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We systematically compare strengths and weaknesses of two methods that can be used to
quantify causal links between time series: Granger-causality and Bivariate Phase Rectified
Signal Averaging (BPRSA). While a statistical test method for Granger-causality has already
been established, we show that BPRSA causality can also be probed with existing statistical
tests. Our results indicate that more data or stronger interactions are required for the BPRSA
method than for the Granger-causality method to detect an existing link. Furthermore, the
Granger-causality method can distinguish direct causal links from indirect links as well as links
that arise from a common source, while BPRSA cannot. However, in contrast to Granger-
causality, BPRSA is suited for the analysis of non-stationary data. We demonstrate the
practicability of the Granger-causality method by applying it to polysomnography data from
sleep laboratories. An algorithm is presented, which addresses the stationarity condition of
Granger-causality by splitting non-stationary data into shorter segments until they pass a
stationarity test. We reconstruct causal networks of heart rate, breathing rate, and EEG
amplitude from young healthy subjects, elderly healthy subjects, and subjects with obstructive
sleep apnea, a condition that leads to disruption of normal respiration during sleep. These
networks exhibit differences not only between different sleep stages, but also between young
and elderly healthy subjects on the one hand and subjects with sleep apnea on the other hand.
Among these differences are 1) weaker interactions in all groups between heart rate, breathing
rate and EEG amplitude during deep sleep, compared to light and REM sleep, 2) a stronger
causal link from heart rate to breathing rate but disturbances in respiratory sinus arrhythmia
(breathing to heart rate coupling) in subjects with sleep apnea, 3) a stronger causal link from
EEG amplitude to breathing rate during REM sleep in subjects with sleep apnea. The Granger-
causality method, although initially developed for econometric purposes, can provide a
quantitative, testable measure for causality in physiological networks.

Keywords: time series analysis, network physiology, Granger causality, bivariate phase rectified signal averaging,
sleep apnea, heartbeat, respiration, brain-wave amplitudes

1 INTRODUCTION

Causality is an ambiguous term and there are numerous philosophical, sociological, statistical,
physical and information-theoretic approaches to define causality [Granger (1980); Hlaváčková-
Schindler et al. (2007); Pearl and Mackenzie (2018)]. Although classified as statistical rather than a
causal concept by some authors [see e.g., Hamilton (1994); Pearl (2009) for well-founded
arguments], Granger causality [“G-causality”, Granger (1969)] provides a generally accepted
operational framework to investigate causal interactions in time series. Going back to an idea by
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Norbert Wiener [Wiener (1956); therefore also “Wiener-Granger
Causality”], Clive Granger was first to apply a linear regression
model to probe whether a process X has a causal relationship with
another process Y {or whether X can forecast Y [Hamilton
(1994)]}. Limitations of this linear approach and prominent
non-linear extensions of G-causality are discussed in detail by
Hlaváčková-Schindler et al. (2007).

In the field of physiological time series analysis and in
particular when probing for physiological interactions, G-
causality plays a major role along with entropy-based
measures [Schulz et al. (2019)], phase synchronization analysis
and symbolic dynamics [Müller et al. (2016)]. Indeed, G-causality
is frequently used in the emerging field of Network Physiology
[Bashan et al. (2012)] to investigate the network interactions
between multiple physiological systems involved in
cardiovascular/cardiorespiratory control [Porta and Faes
(2015); Schulz et al. (2013)] and heart-brain coupling [Faes
et al. (2015)]. It is becoming a standard tool in neuroscience
to identify directed functional interactions in the brain [Hesse
et al. (2003); Bressler and Seth (2011); Seth et al. (2015)].
However, G-causality was initially developed for economic
time series [Granger (2004)], which are usually shorter
(regarding their number of samples) and sampled at lower
frequencies than physiological time series. This must be
considered when using G-causality for physiological
applications. Notably, the condition of “instantaneous
causality” [Granger (1969)] may, in contrast to economic data,
not be present in physiological data because typical sampling
rates are higher than the delay time of the causal relationships
[Lin et al. (2016)]. Furthermore, there are forms of coupling
between physiological systems that coexist but operate at different
time scales [Bartsch et al. (2014); Bartsch and Ivanov (2014)].
Therefore, in order to identify physiological interactions for fast
as well as very slow processes, the original model must be
extended and G-causality computed at different temporal
resolutions.

An often discussed drawback of G-causality for practical
implementations is the necessity of data being stationary,
which is usually not the case for physiological recordings.
Workarounds range from simply differentiating the data or
analyzing shorter (“quasi-stationary”) time windows to more
complex methods utilizing an adaptive recursive least-square
algorithm [Hesse et al. (2003)] or applying spectral density
matrix factorization of the Fourier and wavelet transforms
[Dhamala et al. (2008)] — with each method having its own
pros and cons [Bressler and Seth (2011)].

An alternative, simple yet powerful method, which does not
require stationarity to investigate interactions and causal relations
between time series, is Bivariate Phase Rectified Signal Averaging
(BPRSA) analysis [Schumann et al. (2008)]. While originally
developed as a mono-variate method to study quasi-periodic
oscillations in non-stationary signals [Bauer et al. (2006b)] and
quantify cardiovascular risk [Bauer et al. (2006a)], its bivariate
extension has been applied to assess spontaneous baroreflex
sensitivity [Müller et al. (2012)], and, more recently, to analyze
maternal-fetal heart rate coupling [Montero-Nava et al. (2020)].

Because BPRSA is, in contrast to G-causality, a model-free
approach to study inter-relationships and causality in
physiological signals, in this paper we aimed for a systematic
comparison of both methods. This will be done in Part A after a
proper introduction of each method. In particular, we will
elaborate on their strengths and weaknesses, and present
statistical tests to probe for significant interactions. The
analysis is done with a focus on possible applications in
physiology. A corresponding example regarding physiological
networks during sleep will be presented in Part B of the paper.

2 PART A: METHODS FOR CAUSALITY
ANALYSIS
2.1 Differentiating Between Direct and
Indirect Links
In physiological networks an important problem is to distinguish
direct from indirect links. Figure 1 depicts direct and indirect
links in simple three-node networks. In all three cases, the node
corresponding to the source signal z seems to influence the target
node, i.e., signal x. While there is a direct link from z to x in
subfigure (a), there is only an indirect link in subfigure (b),
mediated by signal y. Subfigure (c) shows another form of an
indirect link, where the link between z and x is purely due to the
common influence of y on both signals. Note that a time lag,
indicated by the operator L, is important only in case (c). If the
time lag from y to zwas longer than the lag from y to x (i.e., α > β),
the indirect link would change its direction and point from x to z
instead.

There are more complex and mixed cases e.g., direct and
indirect links between the same two nodes, and coexisting links
[Bartsch and Ivanov (2014)], but the ones shown in Figure 1 are
the most basic setups, and in the following they will be used to test
and compare G-causality and BPRSA. By studying results for
modeled data, we show that G-causality is more appropriate to
distinguish these setups within a certain range of detection limits.

2.2 Method 1: Granger Causality
A simplified definition of Granger causality is: “Variable z
Granger-causes (G-causes) variable x if knowledge about z
improves the forecast of x” [Granger (1969)]. This reflects our
common understanding of cause and consequence: The cause
must precede the consequence in time and if z has no effect on x,
we do not call it causal. This idea is formalized in the framework
of autoregressive (AR) processes.

Under fairly general conditions a random process can be
described by an AR model of order p [see, e.g., Lütkepohl
(2005)]. Consider two AR models of the time series xt, one
including and one excluding information on zt,

xt � ∑
p

i�1
ϕ 1( )
i xt−i( ) + w 1( )

t ; STD w 1( )( ) � σ 1( ), (1)

xt � ∑
p

i�1
ϕ 2( )
i xt−i + ψ 2( )

i zt−i( ) + w 2( )
t ; STD w 2( )( ) � σ 2( ). (2)
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Equation 1 models the value of x at time t as a weighted average
over its own past plus a white noise process wwith zero mean and
standard deviation (STD) σ(1). The weighting factors ϕi can be
obtained by minimizing the error term w(1). The past of x carries
information about its own future, but this information is
necessarily incomplete due to the statistical nature of x. The
better x can be described (forecast) from its own past, the lower
the standard deviation σ(1) of the residual w(1).

Equation 2 additionally considers information about z. If this
information helps to model (forecast) x, then the standard
deviation σ(2) will be reduced compared to σ(1). The G-value
Gz→x is a measure for the improvement of the forecast of x by
including z, and therefore a measure of causality,

Gz→x � ln
σ 1( )

σ 2( ). (3)

Gz→x quantifies G-causality, however it remains unclear whether
1) an obtained G-value is significantly different from zero, and 2)
the link is direct or indirect.

To resolve issue 1), one can test the null hypothesis that all
coefficients ψ(2)

i of Eq. 2 are practically zero, i. e.,G-causality does
not exist. This is done by assuming an F or chi-squared
distribution, given that the estimators of the least square
method coefficients are asymptotically normally distributed
[Neusser (2011)], and estimating the probability of a non-zero
mean value. Because no other variables (such as y) are taken into
account, this is a pairwise analysis method, which can identify
links from z to x in all three cases of Figure 1.

In order to differentiate between direct and indirect links,
i.e., to resolve issue 2), a conditional analysis is necessary.
Consider the two extended AR models,

xt �∑
p

i�1
ϕ 3( )
i xt−i + τ 3( )

i yt−i( )+w 3( )
t STD w 3( )( )� σ 3( ), (4)

xt �∑
p

i�1
ϕ 4( )
i xt−i + τ 4( )

i yt−i +ψ 4( )
i zt−i( )+w 4( )

t STD w 4( )( )� σ 4( ). (5)

Equations 4, 5 are the same as Eqs. 1, 2, except that the past
of y is added to both. Hence, σ(4) is lower than σ(3) if and
only if z adds information that is not already provided by y.
Therefore, the conditional analysis will not show y-conditional
G-causality

G
y( )

z→x � ln
σ 3( )

σ 4( ) (6)

for the indirect z → x links shown in Figures 1B,C, but only for
the direct link in Figure 1A. Besides, cases (b) and (c) can be
distinguished by a pairwise analysis of z and y (disregarding x).
This idea can be extended to a set of arbitrarily many variables,
but for the scope of this work three variables (time series xt, yt, and
zt) are sufficient.

Stationarity is an important prerequisite for the AR
framework, because the process’ characteristics (i.e., the
coefficients ϕi, ψi, τi) must not change over time. A stationary
process is a process with a constant mean and a finite covariance
function that is invariant to shifts in time. This requirement is
problematic, because many physiological signals are inherently
non-stationary [Ivanov et al. (1996); Goldberger et al. (2002)].
Here, we probe stationarity with the Augmented Dickey-Fuller
(ADF) test, which is widely accepted [Paparoditis and Politis
(2018)] and based on ARmodeling, so that it operates in the same
framework as G-causality analysis.

In summary: G-causality is based on the improvement of a
forecast by including additional data from other signals, and it
can only be applied to stationary data. It can be used to
distinguish between the three setups shown in Figure 1, if
pairwise analysis and conditional analysis are applied. With G-
causality the existence of a causal link can be decided as yes/no
question with a statistical test, and quantified with the G-value.

2.3 Method 2: Bivariate Phase Rectified
Signal Averaging
While the G-causality approach is sensitive to non-stationarities, the
Phase Rectified Signal Averaging method [PRSA, Bauer et al.
(2006b)] and its bivariate version [BPRSA, Schumann et al.
(2008)] have been developed to study noisy, non-stationary
signals. The methods are especially suitable for quasi-periodic
time-series, where perturbations reset the signal phase at random
times. The BPRSA approach can easily be extended to an arbitrary
number of signals. The idea is to align windows of the target signal x
that are in the same phase with respect to one or more trigger signals
(y and z) and average over all these windows. The procedure is
described in detail in Schumann et al. (2008), see also Bauer et al.
(2006b,a, 2009); here we only provide a brief overview.

FIGURE 1 | Illustration of a direct link (A) and indirect links (B,C) from source z to target x. An indirect link can be due to a causal chain z→ y→ x (B) or due to time
delayed effects of y on x and zwith a longer time delay towards x. Solid edges represent direct links, dashed edges the resulting indirect links; L is the time lag operator.
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The easiest and standard way to define trigger events from
signal z is to consider all positions, where the signal increases, i. e.,
zt] > zt]−1 for a trigger event at time t]. We denote all m trigger
points by t], ] = 1, . . ., m. Any other criterion that returns a
Boolean value (trigger event or no trigger event) is possible,
including criteria that are based on multiple signals. Each trigger
event at t] leads to an anchor point xt] of the target signal. Then,
windows of width 2L are chosen around each anchor point xt],

xt]−L, xt]−L+1 . . . , xt]+L−1{ }. (7)
The resulting BPRSA function for a potential z → x link is the
point-wise average of xt in all of these m windows,

BPRSAj � 1
m

∑
m

]�1
xt]+j, j � −L,−L + 1, . . . , L − 1. (8)

The choice of anchor points is supposed to guarantee that in
each window the index j = 0 is at a similar phase of the
physiological process. The average over all windows is an in-
phase superposition and therefore insensitive to non-
stationarities (that are slower than the time scale L) and artifacts.

If there is no relation between z and x, and m is large, the
resulting BPRSA time series will be constant everywhere, however
with statistical fluctuations. This also happens if the choice of
trigger points is not appropriate to reveal a relation between the
signals, because it does not reflect the underlying processes. Any
significant deviation from a constant value for any BPRSAj must
be interpreted as a relation between z and x, but not necessarily in
the sense of G-causality. A positive (negative) peak in the BPRSA
time series indicates the positive (negative) influence of a trigger
event in z on x, or—in case the peak is at a negative index j—from
x on z. Thus, BPRSA yields temporal information on cause and
effect, just like G-causality. However, we would like to note
that—unlike G-causality analysis—BPRSA does not model the
time series data in any way, but relies on an averaging procedure
assuming that the selected trigger event criterion is suitable for
the relation between the considered signals and that the Central
Limit Theorem holds. Therefore, it is expected that longer data
are needed for a reliable identification of causality relations with
BPRSA.

Since no test for the statistical significance of such a relation
has yet been proposed1, we have studied and compared four tests.
The null hypothesis is that there is no causality between z and x. If
this holds, the trigger points are randomly distributed and each of
the BPRSAj values, Eq. 8, is an average over independent random
numbers and thus normally distributed due to the central limit
theorem.

The following statistical tests are considered and compared:

1) The one-sided Kolmogorov-Smirnov test [Massey (1951)]
measures the difference between the probability density
functions of the BPRSA and a normal distribution,
providing a p-value for the null hypothesis.

2) The two-sided Kolmogorov-Smirnov test [Massey (1951)]
compares the distribution of the real BPRSA values with
the distribution of BPRSA values for random trigger points
(i.e., disregarding the trigger signal z), also providing a p-value
for the null hypothesis.

3) The Anderson-Darling test [Anderson and Darling (1952)]
works similar to this idea, but introduces a weight function
that increases the importance of the tails of the distribution.
This is particularly useful if deviations from normality appear
as abnormally high or low values instead of deviations in the
middle of the bell-shaped curve.

4) The Shapiro-Wilk test [Shapiro and Wilk (1965)] is the most
powerful of these tests according to Razali and Wah (2011). It
is based on variance analysis and compares the variance of a
normal distribution with the estimated variance of the sample.

In summary: The existence of causality in the sense of
BPRSA can be tested by checking whether the BPRSAj

values are normally distributed. In addition, the peak height
can provide quantitative information on the link strength.
Compared to G-causality, this method is less sensitive to non-
stationarities, and it is a model-free approach. However,
BPRSA cannot distinguish direct from indirect links unless
more evolved trigger criteria could be established for a
conditional analysis.

2.4 Results and Discussion: Comparison of
G-Causality and BPRSA Causality
2.4.1 Pairwise Analysis
With the tools presented above, both G-causality and BPRSA
offer ways to test pairwise causality of two signals. In the first step,
we quantified the detection limits. To this end, two signals of 1/f α

noise with α = 0.5 were created by the Fourier filtering method
[Makse et al. (1996); Bashan et al. (2008)]. Starting with white
noise, the power spectrum was rescaled to follow 1/f 0.5 behavior,
and—back in the time domain—the values were rescaled to have
unit variance. These original noise signals are called o1 and o2.
The signals z and x are defined as

z � o1, x � L3z × q + o2 × 1 − q( ), 0< q< 1. (9)
Here, L shifts the series by one time unit, so that L3 shifts it by three
units; the number three was arbitrarily chosen. The unitless number q
quantifies how much x is influenced by z. This setup was designed to
test what influence is necessary for causality to be detected by the
differentmethods. The length of the time series was varied from26 = 64
to 216 = 65,536 samples. The length of the BPRSA time series was
chosen to be 2L= 30, triggering on a rising signal [Bauer et al. (2006a,b);
Schumann et al. (2008)]. Especially for the short time series large parts
of the data had to be discarded due to overlap ofwindowand boundary.
While choosing a shorter window length might result in less discarded
data, the averaged BPRSA time series would become shorter and
therefore impair the quality of the statistical tests. The boundary
effects are negligible for longer time series. For all tests the null
hypothesis was no causality. In our setup z causes x with varying
strength q. Therefore, a test yields the correct result if the null hypothesis
is rejected.We rejected the null hypothesis for p-values lower than 0.05.

1Previous publications focus on the analysis of definitely existing relations [Bauer
et al. (2006b,a); Schumann et al. (2008); Bauer et al. (2009, 2010)].
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Figure 2 shows the dependency of the threshold for the
identification of existing causality on sample size and link
strength for all proposed tests. All experiments were averaged
over 20 realizations in order to get a statistically reliable result.
The confidence intervals are given by the 5th and 95th percentile
of a bootstrap distribution, which is obtained from 100 random
samples. For each sample, we drew 20 out of the 20 realizations,
allowing individual realizations to be picked multiple times.

In the limit of large sample sizes and strong influence q, all
tests correctly identified causality (upper right corner of
Figure 2). In the limit of small sample size and weak
influence q, all tests failed (lower left corner of Figure 2). The
detection limit is given by the p = 0.05 isoline. For small sample
sizes (64 points or less) BPRSA is unable to detect causality, no
matter how strong the link, possibly because a non-negligible
amount of data near the boundaries is discarded. The two-sided
Kolmogorov-Smirnov test failed to detect causality in all cases
and is therefore not shown in Figure 2. The one-sided version
turned out more powerful, but remained weaker than the

Anderson-Darling test and the Shapiro-Wilk test. These results
are in line with the findings of Razali and Wah (2011). The G-
causality test detects causality for smaller sample sizes and weaker
influences than all BPRSA tests.

In the calculations for Figure 2, BPRSA causality methods
turned out to need about two times more computational effort
than G-causality, and all BPRSA tests failed for short time series.
As mentioned above, it is expected that BPRSA needs longer data
for a significant result, since it relies on the Central Limit
Theorem. For nonstationary data, BPRSA can still be applied,
but even longer data would be needed, since the non-
stationarities must cancel out in its averaging procedure.
Furthermore, BPRSA is dependent on the choice of the trigger
criterion. Only if a trigger criterion that fits to the physiological
process is chosen, relationships can be established. Without prior
knowledge, several trials with all kinds of criteria need to be done
in order to probe for BPRSA causality. G-causality does not
require such procedure, but also cannot be used to test for
different kinds of time-varying relations between the
considered signals in a system with non-stationary dynamics.
Therefore, BPRSA can still be advantageous if specific hypotheses
on the nature of the signals’ relations exist or if the signals’
relations change in time.

Both methods provide information on the direction of coupling,
while methods such as cross correlation analysis or cross-spectral
analysis are symmetric in the sense that a coupling of signal x with
signal z is always also a coupling of z with x. BPRSA and G-causality
both overcome this problem. We note that in Figure 2 a power-law
relationship between the critical q-value as function of the sample size
can be seen, however, a detailed study of this scaling is beyond the
scope of the present work.

In summary,G-causality is a more powerful method than BPRSA
causality. Still, the BPRSA method is more likely to be able to handle
nonstationarities because of its natural strength in phase-aligning the
signal parts. However, methods have been developed to overcome the
stationary constraint and apply time-dependent AR-models [Ding
et al. (2000)], which allow the definition of time-dependent G-
causality [Hesse et al. (2003)]. We concluded that G-causality is
better suited to detect causality in multivariate, stationary setups and
continued our analysis with this method.

2.4.2 Conditional Analysis
Consider the setup shown in Figure 1C. There is a relation between z
and x, but it only exists because of the common influence of y. While
BPRSA cannot distinguish between a direct influence of z on x or a
common driver y on z and x, with G-causality these cases can be
separated. This is a real strength ofG-causality, and in this subsection
we are testing the limits of such detection. One way to formalize the
setup is by extending Eq. 9 to three variables, with o1, o2 and o3 again
being independent 1/f 0.5 noise signals,

y � o2;
z � L2y × qy→z + o1 × 1 − qy→z( ); 0< qy→z < 1
x � L4y × qy→x + o3 × 1 − qy→x( ); 0< qy→x < 1.

(10)

We performed pairwise and conditional analysis, see Eqs. 1–5,
and tested for G-causality with an F-test for signals of sample size

FIGURE 2 | Model data according to Eq. 9 is tested for pairwise
causality with statistical tests applied to G-values (blue) and BPRSA values
(yellow and green). The plot shows the p = 0.05 isolines for each test as
function of the influence strength q and the length of the time series (xt
and zt). The isolines’ 5 and 95% confidence interval are marked by dashed
lines, computed from a bootstrap procedure. The tests correctly reject the null
hypothesis above the shown isolines towards the top right corner of the plot.
Clearly, the lowest detection limit is achieved by G-causality (applying the
F-test). BPRSA causality with the Anderson-Darling test (3) and the Shapiro-
Wilk test (4) is less sensitive by a factor of two to three in the influence strength
q as compared to G-causality. BPRSA causality with the one-sided
Kolmogorov-Smirnov test (1) is even less sensitive by another factor of 2, while
the two-sided Kolmogorov-Smirnov test (2) only yielded the correct result in
the top right corner of the plot and is therefore not shown. There seems to be a
power-law relationship between the critical q-value as function of the sample
size, q ~ N−0.5.
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215 = 32,768 and varying influences qy→z, qy→x. The results,
averaged over 20 realizations, are shown in Figure 3.

We identified three regions:

• Region 1: Both, the pairwise and the conditional test do not
reject the null hypothesis that there is no G-causality. This
would lead to the conclusion that there is neither a direct
nor an indirect link, which is false. The reason for the false
negative result is that the influence coefficients qy→z and
qy→x are too weak. Longer time series will shift this detection
limit towards the lower left corner of the figure.

• Region 2: While the pairwise test rejects the null hypothesis,
the conditional analysis does not. This leads to the
conclusion that there is a z → x link, which can only be
indirect. This is indeed true and corresponds to the case
shown in Figure 1C.

• Region 3: Both the pairwise as well as the conditional test
reject the null hypothesis, indicating that there is a direct
z→ x link, which is false. If qy→z and qy→x become so strong
that x and z are both very tightly coupled to y, G-causality is
mistakenly detected. In practice, this limitation rarely
applies, because signals are usually not free of noise and
not coupled so strongly.

If y is known, the method works for log qy→z + log qy→x = log
(qy→z · qy→x) ≥ log (0.02) = −1.7 (dashed line, Region 2), as long as
the link is not extremely strong (Region 3). If the influence is too
weak, no causality will be detected at all. If it is extremely strong,
the indirect link will be mistaken for a direct link.

In practice, measurements will always be limited to certain
variables, and there is no way to exclude the possibility of external
variables y that constitute a common cause to the measured
signals. For this reason, there can practically never be certainty if a
detected link is direct or due to a common source. One approach
to overcome this is to include as many variables in the model as
possible, which is, however, problematic because an increasing
number of parameters must be estimated in this procedure. Prior
knowledge on the modeled process can improve the
interpretation of the results.

3 PART B: RECONSTRUCTION OF CAUSAL
PHYSIOLOGICAL NETWORKS

In this part, conditional G-causality is applied to detect direct
physiological couplings between heart rate, breathing rate, and
EEG amplitude during sleep. We will show in the following that
the couplings among these physiological systems differ between
groups of young healthy subjects, elderly healthy subjects and
patients with obstructive sleep apnea (OSA). OSA is the
temporary, complete or partial disruption of normal
respiration during sleep, caused by a reduced tonus of upper
airways muscles [Dempsey et al. (2010)]. The increased negative
intrathoraic pressure upon inspiration causes the upper airways
to collapse, which results in a drop of blood oxygen and increase
in blood carbon dioxide levels. This leads to an arousal from sleep,
followed by recovery of normal respiration [Penzel et al. (2003b)].

3.1 Methods
Physiological time series were derived from polysomnography
(PSG) measurements that were recorded in several European
sleep laboratories between September 1997 and April 2000 as part
of the EU-project SIESTA [Klosch et al. (2001)]. Before any
analysis, we chose 36 young, healthy subjects with excellent signal
quality (young control group—YC, aged 29 ± 6), 36 elderly,
healthy subjects (elderly control group—EC, aged 51 ± 10) and
43 age-matched, elderly subjects with an apnea-hypopnea index
(AHI) of at least 10 per hour (OSA group, aged 51 ± 9). AHI is the
mean number of apnea and hypopnea events per hour when
considering a full-night sleep. Genders are distributed
approximately equally in the YC (17 male, 19 female) and EC
group (18 male, 18 female), but the OSA group consists mostly of
male participants (38 male, five female). We address this in the
results section. For each subject, we derived:

• Instantaneous heart rate H as the inverse RR-interval,
i.e., the time between two successive heart beats.

• Instantaneous breathing rate B from the inverse interval
between two extrema of the raw respiration signal. The raw
respiration signal was chosen for each subject individually
as the best-quality signal out of effective oronasal airflow
and stretch belts placed around abdomen and thorax.

• EEG α instantaneous amplitude by applying a bandpass
filter on the EEG signal using the α frequency band
7.8–15.6 Hz.

FIGURE 3 | G-causality F-test for z → x for the setup from Figure 1C,
according to Eq. 10. The correct result is obtained in Region 2. For further
details see text.
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Subsequently, signals H and B were interpolated to 1 Hz
resolution, for EEG α, averages over non-overlapping windows
of one second length were taken. The resulting three time series
were all sampled at 1 Hz, and were averaged to resolutions of 2, 5,
10, 15, 30, and 60 s (i.e., 0.5, 0.2, 0.1, 0.067, 0.033, and 0.017 Hz)
for further analysis (see Figure 4).

For each block of 30 seconds, sleep stages were scored by a
sleep technician on the basis of the PSG signal following the rules
by Rechtschaffen and Kales [Hobson (1969)]: light sleep (stages 1
and 2—LS), deep sleep (stages 3 and 4—DS) and REM sleep. Each
triple of time series (H, B and EEG α) was partitioned into patches
of continuous sleep of the same sleep stage, typically several
minutes, and then normalized to zero mean and unity variance.

Since stationarity is a crucial precondition for G-causality
analysis, a stationarity test must precede further analysis. We
based our algorithm on the widely accepted Augmented Dickey-
Fuller Test [ADF test, Paparoditis and Politis (2018)]. On the one
hand, only stationary patches can be used forG-causality analysis, on
the other hand the percentage of usable patches should be
maximized in order to obtain the best possible statistics. A trade-
off can be achieved through variation of the model order. For each
continuous patch of the same sleep stage, all three signals of the node
triple (i.e., heart rate, respiration rate and EEG amplitude) are tested
for stationarity on amodel of order 5. If all of them are stationary, the
G-value is calculated according to Eq. 6. If at least one is
nonstationary, the same procedure is repeated with model order
4, then with model order 3. If the process can still not be modeled as
stationary at model order 3, the patch is split in half and the same
procedure is applied to both shorter patches, motivated by the fact
that shorter time series aremore likely to be sufficiently free of trends
and variability in variance and autocorrelations. A stopping
condition is set when the patches reach a length of less than six
times the time series resolution (i.e., 90 s length is the lower limit for
time series of 15 s resolution), because this is the minimum length
required for an AR model of order five. If this condition is met, the
data is considered nonstationary and discarded.

Of all the data that are potentially available, the percentage of
stationary patches is shown in Figure 5. It does not make sense to
analyze data for resolutions broader than 15 s as most of these
patches do not contain stationary data. This is mainly because of
two reasons: Firstly, there are too few sufficiently long sleep stage
epochs for resolutions > 15 s, and secondly, windows with an
equal amount of data points but lower temporal resolutions cover
longer sleep episodes, which are less likely to be stationary
(i.e., compare high resolution 1 s time series with low
resolution 60 s data). In our datasets, the second reason is
dominant.

Even though resolutions above 15 s are of interest for research
on long-term correlations, they cannot be included because there
is not enough stationary data. For each group the conditional G-
values (Eq. 6) for each time series resolution and each sleep stage
were averaged and weighted by the length of the patch that they

FIGURE 4 | Example of 3 min segments from a YC subject for heart rate (top panel), breathing rate (middle), and EEG α amplitude (bottom) for four different
temporal resolutions. The sleep stage is light sleep. For examples from other sleep stages, see Supplementary Figures S1, S2.

FIGURE 5 | Percentage of stationary sleep episodes as function of the
time scale for the three different sleep stages. Note that wake epochs were
excluded from the analysis because of insufficient statistics.
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were calculated from in order to account for the varying length of
sleep stages.2

Error bars were calculated using a bootstrap method [Efron
and Tibshirani (1993)]: Out of all G-values that comprise a data
point, a new set of G-values was randomly drawn. This set is as
large as the original one, but the same G-value can be picked
several times, while others are not included in a particular
sample. Overall, 100 such samples were drawn and for each
sample the (unweighted) mean was calculated. The standard
deviation of these means is an estimate for the standard

deviation of the actual mean, the standard error, and is
plotted as error bar in Figure 6.

Each analyzed data patch consists of only tens to hundreds of
data points, which is not enough to reliably detect weak links with
the G-causality test (see Figure 2). Therefore, we compare our
results with surrogate data that allow for an alternative way to
validate G-causality: If the average G-value obtained for a
particular group and pair of signals is different from the G-
value of the surrogate data, G-causality can be assumed. For our
surrogate analysis, the respiration rate, heart rate and EEG
amplitude data were taken from three different subjects, so
that no G-causality can be expected between any of the three
signals [Toledo et al. (2002); Bartsch et al. (2007)]. An alternative
method would be the adjusted-amplitude Fourier transform
(AAFT) method [Theiler et al. (1992); Lavanga et al. (2020)].

3.2 Results
The results for all groups and the surrogate data are shown in
Figure 6. The figure shows two of the six combinations in each

FIGURE 6 | Pairwise conditional G-causality for the three groups [YC—(A), EC—(B), OSA—(C)] and surrogate data (D). Error bars represent the standard error
and were calculated using a bootstrap method [Efron and Tibshirani (1993), see text for more details].

2We note that theoretically G-values cannot be negative, because this would imply a
reduction in predictive power caused by adding new information, which is
impossible. In the worst case the new information could just be neglected, which
should lead to a G-value of zero. However, because of numerical reasons the
minimization algorithm used for the parameter calculation of the models can
lead to negative G-values in few cases. Instead of artificially removing those cases
theywere kept because in other cases the algorithm slightly overestimates theG-value.
Removing the negative values would introduce a bias towards higher G-values.
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panel, grouped into pairs of signals for each sleep stage. The error
bars represent the standard error calculated from the bootstrap
procedure described above. Particularly for LS and REM, the
difference in directionality increases for larger time windows
(i.e., lower resolutions at 10 and 15 s), however, for 15 s the error
bars are quite large in many cases. For this reason, time series with
10 s resolution were chosen to generate the physiological networks
presented in Figure 7. Thus, the strength of the connection line
between two nodes (“network link”) is proportional to theG-value at
a resolution of 10 s. While Figure 7 presents less information than
Figure 6, it is more helpful to find patterns and recognize important
differences between the groups.

It is important to note that a time series resolution of 10 s does
not mean that the relevant processes happen within 10 s. The
model that is used to calculate the G-values comprises three to
five past terms, which means that the processes occur in time
windows of 30–50 s, but by default neglect causalities from
processes with dynamics on time scales shorter than 10 s.

Subfigures (a), (b) and (c) in Figures 6, 7 show the results for the
YC, EC and OSA group, respectively. The results for YC and EC are
qualitatively very similar: The interaction betweenheart and respiration
rate is symmetrical in light and deep sleep across all time scales and
takes low to medium values (G < 0.04 at all times). This changes in
REM sleep, where the causality from respiration to heart rate clearly
dominates over the opposite direction, especially towards larger time

scales. The G-value for the causality from respiration to heart rate at
time scale 2 seconds is slightly increased (see Figures 6A,B only),
which is an indicator of respiratory sinus arrhythmia (RSA), a well-
known effect ofmodulation of the heart rate within the breathing cycle.
During inspiration, the heart rate accelerates and it slows down during
expiration [Angelone and Coulter (1964)]. This RSA peak disappears
for REM sleep, which is in agreement with Bond et al. (1973), who
describe “a total dissociation between respiration and rhythmic heart
rate variability” during REM sleep. However, while RSA (which acts
on relatively short time scales on the order of a breathing cycle)
disappears in REM sleep, the causal relation from respiration to
heart rate during REM sleep is shifted to longer time scales. The
RSA peak is also absent in OSA subjects during non-REM sleep (see
Figure 6C), possibly indicating reduced RSA for OSA subjects.

The coupling between EEG α amplitude and respiration rate
remains, for all groups, constantlyweak and symmetrical throughout
all sleep stages and time series resolutions. The only deviation from
this behavior is a slight increase in the causality from EEG α to
respiration rate at larger time scales for EC andOSA subjects in REM
sleep, which could be related to aging. Regarding the coupling
between heart rate and EEG α, there is a clear dominance from
EEG α to heart rate during light and REM sleep. This coupling
almost completely vanishes during deep sleep, causing EEG α to
heart rate coupling to become more symmetric.

The network plots 7(a) and (b) show the small differences between
the YC and EC group. Furthermore, throughout all groups there is
only little G-causality during deep sleep. This is in accordance with
results of Bashan et al. (2012) and Bartsch et al. (2015) who show low
network connectivity during deep sleep using a time delay stability
approach to quantify interactions. At the same time, during deep
sleep there is also a loss of long-term correlations in heart beats
[Bunde et al. (2000); Penzel et al. (2003b)] as well as in respiratory
inter-breath intervals [Schumann et al. (2010)]. Such long-term
correlations, however, exist during light and REM sleep and are
assumed to be due to influences from the sympathetic nervous system
on cardiac and respiratory dynamics [Schmitt et al. (2009); Bashan
et al. (2012)]. In contrast, deep sleep, which is considered the most
restorative sleep stage [Dijk (2009)], is characterized by sympathetic
withdrawal and greatly reduced influence of the autonomic nervous
system on heart and respiratory dynamics. In our results, this is
reflected by a more autonomous behavior of all three nodes for all
groups. A careful comparison between the YC and EC group reveals
that EEG α to heart rate coupling may slightly increase with age. For
OSA patients this effect is even more pronounced and accompanied
by an overall increase of coupling strength also between heart and
breathing as well as EEG α to breathing, possibly indicating a
decreased deep sleep quality because of sleep apnea.

In general, the OSA group follows similar sleep-stage patterns as
the YC and EC groups. Distinct differences, however, can be seen
in the overall strength of coupling: First andmost strikingly, theG-
causality fromheart rate to respiration rate ismuch stronger during
light and REM sleep than in the other two groups. This can be
attributed to different relaxation speeds of heart and respiratory
rate after apnea events. Following an episode of sleep apnea, heart
and respiration rate are increased [Penzel et al. (2003a; 2016)], but
the relaxation of the heart rate happens faster than the relaxation of
the respiratory rate. This leads to a situation where changes in heart

FIGURE 7 | Network plots for conditional G-causality at a time series
resolution of 10 s. The arrow width is directly proportional to the link strength
(G-value). (A) YC. (B) EC. (C) OSA. (D) Surrogate.
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rate precede changes in respiratory rate and thus lead to a detection
of increasedG-causality, as indicated by higherG-values. Secondly,
there is an increased G-causality from EEG α amplitude to
breathing during REM sleep.

Figures 6D, 7D show results for the surrogate data. As expected,
the G-value is very close to zero in all cases at all resolutions, with
small deviations for the 15 s data point, which could be due to the
large error bars at this resolution. These results can be used as a
baseline showing that randomly assembled physiological data yield
negligibleG-values, and that any deviation from zero, as seen in all
other sub-figures, are physiologically meaningful results.

Performing the same analysis without testing for stationarity
yields slightly different results (see Supplementary Figures S4,
S5). Values at short timescales are mostly unchanged, but it seems
that the G-value is overestimated in some cases when ignoring the
stationarity test. Additionally, the standard errors are larger, especially
for longer time scales. Therefore, we conclude that only stationary
data yield non-spurious network links when applying theG-causality
method. The fact that the OSA group consists of mostly male
subjects does not influence our results. We repeated the analyses
of Figures 6, 7 excluding all female subjects from YC and EC, and
obtained similar results (see Supplementary Figures S6, S7).

4 CONCLUSION AND OUTLOOK

In Part A, the causality methods BPRSA and G-causality were
analyzed. Both methods are strong analysis tools to detect
interrelations and causality in time series, but also have
limitations. While BPRSA has rather weak testing methods and
fails to distinguish direct from indirect links, the application of G-
causality is limited due to the fact that it requires time series to be
stationary (which is often not the case in physiology). For the setups
investigated in this work, G-causality yielded better results than
BPRSA causality tests. The G-value provides a measure of the
strength of causality, and it can be computed for pairwise
(bivariate) and conditional (multivariate) setups, where the latter
includes additional information beyond the causing and the caused
signal. Important for Network Physiology, this enables the distinction
between direct and indirect links as well as links that arise from a
common source signal. While (in contrast to BPRSA) theG-causality
method is constrained by the stationarity condition, there are
extensions to the method that circumvent the problem [Hesse
et al. (2003); Dhamala et al. (2008); Bressler and Seth (2011)]. A
particular, simple way to overcome this restriction is to split non-
stationary data into shorter, stationary patches. Further investigations
and alternative approaches to overcome the stationarity condition
could be promising future research pathways.

In part B, the G-causality method was applied to the node triple
consisting of heart rate, respiration rate, and EEG α amplitude,
recorded from subjects with and without OSA. The G-value was
calculated for time series resolutions between 1 and 15 s. Causal
physiological networks were constructed based on theseG-values. In
all groups, strong coupling between respiration and heart rate and
from EEG α to heart rate can be observed in light and REM sleep. In
contrast, during deep sleep, the three nodes are practically
“decoupled”, especially for the young group. This result supports

earlier findings and the understanding of deep sleep as the sleep stage
with lowest sympathetic tone. Because aging changes sympathovagal
balance due to a reduced parasympathetic tone [Schmitt et al.
(2009)], leading effectively to higher sympathetic activity, the G-
causality coupling in deep sleep is slightly increased for the elderly
and OSA groups. Apart from deep sleep, results are very similar for
young and elderly healthy subjects, however, OSA subjects show some
distinct differences. Compared to the other two groups, the most
prominent difference is an increase in G-causality from heart rate to
respiration rate in light and REM sleep due to different relaxation
times of heart rate and respiration rate, which are both increased at the
end of an apnea event. Disturbances in respiratory sinus arrhythmia
during light and deep sleep and a stronger causal link from EEG α to
breathing rate during REM sleep can also be observed inOSA subjects.

Our findings point to the conclusion that sleep of persons with
sleep apnea is not only different with respect to breathing
behavior, but also with respect to coupling mechanisms like
respiratory sinus arrhythmia and deep sleep decoupling.
Comparisons with surrogate data prove the significance of the
obtained results. Overall, the application to causal networks in
subjects with and without sleep apnea demonstrates the
usefulness of G-causality as a measure for physiological coupling.
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