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ABSTRACT
Modern code review (MCR) processes are prevalent in most organi-
zations that develop software due to benefits in quality assurance
and knowledge transfer. With the rise of collaborative software
development platforms like GitHub and Bitbucket, today, millions
of projects share not only their code but also their review data.
Although researchers have tried to exploit this data for more than
a decade, most of that knowledge remains a buried treasure. A cru-
cial catalyst for many advances in deep learning, however, is the
accessibility of large-scale standard datasets for different learning
tasks. This paper presents the ETCR (Exploit Those Code Reviews!)
infrastructure for mining MCR datasets from any GitHub project
practicing pull-request-based development. We demonstrate its
effectiveness with ETCR-Elasticsearch, a dataset of >231𝑘 review
comments for >47𝑘 Java file revisions in >40𝑘 pull-requests from the
Elasticsearch project. ETCR is designed with the challenge of deep
learning in mind. Compared to previous datasets, ETCR datasets
include all information for linking review comments to nodes in
the respective program’s Abstract Syntax Tree.

CCS CONCEPTS
• Computing methodologies → Machine learning; • General
and reference → Experimentation; • Software and its engineer-
ing→ Software development techniques; Collaboration in software
development.
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1 INTRODUCTION
Modern Code Review (MCR) processes are state of the art in most
organizations that develop software, including open-source projects
and global players like Microsoft or Google [1, 15]. While there is a
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consensus that MCR pays for itself through benefits in quality as-
surance and knowledge transfer in practice, empirical data on time
invested into MCR is scarce. Case studies at Google and for 45 open-
source projects found that developers invested on average 3.2h to
6.4h per week [2, 15] inMCR. Though the generality of these studies
may be limited, the numbers indicate that the time invests are very
significant. Consequently, much can be gained by optimizing MCR
processes’ efficiency (i.e., reducing the time per review) and effec-
tiveness (i.e., ensuring developers’ review time is spent where it
matters), for example, on those sections of a new feature that are the
most complex or error-prone. As current research demonstrates, the
advances in deep learning enable researchers to build models capa-
ble of exploiting review data to learn code changes or share reviews
between similar source code in different projects [6, 17]. However,
deep learning requires datasets of sufficient quantity and quality. In
domains such as computer vision, standard datasets have proved to
be a crucial catalyst for many significant advances. With ETCR we
aim to establish a standard infrastructure for creating MCR datasets
geared towards deep learning for automating code review activi-
ties. To demonstrate its effectiveness, with ETCR-Elasticsearch, we
publish a first dataset for the Elasticsearch project, which includes
231k review comments, 91k of which addressed Java source code
that is available in the dataset. As an ETCR dataset, it provides
everything required for linking between review comments and spe-
cific Abstract Syntax Tree (AST) nodes. Compared to previous code
review datasets [5, 13, 14, 17, 18, 20], ETCR greatly facilitates the
creation of further datasets and giving access to potentially millions
of projects by using GitHub pull requests1. We encourage fellow
researchers to explore ETCR-Elasticsearch for their work and to
reuse ETCR to create other datasets. Both artifacts are available on
Zenodo [9, 10] and the accompanying screencasts can be found on
YouTube2.

2 ETCR
In this section, we give an overview of ETCR. Particularly, we pro-
vide insights into ETCR’s data model and its general data collection
process in Section 2.1. Then, we describe ETCR-Elasticsearch, the
first sample dataset generated by ETCR (cf. Section 2.2).

2.1 Data Model and Collection
We constructed ETCR to collect as much data as possible from an or-
dinary MCR process to make it applicable for diverse deep learning
applications. Thus, ETCR extracts data from all the individual steps
of MCR processes as described by previous work [8, 15]. Concretely,
this encompasses (1) the creation, (2) preview, and (3) commenting
of code changes as well as (4) addressing those comments, and

1Source: GitHub Blog, Visited May 5th 2021
2ETCR Overview Screencast, ETCR Tutorial Screencast
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Figure 1: ETCR Data Collection Process and Relational Datamodel

eventually (5) approving the final changes. Note that steps (2)-(4)
typically can take multiple iterations. In deciding which data to
include, we took into account recent MCR-related deep learning
applications to identify additional valuable information [17].

Figure 1 illustrates the six steps and corresponding data model
relations that ETCR uses to download, process, and store data in
a relational database. Its data model is an extension of previous
code review data models [13, 18]. Steps 1 - 4 use ETCR’s main,
Kotlin-based web crawler3 to download the review data and source
code from GitHub via its HTTP-API4. We used this API as the
source for code reviews since it does not alter the project histories
like Gerrit does, as identified by previous work [13, 14]. Steps 5
and 6 use Python modules to augment the resulting dataset. The
minimal configuration requires only the target repository identifier
(e.g., elastic/elasticsearch), a valid GitHub API key, and the
connection details for a PostgreSQL database. In the following, we
only explain the most important aspects of the data model. Further
documentation is included in the artifact [10].

Step 1 downloads the meta-data (i.e., review identifier, author,
topic, and open or closed state) for the specified project. Step 2
uses this data to retrieve all commits (i.e., initial and addressed
code changes) for each pull request, storing their meta-data and
messages. Since a commit can be featured in more than one pull
request, except for the id, it is possible to have duplicate entries in
the commit table5. When multiple commits are associated with one
pull request, each following commit typically addresses previous
comments and initiates a new review iteration. Step 3 downloads
the review comments related to each pull request. In GitHub, one
can comment on pull requests as a whole or particular code changes.

3We credit Tien Dô Nam for the implementation.
4https://docs.github.com/en/rest/reference/pulls
5for ETCR-Elasticsearch this happens for ≈ 8% of the commits

In the first case, there is no direct reference to the code or even
a specific commit. Thus, we store only the message and author
information. If desired, one can use the timestamps to indirectly
associate those messages to commits. In the second case, we also
store the concrete change information, including a reference to
the respective commit, the path to the changed file, the change
hunk within that file, and a link to that file revision (cf. 4 ). Note
that a commented line may refer to a commit that is not part of
the pull request, as reviewers can also comment on the context
of changed code. Finally, comments may also be replies to other
comments, depicted using self-references. Step 4 downloads the
correct revisions of any file addressed by a comment. A change
always involves two revisions, before and after. We only include
the after revisions in the data model because the before revisions
can be restored by rewinding the change hunks from step 3 . Step
5 once more uses the GitHub API to supplement the comments
table with the line information (i.e., the commented single lines or
line ranges), which we found beneficial from other datasets [13, 14].
The side attribute identifies whether lines were added or deleted6.
Step 6 uses javalang7 to parse the java file revisions and stores
the serialized file- and method-level ASTs. Links to their respective
parents distinguish method-level ASTs from file-level ASTs. Stored
ASTs can be deserialized and processed using javalang. To facili-
tate linking from comments to method ASTs, we also include the
methods’ line ranges.

Next, we introduce ETCR-Elasticsearch, the dataset created by
applying the above process to the GitHub repository of the elas-
ticsearch search engine. Note that for data protection we pseudo-
nymized all author names of pull requests, commits, and comments
using sha-224 hashes.

6left side (=0) means addition while right side (=1) relates to deletion
7https://github.com/c2nes/javalang
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Table 1: Descriptive Statistics for ETCR-Elasticsearch

Basic Statistic Value
# Pull Requests 40,323
# Contributors 3,816
# Commits 154,844
# Distinct Files (Java Files) 15,211 (12,492)
# File Revisions (Java Files) 58,078 (47,014)
# Comments (% Replies) 231,627 (16%)

Derived Statistic Value
# PRs per Author (Median) (0.9 Percentile) 15.6 (1) (5)
# Commits per Author (Median) (0.9 Percentile) 66.6 (3) (18,0)
# Comments per Author (Median) (0.9 Percentile) 82.15 (2) (16,5)
# Comments to Java Files 97,831
# Java File ASTs (% of Java File Revisions) 45,431 (97%)
# Java Method ASTs (Unique) 1.09M (228k)
# Comments to Java Files with full Line Information
and ASTs (% of Java File Revisions)

91,249 (93%)

2.2 ETCR-Elasticsearch
We generated the ETCR-Elasticsearch dataset in Dec. 2020 by ap-
plying ETCR to the GitHub repository of the elasticsearch search
engine. This took roughly a week, primarily due to GitHub’s API
rate limits. We selected elasticsearch because, besides having a com-
patible license, it is a very established Java project, first released
in 2010. Since then, ca. 3.8k contributors submitted more than 40k
pull requests and ca. 155k distinct commits. Next, we discuss ETCR-
Elasticsearch’s benefits regarding its quantity and quality.

Quantity. To judge the quantity of ETCR-Elasticsearch specifi-
cally concerning deep learning applications, we compare it to sim-
ilar existing datasets. Moreover, we describe ETCR-Elasticsearch
through a set of descriptive statistics in Table 1.

As a first reference, we selected two recent code change and
review datasets that were successfully evaluated for training neural
machine translation (NMT) architectures. Tufano et al. created a
dataset for learning code changes consisting of ca. 240k method
pairs (i.e., 480k method revisions) from ca. 80k pull requests. Each
method pair consists of the method’s source code before and after
a completed pull request [16]. Their current research also includes
review comments, forming so-called triplets. The corresponding
dataset contains ca. 17k triplets [17]. Therefore, with 1.09M method
revisions, 228k of which are unique, ETCR-Elasticsearch is compa-
rable to this larger dataset. Compared to the triplet-dataset, ETCR--
Elasticsearch contains 2.6 times as many comments with fully avail-
able source code (91k). Table 3 shows that the number of comments
of ETCR-Elasticsearch is comparable to other datasets, particularly
since the larger datasets used multiple projects (i.e., Paixao et al.
[14], Yang et al. [18]).

As a second comparison, we chose two representative datasets
from text classification, namely, IMDB-Reviews (50k instances,
2 classes) for sentiment analysis and News-Categories (200k in-
stances, 41 classes) for topic classification [11, 12]. Both learning
tasks have analogs in classifying review comments or code. Quan-
titatively, ETCR-Elasticsearch features pull requests, commits, file
revisions, and comments in the same magnitude (i.e., 104 − 105).
We expect the number of classes to range similarly from 10-100 for
many learning tasks (e.g., classifying topics in review comments).

Table 2: Exploring Comments in ETCR-Elasticsearch

Refactoring Topic Queries Count Actionability Queries Count
’%extract %constant%’ 17 ’%make this a %’ 228
’%extract %variable%’ 14 ’%can do better%’ 23
’%magic value%’ 9 ’%should %refactor%’ 174
’%magic number%’ 22 ’%should refactor%’ 15
’%extract %method%’ 106 ’%this should be%’ 931
’%separate method%’ 76 ’%we should%’ 9,192
’%separate class%’ 70 ’%you should%’ 486
’%extract %class%’ 37 ’%move this to%’ 149
’%a factory%’ 23
’%singleton%’ 52

Thus, we conclude that the quantity of data in ETCR-Elastic-
search is very likely sufficient for many deep learning applications.
Moreover, if required, researchers can use the ETCR infrastructure
to easily create other datasets.

Quality. In the following, we discuss the dataset’s quality by
considering its practical application and diversity.

We see ETCR’s main application in facilitating research on the
automation of code review using deep learning. Besides Tufano et
al.’s work mentioned above, Guo et al. developed rsharer, which
uses deep learning to share reviews between code clones in differ-
ent projects. These recent approaches exploit MCR data to assist at
the method- or code-snippet level. We expect future approaches to
use MCR data at a finer granularity. For example, emerging tech-
niques could learn to identify and fix flaws regarding particular AST
nodes, e.g., expressions, method invocations, or conditions. To the
best of our knowledge, researchers did not yet attempt this. Thus,
we designed ETCR to provide everything required for developing
such models: complete review comments and source code of the
addressed revisions, ASTs at the file- and method level, and utilities
for linking comments to AST nodes.

We further demonstrate ETCR’s application in an explorative
look at its suitability to the practical learning task of semantic
classification. We consider two meta-classes: a classifying the
refactoring-topics and b the actionability of review comments
(i.e., whether comments trigger changes). Systems based on these
classifications could inform developers about specific issues in their
code ( a ) or give reviewers feedback on how likely their remarks
will lead to changes rather than further discussion ( b ). Such clas-
sifiers could benefit from ETCR’s combination of comments, code
changes, and AST nodes in multiple ways. As a first example, con-
text information from the addressed source code could enable finer
discrimination of review topics than, e.g., binary classifications
from earlier work ( a ) [19]. From this, we derive a new research
question, particularly for ETCR datasets: Can we build classifiers
with superior performance by combining comment text classifica-
tion with a context representation derived from the corresponding
source code? As a second example, based on the dataset, one can
tell whether code sections changed shortly after being commented
on by a reviewer. This knowledge could be used as ground truth
for actionability classifiers, as it suggests that the comment is likely
to have induced the change ( b ).

Table 2 further shows the diversity of ETCR-Elasticsearch by
using simple textual queries to count the appearances of comments
referring to the metaclasses introduced above. The first four queries
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Table 3: Comparison of ETCR-Elasticsearch to existing code review datasets.

Dataset Comments (Number) Line Data Source Code ASTs Applicability
Tufano et al. [17] Yes (17, 1948) - Abstracted Methods - GitHub, Gerrit
Paixao et al. [14] Yes (507, 268) Yes Revision-Snapshots - Specific Gerrit Proj.
Mukadam et al. [13] Yes (106, 439) Yes Metadata - Gerrit
Yang et al. [18] Yes (6, 375, 1289) - Metadata - Gerrit
Gousios and Zaidman [5] Metadata (-) - - - GHTorrent
Zhang et al. [20] Metadata (-) - - - GHTorrent
ETCR-Elasticsearch Yes (231, 627) Yes Revision-Snapshots File&Method GitHub

refer to magic-value anti-patterns [3]. The second four address
design flaws that developers could remedy by extracting methods
or classes. [3]. The final queries search for particular design patterns:
factory and singleton [4].

Regarding actionability, we defined similar queries. Here too,
the simple indicators worked surprisingly well. Interestingly, the
query "%we should%" by far dominates, giving a positive insight
into the tone of the conversation.

The first author validated ten random comments per query to
gauge the number of false positives. For both types of indicators,
the average precision in the random sample was 0.78, with only
one query scoring below 0.5. This investigation shows that all
of the exemplary topics frequently appear in ETCR-Elasticsearch,
underlining the diversity of the data.

Finally, we examine the per-authors statistics10 in Table 1 as
another indicator of diversity. As the significant differences be-
tween the averages and the medians or 0.9 percentiles indicate, a
small number of people make the vast majority of all contributions.
Further investigating this, 90% of all commits and comments are
accounted for by ca. 90 developers. Thus, we conclude that the
ETCR-Elasticsearch reflects the diverse styles, experiences, and
priorities of many developers.

3 RELATED DATASETS
This section gives an overview of the most relevant existing, MCR-
related datasets and their intended research goals. Table 3 shows
a direct comparison of these datasets to ETCR datasets and in
particular to ETCR-Elasticsearch.

Tufano et al. created two datasets for predicting method-level
code changes via deep learning. The first one only used code
changes from 80k pull requests, whereas the more recent one also
incorporates review comments (based on ca. 17k changes) from
GitHub and Gerrit [16, 17]. Compared to ETCR the code is ab-
stracted, and their selection criteria drastically reduce the number
of retained instances. Thus, the dataset may be less suited for reuse
in other research avenues. The Code Review Open Platform (CROP)
by Paixao et al. [14] is a dataset based on specific Gerrit projects
consisting of ca. 507k comments. Since Gerrit is known to rewrite
repository histories [13, 14], CROP only selects projects that keep
copies of their original history in separate repositories. Therefore
CROP offers full snapshots of all relevant revisions. This project se-
lection, however, limits its extensibility compared to ETCR-datasets.

8retained after filtering an initial set of 231, 439 reviewers’ comments
9based on updated data from kin-y.github.io/miningReviewRepo/
10Note that we excluded 27,407 bot-comments for these statistics.

The dataset from Mukadam et al. [13] suffers from similar issues
and lacks actual source code. Even though it also provides line
numbers, it has fewer comments in total (ca. 106k vs. 231k, cf. Ta-
ble 3) and provides only source code metadata. Yang et al. [18]
have the largest number of comments (ca. 6M). However, they also
rely on Gerrit, lack line information, and provide only source code
metadata, since they focus on the people, process, and product as-
pects of MCR. An earlier, no longer available dataset had similar
limitations [7]. Finally, Gousios and Zaidman [5] and Zhang et al.
[20] created datasets of GitHub pull requests that contain mostly
metadata (e.g., comment counts, etc.) for empirical research on
pull-based development.

In summary, compared to existing datasets, ETCR datasets con-
tain everything required to link review comments to complete
source code. To the best of our knowledge, ETCR is the first to
offer ASTs. Moreover, building on GitHub, ETCR is more extensible
compared to Gerrit-based approaches.

4 CONCLUSION
In this paper, we presented the ETCR infrastructure for creating
MCR datasets by mining GitHub pull requests. Using the example
of ETCR-Elasticsearch, we showed the richness of such datasets
in terms of quantity and quality. We compared ETCR datasets to
existing MCR datasets, showing how we combine their strengths to
provide a foundation for standard datasets in code review automa-
tion. In our future work, we plan to (a) release further datasets, (b)
to create adapters for deep learning frameworks such as PyTorch,
(c) research semantic review classification that combines comment-
and source code-features, and (d) further advance the field of deep
learning for code review automation.
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