
Using Ceph’s BlueStore as Object Storage in HPC
Storage Framework

Kira Duwe
kira.duwe@ovgu.de

Otto von Guericke University Magdeburg
Magdeburg, Germany

Michael Kuhn
michael.kuhn@ovgu.de

Otto von Guericke University Magdeburg
Magdeburg, Germany

Abstract
In times of ever-increasing data sizes, data management and
insightful analysis are amidst the most severe challenges
of high-performance computing. While high-level libraries
such as NetCDF, HDF5, and ADIOS2, as well as the associ-
ated self-describing data formats, offer convenient interfaces
to complex data sets, they were built on outdated assump-
tions of storage systems and interfaces. They mostly rely on
the POSIX interface that researchers have been aiming to
replace for decades. Among others, its strict file semantics
are not suitable for current HPC systems. As object storage
has become increasingly prominent to store datasets of data
formats like HDF5, providing a scalable object store back-
end is necessary. Therefore, we looked into Ceph’s object
store BlueStore and developed a backend for the storage
framework JULEA that uses BlueStore without the need for
a full-fledged working Ceph cluster. This way, we signifi-
cantly reduce the prerequisites of running it on an existing
HPC cluster. BlueStore works directly on a raw block device
and thereby circumvents the problems of other Ceph storage
backends like FileStore and KStore.

In a first evaluation, we examine the performance of Blue-
Store and compare it to a POSIX-based solution which shows
our prototype is functional yet not optimized enough to keep
up with the POSIX-based object store. For example, the peak
for explicitly synced writes is 50MB/s for POSIX with a block
size of 4,096 kiB and thereby twice as high as BlueStore’s
with 20.5MB/s.

CCS Concepts: • Software and its engineering → File
systems management.

Keywords: filesystem, object store, BlueStore, JULEA, POSIX,
storage framework, data management

CHEOPS ’21, April 26, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8302-8/21/04.
https://doi.org/10.1145/3439839.3458734

ACM Reference Format:
Kira Duwe and Michael Kuhn. 2021. Using Ceph’s BlueStore as
Object Storage in HPC Storage Framework. InWorkshop on Chal-
lenges and Opportunities of Efficient and Performant Storage Systems
(CHEOPS ’21), April 26, 2021, Online, United Kingdom. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3439839.3458734

1 Introduction
Scientific research has become increasingly data-intensive.
High-resolution simulations generate rapidly growing data
sets that require complex management solutions to perform
meaningful analysis. To these management solutions, effi-
cient data sifting techniques are essential.

However, the hardware and software architecture of large-
scale systems in high-performance computing (HPC) compli-
cate this task. In order to satisfy the demand for high capacity
and high velocity at the same time, typically a hierarchy of
different storage hardware is used.
Another factor increasing the complexity and thus com-

plicating data retrieval is the software stack on top. A typical
I/O (input/output) stack looks similar to Figure 1(a). The
separation between the individual layers allows exchanging
them relatively easily. However, this convenience comes at
the price of performance and management issues, as the
layers are often optimized for different goals.

Parallel Application

ADIOS2/NetCDF

HDF5

MPI-IO

Lustre

Local File System

Block Storage

Parallel Application

ADIOS2/HDF5

JULEA

Local File System

Block Storage

Parallel Application

Block Storage

ADIOS2/HDF5

JULEA

BlueStoreUser
Space

Kernel
Space

(a) (b) (c)

Figure 1. Exemplary HPC I/O stack with I/O libraries, self-
describing data formats, I/O middleware and parallel file sys-
tem for the current state (left) and when using JULEA (mid-
dle) and when using JULEA with Ceph’s BlueStore (right).

This work is licensed under a Creative Commons Attribution International 4.0 License

https://doi.org/10.1145/3439839.3458734
https://doi.org/10.1145/3439839.3458734
https://creativecommons.org/licenses/by/4.0/


CHEOPS ’21, April 26, 2021, Online, United Kingdom Kira Duwe and Michael Kuhn

I/O libraries such as NetCDF (Network Common Data
Form), HDF5 (Hierarchical Data Format), and ADIOS (Adapt-
able IO System) are used to make data handling easier for the
application developers and users. Unfortunately, the associ-
ated self-describing data formats are storage layer agnostic,
capping the potential performance. Furthermore, these li-
braries and most parallel file systems are built on outdated
assumptions and mostly rely on the POSIX (Portable Oper-
ating System Interface) I/O interface that researchers have
been aiming to replace for decades. Among others, POSIX
enforces strict semantics but also treats file data as an opaque
byte stream, which makes it impossible to utilize structural
information on lower layers.

Object Storage. A common approach to circumvent these
restrictions is to store structured information like the file
system metadata in key-value stores, while unstructured
data, like the file content, is stored in object stores. Also, we
have shown in previous work that further splitting of self-
describing file formats allows coupling the data more closely
with the storage system and thereby making use of the data’s
structural information [7]. Therefore, highly scalable key-
value and object stores become increasingly relevant. There
are hundreds of key-value stores and NoSQL databases.1
Furthermore, there exist several object store solutions, espe-
cially for cloud storage, like Amazon S3 and Google Cloud
Storage or open-source variants such as OpenStack Swift2
and MinIO3.
Another prominent example is the Reliable Autonomic

Distributed Object Store (RADOS), which is at the core of
Ceph and provides three services. These are object storage
similar to Amazon S3 through the RADOS Gateway, a vir-
tual block device through the RADOS Block Device, and
the distributed file system CephFS built on POSIX. However,
the Ceph developers turned away from building storage
backends on local file systems, as they deem them unfit for
distributed storage backends [3]. Instead, they designed a
new object store called BlueStore that works directly on raw
storage devices and runs in user-space [2]. This decision
gives more control over the I/O stack and allows them to
decrease performance variability.

BlueStore with JULEA. As this is a very interesting con-
cept, we wanted to know whether it would be possible to use
BlueStore without running a full-fledged Ceph Cluster. As
changes in storage systems that require application changes
are rarely used, we decided to integrate BlueStore into the
JULEA storage framework by Kuhn [6] as it allows running
HDF5 and ADIOS2 applications on top. Furthermore, JULEA
is highly configurable and very modular, reducing our im-
plementation efforts considerably.
1The list of NoSQL database management systems (DBMS) https://hostin
gdata.co.uk/nosql-database/ currently contains 225 DBMS.
2https://opendev.org/openstack
3https://github.com/minio/minio

Figure 1(b) and Figure 1(c) depict the I/O stack using
JULEA and using JULEA with BlueStore. As can be seen,
the stack has become simpler by moving more layers into
the user-space. By using BlueStore, only the block storage
remains in kernel-space.

Contribution. The main contributions of our work are
listed below.

• The option to use BlueStore without running a full-
fledged Ceph cluster

• A prototype for an open-source BlueStore library and
BlueStore backend for JULEA4

• A first evaluation of the BlueStore backend in compar-
ison to the POSIX-based object store

The paper is structured as follows.We give a short overview
of the background of the Ceph storage backends as well as re-
lated work in Section 2. Afterwards in Section 3, we present
the design and implementation of the JULEA backend for
BlueStore. Then we evaluate this backend in comparison to
JULEA’s POSIX-based object store in Section 4 and give an
outlook for future work in Section 5.

2 Background and Related Work
In the following, we will shortly give an overview of the
Ceph architecture as well as related work.

2.1 Ceph
Ceph provides a multitude of storage backends, three of
which are shown in Figure 2, highlighting their internal ar-
chitecture differences [8]. Figure 2(a) depicts FileStore which
is an object store built on top of POSIX where objects are
mapped to files. KStore in Figure 2(b) is the evolved version
without a separate Ceph journal where objects as well as
metadata is handled by a key-value interface. As mentioned
before, BlueStore is very different in that it gives up the lo-
cal file systems entirely as shown in Figure 2(c). Figure 2(d)
shows our approach using both JULEA and BlueStore. The
application typically uses JULEA through our HDF5 VOL
plugin or our ADIOS2 engine to avoid application changes
at all costs.

BlueStore. BlueStore was designed and implemented in
2015 and has been the default storage backend for production
systems of Ceph since 2017 [2]. One of the main motivations
to replace local file systems completely is their lack of trans-
actions and scalable metadata operations. Transactions in dis-
tributed file systems are typically emulated through POSIX
and a write-ahead log (WAL), as can be seen in Figure 2(a).

BlueStore, however, writes the data to the raw storage de-
vice using direct I/O. The metadata is managed by RocksDB,
which runs on a thin user-space file system called BlueFS [1,
2]. Furthermore, low-level file system metadata is stored
in key-value stores such as extent bitmaps. Their reference
4https://github.com/Bella42/julea/tree/objectstore

https://hostingdata.co.uk/nosql-database/
https://hostingdata.co.uk/nosql-database/
https://opendev.org/openstack
https://github.com/minio/minio
https://github.com/Bella42/julea/tree/objectstore


Using Ceph’s BlueStore as Object Storage in HPC Storage Framework CHEOPS ’21, April 26, 2021, Online, United Kingdom

HDD/SSD

NVMe SSD

BlueFS

Objects

Ceph data 

DB WAL RocksDB 

XFS

Ceph data 

Ceph
metadata FS metadata 

FS journal 

Raw Device

XFS

Ceph data 

Ceph
metadata FS metadata 

FS journal 

Application Metadata
Attributes

BlueStore

Ceph Write-Ahead
Journal 

KStore

FileStore

Objects
Metadata
Attributes

Objects
Metadata
Attributes

JULEA API

Objects
Metadata
Attributes

DB WAL LevelDB/ 
RocksDB LevelDB 

BlueFS

Ceph data 

DB WAL RocksDB 

Raw Device
BlueStore

DB WAL 

Ceph API Ceph API Ceph API

(a) (b) (c) (d)

JULEA API

Figure 2. Architecture of the Ceph storage backends FileStore, KStore, BlueStore and BlueStore using JULEA.
The figure is based on the work by Lee et al. [8].

counting and the clone operation have also been optimized.
Lastly, BlueStore makes use of a space allocator that uses
a fixed memory size per TB of disk space. There are also
plans for support of host-managed SMR (Shingled Magnetic
Recording) in BlueStore using a new zone interface. There-
fore, RocksDB and thereby LSM-Trees need to be adapted to
run on SMR drives [3]. Further work to support SMRs has
been done by Aghayev et al. [1].

2.2 Related Work
As discussed before, object-based storage systems are ef-
ficient and scalable to overcome the limitations of the I/O
stack. A prominent example is the Distributed Asynchronous
Object Storage (DAOS) which aims at systems using Storage
Class Memory (SCM) and NVMe storage in user space to
support structured, semi-structured and unstructured data
models [10]. Object-centric storage systems on HSM have
also been shown to improve the performance of HDF5 when
its datasets are stored in the object stores [13, 14]. Further-
more, by using Proactive Data Containers (PDC) as a tuning
technique, the performance can be up to 47 times better than
a highly optimized HDF5 implementation [16].

Another recent approach to optimize themapping of datasets
to object storage shows that pushing the I/O accesses to ob-
ject layer allows distributing it over many servers thereby
exploiting the system’s parallelism[4]. Chu et al. demon-
strate two possible ways using HDF5 VOL plugins on the
one hand and the SkyhookDM Ceph plugin on the other
hand to reorganize the data objects.
Despite the findings of the Ceph developers, Lillaney et

al. argue that dual access over file system semantics and an
object store API is required to satisfy all current demands [11,
12]. Another approach following the dual access concept is
DelveFS which is a user space object store file system [17]. It
uses custom semantics to create unique views onto the object

store and is aimed at large systems using even billions of
objects. Strategies proposed to solve performance problems
of using file systems as storage backends were implemented
in SwimStore (Shadowingwith ImmutableMetadata Store) in
Ceph [9]. Further work on highly-scalable object storage has
also been performed by ECMWF. In their system MARS [5]
they use the Fields Database (FDB), which is both a library
and a storage service working on Lustre as of now [15].

3 Design and Implementation
As we wanted to test whether it would be possible to use the
BlueStore without a Ceph cluster, our aim in the design and
implementation was to build a proof of concept prototype.
Therefore, it is currently not very optimized and leaves a lot
of untapped potentials.

JULEA. JULEA is a storage framework offering high flexi-
bility. Also, it is a user-space system and thereby allows easy
development, debugging as well as deployment on larger
HPC clusters as no root access is necessary to run it. JULEA
supports a multitude of technologies, among others SQLite,
MariaDB, MongoDB, LevelDB, LMDB.

Compute Node #2

Compute Node #1

Storage Node #2

Storage Node #1

Application

Application

MPI

JULEA Client JULEA Server

Database

Object Store

JULEA ServerJULEA Client Object Store

TCP

Figure 3. JULEA architecture with two distinct compute and
storage nodes each.



CHEOPS ’21, April 26, 2021, Online, United Kingdom Kira Duwe and Michael Kuhn

(a) BlueStore backend with syncing (b) POSIX backend with syncing

Figure 4. Throughput for writing and reading with explicit syncing for BlueStore and POSIX. All operations are evaluated
with and without batching. The lineplots show the mean throughput.

(a) BlueStore backend (b) POSIX backend

Figure 5. Throughput for writing without explicit syncing
for BlueStore and POSIX. All operations are evaluated with
and without batching. The lineplots show the mean through-
put.

The general JULEA architecture is shown in Figure 3.
When using JULEA, the application interacts with one or sev-
eral JULEA clients that communicate with the appropriate
backends. The backends are managed by server processes on
the appropriate nodes. By offering a generic interface for ev-
ery one of these concepts the actual implementations can be
easily exchanged. So it is possible, just by adapting the con-
figuration, to switch the database backend, e.g. from SQLite
to MariaDB. Moreover, the backends can be deployed at dif-
ferent hardware levels, increasing the versatility of JULEA
considerably.
Currently, the object store is a prototype built to store

the data directly in POSIX which brings along the expected

limitations discussed in the introduction. Objects are mapped
to files similar to Ceph’s FileStore.

BlueStore Library and Backend. To ease the future us-
age of BlueStore independently of Ceph, we developed a
small library providing the general functionality. The follow-
ing calls are supported at the moment: init, mkfs, mount,
create collection, umount, create, delete, write, read,
status The JULEA backend for BlueStore is in essence a thin
layer wrapping the library functions. Thus, the object store
client uses the BlueStore backend which in turn uses the
BlueStore Library.

How To. To use BlueStore with JULEA, the user needs to
be able to either install the Ceph dependencies themselves
or convince the admin of their cluster to provide them. Then,
Ceph needs to be compiled to obtain the necessary BlueStore
libraries. We run BlueStore on a loop device as block storage
to avoid having to repartition the existing storage devices.
Even though the current state is still away from our final
goal to extract BlueStore, it offers a considerable simplifi-
cation compared to the only previous option of running a
full-fledged Ceph cluster.

4 Evaluation
In the following, we first explain our setup and then we
present the results of our evaluation of BlueStore. We com-
pared JULEA using the BlueStore backend against JULEA
using the POSIX-based object store. We used one compute
node for now, to avoid conflicts between Ceph and the NFS
of our cluster.

Hardware. The compute node is equipped with 4 × AMD
Opteron 6344, 128GB of main memory and a 1 TB WDC
WD1003FBYZ-010FB0 HDD (with a maximum throughput
of roughly 130MB/s). For a baseline, we measured the HDD’s



Using Ceph’s BlueStore as Object Storage in HPC Storage Framework CHEOPS ’21, April 26, 2021, Online, United Kingdom

writing performance to be 109MB/s using dd with a block
size of 4k and the sync flag:

1 dd if=/dev/zero of=dummy bs=4k
↩→ count =1000 oflag=sync
↩→ status=progress

Listing 1. dd call for HDD performance baseline

Software. For the purpose of reproducibility, we list the
version of the software we used below:

• OS + Kernel: Ubuntu 4.15.0-118-generic
• Ceph: master from 2021-02-135
• JULEA BlueStore: from 2021-02-236
• Compiler: GCC 9.3.0

Evaluation. Asmentioned before, this evaluation ismeant
as a first step towards an understanding of BlueStore and
its application areas. The results for both the BlueStore and
the POSIX backend can be found in Figures 4 and 5. We per-
formed measurements for various durations ranging from 1
second to 512 seconds, to rule out variability over time. As
we found none, we present the results for a duration of 4
seconds per block size over a total of 10 runs for block sizes
from 4KiB to 4,096 KiB.
To avoid measuring only the cache, we set JULEA’s stor-

age semantics parameter to storage=safety for the runs
in Figure 4, meaning that every operation is directly synced
to the HDD. However, as this is very extreme behavior, we
also evaluated batched JULEA operations. Depending on the
block size, a sync is performed after every 10.000th operation
for block sizes up to 256 kiB, respectively 1.000th operation
for all larger block sizes.
This difference does not have an impact on the perfor-

mance as can be seen in all plots. As the results for synced
and unsynced reading are very similar for both backends, we
only show the synced results for brevity’s sake. The resem-
blance is no surprise, as the explicit syncing in JULEA does
not considerably change the internal behavior for reading.

Discussion. Synced writes without batching behave simi-
larly in both POSIX and BlueStore. However, POSIX achieves
about double BlueStore’s performance, with POSIX reaching
a peak performance of 50MB/s for 4,096 KiB blocks whereas
BlueStore only achieves 20.5MB/s. Batching improves the
synced writes for BlueStore and POSIX but only up to a block
size of 512 kiB with a peak of 24.9MB/s and 94MB/s, respec-
tively. The large drop afterwards to 10.3MB/s for BlueStore
and 28MB/s for POSIX is unexpected and does not corre-
spond to the change in batch size mentioned earlier. The
exact reasons still have to be investigated. The unsynced

5https://github.com/ceph/ceph/commit/71c33b8466d3af08d285896f42c9f1
2075d44091
6https://github.com/Bella42/julea/commit/bec331dae4e2c7c7183e6e4504
7368b8c28aa971

results have their peak performance at either 512 kiB or 1024
kiB for all operations for both backends. There are caching in-
fluences that we could not circumvent yet, as can be seen for
the reading performance. The BlueStore results vary wildly,
which again points to cache interference. Nevertheless, the
results are still meaningful as real workloads will also en-
counter cache interference.

5 Conclusion and Future Work
We showed that BlueStore can be used as a semi-standalone
object store. The evaluation showed that while there are still
a lot of untapped potentials, our simple BlueStore backend
works well. In the future, we want to decouple it from Ceph
further, so that ideally not all Ceph dependencies need to
be installed. Also, we will make use of more in-depth Ceph
functionality to optimize the behavior. Furthermore, we will
evaluate BlueStore’s suitability to run across several nodes
with JULEA.

Acknowledgments
This work is funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – 417705296.
More information about the CoSEMoS (Coupled Storage
System for Efficient Management of Self-Describing Data
Formats) project can be found at https://cosemos.de.
We also thank our student Johannes Coym for his work

on the BlueFS library and the JULEA backend.

References
[1] Abutalib Aghayev, Sage Weil, Greg Ganger, and George Amvrosiadis.

2019. Reconciling LSM-Trees with Modern Hard Drives using BlueFS.
Technical Report. Technical Report CMU-PDL–, CMU Parallel Data
Laboratory. https://www.pdl.cmu.edu/PDL-FTP/FS/CMU-PDL-19-
102.pdf

[2] Abutalib Aghayev, Sage A. Weil, Michael Kuchnik, Mark Nelson, Gre-
gory R. Ganger, and George Amvrosiadis. 2019. File systems un-
fit as distributed storage backends: lessons from 10 years of Ceph
evolution. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-
30, 2019, Tim Brecht and Carey Williamson (Eds.). ACM, 353–369.
https://doi.org/10.1145/3341301.3359656

[3] Abutalib Aghayev, Sage A. Weil, Michael Kuchnik, Mark Nelson, Gre-
gory R. Ganger, and George Amvrosiadis. 2020. The Case for Custom
Storage Backends in Distributed Storage Systems. ACM Trans. Storage
16, 2 (2020), 9:1–9:31. https://doi.org/10.1145/3386362

[4] Xiaowei Chu, Jeff LeFevre, Aldrin Montana, Dana Robinson, Quincey
Koziol, Peter Alvaro, and Carlos Maltzahn. 2020. Mapping Datasets to
Object Storage System. CoRR abs/2007.01789 (2020). arXiv:2007.01789
https://arxiv.org/abs/2007.01789

[5] Matthias Grawinkel, Lars Nagel, Markus Mäsker, Federico Padua, An-
dré Brinkmann, and Lennart Sorth. 2015. Analysis of the ECMWF
Storage Landscape. In Proceedings of the 13th USENIX Conference on File
and Storage Technologies, FAST 2015, Santa Clara, CA, USA, February
16-19, 2015, Jiri Schindler and Erez Zadok (Eds.). USENIX Associa-
tion, 15–27. https://www.usenix.org/conference/fast15/technical-
sessions/presentation/grawinkel

[6] Michael Kuhn. 2017. JULEA: A Flexible Storage Framework for HPC. In
High Performance Computing - ISC High Performance 2017 International

https://github.com/ceph/ceph/commit/71c33b8466d3af08d285896f42c9f12075d44091
https://github.com/ceph/ceph/commit/71c33b8466d3af08d285896f42c9f12075d44091
https://github.com/Bella42/julea/commit/bec331dae4e2c7c7183e6e45047368b8c28aa971
https://github.com/Bella42/julea/commit/bec331dae4e2c7c7183e6e45047368b8c28aa971
https://cosemos.de
https://www.pdl.cmu.edu/PDL-FTP/FS/CMU-PDL-19-102.pdf
https://www.pdl.cmu.edu/PDL-FTP/FS/CMU-PDL-19-102.pdf
https://doi.org/10.1145/3341301.3359656
https://doi.org/10.1145/3386362
https://arxiv.org/abs/2007.01789
https://arxiv.org/abs/2007.01789
https://www.usenix.org/conference/fast15/technical-sessions/presentation/grawinkel
https://www.usenix.org/conference/fast15/technical-sessions/presentation/grawinkel


CHEOPS ’21, April 26, 2021, Online, United Kingdom Kira Duwe and Michael Kuhn

Workshops, DRBSD, ExaComm, HCPM, HPC-IODC, IWOPH, IXPUG,
Pˆ3MA, VHPC, Visualization at Scale, WOPSSS, Frankfurt, Germany,
June 18-22, 2017, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 10524), Julian M. Kunkel, Rio Yokota, Michela Taufer, and
John Shalf (Eds.). Springer, 712–723. https://doi.org/10.1007/978-3-
319-67630-2_51

[7] Michael Kuhn and Kira Duwe. In press. Coupling Storage Systems and
Self-Describing Data Formats for Global Metadata Management. In
International Conference on Computational Science and Computational
Intelligence (CSCI 2020). Conference Publishing Services (CPS).

[8] Dong-Yun Lee, Kisik Jeong, Sang-Hoon Han, Jin-Soo Kim, Joo-Young
Hwang, and Sangyeun Cho. 2017. Understanding write behaviors of
storage backends in ceph object store. In Proceedings of the 2017 IEEE
International Conference on Massive Storage Systems and Technology,
Vol. 10.

[9] Eunji Lee, Youil Han, Suli Yang, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. 2018. How to Teach an Old File System
Dog New Object Store Tricks. In 10th USENIX Workshop on Hot Topics
in Storage and File Systems, HotStorage 2018, Boston, MA, USA, July
9-10, 2018, Ashvin Goel and Nisha Talagala (Eds.). USENIX Association.
https://www.usenix.org/conference/hotstorage18/presentation/lee

[10] Zhen Liang, Johann Lombardi, Mohamad Chaarawi, and Michael Hen-
necke. 2020. DAOS: A Scale-Out High Performance Storage Stack
for Storage Class Memory. In Supercomputing Frontiers - 6th Asian
Conference, SCFA 2020, Singapore, February 24-27, 2020, Proceedings
(Lecture Notes in Computer Science, Vol. 12082), Dhabaleswar K. Panda
(Ed.). Springer, 40–54. https://doi.org/10.1007/978-3-030-48842-0_3

[11] Kunal Lillaney, Vasily Tarasov, David Pease, and Randal C. Burns. 2019.
Agni: An Efficient Dual-access File System over Object Storage. In
Proceedings of the ACM Symposium on Cloud Computing, SoCC 2019,
Santa Cruz, CA, USA, November 20-23, 2019. ACM, 390–402. https:
//doi.org/10.1145/3357223.3362703

[12] Kunal Lillaney, Vasily Tarasov, David Pease, and Randal C. Burns. 2019.
The Case for Dual-access File Systems over Object Storage. In 11th
USENIX Workshop on Hot Topics in Storage and File Systems, HotStorage
2019, Renton, WA, USA, July 8-9, 2019, Daniel Peek and Gala Yadgar
(Eds.). USENIX Association. https://www.usenix.org/conference/hots
torage19/presentation/lillaney

[13] Jingqing Mu, Jérome Soumagne, Suren Byna, Quincey Koziol, Houjun
Tang, and Richard Warren. 2020. Interfacing HDF5 with a scalable
object-centric storage system on hierarchical storage. Concurr. Comput.
Pract. Exp. 32, 20 (2020). https://doi.org/10.1002/cpe.5715

[14] Jingqing Mu, Jérome Soumagne, Houjun Tang, Suren Byna, Quincey
Koziol, and Richard Warren. 2018. A Transparent Server-Managed
Object Storage System for HPC. In IEEE International Conference on
Cluster Computing, CLUSTER 2018, Belfast, UK, September 10-13, 2018.
IEEE Computer Society, 477–481. https://doi.org/10.1109/CLUSTER.
2018.00063

[15] Simon D. Smart, Tiago Quintino, and Baudouin Raoult. 2019. A High-
Performance Distributed Object-Store for Exascale Numerical Weather
Prediction and Climate. In Proceedings of the Platform for Advanced
Scientific Computing Conference, PASC 2019, Zurich, Switzerland, June
12-14, 2019. ACM, 16:1–16:11. https://doi.org/10.1145/3324989.3325726

[16] Houjun Tang, Suren Byna, Stephen Bailey, Zarija Lukic, Jialin Liu,
Quincey Koziol, and Bin Dong. 2019. Tuning Object-Centric Data
Management Systems for Large Scale Scientific Applications. In 26th
IEEE International Conference on High Performance Computing, Data,
and Analytics, HiPC 2019, Hyderabad, India, December 17-20, 2019. IEEE,
103–112. https://doi.org/10.1109/HiPC.2019.00023

[17] Marc-André Vef, Rebecca Steiner, Reza Salkhordeh, Jörg Steinkamp,
Florent Vennetier, Jean-François Smigielski, and André Brinkmann.
2020. DelveFS - An Event-Driven Semantic File System for Object
Stores. In IEEE International Conference on Cluster Computing, CLUS-
TER 2020, Kobe, Japan, September 14-17, 2020. IEEE, 35–46. https:

//doi.org/10.1109/CLUSTER49012.2020.00014

https://doi.org/10.1007/978-3-319-67630-2_51
https://doi.org/10.1007/978-3-319-67630-2_51
https://www.usenix.org/conference/hotstorage18/presentation/lee
https://doi.org/10.1007/978-3-030-48842-0_3
https://doi.org/10.1145/3357223.3362703
https://doi.org/10.1145/3357223.3362703
https://www.usenix.org/conference/hotstorage19/presentation/lillaney
https://www.usenix.org/conference/hotstorage19/presentation/lillaney
https://doi.org/10.1002/cpe.5715
https://doi.org/10.1109/CLUSTER.2018.00063
https://doi.org/10.1109/CLUSTER.2018.00063
https://doi.org/10.1145/3324989.3325726
https://doi.org/10.1109/HiPC.2019.00023
https://doi.org/10.1109/CLUSTER49012.2020.00014
https://doi.org/10.1109/CLUSTER49012.2020.00014

