
CuART - a CUDA-based, scalable Radix-Tree lookup and update
engine

Martin Koppehel
Thilo Pionteck
koppehel@ovgu.de
pionteck@ovgu.de

Institute for Information Technology and Communications
Otto-von-Guericke Universität Magdeburg

Germany

Tobias Groth
Sven Groppe

groth@ifis.uni-luebeck.de
groppe@ifis.uni-luebeck.de

Institute of Information Systems (IFIS)
Universität zu Lübeck

Germany

ABSTRACT
In this work we present an optimized version of the Adaptive Radix
Tree (ART) index structure for GPUs. We analyze an existing GPU
implementation of ART (GRT), identify bottlenecks and present
an optimized data structure and layout to improve the lookup and
update performance. We show that our implementation outper-
forms the existing approach by a factor up to 2 times for lookups
and up to 10 times for updates using the same GPU. We also show
that the sequential memory layout presented here is beneficial for
lookup-intensive workloads on the CPU, outperforming the ART by
up to 10 times. We analyze the impact of the memory architecture
of the GPU, where it becomes visible that traditional GDDR6(X)
is beneficial for the index lookups due to the faster clock rates
compared to High Bandwidth Memory (HBM).

KEYWORDS
in memory databases, index structures, databases, radix trees, ART
ACM Reference Format:
Martin Koppehel, Thilo Pionteck, Tobias Groth, and Sven Groppe. 2021.
CuART - a CUDA-based, scalable Radix-Tree lookup and update engine.
In 50th International Conference on Parallel Processing (ICPP ’21), August
9–12, 2021, Lemont, IL, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3472456.3472511

1 INTRODUCTION
The increased demand for deep analysis of huge databases puts new
challenges on several components within amodern database system.
New approaches in the query interface have been widely evaluated
and partially adopted within NoSQL databases [18], as well as
optimizations for the storage backends [9]. The index structures
used to find specific records within such a database were steadily
optimized, but there were no significant improvements in order
to speed up index construction and querying. This is particularly
problematic since the available main memory for typical server
systems increased from a few gigabytes in the 00s into the multi-
terabyte range today, enabling more and more database systems

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9068-2/21/08.
https://doi.org/10.1145/3472456.3472511

to be run entirely within the main memory [15]. From this trend
specialized database systems, so called In-Memory-DBs, evolved.
While traditional databases spend lots of CPU time waiting for disk
I/O, a main memory database can access its entire data within a few
hundred CPU cycles because it is entirely backed by main memory.
This development causes the main memory index structure used
within the database to be a major performance factor, as shown in
[16].

While simple queries such as lookups in a key-value store only
perform a single lookup in the index, some more complex queries,
e.g. index joins across multiple tables access the index structure for
each tuple to be joined and hence up to several million times for big
data during query processing. In most real-world OLAP (On-Line
Analytical Processing) and OLTP (On-Line Transactional Process-
ing) scenarios, such complex queries account for the majority of
total queries, since they promise much better performance than
fetching and aggregating data within the client software. Conse-
quently, optimizing the used index structures for higher throughput,
lower latency and smaller size can yield a significant system per-
formance increase [16].

Basically, three categories of index structures are most widely
used today [10]: hash tables, search trees and prefix trees. While
a hash table guarantees constant access times for exact queries,
utilizing this structure for range queries imposes several limitations
on the organization of the data indexed. To use a hash table for
range queries the user needs to guarantee that both the upper and
the lower limit are contained within the hash table. Additionally
the indexed data needs to be stored in a sorted order to enable
traversal operations. The performance of a hash table is mostly de-
termined by the underlying hash function, which can be a problem
if a sophisticated hash function is used.

If range queries with unordered data are required, linked search
trees or prefix trees can be utilized. Such tree structures can be tra-
versed in linear time for given boundaries. The difference between
search trees and prefix trees lies in the representation of the search
keys. While a search tree stores n-1 complete keys within each node,
a prefix tree only stores a subset of the key in each node. In this work
we analyze the Adaptive Radix Tree (ART), which is a memory-
optimized variant of a prefix-tree. It does so by adapting the node
sizes to the number of children and compacting prefixes into inner
nodes. By adapting node sizes, ART achieves the same indexing
performance compared to hash tables and traditional search trees,
with a significant reduction in memory consumption [17]. ART
is an efficient index structure for point, range and prefix lookups

https://doi.org/10.1145/3472456.3472511
https://doi.org/10.1145/3472456.3472511
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3472456.3472511

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Koppehel, Groth et. al.

ART

C

(a)

A E

(b)

D R S

(c)

CAD CAR CASH

CELL

GRT

(d)

(e) (f) (g)

(c)(a) (b) (d) (e) (f) (g)

Figure 1: Example ART (upper half) and corresponding
mapped GRT (lower half), visualizing the memory layout
and the different node sizes, colors represent the different
node sizes

as well as updates. Ref. [2] conducted a performance comparison
between ART, Judy Trees (another interpretation of adaptive radix
trees) and cuckoo hashing. While they found that a "carefully cho-
sen hash table" outperforms radix trees for single queries, ART is
significantly faster for range queries.

Another development in modern data centers within the last few
years is the increasing usage of specialized hardware accelerators,
GPUs and FPGAs. While initially driven by GPU and ASIC solu-
tions for neural network training and inferencing, the increasing
programmability of modern GPUs opens up the possibility to accel-
erate new types of applications such as video/game streaming as
well as databases. Those acceleration approaches manifest them-
selves in off-the-shelf, optimized libraries provided by FPGA and
GPU vendors e.g. the Xilinx Vitis Database library [26] or NVIDIA
CUDA libraries for general purpose computing [21]. Considering
the aforementioned requirements to index structures in modern
database systems as well as the fact that lookups can be arbitrarily
parallelized for most index structures, it is desirable to accelerate
index lookups using GPUs.

1.1 Our Contribution
In this work, we propose memory and algorithmic optimizations
which improve the performance of ART when implemented on
a GPU. We evaluate the performance in terms of throughput for
lookup operations within the ART with several index sizes. We
analyze the impact of different GPU memory architectures such as
GDDR and HBM. We show that the same optimizations can also be
applied towards a CPU-based lookup engine and achieve significant
speedups compared to the original ART implementation. Besides

lookup operations, we also propose a parallel update engine which
is able to atomically replace values within the CuART.

1.2 Structure
The rest of our paper is structured as follows. In the next chapter (2),
we present previous and related work to our research. We will not
only focus on database applications, but also include algorithmically
similar work from other research areas. Chapter 2.1 introduces the
concepts of the ART as well as the algorithm we use to find entries
within the ART. Chapter 3 presents the optimizations we applied to
the existing GPU based ART implementation, highlights challenges
in the design and provides deep insights into the implementation.
Chapter 4 presents the results of our evaluation, comparing and
analyzing several experiments. Finally a short conclusion and an
outlook into further research is given.

2 RELATEDWORK
In [25] a comprehensive performance case study of several mod-
ern index structures with focus on paralellism is published. Since
CuART heavily exploits a high degree of paralellism, the index
structures compared in [25] can be seen as good comparison can-
didates. In their study they find that ART is one of the fastest
tree-based index structures for querying and updating, making it a
good choice for a GPU implementation. Another interesting work
presented by Wu et. al. in [24] adapts the well-known database
cracking algorithm towards ART, optimizing the memory consump-
tion by constructing the ART during query processing, therefore
only indexing keys which are actually queried. Database crack-
ing was first published in [13] as a possible strategy to create and
maintain workload-adaptive index structures, yielding a significant
performance improvement over traditional indices. The strategy
of database cracking was evolved even further by combining the
adaptive merging strategy [7] with database cracking to a hybrid
indexing solution, effectively reaching a workload-adaptive, low-
overhead, low-memory index structure in the context of in-memory
databases [14]. The aforementioned publications are complimen-
tary to our work, since they focus on improving index construction,
maintenance and memory consumption, whereas our work focuses
on performance improvements and memory savings when imple-
mented on a GPU, which opens up space for future work (see section
5.1).

2.1 Radix Trees
Prefix or radix trees have been proposed as a space-efficient data
structure quite a few times in literature. Prominent examples in-
clude the Patricia Trie introduced by Morrison et. al. in [20], as well
as the HAT-Trie in [3] and the Adaptive Radix Tree (ART) intro-
duced by Leis et. al. in 2013 [17] as an extension to traditional Radix
Trees. The upper half of figure 1 shows an ART populated with 4
entries, visualizing the different node sizes and pointers between
the nodes. Since then, several additions and improvements to this
index structure were proposed, e.g. by merging several nodes for
sparse tree areas (START, [5]). Another work that builds on top of
ART was the GRT proposed in [1], a GPU based implementation of
ART which we used as a starting point for our work. The lower half
of figure 1 shows the memory layout of the GRT, obviously only

CuART - a CUDA-based, scalable Radix-Tree lookup and update engine ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Header Keys Offsets

Node 1 Node 2 Header

... Type Prefix Type Defined
Contents

Header Keys
Next
Node
Type

Next
Node
Index

Node 2

Prefix Next NodesKeys

Node 1

GRT

CuART

Compressed Pointer

063 56
offsettype

32

Figure 2: Node Layout of GRT vs. CuART, visualizing the
type dependent contents of a node in GRT

one buffer is used and all items are laid out in order. While radix
trees in general are suitable for exact, range and prefix lookups,
there also have been approaches for running approximate lookups
on the GPU by Groth et. al. in [8], making ART also suitable for
approximate queries.

2.2 Hardware Accelerated Indexing
Ref. [22] presents a new approach for a hybrid in-memory index
tree. Therefore they developed an CPU-GPU B+-tree and HB+-tree.
Their implementation is based on heterogeneous hardware plat-
forms and utilizes a hybrid memory structure with simultaneous
access from both the CPU and the GPU. They achieve a speedup
of 2.4x compared to a plain CPU variant. Ref. [12] also shows new
options to improve the performance of B+-trees in a CPU-GPU
architecture. They use simultaneous sorting and searching on CPU
and GPU to increase the total throughput by 1.8x. It presents an
automatic approach to map OpenCL kernels onto heterogeneous
multi-cores systems, achieving a speedup up to 1.8x. [6] optimizes
the K Nearest Neighbor (KNN) joins by using a hybrid CPU/GPU
approach. Apart from specific index structures, ref. [19] evaluates
OpenCL optimization techniques which can be used across all hard-
ware vendors and platforms, some of which potentially could be
applied to this work too. They show that FPGA platforms have a
better performance portability and energy efficiency than GPUs if
optimized correctly. ref. [23] evaluates OpenCL optimizations in
embedded systems. They show how a multicore algorithm could be
extented and optimized. They maximize the throughput by larger
batches, create a better GPU resource utilization and limit the CPU
and GPU imbalance, a technique we also used in this work.

3 CUART
The following chapter starts by analyzing the problems of GRT
and ART, focusing on why the problems discovered in the GRT de-
crease the achievable performance. Afterwards, we propose several
optimizations

3.1 GRT Analysis
An analysis of the runtime and performance metrics of the initial
GPU-based ART implementation reveals that the memory access
patterns of ART are suboptimal for GPUs, because the node type is

Le
af

 L
in

k

Stage 1 - Upper Layer Lookup

Compacted First LayersSearch Term
depth = 0

Stage 2 - Tree Traversal
N4 Objects

N16 Objects

N48 Objects

N256 Objects

Search Term
depth = 3..max

Stage 3 - Leaf Lookup

CompareSearch Term
depth = max Leaf Objects

FoundNot Found

Figure 3: Lookup Algorithm within the optimized buffer
structure

encoded within the node structure itself (see figure 2). This leads
to at least two memory accesses/transactions towards the local or
global memory, because the correct size to read depends on the
node type, which is encoded within the header.While modern GPUs
have sophisticated memory controllers that will prefetch eagerly,
the larger node types of ART are too large (650B for N48 and 2KB
for N256) to be prefetched upfront. Therefore it is necessary to read
the header first and then read the remaining data depending on the
actual node type. Another substantial problem of trees on GPUs in
general is that the computational effort required to traverse such
tree is typically small, in the case of ART it is at around 20 clock
cycles per node, whereas a global memory access typically requires
50 clock cycles at best (NVidia Ampere GPU). This leads to the
conclusion that increasing memory bandwidth, decreasing memory
latency and improved access patterns will increase the throughput
of tree-based structures when implemented on a GPU.

Another problem arises when running mixed read/write work-
loads such as typical OLTP benchmarks. Due to the control flow
intensive algorithm required to update and restructure such trees,
a CPU is more suitable to actually perform the update operations.
In case of tree modifications like updates and inserts, the CPU most
likely needs to perform other actions on the actual data managed
by the index structure anyway. However, for a tree-based index
structure to be usable on a GPU, the pointer based objects need to
be flattened into one or more buffers which can be used on the GPU.
In case of frequent updates, preparing the buffers for the GPU needs
to happen for almost every update depending on the consistency
guarantees of the DBMS.

3.2 Improvements
The following sections provide a detailed overview of our improve-
ments to the ART index structure to improve the performance when
implemented on GPUs.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Koppehel, Groth et. al.

3.2.1 Memory Access Patterns. In the original implementation of
the GRT, the authors implemented a mapping step from the pointer-
based ART in main memory towards into a single, tightly packed
buffer of nodes utilizing an in-order traversal. This buffer is then
passed to the GPU as an untyped buffer, and is accessed with offsets
in this buffer (see figure 1). While this approach works and is ben-
eficial for hierarchical lookups, it imposes the problem described
in section 3.1, that both the alignment and the size to read from
global memory is unknown beforehand. In our implementation,
we map the index structure into several buffers instead of just one,
as shown in figure 3. Namely we utilize one buffer per node type.
This change has two significant implications. First of all it allows
the implementation to determine the transaction read size before
initiating the actual memory request, as shown in figure 2. This
improvement combined with a guaranteed alignment of at least
16 bytes allows for efficient memory transactions and therefore a
reduced memory controller load. Especially in the case of larger
nodes, trading memory bandwidth for access latency should im-
prove the performance significantly. The second implication is that
we need to replace the byte offsets into the single buffer used by
GRT. We replace the single 64bit offset by a packed 64bit integer
containing the next node type in the most significant bits and the
node index within the corresponding buffer in the least significant
bits. The structure of this 64bit value is shown in figure 2. In our
implementation we use the numbers 1 to 4 to represent the different
node types (1=N4, 2=N16, 3=N48, 4=N256) and 5 to 7 for the dif-
ferent leaf types (5=leaf8, 6=leaf16, 7=leaf32). For very large index
structures, the node type could be further reduced to the actually
used bits, leaving even more addressable space for the node arrays.
Furthermore, this compression also allows us to save one byte of
memory from the node header, because the node type is no longer
required there. We reused that byte for an increased maximum
prefix length.

In our initial implementation, we replaced the dynamically sized
leaf buffer by a fixed size leaf, which can store up to 32 byte keys,
again trading memory bandwidth for access latency for small (4
to 16 byte) keys. During the evaluation, we switched from a single
sized leaves to several leaf objects of different sizes (8, 16, 32 bytes)
to better adapt to dynamic key sizes. A side effect of changing this
buffer structure is that we can make a compile-time guarantee,
that all nodes are aligned to 16 or even 32 byte addresses, which
allows the compiler to generate efficient memory loads. A downside
of having fixed-size leafs is that the user has to define a compile-
time constant maximum key size up to which lookups can be done.
While this restriction is feasible for accelerating traditional columns
where indexes are built of 8 (numeric IDs) or 16 (UUIDs) byte keys,
we show approaches to overcome this limit in section 3.2.3. A side
effect of splitting leafs into multiple leaf buffers of different sizes
is that transferring range queries from the accelerator to the host
is trivial because it is only required to transmit both the start and
the end index within the leaf arrays, because the keys are already
strictly ordered within the leaf buffers assuming a lexicographical
order, thus speeding up range queries significantly.

3.2.2 Compacting upper Layers. In order to improve the total ac-
cess latency, we merged the upper layers into a multi-layer ART

Lookup

GPU

Lookup

CPU

ART
Short
(large)

ART long
(small)

short keys long keys

Query Interface

Figure 4: CPU/GPUHybrid Implementation of long key han-
dling, processing all long keys on the CPU

GPU
C

CECA

Link CELLCAR

CPU
Query:
CASHIER

Query Engine

Long Leaves

Lookup: CASHIER

Result
Processor

Figure 5: CPU/GPUHybrid Implementation of long key han-
dling, storing the long keys separately and inserting links to
long leaves

node, as proposed in ref. [5] for all nodes. This reduces the num-
ber of memory accesses required for one layer to complete and
also increases cache hit rates at the cost of a slightly higher index
memory consumption for large indices. In our case, we merged the
first three layers into a lookup table. We realized this optimization
by utilizing a dense array of compacted pointers (node links), re-
sulting in 128MB of memory consumption on the device. For large
key spaces, this solution accounts for around 30 to 40 megabytes
of device memory used atop of the actual index structure. While
the lookup table takes up 128MB, the overhead is reduced by the
space the nodes in the first three layers take up. Lookups within
the compacted root node are realized by using the first three bytes
of the key as an index into a dense array, as presented in ref. [5].

3.2.3 Handling long keys. Because our approach can only handle
keys up to a compile-time defined length, we introduce three pos-
sibilities for handling longer keys than this maximum. The first
possibility is to skip the GPU-based processing of long keys entirely
and process those keys on the CPU (see figure 4, visualizing the
query split). The second possibility is to move the longer keys into
a separate leaf buffer on the host memory, inserting links to those
leaves into the GPU node buffers (see figure 5). When the GPU
encounters such a link, it sets a specific signal in the return value
indicating that the CPU needs to compare the complete key along
with the address of the actual leaf in main memory. This allows us to
handle exceptionally long keys without wasting memory resources
in the expensive device memory and still perform the actual lookup
on the GPU. The third possibility is the one GRT chose, namely
introducing another leaf type which is dynamically sized either at
byte, word or 16-byte level and perform a dynamic sized memory

CuART - a CUDA-based, scalable Radix-Tree lookup and update engine ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Stage 2

Stage 1

1
CAR

2
CAD

3
CELL

4
CAR

5
CAR ...

Thread ID

&CAR
5

&CAD
2

&CELL
3

1
CAR

2
CAD

3
CELL

4
CAR

5
CAR ...

Thread ID
Superseded Applied

Address List
to update

Lookup

Consume

Hashmap Buffer

Figure 6: Two-staged update process, visualizing conflict res-
olution with a hash table and atomic operations, storing the
highest index of the update operation, updates for other in-
dices are skipped

comparison. While this approach is good for frequent occurences
of keys that are slightly longer than the implementation defined
maximum, it can severely hurt the overall lookup performance in
case of exceptionally long keys, because the single thread spends a
lot of time comparing the actual leaf. The first option (long keys on
the CPU, short keys on the GPU) is the most promising as it is able
to utilize otherwise unused CPU resources to process even more
queries.

3.3 Device Side Deletions
In order to speed up mixed read/write transactions when migrat-
ing read queries towards a GPU we utilize CUDA unified memory,
which is an implementation of shared virtual memory. This archi-
tecture allows us to efficiently process updates and insertions on
the CPU and only updating affected memory regions within the
buffer structure. To process a deletion directly on the device, the
tree is traversed, keeping the last visited offset in local memory.
Once a leaf is reached, its contents are cleared and the reference
to the leaf is removed from the last visited node. The leaf index is
pushed into a list of free leaves which can be used for future inserts.
By not modifying the structure of the tree (i.e. not collapsing nodes
immediately), the deletion performance can be increased signifi-
cantly. Chapter 5.1 outlines the work required to perform all tree
operations in parallel on a GPU.

3.4 Device Side Updates
Update operations replace the value stored for certain keys. In
order to perform an update, again a tree traversal is needed to
find the leaf location to update. Since all operations are applied
in batches, especially in the case of updates the correct ordering

of operations must be considered. We utilize a one-dimensional
grid of threads in CUDA, which means that the update operation
priority increases along with the thread ID. In order to perform
update operations in parallel, duplicate writes to the same key are
eliminated by utilizing an atomic hash table (compare Ref. [4])
storing the maximum element index that performs an update to a
certain leaf. This process is visualized in figure 6. Stage 1 performs a
lookupwithin the tree, returning thememory location instead of the
actual value for the leaf. Afterwards, it updates the hash table if its
thread index is larger than the current one or not contained within
the hash table. Collisions are handled by simple linear probing as
described in ref. [4]. After inserting all indices into the hash table,
a thread synchronization is performed. In the end, all threads read
back the maximum index for their computed memory location and
perform the actual update operation in the global memory if their
thread index is equal to the hash table value. As updates and non-
structural modifying deletes are quite similar in their functionality,
we use the same implementation for both, signaling a deletion
through a setting a nil pointer.

4 EVALUATION
The following sections outline our experimental results of evalu-
ating CuART, GRT and the impact of our optimizations. First we
present our benchmark setup. We evaluate the lookup and update
performance of CuART against GRT and ART in different scenarios
varying parameters.

4.1 Setup
In order to evaluate the performance of our algorithm, we build a
framework that is capable of generating reproducible trees with
data of different characteristics and afterwards generate update,
delete, range and exact lookup queries. In contrast to ref. [1] the
throughput is measured as an end-to-end manner, including CPU
overhead for processing the lookups afterwards, PCIe transfer times
and pipelining. Queries are coalesced into batches in order to reduce
the compute overhead, typically with a power-of-two size to ease
up scheduling and optimal load on the GPUs. We tested against
synthetic random test data as well as real world test data from the
publicly available BTC dataset [11]. Our host code utilizes a variable
amount of command streams for both CuART and GRT, decoupling
the GPU dispatch from a specific number of host threads. In general,
the benchmarks are performed in three stages:

• Populating the ART index
• Mapping the CPU ART into the buffer structure described
in chapter 3.2.1

• Running the actual queries against the GPU, measuring the
throughput

In order to prove that our optimizations are generally applicable,
we conduct several experiments with a wide range of parameters,
varying in tree size, number of host threads, size of the batches sent
to the GPU and different key lengths. To prove that our improve-
ments are not only caused by using a different API, we compare
CuART against both a CUDA and an OpenCL variant of GRT. To
account for different memory options, we present benchmarks of all
candidates on the following three machines to rule out architectural
differences and mimic a variety of scenarios:

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Koppehel, Groth et. al.ICPP ’21, August 9–12, 2021, Lemont, IL, USA Koppehel, Groth et. al.

64k 1M 16M 64M
100

101

102

Tree Size (entries)

Th
ro
ug

hp
ut

(M
O
ps
/s
)

ART, KL 8 CuART, KL 8
ART, KL 16 CuART, KL 16
ART, KL 32 CuART, KL 32

Figure 7: Lookup throughput on classical ART vs CuART
memory layout on CPUs (12 threads, 32ki items per batch,
KL = Key Length, workstation)

• Server - 2x AMD Epyc 7752, 2x NVidia A100 (40GB HBM2),
2TB DDR4-2933

• Workstation - AMD Ryzen 5800X, NVidia RTX3090 (24GB
GDDR6X), 128GB DDR4-3200

• Notebook - Intel Core i7 8750H, NVidia GTX1070 (8GB
GDDR5), 64GB DDR4-2666

4.2 CPU
In this section we conduct several experiments to prove the bene-
fits of our improvements for exact lookups. We start by verifying
our proposed optimizations on the CPU. We varied the tree size
(number of items within the tree) as well as the key length (size per
item) over typical used ranges. Figure 7 shows the impact of our
optimizations on the CPU. For small trees, the CPU has a very good
cache efficiency, CuART outperforms the original ART by 2.5 times
for small trees, increasing the performance gain to up to 20 times
for lookups within larger trees. This experiment reveals that our
opimizations are generally applicable to ART and not only tailored
towards a specific GPU architecture. While this performance gain
is certainly very useful for lookup-intensive workloads (OLAP), it
comes at an additional maintenance burden when updating the
index structure, because all operations have to be done within the
flat buffer. CuART performs and scales significantly better than the
original ART because it employs continous pieces of memory. The
traditional ART implementation is spread across the main memory.
Especially in the case of smaller index structures, our whole tree
fits entirely into the CPU cache and utilizes all available cache lines
due to its continous memory layout, minimizing cache misses.

4.3 GPU Host Code
To achieve the highest throughput on a GPU, it is crucial to keep
as many compute units as possible busy. We performed a design
space exploration on two parameters, namely the number of host
threads (shown in figure 9) sending work to the GPU and the size of
the work batches sent to the GPU (shown in figure 8). While very
small batches increase the overhead on the host side, both GRT
and CuART achieve a good performance at any batch size between

103 104 105
0

2

4

6

·107

Items per Batch

th
ro
ug

hp
ut

(O
ps
/s
)

CuART
GRT - OpenCL
GRT - CUDA
ART CPU

Figure 8: Lookup Throughput with increasing batch size
(26Mi entries, 8 threads, 32 byte keys, server)

100 101
0

2

4

6

·107

Number of Threads

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART
GRT - OpenCL
GRT - CUDA

Figure 9: Lookup Throughput with increasing number of
threads (26Mi entries, 32 byte keys, 32ki items per batch,
server)

8192 and 131072 items. For the remaining experiments, we chose a
batch size of 32768 items. Figure 9 reveals that in general, more
host threads are preferable for both CuART and GRT. We chose
to utilize 8 threads for the remaining experiments as a tradeoff
between dedicating host CPU resources to keep the GPU busy and
running query operations in a real world scenario. Compared to
GRT, CuART is much more thread agnostic. One reason for this
behavior is the inherent asynchronousity of the CUDAAPI utilizing
several streams that can be efficiently mapped onto the GPU. All of
those measurements were taken at a medium tree size (26M entries).

4.4 Exact Lookups
In the next experiment we show the impact of varying the tree size,
with a fixed key length of 32 bytes, e.g. mimicking the scenario
of ART used as an index on a primary key of a growing table.
Figure 10 reveals the scalability of CuART compared to GRT. CuART
outperforms GRT for all tested index sizes, ranging from 64k items
up to 144M items. An interesting detail is that the throughput of

Figure 7: Lookup throughput on classical ART vs CuART
memory layout on CPUs (12 threads, 32ki items per batch,
KL = Key Length, workstation)

• Server - 2x AMD Epyc 7752, 2x NVidia A100 (40GB HBM2),
2TB DDR4-2933

• Workstation - AMD Ryzen 5800X, NVidia RTX3090 (24GB
GDDR6X), 128GB DDR4-3200

• Notebook - Intel Core i7 8750H, NVidia GTX1070 (8GB
GDDR5), 64GB DDR4-2666

4.2 CPU
In this section we conduct several experiments to prove the bene-
fits of our improvements for exact lookups. We start by verifying
our proposed optimizations on the CPU. We varied the tree size
(number of items within the tree) as well as the key length (size per
item) over typical used ranges. Figure 7 shows the impact of our
optimizations on the CPU. For small trees, the CPU has a very good
cache efficiency, CuART outperforms the original ART by 2.5 times
for small trees, increasing the performance gain to up to 20 times
for lookups within larger trees. This experiment reveals that our
opimizations are generally applicable to ART and not only tailored
towards a specific GPU architecture. While this performance gain
is certainly very useful for lookup-intensive workloads (OLAP), it
comes at an additional maintenance burden when updating the
index structure, because all operations have to be done within the
flat buffer. CuART performs and scales significantly better than the
original ART because it employs continous pieces of memory. The
traditional ART implementation is spread across the main memory.
Especially in the case of smaller index structures, our whole tree
fits entirely into the CPU cache and utilizes all available cache lines
due to its continous memory layout, minimizing cache misses.

4.3 GPU Host Code
To achieve the highest throughput on a GPU, it is crucial to keep
as many compute units as possible busy. We performed a design
space exploration on two parameters, namely the number of host
threads (shown in figure 9) sending work to the GPU and the size of
the work batches sent to the GPU (shown in figure 8). While very
small batches increase the overhead on the host side, both GRT
and CuART achieve a good performance at any batch size between

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Koppehel, Groth et. al.

64k 1M 16M 64M
100

101

102

Tree Size (entries)

Th
ro
ug

hp
ut

(M
O
ps
/s
)

ART, KL 8 CuART, KL 8
ART, KL 16 CuART, KL 16
ART, KL 32 CuART, KL 32

Figure 7: Lookup throughput on classical ART vs CuART
memory layout on CPUs (12 threads, 32ki items per batch,
KL = Key Length, workstation)

• Server - 2x AMD Epyc 7752, 2x NVidia A100 (40GB HBM2),
2TB DDR4-2933

• Workstation - AMD Ryzen 5800X, NVidia RTX3090 (24GB
GDDR6X), 128GB DDR4-3200

• Notebook - Intel Core i7 8750H, NVidia GTX1070 (8GB
GDDR5), 64GB DDR4-2666

4.2 CPU
In this section we conduct several experiments to prove the bene-
fits of our improvements for exact lookups. We start by verifying
our proposed optimizations on the CPU. We varied the tree size
(number of items within the tree) as well as the key length (size per
item) over typical used ranges. Figure 7 shows the impact of our
optimizations on the CPU. For small trees, the CPU has a very good
cache efficiency, CuART outperforms the original ART by 2.5 times
for small trees, increasing the performance gain to up to 20 times
for lookups within larger trees. This experiment reveals that our
opimizations are generally applicable to ART and not only tailored
towards a specific GPU architecture. While this performance gain
is certainly very useful for lookup-intensive workloads (OLAP), it
comes at an additional maintenance burden when updating the
index structure, because all operations have to be done within the
flat buffer. CuART performs and scales significantly better than the
original ART because it employs continous pieces of memory. The
traditional ART implementation is spread across the main memory.
Especially in the case of smaller index structures, our whole tree
fits entirely into the CPU cache and utilizes all available cache lines
due to its continous memory layout, minimizing cache misses.

4.3 GPU Host Code
To achieve the highest throughput on a GPU, it is crucial to keep
as many compute units as possible busy. We performed a design
space exploration on two parameters, namely the number of host
threads (shown in figure 9) sending work to the GPU and the size of
the work batches sent to the GPU (shown in figure 8). While very
small batches increase the overhead on the host side, both GRT
and CuART achieve a good performance at any batch size between

103 104 105
0

2

4

6

·107

Items per Batch

th
ro
ug

hp
ut

(O
ps
/s
)

CuART
GRT - OpenCL
GRT - CUDA
ART CPU

Figure 8: Lookup Throughput with increasing batch size
(26Mi entries, 8 threads, 32 byte keys, server)

100 101
0

2

4

6

·107

Number of Threads

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART
GRT - OpenCL
GRT - CUDA

Figure 9: Lookup Throughput with increasing number of
threads (26Mi entries, 32 byte keys, 32ki items per batch,
server)

8192 and 131072 items. For the remaining experiments, we chose a
batch size of 32768 items. Figure 9 reveals that in general, more
host threads are preferable for both CuART and GRT. We chose
to utilize 8 threads for the remaining experiments as a tradeoff
between dedicating host CPU resources to keep the GPU busy and
running query operations in a real world scenario. Compared to
GRT, CuART is much more thread agnostic. One reason for this
behavior is the inherent asynchronousity of the CUDAAPI utilizing
several streams that can be efficiently mapped onto the GPU. All of
those measurements were taken at a medium tree size (26M entries).

4.4 Exact Lookups
In the next experiment we show the impact of varying the tree size,
with a fixed key length of 32 bytes, e.g. mimicking the scenario
of ART used as an index on a primary key of a growing table.
Figure 10 reveals the scalability of CuART compared to GRT. CuART
outperforms GRT for all tested index sizes, ranging from 64k items
up to 144M items. An interesting detail is that the throughput of

Figure 8: Lookup Throughput with increasing batch size
(26Mi entries, 8 threads, 32 byte keys, server)

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Koppehel, Groth et. al.

64k 1M 16M 64M
100

101

102

Tree Size (entries)

Th
ro
ug

hp
ut

(M
O
ps
/s
)

ART, KL 8 CuART, KL 8
ART, KL 16 CuART, KL 16
ART, KL 32 CuART, KL 32

Figure 7: Lookup throughput on classical ART vs CuART
memory layout on CPUs (12 threads, 32ki items per batch,
KL = Key Length, workstation)

• Server - 2x AMD Epyc 7752, 2x NVidia A100 (40GB HBM2),
2TB DDR4-2933

• Workstation - AMD Ryzen 5800X, NVidia RTX3090 (24GB
GDDR6X), 128GB DDR4-3200

• Notebook - Intel Core i7 8750H, NVidia GTX1070 (8GB
GDDR5), 64GB DDR4-2666

4.2 CPU
In this section we conduct several experiments to prove the bene-
fits of our improvements for exact lookups. We start by verifying
our proposed optimizations on the CPU. We varied the tree size
(number of items within the tree) as well as the key length (size per
item) over typical used ranges. Figure 7 shows the impact of our
optimizations on the CPU. For small trees, the CPU has a very good
cache efficiency, CuART outperforms the original ART by 2.5 times
for small trees, increasing the performance gain to up to 20 times
for lookups within larger trees. This experiment reveals that our
opimizations are generally applicable to ART and not only tailored
towards a specific GPU architecture. While this performance gain
is certainly very useful for lookup-intensive workloads (OLAP), it
comes at an additional maintenance burden when updating the
index structure, because all operations have to be done within the
flat buffer. CuART performs and scales significantly better than the
original ART because it employs continous pieces of memory. The
traditional ART implementation is spread across the main memory.
Especially in the case of smaller index structures, our whole tree
fits entirely into the CPU cache and utilizes all available cache lines
due to its continous memory layout, minimizing cache misses.

4.3 GPU Host Code
To achieve the highest throughput on a GPU, it is crucial to keep
as many compute units as possible busy. We performed a design
space exploration on two parameters, namely the number of host
threads (shown in figure 9) sending work to the GPU and the size of
the work batches sent to the GPU (shown in figure 8). While very
small batches increase the overhead on the host side, both GRT
and CuART achieve a good performance at any batch size between

103 104 105
0

2

4

6

·107

Items per Batch

th
ro
ug

hp
ut

(O
ps
/s
)

CuART
GRT - OpenCL
GRT - CUDA
ART CPU

Figure 8: Lookup Throughput with increasing batch size
(26Mi entries, 8 threads, 32 byte keys, server)

100 101
0

2

4

6

·107

Number of Threads

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART
GRT - OpenCL
GRT - CUDA

Figure 9: Lookup Throughput with increasing number of
threads (26Mi entries, 32 byte keys, 32ki items per batch,
server)

8192 and 131072 items. For the remaining experiments, we chose a
batch size of 32768 items. Figure 9 reveals that in general, more
host threads are preferable for both CuART and GRT. We chose
to utilize 8 threads for the remaining experiments as a tradeoff
between dedicating host CPU resources to keep the GPU busy and
running query operations in a real world scenario. Compared to
GRT, CuART is much more thread agnostic. One reason for this
behavior is the inherent asynchronousity of the CUDAAPI utilizing
several streams that can be efficiently mapped onto the GPU. All of
those measurements were taken at a medium tree size (26M entries).

4.4 Exact Lookups
In the next experiment we show the impact of varying the tree size,
with a fixed key length of 32 bytes, e.g. mimicking the scenario
of ART used as an index on a primary key of a growing table.
Figure 10 reveals the scalability of CuART compared to GRT. CuART
outperforms GRT for all tested index sizes, ranging from 64k items
up to 144M items. An interesting detail is that the throughput of

Figure 9: Lookup Throughput with increasing number of
threads (26Mi entries, 32 byte keys, 32ki items per batch,
server)

8192 and 131072 items. For the remaining experiments, we chose a
batch size of 32768 items. Figure 9 reveals that in general, more
host threads are preferable for both CuART and GRT. We chose
to utilize 8 threads for the remaining experiments as a tradeoff
between dedicating host CPU resources to keep the GPU busy and
running query operations in a real world scenario. Compared to
GRT, CuART is much more thread agnostic. One reason for this
behavior is the inherent asynchronousity of the CUDAAPI utilizing
several streams that can be efficiently mapped onto the GPU. All of
those measurements were taken at a medium tree size (26M entries).

4.4 Exact Lookups
In the next experiment we show the impact of varying the tree size,
with a fixed key length of 32 bytes, e.g. mimicking the scenario
of ART used as an index on a primary key of a growing table.
Figure 10 reveals the scalability of CuART compared to GRT. CuART
outperforms GRT for all tested index sizes, ranging from 64k items

CuART - a CUDA-based, scalable Radix-Tree lookup and update engine ICPP ’21, August 9–12, 2021, Lemont, IL, USACuART - a CUDA-based, scalable Radix-Tree lookup and update engine ICPP ’21, August 9–12, 2021, Lemont, IL, USA

105 106 107 108
0

1

2

·108

Tree Size (entries)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART GRT - OpenCL
CuART / CPU ART CPU

Figure 10: Lookup Throughput with increasing tree size
(64k-144M entries, 8 threads, 32byte keys, 16ki items per
batch, workstation)

10 20 30
0

2

4

6

8

·107

Key Length (byte)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART GRT - OpenCL
GRT - CUDA ART CPU

Figure 11: Lookup Throughput with increasing key length
(26Mi entries, 8 threads, 32ki items per batch, server)

107 108

3

4

·107

Total number of Operations

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART
GRT - OpenCL
GRT - CUDA

Figure 12: Throughput against the BTC dataset (15.4M keys,
32 byte key length, 32ki items per batch, 8 threads, server)

0 1 2 3
107

107.5

108

Amount of Keys processed on the CPU (%)

Th
ro
ug

hp
ut

(O
ps
/s
ec
)

CuART/CPU
GRT - CUDA/CPU
GRT - OpenCL/CPU

Figure 13: Hybrid CPU/GPU query approach (8 threads GPU
/ 56 threads CPU, 32+byte keys, 32ki items per batch, 26Mi
entries, server)

CuART actually increases slightly with increasing tree size. This
is due to the fact that larger trees are more densely populated in
this test case which means that large nodes occur more frequently,
where the prefetch misses affect the GRT implementation much
more than CuART (as discussed in section 3.1).

When varying the size of the keys within the tree, the results
change quite a bit. In figure 11 we run the benchmark again, this
time with a fixed tree size and varying key length from 4 to 32 bytes.
The results reveal that CuART outperforms GRT on longer keys
while short keys are heavily beneficial for GRT. This is caused by the
comparison loops, where GRT adapts to shorter keys byte-oriented
compared to CuART which does it word-oriented.

CuART not only outperforms GRT on synthetic test data, but
also on real world data, taken from the BTC challenge. Figure 12
visualizes that CuART outperforms GRT by around 20% on the
BTC dataset. We extract all keys of 32byte length from the BTC
dataset and inserted them into an ART and performed random
lookup operations against this tree. The absolute performance and
the performance gain in this test are lower than in the synthetic
tests due to the fact that long duplicate segments are quite common,
which adds computational overhead during prefix compression and
increases the overall tree depth.

4.4.1 Long Keys. The need for handling keys longer than the
CuART maximum can arise in some specific workloads such as
semantic web indexing. In section 3.2.3 we outlined several possi-
bilities to deal with those long keys. In the following experiments
we evaluate the first option of processing long keys directly on
the CPU and processing short keys in parallel on the GPU. For
this scenario we generate a tree with a controlled percentage of
long keys and run lookup queries with a controlled amount of long
keys afterwards. Figure 13 visualizes the impact of handling those
keys on the CPU, in this case all keys longer than 32 bytes were
processed on the CPU side and only shorter keys are queried on
the GPU. It can be seen that the overall performance drops quite
fast with an increasing amount processed on the CPU, yielding
around 50% performance impact for only 3% of the keys processed
on the CPU. This lead us to the next question whether the same

Figure 10: Lookup Throughput with increasing tree size
(64k-144M entries, 8 threads, 32byte keys, 16ki items per
batch, workstation)

CuART - a CUDA-based, scalable Radix-Tree lookup and update engine ICPP ’21, August 9–12, 2021, Lemont, IL, USA

105 106 107 108
0

1

2

·108

Tree Size (entries)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART GRT - OpenCL
CuART / CPU ART CPU

Figure 10: Lookup Throughput with increasing tree size
(64k-144M entries, 8 threads, 32byte keys, 16ki items per
batch, workstation)

10 20 30
0

2

4

6

8

·107

Key Length (byte)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART GRT - OpenCL
GRT - CUDA ART CPU

Figure 11: Lookup Throughput with increasing key length
(26Mi entries, 8 threads, 32ki items per batch, server)

107 108

3

4

·107

Total number of Operations

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART
GRT - OpenCL
GRT - CUDA

Figure 12: Throughput against the BTC dataset (15.4M keys,
32 byte key length, 32ki items per batch, 8 threads, server)

0 1 2 3
107

107.5

108

Amount of Keys processed on the CPU (%)

Th
ro
ug

hp
ut

(O
ps
/s
ec
)

CuART/CPU
GRT - CUDA/CPU
GRT - OpenCL/CPU

Figure 13: Hybrid CPU/GPU query approach (8 threads GPU
/ 56 threads CPU, 32+byte keys, 32ki items per batch, 26Mi
entries, server)

CuART actually increases slightly with increasing tree size. This
is due to the fact that larger trees are more densely populated in
this test case which means that large nodes occur more frequently,
where the prefetch misses affect the GRT implementation much
more than CuART (as discussed in section 3.1).

When varying the size of the keys within the tree, the results
change quite a bit. In figure 11 we run the benchmark again, this
time with a fixed tree size and varying key length from 4 to 32 bytes.
The results reveal that CuART outperforms GRT on longer keys
while short keys are heavily beneficial for GRT. This is caused by the
comparison loops, where GRT adapts to shorter keys byte-oriented
compared to CuART which does it word-oriented.

CuART not only outperforms GRT on synthetic test data, but
also on real world data, taken from the BTC challenge. Figure 12
visualizes that CuART outperforms GRT by around 20% on the
BTC dataset. We extract all keys of 32byte length from the BTC
dataset and inserted them into an ART and performed random
lookup operations against this tree. The absolute performance and
the performance gain in this test are lower than in the synthetic
tests due to the fact that long duplicate segments are quite common,
which adds computational overhead during prefix compression and
increases the overall tree depth.

4.4.1 Long Keys. The need for handling keys longer than the
CuART maximum can arise in some specific workloads such as
semantic web indexing. In section 3.2.3 we outlined several possi-
bilities to deal with those long keys. In the following experiments
we evaluate the first option of processing long keys directly on
the CPU and processing short keys in parallel on the GPU. For
this scenario we generate a tree with a controlled percentage of
long keys and run lookup queries with a controlled amount of long
keys afterwards. Figure 13 visualizes the impact of handling those
keys on the CPU, in this case all keys longer than 32 bytes were
processed on the CPU side and only shorter keys are queried on
the GPU. It can be seen that the overall performance drops quite
fast with an increasing amount processed on the CPU, yielding
around 50% performance impact for only 3% of the keys processed
on the CPU. This lead us to the next question whether the same

Figure 11: Lookup Throughput with increasing key length
(26Mi entries, 8 threads, 32ki items per batch, server)

CuART - a CUDA-based, scalable Radix-Tree lookup and update engine ICPP ’21, August 9–12, 2021, Lemont, IL, USA

105 106 107 108
0

1

2

·108

Tree Size (entries)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART GRT - OpenCL
CuART / CPU ART CPU

Figure 10: Lookup Throughput with increasing tree size
(64k-144M entries, 8 threads, 32byte keys, 16ki items per
batch, workstation)

10 20 30
0

2

4

6

8

·107

Key Length (byte)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART GRT - OpenCL
GRT - CUDA ART CPU

Figure 11: Lookup Throughput with increasing key length
(26Mi entries, 8 threads, 32ki items per batch, server)

107 108

3

4

·107

Total number of Operations

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART
GRT - OpenCL
GRT - CUDA

Figure 12: Throughput against the BTC dataset (15.4M keys,
32 byte key length, 32ki items per batch, 8 threads, server)

0 1 2 3
107

107.5

108

Amount of Keys processed on the CPU (%)

Th
ro
ug

hp
ut

(O
ps
/s
ec
)

CuART/CPU
GRT - CUDA/CPU
GRT - OpenCL/CPU

Figure 13: Hybrid CPU/GPU query approach (8 threads GPU
/ 56 threads CPU, 32+byte keys, 32ki items per batch, 26Mi
entries, server)

CuART actually increases slightly with increasing tree size. This
is due to the fact that larger trees are more densely populated in
this test case which means that large nodes occur more frequently,
where the prefetch misses affect the GRT implementation much
more than CuART (as discussed in section 3.1).

When varying the size of the keys within the tree, the results
change quite a bit. In figure 11 we run the benchmark again, this
time with a fixed tree size and varying key length from 4 to 32 bytes.
The results reveal that CuART outperforms GRT on longer keys
while short keys are heavily beneficial for GRT. This is caused by the
comparison loops, where GRT adapts to shorter keys byte-oriented
compared to CuART which does it word-oriented.

CuART not only outperforms GRT on synthetic test data, but
also on real world data, taken from the BTC challenge. Figure 12
visualizes that CuART outperforms GRT by around 20% on the
BTC dataset. We extract all keys of 32byte length from the BTC
dataset and inserted them into an ART and performed random
lookup operations against this tree. The absolute performance and
the performance gain in this test are lower than in the synthetic
tests due to the fact that long duplicate segments are quite common,
which adds computational overhead during prefix compression and
increases the overall tree depth.

4.4.1 Long Keys. The need for handling keys longer than the
CuART maximum can arise in some specific workloads such as
semantic web indexing. In section 3.2.3 we outlined several possi-
bilities to deal with those long keys. In the following experiments
we evaluate the first option of processing long keys directly on
the CPU and processing short keys in parallel on the GPU. For
this scenario we generate a tree with a controlled percentage of
long keys and run lookup queries with a controlled amount of long
keys afterwards. Figure 13 visualizes the impact of handling those
keys on the CPU, in this case all keys longer than 32 bytes were
processed on the CPU side and only shorter keys are queried on
the GPU. It can be seen that the overall performance drops quite
fast with an increasing amount processed on the CPU, yielding
around 50% performance impact for only 3% of the keys processed
on the CPU. This lead us to the next question whether the same

Figure 12: Throughput against the BTC dataset (15.4M keys,
32 byte key length, 32ki items per batch, 8 threads, server)

CuART - a CUDA-based, scalable Radix-Tree lookup and update engine ICPP ’21, August 9–12, 2021, Lemont, IL, USA

105 106 107 108
0

1

2

·108

Tree Size (entries)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART GRT - OpenCL
CuART / CPU ART CPU

Figure 10: Lookup Throughput with increasing tree size
(64k-144M entries, 8 threads, 32byte keys, 16ki items per
batch, workstation)

10 20 30
0

2

4

6

8

·107

Key Length (byte)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART GRT - OpenCL
GRT - CUDA ART CPU

Figure 11: Lookup Throughput with increasing key length
(26Mi entries, 8 threads, 32ki items per batch, server)

107 108

3

4

·107

Total number of Operations

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART
GRT - OpenCL
GRT - CUDA

Figure 12: Throughput against the BTC dataset (15.4M keys,
32 byte key length, 32ki items per batch, 8 threads, server)

0 1 2 3
107

107.5

108

Amount of Keys processed on the CPU (%)

Th
ro
ug

hp
ut

(O
ps
/s
ec
)

CuART/CPU
GRT - CUDA/CPU
GRT - OpenCL/CPU

Figure 13: Hybrid CPU/GPU query approach (8 threads GPU
/ 56 threads CPU, 32+byte keys, 32ki items per batch, 26Mi
entries, server)

CuART actually increases slightly with increasing tree size. This
is due to the fact that larger trees are more densely populated in
this test case which means that large nodes occur more frequently,
where the prefetch misses affect the GRT implementation much
more than CuART (as discussed in section 3.1).

When varying the size of the keys within the tree, the results
change quite a bit. In figure 11 we run the benchmark again, this
time with a fixed tree size and varying key length from 4 to 32 bytes.
The results reveal that CuART outperforms GRT on longer keys
while short keys are heavily beneficial for GRT. This is caused by the
comparison loops, where GRT adapts to shorter keys byte-oriented
compared to CuART which does it word-oriented.

CuART not only outperforms GRT on synthetic test data, but
also on real world data, taken from the BTC challenge. Figure 12
visualizes that CuART outperforms GRT by around 20% on the
BTC dataset. We extract all keys of 32byte length from the BTC
dataset and inserted them into an ART and performed random
lookup operations against this tree. The absolute performance and
the performance gain in this test are lower than in the synthetic
tests due to the fact that long duplicate segments are quite common,
which adds computational overhead during prefix compression and
increases the overall tree depth.

4.4.1 Long Keys. The need for handling keys longer than the
CuART maximum can arise in some specific workloads such as
semantic web indexing. In section 3.2.3 we outlined several possi-
bilities to deal with those long keys. In the following experiments
we evaluate the first option of processing long keys directly on
the CPU and processing short keys in parallel on the GPU. For
this scenario we generate a tree with a controlled percentage of
long keys and run lookup queries with a controlled amount of long
keys afterwards. Figure 13 visualizes the impact of handling those
keys on the CPU, in this case all keys longer than 32 bytes were
processed on the CPU side and only shorter keys are queried on
the GPU. It can be seen that the overall performance drops quite
fast with an increasing amount processed on the CPU, yielding
around 50% performance impact for only 3% of the keys processed
on the CPU. This lead us to the next question whether the same

Figure 13: Hybrid CPU/GPU query approach (8 threads GPU
/ 56 threads CPU, 32+byte keys, 32ki items per batch, 26Mi
entries, server)

up to 144M items. An interesting detail is that the throughput of
CuART actually increases slightly with increasing tree size. This
is due to the fact that larger trees are more densely populated in
this test case which means that large nodes occur more frequently,
where the prefetch misses affect the GRT implementation much
more than CuART (as discussed in section 3.1).

When varying the size of the keys within the tree, the results
change quite a bit. In figure 11 we run the benchmark again, this
time with a fixed tree size and varying key length from 4 to 32 bytes.
The results reveal that CuART outperforms GRT on longer keys
while short keys are heavily beneficial for GRT. This is caused by the
comparison loops, where GRT adapts to shorter keys byte-oriented
compared to CuART which does it word-oriented.

CuART not only outperforms GRT on synthetic test data, but
also on real world data, taken from the BTC challenge. Figure 12
visualizes that CuART outperforms GRT by around 20% on the
BTC dataset. We extract all keys of 32byte length from the BTC
dataset and inserted them into an ART and performed random
lookup operations against this tree. The absolute performance and
the performance gain in this test are lower than in the synthetic
tests due to the fact that long duplicate segments are quite common,
which adds computational overhead during prefix compression and
increases the overall tree depth.

4.4.1 Long Keys. The need for handling keys longer than the
CuART maximum can arise in some specific workloads such as
semantic web indexing. In section 3.2.3 we outlined several possi-
bilities to deal with those long keys. In the following experiments
we evaluate the first option of processing long keys directly on
the CPU and processing short keys in parallel on the GPU. For
this scenario we generate a tree with a controlled percentage of
long keys and run lookup queries with a controlled amount of long
keys afterwards. Figure 13 visualizes the impact of handling those
keys on the CPU, in this case all keys longer than 32 bytes were
processed on the CPU side and only shorter keys are queried on
the GPU. It can be seen that the overall performance drops quite
fast with an increasing amount processed on the CPU, yielding
around 50% performance impact for only 3% of the keys processed

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Koppehel, Groth et. al.ICPP ’21, August 9–12, 2021, Lemont, IL, USA Koppehel, Groth et. al.

10 20 30
106

107

108

Key Length (byte)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART/CPU
GRT - OpenCL/CPU
GRT - CUDA/CPU

Figure 14: Hybrid CPU/GPU query approach (8 threads GPU
/ 56 threads CPU, 5% CPU keys, 32ki items per batch, 26Mi
entries, server)

optimizations we applied to the GPU algorithm are also applicable
to the CPU based implementation. To verify that the bottleneck is
indeed the key handling itself, we conducted another experiment
where we process a fixed amount of short keys on the CPU, in this
case 5%. Figure 14 visualizes the result. It can be seen that all GPU
implementations are in fact limited by the CPU processing. This
leads to the conclusion that the other outlined long key handling
options should be evaluated as well in the future.

4.5 Update/Deletions
In this section, we conduct the same experiments outlined in the
previous chapter also for update operations. Figure 15 visualizes the
update throughput of CuART for different tree sizes and batch sizes.
Two observations can bemade from this figure, first of all the update
throughput drops with increasing batch sizes, which is caused by
the fixed size of the temporary hash table for collision resolution,
which leads to more conflicts when having large trees and large
batches. In our tests, we used a hash table size of 1Mi entries, which
means the drop is not visible for a small tree (compare blue 64k tree
curve), because the hash table is only partially filled. For larger trees
and large batches, hash table collisions become quite frequent and
then the linear probing algorithm causes the update throughput
to drop. The collisions can be avoided by utilizing a larger hash
table, trading memory consumption for speed, although quite a bit
of memory is unused. Again, one could use a more sophisticated
probing scheme, but simply increasing the hash table size promises
better results.

Figure 16 shows the update throughput against different key
lengths and tree sizes. While it can be seen that for small trees,
caching effects are overwhelmingly large. As the tree size is grow-
ing, the influence of caching effects drops. As expected, the update
performance drops for larger keys due to more computational over-
head to compare the keys. Figure 17 highlights the performance
gain for updating entries within CuART against GRT and a CPU
based approach. CuART achieves an update throughput of around
20% below its lookup throughput (~120MOps/s) while keeping the

16384 32768 65536 131072

·105

50

100

150

batch size

th
ro
ug

hp
ut

(M
O
ps
/s
) Tree Size

64k
1M
16M
64M

Figure 15: CuART Update throughput with increasing batch
size for different tree sizes (16ki items per batch, 8 threads,
16 byte keys, workstation)

8 16 32

0.8

1

1.2

1.4

·108

key length (byte)

th
ro
ug

hp
ut

(O
ps
/s
)

Tree Size

64k
1M
16M
64M

Figure 16: CuART Update throughput with increasing key
length for different tree sizes (16ki items per batch, 8
threads, workstation)

atomic update guarantees. In contrast, globally visible, atomic up-
dates cause a significant performance drop in both the GRT and
the original ART, where CuART reaches a 10x improvement over
the GRT (~13MOps/s) for atomic updates and up to 50x speedup
compared to the CPU (~2.5MOps/s). However, the throughput of
GRT remains almost constant in GRT, which indicates memory
conflicts.

4.6 GPU Memory Impact
Up till now all experiments were run on the NVidia A100 data cen-
ter GPU, equipped with HBM2. A benchmark across different GPUs
show that the NVidia RTX3090 equipped with GDDR6X generally
outperforms the A100 due to its higher memory clock (2500MHz
on the RTX3090 vs 1215MHz on the A100) and therefore faster
random memory access times. Figure 18 visualizes this phenome-
non, revealing that CuART outperforms GRT on all tested GPUs.
It becomes obvious that CuART profits from a high memory clock
more than GRT, which means that the CuART implementation is
more efficient and therefore reaches the compute bound later than

Figure 14: Hybrid CPU/GPU query approach (8 threads GPU
/ 56 threads CPU, 5% CPU keys, 32ki items per batch, 26Mi
entries, server)

on the CPU. This lead us to the next question whether the same
optimizations we applied to the GPU algorithm are also applicable
to the CPU based implementation. To verify that the bottleneck is
indeed the key handling itself, we conducted another experiment
where we process a fixed amount of short keys on the CPU, in this
case 5%. Figure 14 visualizes the result. It can be seen that all GPU
implementations are in fact limited by the CPU processing. This
leads to the conclusion that the other outlined long key handling
options should be evaluated as well in the future.

4.5 Update/Deletions
In this section, we conduct the same experiments outlined in the
previous chapter also for update operations. Figure 15 visualizes the
update throughput of CuART for different tree sizes and batch sizes.
Two observations can bemade from this figure, first of all the update
throughput drops with increasing batch sizes, which is caused by
the fixed size of the temporary hash table for collision resolution,
which leads to more conflicts when having large trees and large
batches. In our tests, we used a hash table size of 1Mi entries, which
means the drop is not visible for a small tree (compare blue 64k tree
curve), because the hash table is only partially filled. For larger trees
and large batches, hash table collisions become quite frequent and
then the linear probing algorithm causes the update throughput
to drop. The collisions can be avoided by utilizing a larger hash
table, trading memory consumption for speed, although quite a bit
of memory is unused. Again, one could use a more sophisticated
probing scheme, but simply increasing the hash table size promises
better results.

Figure 16 shows the update throughput against different key
lengths and tree sizes. While it can be seen that for small trees,
caching effects are overwhelmingly large. As the tree size is grow-
ing, the influence of caching effects drops. As expected, the update
performance drops for larger keys due to more computational over-
head to compare the keys. Figure 17 highlights the performance
gain for updating entries within CuART against GRT and a CPU
based approach. CuART achieves an update throughput of around
20% below its lookup throughput (~120MOps/s) while keeping the

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Koppehel, Groth et. al.

10 20 30
106

107

108

Key Length (byte)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART/CPU
GRT - OpenCL/CPU
GRT - CUDA/CPU

Figure 14: Hybrid CPU/GPU query approach (8 threads GPU
/ 56 threads CPU, 5% CPU keys, 32ki items per batch, 26Mi
entries, server)

optimizations we applied to the GPU algorithm are also applicable
to the CPU based implementation. To verify that the bottleneck is
indeed the key handling itself, we conducted another experiment
where we process a fixed amount of short keys on the CPU, in this
case 5%. Figure 14 visualizes the result. It can be seen that all GPU
implementations are in fact limited by the CPU processing. This
leads to the conclusion that the other outlined long key handling
options should be evaluated as well in the future.

4.5 Update/Deletions
In this section, we conduct the same experiments outlined in the
previous chapter also for update operations. Figure 15 visualizes the
update throughput of CuART for different tree sizes and batch sizes.
Two observations can bemade from this figure, first of all the update
throughput drops with increasing batch sizes, which is caused by
the fixed size of the temporary hash table for collision resolution,
which leads to more conflicts when having large trees and large
batches. In our tests, we used a hash table size of 1Mi entries, which
means the drop is not visible for a small tree (compare blue 64k tree
curve), because the hash table is only partially filled. For larger trees
and large batches, hash table collisions become quite frequent and
then the linear probing algorithm causes the update throughput
to drop. The collisions can be avoided by utilizing a larger hash
table, trading memory consumption for speed, although quite a bit
of memory is unused. Again, one could use a more sophisticated
probing scheme, but simply increasing the hash table size promises
better results.

Figure 16 shows the update throughput against different key
lengths and tree sizes. While it can be seen that for small trees,
caching effects are overwhelmingly large. As the tree size is grow-
ing, the influence of caching effects drops. As expected, the update
performance drops for larger keys due to more computational over-
head to compare the keys. Figure 17 highlights the performance
gain for updating entries within CuART against GRT and a CPU
based approach. CuART achieves an update throughput of around
20% below its lookup throughput (~120MOps/s) while keeping the

16384 32768 65536 131072

·105

50

100

150

batch size

th
ro
ug

hp
ut

(M
O
ps
/s
) Tree Size

64k
1M
16M
64M

Figure 15: CuART Update throughput with increasing batch
size for different tree sizes (16ki items per batch, 8 threads,
16 byte keys, workstation)

8 16 32

0.8

1

1.2

1.4

·108

key length (byte)

th
ro
ug

hp
ut

(O
ps
/s
)

Tree Size

64k
1M
16M
64M

Figure 16: CuART Update throughput with increasing key
length for different tree sizes (16ki items per batch, 8
threads, workstation)

atomic update guarantees. In contrast, globally visible, atomic up-
dates cause a significant performance drop in both the GRT and
the original ART, where CuART reaches a 10x improvement over
the GRT (~13MOps/s) for atomic updates and up to 50x speedup
compared to the CPU (~2.5MOps/s). However, the throughput of
GRT remains almost constant in GRT, which indicates memory
conflicts.

4.6 GPU Memory Impact
Up till now all experiments were run on the NVidia A100 data cen-
ter GPU, equipped with HBM2. A benchmark across different GPUs
show that the NVidia RTX3090 equipped with GDDR6X generally
outperforms the A100 due to its higher memory clock (2500MHz
on the RTX3090 vs 1215MHz on the A100) and therefore faster
random memory access times. Figure 18 visualizes this phenome-
non, revealing that CuART outperforms GRT on all tested GPUs.
It becomes obvious that CuART profits from a high memory clock
more than GRT, which means that the CuART implementation is
more efficient and therefore reaches the compute bound later than

Figure 15: CuART Update throughput with increasing batch
size for different tree sizes (16ki items per batch, 8 threads,
16 byte keys, workstation)

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Koppehel, Groth et. al.

10 20 30
106

107

108

Key Length (byte)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART/CPU
GRT - OpenCL/CPU
GRT - CUDA/CPU

Figure 14: Hybrid CPU/GPU query approach (8 threads GPU
/ 56 threads CPU, 5% CPU keys, 32ki items per batch, 26Mi
entries, server)

optimizations we applied to the GPU algorithm are also applicable
to the CPU based implementation. To verify that the bottleneck is
indeed the key handling itself, we conducted another experiment
where we process a fixed amount of short keys on the CPU, in this
case 5%. Figure 14 visualizes the result. It can be seen that all GPU
implementations are in fact limited by the CPU processing. This
leads to the conclusion that the other outlined long key handling
options should be evaluated as well in the future.

4.5 Update/Deletions
In this section, we conduct the same experiments outlined in the
previous chapter also for update operations. Figure 15 visualizes the
update throughput of CuART for different tree sizes and batch sizes.
Two observations can bemade from this figure, first of all the update
throughput drops with increasing batch sizes, which is caused by
the fixed size of the temporary hash table for collision resolution,
which leads to more conflicts when having large trees and large
batches. In our tests, we used a hash table size of 1Mi entries, which
means the drop is not visible for a small tree (compare blue 64k tree
curve), because the hash table is only partially filled. For larger trees
and large batches, hash table collisions become quite frequent and
then the linear probing algorithm causes the update throughput
to drop. The collisions can be avoided by utilizing a larger hash
table, trading memory consumption for speed, although quite a bit
of memory is unused. Again, one could use a more sophisticated
probing scheme, but simply increasing the hash table size promises
better results.

Figure 16 shows the update throughput against different key
lengths and tree sizes. While it can be seen that for small trees,
caching effects are overwhelmingly large. As the tree size is grow-
ing, the influence of caching effects drops. As expected, the update
performance drops for larger keys due to more computational over-
head to compare the keys. Figure 17 highlights the performance
gain for updating entries within CuART against GRT and a CPU
based approach. CuART achieves an update throughput of around
20% below its lookup throughput (~120MOps/s) while keeping the

16384 32768 65536 131072

·105

50

100

150

batch size

th
ro
ug

hp
ut

(M
O
ps
/s
) Tree Size

64k
1M
16M
64M

Figure 15: CuART Update throughput with increasing batch
size for different tree sizes (16ki items per batch, 8 threads,
16 byte keys, workstation)

8 16 32

0.8

1

1.2

1.4

·108

key length (byte)

th
ro
ug

hp
ut

(O
ps
/s
)

Tree Size

64k
1M
16M
64M

Figure 16: CuART Update throughput with increasing key
length for different tree sizes (16ki items per batch, 8
threads, workstation)

atomic update guarantees. In contrast, globally visible, atomic up-
dates cause a significant performance drop in both the GRT and
the original ART, where CuART reaches a 10x improvement over
the GRT (~13MOps/s) for atomic updates and up to 50x speedup
compared to the CPU (~2.5MOps/s). However, the throughput of
GRT remains almost constant in GRT, which indicates memory
conflicts.

4.6 GPU Memory Impact
Up till now all experiments were run on the NVidia A100 data cen-
ter GPU, equipped with HBM2. A benchmark across different GPUs
show that the NVidia RTX3090 equipped with GDDR6X generally
outperforms the A100 due to its higher memory clock (2500MHz
on the RTX3090 vs 1215MHz on the A100) and therefore faster
random memory access times. Figure 18 visualizes this phenome-
non, revealing that CuART outperforms GRT on all tested GPUs.
It becomes obvious that CuART profits from a high memory clock
more than GRT, which means that the CuART implementation is
more efficient and therefore reaches the compute bound later than

Figure 16: CuART Update throughput with increasing key
length for different tree sizes (16ki items per batch, 8
threads, workstation)

atomic update guarantees. In contrast, globally visible, atomic up-
dates cause a significant performance drop in both the GRT and
the original ART, where CuART reaches a 10x improvement over
the GRT (~13MOps/s) for atomic updates and up to 50x speedup
compared to the CPU (~2.5MOps/s). However, the throughput of
GRT remains almost constant in GRT, which indicates memory
conflicts.

4.6 GPU Memory Impact
Up till now all experiments were run on the NVidia A100 data cen-
ter GPU, equipped with HBM2. A benchmark across different GPUs
show that the NVidia RTX3090 equipped with GDDR6X generally
outperforms the A100 due to its higher memory clock (2500MHz
on the RTX3090 vs 1215MHz on the A100) and therefore faster
random memory access times. Figure 18 visualizes this phenome-
non, revealing that CuART outperforms GRT on all tested GPUs.
It becomes obvious that CuART profits from a high memory clock
more than GRT, which means that the CuART implementation is
more efficient and therefore reaches the compute bound later than

CuART - a CUDA-based, scalable Radix-Tree lookup and update engine ICPP ’21, August 9–12, 2021, Lemont, IL, USACuART - a CUDA-based, scalable Radix-Tree lookup and update engine ICPP ’21, August 9–12, 2021, Lemont, IL, USA

8 16 32
0

0.5

1

1.5
·108

Key Length (byte)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART
GRT
CPU

Figure 17: Update throughput of CuART, GRT and the CPU
(16Mi entries, 8 threads, 32ki items per batch, workstation)

GTX1070 RTX3090 A100
0

0.5

1

1.5
·108

GPU

Th
ro
ug

hp
ut

(O
ps
/s
)

GRT Lookup

CuART Lookup

CuART Update

GRT Update

Figure 18: Lookup/Update throughput on different GPUs
(16Mi entries, 8 threads, 32ki items per batch, 32 byte keys)

GRT. The figure also includes the throughput for update operations,
where CuART outperforms GRT on all tested GPUs. On the NVidia
A100, there are 40 independent memory channels available (8 per
HBM2 stack), on the RTX3090 there are only 24 channels available
(2 channels per GDDR6X chip), where the channel width is 128 bit
on the A100 (yielding a total memory width of 5120 bits), whereas
the RTX3090 has only a 384bit memory width (24 channels * 16 bit
width). When taking this into account, the GDDR6X memory inter-
face is more suitable due to its higher command clock frequency
and therefore more commands. Another problem with the HBM
within the A100 is the fact that its memory interface is 128bits
per channel which means that a typical transaction (i.e. reading a
node header) is finished within one single clock cycle, which causes
increased command overhead.

5 CONCLUSION
This work presents several optimizations that can be applied in or-
der to improve the lookup performance for the ART index structure
on CPUs as well as GPUs. Furthermore we also adapt our algorithm

to cover atomic updates on the GPU, opening up more use cases
for ART, e.g. in the field of tracking and aggregating metrics with
string-based keys, as done e.g. by monitoring software. We show
that our optimizations outperform existing ART implementations
by up to ten times compared to the traditional CPU ART, up to two
times compared to the GPU ART implementation and up to 50 times
for atomic update operations compared to the CPU ART. We also
show that a GPU utilizing higher-clocked memory is more suitable
for this kind of workload, whereas the RTX3090 outperforms the
A100 at one quarter of the price tag. Possible real-world uses for
our work include ART as an index structure for KV-stores with
update/lookup intense workloads or as a traditional database index
well-suited for point, range and prefix queries.

5.1 Future Work
Possible future improvements include a full device-based manage-
ment of the whole ART, implementing structural modifying inser-
tions and deletions. To achieve this, a more sophisticated buffer
management needs to be implemented, as the need to allocate
new nodes or free old nodes arises. Furthermore, we plan to add
a specialized handling for index structures larger than the device
memory, by migrating rarely used parts of the key space into host
memory and query them in a hybrid manner with both GPU and
CPU doing the work. As it became obvious that the implemented
long key option is decreasing the achieved throughput, we intent
to improve the long key handling in the future. We plan to inte-
grate the multi-layer nodes presented in [5] into our work, further
improving the performance. Finally, we plan to evaluate whether
the proposed optimizations are feasible to be implemented within
an FPGA-based lookup engine.

ACKNOWLEDGMENTS
This work is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project-ID 422742661

German Research Foundation

Funded by

REFERENCES
[1] Maksudul Alam, Srikanth B. Yoginath, and Kalyan S. Perumalla. 2016. Perfor-

mance of Point and Range Queries for In-memory Databases Using Radix Trees
on GPUs. In 2016 IEEE 18th International Conference on High Performance Comput-
ing and Communications. IEEE Computer Society, New York, NY, USA, 1493–1500.
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0212

[2] Victor Alvarez, Stefan Richter, Xiao Chen, and Jens Dittrich. 2015. A comparison
of adaptive radix trees and hash tables. In 2015 IEEE 31st International Conference
on Data Engineering. IEEE Computer Society, New York, NY, USA, 1227–1238.
https://doi.org/10.1109/ICDE.2015.7113370

[3] Nikolas Askitis and Ranjan Sinha. 2007. HAT-Trie: A Cache-Conscious Trie-
Based Data Structure for Strings. In Proceedings of the Thirtieth Australasian
Conference on Computer Science - Volume 62 (Ballarat, Victoria, Australia) (ACSC
’07). Australian Computer Society, Inc., AUS, 97–105.

[4] David Farrell. 2020. A Simple GPU Hash Table. https://nosferalatu.com/
SimpleGPUHashTable.html

[5] Philipp Fent, Michael Jungmair, Andreas Kipf, and Thomas Neumann. 2020.
START — Self-Tuning Adaptive Radix Tree. In 2020 IEEE 36th International Con-
ference on Data Engineering Workshops (ICDEW). IEEE Computer Society, New
York, NY, USA, 147–153. https://doi.org/10.1109/ICDEW49219.2020.00015

Figure 17: Update throughput of CuART, GRT and the CPU
(16Mi entries, 8 threads, 32ki items per batch, workstation)

CuART - a CUDA-based, scalable Radix-Tree lookup and update engine ICPP ’21, August 9–12, 2021, Lemont, IL, USA

8 16 32
0

0.5

1

1.5
·108

Key Length (byte)

Th
ro
ug

hp
ut

(O
ps
/s
)

CuART
GRT
CPU

Figure 17: Update throughput of CuART, GRT and the CPU
(16Mi entries, 8 threads, 32ki items per batch, workstation)

GTX1070 RTX3090 A100
0

0.5

1

1.5
·108

GPU

Th
ro
ug

hp
ut

(O
ps
/s
)

GRT Lookup

CuART Lookup

CuART Update

GRT Update

Figure 18: Lookup/Update throughput on different GPUs
(16Mi entries, 8 threads, 32ki items per batch, 32 byte keys)

GRT. The figure also includes the throughput for update operations,
where CuART outperforms GRT on all tested GPUs. On the NVidia
A100, there are 40 independent memory channels available (8 per
HBM2 stack), on the RTX3090 there are only 24 channels available
(2 channels per GDDR6X chip), where the channel width is 128 bit
on the A100 (yielding a total memory width of 5120 bits), whereas
the RTX3090 has only a 384bit memory width (24 channels * 16 bit
width). When taking this into account, the GDDR6X memory inter-
face is more suitable due to its higher command clock frequency
and therefore more commands. Another problem with the HBM
within the A100 is the fact that its memory interface is 128bits
per channel which means that a typical transaction (i.e. reading a
node header) is finished within one single clock cycle, which causes
increased command overhead.

5 CONCLUSION
This work presents several optimizations that can be applied in or-
der to improve the lookup performance for the ART index structure
on CPUs as well as GPUs. Furthermore we also adapt our algorithm

to cover atomic updates on the GPU, opening up more use cases
for ART, e.g. in the field of tracking and aggregating metrics with
string-based keys, as done e.g. by monitoring software. We show
that our optimizations outperform existing ART implementations
by up to ten times compared to the traditional CPU ART, up to two
times compared to the GPU ART implementation and up to 50 times
for atomic update operations compared to the CPU ART. We also
show that a GPU utilizing higher-clocked memory is more suitable
for this kind of workload, whereas the RTX3090 outperforms the
A100 at one quarter of the price tag. Possible real-world uses for
our work include ART as an index structure for KV-stores with
update/lookup intense workloads or as a traditional database index
well-suited for point, range and prefix queries.

5.1 Future Work
Possible future improvements include a full device-based manage-
ment of the whole ART, implementing structural modifying inser-
tions and deletions. To achieve this, a more sophisticated buffer
management needs to be implemented, as the need to allocate
new nodes or free old nodes arises. Furthermore, we plan to add
a specialized handling for index structures larger than the device
memory, by migrating rarely used parts of the key space into host
memory and query them in a hybrid manner with both GPU and
CPU doing the work. As it became obvious that the implemented
long key option is decreasing the achieved throughput, we intent
to improve the long key handling in the future. We plan to inte-
grate the multi-layer nodes presented in [5] into our work, further
improving the performance. Finally, we plan to evaluate whether
the proposed optimizations are feasible to be implemented within
an FPGA-based lookup engine.

ACKNOWLEDGMENTS
This work is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project-ID 422742661

German Research Foundation

Funded by

REFERENCES
[1] Maksudul Alam, Srikanth B. Yoginath, and Kalyan S. Perumalla. 2016. Perfor-

mance of Point and Range Queries for In-memory Databases Using Radix Trees
on GPUs. In 2016 IEEE 18th International Conference on High Performance Comput-
ing and Communications. IEEE Computer Society, New York, NY, USA, 1493–1500.
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0212

[2] Victor Alvarez, Stefan Richter, Xiao Chen, and Jens Dittrich. 2015. A comparison
of adaptive radix trees and hash tables. In 2015 IEEE 31st International Conference
on Data Engineering. IEEE Computer Society, New York, NY, USA, 1227–1238.
https://doi.org/10.1109/ICDE.2015.7113370

[3] Nikolas Askitis and Ranjan Sinha. 2007. HAT-Trie: A Cache-Conscious Trie-
Based Data Structure for Strings. In Proceedings of the Thirtieth Australasian
Conference on Computer Science - Volume 62 (Ballarat, Victoria, Australia) (ACSC
’07). Australian Computer Society, Inc., AUS, 97–105.

[4] David Farrell. 2020. A Simple GPU Hash Table. https://nosferalatu.com/
SimpleGPUHashTable.html

[5] Philipp Fent, Michael Jungmair, Andreas Kipf, and Thomas Neumann. 2020.
START — Self-Tuning Adaptive Radix Tree. In 2020 IEEE 36th International Con-
ference on Data Engineering Workshops (ICDEW). IEEE Computer Society, New
York, NY, USA, 147–153. https://doi.org/10.1109/ICDEW49219.2020.00015

Figure 18: Lookup/Update throughput on different GPUs
(16Mi entries, 8 threads, 32ki items per batch, 32 byte keys)

GRT. The figure also includes the throughput for update operations,
where CuART outperforms GRT on all tested GPUs. On the NVidia
A100, there are 40 independent memory channels available (8 per
HBM2 stack), on the RTX3090 there are only 24 channels available
(2 channels per GDDR6X chip), where the channel width is 128 bit
on the A100 (yielding a total memory width of 5120 bits), whereas
the RTX3090 has only a 384bit memory width (24 channels * 16 bit
width). When taking this into account, the GDDR6X memory inter-
face is more suitable due to its higher command clock frequency
and therefore more commands. Another problem with the HBM
within the A100 is the fact that its memory interface is 128bits
per channel which means that a typical transaction (i.e. reading a
node header) is finished within one single clock cycle, which causes
increased command overhead.

5 CONCLUSION
This work presents several optimizations that can be applied in or-
der to improve the lookup performance for the ART index structure
on CPUs as well as GPUs. Furthermore we also adapt our algorithm

to cover atomic updates on the GPU, opening up more use cases
for ART, e.g. in the field of tracking and aggregating metrics with
string-based keys, as done e.g. by monitoring software. We show
that our optimizations outperform existing ART implementations
by up to ten times compared to the traditional CPU ART, up to two
times compared to the GPU ART implementation and up to 50 times
for atomic update operations compared to the CPU ART. We also
show that a GPU utilizing higher-clocked memory is more suitable
for this kind of workload, whereas the RTX3090 outperforms the
A100 at one quarter of the price tag. Possible real-world uses for
our work include ART as an index structure for KV-stores with
update/lookup intense workloads or as a traditional database index
well-suited for point, range and prefix queries.

5.1 Future Work
Possible future improvements include a full device-based manage-
ment of the whole ART, implementing structural modifying inser-
tions and deletions. To achieve this, a more sophisticated buffer
management needs to be implemented, as the need to allocate
new nodes or free old nodes arises. Furthermore, we plan to add
a specialized handling for index structures larger than the device
memory, by migrating rarely used parts of the key space into host
memory and query them in a hybrid manner with both GPU and
CPU doing the work. As it became obvious that the implemented
long key option is decreasing the achieved throughput, we intent
to improve the long key handling in the future. We plan to inte-
grate the multi-layer nodes presented in [5] into our work, further
improving the performance. Finally, we plan to evaluate whether
the proposed optimizations are feasible to be implemented within
an FPGA-based lookup engine.

ACKNOWLEDGMENTS
This work is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project-ID 422742661

German Research Foundation

Funded by

REFERENCES
[1] Maksudul Alam, Srikanth B. Yoginath, and Kalyan S. Perumalla. 2016. Perfor-

mance of Point and Range Queries for In-memory Databases Using Radix Trees
on GPUs. In 2016 IEEE 18th International Conference on High Performance Comput-
ing and Communications. IEEE Computer Society, New York, NY, USA, 1493–1500.
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0212

[2] Victor Alvarez, Stefan Richter, Xiao Chen, and Jens Dittrich. 2015. A comparison
of adaptive radix trees and hash tables. In 2015 IEEE 31st International Conference
on Data Engineering. IEEE Computer Society, New York, NY, USA, 1227–1238.
https://doi.org/10.1109/ICDE.2015.7113370

[3] Nikolas Askitis and Ranjan Sinha. 2007. HAT-Trie: A Cache-Conscious Trie-
Based Data Structure for Strings. In Proceedings of the Thirtieth Australasian
Conference on Computer Science - Volume 62 (Ballarat, Victoria, Australia) (ACSC
’07). Australian Computer Society, Inc., AUS, 97–105.

[4] David Farrell. 2020. A Simple GPU Hash Table. https://nosferalatu.com/
SimpleGPUHashTable.html

[5] Philipp Fent, Michael Jungmair, Andreas Kipf, and Thomas Neumann. 2020.
START — Self-Tuning Adaptive Radix Tree. In 2020 IEEE 36th International Con-
ference on Data Engineering Workshops (ICDEW). IEEE Computer Society, New
York, NY, USA, 147–153. https://doi.org/10.1109/ICDEW49219.2020.00015

https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0212
https://doi.org/10.1109/ICDE.2015.7113370
https://nosferalatu.com/SimpleGPUHashTable.html
https://nosferalatu.com/SimpleGPUHashTable.html
https://doi.org/10.1109/ICDEW49219.2020.00015

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Koppehel, Groth et. al.

[6] Michael Gowanlock. 2019. KNN-Joins Using a Hybrid Approach: Exploiting
CPU/GPU Workload Characteristics. In Proceedings of the 12th Workshop on
General Purpose Processing Using GPUs (Providence, RI, USA) (GPGPU ’19).
Association for Computing Machinery, New York, NY, USA, 33–42. https:
//doi.org/10.1145/3300053.3319417

[7] Goetz Graefe, Stratos Idreos, Harumi Kuno, and Stefan Manegold. 2011. Bench-
marking Adaptive Indexing. In Performance Evaluation, Measurement and Char-
acterization of Complex Systems, Raghunath Nambiar and Meikel Poess (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 169–184.

[8] Tobias Groth, Sven Groppe, Martin Koppehel, and Thilo Pionteck. 2020. Paral-
lelizing approximate search on adaptive radix trees. In Proceedings of the 28th
Italian Symposium on Advanced Database Systems, Villasimius, Sud Sardegna, Italy
(virtual due to Covid-19 pandemic). Villasimius, Sardinia, Italy, 56–67.

[9] The PostgreSQL Global Development Group. 2020. Future of storage. https:
//wiki.postgresql.org/wiki/Future_of_storage

[10] Manoj Gupta and Dharmendra Badal. 2013. A Study on Indexes and Index
Structures. 2 (02 2013), 212–222.

[11] José-Miguel Herrera, Aidan Hogan, and Tobias Käfer. 2019. BTC-2019: The 2019
Billion Triple Challenge Dataset. In The Semantic Web – ISWC 2019, Chiara Ghi-
dini, Olaf Hartig, Maria Maleshkova, Vojtěch Svátek, Isabel Cruz, Aidan Hogan,
Jie Song, Maxime Lefrançois, and Fabien Gandon (Eds.). Springer International
Publishing, Cham, 163–180.

[12] Han Huang and Hua Luan. 2020. Optimizing B+-Tree Searches on Coupled
CPU-GPU Architectures. In Algorithms and Architectures for Parallel Processing,
Meikang Qiu (Ed.). Springer International Publishing, Cham, 401–415.

[13] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Cracking.
In Proceedings of the 3rd International Conference on Innovative Data Systems
Research (CIDR). CIDR Conference, Asilomar, California, 68–78.

[14] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. 2011. Merging
What’s Cracked, Cracking What’s Merged: Adaptive Indexing in Main-Memory
Column-Stores. Proc. VLDB Endow. 4, 9 (June 2011), 586–597. https://doi.org/10.
14778/2002938.2002944

[15] Abdullah Talha Kabakus and Resul Kara. 2017. A performance evaluation of in-
memory databases. Journal of King Saud University - Computer and Information
Sciences 29, 4 (2017), 520–525. https://doi.org/10.1016/j.jksuci.2016.06.007

[16] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. 2013. Meet the Walkers: Accelerating Index Tra-
versals for in-Memory Databases. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture (Davis, California) (MICRO-46).

Association for Computing Machinery, New York, NY, USA, 468–479. https:
//doi.org/10.1145/2540708.2540748

[17] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree:
ARTful indexing for main-memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE Computer Society, New York, NY,
USA, 38–49. https://doi.org/10.1109/ICDE.2013.6544812

[18] Yishan Li and Sathiamoorthy Manoharan. 2013. A performance comparison
of SQL and NoSQL databases, In 2013 IEEE Pacific Rim Conference on Com-
munications, Computers and Signal Processing (PACRIM). IEEE Pacific RIM
Conference on Communications, Computers, and Signal Processing - Proceedings,
15–19. https://doi.org/10.1109/PACRIM.2013.6625441

[19] Umar Ibrahim Minhas, Roger Woods, and Georgios Karakonstantis. 2018. Explor-
ing Functional Acceleration of OpenCL on FPGAs and GPUs Through Platform-
Independent Optimizations. In Applied Reconfigurable Computing. Architectures,
Tools, and Applications, Nikolaos Voros, Michael Huebner, Georgios Keramidas,
Diana Goehringer, Christos Antonopoulos, and Pedro C. Diniz (Eds.). Springer
International Publishing, Cham, 551–563.

[20] Donald R. Morrison. 1968. PATRICIA—Practical Algorithm To Retrieve Infor-
mation Coded in Alphanumeric. J. ACM 15, 4 (Oct. 1968), 514–534. https:
//doi.org/10.1145/321479.321481

[21] Inc. NVidia. 2016. Vitis Database Library. https://docs.nvidia.com/cuda/index.
html

[22] Amirhesam Shahvarani and Hans-Arno Jacobsen. 2016. A Hybrid B+-Tree as Solu-
tion for In-Memory Indexing on CPU-GPU Heterogeneous Computing Platforms.
In Proceedings of the 2016 International Conference on Management of Data (San
Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery,
New York, NY, USA, 1523–1538. https://doi.org/10.1145/2882903.2882918

[23] Ben Taylor, Vicent Sanz Marco, and Zheng Wang. 2017. Adaptive Optimization
for OpenCL Programs on Embedded Heterogeneous Systems. SIGPLAN Not. 52,
5 (June 2017), 11–20. https://doi.org/10.1145/3140582.3081040

[24] Gang Wu, Yidong Song, Guodong Zhao, Wei Sun, Donghong Han, Baiyou
Qiao, Guoren Wang, and Ye Yuan. 2019. Cracking In-Memory Database In-
dex A Case Study for Adaptive Radix Tree Index. CoRR abs/1911.11387 (2019).
arXiv:1911.11387 http://arxiv.org/abs/1911.11387

[25] Zhongle Xie, Qingchao Cai, Gang Chen, Rui Mao, and Meihui Zhang. 2018. A
Comprehensive Performance Evaluation of Modern In-Memory Indices. In 2018
IEEE 34th International Conference on Data Engineering (ICDE). IEEE Computer
Society, New York, NY, USA, 641–652. https://doi.org/10.1109/ICDE.2018.00064

[26] Inc. Xilinx. 2019. Vitis Database Library. https://www.xilinx.com/products/
design-tools/vitis/vitis-libraries/vitis-database.html

https://doi.org/10.1145/3300053.3319417
https://doi.org/10.1145/3300053.3319417
https://wiki.postgresql.org/wiki/Future_of_storage
https://wiki.postgresql.org/wiki/Future_of_storage
https://doi.org/10.14778/2002938.2002944
https://doi.org/10.14778/2002938.2002944
https://doi.org/10.1016/j.jksuci.2016.06.007
https://doi.org/10.1145/2540708.2540748
https://doi.org/10.1145/2540708.2540748
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/PACRIM.2013.6625441
https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/321479.321481
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://doi.org/10.1145/2882903.2882918
https://doi.org/10.1145/3140582.3081040
https://arxiv.org/abs/1911.11387
http://arxiv.org/abs/1911.11387
https://doi.org/10.1109/ICDE.2018.00064
https://www.xilinx.com/products/design-tools/vitis/vitis-libraries/vitis-database.html
https://www.xilinx.com/products/design-tools/vitis/vitis-libraries/vitis-database.html

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Structure

	2 Related Work
	2.1 Radix Trees
	2.2 Hardware Accelerated Indexing

	3 CuART
	3.1 GRT Analysis
	3.2 Improvements
	3.3 Device Side Deletions
	3.4 Device Side Updates

	4 Evaluation
	4.1 Setup
	4.2 CPU
	4.3 GPU Host Code
	4.4 Exact Lookups
	4.5 Update/Deletions
	4.6 GPU Memory Impact

	5 Conclusion
	5.1 Future Work

	Acknowledgments
	References

