
Dissecting Self-Describing Data Formats to Enable
Advanced Querying of File Metadata

Kira Duwe
Otto von Guericke University Magdeburg

Magdeburg, Saxony-Anhalt
kira.duwe@ovgu.de

Michael Kuhn
Otto von Guericke University Magdeburg

Magdeburg, Saxony-Anhalt
michael.kuhn@ovgu.de

ABSTRACT
In times of continuously growing data sizes, performing
insightful analysis is increasingly difficult. I/O libraries such
as NetCDF and ADIOS2 offer options to manage additional
metadata to make the data retrieval more efficient. However,
queries on this metadata are difficult as it is currently stored
inside the corresponding self-describing data formats.

By replacing the file system underneath with the storage
framework JULEA, we can use dedicated backends for key-
value and object stores, as well as databases. Splitting the
BP file content into file metadata and file data enables novel
and highly efficient data management techniques without
creating redundancy.We have kept our approach transparent
to the application layer by implementing a custom ADIOS2
engine. Moreover, our data analysis interface allows speeding
up metadata queries by a factor of up to 60,000 in comparison
to the ADIOS2 API and data formats.

CCS CONCEPTS
• Information systems → Distributed storage; Hierar-
chical storage management; •Computer systems orga-
nization→ Client-server architectures.

KEYWORDS
Metadatamanagement, Self-describing data formats, ADIOS2,
JULEA, Metadata querying
ACM Reference Format:
Kira Duwe andMichael Kuhn. 2021. Dissecting Self-Describing Data
Formats to Enable Advanced Querying of File Metadata. In The 14th
ACM International Systems and Storage Conference (SYSTOR ’21),
June 14–16, 2021, Haifa, Israel. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3456727.3463778

SYSTOR ’21, June 14–16, 2021, Haifa, Israel
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8398-1/21/06.
https://doi.org/10.1145/3456727.3463778

1 INTRODUCTION
Large-scale simulations and high-volume streaming systems
generate rapidly growing data sets that are increasingly dif-
ficult to manage and find insights in. For these growing
data sets, it is vital to sift through the data volumes most
efficiently [5]. However, the hardware hierarchy of high-
performance computing (HPC) systems complicates the data
analysis. Another factor increasing the complexity is the
software stack on top. The stack splits into several mostly
isolated layers. While this allows exchanging them, the iso-
lation leads to performance and management issues; e.g.,
how and where to optimize the data access. Furthermore,
the stack is built on the outdated POSIX (Portable Operating
System Interface) I/O interface.
To make filtering raw data easier, I/O libraries such as

NetCDF (Network Common Data Form), HDF5 (Hierarchical
Data Format), and ADIOS (Adaptable IO System)[18], and the
according self-describing data formats (SDDFs) are used. The
goal is to provide self-explanatory data that can be exchanged
between researchers easily while enabling sifting features
to cope with the large data sizes. This is accomplished by
the options to annotate the data with information about
the experiment. All of these formats support the notion of
variables and attributes. While HDF5 focuses on hierarchical
structuring, ADIOS2 aims for a very flat namespace. Though
differing in the exact metadata associated with a variable,
the variable concepts can be mapped onto or transformed
into one another.

1.1 Separating file metadata
Parallel file systems manage files and folders and the re-
sulting file system metadata. Its distinction to file content
is long established. However, we propose to also split the
file content into file metadata and file data. File metadata
is the core feature of an SDDF. It is the structural informa-
tion about the data as well as annotations and additional
statistical metadata like minima.
Currently, the file metadata is stored within the file on

data servers. There, it is treated as data and can, therefore,
only be accessed using optimizations for data retrieval such

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3456727.3463778
https://doi.org/10.1145/3456727.3463778
https://creativecommons.org/licenses/by/4.0/

SYSTOR ’21, June 14–16, 2021, Haifa, Israel Kira Duwe and Michael Kuhn

as large continuous reads. However, to make use of the in-
formation effectively, it has to be accessible as metadata,
typically characterized by small and random accesses. There-
fore, we dissect the file format and store the file metadata in
a database and the data in an object store.

In climate research, simulations can reach several petabytes
(PB) for large ensemble runs that need to be stored for decades
to validate themodels [19]. For cost andmaintenance reasons,
the data is archived in tape storage. The ADIOS2 formats
BP3 and BP4 store the minima and maxima of every step
and block for all variables. Still, to locate all variables in
a specific value range, all files have to be read. By storing
the file metadata separately, only accesses to the variables
meeting the query expression are required instead of scan-
ning the complete data. This is where we see great untapped
potential.

1.2 Contribution
In prior work, we showed that storing the separated file meta-
data of HDF5 in a key-value store is beneficial even for trivial
tasks as iterating over all attributes [15]. In this paper, we
show this separation also works for ADIOS2 formats and we
extend this idea to enable complex queries by using a data-
base instead. The database allows us to work directly with the
data, without having to serialize and deserialize the values
every time they are written or read. Furthermore, we en-
hance the statistics ADIOS2 manages, like minima/maxima,
and show the benefits of precomputing and storing values
such as the average in the database as well.
Summary of our contribution: 1). We developed a design

for how to split up BP3/BP4 to enable querying on file meta-
data without data duplication. 2). We implemented this sep-
aration inside the ADIOS2 library by building an engine
that stores the file metadata in a database in JULEA and
the file data in an object store. Our engine also stores the
mean values for a variable, highlighting the flexibility of our
concept over static file formats. 3). We evaluated our engine
in comparison to BP3 and BP4 for parallel and distributed
writing and reading. We showed the performance benefits
for querying in a post-processing scenario can be as high as
a factor of 60,000. 4). All code is open source1.

2 ADIOS2 & JULEA
The ADIOS2 data model is focused on variables and at-
tributes, completely discarding any other object types for
hierarchical structuring such as groups or links, as found in,
e.g., HDF5 [9]. The data is arranged in steps which are subdi-
vided into blocks. In contrast to BP3, BP4 uses an index table
to keep track of the chunked metadata and is reported to
maintain a relatively constant overhead with an increasing
1https://github.com/julea-io/adios2

step number [6]. By introducing the concept of data charac-
teristics, the BP formats can capture additional statistics as
the value range.

The actual writing and reading behavior of ADIOS2 is de-
termined by the used engine. It will perform the data output
and input and communicate with the system’s I/O resources.
The engine component is built such that it constitutes the
point of application to implement new I/O behavior. We real-
ized the format dissection by implementing our own ADIOS2
engine.

JULEA. To realize the file metadata separation, we needed
to exchange the parallel file system below with a storage
design consisting of dedicated backends using integrated
databases, object stores, and key-value stores. Had we con-
tinued to use Lustre, the database could only be used on top
of the file system instead of replacing it. We chose JULEA,
which is a storage framework that provides building blocks
for a custom storage system [14]. JULEA runs completely in
userspace, thereby avoiding the need for root administrative
privilege and easing debugging and development.

Figure 1 shows the JULEA architecture.When using JULEA,
the application interacts with one or several clients that com-
municate with the backend managed by server processes
on the storage nodes. As the interfaces are generic, the ac-
tual implementations can be exchanged, e.g., from SQLite
to MariaDB. Currently, the object store is a prototype built
to store the data directly in POSIX, which brings along the
expected limitations discussed in the introduction. However,
it is a sufficient basis to evaluate the format dissection in gen-
eral. Also, the network communication is based on TCP/IP,
considerably increasing the overhead.

3 DESIGN AND IMPLEMENTATION

ADIOS2

JULEA Client

DAI

JULEA Server

Compute Node #1

Compute Node #2

Storage Node #1

Storage Node #2

Object Store

MariaDB File System

Application

ADIOS2

JULEA ClientApplication

MPI

Object Store

JULEA Server

TCP

File System

Figure 1: Benchmark setupwith two compute and stor-
age nodes.

The core component of our work is the design and imple-
mentation of an ADIOS2 engine that handles the separation
of the file data and file metadata. Figure 1 shows one of the

https://github.com/julea-io/adios2

Dissecting Self-Describing Data Formats to Enable AdvancedQuerying of File Metadata SYSTOR ’21, June 14–16, 2021, Haifa, Israel

JULEA configurations that we evaluated in detail. The appli-
cation is distributed across two compute nodes using MPI. It
uses the ADIOS2 library for its I/O, internally employing our
engine that uses the JULEA client to forward the metadata
and data to different backends. Note that the original BP file
is not stored as a file anywhere in JULEA. The data is split
into chunks and spread across the distributed object store
servers, similar to Lustre’s striping. The object store makes
use of the underlying local file system to store the data. The
metadata, however, is stored in a database. We do not use a
distributed database for now, as the file metadata size is small
enough to fit into a single instance. Thereby, we can avoid
the overhead of keeping a distributed database consistent.
The performance bottleneck for a large number of MPI pro-
cesses can be mitigated by moving the database to a faster
hardware layer which is shown in Figure 2. Nevertheless, we
will examine the possibilities for a distributed database in
the future.

Data Distribution. Figure 1 also shows how the application
output is split into file metadata and data and then stored sep-
arately. Currently, SQLite is run in the main memory while
MariaDB resides on HDDs. In the future, JULEA will make
full use of new technologies such as NVRAM to store the
databases. The data chunks are identified by a unique ID that
is assigned to the specific combination of the file name, vari-
able name, step, and block. This allows fine-grained access to
the data. Data identification through the ID also means that
migrating the database or the object store is uncomplicated
as it does not require path updates. We evaluate SQLite and
MariaDB as the database backends.

ADIOS2

CPU

Application

NVRAM/SSD/HDD

Distributed File System

BP File

Application

SQLite

MariaDB

Object Store

Current JULEA

Application

SQLite

MariaDB

Object Store

Future JULEA

Object Store
SSD

HDD

NVRAM

CPU CPU

RAM

HDD

Figure 2: Different storage components on correspond-
ing hardware layers

The separation of file metadata and data allows us to use
JULEA’s versatile configuration features as depicted in Fig-
ure 2. So, the database can be stored on faster hardware than
the object store without the need for large amounts of fast

hardware. This is possible because the database does not
hold the data and therefore is small compared to the original
file size.

JULEA-DB engine. We have implemented an ADIOS2 en-
gine (JULEA-DB) to realize the format dissection. In ADIOS2,
the metadata for a variable includes the global minimum and
maximum while each block saves the local ones. We store
the step and block information as well as the dimensions of
the data arrays and their location in the global MPI space
shared across all processes.

The computation of the mean value is not part of ADIOS2
but added to highlight the gained flexibility over the SDDFs.
We see great potential in the option to customize additional
file metadata where users can specify values or expressions
that should be calculated and stored in the database for faster
post-processing. Currently, our data analysis interface (DAI)
(see Figure 1) is a rudimentary prototype. This custom meta-
data can only be accessed through the JULEA client and will
be lost when exporting data to BP files.

4 EVALUATION
We evaluated the performance of the JULEA-DB engine us-
ing SQLite and MariaDB in comparison to the BP3 and BP4
engines. Our main focus was not necessarily to achieve a
competitive performance but to illustrate the value of the
format dissection for analyzing and post-processing. How-
ever, as I/O constitutes one of the most severe bottlenecks in
HPC systems, the writing performance is still very relevant.

Setup. Each compute node is equipped with 4 × AMD
Opteron 6344, 128–256GB of main memory and a 1 TB HDD
(with a maximum throughput of roughly 130MB/s). The
Lustre system uses 10 × 2 TB HDDs for a total capacity of
20 TB, while the metadata is stored on a single 160GB SSD
for fast access. The compute nodes are connected to the
Lustre nodes via 1Gbit/s Ethernet but also have a 40Gbit/s
InfiniBand connection with each other. Since the compute
nodes are not equipped with SSDs, we opted to put SQLite
databases into the main memory. MariaDB was run on one
of the compute nodes’ HDDs, though.

4.1 Write and Read Performance
To evaluate the write and read performance, we used the
heat transfer application from the ADIOS2 examples [16]. It
solves the 2D Poisson equation using finite differences for
the temperature distribution in homogeneous media. The
data rates shown in Figure 3 are the mean values of the
individual I/O times of each process per step over all steps.
To reduce cache influences, we dropped the cache in between
writing, reading, and querying. Also, we explicitly sync the
data so that it is written in the measured time frame. In

SYSTOR ’21, June 14–16, 2021, Haifa, Israel Kira Duwe and Michael Kuhn

the case of JULEA, we synchronize the writing of every
block, i.e. the data of each process. For the BP engines, we
adapted the POSIX file transport to flush at the end of each
step. This means, that the BP engines are synced less than
JULEA which needs to be considered when comparing the
results. Note that we have ten storage nodes and only four
compute nodes. When using BP3 and BP4, we write to the
Lustre storage nodes. However, when evaluating the JULEA-
DB engine, we cannot use them as we replaced Lustre with
JULEA to simplify the I/O stack.We can give a rough estimate
of this impact as we performed measurements using one
node where BP3 and BP4 wrote to both the local HDD and
Lustre. The local HDD is limited in terms of parallel accesses
in contrast to the ten storage nodes of Lustre.
The most notable difference was reached using 24 pro-

cesses for BP4 where local writes achieved 30MB/s in con-
trast to 54MB/s using Lustre. When reading, Lustre achieved
60MB/s and thus about double the local performance of
30MB/s. We also evaluated different matrix sizes and found
that all configurations behaved similarly for sizes 10242,
20482, and 40962. So, we only present the results of the
largest matrix size as it is the most relevant for HPC systems.

Figure 3:Write and read performance for 4 nodes with
1 to 48 processes per node and matrix size of 40962.

In Figure 3 the data rates for four nodes are shown. The
BP data rates grow as expected by a factor of four. JULEA,
however, only achieves an improvement by a factor of two
for several reasons. One is the mentioned disadvantage of
the local storage in contrast to Lustre. Also, the very strict
data syncing, the overhead of the TCP/IP network stack and
the object store being emulated by POSIX contribute to it.
Both the reading and writing performance for JULEA unsur-
prisingly benefit from running the database in the RAM in
the case of SQLite compared to the MariaDB server running
on the HDD.

4.2 Query Time
The main focus of this paper is to demonstrate the value of
the format dissection it has for querying and post-processing.
For this, we developed two query applications, ADIOS2-
Query and JULEA-Query. The question we want to answer
in our example query is: What block does have the largest
difference between its mean value in step 1 and step 5?

ADIOS2-Query uses the ADIOS2 API to query the data.
To answer the question, it needs to read the complete data
of step 1 and step 5, and compute the mean value for each
block. It then needs to determine the index of the block,
with the largest difference between its two mean values. The
matching results for the variable steps 1 and 5 are read from
the file in Lustre.
To validate the usefulness of the data analysis interface

(DAI) depicted in Figure 1 we also wrote a query applica-
tion directly interfacing the JULEA storage system. Using
the JULEA API, we can access the mean value that has been
precomputed by the JULEA-DB engine when writing the
data blocks. This query application, therefore, does not need
to access the object store containing the data. It is sufficient
to read the mean values from the respective database and
compute the differences accordingly to ADIOS2-Query. The
measured time contains the time to read the mean values and
the computation time. The time to precompute the means is
captured in the writing performance of the JULEA engine.
In Figure 4 the query time is depicted for 1, 2 and 4 nodes.
The number of blocks is determined by the number of MPI
processes of the writing application and is therefore iden-
tical to the labels of the x-axis of the previous figures. As
Figure 4 clearly shows, JULEA-Query is incredibly fast and
does at maximum not even take a second to finish. To have
a direct comparison, we not only evaluated the BP engines
for ADIOS2-Query but also the JULEA-DB engine. Using the
ADIOS2 API, there is no way to access the additional meta-
data stored in the database. Therefore, the JULEA-DB query
time consists mostly of the time it takes to read steps 1 and
5, which also applies to the BP engines. When querying 192
blocks, both SQLite and MariaDB take 0.01s while BP3 and
BP4 need 621s and 601s, respectively. This is a performance
improvement of roughly 60000 when using our engine with
the DAI layer.

5 RELATEDWORK
To improve the metadata management, large-scale research
projects often develop domain or even system specific so-
lutions that are therefore not widely applicable [2, 7, 8, 10,
20, 24]. Other popular attempts to improve efficient data
querying and retrieval focus on marking relevant regions of
the data with labels [22, 23]. EMPRESS2 is another approach
for using labels to improve the metadata management [17].
It offers custom metadata tags enabling users to highlight
interesting areas of data before storing. Thereby, the post-
processing can be eased, as scanning the complete data is no
longer required. It outperforms established self-describing
formats, such as HDF5, in metadata querying considerably.
Lawson et al. show the value of a relational database man-
agement system (RDBMS) for the management of scientific

Dissecting Self-Describing Data Formats to Enable AdvancedQuerying of File Metadata SYSTOR ’21, June 14–16, 2021, Haifa, Israel

1 3 6 12 24 48
Blocks

10−2

10−1

100

101

102

103
s

Query time for 1 node
JULEA-Q MariaDB
JULEA-Q SQLite
ADIOS2-Q MariaDB

ADIOS2-Q SQLite
ADIOS2-Q BP3
ADIOS2-Q BP4

2 6 12 24 48 96
Blocks

Query time for 2 nodes

4 12 24 48 96 192
Blocks

Query time for 4 nodes

Figure 4: Query time for ADIOS2-Query and JULEA-Query for 1, 2 and 4 nodes. The number of blocks equals the
number of processes for writing and reading. The matrix size is 40962. Note the log scale for the time (y-axis).

metadata in HPC. As Zhang et al. emphasize, having to main-
tain a separate database introduces several problems [3, 27].
Besides EMPRESS they discuss other projects using RDBMSs
for metadata management like BIMM [13] and SPOT [25]. An
approach to circumvent the required transformation of meta-
data is JAMO, which uses the document database MongoDB,
yet still shares the same drawbacks as the RDBMS-based
proposals. Most importantly, using a database typically leads
to duplication of metadata. By replacing the file system with
JULEA, we can employ an integrated database and thereby
avoid metadata duplication. Also, this removes the challenge
of keeping the data consistent across the files and the data-
base. Zhang et al. bypass these challenges by introducing
MIQS (Metadata Indexing and Querying Service) for HDF5.
MIQS constitutes a schema-free solution that maintains an
in-memory index for each process. The relation between
attributes and file paths, however, needs to be stored re-
dundantly. Finally, the ADIOS developers have evaluated
different block indexing techniques to speed up the ADIOS
metadata management. As of now (ADIOS2 version 2.6), the
query interface [21] is not deployed in ADIOS2. The index
concepts follow a similar line as to MIQS by building an
index on a file allowing direct metadata access and faster
data access [11, 26]., Though it improves the querying per-
formance in general, the index processing time impacts the
performance, as a large number of blocks slows down the
used indexing mechanisms considerably.

6 CONCLUSION AND FUTUREWORK
In summary, we were able to show the possible performance
improvement for data querying that can be achieved by sepa-
rating the BP file format into file metadata and file data. This
dissection has allowed us to exploit storage characteristics
for improved performance, especially for query scenarios.
Specifically, the database can be stored on faster storage
technologies such as SSDs, while the object store can use
traditional HDDs. We have kept our approach transparent

to the application layer by implementing a custom ADIOS2
engine. By storing the file metadata in the appropriate back-
ends in JULEA, we also gain the flexibility to introduce new
metadata that can be precomputed and stored along with
existing metadata, such as the minimum and maximum. This
would not be possible otherwise without changing the file
format itself. Our prototype engine precomputes the mean
value of each block to demonstrate the possibility of meta-
data extension. Moreover, our data analysis interface allows
speeding up metadata queries by a factor of up to 60,000
compared to the ADIOS2 API and data format.
One of the key aspects we will focus on in the future is

to extend the data analysis interface (DAI) so that users can
specify values or custom operations that should be calcu-
lated and stored in the database for faster post-processing.
For common operations, it might then not be necessary to
access data at all or at least cut down the number of blocks
considerably, as shown by the JULEA-Query application. We
will work on supporting external tools such as the climate
data operators (CDO) [12].

Furthermore, there are several aspects in JULEA that need
improvement. The object store currently sits on top of a
full-featured POSIX file system, which we are planning to
optimize in the future by using a proper object store backend.
Work is underway for an object store backend using Ceph’s
BlueStore [1] to avoid POSIXwhenever possible [4]. Also, the
network communication is based on TCP/IP, considerably
increasing the overhead. It will be extended with libfabric
support in the future. Based on our concept of dissecting
SDDFs, we will use structural information in the form of file
metadata for intelligent hierarchical storage management.

ACKNOWLEDGMENTS
This work is funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – 417705296. We
thank the reviewers and our shepherd for their constructive
feedback and help.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel Kira Duwe and Michael Kuhn

REFERENCES
[1] Abutalib Aghayev, Sage A. Weil, Michael Kuchnik, Mark Nelson, Gre-

gory R. Ganger, and George Amvrosiadis. 2019. File systems un-
fit as distributed storage backends: lessons from 10 years of Ceph
evolution. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-
30, 2019, Tim Brecht and Carey Williamson (Eds.). ACM, 353–369.
https://doi.org/10.1145/3341301.3359656

[2] Solveig Albrand, Thomas Doherty, Jerome Fulachier, and Fabian Lam-
bert. 2008. The ATLAS metadata interface. In Journal of Physics: Con-
ference Series, Vol. 119. IOP Publishing, 072003.

[3] Suren Byna, M. Scot Breitenfeld, Bin Dong, Quincey Koziol, Elena
Pourmal, Dana Robinson, Jérome Soumagne, Houjun Tang, Venkatram
Vishwanath, and Richard Warren. 2020. ExaHDF5: Delivering Efficient
Parallel I/O on Exascale Computing Systems. J. Comput. Sci. Technol.
35, 1 (2020), 145–160. https://doi.org/10.1007/s11390-020-9822-9

[4] Kira Duwe and Michael Kuhn. 2021. Using Ceph’s BlueStore as Object
Storage in HPC Storage Framework. In Proceedings of the Workshop
on Challenges and Opportunities of Efficient and Performant Storage
Systems (Online Event, United Kingdom) (CHEOPS ’21). Association
for Computing Machinery, New York, NY, USA, Article 3, 6 pages.
https://doi.org/10.1145/3439839.3458734

[5] Kira Duwe, Jakob Lüttgau, Georgiana Mania, Jannek Squar, Anna
Fuchs, Michael Kuhn, Eugen Betke, and Thomas Ludwig. 2020. State
of the Art and Future Trends in Data Reduction for High-Performance
Computing. Supercomput. Front. Innov. 7, 1 (2020), 4–36. https://doi.
org/10.14529/jsfi200101

[6] Michael Feldman. 2019. Will HPC Centers Say ADIOS To POSIX
I/O? https://www.nextplatform.com/2019/09/04/will-hpc-centers-say-
adios-to-posix-i-o/. Accessed: 2020-05-18.

[7] Jerome Fulachier, O Aidel, S Albrand, F Lambert, Atlas Collaboration,
et al. 2014. Looking back on 10 years of the ATLAS Metadata Interface.
Reflections on architecture, code design and development methods. In
Journal of Physics: Conference Series, Vol. 513. IOP Publishing, 042019.

[8] Jerome Fulachier, Fabian Lambert, and Jerome Odier. 2017. ATLAS
Metadata Interface (AMI), a generic metadata framework. In J. Phys.
Conf. Ser., Vol. 898. 062001.

[9] William F. Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins,
Greg Eisenhauer, Junmin Gu, Philip E. Davis, Jong Choi, Kai Ger-
maschewski, Kevin A. Huck, Axel Huebl, Mark Kim, James Kress,
Tahsin M. Kurç, Qing Liu, Jeremy Logan, Kshitij Mehta, George
Ostrouchov, Manish Parashar, Franz Poeschel, David Pugmire, Eric
Suchyta, Keichi Takahashi, Nick Thompson, Seiji Tsutsumi, Lipeng
Wan, Matthew Wolf, Kesheng Wu, and Scott Klasky. 2020. ADIOS
2: The Adaptable Input Output System. A framework for high-
performance data management. SoftwareX 12 (2020), 100561. https:
//doi.org/10.1016/j.softx.2020.100561

[10] Matthias Grawinkel, Lars Nagel, Markus Mäsker, Federico Padua, An-
dré Brinkmann, and Lennart Sorth. 2015. Analysis of the ECMWF
Storage Landscape. In Proceedings of the 13th USENIX Conference on
File and Storage Technologies, FAST 2015, Santa Clara, CA, USA, Feb-
ruary 16-19, 2015, Jiri Schindler and Erez Zadok (Eds.). USENIX Asso-
ciation, 15–27. https://www.usenix.org/conference/fast15/technical-
sessions/presentation/grawinkel

[11] Junmin Gu, Scott Klasky, Norbert Podhorszki, Ji Qiang, and Kesheng
Wu. 2018. Querying Large Scientific Data Sets with Adaptable IO
System ADIOS. In Supercomputing Frontiers - 4th Asian Conference,
SCFA 2018, Singapore, March 26-29, 2018, Proceedings (Lecture Notes
in Computer Science), Rio Yokota and Weigang Wu (Eds.), Vol. 10776.
Springer, 51–69. https://doi.org/10.1007/978-3-319-69953-0_4

[12] Frank Kaspar, Uwe Schulzweida, and Ralf Mueller. 2010. "Climate data
operators" as a user-friendly processing tool for CM SAF’s satellite-
derived climate monitoring products. https://doi.org/10.13140/RG.2.2.
20422.68165

[13] Daniel Korenblum, Daniel Rubin, Sandy Napel, Cesar Rodriguez, and
Chris Beaulieu. 2011. Managing biomedical image metadata for search
and retrieval of similar images. Journal of digital imaging 24, 4 (2011),
739–748.

[14] Michael Kuhn. 2017. JULEA: A Flexible Storage Framework for HPC. In
High Performance Computing - ISC High Performance 2017 International
Workshops, DRBSD, ExaComm, HCPM, HPC-IODC, IWOPH, IXPUG,
Pˆ3MA, VHPC, Visualization at Scale, WOPSSS, Frankfurt, Germany,
June 18-22, 2017, Revised Selected Papers (Lecture Notes in Computer
Science), Julian M. Kunkel, Rio Yokota, Michela Taufer, and John Shalf
(Eds.), Vol. 10524. Springer, 712–723. https://doi.org/10.1007/978-3-
319-67630-2_51

[15] Michael Kuhn and Kira Duwe. 2020. Coupling Storage Systems and
Self-Describing Data Formats for Global Metadata Management. In
International Conference on Computational Science and Computational
Intelligence (CSCI 2020). Conference Publishing Services (CPS). In
press.

[16] Oak Ridge National Laboratory. 2021. Heat Transfer Application
ADIOS2. https://github.com/ornladios/ADIOS2/tree/master/examples/
heatTransfer. Accessed: 2021-05-18.

[17] Margaret Lawson and Jay F. Lofstead. 2018. Using a Robust Metadata
Management System to Accelerate Scientific Discovery at Extreme
Scales. In 3rd IEEE/ACM InternationalWorkshop on Parallel Data Storage
& Data Intensive Scalable Computing Systems, PDSW-DISCS@SC 2018,
Dallas, TX, USA, November 12, 2018. IEEE, 13–23. https://doi.org/10.
1109/PDSW-DISCS.2018.00004

[18] Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki,
and Chen Jin. 2008. Flexible IO and integration for scientific codes
through the adaptable IO system (ADIOS). In 6th International Work-
shop on Challenges of Large Applications in Distributed Environments,
CLADE@HPDC 2008, Boston, MA, USA, June 23, 2008, Yoonhee Kim and
Xiaolin Li (Eds.). ACM, 15–24. https://doi.org/10.1145/1383529.1383533

[19] Jakob Lüttgau, Michael Kuhn, Kira Duwe, Yevhen Alforov, Eugen
Betke, Julian M. Kunkel, and Thomas Ludwig. 2018. Survey of Storage
Systems for High-Performance Computing. Supercomput. Front. Innov.
5, 1 (2018), 31–58. https://doi.org/10.14529/jsfi180103

[20] Sangmi Lee Pallickara, Shrideep Pallickara, and Milija Zupanski. 2012.
Towards efficient data search and subsetting of large-scale atmospheric
datasets. Future Generation Comp. Syst. 28, 1 (2012), 112–118. https:
//doi.org/10.1016/j.future.2011.05.010

[21] Norbert Podhorszki, Qing Liu, Jeremy Logan, Jingqing Mu, Hasan
Abbasi, Jong-Youl Choi, and Scott A. Klasky. 2018. ADIOS 1.13.1 USER’S
MANUAL. https://users.nccs.gov/~pnorbert/ADIOS-UsersManual-1.
13.1.pdf. Accessed: 2020-05-15.

[22] Hyogi Sim, Youngjae Kim, Sudharshan S. Vazhkudai, Geoffroy R. Val-
lée, Seung-Hwan Lim, and Ali Raza Butt. 2017. Tagit: an integrated
indexing and search service for file systems. In Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2017, Denver, CO, USA, November 12 -
17, 2017, Bernd Mohr and Padma Raghavan (Eds.). ACM, 5:1–5:12.
https://doi.org/10.1145/3126908.3126929

[23] Houjun Tang, Suren Byna, Bin Dong, Jialin Liu, and Quincey Koziol.
2017. SoMeta: Scalable Object-Centric Metadata Management for
High Performance Computing. In 2017 IEEE International Conference
on Cluster Computing, CLUSTER 2017, Honolulu, HI, USA, September
5-8, 2017. IEEE Computer Society, 359–369. https://doi.org/10.1109/
CLUSTER.2017.53

https://doi.org/10.1145/3341301.3359656
https://doi.org/10.1007/s11390-020-9822-9
https://doi.org/10.1145/3439839.3458734
https://doi.org/10.14529/jsfi200101
https://doi.org/10.14529/jsfi200101
https://www.nextplatform.com/2019/09/04/will-hpc-centers-say-adios-to-posix-i-o/
https://www.nextplatform.com/2019/09/04/will-hpc-centers-say-adios-to-posix-i-o/
https://doi.org/10.1016/j.softx.2020.100561
https://doi.org/10.1016/j.softx.2020.100561
https://www.usenix.org/conference/fast15/technical-sessions/presentation/grawinkel
https://www.usenix.org/conference/fast15/technical-sessions/presentation/grawinkel
https://doi.org/10.1007/978-3-319-69953-0_4
https://doi.org/10.13140/RG.2.2.20422.68165
https://doi.org/10.13140/RG.2.2.20422.68165
https://doi.org/10.1007/978-3-319-67630-2_51
https://doi.org/10.1007/978-3-319-67630-2_51
https://github.com/ornladios/ADIOS2/tree/master/examples/heatTransfer
https://github.com/ornladios/ADIOS2/tree/master/examples/heatTransfer
https://doi.org/10.1109/PDSW-DISCS.2018.00004
https://doi.org/10.1109/PDSW-DISCS.2018.00004
https://doi.org/10.1145/1383529.1383533
https://doi.org/10.14529/jsfi180103
https://doi.org/10.1016/j.future.2011.05.010
https://doi.org/10.1016/j.future.2011.05.010
https://users.nccs.gov/~pnorbert/ADIOS-UsersManual-1.13.1.pdf
https://users.nccs.gov/~pnorbert/ADIOS-UsersManual-1.13.1.pdf
https://doi.org/10.1145/3126908.3126929
https://doi.org/10.1109/CLUSTER.2017.53
https://doi.org/10.1109/CLUSTER.2017.53

Dissecting Self-Describing Data Formats to Enable AdvancedQuerying of File Metadata SYSTOR ’21, June 14–16, 2021, Haifa, Israel

[24] Ani R Thakar, Alex Szalay, George Fekete, and Jim Gray. 2008. The
catalog archive server database management system. Computing in
Science & Engineering 10, 1 (2008), 30.

[25] Craig E. Tull, Abdelilah Essiari, Dan Gunter, Xiaoye Sherry Li, Simon J.
Patton, and Lavanya Ramakrishnan. 2013. The SPOT Suite project.
http://spot.nersc.gov/.. Accessed: 2020-10-09.

[26] Tzu-Hsien Wu, Jerry Chi-Yuan Chou, Norbert Podhorszki, Junmin Gu,
Yuan Tian, Scott Klasky, and Kesheng Wu. 2017. Apply Block Index
Technique to Scientific Data Analysis and I/O Systems. In Proceedings
of the 17th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing, CCGRID 2017, Madrid, Spain, May 14-17, 2017. IEEE
Computer Society / ACM, 865–871. https://doi.org/10.1109/CCGRID.
2017.37

[27] Wei Zhang, Suren Byna, Houjun Tang, Brody Williams, and Yong
Chen. 2019. MIQS: metadata indexing and querying service for self-
describing file formats. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC 2019, Denver, Colorado, USA, November 17-19, 2019, Michela Taufer,
Pavan Balaji, and Antonio J. Peña (Eds.). ACM, 5:1–5:24. https://doi.
org/10.1145/3295500.3356146

http://spot.nersc.gov/.
https://doi.org/10.1109/CCGRID.2017.37
https://doi.org/10.1109/CCGRID.2017.37
https://doi.org/10.1145/3295500.3356146
https://doi.org/10.1145/3295500.3356146

	Abstract
	1 Introduction
	1.1 Separating file metadata
	1.2 Contribution

	2 ADIOS2 & JULEA
	3 Design and Implementation
	4 Evaluation
	4.1 Write and Read Performance
	4.2 Query Time

	5 Related Work
	6 Conclusion and Future Work
	References

