
Towards an API for the Path-Aware Internet
Thorben Krüger

OVGU Magdeburg, Germany

thorben.krueger@ovgu.de

David Hausheer

OVGU Magdeburg, Germany

hausheer@ovgu.de

ABSTRACT
Path-aware networking (PAN) architectures promise to support

practical multipath communication with increased availability and

to accommodate heterogeneous communication requirements.

However, at a time when most applications merely rely on

"HTTP(S) as a Substrate" for their networking requirements, the

quick adoption and effective use of such new communication ca-

pabilities at the application level is challenged from a deployment

standpoint. This raises the question of how to create an adequate

application programming interface for a path-aware Internet that

comes with measurable improvements in network communication.

Using concepts from current IETF-IRTF in-progress documents,

our work reasons about the demands and implications of path-

aware application programming, sketches a possible approach and

provides an early glimpse of our practical implementation of a

suitably abstract interface to a next-generation networking stack.

CCS CONCEPTS
• Networks → Programming interfaces;

ACM Reference Format:
Thorben Krüger and David Hausheer. 2021. Towards an API for the Path-

Aware Internet. In ACM SIGCOMM 2021 Workshop on Network-Application
Integration (NAI’21), August 27, 2021, Virtual Event, USA. ACM, New York,

NY, USA, 5 pages. https://doi.org/10.1145/3472727.3472808

1 INTRODUCTION
Emerging networking architectures promise to empower Internet

hosts through a range of additional communication capabilities

and guarantees. With path-aware networking (PAN) in particular,

hosts gain the ability to actively steer their traffic according to

dynamic constraints, prevailing network conditions and application

requirements [8].

On the application side however, Internet data-exchange has

been following a trend of increased avoidance of specialized pro-

tocols and technologies in favor of "HTTP(S) as a Substrate" as

the pragmatic lowest common denominator for simple and rea-

sonably reliable network interaction [5]. While from the point of

view of individual applications, this approach often is indeed the

most rational choice [6], it has also led to a higher level of general

ignorance about underlying Internet technology among application

developers. In order to address the widening discrepancy between

the sophisticated capabilities soon available on the networking side

NAI’21, August 27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8633-3/21/08.
https://doi.org/10.1145/3472727.3472808

and the typical communication features required on the application

side, the IETF TAPS Working Group [5] is (as of mid-2021) drafting

a novel, abstract transport services API [13]. An interface like this

would enable an application to simply indicate high-level commu-

nication requirements and characteristics like, e.g., "constant-rate

streaming" or "capacity-seeking", leaving the concrete network-

level realization to the underlying communication stack.

Our work draws significant inspiration from [13] to reason about

the required capabilities of a suitable corresponding networking

back-end in the context of the next-generation path-aware SCION

Internet architecture [8]. We explore some of the resulting implica-

tions and apply our insights to design the "PANAPI" system, which

leverages the novel opportunities of a path-aware network archi-

tecture to maintain an up-to-date local view of current network

properties in a central database. Based on this information, path

alternatives are ranked and chosen in response to application re-

quirements that are expressible in simple, high-level terms through

the next-generation API. In this way, path-awareness has a measur-

able benefit on the application side, without further complicating

the task of network communication.

2 BACKGROUND
In the following, we look at the status quo in network programming

and traffic optimization based on the traditional BGP-based Internet,

and then put this in contrast with emerging path-aware networking

approaches such as the SCION Internet architecture.

2.1 Network Programming Status Quo
On the current, BGP-based, Internet, most user-facing applications

these days perform network communication via one of two mecha-

nisms (see Figure 1):

(1) TCP or UDP, using thin, programming-language specific

abstractions over the BSD socket interface, or

(2) more abstract libraries with convenient interfaces that be-

hind the scenes usually use "HTTP(S) as a Substrate"

The first approach leaves implementing any traffic optimization

mechanisms that are not already dealt with in the OS kernel or the

network medium itself to the application. Some attempts [10] have

been made to extend the Socket Programming paradigm to support

novel networking capabilities, ultimately contributing [2] to the

wider recognition of the general need for "An Abstract Application

Layer Interface to Transport Services" [13], which is currently under

active development in the TAPS Working Group [5] at the IETF

and which we discuss below.

The second, more popular approach based on the use of higher-

level (mostly HTTP-based) libraries frees the application program-

mers fromworrying about some of the low-level networking details.

While some HTTP(S) libraries [12] or DNS resolvers [7] implement

optimizations like RFC 8305 [9], their scope is limited and their

APIs are hardly standardized.

68

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike International 4.0 License.

https://doi.org/10.1145/3472727.3472808
https://doi.org/10.1145/3472727.3472808
https://creativecommons.org/licenses/by-nc-sa/4.0/


NAI’21, August 27, 2021, Virtual Event, USA Thorben Krüger and David Hausheer

Figure 1: Network Programming Status Quo: Most applica-
tions use "HTTP(S) as a Substrate"; interaction with the low-
level Socket API directly has become increasingly unusual.

2.2 Traffic Optimization Status Quo
On the BGP-based Internet, various techniques to achieve improved

communication have been proposed on the different network levels.

On the application layer, the "happy eyeballs" approach from RFC

8305 [9] relies on simultaneous connection establishment attempts

across competing network substrates (i.e., IPv4 and IPv6). In such

a "connection racing" scenario, the connection with the quickest

established handshake is likely to also deliver the lowest latency in

general and will be used henceforth in favor of any runner-ups.

In a somewhat related approach on the routing side, the pro-

posed REPLEX [3] traffic engineering algorithm balances traffic

loads across alternative routes by allocating traffic portions in

an exploratory manner while monitoring performance. On the

other hand, Espresso [15] is an established BGP-based inter-domain

traffic-engineering system that uses the privileged vantage point of

a large CDN to leverage centrally aggregated performance observa-

tions for fine-grained traffic steering and improved user experience.

The general problem of how to best select from a range of pos-

sible paths on the host is already familiar from peer-to-peer (P2P)

networking research: resources offered by P2P systems often ex-

ist in multiple replicas, i.e., they are accessible across "paths" of

different lengths and, therefore, of different desirability.

The "Application-Layer Traffic Optimization (ALTO) Problem

Statement" from RFC 5693 [11] explores the p2p-centric question

of how to obtain and distribute the necessary information for appli-

cations to perform better-than-random peer selection, i.e., to pick

shorter paths over longer ones, preferring local copies of the data

to remote ones.

One early proposed solution is an "oracle" mechanism [1] that

could be deployed by ISPs and can be queried by applications wish-

ing to improve performance. The idea is that both the users and

the ISPs would benefit from such an arragement.

In a data-center context, the somewhat related, learning-based

"Prophet" [4] system centrally processes network performance data

to predict throughput of reactive (TCP) flows.

2.3 Next-Generation Network Programming
In recognition of the problems associated with using "HTTP(S) as

a Substrate", the IETF TAPS Working Group envisions an API that

"[. . . ] supports the asynchronous, atomic transmis-

sion of messages over transport protocols and net-

work paths dynamically selected at runtime. It is in-

tended to replace the traditional BSD sockets API as

the common interface to the transport layer, in an

environment where endpoints could select from mul-

tiple interfaces and potential transport protocols." [13]

If such an interface is realized as intended according to the above

excerpt, applications are set to gain the ability to express high-level

communication demands via a modern API while leaving lower-

level optimizations of network behavior to the underlying system

that provides this interface.

At the time of this writing, the concrete specification is still

work-in-progress and in a draft stage at the IETF. Nevertheless, it

already provides a realistic framework to explore a plausible future

way of network communication from the application perspective.

2.4 Path-awareness in the SCION Architecture
The SCION architecture offers path-awareness on inter-network

granularity through a design based on packet-carried forwarding
state. It cryptographically guarantees that any autonomous system

(AS) on the chosen path can only be entered and exited via the

exact interfaces specified in the packet header for that network [8].

On the SCION Internet, every host can select paths to a destina-

tion on its own. Given the desired destination, it is the responsibility

of each AS to provide its hosts with reasonable path options1, while
the final path selection authority lies with the hosts.

While a network can dynamically restrict set of path options it

is prepared to offer to its hosts, it has little additional influence on

the concrete choice of paths that the hosts make. However, good

network resource utilization is in the interest of all parties. On the

host-side, there is an incentive to find paths with unused resources

to maximize performance. On the network side, better usage of

otherwise under-utilized paths is equivalent to better balanced

traffic patterns and less chance for congestion.

The standard SCION network API currently only applies simple,

static heuristics (e.g., path length) to automatically select commu-

nication paths on behalf of an application. While this represents a

reasonable default, there is no simple way for an application with

specific communication requirements to influence this process and

adapt the path choice to its specific requirements.

1
"Path options" do not necessarily mean "ready-made paths". In SCION, path servers

disseminate "path segments" from which the hosts then construct complete paths.

69



Towards an API for the Path-Aware Internet NAI’21, August 27, 2021, Virtual Event, USA

3 CHALLENGE
We now turn to the following question:

How to design a system that supports a useful application program-
ming interface for the path-aware Internet?

3.1 Requirements
Based on the background given above, we can now identify and

reason about the requirements for a meaningful interaction with a

path-aware Internet:

Measurable benefit. To gain the necessary acceptance among

users and developers, path-awareness must have a meaningful and

measurable benefit from the perspective of the application. It must

result in increased network performance or reliability, while not

making the task of implementing network communication any

more difficult for the developer when compared to the status quo.

Access to path quality information. Selecting paths for a

given communication requirement depends on the ability to obtain

information about the suitability of each option, beyond simple

heuristics merely based on "path length".

Good network utilization. The concrete path choices that are

made by the networking stacks on the hosts on behalf of their

applications directly translate to concrete traffic patterns in the

larger network. Inaccurate path quality information could result in

sub-optimal network utilization and have a detrimental effect on

application performance.

3.2 Consequences
Taken together, these requirements have clear implications:

Path selection must be automated behind useful abstrac-
tions. In particular, programming applications with path-aware

featuresmust not require dealing with the selection of suitable paths
from sets of alternatives directly. Optimized path choice should

rather be conducted on behalf of the application and behind higher-

level abstractions that represent the desired communication prop-

erties in a straight-forward manner. These must be automatically

mapped to suitable paths that achieve those properties. Assessing

path suitability in turn requires access to path quality information.

Path properties must be actively collected. In the absence of a

dedicated mechanism for dissemination of path quality information

on the network level, independent collection of path properties is

required on each host.

Path quality informationmust be re-used. When re-assessing

the suitability of a path on behalf of different applications, reference

to any recent, already obtained path properties can help to improve

the selection process.

Path-awareness must be provided through one host-wide
service. Such a service will necessarily be ideally positioned

• to ensure that different applications running in parallel are

not interfering with each other

• to direct traffic across maximally disjoint paths

• to respect system-wide configuration parameters and run-

time preferences

Figure 2: PANAPI - High-level system overview.

• to focus the implementation efforts of low-level network op-

timizations, traffic engineering approaches and new features

behind a single, general-purpose networking API

These insights form a rough framework for our prototype of a

next-generation networking stack.

4 PROPOSED APPROACH
We are currently in the early stages of development of a path-aware

networking stack for the SCION architecture, entitled "PANAPI".

It consists of two core components: the developer facing abstract

networking API as a front end, and the daemon in the back end that

is responsible for processing observed and assessed performance

data and performing path selection in accordance with application

requirements. For a high-level overview, see Figure 2.

Networking API. The design of our API closely follows the

ideas developed in [13]. One example are "Capacity Profiles" which

an application can use to indicate

"the desired network treatment for traffic sent by the

application and the tradeoffs the application is pre-

pared to make in path [. . . ] selection to receive that

desired treatment. [. . . T]he Transport Services system

SHOULD select paths [. . . ] to optimize the tradeoff

between delay, delay variation, and efficient use of

the available capacity based on the capacity profile

specified." [13]

70



NAI’21, August 27, 2021, Virtual Event, USA Thorben Krüger and David Hausheer

Such high-level next generation features have a profound impact

on network programming. The example in Listing 1 shows all the

necessary API interactions that are required to request that a) the

new connection to a remote host should use multiple aggregated
paths in parallel, and b) paths that have a high available network

capacity are preferred.

Property Collection. Our principal method to obtain path prop-

erty information is through passive measurements on end hosts.

Here, directly observed path performance on active flows give indi-

cations about metrics such as bandwidth, round-trip-time and jitter.
Where available, less transient information in the form of long-lived

properties like, e.g., link capacity, MTU, or even the 𝐶𝑂2 footprint
of a path segment complement the directly observed metrics.

Further measurements can also take place at a larger scale on net-

work ingress and egress. Network equipment can monitor metrics

such as queue lengths or link utilization additionally.

Property Processing. Currently, a host has to rely exclusively on
locally collected path property information to inform its path choice.

Recently observed communication peformance on a path provides

a first estimate of that path’s suitability for future communication.

Additional information that has been obtained at the network

level could also be incorporated in the final decision. By default,

the path selection process does not rely on the presence of any

dedicated network-level property services. Purely host-based path

quality assessments form the core of our approach.

Path Selection and Exploration. When no recent information

is available about the potential paths to a destination, simultaneous

connections are initiated over all possible paths in parallel. The

completion times of the different handshakes give a first indication

about the latencies on each respective path and serve as initial

data points to be entered into the path quality database. This is an

adaption of the "connection racing" idea from RFC 8305 [9].

Similar to the REPLEX [3] mechanism, the system also occasion-

ally migrates non-critical connections to alternative paths while

closely monitoring the associated performance. The change is im-

mediately reversed if the relevant communication metrics do not

improve. Otherwise, a better path has likely been discovered that

could subsequently also be used for more critical communication.

4.1 Preliminary Findings and Outlook
While our proposed solution is still under development, we have

already demonstrated the practical feasibility of a next-generation

networking API in the spirit of the IETF TAPS proposal through

a first working prototype [14], which enables high-level network

application programming in the manner depicted in Listing 1.

Carefully reasoning about the requirements for the PANAPI dae-

mon has resulted in a promising design for the service architecture

depicted in Figure 2 that we have already begun to implement.

While it is a bit too early to present concrete results, the important

pieces are all starting to fall into place. In particular, we are in

the process of identifying several useful strategies for passive path

performance monitoring, path property derivation and informed

path choice.

PANAPI is envisioned to soon serve as a platform to test novel

traffic steering approaches in a path-aware environment and to

import "panapi"

r := panapi.NewRemoteEndpoint()
r.WithSCIONAddress("19-ffaa:0:1303,10.2.1.89")
r.WithPort(1337)
r.WithProtocol("QUIC")

t := panapi.NewTransportProperties()
// pre-requiste for requirement a)
t.Set("multipath", "active")

p := panapi.NewPreconnection(r,t)
// requirement a)
p.SetProperty("multipathPolicy", "aggregate")
// requirement b)
p.SetProperty("capacityProfile", "capacitySeeking")

Connection := p.Initiate()

// simplified asynchronous connection handling
C <- Connection.Ready()
C.Send(Request)
Response <- C.Receive()

Connection.Close()

Listing 1: Code example for interactingwith PANAPI, demon-
strating connection setupwith advanced networking features
and simplified asynchronous connection handling.

explore new ideas that could have over-arching benefits for net-

work applications in general. Once the core functionality has been

realized on a purely host-based basis, further research will focus

on improvements for path quality assessments, e.g., via an external

"path quality oracle" or "throughput prophet" service that could be

queried.

5 CONCLUSION
We have shown that path-awareness has novel implications for

practical network programming on both the application-facing as

well as the network-facing side. For reasons of simplicity and de-

veloper acceptance, path-awareness must be largely hidden from

the application in favor of a more abstract communication inter-

face in the spirit of current IETF work. Accordingly, this requires

automation of lower-level network interactions.

In the absence of a dedicated way to obtain information about the

suitability of each of the different possible network paths that could

be picked on behalf of an application, the networking back-end

must maintain a database with any already assessed path qual-

ity information. To maximize its usefulness, this database must

aggregate any available information from the host’s network inter-

actions. This leads us to the insight that all network communication

on the host must ideally be managed by a central system. With

PANAPI, we combine these insights into an integrated design for a

next-generation networking stack.

71



Towards an API for the Path-Aware Internet NAI’21, August 27, 2021, Virtual Event, USA

REFERENCES
[1] Aggarwal, V., Feldmann, A., and Scheideler, C. Can ISPs and P2P users

cooperate for improved performance? ACM SIGCOMM Computer Communication
Review 37, 3 (2007), 29–40.

[2] Enghardt, T. Informed access network selection to improve application perfor-
mance. Doctoral thesis, Technische Universität Berlin, Berlin, 2019.

[3] Fischer, S., Kammenhuber, N., and Feldmann, A. REPLEX: Dynamic Traffic

Engineering based on Wardrop Routing Policies. In Proceedings of the 2006 ACM
CoNEXT conference (2006), pp. 1–12.

[4] Gao, K., Zhang, J., Yang, Y. R., and Bi, J. Prophet: Fast accurate model-based

throughput prediction for reactive flow in dc networks. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications (2018), IEEE, pp. 720–728.

[5] IETF. Charter for Working Group. Tech. Rep. charter-ietf-taps-02, Internet

Engineering Task Force, Mar. 2021. Work in Progress.

[6] Moore, K. On the use of HTTP as a Substrate. RFC 3205, Feb. 2002.

[7] Obser, F. unwind(8); "happy eyeballs", Nov. 2019. Archived mailing list email.

[8] Perrig, A., Szalachowski, P., Reischuk, R. M., and Chuat, L. SCION: a secure

Internet architecture. https://www.scion-architecture.net/pdf/SCION-book.pdf,

2017.

[9] Schinazi, D., and Pauly, T. Happy Eyeballs Version 2: Better Connectivity Using

Concurrency. RFC 8305, Dec. 2017.

[10] Schmidt, P. S., Enghardt, T., Khalili, R., and Feldmann, A. Socket intents. In

Proceedings of the ninth ACM conference on Emerging networking experiments and
technologies (12 2013).

[11] Seedorf, J., and Burger, E. Application-Layer Traffic Optimization (ALTO)

Problem Statement. RFC 5693, Oct. 2009.

[12] Sternberg, D. curl vs wget, Mar. 2021.

[13] Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G., Kühlewind, M.,

Perkins, C., Tiesel, P. S., Wood, C. A., Pauly, T., and Rose, K. An Abstract

Application Layer Interface to Transport Services. Internet-Draft draft-ietf-taps-

interface-12, Internet Engineering Task Force, Apr. 2021. Work in Progress.

[14] With, N., and Krüger, T. Implementation of a Transport-Agnostic, High-Level

Networking API. https://code.ovgu.de/hausheer/taps-api, 2021.

[15] Yap, K.-K., Motiwala, M., Rahe, J., Padgett, S., Holliman, M., Baldus, G.,

Hines, M., Kim, T., Narayanan, A., Jain, A., et al. Taking the Edge off with

Espresso: Scale, Reliability and Programmability for Global Internet Peering. In

Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication (2017), pp. 432–445.

72

https://www.scion-architecture.net/pdf/SCION-book.pdf
https://code.ovgu.de/hausheer/taps-api

	Abstract
	1 Introduction
	2 BACKGROUND 
	2.1 Network Programming Status Quo 
	2.2 Traffic Optimization Status Quo 
	2.3 Next-Generation Network Programming 
	2.4 Path-awareness in the SCION Architecture 

	3 CHALLENGE 
	3.1 Requirements 
	3.2 Consequences 

	4 PROPOSED APPROACH 
	4.1 Preliminary Findings and Outlook

	5 Conclusion 
	References



