study was to establish a model to reliably detect QTL for

flowering time in HEB-25.

Flowering time is a well-studied trait and many genes are already known so that it
is perfectly suited as a proof of concept and to evaluate the power of GWAS in HEB-
25. In addition, a direct comparison with the genetic architecture of the allogamous
species maize was possible, which has been investigated in the US-NAM population
(Buckler etal. 2009). Furthermore, since flowering time is of major importance with
regard to climate change, the question should be answered whether there is useful

variation among wild barley to improve future breeding.

1 Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, Pillen K (2015)
Modelling the genetic architecture of flowering time control in barley through nested association
mapping. BMC Genomics 16: 290.
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Abstract

Background: Barley, globally the fourth most important cereal, provides food and beverages for humans and feed
for animal husbandry. Maximizing grain yield under varying climate conditions largely depends on the optimal
timing of flowering. Therefore, regulation of flowering time is of extraordinary importance to meet future food and
feed demands. We developed the first barley nested association mapping (NAM) population, HEB-25, by crossing 25
wild barleys with one elite barley cultivar, and used it to dissect the genetic architecture of flowering time.

Results: Upon cultivation of 1,420 lines in multi-field trials and applying a genome-wide association study, eight major
guantitative trait loci (QTL) were identified as main determinants to control flowering time in barley, These QTL
accounted for 64% of the cross-validated proportion of explained genotypic variance (pg). The strongest single
QTL effect corresponded to the known photoperiod response gene Ppd-H1. After sequencing the causative part
of Ppd-H1, we differentiated twelve haplotypes in HEB-25, whereof the strongest exotic haplotype accelerated
flowering time by 11 days compared to the elite barley haplotype. Applying a whole genome prediction model
including main effects and epistatic interactions allowed predicting flowering time with an unmatched accuracy
of 77% of cross-validated pg.

Conclusions: The elaborated causal models represent a fundamental step to explain flowering time in barley. In
addition, our study confirms that the exotic biodiversity present in HEB-25 is a valuable toolbox to dissect the
genetic architecture of important agronomic traits and to replenish the elite barley breeding pool with favorable,
trait-improving exotic alleles.

Keywords: Barley, Wild barley, Nested association mapping (NAM), Flowering time, Genome-wide association
study (GWAS), Quantitative trait locus (QTL), Genomic prediction, Epistasis, Haplotypes

Background

Barley is among the oldest crop species human civilization
was built on. Approximately 10,500 years ago, barley was
domesticated in the Fertile Crescent [1,2], presumably
followed by additional independent domestication events
in East Asia [3,4]. Domestication and subsequent genetic
selection led to gene erosion in most crop species’ gene
pools [5,6], threatening future breeding advances. Utilizing
the untapped biodiversity, present in wild progenitors is
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one promising approach to replenish the elite breeding
pool with new favorable alleles [6-13]. The enriched diver-
sity may be pivotal to boost the rate of genetic improve-
ment and to cope with the anticipated enhanced effects of
biotic and abiotic stresses due to climate change.

In this regard, time of flowering is expected to play a
major role in future crop improvement. It is a key trait
for the successful completion of a plant’s life cycle and,
therefore, it has a strong impact on grain yield [14].
Flowering time indicates the transition from vegetative
to reproductive stage, which is mainly influenced by en-
vironmental cues like day length (photoperiod) and pro-
longed exposure to cold temperatures (vernalization). In

|. This is an Open Access article distributed under the terms of the Creative
ecomr
reproduction in any medium, provided the original

rg/licenses/by/4.0), which permits unrestricted use, distribution, and
ork is properly credited. The Creative Commons Public Domain
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barley, the day length determining light signal is trans-
mitted from a circadian clock oscillator, with Ppd-H1,
a PSEUDO-RESPONSE REGULATOR 7 (PRR7) gene, in
its center [15]. Under long day condition, Ppd-H]I, through
mediation of CONSTANS (CO), promotes the expression of
the floral inducer Vin-H3, a homolog of the Arabidopsis
thaliana FLOWERING LOCUS T (FT) gene [16]. On the
other hand, Vin-H2, a zinc-finger CONSTANS, CO-like and
TOCI (CCT)-domain protein (ZCCT1I) acts as a repressor
of Virn-H3 [17]. Vim-H2, in turn, is repressed by Vin-H1, an
APETALAI family MADS-box transcription factor [18],
which is up-regulated during vernalization. Thus, after
vernalization, the repression of Vrn-H3 is abolished
and flowering is induced. Based on its vernalization
requirement, winter barley and spring barley can be dis-
tinguished. Spring barley lacks the vernalization require-
ment due to a deletion of Vin-H2 [19].

Besides photoperiod and vernalization, there are also
genetic mechanisms acting independently of environmen-
tal cues, so-called earliness per se [20]. Although several
key regulatory cereal genes of flowering time were charac-
terized and finally cloned during the last two decades, still
little is known about the genetic architecture underlying
flowering time regulation in temperate cereals, as com-
pared to the model species A. thaliana [14,21-23]. So far,
a holistic explanation of flowering time in a segregating
germplasm population and the accurate prediction of a
plant’s time of flowering, based on the combined action
and interaction of major genes, is still not fully achieved in
cereal species, Furthermore, it is reported that wild barley
accessions possess a rich reservoir of beneficial alleles
controlling flowering time [7,24,25].

Page 2 of 12

Nested association mapping (NAM) emerged as a multi-
parental mapping design to investigate genomic regions
with unprecedented genetic resolution and allelic variation
by combining the advantages of linkage analysis and associ-
ation mapping [26]. Hence, it facilitates the elucidation of a
trait's genetic architecture via genome-wide association
study (GWAS). Until now, the NAM design was applied to
the allogamous species maize and sorghum [26,27]. NAM
populations for autogamous species like barley or wheat
have not been developed, yet. In maize, the genetic dissec-
tion of various agronomic traits, including flowering time,
has been investigated [28-34]. However, it was not possible
to completely dissect the genetic architecture of flowering
time in maize due to its complex inheritance and the multi-
tude of involved small effect QTL. We developed the first
NAM population in the autogamous species barley, termed
‘Halle Exotic Barley 25’ (HEB-25). The population results
from initial crosses between the spring barley elite cultivar
Barke (Hordeum vulgare ssp. vulgare, Hv) and 25 highly
divergent exotic barley accessions, contributing an ideal
instrument to study biodiversity. The exotic donors com-
prise 24 wild barley accessions of H. vulgare ssp. sponta-
newm (Hsp), the progenitor of domesticated barley, and one
Tibetian H. vulgare ssp. agriocrithon (Hag) accession, Barke
was selected since it was also used as a parent of a barley
high-resolution mapping population [35] and as a genetic
stock for mutation screening [36]. The exotic donors were
selected from Badr et al. [37] to represent a substantial part
of the genetic diversity that is present across the Fertile
Crescent, where barley domestication occurred. To gener-
ate the nested population, F, plants were backcrossed to
Barke and, subsequently, selfed three times (Figure 1). In
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Figure 1 Development of the nested association mapping population HEB-25. HEB-25 is made of 25 families with 1,420 NAM lines in BC,S,. Per
NAM line, one chromosome pair is illustrated as a double bar. Black and colored bars represent chromosome segments originating from Barke
and the exotic donor accessions, respectively. At each SNP locus, HEB-25 is expected to segregate into 71.875% homozygous Barke, 6.25% heterozygous
and 21.875% homozygous donor genctypes.
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total, HEB-25 consists of 1,420 BC,S; lines, divided into 25
HEB families of up to 75 lines per family (Additional file 1).

In the present study we investigated the genetic archi-
tecture of flowering time in barley. For this purpose, the
NAM population HEB-25 was grown from 2011 to 2013
in multi-field trials to gather data on flowering time. By
combining these data with high-density SNP marker infor-
mation via genome-wide association studies and genomic
prediction models, we could show that flowering time in
barley mainly depends on a low number of large-effect
QTL and epistatic interactions.

Results and discussion
Characterization of HEB-25
The inheritance of parental segments across the genomes
of the 1,420 HEB lines was characterized through genotyp-
ing 5,709 informative, genic single nucleotide polymorph-
ism (SNP) markers [35]. Marker saturation was high with
an average genetic distance of 0.17 ¢cM and a maximum
gap of 11.1 ¢cM between adjacent markers. Linkage disequi-
librium (LD) among the 26 parents decayed rapidly
(Additional file 2) enabling a high mapping resolution
[26]. The SNP data revealed a low degree of genetic
similarity between Barke and the donors, ranging from
40 to 54% (Additional file 1). Parents and the HEB-25
population could be clearly separated in a principal
component analysis (PCA) (Additional file 3). Also,
HEB families could be ordered in the PCA based on
their geographical origin. These findings point to the
high genetic diversity that is present among HEB-25
and its parents.

Diversity in HEB-25 was also visible phenotypically.
During the seasons 2011 through 2013, HEB-25 was cul-
tivated at the Halle University Experimental Field Station
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to collect flowering time data. The HEB lines flowered
on average 68.1 days after sowing with a range from 51.0 to
98.9 days and a standard deviation of 6.5 days (Additional
files 4 and 5). The broad variation in flowering time, cover-
ing almost 50 days among the 1,420 HEB lines, and a high
heritability of 91.6%, as well as the genetic properties of the
NAM population provided an excellent starting point to
study the genetic architecture of flowering time through
GWAS.

Genome-wide association study

For GWAS, we initially applied the multiple linear re-
gression Model-B with step-wise selection of cofactors,
as outlined in Liu et al. [38]. Model-B was found most
suitable to study traits across multiple related families
[39], where a family effect and additional SNPs, selected
as cofactors, are included in the model. GWAS revealed
eight highly significant major QTL regions controlling
flowering time with Pgon.nowm < 1.0 E-10 (Table 1,
Figure 2, Additional files 6 and 7). Testing the combined
explanatory power of the single peak markers of the eight
major QTL revealed a cross-validated explained propor-
tion of genotypic variance (pg, [40]) of 64% (Figure 3). To
check if genetic relatedness, as reported elsewhere [41],
affects this parameter in HEB-25, we also estimated pg for
different sets of eight randomly chosen SNPs, excluding
regions with significant QTL. However, since the cross-
validated explained pg remained low with an average of
8%, we conclude that genetic relatedness between individ-
ual lines does not play a major role in HEB-25. This em-
phasizes the power and precision of QTL detection in
HEB-25, which may be a combined effect of the low ex-
tent of LD and the particular mating design, resulting in
an elevated rate of chromosomal recombination. Thus,
flowering time of barley can be reliably predicted based on

Table 1 List of eight major QTL controlling flowering time in HEB-25

QTL Chr® Pos® Range®  Peak marker No. Seg. Fam.? Pionnom P& CV Freq? Effect” CG'
OFtHEB25-1b  1H 1283 1280-1283 SCRI_RS_150786 25 241E-18 001 &8 -14 HVELF3 [46,47]
QFtHEB25-2b 2H 230 168-238 BK_16 24 339E-130 036 100 —95 Ppd-H1 [15]
QFtHEB25-2¢ 2H 574  564-58.1 BOPA2_12_30265 25 2.25E-42 005 84 -30 HeCEN [35]
QFtHEB25-3¢  3H 1084 107.8-109.2 BOPA1_ABCO7496_ pHv1343_02 23 262862 004 83 =31 denso [45]
QFtHEB25-4a 4H 35 35 BOPA2_12_31458 24 508E-15 005 82 32

QFtHEB25-4e  4H 1134 1134-1143 SCRI_RS_216897 24 4.58E-17 002 100 22 Vrn-H2 [17]
QFtHEB25-5d  5H 1255 1255-1258 BOPA1_4795_782 24 231E-33 006 60 38 Vn-Hi1 [18]
QFtHEB25-7a 7H 343 259343 BOPA2_12_30895 23 6.04E-69 007 100 4.1 vrn-H3 [16]

“Barley chromosome on which the QTL was determined.

PGenetic position of the peak marker and range of the QTL in cM, based on Comadran et al. [35].

“Marker of the QTL with the highest significance (peak marker).

INumber of families, in which peak marker is segregating.

“Significance of the peak marker, expressed as Pgon HoLw-

fCross-validated proportion of explained genotypic variance of peak marker.

9IFrequency of significant detections of the peak marker in 100 five-fold cross-validation runs.
"Difference between the wild genotype and the cultivated genotype in days until flowering. Early flowering effects of exotic alleles are indicated in red.

'Candidate gene, potentially explaining the QTL effect with reference.
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Figure 2 Genetic architecture of flowering time in HEB-25. Barley chromosomes are indicated as colored bars on the inner circle, centromeres are
highlighted as transparent boxes. a) Grey connector lines represent the genetic position of SNPs on the chromosomes. b) Frequency of QTL
detection in 100 cross-validation runs via GWAS (0 to 100, grid line spacing: 25); markers with > 50 detections are colored in red. ¢) Additive effect
of the SNP obtained from the BayesCrt genomic prediction model. d) Links in the center of the circle represent significant (Pgon-roim < 0.05) di-genic
interactions between SNP markers via GWAS. Clusters of significant SNP interactions are indicated by different colors. Position of candidate genes,
potentially explaining major effects and epistatic effects, correspond to Table 1 and are indicated in blue outside the circle.

N
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eight major QTL. This finding is in contrast to flowering
time regulation in the allogamous species maize and
sorghum, where only small effect minor QTL were de-
tected [28,42]. The most significant association in HEB-25
(Pgon-HOLM = 3.4 E-130) was observed on the short arm
of chromosome 2H and explained a pg of 36%. This SNP
is directly located within Ppd-H1, the major determinant
of photoperiod response in barley under long day condi-
tion [15]. Seven further genomic regions of extraordinary
high significance were detected on chromosome arms
1HL, 2HS, 3HL, 4HS, 4HL, 5HL, and 7HS. All except one
QTL (4HS) could be assigned to known flowering time
genes (Table 1, Figure 2 and Additional file 7). Besides
Ppd-H1, also the vernalization genes Vrn-H1 and Vin-H2,
as well as the floral inducer Vrn-H3 and its putative para-
log HVCEN [43] exhibited highly significant effects. In
addition, we could confirm the importance of gibberellic

acid (GA) in flowering time regulation [44] through detec-
tion of denso [45] and HVELF3 [46,47] as two further
major QTL. Both genes are shown to be involved in GA
biosynthesis [45,48]. So far, only the QTL on 4HS could
not been referenced. This QTL, thus, remains a subject
for further genetic investigations.

The eight major QTL were located with high genetic
precision, with four QTL restricted to confidence inter-
vals of less than 0.9 cM (Table 1). In cases where gene-
specific SNPs were available (i.e. Ppd-H1 and Vrn-H3),
exactly those SNPs revealed the highest significance
within the respective QTL window (Additional file 6).
The exotic alleles at Ppd-HI1 and Vrn-H3 revealed the
strongest effects, accelerating flowering time by 9.5 days
and delaying flowering time by 4.1 days, respectively.
The drastic effects of single QTL outline the high poten-
tial of introducing wild barley alleles from HEB-25 in
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Figure 3 Cross-validated proportion of explained genotypic variance
(pe) of different applied models. The box-whisker plots depict the
variation of explained genotypic variance after 100 cross-validations.
The tested QTL models are (i) the single SNP locus Ppd-HT (Mean
pe = 0.36), (ii) GWAS with peak markers, representing the eight
major QTL indicated in Table 1 (Mean pg =0.64), (iii) the whole
genome ridge regression best linear unbiased prediction (RR-BLUP,
mean pg = 0.71), (iv) the BayesCr prediction (Mean pg =0.74), and
{v) RR-BLUP including epistasis (Mean pg =0.77).

order to adapt flowering time to environmental require-
ments and to enhance biodiversity in the elite barley
breeding pool.

Ppd-H1 haplotype study

As we used bi-allelic SNP markers, additive effects were
estimated across the NAM population. Theoretically,
there may be up to 26 different alleles present at each
locus in HEB-25. Thus, distinct alleles that show con-
trasting effects between families potentially escaped de-
tection in our SNP-based GWAS. Contrasting effects are
illustrated in Figure 4 and, in detail, in Additional file 6.
For instance, SNPs at position 46.2 ¢M on chromosome
3H, which are tightly linked to HvGI [49], revealed
opposing effects across HEB families. We tested the po-
tential to integrate SNP haplotypes in the GWAS model
for Ppd-H1, which exhibited the largest pg. After re-
sequencing the last two exons and three introns of Ppd-
H1, twelve haplotypes could be distinguished (Additional
file 1). All Hsp donor haplotypes at Ppd-H1 showed a sig-
nificantly reduced flowering time (Additional file 8 and
Figure 5), where a maximum reduction of flowering time
was associated with H-6 (-11.1 days compared to elite
barley haplotype H-2). Only the Hag haplotype H-45 did
not differ from H-2. This finding confirms the presence of
haplotype-specific effects present in HEB-25. Conse-
quently, we expect the existence of further haplotype ef-
fects for other candidate genes controlling flowering
time. The haplotype-based Ppd-HI model resulted in a
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slight increase of the cross-validated explained pg from
36% to 38%. This finding implies that modelling
haplotype-specific effects for a substantial portion of the
barley gene space may result in an improved prediction
of flowering time in HEB-25. However, a genome-wide
re-sequencing of HEB-25 lines will be required to
identify and distinguish those haplotypes.

Applying genomic prediction models

To check whether we could further elucidate the genetic
architecture of barley flowering time we applied genomic
prediction models that considered all markers simultan-
eously. Genomic prediction evolved in animal breeding as
a tool to predict a phenotype based on modelling a large
set of SNP data [50]. It is used for selection of improved
genotypes based on estimated genomic breeding values.
Applying RR-BLUP [51] and BayesCrn [52] models, we
could further increase the cross-validated explained pg to
71% and 74%, respectively (Figure 3). These findings are in
agreement with comparisons of multiple linear regression
and genomic prediction of traits in bi-parental plant popu-
lations [53]. However, our pg values substantially exceed
the prediction accuracies of genomic prediction models
reported in comparable studies [54-56], underlining the
tremendous predictive power of HEB-25. Interestingly,
compared to GWAS, only a few additional loci had non-
zero effects in the BayesCnt model, indicating that flower-
ing time is indeed mainly controlled by the eight major
loci detected via GWAS.

We assume that important reasons for the slightly
higher explained pg of genomic prediction compared to
GWAS are that minor QTL effects and marginally exist-
ing genetic relatedness [55,57] among HEB lines may be
better modeled in the first case. Furthermore, modeling
all makers simultaneously enables a better prediction of
flowering time due to the estimation of family-specific
QTL effects. This is indicated by the occurrence of op-
posing additive effects between HEB families alongside
tightly linked SNPs (Figure 2 and Additional file 6).

A model including epistasis to maximize the cross-validated
explained pg

A final increase of the cross-validated explained pg to an
extraordinary high level of 77% was achieved by including
di-genic epistatic interactions between significant main ef-
fect SNPs in the RR-BLUP model. This finding indicates
that epistasis explains a portion of the ‘missing heritability’
[58] of flowering time regulation in barley, whereas in
maize it does not [28]. The term ‘missing heritability’ is
highly debated in quantitative genetics and refers to the
observation that the explained genotypic variance of com-
bined marker effects is usually lower than the heritability
of the trait. Epistatic interactions between candidate genes
may point to functional relationships and genetic
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Figure 4 Visualization of family-wise SNP effects. Barley chromosomes are indicated as inner circle of colored bars, centromeres are highlighted
as transparent boxes. Grey connector lines represent the genetic position of SNPs on chromosomes. Each track displays one HEB family (FO1 - F25,
from inside to outside). The heatmap indicates the difference in days between the donor and Barke genotype. Blue and red colors specify early and
late flowering, respectively, caused by the donor genotype. White color indicates no SNP effect or SNPs monomorphic in the respective family.
Candidate genes (Table 1) are indicated outside the circle. Black frames highlight their family-specific effects as indicated in Additional file 6.

networks [59]. Our findings indicate that the flowering
time genes HvGl, Vrn-H2, Vin-H1 and HvCOI [60] on
chromosomes 3H, 4H, 5H and 7H, respectively, are prob-
ably major players of di-genic epistatic interactions in
HEB-25. All four genes potentially interact with each
other as well as with further genes on additional chromo-
somes (Figure 2 and Additional file 9). These observations
are in agreement with independent studies in barley and
A. thaliana where these interacting genes were placed in a
day length and temperature depending signaling network
that controls flowering time [14,21-23]. It is, thus, likely
that the observed interaction between the chromosomal
regions in HEB-25 may be a function of the mentioned
flowering time genes. As an example we refer to the po-
tential interaction found between Vrn-HI and Vin-H2.
Epistatic interactions between these loci were already
reported [17,61,62] and support the model that Vrn-H2 is
a long-day suppressor of flowering, that is itself sup-
pressed by Vin-H1I following vernalization [63]. Barke is a

spring type barley cultivar that lacks the vernalization re-
quirement due to a deletion of Vrn-H2 [19]. Hence, our
findings may indicate that the epistatic interaction found
between the two regions on chromosomes 4H and 5H is
based on the presence (exotic allele) or absence (Barke
allele) of Vrn-H2, the target of Vin-HI. In general, the
epistatic interactions detected in HEB-25 may provide
hints for the presence of so far unknown functional
networks of genes, which assist in fine-tuning flowering
time in barley. Studies with knock out lines of these genes
may be used to validate the observed interaction effects.

Conclusions

The first barley NAM population HEB-25 provides great
opportunities for future research and breeding. The genetic
constitution of HEB-25 allows to carry out detailed studies
on the genetic architecture of important agronomic traits,
as exemplified by flowering time. The present study sub-
stantiated that flowering time in barley is primarily
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Figure 5 Box-whisker plots of flowering time BLUEs for Ppd-H1
haplotypes. Green box-whisker-plots display the distribution of
flowering time BLUEs of all HEB lines carrying the respective haplotype.
Horizontal lines and diamonds indicate median and mean, respectively,
for each haplotype. The extension of vertical lines indicates minimum
and maximum observations, excluding outliers, which are indicated as
circles. The red dotted horizontal line indicates the BLUE of cultivar
Barke (68.2 days). H-2 represents the haplotype of the Barke genotype
present in HEB lines. All haplotypes except H-45 differ significantly
(P < 0.05) from H-2, as indicated by red asterisks. Further information to
haplotypes is given in Additional files 1 and 8.

determined by large-effect QTL and epistatic interactions.
This finding is in contrast to flowering time regulation in
the allogamous species maize and sorghum, where only
small effect minor QTL were detected [28,42], indicating
that the mating system may control the genetic architec-
ture of adaptive traits [28].

In future, the NAM population HEB-25 will be utilized
in two directions: On the one hand, HEB-25 may support
elucidating the genetic architecture of quantitatively inher-
ited agronomic traits, ultimately resulting in cloning of yet
unknown causal genes. On the other hand, HEB-25 will be
exploited by breeders to enhance biodiversity of the elite
barley gene pool. This may occur through introgression of
favorable wild alleles with the aim to sustainably increase
yield and stress tolerances against disadvantageous climate
conditions like drought, heat and salt.

Methods

Development of the NAM population

The development of the NAM population ‘Halle Exotic
Barley 25’ (HEB-25) was initiated in 2007 conducting
crosses between the spring barley cultivar Barke (Hordeum
vulgare ssp. vulgare) and 25 highly divergent exotic wild
barley accessions. The latter were used as pollen donors.
Twenty-four accessions, originating from Afghanistan, Iran,
Iraq, Israel, Lebanon, Turkey, and Syria (Hordeum vulgare
ssp. spontaneun), were selected to maximize the genetic di-
versity in HEB-25. One further accession, HID380,
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originating from Tibet, China, was classified as Hordeum
vulgare ssp. agriocrithon (Aberg). F; plants of the initial
crosses were backcrossed with Barke as the female parent.
Twenty BC, plants per cross were subsequently selfed three
times, using the single seed descent (SSD) technique to
generate the next generations. The resulting BC;S; gener-
ation consists of 1,420 individual lines, classified in 25 HEB
families with 22 to 75 individual lines per family (Additional
file 1). Subsequently, each HEB line was bulk propagated
until BC;S3¢ to achieve sufficient seed numbers for field
testing. No artificial selection was carried out during the de-
velopment of HEB-25.

Collecting single nucleotide polymorphism (SNP) data
SNP genotype data were collected at TraitGenetics,
Gatersleben, Germany, for all 1,420 individual BC,S; lines
and their corresponding parents with the barley Infinium
iSelect 9k chip consisting of 7,864 SNPs [35]. At each locus,
three genotypes were differentiated, with an expected
BC,S; segregation ratio of 0.71875 : 0.0625 : 0.21875
for homozygous recipient (i.e. Barke), heterozygous and
homozygous donor genotypes, respectively. In total,
1,027 monomorphic SNPs and 1,128 SNPs with high
failure rates (i.e. no call in >10% of HEB lines) were ex-
cluded from the dataset, resulting in 5,709 informative
SNPs for further analyses.

Extraction of genomic DNA

DNA was extracted from leaf tissue of 1,420 single
founder HEB plants in generation BC;S;. The subse-
quent seed propagation of HEB lines was based on these
founder HEB plants. For Barke and the wild barley ac-
cessions leaf material from three to four plants was used
to create bulked samples. The plants were cultivated in a
glasshouse and 50 to 100 mg of leaf material was harvested
for each sample. DNA was extracted according to the man-
ufacturer’s protocol, using the BioSprint 96 DNA Plant Kit
and a BioSprint work station (Qiagen, Hilden, Germany),
and finally dissolved in distilled water at approximately
50 ng/pl.

SNP mapping

The chromosomal positions of 3,391 out of 5,709 SNPs
were taken from Comadran et al. [35]. The remaining
SNPs were fitted next to the mapped SNPs applying chi-
square tests of independence. Each non-mapped SNP
was compared to each mapped SNP based on genotype
segregation across all HEB lines. If two SNPs segregated
completely independent from each other, ie. in case of
no linkage disequilibrium (LD), one expects to find all
possible genotype combinations according to the product
of their single locus genotype frequencies. However, in case
of tight linkage, there should be a significant deviation from
the expected genotype combination frequencies due to
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reduced recombination between these markers. Conse-
quently, a high chi-square statistic and a low P-value likely
indicate a tight linkage. Therefore, we assigned the position
of the SNP with the lowest P-value (minimum: P < 0.001)
to the non-mapped SNP under investigation. If there were
more than one SNP with the same P-value, the position of
the unmapped SNP was defined as the average of the mini-
mum and the maximum position of the respective markers.
In this way, all except six of the non-mapped SNPs were
placed into the Comadran map.

SNP calling

The differentiation of the HEB genotypes was based on an
identity-by-state approach. Based on parental genotype in-
formation, the exotic allele could be specified in each segre-
gating family, Thus, HEB lines that showed a homozygous
exotic genotype were assigned a value of 2 and HEB lines
that showed a homozygous Barke genotype were assigned a
value of 0. Consequently, heterozygous HEB lines were
assigned a value of 1. If a SNP was monomorphic in one
HEB family but polymorphic in a second family, lines of
the first HEB family were assigned a genotype value of 0 to
keep a full genotype data set, which is a pre-requisite for
the subsequent multiple regression analysis. For the same
reason, missing genotypes were estimated applying the
mean imputation (MNI) approach [64]. For this, each miss-
ing SNP value was replaced with the mean of the non-
missing values of that SNP in the respective HEB family.
Quantitative SNP genotypes were subsequently used for
multiple regression analysis.

Evaluation of genetic diversity

SAS 9.4 Software (SAS Institute Inc., Cary, NC, USA) was
used to evaluate genetic diversity among parents and pro-
genies of the HEB-25 population. Genetic similarities (GS)
between HEB lines and their parents and among HEB
lines were calculated with Proc Distarce, based on a sim-
ple matching comparison between the three possible
genotype states across all informative SNPs. In addition,
we performed principal component analysis (PCA) using
R [65]. First we applied PCA for the 26 parents (the culti-
var Barke and 25 wild donors) based on the SNP matrix.
The first two PCs explained 51.9 and 4.8% of the variation.
Then, all progenies of HEB-25 were projected to the space
spanned by the two PCs (Additional file 3) as outlined in
detail elsewhere [66].

Linkage disequilibrium (LD)

LD was calculated as r* [67] between all mapped SNPs
with the software package TASSEL [68]. For this pur-
pose, heterozygous genotypes and SNPs with a minor
allele frequency <0.05 were excluded. LD was calcu-
lated across the 26 parents of HEB-25. LD decay across
intra-chromosomal SNPs was displayed by plotting r*
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between SNP pairs against their genetic distance. A
second-degree smoothed loess curve [69] was fitted in
SAS with Proc Loess. The population-specific baseline r*
was defined as the 95% percentile of the distribution of
for unlinked markers [70]. LD decay was defined as the
distance, at which this baseline crossed the loess curve.

Ppd-H1 haplotype definition

For sequencing of the Ppd-HI locus on chromosome
2HS we used the following primers: PP05 (forward)
5'-GTGCAAAGCATAATATCAGTGTCC-3" and PP04
(reverse) 5'-GGCCAAAGACACAAGAATCAG-3'. These
primers amplify the last two exons and three introns of
Ppd-H1 covering the CCT domain that contains SNP22,
the causal SNP of Ppd-H1 [15]. Identical sequences were
grouped into haplotypes. A detailed description of the
sequencing is given in Jakob et al. [71].

HEB-25 field trials

Between 2011 and 2013, three field trials were conducted
at the ‘Kithnfeld Experimental Station’ of the University of
Halle to gather phenotype data on flowering time. In
2011, the field trial was conducted with selfed progenies
of BC,S; lines (so-called BC,S3.4). Sowing occurred in sin-
gle to five row plots with a length of 1.50 m and a distance
of 0.20 m between rows. The number of rows per HEB
line and the position inside the field trial depended on the
number of available BC,S;., seeds. Lines with seed num-
bers lower than ten were planted in plots with a length of
0.50 m. In 2012 and 2013, the field trials were conducted
with the selfed progenies in BCS3.5 and BC,S5,, respect-
ively. Two replications per HEB line, arranged in two
randomized complete blocks, were cultivated in 2012 and
2013. The plots consisted of two rows (30 seeds each) with
a length of 1.50 m and a distance of 0.20 m between rows.
All field trials were sown in spring between March and
April with fertilization and pest management following
local practice.

Phenotypic data

The occurrence of flowering time was recorded as days
after sowing, when the first awns were visible (BBCH49
[72]) for 50% of all plants of a plot. We performed a one-
step phenotypic data analysis with SAS, using a linear
mixed model with effects for genotype (ie. 1,420 HEB
lines), environment (i.e. 3 years) and interaction of geno-
type and environment. To estimate variance components,
all effects were assumed to be random. Broad-sense herit-
ability (h*) was estimated on an entry-mean basis. Best lin-
ear unbiased estimates (BLUEs) of flowering time were
calculated for each genotype assuming fixed genotype
effects.
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Genome-wide association study (GWAS)

For GWAS, we applied Model-B as outlined in detail by
Liu et al [38]. This model was found most suitable to
carry out GWAS with multiple families [39]. It is based on
multiple regression considering an SNP effect and a family
effect in addition to cofactors, which control both popula-
tion structure and genetic background [39]. Cofactor se-
lection was carried out by applying Proc Glmselect in SAS
and minimizing the Schwarz Bayesian Criterion [73].
The genome-wide scan for presence of marker-trait as-
sociations was implemented in the statistical software R
[65], excluding cofactors linked closer than 1 ¢cM to the
SNP under investigation. The Bonferroni-Holm pro-
cedure [74] was used to adjust marker-trait associations
for multiple testing. Significant marker main effects were
accepted with Ppon o < 0.05. Additive effects for each
SNP were estimated based on regression across but also
within families. Significant marker trait associations were
grouped to a singled QTL if the significant SNPs were
linked by less than 5 ¢cM and revealed additive effects
of the same direction, i.e. both exotic alleles increased or
decreased flowering time. In addition, a two-dimensional
epistasis scan was carried out to identify pairwise marker
interactions. For this, the GWAS Model-B was extended
to cover a second main SNP effect and the interaction
effect between the two SNPs.

Haplotype-based association mapping for Ppd-H1

A haplotype-based association mapping test was imple-
mented in HEB-25 to test for effects of haplotypes at Ppd-
H1. We used the same GWAS procedure with cofactor
selection as mentioned before. However, bi-allelic SNPs
covering the region of Ppd-HI were replaced by a qualita-
tive variable containing the defined Ppd-HI haplotype.
BLUEs were determined for each haplotype. Subsequently,
pairwise comparisons between all haplotype BLUEs were
performed using the Tukey-Kramer [75] multiple compari-
son test.

Genomic prediction

Based on BLUEs of the 1,420 HEB genotypes, two ap-
proaches for genomic prediction were applied considering
additive effects: ridge regression best linear unbiased pre-
diction (RR-BLUP [51]) and BayesCrr [52]. All statistical
procedures for genomic prediction approaches were exe-
cuted using R. We briefly describe the two models in the
following.

Let n be the number of genotypes, # be the number
of markers and [ be the number of environments. The
RR-BLUP model has the form y=1,u + Xg+e, where y
is the vector of BLUEs of flowering time scores for all
HEB genotypes across environments, 1, denotes the vec-
tor of 1’s, p is the overall mean, g is the vector of marker
effects (for SNP markers, allele effects), X is the
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corresponding design matrix and e is the residual term.
In the model we assumed that gNN(O,cré) , e N

(0, 02), where UE, = o%/m for SNP markers and ¢2 =

o%/l. Here o and g% are the genotypic and residual
variance components obtained in the mixed model in
the phenotypic data analysis. The penalty parameter is
A = (c%/1)/(6%/m). The estimation of marker effects is
then given by the mixed model equations [76].

The basic model of BayesC m is the same as RR-BLUP,
However, all parameters are treated as random variables
in a Bayesian framework. First, we defined the prior dis-
tributions as g NN(O, a;)‘ e~ N(0, a2). The prior of
W is a constant. The prior distribution of 0'; is assumed
to be zero with probability 7w and a scaled inverse chi-
squared distribution with probability (1-m). The prob-
ability  is a random variable whose prior distribution is
uniform on the interval [0,1]. The prior distribution of
o2 is also scaled inverse chi-squared. A Gibbs sampler
algorithm was then implemented to infer all the parame-
ters in the model. It was run for 10,000 cycles and the
first 1,000 cycles were discarded as burn in. The samples
of g from all later cycles were averaged to obtain esti-
mates of the marker effects.

Cross-validation for additive models

The accuracy of the prediction of flowering time by
GWAS and the two genomic prediction approaches
were evaluated using five-fold cross-validations [77]. In
each run of cross-validation, the estimation set in-
cluded 80% of HEB lines, randomly selected per HEB
family, while the remaining 20% of HEB lines were
assigned to build the test set. For GWAS, we per-
formed an association mapping scan within the estima-
tion set and recorded the detected significant markers.
To determine the cross-validated proportion of ex-
plained genotypic variance (pg), we estimated the ef-
fects of the significant peak markers within the
estimation set and predicted the genotypic value of the
lines in the test set [40]. We then calculated the cross-
validated pg as the squared Pearson product-moment
correlation between predicted and observed genotypic
values in the test set standardized with the heritability.
The mean pg in 100 cross-validation runs (20 times five-
fold cross-validations) was taken as the final record. In
addition, the number of significances for each SNP was
cumulated across all runs and is referred to as QTL de-
tection rate.

For genomic prediction we estimated the effects for all
markers using the estimation set and predicted the
genotypic value of the lines in the test set. The cross-
validated pg was calculated as in GWAS.
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Exploiting additive and additive times additive epistatic
effects in genomic prediction

We extended the RR-BLUP based on main effects
to model also epistasis for markers with significant
main effects in the GWAS. The model is y=1,u+
Z:’i:lxigf 4 Z:}d()(f--)(;)f}-j + e, where y is the vector of
BLUEs of flowering time for all HEB genotypes, 1,, denotes
the vector of 1’s, p is the overall mean, g; is the main
additive effect of the i-th marker, X; is the vector of marker
indices, f; is the epistatic effects of the j- and the I-th
marker, X; X; is the point-wise product of the two vectors
X; and X, and e is the vector of residual terms. Note that
in the third term of the right hand side of the formula, the
sum is not taken over all pairs of markers but only pairs of
markers exhibiting a significant additive effect in the
GWAS study performed previously. Hence, in different
cross-validation runs, different pairs of markers were con-
sidered in the model. The model assumptions are similar
to the usual RR-BLUP, except treating additive and epistatic

effects separately. We assumed g, N (0, aﬁ) > S N

(0, (7?) , where ag = pgos/m, o; = (1-pg)os/p. Here P
is the cross-validated proportion of explained genotypic
variance for genomic prediction, obtained previously by
the RR-BLUP, only considering additive effects, m is the
number of markers, p is the number of pairs of markers
having significant additive effect. Therefore the penalty
parameter \ is different for additive and epistatic effects.

Using the above extended model, for each cross-validation
run we estimated the additive effects of all markers and
epistatic effects of all pairs of markers exhibiting sig-
nificant additive effects in GWAS using the estimation
set. Then we predicted genotypic values of the lines in
the test set and calculated the pg in the same way as
outlined above.

Availability of supporting data

Raw data, including data on SNPs, Ppd-HI haplotypes
and GWAS, and all other supporting data are provided
as additional files.

Additional files

Additional file 1: Genetic constitution of HEB-25: classification of
families and donors. Tabular overview of the genetic constitution of
HEB-25, classifying the 25 families and donors and containing the Ped-H1
haplotypes.

Additional file 2: LD decay of intra-chromosomal markers among
HEB-25 parents. Figure showing the LD decay of intra-chromosomal
markers among HEB-25 parents by plotting r¥ against the genetic marker
distance.

Additional file 3: Principal component analysis for HEB-25 and its
parents. Figure showing the relatedness of HEB-25 lines by platting of
the first two principal components of a principal component

analysis for HEB-25 and its parents

Additional file 4: Distribution of flowering time. Figure showing the
frequency distribution of flowering time BLUES across three field trials
and illustrating contrasting phenotypes in the field.

Additional file 5: Phenotype and genotype data for HEB-25. Table
listing the complete phenotype and genotype data of HEB-25 underlying
this study as well as marker information.

Additional file 6: Estimates of single marker GWAS and genomic
prediction effects across HEB-25 and within individual HEB families.
Table listing the results of GWAS and genomic prediction across HEB-25
and within individual HEB farnilies.

Additional file 7: GWAS Manhattan plot for flowering time, Figure
displaying the GWAS results through plotting the significance and effects
of markers in a Manhattan plot.

Additional file 8: Ppd-H1 haplotype comparison. Two tables
contrasting the different Ppd-H1 haplotype effects by comparison of their
BLUEs.

Additional file 9: Significant epistatic interactions via GWAS. Table
listing all significant (Paewiong < 0.05) epistatic interactions between
SNPs that were obtained via GWAS.
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GENOMIC DISSECTION OF PLANT DEVELOPMENT AND ITS IMPACT ON
THOUSAND GRAIN WEIGHT IN BARLEY THROUGH NESTED ASSOCIATION
MAPPING

Chapter 2

Genomic dissection of plant development and its impact on thousand
grain weight in barley through nested association mapping?

After the initial investigation of flowering time in HEB-25 (Chapter 1) the aim of the
following study was to dissect the genetic control of flowering time in more detail

to fine-tune plant development with regard to yield components.

Since not only flowering time itself but also other developmental stages like
maturity have a major impact on final grain yield the question was whether
different developmental stages are under independent genetic control or if they are
co-regulated by the same major genes. This should be achieved by comparing GWAS
results of several developmental traits and showing their impact on the yield
component thousand grain weight. Finally, conclusions should be drawn about an
optimal strategy for the timing of developmental phases to increase thousand grain

weight.

2 Maurer A, Draba V, Pillen K (2016) Genomic dissection of plant development and its impact on thousand
grain weight in barley through nested association mapping. J Exp Bot 67: 2507-2518.
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as being two major determinants of flowering time. Vrn-
H3 (Yan et al., 2000) is the key gene controlling flower ini-
tiation in barley. It is an orthologue of the Arabidopsis FT
(FLOWERING LOCUS T) gene. The FT protein moves from
leaves to the shoot apical meristem, as postulated decades ago
for the mobile signal “florigen’ (Chailakhyan, 1937). Its func-
tion as a promoter of flowering is assumed to be preserved
across different plant species (Turck ef al., 2008).

The key vernalization genes Vin-HI (Yan et al., 2003)
and Vrn-H2 (Yan et al., 2004) have a major impact on Vrn-
H3 expression. Fru-H2 was determined to be a repressor of
Vrn-H3, which prevents flowering under long days before
vernalization. Fin-HI responds to low temperatures (Oliver
et al., 2013) as a result of cis-regulatory elements in its pro-
motor region (Alonso-Peral et al., 2011). It is up-regulated
after vernalization and, thus, promotes flowering through
direct binding to the promoters of Vin-H2 (repression) and
Vrn-H3 (activation) (Deng et al, 2015). A differentiation
between winter and spring barley can be made based on their
response to vernalization. The latter lacks the vernalization
requirement as a result of a natural deletion of Frun-H2 (von
Zitzewitz et al., 2005).

Flowering is furthermore promoted by Ppd-HI under long
days (Turner et al., 2005) and by Ppd-H2 under short days
(Kikuchi et al., 2009). In addition to photoperiod and ver-
nalization, light quality (Nishida et /., 2013; Pankin et al.,
2014), circadian rhythms (Campoli ez al., 2012; Faure et al.,
2012; Zakhrabekova et al., 2012; Campoli et al., 2013; Calixto
et al., 2015), and phytohormones like gibberellic acid (GA)
(Jia et al., 2009; Jia et al., 2011; Boden et al., 2014) and cyto-
kinins (Mrizova et al., 2013) also contribute to the induction
of flowering in barley. Many loci that were previously clas-
sified as earliness per se genes that act independently from
external signals (Laurie et al., 1995) were recently assigned
to those classes. The complexity of floral networks (Bliimel
et al., 2015) is caused by the interplay between numerous
genes and external signals. It is worth taking a closer look
at specific developmental subphases to help unravel these
networks.

The life cycle of barley consists of several subphases.
The most basic differentiation divides the life of a barley
plant into vegetative, reproductive and grain-filling phases
(Sreenivasulu and Schnurbusch, 2012). Vegetative plant
organs develop during the vegetative phase. The reproductive
phase starts with the initiation of spikelets, which develop
over time. This phase is terminated with anthesis resulting in
the onset of the grain-filling phase. The length of different
preanthesis subphases has been shown to be under genetic
control (Kernich et al., 1997; Borras et al., 2009; Borras-
Gelonch et al., 2010; Borras-Gelonch et al., 2012; Alqudah
et al., 2014) and impacts yield-related traits (Miralles et al.,
2000; Alqudah and Schnurbusch, 2014, 2015). The postan-
thesis phase is also assumed to have a major impact on yield
by determining the time frame for grain-filling (Evans and
Wardlaw, 1976; Egli, 2004), which controls the yield compo-
nent grain weight (Distelfeld et al., 2014). Although the tim-
ing and duration of developmental phases is important for a
plant’s yield potential, most genomic studies dealing with the
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regulation of plant development and its impact on yield focus
solely on flowering time as the only developmental parameter.

Nested association mapping (NAM) has been shown to be
a valuable tool in the dissection of the genetic architecture
of many traits in maize, sorghum, and barley (Buckler et al.,
2009; Jordan er al., 2011; Maurer et al., 2015). A NAM popu-
lation is the result of wide crosses of highly diverse donor
genotypes with a recurrent elite cultivar, followed by several
rounds of selfing. It combines the advantages of association
mapping (i.e. high allele richness and mapping resolution)
and linkage mapping (i.e. high statistical power). It also pro-
vides excellent opportunities to evaluate the performance of
untapped wild alleles in an elite background as a result of its
exclusive mating design (Ogut ef al., 2015).

The aim of this study was to characterize the genetic archi-
tecture of barley development. To do this, we used the NAM
population HEB-25 (Maurer er al., 2015) consisting of 1420
highly divergent BC,S; lines. We also wanted to shed more
light on the flowering time pathway in barley by comparing
the impact flowering time genes had on different developmen-
tal subphases. In addition to time to flowering (HEA), we
investigated time to shooting (SHO), duration of the shoot
elongation phase (SEL), duration of the ripening phase (RIP)
and time to maturity (MAT). In order to gain insight into
additional physiological functions of flowering time genes and
their impact on yield formation, we also investigated plant
height (HEI) and thousand grain weight (TGW, Table 1).
Furthermore, we looked at whether there was useful variation
present in the wild barley germplasm that could be used to
fine-tune specific developmental phases in order to increase
yield potential in future barley breeding programmes.

Materials and methods

Plant material

The NAM population HEB-25 (Maurer et al., 2015), consisting
of 1420 individual BC;S; lines in 25 wild-barley-derived subfami-
lies, was used in this study. HEB-25 was the result of initial crosses
between the spring barley cultivar Barke (Hordeum vulgare ssp. vul-
gare) and 25 highly divergent exotic wild barley accessions ( Hordeum
vulgare ssp. spontaneum and agriocrithon). F plants of the initial
crosses were backcrossed with Barke. For detailed information
about the population design, see Maurer et al. (2015).

Collecting single nucleotide polymorphism data

Single nucleotide polymorphism (SNP) genotype data were col-
lected at TraitGenetics, in Gatersleben, Germany, for all 1420 indi-
vidual BC,S; lines and their corresponding parents. The barley
Infinium iSelect 9K chip consisted of 7864 SNPs (Comadran ef al.,
2012). The genotype data were processed and stored as indicated
in Maurer et al. (2015) and 5709 informative SNPs, which met the
quality criteria, could be utilized in this study. An identity-by-state
approach was used to differentiate between the HEB genotypes.
Based on parental genotype information, the exotic allele could be
specified in each segregating family, and homozygous exotic geno-
types were assigned a value of 2. HEB lines that showed a homozy-
gous Barke genotype were assigned a value of 0. Consequently,
heterozygous HEB lines were assigned a value of |. Numbers can
therefore be interpreted as a quantitative variable representing the
dose of the wild allele.
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HEB-25 field trials

Between 2011 and 2014, four field trials were conducted at the
‘Kithnfeld Experimental Station” of Martin Luther University
Halle-Wittenberg (51°29°46.47"N; 11°59°41.81”E) to gather pheno-
type data. In 2011, the field trial was conducted with selfed progenies
of BC,S; lines (so-called BC,S,,), arranged as a single randomized
block. The majority of plots (92%) included one or two rows per
HEB line whereas the remaining 8% of plots included three to five
rows, depending on the number of available BC,5;4 seeds. Plots in
2011 had a length of 1.50 m, a distance of 0.20 m between rows, and
were separated by 0.50 m to reduce competition between plots. In
2012 and 2013, the field trials were conducted with the selfed prog-
enies in BC,S;.5 and BC,S;,, respectively. Two replications per HEB
line, arranged in two randomized complete blocks, were cultivated
in 2012 and 2013. The plots consisted of two rows (30 seeds each)
with a length of 1.50 m, a distance of 0.20 m between rows, and a
spacing of 0.50 m between plots, In 2014, BC,S;.; seeds were sown
in a single randomized block. The plots consisted of two rows (50
seeds each) with a length of 1.50 m, a distance of 0.20 m between
rows and a spacing of 0.50 m between plots. Barke was integrated as
a check line in all trials. All field trials were sown in spring, between
March and April, with fertilization and pest management carried
out according to local practice. No additional fertilizer was applied
in 2014,

Phenotypic data

Table 1 shows a list of all of the investigated traits and a descrip-
tion of their measurements and the years studied. This information
is supplemented insofar as all developmental traits were recorded
both as “days from sowing’ and ‘growing degree days’ (GDD), which
were calculated with a base temperature of 0 °C in accordance with
equation (1) in McMaster and Wilhelm (1997). Thus, the mean daily
temperatures of all of the days with a mean temperature above 0 °C
were cumulated.

Statistical analyses

We performed a one-step phenotypic data analysis for all traits with
SAS 9.4 (SAS Institute Inc., Cary, NC, USA), based on a linear
mixed model (PROC MIXED) with effects for genotype (i.e. 1420
HEB lines), environment (i.e. 4 years) and interaction of genotype
and environment. To estimate variance components, all effects were
assumed to be random (PROC VARCOMP). Heritabilities across

where V., Viy and Vg represent the genotypic components, geno-
type X year, and error variance components, respectively. The terms
y and r indicate the number of years and replicates, respectively.
Best linear unbiased estimates (BLUESs) were calculated with PROC
MIXED for each genotype assuming fixed genotype effects. BLUEs
were used to calculate Pearson’s correlation coefficients (r) with
PROC CORR.

Genome-wide association study

We applied Model B on trait BLUEs as outlined in detail by Liu
et al. (2011). This model was found to be most suited for carrying
out genome-wide association study (GWAS) with multiple families
(Wiirschum et @l., 2012) and has already been shown to work prop-
erly in HEB-25 (Maurer et al., 2015). It is based on multiple regres-
sion, taking into account a quantitative SNP effect and a qualitative
family effect in addition to quantitative cofactors that control both
population structure and genetic background (Wiirschum et al.,
2012). Cofactor selection was carried out on this model and included
all SNPs simultaneously by applying PROC GLMSELECT in SAS
and minimizing the Schwarz Bayesian Criterion (Schwarz, 1978).
PROC GLM was used to perform the genome-wide scan for the
presence of marker—trait associations. Cofactors that were linked
closer than 1 ¢cM to the SNP under investigation were excluded. The
Bonferroni-Holm method (Holm, 1979) was used to adjust marker—
trait associations for multiple testing. Significant marker effects were
accepted with Pyon.orm<0.05. The proportion of the phenotypic
variance explained by a marker was determined by estimating R?
after modelling the marker solely in a linear model. Additive effects
for each SNP were taken as the regression coefficient of the SNP
directly from the GWAS model. Family-specific effects were calcu-
lated for all markers based on a simple linear model, including a gen-
eral family term and the marker effect as nested within the family.
To increase the robustness of the method, the entire procedure was
applied 200 times on random subsamples of the full dataset. Each
subsample included 80% of the lines, randomly selected per HEB fam-
ily. We recorded the significant (Pgon_ory<0.05) markers detected,
which is referred to as the detection rate. Markers that were detected
in at least 10% of subsamples were accepted as putative QTLs, fol-
lowing Ogut et al. (2015). Significant markers were merged into a
single QTL if they were linked by less than 4 ¢cM. Additive effects,
Pronoww values and R? were averaged across all runs, in which the
respective marker was significant. In order to evaluate the explained
phenotypic variance, the unbiased estimator R?,;; (Draper and Smith,
1981) was determined for each subsample by simultaneously model-

vears were calculated as: A% = % . ling all of the significant markers in a linear model. In order to deter-
Vo +-—X 4 R mine the predictive ability Rzpmd. the estimated additive effects of each
yr subsample were used to predict the phenotypic value of the remaining
Table 1. List of evaluated traits
Abbreviation Trait Unit Method of measurement Years studied
SHO Shooting days Number of days from sowing until first node palpable at least 1.cm above the tillering 2011-2014
nede for 50% of all plants of a plot (BBCH 31; Lancashire et al., 1991)
SEL Shoot elongation phase GDD Time from SHO to HEA 2011-2014
HEA Flowering days Number of days from sowing until first awns visible (BBCH 49; 2011-2014
Lancashire et al., 1991) for 50% of all plants of a plot
RIP Ripening phase days Time from HEA to MAT 2012-2014
MAT Maturity days Number of days from sowing until hard dough: grain content solid and fingernail 2012-2014
impression held (BBCH 87; Lancashire et al., 1991) for 50% of all plants of a plot
TGW Thousand grain weight g Calculated after harvest by use of MARVIN seed analyser (GTA Sensorik GmbH, 2011-2013
Neubrandenburg, Germany) based on a 200 seeds sample of each plot. Before,
seeds were cleaned and damaged seeds were sorted out
HEI Plant height cm Recorded at maturity as the distance from ground to tip of the erected ear (without 2011-2013

awns), taken as an average across the ears of a plot
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20% of the lines. We then calculated REF,.M to be the squared Pearson
product-moment correlation between predicted and observed pheno-
typic values. The means of Rzi,dj and Rzmd, measured over 200 runs,
were ultimately recorded as the final values.

We used the BARLEYMAP pipeline (Cantalapiedra et al.,
2015) to identify potential candidate genes to explain the QTLs.
BARLEYMARP enables markers to be mapped and gene sequences
to be aligned against sequence-enriched genetic (Mascher et al,
2013) and physical frameworks (International Barley Genome
Sequencing Consortium, 2012). This represents a very precise way to
find positional coincidence of QTLs with putative candidate genes.
The results are presented in Supplementary Table S1 at JXB online.
We also compared our wild allele effects to those reported in a bar-
ley BC>DH population and a set of wild barley introgression lines
(Wang et al., 2010). Here several known flowering time genes were
sequenced in wild and cultivated barley. Since the wild allele effect
was also produced directly from a cross of wild barley and cultivated
barley, we assume that similar effects indicate the same candidate
genes.

Results and discussion
Phenotypes

A broad variation in phenotypes of HEB-25 lines was
observed for all traits across and within years. This resulted in
high coefficients of variation (Supplementary Table 82). After
calculating BLUESs, which were corrected for year effects, we
observed large differences of more than 100% between the
most extreme HEB lines for each trait except MAT (Table 2
and Supplementary Fig. S1). For instance, a difference of
51.4 days between the earliest and the latest genotypes could
be observed for HEA, and likewise TGW varied between 19.4 g
and 60.2g. The lowest coefficient of variation was obtained
for the trait MAT, where the most extreme genotypes never-
theless showed a difference of 33.4 days.

Phenotypic correlations

We calculated Pearson’s correlation coefficients (r) in order to
gain basic insights into the relationships between the differ-
ent phases of plant development, HEI, and their influence on
TGW. We observed very high correlations (0.88-0.93) between
SHO, HEA, and MAT (Table 3). This indicates that early
shooting lines also tend to be early for other stages. Another
peculiarity is that in the case of RIP correlation coefficients
were negative for all other developmental stages. Together
with the relatively low coefficient of variation for MAT, this
indicates that the time of maturity may be predetermined or
limited to some extent by environmental factors such as heat
and drought. As both SEL and RIP were calculated to be
the difference between two other stages, we can draw conclu-
sions about their main determinant. Following this, HEA had
the greatest impact on the duration of SEL and RIP, since
its correlation coefficients outperformed those of SHO and
MAT, respectively. The duration of SEL greatly impacted
HEI (r=0.45), indicating that the occurrence of (semi-)dwarf
plants was based more on a shortened period of SEL than on
a reduced growth rate. No correlation with TGW could be
observed for SEL. TGW was positively correlated with RIP
(r=0.37), which may be due to an extension of grain-filling,

MAPPING

Table 2. Descriptive statistics for best linear unbiased estimates
(BLUESs) and heritabilities across all environments

Trait? NP Mean® SD? Min® Max' CV%I K"
SHO 1422 533 5.6 38.6 826 104 0.93
SEL 1422  237.8 42.6 108.9 3960 17.9 0.75
HEA 1422 679 6.3 50.4 1019 9.2 0.94
RIP 1420 327 26 19.2 40.5 7.9 0.81
MAT 1420 101.3 4.5 88.5 1219 4.5 0.91
TGW 1422 465 5.0 19.4 60.2 10.8 0.57
HEI 1420 63.9 8.5 41.0 100.56 13.3 0.88
4 Trait abbreviations are given in Table 1.
“ Number of observations (genotypes).
© Arithmetic mean.
¢ Standard deviation.
£ Minimum.
" Maximum.
9 Coefficient of variation (%).
" Heritability.
Table 3. Pearson’s correlation coefficients (r)

SEL HEA RIP MAT TGW HEI
SHO 0.32 0.92 -0.67 0.88 -0.38 -0.01
SEL 0.66 -0.60 0.57 -0.07 0.45
HEA -0.79 0.93 -0.35 0.17
RIP -0.54 0.37 -0.19
MAT -0.28 0.13
TGW 0.31

Bold values indicate significant correlations at £<0.0001, Trait
abbreviations are given in Table 1.

where starch is being stored in the grains (Distelfeld er al.,
2014). Interestingly, HEI was also positively correlated with
TGW (r=0.31).

Heritabilities

Heritabilities for all investigated traits were calculated
over 3-4 years. We observed heritabilities >0.5 for all
traits (Table 2). Heritabilities for the developmental traits
SHO, HEA, and MAT were almost identical, regardless of
whether they were measured in days or growing degree days
(GDD) (Supplementary Table S3). However, days outper-
formed GDD (0.81 vs 0.68) in the case of RIP, while GDD
outperformed days (0.75 vs 0.69) in the case of SEL. Thus,
for SEL, GDD rather than days offers a better estimate
for the relative time needed to fulfil this stage, since plant
growth rate and, hence, plant development is based on the
interplay between different temperature-dependent bio-
chemical processes (Atwell er al., 1999; Atkin and Tjoelker,
2003). This is of particular importance, especially when
dealing with data from different years and when taking into
account that the onset of SEL differs greatly (from 38.6
to 82.6 days after sowing) between individual lines in the
HEB-25 population. In contrast, the use of days instead of
GDD resulted in a higher heritability for RIP. This observa-
tion may be attributed to the fact that plant development
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does not benefit from higher temperatures if a certain tem-
perature threshold is met or the plant has reached a critical
physiological state. McMaster and Smika (1988) compared
temperature-dependent and -independent models to predict
growth stages in winter wheat and pointed out that the best
model for predicting a developmental stage varied depend-
ing on the respective stage. Therefore, we decided to concen-
trate on GDD for SEL and days for all other developmental
traits in our analyses.

GWAS

We conducted GWAS for each trait in order to further ana-
lyse the above-mentioned correlations between traits and to

elucidate which QTLs are responsible for controling trait
variation in HEB-25. We applied a multiple linear regres-
sion model, including a population main effect and selected
markers as cofactors, to account for genetic background and
relatedness. This model was recently shown to perform best in
HEB-25 (Maurer et al., 2015).

We were able to detect numerous associated genomic
regions for all of the traits studied using our GWAS method
(Fig. 1 and Supplementary Table S4). A total of 89 QTLs
could be defined (Table 4 and Supplementary Table SS5).
Most QTLs were shared by multiple traits. However, we
could also detect trait-specific QTLs for all of the seven
traits (Supplementary Fig. S2). We obtained broad varia-
tion for wild allele QTLs, with an increase or decrease in

Fig. 1. Comparison of GWAS results across developmental traits, thousand grain weight and plant height. Barley chromosomes are indicated as
coloured bars on the inner circle, and centromeres are highlighted as transparent boxes. Grey connector lines represent the genetic position of SNPs
on the chromosomes, which is given in centimorgans on the outer circle. Each track represents one trait, and these are (from inside to outside) SHO,
SEL, HEA, RIP, MAT, TGW and HEI. Trait abbreviations are given in Table 1. Black boxes indicate the QTL positions. The height of histogram bars above
represent the detection rate across 200 repeated random subsamples. The blue and red colours of the bars indicate trait-reducing and trait-increasing
effects, respectively, exerted by exotic QTL alleles. Candidate genes of major QTLs are indicated outside the circle.
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trait values compared with the Barke control allele. In this
regard, we were able to identify 10 QTLs where the wild
allele increased TGW by up to 6.6g (Supplementary Table
S5). Modelling all significant markers of one trait simul-
taneously resulted in explained percentages of phenotypic
variance (R*,4) ranging from 63.6% (TGW) to 82.3% (HEL).
The fact that Rzp,.m, values, resulting from a prediction of
phenotypes of an independent sample, were also compara-
tively high (Table 4) confirms the robustness of the method
and indicates that a large fraction of phenotypic variation
can be explained by genotypic variation.

Below, we present eight common QTLs (starting with
chromosome 1H in ascending order) and discuss their rele-
vance in controlling the five developmental traits SHO, SEL,
HEA, RIP, and MAT. Then, in order to draw conclusions
about their potential QTL function, we study their effects
on HEI and TGW. Since HEB-25 enables high genetic preci-
sion in mapping of QTLs (Maurer et al., 2015), we obtained
strong positional coincidence with plausible candidate genes
(Supplementary Table S1). We therefore directly refer to
these candidate genes in the headings of the subsections. The
results of these eight major QTLs are summarized in Table 5
and illustrated in Fig. 2. Finally, we discuss the developmen-
tal phase-specific QTLs that were obtained in this study.

QTL-1H-10 (HVELF3)

We observed a QTL that showed significant effects for all
seven traits studied except for RIP and TGW. The QTL
is located close to the telomere of chromosome arm 1HL
(QTL-1H-10). The exotic allele at this locus is associated
with a slight acceleration of plant development. The time
to reach each stage was shortened by 2-3 days in contrast
to the allele of the spring barley cultivar Barke. This QTL
region harbours the earliness-inducing eamé&/mat-a locus
(Franckowiak et al., 1997) and may correspond to HvELF3
(EARLY FLOWERING3), which is orthologous to the
Arabidopsis circadian clock gene ELF3 (Faure et al., 2012;
Zakhrabekova et al., 2012). HvELF3 was recently shown to
influence flowering by regulating GA production in barley
(Boden et al., 2014).

Table 4. Number of QTLs and total explained phenotypic variance

Trait QTLs (n)° R (96 R req (%)
SHO 49 81.6 59.9

SEL 28 65.9 42.5

HEA 43 79.0 55.6

RIP 30 66.6 a7:8

MAT 32 78.9 56.2
TGW 43 63.6 42.8

HEI 37 82.3 45.7

No. of unique QTLs 89

@ Trait abbreviations are given in Table 1.

 Number of QTLs detected for the respective trait.

¢ Mean explained phenotypic variance by GWAS.

9 Mean ability to predict phenotypes of an independent sample.

MAPPING

QTL-2H-4 (Ppd-H1)

QTL-2H-4 exerted significant effects on all developmental
traits and HEI, thereby explaining up to 34% of the pheno-
typic variance (R?). The most significant SNP marker (i_
BK_12) is directly located within the Ppd-H/ gene, which is the
main determinant of response to long day conditions in barley
(Turner et al., 2005). Most wild barley accessions were shown
to carry a highly responsive Ppd-H1 allele, accelerating devel-
opment under long day conditions (Cockram et al., 2011). In
contrast, Barke, like most spring barley from Northern Europe,
carries an allele that exhibits a reduced response to long days.
In our study, the wild allele led to a strong acceleration of all
developmental phases by up to 9.3 days, except for RIP, which
was delayed by up to 3 days. In contrast, HEI was reduced by
7.3cm when the wild Ppd-HI allele was present. After reaching
the reproductive stage, relatively more energy is put into repro-
ductive organs. This leads to reduced vegetative growth. Thus,
the wild allele at Ppd-HI may accelerate floral development at
the expense of growth and biomass production.

QTL-2H-7 (HVCEN)

We observed a QTL, located next to the centromere of chro-
mosome 2H, that showed significant effects on all traits
except TGW. Comadran et al. (2012) identified HvCEN
(CENTRORADIALIS), a homologue of Arabidopsis TFL/
(TERMINAL FLOWERI), as the possible gene behind this
locus. Recently, Loscos et al. (2014) found evidence that
HvCEN plays a central role in the induction of flowering in
barley. The effects of HvCEN on all developmental phases
were similar to the effects of Ppd-HI. However, the scale of
the effects was clearly reduced. At this point we should note
that the HvCEN effect is presumably not due to genetic link-
age to Ppd-H1, since Ppd-H1 was selected as a cofactor in the
GWAS model for calculating the HvCEN association.

QTL-3H-9 (denso/sdw1)

QTL-3H-9 was detected for all five developmental traits.
This QTL may correspond to the densolsdwl locus, causing a
semi-dwarf phenotype. HvGA20ox2, coding a GA-20 oxidase
enzyme, is a candidate gene for explaining its function (Jia
et al.,2009; Ha et al., 2011). The denso allele is commonly pre-
sent in modern European malting barley cultivars like Barke
(Jia et al., 2009). Therefore, it is not surprising that we also
observe a strong effect on HEI for this locus, explaining 41%
of phenotypic variance (R%). The presence of the wild allele
increased HEI by up to 12.3cm. This QTL simultaneously
affected all developmental traits and TGW. The wild allele
reduced the time required to reach SHO, HEA and MAT by
5.7, 4.3 and 4.0 days. respectively. At the same time it delayed
the time between these stages (SEL and RIP). Furthermore,
the wild allele increased TGW by up to 4.5g. As the absolute
effects steadily diminished throughout the developmental
stages (Table 5), we presume that denso/sdwl plays a major
role in the very early stages of development. All in all, the
influence of densolsdwl on all investigated traits underlines
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Table 5. Major developmental QTLs and their impact on further traits

cM interval® SHO? SEL  HEA RIP MAT TGW HEl Candidate gene/locus with reference

QTL Chr*  Peak marker” From  Until

QTL-1H-10 1H i_SCRI_RS_150786 128.0 1331 -1.9 -10.2 -23 -3.4 -3.2 HVELF3 (Faure et al., 2012;
Zakhrabekova et al., 2012)

QTL-2H-4 2H i_BK_12 222 238 -74 -46.7 -9.3 28 -6.8 -7.3 Ppd-H1 (Turner et al., 2005)

QTL-2H-7 2H i_12_30265 53.3 608 -1.9 -39.8 -3.6 19 -26 -4.7 HvCEN (Comadran et al., 2012)

QTL-3H-9 3H i_11_11172 103.8 109.8 =-5.7 449 -43 09 -4.0 4.5 12.3 denso/sdw1 (Jia et al., 2009)

QTL-4H-1 4H i_12_31458 0.6 149 20 15.4 25 =07 20 =35 -2.6

QTL-4H-9 4H i_ SCRI_RS_216897 110.2 1143 7.8 1.3 82 =31 55 =15 4.2 Vm-H2 (Yan et al., 2004)

QTL-5H-10  5H i_11.10783 122.4 1285 79 85 =35 52 6.6 Vin-H1 (Yan et al., 2003)

QTL-7H-3 7H i_12_30895 29.8 343 34 36.8 57 =21 3.5 25 Vmn-H3 (Yan et al., 2006)

Negative values are indicated in bold. Blank cells indicate that the respective QTL was not detected for the trait. Trait abbreviations are given in
Table 1. For a complete table of all QTLs, see Table S5.

@ Chromosome on which the QTL was detected.

“ iSelect name of marker with the highest significance for HEA.

¢ Genetic interval (cM) with lower and upper threshold of QTL, based on the map of Maurer et al. (2015).

9 Most extreme effect (absolute difference of homozygous wild genotype and homozygous cultivated genotype) of all significant SNPs in
respective QTL interval.

SHO [d]

HEI [cm/2]

HEA [d]

V/ %
MAT [d] RIP [d]
-+ QTL-1H-10 (HVELF3) =~ ——QTL-2H-4 (Ppd-H1) = =QTL-2H-7 (HVCEN)
—QTL-3H-9 (denso/sdw1) ««« QTL-4H-1 = QTL-4H-9 (Vrn-H2)

««+ QTL-5H-10(Vrn-H1)  +«+ QTL-7H-3 (Vrn-H3)

Fig. 2. Spider diagram of major QTL effects across traits. Different traits are represented by corner points of the net. Trait abbreviations are given in

Table 1. Effects of wild alleles are indicated by differentially shaped lines for the respective QTL. The blue-shaded and red-shaded backgrounds of the
spider net indicate trait-reducing and trait-increasing effects, respectively, exerted by exotic QTL alleles. To enable a comparison of traits within the same
scale, values of SEL have been divided by 16.3, which represents the equivalent of one GDD to one day during SEL. Values of HEI have been divided by 2.

its complex and important role in plant physiology through- QTL-4H-1
out a plant’s life cycle—a known feature of GA (Taiz and
Zeiger, 2007). In addition to the importance of GA in floral
regulatory networks (Mutasa-Gottgens and Hedden, 2009),
elevated levels of GA also play a role in the delay of senes-
cence, as shown for pea (Wang et al., 2007). Furthermore, GA
levels were shown to be crucial for endosperm differentiation
and for the growth of barley grains (Weier et al., 2014).

QTL-4H-1 is another ubiquitous QTL that has recently been
identified as being a major QTL for flowering time in barley
(Maurer et al., 2015). The position of the most significant
peak markers differs between 3.5 and 14.9 ¢cM depending
on the investigated trait. Nevertheless we assume that both
peaks correspond to the same QTL due to a lack of marker
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density in this region. This QTL has also been found for
TGW and HEI, underscoring its crucial role in plant physiol-
ogy. This QTL delayed all developmental stages by approxi-
mately 2 days, except for RIP. which was accelerated by
approximately 2 days. Simultaneously, TGW was reduced
by 3.5g and HEI was reduced by 2.6cm. To date, no clear
candidate gene for this QTL has been found. However, after
aligning the sequences of significant markers in this region
against sequence-enriched genetic and physical frameworks
via BARLEYMAP (Cantalapiedra er al, 2015) a CCT
(CONSTANS, CO-like, and TOCT) domain gene was identi-
fied in this region (Genbank accession number AK354746).
Many known flowering time regulators have CCT domains
(Cockram et al., 2012). Furthermore, the LOG (LONELY
GUY) gene (MLOC_45038.2) could be assigned to this
region. LOG encodes a cytokinin-activating enzyme that is
required to maintain meristem activity. Its loss of function
causes pre-mature termination of the shoot meristem in rice
development (Kurakawa et al., 2007).

QTL-4H-9 (Vrm-H2)

QTL-4H-9, which may harbour Vrn-H2, the main repressor
of flowering in vernalization-dependent barley (Yan ef al,
2004), was reliably detected for SHO, HEA, RIP and MAT.
The wild allele delayed the respective developmental stages
by up to 8 days, whereby RIP was shortened by up to 3 days.
However, the high variation of marker effects among signifi-
cant SNPs indicates that effects vary greatly depending on the
segregating families of the respective SNPs (Supplementary
Table S4). This locus is naturally deleted in spring barley
cultivars like Barke. The result is that no vernalization is
required to induce flowering (von Zitzewitz et al., 2005). This
explains why the alleles from wild barley, which are predomi-
nantly winter types (Cockram et al., 2011), delayed flowering
in our spring-sown field trials. The fact that this QTL was
infrequently detected for the traits SEL, TGW and HEI leads
us to assume that the impact of Vrn-H2 on these traits may be
diminished or biased by family-specific effects.

QTL-5H-10 (Vrn-H1)

This QTL was shared between SHO (+7.9 d), HEA (+8.5 d),
RIP (-3.5 d) and MAT (+5.2 d) and may correspond to the
Vrn-H1 locus with HvBM3A4 (M ADS-box 5A4) being a candi-
date gene (von Zitzewitz et al., 2005). Vin-H1 is known to be
involved in the vernalization pathway of flowering time regu-
lation by responding to the low temperatures required for ver-
nalization (Oliver et al., 2013). HvPhyC (PHYTOCHROME
() is another gene that affects flowering time (Nishida et al.,
2013; Pankin er al., 2014). 1t is closely linked to HvBM35A,
which makes it difficult to distinguish between their effects.
In addition, a QTL for HEI (QTL-5H-11) has been defined
approximately 3 ¢cM distal from the position of HvBMS54 and
HvyPhyC. This further complicates the interpretation of the
QTL effects in this genomic region. Again, as already shown
for Vrn-H2, the high variation of marker effects points to
family-specific effects for this locus. An extraordinarily high
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variation exists for the trait TGW, which is caused by a single
SNP marker (i_11_11090) that is only polymorphic in HEB-
FO8. The wild allele caused an estimated increase in TGW
by 6.6 g, whereas all other significant markers in the Vin-H/
region reduced TGW by 1.5-1.8 g. Interestingly, there is low
variation for the locus affecting HEI, located 3 ¢M distal from
Vrn-HI. This indicates that this locus might be independent
of Vrn-HI.

QTL-7H-3 (Vrin-H3)

The most significant SNP marker at this QTL (i_12_30895)
is directly located within Vrn-H3. The Vin-H3 locus in barley
has been shown to correspond to HvFT1, the orthologue of
Arabidopsis FT (Yan et al., 2006; Faure et al., 2007). This gene
plays a central role in the flowering pathways as it is involved
in the switch from vegetative to reproductive growth under
long day conditions (Turck ef al., 2008). In our population,
significant effects of this QTL were observed for all devel-
opmental traits and HEIL. On average, the wild allele in the
Vrn-H3 region delayed all developmental phases by 3-6 days,
except RIP, which was shortened by approximately 2 days.
However, ample variation in marker effects exists for all
developmental traits (Supplementary Table S4). For instance
we observed effects for SHO ranging from —3.3 to +3.4 days
depending on the families in which the respective marker
segregates. This clearly shows the presence of family-specific
effects, most likely due to functionally different haplotypes of
Vrn-H3 among the HEB-25 donor accessions. However, for
the trait HEI (increased by 2.5cm) the effect of the wild allele
was relatively constant. Interestingly, gene-specific markers
of Vrn-H3 did not impact TGW. Instead, the QTL for TGW
was defined at around 4 ¢cM proximal of Frn-H3 at 38.8 cM
(QTL-7TH-4) causing a reduction of TGW by upto 2.2g.

Developmental phase-specific QTLs

In addition to the majority of QTLs that were shared across
developmental traits, we also found certain QTLs that
impacted a specific stage of plant development. These QTLs
are a potential source for fine-tuning the phases of plant
development and unravelling the physiological pathways.

QTLs affecting early development

QTLs that affect early development are characterized by their
influence on SHO and SEL. SEL is strongly related to the
phase from awn primordium to tipping, which was shown to
be the most decisive developmental phase for spikelet sur-
vival (Alqudah and Schnurbusch, 2014) and leaf growth rate
(Alqudah and Schnurbusch. 2015) in barley. The length of
this phase is therefore assumed to play a key role in determin-
ing a plant’s yield potential.

We found three striking QTLs (QTL-1H-6, QTL-3H-14
and QTL-5H-16) that exhibited exclusive effects on SHO and
SEL. In the case of QTL-3H-14, SHO was accelerated by
approximately 2 days and TGW increased by 1.3 g. In the case
of QTL-1H-6 and QTL-5H-16, SHO was delayed by 1-2 days
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without any effect on TGW. These QTLs were not shown to
affect HEA since the effect on SEL was contrary to the effect
on SHO. This therefore compensated for the effect of SHO in
the subsequent developmental phases. Thus, we assume that
these QTLs play a role in very early plant development by
affecting the time to reach SHO and the duration of SEL.

We also observed QTLs specific to the SEL trait. For instance,
QTL-2H-10 extended SEL by 19.7 GDD, while QTL-4H-5,
QTL-5H-2and QTL-5H-7 shortened SEL by 12.2, 12.1 and 18.0
GDD, respectively. Interestingly, some of the above-mentioned
QTLsalso affected TGW and HEI in addition to affecting SEL.
In the case of QTL-5H-2, the shortened period of SEL corre-
lates with reduced HEI. Although QTL-4H-5 and QTL-2H-10
show contrasting effects on SEL, they co-localized with QTLs
that decrease TGW. In the case of QTL-2H-10 this effect is likely
caused by the six-rowed spike locus Fis/ (Komatsuda et al.,
2007) originating from the Hordeum vulgare ssp. agriocrithon
donor of HEB-F24 in our population. Six-rowed spikes gener-
ally show decreased TGW due to a higher grain number. This
causes single grains to compete for assimilates. Interestingly,
Vrsl also seems to extend SEL. This corroborates the observa-
tion that six-rowed barley has a higher leaf area and leaf dry
weight than two-rowed barley. since leaf biomass is mainly pro-
duced during SEL (Alqudah and Schnurbusch, 2015).

QTLs affecting late development

QTLs that affect late development are thought to influence
RIP and MAT. Following Davies and Gan (2012), whole
plant senescence is initiated through a physiological transi-
tion at flowering. This leads to a remobilization of nutrients
to the developing seeds (Distelfeld et al., 2014). In the present
study, RIP represents the period of whole plant senescence
and grain-filling. Thus, it is considered to be highly impor-
tant in determining yield, particularly as a result of the grain
weight component (Distelfeld er al., 2014). Egli (2004) also
emphasized that the duration of this period played an impor-
tant role in grain crop yields.

The most obvious QTL to specifically affect late develop-
ment was detected in the centromeric region of chromosome
6H (QTL-6H-4). In addition to affecting RIP and MAT, this
QTL also significantly affected TGW and HEIL. HyNAM-1
(NO APICAL MERISTEM-1). coding for an NAC transcrip-
tion factor (Distelfeld er al., 2008), is a promising candidate
for this locus. It plays an important role in inducing senes-
cence (Distelfeld er al., 2014). Moreover, it has been shown
that its wheat homologue NAM-BI influences the remobili-
zation process of nitrogen, iron and zinc in the developing
grain (Uauy et al., 2006; Waters et al., 2009). In our study
the wild allele accelerated senescence, which shortened RIP
by approximately 1 day and consequently led to earlier MAT
(-3.4 days). Simultaneously, TGW was reduced by 2.6g and
HEI was reduced by 4.5cm. Interestingly, there is a second
QTL for RIP (QTL-6H-5) that is closely linked to HvNAM-1.
It mainly affects early stages by delaying SHO and HEA
and shortening RIP. This behaviour points to the candi-
date gene HvGR-RBP! (GLYCINE-RICH RNA BINDING
PROTEIN), which is consistent with the findings of other

groups (Jukanti er al., 2008; Streitner et al., 2008; Mason
et al., 2014). This is the first time in barley genomics that we
have been able to clearly distinguish this adjacent locus from
HyNAM-1.

Comparison of shared QTLs

In previous sections we mentioned many QTLs that simul-
taneously affected several developmental traits. Comparing
their effects across traits provides insights into the different
modes of action of the respective QTLs (Fig. 1 and Table 5).

In general, most QTLs affecting HEA also have a similar
effect on SHO. This is also reflected by the high correlation
of r=0.92 (Table 3). However, comparing the absolute effects
on both stages, we can state that the effect on HEA is gen-
erally more pronounced. This is reflected by an increased
SEL and indicates that the effect may accumulate over time.
However, the densolsdwl locus is a striking exception to this
rule. Although both time to SHO and HEA are reduced, it
simultaneously extends the time needed for SEL. This indi-
cates that the effect on SHO is stronger than on HEA at
densolsdwl. We therefore assume that denso/sdwl has the big-
gest impact in the very early developmental stages and that its
influence decreases during subsequent developmental phases.

Almost half of all developmental QTLs in our study
simultaneously showed significant effects on HEI. However,
the direction in which HEI was influenced differed between
QTLs, even if they shared the same tendencies with regard
to developmental traits. This is interesting when it comes to
separating general developmental effects from purely repro-
duction-promoting effects. In most cases, HEI increased as
the duration of SEL increased and vice versa. This is already
indicated by the positive correlation of both traits (r=0.45).
However, in the case of QTL-4H-1 and Vin-H2, the pro-
longed duration of SEL is accompanied by a reduction in
HEI. Since these QTLs retard development and simultane-
ously reduce HEI, we assume that their gene products may
generally hamper plant development.

Relevance of developmental subphases with regard
to TGW

We observed numerous QTLs that were significantly asso-
ciated with the developmental subphases SEL and RIP.
We observed a general influence on TGW for the duration
of grain-filling, i.e. RIP; as RIP increased, TGW increased
as well. However, we could not find any direct correlations
between SEL and TGW. There were hints that the inter-
play between RIP and SEL may be of interest. In general,
we observed a negative correlation between both traits with
r=-0.6. Consequently, a shortened SEL would cause an
extended RIP. This would then cause a longer period of
grain-filling and thus increase TGW. The time of physiologi-
cal maturity (MAT) is largely predetermined by environ-
mental factors, as discussed above. Therefore, increasing the
duration of RIP leads to earlier flowering, and very likely also
to a shorter period of SEL. Thus, if the duration of RIP is
extended to increase TGW, this will result in a reduction in
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SEL. This lowers the amount of biomass that would be able
to supply the developing grains with assimilates (Alqudah and
Schnurbusch, 2015). Normally this reduction would not have
serious consequences since plants produce excess vegetative
mass (Egli, 1998). However, if the effect is severe (e.g. in the
case of Ppd-HI in our study), the beneficial effect on TGW
may be compensated. We therefore presume that increasing
TGW is based on a trade-off between an extended RIP and a
shortened SEL. However, one has to keep in mind that yield
formation is based on a complex interplay between several
yield components. To scrutinize our findings, we therefore
suggest studying all yield components simultaneously, i.e.
tiller number, number of grains per spike and grain weight, as
well as total grain yield, in future HEB-25 field experiments.
In addition, spike photosynthesis may also require analysis,
since its role in grain-filling has recently been highlighted
(Sanchez-Bragado er al., 2014).

Beneficial wild germplasm present in HEB-25

One major advantage of using HEB-25 is the ability to
directly evaluate the value of wild barley alleles in a culti-
vated background. Thus, we were able to identify 10 QTLs
where the wild allele increased TGW by up to 6.6g com-
pared with the elite Barke allele. These wild QTL alleles
are promising candidates for improving future barley grain
weight once they are introduced into barley breeding pro-
grammes. However, the optimum strategy of adjusting plant
developmental subphases to increase grain weight may vary
depending on the ecogeographic region in which barley is
grown. As latitudes increase, alleles conferring a decelerated
plant development would be favourable for making use of
the longer and cooler season for grain-filling. For barley cul-
tivated in lower latitudes, early flowering would be favour-
able, for instance, to escape early season terminal drought
(Comadran et al., 2012). Therefore, it is currently not pos-
sible to make a general statement about the usefulness of
specific plant development QTL effects. However, as we see
that there is tremendous effect variation for every trait, we
conclude that HEB-25 harbours a multitude of beneficial
plant development QTL alleles for different ecogeographic
regions.

In this study, the most prominent example for putative advan-
tageous effects of wild alleles is the densol/sdw! QTL on chro-
mosome 3H. Barke carries the dwarfing denso allele, which was
introduced in barley breeding programmes during the ‘Green
Revolution’. It reduces plant height and improves resistance to
lodging. whereby also yield is increased (Jia ef al.. 2009). The
wild allele extends SEL and RIP, and increases TGW, com-
pared with the cultivated Barke allele. Unfortunately, these
beneficial effects are accompanied by the unfavourable effect of
increasing HEI. However, we observed lines (e.g. HEB_25_050)
in HEB-25 that carry the wild allele at the denso/sdw! locus and
nevertheless demonstrate high agronomic performance. This
is most likely due to introgression of additional wild alleles,
which appear to compensate for the effect of increasing HEI
(Supplementary Table S6). We thus encourage breeders to inte-
grate wild germplasm into their breeding programmes. This
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way, the elite barley gene pool can be replenished with new
favourable alleles to overcome future agricultural challenges.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. Frequency distributions of BLUEs for all inves-
tigated traits, plotted as histograms.

Figure S2. Venn diagrams indicating the number of shared
QTLs across traits.

Table S1. Results of BARLEYMAP alignments to detect
QTL candidate genes.

Table S2. Descriptive statistics of all investigated traits,
grouped by years.

Table S3. Heritabilities (7%) of all investigated traits, includ-
ing the comparison of days and GDD for developmental
traits.

Table S4. Tabular overview of all results gathered from
GWAS, along with family-specific effect estimates for
each SNP.

Table S5. Overview of all QTLs and their effects, with posi-
tion, estimated effect on the different traits, and plausible
candidate genes.

Table S6. Raw phenotype data and BLUESs of the investi-
gated traits across years and blocks, along with information
about the allelic state at the densolsdwl locus.
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Chapter 3

Estimating parent-specific QTL effects through cumulating linked
identity-by-state SNP effects in multiparental populations®

The models used in Chapter 1 and Chapter 2 mainly focused on the estimation of
main effects to detect QTL. However, since HEB-25 is a multi-parental population,
theoretically up to 26 different alleles could be present at each QTL. Therefore, the
aim of the following study was to compare different methods to estimate donor-
specific QTL allele effects. The arising question was whether this issue can be

addressed in GWAS without losing statistical power.

3 Maurer A, Sannemann W, Leon J, Pillen K (2016) Estimating parent-specific QTL effects through
cumulating linked identity-by-state SNP effects in multiparental populations. Heredity. doi:
10.1038/hdy.2016.121
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parent. Nevertheless, this SNP could have been inherited from another
parent sharing the same IBS allele state as the reference parent. In this
case they would show different IBD states, although they share the
same [BS allele,

Here, we derive IBD from IBS genotype data in a wild barley NAM
population. Subsequently, we test whether parent-specific IBD calling of
SNPs is superior over classical biallelic IBS calling in GWAS, For this, we
apply GWAS to four agronomic traits of increasing complexity (grain
colour, grain threshability, flowering time and thousand grain weight).
Subsequently, we develop a novel approach to model parent-specific
quantitative trait locus (QTL) effects in the wild barley NAM population
HEB-25 (Maurer et al., 2015) without the need of IBD information or
modelling haplotypes a priori. To test the method’s accuracy we perform
extensive simulation studies with varying trait complexities. We then
show that this approach is also suitable to model parent-specific QTL
effects in a barley MAGIC population (Sannemann et al., 2015).

MATERIALS AND METHODS
Plant material
The NAM population HEB-25 (Maurer et al, 2015), consisting of 1420
individual BC1S3 lines in 25 wild barley-derived families, was used in this
study. HEB-25 is the result of initial crosses between the spring barley cultivar
Barke (Hordewm vulgare ssp. vulgare) and 25 highly divergent exotic wild barley
accessions (H. wvulgare ssp. spontaneum and H. wvulgare ssp. agriocrithon),
hereafter referred to as donors. F1 plants of the initial crosses were backcrossed
with Barke. For detailed information about the population design, see Maurer
et al. (2015).

The barley MAGIC population consists of 533 doubled haploid lines, created
through intermating eight founder genotypes of barley breeding in Germany.
For more details about this population, see Sannemann et al. (2015).

Phenotype data

Four major agronomic traits were investigated in this study. Phenotype data
were collected in field trials in Halle, Germany (51°29'46.47'N; 11°59'41.81'E)
during the seasons 2011-2014. Briefly, the complete population was grown in
double rows following a randomised complete block design in two replications.
For details on the experimental setup, see Maurer et al. (2016). Flowering time
(heading (HEA)) and thousand grain weight (TGW) data were taken from
Maurer et al. (2016). Grain threshability (THR) was manually scored on a scale
from 1 (difficult to thresh) to 9 (easy to thresh), after threshing mature spikes
using a home-made rotating threshing drum. In addition, data on grain colour
(GrCol), manually scored as 1 (light) or 9 (dark) after visual assessment, were
scored. These traits were selected because we assumed that they are controlled
by few (GrCol, THR) or many (HEA, TGW) genes.

Genotype data

All 1420 BCIS3 lines and their corresponding parents were genotyped with the
barley Infinium iSelect 9K chip (Illumina Inc., San Diego, CA, USA) (Maurer
et al., 2015), consisting of 7864 SNP markers as reported in Comadran et al
(2012). SNP markers that did not meet the quality criteria (polymorphic in at
least one HEB family, < 10% failure rate, <12.5% heterozygous calls) were
removed from the data set. A total of 305 markers were removed as they
revealed the exact segregation among all HEB lines as a twin marker, indicating
that they were in complete linkage disequilibrium (LD). Only one of the twin
markers was kept, resulting in a total set of 5398 remaining markers. Out of
these markers, 4861 segregated in less than 25 families, and 448 thereof
segregated only in a single family.

Defining IBS and IBD matrices

Polymorphic SNP alleles originating from Barke or the wild barley donors of
the NAM population HEB-25 are easily distinguishable by state. Based on the
Barke reference genotype, the wild barley allele can be specified in each
segregating family. To set up the IBS matrix the state of the homozygous Barke
allele was coded as 0, whereas HEB lines that showed a homozygous wild barley
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genotype were assigned a value of 2. Consequently, heterozygous HEB lines
were assigned a value of 1. If a SNP was monomorphic in one HEB family but
polymorphic in a second family, lines of the first HEB family were assigned a
genotype value of 0, as their state is not different from the Barke allele. Gaps
resulting from missing genotypes (0.6% of all data points) were filled with the
mean of polymorphic flanking markers, based on the map of Maurer et al
(2015). This way a complete genotype data set (IBS) was retained that is
required to carry out the following multiple regression GWAS.

To convert the IBS matrix into an IBD matrix, we first replaced each marker
value that was monomorphic in a HEB family by an empty value. Then, the
resulting gaps (44.9% of all data points) were filled with the mean of the next
polymorphic flanking markers of this gap. This way we can distinguish whether
the allele is inherited from the recurrent parent Barke or a wild donor across
the whole NAM population. The newly assigned IBD value reflects the marker’s
probability of being inherited from the wild barley donor.

Both matrices are available as Supplementary Figure S1 and Additional File S1.

Models used for genome-wide association mapping
We used two different multiple linear regression models to conduct genome-
wide association mapping on best linear unbiased estimates of each HEB line
trait performance. The best linear unbiased estimates were obtained from a
linear mixed model with effects for genotype, environment and interaction of
genotype and environment.

Model 'IBS-M' corresponds to Model-A of Liu et al. (2011), where SNP
markers are included as main effects using the quantitative IBS genotype matrix
scores.

Model "IBS-M" : Y =+ ZSNPjs + ¢

This model showed the highest predictive power and detected the highest
number of QTLs when compared with other joint linkage association mapping
models (Wiirschum et al,, 2012). Model ‘IBD-M x F' models the SNP markers
as interaction effect with the HEB family. This model is based on the
quantitative IBD genotype matrix scores,

Model "IBD-M x F' : Y = g+ Z(SNPpp x Fam) + &

The analyses were carried out with SAS 9.4 Software (SAS Institute Inc.,
Cary, NC, USA) using Proc GLMSELECT. This procedure selects the best
model out of a set of predefined possible factors. In our case, all SNPs were
initially defined as possible factors. Significant SNPs were then determined by
stepwise forward-backward regression, SNPs were allowed to enter or leave the
maodel at each step until the Schwarz Bayesian criterion (Schwarz, 1978) could
not be reduced further. SNPs included in the final model are hereafter referred
to as significant SNPs. The total number of significant SNPs included in the
final model was recorded. A SNP eftect estimate can be interpreted as the allele
substitution effect (@) and represents the regression coefficient of the respective
SNP in the final model. Note that all significant SNP effect estimates are
modelled at the same time in the final model.

Cross-validation
A fivefold cross-validation was run 20 times to increase the robustness of the
results. For this, 100 subsets were extracted out of the total phenotypic data.
Each subset consisted of 80% randomly chosen HEB lines per family, This set
was used as the training set to define significant markers and to estimate their
effects, whereas the remaining 20% of lines were used as the validation set. The
phenotypes of the validation set lines were predicted based on marker effects
estimated in the training set. Prediction ability (R*val) was then calculated as
the squared Pearson product—-moment correlation between the observed and
predicted phenotypes of the validation set, whereas R’train represents the
maodel fit of the training set.

To define QTL regions, we calculated a SNP marker's detection rate as the
number of times, out of 100, it was included in the final model. Robust major
QTLs were defined if they were detected more than 20 times in IBD-M x F.

Cumulating SNPs to estimate parent-specific QTL effects
To estimate a parent-specific QTL effect from model 'IBS-M' we cumulated
significant SNP marker effects. First, a peak marker for each expected parent-

-36 -



ESTIMATING PARENT-SPECIFIC QTL EFFECTS THROUGH CUMULATING
LINKED IDENTITY-BY-STATE SNP EFFECTS IN MULTIPARENTAL POPULATIONS

specific QTL was selected from maodel '1BD-M x F' where the number of model
inclusions across all 100 cross-validation runs was maximised. Each peak
marker was placed central in a 26 ¢cM interval (that resembles the mean
introgression size in HEB-25) to look for significant SNPs in this region. Then,
‘IBS-M' SNP effect estimates of all markers within this interval were cumulated
for each of the 25 donors, following > | SNP(doror), * &, where i iterates
through all significant SNPs (n) in the respective QTL interval. SNP (donor);
represents the quantitative IBS donor genotype (that is, 0 vs 2) of the i-th
significant SNP and o; denotes the SNP effect estimate of this SNP obtained
from model ‘IBS-M', As SNPs show different IBS segregation patterns across
the donors of HEB families (Supplementary Table S1), a different cumulated
effect was obtained for each donor. This procedure was conducted within each
of the 100 cross-validation runs and the mean of them was taken as the final
parent-specific QTL effect estimate. For an illustration of the workflow and an
example see Supplementary Figure S2.

Finally, we determined cumulation precision that is the correlation of the
cumulated parent-specific effects with the effects obtained from model TBD-
M x F'. We chose this comparison to check our hypothesis of whether multiple
SNPs clustering in specific regions are able to represent parent-specific effects.

To test its general transferability to other multiparental populations, we
applied the same approach to a barley MAGIC population comprising 533
doubled haploid lines (Sannemann et al, 2015). We used the above described
model ‘IBS-M' to derive parent-specific QTL effects for flowering time from
4550 biallelic SNP markers. Peak markers were chosen based on minimum
P-values and a window of 20 c¢cM was used to cumulate QTL effects on
flowering time. We chose this window size, as here LD fell below the
population-specific critical value of 0.021 (Breseghello and Sorrells, 2006;
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Figure 1 Variation of number of significant SNPs (a) and variation of
prediction ability (R?val) (b) in the barley NAM population. Box plots
indicate the distribution across 100 cross-validation runs. Empty and filled
boxes represent models ‘IBS-M' and ‘IBD-MxF', respectively. Traits are
separated by columns.
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Sannemann et al, 2015). We then compared the estimated parent-specific QTL
effects with haplotype-based QTL estimates obtained from modelling parental
haplotypes with R/mpMap, as presented in Sannemann ef al (2015).

Simulation studies

We performed simulation studies to further check the suitability of the
investigated models and the ‘cumulation method’. For this purpose we used
our existing real genotype matrices and simulated different QTLs for an
artificial trait. We created scenarios that differed in the number of estimated
QTLs (1, 3 and 8) and the amount of noise added to the phenotypes to decrease
heritability. QTL positions were defined by picking single random SNPs from
the IBD genotype matrix throughout the genome. The SNP that was selected
for the one QTL scenario was also one of the three SNPs in the three QTL
scenario and these three QTLs were part of the eight SNP scenario. The SNP
genotypes of the eight simulated QTLs were removed from both genotype
matrices and not used in the further analyses. The trait mean was set to 50.
Parent-specific allele substitution () effects could take defined values (-5, - 3,
0, 1 and 2) and were randomly assigned to families (Supplementary Table 52).
To add noise to the phenotype data an error term was added that was defined
as a normally distributed value (p=0, 6=1), multiplied by 0 (no noise), 3
(medium noise: noise moderate compared with simulated effect sizes) or 6
(high noise: noise may be bigger than simulated effect sizes). The same training
and test sets as described above have been used to scan for significant
associations and to estimate prediction abilities. The obtained QTL positions
and parent-specific effect estimates were compared with the truly simulated
data and the rate of false positives (that is, significant SNPs that did not match
the respective QTL interval) and the power to detect QTL precisely (that is, at
least one significant marker in a 5 cM interval surrounding the QTL) have been
defined for each of the 100 cross-validation runs. In addition, different window
sizes (2—40 cM) to cumulate SNP effects in model [BS-M were tested to
determine the optimum window for SNP effects to be cumulated. For this
purpose, cumulation precision (that is, correlation of cumulated and true
parent-specific QTL effects) and the mean difference from the true effect (that
is, absolute difference of the cumulated effect and the true parent-specific QTL
effect, averaged across parents) have been determined.

RESULTS

QTL detection

In general, a considerably lower number of significant markers was
detected by ‘'IBD-M x F’ than by ‘IBS-M’, irrespective of the trait. For
instance, on average 80 and 6 significant markers for HEA were
detected by model ‘IBS-M' and model ‘IBD-MxF', respectively
(Figure 1a and Table 1). All significant markers detected by model
‘IBD-M x F* were also detected by model ‘[BS-M’, irrespective of the
trait (Figure 2).

Prediction ability

The prediction ability estimates (R?val) of IBS-M’ and ‘IBD-M x F
were on comparable levels for the traits HEA and THR. Model ‘IBD-
M xF' showed the highest predction abilites for the assumed mono-/
oligogenic traits GrCol and THR. However, for TGW, ‘IBS-M’
predicted phenotypes better than ‘IBD-MxF (Figure 1b and
Table 1). All comparisons of ‘TBS-M’ and ‘IBD-M x F’ were significant
at P<0.001 after applying one-way analysis of variance, except for
HEA (Supplementary Table S3).

Cumulating SNPs to estimate parent-specific QTL effects

As already mentioned above, model ‘IBS-M’ detected much more
significantly associated SNPs than model ‘IBD-M x F' (Figure la and
Table 1). In Figure 2, the contrast in detection rate of QTL regions is
visualised. The comparison indicates that model TBD-M x F' detects
major QTLs as single associations, whereas numerous significant
markers from model TBS-M' cluster in these major QTL regions.
Based on the observed differences, we wondered whether these SNP
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4
clusters from model ‘IBS-M' were able to reflect parent-specific effects ~ (GrCol, 1H-116.8 cM) and was positively correlated (r=0.69) with the
obtained from model ‘IBD-M x F'. Therefore, we cumulated SNP  above-mentioned cumulation precision (Table 2).
effect estimates (taken from model ‘IBS-M’) surrounding the 12 clear When applying the method to a barley MAGIC population to
QTL peaks obtained from model ‘IBD-M x F' within a window of  estimate parent-specific QTL effects for flowering time and comparing
26cM, representing the mean introgression size in HEB-25 them with the haplotype-specific QTL effects presented in Sannemann
(Supplementary Figure S3). et al. (2015), we observed a mean cumulation precision of 0.60,
To estimate the cumulation precision as a measure of appropriate-  ranging from 0.26 (QFT.MAGIC.HA-3H.a) to 0.98 (QFT.MAGIC.
ness of the method we correlated the averaged cumulated QTL effects HA-7H.a, Table 2).
with the average IBD-M X F effect estimate for each QTL. Cumulation
precision ranged from 0.26 (HEA, 3H-107.8cM) to 0.96 (GrCol, Simulation studies
1H-116.8 cM) with a mean of 0.65 (Table 2 and Figure 3). In addition, In a designed simulation study we modelled specific scenarios of
the mean number of significant SNPs per QTL interval was recorded.  possible trait architectures in our NAM population to check the
The mean number ranged from 2.6 (HEA, 3H-107.8cM) to 24.1 performance of model IBS-M and IBD-MXF and the general
suitability of the cumulation method. These scenarios differed for
Table 1 Comparison of mean R2 and mean number of significant the number of QTLs, the size of QTL effects and the background noise
SNPs across 100 cross-validation runs, calculated for two models and ~ ©f modelled phenotype values.
four traits Generally, both models detected simulated QTLs with high preci-
sion, that is, a significant marker was detected in a 5cM interval
Trait R?val Retrain Number of significant SNPs  surrounding the true QTL position (Table 3). However, with increas-
ing noise added to the phenotype values, QTL detection was
'IBS-M' 'IBD-MxF' 'IBS-M' ‘IBD-MxF'  'IBS-M' 'IBD-MxF' decreased. In particular, model IBD-M xF was not able to detect
any QTL if eight QTLs with high background noise were modelled. In
HEA 062 063 0:85 045 0 g contrast, model ‘IBS-M’ could detect all modelled QTL with high
Iﬁ: 8312; gz; g;; ggg ;2 ; precision even at higher background noise. The aforementioned
’ ’ ’ ’ clustering of significant SNPs surrounding the QTLs in model IBS-
GrCol  0.71 0.85 0.93 0.95 80 5 i . y .
M was also observed in the simulations (Supplementary Figure S4).
Mean 0.66 0.65 0.86 0.74 72 4 i T
The rate of false positive associations that were not part of the
Abbreviations: GrCol, grain colour; HEA, heading; IBD, identical by descent; IBS, identical by : s e Y :
state; Rtrain, model fit of the training set; R2val, prediction ability; SNP, single-nucleotide respective QTL interval was low for model IBD-Mx E, ranging from
polymorphism; TGW, thousand grain weight; THR, threshability. 0.00 to 0.31, whereas for model IBS-M, rates from 0.46 to 0.83 were
Traits studied: HEA, TGW, THR and GrCo; Models applied: only marker main effects based on . e s . .
IBS ('IBS-M’) and only marker-by-family effects based on IBD genotypes (‘IBD-M x F'). The last obtained (Tab]e 3). Prediction abilities exceeded 0.5 in all scenarios
row indicates the mean across traits. when no noise was added to the phenotypes and decreased with
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Figure 2 Comparison of detection rates of significant markers across the genome between models ‘IBS-M' and ‘IBD-MxF' in the barley NAM population.
Each of the four rows represents a different trait. The height of the peaks indicates the number of significant effects detected per SNP marker out of 100
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Table 2 Cumulation precision (r) of major QTLs located in barley NAM and MAGIC populations

Populatior® Trait QrL Cumulation precision (rf* No. of cumulated SNPs® cw
NAM HEA 2H-23 cM 0.40 4.8 0.25
HEA 2H-57 cM 0.60 3.2 0.40
HEA 3H-107.8 cM 0.26 26 0.45
HEA 4H-3.5cM 0.68 2.7 0.71
HEA 4H-113.4 cM 0.69 3.9 1.41
HEA 5H-125.5 cM 0.90 7.7 0.66
HEA 7H-34.3 cM 0.70 8.1 0.87
TGW 4H-14.9 cM 0.36 28 0.75
TGW 6H-49.1 cM 0.58 3.6 0.61
THR 1H-97.9cM 0.93 10.8 0.32
THR 2H-69.3 cM 0.75 h3 0.43
GrCol 1H-116.8 cM 0.96 24.1 2.85
Correlation with cumulation precision® 0.69 0.44
MAGIC FT. QFT.MAGIC.HA-2H.a 0.81 2 6.35
FT QFT.MAGIC.HA-3H a 0.26 1 6.14
FT QFT.MAGIC.HA-3H.b 0.51 2 6.51
FT QFT.MAGIC.HA-4H.a 0.37 3 311
FT QFT.MAGIC.HA-5H.a 0.42 2 2.99
FT QFT.MAGIC.HA-5H.b 0.89 1 6.82
FT QFT.MAGIC.HA-7H.a 0.98 4 6.38
Correlation with cumulation precision 0.32 0.63

Abbreviations: CV, coefficient of variation; FT, flowering time; GrCol, grain colour; HEA, heading; MAGIC, multiparent advanced generation inter-cross; NAM, nested association mapping; QTL,
quantitative trait locus; SNP, single-nucleotide polymorphism; TGW, thousand grain weight; THR, threshability.

INAM: barley population HEB-25 (Maurer et al., 2015); MAGIC of barley (Sannemann et a/., 2015).

“Correlation coefficient of QTL effect, obtained from ‘IBD-Mx F' (NAM) and parental allelic means, obtained from the haplotype approach (MAGIC), respectively, versus QTL effect, estimated by

cumulating nearby SNP effects from ‘IBS-M'. Means: 0.67 (NAM); 0.60 (MAGIC).

ENumber of significant SNPs that were cumulated in an interval surrounding the QTL (NAM: 26 cM, MAGIC: 20 cM). For NAM, the mean across 100 cross-validation runs is shown.
9CV of all parent-specific QTL effects obtained from model 'IBD-Mx F’ (NAM) and the haplotype approach {MAGIC), respectively.
®Pearson's correlation coefficient (/) between cumulation precision for NAM and MAGIC population, respectively.

increasing number of simulated QTLs and noise (Table 3). Prediction
abilities of model IBD-M x F were higher than those of IBS-M, except
when IBD-M x F failed to detect any QTL.

Applying the cumulation method to estimate parent-specific
effects from IBS-M revealed high accordance with the truly estimated
effects. Cumulation precision increased with increasing window size of
included SNP effects and reached a plateau at ~ 22 ¢cM (Supplementary
Figure S5). At this position a cumulation precision of 0.94 was
obtained if one QTL was simulated and no noise was added. In case of
eight simulated QTLs with high noise, a cumulation precision of 0.54
was obtained. The mean difference of cumulated effects and the truly
simulated effects decreased with increasing window size. At a window
size of 26 ¢cM, a mean difference of 0.6 was obtained if one QTL was
simulated and no noise was added.

DISCUSSION

QTL detection

In general, both models reliably detected simulated QTLs with high
precision (Table 3 and Supplementary Figure S4). Expectedly, with
increasing number of simulated QTLs and increasing noise, QTL
detection power was decreased, especially when model IBD-M x F was
used. The number of significant markers was higher for ‘TBS-M’
(Table 1, 72 on average in the real data set) than for TBD-M x F’ (4).
One reason to explain the higher number of significant SNPs in ‘TBS-
M’ is clustering of SNPs in major QTL regions. However, if we look at
Figure 2 and Figure 54, we see that additional genomic regions of
significant SNPs are present in ‘TBS-M'. On one side, a substantial part
of them might be false positive associations, a fact that has also been
pointed out in our simulation studies. According to the results
obtained therein, up to 83% of associated SNPs were false positives.

This is a known issue if the number of available markers exceeds the
number of phenotypes to explain, leading to overfitting of the model.
However, this problem in defining true associations can be overcome
by cross-validation of the results and counting the number of
significances across several runs (Valdar er al, 2009; Wirschum
et al, 2012). If we look at the detection rates across 100 runs, we
clearly observe the highest peaks at the positions of true QTLs, both in
the real data set (Figure 2) and the simulation studies (Supplementary
Figure 54). Besides false positive associations, however, some regions
in the real data set might correspond to known QTLs as, for example,
the known flowering time gene HvELF3 at 128 ¢cM on 1H (Figure 2).
For this locus the weakest effect out of eight major HEA QTLs was
observed in Maurer et al. (2015). Most likely, TBD-M x F' is not able
to detect it as smaller subgroups are used for the scan of marker trait
associations when only interaction effects are modelled. Similar
observations were made by Ogut er al. (2015) in the maize NAM
population. The authors observed that for small effect QTL, a joint-
family model was able to detect them more reliably than a single-
family model. Therefore, model ‘IBD-M x F’ seems to be able to detect
predominantly QTLs with strong effects. This makes it suitable to
separate useful and valuable major QTLs, explaining a high amount of
variance, from minor low-impact QTLs. This finding might be of
particular interest for plant breeders.

Prediction abilities

Comparing prediction abilities of the different models enabled us to
gain insight into the reliability of estimated QTL effects. We used QTL
effects of the training population, which consisted of 80% of randomly
chosen lines per family, to predict the phenotypes of the remaining
20% and repeated this procedure 100 times to make it more robust.

Heredity

-39.-



ESTIMATING PARENT-SPECIFIC QTL EFFECTS THROUGH CUMULATING
LINKED IDENTITY-BY-STATE SNP EFFECTS IN MULTIPARENTAL POPULATIONS

Estimating parent-specific QTL effects in multiparental populations

A Maurer ef al
6
HEA-2H-23cM HEA-2H-57¢M HEA-3H-107.8cM HEA-4H-3.5¢cM HEA-4H-113.4cM HEA-5H-125.5cM
16 -
5 0- =040 r=0.60 r=0.26 r=0.68 r=069 r=0.90
v s5- LY e
@ o aglrfes ,ﬁ‘w
E s- o - il
.g a0 @
B 15 -
& HEA-7H-34.3cM TGW-4H-14.9cM TGW-6H-49.1cM THR-1H-97.9cM THR-2H-69.3cM GrCol-1H-116.8cM
@
15 -
B 10 — r=0.70 r=0.36 r=058 r=093 r=0.75 r=0.96
2
% i Jg-%‘*f" /
E o0- LI o r
8 5 g s /
10
15
N B T e o G R T T M e o ) B LT v TR W O R ) B Do o
4510 -5 0 6 10 15 1610 -6 0 5 10 15 1510 -5 0 5 10 15 4510 6 0 & 10 15 -15-10 5 0 6 10 16 156 10 5 0 5 10 16
IBD 'MxF' effect
Figure 3 Scatter plots of the cumulated SNP effects from model ‘IBS-M' against the M x F effects obtained from model ‘IBD-Mx F" for 12 major QTLs in the
barley NAM population. Each dot represents the estimated QTL effect of one exotic HEB donor. A linear regression line (in orange) and Pearson’s correlation
coefficients (), indicating the cumulation precision, are given for each QTL. Axis values represent the absolute difference between exotic and cultivated (that
is, Barke) QTL alleles.
Table 3 Quality parameters of IBS-M and IBD-M xF in different observation is that wild donor-specific QTL effects for HEA are
simulation scenarios predominantly pointing to the same direction compared with the elite
‘ ] ] — allele of the reference parent Barke (Supplementary Table S4), as a
No noise  Medium noise  High noise .\ qequence of domestication (Cockram et al., 2011). Tn particular, it
IBS-M  QTL detection power® 1QTL  1.00 0.48 0.01 was shown that in the HEB-25 population at the Ppd-H1 gene, which
3QTls 0.99 0.78 0.37 revealed a major impact on HEA by explaining 36% of genotypic
8QTls 0.91 0.74 0.45 variance, 24 out of 25 wild donors carry alleles with almost identical
Mean 0.94 0.72 0.39 effects (Maurer et al., 2015). Therefore, modelling M x F effects might
False positives® 1QrL 063 0.75 0.83 not be able to substantially improve the model fit. For TGW, we
3QTLs 054 0.57 0.73 observed a clearly reduced R’val for 'IBD-M x F". This might illustrate
8QTls 046 0.48 0.55  that with increasing trait complexity and, thus, decreasing heritability,
- » Mean 0.55 0.60 0.70 the modelling of parent-specific marker effects impedes detection of
Prediction ability® ; gi:: g:i g;: gg: relevant QTLs and diminishes reliable effect estimation. This is
s ’ ’ confirmed by our simulation study where QTL detection power and
8QTLs 0.55 0.28 0.08 i s . . ; : 5 i
- el - Pt prediction ability decreased in scenarios with higher trait complexity,
IBD-MxF QTL detection power 1QTL  1.00 1.00 0.07 represented.by more snmu.latcid Q"i.‘Ls :jmd higher amount of noise. In
3Qrls 100 1.00 0.34 contrast, oligo- or monogenic traits like THR and GrCol benefitted
8QTls  1.00 0.96 0.00 from modelling of parent-specific marker effects. This was most
Mean 1.00 0.98 0.09 prominent for the trait GrCol, a trait that is only segregating in three
False positives 1QarL 0.31 0.00 0.00 families (F-06, F-16, F-24) and no more than 46 lines in total are
3QTLs  0.22 0.00 0.00 showing the dark-grained phenotype. Under this circumstance, model
8QTLs  0.07 0.00 nia ‘IBS-M’ was able to reach a prediction ability of 0.71, whereas model
Mean  0.20 0.00 0.00 ‘IBD-M x F' reached a prediction ability of 0.85. This outlines the
Prediction ability rarL 097 0.35 0.00  potential to increase prediction ability when parent-specific effects are
Tl 0.6 05, 013 modelled. Interestingly, although ‘IBS-M’ only assumes marker main
;QTLS 8:2 ggz 882 effects and no causative SNP for grain colour is available in our
ean : : : marker set, a remarkable prediction ability of 0.71 was observed. This
Abbreviations: IBD-M xF, identical-by-descent marker-by-family effects; IBS-M, identical-by- led to the hyputhesis that multiple IBS markers can account for
state marker main effects; QTL, quantitative trait locus. .
All values are averaged across 100 simulated cross-validation runs. parent—speaﬁc effects.
AQTL detection power is defined as the model's ability to precisely detect the simulated QTL
within a 5 ¢cM window surrounding the true position. § .
bFalse positive associations are all detected significant associations that were outside the Cumulation method enables realistic modellmg of parent-spedﬁc
interval of cumulated single-nucleotide polymorphisms (SNPs; 26 ¢M) surrounding a QTL Nt
“Prediction ability represents the correlation coefficient of predicted phenotypes (based on SNP effects
effects obtained in the training set) and observed phenotypes in the test set. To check whether linked SNP markers are suited to reflect parent-
specific QTL effects, we cumulated SNP effects surrounding the peak
It appears that models ‘TBS-M’ and ‘IBD-M x F' possess a similar  marker of each QTL. Thereby, we focussed on strong QTLs that were
power to predict phenotypes of HEA and THR, however there were  detected by ‘IBD-Mx F and compared the estimated M x F effects
substantial differences for TGW and GrCol (Table 1). Prediction with the parent-specific effects derived by cumulation of ‘IBS-M’
abilities of polygenic traits like HEA and TGW showed no increase ifa  estimates. We used a window of 26 cM, with the peak marker in its
parent-specific effect was modelled, Most likely, the reason for this  centre, to scan for significant [BS markers. This window size turned
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out to be reasonable to capture enough SNPs to maximise the
prediction ability of parent-specific QTL effects in simulation studies
(Supplementary Figure S5). This window size also reflects the mean
introgression size in the HEB-25 population. Thus, markers in this
window are often inherited together. The idea behind cumulating their
effects is that they are estimated at the same time in the final model
and each of the corresponding IBS markers segregates in different
families. Therefore, if a marker is not segregating in a particular family
(that is, genotype score=0=Barke), its effect does not contribute to
the cumulated effect (that is, 0 x SNP effect=0), whereas others do
(that is, 2 x SNP effect # 0). Consequently, by combining all markers
surrounding a QTL, a specific effect for each parent is estimable, based
on the combination of differently segregating significant SNPs. This
way, we estimated the parent-specific effects for 12 major QTLs.

Giraud et al. (2014) followed a similar approach when comparing
QTL effects derived from models assuming ancestral haplotypes with
QTL effects gathered from cumulating closely linked single-marker
effects. In their case the cumulated effects of two markers already
reflected the effect of the respective haplotypes at two different QTLs
with high precision.

To estimate how reliable the cumulation of ‘IBS-M'-derived SNP
effects is able to predict the parent-specific QTL effect, we correlated
the cumulated estimates with the M x F effect obtained from model
‘IBD-M x F'. We chose this comparison as these M x F effect estimates
are very robust and presumably give the best insight into the true
parent effect. We observed high positive correlation coefficients for
most of the QTLs, ranging from 0.26 (HEA, 3H-107.8 cM) to 0.96
(GrCol, 1H-116.8 cM) with a mean of 0.65 (Figure 3). This shows that
cumulating SNP main effects within a QTL region is suitable to
estimate a parent-specific effect. Especially for oligo- or monogenic
traits (THR, GrCol), we observed extremely high cumulation preci-
sion, indicating that the method is of special appropriateness if
background noise from other QTLs is low.

The presence of parent-specific QTL effects in HEB-25 was first
indicated in Maurer et al (2015), where resequencing of Ppd-HI
clearly revealed the presence of different haplotypes and consequential
parent-specific effects. This resulted in one specific haplotype,
originating from HEB family F-24, that showed no difference in
HEA as compared with the Barke haplotype. In our study, this could
also be observed when looking at the 'IBD-M x F’ estimate of this QTL
for F-24. However, the method of cumulating SNP effect estimates
from model TBS-M’ failed to detect this fact. We raised the question of
why in this obvious case the method seems to fail. One reason could
be that in this QTL region there are no F-24-specific SNPs available
that could account for the allelic effect. However, in close proximity to
the Ppd-HI gene (BK_12-BK_16, 23.0 ¢cM), there are three tightly
linked SNPs available that solely segregate in F-24 (BOPA1_5880_2547
at 23.2¢M, SCRI_RS_182270 at 24.9cM and SCRI_RS_115892 at
25.4 cM). When checking their linkage in more detail we recognised
that there is recombination between them and Ppd-H1 in seven cases,
whereas only in four cases they are inherited together (Additional File
S1). Estimating a compensating effect for one of these SNPs that could
fine-tune the Ppd-H1 effect will therefore not work. Thus, the GWAS
procedure is not able to take any of the F-24-specific SNPs into
account to optimise the model. We ran ‘IBS-M’ again on the whole
data set and excluded those seven lines that showed recombination. As
expected, BOPA1_5880_2547 now became significant and, conse-
quently, the cumulation method allowed obtaining a more realistic
parent-specific effect estimate (Supplementary Table S5).

In addition, for other flowering QTLs, which were described in
HEB-25, we could corroborate the presence of parent-specific effects.

Estimating parent-specific QTL effects in multiparental populations
A Maurer et al

For instance, the three vernalisation genes Vrn-HI, Vin-H2 and Vin-
H3 were supposed to show a parent-specific effect pattern (Maurer
et al., 2015, 2016). In this study, we were also able to estimate the
parent-specific effects of these QTLs by cumulating SNP effects. We
could show that there is plenty of diversification for these vernalisation
loci available, depending on the origin of the respective donor. For
instance, we observed extremely different parent-specific HEA effects
of +8.5 days in F-09 and +1.3 days in family F-19 at Vrn-HI locus
(Supplementary Table S4).

As we do not know the true QTL effects in our real data set, the
correlation of the cumulated effects with the IBD-M x F effects might
not really represent an adequate measure of appropriateness of
the method. Therefore, we also applied the cumulation method to
the simulated data set, where we determined exact parent-specific
effects. As a result we obtained a high cumulation precision of 0.94 for
the case where one QTL was simulated and no noise was modelled
(Supplementary Figure S5). Even for eight simulated QTLs with high
noise, a cumulation precision of 0.54 was obtained. At the same time,
the mean difference of the cumulated effect and the truly simulated
parent-specific effects was low (0.6), indicating the appropriateness of
the method. This is in particular remarkable as the simulated parent-
specific QTL effects were randomly assigned to donors, that is, closely
related donors could have opposing effects and vice versa.

Applying the cumulation method to a barley MAGIC population

Besides the general suitability of the cumulation method in a NAM
population, we checked whether this also works for MAGIC popula-
tions. Therefore, we took raw data on flowering time from an eight-
way barley MAGIC population (Sannemann et al., 2015) and applied
model 'IBS-M’. Compared with both GWAS approaches presented in
Sannemann et al. (2015), model 'IBS-M’' detected more QTLs, while
keeping all QTLs detected before (Supplementary Table S6). Further-
more, total R? increased to 74.8%. When using the effect estimates of
all significant SNPs to predict the phenotypes of the eight parents,
we obtained high accordance (r=10.85, Figure 4 and Supplementary
Table S6), indicating the model’s general suitability. Then, we applied
the cumulation method and compared our estimates with the
estimates obtained from the haplotype approach, published in
Sannemann et al. (2015), that is based on founder haplotype
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Figure 4 Correlation of observed and predicted flowering time of the eight
MAGIC founders. Observed phenotypes are presented in Sannemann et al.
(2015), and predicted phenotypes are based on the effect estimates of all
significant SNPs obtained in model ‘IBS-M’. Founder lines are abbreviated:
AB, Ack. Bavaria; AD, Ack. Danubia; B, Barke; C, Criewener 403; HF, Heils
Franken; HH, Heines Hanna; P/, Pflugs Intensiv; R, Ragusa.
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probabilities calculated with R/mpMap (Huang and George, 2011). On
average, we observed a correlation of 0.60 between our estimates and
those obtained from the haplotype approach (Table 2). For QFT.
MAGIC.HA-7H.a, which explains 28.5% of the variance for heading
in the MAGIC population, we reached a correlation of 0.98. By using
our method it was also possible to estimate a QTL effect for the
MAGIC parent ‘Pflugs Intensiv'/'Criewener 403’, where the haplotype
approach used in Sannemann et al (2015) failed. The given results
demonstrate the potential of applying our cumulation method to
MAGIC populations to estimate parent-specific QTL effects without
the need of haplotype or IBD information.

Prerequisites and characteristics of the cumulation method

The method's success depends on two major prerequisites. First, map
positions of all investigated markers must be known. The more
accurate the map is, the higher is the chance to differentiate effects
reliably. Second, there must be LD present in the population. The fact
that SNPs are inherited together because of genetic linkage enables
merging these SNP effects to define a parent-specific effect. LD in a
multiparental population can be seen as a function of the LD that is
present among the parents and the specific population design. In the
NAM population HEB-25, there is low LD present among the parents
(Maurer et al., 2015) and F1 plants were backcrossed to the recurrent
parent Barke. Because of reduced recombination after backcrossing,
the introgressed wild barley segments are relatively large, allowing
many SNPs to be included in a QTL-surrounding window. However,
with an increasing number of differentially segregating SNPs we expect
that a smaller window may be sufficient for cumulation of QTL effects.

Using model TBS-M' and deriving the parent-specific effect estimate
out of it instead of modelling IBD or haplotype effects has several
benefits that should be highlighted. (1) More QTLs are detectable
compared with a model containing only M x F effects modelled as
IBD. This is easily visible in Figure 2 and Supplementary Figure 54,
where we see multiple additional SNP peaks for model ‘IBS-M’
compared with model 'IBD-M x F'. This is most likely because of the
fact that in ‘IBD-M x F* smaller subgroups are used for the scan of
marker trait associations that impede detection of minor QTLs. (2)
The grouping of SNP effects is not restricted to 25 families as in
models assuming a M x F effect in a NAM population. Because of the
different segregation patterns of SNPs, much more information can be
gathered by specific combinations of these SNPs. This results in the
definition of phenotypic clusters rather than parent-specific haplo-
types. Especially, if IBD cannot clearly be derived from pedigree
information, as it is for instance the case in MAGIC populations, this
method represents an excellent way to model allelic effects originating
from different parents independent of IBD information. (3) Haplo-
types are not defined a priori based on SNP profiles of parental lines
like, for example, in clusthaplo (Leroux et al, 2014) or R/mpMap
(Huang and George, 2011). Instead, our method represents a more
functional approach that is not solely based on ancestral relationships.
This enables to track down beneficial genetic variation in a more
practical manner.

Besides the above-mentioned beneficial aspects, there are also some
limitations that one has to take into account when applying the
cumulation method. First, the method is not able to separate effects
from tightly linked QTLs, at least not within the selected genetic
interval of SNPs being cumulated. Another fact is that the method's
success seems to decrease with increasing trait complexity. Strong
QTLs with ample allelic variation are still reliably represented by the
cumulation method, but one has to be cautious in interpreting parent-
specific effects defined for minor QTLs. Furthermore, the effects
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estimated by the cumulation method are in general less extreme and
show lower variation across parents than IBD-based methods do.
Another critical point is the high number of false positive associations
detected by the model. Probably, they cause the low prediction ability
of IBS-M when background noise increased. However, the parent-
specific effects obtained via the cumulation method nevertheless
turned out to be clearly correlated to the true QTL effects in the
simulations. Therefore, we strongly recommend running several cross-
validation runs to identify the most reliable QTL positions before
cumulation.

To sum up, the comparison of a family-based method (IBD-M x F)
with a method assuming general SNP effects (IBS-M) revealed a slight
advantage in prediction ability of IBD-MxF, especially for highly
heritable traits. However, IBS-M turned out to be superior for traits
with lower heritabilities. The idea of cumulating genetically linked
SNP effects from model TBS-M' provided a novel approach to
reconstruct parent-specific QTL effects. This method proved to be
applicable to NAM and MAGIC types of multiparental populations
even if no IBD information is available. At present, there seems to be
the tendency that both haplotype-based linkage models and single-
marker association models should be used in a complementary way
for QTL detection in multiparental populations (Lorenz et al, 2010;
Kump et al, 2011; Tian et al., 2011; Bardol et al, 2013). Our method
represents an intermediate path, combining a high QTL detection rate
with the possibility to predict parental QTL effects under a reduced
computational load. In future, we assume that the cumulation method
will benefit from a massive increase in available SNP genotype data
that can enhance the precision of this method, for instance by utilising
SNP information from exome capture sequencing (Mascher et al.,
2013) or increased sizes of SNP chips.

Data archiving

All relevant data are available as supplementary files at Heredity's
website or are taken from published articles (Maurer et al, 2015;
Sannemann et al, 2015). Additional files containing genotype and
phenotype data used as input as well as the obtained GWAS results are
available from the Dryad Digital Repository http://dx.doi.org/10.5061/
dryad.36rml.
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General discussion

Suitability of HEB-25 for GWAS

HEB-25 is a novel population that has never been used to conduct GWAS before.
Therefore, there was the need to identify methods that are able to reliably detect
MTAs and explain the genetic architecture of traits. Previous work already
describes the advantages of NAM populations in general - i. e. it combines the power
of linkage mapping with the resolution of association mapping (Yu et al. 2008). For
this kind of population joint linkage association mapping (JLAM) is an appropriate
choice. Wiirschum et al. (2012) compared several different models for the detection
of QTL in a joint set of bi-parental sugar beet breeding populations, a set-up that is
comparable to a NAM population. The authors concluded that Model-B, a multiple
linear regression model containing cofactors and a population effect to account for
genetic background, effectively controlled population structure and possessed a
high predictive power. Therefore, this model was initially chosen for application in
HEB-25 (Maurer et al. 2015; Maurer et al. 2016a). Although in preliminary work a
linear mixed model was applied on a subset of HEB-25 (so-called HEB-5,
Schnaithmann et al. (2014)), Model-B was used as it clearly outperformed the
former model with regard to QTL detection power and computational load (data
not shown). The increased QTL detection power might be attributed to the fact that
Model-B contains cofactors to effectively account for genetic background in a
multiple regression framework. Cofactors are other markers that explain part of the
variance of a trait and may for instance be identified via forward-backward
selection in multiple regression models. They are included in the model when
testing a marker’s association. In classical CIM this basic concept is also
implemented and superior to classical interval mapping where no cofactors are
included (Zeng 1994). According to Vilhjalmsson and Nordborg (2013) controlling
for genetic background is also a major issue in GWAS and Wiirschum and Kraft
(2015) showed that incorporating cofactors in a multi-locus model combined
sufficient control of the false-positive rate with high QTL detection and predictive

power.

As a proof of concept the trait flowering time has been investigated (Maurer et al.

2015). Flowering time is a highly heritable and well-investigated trait across
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species (Jung and Miiller 2009; Hill and Li 2016) and a lot could be learned from the
model species Arabidopsis (Bliimel et al. 2015). In barley the main genes involved
in the regulation of flowering time have been identified throughout the last decades.
Briefly, Vrn-H1 and Vrn-HZ2 are the main determinants of vernalization requirement
and Pph-H1 and Ppd-HZ2 control responsiveness to day length. Flowering is
promoted through the floral integrator gene Vrn-H3/HvFT1. In Maurer et al. (2015)
eight major QTL that explained 64% of the cross-validated proportion of explained
genotypic variance were reliably identified. Seven out of these QTL corresponded
to known genes, namely HVELF3 (Faure et al. 2012; Zakhrabekova et al. 2012), Ppd-
H1 (Turner et al. 2005), HvCEN (Comadran et al. 2012), HvGAZ0ox: (Jia et al. 2015),
Vrn-H2 (Yan et al. 2004), Vrn-H1 (Yan et al. 2003) and Vrn-H3/HvFT1 (Yan et al.
2006). Gene-specific SNP markers for Ppd-H1 (BK_12, BK_13, BK_14, BK_15, BK_16,
BOPA2_12_30871, BOPA2_12_30872) and Vrn-H3/HvFT1 (BOPA2_12_30893,
BOPA2_12_30894, BOPA2_12_30895, BK_05) were available on the Infinium iSelect
9K chip (Illumina Inc., San Diego, CA, USA) used for genotyping. Notably, exactly
those SNPs were identified as the peak markers of the corresponding QTL regions.
Besides the known genes one further QTL on chromosome 4H could be reliably
detected, for which no candidate gene has been described yet. Altogether, this
outlines the high potential of conducting GWAS in HEB-25 for analyzing the genetic

architecture of important agronomic traits.

Evaluation of allelic diversity and usefulness of wild alleles

Not only the question of which QTL regulate a specific trait, but also the question
whether there is useful allelic variation available to enhance modern barley
cultivars is important. With regard to phenology there is a growing demand for
adaptation to environmental threats like drought and heat periods caused by
climate change (Rotter et al. 2015). This way the optimal timing of flowering
directly affects grain yield as it needs to occur during specific seasons to avoid
abiotic and biotic stresses (Hill and Li 2016). Counteracting the trend that almost
all modern barley cultivars flower in a relatively narrow space of time, replenishing
the elite barley genepool with favorable exotic alleles may be a promising way to

meet future food and feed demands.
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Within the framework of GWAS also QTL effects were estimated to obtain a measure
for the potential value of a wild allele in regard to fine-tuning flowering time of elite
material. It turned out that flowering time is severely accelerated by approximately
10 days on average if a wild Ppd-H1 allele is present. In contrast, at the major
vernalization loci Vrn-H1 and Vrn-HZ2 on average a delayed flowering time of 2-4
days could be observed. This is generally attributed to the fact that the reference
parent Barke as a spring barley is not responsive to day length and needs no
vernalization, whereas wild barley can predominately be seen as a winter barley
(Cockram et al. 2011). However, one cannot assume that all 25 wild donors carry
the same allele exerting the same effect at a given locus. This was investigated in
detail in a case study, where Ppd-H1 was re-sequenced to determine haplotypes for
the donors of HEB-25. Calculating the haplotype effects for this gene revealed
strong phenotypic differences between the haplotype of the wild barley accession
HID_380 (H-45) and the remaining wild barley haplotypes (Maurer et al. 2015).
Interestingly, this accession is classified as Hordeum vulgare ssp. agriocrithon
(Aberg), originating from Tibet, China, which underlines its potentially different
domestication history (Dai etal. 2012; Ren et al. 2013). Since re-sequencing of every
QTL allele was no feasible option another method to estimate donor-specific QTL
allele effects should be defined. This was one aim of Maurer et al. (2016b). With the
models introduced therein it was possible to estimate donor-specific QTL effects in
a computationally effective manner. This way, for most flowering time QTL allelic
differences could be shown. Especially at the vernalization loci Vrn-H1 and Vrn-HZ,
but also at the Vrn-H3/HVFT1 locus there is much allelic variation available with

some alleles even showing opposing effects.

It is difficult to give general suggestions about the usefulness of wild alleles to fine-
tune flowering time in future plant breeding. The optimal timing of flowering varies
largely, depending on the environment. While early flowering varieties are favored
in Southern Europe and Australia to escape drought (Comadran et al. 2012; Hill and
Li 2016), in Northern Europe late flowering cultivars are preferred to make use of
the prolonged vegetation period (Cockram et al. 2007). Another fact that further
complicates the design of an optimal flowering cultivar is that QTL x environment
interaction has to be considered. Ppd-H1 for instance shows a completely different

effect on flowering time when lines carrying the wild allele were grown close to the
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equator, where an average wild allele effect of approximately +2 days on flowering

time compared to the Barke allele was observed (Saade et al. 2016).

Since the field experiments that built the base for the present thesis had all been
conducted at the same location over several years conclusions about a local
ideotype can be drawn. Since not only flowering time itself but also other growth
stages play a role to increase yield in cereals (Alqudah and Schnurbusch 2014;
Semenov et al. 2014) further key parameters of plant development (shooting and
maturity) as well as their impact on plant height and thousand grain weight have

been investigated in HEB-25 in Maurer et al. (2016a).

It turned out that the eight previously detected major flowering time QTL also have
major impacts on shooting and maturity. Most of them also showed effects on plant
height and thousand grain weight, suggesting that plant development can have a
direct impact on them. However, there were some peculiarities of specific QTL that
need to be highlighted. First, not all QTL exerted the same effect on all three
developmental stages. Consequently, if the effect on one stage is stronger than on
the following stage also the time span between them is affected. Generally, for most
QTL the effect on flowering time was more pronounced than on shooting, indicating
that the effect somehow accumulates over time. This was true for all major QTL
except denso/sdw1. Here, the effect on shooting was stronger than on flowering,
which in turn caused an extended shoot elongation period. This lead to an increased
plant height, which is a known feature of the wild allele at this locus and the reason
why short-straw alleles at this locus have been established in breeding to increase
yields due to higher lodging resistance (Jia et al. 2009). However, in case of the
newly defined major QTL for flowering time, QTL-4H-1 (Maurer et al. 2015), an
extended shoot elongation period resulted in reduced plant height. The next
outcome of Maurer et al. (2016a) was that flowering time is negatively correlated
with maturity; i. e. early flowering causes an extended period of ripening while late
flowering results in a shortened ripening period. Since grain filling occurs during
this period its duration can directly affect thousand grain weight (Distelfeld et al.
2014). The negative correlation of flowering time and maturity might be explained
by an environmental stress that triggers the plant to finish its life cycle earlier than
the genetic constitution of the plant would allow. When looking at the average

temperature and precipitation patterns across the field trial years (2011-2014) a
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period of drought and heat occurred approximately between 80 and 90 days after
sowing (Figure 1). It might be that this period caused the plants to prematurely

initiate finishing their life cycle due to external factors.
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Figure 1) Average temperature and precipitation across 2011-2014 in Halle.
Shown are the mean daily temperature (red) and precipitation (blue) averaged across
2011-2014. The values are presented as moving mean of eight days. Colored boxes indicate

the population mean of HEB-25 for shooting, flowering and maturity.

Gooding et al. (2003) came to the conclusion that drought and increased
temperature before the end of grain filling shortened the grain filling period and,
thus, reduced grain yield in wheat. In barley, drought, particularly when combined
with high temperature, caused large reductions in grain weight under field
conditions (Savin and Nicolas 1996). Preponing flowering in barley might therefore
be a suitable strategy to increase yield in drought-prone regions like Halle.
Introgressing wild alleles can be a way to achieve this adaptation in future barley
breeding. However, one has to take into account that earlier flowering might also
influence other yield components like tillering and spikelet formation (Sreenivasulu
and Schnurbusch 2012) and thereby alter yield structure of plants. In this context
Alqudah and Schnurbusch (2014) revealed that awn primordium to tipping is the
most decisive developmental phase for spikelet survival in barley. Since earlier

flowering also impacts the duration of this phase one has to be cautious not to
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shorten this period severely. Determining the optimal flowering time can therefore
be seen as a trade-off between early flowering and a long shoot elongation phase.
The wild allele at the denso/sdw1 locus might therefore be a promising choice to
fine-tune plant development, since it combines early flowering with a prolonged
shoot elongation phase, which is however accompanied by an increased plant

height potentially leading to negative effects like lodging.

Characteristics of HEB-25 and alternative multi-parental populations

As shown in the previous chapters HEB-25 represents a powerful GWAS tool
combined with the possibility to retrieve useful exotic alleles. In the following
section its properties are discussed and compared to classical mapping concepts as

well as other multi-parental population designs.

As already shown before eight major flowering time QTL were identified that jointly
account for 64% of the cross-validated proportion of explained genotypic variance
in a multiple linear regression model (Model-B). In addition to Model-B the analysis
was conducted by applying whole genome prediction models, originally developed
for genomic selection in animal breeding (Meuwissen et al. 2001). Instead of
including only a subset of markers to control for genetic background genomic
prediction incorporates all available markers to detect QTL and estimate their
effects. By applying BayesCmt (Habier et al. 2011) the cross-validated proportion of
explained genotypic variance could be further increased to 74%, which is
comparable to the ~80% that were reported for days to anthesis in the maize NAM
population (Peiffer et al. 2014). These values clearly exceed the prediction
accuracies reported for many bi-parental populations (Nakaya and Isobe 2012).
The NAM population design may cause this high predictive power, however also the
increased population size, compared to classical bi-parental populations might

explain this feature (VanRaden et al. 2009).

However, what can be stated without doubt is that the number of detectable QTL is
massively increased in a multi-parental population, since there is a high number of
alleles present in the set of founders. In HEB-25 initially eight major flowering time
genes could be defined (Maurer et al. 2015). By applying numerous rounds of cross-

validation and counting the number of significances (Valdar et al. 2009) for each
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marker 35 additional minor QTL for this trait could be detected (Maurer et al.
2016a), reflecting the complex regulation of flowering time (Bliimel et al. 2015).
This is an outstanding example of the increased QTL detection power of HEB-25
compared to classical concepts where usually less QTL are detected. QTL detection
could be further improved by combining several multi-parental populations. Li et
al. (2016c) combined the US-NAM and the CN-NAM populations of maize, resulting
in approximately 8,000 lines used for GWAS. They revealed an increased QTL
detection rate as compared to analyzing them separately. Meng et al. (2016) report
similar findings when combining different MAGIC populations in rice. In this regard
it would be exciting to see how combinations of the barley MAGIC population
(Sannemann et al. 2015), the AB-NAM population (Nice et al. 2016) and HEB-25

would perform.

A specific characteristic of HEB-25, compared to the original NAM population
design of Yu et al. (2008), is the backcross of F1 plants that was included in the
population design. Therefore, each line carries a smaller amount of wild genome
(25% vs. 50%), which might enable more accurate effect estimation since
background noise is reduced. However, one has to keep in mind that at the same
time the number of lines carrying a specific segment is reduced. This is a major
constraint especially of AB-NAM, where a specific locus is only represented in
12.5% of lines in each family. Taken together with the low number of lines per
family (30) some family-specific QTL that are only present in 3-4 lines might be hard
to detect (Nice et al. 2016). BC-based NAM populations facilitate introgression of
desirable wild alleles into elite material, since the first steps of backcrossing have
already been performed. In addition, the estimated wild allele effect has already
been evaluated in the genetic background of an elite parent. However, QTL x genetic
background interaction should be considered when introgressing the desired QTL
into cultivars other than the reference parent (Bernardo 2014). MAGIC populations
overcome this limitation by enabling effect estimation across different genetic
backgrounds, since several founders are intercrossed. Due to this specific mating
design also a higher number of recombination can be expected, which positively
affects mapping resolution (Gardner et al. 2016). Ladejobi et al. (2016) highlight the
benefits of MAGIC over NAM with regard to creation of novel recombinants in order

to increase diversity for trait mapping. However, identification of the founder
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carrying a desirable allele is impeded in MAGIC populations, whereas in a NAM
design a wild allele’s effect can be directly traced back to the specific donor of a
family. In MAGIC populations usually extensive haplotype-modelling approaches
have to be performed to identify the most promising founder allele. The cumulation
method, which has been developed within the frame of this thesis (Maurer et al.
2016b), represents a universal approach, enabling effect estimation for each

founder QTL allele in both NAM and MAGIC populations.

Multi-parental populations are one of the key techniques to accelerate crop
improvement in a changing climate (Batley and Edwards 2016). Different NAM and
MAGIC population designs exist that show different benefits. They all have in
common that they represent improvements over classical bi-parental or association
mapping designs. It might be a promising approach to identify useful exotic alleles
in multi-parental populations and incorporate them into breeding programmes via
classical crossing or genome editing techniques like CRISPR-Cas9 (Doudna and
Charpentier 2014), which has recently been successfully applied in barley
(Lawrenson et al. 2015).
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Summary

Future world crop production is expected to be severely impacted by prospected
effects of climate change and human population growth. Therefore modern
agriculture is confronted with a number of challenges to secure global demands.
Plant breeding is regarded to play a key role in meeting this goal. However, one
major constraint plant breeding has to deal with is a reduced adaptability of the
current elite breeding germplasm to a changing environment. This resulted from a
depletion of allelic diversity during domestication and modern elite breeding. One
way to replenish the elite breeding pool with new favorable alleles is to introgress
exotic alleles from wild ancestors of cultivated crops. Classically, exotic alleles of
interest have been identified through mapping of quantitative trait loci (QTL) or
genome-wide association studies (GWAS). However, in recent years the concept of
multi-parental mapping populations evolved whereby mapping resolution and QTL

detection power could be increased.

In the present thesis the development of the worldwide first wild barley nested
association mapping (NAM) population, HEB-25, is reported and utilized to identify
favorable exotic alleles via GWAS. HEB-25 is a multi-parental mapping population
based on recurrent crosses of the German elite barley cultivar Barke with 25 highly
divergent wild barley accessions, originating from the Fertile Crescent and Tibet. In
total, the population consists of 1,420 individual BC1Ss3 lines, subdivided into 25
families of up to 75 genotypes. The genetic architecture of flowering time, a
potentially relevant trait to escape abiotic stresses, was investigated via GWAS
(Chapter 1, Maurer et al. (2015)). It was shown that the statistical models developed
within the frame of this work are well-suited to analyze the genetic architectures of
agronomically important quantitative traits in HEB-25. Eight major flowering time
QTL were defined that could be assigned to seven key flowering time genes, known
from Arabidopsis and barley, serving as a proof of concept. The remaining QTL
represents a novel locus that has not been described before. Furthermore, it could
be shown that there is a high degree of allelic diversity available in HEB-25 to fine-

tune flowering time with up to 25 different exotic alleles at each QTL.

Since not only flowering time itself but also further developmental key stages are

critical in determining yield, the next step was to evaluate also time of shooting and
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maturity. To assess their impact on physiological processes, also plant height and
thousand grain weight were investigated (Chapter 2, (Maurer et al. 2016a)). It
turned out that the previously defined eight major QTL also had major impacts on
other developmental stages as well as on plant height and thousand grain weight.
However, there were slight differences in the effects single QTL exerted on different
stages. For instance, exotic alleles at the denso/sdw1 locus accelerated shooting
more than flowering, resulting in an extended shoot elongation phase and increased
plant height. Simultaneously, denso/sdwl increased thousand grain weight,
presumably as a result of an extended ripening phase. A further outcome of this
study was that in general maturity is negatively correlated with flowering time.
Early flowering plants therefore have an extended ripening period. It seems that
environmental signals prematurely terminated grain filling in Halle. Possibly, a
warm and dry period between 80 and 90 days after sowing caused HEB plants to
end their life cycle earlier than the genetic constitution would allow. Preponing
flowering time might, thus, be an appropriate way to increase yields in a drought-

prone environment.

At each QTL, theoretically up to 26 different alleles are present in HEB-25. Thus, the
next task was to develop a model estimating donor-specific QTL allele effects
(Chapter 3, (Maurer et al. 2016b)). Since each HEB family is comparably small,
consisting of on average 60 BC1Ss lines, a direct calculation of QTL allele effects in
single families did not result in reliable estimates. Therefore, a conceptually
different method to overcome this limitation was developed. The so-called
cumulation method produced SNP effect estimates across the full HEB-25
population and calculated a donor-specific QTL effect by summing up SNP effect
estimates in a defined genetic region surrounding a QTL position. By applying the
cumulation method, high QTL detection power and reliable donor-specific effect
estimation were obtained. An extraordinary high variation of donor-specific QTL

effects was observed for Vrn-H1 and Vrn-H3, two major flowering time QTL.

To conclude, HEB-25 is a multi-parental exotic population, perfectly suitable to
investigate agronomically important traits and to replenish the elite barley
breeding pool with selected wild barley alleles. Since it exhibits high allelic

diversity, HEB-25 may be exploited worldwide to fine-tune plant development and
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to improve abiotic stress tolerance as well as yield and yield-stability by

introgressing selected favorable QTL alleles.
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Zusammenfassung

Die zuklinftigen Getreideertrdge werden mafdgeblich von den prognostizierten
Auswirkungen des Klimawandels und dem gleichzeitig stattfindenden globalen
Bevolkerungswachstum beeinflusst. Die moderne Landwirtschaft muss eine
Vielzahl von Herausforderungen bewaltigen, um den steigenden Bedarf zu decken.
Die Pflanzenziichtung nimmt bei der Bewerkstelligung dieser Herausforderungen
eine Schlisselrolle ein. Eine Hiirde stellt dabei jedoch die reduzierte
Anpassungsfahigkeit moderner Elitesorten an die sich andernden
Umweltbedingungen dar. Dies ist auf den Verlust allelischer Vielfalt im Zuge der
Domestikation und Ziichtung zuriickzufiihren. Eine Moglichkeit die genetische
Vielfalt in der modernen Pflanzenziichtung wieder zu erh6hen stellt das Einkreuzen
von exotischen Allelen der urspringlichen Vorfahren kultivierter Arten dar.
Klassischerweise wurden vorteilhafte exotische Allele mittels QTL (quantitative
trait locus)-Kartierung oder mithilfe von genomweiten Assoziationsstudien
(GWAS) identifiziert. In den vergangenen Jahren hat sich dafiir jedoch das Konzept
multiparentaler Populationen etabliert, wodurch die Fahigkeit QTL mit hoher

Prazision zu bestimmen erhoht werden konnte.

In der vorliegenden Arbeit werden die Entwicklung der weltweit ersten nested
association mapping (NAM)-Population in Wildgerste, HEB-25 genannt, sowie
deren Nutzung zur Identifikation von vorteilhaften exotischen Allelen mittels
GWAS, dargestellt. HEB-25 ist eine multiparentale Kartierungspopulation, die auf
rekurrenten Kreuzungen der deutschen Sommergerstensorte Barke mit 25
hochdiversen Wildgerstenakzessionen aus dem Fruchtbaren Halbmond und Tibet
beruht. Insgesamt besteht die Population aus 1420 unterschiedlichen BC1S3-Linien,
die in 25 Familien mit bis zu 75 Genotypen untergliedert sind. Mittels GWAS wurden
in dieser Population die genetischen Grundlagen, die den Zeitpunkt der Bliite
bestimmen, untersucht (Kapitel 1, Maurer etal. (2015)). Der Bliihzeitpunkt ist unter
Umstdnden entscheidend, um abiotischen Stress zu vermeiden. Es konnte gezeigt
werden, dass die statistischen Modelle, die im Laufe der genannten Arbeit
entwickelt wurden, bestens dazu geeignet sind die genetischen Grundlagen
agronomisch relevanter quantitativer Merkmale in HEB-25 zu erforschen. Acht

Haupt-QTL fiir den Bliihzeitpunkt konnten dabei identifiziert werden, die sieben
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bereits bekannten Bliihgenen aus Arabidopsis und Gerste entsprachen. Dies kann
als Konzeptnachweis fiir das Funktionieren der Methode angesehen werden. Der
verbleibende QTL stellte sich als neu heraus, da er bis dato noch nicht beschrieben
wurde. Dartiber hinaus konnte gezeigt werden, dass ein hoher Grad an allelischer
Diversitat in HEB-25 vorhanden ist, um den Bliihzeitpunkt mit bis zu 25

verschiedenen Wildallelen pro QTL feinzujustieren.

Da nicht nur der Bliihzeitpunkt an sich, sondern auch weitere Kardinalpunkte der
Pflanzenentwicklung fir die Ertragsbildung entscheidend sind, wurden im
nachsten Schritt zusatzlich der Zeitpunkt des Schossens sowie der Reifezeitpunkt
untersucht. Um deren Einfluss auf pflanzenphysiologische Prozesse zu beschreiben,
wurden auflerdem die Pflanzenhohe und das Tausendkorngewicht analysiert
(Kapitel 2, Maurer et al. (2016a)). Es zeigte sich, dass die vorher definierten acht
Haupt-QTL fiir den Bliihzeitpunkt auch die anderen Entwicklungsstadien sowie
Pflanzenhohe und Tausendkorngewicht mafdgeblich beeinflussten. Dabei zeigten
sich jedoch leichte Unterschiede wie stark die verschiedenen Entwicklungsstadien
von einem bestimmten QTL beeinflusst wurden. Zum Beispiel beschleunigten
exotische Allele am denso/sdw1-Locus das Schossen starker als die Bliite, wodurch
die Sprossstreckungsphase verliangert und die Pflanzenhéhe erhoht wurde.
Gleichzeitig verursachte denso/sdw1 eine Erhohung des Tausendkorngewichtes,
was vermutlich aus einer verlingerten Reifephase resultierte. Ein weiteres
Ergebnis dieser Arbeit war, dass der Reifezeitpunkt generell negativ mit dem
Bliihzeitpunkt korreliert war. Frith bliihende Pflanzen hatten demnach eine
verldngerte Abreifeperiode. Es scheint, dass bestimmte Umweltfaktoren ein
frihzeitiges Ende der Kornfiillungsphase in Halle herbeifiihrten. Moglicherweise
war eine Periode von warmen Temperaturen in Kombination mit anhaltender
Trockenheit 80 bis 90 Tage nach der Aussaat dafiir ausschlaggebend, dass Pflanzen
eher abreiften als es ihre genetischen Voraussetzungen erlaubt hatten. Eine
Verfrihung der Bliite konnte demnach ein probates Mittel sein den Ertrag in

trockenheitsanfalligen Gebieten zu sichern.

Da an jedem QTL theoretisch bis zu 26 unterschiedliche Allele in HEB-25
unterschieden werden kénnen, bestand die nachste Aufgabe darin ein Modell zu
entwickeln, um donorspezifische QTL-Allel-Effekte zu bestimmen (Kapitel 3,

Maurer et al. (2016b)). Aufgrund der relativ kleinen Familiengrofde von
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durchschnittlich 60 BCiS3-Linien fiihrte eine direkte Schatzung der Effekte in
einzelnen Familien nicht zu verlasslichen Ergebnissen. Deshalb wurde in Form der
sogenannten Kumulationsmethode ein anderes Konzept erarbeitet. Dabei werden
SNP-Effekte iiber die gesamte HEB-25-Population geschitzt und anschliefdend die
donorspezifischen Effekte errechnet, indem die SNP-Effekte einer definierten, den
QTL umgebenden genomischen Region, aufsummiert werden. Durch dieses
Vorgehen konnte eine hohe QTL-Detektionsrate bei gleichzeitiger zuverlassiger
Schatzung donorspezifischer Effekte realisiert werden. Es zeigte sich, dass eine
aufderordentlich hohe Variation hinsichtlich donorspezifischer Effekte besonders

bei Vrn-H1 und Vrn-H3, zweier Haupt-QTL fiir den Bliihzeitpunkt, existiert.

Alles in allem stellt HEB-25 eine multiparentale Population dar, die vorziiglich dazu
geeignet ist agronomisch relevante Merkmale zu erforschen und die moderne
Gerstenziichtung mit ausgewahlten exotischen Allelen zu bereichern. Aufgrund der
reichhaltigen Alleldiversitat konnte HEB-25 weltweit genutzt werden, um
Pflanzenentwicklung, abiotische Stresstoleranz, sowie Ertrag und Ertragsstabilitat

durch die Introgression ausgewahlter exotischer Allele zu optimieren.
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