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ABSTRACT
Generation of synthetic biometric samples such as, for instance,
fingerprint images gains more and more importance especially in
view of recent cross-border regulations on security of private data.
The reason is that biometric data is designated in recent regula-
tions such as the EU GDPR as a special category of private data,
making sharing datasets of biometric samples hardly possible even
for research purposes. The usage of fingerprint images in forensic
research faces the same challenge. The replacement of real datasets
by synthetic datasets is the most advantageous straightforward
solution which bears, however, the risk of generating “unrealistic”
samples or “unrealistic distributions” of samples whichmay visually
appear realistic. Despite numerous efforts to generate high-quality
fingerprints, there is still no common agreement on how to define
“high-quality” and how to validate that generated samples are real-
istic enough. Here, we propose general requirements on synthetic
biometric samples (that are also applicable for fingerprint images
used in forensic application scenarios) together with formal metrics
to validate whether the requirements are fulfilled. Validation of our
proposed requirements enables establishing the quality of a genera-
tive model (informed evaluation) or even the quality of a dataset of
generated samples (blind evaluation). Moreover, we demonstrate in
an example how our proposed evaluation concept can be applied
to a comparison of real and synthetic datasets aiming at revealing
if the synthetic samples exhibit significantly different properties as
compared to real ones.
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1 INTRODUCTION
Recent cross-border regulations on security of private data impose
severe restrictions on preserving, sharing and processing of person
related data. Since biometric data such as face, iris and fingerprint
images are considered a special category of private data, sharing
databases of biometric samples has become very difficult. Moreover,
biometric samples may include privacy sensitive attributes such as
gender, age, ethnicity, or health status [37]. These facts hinder both
scientific research and industrial development of reliable biometric
access control systems and forensic investigation tools.

Gathering large-scale datasets of biometric samples has been
always an issue. Even disregarding that acquiring biometric samples
is very time- and resources-intensive, it is also tremendously hard
to gather unbiased datasets of sufficient scale.

In general, there are two ways to compile a dataset of biomet-
ric samples that are not linked to individuals: (i) gather biometric
samples from real persons and anonymize/de-identify them, (ii)
artificially generate so-called synthetic biometric samples. The first
option is clearly disadvantageous due to the need for data gather-
ing as well as for tedious removing of privacy sensitive attributes.
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The second option seems to be superior from all points of view,
nonetheless bearing the risk of generating “unrealistic” samples or
“unrealistic distributions” of samples which may visually appear
realistic.

In this paper we endeavor answering the question: What is the
quality of synthetic biometric samples, or more precisely, which re-
quirements should the synthesized datasets meet to replace datasets
of real samples. After defining hard and soft requirements, we sug-
gest how to validate whether the requirements are fulfilled or how
to adapt the sample generation process to fulfill most of the require-
ments.

The paper is organized as follows: An overview of fingerprint
generation approaches is given in Section 2 (see Table 1). As our
main contribution, in Section 3, we propose requirements on syn-
thetic datasets along with validation metrics (see Table 2). Section 4
comprises evaluation of several exemplary datasets regarding some
of the proposed requirements. In Section 5, we draw our conclusions
and present future work.

2 RELATEDWORKS
There exist two concepts of generating samples for biometric or
forensic research: model-based and data-driven. Early works were
rather focused on model-based generation. For fingerprints, the pro-
cess is an inverse to the extraction of minutiae. Starting from a set
of minutiae, a fingerprint area, an orientation map and a frequency
map are estimated. Then, the iterative pattern growing approach
draws ridges along the orientation lines by applying Gabor fil-
ters [7]. This approach has been implemented in the software tool
SFinGe [6] and then reimplemented in the software tool Anguli1.
Model-based fingerprint texture synthesis is also discussed in [20].
The Anguli generator has been used to create the “groundtruth”
fingerprint images2 for a set of subsequently degraded fingerprint
samples used in a fingerprint impainting and denoising competition
[1, 9].

The general problem of model-based generation approaches is
lack of realism [28]. In particular, the limitations can be summarized
as follows:
(1) Independent generation of ridge orientation and minutiae mod-
els leads to the fact that minutiae distributions could be generated
without having a valid ridge orientation field;
(2) Ridge-lines as well as spacing between ridge-lines has a constant
width making the detection of synthetic patterns an easy task. High
accuracy while discriminating real and synthetic fingerprints was
demonstrated in [8];
(3) Using masterprints for ridge-line pattern, generation may lead to
non-consistent ridge flow leading to unrealistic fingerprint images;
(4) Non-considering local minutiae configurations may lead to un-
realistic minutiae configurations. This drawback was exploited in
[13] to reliably discriminate real and synthetic fingerprints.

In contrast to modeling, the modern trend is a data-driven gener-
ation of realistic fingerprint images. Thanks to recent development
of artificial neural networks and especially Variational Autoen-
coders (VAE) and Genarative Adversarial Networks (GAN) very

1https://dsl.cds.iisc.ac.in/projects/Anguli/
2http://chalearnlap.cvc.uab.es/dataset/32/description/

impressive results have been demonstrated not only with images
of human faces but also with fingerprint images.

The first effort to synthesize fingerprints using a Wasserstein
GAN is made in [4] aiming at generating so-called master finger-
prints that match multiple original fingerprints. Later on, in [27],
a connectivity imposed GAN is introduced and applied to two
datasets: FVC-2006 and PolyU. In [2], fingerprints are synthesized
by a variational autoencoder. In [10], a lightweight GAN is proposed
for creating 128x128 pixel fingerprint patches and compared with
five established GAN architectures based on 64x64 pixel patches.
The size of generated images in the aforementioned publications is
rather insufficient. In [5], a combination of an autoencoder and an
adapted Wasserstein GAN is used for synthesizing 512x512 pixel
fingerprint patches. The realistic appearance of synthetic finger-
prints is dramatically improved in [38] by applying CycleGAN to
transfer texture from real fingerprints to conventionally synthe-
sized ridge-line patterns with added sweet pores. An alternative
approach for generating high-resolution realistic fingerprints is
proposed in [33]. Here, GAN is combined with a super-resolution
network. The next breakthrough is done in [28] by incorporating
identity information into the fingerprint synthesis network which
is based once again on combining autoencoder and Wasserstein
GAN.

Despite numerous efforts to generate high-quality fingerprints,
there is still no common agreement on how to define “high-quality”
and how to prove that the generated samples are realistic enough.
Moreover, datasets of synthetic fingerprints are compiled for dif-
ferent purposes. The characteristics of synthetic fingerprints that
are strictly required for validation of Automated Fingerprint Iden-
tification Systems (AFIS) might not be necessary for analyzing
latent fingerprints in forensic investigations and vice versa. In [34],
for instance, the focus is on generation of latent fingerprints. The
NIST SD 27 dataset is used as a source of training samples and the
software tool StirTrace3 is applied for training data augmentation.
StirTrace simulates artifacts that are identified in the literature [16–
18, 26] as relevant for forensic analysis of latent fingerprints at a
crime scene. In particular, StirTrace is used for simulation of sensor-
characteristic artifacts represented by Random additive noise and
Random Gaussian noise, sensor scan artifacts represented by salt
and pepper noise as well as different acquisition conditions artifacts
represented by rotation, re-scaling and cropping of a fingerprint
image.

GAN-based generation of latent fingerprints with pre-defined
characteristics can be made possible if a training dataset is aug-
mented by patterns representing environmental conditions, sub-
strate influence, features of an acquisition device and acquisition
conditions, and such a dataset is used for training of a GAN archi-
tecture which implements disentanglement learning. The study in
[34] is not focused on conditional generation but introduces the
concept which is capable of such functionality.

Another important aspect is the simulation of fingerprints par-
tially corrupted due to errors in the acquisition process [21] or skin
diseases [22]. To the best of our knowledge there still exist no GAN
models capable of doing it.

3https://sourceforge.net/projects/stirtrace/

Session 4: Biometry & Authentication  
 
IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium

94

https://dsl.cds.iisc.ac.in/projects/Anguli/
http://chalearnlap.cvc.uab.es/dataset/32/description/
https://sourceforge.net/projects/stirtrace/


Table 1: State of the art in GAN-based generation of fingerprint images together with the requirements to synthetic data and
metrics applied
Paper Generation approach Source DB Max. image dim. Addressed requirements (see section 3.1)
Minaee et al. ’18 [27] Finger-GAN: Connectivity FVC’06, PolyU 64x64 R+D (Frechet Inception Distance to training

imposed GAN samples)
Bontrager et al. ’18 [4] DeepMaster-Prints: NIST SD9, 128x128 R (Visual inspection),

WassersteinGAN FingerPass DB7 A (Matching against training samples)
Cao & Jain ’18 [5] Autoencoder + NIST SD27, 512x512 R (NFIQ2, minutiae configuration),

WassersteinGAN NIST SD14 D (Pair-wise matching),
A (Matching against training samples)

Attia et al. ’19 [2] Variational Autoencoder no info no info no info
Fahim et al. ’20 [10] Lightweight GAN LivDet 256x256 R (Visual inspection), D (MS-SSIM scores)
Riazi et al. ’20 [33] SynFi: GAN + NIST SD9 256x256 R (Visual inspection + fake detection)

super-resolution DCNN
Mistry et al. ’20 [28] Convolutional Autoencoder + Longitudinal 512x512 R (NFIQ2, minutiae configuration),

WassersteinGAN + Identity fingerprint D (Pair-wise matching),
Prior records A (Matching against NIST SD4 samples)

Wyzykowski et al. ’20 [38] Anguli + Pores + Style PolyU HRF 512x512 R (Visual inspection, FP recognition test, Human
Transfer using CycleGAN + perception test)
super-resolution CNN

Seidlitz et al. ’21 [34] PGGAN, StyleGAN NIST SD27 512x512 R (NFIQ2),
StyleGAN2 A (Matching against training samples)

Table 1 summarizes the state of the art in GAN-based fingerprint
generation together with the requirements on the synthetic data
and the metrics applied. First and the foremost concern of all studies
is the realistic appearance, which is measured either objectively
by the NFIQ2 metric [31] or statistics describing minutiae config-
uration or subjectively by a visual inspection. Many studies also
evaluate diversity and anonymity of synthetic samples. Diversity
is usually measured by checking an “impostor” distribution or to
be more precise by cross-matching of all generated samples and
comparison of the resulting matching score histograms to those
of real fingerprint datasets. Anonymity is provided if there are no
matches between generated and training samples. Hence, each gen-
erated sample is matched against all samples used for GAN training.
Fingerprint matching is conducted by applying commercial of-the-
shelf (COTS) solutions (e.g. Neurotechnology VeriFinger SDK4 or
Innovatrics Fingerprint Recognition SDK5 or by open source soft-
ware (e.g. NIST/Bozorth36). All in all, we can conclude that still
there is no consensus on how to evaluate the quality of a generative
model or even the quality of a dataset of generated samples.

3 THEORETICAL CONCEPT
As our main contribution, we propose requirements on synthetic
biometric data generated by a generative model. These require-
ments are defined in Section 3.1 and summarized in Table 2. They
are classified into hard (technical) and soft (ethical) requirements.
For each requirement we also propose a validation method and a
generator adaptation technique.

In addition to general considerations, we adapt our proposed
requirements to synthetic fingerprints. Moreover, we distinguish
between two practically relevant but distinct fingerprint application

4https://www.neurotechnology.com/verifinger.html
5https://www.innovatrics.com/biometrics-for-oem-solutions/
fingerprint-recognition/
6https://www.nist.gov/services-resources/software/
nist-biometric-image-software-nbis

scenarios: biometric authentication and forensic investigation of
latent fingerprints bearing in mind that the requirements may have
different importance.

3.1 Definition of the Requirements
The requirement Realistic appearance (R) can be interpreted dif-
ferently. In our considerations realistic appearance encompasses
two criteria: 1. the naked eye cannot tell apart real and generated
fingerprints; 2. ridge-line patterns appear statistically natural. The
first one is rather important for manual investigations of finger-
prints e.g. training of forensic officers. The second one is essential
for reliable AFIS validation. The appearance to the naked eye is
subjective and can be tested only in a human experiment. In con-
trast, statistical characteristics (e.g. number of cores and deltas,
frequency of ridge lines, amount of minutiae, background noise)
can be validated by comparing distributions of these characteristics
in real and synthetic data.

For fingerprints, the recently proposed NFIQ2 metric should
perfectly cover the second criterion. Initially, the NFIQ metric has
been designed to check whether fingerprints acquired by commer-
cial biometric sensors are good enough to be further used in AFIS
for reliable person identification. The advanced metric NFIQ2 is
optimized to assess the quality of 500 dpi live-scanned fingerprints
coming from adults and captured with optical scanners, but can be
easily adapted to assess the quality of other types of fingerprints e.g.
digitalized latent fingerprints [3]. The generation of fingerprints
with a realistic appearance is a challenge for both model-based and
data-driven generation approaches. Moreover, it is stated that the
existing model-based approaches generally lack realism [28].

The requirement Sufficiently high image resolution (I) is not
an issue for model-based generation. For data-driven generation, in
contrast, image resolution is of major importance because the size
of input and output images is an inherent property of generative
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Table 2: General requirements on synthetic biometric data
Requirement Validation Generator adaptation

Hard (technical) requirements
Realistic appearance (R) Subjective test, data-specific quality metric Selection of a suitable generative model
Sufficiently high image resolution (I) Trivial check of image dimensions as well as Turn the input/output image size from an

dimensions of a fingerprint region inherent property to a tunable parameter
Data anonymity (A) Differential privacy validation by matching Randomization of identity related attributes

of synthetic and training samples in training
Diversity/Uniqueness (D) Biometric cross-comparison of generated samples A-posteriori uniqueness validation or

and comparison of score distributions with those pseudo-random generation
of real fingerprint datasets

Controllable generation (C): same Comparison of intra-class and inter-class Integration of an identity prior into the
subject vs. different subjects distributions of matching scores to each other training process and conditional generation
Reflection of basic characteristics Comparison of distributions of certain characteristics Selection of a suitable generative model,
of ground truth (training) data (B) (real vs. synthetic), Frechet Inception Score (FIS) Integration of fingerprint characteristics into

the training process and conditional
generation

Soft (ethical) requirements
Equal distribution of privacy-related Detector-based validation Integration of privacy-related attributes into
attributes (E), such as gender, age, ethnicity etc. the training process and conditional

generation

The application of these requirements is done in this paper in the following sections:
Realistic appearance (R) In sections 3.4 for an exemplary application of the requirements for a structured assessment of

existing generative models and in 4.2.1 for assessing our own experiment
Sufficiently high image resolution (I) In section 3.4
Data anonymity (A) In section 3.4
Diversity/Uniqueness (D) In section 4.2.2
Controllable generation (C): In section 4.2.2
Reflection of basic characteristics (B) Reserved for future work
Equal distribution of privacy-related attr. (E) Reserved for future work

neural networks. The image size in pixels should be high enough to
cover the whole area of a fingerprint captured at scanning resolu-
tion of at least 500 dpi which is required by FBI-compliant systems
[19]. Speaking of a fingerprint area that is approximately 1.0x0.7
inch, the image size should exceed 500x350 pixels. The minimal
resolution to work with sweat pores is 1000 dpi, requiring the im-
age size of at least 1000x700 pixels. Generation of such images is a
hard competition for e.g. GAN-based generation approaches. The
probably most elegant solution is the Progressive Growing GAN
[23] where the image size increases during the learning process
gradually covering more and more details of an image.

The requirement Data anonymity (A) means the anonymity
of generated fingerprints and implies that no person in the world
possess these particular fingerprints. In this formulation, the re-
quirement cannot be fulfilled because there is no dataset of all
possible real fingerprints and a synthetic fingerprint could match
an existing real one just by chance. The more modest requirement is
that a synthetic fingerprint does not belong to any of subjects who
provided their fingerprints for a training dataset used for finger-
print generation. Note that for model-based generation approaches
where the minutia map is generated completely randomly, the data
anonymity requirement is fulfilled by definition (just because of
non-existence of the training dataset). For data-driven generation
approaches, data anonymity is closely connected with the term
‘differential privacy’. A loose definition would be: ‘an algorithm is

differentially private if an observer cannot extract any information
about a particular subject by analyzing algorithm’s output.’ Differ-
ential privacy in application to GAN-generated data is addressed
in [36].

Validation of differential privacy of a fingerprint generator could
happen by matching each synthetic fingerprint against all real
fingerprints used for generator training, looking for exactly one
match. If a synthetic fingerprint matches k (k > 1) original instances,
then k-anonymity is indicated. For fingerprints, it is highly likely
that by mixing images the GAN generator strongly modifies the
minutia maps of the training fingerprints so that the minutia maps
in synthetic fingerprints have a random nature. However, there is
no guarantee that all synthetic fingerprints do not match original
ones. The ratio of anonymous fingerprints in the whole number of
generated fingerprints should indicate the ‘anonymity score’ of a
generative model.

In order to improve the anonymity score of a generative model,
one should either switch to conditional generation by including
an identity prior to the generator training or randomly change the
minutia maps of training samples.

The requirement Diversity/Uniqueness (D) implies that the
generated fingerprint images are significantly different from each
other. Due to the mode collapse often encountered in GAN training,
many generated samples may be very similar. Checking whether
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the synthetic samples are diverse enough could happen by cross-
comparison of them,meaning that each generated sample ismatched
against all other generated samples. Ideally, the distribution of the
cross-comparison scores should not strongly deviate from that of
real fingerprints. However, a general comparison between a dataset
of synthetic fingerprints and real fingerprints is hardly possible
because the distribution of cross-comparison scores may strongly
vary from one dataset of real fingerprints to another.

Compilation of diverse synthetic fingerprint datasets is possible
by including an a-posteriori uniqueness validation meaning that
each generated fingerprint is matched against all previously gen-
erated fingerprints and preserved in a dataset only in case of no
single match. The other option is, as in the case of data anonymity,
to rely on conditional generation by including an identity prior to
the generator training. So, every new fingerprint can be generated
using a unique identity (minutia map). Note that for model-based
approaches the diversity issue is easily solved by randomization of
model parameters (basic pattern, minutia map) during the genera-
tion.

The requirement Controllable generation (C) implies the abil-
ity of a generative model to generate not only random inter-class
samples but also intra-class samples which is very important for
a generative model. For model-based fingerprint generation the
solution is trivial - keep basic pattern, minutia map and sweat pores
locations and randomly change all other model parameters. For
data-driven generation, the standard solution is disentanglement
learning and further conditional generation [29] meaning that ei-
ther class labels or minutia maps should be integrated into the
training process.

The validation whether the network is able to generate samples
of the same class could happen by comparison of intra-class and
inter-class distributions of matching scores to each other.

The requirementReflection of basic characteristics of ground
truth data (B) implies that generated fingerprints preserve inher-
ent characteristics of real fingerprints used for generation. Since
model-based generation requires no training samples, this require-
ment is solely relevant for data-driven generation. If we can clearly
define and extract a certain characteristic from an image and, more-
over, describe its presence by a scalar value, the direct comparison
of the value distribution in real and synthetic datasets is a trivial
and straightforward solution. In a more general case, when the
presence of a characteristic cannot be formalized and represented
by a single value, the comparison of distributions by Frechet Incep-
tion Distance [15] is the only objective way to validate whether the
characteristics of real samples have been transferred to synthetic
samples. Similarly to controllable generation, the standard solution
here is disentanglement learning and further conditional genera-
tion, however, focusing not on identity of a fingerprint but on some
characteristic of training samples.

In fact, data-driven fingerprint generation has a huge potential
for targeted fabrication which might be of interest for biometric au-
thentication (e.g. simulating different biometric fingerprint sensor
types such as capacitive or thermal sensors) and is of special interest
for forensic investigations. In [30], a wide range of characteristics

have shown to be relevant. They concern all stages along the corre-
sponding signal processing and pattern recognition pipeline. An
non-exhaustive list would contain for example: a) pipeline selec-
tion: the type of fingerprint under consideration (rolled vs. plain vs.
latent fingerprints), fingerprint development method impact (esp.
for latent fingerprints); b) sample/signal acquisition: sensor and
sensor scan characteristics, smudgy fingerprints (and other trace
characteristics such as fibers or other traces overlapping a latent
print) and substrate characteristics, different acquisition conditions;
c) pre-processing: handling of application scenario specific artifact
characteristics (e.g. for printed fingerprint contexts or to compen-
sate arbitrary image sizes). This non-exhaustive list could easily
be extended and has seen in the past the emergence of dedicated
image post-processing tools like StirTrace (see Section 2) for data
augmentation and derivation of datasets with simulated artifacts for
forensic purposes, including the training of dactyloscopic experts.

The requirement Equal distribution of gender, age, ethnicity,
etc (E) is important to avoid biases in evaluation datasets which
often lead to a wrong picture of reality. Training with biased data
leads to biased models which can be discriminatory or even harm-
ful to humans. Since fingerprints may preserve privacy-related
attributes (other than the minutia map), it is required that samples
with each expression of each attribute are equally well presented
in a dataset. This requirement to a generative model is currently
rather theoretical due to the lack of a precise picture on how exactly
personal characteristics such as gender, age or ethnicity manifest
themselves in fingerprint patterns.

Technically, the adaptation of a generative model to include the
control of privacy-related attributes is similar as for generating
certain fingerprint characteristics on demand.

3.2 Evaluation perspective
Our proposed requirements are initially formulated for evaluation
of generative models. However, the same instrument can be applied
to evaluate datasets of synthetic biometric samples to be used in
biometric or forensic evaluations. In the case of evaluating a gener-
ative model, we possess two datasets: a set of real samples used for
training and a set of generated samples. In the case of evaluating a
dataset of generated samples, real samples used for training are not
known. This is why we call the first evaluation case informed (or
generic evaluation) and the second case - blind evaluation. While
the informed evaluation comprises all formulated requirements,
the blind evaluation is usually limited to the following subset: re-
alistic appearance (R), sufficient image resolution (I) and diversity
(D). However, if a probe dataset includes several instances of one
finger, the requirement controllable generation (C) should also be
validated. If a probe dataset includes metadata describing charac-
teristics of the generated sample such as, for instance, “simulation
of fingerprints scanned by a particular optical sensor”, then the
validation of the requirement (B) could also make sense.

3.3 Importance of the requirements for
Biometrics and Forensics

Depending on the application scenario for which the synthetic
biometric samples are generated, the requirements discussed above
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receive different weights regarding their importance. If the focus
is on evaluation of biometric authentication systems, it is highly
important that a generative model is able to generate both intra-
class and inter-class samples which are on the one hand sufficiently
diverse (D) and on the other hand reflect the characteristics of real
samples especially the sensor type influence (the requirements C
and B).

In contrast, if the focus is on scenarios involving the manual
analysis of fingerprints, like in forensic crime scene investigation,
the most important requirements are realistic appearance (R), suffi-
ciently high image resolution (I) and the ability to reproduce the
basic characteristics of real samples like a fingerprints aging effect
or a substrate influence (B).

The requirements realistic appearance (R), data anonymity (A),
diversity (D) and equal distribution of privacy-related attributes (E)
are important independently of the field in which the dataset of
synthetic fingerprints is going to be applied.

Besides requirement engineering aspects (i.e. specifying charac-
teristics that should be addressed in data generation for a specific
application scenarios), the requirements introduced in this paper
can also be used to provide a structured assessment of both: a data
synthesis process (see Section 3.4) and a resulting dataset (see Sec-
tion 4). As an additional benefit, using this set of requirements
as a projection surface allows for a better comparison between
generative models (or datasets).

3.4 Exemplary application of the requirements
for a structured assessment of existing
generative models

An example of evaluation and (less formal) comparison of several
generative models can be found in our previous study [34]. We
tested three GAN architectures (Progressive Growing GAN [23],
StyleGAN [24] and StyleGAN2 [25]) for generation of latent fin-
gerprints trained using around 40k fingerprint patches sampled
from the NIST SD 27 dataset. Prior to training, the set of fingerprint
patches was augmented by their filtered versions increasing the
number of training samples to approximately 500k. Since the gen-
erative models are trained iteratively and each snapshot of a model
can be used for generation of fingerprint images, the evaluation
was conducted for only one snapshot of each model. The num-
ber of training iterations is proportional to the parameter kImages
referring to the number of real images presented to the network
during the training phase. Usually, the parameter kImages is set
prior to training and the training lasts until the number of itera-
tions is reached. However, due to time limitations, training can be
stopped earlier without lose of the generative model performance.
Aiming at fingerprint image quality assessment during the train-
ing, some snapshots were used for generation of 1000 fingerprint
images and estimating the average NFIQ2 scores of them. For each
of the three GAN architectures one snapshot was picked for the
evaluation so that the balance between the training time and the
average fingerprint image quality in terms of the NFIQ2 metric was
held. Hence, the generative models are evaluated by assessing a set
of 1000 fingerprint images generated by the aforementioned model
snapshots from random seeds. The main assumption is that 1000

fingerprint images selected in such a way reflect the general ability
of the Generator network to produce images of a certain quality.
The fingerprint images generated by the latter snapshots should in
average possess the same properties.

Our previous study in [34] explicitly addresses only three require-
ments: realistic appearance (R), data anonymity (A) and sufficiently
high image resolution (I). The remaining requirements diversity
(D), conditional generation (C), reflection of basic characteristics of
training data (B) and equal distribution of privacy-related attributes
(E) are either addressed implicitly or not addressed at all.

The more structured informed evaluation of the generative mod-
els from [34] is done in the following:

• Realistic appearance (R): A subjective visual inspection of the fin-
gerprint images suggests that all three generative models are
capable of producing synthetic fingerprints which cannot be told
apart from real fingerprints by the naked eye. An objective evalua-
tion on the realistic appearance is done by calculating the NFIQ2
scores and comparing the histograms of NFIQ2 scores of real
and synthetic fingerprints. It is shown that synthetic fingerprint
patches generated by any of the three considered generative
models have on average slightly higher NFIQ2 scores than the
real fingerprint patches used for training. The reason for this
phenomenon is discussed in detail in [34]. This trivial analysis
of NFIQ2 scores enables us to conclude that the considered gen-
erative models are capable of generating realistically appearing
fingerprint patches. The NFIQ2 scores of 266 out of 1000 images
generated with the Progressive Growing GAN, 371 out of 1000
images generated with the StyleGAN and 191 out of 1000 im-
ages generated with the StyleGAN2 exceed the threshold of 35
meaning the very good to excellent quality of fingerprints.

• Sufficiently high image resolution (I): The requirement for high
image resolution is automatically fulfilled by the selection of a
certain GAN architecture and a proper snapshot of a generative
model that generates fingerprint patches with the size of 512x512
pixels at a resolution of 1000 ppi.

• Data anonymity (A): Since the evaluation of a data anonymity
requires matching of fingerprints, the fingerprint images should
be of sufficient quality (see requirements R and I) for reliable
extraction of minutiae. Hence, the data anonymity requirement
is checked only with the fingerprint images for which a NFIQ2
score is higher than 35. Each of those synthetic fingerprints is
matched against all real fingerprints used for training of the cor-
responding generative model. The matching is done by means
of NIST tools: MINDTCT for minutiae extraction and Bozorth3
for comparison of minutiae lists. The threshold for the Bozorth3
score has been set to 30, meaning that if exactly one Bozorth3
score is higher than 30, the generated fingerprint is reported
to have a match in the training dataset and, therefore, cannot
be considered anonymous. The number of reported anonymous
fingerprints are 169 out of 266 (63.53%) for the Progressive Grow-
ing GAN, 182 out of 371 (49.06%) for the StyleGAN and 106 out
of 191 (55.50%) for the StyleGAN2. Using our terminology, the
ratios of anonymous fingerprints, namely 63.53%, 49.06% and
55.50%, can be seen as estimations of the “anonymity score” of
the corresponding generative models.
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• Diversity (D): For each of the three generative models, we visually
inspected the 1000 generated fingerprint patches and concluded
that all patches appear significantly different to each other. How-
ever, no objective validation has been conducted.

• Controllable generation (C): Due to the absence of fingerprint
identity information during the training, all three models trained
are not capable of generating several different fingerprint images
for one fingertip.

• Reflection of basic characteristics of training data (B): The visual
inspection conducted in [34] suggests that the generated im-
ages have very similar characteristics to the NIST SD27 patches,
however no formal objective validation has been conducted.

• Equal distribution of privacy-related attributes (E): Since the source
dataset includes no information about privacy-related attributes
in training fingerprint images and the fact that there is no con-
sensus on how particular privacy-related attributes manifest
themselves in fingerprint patterns, validation of this requirement
is not possible yet.

4 EVALUATION
An application of our evaluation concept is demonstrated in an
example of blind evaluation of two synthetic fingerprint datasets
generated by SFinGe (FVC2002 Db4 and FVC2004 DB4).
The main goal of the following evaluation is to assess the postulated
requirements Realistic appearance (R), Diversity (D), and Control-
lable generation (C) for these datasets. This is done by verifying
whether it is possible to differentiate synthetic and real fingerprint
images by comparing their quality value and comparison score dis-
tributions. This analysis is refined by the application of a statistical
test based on the results of histogram metrics utilized to measure
the overlap of the considered distributions.

4.1 Evaluation methodology
4.1.1 Datasets.

PLUS FP Ageing: For the acquisition of this database, 10 differ-
ent fingerprint capturing devices have been used. Five of them are
optical (including two multispectral scanners), four are capacitive
(one swipe) and one is thermal. In total there are 108106 fingerprint
samples, acquired in 4 sessions over a time-span of 2 years from 59
different subjects (50 of these subjects participated in all 4 captur-
ing sessions). Only a subset of the database was used, containing
samples from the third session for six selected capturing devices,
which are: RealScan G1 (optical), URU5100 (optical), Lumidigm
V311 (optical multispectral), Lumidigm M311 (optical multispec-
tral), IB Columbo (capacitive) and NB-3010-U (thermal).

CASIA FP Ageing: The “CASIA Fingerprint Subject Ageing Ver-
sion 1.0” is a publicly available dataset focusing on biometric tem-
plate ageing effects7. The 5880 samples were collected from 49
different subjects in two sessions with 4 years timespan in between.
The imprints’ acquisition was done with three different capturing
devices, two of them are optical (Digital Persona URU4000 and
URU4500), and the last one, the Atmel TouchChip TCRU1C scanner,

7http://biometrics.idealtest.org/dbDetailForUser.do?id=15

is capacitive.

FVC2002 and FVC2004: These benchmark fingerprint datasets
were used during the 2002 and 2004’s fingerprint verification con-
test. Both contain 4 subsets, 3 of them captured by real fingerprint
scanners while the fourth one contains synthetically generated
samples by the SFinGe generator [6]. Each subset includes 800
fingerprint samples from 100 fingers, 8 imprints per finger.

• FVC2002: Db1 - optical sensor “TouchView II” by Identix, Db2 -
optical sensor “FX2000” by Biometrika, Db3 - capacitive sensor
“100 SC” by Precise Biometrics and Db4 - synthetic generated
samples using SFinGe v2.51

• FVC2004: DB1 - optical sensor “V300” by CrossMatch, DB2 - op-
tical sensor “U.are.U 4000” by Digital Persona, DB3 - thermal
sweeping sensor “FingerChip FCD4B14CB” by Atmel and DB4 -
synthetic fingerprint samples using SFinGe v3.00

4.1.2 Tools implementing metrics.

Two different kinds of metrics were used, the first one to evaluate
realistic appearance and the second one to evaluate diversity.
For fingerprints, a natural way to assess the realistic appearance
(requirement R) is to employ standard fingerprint quality metrics.
Hence, we used NFIQ28, NFIQ1 [35] and several quality metrics
suggested by Olsen et al. [32]:

• Frequency Domain Analysis (FDA): This metric is based on ex-
tracting the ridge-valley signature of the imprints in a block-
based manner by computing the Discrete Fourier Transformation
of the signature to determine the frequency of the sinusoid fol-
lowing the ridge-valley structure. This results in a local quality
score, which is averaged over all blocks to derive the final quality
value.

• Gabor quality (GAB): It operates on a per-pixel basis by calcu-
lating the standard deviation of responses from a Gabor filter
bank. This filter bank describes areas in the imprint by measuring
the regular ridge-valley pattern and thus, there will be a high
response from filters containing fingerprint information, while
in areas containing background or unclear ridge-valley structure
the Gabor response of all orientations will be low and constant.

• Gabor-Shen quality (GSH): This block-based metric also makes
use of a Gabor filter bank. The filter response of each Gabor
kernel is computed on the pixels in each block and a standard
deviation is computed on the responses. Using thresholding, each
block is determined to be either foreground or background and
also of poor or good quality.

All those metrics have a different output range with higher values
indicating better quality.

In order to assess the diversity (requirement D), we performed
cross-comparison experiments of the samples using several state-
of-the-art fingerprint recognition systems: Neurotechnology Ver-
iFinger 11.0 SDK9 (output score range [0, 2000]) and Innovatrics

8https://github.com/usnistgov/NFIQ2
9https://www.neurotechnology.com
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ANSI/ISO SDK10 (output score range [0, 1000]) being two represen-
tatives of minutiae-based fingerprint recognition systems as well
as Fingercode (FC) and Phase Only Correlation (POC) [14] (output
score range [0, 1]) as non-minutiae based ones.

In the first case, we generate quality scores for each sample
and, in the second case, comparison scores between pairs of mated
fingerprints (genuine scores) as well as pairs of non-mated finger-
prints (impostor scores). Based on these scores, histograms and
fitted density distributions (to these histograms) are utilised to
further evaluate/illustrate the results. In order to go beyond vi-
sual inspection of distribution plots and to quantify the outcome,
the histograms were compared using the following standard his-
togram metrics: Chi-Squared (Chi), Histogram Intersection (HI)
and Kullback-Leibler (KL) [12]. All three metrics exhibit an output
range of [0, 1] on our data, where 0 means highest possible corre-
spondence between the histograms (for Kullback-Leibler) or lowest
possible correspondence (for Chi-Squared and Histogram Intersec-
tion). Note that e.g. for Chi-Squared the numerical values have
been inverted as compared to the original definition to achieve a
homogeneous interpretation of the values in the employed MatLab
software11. The computed comparison and quality score density
distributions were fitted using a uni-variate kernel density estimate
based fitting.

A five-times repeated random sampling of quality or compari-
son scores was done to ensure an equal number of scores for each
dataset. For imposter scores each time 1000 scores were sampled,
while for genuine scores and the quality values 600 were selected.
This became necessary as the number of samples in the datasets
varies to a great extent. All plots presented in the following show
the averaged results from the random samples independently drawn
for each dataset (the corresponding standard deviation is always
lower than 1%).

Figure 2: Plots showing the high overlap of histogram com-
parison metric results for GSH (left) and NFIQ2 (right).

10https://www.innovatrics.com
11“Histogram distances” https://de.mathworks.com/matlabcentral/fileexchange/39275-
histogram-distances

4.2 Validation of requirements
4.2.1 Realistic appearance (R).

Each of the applied metrics (NFIQ2, NFIQ1, FDA, GSH and GAB)
highly differ from each other in describing different imprint’s char-
acteristics. Thus, the overall trends with regards to synthetic and
real fingerprint samples are highly varying. Figure 1 shows some
examples of these variations detected in the quality value distribu-
tions of FDA (top left), GSH (top right), GAB (bottom right) and
NFIQ2 (bottom left). Not all of the evaluated datasets are depicted,
only those which exhibit a clearly different behaviour to the re-
maining ones. The results obtained using NFIQ1 exhibit a similar
trend to GAB. The utilised line style and colour for each dataset are
the same for all the following score distribution plots (see Figure
4). The choice of the synthetic dataset, either FVC2002 Db4a or
FVC2004 DB4A does have hardly any influence on the plots and
thus, the same trend can be observed regardless of which FVC syn-
thetic subset is taken into account. This can be seen if Figure 3 is
compared with the top left image of Figure 1. Figure 3 depicts also
the FDA quality results, but using FVC2004-DB4A, while the top
left plot of Figure 1 was generated using FVC2002-Db4a sample
information. As the overall tendency for both synthetic datasets
are the same we decided to show only FVC2002-Db4a plots in all
following figures.

Figure 3: FDA quality value distributions using FVC2004 syn-
thetic samples.

Several oddities can be observed. First, in the top left (FDA) at least
one real sample dataset seems to perfectly overlap the distribution
of the synthetic samples. Other distributions exhibit a reduced over-
lap, lowest for both PLUS datasets and there is no overlap present
for GAB and GSH. This indicates that the FVC synthetic data might
have been adjusted to exhibit similar quality levels as the FVC real
data according to NFIQ and other ridge structure based quality
metrics (like FDA).
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Figure 1: Quality value distributions of samples from FVC, CASIA and PLUS datasets using FDA (top left), GSH (top right),
GAB (bottom left) and NFIQ2 (bottom right). The line colour, line style and naming of top left plot was used in all following
distribution plots.

Table 3: P-values of Mann-Whitney-U tests of histogrammet-
ric values from real and synthetic quality value distribution
comparisons. The null hypothesis in each case is defined
such that the histogram metric values of real and synthetic
score distribution comparisons are from continuous distri-
butions with equal medians with an alpha significance level
of 0.01.

NFIQ2 NFIQ FDA GAB GSH
Chi 0.04 0.02 0.62 0.79 0.06
HI 0.04 0.05 0.64 0.89 0.09
KL 0.73 0.98 0.65 0.83 0.0002

In the top right example, showing GSH distributions, the syn-
thetic distributions can be characterised as skewed to the left, while
all (depicted) real datasets are skewed to the right. However, as the
positive/negative skewness is relatively flat, a high overlap of the
quality values can still be detected from a visual point of view.

Overall, the fingerprint quality distributions of synthetic and real
data are sometimes similar (for specific sensor choices), often very
different (for other sensors), but not clearly separable. Hence, a
clear assessment of requirement (R) is not possible based on this
visual inspection.

In order to approach a more quantitative statement, we apply his-
togram metrics to compare the distributions. The aforementioned
visual overlap also affects the utilised histogram metrics to a large
extent, which is shown in Figure 2, visualising the results obtained
by Chi, HI and KL when: a) metric values between synthetic and
real sample distributions are marked as red crosses and b) metric
values between real and real sample distributions are marked as
green circles. In both cases, 21 values have been randomly sampled
from all computed histogram comparisons. In contrast to the distri-
butions visualised in Figures 1 and 4, all the evaluated datasets have
been considered for the random sampling. For case a) only results
involving FVC2002 Db4a samples are shown (results for FVC2004
DB4A would be highly similar). For case b) (real vs real samples) all
combinations of real data distribution comparisons were computed.
The number of included metric values is balanced for both cases.
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Figure 4: Comparison score distributions of samples from FVC, CASIA and PLUS datasets for genuine (left column) as well as
imposter scores (right column) using FC (top row) and Verifinger (bottom row) as fingerprint recognition systems. The line
colour, line style and naming of top left plot was used in all following distribution plots.

Table 4: P-values of Mann-Whitney-U tests of histogrammet-
ric values from real and synthetic score distribution com-
parisons. The null hypothesis in each case is defined such
that the histogram metric values of real and synthetic score
distribution comparisons are from continuous distributions
with equal medians with an alpha significance level of 0.01.

genuine imposter genuine imposter
FC POC

Chi 0.49 0.65 0.0015 0.11
HI 0.39 0.49 0.0013 0.13
KL 0.20 0.16 0.37 0.02

ANSI Verifinger
Chi 0.47 0.69 0.77 0.0000
HI 0.46 0.94 0.95 0.0000
KL 0.22 0.59 0.41 0.0019

For all three metrics it is difficult so clearly separate the results
for case a) and b). Thus, from a quality point-of-view it might be pos-
sible to differentiate between synthetic and real fingerprint samples
in some cases by an in-depth analysis of the respective distributions
by statistical means. In general, using one of the considered metrics

does never lead to an unambiguous decision in terms of differen-
tiating real vs. synthetic data, with the only exception shown in
Table 3, where the p-values for a Mann-Whitney-U test [11] are
presented. The Mann-Whitney-U test is a non-parametric test for
two independent sample sets and allows a t-test identical interpre-
tation of the results. However, it must be noted that the applied test
is computed based on rank sums rather than means as it is done
using a t-test. Here, the selected sample sets are on the one hand
the metric values contained in the aforementioned case a) and on
the other hand those contained in case b). If the values reported
in Table 3 or Table 4 are lower than 0.01, the test indicates that
the metric values have been drawn from different distributions,
i.e. that synthetic and real samples can be differentiated using the
respective metric. Only for one GSH case, which is shown in the
left image of Figure 2, the test indicates that the KL values have
been drawn from different distributions, i.e. that synthetic and real
samples can be differentiated using the KL metric.

Overall, our results indicate that apart from the quality measure
GSH when compared with the KL hsitogram metric, all settings
indicate that the quality distributions of the synthetic data do not
behave differently from the quality distributions of real data (as the
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Figure 5: Plots showing the high overlap of histogram comparison metric results for genuine (left, center left plot) as well
as imposter distributions (center right, right plot) using FC (left, center right plot) and Verifinger (center left, right plot) as
fingerprint recognition systems.

latter also exhibit a significant variety in their respective character-
istics). Therefore, we conclude that requirement R is fulfilled.

4.2.2 Diversity (D) and Controllable generation (C).
Requirements D and C were evaluated using two minutiae and two
non-minutiae based fingerprint recognition systems by generating
genuine and imposter score distributions representing the compar-
ison’s behaviour of all four systems and performing technically the
same analysis on the scores as done for requirement (R).

Score distributions are compared in Figure 4 where the first row
corresponds to the averaged results using FC and the second one us-
ing Verifinger. In general, both minutiae-based systems, Verifinger
and Innovatrics ANSI, exhibited a similar trend which only differs
sightly from the non-minutiae based ones (MC and POC). There is
a high overlap of imposter as well as genuine scores between both
synthetic and real sample distributions.

Requirement D would be violated in case synthetic impostor
score distributions would indicate a higher similarity among un-
related samples as compared to real data. This is clearly not the
case in the examples shown. Thus, diversity (D) is given for the
synthetic data considered. Contrasting to this, requirement C would
be violated in case of strong overlap of genuine and impostor dis-
tributions, respectively. The FC score distributions exhibit a high
overlap for both synthetic as well as real data – this indicates that
FC scores are not suited to be used to assess requirement C. On the
other hand, the Verifinger results do not show significant overlaps,
neither for synthetic, nor for real data. Thus, controllable genera-
tion (C) is given for the synthetic data considered.

The histogram comparison metrics also report a high overlap of
the distributions in general (see Figure 5). The only exceptions to
this trend are the genuine distribution comparisons using FC (Chi
and HI) and imposter scores using Verifinger evaluated by Chi and
KL (the latter being relevant for assessing requirement D). In these
cases some of the “synthetic vs real” sample comparison metric
values can be clearly separated from the “real vs real” results. A

statistical separation using the Mann-Whitney-U test (see Table
4), was not successful for the FC exceptions, while the Verifinger
exceptions (impostor scores) are confirmed by the statistical anal-
ysis as well. According to the performed statistical test, Chi and
HI for the genuine distributions evaluated by POC as well as all
metrics for the impostor distributions evaluated by Verifinger lead
to a separation of synthetic and real distributions. Hence, while a
separation between synthetic and real fingerprint score distribu-
tions is not possible in general, it is feasible in some single cases, in
particular for some specific recognition algorithms. However, while
the impostor distributions are found to be different in these cases,
they are not different in a way to indicate a violation of requirement
D, see above for the corresponding discussion.

5 CONCLUSION AND FUTUREWORK
Our proposed requirements on synthetic fingerprint images (sum-
marized in Table 2) are formulated towards establishing a consensus
on how to evaluate the quality of a generative model that produces
synthetic fingerprints or the quality of a dataset of synthetic finger-
prints. Beyond the standard requirements for realistic appearance,
sufficiently high image resolution, diversity and data anonymity, we
ask for controllable generation, reflection of basic characteristics of
ground truth (training) data for the case of data-driven generation
and finally for equal distribution of privacy-related attributes such
as gender, age, ethnicity, etc. in the generated samples. Moreover,
for each requirement we propose a metric which indicates whether
the requirement is met. We elaborate on which requirements are
more important for which applications focusing on biometric au-
thentication and forensic investigations. We draw a line between
an informed evaluation of a generative model and a blind evalua-
tion of an already generated dataset with respect to the proposed
requirements.

In the experimental part, the proposed requirements are val-
idated for several datasets of real and synthetic fingerprints to
conclude whether it is possible to tell real and synthetic samples
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(or datasets) apart using the proposed metrics. While doing so, we
look into issues of realistic appearance, diversity and controllable
generation.

Our future work will include research and development of GAN-
based generative models capable of conditional generation of finger-
print images incl. embedding artifacts that characterize fingerprint
sensor, substrate influence and environmental conditions as well as
individual characteristics of a finger. We plan a full-stack evaluation
of recently proposed fingerprint generators aiming at comparing
them to each other and establishing their limits. Furthermore, we
are going to study which consequences the violation of one or an-
other requirement would have regarding privacy leakage as well
as validity of the evaluation based on the synthetic data.
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