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A B S T R A C T

The difficulty of solving a multi-objective optimization problem is impacted by the number of objectives to
be optimized. The presence of many objectives typically introduces a number of challenges that affect the
choice/design of optimization algorithms. This paper investigates the drivers of these challenges from two
angles: (i) the influence of the number of objectives on problem characteristics and (ii) the practical behavior
of commonly used procedures and algorithms for coping with many objectives. In addition to reviewing
various drivers, the paper makes theoretical contributions by quantifying some drivers and/or verifying these
drivers empirically by carrying out experiments on multi-objective combinatorial optimization problems (multi-
objective NK-landscapes). We then make use of our theoretical and empirical findings to derive practical
recommendations to support algorithm design. Finally, we discuss remaining theoretical gaps and opportunities
for future research in the area of multi- and many-objective optimization.
1. Introduction

Multi-objective optimization (MO) (Deb, 2001; Miettinen, 2012) is
the area looking at the development and application of algorithms
to problems with multiple conflicting objectives; problems with more
than three objectives have also been termed as many-objective prob-
lems (Kollat et al., 2011) and are less studied. In the absence of any user
preferences about desired ideal solutions, the goal of MO algorithms
(MOAs) is not to identify a single optimal solution but to approximate
(or compute exactly if possible) the set of best trade-off solutions to a
problem, also known as the Pareto (optimal) set. We say that a solution
Pareto dominates, or simply dominates, another solution if it is not
worse in any objective and if it is strictly better in at least one objective.
Solutions in the Pareto set are non-dominated by any other solution
from the feasible solution space.

The traditional approach to tackle a MO problem is to convert it
into a single-objective problem using a scalarizing function (Chankong
and Haimes, 1983; Pascoletti and Serafini, 1984; Eichfelder, 2008),
and then solve the problem repeatedly using different ‘configurations’
of the scalarizing function (e.g. different weights). A commonly used
scalarizing method is to combine the objectives using a weighted sum,
and then alter the weights to discover one solution per algorithmic run.
However, in the non-convex case, non-linear scalarization methods are
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more useful, given that linear scalarization methods can generate only a
subset of Pareto optimal solutions, known as supported solutions (Mi-
ettinen, 2012). An alternative approach is to use a population-based
approach, such as a multi-objective evolutionary algorithm (MOEA),
to evolve several solutions (a population) in one algorithmic run with
the hope to also discover multiple Pareto optimal solutions in one
go. MOEAs have proven to be an efficient approach, especially for
problems with two and three objectives (Coello et al., 2007; Deb, 2001).
Traditional MOEAs rely on the Pareto dominance concept combined
with diversity maintenance mechanisms to drive the search (e.g. NSGA-
II Deb et al., 2002). Two further prominent concepts are indicator-based
and decomposition-based methods. The former concept replaces the
objectives with a unary set performance metric (indicator) and then
optimizes this metric (e.g. AGA Knowles and Corne, 2003 and IBEA Zit-
zler and Künzli, 2004). A commonly used indicator is the hypervolume
indicator (Zitzler et al., 2003), which measures the volume of the objec-
tive space that is dominated by the image of the Pareto set (also known
as the Pareto front) and bounded by a reference point. Decomposition-
based approaches (e.g. MOEA/D Zhang and Li, 2007) decompose a
MO problem into several single-objective problems using a scalarizing
function with different weights. Each solution in the population is then
dedicated to optimize one scalarizing function.
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From the literature, it is apparent that solving MO problems is
known to be difficult for some problem classes; moreover, we know
from the No Free Lunch theorem (Wolpert and Macready, 1997) that
there is no single best approach in the general case. The computational
difficulty grows with an increase in the number of objectives affecting
different problem characteristics, such as the number of Pareto optimal
solutions, distances among solutions, and likelihood of objectives vary-
ing in complexity and evaluation times. Furthermore, it is anticipated
that algorithms and procedures designed for MO problems will face
difficulties as the number of objectives increases. For example, the
complexity for routines such as dominance tests and updating of the
Pareto archive affects Pareto dominance-based MOEAs, creating evenly
distributed weight vectors impacts decomposition-based MOEAs and
scalarizing methods, and computing and approximating the hypervol-
ume can become an issue for indicator-based MOEAs and performance
validation. An overview of recent developments in the area of many-
objective optimization can be found, for example, in Ishibuchi et al.
(2008), Aguirre (2013) and Chand and Wagner (2015), and empirical
work on the efficiency of MOEAs for many-objective optimization
problems can be found, for example, in Purshouse and Fleming (2003),
Hughes (2005) and Wagner et al. (2007).

We make several contributions to support the community in gain-
ing a better understanding about the effect of increasing the number
of objectives on problem characteristics and the complexity of MO
procedures and algorithms:

• We adopt a holistic approach linking theory with empirical analy-
sis, and then we highlight how our results translate into practice.

• We theoretically investigate the key drivers attributing to an in-
crease in computational and algorithmic challenges. In particular,
we derive probabilities for a solution to be non-dominated, and
propose a general formulation for scalarizing functions.

• We conduct empirical experiments on multi-objective
NK-landscapes (Aguirre and Tanaka, 2007; Verel et al., 2013) to
back up our theoretical contributions and verify various published
theoretical results (as summarized in Table 1).

• We derive practical recommendations from our analysis to sup-
port algorithm design.

et us highlight that our focus is on understanding the impact of the
umber of objectives on different problem characteristics and MO pro-
edures including exact scalarization-based methods and population-
ased heuristics. The review and evaluation of individual MOEAs is
ut of scope of this paper, and can be found, for example, in Ishibuchi
t al. (2008) and Chand and Wagner (2015). However, as pointed out
bove, we will use our theoretical and empirical findings to provide
ecommendations for MOEAs of different type.

This paper is organized as follows. The next section defines key MO
oncepts and motivates the choice of the test problem (NK-landscapes)
sed for empirical evaluation. Section 3 investigates the influence of
he number of objectives on different problem characteristics, while
ection 4 investigates the complexity of commonly used procedures
nd algorithms for coping with multiple objectives. Section 5 presents a
ummary of our theoretical and empirical findings, and then uses these
o make recommendations for algorithmic setup choices for MOEAs,
efore finally discussing directions for future research.

. Background

This section provides the relevant formal definitions to understand
nd avoid ambiguity of the various MO concepts, which will be used in
he subsequent sections. The section will also provide details of multi-
bjective NK-landscapes, the model we use to empirically validate our
heoretical contributions and/or existing theoretical results.
2

2.1. Basic definitions

Definition 2.1 (Multi-Objective Optimization (MO) Problem). The gen-
eral formulation of a MO problem is to ‘‘maximize’’ 𝐟 (𝐱) subject to 𝐱 ∈

, where 𝐱 = (𝑥1,… , 𝑥𝑗 ,… , 𝑥𝑛) is a candidate solution vector (or simply
solution) consisting of 𝑛 design (or decision) variables, 𝑋 ⊂ R𝑛 is the
earch domain, and 𝐟 = (𝑓1,… , 𝑓𝑖,… , 𝑓𝑚) is a vector objective function
∶ 𝑋 → R𝑚 mapping solutions to a 𝑚 dimensional objective space. The

term ‘‘maximize’’ is written in quotes to indicate that in general there is
no single solution that maximizes all objectives simultaneously, and a
further definition is needed to define an ordering on candidate solutions
(see below).

Definition 2.2 (Pareto Dominance). Consider two solutions 𝐱1 ∈ 𝑋 and
𝐱2 ∈ 𝑋. We say that 𝐱1 is dominated by 𝐱2, also written as 𝐱1 ≺ 𝐱2,
f and only if ∃𝑖 such that 𝑓𝑖(𝐱1) < 𝑓𝑖(𝐱2) and ∀𝑗, 𝑓𝑗 (𝐱1) ≤ 𝑓𝑗 (𝐱2). This

relation is also sometimes called strict Pareto dominance in contrast to
the weak Pareto dominance defined below.

Definition 2.3 (Weak Pareto Dominance). Consider two solutions 𝐱1 ∈
and 𝐱2 ∈ 𝑋. We say that 𝐱1 is weakly dominated by 𝐱2, also written

s 𝐱1 ⪯ 𝐱2, if and only if ∀𝑗, 𝑓𝑗 (𝐱1) ≤ 𝑓𝑗 (𝐱2).

efinition 2.4 (Pareto Optimal). A solution 𝐱1 ∈ 𝑋 is called Pareto
optimal if there does not exist a solution 𝐱2 ∈ 𝑋 that dominates it.

Definition 2.5 (Pareto Set). The set of all Pareto optimal solutions is
said to form the Pareto set.

Definition 2.6 (Pareto Front). The image of the Pareto set in the
objective space is known as the Pareto front.

Definition 2.7 (Hypervolume Indicator). Given a set of points in the
objective space 𝑆 ⊂ R𝑚 and a reference point 𝑟 ∈ R𝑚, the hypervolume
indicator of S is the measure of the region weakly dominated by 𝑆 and
weakly dominating 𝑟, i.e.:

𝐻(𝑆, 𝑟) = 𝛬(𝑞 ∈ R𝑚
| 𝑟 ⪯ 𝑞 ∧ ∃𝑝 ∈ 𝑆 ∶ 𝑞 ⪯ 𝑝)

where 𝛬(.) denotes the Lebesgue measure. Alternatively, it may be
interpreted as the measure of the union of boxes:

𝐻(𝑆) = 𝛬
(

⋃

𝑝∈𝑆,𝑟⪯𝑝
[𝑟, 𝑝]

)

where [𝑟, 𝑝] = {𝑞 ∈ R𝑚
| 𝑞 ⪯ 𝑝 ∧ 𝑟 ⪯ 𝑞} denotes the hypercuboid

delimited by 𝑝 and 𝑟. The advantage of hypervolume indicator is its
compliance with the Pareto dominance relation (Zitzler et al., 2003).

Definition 2.8 (Pareto Archive). A Pareto archive is a set of mutually
non-dominated solutions, i.e.:

𝐴 = {𝐱 ∈ 𝑋 | ∀𝐱1 ∈ 𝐴, 𝐱2 ∈ 𝐴 ∶ 𝐱2 ⊀ 𝐱1 ∧ 𝐱1 ⊀ 𝐱2}.

In the context of multi-objective algorithms, a Pareto archive is used
to store potentially Pareto optimal solutions, i.e. solutions that are not
dominated by any solution generated so far. The Pareto archive may be
unbounded, or bounded in cardinality, i.e. it may contain only a limited
number of 𝑁 solutions.

2.2. Multi-objective NK-landscapes

Multi-objective NK-landscapes (Aguirre and Tanaka, 2007; Verel
et al., 2013) constitute a synthetic problem-independent model used
for constructing multi-objective combinatorial optimization problems.
They extend single-objective NK-landscapes (Kauffman, 1993), describ-
ing and generalizing a large family of unconstrained binary optimiza-
tion problems (Heckendorn and Whitley, 1997). Importantly, a multi-
objective NK-landscape instance can be constructed with any number
of objectives, making it attractive for the purpose of our study.
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Table 1
Overview of the topics to which this paper is making either a theoretical or empirical contribution (using NK-
landscapes), and the section, equation(s) and/or figure(s) presenting the actual contribution. Sections not listed in
the table perform a mini review and are included in the paper to put the work in context.

Topic Presented in Theoretical
contribution

Empirical
contribution

Number of Pareto optimal
solutions

Section 3.1 Fig. 1

Probability for a solution to be
non-dominated

Section 3.2 Eq. (1) Figs. 2–5

Probability of heterogeneous
objectives

Section 3.4 Fig. 6

Distances between solutions Section 3.5 Fig. 7
Dominance test and updating the
Pareto archive

Section 4.1 Figs. 9–11

Computing and approximating
hypervolume

Section 4.2 Figs. 12–14

Impact on scalarization methods Section 4.3 Eq. (A.10)
Distances between weight vectors Section 4.4 Fig. 15
o
o
b
5
s

3

c
s

In particular, candidate solutions are binary strings of size n. The
bjective function vector 𝐟 is defined as 𝐟 ∶ {0, 1}𝑛 → [0, 1]𝑚 such

that each objective 𝑓𝑖 is to be maximized. As in the single-objective
case, the objective value 𝑓𝑖(𝐱) of a solution 𝐱 is the average value of
the individual contributions associated with each design variable 𝑥𝑗 .
Given objective 𝑓𝑖, 𝑖 ∈ {1,… , 𝑚}, and each variable 𝑥𝑗 , 𝑗 ∈ {1,… , 𝑛},
a component function 𝑓𝑖𝑗 ∶ {0, 1}𝑘+1 → [0, 1] assigns a real-valued
contribution for every combination of 𝑥𝑗 and its k epistatic interactions
{

𝑥𝑗1 ,… , 𝑥𝑗𝑘
}

. These 𝑓𝑖𝑗 -values are uniformly distributed in [0, 1]. Thus,
the individual contribution of a variable 𝑥𝑗 depends on its value and on
the values of 𝑘 < 𝑛 variables

{

𝑥𝑗1 ,… , 𝑥𝑗𝑘
}

other than 𝑥𝑗 . The problem
can be formalized as follows:

max 𝑓𝑖(𝑥) =
1
𝑛

𝑛
∑

𝑗=1
𝑓𝑖𝑗 (𝑥𝑗 , 𝑥𝑗1 ,… , 𝑥𝑗𝑘 ) 𝑖 ∈ {1,… , 𝑚}

s.t. 𝑥𝑗 ∈ {0, 1} 𝑗 ∈ {1,… , 𝑛}

he epistatic interactions, i.e. the k variables that influence the contri-
ution of 𝑥𝑗 , are typically set uniformly at random among the (𝑛 − 1)
ariables other than 𝑥𝑗 , following the random neighborhood model
rom Kauffman (1993). By increasing the number of epistatic interac-
ions 𝑘 from 0 to (𝑛 − 1), problem instances can be gradually tuned
rom smooth to rugged. Interestingly, multi-objective NK-landscapes
xhibit different characteristics and different degrees of difficulty for
ulti-objective optimization methods1 (Daolio et al., 2017; Liefooghe

t al., 2020). In the following two sections, if not otherwise stated we
ave considered 30 randomly-generated instances of multi-objective
K-landscapes with 𝑛 = 10 decision variables, and 𝑘 = 0 (i.e. linear
roblems), but, of course, varied the number of objectives 𝑚 as the

impact of 𝑚 is the focus of this study.

3. Effect of the number of objectives on problem characteristics

In this section, we study the influence of the number of objectives
on different problem characteristics as outlined in Table 1.

3.1. Number of Pareto optimal solutions

In the combinatorial case, the number of Pareto optimal solutions
is known to grow exponentially with the number of objectives in the
worst case, that is (𝑐𝑚−1), where 𝑐 is a constant value (Bazgan et al.,
2013). Furthermore, as shown by Bazgan et al. (2013), this bound
is tight for many classical multi-objective combinatorial optimization
problems, such as selection, knapsack, shortest path, spanning tree,
traveling salesperson, and s–t cut problems. Obviously, the number

1 The source code of the multi-objective NK-landscapes generator is
vailable at the following URL: http://mocobench.sf.net.
3

Fig. 1. Proportional number of Pareto optimal solutions with respect to the number
of objectives 𝑚 for multi-objective NK-landscapes.

of Pareto optimal solutions is also bounded by the size of the whole
feasible set.

Verel et al. (2013) experimentally investigate the number of Pareto
optimal solutions for multi-objective NK-landscapes with 2, 3 and 5
objectives. They report that it grows exponentially with the problem
size, the number of objectives and the degree of conflict among the
objectives, and that it slightly decreases with the number of variable
interactions. Given the aim of the current paper, we focus on the
number of objectives by considering multi-objective NK-landscapes
with 2 to 20 objectives. In Fig. 1, we report the proportion of Pareto
ptimal solutions in the solution space with respect to the number of
bjectives. We see that less than 5% of solutions are Pareto optimal for
i-objective problems (𝑚 = 2), whereas this proportion grows to about
0% for 𝑚 = 7 objectives. For 𝑚 = 20 objectives, more than 99% of
olutions are Pareto optimal for all considered instances.

.2. Probability for a solution to be non-dominated

With a growing number of objectives, the dominance relation be-
omes less discriminative (Aguirre, 2013). Let us consider the compari-
on between two arbitrary solutions 𝐱1 and 𝐱2 on 𝑚 objectives. Assume

that the probability of equal objective values can be neglected, and that
the comparison with respect to each objective is independent. For each
objective there is a 1∕2 probability that 𝐱1 has a better value for this
objective than 𝐱2, and the same probability applies for the opposite

situation. Note that we do not assume any particular distribution of

http://mocobench.sf.net
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Fig. 2. Probability that all 𝜇 randomly selected pairs of solutions are mutually non-dominated from the theoretical model given in Eq. (1), with respect to the number of objectives
(left), and to the number of pairs 𝜇 (right).
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bjective values. We just assume that the results of comparisons accord-
ng to particular objectives are independent random variables. As such,
iven a problem with 𝑚 objectives, the probability that one solution
ominates the other one is 1∕2(𝑚−1). Thus, as 𝑚 increases, it becomes

more likely that two arbitrary solutions are mutually non-dominated. If
the objectives are positively correlated, this probability increases, and
if they are negatively correlated this probability decreases (Verel et al.,
2013).

As a consequence of the reduced discriminative power of the dom-
inance relation, the probability that a given solution is Pareto optimal
increases with the number of objectives. To the best of our knowledge,
there is no exact formula for the probability of a solution to be Pareto
optimal within a given population, and such probability would depend
on the distribution of solutions in the population. However, to get some
intuition about the impact of the number of objectives on this, we
derive the formula for the probability that all 𝜇 randomly selected pairs
of solutions are mutually non-dominated:
𝜇
∏

𝑖=1

(

1 − 1
2𝑚−1

)

=
(

1 − 1
2𝑚−1

)𝜇
(1)

his theoretical probability is reported in Fig. 2 for different number
f objectives, 𝑚, and number of pairs, 𝜇. As such, the probability
hat all 𝜇 randomly selected pairs of solutions are mutually non-
ominated increases with the number of objectives, and decreases
ith the number of pairs. It becomes very likely that all pairs are
utually non-dominated for problems with 𝑚 > 15 objectives, even

or large numbers of pairs. In Fig. 3, we measure this proportion for
ulti-objective NK-landscapes using 𝑚 ∈ {2, 3,… , 20}. In particular,
e perform 30 independent samples per instance for each setting.
omparing Fig. 2 with Fig. 3, we observe that the theoretical model

its the experimental data well, although there are some small but
ignificant differences. Through an additional analysis we found that
his is caused by small positive or negative correlations between objec-
ives resulting from random (diss)similarities of instance parameters.
uch correlations modify the probabilities that two randomly selected
olutions are non-dominated w.r.t. the assumed independent objectives
odel. Since Eq. (1) is exponential, even very small differences of the
robabilities that two randomly selected solutions are non-dominated
ay results in noticeable differences in the probability that all pairs are
on-dominated.

Although the probability for a solution to be non-dominated in
andom populations might be difficult to derive theoretically due to the
ependencies between solutions, we report in Fig. 4 empirical results on
he proportional number of times a given solution is not dominated by
ny of 𝜇 other solutions, all drawn at random. We consider the same set
f multi-objective NK-landscapes. The probability for a solution to be
4

on-dominated grows with the number of objectives, but the increase
s steeper than that of Fig. 3. It also reduces with the population size,
lthough its effect is lower than that of the number of objectives. For 2

objectives, it ranges from about 70% when a single pair of solutions is
considered, to less than 2% when the solution is compared against 1 000
others. By contrast, for problems with more than 12 objectives, there
is over 90% chance that the solution is not dominated by any other,
independently of the population size.

Additionally, we report in Fig. 5 the proportional number of non-
dominated solutions in populations containing 𝜇 random solutions. The
curves follow a similar trend than that of Fig. 4. For small populations
(𝜇 = 10), there is about 30% of non-dominated solutions for 2-objective
problems, 50% for 3-objective problems, to more than 70% for prob-
ems with 4 objectives and more, and even more than 90% for problems
ith 6 objectives and more. For larger populations, this proportion
ecreases but remains higher than 90% for problems with 12 objec-
ives or more, independently of the population size. Multi-objective
election methods for ranking solutions from a population of mutually
on-dominated solutions are discussed and compared by Corne and
nowles (2007).

.3. Number of preference parameters

In numerous multi-objective optimization methods, the decision
aker (DM) is expected to express his/her preferences, e.g. in the form

f weighting coefficients or reference levels (aspiration levels/goals)
pecified for each objective (Miettinen, 2012). The number of such pref-
rence parameters grows just linearly with the number of objectives.
owever, for certain methods, such as AHP (Saaty, 1987), preference
arameters are expressed with respect to each pair of objectives; in this
ase, their number grows quadratically.

.4. Probability of having heterogeneous objectives

As the number of objectives increases and one is faced with a
any-objective problem, it becomes more likely that the objectives

re heterogeneous meaning they differ in, for example, complexity
e.g. linear vs non-linear, unimodal vs multimodal), evaluation efforts
n terms of time, costs, or resources, available information (expensive
lack box vs given closed-form function), or determinism (stochastic vs
eterministic).

Examples of problems with heterogeneous objectives include real-
orld problems where some objectives must be evaluated using time-

onsuming physical experiments in the laboratory, while other objec-
ives are evaluated using relatively quicker calculations on the com-
uter. Problems that fall into this category can be found, for instance, in
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Fig. 3. Proportion from 𝜇 randomly selected pairs of solutions that are mutually non-dominated for multi-objective NK-landscapes, with respect to the number of objectives 𝑚
(left), and to the number of pairs 𝜇 (right).
Fig. 4. Proportion of solutions that are not dominated by any of 𝜇 random solutions for multi-objective NK-landscapes, with respect to the number of objectives 𝑚 (left), and to
the number of solutions 𝜇 (right).
Fig. 5. Proportion of non-dominated solutions in random populations for multi-objective NK-landscapes, with respect to the number of objectives 𝑚 (left), and to the number of
solutions 𝜇 (right).
drug design (Small et al., 2011) and engineering (Terzijska et al., 2014).
In the former, the objectives related to potency and side effects of drugs
need to be validated experimentally, while the cost of manufacturing
a drug or number of drugs in a drug combinations can be obtained
quickly.

The first work we are aware of on the topic of heterogeneous
objectives was by Allmendinger and Knowles (2013). This work was
5

motivated by a real-world scenario where the objective function com-
ponents were of different ‘‘latency’’ (evaluation times). This initial
study was then extended in (Allmendinger et al., 2015), where dif-
ferent strategies for coping with latencies in a bi-objective problem
were proposes and analyzed. Recently, more research has been car-
ried out on the topic of heterogeneous objectives including the ap-
plication of surrogate-assisted methods (Chugh et al., 2018; Wang
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Fig. 6. Mean and standard error of minimum (circles) and maximum differences (triangle) in objective evaluation duration (y-axis) as a function of the number of objectives, 𝑚
(x-axis). The left plot shows this data for three Beta distributions, and the right plot for a uniform distribution.
et al., 2020, 2021), transfer learning (Wang et al., 2020, 2021) and
non-evolutionary methods (Thomann, 2019). The reader is referred
to Allmendinger and Knowles (2021) for a more in depth review on
heterogeneous objectives.

To motivate and further raise awareness of heterogeneous objec-
tives, we investigate the relationship between the number of objectives
in a problem and the degree of heterogeneity induced by them. For
the purpose of this experiment, we limit ourselves to heterogeneity in
form of latencies (evaluation times) across the objectives. Assuming a
problem with a certain number of objectives, each being associated
with an evaluation duration drawn from a given distribution, we want
to know what is the mean minimum and maximum difference in
evaluation times among these objectives. We repeated this experiment
for different numbers of objectives (1–25 objectives as indicated on the
x-axis) and four distributions to drawn the evaluation durations from.
Each configuration was repeated 100 times, and the mean and standard
error of the minimum and maximum differences in evaluation durations
are plotted in Fig. 6. As the considered distributions, we considered
(i) three different Beta distributions — 𝚋𝚎𝚝𝚊(2, 8) (skewed to the right),
𝚋𝚎𝚝𝚊(8, 2) (skewed to the left), and 𝚋𝚎𝚝𝚊(5, 5) (symmetric), each defined
on the interval [0,1] — allowing us to simulate conveniently skewness
in the evaluation of durations of the objectives, and (ii) one uniform
distribution defined on the interval [1,50]. The Beta distribution has
also been used extensively in the literature to quantify the duration of
tasks (see seminal paper of Malcolm et al., 1959) in different contexts.
The purpose of using the uniform distribution is to have a baseline to
compare against.

It can be seen from the left plot of Fig. 6 that, regardless of the skew-
ness and probability distribution, the mean minimum and maximum
difference in evaluation durations of objectives starts roughly from the
same level for a bi-objective problem (𝑚 = 2) with the two mean
differences becoming exponentially more and more distinct as the prob-
lem becomes many-objective. This pattern is expected since it becomes
more likely that the evaluation duration of a new objective (as sampled
from the Beta distribution) is either more similar or distinct to the
evaluation duration of an existing objective. Perhaps more surprisingly
is the asymmetry between the minimum and maximum difference with
increasing 𝑚: While the mean minimum difference is hardly affected
by the choice of probability distribution (with the difference flattening
quickly from around 𝑚 > 15 objectives), there is a statistical difference
between the Beta distributions when considering the mean maximum
difference; in particular, the mean maximum difference associated with
the symmetric distribution (𝚋𝚎𝚝𝚊(5, 5)) increases faster than with the
two skewed distributions. This pattern stems from the fact that its
more likely to sample extreme values for the evaluation duration with
the symmetric distribution. Consequently, the gap between the mean
6

minimum and maximum difference in evaluation times is even greater
in the case of the uniform distribution (right plot of Fig. 6), where the
probability of sampling any possible evaluation time is equal within the
interval [1,50].

Having observed that the algorithm choice is affected amongst
others by latency (Allmendinger and Knowles, 2021), this experiment
indicates that knowing about the distributions of latency (evaluation
times) can be used in the selection and design of novel algorithms to
cope with heterogeneous objectives.

3.5. Distance between solutions

The distance between pairs of solutions randomly selected from the
whole search space and from the Pareto set is reported in Fig. 7. We
consider multi-objective NK-landscapes with 𝑚 ∈ {2, 3,… , 20}. For each
instance, we select 30 random pairs of solutions, and we report their
Hamming distance in the design space and their Euclidean distance in
the objective space. The Hamming distance among random solutions
does not depend on the number of objectives, of course. However,
the Hamming distance among Pareto optimal solutions increases sig-
nificantly with the number of objectives, 𝑚. For 𝑚 > 13 objectives,
the expected distance among Pareto optimal solutions matches the
one from random solutions. This comes as no surprise since most
solutions are Pareto optimal in such high-dimensional objective spaces,
as already mentioned in Section 3.1. However, when few objectives
are considered, Pareto optimal solutions are much closer than random
solutions. As such, for many-objective problems, good-quality solutions
spreading along the Pareto front are far away from each other, so that
we argue that few building blocks (if any) might actually be exploited
by (blind) recombination.

When looking at the objective space, the Euclidean distance among
objective vectors is increasing almost linearly with the number of
objectives, with the distance among Pareto optimal solutions being
only slightly lower than the distance among random solutions for 𝑚 <
15 objectives. As can be visualized in the illustrative two-objective
NK-landscapes provided in Fig. 8, reproduced from Verel et al. (2013),
the objective space resembles a multidimensional ‘‘ball’’, so that non-
dominated objective vectors are not particularly closer than random
ones. Given that the distance between solutions in the objective space
increases with the number of objectives, we expect that identifying a
high-quality representation of the Pareto front, in terms of coverage,
gets more difficult for many-objective optimization problems.
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Fig. 7. Distance among solutions from the whole search space and from the Pareto set for multi-objective NK-landscapes with respect to the number of objectives.
Fig. 8. Objective space of a multi-objective NK-landscape instance with 𝑚 = 2 objectives.
4. Effect of the number of objectives on the complexity of multi-
objective procedures and algorithms

In this section we report a number of computational experiments,
both performed for the purpose of this paper and analyzing results re-
ported in the literature. Note that, although a number of computational
studies with the methods considered in this paper have been reported in
the literature, they are usually focused on performance comparison, in
most cases w.r.t. a newly-proposed method. By contrast, our goal is to
more systematically study the influence of the number of objectives on
the behavior of some representative algorithms. Furthermore, usually
smaller numbers of objectives are used in reported experiments.

Although most studies are based on a number of pairwise com-
parisons of solutions, it is important to notice that the elementary
operation for complexity results reported below is a pairwise compari-
son per objective. This choice is motivated by the fact that we want
to highlight the effect of the number of objectives (𝑚) on different
multi-objective optimization tools and methods.

4.1. Dominance test and updating the Pareto archive

In this section, we consider the processes of testing if a solution 𝐱
7

is dominated or not by a Pareto archive and of updating this archive.
Updating the Pareto archive 𝐴 with a new solution 𝐱 means that all
solutions dominated by 𝐱 are removed from 𝐴 and 𝐱 is added to 𝐴 if it
is not dominated by any solution in 𝐴. The complexity analysis of the
two processes is the same, since the dominance test is the bottleneck
part of the updating process.

The simplest data structure for the Pareto archive is a simple, un-
ordered list of solutions with linear time complexity of update. Several
methods and related data structures aiming at efficient realization of
the Pareto archive update have been proposed, e.g., Quad Tree (Sun
and Steuer, 1996; Mostaghim and Teich, 2005; Sun, 2006, 2011; Field-
send, 2020), MFront II (Drozdík et al., 2015), BSP Tree (Glasmachers,
2017), and ND-Tree (Jaszkiewicz and Lust, 2018). Jaszkiewicz and Lust
(2018) reported some complexity results for ND-Tree:

• Worst case: (𝑚 𝑁);
• Best case: 𝛩(𝑚 log(𝑁));
• Average case: 𝛩(𝑚 𝑁𝑏), where 𝑁 is the size of the archive, and
𝑏 ∈ [0, 1] is the probability of branching (i.e. the probability of
testing more than one subnode in ND-Tree).

Note that linear time complexity in the worst case holds also for

Quad Tree (Sun and Steuer, 1996) and the sublinear time complexity
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in average case could also be obtained with BSP Tree (Glasmachers,
2017).

The Pareto archive may be either bounded in size or unbounded,
i.e. contain only some or all non-dominated solutions generated so
far (Fieldsend et al., 2003). In the latter case, the size of the Pareto
archive may, in general, grow exponentially with the number of objec-
tives (see Section 3.1). Assuming that 𝑁 = (𝑐𝑚−1) (see Section 3.1),
he complexity of the update process of an unbounded archive becomes:

• Worst case: (𝑚 𝑁) = (𝑚 𝑐𝑚−1);
• Best case: 𝛩(𝑚 log(𝑁)) = 𝛩(𝑚 log(𝑐𝑚−1)) = 𝛩(𝑚2 log(𝑐));
• Average case: 𝛩(𝑚 𝑁𝑏) = 𝛩(𝑚 𝑐(𝑚−1)𝑏).

In other words, in the worst case, the time grows exponentially with
𝑚, and, in the average case, the time may grow exponentially with 𝑚 if
𝑐𝑏 > 1.

To illustrate the above analysis, we perform the following compu-
tational experiment. We consider multi-objective NK-landscapes with
𝑛 = 16, 𝑘 = 0, and 𝑚 ∈ {3, 4,… , 20}. For each setting, we generate 30
random instances. All 216 = 65 536 solutions are processed in random
order. Note that in this experiment we use instances with 𝑛 = 16 instead
of 𝑛 = 10 used in other places, because with 𝑛 = 10 the number
of solutions was too low to show significant differences between the
evaluated methods. The methods used in this experiments are sim-
ple list, ND-Tree (Jaszkiewicz and Lust, 2018), Quad Tree (precisely
Quad Tree 2 algorithm described by Mostaghim and Teich, 2005 with
the corrections described by Fieldsend, 2020), and MFront II (Drozdík
et al., 2015) with the modifications proposed by Jaszkiewicz and
Lust (2018). We used C++ implementations of these methods de-
scribed by Jaszkiewicz and Lust (2018), however, implementation of
the Quad Tree has been improved on both technical level and using
the corrections proposed by Fieldsend (2020). Fig. 9 (left) presents
average running times of the four methods needed to process all
solutions. As could be observed, the ranking of the methods depends
on the number of objectives in a non-trivial way. Overall, the two best
methods are Quad Tree and ND-Tree, with Quad Tree being better for
𝑚 = {12,… , 17} objectives, and ND-Tree being better in other cases.
Somehow surprisingly, simple list performs very well for small numbers
of objectives and is the best method for 𝑚 = 3 and 𝑚 = 4 objectives.
This is related to the design of the experiment in which all solutions
are used. For small numbers of objectives, there are relatively few non-
dominated solutions (see Fig. 1), so the list is relatively short and a new
solution has a high chance to be dominated by many solutions in the
list. Thus, a dominating solution is often quickly found and the update
process is finished. Note also, that MFront II is the worst performing
method.

It could also be observed that the running time grows exponentially
with the number of objectives. This could be however, caused just by
the growing size of the Pareto archive (see Section 3.1, Fig. 1). Thus, in
Fig. 9 (right) we present running times divided by the number of Pareto
optimal solutions. The relative running time changes only slightly for
Quad Tree and ND-Tree again with a non-trivial pattern.

Furthermore, as we discussed above in this section, methods like
ND-Tree aim at ensuring sublinear time complexity w.r.t. the size of
the Pareto archive. To verify this, we measure running times needed
to achieve the Pareto archive of 10%, 20%,… , 100% of the final size. To
be precise, the running time reported e.g. for 20% is the running time
from the moment of achieving 10% of the final size till the moment
of achieving 20% of the final size divided by the number of processed
solutions (in other words, we report average time of processing a single
solution in a given interval of the Pareto archive size). Ideally, this
running time should be constant or grow sublinearly with the size of the
Pareto archive. The results for 20 objectives are presented in Fig. 10.
Since the running times of the four methods differ significantly (see
Fig. 9), the running times of each method are normalized such that
8

the maximum time is 1. As it can be observed, running time needed f
to process a single solutions for 20 objectives grows linearly with the
size of the Pareto archive for all methods. Of course, the speed of
this growth differs for different methods. On the other hand, for some
smaller numbers of objectives the running times are indeed almost
constant or clearly sublinear (see Fig. 112). This means that for each
method, for some number of objectives, we observe a switch of its
behavior from sublinear to approximately linear dependence on the
size of the Pareto archive. The switching point is different for different
methods and is between 5–7 objectives for the simple list and MFront II,
between 6–8 objectives for ND-tree, and between 4–6 objectives for

uad tree. In other words, since the number of Pareto optimal solutions
rows in general exponentially with the number of objectives (see
ection 3.1), according to the presented experiment, for at least 8
bjectives we can expect exponential growth (w.r.t. 𝑚) of updating
n unbounded Pareto archive independent on the method used. In
ur opinion, it is caused by the reduced discriminative power of the
ominance relation (see Section 3.2) for higher numbers of objectives.
lthough different methods are based on different ideas, all of them use
ome properties of dominance relation to speed-up the update process,
hus all of them are affected by its reduced discriminative power.

The methods tested in our experiment together with several other
ethods were also recently experimentally evaluated by Fieldsend

2020). The conclusion of that experiment was that ND-Tree generally
erforms best in long runs, but this was not a universal finding. Further-
ore, the performance of the different methods can vary considerably

etween hardware architectures, and in a non-constant fashion. Also,
ur additional preliminary experiments (not reported in this paper)
ndicate that performance may strongly depend on the data sets used
nd the order in which the solutions are processed. In particular, the
unning time may depend on whether the new solution is dominated,
on-dominated or dominating, and the pattern may be different for
ifferent methods. Thus, we encourage further experiments testing
ractical behavior of the methods for updating the Pareto archive, in
articular using different orders of solutions, which is however, out of
he scope of this paper.

.2. Computing and approximating hypervolume

When assessing the performance of multi-objective optimization
lgorithms, or in indicator-based evolutionary multi-objective opti-
ization, the indicator-value of a set of solutions is to be computed
ultiple times. One of the recommended and most-often used indicator

s the hypervolume (Zitzler et al., 2003; Shang et al., 2021), because
f its compliance with the comparison of sets of points based on the
ominance relation. Note that, since dominated solutions do not influ-
nce the hypervolume, only non-dominated solutions, forming a Pareto
rchive of size 𝑁 , need to be taken into account. Unfortunately, the
xact hypervolume computation time is known to grow exponentially
ith the number of objectives. Although efficient algorithms exist for
= 3 (Beume et al., 2009) and 𝑚 = 4 (Guerreiro and Fonseca, 2018),

he best known algorithm for the general case has a time complexity of
(𝑁𝑚∕3 polylog 𝑁) (Chan, 2013).

To analyze the above theoretical results experimentally, we test
he behavior of two state-of-the-art methods for exact computation of
ypervolume, namely the non-incremental version of the Hypervolume
ox Decomposition Algorithm (HBDA-NI) (Lacour et al., 2017) and the
mproved Quick Hypervolume algorithm (QHV-II) (Jaszkiewicz, 2018).
he results published in these papers are used, and the running times of
BDA-NI have been divided by 2.5 to compensate processor differences
s suggested in Jaszkiewicz (2018). The results are reported for data

2 The ‘jump’ or running time observed for Quad tree with 20% of the
areto archive size and small number of objectives (𝑚 = 3 in particular) is
robably because the initial tree must be built before the method achieves
ull performance.
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Fig. 9. Running time of four methods for updating the Pareto archive (left, logarithmic scale), and running time divided by the number of Pareto optimal solutions (right).
o
𝑠

U
s
s
d
i
A
t
t
i
g
h

Fig. 10. Relative running time of Pareto archive for processing a single solution w.r.t.
to the Pareto archive size for 𝑚 = 20 objectives.

sets proposed by Lacour et al. (2017) (concave, convex, and linear)
composed of 1 000 points in 𝑚 ∈ {4, 6, 8, 10} dimensional objective
spaces, with objective values (and thus hypervolume) normalized to the
range [0, 1]. We use 10 instances for each combination of data set type
and number of objectives. The results are presented in Fig. 12. Note
that for the running time w.r.t. the number of objectives, a logarithmic
scale is used. The running times of the exact methods grow indeed
exponentially with the number of objectives, which suggests that the
exponential time complexity holds not only in the worst case, but in the
typical case as well. At the same time the running times grow relatively
slowly with the number of points (see Fig. 12, right).

Alternatively, the hypervolume can be approximated by Monte
Carlo sampling (Bader and Zitzler, 2011). In this case, the complexity
is 𝛩(𝑠 𝑚 𝑁𝑏), where 𝑠 is the number of sampling points and the term
𝑁𝑏 relates to the dominance tests (see Section 4.1). Since Monte Carlo
sampling is just a sequence of 𝑠 independent experiments, each asking
a yes/no question (dominated/non-dominated), the confidence interval
can be derived from the binomial distribution and does not depend on
the number of objectives. On the other hand, the question remains if
the size of the confidence intervals should be reduced with growing
number of objectives 𝑚 and/or growing 𝑁 .

To analyze the above question, we consider first the case where
the size 𝑁 of the set of points for which hypervolume is estimated
is constant and only the number of objectives changes. The required
precision of hypervolume estimation could be related to an average
contribution of a single point to the hypervolume, i.e. the difference
in the hypervolume with and without this single point. In other words,
intuitively speaking, the precision of hypervolume estimation should
9

w

be sufficient to distinguish addition/subtraction of a given number of
points. It could be expected that the average contribution does not
depend on the number of objectives. To analyze this experimentally,
we use the same data sets as above. For each individual point its
contribution to the hypervolume of the given set is calculated with an
exact method. The results presented in Fig. 13 are average contributions
for 10 × 1 000 = 10 000 individual points. The influence of the number
of objectives depends mainly on the instance type and only in the case
of convex instances the average contribution decreases with a growing
number of objectives. However, note that for convex instances, the
hypervolume approaches 0 as the number of objectives grows (i.e. the
points are very close to the nadir point), thus the contribution of an
individual point also approaches 0. On the other hand, the average
contribution grows with the number of objectives for linear instances.
Summarizing, no general trend for the decrease or increase of the
average contribution with the growing number of objectives could
be concluded from this experiment, thus we conclude that also the
size of the confidence interval should not change with the number of
objectives and constant 𝑁 .

Additionally, as discussed above, it is often assumed that 𝑁 in-
creases with 𝑚. In this case, it could be expected that the average
contribution is 𝛩(1∕𝑁). To test this assumption, we show the results
in Fig. 13 for the same set of instances with 200, 400,… , 1 000 points.
As it can be observed, the average contribution indeed decreases ap-
proximately linearly with 1∕𝑁 . Since we propose to treat the average
contribution as the indicator of required precision, the size of the
confidence interval 𝑟 (i.e. the difference between the upper and lower
confidence bound) for the estimated hypervolume should be 𝛩(1∕𝑁).
The confidence interval for binomial distribution could be calculated
with Wilson score interval with continuity correction for binomial
distribution (Newcombe, 1998). According to this test, 𝑟 = 𝛩(1∕

√

𝑠),
where 𝑠 is the number of sampled points, so 𝑠 = 𝛩(1∕𝑟2). Thus, in
rder to achieve the required accuracy, the number of sampled points
should be 𝛩(𝑁2).

To test the above hypothesis, we perform the following experiment.
sing the same data sets we run Monte Carlo sampling until it achieves

ize of the confidence interval lower or equal to 5∕𝑁 . We use the
implest version of Monte Carlo sampling in which the hypercuboid
efined by the nadir and ideal points is uniformly sampled. ND-tree
s used for the dominance test. The results are presented in Fig. 14.
s can be observed, for linear and concave instances the running

imes grow slowly with the number of objectives, which is due to
he increasing number of comparisons of objective values. For convex
nstances the running time of Monte Carlo sampling decreases with the
rowing number of objectives, because for this set of instances with
igh numbers of objectives, the hypervolume values are very close to 0

hich makes the estimation task easier. We test also the influence of the



Computers and Operations Research 145 (2022) 105857R. Allmendinger et al.

o

n

Fig. 11. Running time of Pareto archive for processing a single solution w.r.t. to the relative Pareto archive size for smaller numbers of objectives 𝑚 ∈ {3, 4,… , 8}.
Fig. 12. Running time of exact hypervolume computation methods w.r.t. the number of objectives (left, logarithmic scale) and the number of points for instances with 𝑚 = 8
bjectives (right).
Fig. 13. Average contribution of individual solutions to the hypervolume w.r.t. the number of objectives (left) and the number of points (right).
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umber of points on the running time for 8 objective instances (Fig. 14)
together with quadratic trend lines which fit the data very well. Note,
however, that the running times of exact methods are shorter than
that of Monte Carlo sampling for 4 objectives and comparable for 6
objectives. Only for 8 and 10 objectives Monte Carlo sampling is clearly
beneficial in the presented experiment. Furthermore, since the required
sample size, and thus CPU time, is 𝛩(1∕𝑟2), the running time of Monte
Carlo may be much higher if a smaller confidence interval is required.
10

o

For example, if the required confidence interval is 1∕𝑁 (i.e. 5 times
maller), the running time of Monte Carlo sampling would grow about
5 times and the running times of exact methods would be larger only
or 10 objectives.

Summarizing, both the theoretical analysis and the presented exper-
ments suggest that Monte Carlo sampling is an interesting alternative
o exact methods for many-objective problems, if an approximate value
f hypervolume is sufficient in a given context. Note also that recently
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Fig. 14. Running time of Monte Carlo sampling for hypervolume estimation w.r.t. the number of objectives (left) and the number of points (right).
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a number of more advanced algorithms for approximate hypervolume
computation have been proposed, some of them providing an approxi-
mation guarantee (Ishibuchi et al., 2009; Tang et al., 2017; Ma et al.,
2018; Shang et al., 2018; Jaszkiewicz et al., 2020; Zhang and Golovin,
2020).

4.3. Impact on scalarization methods

The aim of this section (see also the Appendix) is to discuss the
influence of the number of objectives in the scope of scalarization
procedures, which are a well-established approach to MO optimization;
hence, we can afford being more technical in our discussion. Using the
properties of a general scalarization function, we derive corresponding
properties of some prominent scalarization techniques as special cases
of the general scalarization function.

We consider a MO problem with the vector-valued objective func-
tion 𝐟 and the feasible set 𝑋 (see Definition 2.1). An important
question is how to characterize the sets of Pareto (weakly) optimal
elements of MO problems via suitable scalarization methods. In the
non-convex case, especially in combinatorial MO, it is important to
provide suitable non-linear scalarization functions. Depending on the
monotonicity properties of the involved scalarization functions, some
of the scalarization methods used for deducing characterizations of
solutions to MO problems generate weakly Pareto optimal solutions
(see Definition 2.3), other scalarization methods generate Pareto op-
timal solutions (see Definition 2.2). For an overview on scalarization
methods and corresponding algorithms for solving MO problems, we
refer to Eichfelder (2008), Tammer and Weidner (2020) and references
therein.

Pascoletti and Serafini (1984) introduced a scalar optimization
problem that can be formulated using a general non-linear scalarizing
function that we will discuss in this section. Corresponding non-linear
scalarization methods, including applications in economics, are studied
by Bonnisseau and Cornet (1988), Bonnisseau and Crettez (2007)
and Luenberger (1992a,b). The parameters in the scalar optimization
problem by Pascoletti and Serafini (1984) are elements 𝓁 ∈ R𝑚 and 𝑎 ∈
R𝑚, see Eq. (A.11). Furthermore, in the 𝜖-constraint problem by Haimes
et al. (1971) and Chankong and Haimes (1983), parameters 𝜖 =
(𝜖1,… , 𝜖𝑚) ∈ R𝑚 are involved. The scalarization method by Pascoletti
nd Serafini (1984) and the 𝜖-constraint problem are used for deriving
arameter-based adaptive algorithms in Eichfelder (2008), compare
lso Polak (1976). By varying the parameters 𝓁 ∈ R𝑚 and 𝑎 ∈ R𝑚 in
q. (A.11), adaptive algorithms generate an equidistant approximation
f the set of Pareto optimal elements to the MO problem by solving
calarized problems. If the number of objectives 𝑚 is increasing, then
he parameter vectors 𝓁 and 𝑎 belong to higher dimensional spaces,
11

.e., the number of preference parameters increases linearly.
.3.1. A general scalarization method by translation invariant functions
Let us consider the general class of scalarization functionals given

y translation invariant functions 𝜑 ∶ R𝑚 → R ∶= R ∪ {−∞} ∪ {+∞}.
The translation invariance of 𝜑 along a direction 𝓁 ∈ R𝑚⧵{0} is defined
by the property 𝜑(𝑦 + 𝑡𝓁) = 𝜑(𝑦) + 𝑡 for all 𝑦 ∈ R𝑚, 𝑡 ∈ R. Translation
invariant functions play an important role in scalarization methods
for multi-objective optimization problems as well as in risk theory and
mathematical finance (Artzner et al., 1999; Jaschke and Küchler, 2001).
Translation invariant functions can be formulated using a certain set
𝐴 ⊂ R𝑚 and a parameter vector 𝓁 ∈ R𝑚 ⧵ {0} with the property
𝓁 ∈ −0+𝐴 ⧵ {0} (0+𝐴 ∶= {𝑦 ∈ R𝑚 ∣ 𝐴 + R+𝑦 ⊆ 𝐴} denotes the recession
cone of 𝐴). An equivalent formulation of translation invariant functions
using 𝐴 and 𝓁 is given in Eq. (A.3).

We explain that the scalarization functions involved in the Cheby-
shev scalarization, the 𝜖-constraint problem and other scalarization
methods are special cases of the general translation invariant scalar-
ization function (A.3). Using these results, it is possible to obtain con-
tinuity, monotonicity, convexity and other algebraic properties of the
scalarization functions in the Chebyshev scalarization, the 𝜖-constraint
problem from the corresponding properties of the general nonlinear
translation invariant function derived in Göpfert et al. (2003, Theorem
2.3.1). These properties are very important for a characterization of
the solutions to MO problems.

In Corollary A.1, especially in Eq. (A.10), we show that the (along
𝓁 translation invariant) function 𝜑𝐴,𝓁 ∶= 𝜑 is completely defined
by the parameter vectors 𝓁 ∈ R𝑚 ⧵ {0} and 𝑤 ∈ R𝑚 and elements
𝑎𝑖 ∈ R𝑚 (𝑖 = 1,… , 𝑛). These parameter vectors are involved in certain
inner products of the 𝑚 dimensional vectors 𝓁 and 𝑤 included in the
description of the function 𝜑𝐴,𝓁 in Eq. (A.10). If we add some more
objectives, then the scalarized problem is not more difficult because
the number of objectives 𝑚 is only involved in the inner products
⟨𝑎𝑖, 𝑤⟩ and ⟨𝑎𝑖,𝓁⟩ of the 𝑚 dimensional vectors 𝑎𝑖,𝓁, 𝑤 ∈ R𝑚 taking
into account Corollary A.1.
4.3.2. Scalarization methods for multi-objective combinatorial optimization

The application of scalarization methods, especially of the
𝜖-constraint method, for combinatorial MO problems is discussed by
Figueira et al. (2017). As explained in (a) of the Appendix, the 𝜖-
constraint method is a special case of a scalarization by means of
translation invariant functions 𝜑𝐴,𝓁 (see Eq. (A.3)) with the parameters
𝐴 and 𝓁 given by Eqs. (A.4)–(A.5). Scalarizations of combinatorial MO
problems with an objective function 𝜑𝐴,𝓁◦𝐟 , where 𝐴 and 𝓁 are given
by Eqs. (A.4)–(A.5), are resource-constrained combinatorial problems.
These scalar combinatorial optimization problems constitute to be NP-
hard. In particular, if we consider combinatorial problems, then the
additional 𝜖-constraints can make the optimization problem with the
objective function 𝜑𝐴,𝓁◦𝐟 based on different parameters 𝐴 and 𝓁 like
in Eqs. (A.4)–(A.5) considerably more difficult to solve than the

corresponding weighted sum scalarization of the MO problem. Figueira
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t al. (2017) explained that the cause for this supplementary difficulty
s the perturbation of the combinatorial structure of the polyhedron of
easible elements by the 𝜖-constraints (see Eqs. (A.2)–(A.4)).

Furthermore, it is mentioned in Figueira et al. (2017) that there are
particular cases where the property of total unimodularity is compatible
with the 𝜖-constraint method. There are combinatorial MO problems,
where total unimodularity can be maintained during the scalarization
procedure. For instance, the constraint matrix of a binary knapsack
problem or the binary assignment problem is totally unimodular.

In general, it seems to be preferable to use the non-linear translation
invariant function in Eq. (A.10) for scalarization. Taking into account
Corollary A.1, it is possible to avoid additional 𝜖-constraints.

Concerning the influence of the number of objectives:

• 𝜖-constraint method: There are more 𝜖-constraints in the scalar-
ized problem in the case that we add some objectives; see
Eqs. (A.2)–(A.4). Furthermore, the structure of the MO problem’s
constraints can be perturbed by the additional 𝜖-constraints.

• scalarization by 𝜑𝑤+𝐴𝐿 ,𝓁 : If we add some more objectives, then
the problem (MO(𝜑𝑤+𝐴𝐿 ,𝓁)) in the Appendix is not more difficult
because the number of objectives 𝑚 is only involved in the inner
products ⟨𝑎𝑖, 𝑤⟩ and ⟨𝑎𝑖,𝓁⟩ for 𝑎𝑖, 𝑤,𝓁 ∈ R𝑚; see Eq. (A.10) in
Corollary A.1.

.4. Distances between weight vectors

In decomposition-based MOEAs, such as MOEA/D (Zhang and Li,
007) and its variants (Trivedi et al., 2017), multiple scalar sub-
roblems are optimized simultaneously. Each sub-problem is defined
y a particular weight vector setting for the considered scalarizing
unction. It is often argued that the search process actually benefits
rom solving the sub-problems cooperatively, given that there exists

certain locality among them, the solution from one sub-problem
ontributing to the solution of another sub-problem and vice-versa. In
articular, a neighborhood is defined among sub-problems in order to
imit the exchange of information between them. In this section, we
nvestigate how the distance between uniformly-defined weight vectors
s impacted by the number of objectives.

We generate weight vectors following a simplex-lattice design
Scheffé, 1958) as performed, e.g., in the original MOEA/D (Zhang
nd Li, 2007), where the number of weights is set as the population
ize 𝜇. The simplex-lattice design generates 𝜇 weight vectors such that
𝜇 =

(𝐻+𝑚−1
𝑚−1

)

, where 𝐻 is a user-defined parameter. In our experiments,
for a given number of objectives 𝑚, we take the smallest 𝐻− value
such that 𝜇 ≥ 100. The neighborhood of a given weight vector is
defined as the set of the 𝑇 closest weight vectors, based on Euclidean
12
distance. We consider three neighborhood sizes 𝑇 ∈ {10%, 20%, 100%},
given as a proportion of the total number of weight vectors 𝜇. When
𝑇 = 100%, this means that there is no restriction on the exchange of
information between solutions; i.e. the neighborhood is made of the
entire population. For a given setting, we select 900 pairs of weight
vectors randomly (we used the same setting in Section 3.5), each time
within a given neighborhood, and we report the average Euclidean
distance between them and confidence intervals in Fig. 15. Note that
the ‘jump’ between 𝑚 = 13 and 𝑚 = 14 results from the fact that,

ith the simplex-lattice design, only some sparse values of 𝜇 may be
btained, and we select the smallest 𝐻− value such that 𝜇 ≥ 100. The
alue of 𝜇 obtained in this way is much smaller for 𝑚 = 14 (105) than
or 𝑚 = 13 (455) and the distances between the weight vectors become
arger also due to this fact.

We observe that the distance among weight vectors increases with
he number of objectives. When no neighborhood is considered (𝑇 =
00%), the distance goes from about 0.5 for 𝑚 = 2 to close to 1 for
≥ 14. Restricting the selection of weight vectors among the 10%

r 20% closest ones reduces the distance to an order of magnitude.
owever, the trend remains similar, and the distance exceeds 0.5 for
roblems with more than 12 objectives, even with a small neighbor-
ood size of 𝑇 = 10%. As such, the assumption that the neighboring

sub-problems share similar information becomes less accurate as the
number of objective grows, and might actually affect the performance
of decomposition-based MOEAs for many-objective problems.

5. Conclusions and future work

5.1. Summary

This paper has carried out a theoretical and empirical analysis of
the impact of increasing the number of objectives 𝑚 on (i) the char-
acteristics of a multi-objective (MO) problem and (ii) the complexity
of commonly used MO procedures and algorithms. For the empirical
analysis, we used multi-objective NK-landscapes, which allowed us to
conveniently scale up the number of objectives 𝑚. Table 1 provides an
overview of the topics we have made contributions to, and where these
can be found in the paper. The main findings of our analysis in terms
of scaling efficiencies can be summarized as follows.

• Good scaling behavior (i.e., polynomial):

– Impact on scalarization methods: We have proposed a gen-
eral non-linear scalarizing function that can be used to
describe several well known scalarizing techniques includ-
ing weighted Chebyshev scalarization, weighted sum scalar-
ization, Pascoletti–Serafini problem, 𝜖-constraint problem,
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and scalarization by Kaliszewski. Using the proposed non-
linear functions, the complexity of solving the correspond-
ing scalar problem grows linearly with 𝑚.

– Approximating hypervolume: We have shown that the com-
plexity of computing the hypervolume exactly grows ex-
ponentially with 𝑚 in the typical case (not only in the
worst case). When approximating the hypervolume using
Monte Carlo sampling, we demonstrated empirically that
the size of the confidence interval (of the approximated
hypervolume value) should not change with 𝑚 assuming
a constant Pareto archive size 𝑁 ; instead the number of
sampled points should be 𝛩(𝑁2). Moreover, we showed that
there is a switching point (𝑚 ≥ 8 in our study) beyond which
the running time of a sampling-based approach outperforms
an exact method, and the switching point moves to higher
𝑚 as the required confidence interval reduces in width.

• Relatively good scaling behavior:

– Dominance test and updating the Pareto archive: Although, in
the case of unbounded Pareto archive, the running time of
updating the Pareto archive grows exponentially with 𝑚 for
all four considered data structures – a simple (unordered)
list, ND-Tree, Quad Tree, and MFront II –, experiments re-
veal that ND-Tree and Quad Tree are more robust. With re-
gards to the running time of processing single solutions w.r.t
to the Pareto archive size, we observed empirically a switch-
ing point in terms of 𝑚 beyond which the running time
turns from sublinear to approximately linear dependence on
the Pareto archive size. This switching point is between 5–7
objectives for the simple list and MFront II, between 6–8
objectives for ND-tree, and between 4–6 objectives for Quad
tree.

• Poor scaling behavior (i.e., exponential complexity, decreased
quality):

– Number of Pareto optimal solutions: We have confirmed em-
pirically that the number of Pareto optimal solutions grows
exponentially with 𝑚, with less than 5% of solutions being
Pareto optimal for 𝑚 = 2 and this proportion growing to
about 50% for 𝑚 = 7, and more than 99% for 𝑚 = 20 for the
considered problems.

– Probability for a solution to be non-dominated: We derived
theoretically the probability that 𝜇 random pairs of solu-
tions are mutually non-dominated, and this probability is
(

1 − 1
2𝑚−1

)𝜇
. An empirical analysis confirmed the correct-

ness of this probability, and showed that it becomes very
likely that all solutions are mutually non-dominated for 𝑚 >
15, even for values of 𝜇 > 1 000.

– Probability of having heterogeneous objectives: We have shown
experimentally that the level of heterogeneity among ob-
jectives in a many-objective problem increases with 𝑚. In
particular, for the case of heterogeneous evaluation du-
rations of objectives, with durations being drawn from a
Beta distribution, we observed that the difference in the
minimum and maximum difference in evaluation durations
decreases and increases exponentially with 𝑚, respectively.
A unskewed (symmetric) Beta distribution was associated
with the largest increase in the maximum difference.

– Distance between solutions: We have shown empirically that,
as 𝑚 increases, the expected distance (in the design space)
among Pareto optimal solutions becomes more similar to
the one among random solutions, and for 𝑚 ≥ 15 the
distances were identical. Due to the spherical distribution of
solutions in the objective space for the problems considered,
the distance between Pareto optimal and random solutions
13
in the objective space is very similar and increases linearly
with 𝑚. These observations suggest that, for many-objective
problems, (i) it becomes more difficult to discover a high-
quality representation of the Pareto front as the Pareto
optimal solutions are distant from each other, and (ii) that
few building blocks (if any) might actually be exploited by
(blind) recombination.

– Computing hypervolume exactly: We have shown empirically
that existing theoretical results hold and that the exact hy-
pervolume computation time growths indeed exponentially
with 𝑚 in the typical case (not only in the worst case).

– Distance between weight vectors: We observed empirically
that the distance among uniformly-defined weight vectors
increases with 𝑚. A smaller neighborhood size follows the
same general trend but reduces the distance between weight
vectors to an order of magnitude, with the distance exceed-
ing 0.5 for 𝑚 > 12 even for a neighborhood size of 10%.
This implies that, as 𝑚 increases, the assumption that neigh-
boring sub-problems share similar information becomes less
accurate.

5.2. Recommendations for MOEAs

This section will make use of our theoretical and empirical findings
to provide recommendations and considerations on design choices for
different multi-objective optimization paradigms when applying them
to problems with many objectives.

• For all classes of MOEAs:

– Algorithm performance should be evaluated in terms of rep-
resentation quality of the Pareto front. This indicates an al-
gorithm’s ability to deal efficiently with the large distances
between Pareto optimal solutions when 𝑚 is large.

– The distance between solutions in the objective space in-
creases with 𝑚, causing the quality of representation to
decrease and reduce coverage.

– The level of heterogeneity in a MO problem increases with
𝑚, urging the need for customized methods for coping with
heterogeneity for many-objective problems.

– The distance between solutions in the design space increases
with 𝑚, causing (blind) recombination to be less effective.

– When no external Pareto archive is considered, the pop-
ulation size shall increase to maintain the same level of
coverage of the Pareto front because the number of Pareto
optimal solutions increases with 𝑚.

– When an external Pareto archive is considered, a data struc-
ture such as Quad Tree or ND-Tree shall be used when 𝑚 is
large and in need to discover a good representation quickly.

• For dominance-based MOEAs (e.g. NSGA-II Deb et al., 2002):

– The dominance relation becomes less discriminative as 𝑚 in-
creases, causing a reduction in the selection pressure (when
selection is done based on dominance) and affect negatively
the representation quality of the Pareto front.

– The diversity maintenance method employed is critical to
ensure adequate selection pressure as 𝑚 increases, since
most solutions in the search space are mutually
non-dominated.

• For decomposition/scalarization-based MOEAs (e.g. MOEA/D
Zhang and Li, 2007):

– Assuming a constant number of weight vectors (and pop-
ulation size), all issues mentioned above for constant pop-
ulation sizes hold. Moreover, the distance between weight

vectors increases with 𝑚.
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– Assuming that the number of weight vectors increases with
𝑚 (in order to maintain the same level of coverage), the
algorithm complexity increases with the number of weight
vectors. It remains unclear how the number of weight vec-
tors shall increase, e.g. polynomially or exponentially.

– The complexity of solving an individual scalar problem
grows linearly with 𝑚, and the associated problem can
be formulated conveniently using the general non-linear
scalarizing function proposed in this work.

• For indicator-based MOEAs (e.g. IBEA Zitzler and Künzli, 2004):

– Computing the hypervolume of a solution set exactly has a
complexity that is exponential in 𝑚.

– When using Monte Carlo sampling to approximate the hy-
pervolume combined with a constant population size, all
issues mentioned above for constant population sizes hold.

– When using a constant population size, then do not change
the size of the confidence interval when approximating the
hypervolume through sampling as 𝑚 increases.

– Account for both the desired accuracy of the hypervolume
(width of the confidence interval) and 𝑚 when deciding
whether to compute the hypervolume exactly or approx-
imately. Another interesting approach is to use recently
proposed methods combining exact algorithms with Monte
Carlo sampling (Tang et al., 2017; Jaszkiewicz et al., 2020).

– When assuming a population size that increases with 𝑚, it
remains unclear at this stage how the number of sampling
points shall be changed (or not) to reach the same level of
hypervolume approximation quality.

.3. Future work

Although this study allowed us to make headwind in terms of both
heoretical and empirical contributions to understanding and dealing
ore efficiently with many-objective optimization problems, there is
uch more that we as a community can do to advance this research

rea. We identified three main directions for future work to advance
ur work further that we discuss in the following.

Consider other problem setting and types to verify theoretical
esults: Our empirical study considered the impact of varying the
umber of objectives 𝑚 using a combinatorial (binary) problem but we
ept both the dimension of the design space and the level of correlation
etween objectives constant. It would be important to verify existing
nd new theoretical findings for other problem settings and other
rtificial and real problem types, such as continuous and mixed-integer
nd/or distance-based problems (Köppen et al., 2005; Fieldsend et al.,
019; Cheng et al., 2016). Gaining a more profound theoretical and
mpirical understanding of the impact of heterogeneous objectives (All-
endinger et al., 2015; Eichfelder et al., 2015) on many-objective

ptimization is critical too, together with the impact of the objectives’
on-linearity and the correlation between the objectives (Verel et al.,
013).

Investigate other multi-objective concepts and algorithms: Our
mpirical study investigated the impact of 𝑚 on different problem char-
cteristics and multi-objective concepts. Additional empirical studies
ould investigate if the theoretical findings hold for different multi-
bjective concepts and algorithms. For example, we considered the
cenario where the solutions are processed in a random order, when
valuating the complexity of dominance tests and updating the Pareto
rchive as a function of 𝑚, while the quality of solutions generated by
OEAs should generally improve with the running time. Thus, future
ork can investigate the same aspects for more realistic orders of

olutions or sequences of solutions generated by real MOEAs. More-
ver, it would also be important to critically evaluate the impact of

on other multi-objective concepts, such as non-dominance sorting.
14

onsequently, the findings gained from the empirical analysis could be e
sed to develop more efficient methods for dealing with many-objective
roblems. This includes also more efficient scalarization methods that
ccount for variable domination structures and special structures of the
arameter sets; exploring the use of these methods for problems where
he preferences of the DM change over time would be very timely given
he uncertain environment we are living in.

Expand the theoretical study: Extensive contributions can be
ade on advancing the theoretical grounding of multi-objective con-

epts and algorithms as a function 𝑚. For example, our theoretical
ork can be extended by deriving the probability for a solution to
e non-dominated given a random population; the challenge here is
o account for the various dependencies between solutions. Knowing
his probability would allow to predict the expected number of non-
ominated solutions in a population and hence facilitate the design
f more efficient initialization strategies for many-objective problems.
his line of research has been considered, for example, by Knowles
nd Corne (2007), Joshi and Deshpande (2014). Research related to
eterogeneous objectives in a many-objective setup is still in its infancy
nd forms another direction of future research in terms of theory
nd algorithms. Given a problem with heterogeneous objectives and
portfolio of algorithms, an interesting theoretical and empirical ques-

ion could be to investigate whether it is possible to use information
vailable about the heterogeneity to predict which algorithm should
e selected to solve the problem. This task can also be formulated as
n algorithm selection problem (Rice, 1976).
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ppendix. Scalarization methods

We study the relationships between a MO problem with the vector-
alued objective function 𝐟 and the feasible set 𝑋 (see Definition 2.1)
nd a scalarization of the MO problem by translation invariant func-
ions 𝜑 (see Section 4.3). Using these relationships, we explain the
nfluence of the number of objectives in scalarization procedures.

In order to discuss a general scalarization technique (see also Sec-
ion 4.3) for the characterization of solutions to MO problems, we
ssume a more general definition of Pareto optimality: We consider
areto (weakly) optimal solutions defined by a nontrivial, closed, con-
ex and pointed cone 𝐶 ⊂ R𝑚 (see Definition A.1). Such more general
ones 𝐶 are important for deriving monotonicity properties of the
calarization functions and for the characterization of properly efficient

lements.
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𝐟
p

I

Definition A.1. Consider a MO problem where the objective function
is to ’’maximize’’ with respect to a nontrivial, closed, convex and

ointed cone 𝐶 ⊂ R𝑚. A solution 𝐱1 ∈ 𝑋 is called a Pareto optimal
solution with respect to 𝐟 and 𝐶 if:

𝐟 (𝐱1) ∈ {𝐟 (𝐱) ∈ 𝑌 ∶ 𝑌 ∩ (𝐟 (𝐱) + (𝐶 ⧵ {0})) = ∅}.

Furthermore, 𝐱1 ∈ 𝑋 is called a Pareto weakly optimal solution with
respect to 𝐟 and 𝐶 if:

𝐟 (𝐱1) ∈ {𝐟 (𝐱) ∈ 𝑌 ∶ 𝑌 ∩ (𝐟 (𝐱) + int 𝐶) = ∅},

where int 𝐴 denotes the interior of a set 𝐴 ⊂ R𝑚.

Remark. Of course, for the special case 𝐶 = R𝑚
+ ∶= {𝑦 ∈ R𝑚 ∣

∀𝑖 ∈ {1,… , 𝑚} ∶ 𝑦𝑖 ≥ 0}, a Pareto optimal solution in the sense of
Definition A.1 coincides with a Pareto optimal solution in the sense of
Definition 2.4.

Because of technical reasons, especially because of the calculus
rules concerning −∞ and +∞ for extended real-valued functions,
scalarization methods are usually formulated as minimization problem
(see Tammer and Weidner, 2020, Chapter 3 and references therein).
Taking into account that a Pareto optimal (maximal) solution with
respect to 𝐟 and 𝐶 (see Definition A.1) is a Pareto optimal (minimal)
solution with respect to −𝐟 and −𝐶 and vice versa, we replace the MO
problem by the equivalent problem to find Pareto optimal (minimal)
solutions with respect to −𝐟 and −𝐶. Analogously, since a Pareto weakly
optimal (maximal) solution with respect to 𝐟 and int 𝐶 is a Pareto
weakly optimal (minimal) solution with respect to −𝐟 and − int 𝐶 and
vice versa, we replace the MO problem by the equivalent problem to
find Pareto weakly optimal (minimal) solutions with respect to −𝐟 and
− int 𝐶. For simplicity, we put 𝐟 ∶= −𝐟 and denote the corresponding
minimization problem as MO problem too.

A prominent scalarization method is the well known weighted
Chebyshev scalarization:

min
𝐱∈𝑋

max
𝑖∈{1,…,𝑚}

𝜆∗𝑖 (𝑓𝑖(𝐱) −𝑤𝑖) (A.1)

with 𝜆∗ = (𝜆∗1 ,… , 𝜆∗𝑖 ,… , 𝜆∗𝑚) ∈ int R𝑚
+, 𝑤𝑖 ∈ R (𝑖 = 1,… , 𝑚).

Another important scalarization method is the 𝜖-constraint problem
(with 𝜖 = (𝜖1,… , 𝜖𝑚) ∈ R𝑚), see Haimes et al. (1971):

min 𝑓𝑗 (𝐱)
subject to 𝑓𝑖(𝐱) ≤ 𝜖𝑖, 𝑖 = 1,… , 𝑚, 𝑖 ≠ 𝑗,

𝐱 ∈ 𝑋 ⊆ R𝑛.

(A.2)

We now explain that the scalarization functions involved in the
problems (A.1) and (A.2) are special cases of a general non-linear
translation invariant scalarization function given by Eq. (A.3).

For a nonempty closed subset 𝐴 of R𝑚 and an element 𝓁 ∈ −0+𝐴 ⧵
{0}, we study a non-linear (along 𝓁 translation invariant) function
𝜑 ∶= 𝜑𝐴,𝓁 ∶ R𝑚 → R ∶= R ∪ {−∞} ∪ {+∞} defined by:

𝜑𝐴,𝓁(𝑦) ∶= inf{𝑡 ∈ R ∣ 𝑦 ∈ 𝑡𝓁 + 𝐴}. (A.3)

Now, we consider the scalarized MO problem using the non-linear
function 𝜑𝐴,𝓁 introduced in Eq. (A.3):

min
𝐱∈𝑋

𝜑𝐴,𝓁(𝐟 (𝐱)). (MO(𝜑𝐴,𝓁))

f we consider a nontrivial, closed, convex and pointed cone 𝐶 ⊂ R𝑚

and suppose 𝐴 − 𝐶 ⊆ 𝐴, then 𝜑𝐴,𝓁 in (A.3) is 𝐶-monotone (i.e., 𝑦1 ∈
𝑦2 + 𝐶 implies 𝜑𝐴,𝓁(𝑦1) ≥ 𝜑𝐴,𝓁(𝑦2)) and a solution of (MO(𝜑𝐴,𝓁)) is a
weakly optimal solution with respect to 𝐟 and 𝐶, see Göpfert et al.
(2003, Theorem 2.3.1 (d) and Theorem 3.1.9).

We explain that many well known scalarization methods for multi-
objective optimization problems are special cases of a scalarization
by means of the non-linear (along 𝓁 translation invariant) function in
Eq. (A.3).
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(a) We show that the 𝜖-constraint method can be described by means
of functions of type Eq. (A.3): Let some 𝑗 ∈ {1,… , 𝑚} and some
real values 𝜖𝑖 ∈ R, 𝑖 = 1,… , 𝑚, 𝑖 ≠ 𝑗, be given. Then, the 𝜖-
constraint scalarization (see Haimes et al., 1971; Chankong and
Haimes, 1983; Eichfelder, 2008; Durea et al., 2017), is given by
the function 𝜑𝐴,𝓁 in Eq. (A.3) with:

𝐴 ∶= �̄� − R𝑚
+ , with �̄� = (�̄�1,… , �̄�𝑚)𝑇 , �̄�𝑖 =

{

0 for 𝑖 = 𝑗,
𝜖𝑖 for 𝑖 ≠ 𝑗,

(A.4)

𝓁 = (𝓁1,… ,𝓁𝑚), where 𝓁𝑖 =
{

1 for 𝑖 = 𝑗,
0 for 𝑖 ≠ 𝑗.

(A.5)

We denote the function in Eq. (A.3) with 𝐴 and 𝓁 as in (A.4)–
(A.5) by 𝜑𝜖

𝐴,𝓁 . With 𝐴 and 𝓁 given by (A.4)–(A.5), the scalarized
MO problem:

min
𝐱∈𝑋

𝜑𝜖
𝐴,𝓁(𝐟 (𝐱)) (MO(𝜑𝜖

𝐴,𝓁))

describes the 𝜖-constraint problem in (A.2).
Taking into account Göpfert et al. (2003, Theorem 2.3.1 (d)
and Theorem 3.1.9), solutions of the scalarized problem in (A.2)
generate weakly optimal solutions of the MO problem.
If the number 𝑚 of objectives is increasing, then the number
of parameters 𝜖𝑖 (𝑖 = 1,… , 𝑚) involved in the constraints (see
Eq. (A.4)) in the definition of the function 𝜑𝜖

𝐴,𝓁 (i.e., the number
of 𝜖-constraints) is growing up. Furthermore, the supplementary
𝜖-constraints (now involved in the constraints 𝑦 ∈ 𝑡𝓁 + 𝐴 (see
Eq. (A.3)) with 𝐴 given by Eq. (A.4) and 𝓁 given by Eq. (A.5))
can destroy the structure of the MO problem’s constraints such
that the scalar optimization problem (MO(𝜑𝜖

𝐴,𝓁)) could be more
difficult to solve.

(b) Let a set 𝐵𝐿 be given by a system of linear inequalities. We
consider:

𝐵𝐿 ∶= {𝑦 ∈ R𝑚 ∣ ⟨𝑎𝑖, 𝑦⟩ ≤ 𝛼𝑖, 𝑎
𝑖 ∈ R𝑚, 𝛼𝑖 ∈ R, 𝑖 ∈ {1,… , 𝑛}}.

(A.6)

Using 𝑎𝑖 from this formula for 𝐵𝐿, we define a set 𝐴𝐿 ⊂ R𝑚 by:

𝐴𝐿 ∶= {𝑦 ∈ R𝑚 ∣ ⟨𝑎𝑖, 𝑦⟩ ≤ 𝛼𝑖, 𝑖 ∈ 𝐼} (A.7)

with the index set:

𝐼 ∶= {𝑖 ∈ {1,… , 𝑛} ∣ {𝑦 ∈ R𝑚 ∣ ⟨𝑎𝑖, 𝑦⟩ = 𝛼𝑖} ∩ 𝐵𝐿 ∩ int R𝑚
+ ≠ ∅}.

(A.8)

The set 𝐼 is exactly the set of indices 𝑖 ∈ {1,… , 𝑛} for which the
hyperplanes ⟨𝑎𝑖, 𝑦⟩ = 𝛼𝑖 are active in the non-negative orthant.
Let 𝐵𝐿 and the corresponding set 𝐴𝐿 defined as in Eq. (A.7), let
vectors 𝓁 ∈ −0+𝐴𝐿 ⧵ {0} and 𝑤 ∈ R𝑚 be given. We consider the
function 𝜑𝐴,𝓁 (see Eq. (A.3)) with 𝐴 = 𝑤 + 𝐴𝐿, i.e., we study the
function 𝜑𝑤+𝐴𝐿 ,𝓁 ∶ R𝑚 → R of type (A.3) given by:

𝜑𝑤+𝐴𝐿 ,𝓁(𝑦) = inf{𝑡 ∈ R ∣ 𝑦 ∈ 𝑡𝓁 +𝑤 + 𝐴𝐿}, 𝑦 ∈ R𝑚. (A.9)

The function 𝜑𝑤+𝐴𝐿 ,𝓁 depends on the set 𝐴𝐿 and the parameter
vectors 𝓁 and 𝑤.
Using the non-linear function 𝜑𝑤+𝐴𝐿 ,𝓁 given by Eq. (A.9), we
consider the scalarized problem:

min
𝐱∈𝑋

𝜑𝑤+𝐴𝐿 ,𝓁(𝐟 (𝐱)). (MO(𝜑𝑤+𝐴𝐿 ,𝓁))

The following assertion is shown by Tammer and Winkler (2003)
under more restrictive assumptions. In the following corollary,
we derive our results under weaker assumptions concerning the
parameter 𝓁 involved in the scalarizing function.

Corollary A.1. We consider the set 𝐵𝐿 given by Eq. (A.6)) and
𝑤 ∈ R𝑚 arbitrarily chosen. Let the corresponding set 𝐴𝐿 be given
by Eqs. (A.7)–(A.8), 𝓁 ∈ −0+𝐴𝐿 ⧵ {0} and the function 𝜑𝑤+𝐴𝐿 ,𝓁
given by (A.9). Assume that ⟨𝑎𝑖,𝓁⟩ ≠ 0 for all 𝑖 ∈ 𝐼 .
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Then, the non-linear function 𝜑𝑤+𝐴𝐿 ,𝓁 in Eq. (A.9) is convex
and R𝑚

+-monotone (i.e., 𝑦1 ∈ 𝑦2 + R𝑚
+ implies 𝜑𝑤+𝐴𝐿 ,𝓁(𝑦

1) ≥
𝜑𝑤+𝐴𝐿 ,𝓁(𝑦

2)). Furthermore, 𝜑𝑤+𝐴𝐿 ,𝓁 in Eq. (A.9) has the structure:

𝜑𝑤+𝐴𝐿 ,𝓁(𝑦) = max
𝑖∈𝐼

⟨𝑎𝑖, 𝑦⟩ − ⟨𝑎𝑖, 𝑤⟩ − 𝛼𝑖
⟨𝑎𝑖,𝓁⟩

. (A.10)

Proof. We get the assertions from Göpfert et al. (2003, Theorem
2.3.1) and:

𝜑𝑤+𝐴𝐿 ,𝓁(𝑦) = inf {𝑡 ∈ R ∣ 𝑦 −𝑤 − 𝑡𝓁 ∈ 𝐴𝐿}

= inf {𝑡 ∈ R ∣ ⟨𝑎𝑖, 𝑦⟩ − ⟨𝑎𝑖, 𝑤⟩ − 𝑡⟨𝑎𝑖,𝓁⟩ ≤ 𝛼𝑖, 𝑖 ∈ 𝐼}

= inf {𝑡 ∈ R ∣
⟨𝑎𝑖, 𝑦⟩ − ⟨𝑎𝑖, 𝑤⟩ − 𝛼𝑖

⟨𝑎𝑖,𝓁⟩
≤ 𝑡, 𝑖 ∈ 𝐼}

= max
𝑖∈𝐼

⟨𝑎𝑖, 𝑦⟩ − ⟨𝑎𝑖, 𝑤⟩ − 𝛼𝑖
⟨𝑎𝑖,𝓁⟩

. □

It is important to mention, if the number 𝑚 of objectives is increas-
ing, then the inner products in Eq. (A.10) are taken for parameter
vectors 𝑤 and 𝓁 in higher dimensional spaces R𝑚. However, the
scalarized problem MO(𝜑𝑤+𝐴𝐿 ,𝓁) is not more difficult to solve
because the parameter vectors 𝑤 and 𝓁 are only involved in
certain inner products.
Furthermore, we obtain corresponding results for the well known
weighted Chebyshev scalarization (see the scalar problem in
(A.1) with the origin as reference point 𝑤) as special case of
Eq. (A.10). An important result by Kaliszewski (1994, Theorem
3.7) concerning the characterization of Pareto optimal elements
of MO problems also follows from Eq. (A.10).

(c) In order to generate weakly optimal solutions of a MO problem,
Pascoletti and Serafini (cf. Eichfelder, 2008, Pascoletti and Ser-
afini, 1984) considered the following scalar surrogate problem:

min 𝑡

subject to 𝐟 (𝐱) ∈ 𝑡𝓁 + 𝑎 − R𝑚
+ ,

𝐱 ∈ 𝑋 ⊆ R𝑛, 𝑡 ∈ R

(A.11)

with parameter vectors 𝑎 ∈ R𝑚, 𝓁 ∈ int R𝑚
+. The scalar problem

in (A.11) is a scalarization of the MO problem by means of a
function in Eq. (A.3) with 𝐴 = 𝑎 − R𝑚

+ and 𝓁 ∈ int R𝑚
+, namely:

min
𝐱∈𝑋

𝜑𝑎−R𝑚
+ ,𝓁

(𝐟 (𝐱)). (MO(𝜑𝑎−R𝑚
+ ,𝓁

))

Taking into account (Göpfert et al., 2003, Theorems 2.3.1 (d)
and 3.1.9), solutions of (MO(𝜑𝑎−R𝑚

+ ,𝓁
)) generate weakly optimal

solutions of the MO problem.
If the number 𝑚 of objectives is increasing, then the parameter
vectors 𝑎 ∈ R𝑚, 𝓁 ∈ int R𝑚

+ belong to higher dimensional spaces.
These parameter vectors are involved in the constraints in the
definition of the function 𝜑𝑎−R𝑚

+ ,𝓁
as well as of problem (A.11),

such that the number of constraints is growing up. Furthermore,
a perturbation of the structure of the constraints in the MO
problem by the additional constraints is possible depending on the
structure of the additional objectives such that the scalar problem
in (A.11) could be more difficult to solve.
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