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Introduction

Proton transfer is a ubiquitious phenomenon and it lies at the core of many scientific

problems. One such field is biology, where proton transport across membrane pro-

teins is frequently encountered and is considered one of the fundamental building

blocks of nerves, muscles and synapses. [1–3] Another important field is the techni-

cal sector, where fuel cell technology takes advantage of proton transfer processes

to efficiently convert energy stored in a fuel, such as hydrogen, into electrical energy.

This is done by dividing the exothermic redox reaction, in which hydrogen reacts with

oxygen to water, into two separated processes: At the anode, an oxidation reaction

takes place, dissociating the incoming hydrogen into protons and electrons, whereas

at the cathode protons react with oxygen and electrons to water. These two reac-

tions are separated spatially by an electrolyte, which only permits protons to pass,

and thus forces the electrons to move through a connected electric circuit in order to

reach the cathode.

For an efficient operation of the fuel cell, the membrane material of the elec-

trolyte needs to meet several conditions: High ionic conductivity (preferably in low

humidity conditions), high thermal and oxidative stability, and cost effectiveness. [4]

In search of materials fulfilling these demands, many studies have been conducted

both experimentally and theoretically. [5–36]

One of the most commonly used water-based membrane materials is Nafion. It

consists of perfluorinated vinyl ether groups attached to a tetrafluoroethylene back-

bone. [37] While the backbone is hydrophobic, the hydrophilic SO−3 groups lead to

the formation of water channels under hydrated conditions. Therefore, the proton

conduction properties of Nafion can be mostly attributed to the proton conductiv-

ity of bulk water. This, however, limits the possible operating temperature of Nafion

membranes, as temperatures above 100 °C lead to water loss and thus a decrease in

conductivity.

Another group of membrane materials which are particularly in the focus of this

thesis, are phosphonic acid- and phosphoric acid-functionalized compounds. In
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4 CHAPTER 1. INTRODUCTION

contrast to Nafion-based compounds, materials based on phosphonic or phospho-

ric acid groups are a suitable choice for low-humidity electrolytes in fuel cells. [38,

39] One of them is Hexakis(p-phosphonatophenyl)benzene (p-6PA-HPB) [40, 41],

an aromatic, disk-shaped compound with six phosphonic acid groups per molecule.

In contrast to Nafion, its proton conductivity stays constant over a temperature range

from 100 °C to 180 °C. [40] X-ray diffraction experiments show that p-6PA-HPB molecules

arrange in a columnar supramolecular structure. Because of this anisotropic ar-

rangement, proton transfer takes place preferably along the direction of the columns.

Solid acids are another candidate for fuel cell membrane materials as they ex-

hibit proton conductivity under low-humidity conditions and temperature stabil-

ity. [42, 43] In this thesis, the focus will be on solid acids of the form CsH2PO4 and

CsHSO4. Solid acids have the interesting property to undergo a superprotonic phase

transition, during which the proton conductivity increases by several orders of mag-

nitude. [44–48] In the low temperature phase their hydrogen bond network is highly

ordered, which leads to a decrease in proton conductivity. Higher temperatures lead

to a phase transition (around 400 K for CsHSO4 and 500 K for CsH2PO4) resulting in

a disordered hydrogen bond network and a strong increase in proton conductivity.

On the microscopic scale, two main mechanisms have been found to be respon-

sible for proton conductivity: The vehicle mechanism describes the diffusion of pro-

tons bonded to a carrier such as H2O or NH3. [49] In this case, the proton conductiv-

ity is limited by the diffusivity of the carrier molecule. On the other hand, the Grot-

thuss mechanism describes charge transfer by means of a hopping process of charge

carriers between host molecules without the requirement of a diffusive motion of the

host.[50] Although it was proposed more than 200 years ago, only in recent years have

Molecular Dynamics (MD) studies revealed its finer details. [23, 36]

Simulation with Molecular Dynamics In the field of theoretical chemistry, molec-

ular dynamics simulations have become an invaluable tool to model chemical pro-

cesses on an atomistic level. By numerically calculating the temporal evolution of

atomic systems they are able to reveal both structural and dynamic characteristica

of complex chemical compounds. The core idea of molecular dynamics methods is

simple: given an ensemble of interacting atoms, the corresponding equations of mo-

tion are integrated, and thus the phase space of the atomic system is sampled via its

time evolution. By calculation of ensemble averages it is then possible to determine

macroscopic quantities from the microscopic molecular dynamics trajectories. In

combination with a multitude of methods which enable the control of external vari-

ables such as pressure or temperature, molecular dynamics allow to carry out “in-

silico” experiments in which the external variables are adjusted to experimental con-

ditions, while also giving insight into the microscopic picture of chemical processes
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or structural features.

Figure 1.1: Schematic depiction of
the oxidation-reduction process in-
side a fuel cell. Hydrogen is split
into protons and electrons at the an-
ode. While the protons travel through
the electrolyte, the electrons move
through an external electric circuit.

The quality of a molecular dynamics

simulation depends strongly on the accu-

racy of the interatomic potentials. One com-

mon approach is the use of empirical po-

tentials which describe the potential energy

surface landscape of molecular systems by

means of parameterized functions. These

functions can take geometric parameters

such as bond lengths or angles between

bonds into account, and are often fitted

to quantumchemical and experimental data

with the aim to reproduce selected proper-

ties (for example internal geometries, vibra-

tions or conformational energies [51]). The

advantage of parameterized approaches lies

in the fast function evaluation which allows

system sizes of up to several nanometers

and timescales up to milliseconds. Their

main drawback, on the other hand, is the

fixed bond topology, which does not allow the simulation of bond breaking reactions.

An alternative approach is to explicitly solve the Schrödinger equation of the elec-

tronic subsystem and thus calculate chemical bonds and chemical reactions. The

methods employing this approach are subsumed under the term ab initio. For a fixed

atomic configuration, the energy eigenvalue of the electronic Schrödinger equation

represents the interatomic interaction potential. This potential in turn allows the

determination of interatomic forces, and therefore the time-evolution of a chemi-

cal system by explicit integration of the equations of motions. In this approach, the

molecular bond topology is the result of the calculation, not the input as for clas-

sical MD . Electronic structure-based MD simulations are a well-suited choice for

the investigation of proton transport processes. In general, however, the time scales

reached by ab initio methods are several orders of magnitude lower than those of

parameterized approaches.

Scale-Bridging with Kinetic Monte Carlo Monte Carlo is an umbrella term for a

large array of algorithmic approaches which use random sampling in order to cal-

culate numerical results. The focus in this thesis lies especially on so-called “Kinetic

Monte Carlo” methods. [52–54] This class of Monte Carlo methods is commonly used

to model time-dependent processes based on predetermined transfer rates. They are
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commonly used to model phenomena such as adsorption processes[55–59], charge

transport[60–62], oxidation reactions[63–65], hydrogenation[66–68], deposition pro-

cesses[69–71], crystal growth[72–74] or diffusion processes. [75–78] In this thesis,

kinetic Monte Carlo is used to model proton transport/diffusion in various com-

pounds.

cMD/LMC Scheme The scheme which has been developed in the context of this

work combines Molecular Dynamics with a kinetic Monte Carlo like algorithm. The

translational diffusion of protons is modeled by the kinetic Monte Carlo scheme,

whereas the temporal evolution of all heavier atoms (and molecules) is determined

via MD . The unique feature of this combined approach developed is that the com-

bination of MD and kinetic Monte Carlo allows to calculate the proton diffusion on

time scales only accessible to kinetic Monte Carlo while still taking into account the

accurate temporal evolution of the proton pathways as determined by MD .



Theory

2.1 Molecular Dynamics

Molecular Dynamics (MD) is a numerical simulation technique which is commonly

used to determine macroscopic and dynamical properties of systems of interacting

particles. This is done by explicitly integrating the Newtonian equations of motion of

each particle in the system. Because of its versatility, it has become a common tool

to tackle various problems regarding condensed matter systems.

MD can be roughly divided into two large categories: Force-Field MD (or classi-

cal MD ) and ab initio MD . While the former uses parameterized interatomic poten-

tials to determine the forces acting within the system, the latter actually solves the

Schrödinger equation of the electronic subsystem in order to determine the forces

acting on each atom. The advantages of classical MD lie in the low computational

costs of the force-field calculations. This allows the simulation of large systems such

as proteins or even viral structures. [79]

The use of ab initio MD on the other hand allows the simulation of chemical reac-

tions without heuristic approaches or parameterizations. The term ab initio is a col-

lective name for a variety of different methods which solve the electronic Schrödinger

equation by means of different approaches and with varying degrees of accuracy.

The focus in this thesis will be restricted to Hartree-Fock, which represents a wave

function-based approach, and Density Functional Theory, which minimizes the en-

ergy as a functional of the electron density.

2.1.1 Ensemble Averages

Molecular dynamics simulations can be seen as a virtual experiment carried out on

the computer. At each time step in the simulation, the positions and momenta of the

atoms are propagated. This way, each time step yields a point in the system’s phase

space.

In order to arrive at the macroscopic value of some observable a, one would in

7
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theory have to integrate over the whole phase space:

〈a〉 =

∫
ρ (r1, . . . , rN ,p1, . . . ,pN ) a(r1, . . . , rN ,p1, . . . ,pN )dr1 . . . drNdp1 . . . dpN

(2.1)

where ρ is the probability density to find the system at the corresponding point in

phase space.

If the system is ergodic, i.e. if given enough time, it will visit all points in phase

space eventually, then the integration over phase space can be replaced by an integral

over time.

〈a〉 = lim
T→∞

1

T

T∫
0

a (r1(t), . . . rN (t),p1(t), . . .pN (t)) dt (2.2)

In this form, Molecular Dynamics allows the evaluation of 〈a〉 by propagating the

molecular system in discrete time steps and approximating the integral of equation

2.2 by a finite sum.

〈a〉 ≈ 1

Nsteps

Nsteps∑
i

a (r1(i∆t), . . . rN (i∆t),p1(i∆t), . . .pN (i∆t)) (2.3)

2.1.2 Molecular Dynamics based on Force Fields

One approach to calculate the interatomic potentials within a Molecular Dynamics

simulation is by means of parameterized functions which take geometric parameters

of the system, such as bond lengths or bond angles, as arguments.

In this approach, the total energy of the system is composed of a set of potential

functions. These include stretching (Ubond), bending (Uangle) and torsional (Utorsional

and Uimproper) interaction energies, plus a van-der-Waals term for non-bonded inter-

actions, and a Coulomb term for electrostatic interactions. [80]

Utotal = Ubond + Uangle + Utorsional + Uimproper + UvdW + UCoulomb (2.4)

The stretching potential describes each covalent bond as a parabolic function char-

acterized by an equilibrium distance r0i and a constant kbond
i which determines the

bond strength. The internal coordinate ri is the distance between the two atoms

forming the ith bond.

Ubond =
∑
i

kbond
i (ri − r0i)

2 (2.5)

The bending potential is defined by the same functional form. The internal coor-

dinate Θi is the angle between the ith pair of covalent bonds, and Θ0i describes the
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equilibrium angle.

Uangle =
∑
i

k
angle
i (Θi −Θ0i)

2 (2.6)

The torsional potential is described by a sinusoidal function. The internal coor-

dinate Φi describes for three consecutive covalent bonds the angle between the first

and the last bond. The integer n describes the periodicity of the potential.

Utorsional =
∑
i

kdihed
i [1 + cos (niΦi − γi)] (2.7)

Furthermore, an improper potential is added with the aim to keep selected groups

planar or to conserve chirality.

The van-der-Waals potential is described by a Lennard-Jones potential

UvdW =
1

2

∑
i 6=j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

UCoulomb =
1

2

∑
i6=j

1

4πε0

qiqj
rij

(2.8)

The parameter εij determines the well depth of the potential between atom i and

atom j. σij determines the equilibrium distance.

Thanks to the explicit analytic form of the interatomic potentials, force field MD

can be computed very effectively on computers. This allows the simulation of large

systems up to several nanometers and on millisecond timescales.

2.1.3 Verlet Algorithm

If we assume that the potential acting on the particles is conservative, i.e. it depends

only on their positions, the forces acting on each particle are given by

Fi = −∇iV (r1, r2, . . . , rN ) (2.9)

In order to arrive at an expression for a numerical integration scheme, one starts

with a Taylor expansion of the position vector up to second order of the ith particle

in the system:

ri(t+ ∆t) ≈ ri(t) +
dri
dt

∆t+
1

2

d2ri
dt2

∆t2 (2.10)

Using Newton’s second law, the acceleration can be replaced by the acting forces.

ri(t+ ∆t) ≈ ri(t) +
dri
dt

∆t+
Fi

2mi
∆t2 (2.11)
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In order to eliminate the derivative of r in the equation, we calculate ri(t+ ∆t) +

ri(t−∆t) using equation 2.11.

ri(t+ ∆t) ≈ 2ri(t)− ri(t−∆t) +
Fi
mi

∆t2 (2.12)

This equation is also known as the Verlet algorithm. [81]

In order to determine the velocities, an equation for r(t−∆t) can be determined

in analogy to equation 2.11. Subtracting it then from equation 2.11 yields:

vi(t) =
dri(t)
dt

=
ri(t+ ∆t)− ri(t−∆t)

2∆t
(2.13)

2.1.4 Velocity-Verlet Algorithm

The Velocity-Verlet algorithm represents a modification of the standard Verlet algo-

rithm and offers explicit formulas for both positions and velocities. For this, starting

from time tnext = t+ ∆t, a Taylor expansion is done for ri(tnext −∆t):

ri(t) = ri(tnext −∆t) ≈ ri(t+ ∆t)− dri(t+ ∆t)

dt
∆t+

Fi(t+ ∆t)

2mi
∆t2 (2.14)

Inserting the above equation in equation 2.11, yields the expression

vi(t+ ∆t) = vi(t) +
Fi(t) + Fi(t+ ∆t)

2mi
∆t (2.15)

This way, together with equation 2.11, this allows for the simultaneous calculation of

positions and velocities. The direct access to positions and velocities via equations

2.11 and 2.15 is especially useful when employing constant temperature or constant

pressure algorithms. [82]

2.1.5 Thermostats

By combining one of the Verlet integration algorithms with a suitable potential, it is

possible to compute a trajectory of a molecular system. As the system is fully isolated

(there is no external system it could exchange energy with), and the equations of mo-

tion conserve the energy, the energy of the system will be constant over time. Given

that the number of particlesN and the system volume V is fixed, this corresponds to

an NVE-Ensemble. Oftentimes, however, it is desirable to sample from other ensem-

bles, such as a constant temperature (NVT) or constant pressure (NPT) ensemble, as

they allow to run simulations under “experimental conditions”, where a fully isolated

system cannot be realized. While it is possible to relate the system temperature to the

average kinetic energy of the particles, this only allows to determine the temperature

in retrospect, but ideally the temperature should be a controllable parameter.
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To address this problem, a multitude of algorithms were developed which sim-

ulate the interaction of the atomic system with a surrounding heat bath. [83] The

discussion here will be restricted to the Nosé-Hoover thermostat.

Nosé-Hoover Thermostat

In the canonical ensemble (NVT), the system is coupled to a large heat bath, with

which it can exchange heat. Consequently, the system will assume the temperature

of the heat bath. In order to achieve the same effect in molecular dynamics simula-

tions, the Nosé-Hoover thermostat modifies the equations of motions by adding an

additional term [84, 85]:

dqi
dt

=
pi
mi

(2.16)

dpi
dt

= −∂V
∂qi
− ξpi (2.17)

Q

2

dξ

dt
=
∑
i

p2
i

2mi
− 3

2
NkT (2.18)

In the above equations, qi denotes the position, pi the momentum, and mi the mass

of the ith particle. V is the potential acting on the particles. ξpi acts similarly to a

friction term, but as the change in ξ depends on the difference between the system

temperature and the target temperature, it will counteract too large deviations from

the target temperature. The new degrees of freedom introduced by the additional

terms, can be thought of as a fictitious particle with massQ and velocity ξ. Therefore,

one can analogously define

pξ = Qξ (2.19)

The change of the equations of motions give rise to a new conserved quantity

H =
∑
i

p2
i

2mi
+ V (q) +

Q

2
ξ2 + 3NkT ln(s) (2.20)

with
d ln(s)

dt
= ξ (2.21)

It was shown that these equations produce a canonical distribution only if the system

is ergodic. [85] To remedy this shortcoming, the Nosé-Hoover method was extended

to include a set of M thermostats which are coupled as follows:
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Q1ξ̇1 =
∑
i

p2
i

mi
− 3NkT − ξ2pξ1 (2.22)

Qj ξ̇j =
p2
ξj−1

Qj−1
− 3kT − ξj+1pj (2.23)

QM ξ̇M =
p2
ξM−1

QM−1
− 3kT (2.24)

with the corresponding Hamiltonian

H =

N∑
i=1

p2
i

2mi
+ V (q) +

M∑
i=1

p2
ξi

Qi
+ 3NkT ln(s1) +

M∑
i=2

kT ln(si) (2.25)

The choice of sensible values for the Qi is essential, as for very large masses Qi, the

distribution will approach the microcanonical distribution, whereas too large masses

may lead to the inhibition of the momenta. [85]

2.2 Electronic Structure Methods

The essence of electronic structure methods is the quantum mechanical treatment of

molecular systems by solving their corresponding Schrödinger equation. The Hamil-

tonian of any chemical system can be written in the following form:

Ĥmol. = T̂nuc. + T̂el. + V̂ee + V̂ne + V̂nn (2.26)

consisting of (from left to right) the kinetic energy operators of the nuclei and the

kinetic energy operator of the electrons, as well as the interaction potentials describ-

ing electron-electron, nucleus-electron and nucleus-nucleus interactions. By solving

the time-independent Schrödinger equation

Ĥmol. |Ψmol.〉 = E |Ψmol.〉 (2.27)

it is in principle possible to determine all properties of a chemical system. This is a

daunting task, however, as a full quantum mechanical treatment involves the deter-

mination of the full many-particle wave function containing degrees of freedom for

both nuclei and electrons. In order to reduce the complexity of equation 2.26, it is

thus advisable to make a few approximations.

The most prominent one is the Born-Oppenheimer approximation (also known

as adiabatic approximation), which assumes that the full wave function Ψ(r,R) can
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be expressed by the ansatz

Ψ(r,R) = Ψnuc.(R)Ψel.(r,R) (2.28)

where r denotes the degrees of freedom of the electronic subsystem, and R denotes

the degrees of freedom of the nuclear subsystem.

The qualitative justification for this ansatz lies in the fact that the masses of nuclei

and electrons differ by around three orders of magnitude. Thus, the electrons can be

considered to adapt instantaneously to the position of the slowly moving cores.

In the context of this work, the typical form of the Schrödinger equation usually

consists of the electronic Hamiltonian alone. For an atomistic/molecular system, it

has the form

Ĥel. = T̂el. + V̂ee + V̂ext (2.29)

consisting of the electronic kinetic energy operator

T̂el. = −1

2
∇2 (2.30)

the electron-electron interaction

V̂ee =
∑
i<j

1

|ri − rj |
(2.31)

and an external potential

V̂ext = −
Nel.∑
i

Nnuc.∑
j

1

2

Zj
|ri − Rj |

(2.32)

which includes electron-nucleus interactions, but can be extended to include inter-

actions with external fields, as well.

According to the Hellman-Feynman theorem, the atomic forces can be obtained

from the electronic Hamiltonian via

Fi = − ∂

∂R
〈Ψ0|Hel. |Ψ0〉 (2.33)

Thus, an approach for an ab initio simulation can be devised by determining the

ground state energy |Ψ0〉 of the HamiltonianHel.(R) at each MD time step, and prop-

agating the positions and momenta of the nuclei according to the forces obtained by

the Hellman-Feynman equation.

Different approaches have been developed to find numerical solutions of equa-

tion 2.29. The focus of this thesis will be on the Hartree-Fock method and Density

Functional Theory. While the former constructs an ansatz for the many-particle wave
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function from a Slater determinant of single-particle wave functions, the latter treats

the energy of the electronic system as a functional of the electron density. In the

following, a summary of the different methods will be given.

2.2.1 Hartree Fock

The Hartree-Fock method is one of the central approximations of theoretical chem-

istry, and serves as a basis for more advanced methods. The following discussion

mostly follows the explanation by Szabo and Ostlund. [86]

The starting point of Hartree-Fock is the construction of the electron wave func-

tion as a Slater determinant of one-particle spin orbitals χi(x) where the vector x

contains both positional coordinates r and a spin coordinate σ.

|Ψ0〉 =

∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) . . . χN (x1)

χ1(x2) χ2(x2) . . . χN (x2)
...

...
. . .

...

χ1(xN ) χ2(xN ) . . . χN (xN )

∣∣∣∣∣∣∣∣∣∣
(2.34)

By construction the wave function |Ψ0〉 is antisymmetric with respect to exchange of

any two coordinates, therefore fulfilling the Pauli exclusion principle.

In order to find the optimal wave function within this ansatz, one minimizes (ac-

cording to the variational principle)

E[Ψ0] = 〈Ψ0| Ĥel. |Ψ0〉 (2.35)

under the constraint that the spin orbitals are orthonormal

〈χi|χj〉 = δij (2.36)

The minimization can be achieved by means of the method of Lagrange multipliers,

and the result is a new eigenvalue equation for each orbital.

f̂χi = εiχi (2.37)

The Fock operator f̂ consists of three components shown below:

f̂ = ĥ+
∑
b

Jb −Kb (2.38)

The operator ĥ is simply the Hamiltonian of a single electron subject to the Coulomb
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potential due to the nuclei.

ĥχa =

[
−1

2
∇2 −

∑
α

Zα
|ra − Rα|

]
χa(x1) (2.39)

The operator Ĵ describes the Coulomb potential acting on electron one caused by

the averaged position of electron two. The summation in equation 2.38 can thus be

interpreted as the total Coulomb energy between a single electron and the averaged

charge of the remaining electrons.

Ĵbχa =

[∫
dx2

χb(x2)∗χb(x2)

|r1 − r2|

]
χa(x1) (2.40)

The operator K̂ on the other hand has no classical interpretation. As can be seen

in equation 2.41, the calculation of K̂χa contains an integral which includes χa at

every point in space. K̂ is therefore called non-local.

K̂bχa =

[∫
dx2

χ∗b(x2)χa(x2)

|r1 − r2|

]
χb(x1) (2.41)

In the special case of restricted close-shell Hartree-Fock, only systems with closed

shells are considered, i.e. each orbital is occupied by two electrons. Furthermore,

each spin orbital has the form

χi(x) =

Ψj(r)α(σ)

Ψj(r)β(σ)
(2.42)

i.e. the spatial orbital Ψj is the same for α and β spin. In this case, after integrating

over the spin coordinate, the Fock operator can be expressed as

f̂ = 2ĥ+
∑
b

2Jb −Kb (2.43)

and the Hartree-Fock equations become

f̂ |Ψa〉 = εa |Ψa〉 (2.44)

2.2.2 Roothaan Equations and Self-Consistent Field Approach

In order to achieve a numerical solution of the previously discussed Hartree-Fock

equations, it is helpful to convert them to matrix form by expanding the orbitals in a
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basis set of K orbitals.

|Ψa〉 =

K∑
i

cia |φi〉 (2.45)

Inserting the expansion into the Hartree-Fock equations (equation 2.44) and mul-

tiplying with 〈φj | from the left yields∑
i

cia 〈φj | f̂ |φi〉 =
∑
i

ciaεa 〈φj |φi〉 (2.46)

By defining the overlap matrix S

Sji = 〈φj |φi〉 (2.47)

the Fock matrix F

Fji = 〈φj | f̂ |φi〉 (2.48)

and the coefficient matrix C

Cia = cia (2.49)

the Hartree-Fock equation can be written as

FC = SCε (2.50)

In the case of an orthonormal basis set, S reduces to unity, and the eigenvalue prob-

lem can be solved by diagonalization of F. It is important to note that the Fock op-

erator, and therefore the Fock matrix, depend on the electron density due to the in-

cluded operators Ĵ and K̂, and therefore on the coefficient matrix C. In order to ob-

tain a solution of equation 2.50, an iterative scheme is used. Based on a first guess of

the orbital coefficients, the Fock operator can be calculated, and thus the coefficient

matrix C can be found. This, in turn allows a further calculation of F. This scheme is

repeated until the change in the electron density is below a specified threshold.

2.2.3 Homogeneous Electron Gas

The Thomas-Fermi model is often seen as the predecessor of modern density func-

tional theory. It builds on the assumptions that electrons behave like a free electron

gas within small volume elements, and that the interaction energies within an atom

can be determined by the electron density alone. Based on these approximations, an

explicit formula for the energy as a functional of the electron density can be found.

The derivations here are based on the explanation given by Yang and Parr. [87]

The goal is to find an analytic expression for the kinetic energy of an electron gas as

a functional of the electron density. We start with the assumption that electrons be-
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have like free particles within a small Volume ∆V = l3. In this case, the Schrödinger

equation can be solved directly, and the resulting energy levels are

E(nx, ny, nz) =
h2

8ml2
(
n2
x + n2

y + n2
z

)
(2.51)

where nx, ny and nz are positive integers. The number of states with an energy

smaller or equal to ε can therefore be approximated by counting the number of states

within a sphere of radius
(
n2
x + n2

y + n2
z

)1/2
. As only positive integers are allowed,

only the volume within the first octant is considered.

N =
1

8

4

3
π
(
n2
x + n2

y + n2
z

)3/2
=
π

6

(
8ml2ε

h2

)3/2

(2.52)

The density of states g(ε) is therefore:

g(ε) =
dN

dε
=
π

4

(
8ml2

h2

)3/2

ε1/2 (2.53)

The total energy (of a volume element) can then be found by integrating over all en-

ergies and considering that electrons are subject to the Fermi distribution:

f(ε) =
1

exp[(ε− εF ) /kT ] + 1
(2.54)

In the limit T → 0K, the Fermi distribution f(ε) becomes a step function. Thus, by

integrating up to the Fermi energy εF , one obtains

∆E = 2

εF∫
g(ε)εdε =

8π

5

(
2m

h2

)3/2

l3ε
5/2
F (2.55)

Together with the total number of electrons

∆N = 2

εF∫
g(ε)dε =

8π

3

(
2m

h2

)3/2

l3ε
3/2
F (2.56)

and by integrating over all volume elements, one obtains the full kinetic energy func-

tional:

TT-F[ρ] = CF

∫
ρ5/3(r)dr (2.57)

with

CF =
3

10
(3π2)2/3 (2.58)

Likewise is it possible to express the electron-electron interactions and the Coulomb

interactions between electrons and cores in terms of the electron density. For a single
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atom, this gives rise to the total energy functional

ETF[ρ] = TTF[ρ] +
1

2

∫ ∫
drdr′

ρ(r)ρ(r′)
|r− r′|

− Z
∫
dr

ρ(r)

|r− R|
(2.59)

Following physical intuition (or mimicking the procedure shown in section 2.2.1)

one might be tempted to minimize the energy functional with respect to the elec-

tron density. But it should be noted that this has not been proven yet (for the justi-

fication of this procedure, see section 2.2.4). As before, the minimization should be

constrained such that the total number of electrons stays constant.

δ

{
E[ρ]− λ

[∫
drρ(r)−N

]}
= 0 (2.60)

Calculating the functional derivative above yields an Euler-Lagrange equation:

5

3
CF ρ

2/3 +
1

2

∫
dr′

ρ(r′)
|r− r′|

− Z

|r− R|
= λ (2.61)

By solving this equation together with the condition∫
drρ(r) = N (2.62)

the electron density can be determined, and using the energy functional from equa-

tion 2.59, the total energy can be calculated.

The homogeneous electron gas, although conceptually simple, has been shown

to yield reasonable numerical results for various systems. [88, 89] On the other hand,

molecular bonding cannot be described, as the energy of a neutral molecule is always

higher than that of the isolated atoms. [90] Furthermore, electron interactions are

only treated classically.

2.2.4 Density Functional Theory

Density Functional Theory continues the idea of the Thomas Fermi model that an

electronic system can be described by an energy functional of the electron density.

However, it is shown that such an approach is not only an approximate technique,

but can, in principle, be exact.

Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems[91] have formed the foundation of modern Density

Functional Theory.
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Theorem 1: The external potential Vext(r) is uniquely determined (apart from a

constant) by the ground state electron density n0(r)

The consequence of this theorem is that the electron density therefore also com-

pletely determines the Hamiltonian of the system.

Theorem 2: The total energy of the system can be written as a functional of n,

whose minimization yields the ground state density for any external potential.

E [n] =

∫
Vext(r)n(r)dr + F [n] (2.63)

with

F [n] = 〈Ψ| T̂ + V̂ |Ψ〉 (2.64)

Note that the choice of n is not completely free. Instead, the Hohenberg-Kohn The-

orems are only valid for densities which stem from antisymmetric ground state wave

functions. This condition is called v-representability.

Levy-Lieb Formulation

From a practical point of view, the Hohenberg-Kohn theorems do not provide an ac-

tual approach how to minimize the energy functional with respect to the electron

density. The reason for this is the v-representability, as it is in general not possible to

decide for a given density, whether it is v-representable or not.

Levy and Lieb[92, 93] provide a similar functional as Hohenberg and Kohn, which

however does not require the density to be v-representable. Instead, a weaker con-

dition is required: the N-representability, which only requires that the density stems

from an antisymmetric wave function for N electrons.

The conditions for N-representability are:

n(r) ≥ 0 (2.65)∫
n(r)dr = N (2.66)∣∣∣∇n(r)1/2

∣∣∣2 <∞ (2.67)

A connection to the Hohenberg-Kohn theorems can be made as follows:

According to the variation principle, a wave function |Ψn0
〉which yields the ground

state density n0 will fulfil the inequality

〈Ψn0
| Ĥ |Ψn0

〉 ≥ 〈Ψ0| Ĥ |Ψ0〉 (2.68)
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with the ground state wave function |Ψ0〉. This is equal to

〈Ψn0
| T̂ + V̂ |Ψn0

〉+

∫
vext(r)n0(r)dr ≥ 〈Ψ0| T̂ + V̂ |Ψ0〉+

∫
vext(r)n0(r)dr (2.69)

Identifying 〈Ψ0| T̂ + V̂ |Ψ0〉 as equation 2.64, one arrives at

〈Ψn0
| T̂ + V̂ |Ψn0

〉 ≥ F [n0] (2.70)

Therefore, F [n0] can be found by minimizing F [n] over all wave functions which

yield the ground state density n0:

F [n0] = min
Ψ→n0

〈Ψ| T̂ + V̂ |Ψ〉 (2.71)

Kohn-Sham Ansatz

The Kohn-Sham ansatz provides a practical approach to the determination of the

electron density. By replacing the many-body system with a system ofN non-interacting

electrons, a direct calculation is made possible.

In the Kohn-Sham approach, the energy functional has the form

EKS[n] = Ts[n] +

∫
vext(r)n(r)dr + EH [n] + EXC [n] (2.72)

Ts is simply the sum of kinetic energies of the N independent electrons

Ts = − h̄2

2me

∑
σ

Nσ∑
i

〈Ψσ
i | ∇2 |Ψσ

i 〉 (2.73)

whereas EH [n] is the hartree energy

EH [n] =
1

2

∫
drdr′

n(r)n(r′)
|r− r′|

(2.74)

The functionalEXC [n] contains the difference between the independent-electron

system, and the real system of interacting electrons. An accurate description ofEXC [n]

will therefore lead to an accurate ground state density.

In order to find the density which minimizes EH [n], one solves

δEH
δΨσ∗

i

!
= 0 (2.75)

with the constraint of orthonormal orbitals.
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This results in N equations similar to the Schrödinger equation(
− h̄2

2me
∇2 + vext(r) + vH(r) + vXC(r)

)
Ψσ
i (r) = εiΨ

σ
i (r) (2.76)

where the Kohn Sham potential vKS is defined as

vKS = vext(r) + vH(r) + vXC(r) (2.77)

Analogously to section 2.2.2 these equations can be written in matrix form.

The above equations allow the determination of the electron density by means of

a self-consistent iteration scheme. Starting from a guessed initial density, vKS can be

calculated, which then allows solving the Schrödinger equation for the single particle

wave functions. The newly obtained wave functions, in return, allow an update of the

density. This iteration can then be repeated until the electron density converges.

2.3 Monte Carlo Methods

Monte Carlo is an umbrella term for a variety of algorithms which use stochastic tech-

niques in order to solve numerical problems. Its first prominent application was dur-

ing Second World War in the Manhattan Project. Since then, the method has gained

traction because of its straightforward use and the continuously increasing perfor-

mance of computers. In contrast to molecular dynamics which deterministically

creates trajectories of molecular systems, Monte Carlo methods statistically sample

possible configurations of the system. Besides calculations of high-dimensional inte-

grals, Monte Carlo methods are commonly used to determine equilibrium structures

of molecules or dynamical features such as adsorption processes and diffusion.

2.3.1 Basic Principles

The discussion in this section mostly follows the explanations given by Kalos. [94]

Probabilities and Random Variables

In order to be able to talk unambiguously about random processes such as Monte

Carlo, a few mathematical terms should be defined first which are important in the

context of random events. A random variable is a variable which can assume a set

of values which are the result of a random process. For example when rolling a six-

sided dice, the random variable X ∈ {1, 2, 3, 4, 5, 6} could be defined as the resulting

number.

Each possible outcome of a random event Ei can be assigned a probability pi =

P (Ei). The probabilities of the random events are defined such that they satisfy the
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Kolmogorov axioms. [95]

1. The probability of an event Ei is a real number greater than or equal to zero for

each event in the event space.

P (Ei) ≥ 0 (2.78)

2. The probability that at least one elementary element of the whole sample space

occurs is one

P (Ω) = 1 (2.79)

3. For a set of mutually exclusive events, the following applies⋃
i

Ei =
∑
i

P (Ei) (2.80)

From these three axioms all other properties of probability can be derived.

In the case of the dice example, one quickly sees that the six possible outcomes

are mutually exclusive. From 3) and 2) we can then deduce that

P ({1, 2, 3, 4, 5, 6}) =

6∑
i=1

P (X = i)
!
= 1 (2.81)

Assuming that each possible outcome has the same probability, one arrives atP (X =

i) = 1
6 .

Continuous Random Variables

In many cases, the random variables which describe a random process are not dis-

crete, but can assume any real value within an interval. For example, the decay of

an atomic nucleus can occur at any time τ between zero (immediate decay) and in-

finity (no decay). The probability to find a continuous random variable X within an

interval [a, b] is described by a probability density function p(x).

P (a ≤ X ≤ b) =

b∫
a

p(x)dx (2.82)

Furthermore, the probability density is normalized such that

∞∫
−∞

p(x)dx = 1 (2.83)
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Expectation Values

The expectation value of a discrete random variable is defined as

〈X〉 =
∑
i

P (X = xi)xi (2.84)

In the case of a continuous variable, one has to replace the sum by an integral

〈X〉 =

∞∫
−∞

p(x)xdx (2.85)

Monte Carlo Integration

The idea of Monte Carlo integration is to replace an (often high-dimensional) integral

by an approximation where N samples Xi are drawn from a uniform distribution.

∫
V

f(x)dx ≈ V

N

N∑
i

f(Xi) (2.86)

A common example to demonstrate the use of random numbers to obtain a numer-

ical result is the determination of the area of a quarter-circle. Figure 2.1 on the left

side visualizes the approximation described in equation 2.86. For large sample sizes,

the approximation will converge to the true integral.

There is another way the integral can be solved, however. By interpreting the

quarter-circle as a two-dimensional function

f(x, y) =

1 if x2 + y2 ≤ 1

0 otherwise
(2.87)

it is possible to determine an approximation by sampling from two-dimensional space.

∫
V

f(x, y)dxdy ≈ V

N

N∑
i

f(Xi, Yi) (2.88)

A useful property of the Monte Carlo integration is the fact that it is straightforward

to extend the integration method to arbitrary dimensions.

It should be noted that uniform distribution can be replaced by some other dis-

tribution g(x). In this case the integrand needs to be weighted by 1
g(x) .
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Figure 2.1: By repeatedly drawing random numbers, it is possible to approximate the
area of the quarter circle. The integral can be approximated either by Monte Carlo
integration in one dimension (left side) or integration over two dimensions (right
side).

2.3.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a method whose purpose is to draw samples

from a probability distribution f(x) which cannot be sampled directly. Initially pre-

sented in 1953,[96] it was first used to determine thermodynamically probable con-

figurations of particles which were part of a canonical ensemble. Calculating an en-

semble average of some observable in the canonical ensemble involves calculating

integrals of the form

〈a〉 =

∫
dr1 . . . drNa(r1, . . . , rN ) exp(−βU(r1, . . . , rN ))/

∫
dr1 . . . drN exp(−βU(r1, . . . , rN ))

(2.89)

This is done by constructing a Markov chain whose stationary distribution equals

the desired probability distribution. In order to guarantee that there is a stationary

distribution of the Markov chain, it is sufficient (although not a necessary condition)

to show that it fulfills detailed balance, i.e. the probability that the system is in state

x and transitions to x′ is equal to the probability to be in x′ and transition to x.

p(x)p(x′|x) = p(x′)p(x|x′) (2.90)

If one writes p(x′|x) as a product of a probability to move q(x, x′) and an acceptance

probability a(x′|x) with

a(x|x′) = min

{
1,
f(x′)

f(x)

q(x|x′)
q(x′|x)

}
(2.91)
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it can be shown that detailed balance is fulfilled. [97] Furthermore, if q(x, x′) is sym-

metric, equation 2.91 further simplifies, and the second fraction becomes one. Fol-

lowing from the above discussion, the algorithm to sample from a distribution f be-

comes:

Given a position xi

1. Draw a new position in the vicinity of xtrial = xi + rξ (where ξ may be a uniform

random number between -1 and 1, and r the vicinity radius)

2. Set xi+1 = xtrial with probability min
{

1, f(xtrial)
f(x)

}
Otherwise set xi+1 = xi

In order to assure that the Markov Chain samples from the stationary distribution,

so-called burn-in periods are usually calculated before the actual Monte Carlo run,

in which no samples are taken from the Markov Chain.

2.3.3 Random Walk

An example commonly used to illustrate the concept of a random walk is that of a

drunk person staggering from street light to street light at night. Because of their

intoxicated state, they do not remember which steps they have taken before arriving

at the current street light, and thus the direction of each new step toward the next

street light only depends on the position they currently have. Surprisingly, this simple

model can be used to make predictions of very different real-world problems such as

Brownian motion [98, 99] or even the fluctuation of stock prices. [100–102]

In order to arrive at a more formal description of the random walk, we can express

the trajectory of the random walker as a sequence of states xi which are reached at

time ti. As the process is stochastic, both the positions xi and the times ti are random

variables, whose outcome is not deterministic. Therefore, it is only possible to give a

probability that the random walker walks a certain trajectory.

P (xN , tN ; xN−1, tN−1; ...; x1, t1) (2.92)

For the characterization of the random walk, it is helpful to consider conditional

probabilities, in other words the probability that the walker reaches state xN at time

tN given his previous trajectory. Without any further assumptions, the conditional

probability is

P (xN , tN |xN−1, tN−1; ...; x1, t1) =
P (xN , tN ; xN−1, tN−1; ...; x1, t1)

P (xN−1, tN−1; ...; x1, t1)
(2.93)

In this general form, the conditional probability may well depend on the complete
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history of the trajectory. The important property of a random walk, however, is the

fact that the probability to reach a new state only depends on the current state, also

referred to as Markov property. This simplifies equation 2.93 to

P (xN , tN |xN−1, tN−1; ...; x1, t1) = P (xN , tN |xN−1, tN−1) (2.94)

Given a state x, and using the Markov property, the following expression emerges for

the probability to find the system in state x at time t+ ∆t:

P (x, t+ ∆t) =
∑
y6=x

P (y, t)P (x, t+ ∆t|y, t) + P (x, t)P (x, t+ ∆t|x, t) (2.95)

In this formula, the first summand describes the probability that the system is in

some state other than x at time t, and transitions to x in the next time step. The

second summand describes the probability that the system is already in state x at

time t, and stays there.

The probability that the system transitions from x to x can also be expressed by

its complementary event:

P (x, t+ ∆t|x, t) = 1−
∑
y 6=x

P (y, t+ ∆t|x, t) (2.96)

Inserting this into equation 2.95, and subtracting P (x, t) from both sides yields

P (x, t+ ∆t)− P (x, t) =
∑
y 6=x

P (y, t)P (x, t+ ∆t|y, t)− P (x, t)P (y, t+ ∆t|x, t) (2.97)

In the last step, the conditional probabilities for a jump within a time interval

∆t are expressed as transition rates. This assumes that for small time steps ∆t the

transfer probabilities grow linearly in time.

P (x, t+ ∆t|y, t) = ω(y→ x)∆t (2.98)

Thus, equation 2.97 becomes

P (x, t+ ∆t)− P (x, t) =
∑
y6=x

P (y, t)ω(y→ x)∆t− P (x, t)ω(x→ y)∆t (2.99)

Dividing by ∆t and taking the limit, we arrive at a differential equation for P (x, t)

whose solution tells us the temporal evolution of the probability to find the system

in state x.
d

dt
P (x, t) =

∑
y6=x

P (y, t)ω(y→ x)− P (x, t)ω(x→ y) (2.100)
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This differential equation is called Master equation. It describes the dynamics of

the system as a differential equation of probabilities.

If the probabilities become stationary, i.e. they stay constant in time, the time

derivative becomes zero
d

dt
P (x, t) !

= 0 (2.101)

In this case, the following equation applies:∑
y6=x

P (y, t)ω(y→ x) =
∑
y 6=x

P (x, t)ω(x→ y) (2.102)

which is the condition for detailed balance (see section 2.3.2).

2.3.4 Inverse Transform Sampling

The inverse transform sampling is a technique commonly used to generate random

numbers with a desired probability density. Given a continuous random variable,

assume that a random variableX has the probability distribution function pX(x). Its

cumulative distribution function is defined as

FX(x) =

x∫
−∞

p(t)dt (2.103)

If a random variable Y has a uniform distribution on [0, 1], then the random variable

F−1
X (Y ) has the probability distribution pX(x). [103]

As an example to illustrate the way the inverse transform sampling works, let us

try to simulate a biased dice, whose probability to show a three is three times more

likely than for any other number. The upper-left picture in figure 2.2 shows the corre-

sponding probability distribution. In order to draw numbers from this distribution,

one could do the following:

1. Stack the bars on top of each other

2. Draw a (uniformly distributed) random number between one and zero

3. Its value then determines the height at which a value is drawn from the stack

In the above example it is easy to see that the number three will be selected more

often as it constitutes a larger part of the total stack.

In the case of a continuous variable, the “stacking” of discrete probabilities has to

be replaced by the cumulative distribution function. A value from the desired prob-

ability distribution pX(x) is then sampled by drawing a random number r between

zero and one, and determining the x-value of the intersection between r and the cu-

mulative distribution function FX(x)



28 CHAPTER 2. THEORY

0.0

0.2

0.4

1/8 1/8

3/8

1/8 1/8 1/8

0

2

4
pX(x)

0 1 2 3 4 5 6
0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0
FX(x)

Figure 2.2: Upper-left: Probability distribution of a biased dice. The probability of
getting a three is three times more likely than for any other number.
Lower-left: The behavior of the dice can be simulated by choosing a (uniformly) ran-
dom number between zero and one on the y-axis and determining with which bar it
intersects.
In the case of a density of a continuous random variable (upper-right), the sum
over probabilities needs to be replaced by an integral over a probability distribution
(lower-right).

2.3.5 Asymmetric Simple Exclusion Process (ASEP)

The Asymmetric Simple Exclusion Process (ASEP) is a simple model which realizes a

Markov process of interacting particles moving on a discrete lattice. Each site of the

lattice can be occupied by at most one particle. An update procedure moves these

particles in discrete time steps over the lattice. Due to its simple set of rules the (one-

dimensional) ASEP has been used for the modeling of non-equilibrium systems. [54,

104–107] Applications are, among others, traffic flow simulations [108] and protein

synthesis. [109]

In figure 2.3, the example of a one-dimensional chain is shown. In this case, a

particle sitting at a site i in the middle of the chain can jump with probability pi,i+1

to the right, and with probability pi,i−1 to the left.

For the one-dimensional case, a linear chain consisting ofL sites, different update

procedures exist: [54]

(a) Random-Sequential Update: At each time step, an edge (i, i + 1) is randomly

chosen and updated
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Figure 2.3: Illustration of the Asymmetric Exclusion Process using the example of a
one-dimensional chain. Each lattice site (numbered from 1 to 7) can be either occu-
pied or unoccupied. At each step, an edge (i, j) between two sites is chosen, and a
particle will jump with probability pi,j , only if site i is occupied, and site j free.

(b) Sublattice-Parallel Update: In the first step, the condition for a jump is tested at

the end points 1 and L. Then, all even pairs (2i, 2i + 1) are updated. Finally all

uneven pairs (i, i+ 1) are updated.

(c) Ordered-Sequential Update: In this update scheme, subsequent lattice sites are

updated (either from left to right or from right to left)

2.3.6 Kinetic Monte Carlo

The Kinetic Monte Carlo scheme (also referred to as Stochastic Simulation Algo-

rithm) is a method to determine the temporal evolution of a system by randomly

sampling the transitions between possible states of the system.

Starting from a system in state i at time t = 0, we want to determine the probabil-

ity that it is still in the same state at a later time t. Using the master equation

d

dt
Pi(t) =

∑
i 6=j

Pj(t)ωj,i − Pi(t)ωi,j (2.104)

one can see that the probability to stay in state i is given by

dPi(t)

dt
= −

∑
j

Pi(t)ωij(t) (2.105)

Integration of this differential equation for pi(t) gives the probability to still find the

system in state i after a time τ has passed:

Pi(τ) = exp

− τ∫
0

Ωi(t
′)dt′

 (2.106)
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with

Ωi(t) =
∑
j

ωij(t) (2.107)

Equation 2.106 yields a lifetime distribution of state i. In the case of time-independent

rates, Ω(t) becomes a constant, and equation 2.106 simplifies to an exponential dis-

tribution. The Kinetic Monte Carlo scheme samples from this distribution in order to

determine the waiting time before the next state transition occurs. More specifically,

a random number x in the range (0, 1] is drawn, and the waiting time τ is determined,

for which equation 2.108 is fulfilled:

− ln(x) =

τ∫
0

Ωij(t
′)dt′ (2.108)

In the time-independent case the equation can be explicitly solved for τ :

τ = − ln(x)

Ω
(2.109)

whereas in equation 2.108 τ must in general be determined numerically.

Once the lifetime τ has passed, the algorithm determines the target site for the

excess charge by drawing another random number x from the interval [0,
∑
j

ωi0,j(t)]

and choosing the second state with index j0 such that

j0−1∑
j=0

ωi0,j(t) ≤ x <
j0∑
j=0

ωi0,j(t) (2.110)

Note that both the determination of τ and the determination of the target site are

just the application of the inverse transform sampling (section 2.3.4).



Algorithmic Description

The coupled Molecular Dynamics/Lattice Monte Carlo (cMD/LMC) algorithm is a

stochastic scheme which models proton transfer on mesoscopic time scales by means

of a kinetic Monte Carlo like algorithm which is coupled to a molecular dynamics

trajectory. By taking into account the temporal change of the atomic positions, the

cMD/LMC scheme is able to accurately react to changes of the hydrogen bond net-

work. In this chapter, a detailed explanation of the scheme is given.

3.1 Coupling of Molecular Dynamics and Lattice Monte

Carlo Scheme

Given a precomputed Molecular Dynamics (MD) trajectory of a proton conducting

system, the cMD/LMC scheme translates donor/acceptor pairs found in the trajec-

tory into a lattice of proton hosting sites. Each site can be in either of two states:

occupied by a proton, or unoccupied. Within the Monte Carlo scheme, the protons

are then moved stochastically between lattice sites according to transfer rates which

 

Figure 3.1: Illustration of the translation from an atomic structure to a discrete lattice
of proton hosting sites. The proton transfer rate ω(dij) between two sites i and j
determines the dynamics of the system.
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are defined for each pair of sites. In order to compute chemically realistic proton dif-

fusion, acurate values for the transfer rates need to be found. The ansatz in this work

consists of two steps: Firstly, the proton transfer rate is expressed as a function of ge-

ometric parameters with respect to donor and acceptor. In the most basic approach

this can be a simple distance dependency, but further parameters such as hydrogen

bond angles can be taken into account as well. Secondly, the temporal change of the

molecular structure obtained from MD is taken into account for the construction of

the transfer rates. More specifically, for a number of N donor/acceptor atoms, a dis-

tance matrix is determined with matrix elements dij denoting the distance between

atom i and atom j.

dij = |ri − rj | (3.1)

Given that ω(d) is the functional form of the proton transfer rates with respect to the

donor/acceptor distance, a transfer rate matrix can be constructed via

ωij = ω(dij) (3.2)

Over the course of the MD trajectory, the pair-wise distances dij(t) vary with time,

and thus the transfer rates are also time-dependent.

The determination of the rate function is discussed in detail in the appended pa-

pers. In this thesis, it was determined via statistical analysis of ab initio MD trajecto-

ries, and from energy surface scans of the proton transfer reaction path.

3.2 Coupled MD/LMC Scheme using the Asymmetric Ex-

clusion Process

In the case of proton diffusion in a neutral system, the cMD/LMC scheme uses a

variation of the Asymmetric Simple Exclusion Process (ASEP) (see section 2.3.5) for

the stochastic propagation of the protons. This scheme uses a discrete lattice, where

each lattice site represents a donor/acceptor atom. Each lattice site can be either

occupied or unoccupied, and the transfer rate matrixωij contains the proton transfer

rate between each pair of lattice sites i and j.

Within the ASEP scheme, the proton transfer rates ωij between lattice sites need

to be converted to jump probabilities pij via

pij = ωij∆t (3.3)

At each Monte Carlo step, a connection between an oxygen Oi and a second oxy-

gen Oj is chosen randomly. If site i is occupied by a proton, and site j is empty, the

proton is moved to site j with probability pij .
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MD Trajectory

Distance Routine

Jump Rate Calculation

KMC Scheme

Positions

Distances

Jump Rates

Current time t,
Time of last jump tjump,

Lattice position

Figure 3.2: Flowchart diagram of the feedback loop within the cMD/LMC scheme for
excess charge diffusion.

Given a total number of lattice sites N , there are a total number of N(N − 1) con-

nections between lattice sites. Thus, at each Monte Carlo step a particular connec-

tion (i, j) has the probability 1
N(N−1) to be chosen. Therefore, N(N − 1) Monte Carlo

steps (also referred to as one sweep) are associated with the MD time step ∆t. When

coupled with an MD trajectory, ∆t in equation 3.3 is chosen such that it corresponds

to the MD time between updates of the atomic positions.

3.3 Excess Charge Kinetic Monte Carlo Algorithm

The cMD/LMC scheme for excess charge diffusion represents a continuation of the

algorithm presented in section 3.2 with the aim to extend its applicability to aqueous

media. In order to adequately describe such highly fluctuating systems, the cMD/

LMC scheme requires several modifications.

As water shows a strong structural response to the presence of an excess charge,

the cMD/LMC scheme needs to be aware of these effects. By design, the molecu-

lar dynamics trajectory runs independently from the LMC scheme. This prevents

the implementation of a direct structural response of the MD structure to the ex-
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cess charge state within the LMC scheme. However, an ab initio analysis of the first

solvation shell of H3O+ shows that the H3O+-H2O distance distribution can be ob-

tained by means of a straightforward transformation of the neutral H2O-H2O dis-

tance distribution. Thus, a distance-rescaling routine is implemented into the cMD/

LMC scheme, which receives atomic positions of neutral bulk water as input, and

modifies the first solvation shell around the LMC excess charge accordingly. In order

to take into account the relaxation time of the first solvation shell, an additional pa-

rameter controls the speed of the structural relaxation. Finally, in order to take the

hydrogen bond topology of H3O+ within water into account, the number of lattice

connections from the excess charge donor to neighboring excess charge acceptors is

restricted to the three closest neighboring molecules.

Figure 3.2 illustrates the concept. The distance generating routine receives the

current LMC state consisting of the current time t, the time of the last excess charge

transfer tjump, and the lattice position of the excess charge. Based on this input, the

corresponding donor-acceptor distances are calculated and passed on to the jump

rate generator. The jump rate generator in turn passes the jump rates to the LMC

scheme, which then determines the time of the next excess charge transfer. The

determination of the donor-acceptor distances, on the other hand, involves several

steps within the distance generating routine. Figure 3.3 illustrates these steps. Within

a specified time interval after an excess charge transfer has occurred, interpolated

values for the distances are computed which lie between the unrescaled/neutral and

relaxed H3O+-H2O distances.

dOO(t) = dOO
neutral(t) +

t− t0
trelax

[
dOO

hydronium(t)− dOO
neutral(t)

]
(3.4)

In contrast to the ASEP scheme, the time is not incremented in equal steps, but

is a random variable whose distribution depends on the proton transfer rates (see

section 2.3.6).
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Read atom positions from MD
trajectory

Determine neighbors of H3O+

t− tjump < trelax?

Interpolate between neutral
and relaxed distances

Use relaxed distances

Determine jump rates
from distances

Yes No

Figure 3.3: Flowchart of the distance scheme. After receiving the neutral H2O-
H2O distances from the molecular dynamics trajectory, the distance scheme decides
whether to interpolate between neutral and relaxed distances, thus imitating the re-
laxation process, or to use the relaxed distances.



36 CHAPTER 3. ALGORITHMIC DESCRIPTION



Publications

4.1 Publication Overview

For the design of fuel cell membrane materials, it is essential to examine proton

transport processes on an atomistic level, as the overall diffusivity is determined both

by structural features of the molecular assembly and the proton hopping dynam-

ics. While ab initio methods are able to offer a high level of accuracy with respect

to molecular structure and proton dynamics, this comes at the price of high com-

putational demands for the necessary molecular dynamics simulations. The cMD/

LMC scheme developed in this thesis strives to determine proton dynamics at mod-

erate computational costs while still maintaining a high accuracy by parameterizing

ab initio results.

4.1.1 Proton Transport in Solid Acids

Figure 4.1: Cubic phase of the solid acid CsH2PO4

In the scope of this project, two solid acid materials, CsH2PO4 and CsHSO4 were

investigated by means of ab initio MD simulations and using the cMD/LMC scheme.
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Figure 4.2: Tetragonal phase of the solid acid CsHSO4

In particular the superprotonic phase transition of CsH2PO4, during which the pro-

ton conductivity increases by several orders of magnitude, was investigated. Using

the cMD/LMC scheme the proton conductivity could be decomposed into contri-

butions of proton hopping and structural reorientation. For CsH2PO4, it turns out

that the decisive factor for the drastic change in proton conductivity between the

low-temperature phase and high-temperature phase is due to an increased anion ro-

tation, which promotes long-range proton transport. On the other hand, a chemical

substitution (P→ S) leads to a decrease in proton conductivity which can mainly be

attributed to a decline of the proton transfer rates.

4.1.2 Water-Free Proton Transport

An important topic with respect to fuel cell materials are chemical compounds which

allow proton transport at low humidity conditions. This way, operation temperatures

above 100 °C can be realized without the risk of dehydration of the fuel cell mem-

brane. On a microscopic scale, the connectivity of the hydrogen bond network plays

a crucial role, as it needs to compensate for the lack of H2O as a carrier molecule.

In the context of this work, a supramolecular assembly of disk-shaped molecules

functionalized with phosphonic acid groups (Hexakis(p-phosphonatophenyl)ben-

zene (p-6PA-HPB) ) was investigated at various temperatures. As figure 4.3 shows,

the disk arrangement forms channels of hydrogen bonded phosphonic acid groups

along which proton transport is possible. Investigations of the proton conductivity

of p-6PA-HPB by means of the cMD/LMC scheme confirmed that the anisotropic

arrangement of the molecules leads to a preference direction of the proton conduc-

tivity. Furthermore, it was investigated how structural reorientation, specifically the

rotation of the phosphonic groups influence the overall proton conductivity. For this,

the cMD/LMC scheme was enhanced by an additional stochastic “rotation event” in
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Figure 4.3: The supramolecular assembly of the phosphonic acid-functionalized
disks leads to a columnar structure. Channels of hydrogen bonded phosphonic acid
groups between the columns enable proton transport.

which protons residing at the same phosphonic group are swapped in cyclic order,

thus emulating a partial rotation.

4.1.3 Water-Mediated Proton Transport

Nafion-based proton exchange membranes continue to be used both in research and

commercially. Nafion, which consists of perfluorinated vinyl ether groups, has been

shown to yield high proton conductivity under hydrated conditions. In order to un-

derstand the proton conduction properties of such exchange membranes, it is there-

fore essential to investigate proton transport processes in bulk water.

In the context of this work, the cMD/LMC scheme was developed further to allow

the calculation of excess charge diffusivity in water. As water is a highly unordered

system, the cMD/LMC scheme needs to be modified in order to take into account

structural relaxation effects. Based on an ab initio trajectory of an excess charge in

water, the influence of an excess charge on the first solvation shell of its host H3O+

molecule is investigated, and incorporated into the cMD/LMC scheme. As the pres-

ence of an excess charge influences the distance of the H3O+ ion to the molecules

in its proximity, the cMD/LMC scheme needs to take into account this dielectric re-

laxation as well. For this, a relaxation scheme is constructed such that the donor-

acceptor distances between neutral water molecules are mapped to typical distances

found between H3O+ and H2O. An additional parameter trelax controls the time scale

of the relaxation process within the cMD/LMC scheme. With these new adjustments,

the cMD/LMC scheme is able to yields excess charge dynamics which are in good

agreement with ab initio simulations.
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A coupled Molecular Dynamics / kinetic Monte Carlo
Approach for Protonation Dynamics in Extended

Systems

Gabriel Kabbe, Christoph Wehmeyer, Daniel Sebastiani

J. Chem. Theory. Comput., 2014, 10, 4221–4228

http://dx.doi.org/10.1021/ct500482k

Abstract: We propose a multi-scale simulation scheme that combines first-principles

Molecular Dynamics (MD) and kinetic Monte Carlo (kMC) simulations to describe

ion transport processes. On the one hand, the molecular dynamics trajectory pro-

vides an accurate atomistic structure and its temporal evolution, and on the other

hand, the Monte Carlo part models the long-time motion of the acidic protons. Our

hybrid approach defines a coupling scheme between the MD and kMC simulations

that allows the kMC topology to adapt continuously to the propagating atomistic mi-

crostructure of the system. On the example of a fuel cell membrane material, we val-

idate our model by comparing its results with those of the pure MD simulation. We

show that the hybrid scheme with an evolving topology results in a better description

of proton diffusion than a conventional approach with a static kMC transfer rate ma-

trix. Furthermore, we show that our approach can incorporate additional dynamical

features such as the coupling of the rotation of a side group in the molecular building

blocks. In the present implementation, we focus on ion conduction, but it is straight-

forward to generalize our approach to other transport phenomena such as electronic

conduction or spin diffusion.

http://dx.doi.org/10.1021/ct500482k
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Toward Realistic Transfer Rates within the Coupled
Molecular Dynamics/Lattice Monte Carlo Approach

Gabriel Kabbe, Christian Dreßler, Daniel Sebastiani

J. Phys. Chem. C, 2016, 120, 19905–19912

http://dx.doi.org/10.1021/acs.jpcc.6b05821

Abstract: We refine our recently developed coupled Molecular Dynamics / Lattice

Monte Carlo scheme for the simulation of protonation dynamics in complex hydrogen-

bonded solids in view of improving the resulting transport processes. The distance

dependency of the proton jump rate between lattice sites and its dependence on ad-

ditional geometric criteria (bond angles) are derived in a systematic and consistent

way. The distance dependency follows an accurate potential energy surface scan

from quantum chemical calculations. The novel geometric criterion takes into ac-

count that proton hopping occurs almost exclusively along linear hydrogen bonds.

We illustrate the capabilities and the versatility of our scheme on the example of two

chemically quite different condensed phase systems: a crystalline solid acid com-

pound and a liquid crystal. Surprisingly, we find that our coupled Molecular Dynam-

ics / Lattice Monte Carlo scheme yields converged mobility parameters even when

based on underlying ab initio molecular dynamics trajectories which themselves are

not fully converged. Our method yields more accurate values for the mean square

displacement, the OH bond autocorrelation function and the proton jump frequen-

cies in agreement with both reference ab initio molecular dynamics simulations and

experimental values.

http://dx.doi.org/10.1021/acs.jpcc.6b05821
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Proton Conductivity in Hydrogen Phosphate/Sulfates
from a Coupled Molecular Dynamics/Lattice Monte

Carlo (cMD/LMC) Approach

Christian Dreßler, Gabriel Kabbe, Daniel Sebastiani

J. Phys. Chem. C, 2016, 120, 19913–19922

http://dx.doi.org/10.1021/acs.jpcc.6b05822

Abstract: The ionic conductivity of solid acids of CsHnXO4 type (X=P, S;n=2,1) varies

upon chemical substitution P↔S and between different crystal structures (Tc = 503 K

for CsH2PO4). We apply a recently developed coupled Molecular Dynamics/Lattice

Monte-Carlo simulation approach to explain both the phosphate / sulfate and tem-

perature / phase-related variations of the proton conductivity on a molecular level.

Our simulation method elucidates the relative importance of the two key compo-

nents of the Grotthuss-type proton conduction mechanism, proton hopping and

structural reorientation, as a function of the chemical/thermodynamical conditions.

We find that the chemical substitution leads to a substantial change in the proton

hopping rate, which however results only in a modest variation of the proton diffu-

sivity. The variation of the temperature of CsH2PO4 results in a significant response

of the anion rotation frequency, which turns out to be the rate-limiting process for

proton conduction. In particular, the dramatic conductivity response to the phase

transition can be explained by a large change of the rotation frequency. In contrast

to this, our simulations show that for CsHSO4, the local proton hopping rate is the de-

cisive mechanism which controls long-range proton transport. These findings illus-

trate that the actually rate limiting factor of proton conduction in such solid acids is

http://dx.doi.org/10.1021/acs.jpcc.6b05822
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clearly system-dependent.Our simulated results for the proton conductivities agree

almost quantitatively with experimental values, providing further evidence for the

high predictive capabilities of our scale-bridging cMD/LMC simulation approach.
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Proton Mobility in Aqueous Systems: Combining ab
initio Accuracy with Millisecond Timescales

Gabriel Kabbe, Christian Dreßler, Daniel Sebastiani

Phys Chem Chem Phys, 2017, 19, 28604–28609

http://dx.doi.org/10.1039/C7CP05632J

Abstract: We present a multiscale simulation of proton transport in liquid water,

combining ab initio molecular dynamics simulations with force- field ensemble av-

eraging and kinetic Monte-Carlo simulations. This unique Ansatz allows for ab initio

accuracy incorporating the femtosecond dielectric relaxation dynamics of the aque-

ous hydrogen bonding network, and bridges the time-scale gap towards the explicit

simulation of millisecond diffusion dynamics.

http://dx.doi.org/10.1039/C7CP05632J
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Insight from Atomistic Simulations of Protonation
Dynamics at the Nanoscale

Christian Dreßler, Gabriel Kabbe, Daniel Sebastiani

Fuel Cells, 2016, 16, 682–694

http://dx.doi.org/10.1002/fuce.201500217

Abstract: In this paper, we give an overview of the role of Molecular Dynamics (MD)

simulations in the field of proton exchange membranes. It focuses on structural and

dynamical findings regarding the topology of hydrogen bond networks and proton

diffusion. On the one hand, findings about water-containing PEM fuel cell materi-

als, such as Nafion and liquid containing pore materials are discussed. On the other

hand, proton conduction in water-free systems is elucidated. Here, the focus lies on

phosphonic acids, which possess a rigid structure, and polymer structures such as

Poly(vinyl phosphonic acid) and Hexakis-(p-phosphonatophenyl)benzene.

http://dx.doi.org/10.1002/fuce.201500217


4.6. 81-94



Academic Curriculum Vitae

95



Gabriel Kabbe

Adresse Am Steintor 17,
06112 Halle

Geburtstag 15. September 1986
Telefon 01522 316 32 18
E-Mail gabriel.kabbe@mail.de

Ausbildung
2013-Heute PromotionTheoretische Chemie,Martin-Luther Universität, Halle

Thema: Development of a coupled Molecular Dynamics / Lattice Monte Carlo Scheme

2010-2013 Master of Science, Freie Universität Berlin

Masterarbeit: Simulating Proton Transfer in Hexakis(p-phosphonatophenyl)benzene

2007-2010 Bachelor of Science, Freie Universität Berlin

Bachelorarbeit: Optische Rotationsdispersion und zirkularer Dichroismus an chiralen Lö-
sungen

1997-2006 Abitur, Carl-Benz Gynmnasium, Ladenburg

Berufliche Erfahrung
2013-Heute Martin-Luther Universität Halle-Wittenberg

Lehre

• Vorlesung Physikalische Chemie (Tutor/Dozent)

• VorlesungTheoretische Chemie (Tutor/Dozent)

• Vorlesung Python für Naturwissenschaftler (Dozent)

2013-Heute Martin-Luther Universität Halle-Wittenberg
System-Administration

• Linux-Server Administration

• Systemweite Linux-Installationenmit FAI

• Backup-Verwaltung

• Virtualisierung mit Docker, VirtualBox und Vagrant

2017 Freiberuflich für die Berlin-Brandenburgische Akademie der Wissenschaften
Software-Entwicklung
Konvertierung historischer Dokumente von LaTeX nach XML

1 of 2



Programmier- und IT-Kenntnisse
Programmiersprachen
Python
C, C++
Haskell
Java

Data Science
NumPy, SciPy - Numerik
SymPy - Symbolisches Rechnen
Pandas - Datenanalyse
Tensorflow, scikit-learn - Machine Learning

Verschiedenes
Docker, VirtualBox, Vagrant - Virtualisierung
CherryPy - Web Framework in Python
git - Versionskontrolle

Sprachen
Englisch
Spanisch

Hobbies
Klavier, Gitarre
Reisen
Kraftsport, Fahrrad

2 of 2



98 CHAPTER 5. ACADEMIC CURRICULUM VITAE



Conclusion

The central objective of this thesis project was the development, implementation

and benchmarking of a coupled Molecular Dynamics/Lattice Monte Carlo (cMD/LMC)

scheme for the efficient simulation of ion diffusion in condensed phase compounds.

The natural subsequent objective was the application of the cMD/LMC scheme to

fuel cell membrane materials.

In the first part of this thesis, the focus lies on the development of the cMD/LMC

scheme with the aim to simulate proton transfer on extended time scales while still

maintaining structural and dynamical accuracy as provided by ab initio simulations.

In order to capture the dynamical features of the proton hopping mechanism, a pa-

rameterized proton jump rate function is determined and fitted to ab initio data. In

combination with trajectories of the molecular structure, it is possible to determine a

time-dependent proton transfer rate matrix, which is used as an input to the Lattice

Monte Carlo scheme. The predictive accuracy of the cMD/LMC scheme with regard

to proton dynamics is examined using the example of Hexakis(p-phosphonatophe-

nyl)benzene (p-6PA-HPB) , a disk-shaped molecule functionalized with six phospho-

nic acid groups. Its supramolecular assembly has a columnar structure which forms

an intercolumnar hydrogen bond network. Proton mean squared displacement and

the temporal evolution of covalent OH bonds are analyzed and shown to be in good

agreement with ab initio results. The activation energy of a proton transfer is de-

termined as a function of the donor-acceptor distance by means of a temperature

analysis of the proton jump rate. Finally, directed proton flux through several layers

of p-6PA-HPB is simulated by connecting the start and end points of the assembly

to an artificial proton reservoir and sink. In this way, it is possible to determine the

anisotropy of the proton conductivity tensor for such compounds.

The second part represents a refinement of the cMD/LMC method in view of en-

hancing the flexibility of the Monte-Carlo transfer rate topology in order to achieve a

better transferability of the approach to different chemical systems. First, the accu-

racy of the proton transfer rate is improved by means of quantum chemical calcula-
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tions. Furthermore, the correlation between proton jump rate and the linearity of the

hydrogen bonds is included. the improved generality and accuracy of the cMD/LMC

scheme is demonstrated with respect to proton mean squared displacement and OH

bond autocorrelation on the example of a liquid crystalline proton conductor (p-6PA-

HPB ) and a crystalline solid acid compound (CsH2PO4). Further, the convergence

of the dynamical properties calculated within the LMC scheme corresponds to the

convergence of the structural subvolume of the phase space sampled via ab initio

Molecular Dynamics (MD) .

The last part of this thesis constitutes a proof of concept for the applicability of the

cMD/LMC in highly fluctuating systems. On the example of an excess proton in wa-

ter, the cMD/LMC scheme is further enhanced to realistically describe the complex

proton transfer mechanisms caused by the strongly fluctuating hydrogen bonds and

the dielectrical relaxation effects in water. The enhancement consists of two parts:

firstly, the LMC scheme needs to be able to mimic the shortening of the hydrogen

bonds caused by the electrostatic effects between the positively charged H3O+ and

its first solvation shell. Secondly, the time scale of this dielectrical relaxation needs

to be accounted for in order to realistically model the response of the hydrogen net-

work after an excess charge transfer. The calculations here show that both effects are

represented quantitatively.

In conclusion, the cMD/LMC scheme has been shown to be an effective tool for

the simulation of proton diffusion on mesoscopic time scales. The combination of

molecular dynamics with a kinetic Monte Carlo scheme allows accurate calculations

with low computational effort. This makes it an attractive tool for postprocessing of

existing ab initio trajectories in cases where the heavy atom structure has converged,

but the motion of the light hydrogen atoms has not been sufficiently sampled yet.

In the near future, the cMD/LMC scheme will be further extended and refined.

One natural extension is the description of OH− diffusion. It will be interesting to see

whether the diffusion mechanisms of a solvated hydroxide ion can be approximated

in a similar way as for hydronium ions. Furthermore, Lithium ion transport, which is

currently being investigated by means of molecular dynamics simulations, might be

another field of applications. The author is therefore optimistic that the cMD/LMC

scheme will be a useful tool for future studies.
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