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1 Summary

1.1 English version

Complex biological processes such as RNA splicing, protein degradation, and metabolic
switches are a prerequisite for organisms to adapt to environmental stimuli, respond to
pathogens, and absorb nutrients. These biological processes are studied in molecular biol-
ogy and there are powerful techniques for the study of proteins, DNA sequences, and small
molecules such as nuclear magnetic resonance (NMR) spectroscopy, high–throughput se-
quencing technologies, and mass spectrometry. Depending on the technique the amount of
biological raw data can be in the order of hundreds of gigabytes and specialized tools are
needed to process this data and extract interpretable information. A deep understanding
of both biology and computer science is a prerequisite for the development of such tools
and bioinformatics is an interdisciplinary field which emerged from this demand. Bioin-
formatics research involves the development of tools for the study of biological processes
using methods from computer science.

Systems biology is a bioinformatics field which aims at an understanding of biological
systems rather than investigating each biological process individually. Systems biology
approaches are able to translate various kinds of biological data to parameters of mathe-
matical models enabling, amongst others, the understanding of the complex interplay of
different biological entities, the reproduction of emergent properties of metabolic pathways,
and the prediction of the behaviour of cells under hypothetical conditions. Research in sys-
tems biology necessitates insights into the regulation of gene expression, the metabolism,
and the integration of biological data from different sources. The publications in this cumu-
lative thesis are rooted in these three fields, namely (i) “Phylogenetic footprinting” for the
study of the regulation of transcriptional initiation, (ii) “Data Processing and Interpretation
of Mass Spectrometry Data” for the study of metabolic fingerprints, and (iii) the “Integra-
tion of biological data” for the combined analysis of different data. Two publications reside
in each of these fields and I will summarize these six publications subsequently.

Decoding the regulation of gene expression is essential for the understanding of life and
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1. SUMMARY

the transcriptional initiation is a vital sub–process. Transcriptional initiation is governed
by the concerted binding of transcription factors (TFs) to transcription factor binding
sites (TFBSs) and de novo motif discovery with “Phylogenetic footprinting” on basis of
ChIP–seq data gives deep insights into this sub–process.

Unfortunately, ChIP–seq data is subject to the ubiquitous binding–affinity bias which leads
to the prediction of distorted sequence motifs and biased sets of TFBSs. My colleagues and
I developed a phylogenetic footprinting model which is capable of estimating and correcting
the binding–affinity bias in ChIP–seq data. We found that the proposed phylogenetic
footprinting model improves de novo motif discovery and that the corrected sequence
motifs are softer than the uncorrected sequence motifs.

The increasing availability of sequence data and algorithms for de novo motif discovery re-
sults in the demand to compare different sequence motifs. Sequence motifs which have been
extracted from, e.g., different species, tissues, and samples are often similar which makes
the comparison challenging. My colleagues and I developed the R–based tool DiffLogo for
the comparative visualization of sequence motifs in DNA sequences, RNA sequences, and
protein domains. DiffLogo allows the detection of even small motif differences between two
sequence motifs and also supports the pair–wise comparison of more than two sequence
motifs. We demonstrated the utility of DiffLogo using sequence motifs of one transcription
factor from different cell lines, sequence motifs from different transcription factors, and
sequence motifs in protein domains from different phylogenetic kingdoms. DiffLogo was
also used to show the effect of the binding–affinity bias in ChIP–seq data.

The study of small molecules in the cell gives insights into the chemical fingerprints of
different biological processes. Metabolite profiles provide a snapshot of these chemical
fingerprints in the samples of interest and Mass Spectrometry (MS) is an essential technol-
ogy to prepare these metabolite profiles. The “Data Processing and Interpretation of Mass
Spectrometry Data” is mandatory in order to gain biological insights from MS data and the
identification and precise quantification of metabolites remains a major challenge.

Isotope clusters are sets of related signals in MS data and it has been shown that isotope
clusters can be utilized to improve the identification and quantification of metabolites.
My colleagues and I developed an approach for the prediction, detection, and validation
of isotope clusters in MS data and we integrated this approach into the popular R–based
tools xcms and CAMERA. We found that using the proposed approach it is possible to
extract 37% more isotope signals from Arabidopsis thaliana measurements and in a mix of
standard compounds the correct molecular formula could be predicted in 92% of the cases
in the top three ranks.

The structural elucidation of metabolites in metabolite profiles is done one–by–one and
known as one of the major bottlenecks for the research of the metabolism. My colleagues
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1.1 English version

and I developed the web application MetFamily for the discovery of regulated metabolite
families in metabolite profiles providing a birds eye view on comparative studies. Met-
Family supports the clustering of metabolites with respect to śtructural similarity and
the discovery of group–discriminating metabolites which enables the discovery of metabo-
lite families with biochemical relevance. In a study we compared metabolite profiles of
tomato trichomes and trichome–free tomato leaves and we classified a multitude of un-
known metabolites to metabolite families which are specific for tomato trichomes.

The life sciences face an continuously increasing amount of available data from diverse
sources such as publications, biological databases, and own experiments. Challenging
problems such as cancer development, the increase of crop yield, and diabetes necessitate
the analysis of data of different types from various sources and the “Integration of biological
data” is a prerequisite to tackle such problems.

The integration of biological data into biological networks enables the interpretation of
wet lab data in a biological context. My colleagues and I extended the VANTED system
for the network–assisted visualization and analysis of wet lab data. We added and refined
several features such as file import capabilities, standardized graphical representations of
biological networks, and the simulation of mathematical models representing biological
networks.

Sharing datasets is crucial in most life science projects and the compliance to standards
is a prerequisite for the integration of biological data. My colleagues and I developed
the DBE2 information system for the sharing of biological data in a unified way for the
VANTED system. The DBE2 information system supports a seamless integration into the
VANTED system, the central sharing of biological data with a user right management,
and the ontology–assisted standardization of biological terms.

In summary, my colleagues and I contributed to the development of tools for the research
of complex biological processes in molecular biology. De novo motif discovery with “Phy-
logenetic footprinting” on basis of ChIP–seq data gives insights into the regulation of gene
expression, the “Data Processing and Interpretation of Mass Spectrometry Data” reveals
metabolic fingerprints in metabolic profiles, and the “Integration of biological data” enables
a combined data analysis for a more holistic understanding of processes in the cell. The
development of tools for the research of these three fields is a prerequisite to investigate
biological questions using systems biology approaches. Advancements in the research of
systems biology promise a more comprehensive understanding of biological processes and
hence an understanding of the mode of existence of organisms.
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1. SUMMARY

1.2 German version

Komplexe biologische Prozesse wie das Spleißen von mRNAs, der Abbau von Proteinen und
metabolische Schalter sind eine Voraussetzung allen Lebens, um auf Nährstoffe, Krankheit-
serreger und abiotische Reize zu reagieren. Die Molekularbiologie untersucht derartige
Prozesse mittels leistungsfähiger Techniken wie zum Beispiel Kernspinresonanzspektroskopie,
DNA-Sequenzierung im Hochdurchsatz, und Massenspektrometrie. Je nach Technik kön-
nen hierbei Datenmengen von mehreren hundert Gigabyte anfallen, was spezialisierte Soft-
warewerkzeuge für die Extraktion interpretierbarer Informationen notwendig macht. Die
Bioinformatik ist ein interdisziplinäres Feld welches Konzepte der Biologie und Informatik
zusammenbringt und die Grundlage für die Entwicklung derartiger Werkzeuge bildet.

Die Systembiologie ist ein Teilgebiet der Bioinformatik und erforscht biologische Systeme,
anstatt einzelne biologische Prozesse isoliert zu betrachten. Ansätze der Systembiologie
versuchen unterschiedliche biologische Daten als Parameter von Modellen zu nutzen um,
zum Beispiel, das komplexe Zusammenspiel verschiedener biologischer Faktoren zu verste-
hen, intrinsische Eigenschaften von Stoffwechselwegen zu simulieren oder das Verhalten
von Zellen unter hypothetischen Bedingungen vorherzusagen. Fortschritte in der System-
biologie fußen auf Erkenntnissen der Genregulation, des Metabolismus und der Integration
biologischer Daten von verschiedenen Quellen. Die Publikationen in dieser kumulativen
Dissertationsschrift sind in diesen drei Bereichen angesiedelt, und zwar (i) “Phylogenetic
footprinting” für die Untersuchung der Initiation der Transkription, (ii) “Data Processing
and Interpretation of Mass Spectrometry Data” für die Untersuchung biochemischer Signa-
turen und (iii) “Integration of biological data” für die integrative Analyse von biologischen
Daten. Diesen drei Gebieten steuere ich je zwei Publikationen bei und ich werde diese
sechs Publikationen im Folgenden umreißen.

Die Entschlüsselung der Genregulation ist eine Voraussetzung für das Verständnis des
Lebens und die Initiation der Transkription ist ein entscheidender Teilprozess der Genreg-
ulation. Die Initiation der Transkription wird von der gezielten Bindung von Transkrip-
tionsfaktorbindestellen durch Transkriptionsfaktoren reguliert und die Vorhersage von Se-
quenzmotiven mittels “Phylogenetic footprinting” in ChIP-seq Daten gewährt umfassende
Erkenntnisse über diesen Teilprozess.

Allerdings sind ChIP-seq Daten vom so genannten binding–affinity bias (BA bias) verz-
errt, was zu ebenso verzerrten Sequenzmotiven und vorhergesagten Transkriptionsfak-
torbindestellen führt. Meine Kollegen und ich entwickelten ein Phylogenetic Footprint-
ing Modell, welches den BA bias in ChIP-seq Daten schätzen und korrigieren kann. Wir
zeigten, dass das vorgeschlagene Modell zur Vorhersage von weicheren Sequenzmotiven
führt und die Güte der Motivvorhersage verbessert.
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1.2 German version

Die stetig wachsende Menge von Sequenzdaten und Algorithmen für die Motivvorhersage
führt zur Notwendigkeit, verschiedene Sequenzmotive miteinander zu vergleichen. Sequenz-
motive, welche von verschiedenen Spezies, Geweben oder biologischen Proben gewonnen
wurden, sind sich oft sehr ähnlich was den Vergleich schwierig gestaltet. Meine Kolle-
gen und ich entwickelten das R–basierte Softwarewerkzeug DiffLogo für die vergleichende
Visualisierung von Sequenzmotiven in DNA Sequenzen, RNA Sequenzen und Protein-
domänen. DiffLogo ermöglicht die Erkennung von feinen Unterschieden zwischen zwei
oder mehr Sequenzmotiven durch paarweise Vergleiche. Am Beispiel von Sequenzmotiven
des gleichen Transkriptionsfaktors in unterschiedlicher Zelllinien, Sequenzmotiven unter-
schiedlicher Transkriptionsfaktoren und Sequenzmotiven unterschiedlicher Reiche demon-
strierten wir die Möglichkeiten von DiffLogo. DiffLogo wurde benutzt um den Effekt des
BA bias in ChIP-seq Daten aufzuzeigen.

Die Untersuchung niedermolekularer Verbindungen in der Zelle gewährt tiefe Einblicke in
die biochemischen Signaturen von biologischen Prozessen. Metabolitenprofile stellen eine
Momentaufnahme dieser biochemischen Signaturen in biologischen Proben dar und die
Massenspektrometrie ist eine entscheidende Technologie für die Erstellung von Metabo-
litenprofilen. Das Themengebiet “Data Processing and Interpretation of Mass Spectrome-
try Data” bildet die Grundlage, um biologische Erkenntnisse aus Massenspektrometriedaten
zu gewinnen. Besonders die Quantifizierung und Identifizierung von Metaboliten stellt hier
eine große Herausforderung dar.

Isotopenmuster setzen sich aus einer Reihe verwandter Signale in Massenspektrometriedaten
zusammen und es wurde gezeigt, dass Diese für eine genauere Quantifizierung und Iden-
tifizierung von Metaboliten genutzt werden können. Meine Kollegen und ich entwickel-
ten einen Ansatz für die Vorhersage, Erkennung und Validierung von Isotopenmustern in
Massenspektrometriedaten und integrierten diesen Ansatz in die verbreiteten Softwarew-
erkzeuge xcms und CAMERA. Wir zeigten, dass unser Ansatz in Messungen von Arabidop-
sis thaliana 37% mehr Isotopensignale extrahiert und in einer Mischung von chemischen
Standardsubstanzen sagten wir in 92% der Fälle die richtige Summenformel in den obersten
drei Rängen vorher.

Die Strukturaufklärung von tausenden von Metaboliten in Metabolitenprofilen findet einzeln
statt und stellt daher einen wesentlichen limitierenden Faktor in der Metabolomik dar.
Meine Kollegen und ich entwickelten die Webanwendung MetFamily für die Erkennung
von regulierten Metabolitenfamilien, um eine Vogelperspektive auf vergleichende Studien
zu ermöglichen. MetFamily kann Metabolite anhand struktureller Ähnlichkeit gruppieren
und gruppenunterscheidende Metabolite finden, was die Entdeckung von Metabolitenfam-
ilien mit biochemischer Relevanz ermöglicht. Wir verglichen Metabolitenprofile von glan-
dulären Trichomen der Tomatenpflanze mit trichomfreien Tomatenblättern und ordneten
eine Vielzahl unbekannter Metabolite Metabolitenfamilien zu, welche spezifisch für glan-
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1. SUMMARY

dulärer Trichome der Tomate sind.

Wissenschaftlern der Lebenswissenschaften steht eine stetig wachsende Menge von Daten
aus Publikationen, biologischen Datenbanken und hauseigenen Experimenten zur Verfü-
gung. Große Probleme wie die Krebsbekämpfung, die Steigerung des Ertrags von Kul-
turpflanzen und Diabetes erfordern die Analyse verschiedener biologischer Daten aus het-
erogenen Quellen und das Themengebiet “Integration of biological data” beschäftigt sich
mit dieser Anforderung.

Die Integration biologischer Daten mit biologischen Netzwerken ermöglicht die Interpre-
tation von Labordaten im biochemischen Kontext. Meine Kollegen und ich erweiterten
das Softwarewerkzeug VANTED für die netzwerkgestützte Visualisierung und Analyse
von Labordaten. Wir erweiterten bestehende Funktionalitäten und fügten Neue hinzu
bezüglich der Unterstützung verschiedener Datenformate, der standardisierten Darstel-
lung biologischer Netzwerke und der Simulation mathematischer Modelle von biologischen
Netzwerken.

Der Austausch von biologischen Daten ist ein wichtiger Bestandteil von Projekten in den
Lebenswissenschaften und die Einhaltung von Standards ist eine Voraussetzung für die
Integration dieser Daten. Meine Kollegen und ich entwickelten das DBE2 information
system für den vereinheitlichten Austausch biologischer Daten in VANTED . Das DBE2
information system ist nahtlos in VANTED integriert, realisiert den zentralen Austausch
von biologischen Daten inklusive Nutzerrechteverwaltung und standardisiert biologische
Begrifflichkeiten basierend auf Ontologien.

Zusammenfassend trugen meine Kollegen und ich zur Entwicklung von Softwarewerkzeu-
gen für die Erforschung von komplexen biologischen Prozessen in der Molekularbiologie
bei. Entwicklungen im Themengebiet “Phylogenetic footprinting” ermöglichen Einblicke
in die Genregulation anhand von ChIP-seq Daten, Entwicklungen im Themengebiet “Data
Processing and Interpretation of Mass Spectrometry Data” ermöglichen die Erkennung von
biochemischen Signaturen in Metabolitenprofilen und Entwicklungen im Themengebiet “In-
tegration of biological data” ermöglichen die Untersuchung umfassenderer Fragestellungen
zu den biologischen Prozessen in der Zelle. Softwarewerkzeuge für die Forschung in diesen
drei Themengebieten sind eine Voraussetzung für die Ergründung biologischer Fragestel-
lungen mittels Ansätze der Systembiologie. Fortschritte in der Systembiologie versprechen
ein ganzheitliches Verständnis von biologischen Prozessen und damit der Lebensweise von
Lebewesen.
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2 Introduction

The pursuit to understand and influence the nature of organisms is as old as mankind.
Based on pure empiricism, humans were able to change the nature of animals and plants
more than 10,000 years ago by domestication and breeding of dogs, cattle, and fowl as well
as grasses, herbage, and fruits. In turn, these achievements also fundamentally changed
the human way of life as these finally moved us from the caves into apartment buildings
(Sturgis, 2015). However, the human activities in this field were mostly not scientific and
the basic principles of life in the cell remained concealed for a long time.

In the mid of the 19th century, Mendel suggested the existance of inheritable units in
organisms and Darwin introduced in his work ”On the Origin of Species“ the revolutionary
idea that species are subjected to evolution (Darwin, 1859). In the mid of the 20th century,
theoretical and technical advances facilitated the research of the basic building blocks of
life and Warren Weaver coined the term Molecular biology as the use of methods from
physics such as X–rays, ultracentrifuges, and mathematics for the research of living things
(Weaver, 1970). Francis Crick and James Watson published their revolutionary paper
about the structure of the DNA double helix and Francis Crick constituted the central
dogma of molecular biology which established the basis for today’s understanding of life, i.e.
DNA makes RNA and RNA makes protein (F. H. Crick, 1958; F. Crick, 1970). The deeper
exploration of molecular biology continued quickly and more recent breakthroughs include
the production of human insulin in the bacterium Escherichia coli, ”DNA finger printing“
in the law court, and the sequencing of the human genome (Kamionka, 2011; Chambers
et al., 2014; Sawicki et al., 1993). In the future, cultural, political, and ethical questions
become more and more important as nowadays possibilities involve genetically modified
organisms (GMOs) in the environment, biowarefare, and the possibility to concertedly
modify the human germline.

Computer–assisted data analysis is nowadays a prerequisite for the research in the life
sciences. The theoretical basis of computer science was laid by Gottfried Wilhelm Leibniz
with the formal definition of binary logic in the 18th century and George Boole with his
boolean algebra in the 19th century. In the 20th century, Kurt Gödel founded the com-
plexity theory, Alan Turing introduced the turing machine, and Claude Elwood Shannon
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2. INTRODUCTION

invented the modern digital circuit design. Starting with comparatively simple mechanical
computers for arithmetics and the enciphering of messages, the breakthrough of computer
science started with the invention of the first point-contact transistor invented by John
Bardeen, Walter Brattain, and William Shockley (Shockley, 1952). The ”von Neumann
architecture“ by John von Neumann paved the way for the first personal computer in the
mid of the 20th century (Godfrey et al., 1993). In the 1960s the ARPANET managed the
switching of packets of data in a network of local area networks. This installation funda-
mentally changed the way of exchanging data world–wide as the ARPANET is considered
the predecessor of the Internet. Computer science changed economy, sciences, and last but
not least our everyday life. Current research in computer science includes voice recogni-
tion for better interfaces, deep learning for the recognition of patterns in diverse kinds of
data, and distributed systems for the management of big data. In the future, quantum
computing, artificial intelligence, and advanced computer–human interfaces could change
everything again.

Computer science changed the research in the life sciences in the 1950s as more and more bi-
ological sequences became available due to Sanger sequencing (Sanger et al., 1975). First
theoretic and algorithmic developments for the comparison and alignment of DNA se-
quences, RNA sequences, and amino acid sequences emerged to the field of bioinformatics
as proposed by Paulien Hogeweg and Ben Hesper in 1970. Originally, the term bioinformat-
ics coined ”the study of informatic processes in biotic systems“ (Hogeweg, 2011), but with
the rapid growth of this field in the 1990s the term bioinformatics was thenceforth rather
used for ”computational methods for comparative analysis of genome data“ (Hogeweg,
2011). After the turn of the millennium, the field of bioinformatics published an enormous
amount of papers describing the development and implementation of computer programs
for the management of various types of data, statistical measures, and new algorithms to
analyze large data sets. Typical problems in bioinformatics include the prediction of genes
in genomic sequences, 3D modeling of proteins, and the clustering of protein sequences to
protein families. Current research in bioinformatics includes phylogeny for the understand-
ing of evolutionary mechanisms, the concerted reprogramming of genetic material, and the
creation of holistic cell models. In the future, new insights into the structure and regulation
of hundreds of genomes, precise predictions of drug targets, and continuing contributions
to the theoretical biology in general could greatly extend our possibilities to understand
and influence the nature of organisms. In this sense, I am honored to contribute to the field
of bioinformatics in different aspects such as the network–assisted integration of biological
data, the analysis of metabolite profiles, and the precise extraction of DNA motifs from
wet lab data.

The manuscripts in this thesis touch different subjects in biology, computer science, and
bioinformatics. In this chapter I give a brief introduction into the basics of these subjects.
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2.1 Biological background

In section 2.1, I will introduce the biological background of my works, in section 2.2 I
will introduce the computer science background, and in section 2.3 I will introduce the
bioinformatics background. Finally, I state the research objectives of this thesis in section
2.4.

2.1 Biological background

The manuscripts in this thesis touch different subjects in the field of biology and in this sec-
tion I give a brief introduction into the basics of these subjects. Specifically, in subsection
2.1.1 I will introduce the central dogma of molecular biology and the major players thereof,
in subsection 2.1.2 I will introduce the regulation of gene expression, and in subsection 2.1.3
I will introduce the metabolism and small molecules.

2.1.1 The central dogma of molecular biology

The central dogma of molecular biology holds for all living organisms and states that
sequential genetic information can be translated into a chain of amino acids, but a chain
of amino acids can not be translated into sequential genetic information (F. Crick, 1970).
Possible translations of sequential information originally included three essential processes
in the cell, namely DNA replication, transcription, and translation (see Figure 2.1). These
three processes involve the three biopolymers DNA, RNA, and proteins.

The Deoxyribonucleic acid (DNA) encodes the potential of organisms to reproduce and
exist in a dynamic environment (Watson et al., 1953). DNA is a biopolymer of four
different nucleobases, namely adenine (A), cytosine (C), guanine (G), and thymine (T),
and the order of these nucleobases encodes genetic information. Two reverse complement
(+/-) strands of DNA form the well–known double–helix in higher organisms which means
that the entire genetic information is encoded on each strand. All genetic information
of an organism is called genome which includes genes, regulatory sequences, and even
patches of genetic information from foreign species and genomics refers to the study of the
genome. A prerequisite for the reproduction of organisms is DNA replication (cf. Figure
2.1) which denotes the process to produce two copies of DNA molecules from the original
DNA molecule (Alberts et al., 2015). The implementation of genetic information is called
gene expression and involves the production of Ribonucleic acids (RNAs) by transcription
and the production of proteins by transcription followed by translation.

Transciption is the process to produce RNA from a segment of DNA (Solomon et al.,
2007). RNA is a biopolymer of four different nucleobases, namely adenine (A), cytosine (C),
guanine (G), and uracil (U), and the order of these nucleobases encodes genetic information.
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There are various types of RNA such as messenger RNAs (mRNAs), microRNAs, and
ribosomal RNAs and the volume of RNA in the cell represents the currently available
genetic information. All mRNAs in the cell constitute the transcriptome and the study of
the transcriptome is denoted transcriptomics.

Translation is the process to produce polypeptides from mRNAs (Berg et al., 2002).
Polypeptides are a biopolymer of 22 different amino acids and the order of these amino
acids in vital for the properties of the folded protein. Short polypeptides are called pep-
tides and serve as hormones, signaling molecules, and antibiotics. Proteins can form big
complexes and constitute, amongst others, the cell structure, membrane transporters, and
enzymes. All proteins in the cell constitute the proteome and the study of the proteome
is denoted proteomics.

Figure 2.1: The central dogma of molecular biology (taken from Horspool, 2008).
The biopolymers DNA, (+) Sense RNA, (-) Sense RNA, and proteins are depicted simplified in
blue, processes translating sequential information are marked with arrows and black captions
with the name of the process and the translated biopolymers, and the enzymes performing
each process are marked in pink. Processes with continuous orange arrows are considered in
the original formulation of the central dogma of molecular biology and processes with dashed
green arrows have been added later.

Nowadays, the central dogma of molecular biology has been extended because besides DNA
replication, transcription, and translation there are two additional ways in which sequential
information can be transferred, namely reverse transcription for the translation of RNA
to DNA and RNA replication for the translation of RNA to RNA. Gene expression is an
active field of research and it has been shown that the expression of genes is regulated
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at all stages. An introduction to the regulation of gene expression with emphasis on
transcriptional initiation is given in subsection 2.1.2.

Enzymes are proteins which are essential for the catalysis of metabolic reactions for the
transformation of small molecules into each other. Small molecules constitute the currently
available building blocks of life in the cell including intermediates, storage molecules, and
the basic modules for DNA, RNA, and proteins. An introduction to enzymes and small
molecules is given in subsection 2.1.3

2.1.2 Regulation of gene expression and transcriptional initiation

The regulation of gene expression is vital in all living organisms as it adopts the gene ex-
pression towards cellular differentiation, environmental stimuli, and morphogenesis. This
process is informally termed gene regulation and includes a wide range of mechanisms to
fine–tune the produced amount of gene products. First described by Jacques Monod in 1961
for the lac operon in Escherichia coli, today’s repertoire includes the transcriptional initi-
ation, the processing of mRNAs, and post-translational modifications of proteins.

The transcriptional initiation is also known as transcriptional regulation and regulates the
efficiency of the transcription from DNA to RNA. Hence, transcriptional initiation governs
the number of produced mRNA copies in the cell which can be translated to polypeptides
by translation. Important players of transcriptional initiation in procaryotes as well as
eucaryotes are transcription factors (TFs) as illustrated in Figure 2.2.

TFs are proteins which show certain affinities to short DNA sequences. The degree of
binding–affinity depends, amongst others, on the order of nucleobases in each DNA sub-
sequence and DNA subsequences with a sufficient degree of binding–affinity are denoted
transcription factor binding sites (TFBSs). The presence or absence of TFs at TFBSs alters
the ability of the RNA polymerase to bind and translate a specific DNA region by tran-
scription. The transcriptional regulation of genes encoding TFs results in gene regulatory
networks which encode sophisticated programs of life.

The TFBSs of a specific TF show a specific base composition which depends on the TF.
The pattern in this base composition is called motif and the discovery of motifs gives deep
insights into gene regulatory networks. An introduction to the de novo motif discovery
with phylogenetic footprinting is given in subsection 2.3.2.

2.1.3 Metabolism and small molecules

The term metabolism covers the conversion of small molecules by enzymes into each other
(Pace, 2001). These small molecules are denoted metabolites and the assembly and de-
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Figure 2.2: The transcriptional initiation of a typical eucaryotic gene (Figure
Fig7-17 from Alberts et al., 2015). Upper part: The regulation of a representative gene
”X“ is governed by TFs (here referred to as general TF and transcription regulators) which
bind to TFBSs (here referred to as cis–regulatory sequences) upstream and downstream of
the gene ”X“. Lower part: The three–dimensional structure of the complex above is indicated.
TFs and coactivators interact with different parts of the RNA polymerase II in order to start
the transcription process.

pletion of metabolites is the basis of all processes in living organisms. Main tasks of the
metabolism are the conversion of nutrients to ATP (the fundamental energy carrier of or-
ganisms), DNA, RNA, proteins, signaling molecules, and storage molecules as exemplified
in Figure 2.3. These processes require a wealth of enzymes and intermediate metabo-
lites.

The available set of enzymes encircles the range of possible metabolic reactions and results
in a metabolic network (Ogata et al., 1999). The spread of the metabolic network is regu-
lated by activation, deactivation, production, and depletion of enzymes depending on the
developmental stage, tissue, and environmental stimuli. Metabolic networks are decom-
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Figure 2.3: Glycolysis and the citric acid cycle are central pathways in the
metabolism of most organisms (Figure Fig2-59 from Alberts et al., 2015). The
glycolysis pathway and derived compound classes are indicated in yellow. The citric acid cy-
cle and derived compound classes are indicated in green. Chemical compounds and compound
classes are indicated in black and metabolic reactions are indicated with arrows, where black
arrows indicate reactions of the glycolysis and the citric acid cycle and red arrows indicate
outgoing metabolic pathways. The compound glucose is the input of the glycolysis and indi-
cated in blue. The two pathways glycolysis and TCA process glucose for the production of
energy and a big range of compounds.

posed somewhat arbitrarily to metabolic pathways for, amongst others, the allocation of
ATP, the degradation of xenobiotics, and the production of secondary metabolites. The
entirety of metabolites in the cell is called metabolome and the study of the metabolome
is called metabolomics.

Metabolomics covers the research of metabolites using metabolite profiles to investigate the
chemical fingerprints of different biological processes. An essential technology to prepare
metabolite profiles is Mass Spectrometry (MS). An introduction to MS and MS data is
given in subsection 2.3.3.

2.2 Computer science background

The manuscripts in this thesis touch different subjects in the field of computer science and
in this section I give a brief introduction into the basics of these subjects. In subsection 2.2.1
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I will introduce the Java programming language, in subsection 2.2.2 I will introduce the
R programming language, in subsection 2.2.3 I will introduce databases, and in subsection
2.2.4 I will introduce data integration and ontologies.

2.2.1 The Java programming language

Java is a concurrent, class-based, and object-oriented computer programming language
(Gosling et al., 2014). Java is compiled into standard bytecode that can run on any device
with a Java virtual machine (JVM ) in contrast to other common programming languages
such as C++, Fortran, and Pascal which necessitate specific compilations for each operating
system. Java is one of the most popular programming languages and frequently used for
stand–alone applications, client–server web applications, and applets. There is a multitude
of Java libraries for different communities such as Colt for physics, cdk for chemistry, and
BioJava for bioinformatics (Wendykier et al., 2010; Steinbeck et al., 2003; Prlić et al.,
2012). There is a rich set of free tools for the development of Java code such as the
eclipse Integrated Development Environment (IDE), the YourKit profiler, and the unit
test framework JUnit.

Java is used for the development of a multitude of bioinformatics tools such as Cytoscape,
Ondex, and the CLC Genomics Workbench (Shannon et al., 2003; Köhler et al., 2006;
Giotis et al., 2016). Such software is critical for the research in the life sciences as these
implement different algorithms for the analysis of biological data. The VANTED system is
a Java–based software to assist users in the analysis of wet lab data in context of biological
networks. My colleagues and I contribute to the development of VANTED and VANTED
add–ons in chapter 4 in sections 4.1 and 4.2.

2.2.2 The R programming language

R is a computer programming language for statistical computing and has broad capabilities
for the preparation of publication–ready graphics (Morandat et al., 2012). R supports a
command–line interface and is an interpreted programming language which is supported on
all major operating systems. There is a multitude of standard functionality such as classical
statistical tests, clustering, and multivariate analyses. The popular CRAN repository hosts
R packages for diverse fields of application and in 12/2016 there are about 10, 000 freely
available packages. There are many free tools for the development of R code such as the
RStudio IDE, devtools for the management of packages, and R–Forge as a central platform
for the development of R packages.

R is used for the development of a multitude of bioinformatics packages supporting im-
port/export capabilities, reporting tools, and adapter for libraries from foreign program-
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ming languages. Bioconductor is a free platform for open source software for the analysis
of wet lab data in molecular biology and metabolomics and in 12/2016 there are more than
1, 000 freely available packages (Gentleman et al., 2004). Popular R packages are genefilter
for the filtering of genes from high–throughput data, BioMart for data integration, and
GenomicAlignments for the handling of short genomic alignments (Bourgon et al., 2010;
Durinck et al., 2005; Lawrence et al., 2013).

Many well established R packages are subject to continuous development to keep the pack-
ages up–to–date, to extend the functionality, and to improve the usability. First, my
colleagues and I contribute to the development of the R package DiffLogo in chapter 5 in
section 5.2 to enable the visual comparison of sequence motifs (see also 2.3.2). Second, my
colleagues and I contribute to the development of the R-based web application MetFamily
in chapter 6 in section 6.1 to enable researchers the analysis of MS data on the level of
metabolite families (see also 2.3.3). Third, my colleagues and I contribute to the devel-
opment of the R packages xcms and CAMERA in chapter 6 in section 6.2 to improve the
extraction of isotope clusters from MS raw data (see also 2.3.3).

2.2.3 Databases

Databases have been invented in the 1960s for the persistent and structured storage and
convenient query of a set of related data and databases are nowadays indispensable in
industry and science. Access to the data is usually provided by a database manage-
ment system (DBMS) which is a software for the support of diverse functionality such as
database creation, database query, and database administration. Data which is managed
by databases includes scientific information, customer accounts, and weather data.

There are relational databases and NoSQL (”not only SQL“) databases. Relational databases
are based on the relational model of data proposed by E. F. Codd in 1970 (Codd, 1970).
The relational model is constituted by a set of linked tables to represent a part of the real
world. With relational databases users are able to perform powerful queries using differ-
ent query languages such as Object Query Language (OQL), Structured Query Language
(SQL) and XQuery. NoSQL databases, in contrast, do not rely on the relational model of
data in favor of response times, data transfer rates, and partition tolerance (Leavitt, 2010).
NoSQL databases go back to the 1960s, but sophisticated developments root in the 21th
century in times of big data and real–time web applications. Databases are an active field
of development both in industry and science and future developments aim at new data
models, concurrency control, and query optimization.

Databases in the life sciences are called biological databases and biological databases are
popular for the structured storage and query of biological data such as genomic DNA
sequences, 3D structures of proteins, and metabolite structures (Attwood et al., 2011).
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The integration of biological data from databases exhibits a major challenge which is
discussed in section 2.3.1.

2.2.4 Data integration and Ontologies

The continuously increasing availability of data and databases raises the problem to com-
bine data from different sources to overcome the shortcomings of the individual data
sources. The development of systems combining different databases began in the 1980s
and the data integration emerged to an active field of development both in industry and
science (J. M. Smith et al., 1986). The first concepts of data integration have been data
warehouses which extract data from heterogeneous sources into a single view schema.
Later, mediated schemas played a major role which involves the mapping of queries to
the individual data sources (Lacroix, 2003). Current developments concern the semantic
data integration tackling semantic conflicts in heterogeneous data sources such as different
currencies, different data attributes, and ambiguous terms.

Ontology-based data integration is a well–established approach to resolve the aforemen-
tioned semantic conflicts. Ontologies allow to explicitly define the meaning of terms and
their relations for a particular domain of interest in a form which is interpretable by both
humans and computers (Sowa, 1995). A controlled vocabulary represents a set of terms
without mutual relations and can be understood as a special case of ontology. Ontologies
are applied in context of the semantic web, biomedical informatics, and library science. An
introduction to the integration of biological data and ontologies in context of bioinformatics
is given in subsection 2.3.1.

2.3 Bioinformatics background

The manuscripts in this thesis touch different subjects in the field of bioinformatics and in
this section I give a brief introduction into the basics of these subjects. In subsection 2.3.1
I will introduce the integration of biological data, in subsection 2.3.2 I will introduce phy-
logenetic footprinting and phylogenetic shadowing, and in subsection 2.3.3 I will introduce
MS.

2.3.1 Integration of biological data

Classical research in the life sciences apply a reductionistic approach which means that
complex phenotypes are traced back to simple reasons. For instance, in case of diseases
caused by mutations in a single gene such as hemophilia, sickle cell anemia, and cystic
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fibrosis this approach works well. However, many problems in molecular biology such as
cancer development, the increase of crop yield, and diabetes can not be reduced to such
a direct cause and effect. Here, multiple factors need to be considered in frame of an
integrative approach.

The field of bioinformatics faces thousands of biological databases and the integration of
biological data from different sources is a prerequisite for more holistic analysis approaches
(Hernandez et al., 2004). There are many systems for the integration of biological data
such as SRS, BioMoby, and KEGG which enable life scientists to query biological data
from heterogenous data sources (Etzold et al., 1996; Wilkinson et al., 2002; Ogata et al.,
1999). A promising approach for the integration of biological data is the integration with
biological networks. The VANTED system is designed to assist users in the analysis of wet
lab data in context of biological networks (Junker et al., 2006). An analysis of user needs
unraveled a set of missing features such as file import capabilities, mathematical methods
for simulating metabolic pathways, and the support of standard graphical representations
for biological entities. My colleagues and I contribute to the development of VANTED in
chapter 4 in section 4.1 to support the analysis of biological data in context of biological
networks.

Many ontologies have been designed to assist life science researchers in structuring a par-
ticular field of interest such as the Gene Ontology for the description of gene functions,
ChEBI for the classification of small molecules, and the NCBI taxonomy for the classifi-
cation of species (Ashburner et al., 2000; Hastings et al., 2013; Sayers et al., 2009). Such
ontologies have been proved to support the integration of biological data and are the basis
for prevalent analyses such as the enrichment analysis. However, the unified denomination
of substances and meta data in biological data sets using ontologies and controlled vocabu-
laries was not supported in VANTED . My colleagues and I contribute to the development
of the DBE2 information system in chapter 4 in section 4.2 to tackle this problem.

2.3.2 Phylogenetic footprinting and phylogenetic shadowing

Phylogenetic footprinting is an approach for the identification of TFBS in DNA sequences
for a set of species. In case of many closely related species this approach is called phy-
logenetic shadowing (Boffelli et al., 2003). The DNA sequences are preprocessed to a set
of alignments, where each alignment comprises orthologous sequences from all considered
species or a subset thereof. First applications of phylogenetic footprinting go back to Tagle
et al. in 1988 and this approach has become increasingly applicable and lucrative as the
number of published genomes increases rapidly (Robinson et al., 2011).

The key idea of phylogenetic footprinting is that functional sequences such as TFBSs are
subject to negative selection during evolution. Hence, functional sequences should be less
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prone to mutations compared to flanking sequences which leads to a higher degree of
sequence conservation in these regions. The aim of phylogenetic footprinting is to identify
these regions.

Chromatin immunoprecipitation with high–throughput DNA sequencing (ChIP–seq) is an
essential technology for the identification of TFBSs in DNA sequences which correspond to
a TF of interest (Johnson et al., 2007). However, ChIP–seq is subject to different sources
of bias similar to many other techniques. Specifically, the binding–affinity bias leads to
the prediction of distorted sequence motifs and the extraction of a biased sets of TFBSs.
My colleagues and I develop a phylogenetic footprinting model which allows the estimation
and the diminishment of the binding–affinity bias in ChIP–seq data in chapter 5 in section
5.1.

As the number of available algorithms and sequence data sets increases, it becomes a more
and more important task to compare sequence motifs which have been extracted, e.g., using
different algorithm parameters and sequence data from different experiments, tissues, and
developmental stages (Colaert et al., 2009). These sequence motifs can be very similar
to each other and can not be compared by eye. There is no tool for the comparison of
sequence motifs which can handle arbitrary alphabets, which performs position–specific
comparisons, and which supports a high degree of user–customization. My colleagues and
I develop an appropriate tool called DiffLogo for the visual comparison of sequence motifs
in chapter 5 in section 5.2.

2.3.3 Mass spectrometry

Mass spectrometry is an important technique to measure the mass of particles in a sample
and early developments root in the late 19th century. The basis of modern mass spectrom-
etry was laid by Arthur Jeffrey Dempster and Francis William Aston in the early 20th
century (Dempster, 1918; Squires, 1998). Sector mass spectrometers have been impor-
tant in the Manhatten Project to separate different isotopes of uranium and more recent
developments have been awarded with multiple Nobel Prices.

Mass spectrometry is used in bioinformatics to measure the mass of thousands of small
molecules and proteins in biological samples and hence represents a vital technique in both
metabolomics and proteomics (Fenn et al., 1989). Measurements comprise mass spectra
which contain noisy peaks for each measured molecule. For the purpose of structural
elucidation these molecules are subjected to tandem mass spectrometry which involves
the fragmentation of molecules in order to measure the resulting fragments in MS/MS
spectra.

The analysis of mass spectra and MS/MS spectra is known as one of the major bottlenecks
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in metabolomics and tools for the comprehensive analysis of MS data in a reasonable
amount of time are urgently needed (Evans et al., 2009). A promising approach for the
comprehensive analysis of MS data is to consider biochemically meaningful groups instead
of each metabolite individually. These groups are denoted metabolite families and allow
to capture biochemical patterns in a glut of measurable metabolites. My colleagues and I
develop the tool MetFamily for the analysis of MS data on the level of metabolite families
in chapter 6 in section 6.1. In addition, it is a big challenge to identify and quantify
the individual metabolites in metabolite profiles and for this purpose my colleagues and I
implement an approach for the extraction and validation of isotope clusters from MS data
in chapter 6 in section 6.2.

2.4 Research objectives

In this chapter, I gave a brief introduction into the fields biology, computer science, and
bioinformatics. In the field of bioinformatics I revealed six major challenges with con-
siderable impact on current life science research. Two challenges are located in the field
”Integration of biological data“, two in the field ”Phylogenetic footprinting“, and two in the
field ”Data Processing and Interpretation of Mass Spectrometry Data“.

In the field ”Integration of biological data“ my colleagues and I wish to improve the inte-
gration of biological data in context of biological networks using VANTED and to provide
an ontology–assisted management of wet lab data in the VANTED system. In the field
”Phylogenetic footprinting“ my colleagues and I wish to detect and diminish the binding–
affinity bias in ChIP–seq data and to provide a tool for the visual comparison of sequence
motifs. In the field ”Data Processing and Interpretation of Mass Spectrometry Data“ my
colleagues and I wish to improve the extraction of isotope clusters from MS raw data and
to provide a freely available web application for the analysis of MS data on the level of
metabolite families.
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Peer-reviewed publications

This thesis is a cumulative thesis, accumulating research articles that have previously been
published in peer-reviewed international journals and combining these to a thesis. The
following list summarizes these publications. First authors are underlined and my name
(Treutler né Mehlhorn) is marked in bold.

• Hendrik Rohn, Astrid Junker, Anja Hartmann, Eva Grafahrend-Belau, Hendrik
Treutler, Matthias Klapperstück, Tobias Czauderna, Christian Klukas, and Falk
Schreiber. VANTED v2: a framework for systems biology applications. BMC systems
biology, 6(1):139+, November 2012. doi:10.1186/1752-0509-6-139

• Hendrik Mehlhorn and Falk Schreiber. DBE2 - management of experimental data
for the VANTED system. Journal of integrative bioinformatics, 8(2)162+, July 2011.
doi:10.2390/biecoll-jib-2011-162

• Hendrik Treutler and Steffen Neumann. Prediction, detection, and validation of
isotope clusters in mass spectrometry data. Metabolites, 6(4):37+, October 2016.
doi:10.3390/metabo6040037

• Hendrik Treutler, Hiroshi Tsugawa, Andrea Porzel, Karin Gorzolka, Alain Tissier,
Steffen Neumann, and Gerd Ulrich U. Balcke. Discovering regulated metabolite
families in untargeted metabolomics studies. Analytical chemistry, 88(16):8082-8090,
August 2016. doi:10.1021/acs.analchem.6b01569

• Martin Nettling, Hendrik Treutler, Jesus Cerquides, and Ivo Grosse. Detecting
and correcting the binding-affnity bias in ChIP-seq data using inter-species informa-
tion. BMC genomics, 17(1):347+, May 2016. doi:10.1186/s12864-016-2682-6

• Martin Nettling, Hendrik Treutler, Jan Grau, Jens Keilwagen, Stefan Posch, and
Ivo Grosse. DiffLogo: a comparative visualization of sequence motifs. BMC bioin-
formatics, 16(1):387+, November 2015. doi:10.1186/s12859-015-0767-x

I hereby declare that the copyright of the content of the articles Mehlhorn et al., 2011,
Nettling, Treutler, Grau, et al., 2015, Nettling, Treutler, Cerquides, et al., 2016, Rohn et
al., 2012, and Treutler and Neumann, 2016 is by the authors. These papers are available
at:

• Mehlhorn et al., 2011:
http://journal.imbio.de/index.php?paper_id=162

• Nettling, Treutler, Grau, et al., 2015:
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0767-x
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• Nettling, Treutler, Cerquides, et al., 2016:
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-016-2682-6

• Rohn et al., 2012:
https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-139

• Treutler and Neumann, 2016:
https://www.mdpi.com/2218-1989/6/4/37

I hereby declare that the copyright of the content of the article Treutler, Tsugawa, et al.,
2016 is by the American Chemical Society (ACS). The paper is available at:

• https://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b01569
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3 Paper summary

This cumulative thesis covers six publications which tackle the six challenges highlighted in
the introduction. As indicated in section 2.4, these publications touch three subject areas
in the life sciences with two publications each, namely the “Integration of biological data”
(Rohn et al., 2012; Mehlhorn et al., 2011), “Phylogenetic footprinting” (Nettling, Treut-
ler, Cerquides, et al., 2016; Nettling, Treutler, Grau, et al., 2015), and “Data Processing
and Interpretation of Mass Spectrometry Data” (Treutler and Neumann, 2016; Treutler,
Tsugawa, et al., 2016). A rough classification with respect to the four omics of molecu-
lar biology, namely genomics, transcriptomics, proteomics, and metabolomics, is given in
Figure 3.1.

3.1 The presented works in context

The presented publications have a potential impact on diverse research from all–over the
world and on each other as each publication contributes one peace of a bigger puzzle,
namely the understanding of biological systems in terms of systems biology. Systems biol-
ogy aims at modelling the emergent properties of biological systems and developments in
the fields “Integration of biological data”, “Phylogenetic footprinting”, and “Data Processing
and Interpretation of Mass Spectrometry Data” are a prerequisite for this pursuit.

The subject area “Integration of biological data” aims at relating biological data of differ-
ent types such as gene expression levels, protein modifications, and metabolite abundances.
This is important in the life science research as data integration enables a combined data
interpretation instead of interpreting each dataset individually. The subject area “Phy-
logenetic footprinting” is dedicated to the prediction of TFBSs in DNA sequences using
sequence alignments from phylogenetically related species. These functional elements con-
trol an important step in the regulation of gene expression and the prediction of TFBSs
by de novo motif prediction provides insights into gene regulatory networks. The subject
area “Data Processing and Interpretation of Mass Spectrometry Data” involves the study
of the small molecules in a tissue, organ, or organism and even these in single cells and
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Figure 3.1: Six publications in context of four omics. The six publications of the
dissertation at hand are shown in context of the four interconnected omics “Genomics”, “Tran-
sciptomics”, “Proteomics”, and “Metabolomics” which consider the four major biological enti-
ties DNA, RNA, proteins, and metabolites respectively. Publication reference and summary is
given in boxes for each publication. In the publication references authors with first–authorship
are underlined and I am marked in bold. In the summaries the kind of data is marked in bold
and the green sectors in the boxes indicate the appropriate kinds of omics.

exudates. Small molecules comprise metabolites, signalling molecules, and peptides and
the measurement of small molecules in metabolite profiles using MS allows comprehensive
snapshots of the physiology of the sample.

The analysis of biological datasets in context of biological networks is often a prerequisite
in recent research and VANTED has proven to be a powerful framework for this task (Rohn
et al., 2012). VANTED supports researchers in the analysis and visualization of biological
data in context of biological networks to draw biological conclusions in the frame of the
knowledge generation cycle in systems biology. The management of datasets in life science
projects using the DBE2 information system decreases the technical hurdle for researchers
and partners from industry to store, share, and analyze results from different experiments
in an ontology–assisted way in VANTED (Mehlhorn et al., 2011).

An important type of data is the metabolite profile which provides a snapshot of the physi-
ology of the sample of interest. The characterization of signals in metabolite profiles can be
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improved in terms of quantification and identification using isotope clusters (Treutler and
Neumann, 2016). The exhaustive extraction of isotope clusters from MS raw data using
xcms and CAMERA facilitates the mapping of metabolite profiles on metabolic pathways
using tools such as VANTED . In addition, an improved quantification of metabolites in
metabolite profiles enables the determination of more precise effect sizes in comparative
metabolomics studies using tools such as MetFamily (Treutler, Tsugawa, et al., 2016).
MetFamily is designed for the discovery of regulated metabolite families which can provide
strong biochemical hints towards differentially regulated metabolic pathways. In VANTED
these metabolic pathways can be analyzed in context of the metabolite profile which can
be stored and shared using the DBE2 information system. In addition, the regulation of
enzymes in metabolic pathways can be essential for the interpretation of metabolite profiles
and gene regulatory networks encode the entangled nature of this regulation.

DNA binding motifs of TFs are crucial for the elucidation of gene regulatory networks and
ChIP–seq has become the major technology for the detection of these DNA binding motifs.
Unfortunately, ChIP–seq data is distorted by the ubiquitous binding–affinity bias which
leads to an artificial sharpening of the detected DNA binding motifs. The detection and
correction of this bias is possible using a phylogenetic footprinting model which facilitates
the construction of precise gene regulatory networks (Nettling, Treutler, Cerquides, et al.,
2016). Gene regulatory networks are specific for the organism, tissue, and developmental
process of interest which is reflected in slightly different DNA binding motifs. Often, such
motif differences are not apparent using traditional approaches. DiffLogo is designed for
the visual comparison of motifs in DNA, RNA, and proteins and allows the clustering of
multiple motifs. This allows more mechanistic insights into the differences between gene
regulatory networks under different conditions which might advance our understanding of
complex biological processes (Nettling, Treutler, Grau, et al., 2015).

In summary, the interpretation of biological data in context of biological networks is a
promising approach and tools such as VANTED are needed to fulfil this task. The DBE
information system implements an ontology–assisted management of biological data in
VANTED to facilitate the integration of biological data. In case of metabolite profiles, the
precise quantification and identification of metabolites is a prerequisite for downstream
analyses and data integration and continuously refined tools such as xcms and CAMERA
approach this challenge. In addition, the web application MetFamily assists biologists and
biochemists in the comparative analysis of metabolite profiles to gain biochemical hints
such as the activation of certain enzymes and disordered metabolic pathways. De novo
motif prediction with phylogenetic footprinting is a powerful approach for the construction
of gene regulatory networks and tools implementing this approach need to incorporate
certain sources of bias such as the binding–affinity bias. The extracted motifs differ under
different conditions and researchers need tools such as DiffLogo to perform custom motif
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comparisons in order to interpret findings, document work, and present results. Hence, the
presented publications tackle different challenges in the life sciences and complement each
other in order to gain a better understanding of biological processes in terms of systems
biology.

In the next sections, I will summarize the objectives, methods, and results of the six
publications in this thesis. In section 3.2 I will summarize two publications regarding the
subject area “Integration of biological data”, in section 3.3 I will summarize two publications
regarding the subject area “Phylogenetic footprinting”, and in section 3.4 I will summarize
two publications regarding the subject area “Data Processing and Interpretation of Mass
Spectrometry Data”.

3.2 Integration of biological data

I will summarize the publication entitled ”VANTED v2 – A framework for systems biology
applications” in subsection 3.2.1 and I will summarize the publication entitled ”DBE2 –
Management of experimental data for the VANTED system” in subsection 3.2.2.

3.2.1 VANTED v2 – A framework for systems biology applications

The integration of biological data is often a requirement for the data analysis in life sci-
ence projects. Here, data of different types such as genomics data, proteomics data, and
metabolomics data is brought into context. My colleagues and I contributed to the develop-
ment of the VANTED system which aims at the integration and interactive visualization of
omics–data in context of biological networks such as metabolic pathways, gene regulatory
networks, and signal transduction networks (Rohn et al., 2012). The mission of VANTED
is to support biologists, biochemists, and bioinformaticians in the network–assisted inter-
pretation of biological data sets and the preparation of publication–ready figures. Please
find a reprint of this publication in chapter 4 in section 4.1.

Methods

The VANTED system was published in 2006 (Junker et al., 2006) and is designed as a
framework for diverse functionality including statistical tests for data analysis, algorithms
for graph layout, and interactive panels for the graphical user interface. Functional modules
are encapsulated in plug–ins and add–ons which can be added during run–time. The
code base of VANTED is written in Java and has been restructured in the frame of this
publication to facilitate the maintainability and further developments.
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VANTED supports seven main tasks, namely i) the import of experiment data and bio-
logical networks, ii) the visualization of experiment data in context of biological networks
in a standardized graphical representation (Systems Biology Graphical Notation (SBGN)),
iii) the integration of data from different types and different sources, iv) the simulation of
mathematical models representing biological networks, v) the exploration of and interac-
tion with experiment data in context of biological networks, vi) the topological analysis of
biological networks and the statistical analysis of experiment data, and vii) the export of
results to publication–ready figures and the export of network data and experiment data
to computer–readable formats. The execution of these tasks requires diverse techniques
regarding different programming languages, different concepts for user interaction, data
management, and more.

Results, Discussion, and conclusions

VANTED has been widely used for the analysis of biological data in context of biological
networks (Dongen et al., 2009; Grafahrend-Belau et al., 2009; Zurbriggen et al., 2009). In
12/2016, Google Scholar1 reports 347 citations for the original paper from 2006 and 72

citations for the presented paper from 2012. An exemplary use case is the visualization of
metabolite measurements and mRNA transcript abundances in the context of metabolic
pathways from KEGG in SBGN. This use case integrates different types of experimen-
tal data with pathway information from KEGG in a standardized graphical representa-
tion which enables to ask new biological questions in the frame of life science projects.
The VANTED system is open–source2 and freely available at http://www.vanted.org/.
VANTED is available for all major operating systems and includes data input templates
for wet lab data, support for different biological network databases such as KEGG (Ogata
et al., 1999), Biomodels (Le Novere et al., 2006), and MetaCrop (Schreiber et al., 2011),
and further documentation.

Potential future developments concern the analysis of biological data in context of multiple
biological networks from different domains such as protein–protein interaction networks,
co–expression networks, and metabolic networks. Users will need efficient data handling
strategies, additional algorithms, and an intuitive user interface for this purpose. A part
of these requirements is currently under development.

1Google Scholar: https://scholar.google.de/
2VANTED source code hosted on BitBucket: https://bitbucket.org/vanted-dev/vanted/
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3.2.2 DBE2 – Management of experimental data for the VANTED sys-
tem

The management of datasets is crucial in most life science projects because wet lab data
from different contributors needs to be exchanged in order to share and combine knowledge
from different experiments. My colleagues and I developed the DBE2 information system
(DBE2 = Database for Biological Experiments 2) for the management of experimental
data for the VANTED system (Mehlhorn et al., 2011). The DBE2 information system
is easy–to–use and supports user–rights management, ontology–controlled vocabularies,
worldwide accessibility, and the opportunity to load, save, and edit the data. The mission
of DBE2 is to support researchers in the sharing, ontology–assisted integration, and analysis
of biological datasets in VANTED . Please find a reprint of this publication in chapter 4 in
section 4.2.

Methods

We designed the DBE2 information system as a three-tier architecture consisting of a
presentation tier interacting with the user, a logic tier implementing the exchange of data,
and a data tier for the persistent storage of data.

We implemented the presentation tier in Java and denote it DBE2 client. The DBE2
client is a VANTED add–on for a seamless integration into VANTED . The DBE2 client
supports a graphical user interface and users with just basic technical capabilities are able
to load, save, share, and edit experiment data.

We implemented the logic tier as a Java servlet and denote it DBE2 servlet. The DBE2
servlet was installed at the IPK Gaterleben in 2010. The DBE2 servlet implements the
download, save, and edit of experiment data including a user right management with user
groups.

We implemented the data tier as a Oracle–database (version 11g) and denote it DBE2
database. The DBE2 database was installed at the IPK Gaterleben in 2010. The relational
database schema of the DBE2 database represents data for user management, experiment
data, and basis data. The user management data represents user accounts and associates
user accounts with user groups in which users are able to share experiment data. The
experiment data is organized in a tree–structure in four levels to represent data of differ-
ent types. The four levels represent experiments, conditions, samples, and measurements
where the first three levels comprise experiment meta data and the fourth level represents
floating-point numbers, pictures, volumes, networks, and gradients. The basis data rep-
resents a controlled vocabulary of unified terms of general interest such as species names,
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measurement units, and substance names. Hence, experiment data can be aggregated for
certain species or measured substances which eases the integration of this data.

Names of chemical compounds and the corresponding taxonomy of compound classes are
accessible from the ontology Chemical Entities of Biological Interest (CHEBI) (Hastings
et al., 2013). Species names and the corresponding species taxonomy are accessible from
the ontology NEWT UniProt Taxonomy Database (NEWT) (Phan et al., 2003). Both
ontologies are retrieved in real time from the Ontology Lookup Service (OLS) which is a
compendium of more than 150 life science ontologies accessible through an unified interface1

(Côté et al., 2010).

Results, Discussion, and conclusions

The DBE2 information system was published in July 2011 and reported 43 registered users
and 73 stored datasets. The DBE2 information system has been used several years in differ-
ent life science projects with users in science and industry. An exemplary use case could be
that a researcher from Australia uploads metabolite measurements to the DBE2 database,
a project collaborator in the United States downloads this data, adds protein abundance
measurements, and uploads the complemented data in turn, and a project collaborator in
Germany downloads this data, integrates it into metabolic pathways, and draws biologi-
cal conclusions. Personal interrogations with users indicated that the functionality of the
DBE2 information system is satisfiable and that some adaptions of the user interface could
improve the user experience. The DBE2 information system is currently unavailable for
the VANTED system since VANTED of version 2.3 due to extensive code changes in the
VANTED framework which break the code compatibility to the DBE2 client.

3.3 Phylogenetic footprinting

I will summarize the publication entitled ”Detecting and correcting the binding–affinity
bias in ChIP-seq data using inter–species information” in subsection 3.3.1 and I will sum-
marize the publication entitled ”DiffLogo: a comparative visualization of sequence motifs”
in subsection 3.3.2.

1Ontology Lookup Service at EMBL-EBI: https://www.ebi.ac.uk/ols/
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3.3.1 Detecting and correcting the binding–affinity bias in ChIP-seq
data using inter–species information

The prediction of TFBSs and their motifs is essential for understanding transcriptional gene
regulation. ChIP–seq has become the major technology to uncover genomic regions con-
taining those binding sites, but motifs predicted by traditional computational approaches
using these data are distorted by the ubiquitous binding–affinity bias. My colleagues and
I contributed to the detection and correction of the binding–affinity bias in ChIP–seq data
using inter-species information (Nettling, Treutler, Cerquides, et al., 2016). The objective
of this work is the development of a phylogenetic footprinting model which is capable of
verifing the presence of binding–affinity bias in ChIP–seq data and to extract corrected
motifs from this data. Please find a reprint of this publication in chapter 5 in section
5.1.

Methods

We suppose that the binding–affinity bias can not be detected based only on ChIP–seq
data from the reference species, but it can be detected using ChIP–seq data from the
reference species and orthologous sequences from phylogenetically related species. The key
idea is that the effect of the binding–affinity bias is strong in the reference species and that
this effect decreased in phylogenetically related species due to mutations which allows the
quantification of the binding–affinity bias. A toy example can be found in the manuscript
in section ”Using sequence information of phylogenetically related species to detect the
binding–affinity bias”.

We proposed a new phylogenetic footprinting model for the quantification and correction
of the effect of the binding–affinity bias from alignments of TFBSs and flanking sequences.
The Java implementation of this model is freely available1. We estimated the proposed phy-
logenetic footprinting model using a modified EM algorithm. The binding–affinity bias was
quantified using estimates of a special parameter for the reference species which represents
an inverse temperature derived from the Boltzmann distribution from thermodynamics.
We measured the prediction accuracy of our model using the classification performance,
namely 100 fold stratified repeated random sub-sampling validation. We used DiffLogo for
the visualization of motif differences between traditional and corrected motifs (Nettling,
Treutler, Grau, et al., 2015).

1PhyFoo source code on GitHub: https://github.com/mgledi/PhyFoo
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Results, Discussion, and conclusions

We analyzed alignments of human ChIP–seq positive regions of five TFs with orthologous
sequences from four other species. Based on these datasets we observed that the binding–
affinity bias is reflected by an increased information content in motifs extracted from the
reference species and that this increase of information content fades in other species pro-
portional to the phylogenetic distance to the reference species. Hence, the binding–affinity
bias leads to an artificial sharpening of the extracted motif and we illustrated this ef-
fect using DiffLogo (Nettling, Treutler, Grau, et al., 2015). We showed that correcting the
binding–affinify bias improves motif prediction as quantified using the classification perfor-
mance, i.e. the accuracy to discriminate motif–bearing alignments from non–motif–bearing
alignments.

We suppose that present motifs in databases and literature are artificially sharpened ver-
sions of the true motif which potentially distorts our understanding of gene regulation.
For example, corrected motifs can be used for the precise in silico prediction of binding
sites, whereas motifs distorted by the binding–affinity bias would lead to imprecise in silico
predictions. The refinement of motifs from databases and literature might lead to the pre-
diction of novel binding sites, cis-regulatory modules, or gene-regulatory networks which
might advance our understanding of transcriptional gene regulation as a whole.

3.3.2 DiffLogo: a comparative visualization of sequence motifs

The increasing amount of sequence data, motif prediction algorithms, and published motifs
involves the demand and opportunity to compare different sequence motifs such as TF-
BSs, splice sites in pre–mRNAs, and phosphorylation sites in proteins. The comparison of
sequence motifs using the de facto standard sequence logo (Schneider et al., 1990) is often
difficult in case of highly similar motifs which have been extracted using different algo-
rithms or from different samples. My colleagues and I developed DiffLogo for the intuitive
visualization of subtle differences among similar sequence motifs such as binding patterns
of one TF in different cell types, binding patterns of different TFs, and protein domains
in different species (Nettling, Treutler, Grau, et al., 2015). The mission of DiffLogo is to
support researchers in the comparative motifs analysis in order to interpret findings, docu-
ment work, share knowledge, and present results. Please find a reprint of this publication
in chapter 5 in section 5.2.
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Methods

The proposed graphical representation of motif differences is inspired by the well–known
sequence logo and denoted difference logo. A difference logo of two motifs depicts for each
motif position a stack of symbols representing DNA bases, RNA bases, or amino acids.
The height of each stack is proportional to the difference between the symbol distributions
in the respective motif position of both motifs.

By default, the Jensen–Shannon entropy is used for the quantification of position–specific
distribution differences and the height of each base is proportional to the probability dif-
ference. However, the calculation of stack height and base height is customizable by the
user with custom measures to enable the usage of difference logos in context of different
biological questions. DiffLogo is implemented as an R package and users with moderate
experience in R should be able to customize DiffLogo to user–specific demands.

The comparison of N motifs is achieved by a table with N × (N − 1) pair–wise difference
logos. The rows and columns of the table are ordered by a optimal leaf–ordered cluster
tree to place similar motifs next to each other. The overall motif differences are displayed
by a color–gradient of the background color of each difference logo.

Results, Discussion, and conclusions

Motifs from the domains genomics, transcriptomics, and proteomics can be compared using
position weight matrices (PWMs) or sequence alignments. We compared DNA motifs
from the human insulator CTCF from different cell lines using DiffLogo and successfully
reproduced literature findings. In addition, we presented specific differences between F-
box protein–protein binding domains from the three kingdoms ”metazoa”, ”fungi”, and
”viridiplantae”.

The proposed approach is implemented in the open–source R package DiffLogo and freely
available at Bioconductor1. The package comprises example data, example code, and
further documentation. In 2016, the DiffLogo package was downloaded approximately 150

times per month in average which suggests that a remarkable number of researchers can
profit from the proposed approach.

A prerequisite for the usage of DiffLogo are basic capabilities in the R programming lan-
guage, but we are aware that many researchers in the life sciences lack this requirement.
In addition, the proposed version of DiffLogo does not properly align motifs with phase
shifts or DNA motifs with reverse complements. Hence, my colleagues and I implemented

1DiffLogo source code on Bioconductor:
https://www.bioconductor.org/packages/release/bioc/html/DiffLogo.html
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the web–server WebDiffLogo for the construction and visualization of multiple motif align-
ments12.

3.4 Data Processing and Interpretation of Mass Spectrome-
try Data

I will summarize the publication entitled ”Discovering Regulated Metabolite Families in
Untargeted Metabolomics Studies” in subsection 3.4.1 and I will summarize the publication
entitled ”Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry
Data” in subsection 3.4.2.

3.4.1 Discovering Regulated Metabolite Families in Untargeted Metabolomics
Studies

The elucidation of metabolic processes provides deep insights into complex processes in
the cell and MS is a key technology for the identification and quantification of metabo-
lites in biological samples. The measurement of fragment spectra is often crucial for the
characterization of the molecular structure of metabolites. Usually, the structural eluci-
dation of metabolites is done one–by–one and known as one of the major bottlenecks in
metabolomics.

My colleagues and I developed an approach for the discovery of metabolite families from
fragment spectra. Metabolite families are classes of biochemically related metabolites and
the grouping of metabolites in metabolite families breaks down the wealth of measur-
able metabolites to meaningful classes. A subset of these metabolite families is differ-
entially regulated in different samples and we denote these metabolite families regulated
metabolite families. Regulated metabolite families provide a birds eye view in comparative
metabolomics studies (Treutler, Tsugawa, et al., 2016). The proposed approach is imple-
mented in a freely–available web app denoted MetFamily . The mission of MetFamily is to
support researchers with limited technical capabilities in the comparative analysis of MS
data on the level of metabolite families. Please find a reprint of this publication in chapter
6 in section 6.1.

1WebDiffLogo source code on GitHub:
https://github.com/mgledi/DiffLogoUI

2WebDiffLogo web page:
http://difflogo.com
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Methods

The input is a metabolite profile comprising the abundance of metabolites in different
samples and a fragment library comprising fragment spectra of these metabolites. Hierar-
chical cluster analysis on fragment spectra is used to structurally relate metabolites for the
detection of biochemically related metabolites denoted metabolite families. Principal com-
ponent analysis on metabolite abundances is used for the detection of group–discriminating
metabolites. The combination of both orthologous analyses allows the detection of metabo-
lite families with differential regulation in different samples denoted regulated metabolite
families.

The proposed approach is implemented in the easy–to–use web app MetFamily . It is
recommended to obtain the metabolite profile and the fragment library from the raw data
using the tool MS-DIAL (Tsugawa et al., 2015), but also other data sources have been
successfully used as documented in the MetFamily input specification1.

MetFamily is implemented as a Shiny web application in R version 3.3. The Shiny server
hosting the Shiny web app is packaged in a docker container. Multi–user support is enabled
by multiple docker instances which are orchestrated using Docker Compose.

Results, Discussion, and conclusions

The proposed approach was applied in a study comparing tomato trichomes with trichome–
free leaves. We discovered two regulated metabolite families which were specific to tri-
chomes, namely branched chain acyl sugars and sesquiterpene glucosides. Interestingly, the
observed diversity of 73 acyl sugars in trichomes illustrates the low substrate specificity of
BAHD acyltransferases which are upregulated in tomato glandular trichomes. Hence, we
uncovered links between enzymatic promiscuity and organ-specific regulation of enzymes
using MetFamily .

MetFamily moves biochemical questions in the centre of attention and preserves the user
not to see the wood for the trees. The proposed analysis pipeline decreases the workload for
the analysis from several days to a few hours which relaxes one of the major bottlenecks
in metabolomics. The proposed approach is implemented in the easy–to–use web app
MetFamily which is open–source2 and freely available3. During data import there are
user–customizable parameters which allow the adaption ofMetFamily to data from different

1MetFamily input specification:
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.6b01569/suppl_file/ac6b01569_si_004.pdf

2MetFamily source code on GitHub: https://github.com/Treutler/MetFamily
3MetFamily web page: http://msbi.ipb-halle.de/MetFamily/
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instruments. There is documentation for the functions of MetFamily1.

Future developments concern the automated detection of metabolite families from fragment
spectra to allow the halve–automated annotation of metabolite families in the MetFamily
web app. Researchers without expert knowledge in the interpretation of fragment spectra
would strongly benefit from this feature. In addition, a collaboration with the researchers
behind the related tool MS2LDA23 (Hooft et al., 2016) might be beneficial for both ap-
proaches could complement each other.

3.4.2 Prediction, Detection, and Validation of Isotope Clusters in Mass
Spectrometry Data

The detection of isotope clusters allows an improved identification and quantification of
metabolites in MS data. Isotope clusters enable precise predictions of the molecular formula
of metabolites which is crucial for the structural elucidation. In addition, isotope clusters
allow an improved quantification of metabolites and database searches with high precision.
My colleagues and I developed an approach for the prediction, detection, and validation of
isotope clusters in MS data (Treutler and Neumann, 2016). This approach can be applied
to liquid chromatography–high resolution MS data and can easily extend existing analysis
pipelines based on the frequently–used R packages xcms and CAMERA. The purpose of
the proposed approach is an exhaustive extraction of reliable isotope clusters from MS
data in order to improve the identification and quantification of metabolites. Please find
a reprint of this publication in chapter 6 in section 6.2.

Methods

After measurement using mass spectrometers, feature detection algorithms perform peak
picking to extract basic properties about peaks in the raw data such as mass–to–charge
ratio, retention time, and peak height. A prerequisite for the prediction of isotope–signals
in the raw data is a traditional peak picking which results in a set of peaks. The location of
putative isotope peaks is predicted on basis of these peaks using chemical prior knowledge
about the composition of isotope clusters. Additional isotope peaks are extracted in a
second peak picking step using the feature detection algorithm centWave (Tautenhahn et
al., 2008) given the predicted isotope peaks.

1MetFamily user guide:
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.6b01569/suppl_file/ac6b01569_si_003.pdf

2MS2LDA web page: http://ms2lda.org/
3MS2LDA source code on GitHub: https://github.com/sdrogers/MS2LDA
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The subsequent detection of isotope clusters involves the arrangement of isotope peaks to
putative isotope clusters. Putative isotope clusters are validated depending on the metabo-
lite mass based on database statistics. These database statistics are compiled on compound
databases such as ChEBI, KEGG, and PubChem to capture the typical distribution of iso-
tope peaks from compounds of different mass ranges.

The proposed approach for the prediction, detection, and validation of isotope clusters is
implemented in R version 3.3. The prediction and detection of isotope peaks has been
integrated into the popular R package xcms (C. A. Smith et al., 2006) and the detection
and validation of isotope clusters has been integrated into the commonly used R package
CAMERA (Kuhl et al., 2011).

Results, Discussion, and conclusions

We extracted 37% more isotope peaks from measurements of Arabidopsis thaliana extracts.
In a mix of standard compounds we predicted the correct molecular formula in 92% of
the cases in the top three ranks. Statistics on different compound databases suggested
that a mass–dependent validation of isotope clusters is more precise compared to existing
approaches for the validation of isotope clusters.

The proposed approach is implemented in the open–source R packages xcms version 1.50.0

and CAMERA version 1.30.0 and is freely available at Bioconductor12. Both packages
comprise example code and further documentation including code and documentation for
the proposed approach. In 2016, the average number of package downloads per month was
more than 1500 in case of the xcms package and more than 600 in case of the CAMERA
package which suggests that a remarkable number of researchers can already profit from
the proposed approach. In 12/2016, Google Scholar3 reports 1693 citations for the xcms
paper from 2006 and 205 citations for the CAMERA paper from 2011.

Future developments concern the adaption of the proposed approach for the prediction
and detection of further related signals in MS data such as adducts and neutral losses.
Especially the exhaustive extraction of signals from different adducts promises an improved
detection of the neutral mass of metabolites which is a prerequisite for the identification
of metabolites from MS data. Currently, the xcms package is restructured for version 3.0

to establish a flexible basis for future developments4.

1xcms source code on Bioconductor:
https://www.bioconductor.org/packages/release/bioc/html/xcms.html

2CAMERA source code on Bioconductor:
https://www.bioconductor.org/packages/release/bioc/html/CAMERA.html

3Google scholar: https://scholar.google.de/
4xcms 3.0 source code on GitHub: https://github.com/Treutler/xcms/tree/xcms3
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Glossary

ChIP-seq (high-throughput) sequencing of immunoprecipitated chromatin.

DNA Deoxyribonucleic acid.

IDE Integrated Development Environment.

mRNA messenger RNA.

MS Mass Spectrometry.

RNA Ribonucleic acid.

SBGN Systems Biology Graphical Notation.

TF transcription factor.

TFBS transcription factor binding site.
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4 Integration of biological data

Publications presented in this thesis related to “Integration of biological data” are entitled
“VANTED v2: a framework for systems biology applications” (Rohn et al., 2012) and
“DBE2 – Management of experimental data for the VANTED system” (Mehlhorn et al.,
2011).

4.1 VANTED v2: a framework for systems biology applica-
tions

In the following reference the first author is underlined and I am marked in bold.
Hendrik Rohn, Astrid Junker, Anja Hartmann, Eva Grafahrend-Belau, Hendrik Treut-
ler, Matthias Klapperstück, Tobias Czauderna, Christian Klukas, and Falk Schreiber.
VANTED v2: a framework for systems biology applications. BMC systems biology, 6(1):139+,
November 2012. doi:10.1186/1752-0509-6-139

https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-139
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VANTED v2: a framework for systems biology
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Abstract

Background: Experimental datasets are becoming larger and increasingly complex, spanning different data
domains, thereby expanding the requirements for respective tool support for their analysis. Networks provide a basis
for the integration, analysis and visualization of multi-omics experimental datasets.

Results: Here we present VANTED (version 2), a framework for systems biology applications, which comprises a
comprehensive set of seven main tasks. These range from network reconstruction, data visualization, integration of
various data types, network simulation to data exploration combined with a manifold support of systems biology
standards for visualization and data exchange. The offered set of functionalities is instantiated by combining several
tasks in order to enable users to view and explore a comprehensive dataset from different perspectives. We describe
the system as well as an exemplary workflow.

Conclusions: VANTED is a stand-alone framework which supports scientists during the data analysis and
interpretation phase. It is available as a Java open source tool from http://www.vanted.org.

Keywords: Biological networks, Data visualization, Data integration, Data analysis, -Omics, Model simulation

Background
Systems biology comprises the iterative cycling between
experimental (wet-lab) and computational (dry-lab)
approaches with the aim of generating a holistic under-
standing of biological systems. The complexity and
comprehensiveness of experimental datasets is exponen-
tially increasing thereby elevating the requirements for
respective tool support. This motivates the development
of adequate software solutions supporting the analy-
sis, integration and visualization of multiple large-scale
datasets.
The reconstruction of different kinds of networks (e. g.,

metabolic, signaling, protein interaction and gene regula-
tory networks [1]) based on experimental datasets allows
for the representation of the diverse nature of biological
systems on a global scale. Networks provide the basis for
qualitative and quantitative network analysis, for exam-
ple, for structural analysis and simulation. Networks can

*Correspondence: rohn@ipk-gatersleben.de
1Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3,
06466 Gatersleben, Germany
Full list of author information is available at the end of the article

furthermore be used for the integrated visualization of
multi-omics experimental datasets. In combination with
exploration functionalities and further data analysis steps
such as correlation and clustering this is crucial for the
gain of knowledge from large-scale datasets. New insights
lead to the generation of new hypotheses giving feedback
to the wet-lab, thereby closing the knowledge generation
cycle in systems biology.
To deal with technical advances and the consequent

increase of genome-wide datasets, a number of very
diverse tools has been developed for network-centered
visualization and analysis of experimental data [2,3]. A
tool supporting every step of the knowledge generation
cycle has to provide the following functionalities: (1)
import of data and networks as well as (2) the export of
data analysis results and visualizations in different stan-
dardized file formats to utilize existing resources, com-
municate findings and distribute new knowledge among
researchers, (3) a variety of analytical methods to extract
novel biological findings from large-scale datasets thereby
reducing the complexity of the dataset, (4) data integra-
tion to combine data from multiple data domains and

© 2012 Rohn et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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support data analysis on a systems level and in the context
of the ’global’ expertise, (5) model simulation to analyze
the dynamic behavior and function of biological systems,
thereby elucidating potential targets of biotechnological
usage, (6) visualization to ease the understanding of com-
plex datasets and help to elucidate previously unknown
functional relations and (7) exploration and interaction
functionalities to support visual analysis of large scale
datasets and to adapt visualizations according to individ-
ual purposes.
Here we present VANTED (version 2) (hereafter named

VANTED), a framework for systems biology applications,
which emerged from the initial VANTED version [4]. Based
on the previously described functionalities it comprises a
comprehensive set of tasks ranging from network recon-
struction, data visualization, integration of various data
types, network simulation to data exploration combined
with a manifold support of systems biology standards for
visualization and data exchange.
According to Figure 1 we will first introduce the seven

main tasks of VANTED with a detailed explanation of vari-
ous sub-tasks and indicate the possibilities for combining
them in order to create systems biology workflows. In
the second section an exemplary workflow is instanti-
ated, demonstrating the combination of sub-tasks in order
to explore a complex metabolite dataset. Finally, we dis-
cuss the benefits of the VANTED framework and describe
potential future use cases and corresponding develop-
ments of the system.

Implementation
The initial VANTED framework was published in 2006 [4]
and is widely used throughout the biologists community
(see, for example, [5-11]). In the last years, the frame-
work has been substantially extended and the structure
has been changed by out-sourcing of sub-tasks from the
VANTED core into add-ons, which are functional modules
that can be added during run-time (see Table 1). Such
modular approaches allow for a stable and easily main-
tainable framework core while enabling users to com-
pose a set of functionalities according to individual pur-
poses (see [12,13] for other examples). VANTED has been
extended by several important technical improvements
such as identifier enrichment for network elements, new
input and output interfaces, self-organizing map cluster-
ing (SOM)[14], KEGG editor functionality [15] and many
more. The new VANTED framework provides a diverse set
of functionalities which support system biologists in visu-
alizing and analyzing large-scale datasets (see Figure 1).
These can be roughly categorized into seven main tasks,
explained in the following sections and Table 1.

Import
Common network exchange formats are supported such
as SBML [16], BioPAX [17], KGML [18], GML [19],
DOT [20], SBGN-ML [21] and SIF [12] thereby enabling
the exchange of data throughout the community. Var-
ious databases (e.g., KEGG [22]) provide network files
which can be imported into VANTED via drag-and-drop.

IMPORT

EXPORT

NETWORK AND DATA ANALYSIS

IMAGE NETWORK

PNG

PDF

JPG SVG

PPT

DATA

NETWORK DATA
GML

GraphML

SIMULATION

GML

GraphML

Excel CSV

CSV

Excel

Statistics

VISUALIZATION

EXPLORATION AND 
INTERACTION

INTEGRATION

TASKS

DAT

KGMLSBML
SBGN -ML BioPAX

PNML

DOT SIF

SBML
SBGN -ML

PNML

SBGN -ML DBE²

DBE²

BioPAX

Figure 1 Overview of tasks supported by VANTED. After the initial import of network and experimental data, various tasks can be performed in a
combinatorial fashion in order to instantiate a systems biology workflow. The export of results and visualizations is possible at each step of the
workflow.
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Table 1 Summary of tasks supported by VANTED

Task Sub-Tasks Implemented in

Import • networks (GML, GraphML, SBML, KGML, SIF,

DOT, BioPAX, SBGN-ML, PNML) core, METACROP add-on, DBE2

add-on

• experimental data (XLS, XLSX∗ , CSV)
• connection to experiment database DBE2

• connection to network databases

(MetaCrop, KEGG, RIMAS)

Visualization • charts (line, bar, pie, heat maps) on nodes and edges core, SBGN-ED add-on,

HIVE add-on, FLUXMAP

add-on

• automatic network layouts (e. g., Graphviz,

force-directed, tree layout)

• SBGN support

• flux data support

• 3D visualization of networks and multimodal data

Integration • mapping of numerical or multimodal data

• mapping tables, identifier mapping

• linking other resources core, HIVE add-on

Simulation • constraint-based analysis FBA-SIMVIS add-on,

• Petri net analysis PETRINET add-on

Exploration and interaction • panning, zooming, collapsing, search, selection

• network exploration

• brushing, image exploration core, GLIEP add-on, HIVE
add-on

Analysis • networks (centralities, shortest path, cycle detection, motifs) core, CENTILIB add-on

• statistics (correlation, clustering, t-test)

• enrichment analysis

Export • raster graphics (PNG, JPG), vector graphics

(SVG, PDF, PPT, SBGN-ML) core, DBE2 add-on

• interactive websites

• experimental data (XLS, XML, DBE2)

• networks (GML, GraphML, DAT (Metatool),

SBML, SBGN-ML, PNML)

The first column comprises the task covered by the VANTED framework. The second column shortly summarizes sub-tasks. Underlined sub-tasks indicate new
functionalities developed since the initial VANTED publication in 2006 [4]. The third column lists the modules of the VANTED framework (VANTED core, add-ons) that
implement the described tasks.

VANTED is directly connected to the MetaCrop and the
RIMAS databases. The MetaCrop database [23] con-
tains manually curated information about metabolic path-
ways of major crop plants and corresponding networks
in SBGN [24]. In addition to metabolic pathways the
database comprises information about reaction kinetics
and gene identifiers as well as related literature references.
In order to filter, explore and import this information,
the METACROP add-on provides seamless access [25].
Besides metabolic networks, gene regulatory networks of

the RIMAS web portal [26] can be directly accessed. This
information resource comprises SBGN-style networks
about regulatory interactions during seed development of
Arabidopsis thaliana.
The import of experimental data is preferably done by

using XLS templates, which enable a structured import
together with meta-data. Alternatively, plain text or CSV
files may be used to import large datasets such as gene
expression data, but require manual enrichment with
meta-data. For unlimited accessibility, persistent storage
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and exchange of experimental data, the DBE2 informa-
tion system [27] is accessible via the DBE2 add-on. The
add-on utilizes ontologies from the Ontology Lookup Ser-
vice [28] to unify terms such as compound names, species
names and measurement units aiming at a facilitated data
integration. As VANTED, DBE2 supports different data
types from numerical data to images, three-dimensional
volumes and networks.

Visualization
Networks are represented as graphs composed of nodes
and edges with fully customizable visual appearance.
Numerous visual attributes such as the position, size,
color and frame thickness of nodes as well as the color
and thickness of edges and other visual attributes such as
labels can be adapted according to individual purposes.
In addition, a specialized set of node and edge shapes is
provided, which build the basis for an SBGN compliant
network visualization. SBGN-ED [29] enables VANTED to
adapt networks for all SBGN languages in order to facil-
itate a standardized visual representation of biological
entities. The visualization of such maps can be validated
for syntactic and semantic correctness according to the
SBGN specification.
Readable network layouts are important to improve

the visual representation of networks. Besides the man-
ual layout of network elements, automated graph layout
algorithms are provided by calling the external Graphviz
layouter API [30] or executing self-implemented layouters
based on Tollis et al. [31] such as the force-directed layout,
tree layout, circle layout, expression matrix layout, grid
layout, subgraph layout and edge-routing algorithms. Fur-
ther editing or improvement of automatic layouts can be
done bymanual curation using nodemerging and splitting
algorithms. The latter is important for splitting frequently
occurring nodes such as ATP or CO2 in metabolic net-
works, thereby preventing edge-crossings throughout the
network.
VANTED offers the integration of various datasets into

network nodes and edges (data mapping) thereby enabling
a network-based view on large-scale datasets. Options for
visual representation of experimental data include shape
and color coding of nodes and edges as well as more
complex visualizations such as bar charts, pie charts,
line charts and heat maps. Experimental factors of com-
plex datasets such as time-resolution, varying genotypes
and environmental conditions can be represented within
one chart. Visualization of charts is performed by call-
ing the JFREECHART library [32]. The FLUXMAP add-on
[33] enables the visual representation of flux data by
edge thickness adaptation. This supports the comparative
visual analysis of complex flux distributions in an interac-
tive way. Using the HIVE add-on [34] image-based data
such as histological cross-sections, microscopy images,

photographs and three-dimensional volume data such as
NMR and CT data can be displayed in the network con-
text based on a workspace approach and rendered using
various 2D-, 3D- and network visualization functions.
Every shape, label, chart and even the selection are

realized in VANTED as single Java Swing components
placed in the graph window (for further technical details
see [35]). Other commonly used libraries such as JUNG
[36] render all graphics in a single component. VANTEDs
approach is harder to implement, but scales better in
terms of rendering speed and enables high flexibility in
adapting and fine-tuning each component. The highly
optimized CYTOSCAPE framework on the other hand
scales very good, but does not enable comparable flexi-
bility in terms of visualization of charts, shapes and other
graphics.
In general, visualization is the most advanced fea-

ture of VANTED. Multiple options and functionalities
enable users to generate appropriate visual representa-
tions thereby substantially facilitating the gain of knowl-
edge compared to working with data tables. VANTED
enables users to interact with up to 10k network elements,
but the responsiveness depends on the visual complex-
ity as complex charts, labels and other visualizations as
well as high numbers of edge crossings may reduce this
numbers considerably down to some thousand elements.
For larger graphs, interaction may become unfeasible and
algorithms such as automatic layouters consume a consid-
erable amount of time.

Integration
Biological entities such as proteins, genes or metabo-
lites are represented as nodes and any relation between
such entities as node-connecting edges (e.g., regulation,
interaction or conversion). Both network elements are
attributed by technical properties such as visualization
parameters (size, position, etc.) and properties related
to their biological role. Each network element may con-
tain links to other resources, usually represented as a
hyperlink to any web-content such as a database entry.
Nodes may link to other networks, enabling navigation
and exploration of connected pathways (see also Section
Exploration and interaction). Based on the present numer-
ical attributes, for example, size, position and node degree,
the user is able to compute new properties such as addi-
tional median values, which are stored as new element
attributes and may be visualized or exported.
In VANTED, network elements are allowed to have sev-

eral (alternative) identifiers. These identifiers provide the
basis for data mapping which depends on common iden-
tifiers in network and experimental data. In case of dif-
ferent identifiers, synonyms have to be defined. For this
mapping tables may be used to provide either additional
labels for network elements or for biological entities in
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the experiment data. Mapping tables are simple XLS files,
which list the existing names in the first column and
additional names in the subsequent columns.

Simulation
Basis of the simulation task is the modeling capability of
VANTED. Model reconstruction is based on a given net-
work topology, which is manually created or imported
from network files. Subsequently, model attributes such as
stoichiometric coefficients, kinetic constants, firing rules
and initial markings are added to the network or are
already part of the import process (SBML files for example
providemost attributes). So far, VANTED does not support
the automated reconstruction of networks from external
sources as described in [37].
These biological networks are finally transformed into

mathematical models in order to analyze dynamic prop-
erties and behavioral attributes. The enrichment of
metabolic networks with stoichiometric coefficients (rep-
resented by edge weights) and the definition of an
optimization function is a prerequisite for the constraint-
based network analysis. The FBA-SIMVIS [38] add-on
enables VANTED to perform different techniques such
as Flux Balance Analysis [39], Flux Variability Analy-
sis [40], Robustness Analysis [41] and Knock-out Analysis.
In combination with a dynamic and visual exploration
of simulation results, this allows for the comprehensive
analysis of metabolism in response to genetic or envi-
ronmental perturbations. Metabolic networks can also be
transformed into Petri nets [42], a second mathematical
model, which is used for formal analysis and simulation
of biological systems. The PETRINET [43] add-on enables
VANTED to semi-automatically transform networks into
valid Petri nets, simulate discrete and continuous Petri
nets of varying complexity and analyze structural prop-
erties. Different visualization and interaction techniques
such as brushing can be utilized in order to visually
analyze P- and T-invariants, the reachability graph and
varying markings of simulation steps.

Exploration and interaction
In terms of exploration of networks and data visual-
izations, VANTED supports standard interaction meth-
ods such as panning, zooming and overview+detail for
selected network elements. The editing and rearrange-
ment of network elements as well as the modification
of attribute values and calculation of new attributes is
possible in an interactive manner. Sophisticated selection
and search functionalities provide the ability to find and
explore network elements based on attribute values.
Furthermore, recurring entities in large networks or

several networks may be linked in order to easily track
interconnections between pathways. The GLIEP [44] add-
on provides an interactive view for the exploration of

interconnected networks by implementing a glyph visual-
ization. Based on these glyphs the user is able to quickly
switch between connected networks or to explore the
overall interconnectivity using a focus+context technique.
Furthermore, the HIVE add-on enables users to collapse
networks into single nodes, thereby providing a clear rep-
resentation of multiple (interconnected) networks. Con-
nections between different networks are retained and link
the network-overview nodes, which can be re-arranged or
expanded according to user requirements.
On the basis of interaction events such as selection,

brushing techniques [45] provide different views on visu-
alized experimental data. The HIVE add-on enables users
to explore and compare spatial distributions within a
biological system by parallel visualization of segmented
images and experimental values in the network view. Hov-
ering over a segment in the image (e.g., corresponding
to an organ) results in highlighting the respective mea-
surement values in the network view. Furthermore it is
possible to explore large numbers of images in the context
of a network. If these images are related to a substance
(e.g., GFP reporter expression for genes in a gene reg-
ulatory network), the user can integrate the respective
images into the network nodes. If a number of nodes is
selected, an image matrix is built up, spanning conditions,
time points and replicate information. This matrix enables
users to compare all images related to the selected nodes
and to explore spatial patterns of different substances in
the context of a biological network.
Further brushing techniques are provided by the

PETRINET add-on for the analysis of Petri net properties
such as invariants and the reachability graph. The user
can move the mouse over nodes of the reachability graph,
triggering the visualization of the respective state in the
network visualization view.

Analysis
The analysis of network topology plays an important role
for the understanding of interactions between biological
entities. VANTED offers to compute several topological
properties such as shortest paths between node pairs, net-
work cycles and motifs. The detection of network motifs
(such as feed-forward loops) is supported by the possi-
bility to search for user-defined motifs which might be
meaningful in the context of certain biological questions.
The VANTED add-on CENTILIB [46] provides algorithms
and methods for the computation and investigation of 17
different centralities in biological networks. Such central-
ities can be used for ranking of network nodes according
to given criteria and for the detection of network hubs.
Results of the centrality analysis can be explored and
analyzed using a brushing-based approach.
The statistical evaluation of experimental datasets is

a central part of data analysis. VANTED offers a series
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of tests for calculation of statistical parameters, for test-
ing the normal distribution of datasets (David Quicktest
[47]) and for outlier detection (Grubbs test). For the
comparison of measurements with multiple conditions,
several t-tests are available such as the unpaired t-test,
the Welch-Satterthwaite t-test and the Mann-Whitney
U-test with user-defined threshold settings for the calcu-
lated p-values. VANTED enables users to perform Pear-
son’s and Spearman correlation analysis based on the
mapped experimental data. Optional settings include a
p-value threshold and the number of experiment condi-
tions included in the analysis (see [4] for implementations
details).
The calculation of clusters is a frequently used approach

to categorize experimental data into functional or behav-
ioral groups. For this task, VANTED supports self-
organizing maps (SOM) [14]. A SOM is an artificial neural
network, which is capable for the automated recognition
of patterns within measurements and is well-suited for
the categorization of time series data of biological entities.
According to a user-defined number of target clusters, the
SOM is trained and cluster attributes are automatically
assigned to the network nodes. In addition such assign-
ments can be done manually. The cluster sub-networks
may then be independently laid out or colorized in order
to visually catch clustered elements at a glance.
For gene expression data VANTED supports the com-

putation and visualization of enrichments in the context
of the GO [48] and the KEGG pathway [22] hierarchies.
For example, for KEGG the procedure highlights classes of
KEGG pathways in which the experimental data enriches
significantly by assigning pie charts [49,50].

Export
VANTED provides a variety of file formats for data stor-
age, publication and exchange. The GML and GraphML
file formats are VANTED s native formats and accordingly
support the storage of networks together with all related
attributes such as layout information and the full set of
mapped and integrated experimental data including the
visualization options for mapped data. Additional infor-
mation can be stored and exchanged as new attributes,
e. g. a new custom attribute “myAttribute” enables to col-
orize all nodes with this attribute based on the respective
attribute value. Such attributes can be created manually
(e. g. cluster information and biological tags) or be the
result of a computation (see [35] for further details).
For the exchange of data within the systems biol-

ogy community, support for file formats such as DAT
[51], SBGN-ML (provided by the SBGN-ED add-on) and
BioPAX is implemented. VANTED additionally supports
the SBML file format which allows for the storage and
exchange of stoichiometric and kinetic models. When
working with the PETRINET add-on, the Petri net and

its configuration can be exchanged using the PNML file
format. Experimental data which has been mapped onto
a network can be extracted and exported using XLS
sheets. The CSV format is supported for different kinds
of node attributes as well as the export of analysis results
such as correlation coefficients. All data types which are
supported by VANTED (numerical data, images, three-
dimensional volumes, networks) can be uploaded to the
DBE2 system for persistent data storage and exchange.
Please note that VANTED usually serves as a data sink and
the conversion between different file formats is not in the
focus of the tool. Network topology (including labels) on
the other hand is preserved in most cases.
Laid out networks can be exported to several graphic

file formats, including raster images (PNG, JPG), as well
as vector images (SVG, PDF, PPT). These file formats
are well suited to be used as images in publications,
presentations or as a basis for further graphical edit-
ing. Furthermore it is possible to export integrated net-
works as browseable and clickable images, embedded in
HTML web sites. Those images can contain web-links to
web resources or public databases. The publishing pro-
cess of these web sites can be done in a semi-automatic
fashion [52].

Results
The previously described tasks can be instantiated and
combined in order to create manifold workflows support-
ing the interpretation of systems biology data. For demon-
stration purposes an exemplary workflow is executed with
the VANTED framework, implementing the analysis of a
comprehensive metabolic dataset taken from Sulpice et al.
[53]. This dataset consists of measurements of enzyme
activity data, metabolite data and different morphological
parameters for a wide range of Arabidopsis thaliana eco-
types. In the following we focus on the first ecotype class
A, which includes the most diverse ecotypes. The steps
of the workflow are depicted in Figure 2 and the tutorial
(Additional file 1).

Import
The import of enzyme activity data, metabolite data
and morphological parameters of different Arabidopsis
thaliana accessions from climate class A is realized using
the VANTED XLS template (see Additional file 2). Exper-
imental data may also be persistently stored in the DBE2
database, enabling file sharing and on-click import of such
experimental data into VANTED. In parallel to the import
of the experimental data, 38 metabolic reference path-
ways are loaded from the MetaCrop database and merged
into one SBGN network. Subsequently all reference path-
ways are assigned to their respective cellular location
and the pathways in each subcellular compartment are
connected to each other by merging identical metabolite
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ANALYSIS
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Figure 2 VANTED workflow for the exemplary use case. A complex metabolite dataset is imported into VANTED, integrated and visualized in the
context of a large SBGN-style metabolic network. Based on data mapping, different kinds of correlation analyses are performed. The results of the
workflow can be exported in various formats.

Figure 3 Visualization, integration and analysis of plant metabolic networks. (A)Metabolic network representing sugar metabolism in SBGN.
A new node for the morphological parameter fresh weight (FW) was added to the network. (B) Integration of metabolic data into the network by
visualization of corresponding charts inside the nodes. Metabolite concentrations are mapped to simple chemical glyphs whereas enzyme activity
data is mapped to macromolecule glyphs. Bar charts display respective values for all Arabidopsis thaliana accessions of climate class A. (C) 1:n
correlation analysis on mapped data for the detection of correlations between the morphological parameter FW and all other metabolic
parameters. Correlation coefficients are visualized by color-coded nodes.
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Figure 4 Correlation network for different pathways. Nodes representing metabolites (green), enzymes (orange) and morphological or other
parameters (gray) are laid out as circles for each pathway. A n:n correlation was calculated, resulting in edges indicating a strong (p ≥ 0.95)
correlation, color-coded by the r-value. This visualization enables an overview about intra- and inter-pathway dependencies.

nodes. Finally a network layout is performed in order to
optimize the edge routing and distance between nodes,
resulting in the network which can be found in Additional
file 3.

Visualization and integration
During data mapping, experimental data is integrated into
the network by the visualization of corresponding charts
inside the network nodes. To unify the identifiers in the
network and the experimental dataset, a mapping table is
used for the enrichment of network nodes with alternative
identifiers (Figure 3a and Additional file 3). Subsequently,
metabolite data is mapped to the nodes representing
metabolites (simple chemical glyph) and enzyme activ-
ity data is mapped to nodes representing enzyme nodes

(macromolecule glyph). New nodes for morphological
parameters are added during the mapping process, as they
are part of the experimental data, but do not occur in
the network. The mapped experimental data is visually
represented by bar charts inside the glyphs resulting in a
data-enriched SBGN network (Figure 3b and Additional
file 4).

Analysis
In order to identify similarities in the profiles of all acces-
sions of climate class A, 1:n and n:n correlation analyses
are performed. In case of the 1:n correlation analysis, the
morphological parameter fresh weight (FW) is chosen
as the target parameter and correlations were calculated
to all other metabolic parameters in the network. Based
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on the resulting correlation coefficients network nodes
are color-coded according to the correlation coefficient
r (Figure 3c and Additional file 5). This visual represen-
tation of correlation results enables biologists to easily
identify metabolic parameters with important influence
on plant morphology at a global scale.
For the n:n correlation analysis, all metabolic parame-

ters in the network are correlated with each other, includ-
ing all metabolite and enzyme activity data as well as
the data of morphological parameters. The resulting cor-
relation values are visualized by generating new edges
between correlating nodes. These edges are color-coded
according to the negative (red) or positive (blue) correla-
tions calculated with p ≥ 0.95 and |r| ≥ 0.6 Pearson’s
product-moment correlation. The resulting network is
used to generate a correlation network at a pathway level,
independent of the order of metabolic reactions within
a pathway. Consequently, the metabolic dataset is used
to generate new nodes in a network-independent man-
ner which are then categorized according to the metabolic
pathway (e.g., Glycolysis, TCA cycle) and laid out as
pathway-specific circles (see Figure 4). During the n:n cor-
relation analysis VANTED generates edges between nodes
with data profiles of significant similarity thereby giving
an overview about intra- and inter-pathway dependencies
and allows for drawing conclusions about the interac-
tion between single parameters. For example, the levels
of amino acids show strong positive correlations among
each other and with levels of TCA cycle intermediates,
as these substances are precursors of the amino acids.
This leads to the assumption that these mentioned parts
of primary metabolism are stable throughout the differ-
ent ecotypes. Secondary metabolites show strong negative
correlations with enzymes of sugarmetabolism among the
considered Arabidopsis thaliana accessions. Variations of
the levels of plant secondary metabolites are conceivable
for accessions with different origin.

Discussion
The VANTED framework provides a rich variety of func-
tionalities at the interface between data analysis, gain of
knowledge out of large-scale datasets and the generation
of feedback to the wet-lab part of the systems biology
cycle. It supports both the fast and customizable visual-
ization of networks and experimental data as well as the
exploration, simulation and different kinds of data anal-
ysis. In contrast, most network-centered tools focus on
a small subset of tasks (compare Table 2). For instance,
OMIX provides high-quality and customizable network
visualization but lacks analysis algorithms and direct con-
nection to important databases. ONDEX focuses on the
generation of large-scale biological networks from het-
erogeneous sources, but does not support charts and
simulations. CELLDESIGNER is designed for the analysis

of the dynamics of metabolic models, but does neither
provide statistical analysis nor advanced interaction tech-
niques. VANTED combines these features in one frame-
work thereby reducing the use of several tools and tedious
file exchanging procedures.
CYTOSCAPE is a widely used biological network anal-

ysis tool, which is the only competing tool providing all
tasks in one system. Both tools cover a large portion of
important systems biology tasks. CYTOSCAPE lacks some
functions such as sophisticated charts and website export,
but compared to VANTED provides additional function-
ality which is usually not in the focus of systems biology
researchers, such as social graph topics. It has a big devel-
oper community which implemented a large number of
plugins (over 150). Although the sheer number of exten-
sions is quite impressive, the quality and complexity varies
significantly. Many CYTOSCAPE plugins only provide sim-
ple functionalities such as the import of a certain file
format, whereas others focus on very special applications
which are not in the scope of the majority of potential
users. In comparison to CYTOSCAPE, the VANTED add-on
concept relies on a smaller set of add-ons each compris-
ing a large set of functionalities which are necessary in
order to perform a whole workflow. Many VANTED add-
ons are able to interact with each other, thereby increasing
the capabilities of the core tool. Examples for such com-
binations are the HIVE and the DBE2 add-on, which
together enable the persistent storage of volumetric and
image data in the exchange database. Also the combina-
tion of FLUXMAP and SBGN-ED enables the visualization
of flux data in SBGN networks. In summary, VANTED
and CYTOSCAPE both enable the execution of various
systems biology tasks within one tool. CYTOSCAPE pro-
vides a larger set of special sub-tasks with varying quality,
whereas VANTED provides a small set of sub-tasks, which
are optimized with regard to solving specific biological
questions.

Conclusions
VANTED is a stand-alone framework which supports sci-
entists during the data analysis and interpretation phase.
This is achieved by integrating experimental data into
biological networks and providing a rich variety of simu-
lation, analysis and visualization functionalities. Manifold
file exchange formats as well as connections to databases
enable the examination of user data in the context of
public resources. In comparison to other tools VANTED
provides a large variety of functionalities, spanning most
of the tasks during the analysis and visualization of large-
scale datasets. The offered set of functionalities enables
users to view and explore data from different perspectives,
thereby facilitating the systemic analysis of a biological
object. The support of various standards enables users to
easily exchange files using well-established standard file
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Table 2 Comparison of non-commercial tools for the network-centered visualization and analysis of biological data

Tasks VANTED CYTOSCAPE ONDEX OMIX CELL PATHVISIO BIOUML VISANT PATHWAY BINA MAPMAN

[12] [54] [55] Designer [57] [58] [59] Projector [61] [62]
[56] [60]

Import

networks + + + + + (+) + (+) + + -

experimental data + + + + (+) + + - + (+) +

connection to experiment database + + + - (+) - - - - + -

connection to network databases + + + - (+) - + + (+) + +

Visualization

charts on nodes and edges + - - + - - - - + - +

automatic network layouts + + + + + - + + - + -

SBGN support + + - - (+) + + - - - -

flux data support + + - + + - - - (+) + -

3D visualization + (+) - + - - - - - - -

Integration

mapping of numerical or + + + + + + - - + + +

multimodal data

mapping tables, identifier mapping + + + - - (+) + - + (+) -

linking other resources + + + + + + + + + - +

Simulation

constraint-based analysis + (+) - + (+) - - - - - -

Petri net analysis + - - - (+) - - - - - -

Exploration and interaction

panning, zooming, collapsing, + + + + (+) (+) + + + + (+)

search and selection

network exploration + + + - - (+) + + + + +

brushing, image exploration + - - - - - - - - - -

Analysis

networks + + + - (+) - + + - (+) -

statistics + + + - - + - - - (+) +

enrichment analysis + + - - - + + + - + +

Export

raster graphics, vector graphics + + + + + + + + - + (+)

interactive websites + - - - - (+) + + + - -

experimental data + + - - + - + - + + -

networks + + + + + + + (+) - + -

The first column comprises the sub-tasks of Table 1, which are covered by the respective tool. Please note that also add-ons and plugins of the respective system were evaluated. “-” no or inadequate support, “(+)” = partial
support, “+” good support of the sub-task.
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formats and allow for an accurate exchange of biological
information using an unambiguous graphical representa-
tion (SBGN). To deal with future user requirements the
VANTED system can be extended in a flexible way by using
BeanShell and JRuby scripts or by writing new add-ons.
In the future we expect novel use cases to emerge for the

VANTED framework, especially large datasets spanning
multiple biological levels such as gene expression, protein
activity, metabolite, flux and phenotypic data from one
biological system [63]. Furthermore, the spatial resolution
of the analyzed systems (e.g., compartmentation, tissues
and organs) increases based on technological advances
and enhanced quantity and quality of imaging techniques.
Finally, mathematical models become more important for
the understanding and prediction of complex behavior of
biological systems.

Availability and requirements
• Project Name: VANTED
• Project home page: http://www.vanted.org
• Operating system(s): Platform independent (Java),

the add-on FBASimVis will work on Windows
computers only

• Programming language: Java 6/7
• License: GPL 2.0

Additional files

Additional file 1: Supplementary tutorial. ZIP file containing the data
for recreating Figures 3 and 4. To guide the user, a PPT file is provided,
which lists and describes all necessary steps to be performed in VANTED.

Additional file 2 : Filled experiment data template. VANTED template
filled with metabolite data from Sulpice et al. [53], consisting of 64
metabolites, 37 enzymes and morphological parameters for 50 Arabidopsis
thaliana ecotypes of climate class A. The file can be opened using MS Excel
and imported into VANTED as an experiment dataset.

Additional file 3: Merged SBGN network. Large-scale metabolic
network of plant primary metabolism in SBGN. The network has been
created with VANTED based on merging different pathways downloaded
from MetaCrop. This file serves as the basis for mapping experiment
datasets and can be imported into VANTED as a network.

Additional file 4: Merged SBGN network enriched with experimental
data. Enriched metabolic SBGN network after mapping additional file 2
onto additional file 3. Metabolite data of 50 Arabidopsis thaliana ecotypes is
mapped to the network and visualized as bar charts inside the nodes. This
file can be imported into VANTED as a network.

Additional file 5: Merged SBGN network enriched with experimental
data and correlation data. Analysis of enriched metabolic SBGN network
by performing a 1:n correlation between the morphological parameter
fresh weight (FW) and all enriched network nodes. The correlation
coefficient is visualized using a global color-code. This file can be imported
into VANTED as a network.
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DBE2 – Management of experimental data for the VANTED system

Hendrik Mehlhorn1*, Falk Schreiber1,2
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06466 Gatersleben, Germany

2Martin-Luther-University Halle-Wittenberg, Institute of Computer Science,
Von-Seckendorff-Platz 1, 06120 Halle, Germany

Summary

DBE2 is an information system for the management of biological experiment data from
different data domains in a unified and simple way. It provides persistent data storage,
worldwide accessibility of the data and the opportunity to load, save, modify, and annotate
the data. It is seamlessly integrated in the VANTED system as an add-on, thereby ex-
tending the VANTED platform towards data management. DBE2 also utilizes controlled
vocabulary from the Ontology Lookup Service to allow the management of terms such as
substance names, species names, and measurement units, aiming at an eased data integra-
tion.

1 Introduction

High throughput phenotyping facilities and modern wet lab techniques such as GC/MS, multi-
dimensional protein gels, and microarrays produce an continuously increasing amount of bio-
logical data sets. Each data set comprises a set of biological measurements as well as annotation
data.

The data type of biological measurements is in many cases a simple decimal number. A decimal
number may represent, for example, the concentration of a metabolite, the relative content
of a messenger RNA, or the propotion of the expression levels of an enzyme under various
conditions. Ordered sets of decimal numbers also represent one dimensional gradients, such
as the concentration of a metabolite in a cell over time. Upcoming facilities enable the high
throughput phenotyping of, for instance, plants, which yields a hugh amount of two dimensional
images. Other techniques such as NMR or CT produce three dimensional volume data. The
magnitude of biological measurement data necessitates data management systems in order to
enable appropriate data analysis and data exchange.

Biological measurements arise in the context of certain experiment conditions and represent
properties of specific biological entities (e.g. the concentration of a metabolite). This is re-
flected in the annotation data. Experiment conditions such as the availability of nutrients, wa-
ter, and light, the time point of the measurement, the underlying genotype, and tissue constitute
notable annotation data in praxis. Annotation data also comprises the names of measured bi-
ological entities as well as the unit of biological measurements. Standards such as PEDRo,

*To whom correspondence should be addressed. Email: mehlhorn@ipk-gatersleben.de
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MIAME, and ArMet [1, 2, 3] provide all necessary fields to reproduce the underlying biologi-
cal experiment. These formats have been proposed for the standardization of annotation data,
but the input demanded from the user is exhaustive which often prevents their usage. For-
tunately bioinformatic analysis techniques such as flux balance analysis, correlation analysis,
and network mapping, need just specific input parameters. The reduced specification demand
of these techniques is an advantage which eases fast and appropriate data set explorations.

A complex biological problem often necessitates the examination of data sets from different
data domains. Most existing databases do mainly only cover single data domains and are not
uniformly addressable, which results in the need of data integration systems such as ONDEX
or BridgeDB [4, 5].

The distribution of data sets also causes the problem of data annotation inconsistencies. For
metabolite terms, protein names, or measurement units various formats or synonym relation-
ships can be found. Ontologies are intended to structure the knowledge of an area of interest.
Life science ontologies such as CHEBI (e.g. chemical compounds), NEWT (species taxon-
omy), and Gene Ontology (e.g. protein functions) are utilizable to overcome data annotation
inconsistencies by strictly annotating the biological measurements using ontology terms [6].

The aim of the DBE2 information system (Database for Biological Experiments 2) is to manage
biological data sets from different data domains in a unified and simple way. Only a small
amount of annotation data is required, which is nevertheless appropriate for recent analysis
techniques. The management and storage of data sets is consistent despite of the domain(s)
the data arises from. The focus is on the integration of multimodal biological measurements of
different data types such as zero dimensional decimal numbers, one dimensional gradients, two
dimensional images, three dimensional volumes, and even biological networks being interesting
in the context of the biological measurements.

The DBE2 information system is based on the DBE information system [7]. The DBE infor-
mation system proved its usefulness for biologists by an easy usage, the permanent availability,
and it’s focus on the integration of data sets stored in the DBE database in a persistent and
structured way.

Figure 1: The three-tier architecture is being instanciated by the DBE2 information system. The
presentation tier (the DBE2 client) calls the logic tier to download, upload, and edit biological
data. The logic tier (the DBE2 servlet) employs the data tier (the DBE2 database and a file storage
system) for the storage of experiment data and binary files. This happens using an underlying user
management to manipulate or transfer data by defined queries.

There are several new developments in DBE2. The integration of further data domains and data
types now enables a bigger area of application. Recent software engineering techniques helped
restructuring the system, yielding a three-tier architecture (see Figure 1). The DBE2 servlet
was introduced to implement all data accesses to the extended DBE2 database by queries and
to facilitate the worldwide availability of the data. Big Files in biological data sets are stored in
a hierarchical storage management by the DBE2 servlet to maintain the database performance.
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The DBE2 client in the shape of a VANTED [8] add-on now provides a graphical user interface
to the DBE2 information system. Each data set access is controlled by defined servlet queries
including an user account management. For the convenient integration of further clients a
library is being supported which implements all DBE2 servlet calls in a functional way.

In addition the utilization of controlled vocabulary from the Ontology Lookup Service [9] raises
the quality of annotation data such as species names, substance names, and measurement units.
An adaption of certain ontology structures enables the organization of the underlying data sets
in a reasonable and intuitive way.

This paper is organized as follows. The (1) Introdution conveys the area and the background
of the DBE2 information system. Section (2) DBE2 schema discusses the representation of
data sets in the DBE2 database and the whole system. A servlet enables the continuous and
worldwide access to data sets, which is being introduced in Section (3) DBE2 servlet. The
DBE2 client is designed as an graphical user interface to the system which is presented in
Section (4) DBE2 client. This paper closes with a (5) Discussion to resume and discuss the
presented content.

2 DBE2 schema

The DBE2 information system is designed to handle biological measurements of diverse data
types and from various data domains such as metabolomics, proteomics, and phenomics. This
happens in the context of the adjacent annotation data. A tree data structure of four levels
represents data sets in an adequate and flexible way (see Figure 2).

A data set of biological measurements with it’s annotation data is called an experiment. It
contains meta information such as the experiment name, the coordinator, and the start date of
the project. An experiment branches into a set of conditions as the experiment context of the
measured data. Each condition represents the species, genotype, and variety as well as the
treatment of the examined biological being. Each condition branches into a set of samples,
which specifiy the measurings of the underlying measured data in space and time. Measured
data is allowed in the shape of (i) simple decimal numbers, (ii) pictures, and (iii) volumes which
correspond to data of zero, two, and three dimensions. It is also possible to represent biological
(iv) networks as well as one dimensional (v) gradients (by a set of ordered (i) decimal numbers).
An abstract example is shown in Figure 2.

The resulting hierarchical tree structure is being implemented in the shape of relational tables
in the DBE2 database as the data tier for a persistent and structured data storage as well as by
a XML document schema for data exchange tasks. This enables dealing with experiment data
of different types from various domains in a unified way using a corporate data structure.

The DBE2 database schema is implemented in an Oracle database (version 11g) and is shown
in Figure 3. The database schema consists of four conceptual modules, namely the (i) User
management module, the (ii) Experiment data module, the (iii) Basis data module, and the (iv)
Supplementary material module. The (i) User management module provides a basic user right
handling. Users need to possess a DBE2 account to store experiments in the DBE2 database.
User accounts get organized via user groups. For every stored experiment a user group is de-
fined with users having the right to access it. The experiment data is being stored in the (ii)
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Figure 2: An experiment is a set of biological measurements together with it’s annotation data
and is represented by a tree structure in four levels. It branches into a set of conditions which
represent the treatment and the genotype of the examined species. Each condition forks into a
set of samples, which provide information about the underlying measured data. Measured data is
allowed to exhibit the shape of decimal numbers, images, volumes, and biological networks.

Experiment data module. This is done one to one according to the described hierarchical tree
structure. A subset of the annotation data is being managed in the (iii) Basis data module. This
module is designed to organize annotation data through controlled vocabulary of various areas
such as species names, unit terms, and substance names. In addition the (iv) Supplementary
material module enables to associate arbitrary supplementing files to any level of the Experi-
ment data module as supplementary material. An important supplementing file could be a SDS
gel image as the source of measured protein expression levels for instance.

Users of DBE are invited to supply annotation data to biological measurements according to the
introduced hierarchical tree structure. Thus the support of information about the experiment in
general, the species, the examined tissue, the time points of the biological measurements, and
the name of the measured entities is necessary. This is sufficient for tasks such as the statistical
comparison of data sets from varios differential treated breeding lines.

3 DBE2 servlet

Every request of the DBE2 client to the DBE2 database is implemented by the DBE2 servlet.
The DBE2 servlet defines a set of queries, which builts an application programming interface
(API). The encapsulation of DBE2 database transactions via a servlet as the logic tier assures
worldwide data access and safe database manipulations. The DBE2 servlet is implemented as
an Java HTTP servlet, which enables a dynamic treatment of all queries on the web server.

The DBE2 servlet implements the observance of the user right management. Every request
associated to confidential user data sets contains parameters to authorize it. The handling of
unexpected cases and errors includes exception reports and DBE2 database rollbacks. In this
way the DBE2 servlet assures a consistent and safe data storage.
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Figure 3: The DBE2 database schema as entity relationship diagram. The database schema com-
prises four modules: (i) User management module for user right handling, (ii) Experiment data
module for experiment data storage, (iii) Basis data module for controlled vocabulary, and a (iv)
Supplementary material module for the association of arbitrary files with entries in the Experiment
data module.
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The queries provided by the DBE2 servlet enable an functional access to the database. Ev-
ery client functionality regarding the DBE2 database is being realized by a certain set of
DBE2 servlet queries. This prevents the client developer from communicating directly with
the database via SQL queries, yielding a rather clean and safe development style.

The transfer of data from the DBE2 client to the DBE2 servlet and back works through streams,
which afford the transfer of arbitrary sized data. For database performance reasons, binary
files are stored using a hierarchical storage management (HSM), which realizes a compromise
between data transfer performance and storage costs. This is implemented by the unpublished
BFiler package in a transactional and simple way. Thus BFILEs (an Oracle SQL datatype) are
stored in the DBE2 database as references to the physical file in the HSM instead of BLOBs
(another Oracle SQL datatype which represents the whole file data).

4 DBE2 client

The DBE2 client supports a graphical user interface (GUI) to the DBE2 information system and
represents an instance of the presentation tier. It executes all user actions regarding the DBE2
database via a set of DBE2 servlet queries. The DBE2 client is designed as a VANTED add-
on, which smoothly enables the usage of analysis and visualization techniques of the VANTED
system [8]. It is also possible to implement further clients for the usage of the system. Therefore
a java library called the DBE2 servlet client is being supported to communicate with the DBE2
servlet in a functional and easy way.

The DBE2 client provides a user-friendly and easy way to upload, edit, and download experi-
ments and to edit the annotation data of the experiment in the local XML format representation.
In addition, the DBE2 information system administrator is allowed to manage terms in the
DBE2 database Basis data module and to manage user rights by changing entries in the DBE2
database User management module. There is also a special public account which may be used
by any user. This account enables users without an DBE2 account to download experiments
which were explicitly approved for public access. See Figure 4 for an overview of all impotant
DBE2 client use cases.

In the case of forbidden queries or unexpected cases the DBE2 servlet throws exceptions pro-
cessed by the DBE2 client. In the case of known errors such as the injury of database table
constraints, this happens either in way of offering an alternative proceeding or by descriptive
messages. An example is that the name of experiments has to be unique.

The usage of a controlled vocabulary for the standardization of annotation data supports easy
mapping of data sets onto each other and onto biological networks. In case of the DBE2 infor-
mation system the controlled vocabulary is being represented by the Basis data module in the
DBE2 database. Whenever an user attempts to upload an experiment to the DBE2 database,
the annotation data of the experiment has to be covered by the Basis data module. Uncovered
annotation data has to be synchronized. Terms in the annotation data of the experiment which
are missing in the Basis data module have to be added to expand the basis data pool or renamed
to match the basis data pool. The DBE2 client offers the possibility to standardize annotation
data by utilizing the Ontology Lookup Service (OLS). The OLS (http://www.ebi.ac.uk/ontology-
lookup/ ) is a compendium of more than 70 life science ontologies retrievable through an unified
interface. Users are able to search various ontologies for terms in the annotation data of experi-
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Figure 4: Use cases diagram of the DBE2 client. There are three types of accounts. The special (i)
public account may used by everybody and is allowed to download particular experiments and to
edit the basis data in the local XML representation of experiments. Users with a (ii) regular DBE2
account may upload, download, and edit experiments in addition. The DBE2 administrator uses
the (iii) root account and is thus allowed to access all features including the management of DBE2
database basis data and the appointment of user rights.

ments. Species names and the according taxonomy tree are accessible from the ontology NEWT
UniProt Taxonomy Database (short name: NEWT) [10]. Names of chemical compounds and
the corresponding compound taxonomy are accessible from the ontology Chemical Entities of
Biological Interest (short name: CHEBI) [6]. With the help of these ontologies, a part of the
DBE2 client named experiment manager (see Figure 5), is able to represent the set of accessible
experiments in a hierarchical way according to their annotation data.

Since the DBE2 client is integrated seamlessly into VANTED, the DBE2 information system
user is instantly able to use the functionalities of the VANTED system. These include the
mapping of experiments on biological networks, the arrangement of experiments according to
KEGG pathway hierarchies, and the corresponding visualization via a graph.

5 Discussion

In this paper the functionalities and the three-tier architecture of the DBE2 information system
were presented. The DBE2 information system is designed for the management of biological
measurements of various domains and types in an unified and easy way. The DBE2 database
represents the data tier and stores biological data in a structured and persistent way. The DBE2
servlet represents the logic tier and realizes all data access and data manipulation in a functional
and safe way. The DBE2 client represents the presentation tier and provides an easy to use GUI
to the DBE2 information system.

Ontology support from the OLS aids the standardization of annotation data. The according
controlled vocabulary eases the integrated analysis of biological measurements from various
data sets. Term taxonomies supported by life science ontologies enable a logically structured
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Figure 5: The Experiment manager dialog of the DBE2 client. The user is able to arrange the
accessible experiments in four ways. The (i) user group arrangement helps to survey user rights
to experiments. The (ii) substance taxonomy arrangement (shown), the (iii) species taxonomy ar-
rangement, and the (iv) substance group arrangement enable an experiment overview according
to the annotation data.

and intuitive survey over a big number of data sets.

Techniques from the seamlessly integrated VANTED system such as data mapping become
even more powerful in the course of the consistent usage of ontology supported annotation
data. For several use case examples of the VANTED system see [11, 12, 13].

The DBE2 information system is currently in use for three projects with users from the IPK
as well as external users. There are 43 registered users and 73 experiments represented in the
DBE2 database.

Future work concerns the support of additional features such as an extended ontology support
for an enlarged data integration potential. In the course of a growing user community and usage
of the DBE2 information system the identification and elimination of potential performance
bottlenecks will be of great importance.

6 Availability and Requirements

• DBE2 information system: DBE2 client and DBE2 servlet client

– DBE2 Web site: http://www.vanted.org/addons/DBE2/index.html

– License: GNU General Public License

– Programming language: Java version 1.5 or higher

– Requirements: The DBE2 client requires the VANTED program
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• VANTED program

– VANTED web site: http://www.vanted.org/

– License: GNU General Public License

– Operating system(s): Platform independent

– Programming language: Java version 1.5 or higher

– Requirements: Screen resolution of 1024 * 768 or higher, mouse, minimum 512
MB RAM recommended
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5 Phylogenetic footprinting

Publications presented in this thesis related to “Phylogenetic footprinting” are entitled
“Detecting and correcting the binding-affinity bias in ChIP-seq data using inter-species
information” (Nettling, Treutler, Cerquides, et al., 2016) and “DiffLogo: a comparative
visualization of sequence motifs” (Nettling, Treutler, Grau, et al., 2015).

5.1 Detecting and correcting the binding-affinity bias in ChIP-
seq data using inter-species information

In the following reference the first author is underlined and I am marked in bold.
Martin Nettling, Hendrik Treutler, Jesus Cerquides, and Ivo Grosse. Detecting and
correcting the binding-affnity bias in ChIP-seq data using inter-species information. BMC
genomics, 17(1):347+, May 2016. doi:10.1186/s12864-016-2682-6

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-016-2682-6
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METHODOLOGY ARTICLE Open Access

Detecting and correcting the
binding-affinity bias in ChIP-seq data using
inter-species information
Martin Nettling1*, Hendrik Treutler2, Jesus Cerquides3 and Ivo Grosse1,4

Abstract

Background: Transcriptional gene regulation is a fundamental process in nature, and the experimental and
computational investigation of DNA binding motifs and their binding sites is a prerequisite for elucidating this process.
ChIP-seq has become the major technology to uncover genomic regions containing those binding sites, but motifs
predicted by traditional computational approaches using these data are distorted by a ubiquitous binding-affinity
bias. Here, we present an approach for detecting and correcting this bias using inter-species information.

Results: We find that the binding-affinity bias caused by the ChIP-seq experiment in the reference species is stronger
than the indirect binding-affinity bias in orthologous regions from phylogenetically related species. We use this
difference to develop a phylogenetic footprinting model that is capable of detecting and correcting the
binding-affinity bias. We find that this model improves motif prediction and that the corrected motifs are typically
softer than those predicted by traditional approaches.

Conclusions: These findings indicate that motifs published in databases and in the literature are artificially
sharpened compared to the native motifs. These findings also indicate that our current understanding of
transcriptional gene regulation might be blurred, but that it is possible to advance this understanding by taking into
account inter-species information available today and even more in the future.

Keywords: Binding-affinity bias, ChIP-seq, Phylogenetic footprinting, Evolution, Transcription factor binding sites,
Gene regulation

Background
Predicting transcription factor binding sites and their
motifs is essential for understanding transcriptional gene
regulation and thus of importance in almost all areas
of modern biology, medicine, and biodiversity research
[1, 2]. Countless approaches exist for predicting motifs
from these genomic regions [3–6], but predicting motifs
from ChIP-seq data and similar experimental data is ham-
pered by the contamination with false positive genomic
regions as well as the enrichment of high-affinity binding
sites [7–9].

*Correspondence: martin.nettling@informatik.uni-halle.de
1Institute of Computer Science, Martin Luther University, Halle (Saale),
Germany
Full list of author information is available at the end of the article

The contamination with false positive genomic regions
is caused by at least three reasons. First, the transcrip-
tion factor or other DNA binding protein pulled down by
immunoprecipitation may not bind directly to the binding
site [10]. Second, ChIP-seq target regions may not con-
tain a binding site due to experimental settings such as
sequencing depth or DNA fragment length [11, 12]. Third,
false positive regions may be predicted in the subse-
quent ChIP-seq data analysis due to never perfect analysis
pipelines and too low signal cutoff thresholds [8]. These
three effects may lead to the selection of false positive
ChIP-seq regions that do not contain at least one binding
site.
The enrichment of high-affinity binding sites is caused

by at least two reasons. First, most antibodies have a pref-
erence of binding high-affinity binding sites with a higher
probability than low-affinity binding sites, causing the set

© 2016 Nettling et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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of binding sites bound in the ChIP-seq experiment to
be partially different from the set of binding sites bound
in vivo [13, 14]. Second, true positive regions with low-
affinity binding sites are rejected due to too high signal
cutoff thresholds [5, 8]. These two effects may lead to
an under-representation of low-affinity binding sites and
an over-representation of high-affinity binding sites in
ChIP-seq regions.
Taken together, the contamination with false positive

genomic regions leads to the contamination bias [15]
and thus to the prediction of artificially softened motifs,
whereas the enrichment of sequences with high-affinity
binding sites leads to the binding-affinity bias [16] and
thus to the prediction of artificially sharpened motifs.
Neglecting these effects leads to distorted motifs and
could potentially affect all downstream analyses [17–20].
Existing approaches for predicting motifs are capable of
detecting and correcting the contamination bias, which
has been found to increase the quality of motif predic-
tion considerably [8, 21, 22], and here we investigate the
possibility of detecting and correcting the binding-affinity
bias.
Detecting the binding-affinity bias seems impossible

based on sequence data from one species alone, but it
seems possible based on inter-species information. This
is possible due to the fact that the binding-affinity bias
is stronger in the target regions of the ChIP-seq experi-
ment in the reference species than in orthologous regions
of phylogenetically related species. This stronger binding-
affinity bias yields more biased motifs in the reference
species than in phylogenetically related species, and this
difference may be used for detecting and potentially cor-
recting the binding-affinity bias.
Phylogenetic footprinting models typically (i) take into

account ChIP-seq data of only one species and (ii) do
not take into account heterogeneous substitution rates
among different DNA regions, heterotachious evolution
of DNA regions, and loss-of-function mutations in bind-
ing sites. The consideration of (i) ChIP-seq data of more
than one species and (ii) heterogeneity, heterotachy, and
loss-of-functionmutations are likely to improve both phy-
logenetic footprinting as well as the detection and cor-
rection of the binding-affinity bias, but in this work we
investigate if the detection and correction of this bias is
possible based on (i) ChIP-seq data of only one species
and (ii) a simple phylogenetic footprinting model that
neglects heterogeneity, heterotachy, and loss-of-function
mutations.
We first investigate if the effect of observingmore biased

motifs in the reference species than in phylogenetically
related species is measurable beyond statistical noise in
target regions of five ChIP-seq data sets of human and
in orthologous regions of monkey, dog, cow, and horse.
We then develop a phylogenetic footprinting model that

incorporates the binding-affinity bias, investigate if this
model improves or deteriorates motif prediction com-
pared to traditional models that do not incorporate it,
and compare the motifs predicted with and without the
correction of the binding-affinity bias.

Results and discussion
In subsection “Using sequence-information of phyloge-
netically related species to detect the binding-affinity
bias”, we describe the basic idea of how the binding-
affinity bias could be detected based on inter-species
information using a toy example. In the remaining sub-
sections we perform three studies based on ChIP-seq
data sets of five transcription factors and on multiple
alignments of the human ChIP-seq target regions with
orthologous regions from monkey, dog, cow, and horse.
In subsection “Decrease of information contents in motifs
from phylogenetically related species” we investigate if the
effect of observing more biased motifs in the reference
species than in phylogenetically related species is measur-
able in these five data sets. In subsection “Modeling the
binding-affinity bias increases classification performance”,
we investigate if a correction of the binding-affinity bias
leads to an improvement or a deterioration of the classi-
fication performance. In subsection “Modeling the bind-
ing-affinity bias leads to softened motifs”, we compare the
sequence motifs predicted with and without the correc-
tion of the binding-affinity bias.

Using sequence-information of phylogenetically related
species to detect the binding-affinity bias
Detecting and correcting the binding-affinity bias might
be possible because the binding-affinity bias inherent
to the ChIP-seq experiment in the reference species
(Fig. 1a) is stronger than the indirect binding-affinity
bias in orthologous regions from phylogenetically related
species. Under this assumption, the information content
of the predicted motifs [23] should decrease with the phy-
logenetic distance from the reference species due to the
increasing number of mutations.
To illustrate this idea, we present a toy example consist-

ing of six binding sites from four phylogenetically related
species in Fig. 1b and Table 1. In this toy example, we
assume an exaggerated binding-affinity bias of three high-
affinity binding sites captured by the ChIP-seq experiment
and three low-affinity binding sites not captured by the
ChIP-seq experiment. In real world applications the native
motif is unknown and the motif predicted on the avail-
able data is biased to an unknown degree. In the presented
toy example, however, the native motif is considered to be
known so that the effect of the binding-affinity bias on the
motifs of the reference species (species 1) and the phy-
logenetically related species (species 2, 3, and 4) can be
illustrated.

5.1 Detecting and correcting the binding-affinity bias in ChIP-seq data using
inter-species information
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Fig. 1 Influence of binding-affinity bias on information content. a Binding-affinity bias in the reference species. The left column shows binding sites
bound in vivo as well as the sequence logo. In the right column, enrichment of high-affinity binding sites by chromatin immunoprecipitation leads
to a different motif with higher information content. b Binding-affinity bias in the reference species and three phylogenetically related species. The
left column shows binding sites bound in vivo and the information content of the species–specific motifs. In the right column, the enrichment of
high-affinity binding sites in the reference species and the other three species leads to different motifs with different information content in each
species. The effect of this enrichment decreases with the phylogenetic distance from the reference species as reflected by decreasing information
contents. Please find the sequences of all species in Table 1

Table 1 Influence of binding-affinity bias on information
content. We illustrate the effect of binding-affinity bias with the
given toy example of a ChIP-seq experiment for six binding sites
in four species. Due to low binding-affinity, red binding sites are
insufficiently bound. This results in the absence of red binding
sites in the measured data which we denote binding-affinity bias.
Binding sites with low binding-affinity typically comprise
dissimilar bases in contrast to black binding sites with high affinity
and common bases. The absence of red binding sites leads to a
sharpening of the resulting motif, which we indicate using the
information content. The information content without binding-
affinity bias is equal in all species, whereas the information
content with binding-affinity bias increases in all species. The
vital point is that the effect of binding-affinity bias decreases with
phylogenetic distance, which involves an increasing number of
mutations. Please find a visualization of this toy example in Fig. 1b

Species 1 Species 2 Species 3 Species 4

Binding site 1 A C G T A C G T A C T T A A T T

Binding site 2 A A T T A A T T C A G T A C G T

Binding site 3 A A G T C A T G A A G T A A T G

Binding site 4 C A T G A A G T A C T G A A G T

Binding site 5 A C G G A C G G A A G T C A G T

Binding site 6 A A T T A A T T A A T G A C T G

Number of mutations 0 6 9 14
in all binding sites

Information content 1.13 1.13 1.13 1.13
without binding-affinity
bias

Information content 1.77 1.54 1.31 1.31
with binding-affinity bias

The motif predicted from the three target regions con-
taining high-affinity binding sites is strongly biased in
reference species 1, and it is impossible to predict the
native motif from only those three target regions. How-
ever, a shadow of this strong binding-affinity bias also
exists in orthologous regions of species 2, 3, and 4,
so the motifs predicted from these orthologous regions
in species 2, 3, and 4 are biased, too. This bias in
species 2, 3, and 4, however, is weaker than the bias in
reference species 1, and this difference can be exploited
for detecting and correcting the binding-affinity bias
and for predicting the native motif from the three tar-
get regions of high-affinity binding sites in reference
species 1 and their orthologous regions in species 2, 3,
and 4.
Specifically, the binding-affinity bias introduced by the

ChIP-seq experiment in reference species 1 causes a
strong increase of the information content of the pre-
dicted motif (1.77 bit) compared to the native motif (1.13
bit). The shadow of the binding-affinity bias in species 2, 3,
and 4 also causes an increase of the information contents
of the motifs predicted in species 2 (1.54 bit), species 3
(1.31 bit), and species 4 (1.31 bit), but this increase in
species 2, 3, and 4 is smaller than in reference species 1
(Table 1 and Fig. 1b). The increase of information con-
tent decreases with the number of observed mutations
and thus the phylogenetic distance of species 2, 3, and 4 to
reference species 1 in which the ChIP-seq experiment has
been performed. Hence, the observation of a decreased
information content of motifs predicted in orthologous
regions of phylogenetically related species compared to
the information content of the motif predicted in the
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reference species could indicate the presence of a binding-
affinity bias and possibly allow the correction of that
bias.

Decrease of information contents in motifs from
phylogenetically related species
We investigate this hypothesis on human ChIP-seq data
of five transcription factors [10, 24] and multiple align-
ments of the human ChIP-seq target regions with orthol-
ogous regions from monkey, dog, cow, and horse [25]
(“Data” Methods). We calculate the information contents
of motifs from human (reference species), monkey, dog,
cow, and horse for each of the five data sets (“Decrease
of information contents in motifs from related species”
Methods) and present the results in Fig. 2. We find for
each of the five data sets that the information content
of the motif from the reference species is significantly
higher (p < 1.83 × 10−14, Wilcoxon Signed-Rank Test,
Additional file 1: Table S1) compared to the information
contents of the motifs from monkey, dog, cow, and horse.

Modeling the binding-affinity bias increases classification
performance
Motivated by this observation, we develop a phy-
logenetic footprinting model capable of taking into
account the contamination bias (MC−), the binding-
affinity bias (M−

BA), neither one or the otherM
−−, or both

(MC
BA) (“Modeling the binding-affinity bias”Methods and

Additional file 1: Section 1). In order to study to which
degree these models are capable of modeling multiple
alignments originating from ChIP-seq data, we consider
the principle of parsimony [26], which states that the sim-
plest of competing explanations is the most likely to be
correct. As the new model MC

BA is more complex than
the traditional model MC−, we should accept it only if it
provides a more accurate representation of the data. A

standard approach for measuring how accurately a model
represents a data set is to measure its performance of
classifying, in this case, motif-bearing and non-motif-
bearing alignments, and a standard approach for measur-
ing classification performance is stratified repeated ran-
dom sub-sampling validation (“Measuring classification
performance” Methods, Fig. 5).
Using this approach we measure the performance of the

four modelsM−−,M−
BA,MC−, andMC

BA to classify each of
the five data sets against the other four. Fig. 3a shows that
MC

BA yields a higher classification performance thanMC−
in all five data sets (p < 2.3 × 10−17, Wilcoxon Signed-
Rank Test, Additional file 1: Table S2), indicating that the
new model MC

BA is more realistic than the traditional
model MC−. We also find that M−

BA yields a significantly
higher classification performance thanMC− in all five data
sets (p < 1.8×10−17, Wilcoxon Signed-Rank Test), which
indicates that taking into account the binding-affinity bias
has a larger impact on the classification performance than
taking into account the contamination bias (Additional
file 1: Figure S1, Figure S2, Figure S10, Figure S11, Figure
S12, Figure S13, Figure S14, Figure S15 and Figure S16).

Modeling the binding-affinity bias leads to softenedmotifs
Next, we investigate the information contents of the cor-
rected motifs predicted by models M−

BA and MC
BA that

take into account the binding-affinity bias and the tra-
ditional motifs predicted by models M−− and MC− that
neglect this bias. Fig. 3b shows that the information con-
tents of motifs predicted by MC− are significantly higher
than the information contents of motifs predicted by
MC

BA (p < 4.0 × 10−18, Wilcoxon Signed-Rank Test).
We also find that the information contents of motifs pre-
dicted by M−− are higher than the information contents
of motifs predicted by MC

BA (p < 4.0 × 10−18, Wilcoxon
Signed-Rank Test, Additional file 1: Table S4), stating that
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Fig. 3 Comparison of modelsMC− andMC
BA. aMean classification performance and standard error of the two modelsMC− andMC

BA quantified by
the area under the receiver operating characteristic curve. We find for each of the five data sets a significantly increased classification performance
forMC

BA compared toMC− . Examples for ROC curves are shown in Additional file 1: Figure S10, Figure S11, Figure S12, Figure S13, Figure S14 and
Figure S15. bMean information content and standard error of the motifs predicted by the two modelsMC− andMC

BA. We find for each of the five
data sets a significantly decreased information content in motifs predicted byMC

BA compared toMC− (p < 4.0 × 10−18)

the binding-affinity bias is stronger than the contamina-
tion bias. Equivalently, this states that the joint effect of
both biases leads to an artificial sharpening of the motifs
and an artificial overestimation of the binding affini-
ties (Additional file 1: Figure S3, Figure S4, Figure S17,
Figure S18).
Finally, we inspect the differences of the corrected

motifs predicted by M−
BA and MC

BA and the traditional
motifs predicted byM−− andMC−. Fig. 4 shows the differ-
ences between the base distributions of pairs of motifs for
MC− andMC

BA by difference logos (“Visualizing motif dif-
ferences with DiffLogo” Methods). We find for each of the
five data sets that the corrected motifs are softer than the
traditional motifs distorted by the binding-affinity bias.
Specifically, we find that the amount of decrease of the
most abundant bases in the corrected motifs compared to
the traditional motifs is roughly proportional to the base
abundance, whereas the increase of the remaining bases is
not proportional to the base abundance. Hence, the cor-
rected motifs are not simply a uniformly softened version
of the traditional motifs, but motifs with different degrees
of dissimilarity at different positions (Additional file 1:
Figure S5, Figure S6,Figure S7, Figure S8 and Figure S9).

Conclusions
We studied the possibility of detecting and correcting
the binding-affinity bias in ChIP-seq data using inter-
species information.We found that the fact that this bias is
stronger in target regions of the reference species than its
shadow in orthologous regions of phylogenetically related
species enables the detection and correction of this bias.
We proposed a phylogenetic footprinting model capable
of taking into account the binding-affinity bias in addition
to the contamination bias, and we applied this model and
its three special cases that neglect one of the two biases
or both to five ChIP-seq data sets. We found by stratified
repeated random sub-sampling validation that taking into
account the binding-affinity bias always improves motif
prediction, that the motif binding-affinity bias leads to a

distortion of motifs that is even stronger than the distor-
tion caused by the contamination bias, and that the cor-
rected motifs are typically softer than those predicted by
traditional approaches. The comparison of corrected and
traditional motifs showed small but noteworthy differ-
ences, suggesting that the refinement of traditional motifs
from databases and from the literature might lead to the
prediction of novel binding sites, cis-regulatory modules,
or gene-regulatory networks and might thus advance our
attempt of understanding transcriptional gene regulation
as a whole.

Methods
In this section we describe “Decrease of information con-
tents in motifs from related species” (i) the determina-
tion of the information contents of motifs in the reference
species and phylogenetically related species, “Modeling
the binding-affinity bias” (ii) the phylogenetic footprint-
ing model that can take into account the binding-affinity
bias, the contamination bias, neither one or the other,
or both, “Measuring classification performance” (iii) the
measurement of the classification performance of these
four phylogenetic footprinting models using stratified
repeated random sub-sampling validation, and “Visualiz-
ing motif differences with DiffLogo” (iv) the visualisation
of differences between the corrected and the traditional
motifs.

Decrease of information contents in motifs from related
species
We determine the information content I(P) of a motif P as
described in [23]:

H�(P) = log2(|A|) −
∑

a∈A
p�,a · log2(p�,a)

I(P) =
W∑

�=1
H�(P),

(1)
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Fig. 4 Differences of motifs predicted byMC− andMC
BA. The height of the base stacks is quantified by the Jensen-Shannon divergence, where high

base stacks represent high motif differences. We find significant motif differences exceeding 0.1 bit for all five data sets (Additional file 1: Figure S5,
Figure S6, Figure S7, Figure S8 and Figure S9)

where A = A,C,G,T is the alphabet, p�,a is the
probability of base a at position � in motif P, and
H�(P) denotes the information content of position � in
motif P.
We measure the information contents of motifs in five

species using repeated random sub-sampling as follows.
Initially, we choose one motif for each of the tran-
scription factors CTCF, GABP, NRSF, SRF, and STAT1
from the JASPAR database, namely MA0139.1 for CTCF,
MA0062.2 for GABP, MA0138.2 for NRSF, MA0083.2 for
SRF, and MA0137.3 for STAT1 [27]. In the first step,
we generate a test set from the set of positive align-
ments (Table 2) by removing randomly 200 alignments.
In the second step, we predict for each transcription
factor one binding site per target region in all target
regions of the reference species (human) in the cor-
responding test data set, extract the predicted binding
sites from the reference species as well as the binding
sites at the same positions in the orthologous regions,
and calculate for each species the information content
of the resulting motif as specified above. We perform
both steps 100 times and report the mean and stan-
dard error of the information content for each of the five
species.

Modeling the binding-affinity bias
In this section we describe the probabilistic model for
modeling the binding-affinity bias as a data generating
process. A derivation of the log-likelihood for motif-
bearing and non-motif-bearing alignments can be found
in Additional file 1: Section 1.
Let O be the number of species. A data set com-

prises N independent multiple sequence alignments.
We use Xn to refer to the n-th sequence alignment.
Every alignment is formed by O sequences. The o-th

Table 2 Data set statistics for human ChIP-seq data. For each of
the five transcription factors (TFs) CTCF, GABP, NRSF, SRF, and
STAT1, we specify the (i) average length of transcription factor
binding site (TFBS), the (ii) number of alignments, and the
(iii) average length of alignments

TF TFBS length Number of alignments Avg. length

CTCF 20 bp 467 213 bp

GABP 12 bp 451 236 bp

NRSF 21 bp 460 245 bp

SRF 12 bp 394 242 bp

STAT1 11 bp 360 244 bp
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sequence is denoted by X .,o
n . By convention, the refer-

ence species (that in which the selection process has
taken place) is species 1. Each sequence of alignment
Xn is composed of Ln nucleotides. We denote by Xu,o

n
the u-th nucleotide of the o-th sequence of the n-
th alignment. All nucleotides are presented by the set
A = {A,C,G,T}.
We assume the existence of a common ancestor of all

of O species. The sequence of the common ancestor of
the n-th alignment is a hidden variable Yn, with Yu

n rep-
resenting its u-th nucleotide. The substitution probability
that nucleotide Yu

n is substituted by the nucleotide Xu,o
n is

denoted by the variable γo.
An alignment Xn may contain a binding site or not. This

is denoted by the variable Mn. The length of the binding
site is denoted by the variable W and the position of the
binding site in alignment Xn is denoted by the variable �n.
The n-th alignment Xn is sampled as follows. The first

decision to be made is whether or not the alignment con-
tains a binding site. This is denoted by variableMn which
follows a Bernoulli distribution with parameter 1 − α.
Thus, whenever variable Mn is equal to 1 (M1

n), the align-
ment contains a binding site and when Mn is equal to 0
(M0

n), it does not.
Thus, parameter α is the probability that alignment Xn

contains no binding site. If α equals 0, the sampled data is
uncontaminated, because all alignments contain a copy of
the binding site. The larger the value of α, the higher the
percentage of non motif-bearing alignments in the sam-
pled data. A value of α equal to 1 models a data set where
no binding sites are present.
Next we introduce the data generating process for non-

motif-bearing alignments and later we explain that for
motif-bearing alignments.

1. Sample the primordial sequence as follows: For each
position u of the sequence sample nucleotide Yu

n
from the background equilibrium distribution π0
independent of the previous nucleotides.

2. For each of the descent species o ∈ {1, . . . ,O},
sample its sequence given the primordial sequence as
follows: To sample nucleotide u of the descent
species o, we apply to nucleotide u of the primordial
sequence the F81 [28] mutation model with the
background equilibrium distribution π0 and the
substitution probability γo.

The generating process for motif-bearing sequences is
slightly more complex, since it has to deal both with
the generation of the binding site and with the selection
process. First, we describe how to sample an alignment
without taking into account the selection process. Sec-
ond, we show how to modify this procedure so that the
selection process is considered.

Sample a motif-bearing alignment Xn as follows:

1. Sample the start position of the binding site �n from
the uniform distribution.

2. Sample the primordial sequence. For each position u
of the sequence outside the binding site, we sample
nucleotide Yu

n from the background equilibrium
distribution π0. For each position u of the binding
site, we sample nucleotide Yu

n from the equilibrium
distribution πu−�n+1.

3. For each of the descent species o ∈ {1, . . . ,O},
sample its sequence X .,o

n as follows: For each position
u of the descent species o outside the binding site,
apply to nucleotide Xu,o

n of the primordial sequence
the F81 mutation model taking as equilibrium
distribution π0. For each position u of the descent
species o inside the binding site, apply to nucleotide
Xu,o
n of the primordial sequence the F81 mutation

model taking as equilibrium distribution πu−�n+1.

Finally, to model the selection process, we introduce
the variable β . β is used to quantify the degree of the
binding-affinity bias in the reference species. We assume
that a transcription factor binds binding site B with a
probability proportional to p(B|π)β−1. As B occurs in vivo
with probability p(B|π), it occurs in the set of immuno-
precipitated sequences with a probability proportional to
p(B|π) · p(B|π)β−1 = p(B|π)β .
We can interpret the meaning of β as follows: If β is

greater than one, low-affinity binding sites are more fre-
quently rejected with respect to p(B) and high-affinity
binding sites are less frequently rejected with respect to
p(B). This leads to an under-representation of low-affinity
binding sites and an over-representation of high-affinity
binding sites in the ChIP-seq data set, thus modeling a
data set that is affected by the binding-affinity bias. If
β is equal to one, low-affinity binding sites are rejected
as frequently as high-affinity binding sites, leading to
a representative set of binding sites in the ChIP-seq
data set, which is not affected by the binding-affinity
bias.
Based on that selection model, sample a motif-bearing

alignment that has passed the selection process as follows:

1. Sample a motif-bearing alignment disregarding the
selection process following the procedure specified
above.

2. Decide whether the alignment is accepted or rejected
based on the probability of acceptance of the binding
site found at the reference species. If the alignment is
rejected, go to step 1.

Thus, we denote (i) the model with α = 0 and β = 1
by M−−, (ii) the model with with α > 0 and β = 1 by
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MC−, (iii) the model with α = 0 and β > 1 by M−
BA, and

(iv) the model with α > 0 and β > 1 MC
BA. M

−− can
neither handle the contamination bias nor the binding-
affinity bias.MC− can only handle the contamination bias,
but not the binding-affinity bias. M−

BA can only handle
the binding-affinity bias, but not the contamination bias.
AndMC

BA can handle both the contamination bias and the
binding-affinity bias.
We call M−−, MC−, M−

BA, and MC
BA foreground mod-

els. For modeling the background alignments, we use the
model with α = 1 and β = 1, which we call background
model and which we denote by B.

Measuring classification performance
For measuring the classification performance of the four
models M−−, M−

BA, MC−, and MC
BA we perform stratified

repeated random sub-sampling validation as illustrated in
Fig. 5 using data sets of the five human transcription fac-
tors CTCF, GABP, NRSF, SRF, and STAT1 that have been
used for benchmarking the phylogenetic footprinting pro-
gramMotEvo [25].
In step 1, we generate two training sets and two dis-

joint test sets for each of the five transcription factors as
follows. We randomly select 200 alignments from the set
of alignments (Table 2) of a particular transcription fac-
tor as positive training set, and we choose the set of the
remaining alignments as positive test set. We randomly
select 500 alignments from the set of alignments of the
four remaining transcription factors as negative training
set and another disjoint set of 500 alignments as negative
test set.

In step 2, we train a foreground model (M−−, M−
BA,

MC−, or MC
BA) on the positive training set and a back-

ground model (B) on the negative training set by expec-
tation maximization [29] using a numerical optimization
procedure in the maximization step.
We restart the expectation maximization algorithm,

which is deterministic for a given data set and a given
initialization, 150 times with different initializations and
choose the foreground model and the background model
with themaximum likelihood on the positive training data
and the negative training data, respectively, for classifica-
tion. We use a likelihood-ratio classifier of the two chosen
foreground and background models, apply this classifier
to the disjoint positive and negative test sets, and calculate
the receiver operating characteristics curve, the precision
recall curve, and the area under both curves as measures
of classification performance.
We repeat both steps 100 times and determine (i) the

mean area under the receiver operating characteristic
curve and its standard error and (ii) the mean area under
the precision recall curve and its standard error.

Data
The data used in this work originate from human ChIP-
seq data of the five human transcription factors CTCF,
GABP, NRSF, SRF, and STAT1, where the ChIP-seq data
for GABP and SRF published in [10] are available from the
QuEST web page [30], and the ChIP-seq data for CTCF,
NRSF, and STAT1 published in [24] are available from
the SISSRs web page [31]. All five data sets have been fil-
tered for high-quality reads and mapped to a reference

testing data

Data preparation

Model training

Model definition
positive 

alignments

training data

Classification

negative
alignments

foreground
model

select randomly
data for training

and testing

background
model

train model using
Expectation

Maximization

classify positive and
negative testing data
by likelihood ratios

Sequence logos

Difference logos

ROC curves average AUCs

Fig. 5 Overview of the workflow presented in this manuscript. In the data preparation step, we randomly compile disjoint training data and testing
data each with positive alignments and negative alignments for each of the transcription factors CTCF, GABP, NRSF, SRF, and STAT1. In the model
training step, we train each of the four presented foreground models as well as a background model by expectation maximization with 150 restarts.
We choose the foreground model and the background model with maximum likelihood, classify the testing data using a likelihood-ratio classifier,
and extract different characteristics such as the ROC curve, the PR curve, the inverse temperature, and the inferred motif. We repeat the described
procedure 100 times and calculate mean values and standard errors for several quantities such as the areas under the ROC curves or the PR curves
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genome [10, 24], and peak calling has been performed by
MACS [32]. Peaks have been extended or cropped to 400
bp, binding regions that potentially comprise more than
one of the five transcription factors have been removed,
and the 900 binding regions with the highest MACS
score have been retained [25]. Orthologous regions from
mouse, dog, cow, monkey, horse, and opossum have been
extracted from the UCSC database [33], multiple align-
ments of these orthologous regions have been obtained
using T-Coffee [34], and these multiple alignments are
kindly provided by [25].
To prepare ungapped alignments from these gapped

data sets of the five transcription factors CTCF, GABP,
NRSF, SRF, and STAT1, we perform the following three
steps. (i) Remove the species that cause the highest num-
ber of gaps in all alignments. Accordingly, we remove
mouse and opossum and keep orthologous regions from
human, monkey, cow, dog, and horse. (ii) Remove all
columns in each of the alignments that contain at least
one gap to obtain ungapped alignments. (iii) Remove all
ungapped alignments that are shorter than 21 bp, which
is the length of the longest motif (NRSF) in the performed
studies. Table 2 shows details about the resulting data. All
data are available as Additional file 2.

Visualizing motif differences with DiffLogo
We used the R package DiffLogo [35] to depict the differ-
ences between the predicted motifs of the models M−−,
M−

BA, MC−, and MC
BA. DiffLogo is an open source soft-

ware that is capable of depicting the differences between
multiple motifs [35]. This is realized by visualizing all pair-
wise differences in anN×N–grid with an empty diagonal.
Each entry in the grid is called difference logo. The degree
of difference of two motifs is calculated by the sum of all
stack heights in the corresponding difference logo and is
indicated by the background color from red (most dissimi-
lar among all motif pairs) to green (most similar among all
motif pairs). The individual sequence logos of the motifs
are shown above the table.
A single difference logo depicts the position-specific dif-

ferences between the base distributions of two sequence
motifs. Differences are visualized using a stack of bases
for each motif position. The height of each base stack
is calculated by the Jensen-Shannon divergence, which
is proportional to the degree of base distribution dis-
similarity. The Jensen-Shannon divergence is zero if both
base distributions are identical, increases with increas-
ing difference of the two base distributions, and reaches a
maximum of 2 bit if the two base distributions are maxi-
mally different, i.e., if two bases occur only in one of the
two motifs each with a probability of 1/2 and the other
two bases occur only in the other motif each with a prob-
ability of 1/2. The height of each base within a stack is
given by the difference of abundance. Thus, the height of

a base is proportional to the degree of differential symbol
abundance. Bases with a positive height indicate a gain of
abundance and bases with a negative height indicate a loss
of abundance. The stack height in the positive direction
must be equal to the stack height in the negative direction,
because the sum of base abundance gain must be equal to
the sum of base abundance loss.

Additional files

Additional file 1: Supplementary Methods, Results, Figures, and
Examples. This file is structured in four sections.
In section 1,Modeling the binding-affinity bias, we describe how to
determine the likelihood of non-motif-bearing and motif-bearing
alignments modeling the contamination bias and the binding-affinity bias.
In section 2, Example interpretation of difference logos, we give an exemplary
interpretation of some difference logos.
Section 3, Supplementary Figures, contains supplementary Figures S1-S18.
Section 4, Supplementary Tables, contains supplementary Tables S1-S10.
(PDF 3492 kb)

Additional file 2: Sequence data. This archive contains data files of
gap-free alignments of the ChIP-seq positive regions for each of the
transcription factors CTCF, GABP, NRSF, SRF, and STAT1 in FASTA format.
(ZIP 645 kb)
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DiffLogo: a comparative visualization of
sequence motifs
Martin Nettling1*†, Hendrik Treutler2†, Jan Grau1, Jens Keilwagen3, Stefan Posch1 and Ivo Grosse1,4

Abstract

Background: For three decades, sequence logos are the de facto standard for the visualization of sequence motifs in
biology and bioinformatics. Reasons for this success story are their simplicity and clarity. The number of inferred and
published motifs grows with the number of data sets and motif extraction algorithms. Hence, it becomes more and
more important to perceive differences between motifs. However, motif differences are hard to detect from individual
sequence logos in case of multiple motifs for one transcription factor, highly similar binding motifs of different
transcription factors, or multiple motifs for one protein domain.

Results: Here, we present DiffLogo, a freely available, extensible, and user-friendly R package for visualizing motif
differences. DiffLogo is capable of showing differences between DNA motifs as well as protein motifs in a pair-wise
manner resulting in publication-ready figures. In case of more than two motifs, DiffLogo is capable of visualizing
pair-wise differences in a tabular form. Here, the motifs are ordered by similarity, and the difference logos are colored
for clarity. We demonstrate the benefit of DiffLogo on CTCF motifs from different human cell lines, on E-box motifs of
three basic helix-loop-helix transcription factors as examples for comparison of DNA motifs, and on F-box domains
from three different families as example for comparison of protein motifs.

Conclusions: DiffLogo provides an intuitive visualization of motif differences. It enables the illustration and
investigation of differences between highly similar motifs such as binding patterns of transcription factors for different
cell types, treatments, and algorithmic approaches.

Keywords: Sequence analysis, Sequence logo, Sequence motif, Position weight matrix, Binding sites

Background
Biological polymer sequences encode information by the
order of their monomers, i.e., bases or amino acids. Often
specific parts of the polymer sequence are of particular
interest, as they encode, for instance, the binding of tran-
scription factors to specific binding sites [1, 2], the binding
to micro-RNA-targets in mRNAs, splice donor sites and
splice acceptor sites in pre-mRNAs [3, 4], the presence
of phosphorylation sites in proteins, or the folding of
specific protein domains [5]. The set of subsequences of
one specific biological process are often represented as a
sequence motif.
A sequence motif is a model, that represents the pref-

erence for the monomers based on a set of aligned

*Correspondence: martin.nettling@informatik.uni-halle.de
†Equal contributors
1Institute of Computer Science, Martin Luther University Halle-Wittenberg,
Halle (Saale), Germany
Full list of author information is available at the end of the article

biopolymer sequences. Sequence motifs are the result of
pipelines comprising wet-lab experiments and motif pre-
diction algorithms, and are frequently used as the basis of
in silico predictions [6]. Thus, sequence motif are critical
for research of a wide range of problems in biology and
bioinformatics.
Considering a particular transcription factor, there are

many pipelines that combine wet-lab experiments such as
HT-SELEX [7, 8], ChIP-Seq [9] or DNase-Seq footprinting
[10] with motif prediction algorithms such as MEME
[2, 11], ChIPMunk [12], POSMO [13], or Dimont [14].
Wet-lab experiments differ in their experimental setup,
e.g., ecotypes, cell types, developmental stage, time
points, or treatment, and motif prediction algorithms
differ in their mathematical theory and implementation
details.
Visualizing the results of motif discovery is nowa-

days accomplished by sequence logos [15], the de facto

© 2015 Nettling et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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standard for visualizing motifs in biology and bioinfor-
matics. Sequence logos emerged as an essential tool for
researchers to interpret findings, document work, share
knowledge, and present results.
However, comparing multiple sequence logos by visual

inspection is sometimes tricky. Differences between
sequence logos of two unrelated transcription factors are
usually obvious, whereas differences between sequence
logos of the same transcription factor are often less
obvious and rather hard to perceive as depicted in
Fig. 1. Moreover, the results of motif discovery algorithms
need to be compared against huge reference databases
such as JASPAR [16] or UniProbe [17] or motifs from
literature.
For this reason, the comparison of motifs is of primary

interest. Several numerical measures including variants
of Euclidean distance, Pearson correlation, and Jensen-
Shannon divergence have been used to compare motifs
[18–21]. These measures express the difference of motifs
as a single number that can be easily utilized subsequently,
e.g., for rankings or clustering algorithms. However, these
measures lose the information of what exactly makes
the difference between the motifs of interest. Hence, the
comparison ofmultiple pairs of motifs can result in similar
measures.
There are various tools for the analysis and visualiza-

tion of motifs as summarized in Table 1. The R package
seqLogo [22] is an implementation of sequence logos. In
the context of motif comparison, sequence logos may be
interpreted as a comparison of the input motif with a
uniformly distributed motif. The web application iceL-
ogo [23] extends this approach by comparing the input
motif with a motif that follows the same background
distribution at each motif position. Basically, seqLogo and
iceLogo are designed for the presentation of single motifs.
In contrast, the R package MotifStack [24] and the web
application STAMP [25] are designed for the presentation
of multiple motifs. Here, the input motifs are clustered
and presented as sequence logos. Thus, the approach of

both tools may be interpreted as multiple comparisons
with a uniformly distributed motif. The web application
Two Sample Logo [26] is capable of comparing two input
motifs on the basis of probability theory. This compari-
son is performed for each motif position individually and
results in a sophisticatedmotif comparison. Depending on
the focus of each tool, the input format is a set of aligned
sequences and/or a position frequency matrix or position
weight matrix. In addition, some tools focus exclusively
on DNA motifs, while others cover DNA, RNA, and pro-
tein motifs or even allow arbitrary alphabets. Table 1
summarizes tools and their capabilities. In section 4 of
Additional file 1, we additionally provide comparative
example plots generated by seqLogo, iceLogo, STAMP, Two
Sample Logo, and DiffLogo.
We intend the pair-wise comparison of motifs and

extend this idea towards the comparison of multiple
motifs as follows.
We focus on the comparison of position-specific sym-

bol distributions of two motifs. We neglect dependencies
between different motif positions to reduce complexity.
As suggested by the sequence logo approach, we intend
to represent the characteristics of each motif position by
the two properties stack height and symbol height within
a stack. The stack height is to be proportional to the
degree of distribution dissimilarity. The symbol height is
to be proportional to the degree of differential symbol
abundance.
We intend to compare three or more motifs on the

basis of pair-wise motif comparisons. This comparison
is to take into account all pair-wise motif comparisons,
suggesting an arrangement in a grid with one row and
one column for each motif and one cell for each motif
comparison. Similar motifs are to be placed in nearby
rows and columns, and the degree of similarity between
all motifs is to become obvious at a glance analogous
to heatmaps. The grid is to be complemented with
a display of the individual sequence logos for further
comparisons.

Fig. 1 Sequence logos of CTCF motifs from cell lines H1-hESC and HUVEC. The two sequence logos are highly similar in their conservation profile
(height of stacks) and nucleotide preference at the individual motif positions
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Table 1 Comparison of related tools. We compare six publicly available tools on the basis of five criteria

Features

Tools Alphabet Input format Comparison Clustering Extensible

seqLogo DNA matrix uniform - -

iceLogo DNA/RNA, proteins sequences average - -

MotifStack any matrix uniform hclust -

STAMP DNA sequences, matrix uniform UPGMA/SOTA -

Two Sample Logo DNA/RNA, proteins sequences position-specific - -

DiffLogo any sequences, matrix position-specific hclust, optimal leaf ordering �
In the first and second column, we examine the kind of supported input, in the third and forth column we examine the mode of action, and in the fifth column we examine
whether the tool is extensible. For the criterion “alphabets” we summarize the supported biopolymers out of DNA, RNA, and proteins or arbitrary alphabets in case of “any”.
For the criterion “input format” we discriminate a set of “sequences” versus “matrix”, which addresses at least one out of the formats position weight matrix (PWM), position
frequency matrix (PFM), and position count matrix (PCM). For the criterion “comparison” we characterize the kind of distribution that is used for motif comparison (“uniform” is
the uniform distribution, “average” is the average base distribution in a set of sequences, and “position-specific” is a position-specific distribution). For the criterion “clustering”
we point out whether there is a clustering of motifs and which cluster-algorithm is used. For the criterion “extensible” we note whether the tool is extensible by the user

Implementation
In this section, we first define the used notation. We then
briefly describe the classical sequence logo. Subsequently,
we introduce the difference logo for the visualization of
pair-wise motif differences. We discuss this new method
and explore potential biological interpretations. Finally,
we propose an approach for employing difference logos
for the joint comparison of multiple motifs.

Basic notation and sequence logo
Consider a motif as an abstract description of a given
set of aligned sequences of common length L from the
alphabet A. The relative frequency of symbol a ∈ A at
position � ∈ [1, L] corresponds to the (estimated) proba-
bility p�,a. In case of two motifs, we use p�,a for the first
motif and analogously q�,a for the second motif.
The well-known sequence logo visualizes a motif with a

symbol stack for each position. We denote the height of
the stack at position � by H� and the height of symbol a
within this stack by H�,a. In the traditional sequence logo,
H� and H�,a are defined by

H� = log2(|A|) −
∑
a∈A

p�,a · log2(p�,a) (1)

H�,a = p�,a · H�, (2)

which states that the height of a stack at position � reflects
the degree of conservation at position � quantified by the
information content and that the height of each symbol at
position � is proportional to its frequency at position �.
Hence, the traditional sequence logo is an intuitive visu-
alization of both (i) conserved motif positions and (ii)
abundant bases.

The approach of DiffLogo
As specified earlier, we compare motifs per position. Sim-
ilar to the sequence logo, we show a symbol stack for each

position. We redefine the calculation of H� and use this
measure as the total height of position � reflecting the dif-
ference of the symbol distribution of both motifs at this
position. We redefine the calculation of H�,a and use this
measure as the height of a symbol within the stack at
position �. In the following, H�,a can be positive or nega-
tive. Symbols with positive valuesH�,a are plotted upward.
Symbols with negative values H�,a are plotted downward.
Generally, there is a plethora of well-understood mathe-

matical criteria that can be combined to define the height
of a symbol stack and the relative heights of symbols
within the stack such as probability differences, informa-
tion divergences, distance measures, or entropies [27]. In
the following, we present DiffLogo with the example of
the Jensen-Shannon divergence for the calculation of H�

and normalized probability differences for the calculation
ofH�,a. We denote the combination of these twomeasures
as weighted difference of probabilities.

Weighted difference of probabilities
We calculate the stack height for each motif posi-
tion using the Jensen-Shannon divergence. The Jensen-
Shannon divergence is a measure for the dissimilarity of
two probability distributions based on information the-
ory [28] (see Fig. 2). In contrast to other measures, the
Jensen-Shannon divergence shows a comparable behavior
when evaluating dissimilarities of distributions near the
uniform distribution. The Jensen-Shannon divergence of
two motifs at position � is given by

H� = 1
2

∑
a∈A

p�,a log2
p�,a
m�,a

+ 1
2

∑
a∈A

q�,a log2
q�,a
m�,a

, (3)

wherem�,a = p�,a+q�,a
2 .

We define the height of each symbol by

H�,a = r�,a · H�, (4)
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Fig. 2 Exemplary comparison of four DNA motifs of length one using the Jensen-Shannon divergence. Motif 1 and motif 2 are depicted as
sequence logos. For each column, we compare the motif in the first row with the motif in the second row using the Jensen-Shannon divergence
listed in the third row. In the first example we depict the case with only one base in each motif resulting in a maximal Jensen-Shannon divergence
of 1 bit. In the second example we depict the case with two equally abundant bases both in motif 1 and motif 2 (both different) resulting again in a
maximal Jensen-Shannon divergence of 1 bit. In the third example we depict the case with two equally abundant bases both in motif 1 and motif 2
(one equal and one different) resulting in a Jensen-Shannon divergence of 0.5 bit. In the fourth example we depict the case with two bases both in
motif 1 and motif 2 (differentially abundant) resulting in a Jensen-Shannon divergence of 0.25 bit

where we define the weight r�,a as

r�,a =
{ p�,a−q�,a∑

a′∈A |p�,a′−q�,a′ | if p� �= q�

0 otherwise.
(5)

r�,a is the probability difference of symbol a at position �

between two motifs normalized by the sum of absolute
probability differences at this position. We use normal-
ized probability differences as these are indicators for the
gain or loss of symbol abundance and provide a view on
the symbol distribution differences of both motifs. As a
consequence, symbols less abundant in the second motif
compared to the first motif are plotted upward, and sym-
bols more abundant in the second motif compared to the
first motif are plotted downward.
This representation emphasizes a high gain or loss of

probability in co–occurrence with a high gain or loss of
information content. The sum of the heights of symbols
with a gain of probability and the sum of the heights
of symbols with a loss of probability are equal at every
position, because each gain of probability of one symbol
implies a loss of probability of the remaining symbols. The
advantage of this approach is that we are capable of see-
ing differences of position-specific symbol distributions
and of seeing those symbols that are responsible for these
differences by gaining or losing abundance.

Comparison of multiple motifs
According to the requirements formulated above, we pro-
pose a visualization for the joint comparison of N ≥ 3
motifs given the measure H� as follows.
We plot the difference logos of all N × (N − 1)

motif pairs with a common ordinate scaling. We define
a scalar dissimilarity value D for a pair of motifs as the

sum of all stack heights in the corresponding difference
logos,

D =
L∑

�=1
H�. (6)

We compute amotif order to group similar motifs. Here,
we take the optimal leaf order of a hierarchical clustering
of the motifs based on D (function hclust in R package
stats and function order.optimal in R package cba). We
arrange the difference logos ordered in anN×N grid with
an empty diagonal. Difference logos opposing each other
across the diagonal of the grid correspond to each other
by an inversion of the ordinate. We visualize D with the
background color of the corresponding difference logo
using a color gradient from green (most similar among
all pairwise comparisons) to red (most dissimilar). We
outline the motif names above each column and left of
each row. In addition, we allow the possibility of drawing
the classic sequence logos and the cluster tree above the
columns as auxiliary information.
The advantage of this approach is that we are capable

of surveying the overall similarities and dissimilarities
in the resulting difference logo grid. Greenish regions
indicate similar motif groups and reddish rows and
columns indicate less similar motifs. Given a region of
interest, it is furthermore possible to comprehend the
origins of dissimilarities from the individual difference
logos and optionally the sequence logos.

R package
DiffLogo is written in R [29]. We provide the implemen-
tation as a ready-to-use R package. For symbol draw-
ing, DiffLogo uses adapted methods from the package
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seqLogo [22] in the software suite bioconductor [30].
DiffLogo allows the analysis of sequence motifs defined
over arbitrary alphabets.
The core functions can be parameterized with func-

tions for H� and r�,a. Hence, the user is capable of com-
bining different formulae for H� and r�,a. We provide
implementations of the Jensen-Shannon divergence and
the normalized probability difference used for the dif-
ference logos presented in this manuscript. In addition,
DiffLogo provides other implementations for H� and r�,a
as alternatives. Exemplarily, we show the result of eight
different combinations of measures for stack height and
symbol height in Additional file 1: Tables S1 and S2. The
DiffLogo package comprises example data, example code,
and further documentation.

Results and discussion
In this section, we present three examples demonstrat-
ing the utility of DiffLogo in different applications. First,
we examine differences in motifs of DNA binding sites of
the same transcription factor from five different cell lines.
Second, we examine differences in motifs of DNA binding
sites of three different transcription factors with similar

binding motifs. Third, we examine differences in motifs of
a protein domain.

DNAmotifs of same transcription factor
We consider sequence logos and difference logos of bind-
ing sites of the human insulator CTCF in different cell
lines as obtained by motif discovery from ChIP-seq data
[31] based on preprocessed ChIP-seq data from the
ENCODE project. For CTCF motif inference, sequences
with p-values smaller than 10-6 were selected. All data
are freely available as Additional File of the original pub-
lication [31]. Since CTCF is a DNA-binding protein, the
alphabet corresponds to the four nucleotides in this case.
In Fig. 1, we plot the sequence logos for two of these

cell types, namely H1-hESC and HUVEC. Considering
the sequence logos, both motifs look highly similar with
regard to the conservation as well as the nucleotide
preference of individual motif positions, and differences
between both motifs are hard to perceive. Considering the
corresponding difference logo in Fig. 3 (row 1, column 5
or row 5 column 1), however, we instantly see that indeed
a large number of motif positions exhibits differences in
nucleotide composition. We find the largest difference

Fig. 3 Comparison of five DNA motifs using DiffLogo. Comparison of five CTCF motifs from cell lines H1-hESC, MCF7, HeLa-S3, HepG2, and HUVEC.
We plot all pair-wise sequence logos and display the distance between each motif using the background color from green (similar) to red
(dissimilar). We plot the sequence logos of each motif as well as the leaf-ordered cluster tree above. The motifs of H1-hESC and MCF7 are highly
similar and substantially different from the other motifs, while the motifs of HeLe-S3, HepG2, and HUVEC are similar to each other as well. Due to leaf
ordering, the difference between compared motifs increases with increasing distance from the main diagonal in the difference logo grid

5.2 DiffLogo: a comparative visualization of sequence motifs
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according to the difference logo at position 8 of the motifs,
where nucleotide C is more prevalent in cell type H1-
hESC compared to HUVEC, whereas the opposite holds
for nucleotide T. This difference is less visible in the
sequence logos, even with hindsight from the difference
logo, due to the low conservation at this position. Specif-
ically, the probability of C increases from 0.35 (HUVEC)
to 0.58 (H1-hESC), whereas the probability of T drops
by a factor of 2 from 0.44 (HUVEC) to 0.21 (H1-hESC).
Depending on the application, this difference at position
8 might have a decisive influence on the outcome of, e.g.,
in silico binding site prediction.
In the literature, several positions with substantial motif

differences uncovered byDiffLogo are known to be related
to CTCF binding affinity. For instance [32] show that “low
occupancy” CTCF binding sites are enriched for C or G at
position 18 compared to “high occupancy” sites, which in
our case might indicate that the H1-hESC ChIP-seq data
set contains a larger number of such “low occupancy” sites
than the HUVEC data set.
In a large-scale study [33], CTCF core motifs are parti-

tioned by the presence or absence of additional upstream
and downstream motifs, where the greatest variations in
the core motifs between partitions can be found at posi-
tions 1-3, 6, 8, 11, 12, 18, and 20, which cover those
positions varying in the difference logo. Again, these par-
titions are related to binding affinity and occupancy of
CTCF.
In summary, DiffLogo helps to identify several motif

positions with substantial variation between cell types,
known to be related to CTCF binding affinity and binding
site occupancy.
In real-world applications, motifs for more than two cell

types are often studied, which might render the pairwise
comparison of difference logos a tedious task. We support
such an evaluation across multiple cell types by a struc-
tured visualization of multiple difference logos as shown
in Fig. 3. Here, we compare the pairwise difference logos
of CTCF motifs from five cell types, namely H1-hESC,
MCF7, HeLa-S3, HepG2, and HUVEC. The cluster tree
and background color of the cells are based on numeri-
cal measures of motif differences (cf. Implementation) and
guide us to the most notable differences between pairs of
motifs. For instance, we observe from the tree and back-
ground colors that the motifs of H1-hESC and MCF7 are
highly similar. The same holds true for themotifs of HeLa-
S3, HepG2, and HUVEC, whereas motifs show substantial
differences between these two groups. To further facilitate
the visual comparison of multiple motifs, we leaf-order
the cluster tree such that neighboring motifs are as similar
as possible. Due to this ordering, the difference between
motif pairs increases with increasing distance from the
main diagonal of the difference logo grid. For instance,
the topology of the clustering would allow to invert the

order of the three leaves under the right sub-tree in Fig. 3,
which, however, would bring the quite dissimilar motifs of
HUVEC and MCF7 in direct neighborhood. From Fig. 3,
we also observe that the two motifs of H1-hESC and
HUVEC are the most dissimilar ones among the motifs
studied. A visualization of all nine available motifs can be
found in Additional file 1: Figure S1.

DNAmotifs of different transcription factors
We demonstrate the utility of DiffLogo for motifs derived
from binding assays for the human transcription factors
Max, Myc, and Mad (Mxi1) from Mordelet et al. [34].
These three basic helix-loop-helix transcription factors
are members of a regulatory network of transcription fac-
tors that controls cell proliferation, differentiation, and
cell death. Each transcription factor binds to different
sets of target sites, regulates different sets of genes, and
thus plays a distinct role in human cells. However, Myc,
Max, and Mad have almost identical PWMs, which all
correspond to an E-box motif with consensus sequence
CACGTG.
The PWMs considered here have been derived from

probe sequences and corresponding binding intensities
of in-vitro genomic context protein-binding microarrays
[34]. The exact binding sites within the probe sequences
are predicted by the de-novo motif discovery tool Dimont
[14] using Slim models [35]. For each of the three tran-
scription factors, the top 1,000 predicted binding sites are
used to generate the corresponding PWM.
In Fig. 4, we plot the sequence logos and difference logos

of Myc, Max, and Mad. We observe from the sequence
logos that the binding motifs are almost identical. Con-
sidering the difference logos, we observe that the six core
nucleotides are conserved in the motifs of all three tran-
scription factors. We find the largest differences between
the motif of Max and the motifs of Myc and Mad. In case
of Max and Myc, we find a Jensen-Shannon divergence
greater than 0.01 bit at positions 11, 12, 22, and 26. In
case of Max and Mad, we find a Jensen-Shannon diver-
gence greater than 0.01 bit at positions 3, 12, 22, and 25.
In both cases, we mainly find more purine (adenine and
guanine) in the motif of Max than in the motifs of Myc
and Mad.

Protein motifs
As a third example, we demonstrate the utility of Diff-
Logo using the F-box domain, which plays a role in
protein-protein binding. The complete F-box domain in
this example is 48 amino acids long [36]. Here, we inves-
tigate the middle section from the 12th to the 35th amino
acid.
In Fig. 5, we plot the sequence logos and difference

logos of F-box domains from the three kingdoms meta-
zoa, fungi, and viridiplantae. We observe from the cluster
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Fig. 4 Comparison of E-Box motifs of Max, Myc, and Mad using DiffLogo. We plot all pair-wise difference logos and display the distance between
each motif using the background color from green (similar) to red (dissimilar). We plot the sequence logos of each motif as well as the leaf-ordered
cluster tree above. The motifs of the transcription factors Myc and Mad are more similar to each other than to the motif Max. The six core nucleotides
with consensus sequence CACGTG are conserved in the motifs of all three transcription factors and, hence, are not visible in the difference logos

tree and the background colors that the motifs of meta-
zoa and fungi are highly similar, whereas motifs of this
group show substantial differences to viridiplantae. The
largest difference can be seen between motifs of metazoa
and viridiplantae.
When comparing metazoa and fungi with viridiplantae,

DiffLogo identifies positions 6, 17, and 22 with high val-
ues of the Jensen-Shannon divergence. The differences at
positions 6 and 22 could be expected from the differences
of the sequence logos, whereas the differences at position
17 are not immediately obvious from them. At position 6
the abundance of arginine (R) in viridiplantae is 0.54 and
thus more than 10 times higher than in fungi and 12 times
higher than inmetazoa. At position 22 tryptophane (W) is
highly abundant in viridiplantae and 4 and 3.4 times more
abundant than in metazoa and fungi. At position 17 the
most noticeable differences in viridiplantae to fungi and
metazoa can be seen for amino acid cysteine (C), valine
(V), alanine (A), and serine (S). The overall abundance
increases from 0.13 in metazoa and 0.12 in fungi to 0.64 in
viridiplantae. In contrast, the abundance of arginine (R),
glutamine (Q), and lysine (K) is only 0.044 in viridiplantae
and 0.44 in metazoa and fungi. A visualization of the

full F-Box domain from four kingdoms can be found in
Additional file 1: Figure S2.

Conclusion
We present DiffLogo, an easy-to-use tool for a fast
and efficient comparison of motifs. DiffLogo may be
applied by users with only basic knowledge in R and
is highly configurable and extensible for advanced
users. We introduce weighted differences of probabili-
ties to emphasize large differences in position-specific
symbol distributions. We present visual comparisons
of multiple motifs stemming from motifs of one
transcription factor in different cell types, different
transcription factors with similar binding motifs,
and species-specific protein domains. Figures gener-
ated by DiffLogo enable the identification of overall
motif groups and of sources of dissimilarity. Using
DiffLogo, it is easily possible to compare motifs from
different sources, so DiffLogo facilitates decision making,
knowledge sharing, and the presentation of results. We
make DiffLogo freely available in an extensible, ready-to-
use R package including examples and documentation.
DiffLogo is part of Bioconductor.

5.2 DiffLogo: a comparative visualization of sequence motifs
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Fig. 5 Comparison of three F-box domain motifs using DiffLogo. We compare the F-box domains from the kingdoms metazoa, fungi, and
viridiplantae and plot all pair-wise difference logos and display the distance between each motif using the background color from green (similar) to
red (dissimilar). We plot the sequence logos of each motif as well as the leaf-ordered cluster tree above. The motifs of metazoa and fungi are highly
similar. All other pairwise comparisons show substantial differences

Availability and requirements
Project name: DiffLogo
Project home page: http://github.com/mgledi/DiffLogo
Availability: http://bioconductor.org/packages/DiffLogo
Operating system(s): Platform independent
Programming language: R
Other requirements: Installation of R 1.8.0 or higher
License: LGPL (≥ 2)
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Supplementary Methods, Results, Figures, and
Examples. This file is structured in four sections. Section 1, Additional
examples, contains Figures S1 and S2. Figure S1 shows a DiffLogo grid for
nine CTCF motifs. Figure S2 shows a DiffLogo grid for four F-box domain
motifs. In section 2, CTCF with and without clustering, we show in detail the
impact of clustering and optimal leaf ordering for a DiffLogo grid of nine
CTCF motifs. In section 3, Alternative combinations of stack heights and
symbol weights, we first describe the mathematical background of four
implementations of H� and two implementations of r�,a . Afterwards, we
show the result of the eight possible combinations in Tables S1 and S2 on
two sequence motifs. In section 4, Tool comparison, we compare DiffLogo
with the five tools seqLogo, iceLogo,MotifStack, STAMP, and Two Sample
Logo.

From the set of nine CTCF motifs we selected the pair of motifs with the
highest similarity according to the Jensen-Shannon divergence (GM12878
and K562) and the pair of motifs with the lowest similarity according to the
Jensen-Shannon divergence (H1-hESC and HUVEC) for the comparison of
the five different tools. (PDF 8775 kb)
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Spectrometry Data
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ABSTRACT: The identification of metabolites by mass spectrometry constitutes a major bottleneck which
considerably limits the throughput of metabolomics studies in biomedical or plant research. Here, we present a
novel approach to analyze metabolomics data from untargeted, data-independent LC-MS/MS measurements.
By integrated analysis of MS1 abundances and MS/MS spectra, the identification of regulated metabolite
families is achieved. This approach offers a global view on metabolic regulation in comparative metabolomics.
We implemented our approach in the web application “MetFamily”, which is freely available at http://msbi.
ipb-halle.de/MetFamily/. MetFamily provides a dynamic link between the patterns based on MS1-signal
intensity and the corresponding structural similarity at the MS/MS level. Structurally related metabolites are
annotated as metabolite families based on a hierarchical cluster analysis of measured MS/MS spectra. Joint
examination with principal component analysis of MS1 patterns, where this annotation is preserved in the
loadings, facilitates the interpretation of comparative metabolomics data at the level of metabolite families. As a
proof of concept, we identified two trichome-specific metabolite families from wild-type tomato Solanum
habrochaites LA1777 in a fully unsupervised manner and validated our findings based on earlier publications
and with NMR.

■ INTRODUCTION

Metabolomics experiments provide small molecule measure-
ments from biological samples in a broad range of applications
including cancer research, drug development, and plant
science.1−5 Mass spectrometry (MS) coupled to liquid
chromatography (LC) is an essential analytical technology to
acquire a snapshot of the metabolic state of a sample. On the
basis of untargeted MS measurements, it is possible to measure
thousands of detectable signals as MS1 features per chromato-
graphic run and to acquire signal profiles of small molecules
based on retention time (RT), accurate mass-to-charge ratio
(m/z), and abundance.6 Univariate or multivariate statistical
analysis is then applied to signal profiles of different sample
groups to detect MS1 features that are group-discriminating or
of interest based on the experimental design.
Hints for the structural characterization or even identification

of MS1 features are obtained from tandem MS measurements
(MS/MS), where the metabolites undergo fragmentation
resulting in MS/MS spectra. MS/MS spectra can be collected
by data-dependent acquisition (DDA) or in data-independent
acquisition (DIA) mode, requiring a trade-off between dwell
time and spectral purity.7,8 Using DIA, it is possible to collect
thousands of MS1 features from a single LC run as well as the
associated MS/MS spectra.9 However, in most studies, the
identity of the vast majority of MS1 features is unknown.

Structure elucidation of each individual MS1 feature from
complex biological samples, e.g., by NMR and interpretation of
MS/MS spectra, is currently out of reach. Thus, the
biochemical relation between MS1 features remains largely
unexplained.
Group-discriminating MS1 features are often structurally

related, e.g., if particular metabolic pathways are differentially
regulated as a consequence of disease,10 stress,11 genetic
manipulation,12 or in the case of organ-specific accumulation of
structurally related metabolites.13 Structurally related metabo-
lites often exhibit latent similarity in their MS/MS spectra in
which characteristic fragmentation patterns arise from common
functional groups or structural features. For instance, upon
negative mode ionization and collision-induced dissociation
(CID), adenylated metabolites such as adenyl nucleotides, CoA
esters, and NAD cofactors form a fragment ion of m/z
134.0472 Da (C5N5H4

−), which corresponds to the mass of the
purine core element. Under the same conditions, glucosides
often form a fragment ion of m/z 161.0455 Da (C6H9O5

−),
characteristic of the hexose side-chain. Thus, on the basis of
existing information, precursor ions showing these character-
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istic fragments could be grouped together as metabolites
sharing common structural features, or metabolite families.
However, even pre-existing MS/MS information characteristic
of certain metabolite families is sparse. Hence, novel
approaches that turn MS1- and MS/MS-features into
interpretable information within a reasonable amount of time
are urgently needed. These approaches should be able to relate
MS1 abundances to latent similarity at the MS/MS spectral
level.
Recently, several studies reported on the organization of

hundreds of MS1 features by molecular networking depicting
relationships between structurally related molecules based on
their spectral similarity.14−17 However, an explicit assignment of
MS1 features to similarity clusters and the source of structural
similarity between up- or downregulated MS1 features was not
apparent. Previously, Wagner et al. used GC-MS data for
hierarchical cluster analysis (HCA) to arrange known and
structurally related metabolites.18 Using HCA, it was possible to
identify structural classes among 59 metabolites. Rasche et al.
described FT-BLAST19 to compare spectra and computation-
ally derived fragmentation trees, revealing clusters of
structurally closely related compounds. However, neither
Wagner et al. nor Rasche et al. considered the abundance of
MS1 features in different samples.
Inspired by the idea to comprehensively analyze molecular

networks and to explicitly group MS1 features, we performed
HCA across hundreds of MS/MS spectra obtained from
glandular trichomes of wild-type tomato Solanum habrochaites
LA1777. Glandular trichomes of vascular plants such as tomato
are metabolic factories producing a plethora of secondary
metabolites involved in plant defense and the communication
with its environment.13,20 We considered characteristic frag-
ments prevalent in MS/MS similarity clusters to assign MS1

features to certain trichome-specific metabolite families. In
addition, we applied principal component analysis (PCA) to
metabolite profiles for the discovery of group-discriminating
MS1 features and combined the information on metabolite
families obtained from HCA (MS/MS feature similarity) with
the PCA loadings (sample-specific MS1 abundance). This
combination of statistical analyses of MS1 feature abundances
and MS/MS structural annotations can not only speed-up the
individual analysis steps, but allows us to address new
questions, such as the discovery of group-discriminating
metabolite families with biochemical relevance. Here, we
exemplarily selected two metabolite families being produced
by tomato glandular trichomes which play important roles in
the plant defense against herbivores, namely the branched chain
acyl sugars21−24 and the sesquiterpene glucosides which are
potentially poisonous to plant herbivores.25,26 We implemented
the proposed methodology in the Open Source web application
“MetFamily” and made our approach freely available (accessible
via http://msbi.ipb-halle.de/MetFamily/).

■ MATERIALS AND METHODS

Fragment Matrix Assembly. MetFamily processes a
metabolite profile of a set of MS1 features together with an
MS/MS library comprising MS/MS spectra for these MS1

features. We obtain both data sets as output of MS-DIAL,9

where the metabolite profile contains extracted m/z/retention
time features from MS1 scans with the corresponding feature
abundances (Data S-1 of the Supporting Information, SI) and
the MS/MS library contains deconvoluted MS/MS spectra of
the MS1 features with relative intensities of the fragment ions
(Figure 1, Data S-2). Instead of MS-DIAL, other tools can
produce similar input data as described in Note S-3. Upon data

Figure 1. MS/MS library format before upload into MetFamily.
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import, MetFamily aligns all MS/MS spectra with a user-
defined m/z error to create the f ragment matrix as shown in
Figure 2, where the relative intensity of unique MS/MS
fragments is associated with the corresponding MS1 feature
(i.e., precursor ion) and its MS1 abundance in individual
samples (Data S-3). For our showcase, this preprocessing step
takes one or 2 min. The fragment matrix is assembled as
follows.
First, we process the set of all fragments. Here, we remove

fragments with an intensity below a user-defined noise
threshold. We normalize fragment intensities within each
MS/MS spectrum to a maximum of 1 (base peak). In addition,

we add one neutral loss (NL) for each fragment by calculating
the mass of the neutral loss as the difference of fragment m/z
and precursor m/z in MS1 (intentionally a negative m/z value).
The intensity of the NLs is chosen equal to the intensity of the
corresponding fragment. In this manuscript, we treat fragments
and NLs equally by denoting both as fragments.
Second, we align the individual MS/MS spectra (Figures 1

and 2). Here, we match fragments from different MS/MS
spectra with similar m/z and merge these to f ragment groups of
unique m/z. We call the mean of all fragment m/z’s of one
fragment group the f ragment group mean. For the alignment of
the individual MS/MS spectra, we use an efficient algorithm

Figure 2. Combined data matrix after data preprocessing by MetFamily. The quantification part (red, left) contains the MS1 features (rows;
precursor ions) and the MS1 abundances in individual samples. In the fragment part (green, right), the column headers are the mean of binned MS/
MS features (m/z or neutral loss) from the MS/MS library. Upper zoom: m/z; retention time of feature (628.2452; 9.16) and its respective peak
heights in two trichome samples. Lower zoom: relative MS/MS intensities of fragment ion m/z 323.09570 Da. Arrows to the left and to the right:
MS1 abundances are analyzed using PCA and MS/MS spectra are analyzed using HCA.
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implemented in the R package xcms31 (version 1.44.0). This
algorithm avoids the usage of fixed m/z bins with a heuristic
approach that groups fragments with similar m/z and
decomposes contiguous fragment groups using hierarchical
clustering. Here, a fragment m/z matches a fragment group, if
the following:

| − | ≤ + ×m m mz m mz EAbs PPM /1 6group MS/MS MS/MS

where m is the fragment m/z, mgroup is the fragment group
mean, mzAbsMS/MS is a parameter representing the absolute m/
z error, and mzPPMMS/MS is representing the relative m/z error
in ppm (parts per million). See Table S-3 for a summary of
user-customizable parameters. After fragment group assembly,
we remove fragment groups which correspond to isotopic ions.
Specifically, we detect fragment groups with a m/z difference of
1.0033 Da (regarding the fragment group means ± m/z error)
which correspond to 13C isotopes. Third, we create the
fragment matrix with one row for each unique MS1 precursor
and columns of fragment groups (Figure 2). We register the
intensity of each fragment in the row and column of the
corresponding MS1 feature and fragment group, respectively.
For each MS1 feature, we generate an ID given by “m/z/
retention time” in MS1.
Finally, we add the set of MS1 abundances in all samples and

other annotations to each row resulting in a combined data
matrix. The combined data matrix represents the data basis for
subsequent analyses and can be examined in a spreadsheet
program for complementing analyses (Figure 2 and Data S-3).
MS1/MS/MS Combined Data Analysis. A principal

component analysis (PCA) for the set of m MS1 features in n
samples is performed as follows. Given the m by n matrix of
scaled MS1 abundances, we calculate the scores and the
loadings. Here, MetFamily supports the scaling functions log2
transformation, Pareto scaling, Centering, and Autoscaling.27 The
scores comprise one data point per sample and reflect
differences between samples. The loadings comprise one data
point per MS1 feature and emphasize MS1 features with
differential abundance between samples.
We perform a hierarchical cluster analysis (HCA) on MS/

MS spectra of a set of MS1 precursor features as follows. We
calculate the distance matrix of pairwise dissimilarities between
the MS/MS spectra of all MS1 features. Here, we provide
different distance functions to score common and distinct
fragments. Specifically, we recommend the distance function
‘Jaccard (intensity-weighted)’, which sums the intensities of
common and disjoint fragments:

= − ∩
∪f s s

sum map s s

sum map s s
( , ) 1

( ( ))

( ( ))i j
i j

i j

where si and sj are the fragments in the MS/MS spectrum of
MS1 feature i and j. To suppress noise and emphasize the
importance of intense fragments, map discretizes the intensities
of the fragments as follows. Intensities smaller than 0.2 are
mapped to 0.01, intensities greater or equal than 0.2 and
smaller than 0.4 are mapped to 0.2, and intensities greater or
equal than 0.4 are mapped to 1. Given the distance matrix, we
calculate a hierarchical cluster dendrogram where each cluster
of MS1 features represents a putative metabolite family.
For each cluster of MS/MS spectra, we calculate the cluster-

discriminating power for prevalent fragments as follows. For each
fragment present in more than 50% of the MS/MS spectra in a

cluster, we measure the ability of this fragment to discriminate
spectra in the cluster from spectra outside the cluster as

= −
f

p p

n
cdp( )k l,

in out

where f k,l is the l-th fragment of the k-th cluster, pin is the
number of MS/MS spectra in the k-th cluster containing the
fragment f k,l, pout is the number of MS/MS spectra outside the
k-th cluster containing the fragment f k,l, and n is the total
number of MS/MS spectra in the k-th cluster. If pout > pin, then
we define cdp( f k,l) = 0. The cluster-discriminating power of a
fragment is in the range from zero to one, and a fragment with
a cluster-discriminating power close to one indicates a very
specific fragment.
Clusters containing fragments with a cluster-discriminating

power close to one indicate metabolite families. Currently, the
annotation of metabolite families based on characteristic MS/
MS fragments is performed by a mass spectrometry expert who
manually evaluates the hierarchy of putative metabolite families
and labels a set of clusters with functional and/or structural
annotations based on characteristic fragment patterns. Each
MS1 feature can be labeled with one annotation, i.e.,
membership in a metabolite family.

Plant Growth and Harvest. Solanum habrochaites LA1777
was grown on soil in a greenhouse (65% humidity, light
intensity: 165 μmol s−1 mm2, 21−24 °C, 16 h light period) and
watered with tap water every 2 days. The plant material was
harvested 12 weeks after germination during the light phase in
the early afternoon. For trichome harvest, tomato leaves were
put on the hand palm (using gloves) and trichomes were
quickly brushed off the leaves by a 2 cm broad paint brush
which was dipped in liquid nitrogen. The frozen trichomes
were collected in a mortar filled with liquid nitrogen.
Trichomes from 15 plant leaves were pooled under cryogenic
conditions and further purified by sieving through steel sieves
of 150 μm mesh width (Retsch, Hahn, Germany). After
removal of trichomes, the plant leaves were immediately
quenched in liquid nitrogen. Pooled leaves were ground in a
mortar under liquid nitrogen conditions. After evaporation of
all liquid nitrogen during storage at −80 °C leaves and
trichomes were lyophilized overnight and stored in a deep
freezer until extraction.

Metabolite Extraction. Using wall-reinforced cryo-tubes of
1.6 mL volume (Precellys Steel Kit 2.8 mm, Peqlab
Biotechnologie GmbH, Erlangen, Germany) filled with 5 steel
beads (3 mm), 25 mg aliquots of dry leaf or trichome powder
was suspended in 900 μL dichloromethane/ethanol (−80 °C).
Then, 200 μL of 50 mM aqueous ammonium formate/formic
acid buffer (0 °C, pH 3) was added to each vial, and two rounds
of cell rupture/metabolite extraction were conducted by
FastPrep bead beating (60 s, speed 5.5 m/s, first round −80
°C, second round room temperature, FastPrep24 instrument
with cryo adapter, MP Biomedicals LLC, Santa Ana, CA,
U.S.A.). After phase separation by centrifugation at 20 000g (2
min, 0 °C) the aqueous phase was removed, and 600 μL of the
organic phase was collected. Following, 500 uL tetrahydrofuran
(THF) was added to exhaustively extract hydrophobic
metabolites and the Fastprep and centrifugation were repeated
accordingly. The THF supernatant was combined with the first
organic phase extract and dried in a stream of nitrogen gas. The
dried extract was resuspended in 150 μL 75% methanol
(aqueous) and filtered over 0.2 μm PVDF.
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Analytical Conditions for Liquid Chromatography
and Mass Spectrometry. 0.5 μL methanolic extract was
injected into an Acquity-UPLC (Waters Inc.) and separated on
a Nucleoshell RP18 (150 mm × 2 mm × 2.7 μm; Macherey &
Nagel, Düren, Germany) at 40 °C. The mobile phase A was
0.33 mM ammonium formate with 0.66 mM formic acid in
water; mobile phase B was acetonitrile. The gradient was 0 min,
5% B; 2 min, 5% B; 19 min, 95% B; 21 min, 95% B; 21.1 min,
5% B; and 24 min, 5% B. The column flow rate was 0.4 mL/
min, the autosampler temperature was 4 °C.
ESI-(−)-Mass Spectrometry was performed on an AB Sciex

TripleTOF 5600 system (Q-TOF) equipped with a DuoSpray
ion source. All analyses were performed at the high sensitivity
mode for both TOF MS1 and product ion scan. The mass
calibration was automatically performed every 20 injections
using an APCI calibrant solution via a calibration delivery
system (CDS). The instrument (TripleTOF 5600, Sciex,
Toronto, Canada) was configured to simultaneously acquire
high resolution MS/MS spectra for all MS1 features (sequential
window acquisition of all theoretical fragment-ion spectra,
SWATH)28 (Figure S-1). The SWATH parameters were MS1

accumulation time, 150 ms; MS2 accumulation time, 20 ms;
collision energy, −45 V; collision energy spread, 35 V; cycle
time, 1160 ms; Q1 window, 25 Da; mass range, m/z 65−1250.
The other parameters were curtain gas, 35; ion source gas 1, 60;
ion source gas 2, 70; temperature, 600 °C; ion spray voltage
floating, −4.5 kV; declustering potential, 35 V.
Raw Data Processing. After measurement, raw data of

triplicate trichome and trichome-free leaf material was
converted from the vendor file format (in our case *.wiff)
into the common file format of Reifycs Inc. (Analysis Base File
format *.abf) using the freely available Reifycs ABF converter
(http://www.reifycs.com/AbfConverter/index.html).This
process took about 1 min per sample. After conversion, the
freely available MS-Dial software was used for feature detection,
ion species annotation, compound spectra extraction, and peak
alignment between samples.9 Data processing by MS-Dial using
the parameters in Table S-1 took about 30 min. Data

processing by MetFamily using the parameters in Table S-2
took 1 min.
Notably, neither the use of SWATH-triggered CID

fragmentation nor the use of MS-Dial are prerequisite to run
MetFamily. Any data independent or data dependent
acquisition to collect MS/MS spectra and other peak picking
and deconvolution software can alternatively be used.29−32 In
that case, their output has to be provided as a text file
containing the peak intensities and a msp-type spectral library
which are formatted as exemplified in Data S-1 and Figure 1,
and described in Note S-3. However, as unique feature, MS-
Dial jointly deconvolutes MS1 and MS/MS features and
automatically predicts the precursor ion when DIA was applied.
Via the Reifycs ABF converter, MS-DIAL accepts all of major
MS vendor-formats as well as the common mzML data and is
applicable to either DIA or DDA MS/MS fragmentation
methods.

Substance Purification. Since NMR requires purified
analytes in the upper μm range, 1 kg of LA1777 leaf material
was surface-extracted with methanol for 2 h. After evaporation,
a methanolic concentrate of this extract was produced and
injected into a LC system in 100 μL increments. For peak
separation using semipreparative HPLC and an analysis by
mass spectrometry (1260 Infinity system, Agilent), a full scan
between 200 and 800 m/z was performed after negative
electrospray ionization (ion source: API-ES, gas temperature:
350 °C, drying gas 10 mL/min, nebulizer pressure 35 psig,
capillary voltage 4500 V). For HPLC, a XTerra prep MS C18
column (5 μm × 7.8 mm × 150 mm; Waters) was used and run
at a flow rate of 6 mL/min at 25 °C. Solvent A was 0.3 mM
ammonium formate acidified with formic acid to pH 6.2.
Solvent B was acetonitrile. Gradient conditions were: 0−5 min
5% B; 5−87 min linear gradient to 95% B; 87−88 min 95% B;
and 88−90 min 5% B. For fractionation, m/z 605.5, 737.5, and
751.5 triggered the selective collection. A makeup pump that
transferred an aliquot of the eluate to the mass analyzer was set
to 0.5 mL/min 50% A - 50% B. Subsequently, all collected
fractions were dried by lyophilization prior to NMR analysis.

Figure 3. Principal component analysis of metabolite extracts of glandular trichomes and leaves of Solanum habrochaites LA1777. Comparison of
2585 MS1 features from TOF-MS measurements (n = 6). (a) scores and (b) loadings with annotations. The PCA loadings with annotations indicate
a predominant enrichment of acyl sugars in glandular trichomes. AS: acyl sugars, SQT-glucosides: sesquiterpene glucosides, and Unknown: Not
characterized here.
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Analytical Conditions for NMR. NMR spectra were
recorded on an Agilent/Varian VNMRS 600 NMR spectrom-
eter operating at a proton NMR frequency of 599.83 MHz
using a 5 mm inverse detection cryoprobe. 2D NMR spectra
were recorded using standard pulse sequences (gDQCOSY,
zTOCSY, gHSQCAD, gHMBCAD) implemented in Agilent
(Varian) VNMRJ 4.2A (CHEMPACK 7.1) spectrometer
software. A TOCSY mixing time of 80 ms was used. HSQC
experiments were run with multiplicity editing and optimized
for 1JCH = 146 Hz. HMBC experiments were optimized for a
long-range coupling constant of 8 Hz; a 2-step 1JCH filter was
used (130−165 Hz). Proton and carbon chemical shifts are
referenced to internal TMS (0 ppm).

■ RESULTS AND DISCUSSION

As a proof of concept, we applied MS signal profiles to compare
the metabolism of a special plant organ in tomato, the glandular
trichomes, to tomato leaves. Plant glandular trichomes are
secretory cells that protrude from the epidermis of many
vascular plants. As “metabolic factories”, they produce
important drugs such as the antimalaria artemisinin or
compounds known to be involved in plant defense.20,33 Here,
we used Solanum habrochaites LA1777, a wild type tomato
accession with a rich profile of secondary metabolites produced
in the glandular trichomes.34 We used six UPLC-(−)ESI-
SWATH-MS/MS runs of triplicate trichome and trichome-free
leaf extracts (cf. Materials and Methods). However, MetFamily

is applicable to a larger number of samples and sample groups.
We used MS-DIAL9 for data preprocessing and exported (i) a
signal profile with MS1 features and (ii) a spectral library with
deconvoluted MS/MS spectra extracted from the raw data
(Data S-1 and Data S-2). Using the software MetFamily, we
aligned the MS/MS spectra of the spectral library resulting in a
novel fragment matrix structure, and we fused this fragment
matrix with the matching set of MS1 features from the six
individual samples to a single matrix (cf. Materials and
Methods, Figures 1 and 2, Data S-3, Table S-3).
MetFamily provides options to perform principal component

analyses (PCA). Here, we performed a PCA on 2585 MS1

features detected in glandular trichomes or leaves of LA1777
using Pareto-scaled data. In our example, PC1 shows a clear
separation between trichomes and leaves with R2 = 0.90, Q2 =
0.82 and a large number of MS1 features more abundant in
glandular trichomes (Figure 3A,B). A Scree plot on additional
principal components is provided in Figure S-2. Up to this
point, all data have been acquired in a fully untargeted manner
and traditionally this is where group-discriminating MS1

features would be subjected to tedious manual structure
elucidation. In our approach, we amended the loadings plot
of the PCA (Figure 3B) with a set of structural annotations
based on characteristic MS/MS fragments which we identified
in different signal-clusters using HCA (Figure 4). Using
MetFamily, we performed a hierarchical cluster analysis
(HCA) on MS/MS spectra of the fragment matrix (Data S-

Figure 4. Hierarchical cluster analysis of 135 trichome-specific MS1 features using the corresponding MS/MS spectra obtained from organic extracts
of S. habrochaites LA1777. For comparison of the groups trichomes versus leaf focusing on trichome-specific features, the set of 2585 MS1 features
was filtered using an MS1 abundance threshold of 20 000 counts and a log2-fold change (LFC) of two. The heatmap below depicts the LFC and the
absolute MS1 abundance in glandular trichomes (TRI) and trichome-free leaves (LVS), respectively. The 135 filtered MS1 features clearly segregated
into two main signal-clusters which in turn further segregated into signal-clusters with different levels of similarity between MS/MS spectra.
Specifically, we identified a cluster of 73 short branched chain acyl sugars (AS, in blue) and a cluster of four sesquiterpene glucosides (SQT-
glucosides, in red) on the basis of a set of characteristic fragments which were prevalent in both clusters (see legend “Annotations” on the right).
Both signal-clusters show characteristic fragments with a cluster-discriminating power of 80% and more (size of the branch nodes, see legend
“Cluster-discriminating power” on the right). 58 trichome-specific MS1 features partially showed further clusters, but remained uncharacterized in
this study (Unknown in black).
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3). For PCA as well as for HCA, MetFamily allows the usage of
thresholds for the MS1 abundance of individual MS1 features
(average of all samples) and for the log2-fold change between
the average MS1 abundance of two sample groups. Since we
were interested in abundant trichome-specific metabolites, we
retained 135 MS1 features in the HCA with MS1 abundances
≥20 000 counts and a log2-fold change ≥2 comparing
trichomes versus leaf. After hierarchical cluster analysis, the
resulting dendrogram indicated a clear segregation into two
main clades with internal spectral similarity (Figure 4).
The first signal-cluster contained 73 MS1 features which

correspond to short branched chain acyl sugars21 (AS, blue in
Figure 4). The structural similarities among members of this
clade was supported by prevalent fragment ions 87.0451 Da
(theoretical mass for C4H7O2

− is 87.0452) and 101.0603 Da
(theoretical mass for C5H9O2

− is 101.0608), which are
indicative for short branched acyl groups. These acyl moieties
were esterified to sucrose as reflected by the fragments
323.0957 Da (theoretical mass for C12H19O10

− is 323.0984;
sucrose-H2OH−) and 305.0864 Da (theoretical mass for
C12H17O9

− is 305.0878; sucrose-2H2OH]−). MS/MS
fragmentation patterns and NMR analysis of two selected
MS1 features of this clade ([m/z; RT]: [737.3578; 14.65] and
[751.3749; 15.64]) confirmed the membership to the
metabolite family of short branched chain acyl sugars (Figures
S-3, S-4, S-7, S-8, S-11−S-14, S-15−S-19 and Tables S-5, S-6).
Our NMR analysis revealed that the feature [737.3578; 14.65]
comprised an isomeric mixture of isobutyl, isopentyl, and
anteisobutyl acyl moieties, which were not resolvable using our
chromatography. MS/MS fragmentation and NMR of various
AS have been thoroughly studied earlier by Ghosh et al., where
compounds selected here for analysis were annotated as
acylsucrose S4:21[2] (theoretical m/z:737.36012 Da (formate
adduct-H)) and acylsucrose S4:22[6] (theoretical m/z:
751.37577 Da (formate adduct-H)), respectively.21

The second signal-cluster contained a group of four MS1

features which correspond to sesquiterpene glycosides (SQT-
glucosides, red in Figure 4). The structural similarities among
members of this clade was supported by three prevalent
fragment ions: m/z 401.2548 Da (theoretical mass for
C21H37O7

− is 401.2545), 563.3051 Da (theoretical mass for
C27H47O12

− is 563.3073), and 605.3176 Da (theoretical mass
for C29H49O13

− is 605.3179) (Figure S-5). Recently, Ekanayaka
et al. identified a novel class of trichome-specific sesquiterpene
glucosides from S. habrochaites using these fragment ions and
elucidated the structures of purified representatives by NMR.26

In our study, CID fragmentation and preparative isolation of
MS1 feature [605.3160; 7.07, an abundant in-source fragment]
with subsequent NMR confirmed the structure of 12-O-(6″-O-
malonyl-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranosyl)-cam-
pherenane-2-endo,12-diol, a member of the novel sesquiter-
pene glucoside metabolite family (Figures S-3−S-6, S-9, S-10
and Tables S-3, S-4).
After annotation of both metabolite families, the correspond-

ing MS1 features are highlighted by their color-code in the PCA
loadings (Figure 3B). In our case, it was evident that the
representatives of both metabolite families were enriched in
glandular trichomes, indicating a trichome-specific upregulation
of short branched chain acyl sugars and sesquiterpene
glucosides. Please note that the hierarchical cluster dendrogram
comprised more clades with internal spectral similarity, but we
concentrated on the short branched chain acyl sugars and
sesquiterpene glucosides whose structures were confirmed by

NMR. A detailed workflow exemplified here is given in Figure
S-1, and the full showcase protocol is given in Note S-1. A
general user guide for MetFamily is given in Note S-2.

Additional Features of MetFamily. MetFamily also
supports semitargeted analyses. In this case, sets of MS1

features can be selected by certain fragment masses, neutral
losses, or combinations thereof within a user-defined mass error
in ppm as filter criteria. Using this option, only selected MS1

features are considered in subsequent PCA or HCA
calculations and the data analysis is consequently constrained
to selected metabolite families. For example, to isolate only
glycosylated MS1 features from all data the user can specify a
fragment ion of m/z 161.0455 Da (C6H9O5

−) from MS/MS
spectra in negative mode and can then focus on the regulation
of enzymatic glycosylations in a biological context (for details,
see the MetFamily user guide in Note S-2). When we applied
this filter with a mass error of 25 ppm, we obtained 568 MS1

features from our example data, presumably containing a
hexose as a structural moiety. In addition, it is possible to search
MS1 features with certain fragments or neutral losses
postanalysis. The corresponding MS1 features can then be
jointly visualized in the PCA loadings and the hierarchical
cluster dendrogram.
It is possible to export different kinds of results from

MetFamily. Selected sets of precursor ions can be exported and,
e.g., reloaded into the original MS data acquisition software.
Further, it is possible to export both the hierarchical cluster
dendrogram and the PCA plots as publication-ready high
quality images. The set of parameters used for the initial data
import can be exported and imported. Finally, it is possible to
export the whole project (including all annotations and color
codes) to enable the user to share the project or to continue the
data analysis at a later time (Data S-4).

■ CONCLUSIONS
The web application “MetFamily” presented here constitutes a
novel approach to analyze metabolomics data from untargeted,
data-independent LC-MS/MS measurements. Rather than
relying on the time-consuming structure identification of
individual metabolites, MetFamily assists in the interpretation
of complex metabolomics data by identifying metabolite
families through patterns in MS/MS. These are generated by
similarity clustering of associated MS/MS spectra and can be
annotated with names and colors. After preprocessing of LC-
MS/MS raw data, MetFamily performs a joint data analysis of
MS1 abundances and MS/MS spectra in which the annotation
of metabolite families facilitates the interpretation of com-
parative data sets. Structure elucidation at the metabolite level
can be performed afterward in a much more focused way. As a
proof of concept, we identified two trichome-specific
metabolite families from wild type Solanum habrochaites
LA1777 in a fully unsupervised manner and validated our
findings based on earlier publications and with NMR. The
plethora of identified trichome-specific acyl sucroses correlates
with upregulation of acyltransferases of the BAHD family in
tomato glandular trichomes (Schilmiller 2012). In addition, the
size of the clade “acyl sugar” is related to a low substrate
specificity of BAHD acyltransferases, illustrating that MetFam-
ily can uncover links between enzymatic promiscuity and
organ-specific regulation of enzymes.
Using the proposed approach, it is now possible to obtain a

comprehensive overview of data sets containing thousands of
mass features within a reasonable amount of time. Thus, by
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providing a dynamic link between structural similarity at the
MS/MS level (HCA) and the corresponding MS1-signal
intensity-based patterns (PCA) we bridge the gap between
raw data and structural information. Moreover, using
MetFamily, precursor ions can now be filtered via combinations
of fragment ions and neutral losses, permitting the selection of
metabolite families based on characteristic fragmentation
patterns.
While traditional compound identification is based on the

comparison of MS/MS spectra (or electron impact MS spectra)
with reference spectra from known compounds, future
developments should exploit spectral patterns of MS/MS
features being characteristic of certain metabolite families.
Public knowledge on such characteristic fragment ions or
neutral losses, e.g., based on metabolite families, can assist mass
spectrometry specialists in the elucidation of unknown features
and will open new perspectives in life science.
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Abstract: Mass spectrometry is a key analytical platform for metabolomics. The precise quantification
and identification of small molecules is a prerequisite for elucidating the metabolism and the
detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task.
Here, we present an approach for the improved detection of isotope clusters using chemical prior
knowledge and the validation of detected isotope clusters depending on the substance mass using
database statistics. We find remarkable improvements regarding the number of detected isotope
clusters and are able to predict the correct molecular formula in the top three ranks in 92% of the
cases. We make our methodology freely available as part of the Bioconductor packages xcms version
1.50.0 and CAMERA version 1.30.0.

Keywords: isotope cluster; software; raw data

1. Introduction

The elucidation of the metabolism provides deep insights into complex processes in the cell such
as responses to nutrition deficiency, pathogen exposure, and drought stress in plants or the implications
of mutations, age, and tissue development in animals. Mass spectrometry is a key technology for the
identification and quantification of metabolites in biological samples. After measurement using mass
spectrometers, feature detection algorithms extract basic properties about peaks in the raw data such
as retention time and peak height. The set of properties describing single peaks are called features and
the exhaustive extraction of features is a prerequisite for downstream analyses such as metabolite
identification and quantitative comparisons between samples.

The feature detection algorithm centWave in the R package xcms version 1.50.0 [1] adapts the
following procedure. First, a set of regions of interest (ROIs) is identified in the ROI identification step,
where ROIs are two-dimensional intervals in the mass-to-charge (m/z) dimension and the retention
time dimension containing potential signals. The set of ROIs is examined in the ROI examination step
in order to validate, localize, and quantify features. In the ROI identification step, a heuristic method
is applied to the raw data to substantially reduce the processing time of the more computationally
intensive ROI examination step. This heuristic method aims at a high specificity at the cost of sensitivity,
especially in case of features with a low signal-to-noise ratio. Consequently, potentially important
features in the raw data are not detected and the information behind these features cannot be used in
downstream analyses.

Most chemical elements are present in different variants called isotopes. Though chemically
almost equivalent, the isotopes of a particular chemical element differ in mass and are thus well
distinguishable using mass spectrometry. The isotopes of each element have a known natural
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abundance and the distribution of isotopes across all atoms of a molecule results in a set of related
signals. The features extracted from these signals are called isotopologue features and the set of
all isotopologue features from one analyte is called isotope cluster also known as isotope pattern.
Unfortunately, many of these signals are below the detection limit which results in the underestimation
of isotopologue features.

Based on isotope clusters, it is possible to determine the charge state, abundance, and elemental
composition of the measured ion with high precision. The arrangement of isotopologue features to
isotope clusters leads to a considerable reduction of data complexity facilitating the interpretation
of data sets. It has been demonstrated that the analysis of isotope clusters leads to an increased
confidence and precision of comparative analyses [2]. Isotope clusters from precursor ions and tandem
mass spectrometry are pivotal for the determination of the molecular formula using software like
SIRIUS [3], Rdisop [4], and others [5–12]. The molecular formula strongly facilitates the identification
of molecules known as a major bottleneck in metabolomics [13,14] and has been demonstrated
metabolome-scale [15]. There are approaches in metabolomics and proteomics which use isotope
clusters to improve peak picking [16–18]. In addition, isotope clusters have been used as a valuable
source for the assessment of the data quality [19] and for database searches with high precision [20].

The detection of isotope clusters is usually performed after peak picking by consideration of
coeluting features separated by certain distances in the m/z dimension. However, a validation of
putative isotope clusters in terms of the removal of leading peaks from hydrogen–losses and the
decomposition of overlapping isotope clusters into individual isotope clusters is usually lacking in
case of small molecules. The deconvolution of overlapping isotope clusters has been described in
case of peptides and proteins, for isotope dilution experiments, and in case of substances with known
molecular formula [17,21,22].

Aiming at the exhaustive detection and precise validation of isotope clusters, we propose the
following approach for liquid chromatography–high resolution mass spectrometry data. We predict
new ROIs for putative isotope peaks based on previously detected features and implement this
approach in combination with the centWave algorithm as part of the R package xcms version 1.50.0 [23].
We validate putative isotope clusters depending on the mass of the substance based on database
statistics and implement this approach as part of the R package CAMERA version 1.30.0 [24].

For evaluation purposes, we apply the modified centWave algorithm to different sets of mass
spectrometry raw data and detect and validate isotope clusters as proposed. We evaluate the
results using various performance measures and find remarkable improvements regarding the
number of detected isotope clusters. The extended R packages xcms and CAMERA are available
at Bioconductor [25].

2. Results

We demonstrate the performance of our approach for an enhanced isotope cluster detection and
validation. First, we describe the workflow which includes our approach; Second, we evaluate the
proposed targeted peak picking with predicted isotope ROIs compared to peak picking with random
ROIs and traditional peak picking on basis of various performance measures; Third, we evaluate
the proposed isotope detection routine with mass–specific isotope cluster validation compared to
several isotope detection routines on basis of various performance measures; Fourth, we present the
isotope ratio quantiles which are used for the validation of isotope clusters; Fifth, we exemplify the
proposed isotope detection routine with and without mass–specific isotope cluster validation on six
example substances.

2.1. Workflow of the Approach

We integrated the proposed methodology into an untargeted workflow which extracts annotated
peak tables from LC-MS raw data as summarized in Figure 1. The user supplies the LC-MS raw data
files in a xcms-supported format, namely one of AIA/ANDI NetCDF, mzXML, mzData, or mzML.
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The workflow incorporates one function from the R package xcms [23], one function from the R package
CAMERA [24], and two new function as follows.

First, we perform peak picking without any prior knowledge which we denote as traditional peak
picking. Here, we use the centWave algorithm [1] which applies a heuristic for the detection of ROIs
(ROI identification step). Given the set of detected ROIs, chromatographic peaks are extracted using
continuous wavelet transformation (ROI examination step). This step results in a peak table with one
row for each detected feature and one column for each feature property such as m/z, retention time,
integrated peak area, and signal-to-noise ratio.

Figure 1. Workflow of the proposed approach. We depict data sets with cylinders, algorithms with
continuous rectangles, and R packages with dotted rectangles. Each algorithm rectangle comprises the
step number (top left corner), the purpose of the algorithm (heading), the R function name (monospace
font), algorithm steps (itemized), and a reference for the algorithm or the individual algorithm steps
(in square brackets, asterisk stands for this manuscript). 1© The workflow starts with traditional peak
picking on LC-MS raw data to extract a peak table comprising features; 2© This peak table is extended
by a targeted peak picking which targets on isotope features; 3© The extended peak table is split into
putative compound spectra denoted pseudospectra; 4© The detection and validation of isotope clusters
is performed on each pseudospectrum resulting in annotated pseudospectra.

Second, we perform the proposed targeted peak picking as described in Section 4.1. Here, a set
of isotope ROIs is predicted on basis of the previously extracted peak table. Given the set of
predicted isotope ROIs, chromatographic peaks are extracted using continuous wavelet transformation
(ROI examination step). Notably, this ROI examination step is identical to the ROI examination step in
the traditional peak picking step with the exception that we use relaxed peak picking parameters this
time. This step results in an extended peak table which is enriched with features corresponding to
isotope isotope peaks as demonstrated in the second results section.

Third, we extract pseudospectra from the extended peak table [24]. This step aims at the extraction
of compound spectra on basis of the retention times, but multiple coeluting compounds are potentially
assigned to the same spectrum which is the reason for the usage of the term pseudospectrum. In case
of multiple raw data files a retention time correction (xmcs function retcor) can be advisable prior to
the extraction of pseudospectra. This step results in a set of pseudospectra. Each pseudospectrum is a
peak table comprising all properties of a subset of the features from the extended peak table.
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Fourth, we detect isotope clusters in each pseudospectrum using the proposed isotope detection
routine with mass–specific isotope cluster validation as described in Section 4.2. Here, putative isotope
clusters are detected and putative isotope clusters are validated based on database statistics as
demonstrated in the third results section. This step results in a set of annotated pseudospectra,
i.e., the given set of pseudospectra enriched with isotope annotations.

The presented workflow is implemented exemplarily in the vignette IsotopeDetectionVignette in
R package CAMERA in version 1.30.0. In addition the R package CAMERA supports a number
of further analyses given the set of annotated pseudospectra. This includes, amongst others,
the annotation of adducts and neutral losses, the filling of missing values, and the combination
of results from opposite ion modes.

2.2. Targeted Peak Picking Using Predicted Isotope ROIs

We examine whether the proposed prediction of isotope ROIs in combination with the centWave
algorithm increases the number of detected isotope peaks. To verify the specificity of the predicted
isotope ROIs to isotopes, we compare predicted isotope ROIs with the same number of random ROIs
denoted noise ROIs. In addition, we compare our approach to the unmodified centWave algorithm
with different signal-to-noise thresholds snthr. We evaluate our approach based on a dilution series
experiment with 40 LC-MS measurements. These data sets comprise both strong and weak signals and
constitute the basis to test the detection of weak signals like isotope peaks.

We evaluate the performance of predicted isotope ROIs detected with different relaxed
signal-to-noise thresholds snthr’ as described in Section 4.1 on 40 LC-MS measurements described in
Section 4.4. We quantify the performance using the performance measures (i) number of detected peaks;
(ii) number of detected isotope peaks; (iii) number of detected isotope clusters; (iv) isotope coverage;
and (v) Peak Picking Score (PPS). The isotope coverage is the ratio between the number of detected
isotope peaks and the number of detected peaks. The isotope coverage ranges from 0 to 1, where 0
means that no isotope clusters have been detected and 1 means that all peaks are part of isotope clusters.
A higher isotope coverage indicates a higher peak picking quality as exploited in [19]. The PPS was
proposed in [19] for the quantification of the peak picking quality and implemented in the R package
IPO. The PPS is defined as the ratio between the number of reliable peaks squared and the number
of non–reliable peaks. The number of reliable peaks is defined as the number of peaks in isotope
clusters which are detected in the IPO package by a custom isotope detection routine. The number
of non–reliable peaks is defined as the number of peaks which are not in a isotope cluster although
it is to be expected based on different criteria. We compute each performance measure as a function
of the relaxed signal-to-noise threshold snthr’ ∈ {100, 95, ..., 5}% ∗ snthr, where snthr = 25 is the
signal-to-noise threshold used in the traditional peak picking step.

In Figure 2 we show the performance of the traditional peak picking in combination with targeted
peak picking with isotope ROIs as well as traditional peak picking in combination with targeted
peak picking with noise ROIs for varying signal-to-noise threshold snthr’. In addition, we show
the performance of traditional peak picking with varying signal-to-noise threshold snthr. In case
of predicted isotope ROIs, all five measures increase with decreasing snthr’. The isotope coverage
appears to saturate for a relaxed signal-to-noise threshold snthr’ of approximately 6.25. For this
threshold, we find in case of predicted isotope ROIs an average increase of approximately +10%
peaks, +37.6% isotope peaks, +33.5% isotope clusters, +25.2% isotope coverage, and +102.8% PPS in
contrast to noise ROIs, suggesting an isotope-specific improvement of peak picking. More specifically,
20 isotope clusters could be extended and 37 isotope clusters could be newly detected. In addition,
we find that the PPS decreases for a relaxed signal-to-noise threshold snthr’ lower than 5. This finding
confirms the general observation that peak picking with a too low signal-to-noise threshold results
in unreliable peaks and is therefore not advisable. We also tested the performance of traditional
peak picking with varying signal-to-noise threshold snthr and find that the number of peaks more
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than doubles. However, the proportion of low–intensity peaks which are not part of isotope clusters
increases disproportionately and there is no specificity for isotope peaks.

Figure 2. Evaluation of predicted isotope ROIs for varying relaxed signal-to-noise threshold snthr’.
We show the mean (solid line) and the standard error of the mean (SEM, interval in dark grey) of the
performance measures (i) number of detected peaks; (ii) number of detected isotope peaks; (iii) number
of detected isotope clusters; (iv) isotope coverage; and (v) Peak Picking Score (PPS). In case of isotope
ROIs and noise ROIs, we plot the performance of each measure without additional ROIs in the first
column (“N/A”) as reference value (horizontal dashed line) and in the subsequent columns with
additional ROIs for decreasing relaxed signal-to-noise threshold snthr’. In case of “Lower S/N
threshold”, we plot the performance of each measure for decreasing signal-to-noise threshold snthr
without additional ROIs. All four measures increase for predicted isotope ROIs with decreasing
signal-to-noise threshold snthr’ in contrast to noise ROIs.

2.3. Isotope Cluster Detection and Validation

There is a multitude of isotope detection routines for the recognition of isotope clusters.
These detect coeluting features which are separated by certain distances in the m/z dimension and
group these features to isotope clusters. However, a validation of detected isotope clusters is typically
based on simple ad hoc rules. There are at least four cases for which the validation of isotope clusters
can be beneficial as shown in Figure 3.

First, valid isotope clusters can be verified which strengthens the trust in the data; Second,
multiple coeluting substances with mass differences of a few dalton can result in isobaric ion species
and thus in overlapping isotope clusters [26]. These are potentially misinterpreted as a single isotope
cluster affecting downstream analyses. This necessitates the deconvolution of the overlapping isotope
cluster into at least two valid isotope clusters; Third, substances can be affected by hydrogen loss
as reported in [27] and exploited in [28]. This leads to mass differences similar to isotope peaks
(mass(1H) = 1.008 ≈ 1.0034 = mass(13C) −mass(12C)) and results in a small trailing peak which is
potentially misinterpreted as monoisotopic peak of the putative isotope cluster. This may result in the
assumption of a wrong monoisotopic mass and may even lead to the rejection of the entire isotope
cluster on the basis of failed intensity-checks [24]. Although this small trailing peak corresponds to
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the same substance, it needs to be removed from the isotope cluster in order to allow more precise
molecular formula predictions. Fourth, the intensity of small peaks is systematically underestimated
by some mass spectrometers which leads to distorted ratios between different isotope peaks as
reported previously [3]. This intensity bias would lead to distorted molecular formula predictions and
the removal of these underestimated peaks from the isotope cluster allows more precise molecular
formula predictions.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Four cases necessitating the validation of putative isotope clusters. Figure 3a,b: Valid isotope
cluster without and with isotope cluster validation; Figure 3c,d: Two overlapping isotope clusters
without and with isotope cluster validation; Figure 3e,f: Hydrogen loss without and with isotope
cluster validation; Figure 3g,h: Underestimated small peak without and with isotope cluster validation.
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We compare the proposed isotope detection routine with mass–specific isotope cluster validation
(IDRNewVal) with the isotope detection routine without isotope cluster validation (IDRNewNoVal),
the isotope detection routine implemented in the AStream package (IDRAStream) [29], the isotope
detection routine implemented in the CAMERA package (IDRCAMERA) [24], and the isotope detection
routine implemented in the mzMatch package (IDRmzMatch) [30]. The isotope detection routines from
AStream, CAMERA, and mzMatch apply different requirements for the validation of isotope clusters.
In IDRAStream it is required that the abundance of the monoisotopic peak, the first isotope peak, and the
second isotope peak decreases strictly, which corresponds to a ratio <1 between consecutive isotope
peaks. In IDRCAMERA it is required that the ratio of the monoisotopic peak to the first isotopic peak is
within an interval which is given by the ratios of the monoisotopic peak to the first isotopic peak of a
substance consisting exactly one carbon atom and a substance consisting exactly massmono/mass(12C)
carbon atoms, where massmono is the assumed monoisotopic mass of the substance. In IDRmzMatch it is
required that isotope peaks show a high correlation regarding coelution.

We evaluate the performance of the isotope cluster detection and validation described in
Section 4.2 on a dilution series experiment with 40 LC-MS measurements described in Section 4.4.
We quantify the performance using the performance measures (i) number of detected peaks; (ii) number
of detected isotope peaks; (iii) number of detected isotope clusters; and (iv) isotope coverage,
i.e., the proportion of detected isotope peaks versus all detected peaks. We compute each performance
measure without predicted isotope ROIs as well as with predicted isotope ROIs for a relaxed
signal-to-noise threshold snthr’ of 6.25. We present the results with predicted isotope ROIs relative
to the results without predicted isotope ROIs in Figure 4. These results are a subset of the results
in Figure A1 in the Appendix A where we present the results for varying relaxed signal-to-noise
threshold snthr’. We relate the results to the quality of the predicted molecular formulas presented in
the Appendix B on a gold standard of 11 data sets with known content.

In Figure 4 we show the performance measures for IDRNewVal, IDRNewNoVal, IDRAStream,
IDRCAMERA, and IDRmzMatch. We find that all four measures increase with predicted isotope ROIs in
case of all isotope detection routines. IDRNewNoVal detects the most isotopes which reflects the fact
that there are no constraints regarding the shape of the isotope cluster. This indicates that a certain
proportion of the detected isotope clusters might be invalid. We point out, that this highly sensitive
algorithm can be useful in case of substances containing uncommon elements such as Cl, Br, Se, or B as
scrutinized in [31]. IDRmzMatch detects by far the lowest number of isotopes which reflects that this
algorithm requires a high degree of correlation between isotope peaks resulting in a high specificity at
the cost of sensitivity. IDRNewNoVal and IDRmzMatch show the lowest number of correctly predicted
molecular formulas as shown in Appendix B. We find comparable results for IDRAStream, IDRCAMERA,
and IDRNewVal. Also the numbers of correctly predicted molecular formulas are similar as shown in
Appendix B. Interestingly, IDRNewVal showed the highest number of correctly predicted molecular
formulas and was also able to rank the highest number of correct molecular formulas to the first three
ranks. Remarkably, in case of 85% to 92% of all tested ions the detected isotope clusters from all isotope
detection routines with or without predicted isotope ROIs were sufficient for the prediction of the
correct molecular formula to the first three ranks. This finding states, that the prediction of molecular
formulas from isotope clusters works well in general and hence it is challenging to improve upon.
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Figure 4. Evaluation of predicted isotope ROIs in combination with different isotope detection routines
for a relaxed signal-to-noise threshold snthr’ of 6.25. We plot the increase of the mean and the
standard error of the mean (SEM, error bars) of the performance measures (i) number of detected
peaks; (ii) number of detected isotope peaks; (iii) number of detected isotope clusters; and (iv) isotope
coverage relative to the performance of the CAMERA isotope detection routine without predicted
isotope ROIs. All four measures increase with predicted isotope ROIs.

2.4. Isotope Cluster Statistics

We examine the compounds of the publicly available databases ChEBI [32], KEGG [33],
KNApSAcK [34], LIPID MAPS [35], and PubChem [36] in order to compute mass–specific confidence
intervals for the abundance–ratio of the monoisotopic peak to the first to fifth isotope peak as described
in Section 4.3. For each database and each isotope peak, we compute multiple quantiles in order to
define confidence intervals with different confidence levels. We validate isotope clusters on basis of
mass–specific confidence intervals of peak abundance–ratios as described in Section 4.2.

We exemplarily examine the interval size and magnitude of the computed confidence intervals of
isotope ratios. A small interval size indicates a small range of observed isotope ratios for the analyzed
substances and allows a precise definition of valid isotope ratios, whereas a large interval size indicates
a diverse range of observed isotope ratios for the analyzed substances and requires a loose definition of
valid isotope ratios. If the interval size and magnitude of the computed confidence intervals depends
on the mass range, then mass–specific confidence intervals can increase the specificity of isotope
cluster validation.

See Figure 5 for the 95% confidence interval of the ratios of the monoisotopic peak to the first;
second, and third isotope peak for the database KEGG with a mass window size of 50 dalton. The ratio
of the monoisotopic peak to the first isotope peak depends on the abundance of the first isotope peak,
which is dominated by the proportion of 13C. This results in a relatively narrow confidence interval,
because the variation of the number of carbon atoms is limited within a 50 dalton mass window.
The ratio of the monoisotopic peak to the second isotope peak depends on the abundance of the
second isotope peak, which is dominated by the proportion of 13C and 34S. The 97.5%-quantile and
the 50%-quantile are higher compared to the case of the first isotope peak because the second isotope
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peak has typically a lower abundance than the first isotope peak. In contrast, the 2.5%-quantile is
smaller compared to the case of the first isotope peak because a subset of compounds comprises at
least one sulfur (partially also chlorine or bromine) with a high abundance of 34S (or 37Cl, 81Br) causing
a relatively high abundance of the second isotope peak and thus a small ratio of the monoisotopic
peak to the second isotope peak. This results in a relatively large confidence interval. The ratio
of the monoisotopic peak to the third isotope peak mainly depends on the abundance of the third
isotope peak, which is dominated by the proportion of 13C and 34S (and 37Cl, 81Br). This results in a
relatively large confidence interval analogous to the case of the second isotope peak. The quantiles are
higher compared to the case of the second isotope peak because the third isotope peak has typically a
lower abundance compared to the second isotope peak. We find that the magnitude of the quantiles
substantially depends on the mass of the substances. Specifically, the quantiles are typically inversely
proportional to the substance mass. For example, in case of the mass interval 200 to 250 dalton versus
the mass interval 800 to 850 dalton the 50%-quantiles deviate by a factor of 3.5 in case of the ratio of the
monoisotopic peak to the first isotope peak, by a factor of 8.4 in case of the ratio of the monoisotopic
peak to the second isotope peak, and by a factor of 25.6 in case of the ratio of the monoisotopic peak
to the third isotope peak. This finding suggests that mass–specific confidence intervals can indeed
increase the specificity of isotope cluster validation. See Figure C1 in Appendix C for an overview of all
computed quantiles and the resulting symmetric confidence intervals of the ratio of the monoisotopic
peak to the first isotope peak for the database PubChem with a mass window size of 50 dalton.

(a) (b)

(c)

Figure 5. 95% confidence interval of the ratio of the monoisotopic peak to the first (a), second (b),
and third isotopic peak (c) of all compounds in KEGG for different compound masses arranged in
mass windows of size 50 dalton. We plot the 50%-quantile in green, the 2.5%-quantile in blue, and
the 97.5%-quantile in red and we emphasize the enclosed 95% confidence interval in grey. The ratios
decrease with increasing compound mass reflecting the increasing proportion of isotopic atoms.
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2.5. Exemplary Isotope Cluster Detection

We exemplify the detection of isotope clusters for selected substances to demonstrate the
proposed isotope detection routine without isotope cluster validation IDRNewNoVal and the isotope
detection routine with mass–specific isotope cluster validation IDRNewVal. We simulate the mass
and relative intensity of the monoisotopic peak and the first five isotope peaks of six substances
with enviPat [37] in centroid mode with a resolution of 10,000, namely (i) aspartic acid which has a
low mass and comprises only the elements CHNO (see Table 1 for details); (ii) cysteine which has a
low mass and comprises sulfur; (iii) chloramphenicol which has a low mass and comprises chlorine;
(iv) digoxigenin monodigitoxoside which has a medium mass and comprises only the elements CHNO;
(v) 2-Chloro-2′-deoxyadenosine-5′-triphosphate which has a medium mass and comprises chlorine;
and (vi) autoinducer-2 which has a low mass and contains boron. The isotopic fine structure of these
substances is not detectable at this resolution and hence each simulated peak is a mixture of multiple
peaks from the isotopic fine structure. We only include isotope peaks with an abundance of at least
0.01% of the abundance of the monoisotopic peak which results in isotope clusters of size 4, 5, 6, 6, 6,
and 6 respectively.

For each isotope cluster, we calculate the minimal absolute mass error ∆mabs in units of dalton
and the minimal relative mass error ∆mppm in units of PPM which are required for a successful isotope
cluster detection. The incorporation of a mass error is necessary because the mass differences between
individual isotope peaks depend on the elemental composition and hence deviates from the default
mass difference of 13C isotopes. It is possible to use only one of both parameters or a combination of
both parameters to enable the detection of isotope clusters (see Equation (2) in Section 4.2).

We merge all six isotope clusters resulting in a single synthetic spectrum comprising 33 peaks.
We apply the isotope detection routines IDRNewNoVal and IDRNewVal as described in Section 4.2 to
the synthetic spectrum. We evaluate whether the isotope detection routines are able to assemble the
original isotope clusters.

In Table 1 we show the results. We find that IDRNewNoVal is able to detect all six isotope clusters
provided that a sufficiently large mass error is set (e.g., ∆mabs = 0.01). In case of a smaller mass
error (e.g., ∆mabs = 0.005) we find that isotope clusters become split at isotope peaks which are
dominated by the isotopes of sulfur, chlorine, or boron, i.e., the second isotope peak of substance (ii);
the second and fourth isotope peak of substance (iii); the second isotope peak of substance (v); and the
first isotope peak of substance (vi). We find that IDRNewValis able to validate all but one isotope
cluster. The first peak of the boron-containing substance (vi) is not included in the isotope cluster,
because the abundance of this peak is too small relative to the space of biological substances of this
mass. Hence, the excluded peak is assumed to be a potential hydrogen-loss. However, this isotope
cluster can be correctly identified without validation or with specialized approaches [31].
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Table 1. Isotope cluster detection exemplified for six substances. We show the substance name,
the sum formula, the mass of the monoisotopic peak and the first five isotope peaks (rounded to five
digits), the mass difference to the monoisotopic peak (∆m, rounded to five digits), the relative peak
intensity (Int., normalized to 100 and rounded to two digits), the absolute m/z error ∆mabs and the
relative m/z error in ppm ∆mppm for a successful isotope cluster detection (∆mabs is rounded to five
digits and ∆mppm is rounded to one digit), whether the isotope cluster assignment using the isotope
detection routine without isotope cluster validation IDRNewNoVal is successful or not (No val., “+”/“–”),
and whether the isotope cluster assignment using the isotope detection routine with mass–specific
isotope cluster validation IDRNewVal is successful or not (Val., “+”/“–”). IDRNewNoVal is able to detect
the isotope clusters of all substances and IDRNewVal successfully validates the isotope clusters of all
but one substance.

Substance Name Sum Formula Mass ∆m Int. ∆mabs ∆mppm No Val. Val.

Aspartic acid C4H7NO4

133.037508 100.00

0.00191 14.3

+ +

134.040468 1.00296 4.96 + +

135.041918 2.00441 0.93 + +

136.044728 3.00722 0.04 + +

Cysteine C3H7NO2S

121.019749 100.00

0.00895 73.9

+ +

122.021976 1.00223 4.59 + +

123.016385 1.99664 5.05 + +

124.019165 2.99942 0.19 + +

125.018404 3.99866 0.03 + +

Chloramphenicol C11H12Cl2N2O5

322.012327 100.00

0.00913 28.4

+ +

323.015369 1.00304 13.00 + +

324.009595 1.99727 66.20 + +

325.012562 3.00024 8.53 + +

326.007250 3.99492 11.54 + +

327.010016 4.99769 1.45 + +

Digoxigenin
monodigitoxoside C29H44O8

520.303618 100.00

0.00078 1.5

+ +

521.307027 1.00341 32.24 + +

522.309803 2.00619 6.70 + +

523.312531 3.00891 1.04 + +

524.315166 4.01155 0.13 + +

525.317742 5.01412 0.01 + +

2-Chloro-2′-
deoxyadenosine-5′-
triphosphate

C10H15ClN5O12P3

524.961858 100.00

0.00817 15.6

+ +

525.964411 1.00255 13.30 + +

526.959596 1.99774 35.41 + +

527.962023 3.00017 4.63 + +

528.963673 4.00182 1.11 + +

529.966017 5.00416 0.12 + +

Autoinducer-2 C5H10BO7

192.055590 24.37

0.00689 35.9

+ –

193.052059 0.99647 100.00 + +

194.055706 2.00012 6.13 + +

195.056530 3.00094 1.59 + +

196.059851 4.00426 0.09 + +

197.060963 5.00537 0.01 + +

3. Discussion

Aiming at the exhaustive detection and precise validation of isotope clusters we propose
an additional targeted peak picking step with predicted isotope ROIs and the mass–specific validation
of putative isotope clusters based on database statistics. Compromising between peak reliability and
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exhaustive detection we use a relaxed signal-to-noise of 6.25 threshold for predicted isotope ROIs and
achieve an increase of +37.6% isotope peaks and +102.8% PPS. We use this relaxed signal-to-noise
threshold by default in the freely available implementation of this algorithms in the R package xcms.
The targeted peak picking with predicted isotope ROIs can easily be adapted in other tools such as
MZmine2 [38], apLCMS [39], and related approaches [40]. The validation of putative isotope clusters
in combination with predicted isotope ROIs results in the highest number of correctly predicted
molecular formulas and also the highest number of correct molecular formulas among the first three
ranks. However, the ranks of correctly predicted molecular formulas were robust with respect to
different approaches for peak picking and isotope cluster detection and it is challenging to improve
upon. We exemplify the use of the proposed isotope detection routine with and without mass–specific
isotope cluster validation and find that it is possible to detect substances with and without biologically
unusual elements using an absolute mass error of 0.01 dalton. Consequently, we use this absolute mass
error by default in the freely available implementation of these algorithms in the R package CAMERA.

The enhanced isotope cluster detection and validation presented in this work could improve
the accuracy of substance quantification. All isotope peaks of one isotope cluster originate from the
same substance and we point out that the consideration of a greater number of features from a certain
substance—although small and noisy—reduces the technical variance in the data. In turn, this would
enhance the precision and yield of comparative analyses, because a reduced data variance would not
only improve calculated fold changes but would enable the statistically valid detection of smaller effect
sizes. The slight improvement in molecular formula prediction could affect a considerable number
of substances in case of metabolome-scale metabolite identification studies. Especially in untargeted
metabolomics reliable hints for metabolite identification are urgently needed.

4. Materials and Methods

We present the methodology of the proposed approach and the used data for evaluation.
Specifically, we describe (i) the targeted peak picking with predicted isotope ROIs; (ii) the detection
and mass–specific validation of isotope clusters; (iii) the computation of isotope ratio quantiles; and (iv)
two sets of mass spectrometry raw data.

4.1. Targeted Peak Picking with Predicted Isotope ROIs

A requirement for the prediction of isotope ROIs is a set of peaks that have been detected
previously. This initial peak picking can be accomplished by one of the numerous peak picker which
are available [1,18,38]. In untargeted approaches, these peak picker typically do not use any prior
knowledge and we refer to this kind of peak picking as traditional peak picking. We propose the
following approach for the targeted detection of isotope peaks. This approach is designed for liquid
chromatography–high resolution mass spectrometry data and does not consider the isotopic fine
structure available with ultrahigh resolution mass spectrometry.

Given a set of detected peaks from traditional peak picking, a maximum charge Z = 3,
and a maximum number of isotopes I = 5 we predict putative isotope ROIs as follows. For each
charge state z ∈ {1, ..., Z} and for each isotope number i ∈ {1, ..., I}, we compute the theoretical m/z
distance to the monoisotopic peak

dz,i =
i ∗ ∆m

z
, (1)

where ∆m = mass(13C) – mass(12C) ≈ 1.003355. We use ∆m as an approximation for the mass
difference between successive peaks in isotope clusters because the isotopic nuclide 13C has usually
the largest impact on isotope clusters in biological samples. Other isotopic nuclides such as 15N, 18O,
and 34S cause isotope peaks with mass differences which can only be discriminated from 13C-isotope
peaks using mass spectrometers with resolution above 40,000 (in case of ions with an m/z of 500 dalton).
For each peak detected by traditional peak picking we predict for each charge state z and for each
isotope number i one putative isotope ROI. Each putative isotope ROI is composed of the retention time
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interval of the detected peak and the m/z interval of the detected peak shifted by dz,i as exemplified in
Figure 6. An additional targeted peak picking is performed based on the set of predicted isotope ROIs
using a relaxed signal-to-noise threshold snthr’ = snthr ∗ r/100, where snthr is the signal-to-noise
threshold for traditional peak picking and r ∈ {100, 95, ..., 5}. Subsequently, the peak table from
traditional peak picking and the peak table from the targeted peak picking on basis of putative isotope
ROIs are merged and redundant peaks are removed.

For control purposes, we generate a set of noise ROIs given the set of predicted isotope ROIs
as follows. To approximate the distribution of the predicted isotope ROIs in the m/z dimension and
the retention time (RT) dimension, we calculate the minimum and maximum m/z and RT of the
predicted isotope ROIs and use a uniform distribution in the calculated intervals of both dimensions.
To approximate the distribution of peak widths in m/z and RT we calculate a histogram of peak widths
in m/z relative to the peak m/z and a histogram of peak widths in RT. For each predicted isotope
ROI we sample one new noise ROI which m/z and RT is uniformly drawn within the calculated
ranges in m/z and RT and which peak width in m/z and RT is drawn from the calculated histograms.
Subsequently, targeted peak picking is applied to the set of noise ROIs using a relaxed signal-to-noise
threshold snthr’ analog to predicted isotope ROIs and the results from traditional peak picking and
targeted peak picking on basis of noise ROIs are merged as before.

Figure 6. Exemplary section of LC-MS raw data. We mark two detected peaks from traditional peak
picking in blue and 12 predicted isotope ROIs in red, orange, and green calculated on basis of the
(monoisotopic) peak (apex m/z ≈ 363.075 dalton / retention time ≈ 291 seconds) given a maximum
isotope number I = 5 and a maximum charge state Z = 3. Via prediction of isotope ROIs, we are able
to expand the region of the already detected first isotope peak and to encompass the signals of the
second, third, fourth, and fifth isotope peak. Here, the subsequent peak picking procedure will not
find relevant signals for the predicted isotope ROIs corresponding to the charge states 2 (orange) and 3
(green) and will reject these accordingly.

4.2. Detection and Mass–Specific Validation of Isotope Clusters

We propose an approach for the detection and validation of isotope clusters in liquid
chromatography–high resolution mass spectrometry data which does not resolve the isotopic fine
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structure. In this approach we detect putative isotope clusters based on characteristic distances in
the m/z dimension. We validate putative isotope clusters depending on the substance mass and we
refer to this validation as mass–specific validation. We detect and validate isotope clusters given a set of
coeluting features, a maximum charge Z = 3, a relative m/z error in ppm ∆mppm, and an absolute m/z
error ∆mabs as follows.

First, we detect putative isotope clusters. For each charge state z ∈ [1, Z], we mark all pairs of
peaks (p1, p2) for which

δz,p1,p2 = ||mass(p1)−mass(p2)| − ∆m/z| ≤ max
(mass(p1) ∗ ∆mppm

106 , ∆mabs
)

(2)

holds, where ∆m = mass(13C)−mass(12C) ≈ 1.003355 is the expected distance between two isotope
peaks (cf. Section 4.1). For each charge state and for each peak p, we compute all putative isotope
clusters (p1, p2, ..., pn) for which δc,p′ ,p′′ holds for each successive pair of peaks (p′, p′′). We retain the
putative isotope cluster with the maximum number of peaks and remove the peaks of this putative
isotope cluster from the set of available peaks. We iteratively perform the last steps with the remaining
peaks until there are no putative isotope clusters with at least two peaks left.

Second, we validate the set of putative isotope clusters which have been extracted previously
depending on the monoisotopic mass. See Figure 3 for four cases which necessitate the following
validation of putative isotope clusters. For each putative isotope cluster (p1, p2, ..., pn) we examine
the second to last peak p′ ∈ (p2, ..., pn). For each peak p′ we compute the ratio of the abundance of
the monoisotopic peak p1 and the abundance of peak p′. Specifically, we compute the minimum and
maximum ratio considering that the abundance estimates of both peaks are affected by the ubiquitous
noise using an estimate of the signal-to-noise ratio of both peaks. If the computed interval of ratios
does not overlap with the 99% confidence interval derived from the KEGG database for the current
monoisotopic mass (mass window size 50) we split the putative isotope cluster. In this case we turn the
peak p′ into the new monoisotopic peak resulting in a new putative isotope cluster (p′, ..., pn) which
is validated as well. We retain all putative isotope clusters which comprise at least two peaks and
consider these as validated isotope clusters.

4.3. Isotope Ratio Quantiles

We perform isotope statistics for each of the databases ChEBI, KEGG, KNApSAcK, LIPID MAPS,
and PubChem as follows [32–36]. We iterate all compounds, compute the exact mass and the theoretical
isotope cluster from the molecular formula, and record the ratio of the monoisotopic peak to the first to
fifth isotope peak. We group all compounds by the exact mass in consecutive mass windows for each
of the mass window sizes 10, 25, 50, 100, and 250 dalton to support different compromises between
mass specificity and quantile robustness. For each mass window size, each mass window, and each
isotope peak (1st–5th) we compute the isotope ratio for several p-quantiles, where p ∈ {5.0× 10−6,
0.999995, 1.0× 10−5, 0.99999, 5.0× 10−5, 0.99995, 1.0× 10−4, 0.9999, 5.0× 10−4, 0.9995, 0.001, 0.999,
0.005, 0.995, 0.01, 0.99, 0.025, 0.975, 0.05, 0.95, 0.1, 0.9, 0.5}. For each mass window size and each
isotope peak we record the isotope ratio in a matrix with one row for each p-quantile and one column
for each mass window. We encapsulate the resulting data for each database, each mass window size,
and each isotope peak in an R object of class S4 named compoundQuantiles. This implementation
supports a simple API for convenient retrieval of the data (see documentation of package CAMERA
version 1.50.0 for details). Based on this implementation, it is also possible to compute isotope ratios
amongst isotope peaks, e.g., the confidence interval of the isotope ratio between the third isotope peak
and the fifth isotope peak for a given mass range.
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4.4. Data Sets

4.4.1. MM48

We perform a case study based on a gold standard data set comprising 11 LC-MS measurements
(UPLC-ESI-QTOF-MS, positive mode) each of a solution of 48 known reference substances denoted
as MM48. The raw data is available in MetaboLights [41] accession MTBLS381 in Supplementary
Materials link. This set of compounds was also used in [24] and the measurements have been deposited
in MetaboLights accession MTBLS188. We compile a ground truth of detectable ions as follows. First,
we assume a set of three expected ions ([M]+, [M + H]+, [M + Na]+) as well as isotope peaks up to the
fifth isotope peak (i.e., [M + 1]+, [M + 2]+, [M + 3]+, [M + 4]+, and [M + 5]+ in case of the [M]+ ion)
for each compound and calculate the exact mass of these 18 molecular formulas (three ions each with
an isotope cluster with six peaks); Second, we check the abundance of these ions in the 11 data sets
and define all ions with a peak area of at least 1000 counts within a retention time interval of at most
five seconds as measurable ions constituting the ground truth. Considering the set of ions which are
measurable in at least six of 11 data sets, we detect 72 monoisotopic ions (see Figure 7), 63 isotope
clusters with at least two ions, and 190 ions in total.

Figure 7. Overview of monoisotopic measurable ions in the MM48 data set. We plot the logarithmic
raw data intensities in the dimensions mass-to-charge ratio (m/z) and retention time and mark the
location of 72 monoisotopic ions which are measurable in at least six of eleven data sets. In case of three
ions with exact mass 175.037, 390.095, and 823.413 dalton, we exemplarily plot the theoretical relative
intensities of the monoisotopic peak and the first to fifth isotope peak in the insets at the top. The set of
measurable ions spans a huge range in both dimensions with different isotope clusters constituting a
diverse basis for validation purposes.
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4.4.2. Dilution Series

We perform a case study based on 40 LC-MS measurements (UPLC-ESI-QTOF-MS, positive
mode), which is a subset of the data used in [24] and is available from the MetaboLights repository
with accession MTBLS188. This set of measurements is composed of a dilution series varying the ratio
of solution and leaf sample. Specifically, the ratio of solution and leaf sample is 0:100, 25:75, 50:50,
and 75:25 in 10 data sets each. This experimental design implies a diverse range of cases in the data
regarding the signal-to-noise ratio of peaks and constitutes the basis to test the detection of weak
signals like isotope peaks.

5. Conclusions

We implemented the targeted peak picking with predicted isotope ROIs in combination
with the centWave algorithm as part of the R package xcms in version 1.50.0 (functions
findPeaks.centWaveWithPredictedIsotopeROIs and findPeaks.addPredictedIsotopeFeatures).
We implemented the mass–specific validation of putative isotope clusters as part of the R package
CAMERA in version 1.30.0 (function findIsotopesWithValidation).

Supplementary Materials: The following are available online at www.ebi.ac.uk/metabolights/MTBLS381, 11
MM48 raw data files used for performance evaluation in the manuscript.
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Appendix A. Isotope Cluster Detection and Validation: Extended Results

We compare the proposed isotope detection routine with mass–specific isotope cluster validation
(IDRNewVal) against the isotope detection routine without isotope cluster validation (IDRNewNoVal),
the isotope detection routine implemented in the AStream package (IDRAStream) [29], the isotope
detection routine implemented in the CAMERA package (IDRCAMERA) [24], and the isotope detection
routine implemented in the mzMatch package (IDRmzMatch) [30].

We evaluate the performance of the isotope cluster detection and validation described in
Section 4.2 on a dilution series experiment with 40 LC-MS measurements described in Section 4.4.
We quantify the performance using the performance measures (i) number of detected peaks; (ii) number
of detected isotope peaks; (iii) number of detected isotope clusters; and (iv) isotope coverage,
i.e., the ratio of the number of detected isotope peaks and the number of all detected peaks.
We compute each performance measure as a function of the relaxed signal-to-noise threshold
snthr’ ∈ {100, 95, ..., 5} % ∗ snthr, where snthr = 25 is the signal-to-noise threshold of the
traditional peak picking step. In the Section 2.3 we show an excerpt of these results, i.e., we present
the results for each isotope detection routine with predicted isotope ROIs relative to the results of
IDRCAMERA without predicted isotope ROIs in Figure 4.

In Figure A1 we show the performance measures for IDRNewVal, IDRNewNoVal, IDRAStream,
IDRCAMERA, and IDRmzMatch.
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Figure A1. Evaluation of predicted isotope ROIs in combination with validated isotope clusters for
varying relaxed signal-to-noise threshold snthr’. We plot the mean (solid line) and the standard
error of the mean (SEM, interval in dark grey) of the performance measures (i) number of detected
peaks; (ii) number of detected isotope peaks; (iii) number of detected isotope clusters; and (iv) isotope
coverage. We plot the performance of each measure without additional ROIs in the first column
(“N/A”) as reference value (horizontal dashed line). All four measures of all isotope detection routines
increase with decreasing signal-to-noise threshold snthr’.

Appendix B. Prediction of Molecular Formulas From Isotope Clusters

In order to study to which degree the proposed approach is capable of improving the detection
and validation of isotope clusters, we test the quality of predicted molecular formulas. The prediction
of molecular formulas is an important step towards the identification of substances and can be done
automatically on the basis of isotope clusters. We use 11 LC-MS measurements with 48 known
compounds and select a set of 72 ions. We predict for each ion a list of ranked molecular formula
candidates using SIRIUS and evaluate the rank of the correct molecular formula [3].

We evaluate the performance of predicted isotope ROIs described in Section 4.1 and the isotope
detection routine with mass–specific isotope cluster validation described in Section 4.2 on 11 LC-MS
measurements of known compounds described in Section 4.4 using predicted molecular formulas
from SIRIUS as described in the Appendix D.4. We quantify the performance using the number of
compounds with a certain rank averaged over all measurements. If the proposed approaches increase
the quality of detected isotope clusters, then the rank of the predicted molecular formulas should
decrease and be ranked first in the ideal case. We compare different combinations of two peak picking
approaches and five isotope detection routines, namely (iA) the traditional peak picking and (iB)
the traditional peak picking in combination with targeted peak picking with predicted isotope ROIs
(see Section 4.1) and (iiA) the isotope detection algorithm from AStream; (iiB) the isotope detection
algorithm from mzMatch; (iiC) the isotope detection algorithm from CAMERA; (iiD) the proposed
isotope detection algorithm without isotope cluster validation; and (iiE) the proposed isotope detection
algorithm with mass–specific isotope cluster validation resulting in ten combinations of algorithms
(see Section 4.2 and the Appendix D). In Table B1 we show the ranks of the predicted molecular
formulas for ten algorithms averaged over 11 data sets.
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Table B1. Molecular formula prediction from isotope clusters. Using SIRIUS we predict molecular
formulas from isotope clusters which have been detected using different algorithms. In the first
column we indicate whether we use targeted peak picking with predicted isotope ROIs (’+’) or not (’−’)
and in the second column we indicate the isotope detection algorithm (IDRAStream for the algorithm
implemented in R package AStream, IDRCAMERA for the algorithm implemented in R package CAMERA,
IDRmzMatch for the algorithm implemented in R package mzMatch, IDRNewNoVal for the proposed
isotope detection algorithm without isotope cluster validation, and IDRNewVal for the proposed isotope
detection algorithm with mass–specific isotope cluster validation). We specify the number of ions with
a molecular formula on rank 1, on rank 2, on rank 3, between rank 4 and rank 10, on a rank above
10, the number of ions which molecular formula is not among the top 1000 candidates (’No rank’),
and the number of ions which have not been detected during peak picking (’No peak’). We arranged
the isotope detection algorithms by the number of ions with molecular formula on rank 1.

Predicted Isotope ROIs Isotope Detection Algorithm Rank 1 Rank 2 Rank 3 3 < Rank ≤ 10 Rank > 10 No Rank No Peak

− IDRmzMatch 48.82 11.55 1.18 3.36 0 4.64 2.45
+ IDRmzMatch 48.18 12 1.18 3.36 0 4.82 2.45
− IDRNewNoVal 49.09 10.91 0.91 1.55 0 7.09 2.45
+ IDRNewNoVal 49.36 11.18 0.73 1.64 0 6.73 2.36
− IDRAStream 52.82 11.27 1.09 1.82 0 2.55 2.45
+ IDRAStream 53.27 11.55 0.55 1.91 0 2.36 2.36
− IDRCAMERA 53.73 10.27 0.82 1.55 0 3.18 2.45
+ IDRCAMERA 52.82 11 0.64 1.64 0 3.55 2.36
− IDRNewVal 53.82 11.09 1 1.55 0 2.09 2.45
+ IDRNewVal 54.09 11.36 0.73 1.64 0 1.82 2.36

Appendix C. Isotope Cluster Statistics: Full Quantile Set for PubChem

In Figure C1 we depict all computed quantiles and the resulting symmetric confidence intervals
of the isotope ratio of the monoisotopic peak to the first isotope peak for the database PubChem with a
mass window size equal to 50 dalton. See Section 4.3 for a detailed description of the database statistics.

Figure C1. The full set of 23 quantiles of the monoisotopic peak versus the first isotopic peak for
the PubChem database for different compound masses arranged in mass windows of size 50 dalton.
We emphasize the enclosed confidence intervals with different colors.
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Appendix D. Software Versions and Processing Parameters

Tools versions, used functions, and parameters of xcms/CAMERA, AStream, mzMatch, and SIRIUS
are given subsequently.

Appendix D.1. xcms/CAMERA

We use the R package xcms version 1.44.0 [23] and the R package CAMERA version 1.27.0 [24]
for peak picking using centWave [1], the grouping of features into pseudospectra, and the detection
of isotope clusters. We processed the raw data of each LC-MS measurement individually as follows.
We performed peak picking with the centWave algorithm with parameters peakwidth = (5, 12),
prefilter = (2, 200), ppm = 10, and snthr = 25. We use a signal-to-noise ratio of 25, because it
has been shown that this ratio yields reliable molecular formula predictions from mass spectrometry
data [42]. Subsequently, we group detected peaks by retention time into pseudospectra-groups using
function groupFWHM with perfwhm = 1 and standard parameters and detect isotope clusters using
function findIsotopes with intensityValue = ’intb’ and standard parameters.

Appendix D.2. AStream

We use the R package AStream version 2.0 [29] for the detection of isotope clusters. We import
the peaks which have been detected using xcms into the AStream datalist structure. We apply the
function data.norm with the parameters mz.tol = 0.005 (the mean m/z error for ppm = 10 as used in
xcms and mzMatch) and we detect isotope clusters using function isotope.search with the parameter
mz.tol = 0.005. In a postprocessing step we remove contradictory isotope annotations, i.e., if (i) peak
B is annotated as [M + 1] isotope peak of peak A and (ii) peak C is annotated as [M + 2] isotope peak of
peak A and (iii) peak C is annotated as [M + 1] isotope peak of peak B; then we remove annotation (iii).

Appendix D.3. mzMatch

We use the R package mzmatch.R version 2.0-13 [30] for the detection of isotope clusters.
We import the peaks which have been detected using xcms via the peakML file format used
by mzMatch using the function PeakML.xcms.write.SingleMeasurement with the parameters
writeRejected = TRUE, ppm = 10, addscans = 0, and ApodisationFilter = FALSE. We convert
this data using function mzmatch.ipeak.Combine and we detect isotope clusters using function
mzmatch.ipeak.sort.RelatedPeaks with the parameters ppm = 10 and rtwindow = 50. In a
postprocessing step we remove all isotope clusters with gaps, i.e., the isotope cluster with monoisotopic
peak [M] and isotope peak [M + 2] without the [M + 1] isotope peak is considered non-evaluable and
removed from the output. Approximately 10% of the isotope annotations are removed in this way.

Appendix D.4. Prediction of Molecular Formulas Using SIRIUS

We predict ranked candidate lists from isotope clusters using command–line SIRIUS [3]
version 3.1.3. We use the parameters –elements = CHNOPS, –isotope = score, –candidates = 1000,
–ppm-max = 10, and –profile = qto f and give the ion species (–ion), the monoisotopic m/z (–mz),
the (m/z, intensity) pairs (into intensity from xcms; –ms1), and an empty MS/MS spectrum (–ms2)
as input. We rank the resulting candidate lists according to the tree score and select the rank of the
correct molecular formula.
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