
Iterative Development and Changing Requirements: Drivers of
Variability in an Industrial System for Veterinary Anesthesia

Elias Kuiter
Otto-von-Guericke-University

Magdeburg, Germany
kuiter@ovgu.de

Jacob Krüger
Ruhr-University Bochum &

Otto-von-Guericke-University
Magdeburg, Germany
jacob.krueger@rub.de

Gunter Saake
Otto-von-Guericke-University

Magdeburg, Germany
saake@ovgu.de

ABSTRACT

Developing a safety-critical embedded system poses a high risk,
since such systems must usually comply with (potentially chang-
ing) rigorous standards set by customers and legal authorities. To
reduce risk and cope with changing requirements, manufactur-
ers of embedded devices increasingly use iterative development
processes and prototyping both for hard- and firmware. However,
hard- and firmware development are difficult to align in a common
process, because hardware development cycles are typically longer
and more expensive. Thus, seamlessly transitioning software to
new hardware revisions and reusing old hardware revisions can
be problematic. In this paper, we describe an industrial case study
for veterinary anesthesia in which we also faced this problem. To
solve it, we introduced preprocessor-based variability to create a
small configurable system that could flexibly adapt to our needs.
We discuss our solution, alternative solutions for hardware evo-
lution, as well as their pros and cons. Our experiences generalize
an interesting evolution scenario for systems that are planned and
delivered as a single system, but exhibited variability to cope with
problems during agile development processes.

CCS CONCEPTS

• Software and its engineering → Embedded software; Re-
quirements analysis; Reusability.

KEYWORDS

Case Study, Configurable System, Driver of Variability, Evolution

ACM Reference Format:

Elias Kuiter, Jacob Krüger, and Gunter Saake. 2021. Iterative Development
and Changing Requirements: Drivers of Variability in an Industrial System
for Veterinary Anesthesia. In 25th ACM International Systems and Software

Product Line Conference - Volume B (SPLC ’21), September 6–11, 2021, Leicester,

United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3461002.3473950

1 INTRODUCTION

Embedded systems, such as vehicles, domestic appliances, and in-
ternet-of-things devices are ubiquitous in our everyday life [37, 44].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8470-4/21/09.
https://doi.org/10.1145/3461002.3473950

Especially in life sciences and medical domains, we depend on
the safety and correct operation of such systems, which must usu-
ally satisfy rigorous legal regulations. So, developing safety-critical
embedded systems is a risky endeavor for manufacturers [13].

In practice, software for embedded systems (i.e., firmware [48]) is
developed with rudimentary development processes like burn-and-
pray [42]. Such processes hamper the verification of the system,
since they value quick fixes and hacks more than proper design
and systematic testing. Furthermore, using traditional development
processes (e.g., the waterfall model) hampers the validation of the
system, since it is more challenging to take changes in customer
requirements and legal regulations into account. To improve the
capability for verifying and validating a system (thus reducing
the financial risk), manufacturers increasingly adopt iterative (e.g.,
agile) development practices based on prototyping [14, 18, 23, 29].

However, adopting iterative development practices for embedded
systems poses its own challenges [29]. One of these challenges is
to align the different durations and costs of hard- and firmware
development cycles. That is, developing a new hardware revision
usually takes longer and is more expensive than developing a new
firmware revision [14, 18, 42, 45]. Thus, a gap between hard- and
firmware emerges, which must be bridged somehow to ensure a
fast time-to-market and reduce the financial risk.

In this paper, we illustrate this problem based on a case study
and discuss several possible solutions, their trade-offs, as well as to
what extent they are applicable to other projects in the embedded
domain. Our case study is about an industrial system for veterinary
anesthesia (i.e., PigNap [31]), which is used by farmers all across
Germany. Since this project was a high-risk endeavor, we utilized
an iterative development process to adapt to changing requirements
and legal regulations. We bridged the aforementioned gap between
hard- and firmware by introducing variability into the system, a
concept known from configurable systems and software product
lines (SPLs) [3, 6, 24]. This allowed us to seamlessly transition to new
(and reuse old) hardware revisions; which ultimately contributed
to the success of the project.

In detail, we contribute the following in this paper:
• We describe the development of an industrial embedded
system, and how variability emerged during its development.

• We discuss the nature of the variability, its drivers, and how
it could have been avoided with other solutions.

• We publish our development repository (i.e., code, commits)
and analysis results on GitHub to support our findings and
enable future research.1

1https://github.com/ekuiter/pignap-case-study

https://doi.org/10.1145/3461002.3473950
https://doi.org/10.1145/3461002.3473950
https://doi.org/10.1145/3461002.3473950
https://github.com/ekuiter/pignap-case-study

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom E. Kuiter et al.

In summary, we contribute towards understanding and resolving
the evolutionary gap between hard- and firmware in embedded
systems. Notably, our findings are generalizable to many projects
in the embedded domain that employ agile practices.

2 CONTEXT

Next, we explain the context of and problem addressed by PigNap
based on a brief domain analysis. In the domain of pig farming,
castration of male piglets (i.e., newborn pigs) is widely practiced
all across the globe [7, 50]. For example, in Germany, there are
about 6,800 piglet breeding farms that castrate about 25 million
piglets in total every year [43, 49]. This procedure is done, because
in 10–75% of cases the meat of uncastrated boars (i.e., male pigs)
may develop an unpleasant smell (known as boar taint) that makes
the meat inedible and therefore unfit for sale [8]. Currently, it is
impossible to remove boar taint or detect it in advance, so the
only choice is to prevent it. One widely practiced solution to this
problem is the castration of male piglets soon after birth [7]. Besides
preventing boar taint, this practice reduces dominant behavior and
cannibalism among the animals [50]. As most piglet breeding farms
aim for profit maximization, they usually perform the castration
procedure without anesthesia, if the local law permits.

In recent years, animal protection movements in Germany have
urged politicians to ban piglet castration without anesthesia [49].
Due to these protests, the German federal ministry of food and
agriculture (BMEL) initiated a change of the Tierschutzgesetz (an-
imal protection act) in 2020 [9]. Thus, since January 2021, piglet
castration in Germany is only allowed via vaccination, injection
anesthesia, or inhalation anesthesia [17, 46, 51]. From an economic
point, inhalation anesthesia tends to be most profitable, since the
castration treatment can be performed by the farmers themselves;
while the other options require the presence of a veterinarian.

The change of the animal protection act was controversially
discussed by politicians, animal rights proponents, farmers, and
veterinarians. In particular, the technical feasibility of inhalation
anesthesia was questioned, since there were no anesthesia machines
on the market that satisfied the strict requirements prescribed by
the first draft of the Ferkelbetäubungssachkundeverordnung (piglet
anesthesia enactment) [10]. However, a compromise was found in
2019: The manufacturers of anesthesia machines had time until
2021 to build prototypes, which were then iteratively reviewed in
close cooperation with the German Agricultural Society (DLG) [30].

These reviews initially focused on safety requirements, such as
workplace safety for the farmers, well-being of the treated piglets,
and environmental pollution by the anesthetic. In later iterations,
non-functional requirements (e.g., ease of use and tamper-proof his-
tory) were also considered [21, 30]. The results of the DLG reviews
drove the development of improved prototypes and showed the
BMEL which requirements were realistic and which were not. So, a
feedback loop between manufacturers, the DLG, and the BMEL was
established, which imposed an incremental development process
on the manufacturers.

As a result of this process, five piglet anesthesia machines were
successfully certified by the DLG. One of these machines is Pig-
Nap, for which we developed the firmware in cooperation with our
industry partners HCP-Technology (responsible for development

and assembly) and BEG Schulze Bremer (responsible for marketing
and training) over the course of one year [31]. Other stakeholders
involved in the development of PigNap include the BMEL (leg-
islator), DLG (certificate authority), and customers (i.e., farmers
and veterinarians)—each with their own specific requirements and
demands for PigNap, which were only partially known in advance.

3 FIRMWARE DEVELOPMENT

We describe our initial requirements analysis and development of
PigNap, focusing on stakeholder interests and emerging variability.

3.1 Initial Requirements Analysis

Our industry partner HCP-Technology is a small German com-
pany that designs and manufactures thermoelectric systems for the
agricultural and medical domain. In May 2019, HCP-Technology
developed an initial concept for a piglet anesthesia machine, which
was anticipated to have complex firmware requirements. Due to
their lack of expertise in software engineering and our success in
previous collaborations [28], they asked the first author of this pa-
per to aid in the firmware design and implementation. Initially, we
had an extensive exchange of information, ideas, and clarifications
with HCP-Technology. This included familiarizing with the domain
(cf. Section 2) and a discussion of the most critical design issues. We
describe two discussion topics in more detail, which later proved
to have unanticipated impact on variability (cf. Section 4).
Pin Mapping. While eliciting requirements, we noticed that hard-
and firmware requirements for an anesthesia machine were clearly
separated: The hardware was primarily required to provide a safe,
fast, and resource-efficient narcosis; that is, its requirements were
mostly concerned with engineering issues regarding pneumatics,
valves, and respiratory masks [51]. In contrast, the firmware was
required for reliably controlling the narcosis process; that is, its
requirements focused on business logic, such as detecting when
a piglet is clamped in the device, managing the state of narcosis,
and thread safety (as the device should allow parallel treatments of
several piglets) [30]. Thus, we agreed on establishing an interface
between hardware (which solves engineering issues) and firmware
(which implements business logic) by means of a pin mapping. A pin
mapping determines which input/output pin (i.e., connection ports
of the embedded CPU) is connected to which piece of hardware [5,
42, 48]. For PigNap, we intended to use this approach to abstract
away low-level details of the narcosis process, so that (as far as the
firmware is concerned) the narcosis can be started/stopped simply
by en-/disabling some pin. The pin mapping approach allowed us
to develop hard- and firmware mostly independently of each other,
as long as both complied with the same interface. Thus, we aimed
to minimize the risk of bugs, as engineering issues and business
logic had minimal potential for unexpected interactions. However,
whenever the interface was subject to unexpected change later on
(e.g., by rewiring or substituting a hardware device), we had to
change hard- and firmware accordingly. Although we were aware
of this issue, we adapted the pin mapping approach early in the
project, because it enabled us to develop hard- and firmware in
parallel and minimize the risk of interaction bugs.
Interpretation of Enactment. Another discussion topic was the
first draft of the BMEL’s piglet anesthesia enactment [10], which

Iterative Development and Changing Requirements: Drivers of Variability in an Industrial System SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

(a) Initial prototype on PCB1 with LCD display. (b) PCB2 with OLED display and FRAM1. (c) Final device with PCB4, OLED, and FRAM2.

Figure 1: Different device prototypes used throughout the development of the PigNap firmware.

mandated several strict requirements for piglet anesthesia machines.
However, these requirements were vaguely phrased, which is why
we had to translate them into concrete requirements for PigNap.
For example, the enactment required that “anesthesia machines
must be suitable on a technical and constructional level to ensure
a sufficient depth of narcosis and avoid piglet suffering as much
as possible,”2 without a further definition of “suitable,” “sufficient,”
or “as much as possible” [10]. In theory, the certification authority
DLG was responsible for interpreting the enactment and setting
concrete standards (e.g., how long piglets should be exposed to the
anesthetic) [30]. However, in practice most of these standards were
only established by the feedback loop between manufacturers and
the DLG described in Section 2. So, for our initial requirements
analysis, we had to predict requirements based on domain knowl-
edge from farmers and veterinaries. Thus, it was clear from the
beginning that we would probably need to adjust our predicted
requirements during development.

Taking the pin mapping as well as enactment interpretation into
account, we developed a preliminary and informal list of firmware
requirements for our anesthesia machine, which served as the basis
for developing our first prototype.

3.2 Development Process

To develop PigNap, we had to choose a development process that
fits the context and requirements explained above. For the hard- as
well as firmware, we opted for an iterative development process
based on prototyping [32, 38, 40]. That is, we repeatedly cycled
through several phases (requirements analysis → development →
review), where each cycle yielded a functional prototype of the
hard- or firmware, respectively. After flashing the firmware onto
the hardware, the combined prototype could be reviewed by several
stakeholders: only HCP-Technology in the beginning and farmers,
veterinarians, as well as the DLG later on. These reviews typically
shed some light on several issues and enactment misinterpretations,
which we incorporated into the next development phase.

We chose a prototype-based iterative process mainly because
the animal protection act prescribes that “the BMEL reports at least
every six months to the German parliament about the current state
of anesthesia machines” [9]. As we and our customers had con-
siderable interest in taking the enactment into a more practically
feasible direction, it was essential that we participated in this feed-
back loop, which was facilitated by our prototype-based process. In

2All excerpts from German law are loosely translated by the authors.

addition, our discussions regarding the pin mapping and enactment
interpretation (cf. Section 3.1) fitted well with an iterative process.

3.3 Development of First Prototype

In June 2019, we began to develop the first PigNap prototype, which
we show in Figure 1a. Regarding the embedded CPU, we quickly
settled for the ESP32 microcontroller [35], which had enough com-
putation power and input/output pins to adapt to new and changing
requirements. Thus, we aimed to minimize the risk of needing CPU
upgrades, which would have required us to rewrite large parts of
the codebase. Regarding external components, we mostly focused
on the pins in our pin mapping that were directly related to the
business logic of the anesthesia treatment process. Due to the pin
mapping interface (cf. Section 3.1), we were able to simulate this
treatment process with simple buttons and LED lights as shown in
Figure 1a (i.e., a button press indicates that a piglet is clamped in the
device and the LEDs indicate the state of narcosis). This allowed us
to develop a first version of the firmware while the first hardware
prototype was still in its inception.

We implemented the firmware in C with the ESP32 SDK. This
SDK is applicable in many scenarios and systems and uses Kconfig
to handle CPU-internal variability [47]. We did not use this mecha-
nism, since the default options worked fine for our purposes. In later
development cycles, we used the #define and #ifdef directives of
the C preprocessor and simple build scripts to manage emerging
variability (cf. Section 3.4). We developed the first firmware version
for the prototype shown in Figure 1a in 38 days, with 5,327 lines of
code in 48 commits on 42 files. Then, we evolved that version over
the course of one year, leading to a final version with 7,081 lines of
code in 138 commits over 59 files (including all variability).

3.4 Emerging Variation Points

To discuss later development cycles of PigNap with respect to
stakeholder interests and emerging variability, we performed an in-
depth analysis of our development repository (i.e., all 138 commits,
June 2019 to June 2020). During our analysis, wemanually inspected
each commit with respect to three questions:

(1) Which firmware requirements does this commit address (e.g.,
introducing some desired functionality)?

(2) Which hardware requirements does this commit address
(e.g., changing the pin mapping)?

(3) Which stakeholders hold interests in these requirements
(e.g., who requested the change and why)?

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom E. Kuiter et al.

20 40 60 80 1001 138120 #Commit

#49

#57

#75

#12
#92

#23 #56

#34 #60

#37
#88

#111

#49

#17 #94

PCB1

PCB2

Fe
at

ur
es

PCB3

PCB4

OLED

LCD

External Counter

Voltage Monitor

NVS

FRAM1

FRAM2

Production

WiFi Scan

Debug

PCB

Display

History

Mode of
Operation

Figure 2: Timeline for the development of the PigNap firmware over the course of one year.

To answer these questions, we cross-referenced the committed
code, mail correspondence, and memory of the project lead at HCP-
Technology as well as the first author. We provide the detailed
results of our analysis in our repository. Due to corporate interests,
we cannot publish all implementation files; however, all variability-
related code artifacts are available for analysis.

Based on our analysis, we identified features (i.e., user-visible
functionalities [3]) and variation points that emerged during the
development of the PigNap firmware. In Figure 2, we visualize
these features and variation points in a timeline. On the x-axis, we
show the number of each commit in our development repository.
On the y-axis, we show which features are actively supported in
the firmware revision corresponding to the given commit. In the
timeline, we emphasize important events like the inception (♦)
and removal (×) of features as well as variation points (•). For
each commit on the x-axis, we can derive a feature model for the
corresponding firmware revision from the features and variation
points on the y-axis. That is, our timeline is equivalent to a temporal
feature model [39], which annotates each feature with the date of
its inception (and, possibly, removal).

In Figure 3, we show the feature model for the final firmware
version at commit #138. This feature model comprises four sub-
trees with alternative features, where each subtree represents some
variation points that emerged after the development of the first pro-
totype (i.e., starting at commit #49). In the following, we describe
each feature subtree in Figure 3 (corresponding to the variation
points highlighted identically in Figure 2) in more detail.
Printed Circuit Board. We can see in Figure 1, that the ESP32 mi-
crocontroller that runs our firmware is mounted on a printed circuit
board (PCB) along with resistors, capacitors, and other hardware
accessories (e.g., a real-time clock with a battery). As described,
we developed hard- and firmware simultaneously by following the
initial pin mapping we described in Section 3.1, which corresponds
to PCB1 in Figure 1a (commit #1). However, several times during de-
velopment, we had to change the pin mapping for various reasons,
namely genuinemistakes (mostly due tomisinterpreting the ESP32

documentation) and changing requirements expressed by stake-
holders during reviews (e.g., we removed an external treatment
counter in favor of a better display at the request of customers).

Since the pin mapping represents the interface between hard-
and firmware, each change necessitated the design and pro-

duction of a new PCB revision (e.g., PCB2). This process was
expensive and time-consuming, because new PCB revisions were
produced only every fewmonths and only in larger quantities by an
external company. Thus, we could not afford to produce a new PCB
for each single change of the pin mapping. Instead, we kept a record
of all outstanding pin-mapping changes, which we forwarded to the
external company shortly before the next PCB would be produced.
This happened three times during development, namely in commits
#49 (PCB2 in Figure 1b), #57 (PCB3), and #75 (PCB4, used in the
final system in Figure 1c), which we encode as features in Figure 3.
Batching the pin-mapping changes together was advantageous on
the hardware side, reducing logistic and production costs. However,
this method also had the disadvantage that pin-mapping changes
were reflected in the hardware only with a month-long delay (i.e.,
the transition phase), during which the firmware was required to
be compatible with two PCB revisions at the same time: First, we
had to support the old PCB revision at least until the new PCB
was produced, which allowed us to use the old revision for testing
firmware changes. Second, we also had to support the new PCB
before it was produced, enabling us to seamlessly transition to the
device prototypes that would use the new PCB. So, during the tran-
sition phase between two PCB revisions, our firmware needed to
support both revisions. We embraced this transitional variability by
introducing corresponding variation points, which we implemented
with preprocessor directives (e.g., #ifdef BOARD_VERSION >= 2).

In addition, we decided to keep the support for old PCB revisions
even after the transition phase was over; that is, we never phased
out any PCB revisions. We opted for this practice for three reasons:
First, it allowed us to keep using old PCB revisions for development
and testing. This was convenient, since the revisions PCB3 and
PCB4 were intended to be used only in device prototypes, and we
had no access to such device prototypes for developing and testing

Iterative Development and Changing Requirements: Drivers of Variability in an Industrial System SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

PigNap Firmware

PCB

PCB1 PCB2 PCB3 PCB4

Display

LCD OLED

History

NVS FRAM1 FRAM2

Mode of Operation

Debug Production

Abstract Feature

Concrete Feature

Mandatory

Optional

Alternative Group

Figure 3: Final feature model for the PigNap firmware, corresponding to commit #138 in Figure 2.

the firmware. Second, the piglet anesthesia enactment explicitly
allowed that “anesthesia machines that were built before this en-
actment comes into effect may still be used even when they do not
satisfy the requirements listed above” [10]. So, we were allowed to
reuse old prototypes for lab testing at the DLG, in-field testing on
farms, or in educational institutions. This hardware reusewas conve-
nient, because it allowed us to efficiently make use of the prototypes
that we built throughout development (and not waste the amount of
work and expensive components put into building these prototypes).
However, to leverage this hardware reuse, we had to keep devel-
oping the firmware for old PCB revisions as well (e.g., so that old
devices would still receive up-to-date bugfixes). Finally, the costs of
keeping variability in the firmware instead of discarding it after the
transition phase was negligible. This was because there was almost
no maintenance effort for a feature after it was initially developed.
Display. The second feature subtree concerns the display that is
mounted on PigNap and is visible to the customer. Early on (commit
#12), we found that having a display with status information may
be useful to convey information to customers, such as the number
of treatments or critical status messages (e.g., low battery warning).
We initially chose an off-the-shelf LCD display (cf. Figure 1a) that
we used to report such information to the customer. However, we
later received criticism from customers regarding the readability
of the information on the display. Thus, we decided to switch to a
more expensive OLED display (cf. Figure 1b), which could display
more information in a more organized and readable way. However,
for similar reasons as described above for the PCB subtree, we still
had to support the LCD display during the transition phase; that
is, until we integrated the OLED display into the hardware design.
After we implemented support for both displays (commit #92), we
kept the support for LCD displays in the firmware to facilitate
hardware reuse as described above.
History.Among the requirements mandated by the first draft of the
piglet anesthesia enactment is that “anesthesia machines must store
a tamper-safe history of the number of treatments and their date for
at least one year” [10]. This was necessary to ensure that anesthesia
machines are actually used by the farmers and no illegal castration
without anesthesia takes place. Of all requirements, this was the
most challenging to implement, because it necessitated many new
requirements for the hard- and firmware: On a hardware level, we
needed a persistent storage to store the history while the device
is switched off; to track the current date, a real-time clock was re-
quired; and for the clock, a battery was needed. On a firmware level,
this implied that we needed a corruption-resilient data structure
to store log data, a Wifi-based user interface for accessing log data,
and a tamper-proof mechanism for switching the battery. Since
these issues required complex solutions, the implementation of the
history subtree accounts for half of the firmware codebase.

Due to the complexity of the history requirement, we decided
to relax this requirement for our first prototype to demonstrate
the feasibility of our solution. This means that we initially used the
built-in non-volatile storage (NVS) of the ESP32 microcontroller
instead of a dedicated storage chip (commit #37). Using the built-in
NVS had the advantage that building the first prototype was faster,
since we did not need to integrate an external device driver. On the
downside, the built-in NVS is not durable enough for the targeted
system lifespan of 20 years. So, this was only a temporary solution
and we later enhanced it with a dedicated 2KiB ferroelectric RAM
storage chip in commit #88 (feature FRAM1). To allow for hardware
reuse and bridge the transition phase, we again decided to keep the
NVS support for old prototypes. This was possible, because storing
a history is not relevant in educational institutions, where the old
prototypes were used.

A second change became necessary when, in February 2020, the
enactment draft was changed by the BMEL to prescribe storing
a history “for at least three years” [10]. Unfortunately, we could not
address this unanticipated change solely by updating the firmware,
because FRAM1 did not have enough storage to save three years
of history. We therefore had to select a larger, more expensive
8KiB storage chip (feature FRAM2). This chip had a different device
driver, so we introduced another variation point in commit #111.
Mode of Operation. When we developed our initial prototype
(cf. Figure 1a), we were not aware of the optimal parameters for
narcosis (e.g., how long piglets should be exposed to the anesthetic
or how many piglets can be treated with one vial of the anesthetic).
We therefore used arbitrary values in the beginning (commit #1),
which were unsuitable for in-field usage. Consequently, we in-
troduced a variation point in commit #49 that distinguishes realistic
values (Production) from dummy values (Debug). By extensive in-
field testing, we successively refined the values used in production
mode. Nonetheless, we kept the dummy values in the feature model,
because they were useful for testing during the development phase.

3.5 Mandatory and Removed Features

For some features (i.e., mandatory, removed), we did no implement
variability, which we briefly discuss next.
Mandatory Features.We omit a detailed discussion of mandatory
features (e.g., narcosis state management, filter reset switch) that
were neither removed nor led to variability. In Figure 3, these fea-
tures can be considered to be integrated in the root feature PigNap
firmware. Note that not all requirement changes necessitated vari-
ation points: Whenever possible, we integrated changes seamlessly
without changing the interface between hard- and firmware (e.g.,
when we rebranded the software to BEG Schulze Bremer). We did
this to keep the number of variation points to a minimum.
Removed Features. Since it was not always possible to correctly
predict customer needs and standards set by the DLG, we also

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom E. Kuiter et al.

had to remove some features during the development process. For
example, we developed a voltage monitor that ensured that the
device would always have some time to commit history changes
whenever it was turned off (commit #23). However, this setup did
not work correctly in some edge cases, so we abandoned it in favor
of a pure software solution (commit #56). Other examples include an
external counter (#17–#94) and a WiFi access point scan (#34–#60),
which we dropped because they provided little additional value.

3.6 Final Configuration Space

We concluded the development of PigNap in June 2020 at com-
mit #138 with a last adjustment of the parameters for narcosis
in the feature Production. At this point, we could build and flash
the firmware for all variants admitted by the feature model in
Figure 3, some of which corresponded to old prototypes. For in-
stance, we show in Figure 1a and Figure 1b setups for the config-
urations {PCB1, LCD,Debug} and {PCB2,OLED, FRAM1,Debug},
respectively (omitting abstract features). For the final device (cf. Fig-
ure 1c) that we delivered to customers, we used the configuration
{PCB4,OLED, FRAM2, Production}. This configuration satisfied all
(possibly changed) requirements that we elicited over the course
of the project, therefore it can be considered the canonical config-
uration of the PigNap firmware. Between the finalization of the
canonical configuration in June 2020 and the commencement of the
enactment in January 2021, we successfully produced, flashed, and
sold hundreds of PigNap devices to farmers in Germany. In a recent
survey, PigNap was estimated to have a market share of 33% [21].
In summary, we consider this project a success story, with two
contributing factors to this success being our iterative development
process and our handling of emergent variability.

4 DISCUSSION

In this section, we discuss the bigger picture of variability in PigNap
and similar projects. We first clarify whether PigNap is an SPL and
the nature of the variability that emerged throughout the system’s
evolution. Then, we point out the driving factors of this variability
and alternative scenarios based on which the variability could have
been avoided. Finally, we discuss the implications and tradeoffs of
these scenarios with regard to our case study and other projects in
the embedded domain.

4.1 Is PigNap a Software Product Line?

An SPL is “a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a common
set of core assets in a prescribed way” [11]. Although PigNap has a
feature model with a “common, managed set of features,” it only
partially satisfies this definition: The variability in the PigNap
feature model does not serve “the specific needs of a particular
market segment or mission.” As we explained in Section 3.6, PigNap
is only sold in one canonical configuration, and thus has no external
variability (i.e., the ability for customers to choose between different
variants) [41]. Instead, all variability in Figure 3 is internal (i.e.,
hidden from customers). Since PigNap was not intended to be an
SPL and almost the entire revenue is generated by a single product,
we do not consider it a classical SPL.

Table 1: Impact of variability drivers in PigNap.

Driver \ Feature subtree PCB Display History Mode

Iterative development
of hardware G#
of firmware # # #

Changing requirements
from customers G# # #
from BMEL and DLG G# # G#

 high impact G# medium impact # no impact

4.2 Domain-Intrinsic Variability

As the development of PigNap started and concluded with a sin-
gle system, we could argue that the variability that emerged (cf.
Section 3.4) was only “accidental” and perhaps could have been
avoided. To examine this claim in more detail, we classify features
in the feature model as (not) intrinsic to the modeled domain. That
is, a feature is domain-intrinsic if it arises naturally from the do-
main knowledge elicited from experts. In contrast, a feature is not
domain-intrinsic when it is only introduced to correct a previous
mistake, adapt to changing requirements, or when it is only neces-
sitated by the development process. Based on this distinction, we
can classify all concrete features in Figure 3 as not domain-intrinsic
(or internal variability due to technical reasons according to Pohl
et al. [41]). Actually, none of these features emerged naturally from
the domain of anesthesia machines. Instead, they can be considered
“byproducts” of the specific circumstances given by our design and
development choices. Thus, all variability in PigNap could have
been avoided by making different design decisions in the beginning.

4.3 Drivers of Variability

If all variability could have been avoided bymaking different choices,
the question arises, which choices precisely promoted variability
and why? We refer to these choices and circumstances as drivers of
variability, which were primarily responsible for the emergent vari-
ability. Precisely, we identified iterative development and changing
requirements as the primary drivers of variability in PigNap. In
Table 1, we show their respective impact on the feature subtrees in
Figure 3, and discuss them in the following.
Iterative Development ofHardware. In Section 3.2, we described
and justified our iterative development process based on prototyp-
ing. Notably, we chose to develop the hard- and firmware of PigNap
in parallel by means of the pin-mapping interface we described in
Section 3.1. Hardware, however, is fundamentally different from
firmware with regard to the design and engineering process: To
produce hardware (e.g., PCB, respiratory masks), components must
be obtained and assembled in a lengthy process. This was further
complicated in our case study, because we outsourced the PCB
production to an external company. In addition, the COVID-19 pan-
demic began to have a negative impact on the component supply
chain in early 2020 [20, 21]. Thus, producing a new prototype of
the PigNap device took weeks to months, while changes to the
firmware could usually be adapted quickly—that is, the hardware
“lagged behind” the firmware. The resulting gap between hard- and
firmware was a high-impact driver of variability in the PCB,Display,

Iterative Development and Changing Requirements: Drivers of Variability in an Industrial System SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

t1t0

revold

revnew

(a) Early Shift (ES)

t1t0

revold

revnew

(b) Late Shift (LS)

t1t0

revold

revnew

(c) Transition Phase (TP)

t1t0

revold

revnew

(d) Hardware Reuse (HR)

Figure 4: Scenarios for evolving hardware revisions in an iterative development process with changing requirements.

and History subtrees. Without this gap, we would not have needed
to introduce variability in these subtrees at all.
Iterative Development of Firmware. The variability in theMode

of Operation subtree was only partially driven by the gap between
hard- and firmware. Instead, it mostly emerged from our develop-
ment practices for the firmware: Usually, after each change to the
firmware, we would test it immediately on our simulation-based
prototypes (cf. Figure 1). Thus, we could quickly identify and solve
obvious problems introduced by our changes. Because our work
on the firmware was mostly remote from the site where the hard-
ware was produced (especially during the pandemic), this practice
allowed us to save time and money for remote maintenance. How-
ever, these quick implementation and test cycles also required an
efficient way to simulate the device with dummy values, which
drove the introduction of the feature Debug.
Changing Requirements. In Section 3.1, we mentioned how one
reason for choosing an iterative development process was that we
anticipated certain requirements to change during development.
These can mostly be classified into customer requirements (which
were requested by farmers and veterinarians) and requirements
from the BMEL and DLG (which related to the piglet anesthesia
enactment). As we described in Section 3.4, introducing the Display
subtree was mostly driven by customers, and the History subtree by
changes to the enactment. In addition, both kinds of requirement
changes also had some impact on the PCB subtree, because the dis-
play and FRAM components affected the pin mapping. In retrospect,
some of the introduced variability (e.g., regarding the display) could
have been avoided with a more detailed initial requirements anal-
ysis. However, in the beginning it was more important to quickly
develop a first prototype than to analyze customer requirements.

4.4 Scenarios for Hardware Evolution

In Section 4.2, we noted that none of the variability in PigNap is
domain-intrinsic, and thus could have been avoided by making
different design decisions. With our knowledge about drivers of
variability from Section 4.3, we now discuss concrete evolution
scenarios with which we could have avoided variability in PigNap.

The natural solution for avoiding variability is to avoid all dri-
vers of variability. If we had not chosen an iterative development
process for PigNap and knew all requirements in advance, no vari-
ability would have emerged. For example, we could have used the
waterfall model instead of an iterative model [4]. In this case, the
hardware would have been developed first; and only afterwards we
would have developed the firmware, which would have avoided the
main driver of variability (i.e., the parallel development of hard- and
firmware). However, in our case study, this scenario clearly violates
our initial requirements analysis (cf. Section 3.1). First, we had to
rely on the feedback loop with the BMEL, DLG, and customers to

successively refine our device, because we did not know all require-
ments in advance. Second, the idea to completely decouple hard-
and firmware development in an embedded system is unrealistic,
they simply interact too much to be considered independently [42].

A more realistic solution to avoid variability may be to not com-
pletely avoid all drivers of variability, but relax some of the de-
sired properties of iterative development that we described in Sec-
tion 3.4. In Figure 4, we show four scenarios for hardware evolution,
which are all intended to bridge the gap that arises when hard- and
firmware are developed in parallel. We show time and variability
on the x- and y-axis, respectively; and the time period between the
design (𝑡0) and production (𝑡1) of a new hardware revision revnew
is marked on the x-axis. The four scenarios we show have different
(dis-)advantages in terms of the properties they relax, which we
summarize in Table 2. We discuss all scenarios in detail and explain
their applicability in our case study.
Early Shift. In the first scenario (cf. Figure 4a), we begin to develop
the firmware for a new hardware revision revnew as soon as revnew
is fully designed (𝑡0). In our case study, this would have meant
to fully shift the development to a new PCB revision, display, or
storage chip as soon as the pin mapping was changed or the new
component selected. The old firmware revision (with support for
the old hardware revision revold) is immediately discontinued in
this scenario. Thus, we avoid introducing any variability. However,
old hardware revisions like revold are neither supported during the
transition (𝑡 ∈ [𝑡0, 𝑡1]) nor after the transition (𝑡 > 𝑡1).
Late Shift. The second scenario is similar to the first one; it also
involves a full shift from revold to revnew. However, in this scenario,
we shift development to revnew only when it is fully produced (𝑡1).
Thus, we still support revold during the transition, although we may
not be able to seamlessly shift to the new firmware version in time.

In both scenarios, early and late shift, we forcibly synchronize
hard- and firmware development. For early shifting, the developed
firmware must wait for the hardware production to catch up; while
for late shifting, the produced hardware must wait for the firmware
development to catch up. Thus, old revisions are only partially sup-
ported and a seamless shift to a new firmware revision is hampered.
Transition Phase. The third scenario addresses these problems as
follows: During the transition, both revold and revnew are temporar-
ily encoded as two firmware variants, which exist at the same time
and are developed in parallel. Thus, we deliberately mix revisions
(i.e., variability in time) and variants (i.e., variability in space) in this
scenario [2, 41]. This scenario has the advantage that we support
both the old and new hardware revisions during the transition and
enable a seamless shift to revnew as well. However, it also comes at
the expense of temporarily introducing variability, which must be
implemented and maintained during the transition phase. There-
fore, this scenario should only be adopted when developers have
sufficient expertise in implementing software variability.

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom E. Kuiter et al.

Table 2: Properties of scenarios for hardware evolution.

Property \ Scenario ES LS TP HR

Supports seamless shift to new revision #
Supports old revisions during transition #
Supports old revisions after transition # # #
Avoids variability G# #

 yes G# partially # no

Hardware Reuse. The fourth and final scenario generalizes the
third: We completely embrace the variability that was introduced
in the transition phase. That is, variability is not temporary in this
scenario, meaning that all old hardware revisions are indefinitely
supported. Depending on the project, this may incur maintenance
costs or variability bugs. In our case study, this scenario was attrac-
tive, because the fast time-to-market and economic constraints of
our project made it necessary that we used the available time and
hardware as well as we could. Compared to a single PigNap system,
which costs over 9,000e, the implementation and maintenance
costs of software variability [26] were negligible for us. In addition,
our expertise in implementing variable software systems [28] was
helpful to contain the complexity of our variable source code.

4.5 Generalizing the Lessons Learned

We discussed the drivers of variability in PigNap and which evo-
lution scenario was best for our project to deal with the gap be-
tween hard- and firmware. We argue that our experiences can
be generalized to other projects in the embedded domain. First,
when developing a real-world embedded system, it is hard to com-
pletely separate the development of hard- and firmware. Typically,
firmware is intended to build on and leverage the specific proper-
ties of the hardware to fulfill its task. However, hard- and firmware
will usually be developed simultaneously, with one guiding the
design of the other to achieve a suitable balance between hard-
and firmware design [14, 23, 29]. Second, real-world systems re-
quire verification (to examine functional correctness of the system)
and validation (to ensure that the system satisfies customer needs).
By incrementally developing and testing a series of prototypes,
the risk of fundamental verification and validation issues can be
reduced; and if a problem occurs, the project can still be steered
into the right direction. Thus, an iterative development process in
which hard- and firmware are developed simultaneously is natural
for developing a new system in the embedded domain [29, 45]. In
addition, customer needs (and in our case, laws and regulations)
frequently change and drive the development of new hardware and
firmware revisions [18, 42]. So, iterative development and chang-
ing requirements are not only drivers of variability in PigNap, but
can be expected to affect the development of many systems in the
embedded domain in general.

In particular, this means that all embedded systems with itera-
tive development and changing requirements will inevitably face
emerging variability, due to the gap between hard- and firmware.
As guidance for deciding how to deal with this gap, project man-
agers may consider our scenarios for hardware evolution and their
tradeoffs. Precisely, they may choose one scenario over the others,
depending on the specific circumstances and desired properties

of the system. If, for instance, the hardware is cheap and can be
quickly produced, the early or late shift strategies may be more
appropriate. Such tradeoffs also depend on the developers’ expe-
rience with SPLs: If said experience is low, it may be too risky to
introduce long-term variability.

5 RELATEDWORK

We are not aware of a similar study on variability in embedded
systems that is not domain-intrinsic (i.e., that emerges and evolves
during the development process). There are numerous case stud-
ies that report on an iterative or re-engineering-based adoption
of SPLs [1, 12, 16, 19, 22, 25, 27, 28, 36, 52, 53] as well as empirical
studies on variability that partly consider not domain-intrinsic fea-
tures [15, 33, 34]. Still, none of these works focuses on the evolution
of such variability during development or provides a dataset anno-
tated by the original developer. Consequently, we provide novel con-
tributions regarding an interesting aspect of variability evolution.

Considering agile development practices, Könnölä et al. [29] an-
alyze three industrial case studies with respect to the potential and
challenges of agile methods in embedded systems development.
They acknowledge the gap between hard- and firmware devel-
opment we mentioned as a primary concern for developing new
embedded systems. Several other studies [14, 18, 42, 45] and a litera-
ture review of Kaisti et al. [23] also argue that the co-development of
hard- and firmware implies challenges for agile development prac-
tices. However, these works neither analyze variability in their case
studies, nor do they suggest a solution for the gap between hard-
and firmware. So, our contributions advance upon these works.

6 CONCLUSION

Developing embedded systems in safety-critical domains (e.g., vet-
erinary anesthesia) comes with high risks, since customer needs and
legal regulations are likely to change and subject to interpretation
by certification authorities. An incremental development process
based on prototyping is crucial to reduce this risk. However, the
emerging gap between hard- and firmware development poses a
challenge, because hard- and firmware fundamentally differ in their
design and engineering processes. In this paper, we described and
discussed an industrial case study in which we faced this challenge.
Our solution was to introduce preprocessor-based variability into
our system, which yielded a small configurable system that could
flexibly adapt to all hardware revisions produced (i.e., hardware
reuse). This was the best course of action in our project, consider-
ing that the costs for producing hardware exceeded the costs for
introducing variability significantly. However, other scenarios for
hardware evolution are also plausible (i.e., early shift, late shift, or
transition phase), each with their individual strengths and weak-
nesses. With our work, we aim to motivate further research on this
issue and provide recommendations for project managers to decide
which scenario may best fit their project.

In future work, we aim to further analyze our scenarios for
hardware evolution on other case studies, allowing us to improve
our current recommendations. Also, it seems promising to develop
(semi-)automated tool support, for instance, for removing tempo-
rary variability in the transition-phase scenario.
Acknowledgments. Partly supported by the DFG (SA 465/49-3).

Iterative Development and Changing Requirements: Drivers of Variability in an Industrial System SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

REFERENCES

[1] Jonas Åkesson, Sebastian Nilsson, Jacob Krüger, and Thorsten Berger. 2019.
Migrating the Android Apo-Games into an Annotation-Based Software Product
Line. In International Systems and Software Product Line Conference (SPLC). ACM,
103–107. https://doi.org/10.1145/3336294.3342362

[2] Sofia Ananieva, Sandra Greiner, Thomas Kühn, Jacob Krüger, Lukas Linsbauer,
Sten Grüner, Timo Kehrer, Heiko Klare, Anne Koziolek, Henrik Lönn, Sebastian
Krieter, Christoph Seidl, S. Ramesh, Ralf Reussner, and BernhardWestfechtel. 2020.
A Conceptual Model for Unifying Variability in Space and Time. In International

Systems and Software Product Line Conference (SPLC). ACM, 15:1–12. https:
//doi.org/10.1145/3382025.3414955

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines. Springer. https://doi.org/10.1007/978-3-642-
37521-7

[4] S. Balaji and M. Sundararajan Murugaiyan. 2012. Waterfall vs. V-Model vs. Agile:
A Comparative Study on SDLC. International Journal of Information Technology

and Business Management 2, 1 (2012), 26–30.
[5] Michael Barr. 1999. Programming Embedded Systems in C and C++. O’Reilly.
[6] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,

Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In InternationalWorkshop on Variability Modelling

of Software-Intensive Systems (VaMoS). ACM, 1–8. https://doi.org/10.1145/2430502.
2430513

[7] Regina Binder, Werner Hagmüller, Peter Hofbauer, Christine Iben, U. S. Scala,
Christoph Winckler, and Johannes Baumgartner. 2004. Aktuelle Aspekte der
Kastration männlicher Ferkel. 1. Mitteilung: Tierschutzrechtliche Aspekte der
Ferkelkastration sowie Verfahren zur Schmerzausschaltung bei der chirurgischen
Kastration. Wiener Tierärztliche Monatsschrift 91 (2004), 178–183.

[8] Michel Bonneau. 1998. Use of Entire Males for Pig Meat in the European Union.
Meat Science 49, Supplement 1 (1998), 257–272. https://doi.org/10.1016/S0309-
1740(98)90053-5

[9] Bundesgesetzblatt. 2020. Tierschutzgesetz (TierSchG).
[10] Bundesgesetzblatt. 2020. Verordnung zur Durchführung der Betäubungmit Isoflu-

ran bei der Ferkelkastration durch sachkundige Personen (FerkBetSachkV).
[11] Paul Clements and Linda Northrop. 2002. Software Product Lines: Practices and

Patterns.
[12] Jamel Debbiche, Oskar Lignell, Jacob Krüger, and Thorsten Berger. 2019. Migrat-

ing Java-Based Apo-Games into a Composition-Based Software Product Line. In
International Systems and Software Product Line Conference (SPLC). ACM, 98–102.
https://doi.org/10.1145/3336294.3342361

[13] William R. Dunn. 2003. Designing Safety-Critical Computer Systems. Computer

36, 11 (2003), 40–46. https://doi.org/10.1109/MC.2003.1244533
[14] Ulrik Eklund, Helena Holmström Olsson, and Niels J. Strøm. 2014. Industrial

Challenges of Scaling Agile inMass-Produced Embedded Systems. In International
Conference on Agile Software Development (XP). Springer, 30–42. https://doi.org/
10.1007/978-3-319-14358-3_4

[15] Wolfram Fenske, Sandro Schulze, and Gunter Saake. 2017. How Preprocessor
Annotations (Do Not) Affect Maintainability: A Case Study on Change-Proneness.
In International Conference on Generative Programming: Concepts and Experiences

(GPCE). ACM, 77–90. https://doi.org/10.1145/3136040.3136059
[16] Thomas S. Fogdal, Helene Scherrebeck, Juha Kuusela, Martin Becker, and Bo

Zhang. 2016. Ten Years of Product Line Engineering at Danfoss: Lessons Learned
and Way Ahead. In International Systems and Software Product Line Conference

(SPLC). ACM, 252–261. https://doi.org/10.1145/2934466.2934491
[17] Bundesanstalt für Landwirtschaft und Ernährung. 2020. Alternativen zur

betäubungslosen Ferkelkastration. Brochure 2001.
[18] Bill Greene. 2004. Agile Methods Applied to Embedded Firmware Development.

In International Conference on Agile Software Development (XP). IEEE, 71–77.
https://doi.org/10.1109/ADEVC.2004.3

[19] Sten Grüner, Andreas Burger, Tuomas Kantonen, and Julius Rückert. 2020. In-
cremental Migration to Software Product Line Engineering. In International

Systems and Software Product Line Conference (SPLC). ACM, 5:1–11. https:
//doi.org/10.1145/3382025.3414956

[20] Dabo Guan, Daoping Wang, Stephane Hallegatte, Steven J. Davis, Jingwen Huo,
Shuping Li, Yangchun Bai, Tianyang Lei, Qianyu Xue, D’Maris Coffman, Danyang
Cheng, Peipei Chen, Xi Liang, Bing Xu, Xiaosheng Lu, Shouyang Wang, Klaus
Hubacek, and Peng Gong. 2020. Global Supply-Chain Effects of COVID-19
Control Measures. Nature Human Behaviour 4 (2020), 577–587. https://doi.org/
10.1038/s41562-020-0896-8

[21] Susanne Gäckler, Sophie Gumbert, Jürgen Harlizius, Wilfried Hopp, and Frederik
Löwenstein. 2021. Isofluran-Narkose: Vieles läuft noch nicht rund. Top Agrar 7
(2021), 18–22.

[22] Takahiro Iida, Masahiro Matsubara, Kentaro Yoshimura, Hideyuki Kojima, and
Kimio Nishino. 2016. PLE for Automotive Braking System with Management
of Impacts from Equipment Interactions. In International Systems and Software

Product Line Conference (SPLC). ACM, 232–241. https://doi.org/10.1145/2934466.
2934490

[23] Matti Kaisti, Ville Rantala, Tapio Mujunen, Sami Hyrynsalmi, Kaisa Könnölä,
Tuomas Mäkilä, and Teijo Lehtonen. 2013. Agile Methods for Embedded Systems
Development–A Literature Review and a Mapping Study. EURASIP Journal on
Embedded Systems 2013, 15 (2013), 1–16. https://doi.org/10.1186/1687-3963-2013-
15

[24] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Carnegie Mellon University.

[25] Jacob Krüger and Thorsten Berger. 2020. Activities and Costs of Re-Engineering
Cloned Variants Into an Integrated Platform. In International Working Conference

on Variability Modelling of Software-Intensive Systems (VaMoS). ACM, 21:1–10.
https://doi.org/10.1145/3377024.3377044

[26] Jacob Krüger and Thorsten Berger. 2020. An Empirical Analysis of the Costs
of Clone- and Platform-Oriented Software Reuse. In Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE). ACM, 432–444. https://doi.org/10.1145/3368089.3409684
[27] Jacob Krüger, Wardah Mahmood, and Thorsten Berger. 2020. Promote-pl: A

Round-Trip Engineering Process Model for Adopting and Evolving Product Lines.
In International Systems and Software Product Line Conference (SPLC). ACM, 2:1–
12. https://doi.org/10.1145/3382025.3414970

[28] Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, and Gunter Saake.
2018. Getting Rid of Clone-And-Own: Moving to a Software Product Line for
Temperature Monitoring. In International Systems and Software Product Line

Conference (SPLC). ACM, 179–189. https://doi.org/10.1145/3233027.3233050
[29] Kaisa Könnölä, Samuli Suomi, Tuomas Mäkilä, Tero Jokela, Ville Rantala, and

Teijo Lehtonen. 2016. AgileMethods in Embedded SystemDevelopment: Multiple-
Case Study of Three Industrial Cases. Journal of Systems and Software 118 (2016),
134–150. https://doi.org/10.1016/j.jss.2016.05.001

[30] DLG-Fachzentrum Landwirtschaft. 2019. Prüfrahmen DLG-TH 10:2019-12, Version

1: Narkosegeräte für die Ferkelkastration. Standard.
[31] DLG-Fachzentrum Landwirtschaft. 2020. DLG-Prüfbericht 7081: BEG Schulze

Bremer GmbH – Isofluran-Narkosegerät PigNap 4.0. Audit Report.
[32] Craig Larman. 2004. Agile and Iterative Development: AManager’s Guide. Addison-

Wesley.
[33] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael

Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-Based Soft-
ware Product Lines. In International Conference on Software Engineering (ICSE).
ACM, 105–114. https://doi.org/10.1145/1806799.1806819

[34] Kai Ludwig, Jacob Krüger, and Thomas Leich. 2019. Covert and Phantom Features
in Annotations: Do They Impact Variability Analysis?. In International Systems

and Software Product Line Conference (SPLC). ACM, 218–230. https://doi.org/10.
1145/3336294.3336296

[35] Alexander Maier, Andrew Sharp, and Yuriy Vagapov. 2017. Comparative Analysis
and Practical Implementation of the ESP32 Microcontroller Module for the Inter-
net of Things. In International Conference on Internet Technologies and Applications
(ITA). IEEE, 143–148. https://doi.org/10.1109/ITECHA.2017.8101926

[36] Jabier Martinez, Wesley K. G. Assunção, and Tewfik Ziadi. 2017. ESPLA: A
Catalog of Extractive SPL Adoption Case Studies. In International Systems and

Software Product Line Conference (SPLC). ACM, 38–41. https://doi.org/10.1145/
3109729.3109748

[37] Peter Marwedel. 2021. Embedded System Design: Embedded Systems Foundations

of Cyber-Physical Systems, and the Internet of Things. Springer. https://doi.org/
10.1007/978-3-030-60910-8

[38] Justus D. Naumann and A. Milton Jenkins. 1982. Prototyping: The New Paradigm
for Systems Development. MIS Quarterly 6, 3 (1982), 29–44. https://doi.org/10.
2307/248654

[39] Michael Nieke, Christoph Seidl, and Sven Schuster. 2016. Guaranteeing Configu-
ration Validity in Evolving Software Product Lines. In International Workshop

on Variability Modelling of Software-Intensive Systems (VaMoS). ACM, 73–80.
https://doi.org/10.1145/2866614.2866625

[40] Nienke Nieveen. 1999. Prototyping to Reach Product Quality. In Design Ap-

proaches and Tools in Education and Training. Springer, 125–135.
[41] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software Product

Line Engineering: Foundations, Principles and Techniques. Springer.
[42] Timo Punkka. 2005. Agile Methods and Firmware Development. SoberIT (2005),

1–21.
[43] Christa Rohlmann, Mandes Verhaagh, and Josef Efken. 2019. Steckbriefe zur

Tierhaltung in Deutschland: Ferkelerzeugung und Schweinemast. Technical Report.
Johann Heinrich von Thünen-Institut. Bundesforschungsinstitut für Ländliche
Räume, Wald und Fischerei.

[44] Farzad Samie, Lars Bauer, and Jörg Henkel. 2016. IoT Technologies for Embedded
Computing: A Survey. In International Conference on Hardware/Software Codesign

and System Synthesis (CODES). ACM, 8:1–10. https://doi.org/10.1145/2968456.
2974004

[45] Takanori Sasaki, Nobukazu Yoshioka, Yasuyuki Tahara, and Akihiko Ohsuga.
2014. Evaluation of Flexibility to Changes Focusing on the Variable Structures in
Legacy Software. In Joint Conference on Knowledge-Based Software Engineering

(JCKBSE). Springer, 252–269. https://doi.org/10.1007/978-3-319-11854-3_22

https://doi.org/10.1145/3336294.3342362
https://doi.org/10.1145/3382025.3414955
https://doi.org/10.1145/3382025.3414955
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1145/2430502.2430513
https://doi.org/10.1145/2430502.2430513
https://doi.org/10.1016/S0309-1740(98)90053-5
https://doi.org/10.1016/S0309-1740(98)90053-5
https://doi.org/10.1145/3336294.3342361
https://doi.org/10.1109/MC.2003.1244533
https://doi.org/10.1007/978-3-319-14358-3_4
https://doi.org/10.1007/978-3-319-14358-3_4
https://doi.org/10.1145/3136040.3136059
https://doi.org/10.1145/2934466.2934491
https://doi.org/10.1109/ADEVC.2004.3
https://doi.org/10.1145/3382025.3414956
https://doi.org/10.1145/3382025.3414956
https://doi.org/10.1038/s41562-020-0896-8
https://doi.org/10.1038/s41562-020-0896-8
https://doi.org/10.1145/2934466.2934490
https://doi.org/10.1145/2934466.2934490
https://doi.org/10.1186/1687-3963-2013-15
https://doi.org/10.1186/1687-3963-2013-15
https://doi.org/10.1145/3377024.3377044
https://doi.org/10.1145/3368089.3409684
https://doi.org/10.1145/3382025.3414970
https://doi.org/10.1145/3233027.3233050
https://doi.org/10.1016/j.jss.2016.05.001
https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1145/3336294.3336296
https://doi.org/10.1145/3336294.3336296
https://doi.org/10.1109/ITECHA.2017.8101926
https://doi.org/10.1145/3109729.3109748
https://doi.org/10.1145/3109729.3109748
https://doi.org/10.1007/978-3-030-60910-8
https://doi.org/10.1007/978-3-030-60910-8
https://doi.org/10.2307/248654
https://doi.org/10.2307/248654
https://doi.org/10.1145/2866614.2866625
https://doi.org/10.1145/2968456.2974004
https://doi.org/10.1145/2968456.2974004
https://doi.org/10.1007/978-3-319-11854-3_22

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom E. Kuiter et al.

[46] Cornelia Schwennen. 2015. Untersuchungen zur Anwendbarkeit der Isofluran-

narkose bei der Ferkelkastration sowie deren Auswirkung auf Produktionsparameter

in der Ferkelerzeugung unter konventionellen Produktionsbedingungen. Ph.D. Dis-
sertation. Tierärztliche Hochschule Hannover.

[47] Steven She and Thorsten Berger. 2010. Formal Semantics of the Kconfig Language.
Technical Report. University of Waterloo.

[48] Gary Stringham. 2009. Hardware/Firmware Interface Design: Best Practices for

Improving Embedded Systems Development. Newnes.
[49] Deutscher Tierschutzbund. 2019. Verbot der betäubungslosen Kastration von

männlichen Saugferkeln: Bewertung der aktuell diskutierten Alternativen aus Tier-

schutzsicht. Position Paper.
[50] Eberhard von Borell, M. Oliver, B. Fredriksen, Sandra Edwards, and Michel Bon-

neau. 2008. Standpunkte, Praktiken und Kenntnisstand zur Ferkelkastration in

Europa (PIGCAS): Projektziele und erste Ergebnisse. Journal für Verbraucher-
schutz und Lebensmittelsicherheit 3, 2 (2008), 216–220.

[51] B. Walker, N. Jäggin, M. Doherr, and U. Schatzmann. 2004. Inhalation Anaes-
thesia for Castration of Newborn Piglets: Experiences with Isoflurane and
Isoflurane/𝑁2𝑂 . Journal of Veterinary Medicine Series A 51, 3 (2004), 150–154.
https://doi.org/10.1111/j.1439-0442.2004.00617.x

[52] Jens H. Weber, Anita Katahoire, and Morgan Price. 2015. Uncovering Variability
Models for Software Ecosystems from Multi-Repository Structures. In Interna-

tional Workshop on Variability Modelling of Software-Intensive Systems (VaMoS).
ACM, 103–108. https://doi.org/10.1145/2701319.2701333

[53] Gang Zhang, Liwei Shen, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2011.
Incremental and Iterative Reengineering towards Software Product Line: An
Industrial Case Study. In International Conference on Software Maintenance (ICSM).
IEEE, 418–427. https://doi.org/10.1109/icsm.2011.6080809

https://doi.org/10.1111/j.1439-0442.2004.00617.x
https://doi.org/10.1145/2701319.2701333
https://doi.org/10.1109/icsm.2011.6080809

	Abstract
	1 Introduction
	2 Context
	3 Firmware Development
	3.1 Initial Requirements Analysis
	3.2 Development Process
	3.3 Development of First Prototype
	3.4 Emerging Variation Points
	3.5 Mandatory and Removed Features
	3.6 Final Configuration Space

	4 Discussion
	4.1 Is PigNap a Software Product Line?
	4.2 Domain-Intrinsic Variability
	4.3 Drivers of Variability
	4.4 Scenarios for Hardware Evolution
	4.5 Generalizing the Lessons Learned

	5 Related Work
	6 Conclusion
	References

