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1 Introduction

In solid state physics the physical properties of numerous materials, such as simple metals, some
semiconductors and insulators can be explained easily in terms of an effective single non-interacting
electrons. But materials with open d and f shells have properties that are harder to explain. In these
materials, e.g. transition metals such as vanadium, iron, and their oxides, rare-earth and actinide ele-
ments, electrons occupy narrow orbitals. Due to the confinement of the electrons in these narrow d or f
orbitals, electrons feel strong Coulombic repulsion (for review see1–3). The small size of the d and f or-
bitals enhance interaction effects and decrease overlap with other orbitals, which is why the interactions
are strong. This category of materials known as strongly correlated materials have the common feature
that the electron-electron interaction is comparable to or larger than the kinetic energy.3 The interplay
of the d and f electrons internal degrees of freedom—spin, charge, and orbital moment—can exhibit
exotic ordering phenomena at low temperatures. This interplay makes strongly correlated electron
systems extremely sensitive to small changes in external parameters, such as temperature, pressure, or
doping.1,4 A wide variety of interesting phenomena can be attributed to electronic correlations, among
them high-temperature superconductors,5–7 Kondo effect,8,9 and heavy-fermions.10

The discovery of a new type of copper-oxide based superconducting material, known as cuprates,
by Bednorz and Müller in 1986,11 with much higher transition temperatures Tc of 38K than normal
superconductors (around 10K), stimulated further research to find novel superconducting materials
with high Tc’s.12 The research in high-Tc superconductors has led to novel materials such as the
pnictides with transition temperatures above 130K.13 A common property of these novel high-Tc
superconductors are the presence of strong electronic correlations due to partially filled d-bands.5–7

Although the exact mechanisms leading to high-Tc superconductivity are still a matter of debate, and
may actually be quite different depending on the type of material, it has been argued that the strong
correlations in the cuprates result in an effective electronic attraction, which is required in order to
obtain superconductivity.12,14 The hope is that a detailed understanding of the mechanisms that lead
to high-Tc superconductivity might lead to novel superconducting materials with even higher Tc’s.

Kondo’s15 explanation of the logarithmic anomaly in the electrical resistivity of the diluted tran-
sition metal alloys based on the s-d exchange model, caused a great interest in investigation of the
Kondo effect problem.16 A well-known many-body phenomenon, the Kondo effect, arises when a local
magnetic moment is weakly coupled to a sea of non-interacting conduction electrons. Such a situation
can be realized for example by a transition metal impurity in a metal host where the strongly interact-
ing electrons within the open d- or f-shell of the impurity give rise to the formation of a local magnetic
moment. Below a characteristic temperature, so-called Kondo temperature Tk, due to the formation
of the unusual Kondo state,16 the magnetic moment of the impurity is quenched.

Opposed to the previous experiments where the Kondo effect had been observed merely in bulk
systems of magnetic impurities embedded in metals,17,18 in 1998, Golhaber–Gordon et al. announced
the observation of conductance signatures of the Kondo effect in a single–electron transistor.19 This
was the first time that the Kondo effect was observed in a single, tunable quantum impurity. The
manifestation of quantum dots systems with the impressive control and tunability possible for artificial
atoms has generated a source of interest in Kondo and related nanoscale devices.20 In this case, the
physics of a quantum dot connected to leads becomes similar to the physics of magnetic impurities
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coupled to the conduction electrons in a metal host, the Kondo effect.21–23The Kondo effect reached
molecular systems as well. Electronic transport through break junction systems with molecules has
been measured.24,25

The Kondo effect also plays an important role in a number of 4f and 5f compounds. Some of
them i.e. heavy-fermion systems, Kondo lattices, exhibit anomalous electronic and magnetic proper-
ties.16 Heavy-fermion behaviour for the first time was observed in CeAl3,26 which revealed enormous
magnitude of the linear specific heat term (γ = 1.6JK−2mol−1).10 Generally, these materials are Ce
and U based metallic compounds which show a strongly enhanced γ-coefficient of the specific heat.27

Since γ is proportional to the effective mass in a simple effective Fermi-liquid theory, the name heavy
fermions was assigned to this material class.27 The huge intra-atomic Coulomb repulsion, makes the
double occupancy of the 4f shells strictly prohibited, which implies that the state of motion of a given
charge carrier completely depends on that of all the others. It is for this reason that such systems are
frequently termed strongly correlated electron systems.10

According to all of these properties, the perspective of the investigation of the strongly correlated
materials is very exciting. But as these phenomena are driven by a strong local interaction U , hence
they are theoretically complicated to study. Perturbation theory breaks down and as each single
electron has a complex influence on its neighbors, it cannot be treated independently, either. Moreover,
one can no longer consider any electron in these material as being in a sea of the averaged motion of
the others as in mean field theories. Since these materials consist of electrons that are neither fully
itinerant which can be described as Bloch waves in the crystal nor, fully localized on their atomic sites,
modeling is complicated as well. The dual particle–wave character of the electron forces the adoption
of components of the real-space and momentum- space pictures.1

Traditionally, the Hamiltonian is simplified to take into account only a few relevant degrees of
freedom.1 One of the simplest models that captures the essence of strongly correlated electrons in
a solid, is the Hubbard Hamiltonian which was introduced in 1963.28 Despite of its simplicity it
cannot be solved exactly for more than 1D.29 Several method have been applied to calculate the
ground state of the Hubbard Hamiltonian. An approximation to the ground state wave function of the
Hamiltonian was given by Gutzwiller.30 It is interesting that the Gutzwiller wave function together
with the Gutzwiller approximation turns out to be a mean-field solution of the Hubbard Hamiltonian, if
we write the latter in terms of so-called slave bosons.12 Auxiliary fields like slave bosons were originally
introduced to replace the two-particle Coulomb interaction term in the Hamiltonian by one bilinear in
the field operators.12

The advent of the Dynamical mean field theory (DMFT)31–34 was a breakthrough in the under-
standing of strongly correlated materials. DMFT replaces the problem of many interacting electrons
on a lattice, with a correlated impurity coupled to a bath of non-interacting electrons. The impurity
self-energy is then determined via a self-consistent iterative procedure. Correlations between electrons
on different atoms are small and hence can be neglected. Hence the main computational task in DMFT
lies in the solution of the quantum impurity model.35

Hence, the Anderson impurity model (AIM)36 is one of the most important models, as it plays a
central role in the understanding of the Kondo effect, as well as in DMFT. Although the AIM looks
simple its solution is not trivial. For a single impurity, the model can be very efficiently treated using
Wilson’s numerical renormalization group (NRG).37 Since the numerical effort of NRG calculations
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rises exponentially with the number of impurities, generically it is computationally very demanding
and cannot be applied to systems with more than two impurities. In addition, it is unable to make use
of the strongest form of parallelization.

A number of approximate methods for solving the Anderson model exists as well. The Non-Crossing
Approximation (NCA)38,39 and One-Crossing Approximation (OCA),40,41 for example, consist in a
diagrammatic expansion around the atomic limit, summing only a subset of diagrams to infinite order.
Both NCA and OCA yield qualitatively correct spectra for not too low temperatures. While the simpler
NCA strongly underestimates the width of the Kondo peak, the vertex corrections within OCA lead to
a quantitatively correct estimate of the Kondo scale. At lower temperatures, both NCA and OCA show
spurious non-Fermi liquid behavior, leading to artifacts in the spectra.42,43 Many other approximate
schemes for solving the AIM exist,44–48 though all are burdened with some kind of limitation.

For multi-band materials and clusters involving several atoms the often used and versatile ap-
proaches are the Continuous-time Quantum Monte Carlo (CTQMC) algorithm,49 and Exact diag-
onalization (ED).50,51 CTQMC can be viewed as another numerically exact method which can be
parallelized efficiently, but the analytic continuation of the imaginary-time data to real frequencies
leading to artifacts in the spectra. Another serious drawback of CTQMC is its restriction to relatively
high temperatures, making this approach of limited use for the study of low-temperature phenomena
such as the Kondo effect.

Conversely to the most approximation schemes which the solution to the infinite AIM consisting
of an impurity level coupled to an infinite and continuous bath representing a conduction electron
band, the key idea in ED is to discretize the continuum of the infinite conduction electron bath via
a finite set of bath levels.35 By replacing the infinite AIM by a finite one, which can be solved by
exact diagonalization. Finite temperature ED combined with DMFT provides accurate results for
various system properties but due to the rapid growth of the Hilbert space the size of the finite bath
representing the infinite lattice is severely limited.35 Due to the discrete nature of the conduction
electron bath, ED faces with some artifacts in the spectral functions especially in the Kondo regime.
In the zero bandwidth limit (one bath level at the Fermi energy) a precursor of the Kondo peak appears
in the form of two strongly renormalized delta-peaks close to the Fermi level.8 Different strategies for
improving direct diagonalization methods have been proposed recently. In one, a careful selection of
basis states makes it possible to include a large number of bath levels.52 In another, the parameters
of an effective finite Anderson model are variationally optimized.53

Here, we focus on a novel method for solving the AIM which has been proposed by Granath and
Strand, the Distributional Exact Diagonalization (DED) approach.54 A big advantage of DED is that
it overcomes the problem of discretization artifacts in ED. Another privilege of DED is that the energy
resolution is the same on all energy scales, so that it can be exploited to resolve higher energy spectral
features which would be difficult to resolve it with NRG.55 In addition it is ideal for the large-scale
parallelization. DED maps the infinite Anderson model onto an ensemble of finite Anderson models
instead of a single effective finite Anderson model. The ensemble average of the self-energies of the
finite Anderson models provides a smooth approximation to the self-energy of the original infinite
Anderson model that is also free of finite-size artifacts.

This thesis is organized as follows: First, in Sec. 2, we review the Anderson impurity model
and the theoretical background of the Kondo effect and the local moment formation. In Sec. 3, the
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exact diagonalization is explained, then the DED approach as originally proposed by Granath and
Strand is reviewed in detail. In addition, we elucidate the crucial role played by the constraint. In
Sec. 4 we present the DED results which show an excellent description of the Anderson model inside
and outside the Kondo regime, except for very strong correlations. The DED results further indicate
that already for a very small number of 1-2 bath sites, the spectra are in good qualitative agreement
with exact spectra calculated by NRG while for a moderate number of 5-7 bath sites the agreement
becomes excellent. In order to generalize the DED approach to finite temperature situations, in Sec.
5 first we explain that the constraint should be relaxed in some way in order to achieve the correct
impurity entropy (in comparison with NRG). Then, we propose a Boltzmann factor associated with an
energy scale required to break the Kondo singlet. At the end of this chapter we calculate the impurity
contribution to the entropy, and then we present the corresponding finite temperature results. In Sec.
6 we generalize DED to the case of multi-orbital Anderson models, in particular we discuss more that
the constraint should be adapted to the multi-orbital case. Finally, in Sec. 7 we conclude the work
with a discussion of the results and a perspective on using DED for more general types of Anderson
impurity models.
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2 Background

2.1 Kondo effect and Anderson impurity model

When a magnetic impurity is inserted in a nonmagnetic metal, it can give rise to a local moment if
an electronic state on the impurity is singly occupied at least on the time scale of the experiment.
Such a situation can be realized for example by a transition metal impurity with an open d or f shell
in a metal host. Friedel56 was the first to introduce a phenomenological model to explain the onset
of local moments.57 A local magnetic moment can form, however, in a bound or resonant state of
the impurity potential near the Fermi level if the levels corresponding to up and down spins are non-
degenerate.57 He proposed that electrons scattering off transition metal atoms form virtual bound-state
resonances.58 Before Friedel, back in the 1940s, it had been argued by Rudolph Peierls and Neville
Mott that a sufficiently strong Coulomb repulsion would block the passage of electrons.58 Ultimately, in
1961 Anderson36 combined the mentioned ideas and reinterpreted Friedel’s idea of resonance formation
in terms of a tunneling process between d or f orbitals and the metallic band. The single impurity
Anderson model (AIM) is:

H = εdnd + Und↑nd↓ +
∑
σ,k

εk c
†
kσckσ +

∑
σ,k

Vk (d†σckσ + c†kσdσ) (1)

with εd the bare energy cost for an electron to reside in the impurity with spin either up or down, dσ
(d†σ) the annihilation (creation) operator for the impurity level d and spin σ, ckσ (c†kσ), the annihilation
(creation) operators for k states of the metallic band and spin σ, ndσ = d†σdσ, nd =

∑
σ ndσ, U the

on-site Coulomb repulsion at the impurity and Vk the coupling between the impurity level d and
conduction electron k.

In this model the metallic host, also often called bath, has a conduction band, which can be
described by Bloch states, |k〉 with some energy dispersion εk. The impurity ion has only one state,
which is spin-degenerate with energy dispersion εd. The impurity orbital can be either singly, or doubly
occupied by two electrons of opposite spins. The crucial input, the correlation between electrons on
the impurity ion, Und↑nd↓, which is typically strong in the narrow d shell, has the effect of favoring
single occupation of the impurity level. This term, which physically arises from the Coulomb repulsion
between the electrons, turns out to be essential for the formation of a magnetic moment on the localized
orbital. Note that the states forming the conduction band are usually s-type which are more expanded
in space, so that interactions are less important for those. The final ingredient in the Anderson model
is a spin-conserving coupling between the impurity level and the k states of the metallic band. The
overlap of the d orbital and the conduction band leads to a hybridization between the d orbital with
the Bloch waves of the conduction band and causes non-diagonal matrix elements of the Hamiltonian.

In order to understand how local moments come into existence, we consider the Anderson model
in the atomic limit where an isolated impurity is described by:

Hatomic = εdnd + Und↑nd↓ (2)
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The four possible quantum states are:

| ↑↓〉 E(d2) = 2εd + U

|0〉 E(d0) = 0

| ↑〉, | ↓〉 E(d1) = εd (3)

The first two are non-magnetic, while the last two are magnetic. For εd negative and U > |εd|, the
ground state is a two-fold degenerate magnetic doublet. Inasmuch as only the spin degrees of freedom
remain, the system behaves as a local moment. Adding or removing an electron from the magnetic
ground state costs an energy of εd + U and −εd, respectively, so that there are two resonances in the
spectral density corresponding to the addition and removal energies εd + U and εd. When εd = −U/2
the excitations are at +U/2 and −U/2. This is known as the symmetric Anderson model or the
particle-hole symmetric regime.

Due to the coupling to the conduction band, the impurity level acquires some broadening Γ (a
more detailed description will be given in Sec.2.3). In case of weak coupling, Γ � |εd − εF | and
Γ � |εd + U − εF |, the cost of doubly occupying the impurity level is much higher than the impurity
energy εd and the broadening Γ. Generally it is assumed that the impurity level lies below the Fermi
energy, εd < 0. This state will be at least singly occupied. To put another electron on the impurity,
the cost of εd + U is needed. So the cost of putting two electrons on the impurity level is 2εd + U .
This energy 2εd + U is far above the Fermi level. So the impurity level stays singly occupied and the
Anderson model supports the formation of local moments.

Now, when a local magnetic moment forms, the weak coupling to a sea of non-interacting con-
duction electrons may induce the Kondo effect, named after the Japanese physicist Jun Kondo.15 At
low temperatures the effective coupling between the magnetic moment and the conduction electrons
becomes antiferromagnetic leading to the formation of a total singlet state S = 0.

To establish the origin of the antiferromagnetic interaction between the local moment and the con-
duction electrons, first we consider the Kondo model. The Kondo Hamiltonian describes the interaction
of impurity spins, assumed to be 1/2, with the spins of conduction electrons. The Kondo Hamiltonian
with a band of mobile electrons is:

HK =
∑
k,σ

εknkσ −
∑
k,k′

Jkk′(Ψ
†
k′SΨk).(Ψ

†
dSΨd) (4)

The interaction Jkk′ is the analog of the Heisenberg spin exchange interaction between the spin of
a band electron and that of a localized electron.57 A positive Jkk′ favors spin parallel alignment and
thus describes a ferromagnetic coupling, while a negative Jkk′ favors antiparallel spin alignment and
thus describes an antiferromagnetic coupling.

In the next step, we focus on the scattering of a conduction electron with a local moment, in the
Anderson model. To do so, a simple Anderson impurity model including a single impurity level d plus
a single conduction level k is considered. Now the weak coupling is considered as a perturbation to
the rest of the Hamiltonian. More precisely, the unperturbed part without coupling to the bath is
H0 = εdnd +Und↑nd↓+

∑
σ εk c

†
kσckσ, while H1 =

∑
σ Vk (d†σckσ + c†kσdσ), which describes the coupling

between impurity and the bath, is treated as a perturbation to the Hamiltonian. Hence the energy
expression up to second order is given by
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Kondo-singlet

Figure 1: Schematic representation of the Kondo state formation by means of the two site Anderson
model. The singly occupied impurity level (red), lies far below the Fermi level, εd < 0 and the coupling
V is weak compared to εd and U . Here we show one possible hopping process. As the conduction
spin is antiparallel to the impurity, the charge fluctuations are possible. The conduction electron can
hop to the impurity and stay there for a short time then hopes back to the conduction band. When
temperature is low enough the impurity spin will be screened by the conduction electrons as the Kondo
singlet forms. And the formation of the Kondo singlet state shows as a narrow peak at the Fermi level
in the impurity density of states.

E = εd − V 2

(
1

εk − εd − U
+

1

εd − εk

)
. (5)

As H1 does not conserve the d level occupancy, the first order contribution to the energy is zero.
The second term in eq.(5) is due to the second order perturbation on the coupling. If we assume the
conduction level is at the Fermi energy, i.e. εk = 0 we get the following energy expression

E = εd − V 2 U

|εd(U + εd)|
, (6)

where for the symmetric situation, εd = −U/2 it becomes,

E = εd − 4|V |2/U. (7)

It immediately becomes clear that minimising the kinetic energy occurs only in the case of the anti-
ferromagnetic coupling, i.e. antiparallel alignment of the impurity spin and the spin of the conduction
electron. Only in this situation the hopping between the impurity and the conduction band is allowed.

When electron hopping plays the main role in the exchange mechanism, we speak of kinetic ex-
change. The mechanism of creating a singlet-triplet splitting is called the the kinetic exchange.59 The
kinetic exchange is driven by minimising kinetic energy, by allowing delocalization of electrons. This
corresponds to using symmetric superpositions of wave functions, and so favours antisymmetric spins,
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i.e. antiferromagnetic interactions. The estimated singlet-triplet splitting is proportional to Jeff (this
will be further discussed in sec.3.1).

Another important point is that in the local moment limit, the Anderson model and Kondo model
describe the same physics. A fundamental difference between the Anderson and Kondo model is that
the Anderson model includes charge fluctuations, which determine the coupling, but they are absent in
the Kondo model which includes only spin-spin interactions.57 The interaction in the Kondo model is
non-zero only in the case that we have a net spin on the impurity i.e. local moment regime. According
to the above derivation, the effect of the charge fluctuations to second order on the coupling in the
Anderson model, results in an antiferromagnetic interaction type in the Kondo model, namely,

Jkk′ ∝ Jeff = −V 2

(
1

εk − εd − U
+

1

εd − εk

)
(8)

(see eq.(5)). The complete derivation can be found in terms of the Schrieffer-Wolff transformations.57

As we already discussed, the formation of a singlet state is favorable for the system. Due to the
formation of this so-called Kondo singlet state the magnetic moment of the impurity is effectively
screened or quenched by the interaction with the conduction electrons. In Fig. 1 we explain the
schematic formation of the Kondo singlet state. In the density of states spectra, due to the formation
of the Kondo singlet state, a new narrow resonance at the Fermi level appears. Alternatively, it can
be argued that the singlet state emerges as a result of a new resonant level60 which forms and stays
pinned at the Fermi level. Hence the density of states, which for the case of the isolated impurity
has a two peak structure, (at the corresponding energies, −εd and εd + U) will turn into a three peak
structure.

The width of the Kondo peak, which defines the hopping rate or tunneling rate, is proportional
to the Kondo temperature Tk. The Kondo temperature known as a characteristic temperature below
which the Kondo singlet forms. It sets the crossover between local moment behaviour where the spin
is free and the low temperature physics, where the spin and conduction electrons are entangled to form
a spin singlet.58

It is also possible to have other situations, e.g. when the broadening Γ is no longer weak compared
to U . In the regime which is called mixed valence regime, εd − εF or εd − εF +U becomes comparable
with the coupling Γ. The charge fluctuations of the impurity become important and the Schrieffer-Wolf
transformations to the Kondo model breaks down.8 Finally, there are two non magnetic regimes one,
with no electrons called empty orbital, |εd − εF | � Γ and the other in the state of double occupancy
|εd + U − εF | � Γ.

2.2 Green’s function

Green’s functions or electronic propagators play a fundamental role in our treatment of many-particle
systems. They refer to correlators of field operators. The detailed description can be found in many-
body text books.57,61 It is common to adopt the Green’s function and define new expressions, to
obtain solutions to our arbitrary problems. Various types of single-particle Green’s function exist, e.g.
the retarded Green’s function is defined as

GR(rσt, r′σ′t′) = −iθ(t− t′)〈{Ψσ(rt),Ψ†σ′(r
′t′)}〉, (9)
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where
{A,B} = AB +BA (10)

and the thermal average is given by,

〈A〉 =
1

Z

∑
ν

〈ν|A|ν〉e−βEν . (11)

It is called retarded, because of the presence of the particle at r at time t depends on its position r′ at
an earlier time t′ (t > t′). Similarly, the advanced Green’s function is given by

GA(rσt, r′σ′t′) = iθ(t′ − t)〈{Ψσ(rt),Ψ†σ′(r
′t′)}〉. (12)

Another two types of Green’s functions which are called greater and lesser Green’s functions:

G>(rσt, r′σ′t′) = −i〈Ψσ(rt)Ψ†σ′(r
′t′)〉, (13)

G<(rσt, r′σ′t′) = i〈Ψ†σ′(r
′t′)Ψσ(rt)〉. (14)

The greater Green’s function corresponds to propagation of a particle and the lesser Green’s function
corresponds to propagation of a hole. The retarded and advanced Green’s function can be expressed
in terms of the greater and lesser Green’s function:

GR(rσt, r′σ′t′) = θ(t− t′)[G>(rσt, r′σ′t′)−G<(rσt, r′σ′t′)], (15)

GA(rσt, r′σ′t′) = θ(t′ − t)[G<(rσt, r′σ′t′)−G>(rσt, r′σ′t′)]. (16)

Note that, even though we call this Green’s function a single-particle Green’s function they are truly
many-body objects because they describe the propagation of single particles governed by the full many-
body Hamiltonian. The point is that we can express many observables in terms of these powerful
functions.61

In the next step, we will see that the Green’s functions are indeed the solutions of equations of
motion. The derivative with respect to the first time argument for the retarded Green’s function is
given by

i∂tG
R(rt, r′t′) = δ(t− t′)δ(r − r′) + (−i)θ(t− t′)〈{i∂tΨ(rt),Ψ†(r′t′)}〉 (17)

Now assume a Hamiltonian which does not explicitly depend on time as

i∂tΨ(rt) = −[H,ψ(r)](t). (18)

H = H0 + Vint (19)

where H0 stands for the quadratic part of the Hamiltonian, including both the kinetic energy contri-
bution and the single particle potential energy, as they are both quadratic in creation and annihilation
operators, and Vint contains all the interactions of the given problem. For the sake of convenience we
introduce a basis set ν.

H0 =
∑
νν′

tν′νa
†
ν′aν , (20)

with tνν′ = 〈ν|H0|ν ′〉. After doing a bit of algebra we obtain the following:∑
ν′′

(iδνν′∂t − tνν′′)GR(ν ′′t, ν ′t′) = δ(t− t′)δνν′ +DR(νt, ν ′t′), (21)
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with DR(νt, ν ′t′) = −iθ(t − t′)〈[−[Vint, aν ](t), a†ν′(t
′)]〉. Since the Hamiltonian does not explicitly

depend on time, the Green’s function can only depend on the time difference t− t′. Then it is useful to
perform a Fourier transformation. Thus the equation of motion in the frequency domain can be found:∑

ν′′

[(δνν′′(ω + iδ)− tνν′′ ]GR(ν ′′ν ′;ω) = δνν′ +DR(ν, ν ′;ω), (22)

where
DR(ν ′, ν ′;ω) = −i

∫ ∞
−∞

dt ei(ω+iδ)(t−t′)θ(t− t′)〈[−[Vint, aν ](t), a†ν′(t
′)]. (23)

To have proper convergence, the frequency of the retarded Green’s function must carry a small positive
imaginary part iδ. recalling that H0 includes the quadratic part of the Hamiltonian while Vint includes
all the interactions. Differentiating the function in eq. (23) with respect to time would generate
another function to be determined. Then the set of equations does not close. We will get back to the
difficulties of this expression for the case of the Anderson impurity model later (see Sec. 2.3).

2.2.1 Lehmann representation

In order to derive the Lehmann representation or the spectral representation we use the set of eigen-
states of the Hamiltonian H say, {|n〉}, as basis set. We also consider the diagonal Green’s function,

G>(νt, νt′) = −i〈cν(t)c†ν(t′)〉 = −i 1

Z

∑
n

〈n|e−βHcν(t)c†ν(t′)|n〉

= −i 1

Z

∑
nn′

e−βEn〈n|cν |n′〉〈n′|c†ν |n〉ei(En−En′ )(t−t
′). (24)

In the frequency domain we obtain:

G>(ν;ω) =
−2πi

Z

∑
nn′

e−βEn〈n|cν | n′〉〈n′|c†ν |n〉δ(En − En′ + iδ). (25)

In the same way it can be proven that:

G<(ν;ω) = −G>(ν;ω)e−βω. (26)

Keep in mind that the retarded Green’s function can be expressed in terms of lesser and greater Green’s
functions eq.(15). So the retarded Green’s function can be expressed as

GR(ν, ω) = −i
∫ ∞

0
dtei(ω+iδ)t 1

Z

∑
nn′

e−βEn(〈n|cν |n′〉〈n′|c†ν |n〉ei(En−En′ )t

+〈n|cν |n′〉〈n|cν |n′〉e−i(En−En′ )t)

=
1

Z

∑
nn′

e−βEn

(
〈n|cν |n′〉〈n′|c†ν |n〉
ω + En − E′n + iδ

+
〈n|c†ν |n′〉〈n|cν |n′〉
ω + En − E′n + iδ

)

=
1

Z

∑
nn′

〈n|cν |n′〉〈n′|c†ν |n〉
ω + En − E′n + iδ

(e−βEn + e−βEn′ ). (27)

The important point here is that the Lehmann representation shows explicitly that the Green’s function
is a sum of electron removal (first term) and electron addition (second term), taking the fact that
〈n|cν |n′〉〈n′|c†ν |n〉 = |〈n|cν |n′〉|2 and 〈n|c†ν |n′〉〈n′|cν |n〉 = |〈n|c†ν |n′〉|2. The Lehmann expression further
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allows to determine the Green’s function from the exact many-body eigenstates. We will make use of
it in the exact diagonalization (see Sec. 3.1) In this work we are mostly interested in zero temperature
calculations, the corresponding zero temperature expression for the impurity level is

GR(dσ, ω) =
∑
n

|〈0|cdσ|n〉|2

ω + En − E0 + iδ
+
∑
n

|〈n|c†dσ|0〉|
2

ω + E0 − En + iδ

(28)

where |0〉 and E0 denote the ground state and corresponding ground state energy. In case that the
ground state is degenerate, we obtain

GR(ν, ω) =
1

Ndeg

Ndeg∑
m=1

(∑
n

|〈0m|cdσ|n〉|2

ω + En − E0,m + iδ
+
∑
n

|〈n|c†dσ|0m〉|
2

ω + E0,m − En + iδ

)
(29)

where Ndeg refers to the number of ground state degeneracy. Furthermore we will use the Lehmann
representation expression in order to introduce the spectral density.

2.2.2 Spectral density

Using
(ω + iδ)−1 = P

1

ω
− iπδ(ω), (30)

where P is a Cauchy principal and taking the imaginary part of eq. (27),

ImGR(ν, ω) = − π
Z

∑
nn′

〈n|cν |n′〉〈n′|c†ν |n〉(e−βEn + e−βEn′ )δ(ω + En − En′) (31)

The spectral density or the spectral function, ρ is defined as

ρ(ν, ω) = − 1

π
ImGR(ν, ω). (32)

The spectral density can be written in terms of greater and lesser Green’s function as well, namely,

ρ(ν, ω) =
i

2π
(G>σ (ν, ω)−G<σ (ν, ω)) (33)

As can be seen in eq.(31) the spectral density is always positive. It also obeys∫ ∞
−∞

dω ρ(ν, ω) = 1. (34)

Hence the Spectral density has the properties of a probability distribution. For Further information we
refer to e.g. the book written by Bruus and Flensberg.61 This concept, consideration of the spectral
density as a probability distribution, will be further used in the distributional exact diagonalization
(DED) approach (see Sec. 3.2).

2.3 Green’s function for the Anderson model

Now we follow the equation of motion for the Anderson model. The impurity Green’s function is:

GR(dσ; t− t′) = −iθ(t− t′)〈{dσ(t), d†σ(t′)}〉 (35)
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Since the Hamiltonian is non-diagonal in the d-operators due to the hybridization, the equations of
motion will have another Green’s function,

GR(kσ, dσ, t− t′) = −iθ(t− t′)〈{ckσ(t), d†σ(t′)}〉 (36)

as well. By letting ν ′′ run over both d and k the following coupled equations are achieved:

(ω + iδ − εd)GR(dσ, ω)−
∑
k

VkG
R(kσ, dσ, ω) = 1 + UDR(dσ, ω), (37)

(ω + iδ − εk)GR(kσ, dσ, ω)− V ∗k GR(dσ, ω) = 0, (38)

where
DR(dσ, t− t′) = −iθ(t− t′)〈{−[nd↑nd↓, cdσ(t)], c†dσ(t′)}〉. (39)

The commutator for spin up σ =↑ in eq.(39) is given by,

[nd↑nd↓, cd↑] = nd↓[nd↑, cd↑] = −nd↓cd↑. (40)

Hence we face a more complicated expression

DR(d ↑, t− t′) = −iθ(t− t′)〈{nd↓(t)cd↑(t), c†d↑(t
′)}〉 (41)

When the interactions are set to zero, U = 0, inserting GR(kσ, dσ, ω) in eq.(37) which obtained from
eq.(38), we find,

(ω + iδ − εd)GR0 (dσ, ω)−
∑
k

VkV
∗
k

ω + iδ − εk
GR0 (dσ, ω) = 1. (42)

Subscript 0 refers to the non-interacting Green’s function. Then the non-interacting impurity Green’s
function, G0

dσ(ω) has a simple equation, namely,

G0
dσ(ω) =

1

ω + iδ − εd −∆(ω)
(43)

with
∆(ω) =

∑
k

VkV
∗
k

ω + iδ − εk
(44)

the hybridization function. The coupling occurs between the d orbital and the conduction band, giving
rise to a hybridization ∆(ω) between the two. The real part of the hybridization function describes
the renormalization and the imaginary part the broadening of the impurity level. In this work we
mainly focus on a flat hybridization. In order to make it clear we explore the analytic structure of this
function. For simplicity we ignore the momentum dependency, assuming that Vk = V . Taking the
imaginary part of the hybridization function and using eq.(30), we end up with the following expression
for the imaginary part of the hybridization function:

∆I(ω) = πV 2
∑
k

δ(ω − εk) = πV 2ρc(ω), (45)

where ρc(ω) is the host density of states. A further simplification is to assume a constant conduction
density of states. The Fermi level we take to be at the center of the band εF = 0, and we assume energy
cutoffs for the conduction band are at −D and D. Therefore, the imaginary part of the hybridization
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function is constant between −D and D. The real part, can be obtained from the Kramers–Kronig
relation:

∆R(ω) =
1

π
P

∫ ∞
−∞

dω′
∆I(ω′)

ω − ω′
=

1

π
P

∫ D

−D
dω′

Γ

ω − ω′
= −Γ

π
log
| D − ω |
| D + ω |

(46)

In the wide band limit D →∞ the real part of the hybridization vanishes. This situation is approxi-
mately realized in noble metals which have s-like conduction electrons.

However, generally one has to take care of the interactions U which means dealing with a com-
plicated expression, eq. (39). Thus the concept of self-energy Σ is introduced as the feedback of
the interacting environment on a propagating particle.58 Now in order to express the self-energy in
terms of impurity correlation functions we do the same as what we did for eq. (42) but including the
interactions,

(ω + iδ − εd)GR(dσ, ω)− UDR(dσ, ω)−
∑
k

VkV
∗
k

ω + iδ − εk
GR(dσ, ω) = 1. (47)

We define the self-energy as,62

Σ(ω) = U
D(dσ, ω)

G(dσ, ω)
. (48)

This allows to solve eq. (47) for the Green’s function, which yields the Dyson equation,

G = G0 +G0ΣG =
1

[G0]−1 − Σ
. (49)

Hence, the impurity propagator can be written as follows

G(dσ, ω) =
1

ω + iδ − εd −∆(ω)− Σ(ω)
. (50)

Solving the Anderson model thus means finding the self-energy Σ(ω). It is difficult to calculate the
self-energy exactly. Therefore various methodologies that have been developed to solve the Anderson
model, apply different approximations to the self-energy. Also in this work we present a method to
approximate the self-energy as an ensemble average of the finite size Anderson models.

2.4 Local moment formation in the Hartree-Fock Approximation

We now study the formation of a local moment on the impurity in the Hartree-Fock approximation.
In order to do so we look at the occupancy of the state of the impurity. In simple words, when a
state is occupied with a spin up and a spin down electron with equal probability, this state is not
magnetic, while if there is a higher probability to occupy the state with one given spin than the other
i.e. 〈n̂d↑〉 6= 〈n̂d↓〉, then the state is basically magnetic and will have a local moment. It should be
mentioned that the procedure we are explaining for the local moment formation here, is only valid in
the context of the mean field approximation, where breaking the spin symmetry exists. In this part we
explore the solution of the Anderson model and local moment formations in a many-body system by
means of the Hartree-Fock approximation. The interaction part U is replaced by its mean-field version

Ud†↑d↑d
†
↓d↓ = Und↑nd↓ → U(〈n̂d↑〉n̂d↓ + 〈n̂d↓〉n̂d↑ − 〈n̂d↓〉〈n̂d↓〉) (51)

The last term makes a shift to the whole system and thus does not affect the physics of the problem
so that we drop it. Then the Anderson Hamiltonian is rewritten as

HHF =
∑
σ

ε̃dσn̂dσ +
∑
k,σ

(Vkc
†
kσdσ + V ∗k d

†
σckσ) +

∑
k,σ

c†kσckσ (52)
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Figure 2: Hartree-Fock solution of the AIM: the spectral density of the impurity (d) electron for the
non spin-polarized situation (LEFT) and the spin-polarized situation (RIGHT).

where ε̃dσ = εd + U〈n̂d−σ〉 and the corresponding Green’s function is expressed as

GHFdσ (ω) =
1

ω − ε̃dσ −∆(ω)
. (53)

The hybridization function ∆(ω) , assumed to be a constant, −iΓ. Hence the spectral density becomes

ρdσ(ω) = − 1

π
ImGHFdσ (ω) =

1

π

Γ

(ω − ε̃d)2 + Γ2
, (54)

which is a Lorentzian centered at ε̃dσ = εd +U〈n̂d−σ〉 with the width of Γ. To calculate the occupancy
per spin the following equation is applied,

〈n̂dσ〉 =

∫ εF

−∞
dωρdσ(ω) =

1

π
cot−1

(
ε̃dσ
Γ

)
. (55)

Note that we set the Fermi energy to zero, and we consider low temperatures T = 0. Hence the
spin up and spin down occupation are coupled via the following equations and have to be solved
self-consistently,

〈n̂d↑〉 =
1

π
cot−1

(
εd + U〈n̂d↓〉

Γ

)
(56)

and
〈n̂d↓〉 =

1

π
cot−1

(
εd + U〈n̂d↑〉

Γ

)
. (57)

These equations are the main equations of the Hartree-Fock approximation to the Anderson model.
As we are doing the mean field approximation, local moments can be found in the magnetic regions.
Mean field theory is often used to study phase transitions and thus changes of symmetry.61 Here as
the Hamiltonian commutes with spin, changes in the spin symmetry is investigated. In Fig. 2, we show
the impurity (d) electron spectral density ρdσ(ω) = − 1

π ImGHFdσ for different spin channels with both
the non spin-polarized (left) and spin-polarized (right) initial guess. The symmetric AIM with, U = 3,
εd = 1.5 and Γ = 0.3 is considered. For a non spin-polarized initial guess n↑ = n↓ the spectrum is a
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Figure 3: Hartree-Fock solution of the AIM: Spin-polarization versus y = U/Γ for the symmetric
AIM (εd = −U/2 and x = 1/2) on the half-log scale(LEFT). Spin-polarization versus x = −εd/U and
y−1 = Γ/U (RIGHT). The colorful area shows the magnetic region where local moments form while
the black area shows the non-magnetic region with no local moments.

single Lorentzian peak centered at zero for the both spin up and down channels. The Fermi energy is
set to zero. Tuning the spin-up occupation slightly larger than the spin down occupation, n↑ = n↓+δn

for the initial guess, we now look at the spin-polarized situation. The corresponding spectrum can be
found on the right hand side of Fig.2. We see that the spectra turned into a double Lorentzian, each
of which presents a specific spin channel.

Since we already saw the spin symmetry broken, as is required for the mean-field approaches, in
the next step, we search for the magnetic regimes where the local moments can form. Solving eq.
(56) and eq. (57) gives the occupation of the impurity level (d-level) and tells us whether there is
magnetization or not. In other words, whether there exists a solution where 〈n̂d↑〉 6= 〈n̂d↓〉 different
from the non-magnetic solution 〈n̂d↑〉 = 〈n̂d↓〉. We immediately notice that if U = 0, the only possible
solution is 〈n̂d↑〉 = 〈n̂d↓〉, which is non-magnetic. In the limit Γ → ∞, there is again a non-magnetic
solution 〈n̂d↑〉 = 〈n̂d↓〉 = 1/2. A magnetic solution exists, however, in the intermediate parameter
range, Γ/U � 1. To simplify the notation we introduce the dimensionless parameters x = −εd/U and
y = U/Γ. Hence x = 0 corresponds to the d-level energy εd lying right at the Fermi level. At x = 1,
we have εd = −U , and thus the upper d-state with energy εd + U is degenerate with the Fermi level.
Hence, magnetization exist only in this interval, 0 < x < 1. So the borders located symmetrically
around the symmetric situation x = 1/2 or εd = −U/2.

Now, we show the transition between the magnetic and the non-magnetic area by means of the
Hartree-Fock approximation in Fig. 3. First we consider the symmetric regime, εd = −U/2 and
x = 1/2. On the left hand side the spin polarization n↑ − n↓ is shown versus y = U/Γ. In order to
have better resolution we show it on the half-log scale. Approximately below U/Γ = 3.1 there is no
magnetic solution. Around U/Γ = 3.1 the spin polarized area starts to appear. Moving towards higher
U/Γ values, the spin up population increases and consequently the spin down population decreases.
This behaviour continues until the spin up is completely dominant.

To explore other regions (not only particle hole symmetric area) we also alter x between 0 and 1.
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In Fig. 3 on the right hand side, the spin polarization magnitude |n↑ − n↓| versus x = −εd/U and
y−1 = Γ/U is shown. The symmetric situation, x = 1/2 and εd = −U/2 in the middle of the plot is the
most favorable case for the magnetic moment to form. Moving from the middle, x = 1/2 (symmetric
case) on either side corresponds to the mixed valence regime. On the left (right) region the lower
(upper) level is nearly degenerate with the Fermi level. A slight change in Γ leads to the non-magnetic
solution and consequently, loss of the local moment. Further useful discussion can be found e.g. in the
book of Philip Phillips.57
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3 Method

3.1 Exact Diagonalization

The main idea of the exact diagonalization (ED) method is to approximate the infinite and continuous
many-body Hamiltonian by a discretized finite one, which can be diagonalized exactly. This yields the
exact eigenvalues {En} and the exact eigenstates {|Ψn〉} of the finite many-body Hamiltonian,

Ĥ|Ψn〉 = En|Ψn〉, (58)

The starting point is to set up the basis sets. Our choice for the basis sets, {|φn〉}, are Slater deter-
minants for fermions, which span the Hilbert space. The Hamiltonian matrix elements in the selected
basis, can then be obtained as,

Hmn = 〈φm|Ĥ|φn〉. (59)

The direct diagonalization of the Hamiltonian matrix provides the eigenstates,

|Ψn〉 =
∑
m

Cmn|φn〉, (60)

and the eigenenergies
En = 〈Ψn|Ĥ|Ψn〉. (61)

It should be emphasized that once the eigenstates {|Ψn〉} and the eigenenergies {En} are determined,
all system properties can be derived. However, ED is only able to deal with finite size systems i.e.
finite Hilbert spaces. The two-body term in the Hamiltonian causes a rapid growth of the many body
Hilbert space. Due to that, the number of bath levels used to represent the conduction band is very
limited. To make it clear, assume a finite system including impurity and bath levels. The size of
the corresponding single-particle Hilbert space underlying the Fock space is ndim. This system can
then be filled by different number of electrons, i.e. nel = 0, 1, ..., 2ndim. Thus the Fock space can be
constructed as a sum of a set of Hilbert spaces representing zero-particle states, one-particle states, ...
and 2ndim-particle states. The size of the corresponding Hilbert space for the each occupancy subspace
is given by,

Dim {nel} =

(
2ndim

nel

)
, (62)

while the memory needed in order to save the whole corresponding Hamiltonian matrix is,

Dim {Hnel
} =

(
2ndim

nel

)2

. (63)

The largest Hilbert space belongs to the half-filled subspace, where nel = ndim. Finally, the total
dimension of the Fock space including all the Hilbert spaces representing the occupancy subspaces is,

2ndim∑
nel=1

(
2ndim

nel

)
= 22ndim . (64)

It immediately becomes clear that calculations are restricted by the available computer memory. Due
to the exponential growth of the Hilbert space and consequently the Hamiltonian with the system
size, only a few number of bath levels can be considered. ED implementation with the full matrix
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diagonalization for 8 levels with the maximum Hamiltonian dimension, 4900 has been reported.63 The
point is that the simple ED yields all the eigenenergies and eigenstates via the direct diagonalization.
Hence in order to diagonalize the Hamiltonian matrix the entire matrix has to be saved which is
very expensive. To circumvent this problem and specially for the situations that all eigenenergies
are not needed the Lanczos method and the Arnoldi algorithm are particularly suited. The Green’s
functions and consequently the spectral functions can be found using the Lanczos method for the
ground state. The full exact diagonalization which is limited to below 10 levels, can then be extended
to 15 or even higher when the Lanczos algorithm is used.64 The Arnoldi algorithm, is suited for
evaluating those excited states that are physically important at low temperatures. This scheme allows
the consideration of 12-15 levels with the maximum Hamiltonian dimension around (106, ..., 4 × 106)
without significantly increased storage requirement.35,65 In this work we only make use of the simple
ED where we diagonalize the full Hamiltonian matrix and we obtain all the corresponding eigenenergies
and eigenstates. But we plan to implement the Lanczos in near future.

By making use of symmetries e.g. the spin S2 and Sz the Hamiltonian can become block-diagonal.
Then the blocks can be diagonalized individually which allows to reach larger number of bath levels.
In order to do so, symmetries of the system i.e. the conserved properties of the system should be taken
into account. In the following, we illustrate the ED formalism on the example of the two-site Anderson
model, which can be solved analytically.

3.1.1 Two-site Anderson model

Calculating the many body eigenstates for a simple version of the single AIM, including one conduction
band site at the fermi level (zero band width limit) εk = 0, gives some insight into the Kondo problem.8

Therefore in the following we go through the exact diagonalization process for this system. The
corresponding Anderson Hamiltonian is simply given by,

HZB = εdn̂d + Und↑nd↓ + εkn̂k +
∑
σ

Vk(c
†
kσdσ + d†σckσ), (65)

where n̂d = d†σdσ and n̂k = c†kσckσ are the number operators for the impurity level and the bath site,
respectively. The symmetric Anderson model is considered and the Fermi energy is set to zero. As
each energy level can be occupied at most by two electrons of unlike spin. Therefore we have four
possible occupancy subspaces i.e. nel = 0, 1, 2, 3 or 4. Accordingly we divide the basis into different
subspaces with respect to the electron numbers.

The dimension of the Hilbert space for the 1-electron basis is
(

4
1

)
= 4 and the corresponding basis

vectors are
{|d ↑〉, |d ↓〉, |0 ↑〉, |0 ↓〉} . (66)

Note that we use |0σ〉 notation for the bath state, as it lies at the Fermi level (εF = 0). Thus the
Hamiltonian matrix for the 1-electron subspace is given by,

H(1) =


εd 0 V 0

0 εd 0 V

V 0 0 0

0 V 0 0

 .
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As can be seen the Hamiltonian matrix is quite sparse. Although, for such a small system the compu-
tational cost is not important, generally we have to deal with larger systems. More efficiently, the block
matrices should be diagonalized instead of the whole matrix. To build the block matrices, the symme-
tries of the system must be considered. The Anderson Hamiltonian commutes with Sz, [H,Sz] = 0, i.e
spin is conserved. Therefore we build the spin blocks, where the blocks correspond to fixed values of Sz.
Also, intuitively can be seen in the Hamiltonian matrix, H(1), that by displacing the second and third
row and column, we can make two blocks on the top left and bottom right. This is equivalent to swap
the second and third basis states in eq. (66), which results in ordering the basis states with respect to
spin up and down. Hence, the corresponding 1-electron Hamiltonian matrix per spin subspace is:

H(1)
σ =

(
εd V

V 0

)
.

Diagonalizing the Hamiltonian matrix, yields the eigenenergies,

E
(1)
σ,± =

εd
2
±

√
ε2d
4

+ V 2. (67)

Let’s move to the 2-electron subspace. The dimension of the Hilbert space for this case is
(

4
2

)
= 6.

Since in the two electron case the spin and the spatial part can be separated, hence the spin state
can be classified as either singlets, S = 0, Sz = 0 or triplets, S = 1, Sz = 0,±1. In the triplet case
the spatial part of the wave function must be antisymmetric, so the levels cannot be doubly occupied.
Therefore the interaction, U , does not play any role, and the total energy of the triplet states is εd+εk.
The triplet states S = 1, Sz = −1, 0, 1 are:

|0, d〉(−) ⊗


| ↓, ↓〉

1√
2
(| ↑, ↓〉+ | ↓, ↑〉)

| ↑, ↑〉

In the singlet case S = Sz = 0 there are three possible states with different energies:

|d, d〉
1√
2
(|0, d〉 − |d, 0〉)

|0, 0〉

⊗ | ↑, ↓〉(−)

The corresponding singlet subspace of the 2-electron Hamiltonian is given by,

H(2)
s =


0

√
2V 0

√
2V εd

√
2V

0
√

2V 0


where the corresponding eigenenergies can be found by the direct diagonalization, namely,

E
(2)
0,s = 0, (68)

E
(2)
±,s = εd/2±

√
ε2d/4 + 4V 2. (69)

By comparing the eigenenergies of the singlet and triplet subspaces we find that the minimum singlet
eigenenergy, E(s)

− = εd/2−
√
ε2d/4 + 4V 2 is lower than the triplet eigenenergy, E(t) = εd (with εk = 0).
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Thus the ground state of the system is a singlet state, which explains the origin of the Kondo singlet
state formation.

We now look at the singlet-triplet splitting for the symmetric Anderson model (εd = −U/2):

E(t) − E(s) ≈ 8V 2

U
, (70)

with U � V . This value is identical to 2Jeff , where Jeff is given in the Schrieffer-Wolff transformation
and to Jkk′ in the Kondo model, eq. (4) (see Sec 2.1).

We further continue by considering the 3-electron subspace. The dimension of the Hilbert space
for the 3-electron basis is

(
4
3

)
= 4. The corresponding basis, ordered with respect to the spin, is

{|d ↑, d ↓, 0 ↑〉, |d ↑, 0 ↑, 0 ↓〉, |d ↑, d ↓, 0 ↓〉, |d ↓, 0 ↑, 0 ↓〉} . (71)

The corresponding Hamiltonian matrix for the 3-electron subspace per spin is then given by,

H(3)
σ =

(
0 V

V εd

)
.

The eigenenergies, which can be found by diagonalizing the Hamiltonian matrix can be obtained as,

E
(3)
σ,± =

εd
2
±

√
ε2d
4

+ V 2. (72)

Thus the eigenenergies of the 1-electron and 3-electron subspaces are identical. Indeed, the 3-electron
subspace is nothing but the 1-hole subspace, which due to particle-hole must be equivalent.

Since we are already equipped with the eigenenergies of 1-electron, 2-electron and 3-electron sub-
spaces, in the next step, we compute the excitation energies from the ground state (2-electron) subspace
to the one electron less (1-electron) subspace:

E
(s)
− − E

(1)
+ ≈ εd − 2Jeff − Jeff/2 = εd − 5Jeff/2, (73)

E
(s)
− − E

(1)
− ≈ εd − 2Jeff − εd + Jeff/2 = −3Jeff/2. (74)

and to the one electron more (3-electron) subspace:

E
(s)
− − E

(3)
+ = E

(s)
− − E

(1)
+ = εd − 5Jeff/2, (75)

E
(s)
− − E

(3)
− = E

(s)
− − E

(1)
+ = −3Jeff/2. (76)

The second set of the equations, (75,76) can be again understood in terms of the particle-hole symmetry.
As the 1-electron and the 3-electron(1-hole) subspaces are identical due to the particle-hole symmetric
condition, consequently the the excitation energies to the half-filled (2-electron) subspace must be
equal of course with the opposite sign.

In Fig. 4 we show the spectral density ρ(ω) = − 1
π ImGdσ(ω) of the impurity (d) level per spin for

both the symmetric (left side) and the asymmetric Anderson model (right side). Gdσ(ω) is computed
from the Lehmann representation. Hence it becomes clear that the spectrum indeed shows the excita-
tions from the 2-electron ground state on adding or removing one d electron. The peak positions are
already derived according to equations.(73-76).

Hence, it can be seen that using ED for such a simple system can give an illustration to the Kondo
physics. Moreover, the particle hole symmetry can be very well conceived.
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Figure 4: Spectral density calculated by ED for a two-site Anderson model (including one impurity
level and one bath site) for the symmetric case εd = −2, εk = 0.0, V = 0.5 and U = 4 (LEFT), and
the asymmetric case εd = −2, εk = 0.0, V = 0.5 and U = 5.5 (RIGHT).

3.1.2 Some implementation details of the exact diagonalization procedure

In this section we explain in detail the technical implementation of the ED method for the general
case. At first, the basis sets should be represented. Our basis sets, Slater determinants for fermions,
{|φm〉}, are represented in the occupation number representation. The reason of this choice is, that in
this way they can be represented by binary digits of integer numbers. Since a bit can have only one
of these two values, either 0 or 1, it is similar to a fermionic state, which can be either occupied by an
electron with a certain spin or unoccupied. In order to make it clear we continue with an examples.
Consider a 3-site system ndim = 3, consisting of a single impurity (d) level plus two bath sites k1, k2,
which is filled with 3 electrons. One possible configuration with the corresponding integer number is,

|d ↑, k1 ↓, k2 ↑〉 = |100110〉 → 1× 20 + 0× 21 + 0× 22 + 1× 23 + 1× 24 + 0× 25 = 25. (77)

Once the basis set is set up, the next step is ordering the basis in terms of the system symmetry. Since
the spin Sz is conserved in the AIM, i.e. [H,Sz] = 0, we classify the Slater determinants according to
the spin Sz.

Now the block Hamiltonian matrices corresponding to a specific occupancy and a certain spin value
can be built up. Generally, the Hamiltonian can be separated in terms of the one-body and two-body
interaction terms

H1 =
∑
σ

∑
i,j

tijc
†
iσcjσ, (78)

and
H2 =

1

2

∑
σ,σ′

∑
i,j,k,l

Uijklc
†
iσc
†
jσ′clσ′ckσ, (79)

respectively, where i, j, k and l run over the number of sites. Here, e.g. the first position is assigned to
spin up and the second to spin down. Note that as the idea is to obtain the Hamiltonian matrix for a
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very general situation, the general expression for the two-body interaction eq. (79) is used. However, if
acquiring the Hamiltonian matrix for the single impurity is the case, then the corresponding two-body
Hamiltonian matrix is much simpler. The Hamiltonian now acts on the basis sets and constructs new
states, obviously different from the initial ones. To make it clear, we assume a two-site model and
we act with the corresponding Hamiltonian on an arbitrary basis state, say, |1001〉. Acting with the
one-body part yields,∑

σ

(
t11c

†
1σc1σ + t12c

†
1σc2σ + t21c

†
2σc1σ + t22c

†
2σc2σ

)
|1001〉 = (−1)0(−1)0t11|1001〉

+ (−1)1(−1)1t12|1100〉

+ (−1)1(−1)1t21|0011〉

+ (−1)0(−1)0t22|1001〉 (80)

and the corresponding non-zero matrix elements for this case are,

〈1001|H1|1001〉 = t11 + t22 (81)

〈1100|H1|1001〉 = t12 (82)

〈0011|H1|1001〉 = t21. (83)

Acting with the two-body part of the Hamiltonian on the same basis, |1001〉, gives zero. The two-body
interaction is nonzero only when the impurity level is doubly occupied, namely,

1/2
∑
σσ′

U1111c
†
1σc
†
1σ′c1σ′c1σ|1100〉 = U1111(−1)0c†1σc

†
1σ′c1σ′ |0100〉

= U1111(−1)0(−1)0c†1σc
†
1σ′ |0000〉

= U1111(−1)0(−1)0(−1)0c†1σ|0100〉

= U1111|1100〉 (84)

and consequently the only nonzero matrix element for this case is according to,

〈1100|H2|1100〉 = U1111. (85)

We should add a bit of explanation regarding the sign attribution to states during acting with the field
operators of the Hamiltonian. When the number of the occupied positions behind the acted position
(where the electron will be added or removed), m, is odd, the corresponding sign is negative and when
m is even the sign is positive. More, assume c3↑|110010〉, which we should remove an electron from the
first position of the second bath site (third site). The number of occupied positions behind it is m = 2

(the first and second positions are occupied while the third and forth are empty), hence the result is
(−1)2|110000〉. The last point is that due to the hermiticity of the Hamiltonian matrix, Hmn = Hnm

we do not need to calculate all the matrix elements.
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3.2 The distributional exact diagonalization Algorithm

In this chapter we review the distributional exact diagonalization (DED) approach, originally intro-
duced by Granath and Strand.54 We consider the AIM of a single interacting impurity level coupled
to an infinite conduction electron bath according to eq. (1). The general idea of the DED approach is
to map the infinite Anderson model to an ensemble of relatively small finite Anderson models, instead
of a single effective Anderson model. Each finite Anderson model can then be solved exactly by exact
diagonalization. Our starting point is the non-interacting retarded Green’s function G0, including Σ0:

G0(ω) =
1

ω+ − εd − Σ0 −∆(z)
(86)

Where ω+ = ω + iδ, with δ, a positive infinitesimal. Σ0 can be understood as an effective one-body
potential for the non-interacting reference system. Its exact role will be elucidated later in Sec.3.3.
Anticipating our later discussion, we mention here that Fermi liquid theory considerations suggest that
Σ0 should be the real part of the interacting self-energy at the Fermi level. It is here in including Σ0

at this stage, and interpreting it as an effective one-body potential that our approach deviates from
that originally proposed by Granath and Strand.54

In the next step, we need to replace the continuous nature of the infinite AIM by the discretized
electronic states in order to feed them into the exact diagonalization process. Therefore the represen-
tation of the non-interacting Green’s function of the impurity level G0 in terms of a large number M
of poles bi on the real axis is considered:

G0(ω) =

M∑
i=1

ai
ω+ − bi

, (87)

thereby effectively discretizing the conduction electron bath. Note that, here ai are the residues
corresponding to the poles bi which have to be normalized according to

∑
ai = 1. Then We divide the

poles into N groups of size n (Nn=M):

G0(ω) =
1

N

N∑
ν=1

n∑
i=1

aνi
ω+ − bνi

=
1

N

∑
ν

Gν0(ω), (88)

where n is a relatively small integer number that ultimately determines the size of the finite AIM, and
N stands for the number of groups, the number of finite-size Anderson models in the ensemble. Now
the residues in each group have to be normalized as well, i.e.

∑n
i=1 a

ν
i = 1 for all ν = 1 . . . N .

The poles representing G0(ω) are generated randomly using the non-interacting spectral density
ρ0(ω) = − Im[G0(ω)]/π as the probability distribution. As we picked up a flat hybridization, then the
corresponding non-interacting spectral density is a Lorentzian function:

ρ0(ω) =
Γ/π

ω2 + Γ2
(89)

Hence, each set ν of n randomly chosen poles uniquely defines the non-interacting part of a finite-size
Anderson model:

Hν
0 = εν0

∑
σ

d†σdσ +
n−1∑
σ,k=1

V ν
k (d†σckσ + c†kσdσ)

+

n−1∑
σ,k=1

ενk c
†
kσckσ. (90)

27



The mapping from the set of poles to the parameters of the finite Anderson model is achieved by
equating Gν0 and the impurity Green’s function corresponding to Hν

0 :

n∑
i=1

aνi
ω+ − bνi

=

(
ω − εν0 −

n−1∑
k=1

(V ν
k )2

ω+ − ενk

)−1

, (91)

where the residues are taken to be constant with aνi = 1/n. Note that since the poles bνi are chosen to be
distributed randomly according to the probabilities ρ0(bνi ), the seemingly reasonable choice aνi ∼ ρ0(bνi )

for the residues is actually wrong as it would lead to a sampled non-interacting DOS different from
ρ0(ω).

The mapping process can be recast into the three equations to extract the finite AIM parameters:
The bath energy levels ενk can now be found from the roots of Gν0 ,

Gν0(ω = ενk) = 0 ∀ k = 1, . . . , n− 1, (92)

while the hoppings V ν
k between the impurity and the bath levels are determined from the derivative of

Gν0 at the bath level energies as

dGν0
dω

∣∣∣∣
ενk

= − 1

(V ν
k )2

∀ k = 1, . . . , n− 1. (93)

And the impurity level energy is obtained from the mean value of sampled poles:

εν0 =
n∑
i=1

aνi b
ν
i =

1

n

n∑
i=1

bνi . (94)

By now, we successfully extracted all parameters for the non-interacting Anderson models. Then,
the interacting finite Anderson model is obtained by adding the interaction part, and, importantly,
subtracting out the effective one-body potential Σ0 to avoid double counting of interaction:

Hν = Hν
0 + Und↑nd↓ − Σ0nd (95)

Hence we see that Σ0 does not really play a role yet. The role of Σ0 will become clear later in the
context of the constraint (see Sec. 3.3). For later convenience we also define the bare impurity level
ενd = εν0 − Σ0 of the finite model. Note that ενd → εd in the limit of n→∞.

The finite Anderson model Hamiltonian Hν is now diagonalized numerically. This yields the many-
body eigenstates |mν〉 and the corresponding eigenenergies Eνm. The Green’s function for the impurity
level in the full interacting system is then given by the Lehmann representation:

Gνσ(ω) =
∑
m

|〈mν |dσ|0ν〉|2

ω+ + Eνm − Eν0
+
∑
m

|〈mν |d†σ|0ν〉|2

ω+ + Eν0 − Eνm
(96)

where |0ν〉 and Eν0 denote the ground state and corresponding ground state energy. In the case of a
degenerate ground state the corresponding Green’s function would be obtained as,

GR(ν, ω) =
1

Ndeg

Ndeg∑
n=1

(∑
m

|〈0νn|dσ|mν〉|2

ω+ + Eνm − Eν0,n
+
∑
m

|〈mν |d†σ|0νn〉|2

ω+ + Eν0,n − Eνm

)
(97)
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Figure 5: Schematic representation of the DED method. The non-interacting density of the impurity
level ρ0(ω) is interpreted as a probability distribution for the poles of the non-interacting Green’s func-
tion G0(ω). A finite number of poles bνi is then generated randomly according to the distribution ρ0(ω).
The selected n poles uniquely define a finite Anderson model Hν with n−1 bath sites. Diagonalization
ofHν yields the self-energy Σν(ω) corresponding to the finite Anderson model. This process is repeated
many times (N). An approximation to the self-energy of the original infinite Anderson model (1) is
obtained from the ensemble average of the self-energies of the finite Anderson model samples (99).

where Ndeg refers to the number of the number of ground state degeneracy. However, we will see
in Sec.3.3 that the particle constraint ensures that the ground state is actually a singlet state. The
corresponding self-energy of the finite Anderson model is

Σν
σ(ω) = (Gν0(ω))−1 − (Gνσ(ω))−1 + Σ0 (98)

This process of generating finite Anderson model Hamiltonians Hν and calculating their self-energies
Σν is repeated N times. Finally, an approximation to the self-energy of the original infinite Anderson
model is obtained from the ensemble average

Σ̄σ(ω) =
1

N

N∑
ν=1

Σν
σ(ω) (99)

An approximation to the corresponding interacting Green’s function is obtained from Gσ(ω) = (ω+ −
εd − Σ̄σ(ω) − ∆(ω))−1. As observed by Granath and Strand, obtaining an approximation to the
Green’s function of the infinite Anderson model by directly averaging the Gνσ(ω) is not an option,
since the sample-averaged interacting and non-interacting Green’s functions Ḡσ(ω) = 1

N

∑
ν G

ν
σ(ω)

and Ḡ0(ω) = 1
N

∑
ν Ḡ

ν
σ(ω), respectively, do not form a proper pair of interacting and non-interacting

Green’s functions connected by the Dyson equation.54 Fig. 5 shows a schematic representation sum-
marizing the main steps of the DED procedure.

3.3 Role of the constraint

In order to achieve valid spectra not all randomly generated Anderson models can be accepted. Granath
and Strand introduced a constraint comparing the ground state particle numbers in the interacting
and non-interacting systems. More precisely, a sample ν is only accepted if the number of particles of
the ground state of the interacting model Hν and that of the non-interacting model Hν

0 coincide, i.e.

Nν (!)
= Nν

0 . (100)
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Figure 6: Effect of constraint: (a) Comparison of spectra calculated with (blue line) and without
(red line) imposing the particle number constraint for n = 4 sites, Γ = 0.3, U = 3, εd = −U/2. (b)
Comparison of sampled non-interacting DOS ρ̄0(ω) for different number of sites with original Lorentzian
non-interacting DOS ρ0(ω).

To show the important role of the constraint, in Fig. 6a we show the spectra corresponding to the
situation when all randomly generated finite Anderson model samples are equally contributing to the
sample-averaged self-energy, i.e. when no constraint is imposed (red dashed line), compared to the
case when only the configurations fulfilling the particle constraint contribute to the ensemble-averaged
self-energy (blue line). As can be seen when no constraint is imposed there is essentially no Kondo
peak and the Hubbard side peaks are overestimated, while applying the constraint, indeed recovers
the full height of the Kondo peak at the Fermi level and lowers the Hubbard side peaks. According to
the Fermi liquid theory and the Friedel sum rule, for the flat wide band limit, the impurity spectral
density at the Fermi level8 is as:

ρd,σ(εF ) =
sin2(π〈nd,σ〉)

πΓ
. (101)

This is an exact expression, which interestingly is independent of the interaction U . For the particle
hole (ph) symmetric case, the impurity spectral density at the Fermi energy coincides exactly with the
height of the Kondo peak, and the occupancy of the impurity level per spin is 1/2, so that,

ρd,σ(εF ) =
1

πΓ
. (102)

The effect of the constraint on the sampled non-interacting density of states is shown in Fig. 6b.
The effect is to deplete the density of sates around the Fermi level. As the number of sites n increases,
the effect of the constraint become less important. As already can be noticed the role of the constraint
is very crucial to capture the Kondo physics correctly. Now, in the following, we elaborate the physical
interpretation of it. Recalling the particle constraint, the sample ν is accepted, if the ground state
particle number of the interacting system Nν coincides with the ground state particle number in the
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non-interacting system Nν
0 . For each finite size sample we have:

Nν = nνimp + nνbath (103)

Nν
0 = nνimp,0 + nνbath (104)

where the contribution of the isolated bath (which is not connected to the impurity) to the total
particle numbers is

nνbath = − 1

π

∫ εF

−∞
dω
∑
k

1

ω+ − ενk
. (105)

Since, the isolated bath levels are exactly the same in both cases eq.(103) and eq.(104), the pure bath
contribution to the total particle number nνbath is the same for both the interacting and non-interacting
system. Hence, the constraint imposes that the impurity charge be the same in the interacting and
non-interacting case, i.e.:

nνimp = nνimp,0 (106)

The impurity charge consists of the impurity level occupancy, nνd plus the additional charge induced in
the conduction electrons (i.e. bath levels) by the scattering due to the presence of the impurity level,
δnνimp:

nνimp = nνd,σ + δnνimp = − 1

π
Im

∫ εF

−∞
dω(Gνd(ω) +

∑
k

gνk(ω)T νkk(ω)gνk(ω)) (107)

where gνk = 1
ω+−ενk

is the propagator for the isolated bath bath level k, and T νkk(ω) = V ν
k G

ν
d(ω)V ν

k

is the scattering T-matrix. Note that in the case of a flat wide band limit, the scattering induced
charge δnνimp vanishes.8 However, here we are considering a small finite number of bath levels, thus
this contribution becomes indeed very important. To further elucidate this we now consider Friedel’s
sum rule for the Anderson model. According to that the impurity charge, nimp is connected to the
scattering phase shift at the Fermi level nimp = η(εF )/π.8 For a finite Anderson model sample ν we
can write:

nνimp,σ = ηνσ(ω)/π (108)

where the scattering phase shift of the interacting system is given by,

ηνσ(ω) =
π

2
− tan−1

(
ω − ενd − Re Σν

σ(ω)− Re ∆ν(ω)

Im Σν
σ(ω) + Im ∆ν(ω)

)
. (109)

Hence it becomes immediately clear, that the particle constraint which is imposing the same impurity
charge to the interacting system and the non-interacting system, is ultimately equivalent to enforcing
the same phase shift to the interacting system and the corresponding non-interacting one, i.e.,

nνimp,σ =
ηνσ(εF )

π

constr.
= nνimp,σ,0 =

ηνσ,0(εF )

π
(110)

where the phase shift of the non-interacting system is given by,

ην0,σ(ω) =
π

2
− tan−1

(
ω − εν0 − Re ∆ν(ω)

Im ∆ν(ω)

)
, (111)

Note that the hybridization function of the sample ν, ∆ν(ω) describing the coupling of the impurity
level to the bath levels, is according to:

∆ν(ω) =
∑
k

|V ν
k |2gνk(ω) =

∑
k

|V ν
k |

ω+ − ενk
. (112)
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with ω+ = ω + iδ where δ is a positive infinitesimal. Let us now have a closer look onto how the
constraint acts on individual samples. We define the effective level as εν0 = ενd + Σ0. In the expression
for the non-interacting system eq.(111) we take the limit of δ → 0. The denominator Im ∆ν(εF ) =

−δ
∑

k
|Vk|2

(εF−εk)2+δ2
is always negative for positive δ and goes to zero for δ → 0 unless, εk = εF . Hence

depending on the sign of the numerator the tan−1 argument tends to −∞, ∞ or zero. So that, for
finite systems the phase shift can only have three different values:

ην0 (εF )→


0 ; for εF − ε0 − Re ∆ν(εF ) < 0

π/2 ; for εF − ε0 − Re ∆ν(εF ) = 0

π ; for εF − ε0 − Re ∆ν(εF ) > 0

The sign of the numerator is determined by the position of the effective level ε̃0ν = εν0 + Re ∆ν(ε̃0
ν).

The effective level is the most important excitations from the Fermi level. If ε̃0ν happens to be below
the Fermi level, then it is hole excitation so that, the numerator εF − ε0 −Re ∆ν(εF ) is negative, and
consequently the phase shift is zero. Conversely, if ε̃0ν lies above the Fermi level there is a particle
excitation, then the numerator εF − ε0−Re ∆ν(εF ) is positive, and hence the phase shift is π. A phase
shift π/2 is theoretically also possible (implying nimp = 1) but in practice it does not happen. This
situation can occur when the effective level ε̃0ν sits right at the Fermi level, or when two effective levels
are at exactly the same distance from the Fermi level, one below and one above. Thus the numerator
becomes zero, and accordingly the phase shift is π/2.

Hence during the DED procedure the phase shift of individual samples will fluctuate between these
two values 0 and π. In the ph-symmetric situation (εd = −U/2) the probability of samples with phase
shift 0 will be equal to the samples with phase shift π for a large enough number of samples. Hence
on average we have a phase shift of π/2 as required in that situation. Away from ph symmetry, the
number of samples with one phase grows on the expense of samples with other phase shifts, so that
the average phase shift becomes different from π/2.

Similar to the non-interacting case, also in the interacting case the phase shift oscillates between
the three values, 0, π/2 and π, depending on the sign of the numerator εF −ενd−Re Σν(εF )−Re ∆ν(εF )

in eq. 109 since the denominator Im Σν(εF )− Im ∆ν(εF ) ∝ δ

ην(εF )→


0 ; for εF − ενd − Re Σν(εF )− Re ∆ν(εF ) < 0

π/2 ; for εF − ενd − Re Σν(εF )− Re ∆ν(εF ) = 0

π ; for εF − ενd − Re Σν(εF )− Re ∆ν(εF ) > 0

Also in the interacting case the sign of the numerator can be related to the position of effective quasi-
particle (QP) levels ε̃νd = ενd−Re Σν(εF )−Re ∆ν(εF ) with respect to the Fermi level. The point is that
by construction in the non-interacting case all poles of the impurity Green’s function have the same
residue, i.e. all QP levels have the same weight while in contrast to the non-interacting case we have
to take into account that the QPs are renormalized, so in principle they can have different weights.
Therefore, ε̃νd in the interacting case is not simply the nearest quasi particle level to the Fermi level, but
rather the most important one, taking also into account its weight (or residue). The most important
one should be given by the pole in the interacting Green’s function with the largest ratio between pole
and residue.

Now just as in the non-interacting case, if the effective energy level ε̃νd of the most important QP, lies
below the Fermi level (hole excitation) the numerator εF − ενd−Re Σν(εF )−Re ∆ν(εF ) is negative, and
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we get a phase shift of 0, and if ε̃νd lies above the Fermi level (particle excitation), then the numerator
becomes positive, and the phase shift is π. In the situation where the numerator becomes exactly zero
we either have a QP exactly at the Fermi level or two equally important QPs above and below the
Fermi level, leading to a phase shift of π/2. The latter situation is not very unlikely especially for the
two site(level) model (one impurity and one bath level) thus we have nimp = 1. But then the particle
constraint can not be fulfilled as in the non-interacting system we either have nimp = 0 or nimp = 2.

Hence we can see that the particle constraint, by demanding that the interacting system has the
same phase shift as the non-interacting one, ultimately requires that the type of the most important
excitation, (i.e. hole-like or particle-like ) be the same in the interacting and non-interacting systems.
This is illustrated in Fig. 7 which compares the spectra of an interacting and non-interacting finite
Anderson model in the case that the constraint is not fulfilled (a) and when it is fulfilled (b). One can
clearly see that the main excitations are not of the same type when the constraint is not fulfilled, while
they are of the same type if the constraint is fulfilled. Clearly, in the latter case a 1:1 correspondence
can be established between the excitations of the interacting and corresponding non-interacting system.
Hence the constraint guarantees that only self-energies Σν

σ(ω) which have the same phase shift as the
corresponding non-interacting model contribute to the ensemble average (99). A closer look at the phase
shifts ηνσ and ην0,σ of individual finite Anderson model samples ν further reveals that the constraint
really establishes a 1:1 correspondence between the excitations of the interacting Hamiltonian Hν and
the corresponding non-interacting one Hν

0 , as required by Fermi liquid theory. When the constraint
is not fulfilled, the 1:1 correspondence with the non-interacting system cannot be established, because
the ground state of the interacting system has an odd number of electrons (Nν = Nν

0 ± 1) and thus
is a doublet state (S = 1/2), while the non-interacting system must have an even number of electrons
(single-particle levels are either doubly occupied or unoccupied), and thus has a singlet ground state
(S = 0). Thus the constraint ultimately enforces that individual Anderson model samples contributing
to the self-energy average (99) comply with Nozieres’ Fermi liquid picture66 of the Kondo effect in the
strong coupling regime: the impurity spin locks into a total spin singlet state with a few conduction
electron bath levels, and the remaining conduction electrons interact weakly with the singlet state,
thus leading to Fermi liquid behavior. Since Friedel’s sum rule is directly related to the height of the
Kondo peak at the Fermi energy, the particle constraint ultimately leads to the recovery of the unitary
limit for the interacting spectral function, and consequently to the recovery of Fermi-liquid behavior.

The effective potential Σ0 included in the non-interacting Green’s function (86) enters in the con-
straint: Since εν0 = ενd +Σ0 it determines the phase shift ην0,σ(εF ) and consequently the impurity charge
nνimp,σ,0 of the non-interacting reference system. as the corresponding non-interacting model contribute
to the ensemble average (99). The interpretation of the constraint as a sample-wise enforcement of
Fermi liquid behavior suggests that the parameter Σ0 should be interpreted as an effective one-body
potential that can be identified with the real part of the (yet to be determined) many-body self-energy:

Σ0 ≡ Re Σ̄(εF ) (113)

This conjecture can be further justified by considering the exact limit of the DED approach: taking
the number of poles n→∞, the original infinite Anderson model is recovered. Since now there is only
one sample, the constraint must be fulfilled for this one sample, hence the phase shift of the interacting
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Figure 7: Comparison of the non-interacting and interacting finite Anderson model spectra for the
case that the particle constraint is not fulfilled (a) and is fulfilled (b).

and corresponding non-interacting model must match exactly, leading to:

tan−1

(
εd + Re Σ(εF )− εF

Γ

)
(!)
= tan−1

(
εd + Σ0 − εF

Γ

)
(114)

which implies Σ0 ≡ Re Σ̄(εF ) .
Since the self-energy itself is not known prior to the calculation, Σ0 has to be determined self-

consistently, starting with some initial guess for Σ0, for example the Hartree shift Σ0 ≡ Und/2 with nd
being the Hartree-Fock occupancy. This is where our approach slightly differs from the one originally
proposed by Granath and Strand. There Σ0 was introduced as an effective chemical potential which is
equal to U/2 for the symmetric situation and away from the ph symmetry is an adjustable parameter
to be fixed by demanding that the interacting and non-interacting impurity occupancy nd be the same.
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4 Zero temperature results

In the following we present results for the AIM described by eq. (1), assuming a constant hybridization
function ∆(ω) = −iΓ. The non-interacting density of states ρ0(ω) is thus a Lorentzian centered
at εd + Σ0 of width 2Γ. To resolve the interacting spectral functions we use a logarithmic mesh,
and a frequency dependent Lorentzian broadening scheme where an imaginary part proportional to
the frequency is added to the frequency argument in the denominators of the Green’s functions, i.e.
ω+ = ω+ iη1 · |ω| with η1 = 0.02. For all cases Numerical renormalization Group (NRG), a numerically
exact method is used as a benchmark.

4.1 Symmetric Anderson model

First we study the AIM at particle-hole symmetry, εd = −U/2 and 〈nd〉 = 1. In this case the real part
of the self-energy at the Fermi level is known prior to calculation, Σ0 = U/2, and hence does not have to
be determined self-consistently. Fig. 8a shows the impurity spectral function ρ(ω) = − ImG(ω)/π for
U = 3 and Γ = 0.3 calculated by DED with n = 8 sites, in comparison with the NRG spectrum. The
DED and NRG spectra are in excellent overall agreement. The Anderson model is in the Kondo regime,
where the spectral function is characterized by three resonances: The sharp Kondo resonance at the
Fermi level and two Hubbard side peaks on either side of the Fermi level close to the excitation energies
εd and εd+U . In Fig. 8b, we show DED spectra for different numbers of sites n in comparison with NRG
for the same set of parameters as in Fig. 8a. In order to better resolve the spectra at low energies, the
energies are plotted on a logarithmic scale. Even for very small models (n = 2) there is good qualitative
agreement with the NRG spectrum, but the width of the Kondo peak is overestimated roughly by a
factor of 2 (see also Fig. 10b), and the height of the Hubbard side peaks is slightly underestimated.
Note, however, that the height of the Kondo peak 1/πΓ (eq. (102)) is always exact, independent of
the number of sites n, since it is imposed by the particle constraint, as discussed in Sec. 3.3. As the
number of sites n increases, the quantitative agreement with NRG improves considerably, becoming
excellent for n = 8 sites. The quantitative improvement with increasing number of sites can also be
seen in Fig. 10b, where we show the half-width of the Kondo peak as a function of the model size n in
comparison to the NRG value.

The number of randomly generated samples contributing to the ensemble average of the self-energy
(99) generally determines the amount of noise in the spectra. By increasing the number of samples N
the noise can be reduced, and vanishes in the limit N →∞. On the other hand, the larger the number
of sites n of the finite size Anderson models, the fewer samples are needed to achieve the same level
of noise, since the number of poles in the spectrum of individual samples increases. For example, in
Fig. 8b for n = 2, 4, 8 sites about 5.8 × 104, 3.6 × 104 and 1.7 × 104 samples, respectively, were used
to generate the spectra. Obviously, in the (theoretical) limit of the original infinite Anderson model
(n→∞) there would be only one sample which would yield an exact and thus noiseless spectrum. In
Table. 2 we report the number of samples used for calculating the spectra shown in Figs. 8-12.

Next we investigate how the quality of the DED spectra changes when the correlation strength
controlled by U/Γ is altered. In Fig. 9a,b we show a comparison of spectra calculated by DED and
NRG for higher values of the broadening Γ than before. For weak correlation strength (Γ = 0.9,
Fig. 9a), the system is no longer in the Kondo regime: the spectra are characterized by a single peak,
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Figure 8: Comparison between DED and NRG spectra for the symmetric Anderson model (U = 3

and εd = −1.5). (a) DED (n = 8) and NRG spectra for Γ =0.3. (b) NRG and DED with different
number of sites n on a half-log scale for Γ =0.3.

though different from the Lorentzian of the non-interacting system due to interaction effects. Here the
agreement with NRG is excellent already for n = 2 (not shown). As the correlation strength increases,
more sites are necessary to achieve good quantitative agreement. For Γ = 0.5 (Fig. 9b), we approach
the Kondo regime, and the three peak structure starts to emerge. Now excellent quantitative agreement
with NRG can be achieved for n = 6 sites. We have already discussed the case Γ = 0.3 (Figs. 8a,b
and Fig. 10b), already in the Kondo regime, where excellent agreement with NRG is reached for n = 8

sites. Figures 9c,d show DED spectra in comparison with NRG for Γ = 0.2, on a normal energy scale
(Fig. 9c), and on a logarithmic energy scale (Fig. 9d) for better resolution of the low-energy features.
The overall qualitative agreement with the NRG spectrum is again quite good, as can be seen from
Fig. 9c. However, the quantitative agreement, especially of the low energy features, i.e. the Kondo
peak, is not very good anymore: the width of the Kondo peak is still strongly overestimated by almost
a factor of 2 even for n = 8 sites. The high energy features on the other hand are captured quite well,
although the height of the Hubbard side peaks is slightly overestimated.

This behavior of decreasing quality of the DED at a fixed number of sites with increasing correlation
strength U/Γ is summarized in Fig. 10a which shows the half-width of the Kondo peak as a function
of Γ, comparing DED for n = 8 sites, NRG and an exact expression.67 For not too strong correlations
up to Γ ≥ 0.3 (U/Γ ≤ 10), DED for n = 8 sites yields an excellent approximation to the width of the
Kondo peak, but begins to deviate from NRG as the correlations become stronger (decreasing Γ). For
very strong correlations (i.e. U/Γ� 10), the width of the Kondo peak becomes strongly overestimated,
by orders of magnitude (see also Fig. 9c and Fig. 9d). This behavior can be understood by considering
the Kondo screening cloud, whose spatial extension grows exponentially with increasing correlation
strength:68 ξK ∝ 1/TK ∝ eΓ/U . Thus the number of bath sites necessary to correctly describe
the Kondo screening cloud grows exponentially with the correlation strength, leading generally to an
overestimation of the Kondo temperature for too small bath sizes. Hence for very strong correlation
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Figure 9: Comparison between DED and NRG spectra for the symmetric Anderson model. (U = 3,
εd = −1.5) (a) DED (n = 6) and NRG spectra for Γ =0.9. (b) DED (n = 6) and NRG spectra for
Γ =0.5. (c) DED (n = 8) and NRG spectra for Γ =0.2. (d) NRG and DED for different number of
sites n on a half-log scale for Γ =0.2.

strengths the DED method cannot provide a quantitatively satisfactory description of the spectra with
a computationally feasible number of bath sites. Yet for correlation strengths up to and including
U/Γ ≈ 10 DED yields an excellent description of the spectra for small to moderate numbers of bath
sites.

4.2 Asymmetric Anderson model

We now consider the AIM away from particle-hole symmetry, εd < −U/2 and 〈nd〉 > 1. As explained
before in Sec. 3.3, the parameter Σ0 has to be determined self-consistently since we identified it with
the real part of the self-energy at the Fermi level, Σ0 ≡ Re Σ̄(εF ) which is unknown prior to the
DED calculation. We thus start with some reasonable initial guess, for example the Hartree shift
Σ0 ≡ U〈nd〉/2, calculated within Hartree-Fock, Σ0 ≡ U/2, or simply Σ0 ≡ −εd. Using this Σ0 in the
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Figure 10: Comparison between DED and NRG spectra for the symmetric Anderson model (U = 3

and εd = −1.5). (a) Half-width of Kondo peak estimated by fitting with Frota line shapes69 versus
Γ calculated by DED (n = 8 for Γ ≤ 0.3 and n = 6 for Γ ≥ 0.5) compared to NRG and the exact
expression on half-log scale. (b) Half-width of Kondo peak versus number of sites n compared to NRG
for Γ =0.3.

DED procedure we calculate the self-energy Σ̄(1)(ω) and thus obtain a new guess for Σ0 → Re Σ̄(1)(ω),
and repeat until self-consistency is reached. This procedure usually converges within a few cycles (2-4)
to an accuracy of under 1%. We find that the effect of the self-consistency on the overall spectrum is
relatively small. The main effect is to improve the position of the Kondo peak and to recover the exact
height of the Kondo peak. Hence if the fine details of the spectrum are less important, it suffices to
compute Σ̄(ω) for some reasonable guess, for example Σ0 = U/2. More details on the self-consistent
determination of Σ0 can be found in the following section.

In Fig. 11a we show the impurity spectral density for U = 3, Γ = 0.3 and εd = −2, calculated
by DED for n = 8 sites in comparison with the NRG spectrum. The DED spectrum is in very good
overall agreement with the NRG spectrum. For as much as we are in the Kondo regime the three peak
structure is retained (see Sec. 4.1). As in the symmetric case, in order to better resolve the spectra at
low energies, we use a logarithmic scale for the energy axis. Since here we are dealing with asymmetric
spectra, we represent the spectral density on the logarithmic scale for negative and positive energies in
Fig. 11c and Fig. 11d, respectively. As in the ph-symmetric case, we observe quantitative improvement
of the DED spectra with increasing n. Especially the position and height of the Kondo peak improve
considerably: While for small n the peak is considerably offset from the Fermi level, the pinning of
the Kondo peak to the Fermi level as seen in NRG is almost completely recovered for n = 8. As can
be seen from Fig. 11b, similar to the symmetric case (see Sec. 4.1), the width of the Kondo peak is
strongly overestimated for n = 2 by almost a factor of 3, but decreases rapidly with increasing n, until
for n = 8 the width is only slightly overestimated by a few percent.

Next we investigate the quality of the DED spectra when moving away from the Kondo regime, by
further decreasing εd such that εd + U approaches the Fermi level. In Figs. 12a,b we compare spectra
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Figure 11: Comparison between DED and NRG spectra for the asymmetric Anderson model (U = 3,
εd < −1.5, Γ = 0.3). (a) DED (for n = 8 sites) and NRG spectra for εd = −2. (b) Half-width of
Kondo peak versus number of sites n compared to NRG (εd = −2). (c) NRG and DED spectra with
different number of sites n for εd = −2 on a half-log scale for negative energies. (d) NRG and DED
spectra with different number of sites n for εd = −2 on a half-log scale for positive energies.
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Figure 12: Comparison between DED and NRG spectra for the asymmetric Anderson model (U = 3,
εd < −1.5, Γ = 0.3). (a) DED (for n = 8 sites) and NRG spectra for εd = −2.5. (b) DED (for n = 8

sites) and NRG spectra for εd = −3.

εd NRG DED (ENS) DED (FSR) Σ0

-1.5 1.0000 0.9992±0.0062 1.0080±0.068 1.496±0.032
-1.65 1.0202 1.0234±0.0063 1.0398±0.062 1.630±0.030
-1.8 1.0420 1.0495±0.0066 1.0646±0.056 1.769±0.027
-2.0 1.0765 1.0862±0.0089 1.1315±0.055 1.937±0.027
-2.5 1.2322 1.2370±0.0110 1.2970±0.030 2.349±0.019
-3.0 1.5270 1.5450±0.0150 1.5280±0.014 2.673±0.014

Table 1: The d-level occupancy 〈nd〉 calculated by NRG compared to DED obtained (i) via the
ensemble average (ENS) and (ii) via Friedel’s sum rule (FSR) from Re Σ̄(εF ) as well as the self-
consistently determined Σ0 = Re Σ̄(εF ) for different values of εd and their statistical errors.

calculated by DED (for n = 8 sites) and by NRG in the intermediate valence regime εd+U−εF ≈ Γ. In
this regime the charge of the impurity level fluctuates strongly between single and double occupation,
leading to a significant deviation of 〈nd〉 from unity. The spectral density is characterized by two
resonances, one at ≈ εd +U of width ≈ Γ, and a much less pronounced resonance at εd. Upon further
decreasing εd the resonance at εd becomes more strongly suppressed (compare Fig. 12b with Fig. 12a),
as we get closer to the non-magnetic regime (εd + U − εF � −Γ) where the impurity level is almost
doubly occupied, and the resonance finally vanishes (not shown). As can be seen from Figs. 12a,b, the
DED spectra are in excellent agreement with the NRG ones even for strong asymmetry, capturing all
the described features very well.

Finally, we also calculate the occupancy of the impurity level 〈nd〉 for different values of εd and
compare with NRG. We investigate two different ways of calculating 〈nd〉 within DED. On the one hand
we can calculate the the occupancy from the ensemble average (ENS) over accepted finite Anderson
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model samples:
〈nd〉 ≈ n̄d =

1

N

∑
ν

〈0ν |nd |0ν〉 (115)

On the other hand we can make use of Friedel’s sum rule (FSR), and calculate 〈nd〉 from the self-energy
at the Fermi level:

〈nd〉 = 1− 2

π
tan−1

(
εd + Re Σ̄(εF )− εF

Γ

)
(116)

where we have already taken into account spin-degeneracy. Also note that nimp = 〈nd,σ〉, in the flat
wide band limit.8 Table 1 shows the results for NRG and DED using n = 8 sites. The overall agreement
between DED and NRG is very good. The values of 〈nd〉 calculated by both approaches in DED agree
with the NRG results within the statistical error for all values of εd. The statistical errors of the
ensemble-averaged occupancy and of Σ0 were estimated from the standard deviation from the mean
over all accepted samples. In the case of the occupancy calculated from Σ0 by FSR, the statistical
error was calculated by error propagation from the standard deviation of Σ0, i.e.:

δnd = |δnd/δΣ0|Σ0δΣ0. (117)

However, the statistical error is generally smaller for the ENS approach. Only for very strong asym-
metry (εd = −3) does the error of the FSR approach become slightly smaller than the one of the ENS
approach, and also the mean values are closer to the NRG results for ENS than for FSR.

From Table. 1 we can see that the error in the occupancy 〈nd〉 calculated via FSR as well as the error
in Σ0 decrease with increasing asymmetry. This can be understood by considering the acceptance ratio
which becomes better the stronger the asymmetry (see Sec. 4.4) so that more samples are accepted
(for a fixed total number of samples) contributing to the ensemble average for the self-energy, and
thus improving the statistics. For small asymmetries the argument to tan−1 in FSR (116) is close
to zero (εd + Re Σ̄(εF ) − εF ≈ 0)), and therefore tan−1 has an approximately linear behavior so that
δnd ≈ 2

πΓδΣ0, explaining the factor of roughly two between the error in 〈nd〉 and the error in Σ0

for small asymmetry since 2/πΓ ≈ 2 for Γ = 0.3. On the other hand, the error for 〈nd〉 calculated
via ENS increases slightly with increasing asymmetry despite more samples being accepted, since
the occupancies of individual finite Anderson model samples fluctuate more strongly with increasing
asymmetry.

4.3 Σ0 determination

As explained in Sec. 3.3 the effective one-body potential Σ0 entering the non-interacting Green’s
function (86) should be identified with the real part of the self-energy at the Fermi level, Σ0 ≡ Re Σ(εF ).
However, with the exception of the ph-symmetric situation where Re Σ(εF ) = U/2, the self-energy at
the Fermi level is unknown prior to calculation. Hence we propose to determine Σ0 self-consistently,
by starting with some initial guess, e.g. Σ0 → U/2. Using this initial guess the DED procedure yields
Re Σ̄(εF ), generally different from Σ0, which is taken as the new guess, Σ0 → Re Σ̄(εF ). This procedure
is repeated until self-consistency is reached, i.e. Σ0 does not change anymore within a specified accuracy.
We find that the self-consistency converges quite rapidly to an accuracy of under 1% within 3-4 cycles.
In Fig. 13 we show the effect of the self-consistency for Σ0 on the spectra close to the Fermi level. The
agreement between NRG and DED using the converged value Σ0 = Re Σ̄(εF ) ≈ 2.65 (red line) is quite
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Figure 13: Spectral function close to the Fermi level for different values of Σ0 calculated by DED
(n = 4 sites) compared to NRG for U = 3, εd = −3 and Γ = 0.3 on a large energy scale (left) and at
low energies (right). Note that on the left panel the curves for Σ0 = −εd (green) and for Σ0 = VHF

(cyan) have been offset by 0.2 and 0.4, respectively, in order to increase the visibility.

good. But the effect of self-consistency is actually relatively weak: DED with the initial guess Σ0 = −εd
or using the Hartree shift for Σ0 yield spectra that are also quite close to the NRG spectrum, with the
peak position just slightly shifted, even when using the Hartree-Fock potential Σ0 ≡ VHF ≈ 2.49 (cyan
line).

4.4 DED statistics

In Table 2 we summarize statistical information on the DED calculations reported in the text. One
can see that the acceptance ratio racc increases with increasing Γ (i.e. decreasing correlation strength
U/Γ), and increasing asymmetry. In both cases interaction effects become weaker, so that the non-
interacting limit is approached, where the DED becomes exact already for the one-site model (the
non-interacting DOS can be reproduced by simply sampling the non-interacting DOS ρ0(ω) of course)
where the constraint is always fulfilled.
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εd Γ n Ntot Nacc racc

-1.5 0.2 8 23875 7449 31%
-1.5 0.3 2 200000 57561 29%
-1.5 0.3 4 100000 35918 31%
-1.5 0.3 8 26000 11090 43%
-1.5 0.5 6 100000 55066 55%
-1.5 0.9 6 100000 70297 70%
-1.65 0.3 8 8500 3743 44%
-1.8 0.3 8 8495 3847 45%
-2.0 0.3 8 8495 4037 47%
-2.5 0.3 8 5093 3071 60%
-3.0 0.3 8 5100 4156 81%

Table 2: Summary of statistical information of the DED calculations reported in the text. Total
number of samples Ntot, number of accepted samples Nacc, and the acceptance ratio racc for different
values of εd, Γ and number of sites n. For all calculations U = 3 was used.
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5 DED for finite temperatures

According to the results shown in the previous chapter the DED scheme with the particle constraint is
well suited to describe the single impurity Anderson model at zero temperature. However, strongly cor-
related systems often show interesting behaviour at finite temperature, for example, high-temperature
superconductivity, Coulomb blockade in quantum dots70 and Mott metal-insulator transition.2 Im-
portantly the Kondo resonance is strongly temperature dependent. This has been shown experimen-
tally19,71,72 as well as theoretically.73–75 On the other hand, thermodynamic properties are of particular
interest for bulk systems, such as dilute concentrations of transition metal or rare-earth ions in nonmag-
netic metals.8,76 Thermodynamic properties such as the specific heat and susceptibility as a function
of temperature provide important information of the system, e.g. whether the system behaves as a
Fermi liquid or not.76,77 Hence, in order to be able to describe the exciting physics occurring at finite
temperatures by means of DED, the next step is to generalize the approach to finite temperatures.

5.1 Straightforward generalization to finite temperatures

To calculate the impurity spectral density at finite temperatures, the DED procedure is implemented
as in the zero temperature case, except that now all the excitations contribute to the spectra (not only
excitations from the ground state). We know that at zero temperature only states up to the Fermi
level are occupied, but when temperature increases also states above the Fermi level can be occupied
and states below the Fermi level vacated. In order to include the effect of all excited states as well, in
the interacting finite Anderson model ν, the general form of the Lehmann representation is used,

Gνσ(ω) =
1

Zν

∑
nm

〈nν |dσ|mν〉〈mν |d†σ|nν〉
ω+ + Eνn − Eνm

(
e−βE

ν
n + e−βE

ν
m

)
(118)

where nν and mν run over all eigenstates, including those with occupancies different from the ground
state, and Eνn and Eνm are the corresponding eigenenergies for each sample ν. Following the DED
procedure the corresponding self-energy Σν(ω, T ) for each finite Anderson model ν, is calculated via
eq. (98). Finally, the self-energy of the original infinite Anderson model is approximated by the
ensemble average,

Σ̄σ(ω, T ) =
1

N

N∑
ν=1

Σν
σ(ω, T ), (119)

which leads to the corresponding interacting Green’s function,

Gσ(ω, T ) =
1

ω+ − εd − Σ̄σ(ω, T )−∆(ω)
. (120)

Performing the DED scheme as explained above results in the impurity spectral densities ρ(ω, T ) =

−1/π ImGσ(ω, T ) at different temperatures according to Fig. 14a. In this figure we present the
corresponding results of the single impurity Anderson model at particle-hole symmetry, U = −εd for
U = 3 and Γ = 0.3 with n = 4. In addition, ΓK = 0.042 is determined from the corresponding zero
temperature T = 0 spectrum (n = 4), by measuring the half width at the half maximum of the Kondo
peak. It should be mentioned that the half width of the Kondo peak at T = 0 for the n = 4 model,
is overestimated by a factor of 2 in comparison with that of the NRG (see Fig. 8). So, we expect to
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Figure 14: Effect of temperature for the symmetric Anderson model for U = 3, εd = −1.5 and Γ = 0.3:
(a) DED spectral densities for different temperatures with n = 4. ΓK = 0.042 is the half-width (at
half maximum) of the Kondo peak at T = 0 for n = 4. For very high temperature (kBT ≈ 24ΓK)
the DED spectrum when no constraint is imposed is also shown. (b) Comparing the impurity entropy
calculated by DED with (black line) and without (red line) imposing the particle number constraint
for n = 6 sites and NRG.

see the temperature evolution of the Kondo peak to be determined by the Kondo temperature for the
n = 4 model.

The expected behaviour of the single-particle spectral densities with respect to temperature for the
Anderson model is as follows: At low temperatures T � TK, where the Anderson model is in the Kondo
regime, the spectrum is characterized by three resonances: A narrow Kondo resonance at the Fermi
level of width approximately TK, and two (atomic like) Hubbard resonances at εd and εd + U energies
(see Sec. 2.1), which carry most of the spectral weight. On increasing the temperature, the Kondo
resonance reduces in height and eventually vanishes at T � TK, while the two Hubbard resonances
acquire more weight with increasing temperature. Thus, at high temperatures T � TK, the spectral
density is well described by the two Hubbard side peaks. Fig. 14a shows that the expected evolution of
the spectral density is partially captured, i.e. the height of the Kondo peak somehow decreases and the
weight of the side peaks increases. But even substantially above the Kondo temperature kBT ≈ 24ΓK,
where the Kondo peak should have vanished completely,74 in the DED spectrum (green line) the Kondo
peak has not entirely disappeared yet. On the other hand, following the red line, it immediately can
be realized that DED, when no constraint is applied (i.e. all configurations equally contribute to the
sampled average self-energy), is able to produce the qualitatively correct result for high temperatures.
This indicates that the DED scheme without the constraint seems to be suited for describing the high
temperature physics e.g. the Coulomb blockade regime or the Mott insulating phase of the Hubbard
model.55

This failure of DED to describe the transition from the low temperature to the high temperature
regime is also present in the thermodynamic properties as we will see. In the next step, we study the
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impurity contribution to the entropy as a central quantity of the thermodynamic properties for the
symmetric Anderson model. Assuming a grand canonical ensemble, the grand potential is:

Ω = −kBT lnZ(T ) (121)

where Z(T ) =
∑

n e
−β(En−µNn) is the partition function. Note that without loss of generality the

chemical potential can be set to zero, µ = 0. The impurity contribution to the entropy, Simp(T ) can
be calculated from the total entropy S(T ), when the bath contribution to the entropy Sbath(T ), is
subtracted,76 i.e.

Simp(T ) = S(T )− Sbath(T ). (122)

We approximate the impurity entropy as a function of temperature within DED, from the ensemble
average, similar to the self-energy (see Sec. 3.2). The impurity entropy for each sample ν can be
obtained from eq. (122), namely,

Sνimp = Sν(T )− Sνbath(T ). (123)

Sν(T ) is the total entropy of the finite size AIM where the corresponding Hamiltonian is given by
eq. (160) and Sνbath(T ) is the contribution of the conduction electron bath to the entropy where the
Hamiltonian of conduction electrons Hbath, is simply given by,

Hν
bath =

n−1∑
σ,k=1

ενk c
†
kσckσ. (124)

From the eigenenergies of the Hamiltonian Hν , the grand canonical partition function,

Zν(T ) = Tr e−βH
ν

=
∑
n

e−βE
ν
n (125)

and the corresponding thermodynamic potential,

Ων(T ) = −kBT lnZν(T ) (126)

can be constructed. Thus the total entropy of the finite AIM can be calculated by,

Sν(T ) = −∂Ων

∂T
= kB lnZν(T ) +

〈Hν〉
T

(127)

where the corresponding total energy is obtained as follows:

〈Hν〉 =
1

Zν

∑
n

Eνne
−βEνn . (128)

The entropy contribution of the isolated conduction electron bath (i.e. not connected to the impurity)
is,

Sνbath(T ) = −
∂Ων

bath

∂T
= kB lnZνbath(T ) +

〈Hν
bath〉
T

. (129)

Since the bath is a non-interacting system, the corresponding partition function is given by

Zνbath =
∑
σ

∏
k

(1 + eβε
ν
k) (130)
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where the ενk’s are the energies of the bath levels of each sample. Finally, the corresponding energy for
the isolated conduction electron bath is obtained via

〈Hν
bath〉 =

∑
σ

∫
dω ρν0(ω) f(ω) ω =

∑
σ

∑
k

ενkf(ενk) =
∑
σ

∑
k

ενk
eβε

ν
k + 1

, (131)

where the non-interacting density of states is given by ρν0(ω) =
∑

k δ(ω − ενk) and f(ω) is the Fermi
function. Applying the DED ensemble average as described by eq. (119) for the self-energy to the
impurity entropy yields

S̄imp(T ) =
1

N

∑
ν

Sνimp(T ). (132)

In Fig. 14b we show the impurity entropy as a function of temperature for the symmetric Anderson
model (U = 3, εd = −1.5) and Γ = 0.3, calculated from eq. (132) for n = 6 (black curve), in comparison
with the numerical renormalization group (NRG) flow (blue curve). Again we take the NRG results as a
benchmark which have been shown to be in perfect agreement with exact Bethe-Ansatz calculations.76

The impurity entropy behaviour in the Anderson model is characterized by three different regions:
In the high temperature limit the entropy is given by Simp = ln 4, since the 4 impurity states (empty,
singly occupied with either spin, or doubly occupied state) are effectively degenerate at high tem-
perature. In the low temperature limit, on the left side of the plot, the entropy value goes to zero,
Simp = 0, expressing that the spin of the impurity forms a total spin singlet state. Between the
two mentioned regions, Fig. 14b (blue and black curve) shows how the impurity entropy is quenched
from its high to its low values as temperature is reduced. The quenching process basically occurs in
two stages: Starting from the high temperatures limit and decreasing temperature the first quenching
stage happens. At this stage, since the singly occupied states of either spins are lower in energy, the
size of the effective impurity Hilbert space reduces from 4 to 2 which corresponds to the formation of
free local moments. As in this local moment regime only the spin degree of freedom remains, there
are only two accessible states for the impurity, corresponding to the entropy as Simp = ln 2 . On
further decreasing the temperature, the second quenching stage takes place. Now the system reaches
the crossover between the local moment regime and the Kondo regime at the Kondo temperature TK.
Finally, below the Kondo temperature the Kondo singlet forms, leading to the complete screening of
the impurity spin by conduction electrons, so that Simp = 0.

The impurity entropy as calculated by DED when the particle constraint is imposed (black curve),
captures the overall expected behaviour, given by NRG, as can be seen in Fig. 14b. At low temperatures
as well as at high temperatures, we see good agreement with NRG, whereas in the crossover regime,
the DED result is considerably off from the NRG’s. This large deviation from NRG corresponds to the
persistence of the Kondo peak in the spectra at finite temperatures. More importantly, the temperature
evolution is not consistent with the Kondo temperature estimated from the half width of the Kondo
peak at T = 0. More precisely, in the crossover region between the local moment regime and the
Kondo regime, where the system reaches the Kondo temperature a large difference (of about 2 orders
of magnitude) between the DED and the NRG impurity entropy is seen. However, referring to Fig. 10
the half width of the Kondo peak at T = 0 for the n = 6 model is only slightly overestimated (factor
of 1.4) in comparison to that of NRG. Note that the Kondo temperature is proportional to the half
width of the Kondo peak,78 i.e:

TK = ΓK/3.7 (133)
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where ΓK is the half width of the Kondo peak at half maximum at T = 0. On the other hand,
considering the DED impurity entropy when no constraint is applied (red curve), shows almost perfect
agreement with NRG at high temperatures. However, as expected (see Fig. 6) in the low temperature
region no correspondence between NRG and DED without the particle constraint, which yields a finite
entropy, is achieved.

Comparing the impurity entropy calculated by DED as a function of temperature with the NRG one
further shows that imposing the particle constraint is essential to describe the low temperature region.
As we argued in detail in Sec. 3.3, the particle constraint enforces a spin singlet state to govern the
Fermi liquid behaviour. Apparently, imposing the particle constraint when the temperature is raised
leads to the persistence of Fermi liquid behaviour and the Kondo singlet state at finite temperatures,
as can be seen from the temperature evolution of the spectra (Fig.14a) and the entropy (Fig. 14b).
Another very interesting aspect, which can be seen in Fig. 14b, is that in the intermediate temperature
regime, where we see the persistence of the Kondo peak, the correct impurity entropy behaviour (given
by NRG), seems to be an interpolation between imposing no constraint (red curve) and imposing
the particle constraint (black curve). Therefore, in order to capture the temperature evolution of the
spectra and entropy with DED, it seems to be necessary to relax the particle constraint in some way
at finite temperature. In this way the full particle constraint would impose Fermi liquid behaviour
at low temperatures, while at high temperatures the complete lifting of the constraint would describe
non-Fermi liquid behaviour.

5.2 Relaxation of the constraint

In the previous section, we elaborated that the particle constraint in the DED formalism, needs to be
relaxed in some way in order to make the method capable of describing the correct behaviour at finite
temperatures. From another point of view, generally at zero temperature the state of system can be
described as a pure singlet state, which in terms of the density matrix can be written as:

ρ̂ = |0〉〈0|, (134)

where |0〉 is the ground state, with
S2|0〉 = 0. (135)

The interaction between the Kondo cloud and the rest of the system is basically very weak. Hence, in
the DED scheme the idea is to describe the Kondo correlation cloud by means of an impurity level plus
a finite number of bath sites, as the Kondo cloud interacts very weakly with the rest of the system,
according to the Fermi liquid picture.66 In DED the system of one impurity and a few number of
bath sites may arrange various configurations where the energy levels and the hopping between levels
differs from one to the other. It is important to emphasize that the mixture of those configurations
(samples) satisfies eq. (135) only if each configuration (sample) itself satisfies eq. (135), since the
expectation value of the spin angular momentum is always positive, i.e. S2|s,ms〉 = h̄2s(s+ 1)|s,ms〉.
This is another way of interpreting the particle constraint role which guarantees the singlet ground
state for each sample (see Sec. 3.3) . Thus in DED the state of the system in the Kondo regime at
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zero temperature is described as a mixture of singlets, namely,

ρ̂DED ≡ Trres [|0〉〈0|] ≈ 1

N

N∑
ν

|0ν〉〈0ν | (136)

where “res” stands for the rest of the system which is assumed to interact only weakly with the Kondo
spin singlet state in the DED formalism. When temperature is raising, the phase coherence is lost,
meaning that the system cannot be described as a pure singlet state anymore but rather as a mixed
state i.e.:

ρ̂ =
∑
n

e−βEn |n〉〈n|. (137)

Hence in analogy to the exact system also in the DED formalism we should produce a mixed state.
Apparently, in DED at finite temperatures it is not enough to only consider the excited states of
the samples with singlet ground state (see Sec. 5.1). Therefore, we assume a mixture of singlet and
non-singlet configurations:

ρ̂DED ≡ TrBath

[∑
n

e−βEn |n〉〈n|

]
≈
∑
ν

qν(T )
∑
nν

|nν〉〈nν |e−βEνn (138)

Including the non-singlet configurations should happen smoothly in order to gradually balance the
Kondo singlet state with respect to temperature increment. Therefore, we include the non-singlet
configurations with some temperature dependent weight qν(T ), to calculate the ensemble average
quantities, e.g. self-energy:

Σ̄(ω, T ) =
1

Q(T )

∑
ν

qν(T )Σν(ω, T ) (139)

and the impurity entropy:
S̄imp(T ) =

1

Q(T )

∑
ν

qν(T )Sνimp(T ), (140)

with Q(T ) =
∑

ν qν(T ). In addition, this weight qν , (yet to be determined), should satisfy two
extreme conditions: At low temperatures T � TK, it should recover the particle constraint and at high
temperatures T � TK, it should include all the configurations, thereby effectively lifting the effect of
the constraint.

The entire system of N finite size Anderson models can be considered as an ensemble of N systems
which may be labelled as ν = 1, 2, . . . , N . Since the various possible states (with a given energy value)
are equally likely to occur, the relevant probability is given by Pν , which should obey:∑

ν

Pν = 1 (141)

The probability Pν at a certain temperature is related to the weight factor qν as,

Pν(T ) =
qν(T )

Q(T )
(142)

The averaged energy of the ensemble δĒ is given by,∑
ν

PνδEν = δĒ (143)
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where δEν(ν = 0, 1, 2, . . . , N) denote some energy scale of the systems, which has to be determined.
The original aim of relaxing the particle constraint was about finding some energy scale to weaken the
effect of the Kondo singlet state at finite temperatures. In addition we keep in mind that in the zero
temperature limit the weight factor qν should recover the particle constraint. Therefore we conjecture
that an energy scale which is associated with the energy required for breaking the Kondo singlet state
should be assumed, e.g.:

δEν = Eν(Nν
0 )− Eν(Nν). (144)

Nν (Nν
0 ) denotes the ground state particle number of the interacting (non-interacting) systems corre-

sponding to Hν and Hν
0 , respectively. Eν(Nν) and Eν(Nν

0 ) denote the minimum eigenenergy of the
corresponding Nν and Nν

0 subspaces.
All possible states of the ensemble, compatible with the conditions (141) and (143) are equally

likely to occur. Then, the aim is to determine the distribution set which while satisfying the conditions
(141) and (143) also maximizes the ensemble entropy,

S = −
∑
ν

Pν lnPν . (145)

The desired {Pν} set is determined by the method of Lagrange multipliers, by which the condition
determining this set becomes

−
∑
ν

Pν lnPν − α

(∑
ν

Pν − 1

)
− β

(∑
ν

PνδEν − δĒ

)
= 0. (146)

To maximize the entropy, its variation δS with respect to {Pν} should vanish, i.e.:

δS

δPν
= −ln Pν − 1− α− βδEν = 0 (147)

which yields,
Pν = e−1−αe−βδEν (148)

As
∑

ν Pν = 1 should hold, ∑
ν

Pν = e−1−α
∑
ν

e−βδEν = 1 (149)

then,
e−1−α = 1/

∑
ν

e−βδEν ≡ Q−1 (150)

Hence, the weight of each Anderson model in the ensemble at finite temperature is obtained by,

qν = e−βδEν (151)

and
Pν = Q−1qν (152)

In the zero temperature limit (β →∞) this Boltzmann factor reduces to the expression of eq. (99):

lim
β→∞

exp (−β (Eν(Nν)− Eν(Nν
0 ))) =

{
1 for Nν = Nν

0

0 for Nν 6= Nν
0

(153)

Conversely, at high temperatures (β → 0) the constraint is effectively lifted as exp(−βEν(Nν) −
Eν(Nν

0 )) → 1. Thus the generalized DED scheme relaxes the constraint for increasing temperatures
thereby allowing to balance the Kondo singlet state.
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Figure 15: DED spectral densities with n = 4 for U = 3, εd = −1.5,Γ = 0.3 at different temperatures
when the particle constraint is relaxed.

5.3 Finite temperature results

Now, within the generalized DED, as explained in the previous section, we compute the impurity
spectral densities at different temperatures as well as the impurity contribution to the entropy as a
function of temperature for the symmetric single AIM (εd = −U/2 and 〈n〉 = 1). Fig. 15 shows
the spectral densities ρ(ω) = − 1

π ImG(ω) for U = 3 and Γ = 0.3 at different temperatures calculated
by DED with n = 4. As we are in the Kondo regime the spectral density of the Anderson model is
characterized by three peaks, two Hubbard side peaks and a sharp Kondo peak. On increasing the
temperature, the Kondo resonance decreases rapidly in height and eventually disappears completely for
T � TK while the side peaks gain more weight as temperature is raised. As can be seen the expected
behaviour is captured correctly by DED when the particle constraint is relaxed. In contrast to the
DED calculations with no relaxation (Fig. 14a) where the Kondo peak does not disappear even at
very high temperatures, one can see here that relaxing the constraint leads to the complete vanishing
of the Kondo peak at high temperatures (purple curve).

Now to study how the quality of DED spectra change at different temperature regimes, we compare
the DED results with the corresponding NRG ones at a wide temperature range, from far below to far
above the Kondo temperature TK. In Fig. 16 we present the spectral densities ρ(ω) = − 1

π ImG(ω)

calculated by DED with n = 4 in comparison with NRG for the same set of parameters as before at
different temperatures. In addition to observe the effect of the relaxation, at each temperature value
we also report the corresponding DED spectrum without relaxing the particle constraint. It can be
seen clearly that the height of the Kondo peak is captured quite well when we relax the constraint,
while before relaxing the constraint the height of the Kondo is substantially overestimated. The only
exception is the panel a where we are very low in temperature and the effect of the relaxation is not
yet visible.

If we calculate the Kondo temperature TK from eq. (133) while taking ΓK as the half width of
the Kondo peak in the NRG spectrum, the corresponding value becomes TK = 0.006. So, below the
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Kondo temperature Fig. 16a the quantitative agreement between NRG and DED is almost perfect.
It should be kept in mind that the DED results presented here are only for three bath sites (n = 4).
Near the Kondo temperature Fig. 16b, the DED and NRG spectrum are still in quite good agreement.
However, at higher temperatures (Fig. 16c), the DED spectrum deviates from the NRG spectrum:
the DED side peaks are somewhat higher while the Kondo peak is narrower, although the height of
the Kondo peak is correctly captured by DED. The deviation of the DED spectrum from the NRG
one becomes more considerable at very high temperatures, to the extent that the Kondo peak in DED
requires a higher temperature to disappear in comparison with NRG (Fig. 16d). In Fig. 16d we show
the DED (green line) and NRG (blue line) spectrum at kBT = 0.3. As can be seen in contrast to NRG,
in the DED result the Kondo peak has not disappeared. To wash out the Kondo peak in the DED
calculations higher temperatures are required. This can be observed in the purple spectrum in Fig. 15
which shows the DED spectrum at kBT = 1. This behaviour can be understood by comparing the half
width of the Kondo peak at T = 0 in the DED spectrum with (n = 4) and that of NRG (see Fig. 10).
Since the Kondo peak is wider in the DED (n = 4) spectrum, the Kondo temperature for the n = 4

model is higher, so that higher temperatures are required to wash out the Kondo peak.
Next we investigate the quality of the DED impurity entropy in different regimes where the corre-

lation strength i.e. U/Γ is changed. The corresponding DED results for U = 3 compared to the NRG
results are shown in Fig. 17. In order to better resolve the impurity entropy behaviour, temperatures
are plotted on a logarithmic scale. Overall, the qualitative behaviour of the impurity entropy is cap-
tured by DED when the particle constraint is relaxed, as can be seen. Following Fig. 16a-d, one can
see that the quantitative agreement between DED and NRG improves when the correlation strength
is reduced. In the regime of stronger correlation strength (Γ = 0.2) where the number of bath sites
necessary to correctly describe the system becomes too big to be feasible at the current level of DED,
the DED curve is quite off from the NRG one (Fig. 16a). In Fig. 16b we show the DED results for
Γ = 0.3 with n = 2, 4, 8 compared to NRG with the same set of parameters as before. Here we are
in the Kondo regime but the correlation strength is not as strong as in the previous case (Fig. 16a).
Nevertheless, the DED impurity entropy even for n = 8 is not in very good agreement with that of
NRG, even though the T = 0 DED spectrum showed almost perfect agreement with NRG (see Fig.8
in Sec.4.1 ). Following the DED results for different n once more we see that the DED results improve
by enlarging the finite Anderson models. By further decreasing the correlation strength DED yields
closer results to NRG. In Fig. 16c where Γ = 0.5 we expect to obtain perfect agreement with NRG
already for n = 6, since the effect of correlations are not so strong and we saw perfect correspondence
of DED with NRG in the spectra at T = 0 (see Fig.9b). As it is not yet achieved we also bring in the
DED calculations for n = 8. Including more bath sites results in moving the DED curve towards the
NRG curve but even for (n = 8) DED is not completely on top of NRG. Finally in Fig. 16d we achieve
excellent agreement with NRG where the Anderson model is not in the Kondo regime anymore: the
shoulder corresponding to the local moment regime is non existence, basically the Hilbert space of the
impurity electron is effectively reduced from 4 to 1 in one step by decreasing the temperature.
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5.4 Discussion

Following the impurity entropy behaviour it can be understood that by relaxing the constraint as
discussed, the thermodynamic properties, specifically the impurity contribution to the entropy is not
described as well as the spectral density evolution with temperature increment. The impurity entropy
behaviour is not completely consistent with the spectral density behaviour. More precisely, the Kondo
temperature is only slightly overestimated by DED (n = 8), according to the width of the Kondo peak
at T = 0, while in Fig. 16b a larger difference between the DED (n = 8) and NRG in the crossover
between the Kondo regime and the local moment regime is visible. In addition the high temperature
impurity entropy is precisely captured with and without imposing the particle constraint (see Fig.14b)
which is not the case in the spectral density. Enforcing the particle constraint leads to the persistence
of the Kondo peak in the spectral density even when temperature is strongly increased (see Fig. 14a).
This inconsistency in the entropy and the spectral density behaviour leads us to believe that perhaps
the impurity entropy should be calculated differently. Here we propose another approach which may
help to improve the current thermodynamic results. Apparently, the DED approach is constructed to
capture the correct behaviour of the self-energy and the spectral density. Therefore a possibly more
plausible way is to calculate the impurity entropy or any thermodynamic quantity via the sample
averaged self-energy. To this end, for instance the free energy can be written as a functional of the
self-energy79 as:

F
[
Σ̄
]

= −2
∑
iω

ln
(
G−1

0 (iw)− Σ̄(iw)
)
, (154)

where iω are Matsubara frequencies. From the free energy the impurity entropy can be obtained as
the temperature derivative,

S = −δF
δT

. (155)

In general, thermodynamic quantities are very sensitive to the high-frequency behaviour of the Green’s
function and the self-energy on the Matsubara axis which causes problems for making cutoffs.80 How-
ever this problem can in principle be controlled by the approach suggested by Deisz et al.80

Another important issue that should be discussed here is the lack of quantitative agreement between
the DED and NRG spectra at high temperatures. Remembering that at low temperatures T � TK, the
standard interpretation is that a spin-1

2 impurity is screened by a surrounding Kondo cloud of spatial
extent ξk. A.K. Mitchell et al. argued that the behaviour of ξk at high temperatures is described as
ξk(T ) ∝ ξk(0)

1−b(T/TK) , where b is a first order function.81 Due to electron correlations the Kondo cloud
evaporates on increasing temperature81 which possibly explains that in the DED calculations one needs
to include more number of bath sites, in order to produce a perfect description of the system at high
temperatures.
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Figure 16: Comparison between DED (n = 4) before and after relaxing the constraint and NRG
spectra for the symmetric Anderson model at finite temperatures (U = 3, εd = −1.5,Γ = 0.3 ). (a)
Comparison between DED and NRG spectra at kBT = 0.001. (b) Comparison between DED and
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Figure 17: Comparison between the DED and NRG impurity entropy for the symmetric Anderson
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6 Towards multi-orbital Kondo physics in real systems

The case of a single correlated impurity orbital in a metal host has been hitherto thoroughly inves-
tigated. However, describing strongly correlated materials in realistic situations, requires that all the
(highly correlated) d or f electrons in different orbitals be considered. This is naturally accompanied
by more complexity, due to more than one orbital being involved: besides the interactions within
orbitals (intra-orbital Coulomb repulsion), also interactions between orbitals, (inter-orbital Coulomb
repulsion) as well as Hund’s rule coupling, should be taken into account. The interplay of these highly
correlated electrons in different orbitals may result in a variety of interesting and exotic phenomena,
such as non-Fermi liquid behaviour82 or the orbital selective Mott transition.83

In the following, in order to generalize the DED method to multi-orbital situations, we focus on
the two-orbital Anderson model and initially on situations governed by Fermi liquid behaviour. At
the end of this chapter the underscreened Kondo effect is studied as an example of non Fermi liquid
behaviour.

6.1 The two-orbital Anderson model

Generally, the multi-orbital Anderson impurity model, describes a local impurity with both orbital and
spin degrees of freedom coupled to a bath of non-interacting conduction electrons. It is not only the
paradigmatic model for the description of magnetic impurities such as Fe or Mn in non-magnetic metal
hosts such as Au, but has also successfully been applied to the description of magnetic adatoms and
molecules on metallic substrates,84–96 quantum dots coupled to conducting wires97 and single molecules
coupled to metal leads98,99

The two-orbital Anderson model as a first step towards multi-orbital model for the entire d- or f -
shell, already captures the additional complexity that leads to exotic phenomena (e.g. non Fermi liquid
behaviour and the orbital selective Mott transition ). Additionally, it can still be treated by Numerical
renormalization group (NRG) so that we can benchmark the DED results with NRG calculations. The
two-orbital Anderson model is defined by the following Hamiltonian:

ĤAIM = Hbath +Himpurity +Hcoupling

Hbath =
∑
kmσ

εkmc
†
kmσckmσ

Hcoupling =
∑
mσ

Vkm(c†kmσdmσ + d†mσckmσ)

Himpurity =
∑
mσ

εdmd
†
mσdmσ +

U

2

∑
mσσ′

nmσ′nmσ

+
U ′

2

∑
m6=m′σσ′

nmσnm′σ′ +
JH
2

∑
m6=m′σσ′

d†mσd
†
m′σ′dmσ′dm′σ. (156)

We assume each impurity orbitalm(= 1, 2) has its own bath, thus c†kmσ(ckmσ) creates (annihilates) bath
electrons, with wavevector k in band m (associated with impurity orbital m) and spin σ. d†mσ(dmσ)

creates (annihilates) the impurity (d) electron with spin σ in orbital m, εdm is the bare energy of
the impurity orbital m and Vkm is the hopping between impurity orbital m and its connected bath.
nmσ = d†mσdmσ, nm =

∑
σ d
†
mσdmσ and nd =

∑
σm d

†
mσdmσ. The intra-orbital and the inter-orbital
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Coulomb repulsion denoted by U and U ′, respectively, are related by U ′ = U − 2JH. JH is the so-
called Hund’s rule coupling originating in the intra-atomic exchange interaction JH = 〈1, 2|Vee|2, 1〉.
The Hund’s rule coupling lowers the cost in repulsive Coulomb energy when placing two electrons in
different orbitals with parallel spin, as opposed to two electrons in the same orbital100,101 as can be
seen by rewriting the last term of eq. (156) in terms of an explicit spin-spin interaction (see appendix):

Himpurity =
∑
mσ

εdmd
†
mσdmσ + U

∑
m

nm↑nm↓

+

(
U ′ − JH

4

) ∑
m6=m′σσ′

nmσnm′σ′ − JH
∑
m6=m′

~Sm . ~Sm′ . (157)

The last term explicitly shows that for JH > 0, parallel alignment of the spins of impurity electrons in
different orbitals results in lowering the impurity energy.

6.2 DED for the multi-orbital model

In order to generate finite Anderson model samples we proceed in the same way as for the single
impurity level case, described in Sec. 3.2: For each impurity level a finite number of poles is generated
randomly according to the probability distribution given by the non-interacting density of states for
each impurity levelm, ρ0m(ω) = − Im[G0m(ω)]/π. Note that in the non-interacting case we are dealing
with two uncoupled single-level Anderson models. Hence the set of poles for each impurity level uniquely
defines a finite single-level Anderson model. When switching on the Coulomb interaction (U ′, JH), the
two Anderson model become coupled. We now make a further simplification and assume that both
impurity levels are degenerate, i.e. εd1 = εd2 and ∆1(ω) = ∆2(ω) and consequently ρ01(ω) = ρ02(ω).
Hence we only generate one set of poles which defines the finite Anderson models of both impurity
levels. More precisely, we randomly generate n/2 poles according to the non-interacting density of
states ρ0m(ω) = − Im[G0m(ω)]/π, and we then follow eq. (91), eq. (92), eq. (93) and eq. (94) (with
n → n/2), to extract the impurity and bath level energies as well as the hoppings for subsystem 1.
The same data is finally also used for subsystem 2:

εν01 = εν02

ενk1 = ενk2 ∀ k = 1, . . . , n/2− 1

V ν
k1 = V ν

k2 ∀ k = 1, . . . , n/2− 1. (158)

The non-interacting part of the finite size (n sites) Anderson model is defined:

Hν
0 =

∑
σm

εν0md
†
mσdmσ +

n−1∑
σ,k=1

V ν
km(d†mσckmσ + c†kmσdmσ) +

n−1∑
σ,k=1

ενmk c
†
kmσckmσ. (159)

The interacting finite Anderson model is obtained by adding the two-body interaction part and sub-
tracting out the effective one body potential Σ0 to avoid double counting of interactions:

Hν = Hν
0 +

∑
m

Unm↑nm↓ + (U ′ − JH
4

)
∑

m6=m′σσ′

nmσnm′σ′ − JH
∑
m6=m′

~Sm . ~Sm′ −
∑
m

Σ0nm (160)

The rest of the DED scheme for the two-orbital Anderson model is analogous to the single impurity
Anderson model: The finite Anderson model Hamiltonian Hν is diagonalized numerically to give the
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Figure 18: Schematic representation of the DED method for the two-orbital Anderson model: The non-
interacting density of states of the impurity level m, ρ0m(ω) is interpreted as a probability distribution
for the poles of the non-interacting Green’s function G0m(ω). Since both subsystems are the same
ρ01(ω) = ρ02(ω), a finite number of poles bνi is generated randomly according to the distribution
ρ01(ω). The selected n/2 poles uniquely define a finite single Anderson model for subsystem 1 with
n/2−1 bath sites. The data of the first subsystem is then copied to subsystem 2, and finally by adding
U , U ′ and JH the finite size two-orbital Anderson model Hν including two subsystems is completed.
Diagonalization of Hν yields the self-energy Σν

m(ω) corresponding to the finite two-orbital Anderson
model. This process is repeated many times (N). An approximation to the self-energy of the original
infinite Anderson model (156) is obtained from the ensemble average of the self-energies of the finite
Anderson model samples (162).
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many-body eigenstates and the corresponding eigenenergies. The interacting Green’s function is then
determined by the Lehmann representation and the corresponding self-energy of the finite Anderson
model per impurity level is calculated by,

Σν
σm(ω) = (Gν0m(ω))−1 − (Gνσm(ω))−1 + Σ0. (161)

Finally, the approximated self-energy for each impurity is obtained from the ensemble average:

Σ̄mσ(ω) =
1

N

N∑
ν=1

Σν
mσ(ω). (162)

Fig. 18 depicts the DED scheme applied to the two-orbital Anderson model as discussed above.
It should be mentioned that only samples ν which satisfy the particle constraint per subsystem i.e.
Nν

1 = Nν
01 and Nν

2 = Nν
02, contribute to the ensemble averaged self-energy. This ensures that each

subsystem obeys Fermi liquid behaviour, and the corresponding screening of the spin in each subsystem.
Imposing the particle constraint to the whole system (Nν = Nν

0 ) would allow the contribution of
samples with Nν

m = Nν
0m± 1, leading to the violation of Fermi liquid behaviour in each subsystem (see

Sec. 3.3).
The Hund’s rule coupling (intra-atomic exchange) is known to be responsible for strong correlations

in multi-orbital metallic materials.101 Thus in order to explore the effect of Hund’s rule coupling we
study the two-orbital Anderson model m = 1, 2 both in the presence and absence of Hund’s coupling
in the Kondo regime. In this regime the characteristic three peak structure of the spectral density
is expected to retain. In the presence of Hund’s coupling we present the DED results for the fully
screened as well as the underscreened half-filled two-orbital Anderson model (spin-1 impurity).

In the calculations a constant hybridization function with the same value for each impurity level
is assumed ∆m = −iΓ, thus the non-interacting density of states ρ0m(ω) is a Lorentzian centered at
εd + Σ0. To resolve the interacting spectral functions we use a logarithmic mesh, and a frequency
dependent Lorentzian broadening scheme where an imaginary part proportional to the frequency is
added to the frequency argument in the denominators of the Green’s functions, i.e. ω+ = ω + iη1 · |ω|
with η1 = 0.02. The DED results are benchmarked by comparison with NRG results.

6.3 Two-orbital Anderson model without Hund’s rule coupling

First, we study the two-orbital Anderson model when the Hund’s coupling is set to zero, i.e. JH = 0 and
U = U ′. The half-filled (nd = 2 and εdm = −3U/2) and the quarter-filled (nd ≈ 1 and εdm = −U/2)
cases are considered. Fig. 19 shows the impurity spectral density ρm(ω) = − 1

π ImGm(ω) for the half-
filled impurity for Γ = 0.3, U = U ′ = 3 and εd = −4.5 calculated by DED with n = 6 (nm = 3) and
n = 8 (nm = 4) in comparison with the NRG spectrum. In this case the real part of the self-energy
Σ0 = −3U/2 is known prior to the calculations, so it does not need to be determined self-consistently.
As can be seen the DED and NRG spectra are in very good agreement with each other, especially at
low energies, i.e. the Kondo peak (see the inset), already for a few bath sites per subsystem nm = 3

(n = 6). By adding one more bath site to each subsystem i.e. nm = 4 (n = 8), the DED Kondo peak is
basically on top of the NRG one. However, the side peaks practically do not change and remain above
the NRG ones. One should bear in mind though that the NRG results which are very reliable and
essentially exact at low energies, are not necessarily as accurate at high energies. It clearly can be seen
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Figure 19: Comparison of DED n = 6, n = 8 and NRG spectra for the half-filled two-orbital Anderson
model without Hund’s rule coupling (εd = −4.0, U = 3.5, U ′ = 3.5, JH = 0, Γ = 0.3 ).
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Figure 20: Comparison of DED n = 6, n = 8 and NRG spectra for the quarter filled two-orbital
Anderson model without Hund’s rule coupling (εd = −1, U = 2, U ′ = 2, JH = 0, Γ = 0.096 ).

that the correlation effects here are not so strong: the Kondo peak is quite wide and the side peaks
are not yet very pronounced. Therefore already a small number of bath sites (nm = 3 per subsystem)
suffices to describe the correct behaviour.

In Fig. 20 we show the spectral density ρm(ω) = − 1
π ImGm(ω) for the quarter-filled impurity for

Γ = 0.096, U = U ′ = 2 and εd = −1 calculated by DED with n = 6 (nm = 3) and n = 8 (nm = 4)
in comparison with the NRG spectrum. The d orbital occupancy computed by DED via the ensemble
average is 〈nd〉 = 1.028. In this case the larger size of the Hilbert space for the one electron more
subspace i.e. nd = 2 compared to the one electron less subspace i.e. nd = 0 leads to an asymmetric
spectrum, as can be seen. Therefore the real part of the self-energy Σ0 is not known in advance and
it should in principle be determined self-consistently. However, the spectrum is relatively noisy as
can be seen in the inset which makes it relatively hard to obtain the exact value of Σ0, but we find
roughly −εd. As we saw in Sec. 4.3 that anyway the effect of self-consistency is actually not that
strong, we perform the calculations for Σ0 = εd = −U/2. The overall qualitative agreement between
DED and NRG spectra is OK. However, even for n = 8 it is more asymmetric compared to NRG
and the Kondo peak is slightly misplaced. Due to the little shift in the Kondo peak position, also
the height of the Kondo peak may not be captured accurately, as a frequency dependent broadening
scheme has been used. While the position of the Hubbard sided peaks is well reproduced, their height
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is somewhat underestimated by DED. On the other hand, in the region between the Kondo peak and
the upper Hubbard peak DED somewhat overestimates the spectral density, while it is underestimated
just below the Kondo peak. The lack of quantitative agreement can be understood by the fact that
the correlation strength is very strong here: U/Γ ≈ 20. Therefore according to Sec. 4.1 the number
of bath sites considered here, apparently is too small to correctly describe the Kondo screening cloud.
Indeed, as can be seen from Fig. 20, increasing the number of sites from n = 6 (red curve) to n = 8

(green curve), considerably improves the DED spectrum with respect to the NRG one: the Kondo peak
moves towards the Fermi energy and increases in height (as can be seen in the inset). Also the side
peak at U/2 = 1 gains more weight and becomes more pronounced. Hence, we expect that by further
increasing the number of bath sites better agreement with the NRG spectrum could be achieved.

6.4 Two-orbital Anderson model with Hund’s rule coupling: the fully screened
case

In the next step we focus on the case where the two orbitals experience a ferromagnetic Hund’s coupling.
In the atomic limit (V = 0) and when there is no Hund’s coupling JH = 0, the ground state is six
fold degenerate. A finite J > 0 leads to the splitting of the sextuplet into a spin triplet (S = 1) as the
ground state and a spin singlet (S = 0). In the two impurity spin-1 system if both impurities being
completely screened the situation is known as the fully screened Kondo effect.

In Fig. 21 we show the spectral density per impurity level ρm(ω) = − 1
π ImGm(ω) for the fully

screened two-orbital Anderson model at particle-hole symmetry (nd = 2 and εd = −U/2−U ′ + JH/2)
for Γ = 0.3, U = 3.5, U ′ = 2.5 and JH = 0.5 calculated by DED with n = 6 (nm = 3) and n = 8

(nm = 4), in comparison to the NRG spectrum. In the inset of Fig. 21 we zoom into the Kondo peak
to better resolve the spectra at low energies. Comparing the current spectrum with the case of no
Hund’s rule coupling (Fig. 19), clearly indicates that the presence of the Hund’s rule coupling leads to
stronger correlations: the width of the Kondo peak strongly shrinks and the side peaks become more
pronounced for JH > 0. For this reason the DED spectrum only agrees qualitatively with the NRG
spectrum, as can be seen. The quantitative agreement especially at low energies is not as good as for
the symmetric two-orbital Anderson model with no Hund’s coupling or the single orbital Anderson
model: the half width of the Kondo peak is overestimated by an order of magnitude. Comparing
the half width of the Kondo peak in the NRG spectra for the fully screened two-orbital Anderson
model (ΓK = 0.0003) and the single orbital Anderson model (ΓK = 0.024) indicates that the Kondo
temperature is much lower here (two orders of magnitude), so that the number of bath sites necessary
to correctly describe the Kondo screening cloud is much larger, due to the greater spatial extent of
the Kondo screening cloud ξK ∝ 1/TK (see Sec. 4.1). In spite of this less bath sites per subsystem
(nm = 4 ) is actually been used compared to the case of the SAIM (n = 8), thus leading to the strong
overestimation of the Kondo peak’s half-width in the DED result. In the inset of Fig. 21, it can be
seen that the width of the Kondo peak decreases with adding one more bath site to each subsystem,
nm = 4 (n = 8). On the other hand at higher energies around 2JH = 1, the DED spectrum is wavy
and its side peaks are below the NRG side peaks. Those features only slightly improve by adding
more bath sites. One can relate them to either not having sufficient bath sites in DED to get smooth
spectra, or to less accuracy of the NRG results at higher energies, or both.
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Figure 21: Comparison of DED n = 8 and NRG spectra for the two-orbital Anderson model including
Hund’s rule coupling (εd = −4.0, U = 3.5, U ′ = 2.5, JH = 0.5, Γ = 0.3 ).
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Figure 22: Comparison of DED n = 8 and NRG spectra for the two-orbital Anderson model including
Hund’s rule coupling (εd = −4.0, U = 3.5, U ′ = 2.5, JH = 0.5, Γ = 0.3 ) with selective self-energies as
a constraint.
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Another reason for the strong overestimation of the Kondo peak by DED, might also lie in the
constraint. A too strong constraint might assign too large weight to the Kondo peak in the spectra.
In order to somehow relax the constraint in the fully screened two-orbital Anderson model, we now do
the DED calculations a bit differently, by doing sampling for each subsystem 1 and 2 independently,
so that subsystems can have different energies and hoppings and additionally allowing self-energies
to contribute to the ensemble-average individually. More precisely, if for instance in subsystem 1 the
particle constraint is fulfilled, Nν

1 = Nν
01, the self-energy of subsystem 1 will contribute to the ensemble

average of level 1 and the self-energy of the other level remains unchanged, or the other way round.
This results in the spectral density ρm(ω) = − 1

π ImGm(ω) for the fully screened two-orbital Anderson
model at particle-hole symmetry (nd = 2 and εd = −U/2−U ′+JH/2) with the same set of parameters
as before with n = 8 (nm = 4) shown in Fig. 22. For better comparison in the inset we also present a
close-up of the Kondo peak. The overall agreement between the DED and NRG spectrum improves.
The width of the Kondo peak is reduced by a factor of 2 but is still quite overestimated compared
to NRG. The side peaks are now in very good agreement with NRG, apart from the two bumps at
the excitation energies corresponding to ±2JH which are exaggerated by DED, possibly due to the
finite number of bath sites. The justification for this way of relaxing the constraint is not yet clear to
us. Now somehow also “underscreened situations” (see following section) contribute to the self-energy
average. These are doublet states where only the impurity level is screened which fulfills the particle
constraint, while the other impurity which does not fulfill the constraint is not screened, but will not
contribute to the self-energy average of that level either.

6.5 Two-orbital Anderson model with Hund’s rule coupling: the underscreened
case

Finally, we study the underscreened Kondo effect. In the case where the two orbitals experience a
strong ferromagnetic Hund’s rule, the triplet configuration constitutes the ground state of the isolated
impurity. This can result in the spin S = 1 underscreened Kondo effect if only a single screening
channel is active, as initially proposed by Nozieres and Blandin,102 and only recently experimentally
observed.103–105 This rather exotic Kondo effect describes the partial screening of a local moment from
spin S to spin S − 1/2 and to so-called singular Fermi liquid behaviour.106

In order to model the underscreened situation within DED, the subsystem 1 is considered as a
single impurity Anderson model, consisting of an impurity level which interacts with its surrounding
bath like before, while subsystem 2 is only an impurity level which does not couple to the bath directly
but only indirectly via impurity level 1 inter-orbital Coulomb interaction U ′ and Hund’s rule coupling
JH. We extract the parameters of subsystem 1 via the DED formalism for the single Anderson model
and then to guarantee the screening of the impurity level 1 we enforce the particle constraint to the
subsystem 1. In addition, in subsystem 2 we fix the impurity level to be always half-filled at a fixed
on-site energy given by, εd = −U/2− U ′ + JH/2.

We show the spectral density ρ1(ω) = − 1
π ImG1(ω) for the screened impurity at particle-hole

symmetry (nd = 2 and εd = −U/2 − U ′ + JH/2) for Γ = 0.3, U = 3.5, U ′ = 2.5 and JH = 0.5

with n = 5 (n1 = 4, n2 = 1), n = 7 (n1 = 6, n2 = 1) calculated by DED, in comparison to the
NRG spectrum. The DED spectrum for n = 8 is in very good agreement with the NRG spectrum
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Figure 23: Comparison of DED (with n = 7, n = 5) and NRG spectra for the underscreened two-
orbital Anderson model including Hund’s rule coupling (εd = −4.0, U = 3.5, U ′ = 2.5, JH = 0.5,
Γ = 0.3).

especially at high energies i.e. side peaks. At energies ±2JH in the DED spectra, two bumps can be
seen while they are more shoulder like in the NRG spectrum. However, at low energies, the width of
the Kondo peak is again strongly overestimated: The half-width of the DED Kondo peak for n = 8 is
approximately 10−2 while it is 10−4 for NRG. In this case the Kondo peak (according to NRG result)
is very narrow, hence the size of the Kondo screening cloud should be rather huge. Thus, in order to
obtain the correct width of the Kondo peak we would need to take into account a much bigger number
of bath sites. The improvement of the DED spectrum with increasing the number of bath sites i.e. the
side peaks are approaching NRG’s and the Kondo peak slightly shrinks in width (see inset), further
vouches that.

6.6 Discussion

To summarize, in the absence of Hund’s coupling, DED yields an excellent description of the symmetric
two-orbital Anderson model already for a small number of bath sites, although for the asymmetric case
with the impurity occupancy of almost 1, there is room for improvement. In this case small number of
sites per subsystem (4) is not enough to achieve quantitative agreement with NRG. This is also the case
when the two impurity orbitals experience Hund’s coupling, the width of the Kondo peak becomes very
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narrow in both fully screened and underscreened situations, meaning that due to the strong correlation
strength the corresponding Kondo temperature is very low for both cases. Consequently, the number of
bath sites necessary to achieve a good quantitative description becomes too big to be computationally
feasible (with the direct diagonalization), due to the growth of the Kondo screening cloud according
to ξK ∝ 1/TK ∝ eΓ/U . Direct diagonalization only allows to deal with a finite size Anderson model
of size n = 8, which is already enough to accurately describe the single AIM inside and outside the
Kondo regime, but it is too small to achieve accurate results for the two-orbital AIM, as it is equivalent
to the size of nm = 4 per subsystem. Thus, adoption of the Lanczos diagonalization scheme or similar
approaches in the DED seems necessary and would possibly allow to treat multi-orbital Anderson
models with a sufficient number of bath sites per impurity level.64

On the other hand, inasmuch as the particle constraint has an essential role in the DED method for
the description of Kondo physics (this has been extensively discussed in the single impurity Anderson
model), it may need to be adapted for multi-orbital Anderson models. As the particle constraint
by construction assigns more spectral weight to the Kondo peak, finding a way to somehow relax or
adapt the particle constraint (e.g. like the finite temperature calculations) may lead to achieve more
accurate results even with currently accessible number of bath sites. The constraint adaptation is
even more crucial for cases where non Fermi liquid behaviour emerges, possibly also important for the
underscreened case which shows “singular Fermi liquid behaviour“, since the particle constraint imposes
Fermi liquid behaviour.
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7 Conclusions and perspectives

In this thesis we have implemented the distributional exact diagonalization (DED) scheme, which
is based on mapping the infinite Anderson problem onto a stochastic ensemble of finite Anderson
models. We find that the DED method generally yields an excellent description of the single orbital
Anderson model, inside as well as outside the Kondo regime. The spectra obtained by DED are
in good qualitative agreement with NRG spectra already for a small number of bath sites. In the
regime of moderate correlation strength, excellent quantitative agreement with NRG can be achieved
by including 5-7 bath sites. However, increasing the correlation strength, the number of bath sites
necessary to achieve a good quantitative description becomes too big to be computationally feasible
due to the exponential growth of the Kondo screening cloud.

We also find that the particle constraint plays an essential role in the DED method for the descrip-
tion of Kondo physics. It basically ensures that individual finite Anderson model samples contributing
to the self-energy average, comply with Nozieres’ Fermi liquid picture of the strong coupling regime,
thereby imposing Fermi liquid behavior on the sample averaged self-energy. This leads to the recovery
of the Kondo peak in the spectrum, which is absent in the DED procedure without constraint.

Since the particle constraint enforces Fermi liquid behaviour, imposing it to cases where Fermi
liquid behavior is not obeyed, for example, at finite temperatures above TK, gives rise to too much
spectral weight at the Fermi level. Hence, the role of the particle constraint needs to be reconsidered
when DED is applied to non Fermi liquid situations. To achieve the correct temperature evolution of
spectra the particle constraint needs to be relaxed, in order to reduce the Kondo peak’s weight in the
spectral density. To this end, we introduce a Boltzmann factor associated with the energy scale for
breaking the Kondo singlet, which determines the weight of a sample contributing to the ensemble-
average quantities. Relaxing the constraint in this way allows to capture the correct evolution of the
Kondo peak by DED, when the temperature is raised: from below to not much far above the Kondo
temperature the agreement between DED and NRG becomes very good already for a small number of
bath sites (n = 4). However, at very high temperatures the quality of the DED spectra considerably
degrades for such a small number of bath sites. Apparently, the number of sites needs to be increased
further in order to achieve a faithful description of the spectra at high temperatures.

Using this relaxation mechanism for the particle constraint, we also investigated the thermodynamic
properties, specifically the impurity contribution to the entropy of the symmetric Anderson model. We
find that with the current feasible number of bath sites, agreement between the DED sample-averaged
impurity entropy and the NRG impurity entropy remains only qualitative. The DED failure to achieve
good quantitative agreement with NRG (in the impurity entropy calculations) is possibly related to
our direct sample averaging of the impurity entropy: as the DED formalism is constructed to acquire
a good approximation to the self-energy, other quantities should actually be calculated via the self-
energy (like the Green’s function). For example, the free energy could be calculated as a functional of
the self-energy, from which other thermodynamic quantities could then be derived.

A big advantage of DED is that it can be parallelized very efficiently. As the randomly generated
finite Anderson model samples are independent from each other, they can be distributed over an
arbitrary large number of nodes. This makes the DED formalism very desirable to be applied to the
multi-orbital Anderson models. As a first choice of the multi-orbital calculations we studied the two-
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orbital Anderson model. To ensure screening of each impurity level or equivalently the Fermi liquid
behaviour the particle constraint is imposed to each subsystem (which includes single impurity level
and the coupled bath). We find that in the absence of Hund’s rule coupling DED yields very good
agreement with NRG for the two-orbital Anderson model as long as the correlation strength is not too
strong. However, switching on the Hund’s rule coupling leads to a strong increase in the correlation
strength as is indicated by the very narrow Kondo peak in the NRG spectrum for the fully screened
Kondo effect. Hence the size of the Kondo correlation cloud becomes too big to be treated with the
currently accessible number of bath sites. The DED spectrum is in overall good qualitative agreement
with the NRG spectrum but the width of the Kondo peak is strongly overestimated in DED by orders
of magnitude.

Thus in the presence of strong correlations, e.g. the single orbital Anderson model with U/Γ� 10

and in the two-orbital Anderson model including Hund’s rule coupling, the number of bath sites in the
finite Anderson model samples needs to be increased in order to enable the DED method to achieve
good quantitative agreement with NRG. Therefore the adoption of other algorithms such as the Lanczos
diagonalization scheme instead of the direct diagonalization seems necessary. This should then allow
to treat multi-orbital Anderson models with a sufficient number of bath sites per impurity level. Also
the constraint as a crucial ingredient of DED may need to be generalized in the multi-orbital case,
especially for non Fermi liquid situations. As in the case of relaxing the constraint in the fully screened
Kondo effect, generalizing the constraint might even allow to obtain more accurate results in Fermi
liquid systems with few bath sites.

Adoption of the Lanczos algorithm and/or generalizing the particle constraint should enable the
DED approach, which can be easily implemented and efficiently parallelized, to treat multi-orbital
Anderson models. Using NRG to solve Anderson models with 2-3 impurity levels is computationally
very demanding and not accessible for more than three impurity levels. Other impurity solvers have
also problems in dealing with multi-orbital Anderson models: NCA and OCA are burdened with some
artifacts in the spectra due to the involved approximations, and CTQMC which can also be parallelized
efficiently has the disadvantage of working on the imaginary axis. Thus, a properly generalized DED
scheme should allow to produce reliable spectra for multi-orbital systems which can be exploited for
the description of real materials by DMFT.
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A Derivation of Hund’s rule coupling

The Hund’s rule coupling between electrons in the same atomic shell stems from the exchange interac-
tion that tries to align the spins of electrons in different levels of the same atomic shell. The exchange
part of the Coulomb interaction is given by:

V̂ex =
1

2

∑
m 6=m′σσ′

Umm′m′mc
†
mσc

†
m′σ′cmσ′cm′σ

= −1

2

∑
m 6=m′σσ′

Umm′m′mc
†
mσcmσ′c†m′σ′cm′σ

= −1

2

∑
m 6=m′

Umm′m′m(c†m↑cm↑c
†
m′↑cm′↑ + c†m↓cm↓c

†
m′↓cm′↓

+ c†m↓cm↑c
†
m′↑cm′↓ + c†m↑cm↓c

†
m′↓cm′↑) (163)

By use of these identities, Ŝ+
m = c†m↑cm↓ , Ŝ

−
m = c†m↓cm↑ we get:

V̂ex =
1

2

∑
m6=m′

Umm′m′m(n̂m↑n̂m′↑ + n̂m↓n̂m′↓) (164)

by making further use of Ŝm . Ŝm′ = ŜzmŜ
z
m′ + 1

2S
+
mS
−
m′ + 1

2S
−
mS

+
m′ we can rewrite the exchange term

as:
V̂ex = −

∑
m 6=m′

Umm′m′m(Ŝm . Ŝm′ + ŜzmŜ
z
m′ −

1

2
(n̂m↑n̂m′↑ + n̂m↓n̂m′↓)) (165)

The first term is the Hund’s rule coupling term: since the exchange matrix element Umm′m′m is usually
positive this term leads to energy lowering if spins in different levels m and m′ align parallel. The last
term gives a negative contribution to the inter-orbital Coulomb interaction (i.e. it lowers the repulsion
between electrons in different orbitals):

ŜzmŜ
z
m′−

1

2
(n̂m↑n̂m′↑+ n̂m↓n̂m′↓) =

1

4
(n̂m↑− n̂m↓)(n̂m′↑− n̂m′↓)−

1

2
(n̂m↑n̂m′↑+ n̂m↓n̂m′↓) = −1

4
NmNm′

(166)
where Nm = nm↑+nm↓ is the total occupation of atomic level m. If the exchange matrix element is the
same for all orbitals in the atomic shell (often approximately true in bulk systems), i.e. Umm′m′m ≡ JH ,
we obtain the standard form of the Hund’s rule coupling:

V̂ex = −JH
∑
m6=m′

Ŝm . Ŝm′ − JH
4

∑
m 6=m′

NmNm′ (167)
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