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Zusammenfassung

Die grundlegende Struktur der (klassischen) analytischen Mechanik ist gleichermaßen
in der Theorie der mikroskopischen Systeme anzutreffen. So stellen die Schrödinger-
gleichung, die stochastischen kinematischen Gleichungen von Edward Nelson und
das quantenmechanische Hamiltonische Prinzip, welches von Michele Pavon abgeleitet
wurde, drei äquivalente Theorien dar, welche jeweils die Dynamik eines Quantenteilchens
eindeutig beschreiben. Jedoch bestehen diverse Schwierigkeiten bei der praktischen
Umsetzung der stochastischen Methoden, sei es beim Lösen der stochastischen Be-
wegungsgleichungen von Nelson oder bei der Auswertung des Variationsprinzips von
Pavon. Es ergibt sich folglich die Notwendigkeit der Wellenfunktion zur weiteren
Analyse im stochastischen Modell, wodurch sich die praktische Umsetzbarkeit bisher
meist auf Systeme beschränkt, bei denen eine analytische Lösung der Schrödingergle-
ichung gefunden werden kann.
Durch die Interpretation des Variationsprinzips von Pavon als ein stochastisches opti-
males Steuerungsproblem gelingt es, quantenmechanische Hamiltonische Bewegungsgle-
ichungen (für Ort und Geschwindigkeit beziehungsweise Impuls) herzuleiten, welche
äquivalent zur Schrödingergleichung sind und unabhängig von dieser gelöst werden
können. Die vorliegende Arbeit stellt die Grundlage und Vorgehensweise bereit, quanten-
mechanische Systeme ohne Kenntnis der Wellenfunktion mit Methoden der stochastis-
chen Mechanik zu beschreiben. Insbesondere ist die Schrödingergleichung, genau wie
die Hamilton-Jabobi Gleichung in der klassischen Theorie, eine mögliche Methode zur
Beschreibung eines quantenmechanischen Systems, jedoch nicht die einzige.

Bei den sich ergebenden Hamiltonischen Bewegungsgleichungen handelt es sich um
gekoppelte vorwärts-rückwärts stochastische Differentialgleichungen, die mit Hilfe eines
iterativen Algorithmus numerisch gelöst werden. Dieser wird explizit erklärt und auf
zwei verschiedene stationäre Probleme angewandt. Hierbei zeigt sich sowohl beim
eindimensionalen harmonischen Oszillator, für den eine exakte Lösung bekannt ist, als
auch bei der eindimensionalen Doppelmulde, die Güte des numerischen Algorithmus.
Weiterhin werden die im Falle der Doppelmulde auftauchenden Tunnelprozesse genauer
analysiert, wodurch der Zusammenhang von Energieaufspaltung und Tunnelzeit (mean
first passage time) deutlich wird.





Abstract

The description of non-relativistic quantum systems is generally based upon the same
fundamental structure as found in the theory of (classical) analytical mechanics. Thus,
the Schrödinger equation, the stochastic kinematic equations of Edward Nelson and the
quantum Hamilton principle, as introduced by Michele Pavon, are equivalent methods
for a unique description of the motion of a quantum particle. However, in practical
applications of these stochastic methods, substantial difficulties may arise. In general,
neither the kinematic equations of Nelson, nor Pavon’s variational can be evaluated in
a straightforward way. In these approaches, the Schrödinger equation has to be faced
from the beginning, meaning that applications are restricted to systems with a known
analytical wave function.

However, if the variational problem of Pavon is interpreted as a stochastic optimal
control problem, the quantum Hamilton equations of motion - that addressing the
particle’s position and velocity, or the particle’s momentum - can be derived and solved
uniquely, yielding an approach that is in fact independent of the Schrödinger equation.
The thesis at hand introduces and demonstrates the description of quantum systems in
terms of the above mentioned stochastic model, and does not require knowledge on
the wave function to yield a proper solution to quantum-mechanical problems. Similar
to the Hamilton-Jacobi equation in classical physics, the Schrödinger equation is thus
one, but not the only, method to describe quantum systems.

The resulting Hamilton equations of motion are coupled forward-backward stochastic
differential equations, which can be solved using an iterative algorithm. That algorithm
is explained explicitly and is applied to two stationary cases. The accuracy of the
algorithm is demonstrated using the example of a one-dimensional harmonic oscillator,
where the exact wave function is known, as well as using a one-dimensional double-well
potential. Furthermore, tunneling processes, as observed in case of the double-well
potential, are thoroughly analyzed, yielding a strict relation between energy splitting
and tunneling time (mean first passage time).
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4.2 Operating principle for the operators Â±i , i = 0, 1. . . . . . . . . . . . . . . . 51
4.3 Single and average trajectory for the one-dimensional harmonic oscillator . . 64
4.4 Probability density p(x) for the one-dimensional harmonic oscillator . . . . . 65
4.5 Osmotic velocity u(x) for the one-dimensional harmonic oscillator as deter-

mining using ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 p(x) for the one-dimensional harmonic oscillator as determined by different

methods and analysis of the associated ODE . . . . . . . . . . . . . . . . . . 67
4.7 u(x) for the one-dimensional harmonic oscillator determined by analyzing the

ODE: impact of the number of trajectories . . . . . . . . . . . . . . . . . . . . 68
4.8 u(x) for the one-dimensional harmonic oscillator determined by analyzing the

ODE: impact of the time increment . . . . . . . . . . . . . . . . . . . . . . . . 69
4.9 u(x) for the one-dimensional harmonic oscillator determined by analyzing the

ODE: impact of the number of time steps . . . . . . . . . . . . . . . . . . . . 70
4.10 u(x) for the one-dimensional harmonic oscillator determined by direct evalua-

tion of the BSDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.11 p(x) for the one-dimensional harmonic oscillator determined by direct evalua-

tion of the BSDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.12 u(x) for the one-dimensional harmonic oscillator determined by direct analysis

of the BSDE: impact of the number of trajectories . . . . . . . . . . . . . . . 73
4.13 u(x) as a step function for the one-dimensional harmonic oscillator by direct

analysis of the BSDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.14 u(x) for the one-dimensional harmonic oscillator determined by direct analysis

of the BSDE: impact of the time increment . . . . . . . . . . . . . . . . . . . 75
4.15 u(x) for the one-dimensional harmonic oscillator determined by direct analysis

of the BSDE: impact of the number of time steps . . . . . . . . . . . . . . . . 76
4.16 First and second excited state for the one-dimensional harmonic oscillator . . 77

III



4.17 p(x) for the one-dimensional double well potential: impact of the number of
trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.18 u(x) for the one-dimensional double well potential: impact of the number of
iteration steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.19 p(x) for the one-dimensional double well potential in comparison to the Nu-
merov solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.20 Wave function of the first two excited states for the one-dimensional double-well
potential in comparison to the Numerov solution for two different barrier heights 83

4.21 Density function of first passage times for the one-dimensional double-well
potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.22 Energies for different parameters for the one-dimensional double-well potential 87
4.23 Wave function of the first two excited states for different parameters for the

one-dimensional double-well potential . . . . . . . . . . . . . . . . . . . . . . 88
4.24 Energy splitting for the one-dimensional double-well potential for different

potential parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.25 Density function of first passage times dependent on the tuple (a, V0) . . . . 91
4.26 Efficiency of the numerical algorithm for stationary systems . . . . . . . . . . 103

5.1 Scheme of methods in classical and quantum mechanics . . . . . . . . . . . . 109

A.1 Relation between different terms of convergence . . . . . . . . . . . . . . . . . A-4
A.2 Double-well potential before and after Wick rotation . . . . . . . . . . . . . . A-19
A.3 Sketch of the ground-state wave function in a double-well potential . . . . . . A-20
A.4 Instanton solution of the euclidean equation of motion . . . . . . . . . . . . . A-22
A.5 A chain of separated instanton/anti-instantons solutions . . . . . . . . . . . . A-23



List of Tables

4.1 Slope and intercept for the osmotic velocity from Figure 4.12 . . . . . 73
4.2 First three energies for the one-dimensional harmonic oscillator . . . . . 78
4.3 E0 and E1 for the one-dimensional double-well potential . . . . . . . . 83
4.4 Mean first passage time for the one-dimensional double-well potential . 85
4.5 Parameters obtained from empirical fits to the first passage time density

function dependent on the tuple (a, V0) . . . . . . . . . . . . . . . . . . 91

V





CHAPTER 1
The need of an alternative approach
to address quantum mechanics

Our modern society is highly dominated by high-end technology that in turn is largely
based upon the understanding of microscopic systems. Just to name but a few, modern
computers, smartphones, or also lasers found in any CD, DVD or blue-ray player
benefit from, or even rely on, a quantum-mechanical understanding of small-scale
processes. Especially the contributions of Max Planck [1901], Albert Einstein [1905],
Werner Heisenberg [1925], Max Born and Pascual Jordan [Born and Jordan, 1925;
Born et al., 1925], and Erwin Schrödinger [1926a,b,c,d, 1927a,b] (see also [Schrödinger,
1982]) revolutionized our understanding of such systems, and have provided the basis
of modern quantum mechanics. Now being able to not only describe the macroscopic
world, but also nature on its atomic scale, a multitude of phenomena that were not
understood until then now turned out to be manageable, yielding new insights and
stimuli for further research along this line. Modern technology has rapidly evolved from
that. Despite its success in connecting the microscopic world to different experimental
findings, quantum mechanics was controversially discussed in its beginning, with
Einstein being perhaps the most famous opponent of this new theory. Nowadays,
quantum mechanics is a well established part of modern physics, and is of indispensable
value to elucidate phenomena on length scales beyond macroscopic effects. Still, the
detailed interpretation of its outcomes can be as interesting as sophisticated.

In classical mechanics, there is a straightforward and intuitive interpretation of the
required mathematical formalism as compared to physical reality. The state space
equals the phase space, i.e. the state space is a set of points with elements directly given
by the position and momentum of the particle(s). Measured quantities are functions
which associate real numbers (the measured data) where elements from the phase space
and the measured data are directly linked to physical properties of the system.
Furthermore, for the description of the dynamics of the system, different theories are
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1. The need of an alternative approach to address quantum mechanics

Classical mechanics:

Hamilton principle
S[x] =

∫ T
0
{ 1

2mv(t)− V (x(t))
}

dt
Hamilton-Jacobi equation
∂tS(x, t)− V (x)− 1

2m (∂xS(x, t))2 = 0

Newton’s equations
ẋ(t) = v(t) , m a(t) = F = − dV

dx (x)

Figure 1.1.: Schematic representation of the three equivalent theories, which describe
the motion of a classical particle uniquely but independently from each
other.

available. Starting from the dynamic equations of Newton, Hamilton established a
variational problem, i.e. Hamilton’s principle, identifying classical paths as stationary
points of the action functional. Moreover, the action function itself fulfills a non-linear,
partial differential equation (PDE), called the Hamilton-Jacobi equation. All three
approaches are equivalent to each other and describe the dynamic of the system uniquely.
This general structure of analytical mechanics is visualized in Figure 1.1.

In 1925, based on the approach of Heisenberg [1925], the so-called matrix mechanics was
introduced by Born, Jordan, and Heisenberg [Born and Jordan, 1925; Born et al., 1925].
This treatment was the first closed theory to describe quantum systems. Somewhat
later, Schrödinger [1926a,c,d, 1927a,b] established his famous equation by making use of
the analogy to the Hamilton-Jacobi formalism in classical mechanics. It turned out that
this theory is equivalent to the matrix mechanics introduced by Heisenberg [Schrödinger,
1926b]. The Hilbert space, related to the solutions of the Schrödinger equation, leads
to the identification of self-adjoint operators as a representation of physical observables
[von Neumann, 1996], which is the standard way of thinking about modern physics.
In detail, this means that the state space (Hilbert space) representation is essentially
abstract, and interpretations are less straightforward as in the phase space of classical
mechanics. In particular, elements of the Hilbert space (vectors and operators) are not
directly linked to physical reality [Friebe et al., 2015]. Measured values of an observable
are given by (real) eigenvalues of the related operators; however, as they represent a
macroscopic pointer position at the time of the measurement, there is no direct link
to the physical properties of the quantum system [Friebe et al., 2015]. Hence, it is
impossible to make any statements about the system before performing the actual
measurement, noting that the measurement itself will change the state of the system.
In fact, repetitive measurements do not necessarily provide the same value for one and
the same observable. Any approach is restricted to expectation values that in turn are
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determined under a certain measurement probability that is correlated with the wave
function of the original system. To make a long story short, it is hence apparent that
the physical interpretation of the mathematical formalism of quantum mechanics is
not as natural as in classical mechanics.

The most common and broadly accepted interpretation of quantum mechanics dates
back to the work of Niels Bohr and Weiner Heisenberg in 1925 to 1927, and has been
consolidated as the Copenhagen interpretation of quantum mechanics. The following
points are of central importance:

1. The wave function, which is the solution to the Schrödinger equation, represents
the state of a system and combines all known information about the system.

2. Heisenberg’s uncertainty principle: Certain properties, e.g. the position and
the momentum of the particle, cannot be simultaneously measured with highest
precession. The more precisely the position of the particle is determined, the less
precisely the momentum can be obtained.

3. In any measurement, the quantum system interacts with the laboratory device.
Performing the measurement, the wave function collapses or is irreversibly re-
duced to an eigenstate of the observable that is detected. The result of such a
measurement is a classical one and should be described in the ordinary language
of classical physics.

4. The correspondence principle: For large quantum numbers (high quantum states),
the properties of the system are in close agreement with those of the classical
description [Born, 1920].

5. The description given by the wave function is probabilistic: the square of the ab-
solute value of the wave function gives the probability density, i.e. the probability
that a measurement on a quantum system yields a given result [Born, 1926].

Even though the Copenhagen interpretation of quantum mechanics has been well
established, its correctness has always been a matter of debate, including also scepsis
and criticism by Schrödinger and Einstein [Heisenberg, 1956]. Suggestions to the
meaning of the wave function are still made; see, for instance, Aharonov et al. [1993]
or Gau [2011].

Forty years after Schrödingers contributions, Edward Nelson [1966] published a work
in which he derived the Schrödinger equation by assuming that the dynamics of a
quantum particle can be represented in terms of time-reversible Brownian motion.
Worth noting, the Born interpretation of the wave function [Born, 1926] is intrinsic to
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1. The need of an alternative approach to address quantum mechanics

this derivation. Identifying the diffusion coefficient as Planck’s constant divided by two
times the mass of the particle, and assuming the expectation value of the acceleration
to be given by the force divided by the mass, he ended up with the Madelung equations
[Nelson, 1966, 1985], which are, for the ground state of the system, equivalent to the
Schrödinger equation [Madelung, 1927]. This theory “attempts to provide a realistic,
objective description of physical events in classical terms” [Nelson, 1985], and overcomes
difficulties in the ordinary theory of quantum mechanics. For instance, the duration
of a tunneling process can be naturally defined, while the standard formulation of
quantum mechanics would require the duration of the process to be accessed as the
expectation value of a “time operator”. Though, there is no time operator in quantum
mechanics! In fact, a lot of efforts have been made to characterize tunneling times both
experimentally [Martinis et al., 1988; Steinberg et al., 1993; Eckle et al., 2008] and
theoretically [MacColl, 1932; Hartman, 1962; Büttiker and Landauer, 1982; Büttiker,
1983; Landauer, 1989; Landauer and Martin, 1994; Steinberg, 1995].

Soon after, variational principles where introduced and the kinematic laws and the
Schrödinger equation could also be derived from this approach [Yasue, 1980, 1981a,b;
Guerra and Morato, 1983; Guerra and Marra, 1984]. Finally, Michele Pavon [1995b]
introduced the so-called quantum Hamilton principle in an analogous way to classical
analytical mechanics, including also the kinematic equations as constraints to the search
of the optimal path, which extremizes the action functional. Consequently, the same
fundamental structure as in classical mechanics can be found for quantum systems.
Similar to the Hamilton-Jacobi equation, the Schrödinger equation is a complete, but
not the only, description of quantum systems.
The quantum-mechanical wave function and the drift coefficients are directly related
to each other, as has been utilized to elucidate the dynamics of quantum systems in
more detail. Applications include, but are not limited to, the double slit [McClendon
and Rabitz, 1983; Nitta and Kudo, 2008], correlated quantum gases [Paul, 2012] and
tunneling processes [Yasue, 1978; Chen and Wang, 1990; Imafuku et al., 1995, 1997;
Aoki et al., 2000; Hara and Ohba, 2003].

Up to date, the analysis of (non-relativistic) quantum systems is based upon an analyt-
ical treatment of, or an numerical approach to, the Schrödinger equation. Even for
approaches utilizing stochastic mechanics, the wave function must be known so as to
address the kinematic equations postulated by Edward Nelson [1966]: Nelson’s theory
requires knowledge of two distinct velocities that in turn are defined by the real and
imaginary part of the gradient of the logarithm of the wave function. Applications
of stochastic mechanics are restricted to a small number of potentials of which the
Schrödinger equation can be solved analytically. Even though the two velocities are
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characterized by two coupled non-linear partial differential equations, which in turn
are equivalent to the Madelung equations, solving these PDEs cannot be performed in
a straightforward way. Consequently, finding a method to determine the velocities is
reasonable and would expand the applicability of Nelson mechanics, as well as it would
supply a complete description of a quantum system in parallel, and independent of,
the Schrödinger equation.

In the study at hand, the quantum Hamilton principle of Pavon will be interpreted as a
stochastic optimal control problem resulting in stochastic quantum Hamilton equations
of motion. This set of equations can be solved - at least numerically - without any
knowledge of the wave function, i.e., they constitute an independent and also more
intuitive way to treat quantum systems.

Stochastic mechanics has a natural derivation from the variational principle
[. . . ]. Had the Schrödinger equation been derived in this way before the
invention of matrix mechanics, the history of the conceptual foundations of
modern physics would have been different.

– Edward Nelson [1985]

The thesis at hand is organized as follows: In the next chapter, fundamental
aspects on stochastic processes and stochastic differential equations will be presented,
followed by a in-detail description of the theory of Nelson mechanics in the third
chapter. In chapter four, comprising the major part of this thesis, the derivation of the
stochastic Hamilton equations of motion will be presented. Stationary systems will be
addressed first, followed by an approach to the more general case of time-dependent
problems. For the stationary case, a numerical algorithm will be introduced and applied
to two exemplary cases. Prospects to further applications and developments will be
discussed at the end of this chapter. Finally, the last chapter summarizes the central
results obtained, and concludes with an assessment on the significance of the theory
derived.
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CHAPTER 2
Stochastic analysis

The central objective of the concepts and methods presented herein is to achieve
an appropriate description of quantum dynamics using the theory of conservative
Brownian motion [Nelson, 1966], i.e., the use of stochastic processes. The following
chapter summarizes fundamental concepts required for stochastic analysis. For the
sake of clarity, an overview of the most relevant definitions is also presented in section
A.1 (appendix).

Definition 2.1 A stochastic process (X(t))t∈I is a family of Rd (or complex-valued)
random variables with an index set I [Arnold, 1973].

Remark 2.2 It is common1 to write Xt instead of X(t).

The stochastic process (X(t))t∈I describes a time-dependent, random-based event. Its
associated index set I is commonly interpreted as a set of different times, with the
distinction of discrete times, I ⊆ N, from continuous ones, I ⊆ R+. For any fixed
t ∈ I, X(t, ·) is a random variable, i.e., X : Ω→ Rd is a measurable function from the
sample space Ω into Rd, while X(·, ω) is a Rd-valued function for all fixed ω ∈ Ω, and
is called realization (trajectory, path) of the process [Arnold, 1973]. In fact, a stochastic
process is always defined on a probability space (Ω,F , P ), which in turn is defined
within the axiomatic system of Kolmogoroff [1933]. The sample space Ω includes all
possible outcomes of the random experiment. The σ-algebra F is the event space and
includes all events A ∈ F to which a probability is assigned. The probability measure
P : F → [0, 1] assigns a probability to each event A ∈ F . Furthermore, P (Ω) = 1, and,
given that A, B are disjoint, P (A ∪ B) = P (A) + P (B). A σ-algebra F ∈ P(Ω)2 is
defined as follows [Meintrup and Schäffler, 2005].

Definition 2.3 (σ-algebra) A set system F ∈ P(Ω), i.e. a set of subsets of Ω, will
be called σ-algebra, if the following conditions are fulfilled:

1In particular, the notation Xt will be used in the context of discrete processes.
2P(Ω) is the power set of Ω

7



2. Stochastic analysis

(i) The basic set Ω is included, i.e. Ω ∈ F .

(ii) F is closed under complementation: If A ∈ F , then Ac := Ω \A ∈ F .

(iii) F is closed under countable unions: If Ai ∈ F , i ∈ N, then ⋃∞i=1Ai ∈ F .

The so-called Wiener process (Wt)t≥0 on (Ω,F , P ) is an important example of stochastic
processes, and is defined as follows:

Definition 2.4 A stochastic process (W (t))t≥0 will be called Wiener process (or Brow-
nian motion), if the following conditions hold [Meintrup and Schäffler, 2005]:

(W1) W (0) = 0 almost sure.

(W2) (W (t))t≥0 consists of independent increments.

(W3) The increments W (t)−W (s), 0 ≤ s < t, are distributed as N(0, t− s), i.e., a
normal distribution with an expectation value equal to zero and variance3 given
by (t− s).

(W4) (W (t))t≥0 is a continuous process, i.e., almost all paths of the process are contin-
uous.

The existence of such processes can be proven; see e.g. Meintrup and Schäffler [2005].
The first three conditions can be verified using Kolmogorov’s existence theorem [Mein-
trup and Schäffler, 2005]. Certainly, in no case a process defined by (W1)-(W3) contains
only continuous paths [Meintrup and Schäffler, 2005]. Nonetheless, by making use
of Kolmogorov’s continuity theorem, [Øksendal, 2000], one can show that there is a
continuous version of the process, and in the following, the assumption will be made
that (Wt)t≥0 is such a continuous version of the process.
Moreover, (W (t))=

(
W (1)(t), . . . ,W (d)(t)

)
will be called d-dimensional Brownian mo-

tion, if the one-dimensional processes
(
W (j)(t)

)
t≥0

, 1 ≤ j ≤ d, are independent from
each other [Øksendal, 2000].

Another important class of stochastic processes are the so-called Markov processes, i.e.,
processes in which the present, the past and future states are statistically independent
of each other.

Definition 2.5 (Markov process) Suppose Bd is the Borel σ-algebra, i.e. the small-
est σ-algebra generated by open sets of Rd. Let Fs be a σ-algebra which is generated

3The variance is, actually, σ2(t − s), however, w.l.o.g. σ = 1, since the latter can indeed be
achieved by (re)scaling the time axis.
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by the process (X(t))t≥0 up to time s. Then, the process is called (weak, elementary)
Markov process, if for 0 ≤ s ≤ t and all B ∈ Bd the condition

P {X(t) ∈ B | Fs} = P {X(t) ∈ B | Xs} (2.1)

is fulfilled (with probability one) [Arnold, 1973].

This condition is called Markov property. There are many equivalent formulations of
this feature; see, for instance, Arnold [1973] or Theorem A.4 in the appendix (section
A.1).

In the following, it will be assumed that all processes considered herein are one-
dimensional ones; however, the presented concepts can be trivially extended to the
higher-dimensional case (addressed in section 2.2). Stochastic processes are often
described by stochastic differential equations (SDEs), which in turn are motivated by
an ordinary differential equation (ODE), i.e. writing

dX
dt = b(t,X(t)) + σ(t,X(t)) · ξ(t) . (2.2)

Here, b, σ are given functions. (ξ(t))t≤0 is called white noise process and has the
following properties [Øksendal, 2000]:

(i) t1 6= t2 ⇒ ξ(t1) and ξ(t2) are independent from each other.

(ii) (ξ(t))t≥0 is stationary, i.e. the (joint) distribution of {ξ(t1 + t), . . . , ξ(tk + t)} does
not depend on t.

(iii) E[ξ(t)] = 0 for all t.

Since reasonable processes fulfilling (i)-(iii) cannot be found [Øksendal, 2000], equation
(2.2) is rewritten in such a way that the process ξ(t) is replaced by a more suitable
one. Let 0 = t0 < t1 < · · · < tn = T be a partition of the time interval [0, T ] and
∆ti := ti+1 − ti, then the discretization of equation (2.2) reads

Xti+1 −Xti = b(ti, Xti) ∆ti + σ(ti, Xti) ξti ∆ti . (2.3)

Replacing ξti ∆ti by ∆Wi = Wti+1 −Wti , it follows that (W (t))t∈[0,T ] has stationary
increments with zero expectation value. In addition, processes with continuous paths
turn out to be described by Brownian motion only [Øksendal, 2000]. Consequently,

Xti = X0 +
i−1∑
k=0

b(tk, Xtk) ∆tk +
i−1∑
k=0

σ(tk, Xtk) ∆Wk . (2.4)

9



2. Stochastic analysis

If the limit ∆tk → 0 is existent, then applications of the usual integration rules will
yield

X(t) = X0 +
∫ t

0
b(s,X(s)) ds + “

∫ t

0
σ(s,X(s)) dW (s)” . (2.5)

The first term is given by a ("normal") Riemann or Lebesgue integral, while the second
term will be addressed in the following by defining

I[f ] :=
∫ t

0
f(s, ω) dW (s, ω) (2.6)

for a wide class of functions f : [0,∞)× Ω→ R.

2.1. Itô integrals
Definition 2.6 Let the set V = V(T ) be the class of functions f : [0,∞) × Ω → R
such that the following conditions hold for all T > 0 [Øksendal, 2000]:

(i) (t, ω)→ f(t, ω) is B × F-measurable, where B is the Borel σ-algebra on [0,∞).

(ii) f(t, ω) is Ft-adapted.

(iii) E
[∫ T

0 f(t, ω)2dt
]
<∞.

The Itô integral I[f ] of a function f ∈ V will be defined as follows. The Itô integral
will be introduced for a simple class of functions φ that are step-functions (also called
elementary functions). Based upon that, it will be shown that every function f ∈ V
can be approximated by step functions, such that I[f ] equals the limit of I[φ] as φ→ f .

Definition 2.7 A function φ ∈ V(T ) will be called elementary function, if there exists
a decomposition 0 = t0 < t1 < · · · < tN = T along with Ftj -measurable random
variables φj, j = 0, . . . , N , with E(φ2

j) <∞ such that

φ(t, ω) =
N−1∑
j=0

1[tj ,tj+1)(t)φj(ω) , φ(T, ω) = φN(ω) . (2.7)

Definition 2.8 (Itô integral for elementary functions) For an elementary
function φ ∈ V the Ito integral reads

I[φ] =
∫ T

0
φ(t, ω) dW (t, ω) =

N−1∑
j=0

φj (W (tj+1)−W (tj)) . (2.8)

Following these considerations, it will be be shown that elementary functions are closed
functions in V .
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2.1. Itô integrals

Theorem 2.9 For every function f ∈ V exists a sequence (φn)n∈N ⊂ V such that

lim
n→∞

E
[∫ T

0
(f(t)− φn(t))2dt

]
= 0 (2.9)

almost surely.

The proof of Theorem 2.9 can, for instance, be found in the textbook by Arnold [1973].
Thus, the stochastic integral I[f ] for an arbitrary function f ∈ V is defined as follows.

Definition 2.10 (Itô integral) Let f ∈ V and let (φn)n∈N ∈ V be a sequence of
elementary functions such that theorem 2.9 holds. Then,

∫ T

0
f(t, ω) dW (t) = ms- lim

n→∞

∫ T

0
φn(t, ω) dW (t) (2.10)

is called Itô integral, where ms- lim (see also appendix A.1) denotes the convergence in
mean square.

Furthermore, the Itô integral has to the following properties.

Theorem 2.11 Let f, g ∈ V. Then

(i) α, β ∈ R

⇒
∫ T

0

(
α f(t, ω) + β g(t, ω)

)
dW (t)

=α
∫ T

0
f(t, ω) dW (t) + β

∫ T

0
g(t, ω) dW (t) (2.11)

(ii) a, b ∈ [0, T ], a < b

⇒
∫ T

0
1[a,b] dW (t) = W (b)−W (a) (2.12)

(iii) 0 < U < T . Then for almost all ω

∫ T

0
f(t, ω) dW (t) =

∫ U

0
f(t, ω) dW (t) +

∫ T

U
f(t, ω) dW (t) (2.13)

holds.

(iv) E
[∫ T

0 f(t, ω) dW (t)
]

= 0

(v) E
[∫ T

0 f(t, ω) dW (t)
]2

= E
[∫ T

0 f(t, ω)2 dt
]

=
∫ T

0 E (f(t, ω)2) dt

(vi)
∫ T

0 f(t, ω) dW (t) is FT -measurable.

11



2. Stochastic analysis

(vii) ∀c > 0, L > 0:

P

{∣∣∣∣∣
∫ T

0
f(t, ω) dW (t)

∣∣∣∣∣ > c

}
≤ P

{∣∣∣∣∣
∫ T

0
f(t, ω)2 dt

∣∣∣∣∣ > c

}
+ L

c2 (2.14)

(viii) The Itô integral has with probability one continuous realizations.

Remark 2.12 It is possible to expand the definition of the Itô integral to a more
general class of processes. Let the properties given by Definition 2.6 (i), (ii) be valid,
and let P

{∫ T
0 f 2(t, ω)dt <∞

}
be true, then (i), (iii), (iv) and (viii) of Theorem 2.11

are fulfilled as well.

The definition using elementary functions is very convenient since the value of the
integral is independent of the choice of the sequence (φn). Moreover, the Itô integral
leads to a martingale, which is an important computational advantage [Øksendal, 2000].
However, there are different ways to define the stochastic integral, e.g. by the use of
Stratonovich integral. It is noted that the different definitions of the stochastic integral
can in fact yield different results [Arnold, 1973; Øksendal, 2000].
Finally, the wanted integral from equation (2.6) can be easily determined using the
following corollary [Arnold, 1973]:

Corollary 2.13 Let f(t, ω) ∈ V with probability one be a continuous function with
respect to t, and 0 = t0 < t1 < · · · < tN = t, δN = maxk(tk+1 − tk), then

∫ t

0
f(s, ω)dW (s) = P- lim

δN→0

N−1∑
k=0

f(tk, ω) (W (tk+1)−W (tk)) . (2.15)

Here, P- lim denotes the convergence in probability.

2.2. Existence and uniqueness for solutions of SDE’s
Now, addressing to all possible solutions X(t, ω) of equation (2.2), the Itô interpretation
of equation (2.2) is that Xt satisfies the stochastic integral equation

X(t) = X0 +
∫ t

0
b(s,X(s)) ds +

∫ t

0
σ(s,X(s)) dW (s) , (2.16)

or, in differential form

dX(t) = b(t,X(t)) dt + σ(t,X(t)) dW (t) , X(t = 0) = X0 , (2.17)

which is called stochastic differential equation. Note that equation (2.17) is only a
formal notation, meaning that the process fulfills the integral equation. Finally, the

12



2.2. Existence and uniqueness for solutions of SDE’s

existence and uniqueness of such equations can be questioned, as well as fundamental
features of their solutions should be clarified, as done below.

Theorem 2.14 (Existence and uniqueness theorem for SDEs)
Let T > 0 and b(·, ·) : [0, T ] × Rd → Rd, σ(·, ·) : [0, T ] × Rd → Rd×m be measurable
functions satisfying

|b(t, x) + σ(t, x)| ≤ C(1 + |x|) , x ∈ Rd, t ∈ [0, T ] (2.18)

for a constant value of C, and let

|b(t, x)− b(t, y)| + |σ(t, x)− σ(t, y)| ≤ D|x− y| , x, y ∈ Rd, t ∈ [0, T ] (2.19)

be valid for a constant D. Moreover, let X0 be a F0-measurable random variable and
(W (t))t∈[0,T ] be an m-dimensional Wiener process.
Then, the stochastic differential equation

dX(t) = b(t,X(t)) dt + σ(t,X(t)) dW (t) , X(t = 0) = X0 (2.20)

has a unique solution (X(t))t∈[0,T ] with the following properties:

1. (X(t))t∈[0,T ] has with probability one continuous realizations, i.e. for fixed ω the
function X(t, ω) is continuous with respect to t.

2. X(t) is adapted to the filtration Ft.

3. E
[∫ T

0 |X(t)|2dt
]
<∞.

The theorem and its proof can be found in many textbooks of stochastic differential
equations, see for instance, Arnold [1973] or Øksendal [2000]. Note that the derivation
of the Itô integral was presented for one-dimensional processes, while the theorem of
existence and uniqueness also applies to the multidimensional case. It is further noted
that uniqueness has to be understood as follows. Let (X(t))t∈[0,T ] and (Y (t))t∈[0,T ]

be solutions to equation (2.20), then this SDE has a unique solution if and only if
P {X(t) = Y (t) , ∀t ∈ [0, T ]} = 1.

Another important property is given by the following theorem, the validity of which is
proven in ref. [Arnold, 1973].

Theorem 2.15 If the conditions of Theorem 2.14 are fulfilled, then the solution X(t)
of equation (2.20) is a Markov process for t ∈ [0, T ], and the transition probability reads

P {t, A; s, x} := P {X(t) ∈ A|X(s) = x} = P{Xs,x(t) ∈ A} . (2.21)
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2. Stochastic analysis

Here, Xs,x(t) is the solution of the SDE (equation (2.20)) with the initial point
X(t = s) = x, that is, Xs,x(t) is the solution of

Xs,x(t) = x +
∫ t

s
b(u,X(u)) du +

∫ t

s
σ(u,X(u)) dW (u) . (2.22)

If a density p(t, y; s, x) to the probability P (t, A; s, x) exists, then the density will fulfill
a forward as well as a backward Fokker-Planck equation [Arnold, 1973].

Theorem 2.16 Let (Xt)t∈[0,T ] be a d-dimensional Markovian process characterized
by equation (2.20), and having the transition probability density p(t, y; s, x). If the
partial derivatives ∂tp, ∂yp and ∂yyp exist, then the density p(t, y; s, x) is a fundamental
solution to the forward Kolmogorov or Fokker-Planck equation (t > s, fixed s and x),

0 = ∂

∂t
p(t, y; s, x) +

d∑
i=1

∂

∂yi

(
bi(t, y) p(t, y; s, x)

)

− 1
2

d∑
i=1

d∑
j=1

∂2

∂yi ∂yj

[(
σ(t, y)σ∗(t, y)

)
ij
p(t, y; s, x)

]
= 0 , (2.23)

with σ∗(t, y) being the transposed matrix of σ(t, y). Analogously, if the partial deriva-
tives ∂sp, ∂xp and ∂xxp are existent, the density p(t, y; s, x) will fulfill the backward
Kolmogorov or Fokker-Planck equation ( s < t, fixed t and y),

0 = ∂

∂s
p(t, y; s, x) +

d∑
i=1

bi(s, x) ∂

∂xi
p(t, y; s, x)

+ 1
2

d∑
i=1

d∑
j=1

(
σ(s, x)σ∗(s, x)

)
ij

∂2

∂xi ∂xj
p(t, y; s, x) . (2.24)

2.3. Example – Brownian motion

For the purpose of illustrating the presented mathematical concepts, and as a link
to the physical background of this thesis, Brownian motion will be discussed in this
section. Brownian motion was observed and documented for the first time by the
Scottish botanist R. Brown, who became aware of the natural motion of pollen particles
immersed in a solvent. It took about 80 years until Einstein and Smoluchowski came
up with a theoretical description of this phenomenon, and this breakthrough still gives
the basis for theoretical considerations [Paul and Baschnagel, 2013].

The concept of Brownian motion is sketched in Figure 2.1 and can be treated in the
framework of theoretical physics as follows. Collisions with the fluid, i.e. the smaller
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2.3. Example – Brownian motion

Figure 2.1.: Scheme of a Brownian particle with mass M in a fluid of much smaller
and lighter particles, taken from [Paul and Baschnagel, 2013].

particles, cause a random force and a viscous drag to the Brownian particle. The
viscous drag force is given by

fdrag = −γMv , (2.25)

where γ is the kinetic viscosity of the medium, M is the mass and v is the velocity of
the Brownian particle. As for the random force, it is assumed that all encounters are
uncorrelated. Based upon the mass difference, fluid particles move much faster than
the Brownian particle, and encounters are approximated as instantaneous events along
with random velocity changes of the Brownian particle. Thus, velocity changes are
well-represented by a Wiener process of strength σ, and the position and the velocity
of the particle can be characterized using two coupled SDEs,

dX(t) =v dt , (2.26)

M dv(t) = − γMv(t) dt + σ dW (t) . (2.27)

Note that the position of the Brownian particle is described by a deterministic equation.
Moreover, it is possible to add an external force F to the particle, which will occur in
the drift term of the velocity. Here, free Brownian motion will be assumed, such that
F = 0 holds. The above equations are equivalent to the Fokker-Planck equation

∂p(t,x,v)
∂t

= [−∇x + γ∇v] ·
(
v p(t,x,v)

)
+ 1

2

(
σ

M

)2
∆xp(t,x,v) , (2.28)

which was used in 1940 by H. Kramers to describe the kinetics of chemical reactions
[Paul and Baschnagel, 2013]. For the sake of simplicity, only the one-dimensional case
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2. Stochastic analysis

will be studied. The velocity process

dv(t) = −γv dt + σ

M
dW (t) , v(t = 0) = v0 , (2.29)

which is also called Orstein-Uhlenbeck process, is a linear SDE. The solution of that
process reads (see Appendix theorem A.7)

v(t) = v0 e−γt + σ

M

∫ t

0
e−γ (t−s) dW (s) . (2.30)

Moreover, the probability density of the velocities fulfills the Fokker-Planck equation
[Paul and Baschnagel, 2013]

∂p(t, v)
∂t

= γ
∂

∂v

(
v p(t, v)

)
+ 1

2

(
σ

M

)2 ∂2p(t, v)
∂v2 . (2.31)

Taking the average of equation (2.30), one gets

E[v(t)] = E[v0] e−γt . (2.32)

Furthermore, one can easily check that the second momentum is given by [Paul and
Baschnagel, 2013]

E
[
v2(t)

]
= σ2

2γM2 +
(

E
[
v2

0

]
− σ2

2γM2

)
e−2γt . (2.33)

Since
lim
t→∞

E
[
v2(t)

]
= σ2

2γM2 =: E
[
v2(∞)

]
, (2.34)

the stationary value of the mean square of the velocity is reached for t→∞ and has to
be equal to the mean thermal velocity of the Brownian motion [Paul and Baschnagel,
2013], i.e.,

M

2 E
[
v2(∞)

]
= kBT

2 ⇒ σ2 = 2γmkBT , (2.35)

where kB is the Boltzmann constant and T is the absolute temperature of the fluid,
i.e., of the environment of the Brownian particle. As a consequence, equation (2.30)
accounts for the thermal equilibrium of the particle, if and only if the two parameters
γ, σ are interrelated by equation (2.35).
The motional process can be determined by integration of equation (2.30), yielding

X(t) = x0 + v0

γ

(
1− e−γt

)
+ σ

M

∫ t

0
dt′

∫ t′

0
e−γ (t′−s) dW (s) . (2.36)
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2.4. Itô formula

For γ →∞ taken such that D := σ2

2γM2 stays constant, the distribution of the motion
process converges to that one of a Gaussian process, i.e., [Arnold, 1973]

X(0)(t) = x0 +
√

2DWt . (2.37)

Hence, in the theory of Ornstein-Uhlenbeck, the Brownian particle has a continuous
velocity (though no continuous acceleration), whose existence is lost in the transition
X(t)→ X(0)(t) [Arnold, 1973].

2.4. Itô formula

Last but not least, the important theorem of Itô will be introduced, as it is very helpful
to evaluate Itô integrals. In fact, the basic definition of Itô integrals it not very useful
to calculate the value of a given integral [Øksendal, 2000]. This situation is reminiscent
of deterministic Riemann integrals, for which the use of the fundamental theorem of
calculus, plus the chain rule, is commonly preferred. However, in the stochastic case,
there is no differentiation theory, but only integration theory. Still, it turns out that it
is possible to establish an Itô integral counterpart of the chain rule, called Itô formula
(see, for instance, ref. [Øksendal, 2000]).

Theorem 2.17 (Itô formula) Let f : [0, T ]×Rd → R be a continuous function with
the continuous partial derivatives

ft(t, x) = ∂

∂t
f(t, x) , fxi(t, x) = ∂

∂xi
f(t, x) , fxi,xj(t, x) = ∂2

∂xixj
f(t, x) , (2.38)

i, j = 1, . . . , d. Let (X(t))t∈[0,T ] be the d-dimensional process given by equation (2.20).
Then, the process

Y (t) = f(t,X(t)) , Y0 = f(0, X0) (2.39)

is also a stochastic differential with respect to the same Wiener process (Wt)t∈[0,T ], and

dY (t) =
b(t,X(t)) fx(t,X(t)) + 1

2

d∑
i=1

d∑
j=1

fxi,xj(t,X(t))
(
σ(t,X(t))σ∗(t,X(t))

)
ij

 dt

+ fx(t,X(t))σ(t,X(t)) dW (t) (2.40)

holds.

This theorem can be expanded for vector-valued processes, where every component
Yk(t) fulfills theorem 2.17.
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For one-dimensional problems, the presented formula becomes simpler, that is,

dY (t) =
[
ft(t,X(t)) + fx(t,X(t)) b(t,X(t)) + 1

2σ
2(t,X(t)) fxx(t,X(t))

]
dt

+ σ(t,X(t)) fx(t,X(t)) dW (t) . (2.41)

Example 2.18 As an example, the Itô formula will be used to determine the value of
∫ t

0
W (s) dW (s) . (2.42)

Similar to the deterministic case, one can assume that the term 1
2W

2(t) appears in
the solution to equation (2.42). Therefore, the Itô formula is applied to the function
f(x) = 1

2x
2, i.e., the process Y (t) = f(W (t)) is given by

1
2W

2(t) = Y (t) = f(W0)︸ ︷︷ ︸
=0

+
∫ t

0

1
2ds +

∫ t

0
W (s) dW (s) , (2.43)

where b(t, x) = 0 and σ(t, x) ≡ 1. Consequently, the wanted integral reads

∫ t

0
W (s) dW (s) = 1

2

(
W 2(t)− t

)
. (2.44)
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CHAPTER 3
Stochastic mechanics

In 1966, Edward Nelson [1966] introduced a new interpretation of quantum systems.
He assumed the interaction of the particle with the environment to be not negligible,
which is in contrast to the standard formalism of quantum mechanics (and classical
mechanics), where the system is always treated to be an isolated one. The particles are
described as classical ones following Newton’s dynamical law augmented by a random
term that describes the interaction with the environment. However, such a behavior
cannot be observed in a macroscopic system. In order to fulfill the correspondence
principle, the diffusion coefficient has to be indirectly proportional to the mass of the
particle. Nelson [1966] then derived the Schrödinger equation by starting from the
kinematic properties of conservative (time-reversible) diffusion processes and assumed
the expectation value of the acceleration to be given by the force divided by the mass
of the particle. He showed that for each solution of the Schrödinger equation there
is a stochastic process which is similar to the relation between the solution of the
Hamilton-Jacobi equations and the Newtonian equations of motion in the classical
theory.

Sometimes, Nelson mechanics is presented as a stochastic variant of de Broglie’s and
Bohm’s pilot-wave theory [Bohm, 1952a,b; de Broglie, 1970; Bohm and Hiley, 1982]
(and references therein), but there is a crucial conceptual difference between them
[Bacciagaluppi, 2005]. In the pilot-wave theory it is assumed that there is a physically
real wave, satisfying the Schrödinger equation together with a particle that follows
a well-defined trajectory [Bohm and Hiley, 1982]. The momentum of this particle
is related to the wave function. As a consequence, the wave function is an intrinsic
assumption to this theory. In contrast to this, Nelson only assumed that the particle
follows a (time-reversible) diffusion process in the configuration space. Based upon
that, he derived the Schrödinger equation, i.e. the wave function is not a part of the
ontology of the theory [Bacciagaluppi, 2005].
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3. Stochastic mechanics

3.1. The principle of stochastic mechanics and its
equivalence to the Schrödinger equation

The work presented herein aims to describe non-relativistic particles in an empty space,
i.e., no friction can be attributed to the space, and the motion of the particle cannot
be described on the basis of the Langevin equation. Therefore, it is assumed that the
particle follows the d-dimensional stochastic (Markov) process (X(t))t≥0 characterized
by the SDE

dX(t) = b(X(t), t) dt +
√

2 ν dWf (t) , X(t = 0) = x0 ∈ Rd , (3.1)

where (Wf (t))t≥0 is a d-dimensional (forward in time) Wiener process, defined in
Definition 2.4, and Wf(t) is independent of all X(s) with s ≤ t. The (constant)
diffusion coefficient ν will be defined later. Note that this is only a formal notation for
the Itô-integral equation,

X(t) = x0 +
∫ t

0
b(X(s), s) ds +

√
2 ν

∫ t

0
dWf (s) . (3.2)

In most cases, X(t) describes the location of an object at time t, which is reasonable
since all the results of a measurement can be interpreted as time-dependent macroscopic
positions of various objects (pointer, marks on photographic plates, etc.) [Nelson, 1988].
As discussed in the previous chapter, the paths of a stochastic process are, in general,
nowhere differentiable. To describe the dynamics of a system, a substitute of the
time-derivative is needed. Therefore, the mean-forward in time derivative is defined as
[Nelson, 1966]

DX(t) := lim
∆t→0

E
[

X(t+ ∆t) − X(t)
∆t

∣∣∣∣∣X(t)
]

. (3.3)

Analogously, the mean-backward in time derivative reads [Nelson, 1966]

D∗X(t) := lim
∆t→0

E
[

X(t) − X(t−∆t)
∆t

∣∣∣∣∣X(t)
]

. (3.4)

Indeed, if X(t) is (in mean) differentiable, then DX(t) = D∗X(t).

Example 3.1 (Ornstein-Uhlenbeck process) As analyzed in the last chapter, the
Langevin equations for describing the dynamics of a diffusive particle in an external
force are given by

dX(t) =v dt , (3.5)

M dv(t) =
[
−γMv(t) + F(X(t))

]
dt + σ dW f (t) . (3.6)
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3.1. The principle of stochastic mechanics and its equivalence to the Schrödinger equation

Therefore, the mean derivatives of the velocity are

D v(t) = − γv(t) + M−1 F(X(t)) , (3.7)

D∗ v(t) = γv(t) + M−1 F(X(t)) , (3.8)

resulting in
1
2DD

∗X(t) + 1
2D
∗DX(t) = M−1 F(X(t)) . (3.9)

This relation can be interpreted as the dynamic law for the Ornstein-Uhlenbeck theory.

As seen from the above example, it is worthwhile to define the second mean derivative
of a stochastic process as

a(t) = 1
2DD

∗X(t) + 1
2D
∗DX(t) , (3.10)

which may be called mean acceleration. The theory discussed here requires that the
drift term is given by a measurable function. Then, the mean-forward derivative is
given by exactly this function, since

DX(t) = lim
∆t→0

E
[

1
∆t

∫ t+∆t

t
b(X(s), s) ds +

√
2 ν

∆t

∫ t+∆t

t
dWf (s)

∣∣∣∣∣X(t)
]

= lim
∆t→0

E
[

1
∆t

∫ t+∆t

t
b(X(s), s) ds

∣∣∣∣∣X(t)
]

= E
[

lim
∆t→0

1
∆t

∫ t+∆t

t
b(X(s), s) ds

∣∣∣∣∣X(t)
]

= E [b(X(t), t)|X(t)] = b(X(t), t) . (3.11)

In general, the SDE in equation (3.1) is asymmetric in time, i.e., if the diffusion process
started at x0 and goes forward in time towards a new point X(t), and moved then
backwards in time with the same duration as before, it would not be mandatory that
the process reaches the same point again. A backward stochastic differential equation
(BSDE)

dX(t) = b∗(X(t), t) dt +
√

2 ν dWb(t) , X(t = T ) = xT (ω) (3.12)

is introduced, which also describes the process (X(t))t≥0 at time t. (Wb(t))t≥0 is a
d-dimensional backward in time Wiener process (as opposed to (Wf (t))t≥0). (Wb(t))t≥0

has the same properties as (Wf (t))t≥0, except of the fact that Wb(t) is independent of
of all X(s) with s ≥ t. Note that the starting point of the backward equation has to
be the endpoint of the forward solution and depends thus on randomness, denoted by
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3. Stochastic mechanics

the dependence on ω. The time horizon is given by T , which must be a sufficiently
large parameter. Furthermore, equation (3.12) is once more just a formal notation for
the following stochastic integral equation:

X(t) = xT −
∫ T

t
b∗(X(s), s) ds −

√
2 ν

∫ T

t
dWb(s) (3.13)

Conditions for the existence and uniqueness to the solution of such a backward SDE
are formulated in the same way as for forward SDEs, and, for instance, are presented
and proven by Peng [1993].

Analogously to the mean-forward derivative, one can show that the mean-backward
derivative is given by the drift term of the backward equation, i.e. D∗X(t) = b∗(X(t), t).
Indeed, the two Wiener processes are equivalent, but not equal [Nelson, 1988], and one
can determine the following relation:

Corollary 3.2 Suppose the process X(t) to be the solution of equations (3.1) and
(3.12), then

Wb(t1) − Wb(t0) = 1√
2 ν

∫ t1

t0

(
b(X(t), t)− b∗(X(t), t)

)
dt + Wf (t1)−Wf (t0)

(3.14)

is fulfilled for all t1 ≥ t0 ≥ 0 [Nelson, 1988].

A more detailed analysis of these processes is in order, and will be presented in a way
analogous to the original work by Nelson [1966]. For additional insights beyond the
aspects summarized below, see references [Nelson, 1985, 1988, 2001]. Note that (x(t), t)
will be replaced by its shorter form (x, t) for ease of notation.

The probability density p(x, t) of the process (X(t))t≥0 satisfies the forward Fokker-
Planck equation,

∂p(x, t)
∂t

= −∇ ·
(
b(x, t) p(x, t)

)
+ ν∆p(x, t) , (3.15)

and the backward Fokker-Planck equation,

∂p(x, t)
∂t

= −∇ ·
(
b∗(x, t) p(x, t)

)
− ν∆p(x, t) . (3.16)

Let the current velocity v(x, t) be defined by

v(x, t) := 1
2

(
b(x, t) − b∗(x, t)

)
, (3.17)
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3.1. The principle of stochastic mechanics and its equivalence to the Schrödinger equation

then the average of the two Fokker-Planck equations yields the equation of continuity,

∂p(x, t)
∂t

= −∇ ·
(
v(x, t) p(x, t)

)
. (3.18)

Theorem 3.3 Suppose that X(t) and Y(t) are stochastic processes of the discussed
type with respect to the same families of σ-algebras and that DX(t), D∗X(t), DY(t),
D∗X(t) are square integrable, continuous functions of t. Then,

d
dt E [X(t) Y(t)] = E [DX(t) ·Y(t)] + E [X(t) ·D∗Y(t)] (3.19)

holds [Nelson, 2001].

Using an Itô formula, one can show that the mean-forward and mean-backward
derivative of a function depending on the process X(t) are given by [Nelson, 1966, 2001]

Df(X(t), t)) =
(
∂

∂t
+ b · ∇ + ν∆

)
f(X(t), t)) (3.20)

D∗f(X(t), t)) =
(
∂

∂t
+ b∗ · ∇ − ν∆

)
f(X(t), t)) . (3.21)

If the smooth functions f and g have a compact support in time1, then Theorem 3.3
shows that

∫ ∞
−∞

E
[
Df(X(t), t)) · g(X(t), t))

]
dt = −

∫ ∞
−∞

E
[
f(X(t), t)) ·D∗g(X(t), t))

]
dt ,

(3.22)

or, equivalently [Nelson, 2001],

∫ ∞
−∞

∫
Rd

(
∂

∂t
+ b · ∇ + ν∆

)
f(x, t) · g(x, t) p(x, t)dx dt

= −
∫ ∞
−∞

∫
Rd
f(x, t) ·

(
∂

∂t
+ b∗ · ∇ − ν∆

)
g(x, t) · p(x, t)dx dt . (3.23)

For A being a partial differential operator, let A† be its (Lagrange) adjoint with respect
to the Lebesque measure on Rd, and let A∗ be the adjoint operator of A. Then,

∫ ∞
−∞

∫
Rd

(
Af(x, t)

)
g(x, t) p(x, t) dx dt

1A smooth function with a compact support is a special continuous function that assumes only
the value 0 outside of the support.
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3. Stochastic mechanics

equals both ∫ ∞
−∞

∫
Rd
f(x, t)A†

(
g(x, t) p(x, t)

)
dx dt

and ∫ ∞
−∞

∫
Rd
f(x, t)

(
A∗g(x, t)

)
p(x, t) dx dt ,

resulting in A∗ = p−1Ap [Nelson, 2001]. Consider

A† =
(
∂

∂t
+ b · ∇ + ν∆

)†
= − ∂

∂t
− b · ∇ − ∇ · + ν ∆ ,

then

−p−1(x, t)∂p(x, t)
∂t

= ∇ · (b(x, t) p(x, t))
p(x, t) − ν

∆p(x, t)
p(x, t)

=∇ · b(x, t) + b(x, t) · ∇p(x, t)
p(x, t) − ν

∆p(x, t)
p(x, t) (3.24)

holds, where the above mentioned relation (equation (3.23)) and the forward Fokker-
Planck equation are used [Nelson, 2001]. Inserting this relation in equation (3.23), one
gets

− ∂

∂t
− b∗(x, t) · ∇ + ν∆ = − ∂

∂t
− b(x, t) · ∇ + 2ν∇p(x, t)

p(x, t) · ∇ + ν∆ . (3.25)

Defining
u(x, t) := 1

2

(
b(x, t) − b∗(x, t)

)
, (3.26)

one finally concludes that
u(x, t) = ν

∇p(x, t)
p(x, t) . (3.27)

Since u(x, t) is the velocity acquired by the Brownian particle in equilibrium with an
external force to balance the osmotic force, u is called osmotic velocity [Nelson, 1966].
Using the continuity equation (3.18), the partial time derivative of the osmotic velocity
reads

ν
∂

∂t

[
ln∇p(x, t)

]
(3.18)= ν∇

(
ṗ(x, t)
p(x, t)

)

(3.18)= −ν∇
(
p(x, t)∇ · v(x, t) + v(x, t) · ∇p(x, t)

p(x, t)

)

⇒ ∂u(x, t)
∂t

(3.18)= −ν∇
(
∇ · v(x, t)

)
− ∇

(
v(x, t) · u(x, t)

)
. (3.28)
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3.1. The principle of stochastic mechanics and its equivalence to the Schrödinger equation

Using equation (3.20) and (3.21), the mean acceleration, defined in equation (3.10), is
given by

a(x, t) = 1
2Db∗(x, t) + 1

2D
∗b(x, t)

= 1
2

[
∂b∗(x, t)

∂t
+ (b(x, t) · ∇)b∗(x, t) + ν ∆b∗(x, t)

]

+ 1
2

[
∂b(x, t)
∂t

+ (b∗(x, t) · ∇)b(x, t) − ν ∆b(x, t)
]

= ∂v(x, t)
∂t

− ν∆u(x, t) +
(
v(x, t) · ∇

)
v(x, t) −

(
u(x, t) · ∇

)
u(x, t) .

(3.29)

Since macroscopic particles follow a deterministic Newton equation, the diffusion
coefficient has to be inversely proportional to the mass m of the particle, and Nelson
[1966] concluded that

ν = ~
2m . (3.30)

The constant ~ = h/2π is the reduced Planck’s constant and denotes a quantum of
action. Furthermore, suppose the particle being influenced by an external force, then
the dynamical assumption, F = m a, is made, where the mean acceleration a is given
by equation (3.10). This situation agrees with the assumption made in the Ornstein-
Uhlenbeck theory of Brownian motion with friction. Since the mean acceleration
equals the classical acceleration, given of course that x(t) is two times continuously
differentiable, the above treatment can be understood as a stochastic extension to
Newton’s law for classical particles.

Consider also the case that the external force is derived from a potential, i.e. F(x, t) =
−∇V (x, t). Then the particle follows a Markov process in the coordinate space
characterized by the forward and backward SDE’s

dX(t) = [v(X(t), t) + u(X(t), t)] dt +
√

~
m

dWf (t)

X(t = 0) = x0 ∈ Rd
, (3.31)

dX(t) = [v(X(t), t) − u(X(t), t)] dt +
√

~
m

dWb(t)

X(t = T ) = xT (ω)
. (3.32)
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The velocities are given by non-linear partial differential equations (PDEs), namely

∂v(x, t)
∂t

= F(x, t)
m

+ ~
2m ∆u(x, t) −

(
v(x, t) · ∇

)
v(x, t) +

(
u(x, t) · ∇

)
u(x, t)

= − ∇V (x, t)
m

+ ~
2m ∆u(x, t)−

(
v(x, t) · ∇

)
v(x, t)

+
(
u(x, t) · ∇

)
u(x, t) , (3.33)

∂u(x, t)
∂t

= − ~
2m∇

(
∇ · v(x, t)

)
− ∇

(
v(x, t) · u(x, t)

)
. (3.34)

If the current and osmotic velocity are known from the beginning, and the Cauchy
problem for these coupled non-linear PDEs can be solved for all x, then the process
will be completely known [Nelson, 1966].

As seen before, the osmotic velocity is a gradient, meaning that

u(x, t) = ~
m
∇R(x, t) . (3.35)

Let the current velocity also be given by the gradient of a scalar function, i.e.

v(x, t) = 1
m
∇S(x, t) . (3.36)

Then, equation (3.33) and (3.34) convert into

∇
(
∂S

∂t

)
=∇

(
−V − 1

2m(∇S) · (∇S) + ~2

2m(∇R) · (∇R) + ~2

2m ∆R
)

(3.37)

∇
(
∂R

∂t

)
=∇

(
− 1

2m ∆S − ~
m

(∇R) · (∇S)
)

(3.38)

by making use of ∇(a2) = 2(∇ · a) a, which is fulfilled for all rotation-free vectors,
∇× a = 0. For the sake of clarity, the position x and time t have been omitted in the
above equations, even though the functions discussed depend on them. Introducing

Ψ(x, t) = eR(x,t) + i
~S(x,t) , (3.39)

equation (3.37) and equation (3.38) are transformed into a linear PDE that in fact
equals the Schrödinger equation [Nelson, 1966, 2001], since

i~
(
∂R

∂t
+ i

~
∂S

∂t

)
=V − ~2

2m

(
∆R + i

~
∆S

)
− ~2

2m

[(
∇R + i

~
∇S

)2]
(3.40)

⇔ i~ ∂Ψ(x, t)
∂t

= −
[
~2

2m∆ + V (x, t)
]

Ψ(x, t) . (3.41)
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3.1. The principle of stochastic mechanics and its equivalence to the Schrödinger equation

Note that this equivalence is only fulfilled for a node-free wave function Ψ; otherwise,
R as well as u will diverge at the nodes of the wave function. The PDEs for the two
scalar functions R and S,

∂S

∂t
= − V − 1

2m(∇S) · (∇S) + ~2

2m(∇R) · (∇R) + ~2

2m ∆R (3.42)

∂R

∂t
= − 1

2m ∆S − ~
m

(∇R) · (∇S) , (3.43)

are Madelung equations [Madelung, 1927]. Equation (3.42) is also very similar to the
Hamilton-Jacobi equation in classical mechanics and corresponds to the hydrodynamic
equation of vortex-free flow with an external force field [Madelung, 1927]. To be more
specific, it is the quantum-mechanical counterpart to the classical Hamilton-Jacobi
equation. The additional term depends on the strength of the stochastic forces and
goes to zero for ν → 0 [Paul and Baschnagel, 2013]. Equation (3.43) matches a
hydrodynamic continuity equation [Madelung, 1927] and is another form of equation
(3.18).

In summary, for each solution of the Schrödinger equation there is a Markov process
characterized by two velocities. The probability density of the process – fulfilling both
the forward and backward Fokker-Planck equation – equals the quantum-mechanical
density given by the square of the absolute value of Ψ(x, t). For all quantum-mechanical
observables defined by self-adjoined operators on the Hilbert space, an associated
stochastic process can be defined. Nonetheless, the reverse statement does not hold in
general [Paul and Baschnagel, 2013].

The expectation value of a quantum-mechanical observable O(x, t) is given by

〈Ψ|O(x, t)|Ψ〉 =
∫
Rd

O(x, t) |Ψ(x, t)|2 dx =
∫
Rd

O(x, t) p(x, t) dx

= E[O(X(t), t)] , (3.44)

which is the definition of the expectation value of a stochastic variable, too. For
operators like the momentum operator p̂ = −i~∇, and also functions of them, the
situation is somewhat different. Still, one can easily check that the expectation value
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3. Stochastic mechanics

of the momentum operator equals the expectation value of the current velocity, i.e.

1
m
〈Ψ| p̂ |Ψ〉 = 1

m

∫
Rd

Ψ∗(x, t) (−i~∇)Ψ(x, t) d3x

=
∫
Rd

Ψ∗(x, t)
(
− i~
m
∇R(x, t) + 1

m
∇S(x, t)

)
Ψ(x, t) d3x

= − i E[u] + E[v] = E[v] , (3.45)

since

E[u] = ~
2m

∫
Rd

∇p(x, t)
p(x, t) p(x, t) d3x = ~

2m

∫
Rd
∇p(x, t) d3x = 0 . (3.46)

However, the osmotic velocity is of physical significance, noting that the second moment
contributes to the kinetic energy of the particle [Nelson, 1988]. The total energy, in
turn, is given by

Etot = m

2 v2(x, t) + m

2 u2(x, t) + V (x, t) , (3.47)

and the conservation of energy can be expressed in term of [Paul and Baschnagel, 2013]
(
∂

∂t
+ v(x, t) · ∇

)
Etot = 0 . (3.48)

The stochastic, path-oriented picture of quantum systems allows the definition of those
observables that are not accessible in the standard description of quantum systems. For
example, tunneling processes can be described in a natural way in stochastic mechanics,
as will be presented in the next section.

Remark 3.4 Indeed, one can easily check that the solutions of equation (3.31) and
(3.32) are given by the same process. Suppose (X(t))t≥[0,T ] being the solution of the
forward equation (3.31), i.e.

X(t) = x0 +
∫ t

0
[v(X(s), s) + u(X(s), s)] ds +

√
~
m

∫ t

0
dWf (s) , (3.49)

and (Y(t))t≥[0,T ] being the solution of the backward equation (3.32), i.e.

Y(t) = xT (ω) −
∫ T

t
[v(X(s), s) − u(X(s), s)] ds −

√
~
m

∫ T

t
dWb(s) , (3.50)

where xT (ω) = X(t = T ) is the end point of the forward process. Then, the backward
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process reads

Y(t) = x0 +
∫ T

0
[v(X(s), s) + u(X(s), s)] ds +

√
~
m

∫ T

0
dWf (s)

−
∫ T

t
[v(X(s), s) − u(X(s), s)] ds −

√
~
m

∫ T

t
dWb(s)

= x0 +
∫ t

0
[v(X(s), s) + u(X(s), s)] ds +

√
~
m

∫ T

0
dWf (s)

+ 2
∫ T

t
u(X(s), s)ds−

√
~
m

∫ T

t
dWb(s) .

Using Corollary 3.2 the backward Wiener process can be expressed in terms of the
forward Wiener process, yielding

Wb(T ) − Wb(t) = 2
√
m

~

∫ T

t
u(X(s), s) ds + Wf (T )−Wf (t) ,

and

Y(t) = x0 +
∫ t

0
[v(X(s), s) + u(X(s), s)] ds +

√
~
m

∫ T

0
dWf (s)

+ 2
∫ T

t
u(X(s), s) ds− 2

∫ T

t
u(X(s), s) ds −

√
h

m

∫ T

t
dWf (s)

= x0 +
∫ t

0
[v(X(s), s) + u(X(s), s)] ds +

√
~
m

∫ t

0
dWf (s) = X(t) .

3.2. Tunneling processes in Nelson mechanics
Out of the fundamental effects known from quantum mechanics, tunneling processes
are among the most fascinating ones, and serve together with the wave-particle dualism
as a prime example illustrating differences between classical and quantum systems.
While a classical particle may not pass through a potential barrier V0 higher than its
energy E, the same does not hold for quantum systems. Still, the duration of such
processes is a matter of debate, noting that there is no time operator in Hilbert-space
theory. In stochastic mechanics, on the opposite, the duration of a process is well
defined, thus overcoming shortcomings in the standard approach.

In the following, tunneling will be used to demonstrate the benefit of using stochastic me-
chanics applied to quantum systems. To address tunneling processes, a one-dimensional
double-well potential will be considered2, see Figure 3.1. Due to the symmetry of the

2See also Appendix A.7
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Figure 3.1.: Sketch of a one-dimensional double-well potential with energy eigenval-
ues belonging to an even and odd solution to the Schrödinger equation,
respectively [Paul and Baschnagel, 2013].

potential, the wave function of a particle located in this potential has to be either even
or odd. Let Ee

n be the energy of the even wave function and let Eo
n = Ee

n + ∆En be
the energy of the odd wave function. Since all odd solutions have an additional zero
crossing at x = 0, an energy splitting ∆En > 0 occurs [Paul and Baschnagel, 2013].
The wave functions Ψe(x) and Ψo(x) of the associated energy values are solutions of
the one-dimensional Schrödinger equation,

i~ ∂tΨ(x, t) =
[
− ~2

2m ∂xx + V (x)
]

Ψ(x, t) . (3.51)

The wave functions are stationary and there is no net probability current from one well
to the other in these states [Paul and Baschnagel, 2013]. Thus, the relation between
tunneling frequency and energy splitting will be derived using the approximation
presented in the textbook by Paul and Baschnagel [2013].

The wave function of a particle localized in the right or left well of the double-well
potential are denoted by ΨR(x) and ΨL(x), respectively, with the assumption of
ΨR(0) = 0 and Ψ′R(0) = 0, since V0 � E. The even and the odd wave function can be
constructed by superposition of ΨL(x) and ΨR(x), that is,

Ψe(x) = 1√
2

[ΨL(x) + ΨR(x)] , Ψo(x) = 1√
2

[ΨR(x)−ΨR(x)] . (3.52)

Considering that the particle is localized on the right-hand side of the wall (x > 0) at
time t = 0, i.e., Ψ(x, 0) = ΨR(x), the evolution of the wave function is expressed as

Ψ(x, t) = 1√
2

e−
iEent
~

[
Ψe(x) + e−

i∆Ent
~ Ψo(x)

]
. (3.53)
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For e−
i∆Ent

~ = −1, the particle will be on the left-handed side of the barrier, so that
the tunneling period,

τn = π~
∆En

, (3.54)

is characterized by the energy difference between the even and the odd state. It is
noted that the eigenvalues of the Schrödinger equation can often only be determined
approximately, e.g. by making use of the WKB-approximation (see for example the
textbook by Landau and Lifschitz [1979] or the Appendix, section A.6). This situation
is opposed to conservative diffusion processes, whose duration can be determined
directly. The average time needed by a particle to go from a position x to another
position xc located on the opposite side of the barrier, is characteristic of the tunneling
period, and referred to as the mean first passage time. This aspect will be discussed in
the following for a stationary one-dimensional Fokker-Planck equation.

Suppose the motion of the particle being described by

dX(t) = b(X(t)) dt + σ(X(t)) dWf (t) , (3.55)

where the conditional probability density for the transition from (x, 0) to (x′, t) is given
by the stationary3 forward Fokker-Planck equation (equation (2.23)),

p(x′, t;x, 0) = − ∂

∂x′

[
b(x′) p(x′, t;x, 0)

]
+ 1

2
∂2

∂x′2

[
σ2(x′) p(x′, t;x, 0)

]
. (3.56)

To determine the mean first passage time, knowledge of the distribution of first passage
times is required. Given that the particle starts at x ∈ (−∞, xc) at t = 0, the
probability that the particle is still in the same interval for times t > 0 is [Paul and
Baschnagel, 2013]

G(x, t) =
∫ xC

−∞
p(x′, t;x, 0) dx′ =

∫ xC

−∞
p(x′, 0;x,−t) dx′ . (3.57)

At the right-hand side of this equation it is used that the actual time may be shifted by
an arbitrary ∆t, chosen here as ∆t = −t. The function G(x, t) characterizes also the
probability that the first passage time τxc of the particle going from x to xc is larger
than t, i.e. [Paul and Baschnagel, 2013]

G(x, t) = P (τxc ≥ t) =
∫ ∞
t

pfpt(τxc) dτxc , (3.58)

where pfpt(τxc) is the desired density of the first passage times. Equation (3.56) and
(3.57) show that pfpt(τxc) depends on the initial state of the Brownian particle. Therefore,

3The drift and diffusion coefficient are not explicitly time-dependent.
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also the backward Fokker-Planck equation (equation (2.24)),

∂

∂t
p(x′, t′;x, t) = −b(x) ∂

∂x
p(x′, t′;x, t) − 1

2 σ
2(x) ∂2

∂x2p(x
′, t′;x, t) , (3.59)

needs to be considered. The studied first passage time problem p(x′, t′;x, t) is also
related to the following boundary conditions [Paul and Baschnagel, 2013]:

1. Absorbing boundary at x = xc: p(x′, t′;xc, 0) = 0.

2. Reflecting boundary for x→ −∞: ∂
∂x
p(x′, t′;x, 0) x→−∞−→ 0.

Determining the partial time derivative of G(x, t) and inserting equation (3.56) into
(3.57) yields

∂G(x, t)
∂t

= ∂

∂t

[ ∫ xc

−∞
p(x′, 0;x,−t) dx′

]
=
∫ xc

−∞

∂

∂t
p(x′, 0;x,−t) dx′

=
∫ xc

−∞

[
b(x) ∂

∂x
p(x′, 0;x,−t) + 1

2 σ
2(x) ∂2

∂x2p(x
′, 0;x,−t)

]
dx′

=
[
b(x) ∂

∂x
+ 1

2 σ
2(x) ∂2

∂x2

] ∫ xc

−∞
p(x′, 0;x,−t) dx′

=
[
b(x) ∂

∂x
+ 1

2 σ
2(x) ∂2

∂x2

]
G(x, t) . (3.60)

Furthermore, G(x, t) is subject to the following boundary conditions [Paul and Baschnagel,
2013]:

G(x, 0) =

1 , x ≤ xc

0 , x > xc
, G(xc, t) = 0 , lim

x→−∞

∂G(x, t)
∂x

= 0 . (3.61)

Since G(x, t) is the complement of the cumulative probability distribution of first
passage times, the expectation value of an arbitrary function f(τxc) is given by

E [f(τxc)] = −
∫ ∞

0
f(t) ∂G(x, t)

∂t
dt . (3.62)

Consequently, the mean first passage time from x to xc reads

τmfpt(x;xc) = E[τxc ] = −
∫ ∞

0
t
∂G(x, t)
∂t

dt =
∫ ∞

0
G(x, t) dt , (3.63)

where the last term is determined using integration by parts. In addition, an ordinary
differential equation can be derived for the mean first passage time. For this purpose,
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3.2. Tunneling processes in Nelson mechanics

equation (3.60) is integrated over time from zero to infinity, which yields

∫ ∞
0

∂G(x, t)
∂t

dt = −1 = b(x) dτmfpt(x)
dx + σ2(x)

2
d2τmfpt(x)

dx2 (3.64)

for all x ≤ xc, noting that the boundary conditions

τmfpt(xc) = 0 , lim
x→∞

dτmfpt(x)
dx = 0 (3.65)

have to be fulfilled. The first derivative of the general solution of this equation is given
by [Paul and Baschnagel, 2013]

τ ′mfpt(x) = τ̄0 exp
[
−
∫ x

−∞

2 b(x′)
σ2(x′) dx′

]

− 2 exp
[
−
∫ x

−∞

2 b(x′)
σ2(x′) dx′

]
·
∫ x

−∞

1
σ2(x′) exp

[∫ x′

−∞

2 b(x′′)
σ2(x′′) dx′′

]
dx′ .

(3.66)

Since τ ′mfpt(x) has to vanish for x→ −∞, only the particular solution remains [Paul
and Baschnagel, 2013]. Using τmfpt(xc) = 0 and the abbreviation

φ(x) = exp
[∫ x

−∞

2 b(x′)
σ2(x′) dx′

]
, (3.67)

the mean first passage time finally reads

τmfpt(x) = 2
∫ xc

x
φ−1(x)

∫ x′

−∞

φ(x′′)
σ2(x′′) dx′′ dx′ . (3.68)

Going back to a quantum particle, one has

b(x) = ~
m
∂x ln |Ψe(x)| , σ2(x) = ~

m
, (3.69)

and the mean first passage time in the n-th energy state is given by

τmfpt(x) = 2m
~

∫ xc

x

1
pn(x′)

∫ x′

−∞
pn(x′′) dx′′dx′ , (3.70)

where pn(x) = |Ψn(x)|2 denotes the stationary probability density in the n-th energy
eigenstate. Thus, the diffusion process quantifies tunneling periods even for stationary
systems, with a qualitatively similar behavior to the non-stationary case [Paul and
Baschnagel, 2013]. Furthermore, it has been shown that the mean first passage time
and the tunneling time (equation (3.54)) are equivalent for a rectangular barrier [Chen
and Wang, 1990]. Finally, it is noted that any particle described by a conservative
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diffusion process is a classical one, and thus cannot pass a potential barrier higher than
the particle’s energy. However, due to interactions of the particle with the environment,
the particle’s energy is not constant but experiences fluctuations around the mean value.
Hence, the particle is driven over the barrier by the omnipresent quantum fluctuations
[Paul and Baschnagel, 2013].

3.3. The development of variational principles

Nelson’s theory of conservative diffusion processes represents the kinematic description
of a quantum particle. However, in this context, the question arises whether the
Schrödinger equation can also be derived from a stochastic variational principle,
according to the original idea of Schrödinger [1926a]. It is well known that there is
a close relation between classical mechanics and deterministic control theory, i.e. the
Hamilton-Jacobi equation can be understood as a programming equation for an optimal
control problem [Guerra and Morato, 1983]. Finding a generalization of Hamilton’s
principle to the quantum-mechanical case would not only be a methodical advantage,
but, basically, also worthwhile for physical interpretations.

Being one of the first, Yasue [1980] described the original variational problem of
Schrödinger in the light of stochastic mechanics. Starting from a stationary diffusion
process X(t) described by

dX(t) = u(X(t)) dt +
√

~
m

dWf (t) , (3.71)

he assumed that the process X(t) (or u(X(t))) is controlled in such a way that the
generalized Newton equation,

m

2 (DD∗ + D∗D) X(t) = − ∇x V (x)|x=X(t) , (3.72)

is fulfilled. However, this means that for every potential V (x) there exists one stochastic
control problem given by equation (3.71), fulfilling the condition defined in equation
(3.72) and yielding the solution b(x). Furthermore, Yasue [1980] showed that this
condition is equivalent to the assumption that the cost function

E
[

lim
T→∞

T−1
∫ T

0

{
m
2 |DX(t)|2 + V (X(t))− E

}
dt
]

(3.73)

becomes extremal for b(x), and that the solution is given by the osmotic velocity,
such that b(x) = u(x). This stochastic variational problem can be interpreted as a
generalization of the energy minimization in classical mechanics and is equivalent to the
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3.3. The development of variational principles

stationary Schrödinger equation. In subsequent publications, the relation between, and
also equivalence of, the original control problem of Nelson (equations (3.71) and (3.72)),
the stationary Schrödinger equation and equation (3.73) has been discussed in more
detail [Yasue, 1981a,b]. In particular, the benefits of describing quantum phenomena
using this theory have been emphasized [Yasue, 1981b]. Among others, this includes
tunneling effects that can be described in a more natural way.

Guerra and Morato [1983] extended the variational problem to the general (non-
stationary) case. However, some difficulties arise since the programming equations are
in general not time-reversible, which is claimed for quantum systems. This situation
can be overcome by making use of a suitable choice of the stochastic action functional
[Guerra and Morato, 1983]. Accounting for the Lagrangian function,

L(t,x(t)) = m

2
(
v2(x(t), t)− u2(x(t), t)

)
− V (x) , (3.74)

the stochastic action functional reads [Guerra and Morato, 1983]

J(t0, T ; p0,u,v) =
∫ T

t0
E [L(X(t), t)]dt . (3.75)

It is noted that the action functional depends on the initial probability density of the
particle’s position. The process X(t) relies on finite-energy diffusion, i.e., equations
(3.31) and (3.32) apply. The negative sign of the osmotic-velocity term is of physical
significance, noting that m

2 u2 reflects rather a potential than a kinetic contribution,
which is in agreement with Schrödinger’s variational problem [Guerra and Morato, 1983].
As a consequence, the Lagrangian field can be chosen in such a way that the required
quantum-mechanical corrections to the Hamilton-Jacobi equation arise. Furthermore,
the gradient form of the current velocity follows directly from the variational principle
without further assumptions, as is also the case in the original work by Nelson [1966].
It is worth mentioning that in classical mechanics as well as in the common theory of
stochastic optimal control, the variational problems are formulated optimally4, which
is not considered by Guerra and Morato [1983].

Finally, relations between quantum mechanics and classical analytical mechanics were
revealed in a coherent way by introducing two variational principles, the saddle points
of which yield the osmotic and current velocity [Pavon, 1995b]. Let U be the family of
stochastic processes (z(t))t∈[t0,T ] having a finite energy on [t0, T ] (square integrable),

4The desired cost function becomes extremal for the optimal control, instead of stationary (δJ = 0).
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i.e., it satisfies [Pavon, 1995b]

E
[∫ T

t0
z(t) · z(t) dt

]
<∞ . (3.76)

The first variational principle is the so-called saddle point action principle, i.e., searching
for û, v̂ under the condition

JR(X̂, û, v̂) = min
v∈U

max
u∈U

E
[∫ T

t0

{
m

2 v2(t) − m

2 u2(t) − V (X(t))
}

dt + S0(X(t0))
]

.

(3.77)
This variational problem is essentially related to that one of Guerra and Morato [1983]
and Schrödinger [1926a], but is now formulated optimally (“min-max”-problem) and
contains the osmotic velocity as a second optimal control variable. The function S0(x)
is characterized by the initial conditions to the Schrödinger equation. The deterministic
part determines the current velocity by minimizing the action functional, while the
term containing the background noise maximizes the action functional by the choice
of the osmotic velocity. Finally, the saddle point equilibrium solution is given by the
motion process (X(t))t∈[t0,T ] described by equation (3.31) and (3.32). That means, in
search of the optimal path, the kinematic equations serve as constraints and extremize
the action functional. This situation is reminiscent of classical analytical mechanics. In
addition, let Xµ be a family of finite energy diffusion processes. The solution (X̂, û, v̂)
for the stochastic game (equation (3.77)) is given by a triple in Xµ × U × U , satisfying
the property

JR(X1,u1, v̂) ≤ JR(X̂, û, v̂) ≤ JR(X2, û,v2) (3.78)

for all (X1,u1, v̂) and (X2, û,v2) in Xµ × U × U [Pavon, 1995b].

Suppose that the function Λ(x,u,v) is a finite constant on C ⊂ Xµ, where the
constraints are fulfilled. Let (X̂, û, v̂) be the solution of the unconstrained problem
(Λ + JR)(x,u,v). Then, (X̂, û, v̂) is also a solution to the original problem. To find
the equilibrium solution, one has to find the Lagrangian functional Λ(x,u,v). Pavon
[1995b] showed that

ΛF,G(X,u,v) =E
[ ∫ T

t0

[
~u · ∇F + ~

2∆F − ∂G

∂t
− v · ∇G

]
(X(t), t)dt

+ G(X(t), t)−G(X(t0), t0)
]

, (3.79)
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where

v̂ = 1
m
∇G(x, t) , û = ~

m
∇F (x, t) . (3.80)

It turns out that the scalar functions F̂ = R and Ĝ = S, for which the Lagrangian
functional becomes constant on Xµ, are given by equation (3.42), i.e.,

∂S

∂t
+ 1

2m(∇S)2 + V (x) − ~
2
[
(∇R)2 + ∆R

]
= 0 . (3.81)

The second variational problem, the saddle point entropy production principle, is given
by the following cost function

JI(X,u,v) = E
[∫ T

t0
mv · u dt + ~R0(X(t0))

]
. (3.82)

As before, the function R0(x) is characterized by the initial conditions to the Schrödinger
equation, and the current and osmotic velocity are given by the saddle point of this
functional, i.e. (X̂, û, v̂) ∈ Xµ × U × U is the solution of [Pavon, 1995b]

JI(X̂, û, v̂) = max
v∈U

min
u∈U

JI(X,u,v) . (3.83)

Based upon a similar approach, Pavon [1995b] derived the Lagrangian functional

ΞF,G(x,u,v) = E
[ ∫ T

t0

[
−1
~

u · ∇G − 1
2m∆G − ∂F

∂t
− v · ∇F

]
(X(t), t) dt

+ F (X(t), t)− F (X(t0), t0)
]

, (3.84)

where the solution5 is characterized by equation (3.43), i.e.,

∂R

∂t
+ 1
m
∇R · ∇S + 1

2m∆S = 0 , (3.85)

and
v̂ = 1

m
∇G(x, t) , û = ~

m
∇F (x, t) . (3.86)

It is worth noting that both stochastic games have to be solved simultaneously in order
to find a unique solution for the two velocities and the associated optimal path.

5The functions F and G for which the Lagrangian functional becomes finite and constant under
the given constraints

37



3. Stochastic mechanics

Finally, Pavon [1995b] combined both stochastic games in one (complex-valued) varia-
tional problem, known as the quantum Hamilton principle, in which the saddle point
action principle and the saddle point entropy production principle are accounted for as
the real and imaginary part of the resulting equation. Thus,

J(X,u,v) = E
[∫ T

t0

{
m

2 (v− iu)2 − V (X(t))
}

dt + Φ0(X(t0))
]

, (3.87)

where Ψ(x, t0) = exp
{
i
~Φ0(x)

}
. The quantum Hamilton principle can be understood

as the generalization of the classical principle to the quantum world, noting that not
only the Madelung equations, but also the wave function itself is determined by a
variational problem [Pavon, 1995b].

Concluding this section, the presented variational principles ultimately show that
quantum mechanics is based upon the same fundamental structure as classical mechanics,
and, again, that the wave function can also be derived from a variational principle.
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CHAPTER 4
From optimal control theory to the
Schrödinger equation

Analogously to classical mechanics, the osmotic velocity u(x, t) and the current velocity
v(x, t) are given by the solution to a stochastic optimal control problem [Yasue, 1980,
1981a,b; Guerra and Morato, 1983; Pavon, 1995b, 1996], which can be solved using
methods often applied in finance. Finding the Nash equilibrium of a stochastic optimal
control problem is the quantum-mechanical counterpart to Hamilton’s principle of
least action. Two major findings have been derived: (i) based upon this concept, the
Madelung equations have been derived, which are equivalent to the Schrödinger equation
[Madelung, 1927], and (ii), stochastic Hamilton equations of motion were introduced,
which generalize the classical Hamilton equations with respect to the quantum world.
These equations can be solved independently from the Schrödinger equation and
characterize the dynamics of a quantum system uniquely. Thus, they give a suitable
basis for advanced method development so as to derive a complete description of
non-relativistic quantum systems in parallel to the standard way. Analyzing stochastic
Hamilton equations of motion ultimately opens up new possibilities to study quantum
systems. Systems without an exactly solvable Schrödinger equation, such as the double-
well potential, could be studied, along with a new numerical approach to the wave
function.

Before the mathematical methods are explained, this chapter deals with the derivation
and numerical simulation of the stochastic Hamilton equations of motion by solving an
optimal control problem. For the sake of clarity, stationary problems will be studied
first and will also be discussed for specific physical systems. After that, all methods
will be expanded to the general (non-stationary) case, which will be described in the
last part of this chapter.
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4. From optimal control theory to the Schrödinger equation

4.1. General statements about stochastic optimal
control theory

The theory of stochastic optimal control systems is often applied to different scientific
problems, e.g., control strategy for electro-rheological or magneto-rheological dampers
[Ying et al., 2003]. Here, damping forces can be adjusted through external electric
and magnetic fields, respectively. Another outstanding example in finance is the
optimization of the investment policy of pension plans [Devolder et al., 2003]. As a
consequence of the broad applicability and high significance, stochastic control problems
are often analyzed in mathematics [Hamadène and Lepeltier, 1995; Hamadène, 1998;
Baghery and Øksendal, 2007; Øksendal and Sulem, 2009; Grecksch, 2002; Øksendal
and Sulem, 2014; Josa-Fombellida and Rincón-Zapatero, 2015].
In this section, the maximum principle for general stochastic games of forward-backward
stochastic differential equations (FBSDEs) is explained. Øksendal and Sulem [2014]
derived a general formulation for Levy processes including jumps. In the thesis at hand,
jump processes are not required, and the mathematical treatment can be somewhat
simplified. Notations used in the following are adapted from the work by Øksendal
and Sulem.

Let (Ω,F , {F}t≥0, P ) be a filtered complete probability space, where P is a reference
probability measure. All following stochastic processes are defined on this space. The
controlled forward SDE

dX(t) = b(t,X(t), u(t), ω) dt + σ(t,X(t), u(t), ω) dW (t) , X(0) = x0 ∈ R (4.1)

is considered for t ∈ [0, T ] (T > 0 is a fixed constant), where (W (t))t≥0 is a (forward)
Wiener process, and (X(t))t≥0 and (u(t))t≥0 define the state and control process,
respectively. As before, the dependence of the respective functions on ω is used to
denote a possible dependence on randomness, meaning that b and σ are stochastic
processes. It will also be assumed that F = {Ft, t ≤ 0} is the P -augmentation of the
natural filtration associated with the Wiener process (W (t))t≥0. u(t) = (u1(t), u2(t))
characterizes the control of the two “players” i = 1, 2. Suppose there are two sub-
filtrations E (i)

t ⊆ Ft , t ∈ [0, T ] representing the information available to the player
i = 1, 2 at time t. Let Ai be the set of admissible control processes for the player i,
contained in the set of E (i)

t -predictable processes for i = 1, 2, with values Ai ⊂ R and
U = A1×A2 [Øksendal and Sulem, 2014]. It is supposed that the functions b(t, x, u, ω)
and σ(t, x, u, ω) are known functions in such a way that equation (4.1) has a unique
solution for each x0 ∈ R and u ∈ U [Øksendal and Sulem, 2014]. Next, the associated
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4.1. General statements about stochastic optimal control theory

controlled backward SDEs (each for one player) are considered to be of the form
dYi(t) = −gi(t,X(t), Yi(t), Zi(t), u(t), ω)dt + Zi(t)dW (t) , t ∈ [0, T ]

Yi(T ) = hi(X(T ), ω) , i = 1, 2
. (4.2)

The functions gi(t, x, y, z, u, ω) are known functions for all x, y, z in R, u in U, and
hi(x, ω) is FT -measurable for each x in R, such that the BSDEs (equation (4.2)) have
a unique solution1 (Yi, Zi) for each u ∈ U [Øksendal and Sulem, 2014].
The so called performance function or cost function is defined as

Ji(u) := E
[∫ T

0
fi(t,Xu(t), u(t), ω)dt + φi(Xu(T ), ω) + Ψi(Y u

i (0))
]

, i = 1, 2 .

(4.3)
Here, the index u illustrates that the variable (e.g. Xu(t)) depends on the control
u = (u1, u2). The function fi(t,Xu(t), u(t)) : [0, T ] × R × U → R, φi(x) : R → R and
Ψi(x) : R→ R have to be given in such a way that the integrals and the expectation
values are existent [Øksendal and Sulem, 2014]. The functions fi may, for instance,
be profit rates, while φi(x) and Ψi(x) represent final and initial costs, respectively. In
physics, the integrand of the action (cost) function is usually given by the Lagrangian
function.

4.1.1. Non-zero sum case – Finding the Nash equilibrium

Consider that the two optimal controls are sought as the Nash equilibrium [Nash,
1951] of the stochastic game (equation (4.1 – 4.3)), where a Nash equilibrium is a pair
(û1, û2) ∈ A1 ×A2 such that [Øksendal and Sulem, 2014]

J1(u1, û2) ≤ J1(û1, û2) for all u1 ∈ A1 (4.4)

and J2(û1, u2) ≤ J2(û1, û2) for all u2 ∈ A2 . (4.5)

In short, this means that there is no reason for player one to deviate from the control
or, so to say, to deviate from the strategy û1 as long as player two stays with strategy
û2. Hence, one can say that a Nash equilibrium is (in some cases) a likely outcome of
the game [Øksendal and Sulem, 2014].

To find the Nash equilibrium of the problem, it is useful to define the Hamilton functions

1Both Y (t) and Z(t) are defined by the backward SDE.
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Hi(t, x, y, z, u1, u2, λ, p, q) , i = 1, 2,

Hi(t, x, y, z, u1, u2, λi, pi, qi) := fi(t, x, y, z, u1, u2) + λi gi(t, x, y, z, u1, u2)

+ pi b(t, x, u1, u2) + qi σ(t, x, u1, u2) , (4.6)

where (λi(t), pi(t), qi(t)) are so-called adjoint processes, noting that the maximum
principle can be used to find the optimal controls [Øksendal and Sulem, 2014]. It
should be taken into account that – even though the optimal controls as well as the
adjoint processes are functions of the controlled processes (X(t), Yi(t), Zi(t)) – the
variables in the Hamiltonian are considered as being independent from each other. In
simple terms, the maximum principle says that the cost functions and the associated
Hamilton functions have their Nash equilibrium at the same control (û1, û2), i.e., the
mathematical problem can be solved by finding the maximum of the related Hamilton
function instead of identifying the function u that extremizes the cost functional.
Necessary and sufficient conditions2, as well as related mathematical proofs, can be
found in the work of Øksendal and Sulem [2014].

For the sake of simplicity, the following shortened notation

∂Hi

∂x
(t) = ∂Hi

∂x

∣∣∣∣∣
x=X(t)

(t, x, Yi(t), Zi(t), u1(t), u2(t), λi(t), pi(t), qi(t)) (4.7)

is used for the partial derivative (and, in a similar fashion, for also other variables). Note
that the control equations (equation (4.1) and (4.2)) for the player i are characterized
by three controlled variables, namely X(t), Yi(t) and Zi(t). Hence, there is a related
adjoint process (λi(t), pi(t), qi(t)) for each of the players i, and the following definition
applies [Øksendal and Sulem, 2014]:

Definition 4.1 The adjoint process λi(t), which is the adjoint process associated to
the backward controlled equation, is given by a forward SDE


dλi(t) = ∂Hi

∂y
(t) dt + ∂Hi

∂z
(t) dW (t)

= λi(t)
[
∂gi
∂y

(t) dt + ∂gi
∂z

(t) dW (t)
]
, t ∈ [0, T ] ,

λi(0) = Ψ′i (Yi(0)) .

(4.8)

pi(t) and qi(t), which, are the associated adjoint processes for X(t), Zi(t), and are

2The conditions for the maximum principle can be additionally found in the appendix, cf. section
A.2.
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defined by a backward SDE,
dpi(t) = −∂Hi

∂x
(t) dt + qi(t) dW (t) , t ∈ [0, T ] ,

pi(T ) = φ′i (X(T )) + h′i(X(T ))λi(T ) ,
(4.9)

where functions with a prime (′) are first derivatives.

Starting from the maximum of the Hamilton functions, one ends up with SDEs for the
optimal controls u1(t) and u2(t) in terms of the adjoint and the state processes.

4.1.2. Zero-sum case

The zero-sum case
J1(u1, u2) + J2(u1, u2) = 0 (4.10)

is a special case of the previous discussed stochastic game, where the Nash equilibrium
equals the saddle point of J(u1, u2) := J1(u1, u2) [Øksendal and Sulem, 2014]. The
above equations simplify considerably, and without loss of generality (w.l.o.g.), the
optimal controls û1, û2 are sought in such a way that

J(û1, û2) = max
u1

min
u2

J(u1, u2) , (4.11)

where

J(u1, u2) := E
[∫ T

0
f(t,Xu(t), u1(t), u2(t), ω)dt + φ(Xu(T ), ω) + Ψ(Y u(0))

]
.

(4.12)
Only one Hamiltonian, as well as only one set of adjoint processes, are needed [Øksendal
and Sulem, 2014]. For g1 = g2 =: g, h1 = h2 =: h, f := f1 = −f2, Ψ := Ψ1 = −Ψ2

and φ := φ1 = −φ2, the controlled processes (Y (t), Z(t)) are solutions of
dY (t) = −g(t,X(t), Y (t), Z(t), u(t), ω)dt + Z(t)dW (t) , t ∈ [0, T ]

Y (T ) = h(X(T ), ω)
(4.13)

and the associated Hamiltonian reads

H(t, x, y, z, u1, u2, λ, p, q) := f(t, x, y, z, u1, u2) + λ g(t, x, y, z, u1, u2)

+ p b(t, x, u1, u2) + q σ(t, x, u1, u2) . (4.14)
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The adjoint processes are given by
dλ(t) = λ(t)

[
∂g
∂y

(t) dt + ∂g
∂z

(t) dW (t)
]
, t ∈ [0, T ] ,

λ(0) = Ψ′ (Y (0))
(4.15)

and 
dp(t) = −∂H

∂x
(t) dt + q(t) dW (t) , t ∈ [0, T ] ,

p(T ) = φ′ (X(T )) + h′(X(T ))λ(T ) .
(4.16)

Note that (λ(t), p(t), q(t)) = (λ1(t), p1(t), q1(t)) = − (λ2(t), p2(t), q2(t)) and
H = H1 = −H2. Consequently, there is only one controlled forward and one controlled
backward equation for the saddle-point of a given cost function, which can be determined
by making use of the maximum principle, i.e., identifying the saddle point of the
associated Hamiltonian.

In the simplest case, one control is constant (w.l.o.g. u2 ≡ 0) and the stochastic
game simplifies to a stochastic optimal control problem, as, for instance, studied in ref.
[Hamadène and Lepeltier, 1995; Hamadène, 1998; Øksendal and Sulem, 2009].

Furthermore, it is possible that the controlled equation for the stochastic optimal
control problem (one control u) depends on a forward as well as backward Wiener
process, i.e., [Bahlali and Gherbal, 2010]


−d yu(t) = b(t, yu(t), zu(t), u(t)) dt + σ((t, yu(t), zu(t), u(t)) dWb(t)

−zu(t)dWf (t)

yu(T ) = ξ .

(4.17)

Such an equation is called backward doubly stochastic differential equation (BDSDE),
where the deterministic part of this equation goes backward in time. ξ ∈ R is
an arbitrary number and can depend on randomness. (Wf (t))t∈[0,T ] is a forward in
time Wiener process, while (Wb(t))t∈[0,T ] goes backward in time. Based upon these
considerations, one aims for the optimal control û(t) so as to maximize the cost function
[Bahlali and Gherbal, 2010].

J(u) = E
[∫ T

0
f(t, yu(t), u(t), ω)dt + Ψ(yu(0))

]
. (4.18)

Despite of the different mathematical structure of the control equation, the resulting
stochastic optimal control problem is similar to that one discussed by Øksendal and
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4.2. Stationary quantum systems

Sulem [2009]. Thus, the optimal control can be found using a maximum principle.
Necessary and sufficient conditions for BDSDEs are analyzed and proven in ref. [Bahlali
and Gherbal, 2010].

In the next section, stationary quantum systems will be analyzed in terms of a stochastic
optimal control problem, where the osmotic velocity is given by exactly that optimal
control that maximizes the related action functional.

Following these considerations, also non-stationary systems will be analyzed, noting
that the current and the osmotic velocity are determined by the Nash equilibrium of
the two distinct variational problems. In addition, it will be possible to reconsider the
control equations in terms of a BDSDE so as to find the wanted optimal control, in
turn extremizing the combined action functional introduced by Pavon [1995b].

4.2. Stationary quantum systems
In Nelson mechanics, the motion of a particle is described by a stochastic process
(X(t))t∈[0,T ] that is characterized by stochastic differential equations. For the sake of
simplicity, only one dimensional problems will be presented; however, all equations can
be extended to higher dimensions.

For stationary systems, the wave function Ψ(x) is given by the solution of the stationary
Schrödinger equation, [

− ~2

2m
d2

dx2 + V (x)
]

Ψ(x) = EΨ(x) , (4.19)

and the current velocity equals zero. Hence, the motion process (X(t))t∈[0,T ] is described
by the following forward and backward SDEs,

dX(t) = u(X(t))dt +
√

~
m

dWf (t) , t ∈ [0, T ]

X(t = 0) = x0 ∈ R
, (4.20)

dX(t) = −u(X(t))dt +
√

~
m

dWb(t) , t ∈ [0, T ]

X(t = T ) = xT (ω)
(4.21)

Here, xT (ω) is the endpoint of the forward SDE and, consequently, depends on random-
ness. On the other hand, x0 is a fixed initial value, which can be chosen arbitrarily. As
before, Wf (t) is a forward (independent of all X(s) with s < t) and Wb(t) is a backward
(independent of all X(s) with s > t) Wiener process. It should also be noted that in
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4. From optimal control theory to the Schrödinger equation

the stationary case, the osmotic velocity is only a function of the motional process and,
therefore, no explicit time-dependence arises.

As discussed in chapter 3, the current and the osmotic velocities are given as the saddle
point solutions of the two variational principles derived by Pavon [1995b]. In the
stationary case, however, only one of them requires a more sophisticated mathematical
treatment. The osmotic velocity is given by the maximum of the following action
functional, i.e., searching for û(X(t)) with

J(û) = max
u

E
[∫ T

0

(
−m2 u2(X(t)) − V (X(t))

)
dt + S0(x0)

]
. (4.22)

The occurring time horizon is finite (T ∈ R is fixed) even if the total duration might
be as long as desired. Worth noting, in the stationary case, equation (4.22) should be
replaced by

J(û) = max
u

lim
T→∞

1
T

E
[∫ T

0

(
−m2 u2(X(t)) − V (X(t))

)
dt + S0(x0)

]
. (4.23)

This situation would require a solution to an optimal control problem with infinite time
horizon [Agram and Øksendal, 2014], which complicates the mathematical treatment
and reduces applicability. Using finite time horizon, on the other hand, is advantageous
for numerical implementation, and, as a compromise, a sufficiently large, arbitrarily
adjustable but fixed period will be considered.

The initial costs S0(x0) are related to the initial condition of the Schrödinger equation,
i.e., Ψ(x0, t = 0) = exp

{
R(x0, 0) + i

~S(x0, 0)
}
. It is noted that in the stationary case

the function S(x, t) = S(t) is only a function of time, hence S0(x) := S(x, t = 0) = S(0)
is constant for all x ∈ R, and one can choose S(0) = 0.

The controlled process is given by the motional process (characterized by equation
(4.20) and (4.21)) and depends on the control u, which is a function of (X(t))t∈[0,T ].
Therefore, the osmotic velocity is the solution of a so-called optimal feedback control
problem, which is, in the stationary case, the quantum-mechanical counterpart of the
least-action principle in classical mechanics.

In contrast to the treatment by Pavon [1995b], who includes the SDEs for the motional
process as constraints for the search of the optimal path in order to extremize the
action functional, equation (4.22) is interpreted as an optimal control problem. This
means that the optimal control u(X(t)) is determined, in turn maximizing the action
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4.2. Stationary quantum systems

functional.

As mentioned previously, direct evaluation of the cost functional is sophisticated and it
is advantageous to derive the optimal control from the maximum principle. Using the
general equations derived by [Øksendal and Sulem, 2014], one has

H(x, u, λ, p, q) = −m2 u
2 − V (x) + λu + p u +

√
~
m
q , (4.24)

with the adjoint processes being defined by the following forward as well as backward
SDEs,

dλ(t) = 0 , λ(0) = 0 , (4.25)

dp(t) = dV (x)
dx

∣∣∣∣∣
x=X(t)

dt + q(t) dWb(t) , p(T ) = λ(T ) . (4.26)

Due to the absence of any initial and final costs, one of the adjoint processes equals
zero, and, using the maximum principle, the osmotic velocity reads

mu(X(t)) = p(t) . (4.27)

Inserting equation (4.27) into equation (4.26), one finally ends up with

du(t) = 1
m

dV (x)
dx

∣∣∣∣∣
x=X(t)

dt+ q(t)
m

dWb(t) . (4.28)

Since the adjoint process λ(t) vanishes, the backward SDE of the motional process
provides no further information to the optimal control problem, and needs thus not to
be considered.

Equation (4.20) and (4.28) constitute a system of coupled forward-backward stochastic
differential equations (FBSDEs), which equal the stochastic Hamilton equations of
motion in the stationary case:

dX(t) = u(X(t))dt +
√

~
m

dWf (t) , X(0) = x0 ∈ R , (4.29)

du(t) = 1
m

dV (x)
dx

∣∣∣∣∣
x=X(t)

dt+ q(t)
m

dWb(t) , u(X(T )) = 0 (4.30)

As such, these coupled equations describe the dynamics of a quantum particle uniquely
and can be solved independently of the solution to the Schrödinger equation. Since
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4. From optimal control theory to the Schrödinger equation

the osmotic velocity and the adjoint processes are functionals of the motional process,
PDEs for them are derived by making use of Itô’s formula [Ma et al., 1994], yielding

du(t) =
(
ut(t, x) + ux(x, t)u(t, x) + ~

2muxx(x, t)
)
x=X(t)

dt

+
[√

~
m
ux(x, t)

]
x=X(t)

dWb(t)

= 1
m

dV (x)
dx

∣∣∣∣∣
x=X(t)

dt+ q(t)
m

dWb(t)

⇒ 0 =ut(t, x) + ux(x, t)u(t, x) + ~
2muxx(x, t)−

1
m

dV (x)
dx (4.31)

q(x, t) =
√
~mux(x, t) . (4.32)

The above PDEs can be simplified to ODEs since the osmotic velocity is not explicitly
time-dependent. The equation for the osmotic velocity equals the gradient of the
time-independent Schrödinger equation and reads

0 =u(x) du(x)
dx + ~

2m
d2u(x)

dx2 − 1
m

dV (x)
dx , (4.33)

q(x) =
√
~m

du(x)
dx . (4.34)

Furthermore, the equation of the osmotic velocity is in accordance with the equation
derived by Nelson [1966]. That means that the Schrödinger equation is one but not
the only way to describe quantum systems uniquely, with thus an analogous situation
to classical mechanics: For both classical and quantum systems there are three distinct,
independent ways to quantity a particle’s motion (see Figure 4.1).

Following these considerations, it is now possible to analyze systems the wave function
of which cannot be determined analytically. Applications include, but are not limited to,
the double well potential, the harmonic oscillator and particles in a Coulomb potential.
The here presented approach addresses a numerical solution to the stationary Hamilton
equations of motion, and it turns out that the wave function can be found in addition
by solving the coupled FBSDEs, as is discussed later on.

Inserting the derived relations for the adjoint processes in the Hamilton function
(equation (4.24)), one gets

H(x, u) = m

2 u
2 − V (x) + ~

du
dx . (4.35)
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4.2. Stationary quantum systems

Classical mechanics:

Hamilton principle
S[x] =

∫ T
0
{ 1

2mv(t)− V (x(t))
}

dt
Hamilton-Jacobi equation
∂tS(x, t)− V (x)− 1

2m (∂xS(x, t))2 = 0

Newton’s equations
ẋ(t) = v(t) , m a(t) = F = − dV

dx (x)

Quantum mechanics:
Stochastic least action principle
J [u] = E

[∫ T
0
{
−m2 u

2 − V (x(t))
}

dt+ S0(x0)
] Schrödinger equation[

− ~2

2m
d2

dx2 + V (x)
]

Ψ(x) = EΨ(x)

Quantum Hamilton equations of motion
dx(t) = u(x(t))dt+ ~

m
dWf (t)

m du(t) = dV (x)
dx dt + q(t)dWb(t)

v = 0 , u = ~
m

d
dx ln Ψ(x)

Figure 4.1.: Schematic representation of the three equivalent theories describing the
motion of a particle uniquely and independently from one another. Top:
Case of classical particles. Bottom: Case of quantum particles.

Worth mentioning, the Hamilton function has no longer the physical meaning of a
Hamiltonian itself, which for the Nelson picture is given by m

2 u
2(x) + V (x). Instead,

it is used in the way as in deterministic control theory, in which the mathematical
Hamilton function coincides with the physical one.

Misawa [1986] succeeded in determining a Hamiltonian for stochastic mechanics from
the Schrödinger equation, too. However, in his Hamilton function the last summand
differs from that one in equation (4.35) by a factor 1/2.

4.2.1. Excited states

In contrast to the variational principle of Yasue [1980], where the variational problem
is formulated such that the difference between the total energy and a given energy (as a
parameter) is extremized, the variational problem of Pavon [1995b] (equation (4.22)) is
in fact independent of the energy. Therefore, the derived Hamilton equations of motion
describe the ground state3 of the system. Even if equation (4.22) is supplemented by

3 The state with the smallest energy
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4. From optimal control theory to the Schrödinger equation

the (constant) energy, i.e.

J(û) = max
u

lim
T→∞

1
T

E
[∫ T

0

(
−m2 u2(X(t)) − V (X(t))− E

)
dt + S0(x0)

]
, (4.36)

the resulting Hamilton equations of motion of the modified problem are the same as
for the original variational problem, noting that only the derivative of the integrand is
needed in the backward SDE for the osmotic velocity. Consequently, also the modified
variational problem provides a self-contained representation of the system’s ground
state.

Moreover, the equivalence between the Schrödinger equation and the equations for the
velocities derived by Nelson [1966] (which equal the system’s Madelung equations) are
only fulfilled for a node-free wave function. It is possible to derive the excited states
of a system from the ground state using the theory of supersymmetric Hamiltonians
[Sukumar, 1985a,b; Grigorenko, 1991; Cooper et al., 1995; Markovich et al., 2012; Chou
and Kouri, 2013]. Sukumar [1985a] showed that the Hamilton operator

Ĥ0 = − ~2

2m
d2

dx2 + V (x) (4.37)

with eigenfunctions Ψn(x) and eigenvalues En, i.e. Ĥ0Ψn(x) = En Ψn(x) , n = 0, 1, . . . ,
can be written as Ĥ0 = Â+

0 Â
−
0 + E0, with the operators Â±0 being defined by

Â±0 := ~√
2m

(
∓ d

dx −
1

Ψ0(x)
dΨ0(x)

dx

)
, (4.38)

where the operator Â+
0 is the Hermitian adjoint of Â−0 [Sukumar, 1985a]. Except of

E0, the superpartner Ĥ1 = Â−0 Â
+
0 + E0 has the same energy spectrum as Ĥ0, where

the ground state of Ĥ1 (and the associated ground state wave function ϕ1
0(x)) is the

first excited state of the original Hamilton operator Ĥ0. The first excited state wave
function is given by [Sukumar, 1985a,b]

Ψ1(x) = 1√
E1 − E0

Â+
0 ϕ

1
0(x) . (4.39)

Applying the operators Â±0 means switching between the eigenfunction spaces of the
associated superpartners, i.e., between the eigenfunction space of Ĥ0 and Ĥ1 (cf. also
Figure 4.2).

As shown by Grigorenko [1991], the same procedure can be applied to the stochastic
description of quantum mechanics. The stationary Schrödinger equation of the ground
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Ĥ0

E4,Ψ4

E3,Ψ3

E2,Ψ2

E1,Ψ1

E0,Ψ0

Ĥ1

E4, ϕ
1
3

E3, ϕ
1
2

E2, ϕ
1
1

E1, ϕ
1
0

Ĥ2

E4, ϕ
2
2

E3, ϕ
2
1

E2, ϕ
2
0Â−0

Â+
0

Â−1

Â+
1

Figure 4.2.: Operating principle for the operators Â±i , i = 0, 1.

state Ψ0(x) = eR0(x) leads to the equation
[
− ~2

2mR′′0(x) − ~2

2mR′0
2(x) + V (x) − E0

]
eR0(x) = 0 . (4.40)

Inserting the definition of the osmotic velocity, u0(x) = ~
m
R′0(x), one obtains

V (x) = E0 + m

2 u
2
0(x) + ~

2u
′
0(x) . (4.41)

The operators Â±0 can be expressed using the osmotic velocity [Grigorenko, 1991],

Â±0 =
√
m

2

(
−u0(x)∓ ~

m

d
dx

)
. (4.42)

Hence, using the expression for the potential (equation (4.41)), the superpartner Ĥ1

reads

Ĥ1 = Â−0 Â
+
0 + E0

=E0 +
(
−u0(x) + ~

m

d
dx

)(
−u0(x) − ~

m

d
dx

)

=V (x)− ~u′0(x)− ~2

2m
d2

dx2

=:V1(x)− ~2

2m
d2

dx2 . (4.43)

Consequently, the first excited state can be found by identifying the ground state ϕ1
0 of

the modified potential V1(x) [Grigorenko, 1991]. In other words, that means that the
optimal control problem for the modified potential V1(x) has to be solved in order to
determine the exited state. Once the ground state ϕ1

0(x) is found, it can be transformed
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into Ψ1(x) by making use of [Sukumar, 1985a,b]

Ψ1(x) =
√

m

2(E1 − E0)

(
−u0(x) − ~

m

d
dx

)
ϕ1

0(x) . (4.44)

If the Hamilton operator Ĥ1 = Â+
1 Â
−
1 + E1 is factorized in the same way as Ĥ0, then the

second state can be found in an analogous way, since Ĥ2 = Â−1 Â
+
1 + E1 (superpartner

of Ĥ1). Finally, all excited states can be calculated iteratively by identifying the ground
state of a sufficiently often modified potential. The n-th excited state wave function of
the original Hamilton operator Ĥ0 is given by [Sukumar, 1985b; Markovich et al., 2012]

Ψn(x) = Â+
0 Â

+
1 . . . Â+

n−1ϕ
n
0√

En − En−1
√
En − En−2 · · ·

√
En − E0

=
n−1∏
i=0

Â+
i [En − Ei]−

1/2ϕn0 , (4.45)

where ϕn0 is the ground state of the n-times modified potential. Further information on
the excited states in the stochastic picture can be found in ref. [Patzold, 2018].

Complete wave function

For stationary systems, the wave function associated with the n-th energy is given by

Ψn(x, t) = Ψn(x) e−
iEnt

~ . (4.46)

The derivation of Ψn(x) from the optimal control problem is explained above; however,
also the term for the constant phase shift can be derived from the Madelung equations.
Since Ψn(x, t) = exp {Rn(x) + i

~Sn(t)} in the stationary case, the equation for Sn(t)
reads

dSn(t)
dt =

[
m

2 u2
n(x) + ~

2
dun(x)

dx

]
− V (x) . (4.47)

Equation (4.41) can be transferred towards the n-th energy and, therefore, the right-
hand part of equation (4.47) equals −En. Hence

Ψn(x, t) = Ψn(x) e−
i
~ Sn(t) = Ψn(x) e−

i
~ Ent . (4.48)
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4.3. Numerical solution to the stationary stochastic Hamilton equations of motion

4.3. Numerical solution to the stationary stochastic
Hamilton equations of motion

In this section, methods to find a numerical solution of the stationary stochastic
Hamilton equations of motion are described. A numerical approximation to the
motional process (X(t))t∈[0,T ] as well as for the osmotic velocity u(X(t)) can be found
iteratively and starts with a rough guess on the osmotic velocity. In fact, the iteration
method converges to the solution of the backward equation (almost) independently of
the initial estimate u0(x), and therefore, the stating point can be chosen as the classical
stationary ground state, i.e., choosing u0(x) ≡ 0. The forward SDE can be solved
numerically, the outcome of which is afterwards used to find a numerical solution to
the backward equation. Consecutively, the resulting control estimate serves to solve
the forward equation again, and this iterative procedure is repeated until sufficient
convergence is achieved. The algorithm is thus subdivided into two major parts:

1. Solving the forward SDE

2. Solving the backward SDE

Furthermore, the equations are transformed into dimensionless ones. Therefore, char-
acteristic lengths and times have to be chosen for the analyzed specific system, which
is, however, not easily done in the general case.

4.3.1. Solving the forward equation

Before solving the forward equation, the time interval [0, T ] has to be discretized,
∆ti := ti+1 − ti, i = 0, . . . , N − 1, where t0 = 0 and tN = T . Now, in the j-th iteration
step, the time-continuous process (X(t))t∈[0,T ] is addressed in terms of a discrete process,(
Xπ,j
ti

)
i=0,..., N

. The numerical calculation can, for instance, be performed by utilizing
the Heun method for SDEs, which is a Runge-Kutta method of convergence order one4

for additive noise [Kloeden, 2002].

Based upon the estimate of the osmotic velocity uj−1(x) determined in the previous

4Further information about the order of convergence can be found in the appendix, section A.4.
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iteration step, the Heun method reads

Xπ,j
0 =x0 , u0(x) ≡ 0 ,

X̃π,j
ti+1 =Xπ,j

ti + ∆ti uj−1
(
Xπ,j
ti

)
+ ∆Wi ,

Xπ,j
ti+1 =Xπ,j

ti + ∆ti
2
[
uj−1

(
Xπ,j
ti

)
+ uj−1

(
X̃π,j
ti+1

)]
+ ∆Wi (4.49)

(4.50)

for i = 0, . . . , N − 1 , j = 1, . . . , Niteration, where ∆Wi := W (ti+1) − W (ti), i =
0, . . . , N − 1 are discrete increments of the Wiener process. Hence, they are normal
distributed random numbers with mean value zero and variance ∆ti, and X̃π,j

ti+1 is a
predictor for Xπ,j

ti+1 using an Euler step.

4.3.2. Solving the backward equation

As the next step, a solution to the BSDE given by equation (4.30) has to be found in
order to determine a new estimate to the control uj. This can be done in two ways:
(i) evaluating the velocity’s ODE (equation (4.33)), and (ii), solving the kinematic
equation (eq. (4.30)) directly, which requires a method suitable for BDSEs.

Solving the ODE

Suppose that uj−1(x) being the estimate of the osmotic velocity determined in the
previous iteration step, and suppose that the discrete process

(
Xπ,j
ti

)
i=0,..., N

determined
by equation (4.49) being an approximation to the (forward) motional process. Then,
a solution to the backward equation in the j-th iteration step uj(x) can be found by
solving

0 =uj−1(x) duj(x)
dx + 1

2
d2uj(x)

dx2 − dV (x)
dx ,

uj(Xπ,j
T ) =uj−1(Xπ,j

T ) ,
duj(x)

dx

∣∣∣∣∣
x=Xπ,j

T

= duj−1(x)
dx

∣∣∣∣∣
x=Xπ,j

T

(4.51)

numerically. To solve the ODE uniquely, two boundary conditions are necessary.
Therefore, at the final time T , the new estimator and its derivative are identified by
accounting for the result of the preceding iteration step, i.e., the boundary conditions
will be iterated, too. Thus, with a growing number of iteration steps, the iterative
conditions become more precise, yielding uj(XT ) ≈ uj−1(XT ) for sufficiently large
values j. The chosen boundary conditions are independent of possible final costs, which,
in general, can occur in the cost function. In contrast to initial costs, which can be
derived from the initial conditions of the Schrödinger equation, a physical meaning of
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final costs does not exist in the general case. Hence, it is reasonable to use iterative
conditions instead of uj(Xπ,j

T ) = 0 obtained from the mathematical model, which is
the classical stationary ground-state solution.

To get a numerical approximation to the solution of the backward equation, equation
(4.51) is transformed into a first order ODE system and subsequently discretized
backward in time using an implicit Euler method, which is solved on the points(
Xπ,j
ti

)
i=0,..., N

. To increase the accuracy of the method, it is useful to determine more
than one realization of the backward process. Therefore, suppose that xm,ji is the m-th
trajectory at time ti of the discrete motion process

(
Xπ,j
ti

)
i=0,..., N

for m = 1, . . . ,M
and i = 0, . . . , N in the j-th iteration step, and, suppose that ∆xm,ji := xm,ji+1 − xm,ji ,
θm,ji := uj(xm,ji ) and φm,ji := u′j(xm,ji ) with m = 1, . . . ,M and i = 0, . . . , N . Thus,
one gets

θm,jN =uj−1(xm,jN ) , φm,jN = u′j−1(xm,jN )
θm,ji

φm,ji

 =
θm,ji+1

φm,ji+1

 − ∆xm,ji ·

 φm,ji+1

2 ·
[

dV (x)
dx

∣∣∣
x=xm,ji+1

− uj(xm,ji+1)φm,ji+1

]
 (4.52)

for m = 1, . . . ,M and i = N − 1, . . . , 0. Note again that the difference equations
are solved backwards in time. The new estimate of the osmotic velocity is given by
the arithmetic average over θm,j for m = 1, . . . ,M . For this purpose, the x-domain is
partitioned into L equidistant intervals, the resulting step size of which is

δ = xmax − xmin

L
. (4.53)

The parameters xmin and xmax are the borders of the range of values. Dependent on
the specific problem, xmin and xmax have to be sufficiently large so as to ensure that
the diffusion process (describing the motion itself) takes place within these borders.
Then, one takes the average over all θj(xm,ji ), m = 1, . . . ,M and i = 0, . . . , N of which
arguments can be found in the same sub-interval, Dl := [xmin + (l − 1)δ , xmin + lδ],
where l = 1, . . . , L. Consequently, the resulting step function uj(x) is the new estimate
to the osmotic velocity, and is used as the drift term for the next iteration step.
In addition, the adjoint process q(t) can also be approximated by the difference
equation system derived from equation (4.52), noting that the adjoint process equals
the derivative of the osmotic velocity. Worth mentioning, q(t) is the adjoint process
to the diffusion coefficient, which, in general, is also a stochastic process. In this case,
the constant diffusion coefficient is a feature of the physical system. Nonetheless, no
knowledge of the adjoint process q(t) is needed to determine the new estimate of the
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4. From optimal control theory to the Schrödinger equation

osmotic velocity, and hence, the specific estimate of q(t) is not explicitly calculated.

Still, the fixed range of x-values must be considered during all simulation steps. Empty
sub-intervals might occur for intervals in which no values of the motional process are
found. In such cases, it will be impossible to find a value for the new estimate of the
osmotic velocity and the value stays the same as before. Furthermore, the diffusion of
the motional process can be limited to an area smaller than the chosen x-domain during
the whole simulation, resulting in an estimate of the velocity equal to the starting value
u0 outside this region.

For stationary problems, the ODE-based approach is a suitable alternative to solving
the BSDE directly. Nevertheless, for the general case of non-stationary systems, a
numerical approach to PDEs is necessary; see, for instance, refs. [Douglas et al., 1996;
Zhang and Zheng, 2002; Milstein and Tretyakov, 2006; Ma et al., 2008]. The associated
calculations are time-consuming, rendering a direct analysis of the BSDE the better
choice. Beyond that, the latter ansatz is equivalent to solving the Schrödinger equation.

Direct evaluation of the BSDE

In the following, the direct evaluation of the coupled FBSDE system starting from
equation (4.29-4.30) will be described. Following the same principles as done before,
a x-domain is chosen via the parameters xmin and xmax, and is partitioned into L
equidistant sub-intervals Dl := [xmin + (l − 1) δ , xmin + l δ] for l = 1, . . . , L, where
the width of the intervals δ is given by equation (4.53). In the same way, suppose that
uj−1(x) is the estimate of the osmotic velocity determined in the preceding iteration
step, and suppose that the discrete process

(
Xπ,j
ti

)
i=0,..., N

is an approximation to the
motional process. ∆Wi, i = 0 . . . , N , are discrete increments of the Wiener process.
The backward equation is discretized using the Euler-Maruyama method, where the
discrete process

(
uπ,jti

)
i=1,...,N

of the j-th iterations step approximates the backward
process, and is given by

uπ,jtN =uj−1(Xπ,j
tN ) , qπ,jtN = 0 ,

uπ,jti =uπ,jti+1 − ∆ti
dV (x)

dx

∣∣∣∣∣
x=Xπ,j

ti

− qπ,jti ∆Wi . (4.54)

The outcome of the preceding iteration step provides the backward condition to avoid
final costs of the action functional.

It may happen that equation (4.54) cannot be solved uniquely since both uπ,jti and
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4.3. Numerical solution to the stationary stochastic Hamilton equations of motion

qπ,jti are unknown in the i-th time step [Bouchard and Touzi, 2004]. In the case of
direct evaluation of the coupled FBSDE system, no additional information on the
processes5 is required for the numerical calculation, which is the common procedure in
the mathematical community; see, for instance, refs. [Ma et al., 2002; Bouchard and
Touzi, 2004; Zhang, 2004; Gobet et al., 2005; Lemor et al., 2006; Bender and Denk,
2007; Bender and Zhang, 2008; Bender and Steiner, 2012].

Because the solution scheme for the backward equation will be based on the numerical
calculation of a conditional expectation, the conditional expectation and some properties
of them are introduced next.

Conditional expectation

Let (Ω,F , P ) be a probability space. The conditional probability P (A|B), i.e. the
probability of the event A ∈ F given that B ∈ F has occurred, is given by

P (A|B) = P (A ∩B)
P (B) , (4.55)

where P (B) > 0. Frequently, one aims for a prediction of the random variable
X : Ω → Rd, where P (B) = 0 almost sure (a.s.). The conditional expectation is
then given as an extension to the previous conditional expectation [Arnold, 1973;
Meintrup and Schäffler, 2005]. Especially, the studied condition is given by the set
B = {X = x ∈ Rd}, which is common in different fields of applications, e.g., stock
price predictions based upon the current market situation.

Definition 4.2 (Conditional expectation) Let X ∈ L1(Ω,F , P ) be a real-valued
random vector and G be a sub-σ-algebra of F , i.e., (Ω,G, P ) is a coarsening of the
original probability space, meaning in turn that X is not generally G-measurable. Then,
an integrable random variable Y ∈ Rd (a G-measurable coarsening of X) is sought in
such a way that it takes, on average, the same value as X, i.e., [Arnold, 1973]

∫
C
Y dP =

∫
C
XdP ∀C ∈ G . (4.56)

In accordance with the theorem of Radon-Nikodym6, there exists exactly one, uniquely
defined Y (a.s.), which is called conditional expectation of X given the condition G.
The common notation is [Arnold, 1973]

Y = E [X| G] . (4.57)

5The ODEs for u(x) and q(x) are derived using the Ito formula
6The theorem is, for example, given in ref. [Schmidt, 2011; Behrends, 2013].
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4. From optimal control theory to the Schrödinger equation

This definition is equivalent to the following one.

Definition 4.3 Let X ∈ L1(Ω,F , P ) be a real-valued random variable and G be a
sub-σ-algebra of F . Then, the random variable Y will be called conditional expectation
of X given G, provided that Y is G-measurable, and [Meintrup and Schäffler, 2005]

E (X1C ) = E (Y 1C ) ∀C ∈ G . (4.58)

Theorem 4.4 Let X, Y ∈ L1(Ω,F , P ) and G ⊂ F , then the conditional expectation
fulfills the following statements, which are to be understood in the “almost sure” sense
[Arnold, 1973; Meintrup and Schäffler, 2005]:

(i) G = {∅,Ω} (trivial σ-algebra) ⇒ E [X|G] = E(X).

(ii) X is G-measurable ⇒ E[X|G] = X, especially, E[XY |G] = X E[Y |G].

(iii) E
(

E[X|G]
)

= E(X).

(iv) X being independent of G ⇒ E[X|G] = E(X).

(v) Linearity: a, b ∈ R being constant: E[aX + bY |G] = aE[X|G] + bE[Y |G].

(vi) Monotony: X1 < X2 → E[X1|G] ≤ E[X2|G].

(vii)
∣∣∣E[X|G]

∣∣∣ ≤ E
[
|X|

∣∣∣G].
(viii) G1 ⊂ G2 ⇒ E

[
E[X|G2]

∣∣∣G1
]

= E[X|G1],
G2 ⊂ G1 ⇒ E

[
E[X|G2]

∣∣∣G1
]

= E[X|G2].

The conditional probability P (A|G) of the event A given that the condition G ⊂ F
holds is a special conditional expectation defined by

P (A|G) = E[1A|G] , (4.59)

and is a G-measurable function on Ω [Arnold, 1973].
If F = G(X) is the σ-algebra, which is generated by the random variable X, one writes
[Arnold, 1973]

E[Y |F ] = E[Y |X] . (4.60)

Furthermore, for each G(X)-measurable random variable Z there exists a measurable
function h with h(X) = Z, i.e., the value of Z is already specified by the value of X(ω)
[Arnold, 1973]. Hence, there exists a measurable function h on Ω with E[Y |X] = h(X),
and one can write [Arnold, 1973]

h(x) = E[ Y |X = x] , (4.61)
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4.3. Numerical solution to the stationary stochastic Hamilton equations of motion

which means, as an interpretation, that the value of the random variable Y is sought,
considered that X takes the value x ∈ Rd.

In addition, the conditional expectation can be understood in a different way, as is
used later on in the numerical algorithm. If X ∈ Rd is a square-integrable random
variable, yielding a stronger condition as the integrability condition before, the space
of all square-integrable random variables, i.e.

L2 =
{
X ∈ Rd : E

(
X2
)
<∞

}
, (4.62)

is a vector space [Kersting and Wakolbinger, 2014]. It holds that (X+Y )2 ≤ 2X2 +2Y 2,
and hence, (X + Y ) ∈ L2. Because E(XY ) = 1/2 E ((X + Y )2 −X2 − Y 2) < ∞, the
space L2 defines a Hilbert space by introducing the scalar-product

〈X, Y 〉 := E (XY ) , ∀X, Y ∈ L2 , (4.63)

with the resulting norm

||X|| :=
√
〈X,X〉 =

√
E (X2) , ∀X ∈ L2 . (4.64)

Based upon the theorem of Riesz and Fischer, the validity of which is proven in ref.
[Schmidt, 2011], the space L2 is a complete one, and hence, projections into complete
subspaces are well-defined. Defining the complete subset

L2(G) :=
{
X ∈ L2 : X is G-measurable

}
, (4.65)

a projection Y from X into L2(G) can be defined for all X ∈ L2 [Kersting and
Wakolbinger, 2014]. Thus, for X ∈ L2 and Y ∈ L2(G), the following statements are
equivalent [Schmidt, 2011]:

1. Y = E[X|G].

2. E ((X − Y )2) ≤ E ((X − Z)2) , ∀Z ∈ L2(G).

3. E
(
XZ

)
= E

(
Y Z

)
.

That means, the projection Y fulfills the characteristic properties of the conditional
expectation. Based on (ii),

E
(
(X − E[X|G])2

)
≤ E

(
(X − Z)2

)
(4.66)

holds for all G-measurable, square-integrable random variables Z. Therefore, the
conditional expectation minimizes the squared distance between the random variables

59



4. From optimal control theory to the Schrödinger equation

and X [Kersting and Wakolbinger, 2014].

Multiplying equation (4.54) by ∆Wi and taking the conditional expectation, one can
derive an equation for the adjoint process qπ,jti in the i-th time step [Bender and Steiner,
2012], yielding

qπ,jti = 1
∆ti

E
[
uπ,jti+1 ∆Wi

∣∣∣ F jti] . (4.67)

Here, F jti is the complete filtration generated by the discrete forward process up
to time ti in the j-th iteration step, i.e., F jti includes previous information on the
motional process. The thus-achieved adjoint process is inserted into (4.54). Now, uπ,jti
can be determined uniquely, for which the calculation of conditional expectations is
indispensable in each time step.

Numerical approaches to coupled FBSDE systems are of high interest, especially in
the field of finance regarding the conditional expectation [El Karoui et al., 1997].
Calculations exploiting Malliavin derivatives7 (see refs. [Fournié et al., 1999, 2001;
Bouchard et al., 2004; Bouchard and Touzi, 2004; Bouchard and Elie, 2008]) are
computational expensive since Skohorod integrals need to be solved in each time step.
Instead, one may make use of the fact that the conditional expectation can be considered
as a projection into L2(F jti), the latter being the Hilbert space of all square-integrable,
F jti-measurable random variables defined in equation (4.65). Algorithms based on this
approach can be found in refs. [Gobet et al., 2005; Lemor et al., 2006; Bender and
Denk, 2007; Bender and Steiner, 2012; Gobet and Turkedjiev, 2015].

Since the solution of the backward equation is a functional of the motion process,
which in turn is a Markov process, only the last value of the motion process has to be
considered in the conditional expectation described by equation (4.67) [Bouchard and
Touzi, 2004]. Hence, the conditional expectation reads

qπ,jti = 1
∆ti

E
[
uπ,jti+1 ∆Wi

∣∣∣ F jti] = 1
∆ti

E
[
uπ,jti+1 ∆Wi

∣∣∣ Xπ,j
ti

]
. (4.68)

Now, one aims for the m-th realization qm,jti of the random variable qπ,jti at time ti in
the j-th iteration step, where qπ,jti is a function of the forward process, i.e.

qm,jti = qπ,jti (Xπ,j
ti = xm,ji ) , m = 1, . . . ,M , i = 0, . . . , N , , j = 1, . . . , Niteration .

(4.69)

7Some information about Malliavin derivative can be found in the Appendix, section A.3.
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4.3. Numerical solution to the stationary stochastic Hamilton equations of motion

Here, xm,ji is m-th computed forward motional process at time ti in the j-th iteration
step. The m-th realization of the adjoint process in the j-th iteration step is given by

qm,jti = 1
∆ti

E
[
uπ,jti+1 ∆Wi

∣∣∣ Xπ,j
ti = xm,ji

]
, m = 1, . . . ,M , i = 0, . . . , N − 1 . (4.70)

A numerical approximation to the conditional expectation can be found by making use
of the fact that E[Y |X] is the projection from Y into the space of all square-integrable
functions that are measurable with respect to the σ-algebra generated by X. Hence,
the numerical approach can be understood in terms of a least-square optimization,
meaning that the function f(X) = E[Y |X] is characterized by

f(X) = arg min
ν

E
[
|ν(X)− Y |2

]
, (4.71)

where ν spans the full range of measurable functions, with E
[
|ν(X)|2

]
<∞ [Bender

and Steiner, 2012]. In order to simplify the infinite-dimensional minimization problem,
one can introduce an L-dimensional functional basis η(x) = (η1(x), . . . , ηL(x)) so that
f(x) can be approximated as

f(x) ≈ α · η(x) , with α ∈ RL . (4.72)

L needs to be sufficiently large so as to achieve a good approximation of f(x). Thus,

α = arg min
α∈RL

E
[
|η(X)α− Y |2

]
. (4.73)

Given that there are xm, ym, m = 1, . . . ,M independent realizations of the processes
X and Y , the expectation value in equation (4.73) can be replaced by the arithmetic
average, yielding [Bender and Steiner, 2012]

α = arg min
α∈RL

1
M

M∑
m=1

[
|η(xm)α− ym|2

]
. (4.74)

For the numerical implementation, a suitable functional basis has to be chosen and the
factor α has to be determined in each time step. The so-called hypercube basis was
first presented by Gobet et al. [2005] and gives a very useful basis to the approach of
conditional expectations. In the one-dimensional case, this basis is given by indicator
functions, i.e.

η(·) = (1Dl(·))l=1,...,L , with 1Dl(x) =

1 , x ∈ Dl

0 , else
, (4.75)
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where the intervals are defined above. Hence, η(x), x ∈ Dl, is a L-dimensional vector,
where all components are zero except of the l-th one.

Consequently, the m-th realization of the adjoint process qπ,jti at time ti in the j-th
iteration step is given by

qm,jti = 1
∆i

αji η(xm,ji ) , (4.76)

with αji = 1
M

M∑
m=1

η(xm,ji )um,jti+1 ∆Wi . (4.77)

Finally, M realizations of the backward equation can be determined by the following
scheme:

um,jtN =uj−1(xm,jN ) , qm,jtN = 0 , (4.78)

qm,jti = 1
∆i

αji η(xm,ji ) , αji = 1
M

M∑
m=1

η(xm,ji )um,jti+1 ∆Wm
i , (4.79)

um,jti =um,jti+1 − ∆i
dV (x)

dx

∣∣∣∣∣
x=xm,ji

− qm,jti ∆Wm
i , (4.80)

i =N − 1, . . . , 0 , m = 1, . . . , M , j = 1, . . . , Niteration .

The new estimate to the osmotic velocity is given by the arithmetic average of all
values um,jti for which several values are found within one and the same interval.

Finally, it is noted that the number of realizations should be chosen with care. The
number of realizations affects the convergence of the method and should be adjusted
relative to the number of time steps and intervals [Bender and Steiner, 2012]. (As will
be also addressed in section 4.4.1.) The number of pathways increases significantly
with the number of time steps, thus leading to high computational effort for improper
settings.
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4.4. Examples – Stationary systems
In this section, the above introduced methods are applied to cases for which an numerical
approximation can be found for both the osmotic velocity and the probability density.
In particular, a one-dimensional harmonic oscillator and a one-dimensional double-well
potential will be analyzed. In contrast to the double-well potential, where neither the
wave function nor the osmotic velocity can be treated analytically, the Schrödinger
equation for the harmonic oscillator can be solved exactly. Thus, the latter case also
permits to compare analytical and numerical results.

4.4.1. One-dimensional harmonic oscillator

In the following, a one-dimensional harmonic oscillator described by the potential
V (x) = x2/2 will be studied. The harmonic potential is transformed into dimensionless
variables using the characteristic length

√
~/mω and the characteristic time ω−1. The

exact solution of the time-independent Schrödinger equation,[
−1

2
d2

dx2 + x2

2

]
Ψ(x) = EΨ(x) , (4.81)

is a function of the associated energy eigenvalues En = n + 1/2, n ∈ N0, and reads

Ψn(x) = π−
1/4 (2n n!)−1/2 e−x

2
2 Hn(x) . (4.82)

Hn(x) are the Hermite polynomials and are defined by

Hn(x) = (−1)n ex2 dn
dxn

[
e−x2] = e

x2/2

(
x− d

dx

)n
e−x

2
2 , n ∈ N0 . (4.83)

Note that N0 is the set of all natural numbers supplemented by zero.

The ground-state wave function (n = 0, E0 = 1/2) is given by Ψ0(x) = π−1/4 e−x
2

2 , which
is a normal distribution centered at the minimum of the potential (x = 0), and with a
variance σ = 1/

√
2. The osmotic velocity is u(x) = −x, and the motional process can be

determined solving

dX(t) = u(X)dt + dWf (t) , X(0) = x0 ∈ R . (4.84)

A simulated representative trajectory and the mean path are displayed in Figure 4.3.
The mean path was calculated as the average over 1000 individual trajectories. Relying
on the procedure described above, the Heun method was utilized using equidistant
time increments, ∆ti = h = 0.001 for all i = 0, . . . , N . During the simulations, the
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Figure 4.3.: Single (black) and average (red) trajectory of a particle experiencing a
one-dimensional harmonic oscillator potential. The mean trajectory is
an average of 1000 paths, each of which consists of 105 time steps with
time increment h = 0.001.

starting point is chosen as x0 = 0. (The choice of the initial condition is arbitrary
and has no influence on the results) As seen in Figure 4.3, the mean path is nearly
zero, and the difference between the single and the averaged trajectory is the smaller
the more paths are generated, i.e. the algorithm converges to the wanted solution.
In the classical stationary ground state (x ≡ 0), the particle rests at the minimum
of the potential. Hence, the quantum-mechanical motion process fluctuates around
the classical state with a certain probability density, the latter being equal to the
square of the absolute value of the wave function. On average, the quantum-mechanical
motional process coincides with the classical one. The probability density can be
determined from the generated paths by calculating the normalized position histogram,
cf. Figure 4.4. The so-obtained position histogram is normalized to an integral area
equal to one. Obviously, the simulation result agrees well the analytically calculated,
exact probability density.

Incorporating the methods introduced above, the osmotic velocity as well as the
probability density will be determined numerically by analyzing the stationary Hamilton
equations of motion,

dX(t) = u(X(t))dt + dWf (t) , X(0) = x0 ∈ R , (4.85)

du(t) = X(t) dt+ q(t) dWb(t) . (4.86)
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Figure 4.4.: Simulated (black points) and exact (red curve) probability density for
the one-dimensional harmonic oscillator. Additionally, in the upper left
corner, the potential V (x) = x2/2 is presented.

Solving the ODE

At first the osmotic velocity is calculated by addressing the associated ODE in each
single iteration step, the overall iteration scheme is repeated 100 times. Finally, all
presented results are averaged over the individual simulations.

The results after different numbers of iterations and the exact solution of the osmotic
velocity are shown in Figure 4.5. Computing not more that 10 iterations, the numer-
ical result coincides with the exact one in a certain range. The more iterations are
performed the larger is the range over which sufficient agreement between the simulated
and analytical result is obtained. Since the initial estimate of the velocity equals the
classical stationary ground state (u0 ≡ 0), the simulation curve drops down to zero
outside the range of convergence. Even though the standard deviation is considerably
larger outside this domain, it decreases over the entire x-domain with an increasing
number of repetitions. Both features are reflected in the inset of Figure 4.5, where all
individual simulations are independent from each other

Using the osmotic velocity estimated after 1000 iteration steps, there are two oppor-
tunities to approximate the probability density. In option 1, 10 000 trajectories of
the motional process8, each with 20 000 time steps and time increment h = 0.01, are

8Alternatively, it is also possible to calculate a single, but very long path of the motional process.
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Figure 4.5.: Numerical solution of the osmotic velocity (points) for the one-
dimensional harmonic oscillator in the stationary case as a function of
the number of iteration steps as compared to the exact solution (red
line). The solution to the backward equation was determined by analyz-
ing the associated ODE. The presented results are arithmetic averages
of 100 independent simulations. In each iteration step, 1500 paths of
the motion process with 3000 equidistant time steps (h = 0.002) are
calculated. Inset: Zoomed section of the plot after 10, 100, 500 and
1000 iteration steps, where error bars reflect the standard deviation
calculated from the spread of individual simulations.

generated by numerically solving the forward SDE with the approximated velocity.
In Figure 4.6, the probability density from this approach – given by the normalized
position histogram – is compared to the exact solution calculated from the Schrödinger
equation. The numerical result is in good agreement with the ground-state probability
density. Relevant discrepancies occur only in a range outside of the 3σ-domain9. In
the presented case, we have σ =

√
1/2 ≈ 0.7071 and hence, the 3σ-domain spans a

range about [−2.12 , 2.12]. Furthermore, the numerical solution of p(x) depends on
new parameters such as the length of the generated paths, with in fact occurs as a
parameter in the numerical approach to the forward equation.

In option 2, the probability density is determined by numerical integration using

9For normally distributed random numbers, 99.73% of all events are found inside the 3σ-interval.
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Figure 4.6.: Probability density determined by either numerical integration (black
points) or by elaborating a position histogram (gray points) are com-
pared to the analytical result (red line) for the case of a stationary
one-dimensional harmonic oscillator. Both cases rely on the osmotic
velocity that is computed on the basis of 1000 iteration steps. The
backward equation is solved by analyzing the associated ODE. The
logarithmic representation emphasizes systematic deviations occurring
at the regions at which the probability density is low.

p(x) = |Ψ(x)|2 = c0 exp
{

2
∫ x

−∞
u(x′)dx′

}
. (4.87)

Since
∫∞
−∞ p(x)dx = 1 the normalization constant c0 is calculated as

c0 =
[∫ ∞
−∞

exp
{

2
∫ x

−∞
u(x′)dx′

}
dx
]−1

. (4.88)

The so-obtained probability density (cf. again Figure 4.6) coincides with the exact
solution within almost the entire range of validity found by the previous procedure.
However, the quality (in terms of accuracy) of the normalized position histogram first
of all depends on the statistical properties of the sampling, while a better convergence
of the osmotic velocity does not necessarily improve the result of the probability
density. In order to expand the range of coincidence between the analytical and the
numerical result, more or (and) longer paths have to be generated, thus increasing the
computational effort. The solution determined by numerical integration depends only
on the quality of the osmotic velocity, and, in addition, the numerical integration is
very simple. Thus, numerical integration as done in option 2 is preferred over option 1.
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Figure 4.7.: Osmotic velocity for the stationary one-dimensional harmonic oscilla-
tor from M trajectories, each with 10 iteration steps and 100 overall
simulations that were finally averaged. The exact solution (red curve)
indicates the range in which the algorithm yields correct results. Error
bars reflect the spread of the 100 overall simulations underlying the here
presented data. Inset: Outcome of a single simulation results out of the
ensemble.

As the next step, the effect of parameter variations on the calculated osmotic velocity is
examined. Simulations with different numbers of paths M are calculated and presented
in Figure 4.7. These simulations consist of 100 overall simulations, each of which with
ten iteration steps that in turn require M trajectories to be calculated. It can be seen
that the results have almost the same range of convergence; however, the standard
deviation determined by repeating the simulation 100 times becomes the smaller the
more trajectories are accounted for in each iteration step. In the inset of Figure 4.7, the
outcome of one out of the 100 simulations relying on M = 103, 104 and 105 trajectories
is shown. An increasing number of trajectories renders each simulation result more
stable, as well as the simulated osmotic velocity becomes smoother (and more precise).
Henceforth, testing the influence of also other parameters on the simulation outcome
u(x), 105 paths are calculated in each iteration step.

Results concerning a variation of the time increment h are plotted in Figure 4.8.
If the time increment is too small, no suitable results will be obtained, as well as
the simulation may diverge (as for the latter case, see the simulation outcome using
h = 0.002). Nonetheless, if the time increment is set to values between 0.004 to 0.009,
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Figure 4.8.: Osmotic velocity for the stationary one-dimensional harmonic oscillator
for different time increments h after 10 iterations. The backward
equation is solved by analyzing the associated ODE. The presented
velocities are arithmetic averages over 100 single simulations.

sufficient agreement with the analytically calculated osmotic velocity is obtained, where
the range of convergence increases with increasing h. If h becomes larger than 0.009,
significant deviations occur that are caused by the reduced precision of the Heun
method underlying the here presented calculations. Similar behavior is revealed by
varying the number of time steps, N . In Figure 4.9 results for different N can be seen;
the inset in Figure 4.9 gives a rough overview over a broad range of N . Both, a small
and a quite large number of steps per trajectory yield misleading results. If each path
consists only a few simulation steps, the estimate stays close to zero (see, for instance,
N = 100), while a large value of N is accompanied by divergence of the simulation.

In summary, for trajectories of a suitable length (parameterN), the range of convergence
will become large with increasing T = N · h. Simulations evaluating the ODE are quite
sensitive to parameter changes, and only a small set of tuples (N , h) provides reliable
simulation results. This situation is ascribed to the non-linearity of the ODE. If more
paths are generated in each iteration step, each single simulation becomes more stable.
This, in turn, renders longer trajectories more feasible from a technical point of view,
while the number of single simulations required for sufficiently precise results can be
reduced. On the other hand, computing a plethora of trajectories significantly increases
the computational effort per simulation, while only modest improvements on the finally
obtained velocity might be achieved.
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Figure 4.9.: Osmotic velocity for the stationary one-dimensional harmonic oscillator
as determined using different numbers of time steps N in each path,
and using 10 iterations. The backward equation is solved by analyzing
the associated ODE. The presented velocities are arithmetic averages
over 100 single simulations. Inset: Simulated u(x) for 100 ≤ N ≤ 3000
(points) and exact solution (red curve).

Direct evaluation of the BSDE

As mentioned above, the osmotic velocity can also be determined by solving the back-
ward equation itself. Figure 4.10 shows the impact of the number of iteration steps
(parameter NIteration) on the so-obtained simulation result along with the analytical,
exact solution. Because a high number of realizations of the motion process is needed
for the numerical calculation of the backward equation, the forward SDE is solved
using an Euler-Maruyama method to save computational time.

Within a certain range around the center of the harmonic potential, the numerical
solution coincides well with the exact one. Outside this range, however, the simulation
drops down to zero, which is the chosen initial estimate of u(x). This situation is
also reminiscent of the previous simulations. In addition, the inset in Figure 4.10
shows part of the results after 10, 50 and 200 iteration steps. Simulation uncertainties
(“error bars”) stay almost the same over the entire range of x-values; already a small
number of iterations (e.g. N = 10) turns out to be sufficient for an acceptable range
of convergence. Within the range of good agreement between the simulated and the
analytical result, error bars are small and have almost the same value, irrespective
of the specific position. As before, the range of convergence of the osmotic velocity
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Figure 4.10.: Numerical solution of the osmotic velocity for the one-dimensional
harmonic oscillator in the stationary case after different numbers
of iteration steps, and exact solution (red line). The solution to the
backward equation was directly determined using a method for coupled
FBSDEs. Inset: Part of the results after 10, 50 and 200 iteration steps,
including the standard deviation indicated by error bars. The presented
results are arithmetic averages of 100 single simulations. The displayed
errors correspond to the dispersion of single simulations. In each
iteration step, 106 paths of the motion process with 100 equidistant
time steps (h = 0.01) are calculated.

gets larger the more iteration steps are made during the simulation. Because of the
high number of realizations, the range of convergence is larger than the corresponding
domain from the ODE.

Evaluating the velocity calculated after 200 iteration steps, the probability density can
be computed either by determining a position histogram of the quantum particle, or by
numerical integration of equation (4.87). Results from both methods are compared to
the quantum-mechanical solution in Figure 4.11. Here, the advantage of the numerical
integration becomes obvious: the range of agreement between the simulated and the
analytically calculated result is larger for the numerical integration method than for
the normalized position histogram. While the accuracy of p(x) determined from the
position histogram is comparable for both methods available for the backward equation,
the probability density determined from numerical integration is much better for the
direct analysis of the BSDE. The position histograms in Figure 4.6 and Figure 4.11
rely on the same number of integration (“time”) steps, yielding a similar quality for
both cases. This is contrasted by the fact that numerical integration relies on the
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Figure 4.11.: Probability density determined by either numerical integration (black
points) or by elaborating a position histogram (gray points) are com-
pared to the analytical result (red line) for the case of a stationary
one-dimensional harmonic oscillator. Both cases rely on the osmotic
velocity that is computed on the basis of 200 iteration steps. A loga-
rithmic representation is chosen to emphasize differences between the
numerical and the analytical result at regions with a small probability
density.

osmotic velocity only. Evaluating the osmotic velocity directly, u(x) converges faster
due to the larger number of generated trajectories during the iteration. Thus, the range
of excellent agreement of the probability density with the analytical result is increased.

The larger number of generated paths is required to ensure a certain order of con-
vergence of the solution to the backward equation [Bender and Steiner, 2012]. The
simulation quality depends also on the number of steps used for calculation of each
trajectory. The more steps are made, the more paths have to be calculated. Later on,
correlations between the number of generated paths and other parameters (e.g. N, L)
will be discussed in more detail.

Aiming for optimal computational times, it is of high technical interest to explore
if simulations relying on a reduced number of trajectories will still provide suitable
results. Therefore, the above simulation is repeated with M = 103, 104, 105, with the
results after 10 iteration steps being presented in Figure 4.12. Here, the previous
simulation incorporating 106 simulation steps serves as a reference relative to the exact
solution, thus reflecting the algorithm’s benchmark accuracy. As expected, increasing
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Figure 4.12.: Osmotic velocity for the stationary one-dimensional harmonic oscillator
for different M after 10 iterations, including the standard deviation
reflected by error bars and the exact one (red line). The BSDE is
solved directly, where 100 time steps with an increment h = 0.01 were
calculated for each trajectory. The presented results are arithmetic
averages over 100 single simulations. The displayed error is given by
the spread of the single simulations. Inset: Result of a single simulation
for each M .

M yield enlarged convergence ranges. Furthermore, it should be noted that the slope
is too small in the case of M = 103. Additional iteration steps do not considerable
improve the simulation result. Table 4.1 summarizes the slope and intercept of the
resulting osmotic velocity as determined from a linear fit to the simulated data in the
convergence region. It follows that the slope increases with an increasing number of
paths generated in each iteration. As said before, the number of the minimum number
of paths sufficient for precise simulation depends on the number of time steps and has
to be sufficiently large in order to achieve a suitable u(x) [Bender and Steiner, 2012].
For paths with 100 time steps each, at least 104 trajectories have to be calculated.

1
2
2M

1
2
2 103 104 105 106

1
2
2 Slope

1
2
2 - 0.933± 0.001 - 0.984± 0.001 - 0.990± 0.001 - 0.993± 0.001

1
2
2 Intercept

1
2
2 0.025± 0.001 0.025± 0.001 0.023± 0.001 0.024± 0.001

Table 4.1.: Slope and intercept with the ordinate for the osmotic velocity from
Figure 4.12 as determined by linear fits.
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Figure 4.13.: Osmotic velocity as a step function (black line) for the stationary
one-dimensional harmonic oscillator for M = 106 as compared to the
exact solution (red line). Additionally, the resulting fit function (purple
dashed line) and data points (purple points) used for the linear fit are
depicted. The here shown u(x) is identical to that one presented in
Figure 4.12 for M = 106; however, only the x-range close to zero is
shown.

In contrast to the well-behaved slope, the osmotic velocities have an intercept dif-
ferent from zero. Note that the intercept is found to be about 0.025 irrespective of
the choice of M , which is half of the chosen interval width δ. The intercept arises
because of the step character of the resulting osmotic velocity, with particular im-
pact of the chosen intervals length δ. In practice, the intervals are constructed using
Dl := [xmin + (l − 1) δ , xmin + l δ] for l = 1, . . . , L, i.e., the intervals are not symmet-
ric around the ordinate. The data points used for the linear fit are in accordance with
the (right) endpoints of the x-intervals, where the velocity has a constant value. Hence,
the fit function is shifted towards higher values, leading in turn to an increased, non-zero
intercept. The bias effect is determined by the interval length, thus, simulations with
the same value of the data yield (almost) the same intercept. This effect is well seen in
Figure 4.13 using simulation results with M = 106 trajectories and 10 iteration steps,
with the x-range being chosen in such a way that the discontinuous, steplike behavior
of u(x) becomes obvious. The unwanted effect of the steplike behavior of the numerical
velocity can be minimized by increasing the number of intervals (reducing the interval
width) and by a symmetric position of the intervals around the point of origin.
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Figure 4.14.: Osmotic velocity for the stationary one-dimensional harmonic oscillator
for different values of h after 10 iteration steps, including also the
exact result (red line). In each iteration step, 105 paths with 100 time
steps are determined and the BSDE is solved directly. The presented
results are arithmetic averages over 100 single simulations.

Several aspects impact the errors accumulated during computation of the backward
equation. First, the used values of the forward process are determined numerically by
exploiting the Euler-Maruyama method, which has a strong order of convergence of
one half.10 At the same time, the the backward equation is discretized on the basis of
an Euler-Maruyama-method, which causes numerical inaccuracy. Solving the difference
equation of the backward process, the conditional expectation has to be evaluated
numerically. The simulation error of the backward equation will scale as N−ρ/2 for
ρ ∈ [0, 1], if the number of intervals L increases proportional to Nα (α ≥ 0), and the
number of paths M increases proportional to N2+2α+ρ [Bender and Steiner, 2012]. The
number of computed paths increases quickly with a growing number of time steps. The
osmotic velocity is calculated using an iterative method, i.e., the quality of the results
depends also on the number of iterations. As a consequence, a quantitative estimate of
the overall error of the osmotic velocity is hard to achieve and is beyond the scope of
this thesis.

Finally, the influence of the length of the single path T = h ·N on the numerical results
will be studied. For this purpose, the time increment h is varied for a fixed number of

10More information on the convergence of SDEs can be found in the appendix, section A.4.
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Figure 4.15.: Osmotic velocity for the stationary one-dimensional harmonic oscil-
lator for different N (denoting the number of time steps) after 10
iteration steps as compared to the exact result (red line). The BSDE is
solved directly, where 105 paths are calculated in each iteration using
the equidistant time increment h = 0.01. The presented results are
arithmetic averages over 100 single simulations.

time steps (see Figure 4.14), while the number of time steps is increased for a fixed
h (see Figure 4.15). Both have nearly the same effect. If the time increment h is in
a certain range (h ∈ [0.01, 0.06]), the simulations will provide suitable results, where
the range of convergence increases with an increasing time increment. If h is too large,
however, numerical errors will arise in the calculation of both, the forward and the
backward equation. If h is too small, randomness has no effect and the particle stays
allmost all the time in the classical ground state (see Figure 4.14, h = 0.001). It is
recommended to extend the trajectory length by increasing the number of time steps
to make use of the effect discussed above. Additional time steps are accompanied by
an increased number of generated paths; otherwise, misleading results are obtained;
see Figure 4.15 (N ≥ 600).

Concluding this section, solving the BSDE directly is the preferred method for the
following reason: First, the simulation is less prone to parameter changes, rendering
the calculations more stable and reducing the risk of fallacy; second, longer trajectories
can be computed despite potentially high computational effort; third, solving the ODE
arising from Itô’s formula is nothing else than solving the gradient of the Schrödinger
equation; forth, for non-stationary problems, a PDE has to be solved numerically which
is very complex, and, last but not least, a method achieving the wave function without
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Figure 4.16.: First and second excited state for the one-dimensional harmonic oscil-
lator.

using the Schrödinger equation itself has been one the major goals of this thesis.

Excited states

Figure 4.2 shows schematically how the ground-state solution can be used to find the
excited states by quantifying the ground state of a modified potential [Grigorenko, 1991].
Using equation (4.43) (the equation for the superpartner of the Hamilton operator),
the modified potential for the harmonic oscillator reads

V1(x) = V (x)− ~
du0(x)

dx = V (x) + ~ω . (4.89)

Since the drift term of the BSDE for the osmotic velocity is given by the derivative of
the potential, the osmotic velocity in the modified potential equals the original one.
Hence, the ground state of Ĥ1 is given by the ground state in the original potential
Ψ0(x). Consequently, no further optimization is required and the excited states can be
directly calculated using the transformation given by equation (4.45), i.e.,

Ψ1(x) =
√

m

2 (E1 − E0)

(
−u0(x) − ~

m

d
dx

)
Ψ0(x) , (4.90)

Ψ2(x) =
√

m

2 (E2 − E1)

√
m

2 (E2 − E0)

(
−u0(x) − ~

m

d
dx

)2

Ψ0(x) . (4.91)

In Figure 4.16, the numerical results for the first and second wave function are
compared to the exact wave functions as calculated from the Schrödinger equation.
The results agree well with each other.
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Using the theory of supersymmetric Hamilton operators, one can determine the energy
spectrum of the harmonic oscillator [Sukumar, 1985a; Cooper et al., 1995]. The n-times
modified potential is given by Vn(x) = V (x) + n~ω, so that the energy is given by

En =E
[
m

2 u
2
0(x) + Vn(x)

]
= E

[
m

2 u
2
0(x) + V (x) + n~ω

]
=E0 + n~ω = ~ω (n + 1/2) . (4.92)

The excited energies can also be calculated using the numerical results and are presented
in Table 4.2. Additionally, if the exact result for the ground state wave function

Ψ0(x) =
(
mω

~π

)1/4

exp
{
−mω2~ x2

}
(4.93)

is used, the wave function of the n-th excited state will be given by

Ψn(x) =
n−1∏
i=0

√
m

2 (En − Ei)

(
ωx − ~

m

d
dx

)n
Ψ0(x)

(4.92)=
(
mω

~π

)1/4 1√
2n n!

√
m

~ω

n
(
ωx − ~

m

d
dx

)n
exp

{
−mω2~ x2

}

=
(
mω

~π

)1/4 1√
2n n!

exp
{
−mω2~ x2

}
Hn

(√
mω

~
x
)

, (4.94)

since ϕn0 (x) = Ψ0(x) for all n ∈ N, with the Hermite polynomials Hn(x) , n ∈ N, being
defined by equation (4.83). Furthermore,

Â+Ψn(x) =
√
m

2

(
ωx− h

m

d
dx

)
1√

2n n!

√
m

~ω

n
(
ωx − ~

m

d
dx

)n
Ψ0(x)

=
√
~ω(n+ 1) Ψn+1(x) , (4.95)

Â−Ψn(x) =
√
m

2

(
ωx+ h

m

d
dx

)
1√

2n n!

√
m

~ω

n
(
ωx − ~

m

d
dx

)n
Ψ0(x)

=
√
~ωnΨn−1(x) . (4.96)

E0 E1 E2

Numerical result 0.49995 1.4993 2.4987
Exact value 0.5 1.5 2.5

Table 4.2.: First three energies for the one-dimensional harmonic oscillator deter-
mined using the numerical result as compared to the exact values.
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As for the harmonic oscillator, the operators Â± coincide with the creation and
annihilation operator11. In the literature, the ladder operators are transformed into
dimensionless variables, such that the prefactor

√
~ω will disappear in equations (4.95)

and (4.96).

Utilizing equation (4.47), the functions S(t) can be determined, and, finally, the
complete wave function for the n-th state reads

Ψn(x, t) = 1√
2n n!

√
m

~ω

n
(
ωx − ~

m

d
dx

)n
Ψ0(x) e−i n ω t e−

iω t
2 . (4.97)

4.4.2. One-dimensional double-well potential

A prime example of a Hamiltonian for which no analytically wave function is available
is the one-dimensional double-well potential. This potential – shown in the inset of
Figure 4.17 – is given by

V (x) = V0

a4

(
x2 − a2

)2
. (4.98)

Here, the minima of the potential are located at ±a, with a = 1.5, and the barrier
height is given by V0 = 2.0. In contrast to the classical solution, where the particle
rests in one of the minima, a quantum particle of energy E < V0 can overcome the
barrier. Thus, the probability density should be different from zero at the maximum of
the potential, and has a maximum in each well.

As before, the osmotic velocity is calculated using the described algorithm, with an
initial estimate of the velocity given by u0 ≡ 0. The starting point(s) of the motional
process are randomly chosen as one of the classical stationary points of the potential
(maximum at x = 0, minimum at x = ±a). All presented results are determined
by direct evaluation of the BSDE during the simulation, and are given by the mean
value of 100 single simulations. The depicted error bars are thus characterized by
the spread of the single simulations. Additionally, to save computational time, the
forward equation is solved using an Euler-Maruyama method. The probability density
is afterwards calculated by numerical integration of equation (4.87) and is plotted
in Figure 4.17 for different numbers M of generated paths. In the inset below, the
related osmotic velocities are shown. For small M , one can see that p(x) is determined
with increased uncertainty (large error bars) at positions close to, or exactly at, its
two maxima. This situation is due to highly asymmetric behavior of single simulations.

11The theory of the ladder operators can be found in almost every textbook for quantum mechanics;
see e.g. ref. [Nolting, 2013].
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Figure 4.17.: Probability density for the stationary one-dimensional double-well
potential for different values ofM (the number of trajectories calculated
per iteration) and a fixed time increment h = 0.01. 200 iteration steps
were applied. The barrier height is given by V0 = 2.0 and the well
position is a = ±1.5. The presented results are arithmetic averages
over 100 single simulations and the displayed error is given by the
dispersion of the single simulations. The potential is plotted in the
inset in the right upper corner and the underlying osmotic velocities
are shown in the lower inset.

The difference of the height of the maxima becomes smaller the more trajectories are
averaged. The osmotic velocity diverges for |x| → ∞ and great differences between the
single simulations occur in the outer x-range. In Figure 4.18 the osmotic velocity as
calculated for different numbers of iterations is shown. As in the case of the harmonic
oscillator, the osmotic velocity has converged over a broad range of x-values even for a
small number of iterations. The dispersion between single simulations stays comparable
for different numbers of iterations; see also the inset in Figure 4.18. However, the
more paths are generated in one iteration step, the more extended is the range in which
a smooth solution occurs. It seems that there is a point at which u(x), calculated after
a few iterations only, experiences a kink, i.e., a point at which u(x) is not differentiable.
With an increasing number of iteration steps, the kink vanishes.

It is worth noting that the maxima of p(x) cannot be found directly at the minima of
the potential, resulting from the coupling of the two wells by tunneling.

The resulting probability density is compared to the solution calculated using the
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Figure 4.18.: Osmotic velocity for the stationary one-dimensional double-well poten-
tial for different number of iterations, using a time increment h = 0.01
and M = 106 trajectories (V0 = 2.0, a = ±1.5). Inset: Zoomed area
of the main plot including standard deviations. The presented results
are arithmetic averages over 100 single simulations and the displayed
error is given by the spread of single simulations.

Numerov method12, which is a common numerical method for the solution of the
stationary Schrödinger equation [Blatt, 1967; Johnson, 1977]. This method is an
algorithm for second-order ODEs (without first derivative), is derived using a Taylor
expansion and has a high order of convergence (convergence order of five [Blatt, 1967]).
The very good agreement of the results of both simulation methods becomes apparent
in Figure 4.19.

Going on further, the first excited state is determined by identifying the ground state
in the modified potential. In contrast to the harmonic oscillator, where the potential is
modified by a constant value, the ground state of the new potential has to be calculated
by a new optimization run. In Figure 4.20, left panel, the so-obtained wave function
is compared with that one resulting from the Numerov algorithm. Here, the solution
to the osmotic velocity relying on M = 106 trajectories is used to modify the potential.
Since the modified potential reads

V1(x) = V (x)− ~
du0(x)

dx , (4.99)

12More information about the Numerov method can be found in the Appendix, cf. section A.5.

81



4. From optimal control theory to the Schrödinger equation

 0

 0.1

 0.2

 0.3

 0.4

-3 -2 -1  0  1  2  3

 P
ro

ba
bi

lit
y 

de
ns

ity
 p

(x
)

Position x

Numerov
Opt. Cont.

Figure 4.19.: Probability density as determined by optimal control theory in com-
parison with the Numerov solution for the stationary one-dimensional
double-well potential. 200 iteration steps were performed using
M = 106 trajectories and a time increment of h = 0.01. The barrier
height is given by V0 = 2.0 and a = 1.5.

and since the drift term of the BSDE is given by the gradient of the potential, the
second derivative of the ground state osmotic velocity has to be calculated in order
to find the velocity in the modified potential. Hence, fluctuations occur in the wave
function (see Figure 4.20). For comparison, the ground-state wave function is also
plotted in Figure 4.20 (left) and the following points should be considered: (i) the
maxima of the two wave functions are located at different positions, where the maxima
of the first state is closer to the well minima, and (ii), the heights of the maxima are
different. Both situations can be explained by considerable coupling between the two
wells that is mediated through tunneling processes.

Furthermore, the energy of the ground state13 can be determined by numerical integra-
tion of

E0 = E
[1
2u

2
0(x) + V (x)

]
=
∫ ∞
−∞

{1
2u

2
0(x) + V (x)

}
p0(x)dx . (4.100)

The first two determined energies are in good agreement the those calculated on the
basis of the Numerov method, but at the same time slightly deviate from the values
determined by the instanton14 method; see Table 4.3. The instanton method is a path

13Calculating E1 is analogues to determining the ground-state energy.
14More information on the instanton solution can be found in the appendix, section A.7.
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Figure 4.20.: Wave function of the first two excited states in comparison with
the Numerov solution for the stationary one-dimensional double-well
potential with a = 1.5 and barrier height V0 = 2.0 (left) as well as
V0 = 5.0 (right).

integral approach with time-located solutions to the classical euclidean equations of
motion, which are derived by a Wick rotation [Văınshtĕın et al., 1982]. Even though
the resulting Feynman paths [Feynman, 1948] are equivalent to the paths generated by
the stochastic equations of motion [Nelson, 1964; Pavon, 2000], the instanton energies
are different. An approach to the instanton energies can be found by making use of the
following assumptions: (i) Most of the time, the particle stays in one of the two wells,
meaning that transitions between the two wells are fast and require only short periods
as compared to the considered time horizon, and (ii), in the vicinity of the minimum,
the potential can be approximated by a harmonic-oscillator potential [Carlitz and
Nicole, 1985]. The resulting energy formulas read [Văınshtĕın et al., 1982]

E0 = ω

2

1 −
√

2ω3a4

πV0
e−

w3a4

12V0

 , (4.101)

E1 = ω

2

1 +
√

2ω3a4

πV0
e−

w3a4

12V0

 , (4.102)

1
2
2 E0 E1 ∆E

1
2
2 Optimal control

1
2
2 1.10345 1.2762 0.173

1
2
2 Numerov method

1
2
2 1.10342 1.2877 0.184

1
2
2 Instanton

1
2
2 1.198 1.4683 0.27

Table 4.3.: Numerical result for E0 and E1 for the one-dimensional double-well
potential, as compared to the outcomes of the Numerov method and the
instanton solution.
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4. From optimal control theory to the Schrödinger equation

with
ω =

√
8V0

a
. (4.103)

The instanton energies coincide with those determined using a WKB15 approximation
[Cooper et al., 1995; Garg, 2000]. For clearly separated wells, it is a fruitful method to
determine energy splittings [Banerjee and Bhatnagar, 1978; Wang et al., 1992; Park
et al., 1998; Garg, 2000]. Because of the presence of the second well, the energy levels
are split in both wells, resulting in two energy levels, one lower and one higher than the
ground-state energy of the single well. Thus, the ground-state energy in the two wells
is considered to be reduced by 1/2∆E, i.e. E0 = E ′0 − 1/2∆E, with an energy splitting
∆E calculated using a WKB-approximation16 [Garg, 2000] or an instanton method
[Văınshtĕın et al., 1982].

This approach is in contradiction to the resulting energies using optimal control theory
or the Numerov method (see also Table 4.3). The assumptions made in both semi-
classical theories are only acceptable if the wells are widely separated from each other.
In Figure 4.20 (right), the two first states associated with a potential barrier height
of V0 = 5.0 are plotted in comparison with the results using the Numerov algorithm.
The more separated the two wells are, the closer the two solutions will be, i.e. the peak
of the right-hand side of the potential will be almost the same for both energies. The
position of the maxima are closer to the well position and the influence of tunneling
becomes less significant.

Tunneling time

Before the energies and the energy splitting will be analyzed for varying potential
parameters, the mean first passage time is addressed. Figure 4.21, upper inset, shows
an example path of the motional process, including two tunneling events. As discussed
in section 3.2, the mean first passage time between the two points xi and xf can be
calculated as [Paul and Baschnagel, 2013]

τmfpt = 2
∫ xf

−xi

dx′
p0(x′)

∫ x′

−∞
p0(x′′) dx′′ . (4.104)

Using the associated probability density, the integral can be determined numerically,
yielding the mean first passage time from displacements −a to a given in Table 4.4.
Furthermore, the calculated osmotic velocity can be used to generate a multitude of
trajectories reflecting the motional process, which in turn can be used to calculate

15named after Wentzel Kramers and Brillouin
16WKB-approach is a semi-classical approach in quantum mechanics; see, for instance, ref. [Landau

and Lifschitz, 1979] or appendix, section A.6.
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Figure 4.21.: Density function of first passage times for the one-dimensional double-
well potential with V0 = 2.0 and a = 1.5, exponential fit (red line)
and best fit using equation (4.106) (green line). The solution to the
osmotic velocity for M = 106 is used to calculate 106 paths, each with
106 time steps (time increment: h = 0.005).

first passage times. The resulting density function of first passage times is shown
in Figure 4.21 (black points). Except of very short periods, the first passage times
of a double-well potential are exponentially distributed (see Figure 4.21), which is
a characteristic property of tunneling processes. For instance, radioactive decays
are commonly well-described by an exponential relationship. Figure 4.21 presents a
logarithmic representation of p(τ), rendering a mono-exponential relationship obvious.
The initial regime can be thought to differ from the exponential behavior since high
energies are required to overcome the barrier within a short period, rendering such kind
of tunneling improbable. At the same time, such concept assumes that the particle
moves with high velocity from one well to the other. Of course, the velocity cannot
overcome a certain threshold, meaning that a maximum in the density function must
occur.

1
2
2 Mean first passage time τ Standard deviation σ(τ)

Definition 14.841
1
2
2 –

1
2
2

Empirical data 15.038
1
2
2 13.194

1
2
2

Exponential fit 15.258
1
2
2 13.042

1
2
2

Non-exponential fit 14.768
1
2
2 12.841

1
2
2

Table 4.4.: Mean first passage time for the one-dimensional double-well potential
determined using different methods. The density function was calculated
by numerical integration using the Simpson method.
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4. From optimal control theory to the Schrödinger equation

For sufficiently large times, the density function can be described by an exponential
function, i.e.,

pexp(τ) = k e−l τ . (4.105)

Its expectation value is given by k/l2; the standard deviation equals
σexp(τ) =

√
2k/l3 − k2/l4.

For short times, another fitting function is required. Empirically, it turns out that the
data can be well fit using

p(τ) = c exp
{
−
(
τs
τ

)α
− τ

τl

}
. (4.106)

The time scales τs and τl characterize the initial rise and final decay of the density func-
tion, respectively, while α describes the sharpness of the peak, and c is a normalization.
The non-exponential fit (equation (4.106)) describes the data almost exactly for small
tunneling times, even though the mono-exponential fit yields better accordance for the
later exponential decay. For the purpose of smoothing, a moving average is used in the
calculation of the presented density function.

The mean first passage time can also be calculated as the arithmetic average of all
detected single tunneling times. Mean values and standard deviations as obtained from
the different methods are summarized in Table 4.4, and are in good agreement with
each other.

Bear in mind that the particle is described as a classical one. Thus, in the here
discussed model, tunneling processes are enabled by (cumulative) quantum fluctuations
that permit the particle to reach a spontaneous energy high enough to overcome
the potential barrier. Energy splittings have been physically explained by tunneling
processes, meaning that there should be a direct link between ∆E and the tunneling
period. It has been assumed that ∆E = ~π/τ [Paul and Baschnagel, 2013]). However,
both methods – stochastic representation and the instanton method – do not reproduce
the value of the above determined mean first passage time.

Different well positions and barrier heights

To analyze the relation between both quantities, the dependence of the energy and the
mean first passage time on the potential parameters (barrier height and well position)
needs to be explored. Therefore, the first two energies for different well positions (fixed
barrier height V0 = 2.0) and different barrier heights (fixed a = 1.5) are determined by
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Figure 4.22.: Energies for the ground (black) and first excited state (purple) as
calculated from the quantum Hamilton equations of motion (symbols)
and the Numerov algorithm (lines) for the one-dimensional double-
well potential in comparison with the results of the instanton method
(light blue and blue lines), and the ground-state energy of an isolated
harmonic oscillator (red line). Left: As a function of different well-
positions a. Right: As a function of different barrier heights V0. The
position of the maximum of the ground-state functions is depicted in
the insets.

solving the quantum Hamilton equations of motion for all different parameters. The
results are compared with the energies calculated using the Numerov algorithm and
the instanton method; see Figure 4.22. It turns out that the energies determined from
the stochastic Hamilton equations of motion are in excellent agreement with those
calculated from the Numerov algorithm, even if a broad range of values a and V0 is
considered. Still, deviations occur in the wave function for high values a and V0 (cf.
Figure 4.23). As an overview, the wave functions of the ground and the first excited
state are shown in Figure 4.23 for a plenty of different parameter combinations.

In the case of a = 0.5, the wave function has only one maximum. With increasing
values of a, two maxima occur and separate from each other. The ground-state energy
(Figure 4.22, left panel)) increases with a decreasing distance between the two wells.
For a ≤ 0.5, the ground-state energy exceeds the barrier, and only a single maximum
remains. The calculated energy increase is explained by Heisenberg’s uncertainty
principle. It says that the more precisely the position of a particle is known, the less
precise the momentum is defined, and thus the energy of the particle: ∆x∆p ≥ ~

2 must
be fulfilled. In the case of small values of a, the two wells approach each other, leading
to localized particles with increased energies.
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Figure 4.23.: Ground state wave function (a) and first excited state wave function
(b) for different well positions but fixed barrier height V0 = 2.0.
Ground state wave function (c) and first excited state wave function
(d) for different barrier heights but a fixed well position a = 1.5.

If the wells get more separated from each other, the energy becomes smaller and
converges to the energy of a separated harmonic oscillator (red dot-dashed line in
Figure 4.22, left panel ),

V (x) = ω
2 (x± a)2 , ω = 2

a

√
2V0 , (4.107)

which is localized at ±a. Also the position of the maxima of the probability density
shifts towards ±a for large a, which can be seen in the inset of Figure 4.22, left
panel. Finally, it can be concluded that the double-well potential can be simplified
towards two separated (isolated) harmonic potentials at moderate (but still sufficiently
large) distances. This scenario becomes valid for a ≥ 3.0 (a dimensionless; cf. equation
(4.98)).

For very low barriers, the ground state energy is higher than V0, and the wave function
has only one maximum. Increasing the potential’s barrier results in an energy smaller
than V0, and a wave function with two maxima. The higher the barrier is, the sharper
the two maxima of the wave functions are; see Figure 4.23, right panel. The
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Figure 4.24.: Energy splitting for the one-dimensional double-well potential for
different well positions (blue: upper abscissa and right ordinate) and
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as calculated from the quantum Hamilton equations of motion (full
lines) and the instanton method (dashed lines). Simulated data are
predictions based upon the mean first passage time (symbols). Inset:
Fit assuming a constant relation between the mean first passage time
and energy splittings.

maximum position shifts towards the well position for growing potential barriers, which
is confirmed in the inset of Figure 4.22, right panel. Since the generated paths
are too short, the wave functions are asymmetric for high barriers. In fact, it is very
unlikely for the particle to overcome such a high barrier, meaning that the particle may
remain at the same side of the barrier all the time. This effect can be overcome by using
longer paths, but then, also more paths should be calculated to ensure numerically
good results.

The above insights can be used to address the occurrence and the nature of energy
splittings arising in double-well potentials. For a broad range of parameters, both
the ground-state and the first exited-state energy fall below the harmonic ground-
state energy. Since the probability of tunneling events drops down with increasing
distances between the wells, the difference between the values of the first two energies
∆E = E1 −E0 goes to zero; see Figure 4.24. Even for for well separated wells (a� 1
and/or V0 � 1 ), where the instanton method predicts energy splitting reasonably
well, the values of E0 and E1 do not match the expected relationship 1/2~ω ± ∆E.
Thus, symmetric splittings around the harmonic ground state can be disregarded: such
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feature is misconception.

As a next step, the relation between so-called “tunneling splitting” and mean first
passage time will be addressed. For a square barrier, the mean first passage time
between entry and exit points of the barrier equals the traversal time [Chen and
Wang, 1990], i.e., the time in which the particle interacts with the barrier [Büttiker
and Landauer, 1982; Büttiker, 1983]. Both yield the “tunneling splitting”. For the
double-well potential, there is no exact point where the particle starts or stops to
interact with the barrier. Therefore, it is necessary to average over all possible starting
points. Suppose xTP is the (smallest) positive turning point (E − V (xTP) = 0), then
the averaged mean first passage time over all possible starting points, xi ∈ (−∞,−xTP],
is given by

τmfpt = 2
∫ −xTP

−∞

{∫ xTP

xi

dx′
p0(x′)

∫ x′

−∞
p0(x′′) dx′′

}
p̃0(xi) dxi . (4.108)

Here, p̃0(x) equals p0(x) except for a new normalization factor determined in a way
such that p̃0(x) is a probability density on (−∞,−xTP]. From the averaged mean first
passage time, one can predict the energy splitting as ∆E = π/τmfpt. It turns out that
they coincide with each other except for a constant prefactor c = 0.646± 0.003. In the
inset of Figure 4.24 the energy splitting divided by π/τmfpt is plotted for different barrier
heights (full symbols) and different well positions (empty symbols). The prefactor is
calculated by a constant fit (brown line). The need of a prefactor goes back to the
fact that the region in which the particle interacts with the potential barrier is not
well-defined, and is in fact unknown. Averaging over all possible starting points is one
possible correction to this effect; however, the end point stays fixed. Nonetheless, the
resulting prediction of ∆E determined by making use of the mean first passage time
(with prefactor) is in good accordance with the result from the quantum Hamilton
equations of motion, or also the Numerov calculations; see Figure 4.24. Deviations
(∆E and c) visible for small a and V0 occur for first excited-state energies higher than
the potential barrier, where the concept of splitting due to tunneling is no longer
applicable.

In summary, there is a systematic and well observable deviation between the real
energies and those predicted by the instanton solution. For the instanton method,
integration over all possible paths can only be done approximately. Still, this method
provides reasonably good results regarding the absolute difference between the two
energies, given that the energy splitting ∆E is sufficiently small. In contrast, the here
presented stochastic model yields sufficiently precise results for any of the studied
potentials, irrespective of small or large energy splittings. Within numerical uncertainty,
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Figure 4.25.: Density function of first passage times dependent on V0 (main figure)
and a (inset). The fit function is given by equation (4.106).

the so-obtained results are exact.

As the last point, the behavior of the density of first passage times is analyzed.
For different parameters, 105 paths of the motional process are generated using the
associated osmotic velocity for the ground state u0(x). The first passage times from
(−a) to (a) are detected and the resulting density functions can be seen in Figure 4.25.
It turns out that the position of maximum density depends only on the position of
the wells, but not on the barrier height. The more separated the wells, the lower
the exponential decrease. The simulated results can be fit empirically using equation
(4.106), yielding excellent agreement (Figure 4.25), with the best-fit parameters being

a V0 τs τl α c

1.5 1.0 1.67 9.51 1.98 1.79
1.5 2.0 1.50 12.83 2.33 1.48
1.5 3.0 1.36 18.38 2.69 1.26
1.5 4.0 1.25 28.04 3.04 1.15
1.5 5.0 1.16 46.08 3.28 1.09
0.8 2.0 0.65 2.85 3.30 1.75
2.0 2.0 2.19 39.94 2.76 1.18
3.0 2.0 3.61 533.4 3.25 1.00

Table 4.5.: Parameters obtained from empirical fits to the first passage time density
function dependent on the tuple (a, V0). The density function is given
by eq. (4.106).
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summarized in Table 4.5.

4.5. Non-stationary quantum systems

In the case of non-stationary systems, the current velocity is different from zero and the
motion process (X(t))t∈[0,T ] is described by the following forward as well as backward
SDE:dX(t) = [v(X(t), t) + u(X(t), t)] dt +

√
~
m

dWf (t) , t ∈ [0, T ]

X(t = 0) = x0 ∈ R
, (4.109)

dX(t) = [v(X(t), t) − u(X(t), t)] dt +
√

~
m

dWb(t) , t ∈ [0, T ]

X(t = T ) = xT (ω)
(4.110)

Again, the starting point of the forward motion is arbitrary and the starting point of
the backward motion has to be the end point of the forward process and is affected by
random events. The Wiener processes (Wf (t))t∈[0,T ] and (Wb(t))t∈[0,T ] were explained
above. In contrast to the stationary case, the velocities are now functions of the
motional process and the time.

As mentioned previously, the current and the osmotic velocity are given as the saddle
points of the two variational problems introduced by Pavon [1995b]:

JR[v̂, û] = min
v

max
u

E
[ ∫ T

0

{
m

2
(
v2(X(t), t)− u2(X(t), t)

)
− V (X(t), t)

}
dt+ S(x0)

]
,

(4.111)

JI[v∗, u∗] = max
v

min
u

E
[∫ T

0
mv(X(t), t)u(X(t), t)dt + ~R(x0)

]
. (4.112)

Remember that the quantum Hamilton principle combines both principles and reads

J(u, v) = E
[∫ T

0

{
m

2 (v(X(t), t)− iu(X(t), t))2 − V (X(t), t)
}

dt + Φ0(x0)
]

.

(4.113)
Here, the function Φ0(x) is given by the initial condition of the wave function
Ψ(x, t0) = exp

[
i
~ Φ0(x)

]
.

Now, there are two methods available for finding the two velocities: First, both saddle-
point problems are solved simultaneously by finding the Nash equilibrium and, second,
the complex-valued quantum Hamilton problem is analyzed.
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4.5.1. Finding the Nash equilibrium

The following treatment is based on the maximum principle for forward-backward
stochastic games [Øksendal and Sulem, 2014], which was described in the beginning of
this chapter. One can easily check that the osmotic velocitiy and the current velocity
are given by the Nash equilibrium (see equation (4.4)-(4.5)) of the two saddle-points
principles, i.e. a Nash equilibrium û, v̂ is a pair such that

JR(u, v̂) ≤ JR(û, v̂) for all u (4.114)

and JI(û, v) ≤ JI(û, v̂) for all v (4.115)

is fulfilled.

In the physical system described herein, the forward controlled process equals the
backward one. However, in general, the two controlled processes are given by two
different random variables. Therefore, the backward process is given by a second
process (Y (t))t∈[0,T ],dY (t) = [v(Y (t), t) − u(Y (t), t)] dt +

√
~
m

dWb(t) , t ∈ [0, T ]

Y (t = T ) = xT (ω)
. (4.116)

The equivalence of the forward controlled process (X(t))t∈[0,T ] and the backward process
(Y (t))t∈[0,T ] in each time step is included as a constraint,

Y (t) = X(t) ∀t ∈ [0, T ] . (4.117)

Suppose αR and αI are two Lagrangian parameters, then the two related Hamilton
functions read

HR(t, x, y, u, v) = m

2 (v2 − u2)− V (x, t) + λR(u− v) + pR(u+ v)

+
√

~
m
qR + αR(x− y) (4.118)

and

HI(t, x, y, u, v) = muv + λI(u− v) + pR(u+ v) +
√

~
m
qI + αI(x− y) . (4.119)
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The adjoint processes are given by the forward SDEs,
dλR(t) = −αR dt

λR(t = 0) = S ′(x0)
,

dλI(t) = −αI dt

λI(t = 0) = R′(x0)
, (4.120)

and backward SDEs,
dpR(t) =

[
∂V (x,t)
∂t

∣∣∣
x=X(t)

− αR
]

dt + qR(t) dWb(t)

pR(t = T ) = λR(T )
, (4.121)


dpI(t) = −αI dt + qI(t) dWb(t)

pI(t = T ) = λI(T )
. (4.122)

Using the maximum principle [Øksendal and Sulem, 2014], i.e., finding the roots of the
partial derivatives of HR and HI with respect to u and v, one gets

mu(t) = λR + pR , m v(t) = λR − pR (4.123)

mu(t) = λI − pI , m v(t) = −λI − pI . (4.124)

One of the two relations for each velocity can now be used to determine a backward
SDE for the respective velocity; knowledge on the two Lagrangian parameters is not
required. Using the integral representation

λR(t) = S ′(x0)−
∫ t

0
αR ds and λI(t) = R′(x0)−

∫ t

0
αI ds (4.125)

of the forward adjoint processes and the integral representation of the backward adjoint
processes, the following BSDE describing the current velocity v(t) is determined:

pR(t) =λR(T )−
∫ T

t

[
∂V

∂x
(X(s), s)− αR

]
ds −

∫ T

t
qR(s)dWb(s)

=S ′(x0)−
∫ T

0
αR ds−

∫ T

t

[
∂V

∂x
(X(s), s)− αR

]
ds−

∫ T

t
qR(s)dWb(s)

= S ′(x0) −
∫ t

0
αR ds︸ ︷︷ ︸

λR(t)

−
∫ T

t

∂V

∂x
(X(s), s)ds −

∫ T

t
qR(s) dWb(s)

⇒ mv(t) = pR(t)− λR(t) = −
∫ T

t

∂V

∂x
(X(s), s)ds −

∫ T

t
qR(s) dWb(s) (4.126)
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Analogously, the osmotic velocity is given by

pI(t) =λI(T ) +
∫ T

t
αI ds −

∫ T

t
qI(s)dWb(s)

=R′(x0)−
∫ t

0
αI ds︸ ︷︷ ︸

λI(t)

−
∫ T

t
qI(s) dWb(s)

⇒ mu(t) =λI(t)− pI(t) =
∫ T

t
qI(s) dWb(s) , (4.127)

with the abbreviation

∂V

∂x
(X(s), s) = ∂V (x, s)

∂x

∣∣∣∣∣
x=X(s)

. (4.128)

Similar to the stationary case, the adjoint processes qR(t) and qI(t) can be found using
an Itô formula, i.e.

qR(t)
m

=
√

~
m

∂v(x, t)
∂x

∣∣∣∣∣
x=X(t)

and qI(t)
m

=
√

~
m

∂u(x, t)
∂x

∣∣∣∣∣
x=X(t)

. (4.129)

The BSDEs for the two velocities thus read

m dv(t) = ∂V (x, t)
∂x

∣∣∣∣∣
x=X(t)

dt +
√
~m ∂x v(x, t)|x=X(t) dWb(t) , (4.130)

m du(t) =
√
~m ∂x u(x, t)|x=X(t) dWb(t) . (4.131)

PDEs quantifying the two velocities can be determined from the adjoint processes.
pR(t) is an adjoint process to the forward motional process. Equation (4.121) shows
that pR(t) has the same mathematical structure as pR(X(t), t). Suppose the partial
derivatives ∂tpR(x, t), ∂xpR(x, t) and ∂xxpR(x, t) are continuous, then – using a forward
(normal) Itô formula – the function pR(x, t) is the solution of

∂pR
∂t

+
(
v(x, t) + u(x, t)

) ∂pR
∂x

+ ~
2m

∂2pR
∂x2 −

∂V

∂x
+ αR = 0 , (4.132)

where x ∈ R and t ≥ 0. Analogously, λR(X(t), t) is an adjoint process to the backward
motional process and fulfills a backward-Itô equation [Pavon, 1995b]. The function
λR(x, t) fulfills

∂λR
∂t

+
(
v(x, t)− u(x, t)

) ∂λR
∂x
− ~

2m
∂2λR
∂x2 + αR = 0, x ∈ R, t ≤ 0 . (4.133)

This PDE for the adjoint process λR(t) is trivially true. Using the same relation for
the current velocity as before, i.e., mv = λR − pR, the PDE characterizing the current
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velocity is found by taking the difference of equations (4.133) and (4.132), that is,

0 = ∂λR
∂t
− ∂pR

∂t︸ ︷︷ ︸
∂t v(x,t)

+ v(x, t) ∂λR
∂x
− ∂pR

∂x︸ ︷︷ ︸
∂x v(x,t)

−u(x, t) ∂λR
∂x

+ ∂pR
∂x︸ ︷︷ ︸

∂x u(x,t)

− ~
2m

[
∂2λR
∂x2 + ∂2pR

∂x2

]
︸ ︷︷ ︸

∂xx u(x,t)

− 1
m

∂V (x, t)
∂x

(4.134)

⇒ 0 = ∂v

∂t
+ v

∂v

∂x
− u

∂u

∂x
− ~

2m
∂2u

∂x2 + 1
m

∂V

∂x
. (4.135)

Note that the Lagrangian parameter is unknown and that the relation for the osmotic
velocity is needed in the derivation. Thus, both relations (equation (4.123)) are
necessary to derive the PDE for the current velocity.
In the same way, the PDE for the osmotic velocity can be calculated using the relations
derived from the entropy production principle, JI [u, v]. λI(X(t), t) is the adjoint process
to the backward motion process and

∂λI
∂t

+ (v(x, t)− u(x, t)) ∂λI
∂x
− ~

2m
∂2λI
∂x2 + αI = 0 (4.136)

holds for λI(x, t), x ∈ R, t ≥ 0. pI(X(t), t) is a function of the forward process and
pI(x, t), x ∈ R, t ≥ 0 fulfills

∂pI
∂t

+ (v(x, t) + u(x, t)) ∂pI
∂x

+ ~
2m

∂2pI
∂x2 + αI = 0 . (4.137)

Subtracting equation (4.137) from equation (4.137), the PDE for the osmotic velocity

0 = ∂u

∂t
+ v

∂u

∂x
+ u

∂v

∂x
+ ~

2m
∂v2

∂x2 (4.138)

can be derived.

Nonetheless, difficulties arise at a more detailed level concerning the interpretation of
the above method: In principle, two additional PDEs can be derived by taking the
sum of equation (4.133) and (4.132), and (4.136) and (4.137),

∂u

∂t
+ v

∂u

∂x
− u

∂v

∂x
− ~

2m
∂2v

∂x2 −
∂V

∂x
+ 2αr = 0 , (4.139)

∂v

∂t
+ v

∂v

∂x
+ u

∂u

∂x
− ~

2m
∂2u

∂x2 + 2αI = 0 . (4.140)
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Technically, the resulting equations are as meaningful as the previous ones resulting from
summation. However, the Lagrangian parameters still occur in these equations, which
is not in accordance with the Madelung equations. Also, the physical interpretation of
these PDEs remains unclear.

Circumventing this issue, the quantum Hamilton principle can be directly evaluated.

4.5.2. Analyzing the quantum Hamilton principle

In the following, a maximum principle for BDSDE systems [Bahlali and Gherbal, 2010]
is used to analyze the quantum Hamilton principle directly. Defining a complex valued
optimal control, vq := v(t)− iu(t), the action functional reads

J(u, v) = E
[∫ T

0

{
m
2 vq(t)

2 − V (X(t), t)
}

dt + Φ0(x0)
]

(4.141)

and is structurally similar to the least-action principle in classical mechanics.

Using an Itô formula, Pavon [1995b] showed that the SDEs for the motional process
can be also written as

dX(t) = v(t)dt + 1
2

√
~
m

[
dWf (t) + dWb(t)

]
, (4.142)

0 =u(t)dt + 1
2

√
~
m

[
dWf (t) − dWb(t)

]
. (4.143)

Multiplying equation (4.143) with i, i2 = −1, and afterwards subtracting the resulting
equation (4.142), the so-obtained SDE depends only on the control vq, i.e. [Pavon,
1995b]

dX(t) = vq(t)dt + 1
2

√
~
m

[ (
1− i

)
dWf (t) +

(
1 + i

)
dWb(t)

]
. (4.144)

This equation characterizes the controlled process to the quantum Hamilton principle,
and consists of a forward and backward Wiener process.

The associated Hamilton function reads

H(t, x, vq, p, q) = −1
2v

2
q + V (x, t) + p vq −

√
~
m

(1 + i) q
2 , (4.145)
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with the adjoint processes p(t), q(t) being defined by


dp(t) = − ∂V (x,t)
∂x

∣∣∣
x=X(t)

dt − q(t) dWb(t)

p(t = 0) = φ0(x0)
. (4.146)

Since the considered performance functional J [vq] and the control vq are complex-valued
variables, the Hamilton function is also a complex function. The search for the optimal
control extremizing the Hamilton function is thus reminiscent of finding the roots of the
derivative of H. One can easily check that the optimal control is given by the adjoint
process, i.e. p(t) = mvq(t). The deterministic part of equation (4.146) is forward in
time; however, this equation can be transformed into the BSDE

m dvq(t) = ∂V (x,t)
∂x

∣∣∣
x=X(t)

dt − q(t) dWb(t)

vq(t = T ) = 0
, (4.147)

where, in any case, the adjoint process q(t) is zero for t = T .

The adjoint process p(t) is a function of the controlled process (and time). Pavon
[1995b] presented an Itô-type formula leading to a PDE for the control vq(t),

∂vq
∂t

+ vq
∂vq
∂x
− i~

2m
∂2vq
∂x2 + 1

m

∂V (x, t)
∂x

= 0 . (4.148)

Separating the real and the imaginary part, one gets

0 = ∂v

∂t
+ v

∂v

∂x
− u

∂u

∂x
− ~

2m
∂2u

∂x2 + 1
m

∂V (x, t)
∂x

, (4.149)

0 = ∂u

∂t
+ v

∂u

∂x
+ u

∂v

∂x
+ ~

2m
∂v2

∂x2 , (4.150)

which are equivalent to the PDEs (equation (4.135) and (4.138)) derived in the section
before.

The second adjoint process is given by

q(t) = −
√

~
m

∂vq
∂x

, (4.151)

which can be determined using the same Itô-type formula. Separating again the real
and the imaginary part in equation (4.147), one can determine the same stochastic
backward equations for the two velocities as in the previous section.
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4.5. Non-stationary quantum systems

Concluding this section, both methods presented herein lead to the same BSDEs for
the two velocities. The equation for the physical momentum p = m (v + u) is given by

dm [v(t) + u(t)] = ∂V (x(t), t)
∂x

dt +
√

~
m

∂m [v(x(t), t) + u(x(t), t)]
∂x

dWb(t) . (4.152)

This equation is also applicable to the stationary case, i.e., inserting v(x, t) ≡ 0 leads to
the same equation for the osmotic velocity as determined from the stationary optimal
control problem.

Besides that, Pavon [1995a] derived a SDE for the quantum velocity vq(t), which is

dvq(t) = − ∂V (x, t)
∂x

∣∣∣∣∣
x=X(t)

dt + ∂xvq(t) dWq(t) , (4.153)

where the quantum noise reads

dWq(t) = 1
2

√
~
m

[
(1− i) dWf (t) + (1− i) dWb(t)

]
. (4.154)

The deterministic part of the quantum velocity is forward in time, as is the equation
for the adjoint process. Still, they are distinct from each other by the different kind
of noise underlying the diffusion process. The reason why the two methods lead to
different results is not evident at the moment. Moreover, the individual equations for
the velocities are not valid for the stationary case, which can be considered as being a
special case of the more general, time-dependent system.

The momentum equation (equation (4.152)) is a promising instrument to describe the
motion of the particle and delivers (together with the FBSDE system for the motional
process) a generalization to the classical canonical equations,

q̇c = ∂Hc

∂pc
= pc

m
, (4.155)

ṗc = − ∂Hc

∂qc
= −∂V

∂qc
, (4.156)

with the Hamilton function Hc = p2
c/2m + V (x, t).

It is noted that the equation for the physical momentum taken on its own, equation
(4.152), cannot uniquely describe the motion of the particle since only the sum of
the two velocities can be determined. Hence, it would be impossible to solve the
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backward equation of the motion process and calculate the complete wave function.
That suggests that a forward equation to the momentum process and the velocities
exists. The resulting process would be time-reversible. Though, up to now, only the
backward equations could be found and it is not clear whether there is a need for
a forward equation for the velocity processes, or not. Nevertheless, the dynamics of
a quantum particle can be uniquely described by the individual equations for the
velocities.

Exploiting the integral representation of the SDEs for the velocities and taking the
expectation value, one gets

mE [v(t)] = − E
[∫ T

t

∂V (x, s)
∂x

ds
]
−
√
~m E

[∫ T

t

∂v

∂x
dW (s)

]
, (4.157)

mE [u(t)] = −
√
~m E

[∫ T

t

∂u

∂x
dW (s)

]
. (4.158)

Since the expectation value of an Itô-integral equals zero, E[u] = 0 holds. Using Fubini’s
theorem, the expectation value of the current velocity reads

mE [v(t)] = −E
[∫ T

t

∂V (x, s)
∂x

ds
]

= −
∫ T

t
E
[
∂V (x, s)
∂x

]
ds . (4.159)

Finally, going back to a differentially form, the equations for the expectation values17

read

d E [X(t)] = E [v(X(t), t)] dt , (4.160)

m d E [v(t)] = − E
 ∂V (x, t)

∂x

∣∣∣∣∣
x=X(t)

 dt , (4.161)

which resembles Ehrenfest’s theorem [Ehrenfest, 1927]. This theorem for the dynamic
laws dictates the time evolution to the quantum-mechanical expectation values of the
position and the momentum operator.

Example - Force-free motion of a particle

Force-free motion resembles Brownian motion in absence of the drift term, i.e.,
∂x V (x, t) = 0. Hence, the momentum reads

dm [v(t) + u(t)] =
√

~
m

∂m [v(x(t), t) + u(x(t), t)]
∂x

dWb(t) . (4.162)

17The derivation for the motional process is analogous to that one of the current velocity.
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One obvious solution to this equation is given by v(x, t) + u(x, t) = v0 + u0 = const.

However, the expectation value of the osmotic velocity has to be zero, hence u0 = 0.
The motional process is thus characterized by

dX(t) = v0 dt +
√

~
m

dWf (t) . (4.163)

Using mv(x, t) = ∂x S(x, t) and Ψ(x, t) ∝ ei/~S(x,t), the wave function equals a plane
wave, i.e.,

Ψ(x, t) ∝ exp
{

im ~−1 v0 x
}

. (4.164)

4.6. Further developments

4.6.1. The efficiency of the numerical algorithm for the stationary
case

In order to find a numerical approach to the backward equation of the (stationary)
osmotic velocity,

m du(t) = ∂x V (x)|x=X(t) + q(t) dWb(t) , (4.165)

it is required to calculate q(t) by conditional expectations that are determined by a
least-square Monte Carlo scheme [Bender and Steiner, 2012].

Again, the equation characterizing the osmotic velocity is discretized using the Euler-
Maruyama method. In each time step, q(t) is calculated by equation (4.77), where the
functional basis η(·) reads [Gobet et al., 2005]

η(·) = (1Dl(·))l=1,...,L , with 1Dl(x) =

1 , x ∈ Dl

0 , else
. (4.166)

The intervals Dl are defined above. The presented algorithm is highly efficient since
a multitude of realizations are determined in each iteration step. The new estimate
of the osmotic velocity is calculated by taking the arithmetic average of those values
u(t) that have an associated argument X(t) located in the desired interval. (Note
that u = u(t,X(t)), where all u belonging to the same x-value should yield the same
result. Deviations reflect numerical/technical uncertainties, and are compensated for
by calculating average values.)

It turned out that the efficiency of the numerical algorithm can be highly improved
by (i) changing the functional basis for the projection of the conditional expectation
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from an orthogonal system to an orthonormal one, and (ii), taking the conditional
expectation directly from equation (4.165). The resulting scheme for the discrete
process becomes

uπ,jti = E
[
uπ,jti+1

∣∣∣Xπ,j
ti

]
− 1/m ∂x V (x)|x=Xπ,j

ti

. (4.167)

The m-th realization in the j-th iteration step of the conditional expectation

hj,mi+1 := E
[
uπ,jti+1

∣∣∣Xπ,j
ti = xj,mi

]
(4.168)

is then given by

hj,mi+1 = αj,i0 η0(xj,mi ) , αj,i0 = 1
M

M∑
m=1

η(xm,ji )um,jti+1 . (4.169)

Here, xj,mi is the value of the m-th path of the discrete process Xπ,j
ti at time ti in the

j-th iteration step. The functional basis η0(·) reads

η(·) =
√

M

card(Dl)
(1Dl(·))l=1,...,L . (4.170)

card(Dl) gives the number of all xj,mi which are at time ti in the interval Dl [Bachouch
et al., 2014, 2016]. It should be emphasized that the conditional expectation of equation
(4.165) leads to a scheme in which the adjoint process18 q(t) is no longer necessary.
Furthermore, the functional basis is, in contrast to the work of Gobet et al. [2005],
normalized by card(Dl).

In Figure 4.26, single realizations of the backward equation (black points) are com-
pared to the resulting estimate of the osmotic velocity (blue points) as obtained from
both methods and both analyzed systems. Here, the efficiency of the new method
becomes obvious. Bender and Steiner [2012] argued that there are two error sources
to the numerical procedure. First, systematic errors induced by the choice of the
basis functions and, second, the simulation error itself. Hence, the right choice of the
functional basis is very beneficial as it increases the simulation’s quality and reliability.
In fact, for the new algorithm much less paths are necessary to achieve much better
results, and the computational time decreases dramatically. As for the double-well
potential, this situation permits to analyze a broader parameter range.

The range of convergence can be further increased by making use of uniformly dis-

18The drift in the backward equation depends only on X(t).
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Figure 4.26.: Efficiency of the numerical algorithm for stationary systems: Com-
parison between single paths of the osmotic velocity (solution to the
backward equation) u(t) and result from the hole algorithm u(x).
Top: harmonic oscillator in comparison with the exact solution.
Bottom: Double-well potential.
Left: Used method. Right: More efficient method.

tributed19 starting points. Uniformly distributed starting points are physically reason-
able, noting that the starting point might be imprecisely known from an observation
(measurement). More information on further developments to the algorithm can be
found in ref. [Beyer, 2018].

4.6.2. Higher dimensions

In principle, all equations can be extended to the multidimensional case, i.e. describing
more than one particle in higher dimensions. Suppose the process (X(t))t∈[0,T ] takes

19Uniformly distributed across the chosen domain.
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values in Rd, then the SDEs read
dX(t) = [v(X(t), t) + u(X(t), t)] dt + σ dW f (t) , t ∈ [0, T ]

X(t = 0) = x0 ∈ R
, (4.171)

dX(t) = [v(X(t), t) − u(X(t), t)] dt + σ dW b(t) , t ∈ [0, T ]

X(t = T ) = xT (ω)
. (4.172)

Here,W f (W b) is a d-dimensional forward (backward) Wiener process and the diffusion
coefficient is given by a diagonal matrix, i.e. σ :=

√
~/m Id, where Id is the d-dimensional

identity matrix.

The maximum principle can be used in the same way as before. However, since the
diffusion coefficient is given by a matrix, the related adjoint process is also a matrix,
and the Hamilton function is given by scalar products [Li and Zheng, 2015; Zhuang,
2017]. For instance, the Hamilton function to the stationary case reads

H(x,u,λ,p, q) = m

2 u
2 − V (x) + 〈λ,u〉 + 〈p,u〉 +

〈
σ , q

〉
. (4.173)

The scalar product for matrices is given by the trace of the matrix product, meaning
that 〈

σ , q
〉

= Tr
(
σT q

)
. (4.174)

The equation for the physical momentum is thus given by

dm [v(t) + u(t)] = ∇x V (x(t), t)|x=X(t) dt +
√

~
m
Jm(v+u) (X(t)) dW b(t) , (4.175)

with Jm(v+u)(x) being the Jacobian matrix of the momentum.

The stochastic Hamilton equations of motion for higher dimensions resemble those of
the one-dimensional case. Difficulties arise for cases in which a change of variables is
necessary, e.g., due to central forces [Beyer, 2018].

Finally, it is noted that excited states for non-Cartesian (stationary) systems are an
interesting, non-trivial issue, the quantification of which might be challenging, but
manageable using the here presented approach; see also ref. [Patzold, 2018].
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4.6.3. Outlook – time-dependent case

Thus far, there is no algorithm feasible for time-dependent stochastic Hamilton equa-
tions. The PDEs for the two velocities can be solved in each iteration step [Milstein
and Tretyakov, 2006], yet such treatment would be highly inefficient, with no benefit
compared to a numerical solution of the time-dependent Schrödinger equation itself.
In fact, such concept resembles a numerical approach to the Schrödinger equation.

Apart from that, the algorithm developed herein can indeed be adapted to cases
in which the two velocities are given by non-stationary equations. Applications are
restricted to the paths of the velocities instead of addressing the functions u(x, t) and
v(x, t), as well as the backward equation of the motional process cannot be considered.

It would be highly interesting to extend the here presented concepts and algorithms
to relativistic systems and spin-carrying particles, and to study multi-body systems
by making use of a multi-dimensional approach. The thesis at hand might provide a
fruitful basis for such applications.
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CHAPTER 5
Conclusion

Non-relativistic particles can be described on the basis of Nelson’s stochastic mechanics,
yielding a feasible alternative approach to quantum systems. Grounded on Nelson’s
pioneering work in 1966, variational principles have been established from which
kinematic laws and the Schrödinger equation could be derived, ultimately stressing
the equivalence of the different theories [Yasue, 1981a; Guerra and Morato, 1983].
Finally, Pavon [1995b] presented the so-called quantum Hamilton principle in a way
consistent with classical analytical mechanics, and using the kinematic equations of
Nelson [1966] as constraints in the search for the optimal path, thus extremizing the
action functional. Nevertheless, the wave function was, up to now, a prerequisite for
applying these theories.

Opposed to previous approaches, the thesis at hand deals with the variational problem
in terms of stochastic optimal control. That is, instead of searching for the optimal
path, optimal controls are addressed, namely the osmotic and current velocity. These
extremize the given cost functions. Putting the considerations into effect leads to the
following two major aspects:

1. The Schrödinger equation
The Madelung equations were derived as the Hamilton-Jacobi-Bellman equations
of the considered variational problem, which are, for the ground state of a
quantum system, equivalent to the Schrödinger equation [Madelung, 1927].

2. Quantum Hamilton equations of motion
Using a maximum principle for forward-backward differential games [Øksendal and
Sulem, 2014], or rather a maximum principle for optimal control problems with
the controlled process being given by a backward doubly stochastic differential
equation [Bahlali and Gherbal, 2010], quantum dynamical equations were derived.
The latter equations can be considered as a generalization of the classical Hamilton
equations of motion. The associated forward-backward stochastic differential
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5. Conclusion

equations are the central result of the thesis at hand, and offer a complete and
unique description of quantum systems. This approach is in accordance with,
but independent from, the time-dependent Schrödinger equation.

In detail, the thesis was divided into two main parts, that is, stationary and non-
stationary systems.

In the stationary case, the mathematical problem was reduced to a zero-sum case and
only the real part of the quantum Hamilton principle had to be taken into account.
The resulting coupled forward-backward stochastic differential equations characterize
the position and the osmotic velocity of the particle. Furthermore, the Madelung
equations of the stationary Schrödinger equation were derived as the Hamilton-Jacobi-
Bellman equation of the related least-action principle. The stochastic optimal control
problem provided the ground state of the system; however, using the approach of super-
symmetric Hamiltonians, all excited states, and therefore the complete spectrum of
eigenfunctions and eigenvalues, can be calculated from the ground state. The dynamic
equations were solved numerically with an iterative algorithm, hence it was possible
to find a numerical approach to the osmotic velocity and the wave function for two
different systems. Especially in the case of a one-dimensional (quartic) double-well
potential – a system without an exactly known wave function – tunneling processes
were analyzed by evaluating the mean first passage time. Furthermore, a direct relation
between the mean first passage time and energy splittings, i.e., the difference between
the first excited-state energy and the ground-state energy, was derived. It turns out
that the assumption of symmetric splitting of the first two energy levels around the
harmonic-oscillator energy is not right for basically the entire parameter set.

For non-stationary systems, two distinct derivations of the stochastic Hamilton equa-
tions of motion were presented. One the one hand, the real and imaginary part of
the quantum Hamilton principle were considered as two variational problems, and the
two velocities were then given as their Nash equilibrium. One the other hand, the
complex-valued principle was analyzed directly, with optimal conditions for backward
doubly stochastic differential equations [Bahlali and Gherbal, 2010]. Both methods
provided the same backward stochastic differential equations of the two velocities.
Additionally, Nelson’s PDEs for the velocities were derived as the Hamilton-Jacobi-
Bellman equations to the variational problems. The equation for the momentum is
also applicable to the stationary case. Furthermore, the derived quantum Hamilton
equations of motion satisfy the correspondence principle, and can be reduce to classical
Hamilton equations.
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Classical mechanics:
Hamilton principle
S[x] =

∫ T
0
{ 1

2mv(t)− V (x(t))
}

dt
Hamilton-Jacobi equation
∂tS(x, t)− V (x)− 1

2m (∂xS(x, t))2 = 0

Newton’s equations
ẋ(t) = v(t) , m a(t) = F = − dV

dx (x)

Quantum mechanics:
Quantum Hamilton principle
J [u, v] = E

[∫ T
0
{
m
2 v

2
q − V (x, t)

}
dt+ Φ0(x0)

] Schrödinger equation
i~ ∂tΨ(x, t) =

[
− ~2

2m∂xx + V (x, t)
]

Ψ(x, t)

Quantum Hamilton equations of motion

dx(t) = [v(x(t), t) + u(x(t), t)] dt+
√

~
m dWf (t) ,

dx(t) = [v(x(t), t)− u(x(t), t)] dt+
√

~
m dWb(t) ,

dm [v(t) + u(t)] =∂V (x, t)
∂x

dt +
√

~
m

∂m [v(x(t), t) + u(x(t), t)]
∂x

dWb(t)

v(x, t) = 1
m
∂x= [ln Ψ], u(x, t) = ~

m
∂x< [ln Ψ]

Figure 5.1.: Schematic representation of the three equivalent theories, which de-
scribes the motion of a particle uniquely and independently from each
other. Top: For classical particles. Bottom: For quantum particles.

In summary, the derived quantum Hamilton equations of motion provide a beneficial
theory for describing quantum systems independently of the Schrödinger equation.
Consequently, the Schrödinger equation is one, but not the only, complete description
of quantum systems. This situation is reminiscent of different ways to formulate
classical analytical mechanics; cf. Figure 5.1. Now being also able to describe systems
lacking an analytical wave function, stochastic mechanics, with its more intuitive
way of representing quantum-mechanical systems, permits to analyze and illustrate
quantum-mechanical phenomena in a way that is in accordance with our every-day
experience, and avoids the often complicated interpretation of quantum-mechanical
results in the usual sense.
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APPENDIX A
Appendix

A.1. General definitions
The following definitions can be found in many textbooks of stochastic analysis; see
e.g. ref. [Arnold, 1973; Øksendal, 2000; Meintrup and Schäffler, 2005].

Definition A.1 (Filtration) Let F = (Ft)t∈I be an increasing sequence of sub-σ-
algebras, i.e.,

Fs ⊂ Ft , ∀ s, t ∈ I , s ≤ t , (A.1)

then F is called filtration.

Definition A.2 (Measurable function) Let (Ω,F , P ) be a given probability space,
then a function f : Ω→ Rd will be called F-measurable, if

f−1(U) := {ω ∈ Ω ; f(ω) ∈ U} ∈ F (A.2)

for all open sets U ⊂ Rd.

Definition A.3 (Adapted process) A stochastic process (X(t))t∈I is called adapted
with respect to Ft (or Ft-adapted), if X(t) is Ft-measurable for all t ∈ I.

Markov processes are introduced in Definition 2.5. The following theorem gives
equivalent formulations to the Markov property.

Theorem A.4 Each of the following conditions are equivalent to the Markov property
given by Definition (2.5):

1. P{A|Fs} = P{A|X(s)} is fulfilled for all 0 ≤ s < t ≤ T and A ∈ Ft.

2. Let F[t,T ] be the σ-algebra generated by the process (X(t))t∈[0,T ] from time t up to
T and let Y be F[t,T ]-measurable and integrable, then E [Y | Fs] = E [Y |X(s)] for
all 0 ≤ s < t ≤ T .
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3. Let A1 ∈ Ft1 and A2 ∈ F[t2,T ], then

P {(A1 ∩ A2)|X(t)} = P {A1|X(t)} P {A2|X(t)} (A.3)

for 0 ≤ t1 ≤ t ≤ t2 ≤ T .

4. For n ≥ 1, 0 < t1 < t2 < · · · < tn < t ≤ T and B ∈ Bd one has

P {X(t) ∈ B|X(t1), X(t2), . . . , X(tn)} = P {X(t) ∈ B|X(tn)} . (A.4)

The proof of Theorem A.4 can be found in the textbook by Arnold [1973].

Definition A.5 (Martingale) A stochastic process (Mt)t≥0 is called martingale with
respect to a family (ζt)t≥0 of σ-algebras ζt ⊂ F , where ζs ⊆ ζt for s ≤ t, if:

1. {ω : M(t, ω) ≤ C} ∈ ζt , ∀C ∈ R , ∀t ≥ 0.

2. E
(
|M(t)|

)
<∞ , ∀t ≥ 0.

3. ∀s ≤ t : E [M(t)| ζs] = M(s).

Theorem A.6 (The martingale representation theorem) Suppose M(t) being
square integrable, i.e. E

(
|M2(t)|

)
< ∞, and M(t) being a Ft-martingale. Then,

a unique stochastic process g(s, ω) can be defined such that g ∈ V(t) (see also Definition
2.6 for V(t)) for all t ≥ 0, and

M(t, ω) = E(M0) +
∫ t

0
g(s, ω)dW (s) a.s.1 ∀t ≥ 0 . (A.5)

The proof of theorem A.6 can be found in ref. [Øksendal, 2000].

Theorem A.7 (Solution of a linear SDE) The linear stochastic differential equa-
tion

dX(t) =
(
B(t)X(t) + b(t)

)
dt + σ(t) dW (t) , X(t = 0) = x0 (A.6)

has the following solution for t ∈ [0, T ],

X(t) = Φ(t)
(
x0 +

∫ t

0
Φ−1(s) b(s) ds +

∫ t

0
Φ−1(s)σ(s) dW (s)

)
, (A.7)

1almost sure
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where Φ(t) is the fundamental matrix of the deterministic equation ẋ = B(t)x.
Especially, if the function B(t) is independent of t, i.e. B(t) = B, then the solution
becomes

X(t) = x0 eB t +
∫ t

0
eB(t−s)b(s) ds +

∫ t

0
eB(t−s)σ(s) dW (s) . (A.8)

The proof of theorem A.7 can be found in ref. [Arnold, 1973].

In probability theory, there are different notations of convergence of random variables
as will be presented in the following. Let X,Xn, n ≥ 1 be Rd-valued random variables
on the probability space (Ω,F , P ).

Definition A.8 (Stochastic convergence) A sequence (Xn)n≥1 of random variables
converges in probability towards a random variable X, if

P {ω ∈ Ω: |Xn(ω)−X(ω)| > ε} → 0 (n→∞) (A.9)

holds for all ε > 0. The common notation is

P- lim
n→∞

Xn = X or Xn
P→ X (n→∞) . (A.10)

Definition A.9 (Convergence in distribution) Let F and Fn be the cumulative
distribution function of X and Xn, respectively. A sequence (Xn)n≥1 of random variables
is said to converge in distribution (or converge weakly) towards X, if

lim
n→∞

Fn(x) = F (x) (A.11)

holds for all x ∈ Rd at which F (x) is continuous.

Definition A.10 (Almost sure convergence) If a null set N ∈ F can be defined
in such a way that the sequence (Xn)n≥1 converges in the usual sense towards x for all
ω /∈ N , i.e.,

P
{
ω ∈ Ω: lim

n→∞
Xn(ω) = X(ω)

}
= 1 , (A.12)

then (Xn)n≥1 converges almost surely, or almost everywhere, or with probability one
towards X. Almost sure convergence is often denoted by the abbreviation a.s., i.e.,
writing

Xn
a.s.→ X (n→∞) or a.s.- lim

n→∞
Xn = X . (A.13)

Definition A.11 (Convergence in p-th mean) If X,Xn ∈ Lp and
E|Xn −X|p → 0 (n→∞) holds, then the sequence (Xn)n≥1 is said to converge in the
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p-th mean towards X. For p = 1 one says that Xn converges in mean towards X. For
p = 2, it is common to say that Xn converges in mean square to X as is expressed via

ms- lim
n→∞

Xn = X . (A.14)

The relation between the different terms of convergence is presented in FigureA.1.

convergence in q-th mean

convergence in p-th mean, q ≤ p

convergence in probabilityalmost surely convergence convergence in distribution

Figure A.1.: Relation between different terms of convergence. Scheme adopted from
ref. [Arnold, 1973].

A.2. Necessary and sufficient conditions for the
maximum principle

In the following, necessary and sufficient optimal conditions for a forward-backward
stochastic differential game are presented. The zero-sum case used for stationary
systems is a special case of this class of problems. Thus, all statements are also
transferable to the zero-sum case. The following conditions are presented and proven
in the paper of Øksendal and Sulem [2014]. Consider the (forward) controlled process

dX(t) = b(t,X(t), u(t), ω) dt + σ(t,X(t), u(t), ω) dW (t) , X(0) = x0 ∈ R (A.15)

and its associated backward controlled processes
dYi(t) = −gi(t,X(t), Yi(t), Zi(t), u(t), ω)dt + Zi(t)dW (t) , t ∈ [0, T ]

Yi(T ) = hi(X(T ), ω) , i = 1, 2 ,
(A.16)

where u(t) = (u1(t), u2(t)) is related to the two players i = 1, 2. As before, (W (t))t∈[0,T ]

is a Wiener process forward in time, where the time horizon T > 0 is fixed. b(t, x, u),
σ(t, x, u), gi(t, x, y, z, u) and hi(x) are known functions in such a way that a unique
solution to the forward and the backward equations exists.
The two sub-filtrations E (i)

t ⊆ Ft , t ∈ [0, T ] represent the information available to the
player i = 1, 2 at time t. Ai are the sets of admissible control processes for the player
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i and are contained in the set of E (i)
t -predictable processes for i = 1, 2, with values

Ai ⊂ R. The optimal controls u1(t) and u2(t) are sought as the Nash equilibrium of

Ji(u) := E
[∫ T

0
fi(t,Xu(t), u(t), ω)dt + φi(Xu(T ), ω) + Ψi(Y u

i (0))
]

, i = 1, 2 ,

(A.17)
i.e. searching for the optimal control û1, û2

J1(u1, û2) ≤ J1(û1, û2) for all u1 ∈ A1 (A.18)

and J2(û1, u2) ≤ J2(û1, û2) for all u2 ∈ A2 (A.19)

are fulfilled. The associated Hamilton functions are defined by

Hi(t, x, y, z, u1, u2, λi, pi, qi) := fi(t, x, y, z, u1, u2) + λi gi(t, x, y, z, u1, u2)

+ pi b(t, x, u1, u2) + qi σ(t, x, u1, u2) , (A.20)

with the adjoint processes λi(t), pi(t), qi(t) being defined by a forward,


dλi(t) = λi(t)
[
∂gi
∂y

(t) dt + ∂gi
∂z

(t) dW (t)
]
, t ∈ [0, T ] ,

λi(0) = Ψ′i (Yi(0)) ,
(A.21)

as well as a backward SDE,
dpi(t) = ∂Hi

∂x
(t) dt + qi(t) dW (t) , t ∈ [0, T ] ,

pi(T ) = φ′i (X(T )) + h′i(X(T ))λi(T ) .
(A.22)

The functions fi(t, x, u), φi(x) and Ψi(x) are fixed functions in such a way that the
integrand and the expectation value in equation (A.17) exist.

Theorem A.12 (Sufficient maximum principle) Let (û1, û2) ∈ A1 ×A1 be opti-
mal controls with the associated solutions X̂(t), Ŷi(t), Ẑi(t), λ̂i(t), p̂i(t) and q̂i(t) for
i = 1, 2. Suppose that the following statements hold [Øksendal and Sulem, 2014]:

1. (Concavity I) The functions x→ hi(x), x→ φi(x), x→ Ψi(x) are concave.

2. (Conditional maximum principle) It holds that

ess sup
v∈A1

E
[
H1(t, X̂(t), Ŷ1(t), Ẑ1(t), v, û2(t), λ̂1(t), p̂1(t), q̂1(t))

∣∣∣ E (1)
t

]
= E

[
H1(t, X̂(t), Ŷ1(t), Ẑ1(t), û1(t), û2(t), λ̂1(t), p̂1(t), q̂1(t))

∣∣∣ E (1)
t

]
(A.23)
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and, similarly,

ess sup
v∈A2

E
[
H2(t, X̂(t), Ŷ2(t), Ẑ2(t), û1(t), v, λ̂2(t), p̂2(t), q̂2(t))

∣∣∣ E (2)
t

]
= E

[
H2(t, X̂(t), Ŷ2(t), Ẑ2(t), û1(t), û2(t), λ̂2(t), p̂2(t), q̂2(t))

∣∣∣ E (2)
t

]
. (A.24)

3. (Concavity II) (Arrow conditions) The functions

Ĥ1(x, y, z) := ess sup
v1∈A1

E
[
H1(t, x, y, z, v1, û2(t), λ̂1(t), p̂1(t), q̂1(t))

∣∣∣ E (1)
t

]
(A.25)

and

Ĥ2(x, y, z) := ess sup
v2∈A2

E
[
H2(t, x, y, z, û1(t), v2, λ̂2(t), p̂2(t), q̂2(t))

∣∣∣ E (1)
t

]
(A.26)

are concave for all t ∈ [0, T ] almost surely. Assume that the following condition
is fulfilled:

E
[ ∫ T

0

{
p̂2
i (t) (σ(t)− σ̂(t))2 + q̂2

i (t)
(
X(t)− X̂(t)

)2

(
Yi(t)− Ŷi(t)

)2 (
∂ Ĥi
∂z

)2
(t) + λ̂2

i (t)
(
Zi(t)− Ẑi(t)

)2
}

dt
]
<∞ (A.27)

for i = 1, 2.

Then, û(t) = (û1(t), û2(t)) is a Nash equilibrium for equation (A.15)–(A.17).

Furthermore, it is also possible to prove a version of the maximum principle without
concavity conditions [Øksendal and Sulem, 2014]. A necessary maximum principle
[Øksendal and Sulem, 2014] can be formulated and understood as an extension to that
one presented in refs. [Øksendal and Sulem, 2009; An and Øksendal, 2012].

Theorem A.13 (Necessary maximum principle) Let (û1, û2) ∈ A1 ×A1 be opti-
mal controls with the associated solutions X̂(t), Ŷi(t), Ẑi(t), λ̂i(t), p̂i(t), q̂i(t) for i = 1, 2.
Suppose that the following statements hold [Øksendal and Sulem, 2014]:

1. For all t0 ∈ [0, T ] and all bounded E (i)
i -measurable random variables αi(ω), the

control βi(t) := 1(t0,T )(t)αi(ω) belongs to Ai , i = 1, 2.

2. For all ui, βi ∈ Ai with βi bounded, there exists a δi > 0 such that the control
ũi(t) := ui(t) + s βi(t), t ∈ [0, T ] belongs to Ai for all s ∈ (−δi, δi), i = 1, 2.
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3. The derivative processes

x1(t) = d
dsX

(u1+sβ1,u2)(t)
∣∣∣∣∣
s=0

,

y1(t) = d
dsY

(u1+sβ1,u2)(t)
∣∣∣∣∣
s=0

,

z1(t) = d
dsX

(u1+sβ1,u2)(t)
∣∣∣∣∣
s=0

,

and, similarly,

x2(t) = d
dsX

(u1u2+sβ2)(t)
∣∣∣∣∣
s=0

, etc.

exist and belong to L2 ([0, T ]× Ω).

4. Suppose

E
[ ∫ T

0

{
p2
i (t)

(
∂σ

∂x
(t)xi(t) + ∂σ

∂ui
(t) βi(t)

)2

+ x2
i (t) q2

i (t) + λ2
i (t) z2

i (t) + y2
i (t)

(
∂Hi

∂z

)2

(t)
}

dt
]
<∞ ,

i = 1, 2.

Then, the following statements are equivalent [Øksendal and Sulem, 2014]:

d
dsJ1(u1 + sβ1, u2)

∣∣∣∣∣
s=0

= d
dsJ2(u1, u2 + sβ2)

∣∣∣∣∣
s=0

= 0 (A.28)

for all bounded β1 ∈ A1 , β2 ∈ A2 .

E
[
∂

∂v1
H1(t,X(t), Y1(t), Z1(t), v1, u2(t), λ1(t), p1(t), q1(t))

∣∣∣∣∣ E (1)
t

]

= E
[
∂

∂v2
H1(t,X(t), Y2(t), Z2(t), u1(t), v2, λ2(t), p2(t), q2(t))

∣∣∣∣∣ E (2)
t

]
= 0 . (A.29)

A.3. Malliavin derivative

The algorithm for solving the backward SDE used in this thesis is based upon the
projection property of conditional expectations. However, it is also possible to find an
algorithm using the Malliavin derivative.
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The conditional expectation E
[
Y π
ti+1
|Xπ

ti
= x

]
can be defined using delta distributions,

namely

E
[
Y π
ti+1

∣∣∣Xπ
ti

= x
]

:=
E
(
δx(Xπ

ti
)Y π

ti+1

)
E (δx(Xπ

ti))
, with δx(X) =

1 , X = x

0 , else
. (A.30)

Since the delta distribution is only different from zero for x ∈ R, and since x ∈ R is
drawn with probability zero, the delta distribution cannot be calculated during the
simulation2. Therefore, one aims for an expression for the conditional expectation
in which the antiderivative 1x≤X is used instead of the delta function. The revised
expression reads

E
[
Y π
ti+1

∣∣∣Xπ
ti

= x
]

=
E
(
1x≤Xπ

ti
Sh(1)Y π

ti+1

)
E
(
1x≤Xπ

ti
Sh(1)

) . (A.31)

The new random variable Sh(1) will be defined later.

In short notations, f ′(·) := δx(·) is written, and the wanted expectation value reads

E(f ′(X)Y ) = E(f(X)Z) . (A.32)

The following definition and chain rule will be necessary to eliminate the derivative (or
finding the new random variable Z). Further information and the proof of the chain
rule can be found in the textbook by Nualart [2006].

Definition A.14 Let (W (t))t∈[0,T ] be an n-dimensional Brownian-motion process on
a complete probability space (Ω,F , P ), and let Ft be the complete filtration generated by
the Brownian motion up to time t. The set S is the set of all smooth random variables
F of the form

F = f

(∫ T

0
h1(t) dW1(t) , . . . ,

∫ T

0
hn(t) dWn(t)

)
, (A.33)

where f : Rn → R is an infinitely often continuously differentiable function, and
hi ∈ L2(Ω× R+), i = 1, . . . , n. The derivation of a smooth random variable F is the
stochastic process (Dt F )t∈[0,T ] in L2(ω × R+) given by

Dt F =
n∑
i=1

∂f

∂xi

(∫ T

0
h1(t) dW1(t) , . . . ,

∫ T

0
hn(t) dWn(t)

)
hi(t) . (A.34)

2The process Xπ is a real number in a specified interval.
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Example A.15 Let f(x) = x, then the derivative of the random variable
F = f

(∫ T
0 h(t) dW (t)

)
reads

Dt F = df(x)
dx

∣∣∣∣∣
x=
∫ T

0 h(t) dW (t)
· h(t) = h(t) . (A.35)

The domain of the derivative in L2(Ω) is denoted by D1,2, meaning that the Hilbert
space D1,2 is the closure of the class of smooth random variables S with respect to the
norm [Nualart, 2006]

‖F‖1,2 =
√

E
(
|F |2

)
+ E

(
‖DF‖2

)
. (A.36)

The following theorem [Nualart, 2006] will be very useful to find the desired random
variable Z.

Theorem A.16 (Chain rule) Let ϕ : Rm → R be a continuously differentiable func-
tion with bounded partial derivatives. Suppose that F = (F 1, . . . , Fm) is a random
vector whose components belong to D1,2. Then, ϕ(F ) ∈ D1,2 and

Dt ϕ(F ) =
m∑
i=1

∂ϕ

∂xi
(F )Dt F

i . (A.37)

Assuming that E
∫ T
0 ‖X(t)‖2

1,2 dt < ∞ holds for a one-dimensional process X, the
derivative of the considered function f(X) is given by

Dt f(X) = f ′(X)DtX . (A.38)

Multiplying this equation with Y h(t) on both sides leads to

Y h(t)Dt f(X) = f ′(X)DtX Y h(t) . (A.39)

Here, the function h(t) fulfills the conditions [Bouchard et al., 2004]

∫ T

0
DtX

π
ti
h(t) dt = 1 ,

∫ T

0
DtX

π
ti+1

h(t) dt = 0 . (A.40)

Integrating equation (A.39) with respect to t and using the condition given in equation
(A.40), one gets

f ′(Xπ
ti

)Y =
∫ T

0
Y h(t)Dtf(Xπ

ti
) dt . (A.41)

Hence, the expectation value reads

E
(
f ′(Xπ

ti
)Y
)

= E
(∫ T

0
Y h(t)Dtf(Xπ

ti
) dt

)
. (A.42)
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The right-hand side of this equation is given the definition presented below [Nualart,
2006].

Definition A.17 (Divergence operator) Let u be a stochastic process such that
∣∣∣∣∣E
(∫ T

0
DtF u(t)dt

)∣∣∣∣∣ ≤ c‖F‖1,2 (A.43)

holds for all F ∈ D1,2, with c ∈ R being constant. Then, the divergence operator δ(u),
also called Skohorod integral, is a random variable defined by

E (F δ(u)) = E
(∫ T

0
DtF u(t) dt

)
, ∀F ∈ D1,2 . (A.44)

For an adapted process (u(t))t∈[0,T ] the Skohorod integral equals the Itô integral [Nualart,
2006].

Going back to the specific problem, i.e. f ′(·) = δx(·), the wanted conditional expectation
reads

E
[
Y π
ti+1

∣∣∣Xπ
ti

= x
]

=
E
(
1x≤Xπ

ti
Sh(1)Y π

ti+1

)
E
(
1x≤Xπ

ti
Sh(1)

) . (A.45)

Here, Sh(F ) denotes the general Skohorod integral of the random variable F and is
commonly denoted as

Sh(F ) :=
∫ T

0
F h(t) δW (t) . (A.46)

Consequently, one has to calculate Skohorod integrals numerically in each time step,
and a beneficial function h is needed. One attempt to this function can be found in ref.
[Bouchard and Touzi, 2004].

A.4. Numerical solution of stochastic differential
equations

In this section, some general statements about the numerical solution of SDEs are made.
A numerical approximation to the solution process is given by time-discrete stochastic
processes that converge to the exact solution. In this context, fundamental terms
(e.g. convergence or global error) are explained and the used numerical approximation
schemes (the Euler-Maruyama method and the Heun method) are analyzed. All
definitions and statements can be also found, for instance, in the textbook by Kloeden
and Platen [1992].
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Suppose that the stochastic process (X(t))t∈[0,T ] is given by the SDE

dX(t) = b(t,X(t)) dt + σ(t,X(t)) dW (t) X(t = 0) = x0 , (A.47)

where the coefficients b, σ : [0, T ] × R → R are known functions in such a way that
a unique solution exists (see theorem 2.14 ). For the sake of simplicity, only one-
dimensional processes are considered. In fact, all statements are also applicable to
higher dimensions.

Let 0 ≤ t0 < t1 < · · · < tN = T be a partition of the given time interval [0, T ] with
time increments ∆i = ti+1 − ti, i = 0, . . . , N − 1. The simplest approximation scheme
is given by the Euler-Maruyama method characterized by the difference equation

Y0 =x0

Yti+1 =Yti + b(ti, Yti) ∆i + σ(ti, Yti) ∆Wi , (A.48)

with ∆Wi := W (ti+1)−W (ti), i = 0, . . . , N−1 being discrete increments of the Wiener
process. The time discrete process3 (Yti)i=0,...,N is a numerical approximation to the
exact (continuous) process (X(t))t∈[0,T ].

Strong convergence

Definition A.18 (Global error) Let (X(t))t∈[0,T ] be the exact solution of equation
(A.47), and let (Yti)i=0,...,N be an approximation of the exact solution as determined,
for instance, by use of the Euler-Maruyama method. Then, the global error is defined
by the expectation value of the difference between the exact and the numerical solution
at the terminal time T , i.e.,

ε = E
(
X(T ) − YtN

)
. (A.49)

Definition A.19 (Strong convergence) Let δ := maxi(δi) be the maximum step
size. The numerical approximation converges strongly to the exact solution at the
terminal time T , if

lim
δ→0

E
(
X(T ) − Y δ

tN

)
= 0 . (A.50)

In order to validate the numerical approximation, the rate of convergence has to be
known.

3In the main part of this thesis, the process used to approximate the actual mechanism is denoted
by Xπ; however, for the sake of clarity, a new variable is used.
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Definition A.20 The approximation process converges strongly with the order γ > 0,
if there exists a constant C > 0 independent of δ, and a δ0 > 0, such that

ε ≤ C δγ , ∀δ ∈ (0, δ0) . (A.51)

This definition is the generalization of the deterministic order of convergence and can
be found in many textbooks of numerical solutions to ordinary differential equations
(see, for instance, ref. [Strehmel et al., 2012]).

However, the global error to the approximation is in general difficult to determine. Thus,
it would be beneficial to use the concept of consistency, which is – like the deterministic
methods – linked to the concept of convergence. Since the exact solution of the SDE
does not occur in the following conditions, strong consistency of an approximation is
often easier to verify [Kloeden and Platen, 1992].

Definition A.21 (Strong consistency) Let Ft, t ∈ [0, T ], be the σ-algebra gener-
ated by Brownian motion (or the Itô process) up to time t. The approximation Y δ

corresponding to the time discretization 0 = t0 < t1 < · · · < tN = T is strongly
consistent, if there is a non-negative function c = c(δ) with limδ→0 c(δ) = 0, such that

E
(∣∣∣E [∆−1

i

(
Y δ
ti+1
− Y δ

ti

)∣∣∣Fti] − b
(
ti, Y

δ
ti

)∣∣∣2) ≤ c(δ) (A.52)

and

E
(

∆−1
i

∣∣∣Y δ
ti+1
− Y δ

ti
− E

[
Y δ
ti+1
− Y δ

ti

∣∣∣Fti] − σ
(
ti, Y

δ
ti

)
∆Wi

∣∣∣2) ≤ c(δ) (A.53)

hold for all fixed Y δ
ti

= y and i = 0, . . . , N .

The first condition requires the average of the increments of the approximation to
converge to that of the Itô process. For vanishing noise, this situation is equivalent
to the deterministic definition of consistency of a one-step-scheme. From the second
condition (equation (A.53)) it follows that the variance of the difference between the
random parts of the approximation and the random parts in the Itô process converges
to zero [Kloeden and Platen, 1992]. Hence, strong consistency gives an indication of
pathwise closeness and implies strong convergence of the time-discrete approximation
to the Itô process. This proposition is explicitly proven in ref. [Kloeden and Platen,
1992] for one-dimensional, autonomous SDEs (b(t, x) = b(x), σ(t, x) = σ(x)) with an
equidistant discretization ∆i = δ for all i.
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Weak convergence

For some practical applications, only the approximation of the probability distribution
(or the moments) of the Itô process (instead of the pathwise convergence) is of interest,
and weaker conditions are acceptable.

Definition A.22 (Weak convergence) Let δ > 0 be the maximum step size. The
discrete time approximation Y δ converges weakly to the Itô process X at time T with
respect to a class C of test functions g : R→ R, if

lim
δ→0

∣∣∣E(g(X(T )) − E
(
g
(
Y δ
T

))∣∣∣ = 0 (A.54)

for all g ∈ C.

If the class C includes all polynomials, then the convergence of all moments will be
required in the above definition. As for the case of strong solutions, it is useful to
consider the order of weak convergence.

Definition A.23 The numerical approximation Y δ will converge weakly with the order
β > 0 at time T , if there exists a constant C > 0 independent of δ such that

∣∣∣E(g(X(T )) − E
(
g
(
Y δ
T

))∣∣∣ ≤ C δβ (A.55)

holds for all g ∈ C.

Definition A.24 (Weak consistency) The approximation is weakly consistent, if
there exists a non-negative function c = c(δ) with limδ→0 c(δ) = 0, such that

E
(∣∣∣E [∆−1

i

(
Y δ
ti+1
− Y δ

ti

)∣∣∣Fti] − b
(
ti, Y

δ
ti

)∣∣∣2) ≤ c(δ) (A.56)

and
E
(∣∣∣E [∆−1

i (Y δ
ti+1
− Y δ

ti
)2
∣∣∣Fti] − σ(ti, Y δ

ti
)2
∣∣∣2) ≤ c(δ) (A.57)

hold for all fixed values Y δ
ti

= y and i = 0, . . . , N .

The first requirement equals the first condition for strong consistency (see equation
(A.52)). The second condition, however, is much weaker than that in equation (A.53):
only the variance of the increment of the approximation has to be close to that one of
the Itô process [Kloeden and Platen, 1992]. A weakly consistent scheme is also weakly
convergent.
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Using the above described concepts, one can easily check that the Euler-Maruyama
scheme (equation (A.48)) has a strong convergence order of γ = 0.5, and is weakly
convergent with the order β = 1.

The last point of this section, the Heun method is analyzed, which is also used to
determine the paths of the motion process.

Example A.25 (Heun method) The Heun scheme for the equation (A.47) is given
by

Y0 =x0 , Ỹti = Yti + b(ti, Yti) + σ(ti, Yti)∆Wi ,

Yti+1 =Yti + ∆i

2
(
b(ti, Yti) + b(ti+1, Ỹti)

)
+ ∆Wi

2
(
σ(ti, Yti) + σ(ti+1, Ỹti)

)
.

(A.58)

In general, this method is neither strongly nor weakly convergent. Only for additive
noise (σ(t, x) = σ is a constant), strong consistency and strong convergence of the
method can be proven [Kloeden and Platen, 1992; Kloeden, 2002]. For additive noise,
the method has a weak convergence order of β = 2 [Szymczak and Ladd, 2003] and is
strongly convergent with the order of γ = 1 [Kloeden, 2002].

A.5. Numerov method for the stationary Schrödinger
equation

The Numerov method is a common method for solving the one-dimensional stationary
Schrödinger equation [Blatt, 1967; Johnson, 1977]. As a considerable advantage, the
energy eigenvalues can be calculated, as was done for different potentials by Fack and
Vanden Berghe [1987].

The following derivation of the algorithm can be found in the paper of Blatt [1967]. As
a first step, the Schrödinger equation is written as

d2Ψ(x)
dx2 = f(x) Ψ(x) , with f(x) := 2m

~ (V (x)− E) . (A.59)

Next, the Taylor expansion at the point x is constructed, and reads

Ψ(x+ h) =
∞∑
n=0

hn

n! Ψ(n) . (A.60)
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Here, Ψ(n) is the n-th derivative of Ψ(x) evaluated at the point x. Hence, one can write

1
2 [Ψ(x+ h) + Ψ(x− h)] = Ψ + h2

2 Ψ(2) + h4

4! Ψ(4) + h6

6! Ψ(6) + . . . (A.61)

and, differentiating twice, one gets

1
2

[
Ψ(2)(x+ h) + Ψ(2)(x− h)

]
= Ψ(2) + h2

2 Ψ(4) + h4

4! Ψ(6) + . . . . (A.62)

If equation (A.62) is multiplied by the factor 1
12h

2, and the result is subtracted
from equation (A.61), the term proportional to Ψ(4) will be eliminated. Using
d2

dx2 Ψ(x) = f(x) Ψ(x), one ends up with

Ψ(x+ h)
(
1− h2

12 f(x+ h)
)

= 2 Ψ(x)
(
1 + 5h2

12 f(x)
)

(A.63)

− Ψ(x− h)
(
1− h2

12 f(x− h)
)

+ O(h6) .

If Ψ(x) and Ψ(x− h) are known, Ψ(x+ h) can be determined uniquely. The method
has a convergence order of five, which is higher than other two-step schemes or also
Runge-Kutta methods [Blatt, 1967].

Now, there are two problems in dealing with this equation. First, the function f(x) has
to be a known function, i.e. the energy has to be calculated, and, second, two initial
points are needed to solve the equation uniquely.

Suppose that the wave function is searched within an interval [−b, b], where b has to
large enough to account for the position of even the most-distant classical turning
point, i.e., positions at which E = V (x) is fulfilled.

If the potential is symmetric, i.e. V (x) = V (−x), the wave function must be
either symmetric, Ψ(x) = Ψ(−x), or antisymmetric,Ψ(x) = −Ψ(−x).
For an even solution, Ψ0 = Ψ(x = 0) is arbitrary and Ψ1 = Ψ(h) can be determined by
the Numerov method,

Ψ1 =
1 + 5

12 h
2 f(0)

1− h2

12 f(h)
. (A.64)

For an odd wave function, on the other hand, Ψ0 has to be zero and Ψ1 is arbitrary
(one may choose Ψ1 = h). The choice of the arbitrary initial value has no influence on
the result since the resulting function is normalized (

∫
|Ψ(x)|2dx != 1). As the solution

is symmetric (or antisymmetric), Equation (A.63) will only be integrated over the
positive x-range.
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If the energy is unknown, the wave function has to be calculated iteratively. At the
beginning, an upper (Q1) and lower bound (Q2) have to be chosen such that the wanted
energy is in between. The first estimate for the energy is given by a bisection of the
energy range, i.e.

E0 = 1
2 [Q1 + Q2] . (A.65)

Next, one has to figure out whether the estimate for the energy is higher or lower than
the wanted energy. If E0 is too high, the estimate will give the new upper bound of the
energy interval (Q1 = E0). If E0 is too low, E0 will be the new lower bound (Q2 = E0).
In order to decide whether the estimate of the energy is too high or too low, equation
(A.63) is integrated forward (starting at x = 0) and backward (starting at b) until the
arbitrary point xa is reached. ΨL(x) is the solution of the forward (outwards) and ΨR(x)
is the solution of the backward (inwards) integration. After suitable normalizations,
the two functions have the same value at xa. Still, the derivatives of the two functions
are different from each other at the point xa if the energy is not accurately determined.
One can show that the correction term of the energy (∆E = E0 − E) is proportional
to Ψ′R(xa)−Ψ′L(xa) [Blatt, 1967]. The two derivatives can be calculated using again a
Taylor expansion at xa,

ΨL(xa − h) = ΨL(xa) − hΨ′L(xa) + 1
2Ψ′′L(xa) + O(h3) , (A.66)

ΨR(xa + h) = ΨR(xa) + hΨ′R(xa) + 1
2Ψ′′R(xa) + O(h3) . (A.67)

Since ΨR(xa) = ΨL(xa) =: Ψ(xa) and Ψ′′R(xa) = Ψ′′L(xa) = f(xa)Ψ(xa), the difference
of the derivative at xa is given by

Ψ′R(xa)−Ψ′L(xa) = −[ 2 + h2f(xa) ]Ψ(xa) + ΨL(xa − h) + ΨR(xa + h)
h

+ O(h2) .

(A.68)
Be aware that the estimate of the energy is used in the function f(x), cf. equation
(A.59). Hence, if ∆E > 0, then Q1 = E0, and if ∆E < 0, then Q2 = E0. The correct
energy will be found if the correction term equals zero.

The next estimate for the energy is given by equation (A.65), where one of the interval
bounds is replaced by E0. The described procedure is repeated until the correction
term of the energy is smaller than a certain tolerance.

It has to be taken into account that the approach of the wave function associated with
the energy estimate Ei (after i iterations) is composed of the solution of the forward
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and backward integration, i.e.,

Ψ(x) =

ΨL(x) , |x| ∈ [0, xa]

ΨR(x) , |x| ∈ (xa, b]
. (A.69)

Here, ΨL(0) = Ψ0 and ΨL(h) = Ψ1 (the choice of the initial points was explained
above), ΨR(b) = h, and

ΨR(b− h) =
2ΨR(b)

(
1 + 5

12h
2f(b)

)
1− h2

12f(b− h)
. (A.70)

After inwards integration, the solution ΨR(x) is multiplied by the factor ΨL(xa)
ΨR(xa) . As the

last step, the approximation to the wave function is normalized in such a way that
∫ b

−b
|Ψ(x)|2dx = 1 . (A.71)

The algorithm converges reasonable well to the desired wave function. Still, in the
article by Blatt [1967], an even more precise algorithm for the energy is presented.

A.6. WKB-Approximation
The WKB-approximation – named after Wentzel, Kramer and Brillouin – is a semi-
classical approach and can be found in many textbooks of theoretical physics; see,
for instance, ref. [Landau and Lifschitz, 1979]. If the De Broglie wave-length4 is
small compared to the size of the system, the quantum system will have nearly
classical features. Suppose that the solution to the one-dimensional, time-independent
Schrödinger equation for a particle in a potential V (x) is searched. The wave function
is written as

Ψ(x) = e i
~S(x) , (A.72)

hence the function S(x) fulfills

1
2m

(
dS(x)

dx

)2

− i~
2m

d2S(x)
dx2 = E − V (x) . (A.73)

4Because of the wave-particle duality, every particle with a certain momentum is correlated with
a wave length, which is called De Broglie wave-length.
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According to the condition that the particle has nearly classical properties, the function
is written as a power series in ~, i.e.,

S(x) = S0(x) + ~
i S1(x) +

(
~
i

)2

S2(x) + . . . . (A.74)

In the first approximation, the function S(x) = S0(x) and the term including ~ is
omitted in equation (A.73) [Landau and Lifschitz, 1979], resulting in

1
2m

(
dS0(x)

dx

)2

= E − V (x) . (A.75)

The solution is given by the classical momentum and reads

S0(x) = ±
∫ √

2m(E − V (x) )dx = ±
∫
p(x)dx . (A.76)

Neglecting the first-order term is only possible if the term is small compared to the
other ones, meaning that ∣∣∣∣∣ d

dx

(
~

S ′(x)

)∣∣∣∣∣� 1 . (A.77)

Consequently, using the definition of the De Broglie wave-length, λ(x) = ~/p(x), one
gets the condition ∣∣∣∣∣ 1

2π
dλ
dx

∣∣∣∣∣� 1 , (A.78)

and the system can be considered as being a semi-classical one [Landau and Lifschitz,
1979]. However, near the classical turning points, the wave length diverges and using
the semi-classical approach is not permitted.

Going further, the next term of the power series S1(x) (see equation (A.74)) is deter-
mined. The term of the order of ~ in equation (A.73) reads

S ′0(x)S ′1(x) + S ′′0 (x)
2 = 0 , (A.79)

and hence,
S ′1(x) = − S ′′0 (x)

2S ′0(x) = − p′(x)
2 p(x) . (A.80)

Integrating this equation, the wave function can be written as [Landau and Lifschitz,
1979]

Ψ(x) = c1√
p(x)

exp
{ i
~

∫
p(x)dx

}
+ c2√

p(x)
exp

{
− i

~

∫
p(x)dx

}
. (A.81)
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In the classically forbidden region, i.e., the region where E < V (x), the exponent
becomes real.

A.7. Instantons
The so-called instanton approach will be explained on the example of a spinless particle
confined in a one-dimensional double-well potential. The method can be directly
extended to field theory, while the standard method (WKB approximation) cannot
[Văınshtĕın et al., 1982]. For the sake of simplicity, the mass of the particle is taken to
be equal to unity, i.e. m = 1, and the potential is given by

V (x) = V0

a4

(
x2 − a2

)2
, (A.82)

where V0 is the barrier height between the two wells located at ±a. The potential is
also presented in FigureA.2 (left).

V0

-a a

V(x)

x

V0

-a a

V(x)

x
-V0

-a a

V(x)

x

Figure A.2.: Left: Double-well potential and classical solutions (red points).
Right: Double-hill potential generated by Wick rotation. The two
maxima can be connected by a classical trajectory (red points).

The total energy and the Lagrange function of the particle are given by

E = 1
2

(
dx
dt

)2

+ V (x) and L(x, ẋ) = 1
2

(
dx
dt

)2

− V (x) , (A.83)

respectively. The classical ground state (E = 0) is twofold degenerate and the two
quantum-mechanical solutions are connected with each other via tunneling processes.
This is in contrast to a classical particle, where the particle is located in one of the
wells for the whole time (E < V0)). The stationary points for the ground state of a
classical particle are also shown in FigureA.2 (left).

Suppose ΨR(x) is the ground state of a particle located at a and ΨL(x) is the ground
state of a particle located at −a. The quantum-mechanical ground state of the double-
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-a a

ΨL(x)

x
-a a

ΨR(x)

x

-a a

Ψ0(x)

x

-a a

Ψ1(x)

x

(a) (b)

(c)

(d)

Figure A.3.: Schematic representation of the ground-state wave function for a parti-
cle located in the left (a) and right (b) well. The ground state (c) as
well as the first excited state of a quantum particle in a double well
are given by a superposition.

well potential and the first excited state are then supposed to be given by a superposition
of the two states (see FigureA.3 ), i.e.

ΨE0(x) = 1√
2
(
ΨR(x) + ΨL(x)

)
, (A.84)

ΨE1(x) = 1√
2
(
ΨR(x) − ΨL(x)

)
. (A.85)

It is also common to use the Dirac notations for the states, i.e.

| − a〉 = ΨL(x) , |a〉 = ΨR(x) ,

|0〉 = ΨE0(x) , |1〉 = ΨE1(x) .

The probability of a transition from xi to xf (e.g. from −a to a) using the Feynman path
integral formalism [Feynman, 1948] is given by the integration over all possible paths
[Dx], with the boundaries x(−T/2) = xi and x(T/2) = xf , weighted by the associated
action S(x) [Văınshtĕın et al., 1982],

〈xf |e−iĤT |xi〉 = N
∫ xf

xi
[Dx]eiS[x(t)] . (A.86)
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Ĥ is the Hamilton operator of the system, e−iĤT is the ordinary evolution operator
and N is a normalization factor. It should be noted that the Feynman paths and the
Nelson paths are equivalent [Nelson, 1964; Pavon, 2000]. The action is given by the
Lagrangian function and reads

S[x] =
∫ T/2

−T/2
L(x(t), ẋ(t))dt . (A.87)

If the states with well-known position are transformed into states with a well-known
energy,

Ĥ|n〉 = En|n〉, (A.88)

the sum of oscillating exponents

〈xf |e−iĤT |xi〉 =
∑
n

e−iEnT 〈xf |n〉〈n|xi〉 (A.89)

will emerge [Văınshtĕın et al., 1982]. However, it is clear that there is no non-trivial
classical solution x(t) for a particle whose total energy (see equation (A.83)) equals zero.
Nevertheless, using a so-called Wick rotation, it is possible to construct non-trivial
solutions by replacing the real-valued time in the Minkowski space by a complex-valued
(euclidean) time, i.e. t→ iτ [Văınshtĕın et al., 1982]. By transition into the euclidean
space, the total energy becomes

E = −1
2

(
dx
dτ

)2

+ V (x) ⇔ −E = 1
2

(
dx
dτ

)2

− V (x) , (A.90)

which corresponds (for E = 0) to a rotation of the potential from V (x) to −V (x).
Hence, the double-well potential is transformed into a “double-hill” potential and the
particle can move from one maximum to the other (see red points in FigureA.2
(right)). The solution is given by [Văınshtĕın et al., 1982]

x(τ) = ±a tanh
(√

2V0(τ − τ0)
)

, (A.91)

with an arbitrary parameter τ0. Such solution is called instanton solution (+), presented
in FigureA.4 (a), or anti-instanton solution (−). Tunneling processes can be described
by an instanton or anti-instanton solution. In FigureA.4 (b) the derivative of x is
shown, which is centered at τ0. Suppose that the particle located by xi = −a at time
−T/2, while it is at xf = a at time T/2. If the time period is shifted to infinity (T →∞),
then the tunneling process will happen almost instantaneously, i.e. with a very short
period as compared to T . Furthermore, the solution exponentially approximates the
trivial classical solution (±a) [Kleinert, 2012].
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-a

a

  τ0

x(τ)

τ

  τ0

x'(τ)

τ

(a) (b)

Figure A.4.: Instanton solution of the euclidean equation of motion. (a) As a
function of imaginary time; (b) time derivative.

In the euclidean space, the action reads [Văınshtĕın et al., 1982]

iS[x]→
∫ −T/2

−T/2

−(dx
dτ

)2

− V (x)
dτ =: SE[x] . (A.92)

Exploiting the euclidean action SE, equation (A.86) becomes

〈xf |e−ĤτT |xi〉 = N
∫ xf

xi
[Dx] e−SE [x(τ)] . (A.93)

The Wick rotation, i.e., the transition towards an imaginary time axis, is possible for
all Feynman integrals, since the integrand does not contain any singularities [Huang,
2007].
Consequently, if the instanton solution (equation (A.91)) is used, the action for one
instanton is given by [Văınshtĕın et al., 1982]

S0 =
∫ ∞
−∞

ẋ2dτ =
∫ a

−a

(
−
√

2V0

a2

)(
x2 − a2

)
dx = ω3a

12V0
, (A.94)

where ω =
√

8V0/a.

As a next step, the measure of the paths has to be calculated. With considerable
mathematical effort, the one-instanton contribution of equation (A.86) is found to be
[Văınshtĕın et al., 1982]

〈−a|e−ĤτT |a〉one-inst. =
(√

ω

π
e−ωτT/2

) √ 6
π

√
S0 e−S0

ω ∫ τT/2

−τT/2
dτ0 . (A.95)

A-22



A.7. Instantons

-a

a

  τ0 τ1 τ2 τ3

x(τ)

τ

Figure A.5.: A chain of separated instanton/anti-instantons solutions.

For very large τT , multiple transitions between the two states are possible, which has
to be considered in the calculation of the amplitude. To determine the energy of the
lowest states, the limit τT →∞ of the transition amplitude is used. Though, the limit
cannot be calculated in a straightforward way using equation (A.95) [Văınshtĕın et al.,
1982]. Since the particle spends only a short time inside the barrier, and since the time
between two crossovers is large, a solution constructed by more that one instanton/anti-
instanton is again a classical solution. Suppose there are n instantons/anti-instantons
with centers

− τT
2 < τ1 < τ2 < · · · < τn <

τT
2 . (A.96)

A chain of instanton/anti-instanton solutions is shown in FigureA.5. If the transitions
are separated from each other, i.e. |τi − τj| � ω−1 is fulfilled for two arbitrary centers
τi, τj , then the associated action of such a path is given by nS0, where S0 is the action
of a path with a single transition only [Văınshtĕın et al., 1982]. Consequently, one
has to determine n integrals (one over each center τi) to determine the amplitude.
Văınshtĕın et al. [1982] showed that

√
ω

π
e−ωτT/2αn

∫ τT/2

−τT/2
ωdτn

∫ τn

−τT/2
ωdτn−1 · · ·

∫ τ2

−τT/2
ωdτ1

=
√
ω

π
e−ωτT/2αn

(ωτT )n

n! , (A.97)

with the instanton density being given by

α =
√

6
π

√
S0 e−S0 . (A.98)

There are two possible amplitudes, 〈−a|e−ĤτT |a〉 and 〈−a|e−ĤτT | − a〉, each of which
can be determined by the summation over all possible n. First, starting in the left well
at xi = −a, the particle arrives at xf = a, which means that the number of transitions
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n has to be odd for this transition, and second, the path ends in the left well, meaning
that an even number of transitions are made. The two amplitudes read

〈−a|e−ĤτT |a〉 =
∞∑

n=1,3,...

√
ω

π
e−ωτT/2 (ωα)n

n! =
√
ω

π
e−ωτT/2 sinh (ω τT α) , (A.99)

〈−a|e−ĤτT | − a〉 =
∞∑

n=0,2,...

√
ω

π
e−ωτT/2 (ωα)n

n! =
√
ω

π
e−ωτT/2 cosh (ω τT α) . (A.100)

In the limit τT → ∞, only the two lowest states have to be taken into account in
equation (A.89), resulting in

〈−a|e−ĤτT |a〉 = e−iE0T 〈a|0〉〈0| − a〉+ e−iE1T 〈a|1〉〈1| − a〉 , (A.101)

〈−a|e−ĤτT | − a〉 = e−iE0T 〈−a|0〉〈0| − a〉+ e−iE1T 〈−a|1〉〈1| − a〉 . (A.102)

Finally, by assessing the coefficients, the two lowest energies read

E0 =ω2

1 −
√

2ω3 a4

π V0
e−

ω3 a4

V0

 , (A.103)

E1 =ω2

1 +
√

2ω3 a4

π V0
e−

ω3 a4

V0

 . (A.104)

The two energies are symmetric around the harmonic oscillator energy. The energy
splitting is given by

∆E = E1 − E0 =
√

2ω3 a4

π V0
e−

ω3 a4

V0 . (A.105)

Carlitz and Nicole [1985] showed (and later also Garg [2000]) that this formula coincides
with the energy splitting determined by a second order WKB-approximation.

These formulas are derived under two assumptions: (i) the potential can be approxi-
mated by the harmonic oscillator close to the minima, and (ii), the particle is located
at ±a except for short periods during which the particle moves through the barrier.
This formalism of path integrals results in good values for very small splittings, which
cannot be described by a first order perturbation theory.
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