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Vorbemerkung  

 

Die vorliegende Habilitationsschrift gibt einen Überblick über eine Reihe von Studien, die sich im 

engeren bzw. weiteren Sinne mit den unterschiedlichen Mechanismen der Informationsintegra-

tion im menschlichen Gehirn beschäftigen. Betrachtet wird insbesondere, wie mit zunehmender 

Komplexität der Mensch-Umwelt-Interaktion Informationen aus unterschiedlichen externen und 

internen Informationsquellen integriert werden. Entscheidender Marker der Informationsin-

tegration sind generell oszillatorische Prozesse und im Besonderen Muster hochfrequenter  Akti-

vität (HFA) im menschlichen Gehirn. Dies erscheint besonders relevant, da das Verständnis von 

Informationsintegration Rückschlüsse auf die Funktionsweise zugrundeliegender Prozesse auf 

neuronaler Ebene ermöglicht. An der Entstehung der Originalarbeiten waren eine Reihe von Kol-

leginnen und Kollegen beteiligt, denen ich nachfolgend ganz herzlich danken möchte.  
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Zusammenfassung 
 

 Die Neurowissenschaften untersuchen Mechanismen, wie das Gehirn externe Umweltreize 

oder aber auch interne Signale (Ignacio Rebollo et al., 2018) verarbeitet. Bei den meisten, wenn 

nicht allen Ansätzen der neuronalen Informationsverarbeitung impliziert der Begriff der Verar-

beitung, dass die unterschiedlichen Informationen in solcher Weise zu einer Einheit aufeinander 

abgestimmt werden (Integration), die es uns Menschen erlaubt optimal zu handeln. Dabei geht 

es in erster Linie um eine abstrakte Repräsentation durch die Assoziation unterschiedlicher 

Merkmale verschiedener Signale zu einem neuen Signal (Mudrik et al., 2016). Diese Informa-

tionsintegration findet sich auf einer Vielzahl von zeitlichen und räumlichen Skalen einerseits 

und kognitiven Ebenen andererseits wieder.  

 

 In der vorliegenden Habilitationsschrift werde ich exemplarisch zeigen, auf welchen neuro-

physiologischen und kognitiven Ebenen Informationsintegration stattfindet. Die Funktions-

weise des menschlichen Gehirns beruht dabei auf der elektrischen Aktivität von Neuronen. Die 

HFA in makroskopischen Messungen wie dem MEG oder ECoG können als lokaler Index funkti-

onaler selektiver Aktivität angesehen werden. Vor allem die HFA reflektiert die Fähigkeit des 

Gehirns zur Selbstorganisation, die es erlaubt Informationen optimal über die Zeit und unter-

schiedliche Kortexbereiche weiterzuleiten. Dies kann als Voraussetzung für die Informationsin-

tegration gesehen werden. Diese Gehirnaktivität ist darüber hinaus essentiell für die Integration 

von Informationen, um optimale Entscheidungen zu treffen. Weiterhin wird in der Arbeit darge-

stellt, dass auf kortikaler und subkortikaler Ebene Vorhersagefehler generiert werden, die zei-

gen, dass das Gehirn durch Informationsintegration über die zeitliche Dimension ein internes 

Modell über die Umwelt generiert auf dessen Basis wiederum Vorhersagen getroffen werden. 

Kommen  aktive motorische Handlungen, die mit den Umweltinformationen koordiniert werden 

müssen, dazu, kann in dieser Arbeit wiederum auf kortikaler und subkortikaler Ebene Integra-

tion von lokalen Informationen in funktionelle globale Netzwerke gezeigt werden, die mit den 

kognitiven Anforderungen variiert.  Auf einer weiteren Ebene zeige ich in dieser Arbeit, wie In-

formationsintegration stattfindet, wenn zur Koordination von Umwelt und Handlungen noch 

selbst generierte Informationen, wie der Abruf von Gedächtnis während des mind wanderings, 

verarbeitet werden.  

 

 Zusammengenommen legen diese möglichen Einflussfaktoren nahe, dass die menschliche 

Informationsintegration ein multifaktorielles Geschehen ist, welches sich auf unterschiedlichen 



5  

Ebenen manifestiert und reziprok mit einer Vielzahl neuronaler Strukturen und Prozesse ver-

bunden ist.   
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1. Einleitung 

 
  Die Menschen hätten nicht in diesem Maße die Welt gestalten können, wie wir sie heute 

kennen, wenn sie auf die Erfordernisse in der Umwelt nur im Nachhinein reagieren können: die 

Anpassung des Menschen wäre ein ausschließlich reflexiver Prozess. Jedoch haben sie gelernt 

Umweltereignisse so optimal zu verarbeiten, sie miteinander zu vergleichen und vorherzusehen, 

um schon im Vorfeld Handlungsoptionen zu überdenken, um sich optimal verhalten zu können. 

So reagieren wir schneller und genauer auf vorhersagbare Reize (Anllo-Vento, 1995; Desimone, 

1995). Menschen müssen daher die Fähigkeit besitzen, Informationen zu einem bestimmten Zeit-

punkt aus der Umwelt aufzunehmen aber auch Regelmäßigkeiten in der Umwelt fortlaufend zu 

erfassen und daraus Vorhersagen abzuleiten, um überleben zu können. Dabei können sich Regel-

mäßigkeiten in der Umwelt über zeitlich kurze (z.B. in Melodien innerhalb von wenigen Sekun-

den) als auch lange Intervalle (z. B. Veränderung über den Tag) erstrecken, die wir erfassen kön-

nen. Menschen müssen, um mit der Umwelt optimal interagieren zu können, Informationen auf-

nehmen, verarbeiten, weiterleiten und mit bestehenden Informationen optimal verknüpfen. Da-

bei ist die Informationsintegration ein rekursiver Prozess, da jeder dieser Aspekte einerseits In-

tegration voraussetzt  und wiederum entscheidender Bestandteil der Informationsintegration ist.  

 

 In der vorliegenden Habilitationsschrift werden Prinzipien der Informationsintegration auf 

diesen unterschiedlichen Ebenen betrachtet und hinsichtlich ihrer Relevanz für menschliche Kog-

nition beleuchtet. Zentraler Punkt hierbei ist, wie neuronale Aktivität, welche in allen Studien an-

hand hochfrequente Aktivität (80-250Hz) im menschlichen Kortex untersucht wird, diese Infor-

mationsintegration reflektiert. Dabei orientiert sich der Aufbau der Arbeit an den unterschiedli-

chen konzeptionellen Ebenen, auf welchen Informationsintegration im Gehirn zu finden ist. Am 

Anfang steht dabei die Frage, wie das menschliche Gehirn in Ruhe, ohne Einflüsse von außen In-

formationseinheiten zusammenfasst (geclustert) und weiterleitet (2.1 – Kritikalität). Danach wird 

der Frage nachgegangen, wie Informationen zu einer subjektiven Einschätzung verknüpft werden 

(2.2 – Delay Discounting) gefolgt von der Untersuchung, wie Informationen verknüpft werden, 

um zu einer objektiven Einschätzung über Regelmäßigkeiten in der Umwelt zu gelangen (2.3 – 

Erkennung von Abweichungen). Während die Experimente innerhalb der ersten Schwerpunkt-

themen keiner Reaktion auf die Umwelt bedürfen, geht es im Weiteren darum zu erfassen, wie 

Prozesse der Informationsintegration ablaufen, wenn wir auf die Umwelt bezugnehmen müssen 

(2.4 – motorisches Lernen) und wie diese Prozesse verändert sind, wenn sich das Gehirn auf sich 

selbst bezieht, obwohl es auf die Umwelt reagieren muss (2.5 – Mind Wandering). Das Konzept 

der Arbeit besteht also darin, zu zeigen welche Integrationsmechanismen bestehen, wenn zuneh-

mend mehr Informationen aufeinander abgestimmt werden müssen: Ruhe – passive Verarbeitung 

von Umweltreizen – aktive Koordination von Bewegungen mit Umweltreizen – Kontrolle über 
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diese Koordination während die Gedanken abschweifen. Ein grundlegender Baustein in all diesen 

Studien ist dabei selbstreferentielle Kognition, die diese Integrationsmechanismen ermöglichen: 

Achtsamkeit – Selbst-Awareness – Vorhersagen aus einem internen Modell – Ausrichtung eigener 

motorischer Handlungen aus einem internen Modell – Verarbeitung von episodischen Gedächt-

nisinhalten. In den folgenden Kapiteln werden zunächst Prinzipien der Informationsintegration 

vorgestellt und mit welchen Messmethoden diese erfasst werden.  

 

1.1 Formalisierung der Informationsintegration im Gehirn 
 

Weiterleitung von Information über den Kortex 
 

 Im folgenden Abschnitt stelle ich eine Voraussetzung für effektive Informationsintegration 

– die Kritikalität – vor. Die Funktionsweise des menschlichen Gehirns beruht auf der elektrischen 

Aktivität von Milliarden von Neuronen, die über multiple räumliche und zeitliche Skalen koordi-

niert werden. Theoretische und experimentelle Arbeiten der Physik haben gezeigt, dass die Mul-

tiskalierungs-Dynamik komplexer Systeme durch räumliche und zeitliche Statistik z. B. von sich 

verzweigenden Lawine charakterisiert werden kann. Eine Lawine meint dabei das zusammen-

hängende ablaufende Auftreten von Events (z.B. Aktionspotentiale einzelner Neurone) über ver-

schiedene Gehirnareale ohne eine zeitliche Unterbrechung. Diese Statistiken legen offen, ob ein 

System in einem zufälligen, geordneten oder kritischen Zustand ist. Letzteres bezeichnet einen 

komplexen Zustand an der Grenze zwischen Ordnung und Unordnung (Bak, 1996; Cocchi et al., 

2017). Empirisch wurden kritische Lawinendynamiken in neuronalen Netzwerken zum ersten 

Mal in Zellkulturen und in vitro Schichten gezeigt (Beggs and Plenz, 2003). Am kritischen Punkt 

sind Netzwerkfunktionen hinsichtlich der Empfänglichkeit für Inputs, der dynamischen Band-

breite von Input/Output Beziehungen, Informationsübertragung und Informationskapazität 

(Shew and Yang, 2009; Shew, 2012) optimal. Neuronale Netzwerke werden dabei flexibler und 

adaptieren einfacher (Arcangelis and Herrmann, 2010). Somit wäre Informationsverarbeitung 

optimiert, wenn die Dynamik des Netzwerkes am kritischen Punkt operiert (Beggs and Timme, 

2012). 

 

Integration von zeitgleichen Handlungsoptionen 
 

Um eine optimale Mensch-Umwelt-Interaktion zu erzielen, bedarf es in manchen Situatio-

nen einer optimalen Verknüpfung von Umweltereignissen, die gleichzeitig auftreten aber in ge-

wisser Weise konkurrieren. Diese Verknüpfung von Informationen aus der Umwelt kann beson-
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ders im Zusammenhang mit Entscheidungen untersucht werden, wobei ein Kompromiss zwi-

schen dem Belohnungswert und dem Zeitpunkt, zu dem die Belohnung ausgezahlt wird, gefunden 

werden muss. Der Wert einer Belohnung sinkt mit der Zeit: je länger wir warten müssen, desto 

weniger ist uns die Belohnung wert. Daher verwandelt eine verzögerte Auszahlung einen objek-

tiven Wert in einen wahrgenommen geringeren Wert. Das führt dazu, dass kleinere aber frühere 

Belohnungen (smaller sooner – SS) größeren aber späteren Belohnungen (larger later – LL) vor-

gezogen werden. Dies wird als Delay Discounting (DD) oder intertemporale Wahlmöglichkeiten 

bezeichnet. Impulsive Entscheidungen könnten durch die Tendenz begründet werden, dass SS ge-

genüber LL Belohnungen vorgezogen werden. 

 

Integration von Wahrscheinlichkeiten von Umweltreizen. 
  

 Im nächsten Schritt stelle ich Arbeiten vor, die untersuchen, wie das menschliche Gehirn 

Informationen über längere Zeitintervalle zu einem internen Bild über die Umwelt integriert. Pre-

dictive Coding (PC) Theorien postulieren, dass neuronale Netzwerke im Gehirn Regularitäten in 

der Umwelt fortlaufend lernen. Aus diesen gelernten Regularitäten werden Vorhersagen abgelei-

tet, die dann mit den tatsächlichen Ereignissen in der Umwelt verglichen werden (Rao and Ballard, 

1999). Stimmen Vorhersage und Umwelt zu einem Zeitpunkt nicht überein, sendet das Gehirn ein 

Fehlersignal (predicition error; PE), dass eine sensorische Abweichung stattgefunden hat 

(SanMiguel et al., 2013). Dieser Vorhersagefehler zeigt sich als Mismatch Negativity. Diese über 

das EEG definierte Komponente reflektiert den Unterschied in der relativen Wahrscheinlichkeit, 

wie häufig Ereignisse in der Umwelt in der Vergangenheit auftraten. Die Erforschung dieses inter-

nen Modells zielt deshalb häufig auf Gehirnprozesse ab, die die Integration von Wahrscheinlich-

keit von bestimmten sensorischen Reizen über einen längeren Zeitraum widerspiegeln. Dabei 

stellt sich die Frage, ob und wie das Gehirn Vorhersagen trifft und wie diese neuronal verankert 

sind.   

 

Diese Frage wird wissenschaftlich häufig mit dem sogenannten oddball-Paradigma untersucht. 

In der auditorischen Modalität wird ein sensorisches Gedächtnis für häufige Standardtöne aufge-

baut, das wiederum durch zufällig eingestreute Devianten verletzt wird, die sich in der Tonhöhe 

(Frequenz) von den Standardtönen unterscheiden. Bei EKPS, die auf Devianten und Standards fol-

gen,  sieht man dabei eine Differenz zwischen der Amplitude, was als Mismatch Negativity (MMN) 

bezeichnet wird. Wie erwähnt, wird die MMN als Korrelat für die automatische Erkennung von 

Veränderungen in der akustischen Umwelt (Lindín et al., 2013) und als klassischer PE während 

des passiven Zuhörens gesehen (Näätänen et al., 1978). Die MMN ist als Differenzwelle definiert, 

wobei die Amplitudenmodulation auf den häufigen Standard von der erhöhten Amplitudenmodu-
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lation der seltenen Devianten subtrahiert wird. Um eine Veränderung zu entdecken ist es notwen-

dig, Informationen über die nähere Vergangenheit gesammelt zu haben oder einen Vergleich zwi-

schen dem einkommenden Reiz und einer sensorischen Gedächtnisspur vorzunehmen. Als solche 

wird angenommen, das die MMN die Speicherung von Informationen im sensorischen Gedächtnis 

(Gaeta et al., 1999; Pekkonen et al., 2001) und die Geschwindigkeit der akustischen sensorischen 

Diskrimination (Engeland et al., 2002) reflektiert.  

 
  

Integration von Umweltreizen und motorischen Handlungen 
 

 Auf einer höheren Komplexitätsstufe müssen Vorhersagen mit motorischen Handlungen 

verknüpft werden. Kopplung von Phase und Amplitude über unterschiedliche Frequenzbänder 

(Phase-amplitude cross-frequency coupling - PAC) von Oszillationen werden als effektiver Me-

chanismus angesehen, lokale Netzwerke zu rekrutieren, um funktionale globale Netzwerke zu for-

men und Informationen anzusteuern (Buzsaki and Draguhn, 2004; Canolty et al., 2006; Cohen et 

al., 2009; Staudigl et al., 2012). (Tort et al., 2008) zeigten transiente θ-Phase-HFA Kopplung im 

Striatum von Ratten während der Bewegung durch ein Labyrinth. Außerdem demonstrierten 

(Tort et al., 2009a) eine funktionelle Verbindung zwischen einer Leistungsverbesserung und der 

Stärke der θ-HFA Kopplung während des Lernens. Jedoch fehlt bisher der Nachweis, ob dieser 

Mechanismus auch bei Menschen zu beobachten ist. Darüber hinaus konnte PAC zwischen HFA 

(80-150Hz) und der θ (4-8Hz) Phase auch bei Menschen (Canolty et al., 2006) gezeigt werden. 

Desweiteren zeigen neuere klinische Studien eine Verbindung zwischen veränderter PAC und 

psychiatrischen  und motorischen Störungen (Uhlhaas and Singer, 2010; Allen et al., 2011; Crowell 

et al., 2012; De Hemptinne et al., 2013). Außerdem tritt PAC bei Sprach- und motorischen 

Aufgaben auf (Canolty et al., 2006; Canolty and Knight, 2010) und die Frequenz der langsamen 

Oszillation ist aufgabenabhängig (Voytek et al., 2010). Jedoch außerhalb klinischer Studien sind 

Hinweise für eine funktionelle Rolle von PAC im Prozess der Organisation von Kognition und 

Verhalten von Menschen begrenzt auf die Domäne des Gedächtnisses. Axmacher et al (Axmacher 

et al., 2010b) berichteten, dass inter-individuelle Unterschiede in der Arbeitsgedächtnisleistung 

mit Unterschieden im PAC korrelieren, was eine funktionelle Relevanz von PAC für 

Gedächtnisprozesse unterstreicht. Tort et al (Tort et al., 2009b) untersuchten die dynamische 

Modifikation funktioneller Beziehungen zwischen Performanz und PAC im Hippocampus von 

Ratten und fanden, dass die Kopplungsstärke zwischen θ und γ (25-100Hz) mit dem Lernen im 

Labyrinth korreliert.  

PAC beschreibt die Abhängigkeit der Amplitude einer hohen Frequenz von der Phase einer nied-

rigen Frequenz. Bei Ratten und Mäusen besteht eine enge Verbindung zwischen der Phase des 

theta Bandes (θ), des lokalen Feldpotentials (LFP) und Einzelzellaktivität (SUA – engl. Single unit 
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activity) (Chrobak and Buzsa, 1998; Sirota et al., 2003; Siapas et al., 2005) was es Neuronen ver-

mutlich erlaubt, größere Neuronenverbände durch transiente Kopplung zu bilden (Chrobak and 

Buzsa, 1998). Diese Studien legen nahe, dass die Interaktion zwischen dem PFK und dem HC über 

PAC stattfindet. (O’Donnell and Grace, 1995) zeigten, dass die hippocampale Hyper- und Depola-

risation zur Hyper- und Depolarisation des Nucleus Accumbens (NAcc) führt. Während der Depo-

larisation steigt die Wahrscheinlichkeit, dass Neuronen des NAcc als Antwort auf PFK Stimulation 

feuern (French and Totterdell, 2002; Goto and Grace, 2008). Dies liefert Hinweise für PAC mit 

einer Erhöhung der HFA an den Senken der θ Aktivität.   

 

Integration von Umweltinformationen während des Mind Wan-
derings 
 
Zusätzlich zu alle diesen Integrationsprozessen haben Menschen die Tendenz während des Allta-

ges mit Gedanken zu episodischen Gedächtnisinhalten zu wandern. Wie schafft es aber das Gehirn 

entgegen diesen zusätzlichen Informationen Informationsintegration fortzuführen, obwohl wir 

während einer experimentellen Aufgabe mit unseren eigenen Gedanken beschäftigt sind und da-

mit in einen Zustand erhöhten Bewusstseins für uns selbst übergehen?  Diese Frage ist besonders 

wichtig, da während der Zeit des Mind-Wanderings bestimmte Verhaltensmasse eine Verschlech-

terung zeigen. Diese Phasen der Bewusstseinsschwankungen müssen daher überwunden werden. 

Bisherige Studien gehen davon aus, dass die Aufmerksamkeit auf externe Reize und damit einher-

gehend sensorische Antworten reduziert werden. Jedoch ist dies bisher nicht explizit getestet 

worden. Hierbei benutzen wir ein klassisches Paradigma, das eine EEG Komponente erzeugt, die 

in einer Vielzahl von vorherigen Studien als Indikator für räumliche Aufmerksamkeitsverlagerung 

gefunden wurde.  

 

1.2 Untersuchungsmethoden  
 

 In dieser Habilitationsschrift werden unterschiedliche Originalarbeiten vorgestellt, in de-

nen unterschiedliche Messmethoden zum Einsatz gekommen sind. Dabei wurden sowohl nichtin-

vasive als auch invasive Aufnahmetechniken bei unterschiedlichen Probandengruppen eingesetzt 

und analysiert.  
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Nicht-invasive Messungen 
 
Magnet- und Elektroenzephalographie 
 
Das MEG detektiert Veränderungen im magnetischen Feld von Neuronen, welche durch neuronale 

Aktivität entstehen, die durch Ionen generiert wird, die einem Gradienten innerhalb des neuro-

nalen Dipols folgen (Hämäläinen et al., 1993). Der elektrische Fluss generiert ein elektrisches Po-

tential vertikal zum Dipol, dessen Veränderungen mit dem EEG gemessen werden können. Gleich-

zeitig entsteht ein magnetisches Feld horizontal zum Dipol, dessen Veränderungen mit dem MEG 

gemessen werden können. Aktivierung des neuronalen Dipols verändert den Ionenstrom inner-

halb des Dipols und darum das elektrische Potential und das begleitende Magnetfeld außerhalb 

des Dipols. Sowohl MEG als auch EEG zeichnen sich im Vergleich mit dem fMRT durch eine hohe 

zeitliche Auflösung auf. Beide haben zudem eine hohe spektrale Auflösung. Jedoch erfasst das 

MEG im Wesentlichen tangential orientierte Dipole, die in den Sulci liegen, während das EEG zu-

sätzliche radiale Dipole erfasst. Anders als beim EEG tragen Volumenströme kaum zum gemesse-

nen Signal im MEG bei, was zu einer höheren räumlichen Auflösung führt aus der sich auch eine 

größere Sensitivität für die HFA ergibt. Der Vorteil des EEG liegt in der Tatsache, dass es trans-

portabel ist und wesentlich billiger in der Anschaffung ist. Der grundlegende Mechanismus des 

MEG besteht darin, dass es schwache magnetische Felder des Gehirns erfassen kann. Die Signale 

des Gehirns, die mehr als eine Milliarde mal kleiner als die Stärke des Erdmagnetfeldes sind, wer-

den mit sogenannten  Superconducting Quantum Interference Devices (SQUIDs) erfasst. Die 

SQUIDs sind in eimem Helm fest integriert und werden mit flüssigem Helium gekühlt, um die Sup-

raleitfähigkeit herzustellen. Die vom Gehirn erzeugten Magnetfeldänderungen induzieren einen 

elektrischen Strom im SQUID, ähnlich wie in einer Spule. Die Sensorfelder, die jeweils aus einem 

Magnetometer und zwei Gradiometern bestehen, sind systematisch über dem gesamten Helm 

verteilt, sodass eine Rekonstruktion der Signalquellen möglich ist. Dieses Triple-Sensor Design 

erhöht das Signal-zu-Rauschen Verhältnis und ermöglicht die Aufnahme von hochfrequenter Ak-

tivität.  
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Invasive Messungen 
 
Elektrokortikographie (ECoG) und Tiefe-Hirnstimulation (DBS) 
 
 Im Kontext von invasiven Messungen sind die untersuchten Gruppen von Studienteilneh-

mern durch die Ziele der klinischen Diagnose und Therapie vordefiniert, da invasive Aufnahmen 

nur im klinischen Kontext durchgeführt werden können und somit Teil einer Behandlung von Er-

krankungen des Gehirns sind. ECoG Messungen werden daher vorrangig bei Patienten mit Epilep-

sie erhoben. Bei der Epilepsie handelt es sich um eine neurologische Erkrankung, die sich durch 

rezidivierende epileptische Anfälle auszeichnet. Liegt bei einem Patienten eine medikamentöse 

Therapieresistenz vor (zwei passende Medikamente in angemessener Dosierung bringen keine 

Anfallsfreiheit) vor, ist die Abklärung einer möglichen epilepsiechirurgischen Behandlung 

schnellstmöglich indiziert. Bei der können in bestimmten Situationen mittels intrakraniellem EEG 

(iEEG) EEG-Elektroden in einem stereotaktisch-neurochirurgischen Eingriff direkt entweder sub-

dural auf den Kortex (ECoG) oder in tiefere Areale (Tiefenelektroden) in das Gehirn gebracht wer-

den. Auf diese Weise ist es möglich, Aktivierungen von Neuronenpopulationen mittels Makro-

elektroden mit einer höheren Auflösung als beim herkömmlichen EEG zu messen. Bei einem sol-

chen Eingriff handelt es sich um ein invasives Verfahren mit dem Risiko von Komplikationen, die 

allerdings durch die wachsende Erfahrung mit den Eingriffen über die letzten Jahre seltener wer-

den und häufig zeitnah sistieren (Gonzalez-Martinez et al., 1982, 2014). Subdurale Elektroden 

sind in Grids angeordnet, also Streifen mit mehreren Elektroden in meist einer oder zwei Reihen, 

die in einer dünnen Schicht aus speziellem Silikon eingebettet sind (Önal et al., 2003).   

 Bei Epilepsiepatienten werden also Elektrodengitter implantiert, um den Fokus des patho-

logischen Gewebes zu lokalisieren. Dies wird getan, um im Anschluss das neuronale Gewebe, des-

sen abnormale Aktivität für die Entstehung des klinischen Bildes, das die Patienten zeigen, ver-

antwortlich ist, zu resezieren. In der Regel befinden sich die Patienten für eine Dauer von zwei 

Abbildung 1. Intrakranielle Elektrophysiologie. (A) Beispiel eines 3 x 8 Grids mit Elektroden für sub-
durale Implantation. (B) Einsatz eines Grids intraoperativ bei Kraniotomie. 
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Wochen in stationärer Behandlung. Während dieser Zeit können die implantierten Elektroden ge-

nutzt werden, um die Aktivitätsveränderung von Neuronengruppen als Antwort auf experimen-

telle Bedingungen zu untersuchen.  

 
 Ein weiterer Ansatz ist die Tiefe-Hirnstimulation (deep brain stimulation – DBS), die bei 

unterschiedlichen neurologischen und psychiatrischen Störungen, wie der Epilepsie, Morbus Par-

kinson (Machado et al., 2012) oder Depression (Bewernick et al., 2010) eingesetzt wird. Die Sti-

mulation des NAcc hat zum Beispiel den Effekt eines Antidepressivums und führt zu positiven 

Veränderungen klinischer Symptome (Bewernick et al., 2010). Ein therapeutischer Effekt der DBS 

lässt sich auch bei der Behandlung der Parkinson-Erkrankung (Parkinson disease – PD) finden. 

Bradykinesia als ein Symptom der PD konnte in früheren Studien durch die Stimulation des Ncl. 

Subthalamicus reduziert werden (Okun et al., 2012). Wie oben dargestellt können einige Patien-

ten mit pharmakoresistenter Epilepsie mittels einer Resektion pathologischen Gewebes behan-

delt werden. Jedoch gibt es eine Gruppe von ungefähr 4% dieser Patienten, die keinen Behand-

lungserfolg durch diese Art von Behandlung zeigen, da der zu resezierende Fokus nicht lokalisiert 

werden kann (Ellis and Stevens, 2008). Bei diesen Patienten ist eine DBS von großer Bedeutung. 

Postoperativ können die Elektroden externalisiert werden, um sowohl elektrische Teststimula-

tion mit unterschiedlichen Parametern aber auch die Aufzeichnung von Aktivität an den Kontak-

ten während experimentalpsychologischer Aufgaben zu ermöglichen.  

 

Diskussion der Messmethoden 
 
 Bei beiden invasiven Aufnahmetechniken, ECoG und DBS, ist die Datenaufzeichnung, wäh-

rend den Patienten ein experimentelles Paradigma präsentiert wird, ein nachrangiges Ziel. Daher 

ist bei dieser Art von Studien einerseits die Anzahl an Probanden reduziert und andererseits die 

untersuchten Gehirnregionen nach ihrem klinischen Interesse und nicht nach experimentellen 

Erwägungen ausgerichtet. Eine standardisierte Evaluation von Gruppeneffekten wie in EEG Stu-

dien ist daher nicht im gleichen Maße möglich, da alle Patienten unterschiedliche Elektrodenpo-

sitionen haben. Außerdem ist die räumliche Information knapp, da nicht der gesamte Kortex mit 

Elektroden erfasst werden kann. Dagegen ist die räumliche Auflösung im ECoG gegenüber dem 

EEG und MEG in dem umschriebenen Areal, in dem das Elektrodengitter liegt, sehr viel höher.  

 

 Die Vorteile von nicht-invasiven Aufnahmetechniken sind einerseits die größeren Gruppen 

von Probanden, die genutzt werden können und andererseits verfügen EEG und MEG über ein 

höheres Maß an Standardisierung, da Elektroden und Sensoren in vordefinierten Mustern über 

den Kortex verteilt sind (Jasper H H, 1958). Die invasiven Messmethoden können durch die di-
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rekte Messung von Gehirnaktivität und geringer Überlagerung unterschiedlicher Quellen eine hö-

here spektrale Auflösung erzielen. Bei den nicht-invasiven Methoden dominieren die niedrigen 

Frequenzen, wogegen die hohen nur sehr selten erfasst werden können (Pfurtscheller and 

Cooper, 1975). Daher sind hohe Frequenzen wie Aktivitätsmuster zwischen 80-250 Hz am besten 

mit subduralen Aufnahmen auf Kosten kleinerer Probandengruppen zu erfassen. Jedoch sind EEG 

und MEG nicht gleichermaßen eingeschränkt. Während das EEG elektrische Potentiale erfasst, 

nimmt das MEG magnetische Signale des menschlichen Gehirns auf. Okada et al. (Okada et al., 

1999) berichteten, dass zumindest oberflächennahe Quellen im MEG relativ unbeeinflusst durch 

den Schädel sind, sodass im MEG höhere Frequenzen besser erfasst werden als im EEG. Außerdem 

sind Lokalisationsfehler im MEG geringer als im EEG, da das EEG sowohl kortikale als auch sub-

kortikale Quellen, wogegen das MEG vorzugsweise kortikale Quellen erfasst. Zusammengenom-

men kann man sagen, dass alle Messmethoden sehr verschiedene  Vorteile haben, die durch eine 

optimale Kombination ausgenutzt werden können. Ein gemeinsames Merkmal all dieser Aufnah-

metechniken ist, dass es sich hierbei um Zeitreihen handelt, die einen Gehirnzustand an aufeinan-

derfolgenden Zeitpunkten in hoch aufgelöster Weise definieren. Diese Messmethoden erfassen 

Gehirnprozesse mit hoher zeitlicher Auflösung. Sie eignen sich daher ideal, unterschiedliche Maße 

zu extrahieren, die den Grad an Informationsintegration definieren. 
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2. Wissenschaftliche Originalarbeiten 
 

  Im Detail zeigen die sich anschließenden Kapitel, welchen wissenschaftlichen Beitrag die 

einzelnen Studien leisten. Im ersten Teil wird untersucht, ob das Gehirn als ein sich selbst organi-

sierendes System zu verstehen ist, das es ermöglicht, Informationen optimal zu verarbeiten. In-

formationsintegration meint dabei die Dynamik, mit der neuronale Aktivität über den Kortex wei-

tergeleitet wird und verschiedene Kortexbereiche Aktivitätsmuster bündeln. Diese Ergebnisse 

wurden in Dürschmid et al., 2020b (PLoS One) veröffentlicht und zeigen, dass sich das Gehirn an 

einem optimalen Punkt für Informationsintegration befindet, wenn sich Menschen in einem Zu-

stand hoher Achtsamkeit befinden.  

Im zweiten Teil wird untersucht, wie aus objektiven Informationen über Belohnungen und de-

ren Auszahlungszeitpunkt ein subjektiver Wert entsteht. Informationsintegration meint dabei, ob 

und wie der Wert und die Zeit innerhalb von Netzwerken gleichermaßen repräsentiert werden. 

Die Ergebnisse aus drei Studien wurden in Dürschmid et al., 2020a (J Neurosci) publiziert und 

zeigen, dass diese Netzwerkrepräsentation dann zu finden ist, wenn Menschen vor dem Hinter-

grund hoher Selbstwahrnehmung handeln.  

Im dritten Teil werden Studien über die Erkennung von Abweichungen in der Umwelt zusam-

mengefasst. Informationsintegration meint dabei das Erfassen von Wahrscheinlichkeitsverteilun-

gen von Reizen in der Umwelt über die Zeit, welches erlaubt, dass wir Vorhersagen über die Auf-

tretenswahrscheinlichkeit von zukünftigen Reizen treffen können. Ergebnisse über die Informa-

tionsintegration von Umweltreizen auf subkortikaler Ebene wurden in Dürschmid et al. 2016 

(Cerebral Cortex) als auch in Dürschmid et al. 2017 (EJN) veröffentlicht. Diese Studien zeigen, 

dass subkortikale Areale Vorhersagefehler kodieren und an den Kortex weiterleiten und dass die 

richtige Funktionsweise subkortikaler Areale entscheidend für das sensorische Gedächtnis ist. 

Weiterhin konnten wir in Dürschmid et al. 2016 (PNAS) und Dürschmid et al. 2019 (Cerebral 

Cortex) anhand von kortikalen Aktivitätsmustern zeigen, dass eine zeitliche Informationsintegra-

tion zur Vorhersage von Umweltreizen im Gehirn repräsentiert ist, was als Voraussetzung für op-

timale Ausrichtung von Handlungen auf die Umwelt gewertet werden kann.  

Im darauf folgenden vierten Schwerpunkt geht es um die Integration von Informationen aus der 

Umwelt mit motorischen Handlungen, die es erlaubt, zunehmend effektiver zu handeln. Vor dem 

Hintergrund motorischen Lernens wurde untersucht, wie neuronale Informationsintegration, wie 

die Kopplung zwischen unterschiedlichen Frequenzen, mit dem Lernen kovariiert. In Dürschmid 

et al. 2014 (PLoS ONE)  und Dürschmid et al. 2013 (Front Hum Neurosci) zeigen wir, dass die 

Frequenzkopplung als ein wesentliches Maß für Informationsintegration mit dem Lernen variiert 

und zustandsabhängig ist.  
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Im letzten Schritt wird dargestellt, ob Informationsintegration weiterhin besteht, obwohl wir 

während einer experimentellen Aufgabe mit unseren eigenen Gedanken beschäftigt sind und da-

mit in einen Zustand erhöhten Bewusstseins für uns selbst übergehen.  Die Studienergebnisse 

sind in Wienke et al. 2021 (Cerebral Cortex Communications) veröffentlicht worden und zeigen, 

dass Informationsintegration dynamisch an Bewusstseinszustände angepasst wird. Diese Artikel 

geben zusammengenommen einen Überblick, welche Mechanismen der Informationsintegration 

im Gehirn zu finden sind und werden im Folgenden detailliert vorgestellt.  
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2.1 Kritikalität – Achtsamkeitsmeditation moduliert Gehirndy-

namik 

  

  Ob Kritikalität geeignet ist, um kognitive Gehirnfunktionen zu beschreiben ist noch nicht 

klar. Unterschiedliche Marker der Kritikalität, wie weitreichende Korrelationen in spontaner nie-

derfrequenter (10 und 20 Hz) EEG Aktivität, wurden am Menschen untersucht (Linkenkaer-

hansen et al., 2001). Beim Menschen wurde Kritikalität neuronaler Lawinen vergleichbar mit der 

Weiterleitung von Aktionspotentialen nur verlässlich im Ruhezustand gezeigt. Shriki et al. (Shriki 

et al., 2013) zeigten, dass makroskopische Lawinen über das gesamte Gehirn, die durch Senken 

und Spitzen der Breitband-MEG-Aktivität definiert werden, keine charakteristische Skalierung 

haben. Dies ist typisch für einen Systemzustand nahe dem kritischen Punkt. Jedoch bleibt die Phy-

siologie neuronaler Lawinen auf einer makroskopischen Ebene unklar. Da Spitzen und Senken im 

MEG/EEG unterschiedliche Phasen von räumlich und zeitlich ausgedehnten oszillatorischen Ge-

neratoren reflektieren können, sollte die Rekonstruktion von Lawinen auf makroskopischer 

Ebene die Polarität und die Frequenz von Gehirnsignalen in Betracht ziehen, um überlagerte Quel-

len auseinanderzuhalten. Vor allem ist die funktionelle Relevanz der Kritikalität und ihre Rolle in 

der Kognition noch immer eine offen Frage.  

 

 Die meisten experimentellen Studien bei wachen, gesunden Probanden wurden unter Ruhe 

(resting) durchgeführt, da aufgabenbezogene Aktivität Nichtstationarität und Überlagerung von 

reiz- und antwortgetriebener Aktivität (Fagerholm et al., 2015) impliziert, für welche gegenwär-

tige statistische Analysen der Kritikalität nicht gut geeignet sind. Jedoch können menschliche Stu-

dienteilnehmer verbal instruiert werden, anhaltend ihre Dynamik des Ruhezustandes durch 

Selbstregulation zu verändern. Eine bekannte Selbstregulationstechnik ist die Achtsamkeitsme-

ditation, welche vermutlich Kritikalität induzieren kann. Während der Meditation wird die acht-

same fokussierte Aufmerksamkeit (mindful focused attention – MFA) benötigt, um den Fokus 

über eine längere Zeit auf die Wahrnehmung zu richten. Dies reduziert den negativen Einfluss von 

Ablenkungen, während zur gleichen Zeit kognitive Kontrolle benötigt wird, um Phasen von Mind-

Wandering (MW siehe unten) zu detektieren. Achtsamkeit (Meditation) und MW (Ruhezustand) 

können als gegensätzliche stationäre Hintergrundzustände angesehen werden, die von Aufmerk-

samkeitsnetzwerken beziehungsweise vom Default Mode Network vermittelt werden (Brewer et 

al., 2011). Bei der Untersuchung ist es wichtig, state und trait Veränderungen zu unterscheiden  

(Lazar et al., 2005; Pagnoni and Cekic, 2007). Bei trainierten Meditierenden könnte die Mediation 

weniger Mühe verlangen, was eine Veränderung hin zu einer subkritischen Dynamik erklären 

würde oder Meditationserfahrene könnten Schwierigkeiten dabei empfinden, während einer Ru-

hephase nicht zu meditieren (Cahn and Polich, 2009).  
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 Im Folgenden werden frequenz- und polaritätsspezifische Analysen neuronaler Lawinen-

dynamik zwischen Achtsamkeit und Ruhezustand verglichen. Um die zuvor genannten möglichen 

Konfundierenden zu vermeiden, wurde eine einfache Achtsamkeitsaufgabe bei Novizen genutzt. 

Da der menschliche Ruhezustand Kritikalität zeigt (Shriki et al., 2013) und MFA die 

Aufmerksamkeitskontrolle erhöht (Slagter et al., 2007; van Leeuwen et al., 2012), wurde der 

Hypothese nachgegangen, dass die Modulation der top-down Aufmerksamkeit während der 

Achtsamkeit – im Gegensatz zur bottom-up Aufmerksamkeit (Fagerholm et al., 2015) – neuronale 

Netzwerke näher an den kritischen Punkt bringt. Spezifisch wurde der Hypothese nachgegangen, 

dass die räumlich-zeitliche Lawinendynamik in diesen Zuständen unterschiedliche kortikale  

 

Regionen involviert, da angenommen wird, dass MFA und Ruheaktivität von unterschiedlichen 

neuronalen Netzwerken vermittelt werden (Kucyi et al., 2013; Mittner et al., 2014; Zhou and Lei, 

2018).  

 

 Dabei konnte gezeigt werden (Dürschmid et al., 2020b), dass Spitzen und Senken im Breit-

band MEG hinsichtlich ihrer Phase an Oszillationen im niedrigen (<50) und hohen Frequenzbe-

reich (>100Hz) gebunden sind. Parallel dazu zeigte eine lineare Regression niedrige Residuen und 

fast kritische Exponenten in einem niedrigen (LFB: 9-37 Hz) und hohen Frequenzband (HFA: 170-

275 Hz). Klare Hinweise auf Kritikalität wurde nur im HFA Frequenzband gefunden: die Güte der 

Abbildung 2 Darstellung der Kaskadengrößenverteilung über die Frequenzen.  A Der lineare Fit ist am bes-
ten in der HFA. B die gemessenen Daten werden besser durch einen linearen Fit erklärt als randomisierte Da-
ten. C Das Verhältnis von Kaskadengröße und –dauer entspricht dem der Anstiege  von Kaskadengröße und –
dauer in HFA. D die HFA zeigt vergleichbare Kaskadenformen für unterschiedlichen Kaskadenlängen E MAAS 
scores sind mit dem Anstiegsparameter des linearen fits korreliert.  
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Regression  war signifikant besser als für einen exponentiellen Fit. Zudem war die Beziehung der 

Exponenten zwischen der Verteilung von Kaskadengröße und –dauer, was als Zeichen für Kriti-

kalität angesehen wird, nur im HFA- aber nicht im LFA-Band gegeben. Außerdem waren zeitliche 

Profile von Lawinen unterschiedlicher Größe power-law skalierte Versionen der gleichen Para-

belform und konnten nach Skalierung übereinandergelegt werden. Dieser Indikator von Kritika-

lität konnte nur für das HFA- aber nicht das LFA-Band gefunden werden. Außerdem führt die 

Achtsamkeitsmeditation zu topographischen Veränderungen der Lawinen verglichen mit Ruhe-

aktivität.  

 

 Zusammenfassend hat diese Untersuchung ergeben, dass hochfrequente Aktivität, die stell-

vertretend für neuronale Aktivität untersucht wurde, eine kritische Dynamik zeigt, die die physi-

ologische Grundlage für optimale Informationsintegration bildet. Im nächsten Kapitel wird unter-

sucht, inwiefern diese Gehirnantworten externe Informationen zu subjektiven Bewertungen zu-

sammenfassen können.   

 

Dürschmid S., Reichert C. , Walter N., Hinrichs H., Heinze H.J., Ohl F.W., Tononi G., Deliano M. Self-
regulated critical brain dynamics originate from high frequency-band activity in the MEG. PLoS 
ONE, 2020. 
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2.2 Delay Discounting – Selbstwahrnehmung reduziert Impulsi-
vität 

 
 Der Wert einer Belohnung sinkt mit der Zeit: je länger wir warten müssen, desto weniger 

ist uns die Belohnung wert. Daher verwandelt eine verzögerte Auszahlung einen objektiven Wert 

in einen wahrgenommen geringeren Wert. Das führt dazu, dass kleinere aber frühere Belohnun-

gen (smaller sooner – SS) größeren aber späteren Belohnungen (larger later – LL) vorgezogen 

werden. Dies wird als Delay Discounting (DD) oder intertemporale Wahlmöglichkeit bezeichnet. 

Impulsive Entscheidungen könnten durch die Tendenz begründet werden, dass SS gegenüber LL 

Belohnungen vorgezogen werden. Bisherige Studien der funktionellen Magnetresonanztomogra-

phie fokussierten auf neuroanatomische Korrelate der subjektiven Bewertung und Interaktionen 

multipler unabhängiger Bewertungssysteme im ventromedialen Präfrontalkortex (vmPFC) und 

dorsolateralen Präfrontalkortex (dlPFC) (McClure et al., 2004, 2007). Dort korreliert der Wert 

eines Ziels mit der Aktivität im vmPFC und die Höhe der Selbstkontrolle mit der Aktivität im dlPFC 

(Hare et al., 2009). Impulsivität könnte aber auch daraus resultieren, dass wir nur unzureichend 

die objektiven Alternativen beachten (Ainslie, 1975; Myerson et al., 2003; Olson et al., 2007), die 

in einen subjektiven Wert übersetzt werden müssen (Mazur, 1987; Green and Myerson, 2004). 

Diese Ansicht legt nahe, dass geringe Aufmerksamkeit für objektive Werte zu stärkerem DD füh-

ren kann.  

 

  

Unterschiede des DD zwischen Studienteilnehmern könnten auch in der unzureichenden Reprä-

sentation von Wahlmöglichkeiten im Arbeitsgedächtnis (Fuster, 1990; Baddeley, 1992; Goldman-

Abbildung 3 Darstellung der Belohnungsoptionen. A: Reaktionszeitexperiment. B: Augenbewegungsmes-
sung. C: MEG-Experiment. Im ersten Experiment testeten wir, ob es Unterschiede hinsichtlich der Zeit, die 
für eine Entscheidung benötigt wurde, gab. B-C: Sowohl im Augenbewegungs- als auch im MEG-Experiment 
wurden den Probanden die Wahlmöglichkeiten zusammen mit der Aufforderung die Entscheidung erst 
nachdem der Fixationspunkt seine Farbe wechselte anzuzeigen, präsentiert. B: Während des Augenbewe-
gungsexperiments wurden die Wahlmöglichkeiten mit größerem Abstand zum Fixationspunkt präsentiert.  
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Rakic, 1992), bevor eine Option selektiert wird, begründet liegen. Wichtig dabei ist, dass Selbst-

wahrnehmung den Unterschieden im DD entgegenwirkt (Peters and Büchel, 2010). Diese 

Beobachtung legt nahe, dass Wahlmöglichkeiten, bei denen Selbstwahrnehmung vernachlässigt 

wird, zu stärkerem DD führt, wobei zwei Beiträge noch immer diskutiert werden. Erstens, wie 

Aufmerksamkeitsmechanismen und der Grad der neuronalen Repräsentation zu Entscheidungen 

in diesen intertemporalen Wahlmöglichkeiten beitragen, ist noch nicht klar. Zweitens, ob und wie 

diese Mechanismen qualitativ durch subjektives Bewusstsein moduliert werden, ist nicht klar.  Es 

kann angenommen werden, dass aufmerksamkeitsbezogene Selektion und neuronale 

Repräsentation mehr Anstrengung benötigen, wenn man die Entscheidung für sich selbst trifft, 

was in prosozialen Entscheidungen reduziert ist (Lockwood et al., 2017). In Übereinstimmung mit 

früheren Studien (Lockwood et al., 2017) kann getestet werden, wie die Übernahme der 

Perspektive einer anderen Person die Anstrengung zur aufmerksamkeitsbezogenen Selektion 

und die neuronale Repräsentation verändert. Dabei liegt der experimentelle Kontrast auf der 

Übernahme der Perspektive des besten Freundes (das Vorgeben sich für den besten Freund zu 

entscheiden), was eine Grundvoraussetzung für prosoziale Handlungen ist und per Definition 

Selbstwahrnehmung reduziert.  

 

 Im Folgenden wurden mit Hilfe von Augenbewegungsmessungen (Eye tracking – ET) und 

MEG Mustern die aufmerksamkeitsbezogene Evaluation und neuronale Repräsentation von 

objektiven Werten im DD Paradigma in zwei Bedingungen miteinander verglichen. In einer 

Bedingung entschieden die Studienteilnehmer über ihre eigene Belohnung, während sie in einer 

zweiten, anonymen prosozialen Bedingung vorgaben, sich für ihren vorgestellten besten Freund 

zu entscheiden. Daher unterschieden sich die Bedingungen nur hinsichtlich der subjektiven 

Wahrnehmung der Belohnung für die Studienteilnehmer. Dabei wurde die Hypothese getestet, 

dass Studienteilnehmer sich in prosozialen Entscheidungen impulsiver entscheiden, selbst dann, 

wenn die Entscheidung komplett anonym war, da sich die Studienteilnehmer ihren besten Freund 

nur vorstellten  (Lockwood et al., 2017). Dabei wurde der Hypothese nachgegangen, dass 

objektive Handlungsalternativen weniger berücksichtigt werden und daher auch weniger im 

Gehirn repräsentiert werden, wenn Entscheidungen für Andere gemacht werden. 

Augenbewegungen sind ein sensitiver Indikator für Aufmerksamkeitsverlagerungen und daher 

kann der Zeitverlauf des Aufmerksamkeitsfokus über die Augenbewegungen untersucht werden 

und weniger Aufmersamkeit bei Entscheidungen für Andere vorhergesagt werden. Mit dem MEG 

wurde erstens untersucht, ob frequenzspezifische Aktivität Wahlmöglichkeiten integriert und 

zweitens, ob Unterschiede in den Wahloptionen (Belohnung und Verzögerung in  
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den beiden Bedingungen) 

innerhalb des Aufmerk-

samkeitsfokus zu Unter-

schieden in der Gehirn-

aktivierung führen.   

 

 In den drei vor-

gestellten Experimenten 

mussten sich die 

Probanden zwischen 

einem LL von 10€ mit einer 

variablen Auszahlungszeit 

D (1,2,5,11,24 oder 52 

Wochen) und SS Wert 

entscheiden, die beide 

hypothetisch waren. Der SS 

Wert war dabei 

hyperbolisch von dem LL 

Wert abhängig. Im ersten 

Experiment wurde 

untersucht, ob sich die 

Probanden hinsichtlich der 

Entscheidungszeit zwi-

schen den beiden 

Bedingungen unterschei-

den. Im zweiten und 

dritten Experiment 

wurden die Probanden gebeten, erst zu antworten, wenn das Fixationskreuz die Farbe wechselt 

(nach 3s ± 200ms). Das war ausreichend länger als die Entscheidungszeit, die in Experiment 1 

ermittelt wurde und minimiert Einflüsse motorischer Handlungen, was besonders für das MEG 

Experiment wichtig ist. Daher konnten ET und MEG Aktivität zeitaufgelöst miteinander verglichen 

werden.  

 

 Dabei zeigt sich, dass die Studienteilnehmer über unterschiedliche Gruppen hinweg 

impulsivere Entscheidungen (weniger DD wenn sie sich für sich selbst entschieden, verglichen 

mit der prosozialen Bedingung) trafen, auch wenn die Zeit, die sie für die Entscheidung 

benötigten, vergleichbar war (Dürschmid et al., 2020a). Im ET-Experiment führte die erhöhte 

Abbildung 4  Augenbewegungsmessung. A zeigt stärkeres Discounting in 
der prosozialen Bedingung. B Farbkodierte Blickrichtungswahrscheinlich-
keit in Abhängigkeit von der Zeit. C zeigt die zeitabhängige Variation der 
Blickbewegung zur Belohnung (oben), zum Fixationskreuz (Mitte) und zum 
Delay (unten) für beide Bedingungen. D zeigt die Korrelation der Blickrich-
tungsstabilität und Unterschiede der Discountparameter. 
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räumliche Distanz zu mehr Anstrengung die Augen zu bewegen. Diese war in der prosozialen 

Bedingung gegenüber der Selbstwahrnehmungsbedingung reduziert, was als soziale Apathie 

bezeichnet werden kann 

(Lockwood et al., 2017). Es 

zeigt sich, dass Intervalle der 

Aufmerksam-keitsverlagerung 

zur Beloh-nungshöhe und -

verzögerung im ET mit 

Intervallen der Repräsentation 

von Beloh-nungshöhe und -

verzögerung im MEG in der 

HFA über-einstimmten. Diese 

Ergebnisse legen nahe, dass 

Unterschiede im Discounting 

aus den Unter-schieden in der 

Evaluation der 

Wahlmöglichkeiten resultiert. 

In der MEG Studie zeigte sich, 

dass die über fronto-temporale 

MEG Sensoren verteilte HFA 

(175-250Hz) ausschließlich in 

der Bedingung der Selbstwahr-

nehmung durch die Wahlmög-

lichkeiten moduliert wurde. 

Dabei waren das 

Discountverhalten zwischen 

den beiden Bedingungen 

korreliert, was für eine 

individuelle Disposition des 

DD spricht.  

 

  

 

 

 

 

 

Abbildung 5 MEG Ergebnisse. A Verhaltensergebnisse. B zeigt die 
Amplitudenmodulation in drei unterschiedlichen Frequenzbändern und 
deren topographische Verteilung. C nur die HFA zeigt eine Korrelation 
mit dem Delay. D in einem sich anschließenden zeitlichen Interval zeigte 
sich eine signifikante Korrelation mit der Belohnungsinformation in der 
HFA.  
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Zusammenfassend kann gesagt werden, dass Informationen in der Umwelt zu einem subjektiven 

Wert integriert werden. Dabei handelte es sich in dieser Studie um zu einem Zeitpunkt 

präsentierte Handlungsoptionen. Wie das menschliche Gehirn Informationen über die Zeit 

integriert, um vor dem Hintergrund des so gewonnenen Wissens über die Regelhaftigkeit in der 

Umwelt Vorhersagen über diese zu treffen, wird im anschließenden Kapitel dargestellt. 

 

Dürschmid S, Maric A, Kehl MS, Robert T Knight RT, Hinrichs H, Heinze HJ. Fronto-temporal cor-
tex regulation of subjective valence to suppress impulsivity in intertemporal choices. Journal of 
Neuroscience, 2021. 
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2.3 Erkennen von Abweichungen – Wie wir ein internes Modell 
erstellen und Vorhersagen ableiten 

 

2.3.1 Subkortikale Verarbeitung 

Vorhersagefehler im Nucleus Accumbens 
 

 Die Detektion von unerwarteten Umweltereignissen ist eine fundamentale Eigenschaft von 

Säugetieren, die darauf beruht, dass wir langzeitliches kontextuelles Wissen einsetzen, um unser 

Verhalten zu lenken (Rao and Ballard, 1999; Heilbron and Chait, 2018). Das erlaubt es, vorhersag-

bare Komponenten des Inputsignals zu entfernen und Redundanz zu reduzieren. Auf einem neu-

rophysiologischen Level wird angenommen, dass mit zeitlicher Regularität Rückwärtsverbindun-

gen gestärkt und gleichzeitig die Stärke von Vorwärtsverbindungen reduziert werden (Kumar et 

al., 2011). Damit werden stabile sensorische Gedächtnisrepräsentationen hergestellt, wenn keine 

PE auftreten.  

 

 Eine subkortikale Region, die bei der Generierung eines PE involviert ist, ist der Nucleus 

Accumbens (NAcc). Dies ist eine Region, die in zielgerichtetem Verhalten involviert ist (Goto and 

Grace, 2008) und bekannt dafür ist, sensitiv für Neuheit (Wood et al., 2004), kontextuelle Abwei-

chung  (Axmacher et al., 2010a), aversive Reize (Becerra et al., 2001; Baliki et al., 2010) und Be-

lohnungs-PE bei Menschen (Abler et al., 2006; Spicer et al., 2007) zu sein. Diese Befunde zeigen, 

dass der NAcc eine kritische Rolle bei der Abweichungserkennung spielen könnte. Jedoch sind die 

neuronalen Grundlangen, die im menschlichen NAcc während der Abweichungserkennung und 

der Erzeugung eines PE beteiligt sind, unklar.  

Abbildung 6 A zeigt die anatomische Region der bilateralen NAcc Tiefenelektroden. B Sieben unterschiedliche 
Töne wurden definiert, die sich nur in der Tonhöhe (500-800Hz) unterschieden. C die Anzahl an Wiederholun-
gen variierte zwischen 0 und 10. 
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 Im Folgenden wurde bei fünf Patienten, die an einem Experiment teilgenommen haben 

(Garrido et al., 2008), das eine detaillierte Analyse der graduellen Stärke der sensorischen Diskre-

panz (mismatch) und der Erwartung erlaubt,  direkt aus dem NAcc abgeleitet. Dabei wurde vor-

hergesagt, dass der NAcc neue Informationen dahingehend gewichtet, ob sie in den fortlaufenden 

sensorischen Kortex passen und Informationen über Abweichungen an Regionen in der kortika-

len Hierarchie übermittelt. Dabei wurden die Hypothesen aufgestellt, dass (i) der NAcc ein senso-

risches Mismatch-Signal evoziert, (ii) dass das Mismatch-Signal in Abhängigkeit von der Stärke 

der Abweichung variiert und (iii) dass die NAcc MMN zur späteren Entstehung der kortikalen 

Mismatch-Komponenten beiträgt, die in Ver-

haltensanpassung involviert sind.  

 

 Dabei wurde beobachtet, dass der 

NAcc die Statistik der lokalen auditorischen 

Szene verlässlich nachverfolgt und dass des-

sen Aktivität spätere kortikale Aktivität vor-

hersagt. Weiterhin wurde gefunden, dass die 

Stärke der Abweichung stärker im NAcc ko-

diert wurde, wenn sie nach vielen Wiederho-

lungen der Standards auftraten. Dass Pro-

banden in dieser Studie passiv einem Audio-

stream zuhörten, unterstreicht den schnel-

len prä-attentionalen und automatischen 

Prozess, der im NAcc-Signal repräsentiert ist 

(Dürschmid et al., 2016b).  

 

Dürschmid S, Zaehle T, Hinrichs H, Heinze 
HJ, Voges J, Garrido MI, Dolan RJ, Knight RT. 
Sensory Deviancy Detection Measured Di-
rectly Within the Human Nucleus Accum-
bens. Cereb Cortex. 2016   

 

 

  
Abbildung 7 A der NAcc zeigt eine Mismatch Antwort 
nach der Präsentation des Devianten. B die Stärke der 
Abweichung ist im NAcc kodiert. Die Amplitude nach ei-
nem Devianten nimmt in Abhängigkeit von DS erst ab 
und nimmt dann in einem späteren Intervall zu. C die 
Amplitudenmodulation im NAcc variiert in Abhängigkeit 
von der Anzahl an vorherigen Standards.  
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Sensorisches Gedächtnis im Nucleus basalis von Meynert 
 

 Dass die MMN einen basalen Gedächtnisprozess widerspiegelt, zeigt sich an deren Reduk-

tion bei Patienten mit Alzheimerscher Krankheit (AD). AD ist mit einer fortschreitenden Ver-

schlechterung von Gedächtnis und kognitiven Funktionen assoziiert und ist die häufigste Ursache 

für Demenz in der mittleren und späten Lebensspanne aufgrund einer organischen Erkrankung 

(Terry and Davies, 1980). Frühere Studien zeigten, dass bei AD Patienten Neurone im Nucleus 

Basalis (NB) massiv degenerieren (Whitehouse et al., 1982). Der NB ist eng mit einer Vielzahl von 

kortikalen und subkortikalen Strukturen vernetzt und ist die größte Quelle cholinerger Innerva-

tion zum Neokortex (Mesulam et al., 1983) mit Projektionen zum frontalen, parietalen, zingulären 

und temporalen Kortex  (Gratwicke et al., 2013). Acetylcholin (ACh) ist ein wichtiger Neuromo-

dulator, der im Kortex ausgeschüttet wird, durch den neuronale Plastizität erhöht wird 

(Rasmusson, 2000) und der bei vielen kognitiven Funktionen wie Aufmerksamkeit  (Voytko et al., 

1994; McGaughy et al., 1996; Sarter and Bruno, 1999; Furey et al., 2008; Kole et al., 2008) und 

Lernen und Gedächtnis (Miasnikov et al., 2001, 2008; Thiel et al., 2002; Warburton et al., 2003; 

Weinberger, 2003; Froemke et al., 2007; Kole et al., 2008) beteiligt ist. Der ACh-Rezeptorblocker 

Scopolamin führt, vermutlich durch eine Verhinderung der Aufnahme neuer Information und 

Speicherung dieser im Gedächtnis, zu einer spezifischen Einschränkung im Lernen (Aggelopoulos 

et al., 2011). Pharmakologische Erhöhung zerebraler ACh-Konzentration (durch Acetylcholines-

terasehemmer) wird als Behandlung fortgeschrittener Demenz eingesetzt. Bei AD Patienten 

könnte also die abnehmende cholinerge Innervation des Kortex aufgrund der NB-Degeneration 

die Ursache für den fortschreitenden Gedächtnisverlust sein.  

 

 Neben pharmakologischen Ansätzen wird die Tiefe-Hirnstimulation (DBS, engl. für Deep 

Brain Stimulation) als potentielle therapeutische Option betrachtet. Die Überlegung dabei ist, die 

verbleibende cholinerge Übertragung durch Stabilisierung oszillatorischer Aktivität in gedächt-

nisrelevanten Kreisläufen zu unterstützen und somit kognitive Funktionen zu verbessern (Kuhn 

et al., 2015; Hardenacke et al., 2016). NB-DBS ist eine experimentelle, in seltenen Fällen therapeu-

tisch effektive, nicht-lädierende Behandlungsmethode in Form von Verabreichung von Stromim-

pulsen in dysfunktionalen Gehirnstrukturen mittels dauerhaft implantierter Elektroden. NB-DBS 

wird bei der Behandlung von Bewegungsstörungen eingesetzt. Ob sie auch das Potential hat, sen-

sorische Gedächtnisfunktionen bei AD Patienten zu verbessern, ist unklar.  

 

   Bei AD Patienten nimmt die Amplitude der MMN in Abhängigkeit vom Inter-Stimulus-Inter-

val (ISI) stärker ab als bei gesunden Kontrollprobanden. Dies legt nahe, dass die Gedächtnisspur 

bei AD Patienten schneller abnimmt als bei Probanden gleichen Alters (Pekkonen et al., 1994). 
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Übereinstimmend mit Verhaltensveränderung ist die MMN in hohem Maße bei AD Patienten be-

einträchtigt. Cheng et al. (Cheng et al., 2012) und Hsiao et al. (Hsiao et al., 2014) berichteten grö-

ßere Amplituden und kürzere Latenzen bis zum Maximum der rechtsseitig gemessenen tempora-

len MMN bei jungen im Vergleich zu älteren und AD Patienten. Ebenso fanden Lindín et al. (Lindín 

et al., 2013) eine reduzierte MMN bei Patienten mit einer leichten kognitiven Störung (mild cog-

nitive impairment – MCI) aber nicht bei Kontrollprobanden. Wichtig bei diesen Studien ist, dass 

die MMN sogar dann erhalten bleibt, wenn Aufmerksamkeit auf die Stimuli nicht notwendig ist. 

Engeland et al. (Engeland et al., 2002) fanden, dass Nikotin, ein cholinerger Agonist, eine Reihe 

von kognitiven Prozessen erhöht, die MMN Latenz verkürzt und prä-attentionale zeitliche Verar-

beitung erhöht. Scopolamin, ein zentral ansetzender cholinerger Antagonist, reduzierte dagegen 

die MMN Amplitude (Pekkonen et al., 2001). Frühere Studien zeigten, dass die Amplitude der P50 

Komponente bei Patienten mit MCI oder bei früher AD im Vergleich zu gesunden Kontrollproban-

den erhöht ist (Polich et al., 1990; Golob and Starr, 2000; Golob et al., 2007; Cheng et al., 2012). 

Eine stärkere P50 bei AD Patienten könnte die beobachteten Unterschiede in der MMN erklären. 

Eine stärkere Amplitude könnte eine Störung der prä-attentionalen Hemmung repetitiver audito-

rischer Inputs indizieren (Cheng et al., 2012). Dabei ist unklar, ob eine Amplitudenmodulation bei 

AD oder MCI eine Pathologie kortikaler Neurone ist oder stattdessen eine funktionelle Konse-

quenz einer Pathologie entfernterer Systeme, so wie dem NB.  

 

 Im Folgenden wurden Gehirnantworten auf wiederholte Reize in einem auditorischen Odd-

ball Paradigma bei Patienten mit AD untersucht, die mit NB-DBS behandelt wurden, und mit Ge-

hirnantworten von altersübereinstimmenden gesunden Kontrollprobanden verglichen. Die erste 

Hypothese dabei war, dass Patienten Unterschiede in der MMN mit und ohne NB-DBS zeigen wür-

den und dass diese Unterschiede nicht, wie in der Kontrollgruppe, der wiederholten auditorischen 

Stimulation zugeschrieben werden können. Weiterhin wurde die Hypothese untersucht, dass Ant-

worten auf Standardtöne im Besonderen bei AD Patienten ohne NB-DBS, möglicherweise auf-

grund der Amplitudenmodulation des P50/N1 Komplexes, verändert sind. Dafür wurden die neu-

ronalen Antworten von AD Patienten mit und ohne NB-DBS auf Standards und Devianten in einem 

auditorischen Oddball Paradigma untersucht, um den Effekt der elektrischen Stimulation auf die 

auditorische Verarbeitung zu beleuchten. Eine Gruppe von altersübereinstimmenden gesunden 

Kontrollprobanden wurde dabei in die Studie einbezogen, um den Effekt wiederholter, auditori-

scher Stimulation im selben Paradigma zu quantifizieren. Die Überlegung dabei war, dass Verän-

derungen in der Patientengruppe zwischen OFF und ON NB-DBS, die nicht parallel mit der wie-

derholten auditorischen Stimulation in der Kontrollgruppe laufen, der DBS aber nicht der Wie-

derholung des gleichen Paradigmas zuzuschreiben sind. Dabei zeigte sich, dass die MMN signifi-

kant eher ohne NB-DBS kam als mit DBS und verglichen zu der Kontrollgruppe in beiden Blöcken. 
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Diese frühe MMN ist sehr wahrscheinlich abhängig von der veränderten Antwort auf Standard-

reize, wenn keine NB-DBS vorgenommen wurde. 

 

 In der Tat fand sich eine veränderte Antwort auf Standardtöne in der Patientengruppe, 

wenn die NB-DBS ausgeschaltet wurde. Hier konnte ein stärkerer positiver Ausschlag im P50 In-

tervall überlappend mit der reduzierten N1 Komponente beobachtet werden. Unter NB-DBS Sti-

mulation ähnelte die Antwort der der altersübereinstimmenden Kontrollgruppe. Im Gegensatz 

dazu fand sich dieses Muster in den Antworten auf die abweichenden Stimuli (Devian-

ten)(Dürschmid et al., 2017).  

 

Dürschmid S, Reichert C, Kuhn J, Freund HJ, Hinrichs H, Heinze HJ. Deep Brain stimulation   of the 
Nucleus Basalis of Meynert attenuates early EEG components associated with defective sensory 
gating in patients with Alzheimer disease – a two-case study. EJN.  

 

 

 

 

 

  

Abbildung 8 Abbildung der Gehirnantworten auf die Reize für jede Gruppe und jeden Block. Es zeigte sich ein 
signifikanter Interaktionseffekt zwischen Patienten und Kontrollen der auf einen Unterschied zwischen den 
Blöcken bei den Patienten hindeutet, aber nicht bei den Kontrollprobanden. Während der NB-DBS normali-
sierte sich die Antwort auf die Standardtöne bei den Patienten, während sie bei den Kontrollen über die Blöcke 
gleich blieb.  
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2.3.2 Kortikale Verarbeitung 

Repräsentation von globalen und lokalen Abweichungen 
 
 

 Wie bereits erwähnt, ergibt sich die Fähigkeit unerwartete Umweltereignisse zu detektie-

ren aus dem Vergleich des aktuellen Zustands der sensorischen Welt mit den Vorhersagen aus 

unmittelbarem und langzeitlichem kontextuellem Wissen. Dabei wird ein Vorhersagefehler gene-

riert, sobald es eine Diskrepanz zwischen beiden gibt. Wichtig ist, dass niederfrequente Kopfober-

flächenaufzeichnungen, wie die MMN, nicht das gesamte Spektrum der neuronalen Antworten auf 

Vorhersageverletzungen zeigen. Während die Aufzeichnung von HFA mit Kopfoberflächen EEG 

aufgrund des schlechten Signal-zu-Rauschen Verhältnisses ein großes methodisches Problem 

darstellt  (Yuval-Greenberg et al., 2008; Muthukumaraswamy, 2013), haben eine Vielzahl von 

elektrokortikographischen (ECoG; abgeleitet von der kortikalen Oberfläche) Studien HFA Ant-

worten als einen lokalen Index funktionaler selektiver Aktivität gezeigt (Crone et al., 1998; Miller 

Abbildung 9 A Darstellung des Paradigmas. B Darstellung der Gehirnregionen mit einer signifikanten Antwort 
auf die Stimuli für das nieder- und hochfrequente Band. C zeigt eine frühere Mismatchantwort in der HFA mit 
früherem Beginn und Maximum (D). E Darstellung der Mismatchantworten getrennt nach kortikalen Regio-
nen.  
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et al., 2007). Dabei ist nicht klar, ob kortikale neuronale Aktivität, die verantwortlich für die Er-

kennung von Abweichungen ist, am besten durch niedrige oder hohe Frequenzanteile repräsen-

tiert wird. Diese Unterscheidung ist allerdings notwendig, da HFA andere Antwortcharakteristika 

zeigt als NF-EKPs (Crone et al., 2006). Intrakranielle Aufzeichnungen zeigten, dass sowohl nieder-

frequente ereigniskorrelierte Potentiale (NF-EKP) als auch HFA im temporalen Kortex bei der Ge-

nerierung von PE eine Rolle spielen (Berger et al., 2005; Fishman and Steinschneider, 2012), wo-

bei die HFA eher ansteigt als die Amplitude der NF-EKPs (Edwards et al., 2014). Im inferioren 

Frontalkortex zeigten sich in früheren ECoG Studien (Edwards et al., 2014; El Karoui et al., 2015) 

keine Hinweise auf frontal HFA als Antwort auf lokale Abweichungen (im Gegensatz zu globalen 

(El Karoui et al., 2015) obwohl NF-EKP Effekte in einigen (Liasis et al., 2001; Rosburg et al., 2005), 

aber nicht allen Studien (Baudena et al., 1995) diskutiert wurden.  

 

 Aufgrund der Schwierigkeit HFA mit EEG abzuleiten, fokussierten frühere PE Studien auf 

niederfrequente ereigniskorrelierte Potentiale. Die Mismatch Negativität (MMN) wird als klassi-

sches PE Signal betrachtet, das hervorgerufen wird, während Probanden passiv Töne hören, die 

vom Kontext abweichen, der durch repetitive Standardstimuli generiert wird  (Näätänen et al., 

1978). Hinweise verdichten sich, dass die MMN interagierende Generatoren im sekundären audi-

torischen Kortex und dem superio-

ren temporalen Kortex aber genauso 

im frontalen Kortex hat (Deouell, 

2007; Shalgi and Deouell, 2007). Je-

doch sind die unterschiedlichen Bei-

träge dieser einzelnen Regionen, be-

sonders die des frontalen Kortex, 

nicht bekannt. Neuropsychologische 

EKP und bildgebende Studien unter-

stützen die Ansicht einer zentralen 

Rolle des Präfrontalkortex (PFK) bei 

kontextueller Verarbeitung 

(MacDonald et al., 2000; Fogelson et 

al., 2009).  

 

Im Folgenden wurden frontale und 

temporale kortikale Muster von NF-

EKPs und HFA verglichen. Dabei un-

terschieden sich, wie oben beschrie-

Abbildung 10 Frontale und temporale Aktivitätsmuster variie-
ren mit der Vorhersagbarkeit von Stimuli. Balken über den farbi-
gen Abbildungen zeigen den Verlauf von F-werten über die Zeit. 
Nur die HFA im frontalen Kortex zeigt einen signifikanten Inter-
aktionseffekt.  
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ben, die Bedingungen in der Vorhersagbarkeit der Abweichung von der Hintergrundstimulation 

(vorhersagbar: vier Standards vor jedem Devianten; nicht vorhersagbar: Devianten sind zufällig 

eingebettet). Der Vorhersagefehler wurde als Differenz zwischen der Antwort auf die Devianten 

und Standards operationalisiert. Abweichungen vom auditorischen Kontext modulierte sowohl 

die HFA als auch die NF-EKPs, die typischerweise mit MMN im EEG assoziiert sind. Der PE zeigte 

sich eher in der HFA als in den NF-EKPs und war sowohl im temporalen als auch frontalen Kortex 

evident. Jedoch nur die HFA im FK differenzierte zwischen vorhersagbaren und nicht vorhersag-

baren Abweichungen, was die Schlüsselrolle des FK beim PE hervorhebt (Dürschmid et al., 

2016a).  

 

Dürschmid S, Edwards E, Reichert C, Dewar C, Hinrichs H, Heinze HJ, Kirsch HE,Dalal SS, Deouell 
LY, Knight RT. Hierarchy of prediction errors for auditory events in human temporal and frontal 
cortex. Proc Natl Acad Sci U S A. 2016   

 

 

  



33  

Repräsentation von Vorhersagen 
 

 Hieraus ergibt sich die Frage, ob dieses von der Umwelt generierte Bild für Vorhersagen 

genutzt werden kann. Mehrere Studien haben die Frage einer proaktiven Vorhersage zu beant-

worten versucht, in dem zum Beispiel kein abweichender Stimulus präsentiert wurde, sondern 

die Präsentation des Reizes ausgelassen wurde (Heilbron and Chait, 2018). Die meisten neurona-

len Antworten auf Auslassungen können als Verletzung einer allgemeinen Vorhersage des zeitli-

chen Auftretens eines Stimulus betrachtet werden. SanMiguel et al. (SanMiguel et al., 2013) ließen 

die Probanden Umweltgeräusche produzieren, indem diese einen Knopf drückten. Die Hypothese 

besteht in diesem Experiment darin, dass die Erwartung eines Tones die vorhergesagte Aktivität 

der Tonrepräsentation im auditorischen Kortex auslöst. Wenn keine Vorhersage gemacht wird, 

dann sollte auf die Präsentation des Tones auch keine auditorisch sensorische Antwort zu finden 

sein. Gehirnantworten auf eine Auslassung sollten deshalb nur eine direkte Konsequenz der Vor-

hersageaktivität sein. Antworten auf gelegentliche Tonauslassungen wurden nur dann gefunden, 

wenn der gleiche Ton wiederholt durch den Knopfdruck hervorgerufen wurde und somit vorher-

sagbar war, da die Probanden den Ton selber generierten. In einer passiven Aufgabe mit visueller 

Ablenkung präsentierten Bendixen et al. (Bendixen et al., 2015) in schneller Reihenfolge sequen-

tielle Tonpaare. Innerhalb eines Paares waren die Töne identisch, wogegen die Frequenzen zwi-

schen den  Paaren  variierten. Antworten auf Auslassungen wurden gefunden, wenn der Ton vor-

hergesagt werden kann (da es der zweite Ton innerhalb eines Paares war), nicht aber, wenn nur 

vorhergesagt werden konnte, wann der Stimulus kommt nicht aber welcher es ist (da es der erste 

Ton eines Paares war). Jedoch hätten die Probanden die Paare als auditorische Objekte wahrneh-

men können und die Auslassung des zweiten Tones innerhalb des Paares, der die kritische Aus-

lassungsantwort hervorrief, könnte eher eine post-hoc Antwort auf die Veränderung der Dauer 

sein, als eine antizipatorische Antwort.  

 

 In der folgenden Studie wurde deshalb nicht auf die Antworten nach der Stimuluspräsenta-

tion oder nach einer Auslassung geschaut. Vielmehr wurde direkt das Intervall vor dem Stimulus 

untersucht. Dies ist das Zeitfenster, in welchem eine Aktivitätsmodulation einem Vorhersagefeh-

ler zuzuschreiben ist, da noch kein Fehler berechnet werden kann. In gleicher Weise wurde aus 

dem MEG die Orientierung eines visuellen Streifenmusters dekodiert, das durch einen vorausge-

henden auditorischen Reiz vorhergesagt werden kann (valider visueller Stimulus) oder nicht (in-
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valider visueller Stimulus). Die Subtraktion des Signals eines valide von einem invalide angekün-

digten Streifenmuster zeigte eine Differenz vor der Stimuluspräsentation. Dies legt den Schluss 

einer vorzeitigen Aktivierung eines antizipatorischen sensorischen Schemas nahe. Grisoni et al 

(Grisoni et al., 2017) fanden mittels EEG Hinweise auf prä-stimulus antizipatorische Bewegungs-

vorbereitung auf spezifische Handlungsverben, die durch bedeutungsvolle Sätze vorhergesagt 

wurden. Jedoch ist nicht klar, ob es sich hierbei um einen automatischen Prozess handelt, da die 

Probanden mit großer Wahrscheinlichkeit die Sätze angehört haben. Während diese Studien 

übereinstimmende Hinweise für eine pro-aktive Vorhersage im MEG und EEG gefunden haben, 

bleiben die Quelle und die Art des Signals dieser prädiktiven Aktivität noch unklar. Um diese Frage 

zu klären, wurde der Vorteil des hohen Signal-zu-Rausch Verhältnisses und die verbesserte räum-

liche Auflösung von ECoG Daten genutzt.  

 

Abbildung 11 Zeitaufgelöste Vari-
anzanalyse. A Darstellung der fron-
talen und temporalen Regionen, wo-
bei nur die erste eine HFA Modula-
tion vor den vorhersagbaren Devian-
ten zeigt (B) was durch einen signifi-
kanten Interaktionseffekt gekenn-
zeichnet ist (C), der in der frontalen 
Region größer als in der temporalen 
ist (D). E Je größer die Prä-stimulus-
modulation, desto geringer ist der 
Vorhersagefehler in frontalen aber 
nicht in temporalen Elektroden.  
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 Im Folgenden sollte nun gemessen werden, wie das Gehirn spektral und anatomisch Vor-

hersagen repräsentiert. Fünf Epilepsiepatienten, bei denen ein prächirurgisches Monitoring mit 

subduralen Elektroden durchgeführt wurde, nahmen an der Studie teil. Ihnen wurden Reize prä-

sentiert, die 180 ms lange, harmonische Töne mit einer Grundfrequenz von 500 oder 550 Hz und 

den 3 jeweils ersten Harmonischen waren. Die Probanden schauten eine ablenkende visuelle Sti-

mulation an, während die Tonsequenzen präsentiert wurden. Die Tonsequenzen bestanden aus 

sehr wahrscheinlichen Standardtönen (P = .8; f0 = 500 Hz) gemischt mit Devianten mit niedriger 

Wahrscheinlichkeit (P = .2; f0 = 550 Hz). In den Blöcken war die Reihenfolge entweder zufällig, mit 

einem Minimum von 3 Standards zwischen zwei Devianten, oder völlig vorhersagbar, so dass je-

der fünfte Ton ein Deviant war. Dabei zeigte sich eine HFA Modulation, die den regulären und 

somit vorhersagbaren Devianten vorausging. Dieses Muster fand sich nur im lateralen Frontal-

kortex (Dürschmid et al., 2019). Im nächsten Schritt wurde untersucht, ob die prä-stimulus Mo-

dulation einen Einfluss auf die Hirnantwort auf den Stimulus hat. Dabei zeigte sich, dass die prä-

stimulus HFA im Frontalkortex mit der post-stimulus HFA korreliert war. Dieses Muster zeigte 

sich allerdings nicht im Temporalkortex (Dürschmid et al., 2019).  

 

Dürschmid S, Reichert C, Hinrichs H, Heinze HJ, Kirsch HE, Knight RT, Deouell LY.  Direct evidence 
for prediction signals in frontal cortex independent of prediction error. Cereb Cortex. 2019. 

https://doi.org/10.1093/cercor/bhy331 
  

https://doi.org/10.1093/cercor/bhy331
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2.4 Motorisches Lernen – Integration von Umweltinformatio-
nen und motorischen Handlungen 

 

Im folgenden Kapitel werden zwei Studien vorgestellt, die sich mit der Integration von Informa-

tion aus hochfrequenter Aktivität in niederfrequente Netzwerke auf neurophysiologischer Ebene 

befassen. Ähnlich wie im vorangegangenen Kapitel wird zunächst die Kopplung von Frequenzen 

auf subkortikaler, gefolgt von dem gleichen Phänomen auf kortikaler Ebene beschrieben.  

 

2.4.1 Informationsintegration im Nucleus Accumbens 

 
 Der Nucleus Accumbens (NAcc) ist Teil des ventralen Striatums und spielt eine zentrale 

Rolle bei der Informationsintegration (Goto and Grace, 2008) des limbischen System, insbeson-

dere dem Präfrontalkortex (PFK) und dem Hippocampus (HC). Der NAcc wird als Schnittstelle, 

durch welche der HC Input zum PFK ansteuert, angesehen (French and Totterdell, 2002). Bei Rat-

ten konvergieren sowohl der PFK als auch der HC auf einzelne NAcc Neurone (Finch, 1996; Goto 

and Grace, 2008) und die PFC-NAcc und HC-NAcc Verbindungen sind wechselseitig voneinander 

abhängig. So zum Beispiel zieht eine Langzeitpotenzierung der HC-NAcc Assoziation eine Lang-

zeitdepression der PFC-NAcc Assoziation nach sich (Grace et al., 2007). Es wird angenommen, 

dass die selektive Stärkung der HC-NAcc Verbindung wichtig für die schnelle Erleichterung ziel-

gerichteten Verhaltens und Unterstützung automatisierter Handlung ist (Goto and Grace, 2005; 

Belujon and Grace, 2008). Solche automatisierten Handlungen sind besonders evident in Aufga-

ben des Bewegungslernens, in welchen der NAcc Informationen für die Planung von Bewegungen 

integriert (Mogenson et al., 1980; Grace, 2000). Münte et al. (Münte et al., 2008) spekulierten, dass 

der menschliche NAcc Information für die Anpassung von Antwortstrategien evaluiert. Dement-

sprechend limitieren Läsionen im NAcc die Flexibilität, die für Verhaltensänderungen während 

des Lernens benötigt werden (Grace et al., 2007). Jedoch ist Wissen über die spezifischen neuro-

nalen Mechanismen, die für die Informationsintegration von PFK und HC im Gehirn benutzt wer-

den, noch immer begrenzt.  
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 Kopplung von Phase und Amplitude über unterschiedliche Frequenzbänder (Phase-

amplitude cross-frequency coupling - PAC) von Oszillationen werden als effektiver Mechanismus 

angesehen, lokale Netzwerke zu rekrutieren, um funktionale globale Netzwerke zu formen und 

Informationen anzusteuern (Buzsaki and Draguhn, 2004; Canolty et al., 2006; Cohen et al., 2009; 

Staudigl et al., 2012). Eine transiente θ-Phase-HFA Kopplung während des Bewegungslernens 

durch ein Labyrinth konnte bereist im Striatum von Ratten gezeigt werden (Tort et al., 2008)  

(Tort et al., 2009a). Jedoch wurde bisher nicht festgestellt, ob der NAcc PAC zwischen θ und HFA 

in einer funktionell spezifischen Art und Weise beim Menschen zeigt. Dies würde darauf hindeu-

ten, dass Informationsintegration innerhalb des NAcc auf der transienten Kopplung zwischen Fre-

quenzen beruht.   

 

 Im Folgenden wurde direkt die NAcc Aktivität bei drei Patienten mittels subkortikaler 

Elektroden gemessen. Dabei wurden die Probanden gebeten, eine Sequenz auf dem Bildschirm zu 

 Abbildung 12 Darstellung der Variation der Kopplungsstärke.  
Die Kopplung zwischen der θ Phase und der HFA ist groß, wenn die kognitive Belastung besonders hoch ist. 
Dies ist am Anfang des Experiments und während dem Verfolgen der zufälligen Sequenz der Fall (A,B). Die 
Kopplung tritt in Durchgängen mit niedriger kognitiver Belastung eher auf (C), wobei der Zeitpunkt der Kopp-
lung von der Modulationsstärke abhängig ist (D). E zeigt die Kopplungsstärke für jeden Teilnehmer.  
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verfolgen und auf sie mit einem Tastendruck zu reagieren (SRTT - (Nissen and Bullemer, 1987). 

Die numerischen Reize der Sequenz konnten dabei entweder in fester oder zufälliger Abfolge prä-

sentiert werden, was zu Unterschieden in der kognitiven Kontrolle führt. Tort et al. (Tort et al., 

2009a) folgend, kann angenommen werden, dass PAC transient im NAcc auftritt und durch das 

Maß an eingesetzter kognitiver Kontrolle moduliert wird. Dabei wurde getestet, ob es (i) PAC im 

NAcc gibt, ob (ii) PAC zwischen hoher und niedriger kognitiver Kontrolle diskriminiert, und ob 

(iii) PAC systematisch mit Verhaltensleistung über das Experiment variiert.  

 

 Dabei zeigte sich, dass im NAcc kontralateral zur Bewegung die θ Phase die HFA (100-

140Hz) nach der motorischen Antwort moduliert. Dabei stieg die PAC im menschlichen NAcc mit 

der kognitiven Kontrolle und sagte die Verhaltensadaptation (Reduktion der Fehlerrate) vorher. 

Die stärkste PAC wurde im ersten Teil gefunden, in dem die Probanden auf die vorhersagbare aber 

noch unbekannte Sequenz antworteten und während sie auf die Reize in der zufälligen Sequenz, 

die hohe kognitive Kontrolle erforderte, antworteten. Im Gegensatz dazu war PAC reduziert, wenn 

die Probanden auf die bereits gelernten Stimuli oder wenn sie mit selbstgewähltem Tastendrü-

cken antworten mussten. Diese Ergebnisse zeigen eine Erhöhung der PAC, nachdem eine Ent-

scheidung getroffen wurde. Somit zeigen diese Daten, dass die PAC ein Mechanismus der Infor-

mationsintegration ist, da sie während der Phase hoher kognitiver Kontrolle auftritt. Das unter-

stützt die Hypothese, dass PAC einen effektiven Mechanismus liefert, über den lokale Netzwerke 

rekrutiert werden, um funktionelle globale Netzwerke zu formen, mit dem Ziel, Informationen 

bereitzustellen (Dürschmid et al., 2013).  

 

Dürschmid S, Zaehle T, Kopitzki K, Voges J, Schmitt FC, Heinze HJ, Knight RT, Hinrichs H. Phase-
amplitude cross-frequency coupling in the human nucleus accumbens tracks action monitoring 
during cognitive control. Front Hum Neurosci. 2013.  
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2.4.2 Phasen-Amplituden-Kopplung als zentraler Mechanismus 
für Mensch-Umwelt-Interaktion 

 

 Wie bereits erwähnt, sind jenseits klinischer Studien Hinweise für eine funktionelle Rolle 

von PAC im Prozess der Organisation von Kognition und Verhalten von Menschen begrenzt auf 

die Domäne des Gedächtnisses. Eine stärkere Verbindung zwischen PAC und menschlichem 

Verhalten würde durch eine Korrelation zwischen PAC und trial-by-trial Variationen in der 

Performanz gezeigt werden können. Um sich damit zu befassen, wurde im Folgenden die 

Beziehung zwischen PAC und Verbesserung der motorischen Leistung untersucht. Dafür wurde 

bei 6 Patienten die kortikale Aktivität (ECoG) erhoben während diese motorische Fertigkeiten 

lernten. Um die Verbindung zwischen PAC und Verhalten zu untersuchen, wurden Veränderungen 

im PAC mit Veränderungen der motorischen Performanz während der Aneignung von 

motorischen Fertigkeiten verglichen.  

 

 Dabei wurden drei motorische Experimente durchgeführt (Serial Reaction time task, 

Go/No-Go task und auditorisch-motorische Koordination), wobei jeder Patient an nur einem 

Experiment teilnahm. Alle Paradigmen erforderten die Koordination von Tastendrücken auf einer 

Computertastatur mit einem externen Stimulus. Alle Probanden führten die Aufgaben mit der 

Hand kontralateral zu dem implantierten Elektrodengitter aus.  

 

 

 Während der Verbesserung der motorischen Leistung zeigte sich eine klare Entwicklung 

der Kopplung. Diese konvergierte in der Stärke, wenn die Verhaltensverbesserung konvergierte. 

Damit konnte gezeigt werden, dass die PAC Dynamik adaptives motorisches Verhalten reflektiert. 

Trotz der Unterschiede in den Aufgaben konnten vergleichbare kortikale Regionen, die mit 

Verhaltensverbesserung assoziiert sind, identifiziert werden. Außerdem konnte gezeigt werden, 

 Abbildung 13 Darstellung der Variation der Frequenzkopplung mit der Performanz gemittelt über alle Teil-
nehmer über den Verlauf des Experiments zeigen eine gleiche Dynamik (A). In B  und C  sind die Performance 
und Frequenzkopplungswerte gemittelt über die frühe und späte Phase dargestellt.  
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dass, obwohl sich die Phase der Kopplung nicht verändert, das Aktivitätsmuster beider 

Frequenzen mit Verhaltensveränderungen variiert (Dürschmid et al., 2014).  

 

Dürschmid S, Quandt F, Krämer UM, Hinrichs H, Heinze HJ, Schulz R, Pannek H, Chang EF, Knight 
RT. Oscillatory dynamics track motor performance improvement in human cortex. PLoS One. 
2014. 
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2.5 Mind Wandering – Erhöhung der Informationsintegration 
während der Selbstreflektion 

 

Abhängig davon wie lange wir wach sind und von der Menge an Erfahrungen, die wir in Phasen 

der Wachheit machen, geht das Gehirn in schlafähnliche Zustände über, die sich als  langsame 

Oszillationen mit hoher Amplitude (slow wave activity – SWA) und kurzer Minderung neuronaler 

Aktivität (Vyazovskiy et al., 2011) zeigen. Dies wird auch als lokaler Schlaf (LS) bezeichnet. Das 

Auftreten dieser OFF Phasen in verhaltensrelevanten kortikalen Arealen wie dem Motorkortex 

kann zu Verhaltensfehlern führen (Vyazovskiy et al., 2011). Auf phänomenologischer Ebene wird 

angenommen, dass LS zu Phasen des Mind Wanderings (MW) führt (Andrillon et al., 2019), 

während derer Aufmerksamkeit zu episodischen Inhalten wandert, die nichts mit der aktuellen 

Umgebungsinformation zu tun haben (Andrillon et al., 2019).  MW umfasst dabei, dass wir 

episodisches Gedächtnis abrufen, während wir mit einer anderen Aufgabe befasst sind und dass 

wir uns dieser Inhalte bewusst werden. Jedoch ist das Bewusstsein für etwas nicht 

gleichbedeutend mit der Aufmerksamkeitsausrichtung darauf. In der Praxis ist die Trennung 

zwischen beiden jedoch sehr schwierig. Daraus ergibt sich die Frage, wie eng Bewusstsein und 

Aufmerksamkeit gekoppelt sind und ob Aufmerksamkeit ausgerichtet werden kann während wir 

uns anderer Dinge bewusst werden.  

  

 Andrillon et al. (Andrillon et al., 2019) schlugen vor, dass LS in 

Aufmerksamkeitsnetzwerken zu deren Deaktivierung und zur Rekrutierung des Default Mode 

Netzwerks führt und in Kombination zur MW führt. Ob LS aber tatsächlich zu MW führt ist nicht 

klar. Jedoch sind diese OFF Phasen potentiell gefährlich, vor allem, wenn das Bedürfnis des 

Gehirns nach Ruhe dann auftritt, wenn Aufmerksamkeit flexibel eingesetzt werden muss. Daher 

stellt sich die Frage, wie die Fähigkeit des Gehirns, Aufmerksamkeit während der OFF Phasen (LS 

und MW) zu verschieben, variiert und ob MW tatsächlich zu einer aufmerksamkeitsbezogenen 

Entkopplung von der Umwelt führt.   

 

 Im Folgenden wurde anhand der N2pc, die eine etablierte elektrophysiologische Antwort 

darstellt, die der Fokussierung von visueller Aufmerksamkeit auf Zielreize zwischen Distraktoren 

zugeschrieben wird (Luck and Hillyard, 1994; Eimer, 1996; Girelli et al., 1997; Hopf, 2000; Mazza 

et al., 2009), untersucht, wie sich räumliche Aufmerksamkeit während des MW verändert. 

Theoretisch sind zwei Szenarien möglich, wobei entweder die N2pc während des MW absinkt 

(Aufmerksamkeitsentkopplung) oder aber zunimmt, da MW als Ablenkung wahrgenommen wird 

und bekannt ist, dass die N2pc mit zunehmenden ablenkenden Reizen auch zunimmt (Mazza et 

al., 2009). Die Aufgabe der Pobanden dabei war es nach einem farbdefiniertem Zielreiz zwischen 
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aufgabenirrelevanten Distraktoren zu suchen. Dabei wurde die Hypothese untersucht, dass wenn 

MS mit LS assoziiert ist, dann finden sich während des MW mehr Phasen der SWA und Indikatoren 

für neuronale Ruhephasen. Letzteres könnte in einer Reduktion der HFA zu finden sein, was als 

Korrelat für die Feuerrate von Zellpopulationen gesehen wird (Friston et al., 2005; Liu and 

Newsome, 2006; Manning et al., 2009; Miller et al., 2009; Ray and Maunsell, 2011). 

 

Abbildung 14 A zeigt die HFA Antwort für die 15 MEG Sensoren mit einer signifikanten Antwort auf das 
Suchdisplay zwischen 81 und 234 ms (B) welche über allen Teilnehmern einen vergleichbaren Verlauf zeigt 
(C). Während des Mind Wanderings war diese reduziert (D) und Slow Wave Oszillationen traten vermehrt 
auf.  
 



43  

 In diesem Experiment konnten sowohl eine verlässliche HFA Antwort in okzipitalen MEG 

Sensoren gefunden werden als auch einer sich anschließenden N2pc, die 

aufmerksamkeitsbezogene Zielreizselektion reflektiert. Der Onset der HFA stieg in okzipitalen 

MEG Sensoren um die 90 ms an und war davon abhängig, wie fokussiert die Studienteilnehmer 

waren. Spezifisch unter MW war die HFA stark abgesenkt (kein signifikanter Unterschied von der 

baseline). Parallel dazu nahm die Anzahl an SWA Perioden mit MW zu. Wie erwartet wurde die 

Leistung unter MW schlechter und die Reaktionszeiten nahmen zu. Im Kontrast dazu waren 

neurale Marker der Aufmerksamkeitsselektion stärker während MW und eng mit 

Verhaltensantworten verbunden. Das heißt, dass obwohl die Performanz generell niedrig war, 

zeigten Probanden mit einer hohen N2pc bessere Leistungen als Probanden mit weniger 

ausgeprägter N2pc. Allgemein waren Prozesse der attentionalen Zielreizselektion, die durch die 

N2pc indiziert werden, während des MW eher erhöht, um möglicherweise die mentale Ablenkung 

durch MW zu kompensieren.  

 

Wienke C, Bartsch M V., Vogelgesang L, Reichert C, Hinrichs H, Heinze H-J, Dürschmid S. Local 
sleep during mind-wandering enhances processes of spatial attention allocation. Cerebral Cortex 
Communications, 2021; 2(1) 

 

  

Abbildung 15 A Darstellung des ereigniskorrelierten magnetischen Feldes (1-30Hz) gemittelt über Versuchs-
durchgänge zwischen 200 und 300 ms. B Zeitverlauf der N2pc. C zeigt die magnetische Feldverteilung für die 
drei unterschiedlichen mentalen Zustände. Die N2pc ist während des Mind Wanderings erhöht.  
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3. Zusammenfassende Diskussion und Ausblick 
 
Menschen sind in der Lage Informationen zu verarbeiten, diese in für die jeweilige Person sinn-

voller Weise zusammenzufassen um aus den gewonnenen Informationen ein Bild von der Umwelt 

zu erzeugen, anhand dessen sie ihre Handlungen ausrichten. In dieser Habilitationsschrift gebe 

ich einen Überblick über die Mechanismen, von denen angenommen wird, dass sie zur Informa-

tionsintegration beitragen. Diese Mechanismen sind komplex und notwendigerweise so divers 

wie die Anforderung, die die Umwelt auf der einen Seite stellt und wie die Handlungen, mit denen 

wir auf die Umwelt reagieren, auf der anderen Seite sind. Um Informationsintegration in der tat-

sächlichen Breite möglichst umfänglich zu erfassen, sind Messmethoden eingesetzt worden, die 

die jeweilige Fragestellung am besten erfassen. Invasive Messmethoden sind dabei Garant sub-

kortikale Aktivität überhaupt  und neuronale Aktivität ohne verzerrende Filtereffekte etwa durch 

den Schädel erfassen zu können. Diese Art der Messmethoden ergänzen die nicht-invasiven Me-

thoden wie EEG und MEG in logischer Weise. Ein einheitliches Merkmal all dieser Messmethoden 

ist, dass sie Gehirnprozesse in ihrer tatsächlichen zeitlichen Skala am besten abbilden können.  

 

Wir konnten in der ersten hier vorgestellten Studie zeigen, dass das menschliche Gehirn einen 

kritischen Punkt erreichen kann, an dem es sich an der Grenze zwischen Ordnung und Chaos be-

findet, bei dem man davon ausgeht, dass dieser die Grundlage für optimale Informationsintegra-

tion bildet. Dieser Punkt kann durch ein einfaches meditatives Training erreicht werden, das, wie 

in der Literatur beschrieben, zu einem verbesserten Einsatz der Aufmerksamkeitsressourcen 

führt. Jedoch wird der Zusammenhang in der bestehenden Literatur immer noch kontrovers dis-

kutiert. Ein ausgereifter Konsens ist allerdings schon allein aufgrund nur wenigen Untersuchun-

gen nicht wahrscheinlich. Nur wenige Studien haben die Beziehung zwischen Meditation und Kri-

tikalität untersucht. Irrmischer et al. (Irrmischer et al., 2018) zeigten eine Reduktion langer zeit-

licher Korrelationen während der MFA und vertraten die Hypothese, dass Aufmerksamkeit am 

kritischen Punkt ausbalanciert ist, was sowohl einen transienten Fokus als auch einen schnellen 

Wechsel zwischen Aufmerksamkeitsressourcen erlaubt. Argumentiert wurde in dieser Studie, 

dass der Aufmerksamkeitsfokus die Informationsweiterleitung reduziert, was im Kontrast zu un-

seren Ergebnissen steht. Diese können aber auch durch die Unterschiede in der Messtechnik (MEG 

bei uns, EEG bei Irrmischer et al.) liegen. Außerdem war es unser Ziel, Informationsintegration 

unabhängig von Umweltinformationen zu untersuchen, weshalb wir nicht stimulusgetriebene 

(zum Vergleich (Fagerholm et al., 2015)) sondern selbstregulierte Modulation der top-down Auf-

merksamkeit untersuchten. Die Kritikalität stellt daher eine Voraussetzung für die Informations-

integration dar.  
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Wichtig ist dabei, dass die selbstorganisierte Kritikalität mit einer Verringerung der 

Amplitude der hochfrequenten Aktivität in rechten fronto-temporalen Kortexregionen einher-

geht. Ein gleiches räumliches wie auch spektrales Muster findet sich auch dann, wenn wir Proban-

den baten sich zwischen einer frühen aber kleinen und einer späten dafür aber größeren Beloh-

nung zu entscheiden. MEG Sensoren über dieser fronto-temporalen Region zeigten eine Integra-

tion von Belohnungswert und deren Auszahlungszeitpunkt. Integration im Sinne des Delay Dis-

countings meint, dass eine Region gleiche Umweltreize kodiert. Eine Neuheit an der Studie ist, 

dass wir direkt untersucht haben, ob der subjektive Wert Impulsivität entgegenwirkt. Bisherige 

Studien konnten dabei nicht den Zeitverlauf der Repräsentation von Wahlmöglichkeiten in der 

zeitlichen Dimension (Millisekunden bis Sekunden), in der dieser stattfindet, auflösen. Der sub-

jektive Wert wurde dabei durch den Kontrast zwischen Wahlmöglichkeiten für einen selbst oder 

in einer prosozialen Bedingung operationalisiert. Eine Frage die sich dabei stellt ist, ob Menschen 

tatsächlich prosozial handeln. Vorherige Studien zeigen, dass Probanden weniger Anstrengungs-

bereitschaft zeigten, wenn sie sich für andere entscheiden sollten (Lockwood et al., 2017). Daher 

nahmen wir an, dass die Bereitschaft, Wahlmöglichkeiten in ihrer Tiefe zu evaluieren, sich zwi-

schen den beiden experimentellen Bedingungen unterschied. Um die zeitlichen Entwicklung der 

Integration der Optionen zu untersuchen, verglichen wir Muster der Aufmerksamkeitsverlage-

rung (Eye Tracker) und der Integration von Handlungsoptionen auf neuronaler Ebene (MEG). Bei 

Letzterem zeigt sich, dass Aktivität in MEG Sensoren über fronto-temporalen Regionen diese In-

tegration reflektiert. Frühere intrakranielle Aufzeichnungen hochfrequenter Aktivität haben un-

ser Verständnis über die kortikale Informationsintegration erweitert, wobei gezeigt wurde, dass 

die HFA als Index lokaler kortikaler Berechnung dient. Diese Studien zeigen, dass die Vorausset-

zungen für optimale Informationsintegration durch kritische Gehirndynamik gegeben sind und 

dass Informationen aus der Umwelt tatsächlich integriert werden.  

 

In der Umwelt treten jedoch bestimmte Ereignisse mit unterschiedlicher Häufigkeit auf. 

Diese Häufigkeitsverteilung erfasst das Gehirn über die Zeit, was es erlaubt, Vorhersagen über die 

Auftretenswahrscheinlichkeit von Umweltreizen zu treffen. Im NAcc zeigt sich dabei eine dop-

pelte Integration, da auf anatomischer Ebene Informationen aus dem Hippocampus und dem PFC 

einerseits und über die Auftretenswahrscheinlichkeit von Umweltreizen andererseits integriert 

werden. Der NAcc trägt dabei zur Kodierung der Statistik der auditorischen Umwelt bei, was sich 

durch eine graduelle Variation der Amplituden des LFP manifestiert. Diese Ergebnisse zeigen die 

Bedeutung des NAcc hinsichtlich der automatischen Integration sensorischer Informationen. Die 

Beziehung zwischen dem NAcc und der P300 liefert Hinweise auf die Rolle in Gedächtnisprozes-

sen, da möglicherweise neuronale Aktivität, die zwischen dem medialen Temporallappen und 

dem dopaminergen Mittelhirn geteilt werden, verbunden werden. Die Korrelation der NAcc Akti-

vität mit der P300 ist zentral für die Annahme einer Verhaltensrelevanz des NAcc – was sich an 
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der Kreuzkorrelation zwischen den Frequenzen während des motorischen Lernens zeigt. Die 

P300 ist verbunden mit Gedächtnisspeicherung und der Detektion verhaltensrelevanter Zielreize 

(Knight, 1996, 1998; Polich and Criado, 2006; Polich, 2007). In unserer Studie benutzten wir nur 

schwache Abweichreize, die typischerweise nur die zentro-parietale P3 Antwort aktivieren. Dies 

könnte bedeuten, dass die Detektion kontextueller Abweichung im hippocampalen-NAcc Netz-

werk stattfindet. Diese integrierte Information wird benutzt, um die Aktivierung eines breiten 

Aufmerksamkeitsnetzwerks auszulösen, dass sich als P3 Antwort manifestiert.  

 

Dass diese Integration von Umweltinformationen über die Zeit eine wichtige Ressource 

des Gehirns ist, zeigt vor allem die Modulation der Detektion von kontextuellen Abweichungen 

bei Alzheimer Patienten, deren Fähigkeit sensorischer Bahnung auditorischer Informationen in 

sensorisches Gedächtnis eingeschränkt ist. Die Hypothese in dieser Studie war, dass wir eine Ver-

änderung der Gehirnantworten zwischen der auditorischen Stimulation ohne und mit NB-DBS 

finden, die sich nicht durch eine wiederholte Stimulation bei den gesunden Kontrollprobanden 

finden lässt. In dem Fall würden Unterschiede allein der Stimulation aber nicht der Wiederholung 

zugeschrieben werden können. Wir fanden, dass ohne DBS die MMN früher war, was durch eine 

stärkere P50 erklärt werden kann, welche eine Beeinträchtigung der präattentiven Hemmung 

wiederholten auditorischen Inputs widerspiegelt. Die P50 ist altersabhängig mit stärkerer 

Amplitude bei älteren Probanden und der Anstieg indiziert ein Defizit in der Filterung bekannter 

Informationen. Das vorrangige Ziel der Studie war es, einen möglichen vorteilhaften Effekt der 

NB-DBS auf die sensorische Integration zu untersuchen.  Trotz der begrenzten Generalisierbarkeit 

aufgrund der geringen Anzahl an Patienten handelt es sich hier um einen wichtigen Hinweis, vor 

allem vor dem Hintergrund nur weniger Publikationen zu dem Thema. Bei dieser sehr seltenen 

Gelegenheit der Aufzeichnung von Gehirnprozessen zeigte sich, dass die Fähigkeit der Informa-

tionsintegration über die Zeit bei AD Patienten verloren geht, diese aber durch DBS wieder her-

gestellt werden kann. Die Frage der Integration von Information über die Zeit an sich konnte in 

dieser Studie und in vorherigen Studien bereits positiv beantwortet werden. Allein die Relevanz 

der Informationsintegration ist damit noch nicht gezeigt. Eine Veränderung eines Vorhersagefeh-

lers, wie ihn die MMN anzeigt in Abhängigkeit von der Vorhersagbarkeit von Devianten, würde 

dagegen zeigen, dass Umweltinformationen über die Zeit tatsächlich genutzt werden und zu ei-

nem schlüssigen Bild über die Umwelt integriert werden. EEG und MEG sind nicht geeignet, eng 

umschriebene Gehirnareale aufzulösen. Außerdem ist es zumindest im EEG nicht möglich, die 

HFA aufgrund des schlechten Signal-zu-Rauschen Verhältnisses zu erfassen. Funktionelle MRT 

Studien deuten auf sowohl temporale als auch präfrontale Aktivität hin. Nur mögliche Unter-

schiede in den Antwortprofilen können damit nicht aufgelöst werden. In unserer ECoG Studie 

zeigte sich sowohl im frontalen als auch im temporalen Kortex eine Antwort auf die auditorischen 
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Reize. Die Dissoziation von Antwortmustern auf vorhersagbare und nicht vorhersagbare zwi-

schen beiden Kortexregionen zeigt Unterschiede in der Informationsverarbeitung und Integration 

auf. Diese Unterscheidung ist vor allem durch die HFA möglich. Dabei fügt die HFA Information 

über unterschiedliche zeitliche Dimensionen zusammen. Alle Devianten können als lokale Abwei-

chungen gesehen werden. Darüber hinaus sind die Devianten in den nicht vorhersagbaren Blö-

cken auch globale Devianten. Aber nur die globalen Devianten führen zu einem PE im frontalen 

Kortex. Diese Studie zeigt im Gegensatz zu früheren Studien, in denen der deviante Ton ein Ziel-

reiz war, bei dessen Auftreten ein Knopf gedrückt werden musste, dass die Umweltinformationen 

automatisch erfasst werden: also auch dann, wenn eine Reaktionen nicht zwingend notwendig ist.  

 

Im anschließenden Schritt konnten wir direkte Hinweise zeigen, dass der frontale Kortex 

Vorhersagesignale unabhängig vom PE zeigt. Predictive Coding Theorien gehen davon aus, dass 

das Gehirn kontinuierlich verfügbare Informationen integriert, um auf Grundlage dessen zukünf-

tige Ereignisse vorherzusagen. Jedoch kamen Hinweise darauf auf Veränderungen des Vorher-

sagefehlers und waren damit nur indirekt. Diese Studie lieferte Hinweise, dass der frontale Kortex, 

nicht jedoch der temporale Kortex die Statistik der Umwelt integriert und automatisch proaktive, 

antizipatorische Vorhersagen generiert. Dieses Muster stimmt mit einer so genannten hazard 

function überein, innerhalb derer ein bevorstehendes Ereignis wahrscheinlicher wird, je länger es 

nicht aufgetreten ist. Dies kann nur gelingen, in dem das Gehirn automatisch und ohne Verhal-

tensrelevanz komplexe Regularitäten über die Zeit integriert und basierend darauf Vorhersagen 

generiert. Jedoch ist nicht klar, ob die prästimulus HFA Modulation in unserer Studie die gleichen 

Vorhersagesignalen repräsentiert wie jene, die in PC Theorien formuliert sind oder ob sie ein Er-

gebnis von Vorhersagesignale sind. In der Summe zeigt sich, dass Informationsintegration auf-

wärts und abwärts in der kortikalen Hierarchie nicht so simpel ist wie zuvor angenommen. Glo-

bale Regularitäten zu erfassen ermöglicht es dem PFC, Aufmerksamkeit auf unerwartete Ereig-

nisse zu lenken. Die Detektion von lokalen Abweichungen ist dagegen auch vorteilhaft, nämlich 

dann wenn es darum geht, den auditorischen Input in bedeutungsvolle Stücke zu zergliedern. 

Beide Aspekte sind für die Informationsintegration unerlässlich, da diese erst die Voraussetzung 

ist, damit wir auf Umwelt optimal reagieren können. Dies zeigt sich an der Kontrolle von motori-

schen Bewegungen in Abstimmung mit Umweltreizen.  

 

Ein vielfach beschriebenes Phänomen dabei ist die Kopplung von θ und HFA, die sich über-

einstimmend mit der Verhaltensverbesserung verändert. Dieses Kopplungsmuster ermöglicht 

adaptives Verhalten, was Resultat von kontinuierlicher Informationsintegration ist. Trotz der Un-

terschiede zwischen den motorischen Aufgaben, die die Probanden durchführen mussten, zeigten 

sich übereinstimmende kortikale Regionen, die mit Verhaltensverbesserung und zufälliger Leis-
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tungsvariation assoziiert sind. In unserer Studie konnten wir außerdem zeigen, dass sich das Ak-

tivitätsmuster trotz Phasenstabilität mit den Verhaltensveränderungen verändert. Verhaltens-

verbesserung während des Übens wird durch verteilte θ-Netzwerke – die während des Wachseins 

hochreguliert werden – ermöglicht. Diese integrieren oder koordinieren lokale Aktivität. Hierbei 

meint das Konzept der Informationsintegration, dass θ oszillatorische Aktivität die Ergebnisse aus 

lokaler Verarbeitung, die durch die HFA im (prä-)motorischen Kortex reflektiert werden, akku-

muliert. Dabei kann angenommen werden, dass Informationen über die Planung von motorischen 

Antworten durch PAC ins Gedächtnis integriert werden. Dies zeigt sich besonders eindrucksvoll 

an der Frequenzkopplung im NAcc, der wechselseitig von Hippocampus und PFC-Aktivität abhän-

gig ist. Die komplexe Verbindung limbischer, präfrontaler und motorischer Aktivität macht den 

NAcc zu einer idealen Region für Informationsintegration, was man wiederum an der Verände-

rung der Frequenzkopplung in dieser Region sehen kann. Bemerkenswert dabei ist, dass das 

Kopplungsmuster abhängig von der kognitiven Kontrolle und damit zustandsabhängig ist. Dies  

untermauert die Hypothese, das PAC ein Mechanismus ist, um Informationen zu integrieren. 

Frühere Studien legen nahe, dass unterschiedlichen Phasen im θ Zyklus unterschiedliche funkti-

onelle Bedeutung haben. Vorallem die abfallende Flanke ist wichtig für den Gedächtnisabruf und 

die Senke für das Enkodieren neuer Informationen.  

 

In den vorangegangen Studien konnte gezeigt werden, dass Informationen integriert wer-

den und dass es sich dabei vermutlich um einen automatischen Prozess handelt, der im Hinter-

grund abläuft. Auch wenn dieses nicht explizit getestet wurde, kann angenommen werden, dass 

dies auch dazu führt, dass wir während des Mind Wanderings nicht komplett den Bezug zur Um-

welt verlieren. Es kann angenommen werden, dass das Gehirn detektiert, dass  wichtige Informa-

tionen durch lokalen Schlaf nicht weiter integriert werden und dadurch Aufmerksamkeitsressou-

ren hochgefahren werden, um der mentalen Ablenkung während des MW entgegenzuwirken.  In-

tegration muss dabei auf zwei Ebenen stattfinden. Informationen über interne Prozesse werden 

integriert, um anhand derer den Einsatz kognitiver Ressourcen zu vermitteln, um eine optimale 

Integration von externen Informationen wieder zu gewährleisten.  

 

 Zusammengenommen demonstrieren die vorgelegten Arbeiten die Wichtigkeit einer brei-

ten  Perspektive in der Erforschung komplexer Integrationsprozesse. Die Interaktion mit der Um-

welt wird durch eine Vielzahl an internen und externen Faktoren bestimmt und zeigt uns so, wel-

che Komponenten zum Verständnis der grundlegenden Fähigkeit zur Verhaltenskontrolle und 

Verhaltenssteuerung wichtig sind, wenn wir lernen oder mental abgelenkt sind.  
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Abstract

Brain function requires the flexible coordination of billions of neurons across multiple scales.

This could be achieved by scale-free, critical dynamics balanced at the edge of order and

disorder. Criticality has been demonstrated in several, often reduced neurophysiological

model systems. In the intact human brain criticality has yet been only verified for the resting

state. A more direct link between the concept of criticality and oscillatory brain physiology,

which is strongly related to cognition, is yet missing. In the present study we therefore car-

ried out a frequency-specific analysis of criticality in the MEG, recorded while subjects were

in a defined cognitive state through mindfulness meditation. In a two-step approach we

assessed whether the macroscopic neural avalanche dynamics is scale-free by evaluating

the goodness of a power-law fits of cascade size and duration distributions of MEG deflec-

tions in different frequency bands. In a second step we determined the closeness of the

power-law exponents to a critical value of -1.5. Power-law fitting was evaluated by permuta-

tion testing, fitting of alternative distributions, and cascade shape analysis. Criticality was

verified by defined relationships of exponents of cascade size and duration distributions.

Behavioral relevance of criticality was tested by correlation of indices of criticality with indi-

vidual scores of the Mindful Attention Awareness Scale. We found that relevant scale-free

near-critical dynamics originated only from broad-band high-frequency (> 100 Hz) MEG

activity, which has been associated with action potential firing, and therefore links criticality

on the macroscopic level of MEG to critical spike avalanches on a microscopic level.

Whereas a scale-free dynamics was found under mindfulness meditation and rest, ava-

lanche dynamics shifted towards a critical point during meditation by reduction of neural

noise. Together with our finding that during mindfulness meditation avalanches show differ-

ences in topography relative to rest, our results show that self-regulated attention as
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required during meditation can serve as a control parameter of criticality in scale-free brain

dynamics.

Significance statement

Our study bridges the gap between criticality, brain physiology and cognition. We show that

scale-free critical dynamics in the MEG can be observed in the broad-band high-frequency

(>100 Hz) activity that has been associated with action potential firing. Our study provides a

link between critical avalanche dynamics at a macroscopic MEG and spike avalanches at a

microscopic level. We show that mindfulness meditation shifts scale-free dynamics towards

the critical point by reducing neural noise. In contrast to a state of rest, mindful focused atten-

tion requires detection and inhibition of mind-wandering, and the refocusing of breath, and

therefore relies on constant monitoring and executive control, particularly in novices. This

could be implemented by brain states balanced at an instable critical point between order and

disorder allowing for flexibly focusing and shifting attention. Self-regulated attention might

thereby serve as a control parameter of criticality in the scale-free brain dynamics.

Introduction

The proper functioning of the human brain rests on the electrical activity of billions of neurons

coordinated across multiple scales. Theoretical and experimental work in physics has shown

that the multi-scale dynamics of a complex system can be characterized by the spatial and tem-

poral statistics of avalanches branching through the system. These statistics reveal whether the

system is in a fully random or a fully ordered state, or whether it is in a critical state, i.e. in a

complex state at the edge between order and disorder [1,2]. Empirically, critical avalanche

dynamics in neuronal networks has been first demonstrated in cell cultures and slices in vitro

by the seminal work of [3]. Further in vitro studies have shown that at the critical point, net-

work functions are optimized with respect to the susceptibility of inputs, dynamic range of

input/output relationships, information transmission, and information capacity [4,5], neural

networks can become highly flexible, display meta-stable patterns, and adapt more easily to

different rules through Hebbian plasticity [6]. Thus, information processing functions would

be optimized if the network dynamics operates at its critical point [7].

However, being a concept derived from physics, criticality still needs to be empirically

linked to cognitive brain functions in awake subjects, more directly. Different markers of criti-

cality like long-range correlation in spontaneous low frequency (10 and 20Hz) EEG activity in

humans have been studied [8]. In humans, criticality of neural avalanches comparable to unit

firing propagation has only been demonstrated reliably for the resting state condition. Shriki

et al. [9] showed that macroscopic whole brain avalanches defined by peaks and troughs of

broad-band MEG activity in awake humans at rest have no characteristic scale, typical for a

system state close to a critical point. However, the physiological nature of neural avalanches on

a macroscopic level remains unclear. Since peaks and troughs in the MEG/EEG can reflect dif-

ferent phases of spatially and temporally extended oscillatory generators, reconstruction of

avalanches on a macroscopic level should take into account the polarity and the frequency of

the brain signals to disentangle superimposed sources. Most importantly, the functional rele-

vance of criticality and its role in cognition is still an open question.

Most experimental studies in awake healthy subjects have been carried out under resting

conditions, as task related activity implies non-stationarity and superposition of stimulus- and
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response-driven activities [10], for which current statistical analyses of criticality are not well

suited. However, human subjects can be verbally instructed to constantly alter their resting

state dynamics through self-regulation switching into a different, stationary operational mode.

A prominent self-regulation technique is mindfulness meditation, which we hypothesize is

purportedly suited to induce changes in criticality, i.e. how close the system is as to its critical

point. During meditation, mindful focused attention (MFA) is required to maintain focus on

sensations over an extended period of time, which reduces distractor noise while at the same

time cognitive control is required to detect phases of mind wandering [11–14] during which

attention is directed elsewhere, as it occurs during an uninstructed resting state. In fact, mind-

fulness (meditation) and mind wandering (resting state) can be considered as opposing sta-

tionary background states, mediated by attentional subnetworks and the default mode

network, respectively [15]. Irrmischer et al. [16] hypothesized that focused attention is bal-

anced at a critical point of instability between order and disorder allowing for both, transient

focus and swift change of attentional resources. They have shown that criticality is reduced in

trained practitioners, i.e. when the meditation task becomes a habit. This would suggest that

during MFA in contrast to the resting state, brain dynamics is tuned closer to a critical point.

However, Irrmischer et al. show [16] that criticality is reduced in trained practitioners during

MFA compared to rest. In trained practitioners, meditation might therefore require less effort,

which could explain the observed shift towards a subcritical dynamics, or, as suggested by

other studies, trained practitioners might experience difficulties in refraining from meditation

practice during rest [17]. Thus, it is important to differentiate state from trait changes [18,19].

In our study we combined a frequency and polarity specific analysis of the macroscopic neural

avalanche dynamics with a variation of the internal cognitive state by comparing a group of

subjects performing mindfulness meditation with a group under rest. To avoid the aforemen-

tioned possible confounds between meditation-induced state and trait changes, we employed a

simple mindful breathing task in novices. As human resting-state activity displays criticality

[9], and MFA enhances attentional control [14,20], we hypothesize that top-down attention–

in contrast to bottom-up attention [10]–modulation during mindfulness training tunes neural

networks closer towards the critical point. Specifically, since it is assumed that MFA and rest-

ing activity are mediated by different neuronal networks [21–23], we further hypothesize that

spatio-temporal avalanche dynamics will involve different cortical regions in these states.

Methods

Participants and paradigm

Seventeen healthy participants (eleven females; mean age 28.3#x00B1;7.5 SD years, two left-

handed), with no history of neurological disorders participated in group MFA. MEG activity

was recorded while subjects were at rest or had to apply MFA (Fig 1A). Specifically, subjects

started with a resting period, followed by an instructed meditation, and finally were asked to

rest again without MFA. The whole experiment consisted of a sequence of five blocks: Rest

(5min)–MFA (5min)–MFA (5min)–MFA (5min)–Rest (5min). Each block was initiated by

the instruction either to rest or to apply MFA. Instructions (see S1 Data) were recorded in

advance and spoken by an experienced meditator (extensive training in Vipassana-meditation

[24] with an overall of 2500 hours of experience during a time period of 5 years and prior expe-

rience as a meditation teacher). In sum, preceding the first MFA phase, subjects were

instructed to concentrate on the breathing cycle as the primary object of awareness. Following

the first MFA block another audio file was played, reminding the participants to refocus on

their breathing whenever they caught their mind wandering. Then the second MFA phase

started. Thereafter a third audio file was presented as a reminder to continue with the task of
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focussing on the breathing cycle. A third MFA phase lasting another 5 min was recorded that

ended with another audio stimulus to initialize a following measurement of resting state activ-

ity for 5 minutes. The participants kept their eyes closed during the whole procedure; the vol-

ume of the audio stimuli was adjusted individually before the MEG recording to a comfortable

level. Another group of ten subjects with no history of neurological disorders forming the

mind wandering (MW) control group (mean age 26±2.75 SD years, one left-handed) carried

Fig 1. Procedure of the experiment. A The mindful focused attention (MFA) experiment conducted with group 1

consisted of five blocks each 5 min long and initiated by an instruction either to rest or to meditate with the breath as

the primary object of awareness while in intermediate blocks in group 2 short stories were read from the same speaker

and subjects had to wait for 5 min afterwards. B Power spectral density was compared between rest, mindful focused

attention and in the mind-wandering condition of group 1 (G1) and group 2 (G2), respectively. Colored lines show

difference in power values (t-values) as a function of frequency, within each group between the first resting block, and

the MFA- (pink line), W- (green line) and final resting blocks (violet line), respectively. The black shaded area gives the

surrogate distribution against which each t-value was compared. The horizontal lines give the confidence interval. C
We observed a significant decrease of power between rest and MFA across a wide frequency spectrum covering the

gamma and high frequency activity range. D shows the topographical distribution of differences in power in the high

frequency band. The green and pink square correspond with the green and pink line in C, respectively. MEG

magnetometers showing the strongest difference in power were located bilaterally over a fronto-temporal region. The

lower panel shows correlation of individual MAAS scores with power difference between rest and MFA. Only in

sensors covering the right frontal cortex we found both power difference between rest and MFA and correlation of

these power differences with MAAS score. E shows MEG activity with trough (upper panel) and peak (lower panel)

events showing different patterns of clustering yielding different likelihood distribution of cascade sizes. F shows

Gaussian fit to histogram of trough and peak events (red line mean, green line lower and upper confidence interval of

estimated Gaussian fits.

https://doi.org/10.1371/journal.pone.0233589.g001
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out the same experiment with the difference that instead of listening to the MFA instruction,

short stories (excerpts from the book “Let me tell you a story: Tales along the road to happi-

ness” written by Jorge Bucay) were read by the same speaker (Fig 1B). After each short story

participants were asked to wait until the next one to be narrated. In essence, we recorded five

blocks of rest, which is characterized by mind-wandering. For a better comparison with group

1 we tagged intermediate blocks as blocks of MW: Rest (5min)–MW (5min)–MW (5min)–

MW (5min)–Rest (5min). Additionally, the trait Mindful Attention Awareness Scale (MAAS

[25]), a 15-item scale designed to assess a core characteristic of mindfulness, was answered by

all subjects of both groups. Higher scores reflect higher levels of dispositional mindfulness. All

participants gave their written informed consent prior to recordings and were compensated

financially for their time. MAAS scores were compared between groups with an unpaired t-

test. The study was approved by the local ethics committee (“Ethical Commitee of the Otto-

von-Guericke University Magdeburg”).

Data acquisition

The subjects were seated in a magnetically shielded room in which magnetoencephalographic

activity (MEG) was recorded while the subjects performed the experiment. Electrooculo-

graphic (EOG) activity was recorded to reconstruct vertical and horizontal eye movements.

Electrode impedance was kept below 10 kΩ. For data acquisition a whole-head, 102-sensor ele-

ment array (Elekta Neuromag1 TRIUXTM) was used. Each of the102 sensor elements was

equipped with one magnetometer measuring the normal field component and two orthogo-

nally oriented planar gradiometers for measuring the gradient components. The participants

sat in an upright position underneath the MEG “helmet”. MEG data were sampled at 2000 Hz

and low-pass filtered with 660 Hz cutoff frequency.

Preprocessing

We used Matlab 2013b (Mathworks, Natick, USA) for all offline data processing. Only magne-

tometers were involved in our analyses. All filtering (see below) was done using zero phase-

shift IIR filters (filtfilt.m in Matlab). First, we used an absolute threshold of 300 fT to discard

signal epochs of excessive, non-physiological amplitude. We then visually inspected all data,

excluded epochs exhibiting excessive muscle activity, as well as time intervals containing arti-

factual signal distortions, such as signal steps or pulses. We refrained from applying artifact

reduction procedures that affect the dimensionality and/or complexity of the data like inde-

pendent component analysis.

Analysis

We estimated the power spectral density (PSD) for different blocks and groups. Specifically,

for each subject we calculated PSD as a function of frequency for the first and the last rest

block across the entire 5 min interval using Welch’s method based on the FFT [26]. After-

wards, the spectra were averaged yielding one mean spectrum for each subject of group 1 for

the rest condition. The same was done for the three blocks of MFA. In the second group the

power spectra of both blocks of resting were similarly calculated and averaged. Then the

power spectra of all 3 MW blocks were calculated and averaged. Across the two groups this

yields four PSD frequency spectra: rest of group 1, MFA of group 1, rest of group 2, and MW

of group 2. In planned comparisons we tested (i) whether the PSD (coefficient of each fre-

quency) differed between groups in the rest block, (ii) MFA differs from rest within group 1,

and (iii) MW from rest within group 2. We hypothesized that rest does not differ between

both groups while potentially MFA results in an altered PSD compared to rest. Hence, for each
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frequency we conducted three t-tests using log power values: rest vs. MFA within group 1, rest

vs. MW within group 2, and rest group 1 vs. rest group 2. To correct the significance threshold

for multiple comparisons resulting t-values were compared against a single surrogate distribu-

tion which was constructed by randomly reassigning labels (i.e. rest group 1, rest group 2,

MFA, MW) to the values of subjects in 10,000 runs [27]. In each iteration we randomly picked

two (out of four) labels and assigned randomly the values of subjects. This results in 10,000

surrogate t-values from which we determined a two-sided 99.9% confidence interval as signifi-

cance threshold.

Phase spectral analysis of peaks and troughs in the broad-band signal

We then analyzed whether the local minima of negative excursions (troughs) or local maxima

of positive excursions (peaks) of the broad-band signal are sufficiently sensitive events to

detect certain phases of oscillations in narrow frequency bands (see Fig 1E for difference

between troughs–local minima in negative excursions–and peaks–local maxima in positive

excursions). Hence, we asked whether events represent only certain phases at certain frequen-

cies, or certain phases of all frequencies. This is important if peaks and troughs of the broad-

band signal are actually generated by band-limited processes. We tested this in the following

way. The raw signal was filtered between 1 and 275 Hz. A notch filter was applied to remove

line noise (±2Hz around the first 5 harmonics).

We then discretized the broad-band signal largely following the procedure proposed by [9].

Epochs in which amplitudes exceeded ± 5 SD were marked as artefacts and excluded. Then,

the time series of all blocks in group 1 were z-transformed individually for all five blocks (rest

1, MFA1, MFA2, MFA3, rest 2), separately for each magnetometer. Positive and negative

excursions exceeding the chosen threshold of ±3 SDs [9] from the mean for each magnetome-

ter were identified (see Fig 1E & 1F). A single peak event was identified as local maximum

within each positive excursion, and a single trough event as local minimum within each nega-

tive excursion. We extracted cascades across our set of MEG magnetometers by first binning

the whole time series in 10 ms windows which is the average bin duration in previous studies

[9] and then summing up all events found within each bin for each magnetometer.

Peak time points (TPpeak) and trough time points (TPtrough) were stored. We then filtered

the broad-band signal in 39 narrow frequency bands with exponentially spaced center-fre-

quencies between 6 and 250 Hz each with a bandwidth of 10% (IIR Filter of order 4) around

the center-frequency. Note that frequency bands around line noise and harmonics can be

assessed since filtered frequency bands are broader than notch filters applied. In each fre-

quency we extracted the instantaneous phase angle (Hilbert function in Matlab). Both, at all

TPpeak and TPtrough we estimated the phase of each of 39 narrow frequencies. This results in

two phase angle distributions for each narrow frequency band–one at the time point of the

broad-band troughs and one at the broad-band peaks. For each distribution, we calculated the

concentration coefficient κ (reciprocal value to variance).

k ¼
1

B2

across all phase angles in each frequency band. A low κ represents an equal likelihood of all

possible phases (-π to +π), which means that the phase of specific frequency is unrelated to the

peak or trough event. A higher κ, on the other hand indicates that, a certain phase is overrepre-

sented within the phase distribution, i.e. that the oscillation at the corresponding frequency is

time- and phase-locked to the broad-band peak or trough event. To determine significance,

we compared frequency specific κ values against a surrogate distribution. In 10,000 runs we
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draw 10,000 random phase values from the phase angle distributions across all frequency and

calculated surrogate κ values and determined the 99% confidence interval of the resulting sur-

rogate distribution.

To investigate criticality features in the MEG data, we performed the following analysis

steps. In short, we first assessed spectral differences between the experimental conditions rest,

MFA and MW within and between groups. In the next step we analyzed whether peaks and

troughs in the broad-band signal are associated with certain phases of oscillations in narrower

frequency bands. Then we carried out a first frequency- and polarity-specific analysis of critical-

ity across all conditions by fitting a truncated power-law to each cascade size and duration dis-

tribution, and by assessing the closeness of its exponent α to a critical value of α = -1.5. We

thereby systematically follow a two-step approach: Before interpreting the exponent, we always

assessed the goodness of the power-law fit, as an insufficient goodness of fit would leave the esti-

mated exponent uninterpretable. The frequency specific analysis of criticality allowed us to

determine candidate frequency bands of the critical dynamics. Then we carried out a more

detailed analysis of criticality with MEG signals filtered in these candidate bands, including

comparisons of alternative fitting distributions, shuffling tests, evaluation of exponent relation-

ships between cascade size and duration distributions, a shape analysis of temporal cascade pro-

files, as well as a correlation analysis between individual power-law fits (exponents and

residuals) and MAAS scores. This initial analysis then allowed us to specifically analyze changes

in criticality with experimental conditions by statistically comparing goodness of power-law fit

and exponents within and between groups under conditions of MFA, MW, and rest. Finally, we

assessed the topographical origin of the branching dynamics, and across which cortical regions

cascades extend during rest vs. MFA to assess similarity and overlap of the involved networks.

Frequency-specific analysis of criticality

In the next step we assessed whether the brain exhibits criticality and if this is a frequency-spe-

cific phenomenon. We assessed this in the following way as outlined in [3,9]. We filtered the

broadband signal in 39 narrow frequency bands with exponentially spaced center-frequencies

between 6 and 250 Hz, each with a bandwidth of 10% (IIR Filter of order 4) around the center-

frequency in each of the five blocks. We then discretized the bandpass filtered signal in the

same way as the broad-band signal (see above, and Fig 1E & 1F). Separately for peak and

trough events, we extracted cascades across our set of MEG magnetometers by first binning

the whole time series in 10 ms windows which is the average bin duration in previous studies

[9] and then summing up all events found within each bin for each magnetometer. The same

analysis was repeated for the frequency bands but different bin durations ranging from 5 to 20

ms. A cascade was defined as a continuous sequence of time bins in which there was an event

on any magnetometer, ending with a time bin with no events on any magnetometer. The sum

of events across all magnetometers in a cascade was defined as the cascade size as it has been

described in previous studies [3,9]. To avoid double dipping in the selection of frequency

bands displaying criticality, we did not make use of differences in meditative state for selecting

the bands. Thus, cascades were pooled across all blocks of a group including both rest and

MFA/MW conditions. Using a power mass function we determined the likelihood of each cas-

cade size (CS) within the set of all cascades. The exponent of the likelihood distribution of the

cascade size (CSLD) was determined by the slope of a linear regression line fitted to the log-log

representation of the CSLD in each subject. Here we used the first 2/3 of each single log-log

CSLD to exclude the sharply dropping likelihood for the longest cascades.

The residuals of the linear fit to the CSLD quantify the deviation of the CSLD from power-

law scaling, and thus from a critical regime. In each frequency band we compared the residuals
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for trough cascades with the residuals for the peak cascades by calculating t-values across

subjects.

To correct the significance threshold for multiple comparisons, the resulting 39 t-values

were individually compared against the same surrogate distribution [27]. In 10,000 runs we

randomly assigned the residual of our participants to peak and trough cascades. This yields a

surrogate distribution of 10,000 t-values for each frequency band. We then estimated the prob-

ability of each observed t-value of each frequency band within the surrogate distribution of the

given frequency band. For assessing the frequency characteristics of criticality, we constructed

the surrogate distribution of CSLD exponents in the following way. We randomly permuted

CSLDs in each subject and for each frequency, and estimated the slopes of their log-log repre-

sentation, again. The dispersion of the surrogate distribution was used to determine a confi-

dence interval around a hypothesized exponent of α = -1.5, which according to theoretical

considerations indicates critical systems behavior [9]. Frequency bands with a mean CSLD

exponent α across subjects lying within the confidence interval were considered showing criti-

cal behavior since it did not deviate from theoretically assumed criticality parameter (α = -1.5).

As further control, time series of each magnetometer was shifted in time separately by a ran-

domly chosen number of samples (Npermutations = 10,000) leading to new cascades with unsys-

tematic spatial spread. Both, an exponent closer to -1.5 and/or smaller residuals in the original

compared to the surrogate data would be indicative for criticality in the original data.

In addition to linear regression, we tested whether cascade size distributions can be better

described by an exponential fit or a log-normal fit, which would indicate a different non-criti-

cal systems state. To this end we compared residuals of the linear fit with residuals of the expo-

nential fit and log-normal fit. T-values were compared against a surrogate distribution. This

surrogate distribution was constructed in the following way. In 10,000 runs we randomly

swapped labels (linear vs. exponential vs. log-normal) and calculated new t-values yielding a

surrogate distribution of 10,000 t-values against which we compared the observed t values.

Additionally, we compared the ratio of the exponents of the cascade size distribution (α) and

cascade duration distribution (τ) with the exponent ρ of the cascade size vs. cascade duration

distribution [28]. The ratio ρ´ is given by a� 1

t� 1
. We compared ρ and ρ´ values in paired t tests

both for the LFB and the HFB. In a critical state, the relation ρ is not different from ρ´ [28].

Avalanche shape collapse

If a neural system is in a critical state, in addition to exhibiting power-law size and duration

distributions, the mean temporal profiles of avalanches should be identical across scales

[28,29] meaning that long duration avalanches should have the same scaled mean shape as

short avalanches (shape collapse). Shapes were produced by averaging the temporal profiles

(number of events in consecutive time bins) of all avalanches of a particular duration. We then

scaled shapes to a uniform duration and scaled the minimal and maximal numbers of events

constituting a cascade between 0 and 1.

External validity

To assess the behavioral relevance of criticality, we tested whether mindfulness correlates with

the goodness of the linear fit in the critical frequency bands as an indicator of power-law scal-

ing and thus of criticality. For this, we correlated the residuals with the summed MAAS scores.

Differences between mindful focused attention and rest

The previous analysis informed us which frequency bands show criticality. We then filtered

the signals in the frequency bands (to anticipate, a low frequency (9-37Hz) and a high
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frequency band (170-275Hz) showing exponents close to criticality α = -1.5). Separately for

the three blocks of MFA and the two blocks of resting activity, we discretized the resulting

bandpass filtered signal and extracted the cascades as outlined above. Then we estimated the

CSLD for both conditions and compared exponents in planned comparisons with a t-test. In

the second step we separately determined the CSLD exponent for each of the five blocks of

group 1 to test the specific hypotheses that (i) brain dynamics were regulated towards critical-

ity from the first block (rest) to the second block (mindful focused attention), (ii) remained at

a constant critical level throughout the following two blocks of mindful focused attention and

(iii) rebound from critical dynamics in the last block when mindful focused attention is sus-

pended (rest). Each t-value resulting from the pairwise comparisons were compared against a

surrogate distribution to test for significance. In 10,000 runs we randomly assigned condition

labels (rest vs. MFA) to the CSLD exponent values across subjects and calculated a t-value

between rest and MFA from these surrogate data. This yields 10,000 new t-values against

which we compared the observed t-values. Finally, we tested whether waiting and rest differed

in the control group comparing exponent values with a paired t-test.

Topographic analysis of avalanche propagation

We further characterized the topographic spread of the avalanches. First, we evaluated where

cascades typically started and hence most likely triggered the avalanches. This was assessed in

the frequency bands showing criticality according to the previous analysis steps. To this end,

we determined the likelihood of each magnetometer to show an event in the first time bin of

each cascade. We did this only for cascades longer than 10 time bins. We hypothesized that

shorter cascades cannot spread fast enough allowing for a comparison between trigger zones

on the one hand and regions where cascades typically propagate on the other hand. If cascades

systematically spread away from the trigger zone then this is most likely detectable in longer

cascades. The likelihood of each magnetometer in the first time bin yielded a topographic dis-

tribution of avalanche starting points, separately for rest and MFA in each subject. In each

MEG magnetometer we compared the likelihood during rest and MFA across subjects with a

t-test yielding a t-value for each MEG magnetometer. Regions of MEG magnetometers with a

significant negative t-value mark those regions where cascades during MFA originate from

more frequently. Conversely, regions of MEG magnetometers with a significant positive t-

value denote those regions where cascades originate more often during rest than during MFA.

Second, to reveal cortical regions across which cascades extend, we determined for each cas-

cade all MEG magnetometers involved. Then we calculated for each MEG magnetometer the

likelihood to be involved in any cascade. This was done for each subject both in the MFA and

the rest condition. The likelihood of each MEG magnetometer to be involved was compared

between MFA and rest across subjects yielding a t-value for each MEG magnetometer. Regions

of MEG magnetometers with a significant negative t-value mark those regions where cascades

during MFA frequently originate from. To correct the significance threshold for multiple com-

parisons, t-values of each MEG sensor were compared against a surrogate distribution. In

10,000 runs we randomly assigned condition labels (rest vs. MFA) to the CSLD exponent val-

ues across subjects and calculated a t-value between rest and MFA from these surrogate data.

This yields 10,000 new t-values against which we compared the observed t-values.

Results

MAAS score for trait mindfulness

The two experimental groups did not differ with respect to the score of the trait Mindful Atten-

tion Awareness Scale (MAAS: Mgroup1 = 4.32; SD = 0.49; Mgroup2 = 4.41; SD = 0.56; t25 = .44;
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p = 0.7). Thus, potential differences in brain dynamics are not due to different levels of

mindfulness.

Spectral power differences

We compared PSD spectra between rest, MFA and MW in planned comparisons to assess

whether these conditions differ regarding oscillatory activity (Fig 1B). We found a difference

in PSD within group 1 between rest and MFA from 42 to 520 Hz as indicated by t-values

exceeding the upper boundary of the 99.9% confidence interval of a surrogate distribution

(ci99.9 = [-3.37 3.48]) corresponding to a decrease of high frequency activity during MFA com-

pared to rest (Fig 1C). The maximal t-value was 4.16 (p = .00004) at 72 Hz. In contrast, we did

not find significant differences between rest and MW within the second group, nor in the rest

condition between group 1 and group 2. MEG magnetometers showing the strongest differ-

ence in power were located bilaterally over a fronto-temporal region (Fig 1D, upper panels).
Furthermore, individual MAAS scores were significantly correlated with a high frequency

power decrease in a right set of fronto-temporal magnetometers and an increase in mid-occip-

ital magnetometers (Fig 1D, lower panel) indicating that activity modulation in these regions

predicts subjective mindfulness. In summary, we found a selective decrease in power of high

frequency activity during MFA (Fig 1C). The comparison with the MW control condition

(Fig 1B) suggests that this modulation of the high frequency activity was not due to changes in

arousal over recording time but was truly related to meditation.

Neural oscillations associated with broad-band peaks and troughs

In previous studies, neural avalanches have been defined on the basis of troughs and peaks in

the broad-band signal of magnetometers, which have been used as basic events for recon-

structing avalanches [3,9]. However, the broad-band signal can be split into narrow frequency

bands which are associated with different psycho-physiological processes. By phase spectral

analysis we determined, whether peaks and troughs in the broad-band signal were associated

with certain phase angle of band-limited oscillations. Particularly, instantaneous phase angle at

the time point of each peak or trough event were determined by a Hilbert transform of 39 nar-

row frequency band signals (exponentially spaced center-frequencies between 6 and 250 Hz

each with a bandwidth of 10%) obtained by digitally filtering the broad-band signal (IIR Filter

of order 4). Phase angle distributions were calculated across all TPpeak and TPtrough of all con-

ditions in the experimental group, respectively, separately for each of the 39 narrow frequency

bands. From these distributions, concentration κ (reciprocal value to standard deviation) was

calculated for peaks and troughs in each frequency band, respectively. Phase distributions in

the alpha, beta, gamma (LFB: low frequency band) and high-frequency range (HFB: high fre-

quency band) have a biased oval while frequencies around 50 Hz have more symmetric, circu-

lar form (Fig 2A) and showed significant κ values (κcrit = .55; LFB: κmax = .87, p< .0001; HFB:

κmax = .88, p< .0001). Thus, peaks and troughs were associated with specific oscillatory phases

of low-frequency oscillations (alpha, beta, gamma) and of high-frequency activity, but not of

mid-frequency oscillations.

Frequency bands displaying critical brain dynamics

To assess whether criticality has to be considered as a global or a band-limited phenomenon,

we investigated the frequency-characteristics of the critical avalanche dynamics by fitting trun-

cated power-laws to cascade size distributions derived from narrow-band filtered MEG signals

(Fig 2B and 2C). Whether the dynamics is scale-free can be assessed by the goodness of the

power-law fit, and how close it is to the critical point by the value of the power-law exponent.
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Power-law fits to trough cascade size distributions displayed significantly smaller residuals

than for peak-cascades at low frequencies between 6 and 34Hz, at 66Hz, and between 104 and

206Hz with an average p-value of .013. This result indicates that trough cascades yielded a bet-

ter power-law fit than the peak cascades in a low (<35 Hz) and a high frequency band

(> 100Hz). As we have argued in the introduction, including both, peaks and troughs as events

into the analysis, might bias cascade size and duration distributions. We therefore continued

our analysis only with the better fitting trough-cascades.

For the trough cascade size distributions (Fig 2B, upper panel), we found low residuals (Fig

2C, upper panel) and near-critical exponents (Fig 2C, lower panel) that were not statistically

different (p>.05) from a critical value of α = -1.5 at low (9–37 Hz) and high frequencies (170–

275 Hz), as determined by a permutation test. In all other frequency bands α differed signifi-

cantly from the theoretically assumed critical exponent value of -1.5 demonstrating that net-

works in these frequency bands did not display near-critical dynamics. We also systematically

varied the bin duration used for cascade reconstruction (Fig 2B, lower panel). Near-critical

exponents were only found for longer bin durations (Fig 2C, lower panel). Shorter bin dura-

tions only yielded exponents significantly more negative (supercritical) than the critical value

of α = -1.5 across all frequencies.

A more detailed analysis of criticality was then carried out in two candidate frequency

bands determined from the frequency-specific analysis above, i.e. for a low frequency band

(LFB: 9–37 Hz) and a high frequency band (HFB: 170–275 Hz). We chose a bin duration of 10

ms since this is the mean bin duration in previous studies (see for example [9]), and, depend-

ing on frequency, shows low residuals of power-law fitting and near-critical exponents in our

data. First, we fitted truncated power-laws to the cascade size distributions derived from these

two bands. In the HFB, the power-law yielded significantly better goodness of fit than an expo-

nential (Fig 3A, resexp = .051, reslin = .031; t16 = 16; p< .0001), and a log-normal function

Fig 2. Depiction of trough and peak cascades. A We extracted the peaks (black) and troughs (red) of the broad band signal. At these time

points we estimated the phase distribution of all 39 narrow frequency bands. Each ring represents the phase distribution of one frequency band

ranging from low (cyan) to high frequencies (pink). We calculated the phase concentration κ for each of the frequencies (lower panel). The

phase distributions in the alpha, beta, gamma and high-frequency range have an oval (corresponding with high κ) while frequencies around 50

Hz have more circular form (corresponding with low κ). B shows cascade size and cascade duration likelihood distributions for one subject for

the different frequency bands in a log-log representation. Low frequencies are shown in darker shades. C We found systematically lower

residuals (better linear fit) for 9–37 Hz (LFB) and 170–275 Hz (HFB) frequency bands and slopes not different from the critical value α = -1.5.

Red line shows average across subjects (individual values shown by blue dots) and standard errors for 10 ms time bins.

https://doi.org/10.1371/journal.pone.0233589.g002
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(reslognorm = .04; t16 = 6; p< .0001), but not in the LFB (resexp = .046; reslin = .049; t16 = 1.05;

p>.05) where the log-normal fit was better than the linear fit (reslognorm = .038; t16 = 3.5; p =

.003). Thus, only in the HFB cascade size distributions were better explained by a truly scale-

free distribution than by other heavy-tailed distributions. Next, we compared in the HFB the

goodness of fit and the estimated exponents with those obtained from surrogate MEG-signals

time-shifted across magnetometers, in which the temporal relation across magnetometers was

perturbed while the temporal succession of events within each MEG magnetometer was main-

tained. Residuals of the power-law fits were significantly larger in the HFB surrogate than in

the original data (t16 = 12.8; p< .0001; see Fig 3B). This shows that in the HFB cascade sizes

better fit to a scale-free distribution than the randomly permuted surrogate data. Residuals in

the LFB were generally larger than in the HFB, and did not significantly differ from the residu-

als of the surrogate data (t16 = 2.2; p>.05). To further evaluate criticality, we tested whether the

ratio ρ´ = a� 1

t� 1
: derived from the exponent α of the cascade size distribution (A) and the expo-

nent τ of the cascade duration distribution (B) differed from the exponent ρ of the average size

distribution over fixed cascade durations (C) for the LFB and the HFB, respectively. The confi-

dence interval (tci = ±2.5) was exceeded only in the LFB (t16 = 3.8; ρ´LFB = 1.53; ρLFB = 1.47)

indicating a significant difference between ρ´ and ρ for the LFB, but not for the HFB (t16 = 2.1;

ρ´HFB = 1.33; ρHFB = 1.34; see Fig 3C). The observed relation ρHFB´ = ρHFB [28] can be

regarded as a genuine sign for criticality in the HFB. Criticality for the LFB, instead, could not

be verified by this test, as ρLFB´ 6¼ ρLFB.

Fig 3. Depiction of cascade size distribution across frequencies. A We found better linear fits in the HFB compared to exponential and log-

normal fits but no such pattern in the LFB. B We found high residuals of the linear fit to the CS taken from randomized data (black) as

compared to empirical data (red). C ratio of CS and CD slopes were not different from correlation slopes between CS and CD indicating

criticality in HFB but not in the LFB. D shows cascade evolution (shape) as a function of cascade length for both LFB and HFB. Note that only

HFB shows comparable cascade shapes for different cascade sizes. E in the HFB higher MAAS score predicted a better linear fit as indicated by

smaller residuals and were also correlated with the slope of the linear regression.

https://doi.org/10.1371/journal.pone.0233589.g003
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Scaling of cascades can be directly assessed by analyzing the cascade shapes, i.e. its momen-

tary size as a function of cascade duration (Fig 3D). In the HFB all cascades have the shape of a

parabola. With different cascade sizes this shape is scaled by a power-law reflecting the under-

lying scale-free avalanche dynamics. Indeed, in the HFB, all shapes collapse when scaled indi-

vidually to unit length. This is again not the case for the LFB. Here, cascade shapes are much

more variable, and are not simply scaled versions of each other.

To assess the behavioral relevance of our findings, we correlated both the residuals of indi-

vidual power-law fits as indicators of scale-freeness, and the corresponding exponents as an

indicator of criticality with individual MAAS scores of mindfulness across subjects (Fig 3E).

In the HFB a significant negative correlation was found for the residuals (r = -.71; p = .0015)

demonstrating a better goodness of scale-free power-law fits with increasing MAAS score. In

parallel, a significant positive correlation was found between individual linear exponents and

the MAAS score (r = .48; p = .049). No significant correlations were found for the LFB, neither

for the residuals (r = .23; p = .36), nor the exponents (r = .34; p = .17). Altogether, a dynamics

showing scale-free, near critical dynamics could be only verified for the HFB.

Differences between mindful focused attention and rest

The previous analysis of criticality was carried out on background MEG pooled across all con-

ditions. We then analyzed the dependence of criticality on our experimental conditions by

reconstructing cascade size distributions separately for groups and block conditions in the

HFB. Fig 4A shows the goodness of power-law quantified by the coefficient of determination

for the resting blocks and the MFA blocks in group 1, and for the resting blocks and the MW

blocks in group 2. In all conditions coefficients of determination were high (R2 > 0.93).

Between MFA and rest R2 showed a significant difference (t16 = 6.6, p< .0001) while there was

no such difference between MW and rest (t9 = 1.2, p = .25). Nevertheless, our results show that

cascade size distributions were scale-free in all conditions. However, as can be seen in Fig 4B,

the exponent of the power-law was significantly more negative during MW and rest than dur-

ing MFA (t16 = 3.7; p = .002). No difference was found between exponents of the rest and MW

condition (t = .65; p = .53). Therefore, with an equally high goodness of power-law fit, power-

law exponents were closer to the critical value of α = -1.5 during MFA. Apparently, MFA

shifted the dynamics from a supercritical closer to a critical state. Notably, even for the individ-

ual experimental blocks in group 1 (Fig 4C) we found significantly more negative exponents

Fig 4. A shows that the linear fit explained almost perfectly variance in the cascade size distributions of both conditions in both groups.

B shows that only the HFB showed a significant difference between blocks in group 1 with CS more closely to α = -1.5 during MFA but

not for the control group. C shows regression slope α for each of the 5 blocks. All black lines indicate statistically significant pairwise

differences. The gray lines indicate pairwise comparisons which did not show significant differences.

https://doi.org/10.1371/journal.pone.0233589.g004
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below -1.5 in the HFB of the resting blocks compared to the 2nd (p = .005), 3rd (p = .02) and 4th

MFA block (p = .02), while there was no difference in the exponent across the MFA blocks (all

p>.13). In contrast, the exponent in the last (5th) resting block of group 1 was much more neg-

ative than in any other block, including the first resting block (ps < .001), and the 2nd (p =

.0003), 3rd (p = .0003) and 4th (p = .0008) MFA blocks. No changes were observed across blocks

of MFA that could be attributed simply to the passing of time. In contrast, the exponent in the

HFB during the last resting block was more negative consistent with a more supercritical

regime than in all other blocks, which might indicate fatigue in the course of experiment. This

might also explain the slightly reduced goodness of fit in the resting condition particularly of

group 1. All this confirms that meditation shifted the scale-free brain dynamics closer to the

critical point.

Topographic distribution of avalanches

Fig 5A shows the distribution of cascade events as function of time and magnetometer chan-

nels relative to avalanche onset. From these spatiotemporal distributions we assessed whether

cascades started and/or spread across the same cortical regions during the different experi-

mental conditions. For each magnetometer we determined the likelihood of being member of

a cascade either at its start, or during the entire time of its spread. We then compared the

regions from which cascades were triggered, or that were traversed by cascades more often in

the MFA vs rest condition, respectively. The rationale is that when MEG magnetometer are

more often involved at the start or during a cascades at rest compared to MFA, then cascades

branch across different regions under these conditions.

Fig 5B shows topographical distributions of t-values of the likelihood of magnetometers

contributing to rest vs. MFA at the start (left) or throughout the entire cascade (right) for the

HFB, i.e. whether cascades more often started at or spread over a magnetometer during rest

(red areas, positive t-values) compared to MFA (blue areas, negative t-values), respectively.

Fig 5. Depiction of topographical distribution differences between conditions. A shows events centred on start of the cascade as marked by

0 for each magnetometer (y-axis). The red framed area denotes the time bin in which no event was found. In each MEG magnetometer we

summed all events found at each sample point both for rest and MFA. Here we depict the difference in the number of events. Light areas

indicate that more events were found in the MFA condition while darker areas indicate that more events were found in the Rest condition. The

upper panel shows the events found in the HFB. Vertical lines show the temporal bins of 10 msec. MEG magnetometers were sorted according

to the number of events found in the first time bin. MEG magnetometers marked by the black vertical line are those showing the strongest

difference between rest and MFA and are located over the right hemisphere. This difference is stronger in the HFB than in the LFB. B shows the

topographical distribution of the likelihood of MEG magnetometers to be involved in HFB cascades (left in the first time bin and right across all

time bins). Blue areas show regions of MEG magnetometers in which the likelihood is higher during MFA than during rest. Red areas show

regions of MEG magnetometers in which the likelihood is higher during rest than meditation. MEG magnetometers at which we observed a

significant difference are marked with a black dot.

https://doi.org/10.1371/journal.pone.0233589.g005
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Magnetometers with statistically significant t-values compared against the surrogate distribu-

tion (tcrit = 2.5) are marked by black circles.

MEG magnetometers covering the right fronto-temporal-parietal region triggered HFB cas-

cades more often during MFA (t16 = -2.8; p = .003). A similar pattern was found in the HFB

across the entire cascade duration. MEG magnetometers covering the mid-central regions

were more often involved in cascades during rest (t16 = 2.9; p = .003), whereas right fronto-

temporal-parietal regions were traversed by HFB cascades more often during MFA than dur-

ing rest (t16 = -2.6; p = .006). In summary, we found that cascades spread differently across cor-

tical regions during rest and MFA. Note, that this does not necessarily mean that cascades

were confined to these regions.

Discussion

Previous analyses on criticality have been carried out on broad-band filtered signals. However,

filtering the MEG signal in a broad-band does not necessarily imply that criticality itself is a

broad-band phenomenon. In a true broad-band phenomenon, all frequency should similarly

contribute to power-law scaling. Our study however shows that peaks and troughs in the

broad-band MEG commonly used to reconstruct neural avalanches are phase locked to oscilla-

tions in the low (<50Hz) and high (>100Hz), but not in the mid-frequency range. Thus, peaks

and troughs are part of spatiotemporally extended oscillatory structures in these two bands. In

parallel, power-law fitting yielded low residuals and near-critical exponents in a low (LFB:

9–37 Hz) and a high frequency band (HFB: 170–275 Hz). Thereby troughs showed a signifi-

cantly better fit in a low and a high frequency band overlapping with LFB and HFB, respec-

tively. Clear evidence for criticality, also, was only found for troughs from MEG signals filtered

in the HFB: only in the HFB the goodness of fit to power-law scaling was significantly better

than for alternative exponential and log-normal distributions, and also better than for ran-

domly permuted surrogate data. Also the exponent relationship of cascade size and duration

distribution proposed by [28] as a genuine sign of criticality, only held for the HFB, but not for

the LFB. Furthermore, temporal profiles of avalanches of different size were power-law scaled

versions of the same parabolic shape, and could be collapsed onto each other after rescaling.

This is regarded as an indicator of criticality, which, however, was only found for the HFB, but

not for the LFB. Moreover, only in the HFB, the MAAS score of mindfulness was positively

correlated both with the goodness of the power-law fit, and with the exponent of the linear fit

across subjects. Our study therefore demonstrates, that criticality in the MEG during MFA is

associated with brain oscillations in the high frequency (>100 Hz) range of the MEG.

The frequency dependence of criticality, and the significantly better power-law fit of

troughs indicates that peaks and troughs might at least stem partially from different phases of

an oscillatory generator, or even from different generators contributing differently to the criti-

cal dynamics of the system. In any case, including both, peaks and troughs in the analysis can

bias the avalanche size distributions towards larger cascade sizes. By counting peaks and

troughs, the contribution of a single dipole, or a single oscillatory generator to an avalanche

would be counted twice, and in case of different, superimposed oscillatory generators, ava-

lanches including peaks and troughs would represent a stronger mixture of physiologically dif-

ferent events than peaks or troughs alone. In order to reduce this bias, the analysis of critical

brain dynamics on a macroscopic level should take into account the polarity and the frequency

of the brain signals. Temporal filtering and selection of troughs thereby can separate the con-

tribution of different generators, and improve the specificity of avalanche reconstruction.

As has been shown, high frequency (>80 Hz) activity in field potentials reflects the feedfor-

ward propagation of action potentials more directly than other bands [30]. Thus, high
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frequency activity would be an ideal carrier of neural avalanches that can spread over the brain

revealing the dynamic state of the brain underlying the transmission process.

Importantly, during MFA neural avalanche dynamics reconstructed from the HFB was

closer to the critical point compared to MW and rest. While all conditions yielded a similar

goodness of fit to a scale free power-law, exponents were closer to the critical value of -1.5 dur-

ing MFA, and more negative during MW and rest, indicating a shift towards a supercritical

dynamics. The largest negative deviation from the critical exponent -1.5 was found in the final

resting block most likely due to fatigue.

In our experiment we instructed subjects to breathe normally. However, drawing attention

to the breathing cycle as during MFA, breathing might have been altered which could in turn

lead to spectral changes. In a recent study, evidence has been found that the breathing rate cor-

relates with slow cortical potentials characterized by oscillations below 1 Hz [31], which is

however outside the MEG-bandwidth we investigated and evidence for breathing to alter criti-

cality is lacking. Also, there were no other low frequency changes in the MEG-spectrum of our

data that would point towards an altered breathing pattern. The main spectral power effect we

found was in a high frequency band (>40 Hz), which could in principle be due to muscle arti-

facts. As reported in a review by [32], muscle artifacts in the MEG are characterized by broad-

band high-frequency activity in the range of 20–300 Hz but with the largest power at the lower

end of this range. Therefore, changes in muscle activity should have altered lower beta/

gamma-power, as well, which was not the case in our data. Furthermore, a significant correla-

tion between high-frequency power reduction and MAAS score was found only unilateral at a

right fronto-temporal site. With respect to the initiation and overall contribution to cascades,

largest differences between conditions were found at mid-occipital and again at right fronto-

temporal sensors. Such topographic distributions would be hard to explain by MFA related

changes in muscle activation. Given the additional fact that we rejected muscle-contaminated

MEG signals without noting differences between experimental conditions, a mere muscle

effect on criticality is unlikely. Notably, the critical dynamics we observed especially in the

high frequency band corresponds to a lower signal power in this band. Hence, we would con-

clude that at least critical dynamics was not driven by muscle artifacts. If any, reconstruction

of avalanche dynamics could have been affected by muscle artifacts during resting state condi-

tions. In this case, MFA would have facilitated the detection of critical brain dynamics by

reduction of muscle activity.

However, given the fact that both the goodness of fit of the power-law and the power-law

exponent were correlated with the MAAS score rather suggests that the shift of the exponent

towards criticality during MFA was truly related to a change in brain dynamics. We used the

MAAS score as independent measure of the subject’s tendency toward mindfulness, a trait of

the subject that is not related to the actual performance during the experiment. Notably, sub-

jects did not differ as to their trait level of mindfulness between the MFA and the MW group,

which shows that group differences in critical dynamics was related to the instruction, and not

to differences in the subject’s meditative capabilities. To our knowledge, there are no well-

established psychophysiological or behavioral markers that specifically quantify such a state

without being confounded by unspecific effects like vigilance. We therefore thoroughly

instructed our subjects to perform meditation without changing breathing, and explicitly used

naïve subjects to show the differences between rest and mediation. To control for vigilance

effects, our experimental design used blocks of rest in the beginning and at the end. Under the

assumption of drowsiness we would have expected that brain dynamics alters progressively

across the entire experiment. Indeed, a vigilance effect was found in the meditation group.

Between the first and the second resting state at the end of the experiment, the cascade size

exponent became more negative than -1.5 indicating a shift towards supercritical behavior.
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This might be an effect of drowsiness. But this was only found in the resting state blocks,

whereas no significant change occurred across meditation blocks. Also, we did not find differ-

ences in alpha band power indicating a vigilance effect, and our experiment was relatively

short (~30 min in total) reducing the influence of vigilance decrements.

A few other studies have also analyzed the relationship between meditation and criticality.

Irrmischer et al. [16] showed a reduction of long range temporal correlations (LRTCs) during

MFA. They hypothesized that attention is balanced at a critical point of instability between

order and disorder allowing for both, transient focus and swift change of attentional resources.

They argue that the focus of attention reduces information propagation by shifting the system

towards a subcritical regime, which seems to be in contrast to our findings. However, consis-

tent with our study, the authors did not find effects of MFA on critical brain dynamics in nov-

ices at frequencies < 45 Hz. Also, in our study, the power-law exponent changed from values

more negative than -1.5 to values close to -1.5, i.e. in a similar direction from a supercritical to

a critical dynamics. Furthermore, differences between our study and Irrmischer et al. [16]

might arise from difference in measurement (MEG vs. EEG) and analysis (various avalanche

based indices of criticality vs. detrended fluctuation analysis, DFA). Thereby, it is not straight

forward to relate DFA to the power-law distributions and criticality indices used in our analy-

sis. Most importantly, their study did not include higher frequencies from 170 to 270 Hz as

our study and their effects were only found in trained subjects. Fagerholm et al. [10] found

that in the resting state broad-band cascades were associated with an approximate critical

power-law form, while the focused task state was associated with a subcritical dynamics. This

parallels our study insofar as critical dynamics were found when subjects are instructed to

focus on their internal milieu and refrain from the external world. Our study adds an impor-

tant point to the knowledge of criticality since we showed that critical dynamics are driven by

high frequency activity which was not assessed in previous EEG studies. Notably, Fagerholm

et al. [10] focused on stimulus-driven attention rather than on self-regulated modulation of

top-down attention as in MFA. Also, subjects had to respond as fast and accurately as possible,

which necessarily confounds brain dynamics underlying attention with stimulus-evoked

responses, visual information processing, decision processes, and movement-related activa-

tion. Hence, subcritical dynamics could not be ascribed exclusively to attentional modulation.

In general, motor tasks that require decisions under focused attention are not the best candi-

dates to contrast with rest, especially since fluctuation between stability and instability as the

identifying feature of criticality is suspended during motor tasks, leading to increased stability

[33]. Hence, studies on deviation from or convergence to criticality during attention must con-

trol for motor activity, visual input and decision processes. Finally, while Fagerholm et al. [10]

proposed that the distribution of cascades changes with different cognitive states rather than

where their origin, we found that cascades during MFA were triggered more often in the right

hemisphere. Our finding thereby is consistent with several studies showing that during top-

down attention right-hemispheric regions play a prominent role [34,35]. Unlike in our study,

Lutz et al., while recording EEGs in long-term Buddhist meditation practitioners, observed in

the gamma-band high amplitude oscillations and phase synchrony between fronto-parietal

electrodes at frequencies from 25 Hz to 42 Hz, i.e. at lower frequencies than the high-frequency

effects in our study [36]. The differences between Lutz et al. and our findings may be due to

different styles of meditation, since Lutz et al. aimed at a state of non-referential compassion

meditation, for which a focused attention on a particular object, was not required.

In our study, we asked the subjects to rest in the first and last block and to perform MFA in

the intermittent blocks. The instruction to rest allows the mind to wander [37]. Mind wander-

ing is characterized by a lower level of alertness [38], and reduced external information pro-

cessing, which could also explain the larger distance from a critical state, as is the case under
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rest, particularly if the subjects get tired. Moreover, during mind wandering attention is

assumed to be decoupled from the environment [38]. By contrast, MFA requires the detection

and inhibition of mind-wandering, and the refocusing of breath, which involves constant

monitoring and executive control, particularly in novices. Clearly, self-regulated top-down

modulation of attention as required during MFA is not well described by a fixed filter with a

narrow aperture. This process is better characterized by a balance of noise and stability, of inte-

gration and segregation, of excitation and inhibitions, as might be implemented by brain states

close to an instable critical point at the border between order and disorder. The observed

decrease in power of the high-frequency activity during MFA in our study might thereby

reflect a lower rate of neuronal spiking in right fronto-parietal regions during MFA, and thus a

reduced destabilizing drive, "distracting" the brain from its balanced critical state during

mind-wandering.

It is usually assumed that during rest the Default Mode Network (DMN) is activated,

whereas studies of focused concentrative mediation have reported fronto-parietal executive

network activity during meditation [39]. Particularly, as shown by functional magnetic reso-

nance imaging (fMRI), MFA is correlated with activation of prefrontal cortex, premotor cor-

tex, and dorsal anterior cingulate cortex that have been also shown to be involved in self-

regulation of attention [40], as well as a reduced activation of posterior cingulate cortex, and

the posterior parietal lobule of the DMN that have been related to mind-wandering, before

[39,41].

In conclusion, we have shown that criticality as obtained from avalanches in MEG record-

ings was only observed at high frequencies > 100 Hz, and that during mindful focused atten-

tion avalanche dynamics was closer to a critical point than during states of rest. Together with

the finding that mindfulness meditation leads to topographic changes in the avalanches rela-

tive to rest, our results show that self-regulated attention as required during meditation tunes

brain dynamics to criticality providing a functional link between criticality and cognition.
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Conceptualization: Stefan Dürschmid, Giulio Tononi, Matthias Deliano.

Data curation: Stefan Dürschmid, Nike Walter.
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Impulsive decisions arise from preferring smaller but sooner rewards compared with larger but later rewards. How neural ac-
tivity and attention to choice alternatives contribute to reward decisions during temporal discounting is not clear. Here we
probed (1) attention to and (2) neural representation of delay and reward information in humans (both sexes) engaged in
choices. We studied behavioral and frequency-specific dynamics supporting impulsive decisions on a fine-grained temporal
scale using eye tracking and MEG recordings. In one condition, participants had to decide for themselves but pretended to
decide for their best friend in a second prosocial condition, which required perspective taking. Hence, conditions varied in
the value for themselves versus that pretending to choose for another person. Stronger impulsivity was reliably found across
three independent groups for prosocial decisions. Eye tracking revealed a systematic shift of attention from the delay to the
reward information and differences in eye tracking between conditions predicted differences in discounting. High-frequency
activity (175-250Hz) distributed over right frontotemporal sensors correlated with delay and reward information in consecu-
tive temporal intervals for high value decisions for oneself but not the friend. Collectively, the results imply that the high-fre-
quency activity recorded over frontotemporal MEG sensors plays a critical role in choice option integration.

Key words: delay discounting; eye tracking; frontal cortex; high-frequency activity; impulsivity; MEG

Significance Statement

Humans face decisions between sooner smaller rewards and larger later rewards daily. An objective benefit of losing weight
over a longer time might be devalued in face of ice cream because they prefer currently available options because of insuffi-
ciently considering long-term alternatives. The degree of contribution of neural representation and attention to choice alter-
natives is not clear. We investigated correlates of such decisions in participants deciding for themselves or pretending to
choose for a friend. Behaviorally participants discounted less in self-choices compared with the prosocial condition. Eye move-
ment and MEG recordings revealed how participants represent choice options most evident for options with high subjective
value. These results advance our understanding of neural mechanisms underlying decision-making in humans.

Introduction
Reward value decreases as a function of time: the longer we
have to wait, the less a reward is typically valued. Hence,

delayed delivery of a larger reward converts an objective
value into a perceived lesser value. This results in choosing a
smaller but sooner (SS) rather than a larger but later reward
(LL), a phenomenon known as delay discounting (DD).
Impulsive decisions might be because of the tendency to
prefer SS rewards compared with LL rewards. Previous fMRI
studies focused on neuroanatomical correlates of subjective
valuation, and observed interactions of multiple independ-
ent valuation systems in the ventromedial PFC (vmPFC)
and the dorsolateral PFC (dlPFC) (McClure et al., 2004,
2007) where goal values correlate with vmPFC activity and
the amount of self-control with dlPFC activity (Hare et al.,
2009). Impulsivity might also result from insufficiently con-
sidered objective alternatives (Ainslie, 1975; Myerson et al.,
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2003; Olson et al., 2007), which have to be translated into
subjective values (Mazur, 1987; Green and Myerson, 2004).
This view suggests that poor attention to objective values
might lead to stronger DD.

Differences in discounting between participants could also
be because of insufficient representation of choice options in
working memory (Fuster, 1990; Baddeley, 1992; Goldman-
Rakic, 1992) before an option is selected. Importantly, self-
awareness counteracts this difference in discounting (Peters
and Büchel, 2010). This observation suggests that choices
neglecting self-awareness should lead to steeper discounting,
but two contributions to these effects are still debated. First,
how attentional mechanisms and the degree of neural repre-
sentation contribute to decisions in intertemporal choices
remains uncertain. Specifically, the time course and neuroana-
tomical basis of integration of choice options (delay and
reward) for subjective valuation are not defined. Second,
whether and how these mechanisms are modulated qualita-
tively by subjective awareness are not clear. We propose that
attentional selection and neural representation require more
effort when deciding for oneself, which is reduced in prosocial
decisions (Lockwood et al., 2017). In accordance with previous
studies (Lockwood et al., 2017), we tested how taking perspec-
tive of another person alters the effort to attentional select and
represent choice options. The experimental contrast relies on
taking perspective of the best friend (pretending to decide for
the best friend), which is a prerequisite for prosocial acts and
by definition reduces self-awareness.

Using eye tracking and temporal resolution of MEG record-
ings, we compared patterns of attentional evaluation and
representation of objective values in a DD paradigm in two
conditions. In one condition, participants decided on their
own reward; whereas in a second anonymous prosocial con-
dition, they pretended to decide for an imagined best friend.
Hence, the conditions differed only in the subjective aware-
ness of reward for the participants. We tested the hypothesis
that participants decide more impulsively in prosocial deci-
sions, even if this decision is completely anonymous since
participants only visualize their best friend (Lockwood et al.,
2017). We further hypothesized that objective choice alterna-
tives are less considered and consequently less represented
when decisions are made for others. Eye movements are a

sensitive proxy of attentional shifts, and we assessed the time
course of the attentional focus using eye movement record-
ings and predicted less attention in choices made for others.
Using MEG in an initial approach, we first evaluated whether
frequency specific activity integrates choices options and sec-
ond, whether differences in choice options (reward and delay
in SELF vs OTHER) within the attentional focus yielded dif-
ferences in neural activation.

Materials and Methods
General paradigm
In all experiments, participants were asked to choose between an LL
amount of 10e at a variable delay D (1, 2, 5, 11, 24, or 52weeks; pre-
sented in pseudorandom order such that all delays were evenly distrib-
uted across the entire experiment) and SS reward. Participants made 10
choices for each delay while SS was adjusted according to the previous
response to reach the individual indifference point with equivalent LL
and SS option. SS was calculated as follows:

SS ¼ LL
ð11k � DÞ

with k denoting the discount parameter (van den Bos et al., 2014). In the
first trial, the discount parameter k was set to 0.02 in all participants and
both conditions (van den Bos et al., 2014; Wang et al., 2016). Choosing
SS instead of LL means that the subjective value of LL was lower than SS.
Consequently, SS was decreased by increasing k. If LL was chosen, k was
decreased for a higher SS. To allow a fast change toward the individual
discount parameter in the beginning in the first 20 trials k was
increased/decreased by 10% of k in the previous trial (kt11 = kt 6 kt·0.1;
t denoting the trial number). To allow a fine-grained variation in follow-
ing trials, k was adjusted by 5% of k in the previous trial (kt11 = kt 6
kt·0.05). Each trial started with a fixation point (3 s6 200 ms) before the
LL and SS choice options were presented simultaneously either on the
left or right side of the screen, respectively, in pseudorandom order. The
monetary reward was always presented above fixation and the delay
below fixation (see Fig. 1). Participants were instructed to evaluate
choice options closely before responding and to indicate their choice by
pressing a left or right button with their left or right index finger in two
conditions. In one condition, participants were instructed to evaluate
choices and decide which amount has a higher value for themselves (self
condition – SELF). In the second prosocial but anonymous condition,
participants were instructed to evaluate choices regarding the presuma-
ble higher value for their best friend (other condition – OTHER)
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Figure 1. Depiction of choice options presentation. A, Reaction time experiment. B, Eye tracking. C, MEG experiment. In the first experiment, we tested for differences in decision times;
hence, participants were asked to respond as fast as possible (A). B, C, Both in the eye tracking and MEG experiment, participants were presented with the choice options and instructed to
withhold decision until fixation points turned red. B, During eye movement recording, choice options were presented further apart.
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(Lockwood et al., 2017). All participants made their decisions in both
conditions in separate blocks in counterbalanced order. Before blocks
started, participants were instructed whether they have to make their
decisions for themselves (SELF) or whether they had to pretend to
decide for their best friend (OTHER). Participants were instructed
before the experiment that, on completion of the experiment, one trial is
randomly chosen from all presented choices (SELF and OTHER) and
the respective monetary reward will be paid at the respective delay to
avoid the belief that outcomes were only hypothetical. Participants were
informed that this trial will be chosen randomly from both the SELF and
OTHER condition to avoid biasing decisions to one of the two condi-
tions. Prosocial behavior is commonly assessed as the willingness to ben-
efit others. Altruism adds that this benefit has to be at their own costs.
Most, if not all, theories of reciprocity, altruism, or prosocial behavior
start from the assumption that perspective taking is the starting point of
each social act. Our critical experimental condition is the instruction to
assume the perspective of their best friend and to pretend to perform an
act that (hypothetically) benefits others.

General analysis
This paradigm only allows a limited number of trials before participants
arrive at their indifference point. In accord with previous studies, we
used 60 trials. In addition, especially in MEG recordings, trials have to
be rejected often because of artifacts. In participants with a strong trend
to choose only one option across trials, this reduction would affect the
option with fewer trials disproportionately stronger. As a result, aver-
aged MEG responses could be largely determined by a prepotent motor
response but not signals related to decision, especially in the OTHER
condition in which we assumed that objective choice alternatives are less
considered. To compare results across groups, we applied the criterion
to all participants in all experiments. To identify participants with a
strong trend to choose only one option across trials, we calculated a
choice index (CI) as follows:

CI ¼
�����
NSS � NLL

NSS1NLL

�����

With NSS denoting the number of SS choices and NLL denoting the
number of LL choices. Participants with CI � 0.66, that is, one option

was chosen almost 5 times as often as the other option,
were excluded (see Fig. 2) in both conditions. We used the
average across the last 10 updated ln(k) parameters sepa-
rately as proxy for individual indifference point in SELF
and OTHER decisions. A higher k value indicates steeper
discounting of delayed rewards and thus more impulsive
choices. As the distribution of discount rates is highly right-
skewed, we used log-transformed k (ln k) in all statistical
analyses.

Statistical analysis. To correct statistical significance for
multiple comparisons, we compared each statistical param-
eter against a surrogate distribution, which was constructed
by randomly yoking labels of the trials and repeating the
ANOVA, t tests, or Pearson’s correlation coefficient.
Consequently, reported p values represent the statistical sig-
nificance relatively to the constructed surrogate distribu-
tion. All permutations (see detailed information for each
test below) were conducted with MATLAB, and each surro-
gate distribution was constructed by running 1000 label
permutations yielding 1000 surrogate values against which
the observed statistical parameters were compared.
Significance criterion in all these tests was statistical param-
eters corresponding with p, 0.025. These critical values
represent the 97.5% confidence and are denoted as Fcrit,
Tcrit, or rcrit. This approach counters the possibility that
MEG and/or eye tracking data might be differently distrib-
uted. In general, bootstrap methods have the advantage of
accounting for the dependence structure of p values.
Bootstrapping offers a way to deal with situations in which
the test statistic may not follow the distribution assumed by
large sample theory.

Power of correlation analysis. We conducted individual correlation
analyses (e.g., gaze stability in eye tracking vs discount parameter or
MEG activity vs discount parameter) where the number of participants
has to be high to avoid false positives. Too few participants might not
correctly reflect a small correlation leading to the false assumption that
there is no correlation despite a de facto but low (e.g., r =0.3) correlation
at the population level. Hence, a high number of subjects is needed for
low correlation strength, but fewer participants can correctly reveal
higher correlations at the population level (e.g., r = 0.6). Increasing the
number of participants without changing mean and SD decreases the p
value and hence increases the likelihood of exaggerating small effects.
The number of participants used in our study are a trade-off between
both approaches: a well-powered individual differences analysis without
inflating mean effects. We determined the power of the maximal correla-
tion coefficient r using GpPower 3.1 (Erdfelder et al., 2009). The power
values are given as b separately for each analysis.

Reaction time experiment
Choice options were presented on the computer screen spanning a visual
field with a horizontal visual angle of 9.5° and vertical visual angle of
1.4°. Participants were instructed to closely evaluate the choice options
and press one of two buttons indicating their choice when they had the
feeling that they made their decision. If they did not respond following
10 s, the next trial started (see Fig. 1A). We compared mean decision
time and ln (k) parameters across participants between conditions using
separate paired t tests (see Fig. 3A,B).

Eye tracking experiment
Participants were instructed to withhold decision until the fixation point
turned red (3 s6 200 ms following presentation of choice options; suffi-
ciently long to exceed mean decision time in the first experiment) to
eliminate any impact of button presses (see Fig. 1B). Choice options
were presented further away from each other spanning an area of 41�
15.5 cm (horizontal visual angle of 32° and vertical visual angle of 12°) to
clearly distinguish gaze direction to the delay and reward. We used for
eye movement recording the Eyelink 1000 system operated on Windows
7 and a desktop-mounted Eyelink CL camera with a TV lens (35 mm
1:1.6). All participants used a chin and forehead rest with 71.5 cm
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distance to the monitor and 59 cm to the camera. Visual
stimuli were presented on a Samsung Syncmaster 2233 (22
inch) with a resolution of 1680� 1050. In each participant,
we tracked the pupil diameter and corneal reflex of the left
eye with a sampling rate of 2000Hz. Before each trial block,
we performed a calibration session with the built-in 9-point
grid method.

Data preprocessing. The resulting eye tracking data
(time series of vertical eye movements to the reward pre-
sented above and delay below fixation cross) were used to
characterize temporal dynamics of evaluation of delay and
monetary reward. First, we identified trials (�1 to 4 s
around stimulus onset) with low fixation in the baseline pe-
riod (�1 s to stimulus onset). That is, we calculated for
each trial the mean y coordinate (vertical eye movements
between reward and delay). Trials with a mean y value .2
SDs (indicating low fixation) of all trials were excluded
from analyses. Since delay and reward were always pre-
sented below and above fixation, respectively (LL and SS options were
presented pseudorandomly to the left and right), we focused on analyz-
ing y coordinates across time. We baseline-corrected by subtracting
from each data point (y coordinate) the mean y coordinate within the
�1 s preceding the stimulus onset in each trial. To define gaze direction
as a function of time across trials, we then calculated at each time point a
histogram of all y coordinates (see Fig. 4B) separately for each partici-
pant. This results in high probability values for fixation before stimulus
onset and high probability values for delay and reward following stimu-
lus onset. These can be identified as colored bands in front of an other-
wise dark blue background (locations on the screen where participants
did not look at consistently) in Figure 4B. From these probability maps,
we extracted three time series defined by gaze to delay Dt, to fixation Ft,
and monetary reward Rt, representing time varying probability to look at
delay, fixation, and reward, respectively. Since participants did not look
exactly at one location, we defined a spatial margin around each of the
three spatial regions based on the real eye movements. To this end, indi-
vidual probability maps were averaged across participants and condi-
tions and across time, leading to three probability maxima, which
correspond with spatial location of delay, fixation, and reward (see Fig.
4B, right, dashed lines). The margin around these maxima is defined by
the inflection points (solid lines). Probability values around the three
maxima corresponding with spatial location on the screen (see Fig. 4B)
were averaged at each time point, leading to three time series for each
participant and condition. Figure 4B (bottom) shows the time series for
delay and reward.

Data analysis. Discounting differences. First, we compared ln (k) pa-
rameters across participants to test whether participants discounted dif-
ferently between conditions (see Fig. 4A) with a paired t test.

Intervals of option evaluation. To test for difference of gaze direction,
we conducted a t test at each time point betweenDt and Rt time series across
participants, leading to TDR time series. This time series shows when partici-
pants inspected on average more the delay or the reward. The level of signif-
icance of TDR was corrected for multiple comparisons by comparing each
TDR value against a surrogate distribution. This surrogate distribution was
constructed by randomly reassigning the labels (delay vs reward) to the sin-
gle participants in 1000 permutations. This leads to 1000 surrogate TDR
value time series. Significance criterion was a TDR value with p , 0.025
within the surrogate distribution of all T values (see Fig. 4B).

Differences in option evaluation. We tested whether participants eval-
uated choice options differently in both conditions. To test for difference
of gaze direction between conditions, we conducted a t test at each time
point for Ft, Dt, and Rt across participants, leading to three t value time
series (TF, TD, and TR) capturing the differences between conditions.
The level of significance of each of the three t value time series was cor-
rected for multiple comparisons by comparing each t value time series
against a surrogate distribution as above but swapping labels (SELF vs
OTHER). Significance criterion was a t value with p, 0.025 within the
surrogate distribution of all surrogate t values (see Fig. 4C).

Correlation of gaze entropy and decision. We hypothesized that differ-
ences in decision-making result from differences in choice evaluation. Dt

and Rt time series representing the probability to look at the delay and
the reward were used to estimate the entropy, which gives the average of
information of all events (here gaze at delay and reward) and reflects the
predictability or stability of gaze direction. If gaze entropy is high, it is
hard to predict whether participants look at the delay or the reward; but
if gaze entropy is low, then gaze direction is stable and prediction is
high. In both conditions, entropy was calculated at each time point t as
follows:

Ht ¼
Xm

i

�pi;t � log2pi;t

With i denoting the reward and delay, p as the likelihood to direct
gaze at one of the two events. The resulting entropy time series HOTHER

was subtracted from HSELF, leading to an HD time series for each partici-
pant. Individual differences in discount parameters were correlated with
HD values at each time point, leading to a new Pearson’s correlation r
time series. The level of significance of r was corrected for multiple com-
parisons by comparing each r against a surrogate distribution. This sur-
rogate distribution was constructed in the following way. For each
iteration, we randomly assigned the individual entropy values HD across
participants. We then correlated these randomly assigned values with
the individual discount values of our participant in 1000 permutations.
This leads to 1000 surrogate r value time series. Significance criterion
was a r value with p, 0.025 within the surrogate distribution of all r val-
ues (see Fig. 4D).

MEG recordings
Data acquisition. In a third group, participants (N= 24; 7 female;

mean age: 26.17; SD= 5.16) were seated in a magnetically shielded room
in which mMEG activity was recorded while participants performed the
experiment. To record vertical and horizontal eye movements, electro-
oculographic activity was obtained. Electrode impedance was kept ,10
kX. For the data acquisition, a whole-head, 102-channel magnetometer
array (Elekta Neuromag TRIUX) with internal helium recycler has been
used. The MEG system contains 102 sensor fields, each equipped with
one magnetometer measuring the normal field component and two
orthogonally oriented planar gradiometers for measuring the gradient
components. The participants sat in an upright position underneath the
MEG “helmet.” MEG data were sampled at 2000Hz with a bandpass fil-
ter from DC to 660Hz.

First, we tested whether participants discount more in the OTHER
condition compared with the SELF condition comparing log-trans-
formed discount parameters between conditions. Participants were
instructed to withhold decision until the fixation point turned red (3 s 6
200ms following presentation of choice options; sufficiently long to exceed
mean reaction time in the first experiment) to eliminate the impact of but-
ton presses (see Fig. 1C). In the eye tracking experiment, we forced partici-
pants to shift gaze and hence their attentional focus. Here, to suppress eye
movements, choice options were presented on the screen spanning an area
of 3� 12 cm (horizontal visual angle of 6.8° and vertical visual angle of
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1.79°). This allows us to assess potential intervals when delay and reward
are within the attentional focus, ruling out the possibility that differences in
MEG activity result from eye movements. Furthermore, all trials with
activity.2 SDs of all electro-oculographic trials were rejected.

Preprocessing.We used MATLAB 2013b
(The MathWorks) for all offline data proc-
essing. All filtering (see below) was done
using zero phase-shift IIR filters. First, we
used an absolute threshold of 300 fT to
discard signal epochs of excessive, non-
physiological amplitude. We then visually
inspected all data, excluded epochs exhib-
iting excessive muscle activity, as well as
time intervals containing artifactual signal
distortions, such as signal steps or pulses.
We refrained from applying artifact reduc-
tion procedures that affect the dimension-
ality and/or complexity of the data (e.g.,
independent component analysis). The
raw signal of all remaining epochs was fil-
tered between 1 and 275Hz. A notch filter
was applied to remove line noise (62 Hz
around the first 5 harmonics) before fil-
tering in specific frequency bands (see
below).

Data analysis. Discounting differences.
First, we compared ln(k) parameters across
participants to test whether participants dis-
counted differently between conditions (see
Fig. 5A).

Choice options related to amplitude mod-
ulation. Next, we tested whether brain activ-
ity shows significant amplitude modulation
to presentation of choice options. For each
trial (�2 s to 6 s around stimulus onset –
sufficiently long to prevent any edge effects
during filtering), we bandpass filtered each
electrode’s time series at 37 frequency bands
(log-spaced between 1 and 330Hz) with a
bandwidth of 15% of the center frequency.
We obtained the analytic amplitude Af ðtÞ of
each frequency f by Hilbert-transforming
the filtered time series. We smoothed the
time series such that the amplitude value at
each time point n is the mean of 10ms
around each time point n. We then base-
line-corrected the brain activity by subtract-
ing the mean activity from the �1 to 0 s
preceding the stimulus onset in each trial of
each magnetometer.

We then identified stimulus-responsive
frequency bands showing a significant am-
plitude modulation in each frequency band
following the onset of choice display. We
first averaged Af across all trials, magneto-
meters, and participants, resulting in one
amplitude time series for each frequency.
We then calculated the average baseline ac-
tivity Bf across the 500ms preceding the
stimulus onset. For each frequency band ac-
tivity, we subtracted Bf from the activity
modulation Af averaged across the 3 s fol-
lowing the stimulus onset. To control the
significance threshold for multiple compari-
sons, the difference between Band Awas
compared against an empirical distribution
derived from randomly shifted time series
(Npermutations = 1000). In each iteration, time
series of each channel (circular shift of the
entire trial time series) separately and new

(surrogate) trial averages (Band�AÞwere calculated from the shifted tri-
als. Frequency bands exceeding the 97.5th or below the 2.5th percentile
of the frequency specific surrogate Bf

�Af distribution (see Fig. 5B, dashed
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Figure 4. Eye tracking results. A, Stronger discounting in the OTHER condition as indicated by differences in discount parameters
(small inset). Error bars indicate SEM. B, Color-coded gaze probability as a function of time to choice option onset (x axis) averaged
across all participants and conditions. y axis indicates the location of reward, fixation, and delay presented on the screen. Yellow
band before stimulus onset (magenta vertical line) indicates that participants looked at the fixation cross. Following stimulus onset,
participants directed gaze to delay and reward as indicated by light green and light yellow streaks across time. Right, Average across
time. Peaks (dashed lines) correspond to exact locations on the screen of reward, fixation, and delay. Bell-shaped averaged probabil-
ity values indicate that participants inspected reward and delay with spatial variability. Probability values within inflection points
(solid lines) were averaged, leading to time series representing gaze probability to delay, reward, and fixation. Bottom, A consistent
chronology of first delay and then reward inspection. Black and red lines indicate probability to direct gaze to delay and reward,
respectively, averaged across participants. First gray shaded area represents the interval in which participants gazed to delay more
than to reward as indicated by a significant t value; the second gray shaded area, vice versa. C, Time-varying probability to direct
gaze to fixation in both conditions averaged across participants. Gray shaded area represents the temporal interval, with significant
difference between SELF (blue) and OTHER (green) condition indicating that participants disengaged slower from fixation in the
OTHER condition. Bottom, Gaze direction to the delay (black frame) separately for both conditions. Top, Gaze direction to reward (red
frame) separately for both conditions. Gray shaded areas represent intervals of significant differences between conditions, indicating
that both delay and reward were inspected more closely in the SELF compared with the OTHER condition. D, Correlation of differen-
ces of gaze entropy and difference of discount parameter between conditions at the time point shown in the left small diagram.
Greater differences in gaze entropy are correlated with greater differences in discounting.
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gray lines) were classified as showing a significant
amplitude modulation following presentation of
choice options.

The previous analysis informed us which fre-
quency band showed a significant modulation to
presentation of choice options. Next, we tested
which channels contributed significantly to the
stimulus response modulation in frequency bands
with significant amplitude modulation. Hence, we
filtered raw time series in the broader frequency
bands showing significant amplitude modulation
found in the previous analysis. We first averaged Af

across all trials and participants and repeated the
analysis as outlined above. Magnetometer’s signals
exceeding the two-sided 95th percentile of the sur-
rogate Bf

�Af distribution were classified as showing
a significant amplitude modulation following pre-
sentation of choice options (see Fig. 5B).

Amplitude modulation with delay. In the next
step, we tested whether these frequency bands code
objective values and hence showed amplitude mod-
ulation as a function of delay and/or reward. First,
we grouped trial activity recorded at magneto-
meters with significant amplitude modulation
according to the six different delays and averaged
across all participants. This was done since the six
different delays were the same in all participants.
This leads to six new time series for each magne-
tometer, each representing the mean activity mod-
ulation to one of the six delays. At each time point,
we linearized amplitude differences between these
6 time series by assigning a rank value to each of
the 6 amplitude values (1 being the lowest ampli-
tude and 6 representing the highest amplitude).
Integer ranks can help to stabilize effects, which
can be obscured because of these fluctuations. This
was used to identify temporal intervals. To corrob-
orate our hypothesis, statistical tests were con-
ducted using the real data. Next, we tested whether
these ranks as a proxy for the amplitude values cor-
respond with the delays. A rank order matching
the number of delay (1 [shortest delay] to 6 [lon-
gest delay]) would indicate that a given frequency
band responds with a gradually increasing ampli-
tude modulation to a gradually increasing delay.
To test this, we used a linear least square fit to the
rank values at each time point. This results in a
new slope time series with positively/negatively
highest slopes when amplitude modulation varies
with delay and slopes at;0 when amplitude is not
modulated by the delay. The level of significance
was corrected for multiple comparisons by com-
paring each slope value against a surrogate distri-
bution. This surrogate distribution was constructed
by randomly reassigning the labels (delay 1-6) to
the six time series in 1000 permutations for each
channel. This leads to 1000 surrogate slope values.
Frequency bands exceeding the two-sided 95th per-
centile of the surrogate distribution were classified
as showing a significant correlation of amplitude
and delay. To assess differences between frequency
bands, we used a time point-by-time point one-
way ANOVA to test for differences of slope values
across magnetometers. We determined the empiri-
cal significance threshold for F values by ran-
domly reassigning the frequency band labels in 1000 permutations
of the same time point-by-time point ANOVA. Last, in the temporal
interval of significant amplitude-by-delay covariation, we used a
one-way ANOVA to test for differences of amplitude values between

6 delays across participants. The same analysis was conducted in the
OTHER condition (see Fig. 5C).

Correlation with reward. To test whether amplitude modulation var-
ied as a function of the reward, we correlated the trial-to-trial variation
of reward with the trial-to-trial variation of amplitude averaged across

Figure 5. MEG results. A, Behavioral results. B, Amplitude modulation in three different frequency bands with topo-
graphical distributions. Two gray dashed lines indicate the upper and lower confidence interval (obtained from a permu-
tation test) and hence distinguishes the frequency bands with significant amplitude decrease (below the lower gray line)
from frequency band with significant amplitude increase (above the upper gray line). In each frequency band, we deter-
mined MEG sensors with significant amplitude modulation over baseline based on a permutation procedure. C, Only HFA
shows correlation with delay. Differences in amplitude modulation as a function of delay was only found in the SELF but
not in the OTHER condition. Error bars indicate SEM. D, In a temporal interval following the coding of the delay, we
found significant correlation with reward information only in the high frequency band and exclusively in the SELF condi-
tion. E: Differences in amplitude modulation between conditions were correlated with differences of discounting between
conditions.
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MEG sensors showing significant amplitude modulation at each time
point. This analysis was done in each participant since monetary reward
values depended on individual decisions and consequently differed
across participants. This results in a Pearson’s r time series for each par-
ticipant. The level of significance was corrected for multiple comparisons
by comparing each r value against a surrogate distribution. This surro-
gate distribution was constructed by randomly reassigning the amplitude
values of one participant to the discount values of another participant in
1000 permutations. This leads to 1000 surrogate r value time series.
Significance criterion was an r value with p, 0.025 within the surrogate
distribution of all r values (see Fig. 5D).

Correlation of MEG response and discount differences. Finally, we
assessed whether differences in amplitude modulation could explain dif-
ferences of discounting behavior between conditions. We averaged in
frequency bands showing significant amplitude modulation across MEG
sensors representing objective choice options in both conditions and cal-
culated the difference time series (Damplitude) for each participant. At
each time point, we calculated Pearson’s r between Damplitude and Dk

denoting the difference in discount parameter in each participant. The
level of significance was corrected for multiple comparisons by compar-
ing each r value against a surrogate distribution. This surrogate distribu-
tion was constructed by randomly reassigning the amplitude values of
one participant to the discount values of another participant in 1000 per-
mutations. This leads to 1000 surrogate r value time series. Significance
criterion was an r value with p, 0.025 within the surrogate distribution
of all r values (see Fig. 5E).

Results
In all experiments, participants were asked to choose between a
LL amount of 10e at a variable delay D (1, 2, 5, 11, 24, or
52weeks; presented in pseudorandom order) and SS (now)
reward (for a detailed description of the paradigm, see Materials
and Methods; Fig. 1). Participants made 10 choices for each delay
in pseudorandom order, while SS was adjusted according to the
previous response to reach equivalent LL and SS options (see
Materials and Methods; Table 1).

Decision time experiment
In the first experiment, we tested 22 participants (13 female; mean
age 24.1 years; SD=5.16; all righthanded with normal or cor-
rected-to-normal vision) (1) for differences in decision time and
(2) whether they discounted differently between both conditions
(analysis steps are explained in more detail in Materials and
Methods). We calculated a CI, which parameterizes how evenly
participants chose both options. Six participants strongly preferred
one choice option (see Materials and Methods; CI � 0.66), which
means that one option was chosen 5 times as often as the other one
andwere excluded. The remaining participants did not differ on aver-
age in their CI (CISELF = 0.21, SD=0.15; CIOTHER = 0.26, SD=0.14;
t(15) = 1.5; p=0.15; Fig. 2A) and in their decision time (RTSELF = 2.36
s, RTOTHER = 2.34; t(15) = 0.16; p=0.8; Fig. 3A). However, they dis-
counted stronger in the OTHER condition (t(15) = 2.3; p=0.03) as
indicated by higher discount parameters (mean lnðkOTHERÞ = �3.7;
SD=0.23; mean lnðkSELFÞ=�4.3; SD=0.29; Fig. 3B).

Eye tracking experiment
To further assess OTHER condition discounting effects, we com-
pared the discounting parameters ln(k) (the natural logarithm of

the k parameter adjusted throughout the experiment) in a second
group (N=20, 10 female; mean age 22.58 years; SD= 2.06). Eye
tracking data (time series of vertical eye movements between
reward presented above and delay below fixation cross) were
used to characterize temporal dynamics of evaluation of delay
and monetary reward. Analysis steps are explained in more detail
in Materials and Methods. In general, we tested for differences in
discounting behavior (see Discounting differences), whether par-
ticipants showed on average a consistent chronology of delay
and reward evaluation (see Intervals of option evaluation),
whether participants evaluated choice options differently in both
conditions (see Differences in option evaluation). These analyses
test for stability choice option evaluation (gaze entropy; reflects
the predictability or stability of gaze direction). In the final step,
we tested whether discounting differences can be explained by
differences in choice evaluation (see Correlation of gaze entropy
and decision).

Discounting differences
One participant was excluded because of his strong bias toward
one option (CI � 0.66). The remaining participants showed on
average no difference in CI (CISELF = 0.24, SD= 0.17; CIOTHER =
0.15, SD= 0.11; t(18) = 1.7; p=0.11; Fig. 2B). Replicating
Experiment 1, participants discounted stronger in the OTHER
condition (t(18) = 3.5; p=0.0025; Fig. 4A) as indicated by higher
discount parameters (mean lnðkOTHERÞ = �3.9; SD= 0.84; mean
lnðkSELFÞ=�4.8; SD= 0.62; Fig. 4A).

Intervals of option evaluation
We tested the chronological order of the inspection of delay
and reward. Participants tended to inspect delay first (Fig. 4B, I;
significant difference to reward between 182ms and 816ms;
tcrit = 6 2.05; tmax = 12.35 at 536ms; p, 0.000001). Participants
then inspected the reward (Fig. 4B, II) between 998 and 1201ms
indicated by higher probability for gaze at reward compared with
delay (tmax = 2.45 at 1102ms; p=0.01). Third, they returned to the
delay (Fig. 4B, III) between 1447 and 2110ms (tmax = 3.68 at
1628ms; p=0.002) with higher probability for gaze at delay com-
pared with reward.

Differences in option evaluation
Here we tested for temporal differences of inspection as a function
of our experimental conditions. We found that participants more
closely inspected the delay (I) in the SELF condition (Fig. 4C, bot-
tom) in the temporal interval from 367 to 626ms (tcrit = 6 2.075;
tmax = 2.8 at 416ms; p=0.0038). Second, we found that partici-
pants more closely inspected the reward (II) in the SELF condition
(Fig. 4C, top) in the temporal interval from 686 to 1032ms (tmax =
2.95 at 925ms; p=0.0026). Third, when participants returned to
the delay information, they also more closely inspected the delay
(III) in the SELF condition between 1434 and 1634ms (tmax = 2.36
at 1686ms; p=0.012).

Correlation of gaze entropy and decision
In the last step, we tested whether differences in gaze entropy
(how stable participants looked at choice options) between con-
ditions correlate with differences in discount parameter between

Table 1. Participants characteristics and exclusion criteria

n (total participants) Age (mean 6 SD) Gender (m/f) MEG artifacts. 30% CI� 0.66 n (final sample size)

Reaction time 22 24.106 5.16 9/13 — 6 16
Eye tracking 20 22.586 2.06 10/10 — 1 19
MEG 24 26.176 5.16 17/7 5 0 19
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conditions. We found a significant correlation (critical r value
was6 0.41) between differences in discount parameter and dif-
ferences in gaze entropy between 628 and 778ms (rmax = 0.66 at
722ms, b = 89%; p=0.0025; Fig. 4D).

MEG experiment
In a third group of participants (N=24; 7 female; mean age:
26.17 years; SD= 5.16 years), we assessed discounting behavior
(see Discounting differences) using MEG activity across specific
frequency bands (see Choice options-related amplitude modula-
tion). We then tested whether these specific frequency bands rep-
resent the delay (see Amplitude modulation with delay), and/or
the reward (see Correlation with reward) and whether differen-
ces of MEG activity between conditions correlate with differen-
ces in discounting behavior (see Correlation of MEG response
and discount differences). Analysis steps are explained in more
detail in Materials and Methods.

Discounting differences
Five participants were excluded since .30% of trials had to be
rejected because of artifacts (we recorded only 60 trials in each
condition). None of the remaining participants had to be rejected
because of a strong bias toward one option (CI � 0.66). The
remaining participants did not differ with respect to CI (t(18) =
1.34, p= 0.2) but show differences in discounting (t(18) = 2.85,
p=0.01) consistently with the other two groups (Fig. 5A).

Choice options-related amplitude modulation
We found a low-frequency band (LF: 6-35 Hz) and high-fre-
quency band (HF: 150-275 Hz) with significant amplitude
decrease compared with baseline bilaterally located over occipital
cortex and over right frontotemporal cortex, respectively (Fig.
5B). Additionally, we found g frequency (50-70 Hz) increase
over baseline following stimulus onset in a central and occipital
ROI (Fig. 5B).

Amplitude modulation with delay
Only HF amplitude varied with the delay information (critical
slope value: 0.69) between 138 and 643ms (slopemax = 0.78 at
411ms; p= 0.03; Fig. 5C). In the SELF condition, we found dif-
ferences in amplitude modulation depending on the delay pre-
sented in this interval (F(5,108) = 2.4; p=0.039). Post hoc tests
revealed a significant difference between 1 and 11weeks
(p=0.04) and 1 and 52 weeks (p=0.0003), 2 and 52weeks
(p=0.01), and 5 and 52weeks (p=0.03). The OTHER condition
exhibits no significant differences (F(5,108) = 0.5). In addition, we
found a highly significant interaction between the OTHER and
SELF condition (F(5,216) = 9.06; p, 0.00001).

Correlation with reward
The HF amplitude was correlated with reward between 576 and
876ms (rmax = 0.05; p= 0.0009 at 816ms; Fig. 5D), which is also
corroborated by a significant difference between frequency bands
between 741 and 826ms (Fcrit = 3.6; Fmax = 5.8 at 756ms;
p, 0.00001). Importantly, in the OTHER condition, HF ampli-
tude was not correlated with the monetary reward. Next, we
compared directly the correlation values between both condi-
tions at each time point. Figure 5D shows the resulting t value
time series. We found that correlation values differed between
conditions (561 and 861ms; tmax = 4.3 at 741ms; p, 0.000001).
This analysis revealed that the significant reward correlation in
the SELF condition is not only significant but also larger than in
the OTHER condition.

Correlation of MEG response and decision
We found that the differences of the HFA predicted differences
in discounting behavior between 96 and 310ms (rmin = �0.5 at
286ms; p=0.01, b = 0.64; Fig. 5E). Although significant, the
power of this analysis is relatively low compared with the correla-
tion analysis in the eye tracking paradigm and the follow-up
analysis (see below). Moreover, the individual differences analy-
sis was conducted in a time-resolved manner. Hence, there is
considerable variation over time and only for a specific temporal
interval we can reliably define a correlation. We hypothesize that
future studies, designed to specifically test for an intermediate
correlation strength using more participants, might be able to
delineate the temporal evolution of individual differences
between MEG responses and decisions with higher accuracy.

Follow-up analysis
We tested whether discounting behavior in the SELF condition
was correlated with the OTHER condition across the three dif-
ferent groups. Differences in discounting parameters accompa-
nied by a significant correlation indicate a similar baseline
mechanism for decision-making, which utilizes a different level
of objective information. We found, across all experiments, ln
(k) parameters correlated between both conditions (r= 0.48;
p= 0.0003, b . 0.95; Fig. 6).

Discussion
Studies on DD have focused on the representation of subjective
value signals by contrasting differential activation associated
with smaller and sooner versus larger and longer choices
(McClure et al., 2004; He et al., 2012; Kim et al., 2012; Cooper et
al., 2013; Peper et al., 2013; van den Bos and McClure, 2013; van
den Bos et al., 2014, 2015). Impulsivity, the choice of SS, is asso-
ciated with preferring sooner rewards compared with later
rewards or to insufficiently considering objective alternatives
(Ainslie, 1975; Myerson et al., 2003; Olson et al., 2007).

We tested whether subjective value (by contrasting self-refer-
ential decisions with prosocial decisions) counteracts impulsivity.
There is considerable debate whether humans are truly prosocial.
In intertemporal choices, it is unclear whether either a higher
reward or an earlier gratification is prosocial. Previous studies
showed that participants put in more effort when acts benefited
themselves (Lockwood et al., 2017). In our experimental settings
across different groups, participants showed impulsive decisions

Figure 6. Follow-up analysis. Correlation of discount parameters between conditions
across all three experiments: reaction time (RT), eye tracking (ET), and MEG.
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(discounted less in self-referential compared with prosocial deci-
sions) but did not show condition decision time differences seen
in impulsive actions (Cho et al., 2010; Wang et al., 2016; Yates et
al., 2016). Hence, we hypothesized that differences in discount-
ing result from differences in depth of evaluation of choice
options. Therefore, prosocial decisions provide the opportu-
nity to test how choice option integration in human partici-
pants is represented and whether information, which pertains
to ourselves, is processed differently compared with prosocial
decisions.

In order to elucidate the temporal evolution of the option
integration process itself, we compared patterns of attentional
reallocation (eye tracking) and choice option integration (MEG).
In our eye tracking experiment, the increased spatial distance
between choice options on the screen enhanced the effort to
move the eyes, corroborating predictions of less effort in the
prosocial condition (social apathy) (Lockwood et al., 2017).
Patterns of choice option evaluation were similar explaining
why decision times are not different but gaze stability differed
between conditions, explaining interindividual differences in
discounting behavior. We hypothesize that less attentional ori-
entation limits representing and integrating choice options.
MEG was recorded in a separate experiment with minimal spa-
tial extent of choice option presentation on the screen, mini-
mizing eye movement contamination of the temporal evolution
of choice option integration allowing replication of behavioral
results in two independent groups. To compare eye tracking
with MEG results, we constructed time series representing the
probability to look at a given spatial point as a function of time.
We observed that intervals of attentional shift to the delay and
reward in the eye tracking experiment were paralleled by inter-
vals of representation of delay and reward in MEG in the HFA.

Intertemporal choices in DD experiments refer to the trade-
off between benefits and costs, which can be either an increasing
delay (“wait”) or increasing effort (“work”) to obtain the reward
(Phung et al., 2019). Both can be dissociated by underlying neu-
ronal circuits driving behavior toward reward maximization
and effort minimization (Prévost et al., 2010; Massar et al.,
2015; Klein-Flügge et al., 2016) accompanied by differences in
discount curves with an inverted sigmoid function and hyper-
bolic function in effort and DD, respectively. We did not see an
initial concave shape in the prosocial condition typical for effort
discounting arguing against the notion that both conditions
recruit different neuronal networks. Instead, we propose that
differences in discounting result from differences in choice
option evaluation. This provides evidence that evaluating gaze
stability is a proxy of attentional direction to choice options,
and predicts DD.

The MEG study showed that only high-frequency activity
(HFA; 175-250 Hz) was modulated by choice options exclusively
in the self-referential condition, providing evidence that activity
distributed in MEG sensors over frontotemporal regions reflects
integration of delay and the reward in humans. HFA is assumed
to reflect nonrhythmic synaptic activity (Buzsáki et al., 2012) and
is a key marker of cortical activation (Edwards et al., 2005; Ray et
al., 2008). Intracranial recordings of HFA response dynamics in
humans have enhanced our understanding of cortical informa-
tion integration in attention, language, memory, emotion, deci-
sion-making, and motor control (Johnson et al., 2020). These
studies imply that HFA acts as an index of local cortical compu-
tation (Buzsáki et al., 2012; Rich and Wallis, 2017). HFA bridges
a long-standing gap to fMRI studies on DD. Power modulation
in higher frequencies has been shown to explain BOLD

responses better than activity in lower frequencies, which are
instead thought to reflect activity in broadly distributed networks
(Nir et al., 2007; Mukamel et al., 2014). The temporal precision
of MEG adds to the spatial resolution of fMRI and is able to
delineate mechanisms of choice option integration in time,
which is in line with previous studies on humans and nonhuman
primates showing that HFA captured reward-related informa-
tion (Hunt et al., 2015). HFA has been regarded as a good mea-
sure of neuronal spiking (Liu and Newsome, 2006; Berens et al.,
2008), consistent with the idea that HFA reflects aggregate local
neuronal output (Buzsáki et al., 2012) because of high correla-
tions between HFA and multiunit activity. Both can distinctively
be localized in granular/infragranular and supragranular layers,
respectively, in V1 and A1 in monkeys and PFC in humans.
Supragranular HFA contributes significantly more to the surface
field potential than deeper layers, and it is argued that HFA may
contain a substantial representation of input from cortical feed-
back pathways (Leszczy�nski et al., 2020). Recent single-neuron
studies in monkeys provide insight into the neural mechanism
for the estimation of interval time (Brody et al., 2003). Single-
unit activity is modulated by the amount of an expected reward
(Leon and Shadlen, 1999; Wallis and Miller, 2003) and encodes
the relative reward value (Tremblay and Schultz, 1999; Cai et al.,
2011). Furthermore, single-neuron recordings in pigeons showed
that neural delay activity was modulated by increasing delay
length and additionally covaried with expected reward amount
(Kalenscher et al., 2005).

The right dlPFC, associated with executive and control func-
tions, potentially represents choice options (Bickel et al., 2009;
Achterberg et al., 2016) and response selection among the most
advantageous (Ho et al., 2016). Our results indicate that self-ref-
erential decisions are characterized by a response selection sup-
pression mitigating impulsive decisions. Activity in the medial
and right dlPFC is also positively correlated with self-risk (Hu et
al., 2017) and cathodal transcranial direct current stimulation
(tDCS), associated with inhibition, reduces impulsivity and risky
behavior in Parkinson patients (Benussi et al., 2017). Thus, lower
levels of activity are associated with less impulsivity, which is in
line with a relative HFA reduction during SELF compared with
OTHER decisions in our study. Importantly, we did not evalu-
ate the activity level of impulsive versus patient decisions but
the neural activity accompanying choice option presentation
preceding these decisions. The disruption of right dlPFC with
low-frequency repetitive transcranial magnetic stimulation
reduces emotional weight during decision-making in social
contexts (Tassy et al., 2012), indicating that the dlPFC actually
integrates objective choice options. These findings are contro-
versial since the impact of tDCS on the right dlPFC is complex
(low risk aversion in gain frames after tDCS but high-risk aver-
sion in loss frames after stimulation) (Ye et al., 2016). Other
studies showed that the right dlPFC mediates action value com-
parisons in value-based decision-making (Morris et al., 2014)
and plays a causal role in the computation of values of choices
(Camus et al., 2009).

Mapping of sources to sensors is ill-posed in noninvasive
recordings. Hence, a multitude of different source combina-
tions could generate the field pattern. Only direct intracranial
recordings can reliably distinguish anatomic localizations.
Furthermore, we operationalized prosocial acts by taking per-
spective of the best friend. It could be argued that participants
did not perform genuine prosocial acts since they did not
directly benefit others because of the hypothetical outcomes.
How real rewards, directly paid to others, influence prosocial
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decisions in intertemporal choices should remain to be deter-
mined. Moreover, future studies can test for an intermediate
correlation strength using more participants to delineate with
higher accuracy the temporal evolution of correlation between
MEG responses and decisions.

Intertemporal behavior has emphasized trait-like variance
(Luo et al., 2014). We found correlation between the discount pa-
rameter in the SELF and OTHER condition arguing in favor of
an individual disposition to discount delayed values. In sum, we
argue that impulsivity does not result from oversensitivity to one
option but a lack of attentional allocation to choice options. The
HFA measured over the right frontotemporal cortex shows
broadband amplitude modulation only when decisions have a
high value for the self but not during anonymous prosocial deci-
sions. Intervals of delay and reward representation match inter-
vals of gaze toward delay and reward. In sum, our results
highlight a unique role of high frequency band activity recorded
over the right frontotemporal cortex representing objective val-
ues important to suppressing impulsivity.
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Abstract
Rapid changes in the environment evoke a comparison between expectancy and actual outcome to inform optimal subsequent
behavior. The nucleus accumbens (NAcc), a key interface between the hippocampus and neocortical regions, is a candidate
region formediating this comparison. Here, we report event-related potentials obtained from theNAcc using direct intracranial
recordings in 5 human participants while they listened to trains of auditory stimuli differing in their degree of deviation from
repetitive background stimuli. NAcc recordings revealed an earlymismatch signal (50–220 ms) in response to all deviants. NAcc
activity in this time window was also sensitive to the statistics of stimulus deviancy, with larger amplitudes as a function of
the level of deviancy. Importantly, this NAcc mismatch signal also predicted generation of longer latency scalp potentials
(300–400 ms). The results provide direct human evidence that the NAcc is a key component of a network engaged in encoding
statistics of the sensory environmental.

Key words: auditory mismatch, P3, prediction error, predictive coding, nucleus accumbens, saliency

Introduction
The ability to detect unexpected environmental events is a
fundamental property of organized mammalian behavior (Kane
et al. 1993, 1996). This capacity depends on a comparison of the
actual state of our sensory world with predictions based on im-
mediate and long-term contextual knowledge. Predictive coding
theory, first articulated within the visual domain, postulates that
neural networks learn statistical regularities of the natural world,

signaling deviations from these regularities to higher centers in
order to guide behavior (Rao and Ballard 1999). This allows pre-
dictable components of an input signal to be removed and redun-
dancy reduced. At a neurophysiological level, it has been
suggested that backward connection strength is increased, and
forward connections decreased, with temporal regularities
(Kumar et al. 2011) so as to establish stable sensory memory
representations when no prediction error (PE) signals occur.
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One subcortical region implicated in the expression of PEs is
the nucleus accumbens (NAcc), a region implicated in goal-
directed behavior (Goto and Grace 2008) and known to be sensi-
tive to novelty (Wood et al. 2004), contextual deviance (Axmacher
et al. 2010), aversive stimuli (Becerra et al. 2001; Baliki et al. 2010),
and reward PEs in humans (Abler et al. 2006; Spicer et al. 2007).
These findings indicate that the NAcc may serve as a critical
hub in deviancy detection. However, the neural underpinnings
engaged in the human NAcc during deviancy detection and
generation of sensory PEs are unknown.

We recorded directly from the NAcc in 5 human subjects par-
ticipating in an experiment (Garrido et al. 2008), permitting
detailed analysis of gradual strengths of sensory mismatch and
expectancy. We predicted that the NAcc would weight how new
information fits into an ongoing sensory context and convey
information about this deviation to regions in the cortical hier-
archy. This led us to hypothesize that (1) the NAcc would gener-
ate a sensory-evoked mismatch signal, (2) that this mismatch
signal should vary as a function of deviance strength, and (3)
that a NAcc mismatch response would contribute to the later
onset of cortical mismatch components involved in behavioral
adjustments. Here, we provide intracranial and simultaneous
scalp electroencephalographic (EEG) data that showNAcc signals
the strength of a PE during perception of auditory regularities and
this PE predicts later cortical activity.

Methods
Five patients (mean ± SD age: 40 ± 9.02 years; 3 males/4 females,
all right-handed) with a history of intractable epilepsy partici-
pated in this study. We recorded intracranially from bilateral
NAcc (Fig. 1A) and bilateral anterior thalamus (ANT). We also re-
corded from electrodes positioned at midline scalp sites. For de-
tails on surgery, deep brain stimulation approach, and placement
of surface electrodes see Zaehle et al. (2013).

Paradigm

We employed a paradigm requiring passive listening to a se-
quence of sine wave sounds (tone pips) with an interstimulus
interval of 0.5 s and constant loudness (Fig. 1B; Garrido et al.
2008). The frequency of sounds varied across 7 different levels
between 500 and 800 Hz with increments of 50 Hz. Sounds of

the same frequency formed a train and train length was defined
by the number of repetitions of the initial sound. The number of
repetitions ranged between 0 and 10 (Fig. 1). The first sound with
a frequency other than the previous train was defined as a devi-
ant sound. This sound along with its next N repetitions formed
the next train. To prevent an onset clicking sound for the stimuli,
a 10-ms sigmoid ramp was applied to the on- and offset of each
sound. Each sound was presented for 70 ms. Participants were
presented with either 1800 (Pat01/Pat02: 15 min) or 1200 trials
(Pat03/Pat04/Pat05: 10 min).

Stimulus Repetition

The number of repetitions (Nrep) varied between 0 and 10. In the
case of 0 repetitions, a deviant stimulus was followed by another
deviant stimulus. In the case of 10 repetitions, the deviant stimu-
lus was followed by 10 standards (resulting in 11 sounds of the
same tone pitch in a train; Fig. 1C). The probability of Nrep ≥ 5
was 87.5% compared with Nrep < 5 = 12.5% to assure that deviant
stimuli were perceived as rare events (Fig. 1C). To compare devi-
ant trials as a function of the train length, we chose the same
probability of trainswithNrep≥ 5 to equate the number of deviant
trials. Sequences of Nrep were randomly presented throughout
the experiment independent of the frequency of the sounds.
This means that a 500-Hz sound could be repeated by 0 – 10 500 Hz
sounds as well as an 800-Hz sound or all other sounds of the 7
pitch levels. Hence, sound pitch and Nrep of the following sound
were unpredictable. The probability of a deviant stimulus was
approximately 15%.

Deviation Strength

The absolute deviation strength (DS) varied with 6 levels of DS.
The strongest deviation was 300 Hz (i.e., 500–800 or 800–500 Hz),
and the weakest deviation was defined as a 50-Hz change (i.e.,
500–550 or 700–650 Hz; Fig. 1B).

Data Collection

Intracranial recordings were obtained using a Walter Graphtek
(Walter Graphtek GmbH, Lübeck, Germany) system, with a sam-
pling rate of 256 Hz and analog bandwidth of 200 Hz. In the left
and right NAcc and ANT, adjacent electrodes were referenced
to the neighboring contact (i.e., 1–2, 2–3, 3–4, with “1”

Figure 1. Depiction of the roving paradigm. (A) Anatomical location of bilateral NAcc depth electrodes. (B) Seven different sound levels were defined differing only with

respect to their frequency (500–800 Hz). Each sound as indicated by the grayscale vertical lines was presented with a random number of repetitions, which were

independent of the frequency of the sound. The difference in tone pitch between the standards and the deviant sound defined the DS. (C) The number of repetitions

varied between 0 and 10.
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representing themost ventral and “4” representing themost dor-
sal electrode contact). This resulted in a bipolar montage with
each NAcc/ANT monitored by 3 electrode positions. This mon-
tage was used to enhance the spatial resolution of the intracra-
nial recordings and to ensure that the recorded activity was not
due to far-field activity from nearby non-NAcc structures.

General Data Analysis

We used Matlab 2009b (Mathworks, Natick, MA, USA) for all off-
line data processing. The resulting time series for the electrodes
located in theNAccwere segmented in epochs of−1 to 2 s relative
to the event (stimulus onset). We filtered the resulting epochs
applying a bandpass filter between 0.1 and 20 Hz. All filtering
was done using a fourth-order Butterworth filter (IIR-filters). To
exclude trials affected by artifacts, we defined a threshold for
the exclusion of trials in each analysis. In each trial t, we calcu-
lated the variance of the bandpass filtered activity across the
epoch. All trials exceeding 2 SD above the mean variance were
excluded from analysis.

We tested the hypotheses that a response in the NAcc (1) dif-
ferentiates between standard and deviant stimuli and (2) repre-
sents the strength of deviation. In addition, we hypothesized (3)
that the NAcc capacity to signal deviation depends on the
strength of recent memory so that small deviations are better
signaled if a memory trace is well established. Finally, the most
prominent component of novelty is the fronto-parietal P300
response dependent on frontal–hippocampal regions in humans
(Knight 1996; Knight and Scabini 1998; Boly et al. 2011). Thus, (4)
we also predicted that a NAcc computation of a PE would drive a
scalp P300 response. In each analysis, we compared the statistical
parameters with an empirical distribution derived froma permu-
tation procedure. In that procedure, all baseline-corrected epochs
comprising the trial duration (0–500 ms) were randomly shifted
in time. All epochs both of each trial and of each subject were
shifted independently. In temporal intervals exceeding the 95%
confidence interval (CI), we also report the minimal P-value
within the empirical distribution.

Coding of the PE
The mismatch signal is defined as the difference in the event-
related activity between standard and deviant stimulus-related
potentials. To measure this we calculated the event-related po-
tential for both standard and deviant stimuli for each subject.
For both stimulus types, we averaged across all intracranial
recording sites and trials. The evoked responses of the 4th to
the last (10th) standard in a train were assigned to the set of
standard trials to equate for the number of trials for standards
and deviants. For each epoch, we subtracted the baseline activity
(−500 to 0 ms before the stimulus onset) and calculated the
t-value using a paired t-test for each time point. The resulting
t-value time series represents the strength of difference between
standard and deviant stimuli across participants as a function of
time. The statistical significance of each t-value was assessed by
comparing the t-values with an empirical distribution derived
from a permutation procedure (Blair and Karniski 1993). All
epochs were randomly shifted in time, and the shifted epochs
were averaged and the t-values between standard and deviant
stimuli were calculated for each time point exactly as for the ob-
served time series. This permutation procedurewas repeated 500
times. For each time point, the CIs (2.5% and 97.5%) of a normal
distribution were determined. All P-values reported show the
probability of the observed t-valuewithin the distributionderived
from the permutation procedure.

PE Depending on Deviation Strength
Throughout the experiment, we randomly varied the DS and the
number of standards. We directly tested the gradual deviancy
variation with a linear regression and grouped trials associated
with deviant stimuli according to the absolute strength of devi-
ation to assess a gradual variation in the DS. Here, the strength
of deviation is defined as the difference in frequency between
each deviant sound and the preceding standard sound. We
used deviant sounds following trains of 5–11 sounds, meaning
deviants following the 4th to the 10th standard (corresponding
to the same set of trains as in the section “Coding of the PE”).
Six different groups of DS were classified ranging fromDS = 50 Hz
(e.g., 500–550or 700–650 Hz) to DS = 300 Hz (500–800 or 800–
500 Hz). We averaged across trials within each deviation group.
This results in 6 time series per subject each 1 trial long. Using
linear regression, we tested the hypothesis that differences in
DS predict differences in recorded amplitude. For each point in
time, we estimated the linear equation

ŷ ¼ a × xþ b

with the vector x as the 6 amplitude values, ŷ as the predicted DS,
a as the slope parameter, and b as the intercept. The individual
slope parameters were averaged across participants and the
averaged slope parameters were used to determine the temporal
intervals in which differences in amplitude predict differences in
DS. The slope parameter is positively/negatively high if a stronger
deviation elicits greater amplitude values in a given temporal
interval. To assess significance, we performed a permutation
procedure with 500 runs in which the same linear regression
analysis was conducted with randomly shifted time series. All
epochs were shifted in time separately. The shifted epochs
were averaged and the slope values were calculated for each
time point exactly as for the observed time series. For each time
point, the CIs (2.5% and 97.5%) of a normal distribution were
determined. Time points with the slope parameter a exceeding
the CI were considered significant. Reported P-values show the
probability of the observed slope value within the distribution
derived from the permutation procedure.

PE Depending on Auditory Regularity
We hypothesized that sensitivity to deviant stimuli with only a
small DS varies as a function of the number of preceding stand-
ard sounds (Haenschel et al. 2005). We tested whether a mis-
match of small DS following a long train elicits an enhanced
mismatch signal compared with the mismatch signal following
a short train. This would indicate that a longer and regular
train facilitates discrimination of small deviations. We also as-
sessed whether sensitivity to a small DS varies as a function of
the number of preceding standard sounds with the linear regres-
sion approach. We used trials associated with a deviant stimulus
and grouped the trials according to the number of preceding
standard sounds. We initially used the 3 levels of lowest DS
(≤150 Hz) out of the 6 levels of deviations. We used small devia-
tions for 2 reasons. First, finding no amplitude variation could de-
rive from the fact that amplitude variations to large deviations
might show a ceiling effect obscuring the gradient as a function
of train length. Secondly, if all DSs were collapsed one could
argue that small deviations do not have the same impact as
large deviations. To prevent this, we tested the influence on
small deviations. Note that the same analysis with all 6 levels
of DS yielded a comparable result (see Supplementary Results).
As outlined in the section “Coding of the PE”, the evoked
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responses of the fourth to the last repetition in a trainwere desig-
nated to the set of standard trials. This results in 7 time series for
each subject. Time series were averaged across all recording
channels. The individual slope parameters were averaged across
participants and the averaged slope parameters were used to de-
termine the temporal intervals inwhich differences in amplitude
predict differences in the number of preceding standards.

NAcc–Cortex Interaction
We tested whether the mismatch signal on the level of the NAcc
predicts cortical activity by determining trial-by-trial cross-cor-
relation between the NAcc and cortical time series in 2 cortical
regions of interest (ROIs). The frontal ROI encompassed Fpz, Fz,
and FCz, and the centro-parietal ROI encompassed Pz and Cz.
In each trial, the time series were averaged separately across
intracranial and surface recording channels leading to 2 time ser-
ies per trial (intracranial and surface activity). Pearson’s correl-
ation r coefficients were used to quantify the coupling between
responses in NAcc and the cortical ROIs. Cross-correlation
means that the activity at each time point across trials in the
NAcc was correlated with the activity at each time point across
trials on the cortical recordings. This provides information
about both the strength of correlation and the temporal relation
of the correlation. Here, the set of trials designated to the deviant
stimuli was used and the same analysis with the set of standard
trials revealed no significant interaction between the NAcc and
scalp recording sites. We calculated r values at each sample
point (Ncomparisons = 129 × 129) and averaged the resulting r-va-
lues across participants. Since r is not a metric measure before
averaging across participants, we transformed r-values using
the inverse hyperbolic tangent in the following equation:

atanhðrÞ :¼ 1
2
ln

1þ r
1� r

� �
forjrj< 1:

This correlation approach requires statistically independent
observations. Statistical significance was assessed by a permuta-
tion procedure, which encompasses 500 runs of the same ana-
lysis with the same time series but randomly shifted in time
and results in CIs for each r-value. We Bonferroni-corrected for
multiple comparisons by dividing the significance threshold by
the number of comparisons as follows:

Pcorr ¼ 0:05
Ncomparisons

:

The Bonferroni-corrected P-value within the empirical distribu-
tions was used as the threshold for statistical significance.

Results
Deviancy Detection in the NAcc

The NAcc Mismatch Signal
We found that between 20 and 130 ms (t4 = −2.9; P = 0.001) and
between 290 and 410 ms (t4 = 4.1; P < 0.0001), the time series for
deviant stimuli generated a mismatch signal (Fig. 2A), indicating
that the NAcc differentiated between standard and new (deviant)
stimuli at these time-epochs. These differences in amplitude
were confined to low frequencies (see Supplementary Material
and Supplementary Fig. 1), being maximal for 11 Hz (range
4–18 Hz) around 240 ms (t4 = 4.866; P = 0.004; uncorrected, see
Supplementary Material for differences between temporal inter-
vals in both analyses). In contrast to the NAcc, the ANT does not

differentiate by differences in amplitude between standard and
deviant stimuli (see Supplementary Fig. 2).

Activity in the NAcc Represents the Deviation Strength
We then examinedwhether the NAcc codes for different levels of
DS (difference in frequency between the deviant stimulus and

Figure 2. In each plot, the vertical dashed line marks the stimulus onset. (A) The

NAcc shows amismatch signal (difference between deviant and standard stimuli)

following the presentation of a deviant stimulus. The bold black line gives the

mean amplitude for deviant stimuli across participants and the shaded area

show the standard error (SE) across participants. The bold gray line shows the

mean amplitude for standard trials across participants. The shaded area

provides the SE across participants. The left y-axis shows the amplitude values

for standard and deviant event-related components. The right y-axis gives the

t-values for the difference between standard and deviant stimuli. The dashed

line shows the t-values as a function of time. The horizontal black bars show

the temporal intervals of corrected significant differences. (B) The strength of

the deviation (difference in tone pitch between previous standard and the

deviant sound) is coded in the NAcc. The amplitude following a deviant

stimulus decreases as a function of DS in an early temporal interval and

increases gradually later. The black line shows the slope parameter derived

from a linear regression at each time point. The curves show the 97.5% and

2.5% CIs derived from a permutation procedure. The gray-shaded areas mark

those temporal intervals in which the observed slope parameter underwent or

exceeded the empirical distribution. (C) The results presented in B imply that

small deviations yield a smaller mismatch signal compared with stronger

deviations. We tested whether the amplitude of the mismatch signal to a small

DS is modulated by the number of preceding standard trials and hence,

auditory regularity. The black line shows the slope parameters as a function of

time together with the CIs derived from a permutation procedure. The negative

slopes imply that the mismatch signal increases with a negative polarity with

an increasing number of preceding standards around 100 ms (gray-shaded

area). We tested whether this can be in part due to a repetition suppression

within a long train of standards.
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the preceding standard sound). We used all levels of DS ranging
from 50 to 300 Hz and predicted the DS from the amplitude
value at each time point using linear regression. The observed
slope parameters derived from the linear regressions were com-
pared with CIs derived from the permutation procedure. In the
time range between 138 and 224 ms (P = 0.002) and 302 and
408 ms (P = 0.008), the observed slope parameterswere significant
(Fig. 2B). This indicates that the first significant mismatch signal
with a negative polarity linearly codes the DS with a stronger
negative amplitude for stronger deviations. The second positive
polarity mismatch signal linearly codes the DS with a stronger
positive amplitude for stronger deviations.

The NAcc Mismatch Signal Depends on the Number of Preceding
Standards
To address whether human NAcc responsivity is dependent on
the recent past, we evaluated the dependency between the num-
ber of prior standard auditory stimuli and the responsivity to a
deviant. We hypothesized that sensitivity to deviant stimuli
would vary as a function of the number of preceding standard

sounds,where the latter can be thought of in terms of an evolving
belief or prior. We tested whether a small DS results in an en-
hanced amplitude of response as a function of increasing length
of a preceding train of standard stimuli. To formally test this, we
compared trials with a low DS (≤150 Hz) but differing numbers of
preceding standard tones. In the time range between 95 and
196 ms (P = 0.007), the mismatch elicited amore prominent amp-
litude following long trains of standards (Fig. 2C). We found a
comparable result even when all deviant trials of all levels of
DS were subjected to this analysis (see Supplementary Results).
This effect might be explained by repetition suppression (see
Supplementary Material) with an increasing length of preceding
trains, but this is unlikely since our test for repetition suppres-
sion was not significant (see Supplementary Fig. 3).

Relation of NAcc Activity to the Cortical Response
A cross-correlation revealed that the NAcc trial-to-trial ampli-
tude variation is linked (P < Pcorr) to the trial-to-trial amplitude
variation recorded at centro-parietal, but not frontal, leads.
Figure 3 shows that early activity in the NAcc (80–180 ms)

Figure 3.Depiction of the cross-correlation analysis. (A) Each point in the upper and lower squarematrix shows the correlation strength between the NAcc and the frontal

(upper) and the centro-parietal (lower) ROI by means of the probability. The white diagonal separates the direction of temporal relation. All values in the upper triangle

show activity in the NAcc preceding surface activity. The lower triangle shows the correlation for surface activity preceding NAcc activity. P-values were derived from a

permutation procedure. The strongest correlation as indicated by the smallest P-values is observed between NAcc activity around 120 ms and surface activity around

350 ms. The magenta line shows the correlation of surface activity at around 350 ms with the NAcc at all time points. The black line shows the correlation of NAcc

activity at around 120 ms with surface activity at all time points. The red line shows the Bonferroni-corrected significance level. The vertical and horizontal dashed

with lines mark the beginning of the next trial. (B) The red and black dots show the frontal and centro-parietal ROIs, respectively. (C) Depiction of the difference waves

between standard and deviant stimuli within the frontal ROI (red line) and the centro-parietal ROI (black line). Only in the frontal ROI, there is a slightmismatch negativity

following 100 ms, which appears to be absent in the centro-parietal potential. The green line gives the t-value for the differences between both ROIs for each time point. In

the time range of significant posterior P3 prediction, the frontal and centro-parietal P3 differ significantly.
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correlates with activity between 330 and 410 ms at centro-par-
ietal recording sites (maximal r = −0.22). Note that the negative
correlation coefficient reflects a positive relationship between
the amplitude variation at both recording sites. Specifically, the
negative correlation results from a correlation between the amp-
litude of negative deflection in the NAcc and the amplitude of the
positive deflection of the P3.

The second positive mismatch signal in the NAcc linearly
codes the DS with a stronger positive amplitude for greater devia-
tions. We were unable to establish a scalp correlate of this later
NAcc activity. The enhanced early latency NAcc–cortical event re-
lated potential correlation was observed for deviation trials, but
not for standard trials (see Supplementary Fig. 4). Note that the
frontal P3 was reduced in this time interval relative to the cen-
tro-parietal response as is typically observed in paradigms with
relatively low stimulus novelty and multiple deviancy repetitions
(Polich 1989a, 1989b; Polich and McIsaac 1994; Fig. 3C). Within the
temporal interval of significant prediction, that is NAcc–cortex
interaction, the centro-parietal P3 differed significantly from the
frontal P3 (t(4) = 2.37, P = 0.038). Based on these results, we tested
for a specific dependency of the posterior P3 amplitude on DS
and the number of preceding standards. We conducted the same
analysis as described for the NAcc. We found that the posterior,
but not the frontal, potential showed a linear dependency on the
DS in the time range between 320 and 370 ms (P = 0.0065)matching
the temporal interval of significant interaction with the NAcc
amplitude variation ( Fig. 4A). We also observed that the posterior,
but not the frontal scalp, potential showed a linear dependency on
the numberof preceding standard trials as revealed bystatistically
significant slope parameters in the time range between 310 and
350 ms (P = 0.0031; Fig. 4B). Moreover, the centro-parietal scalp po-
tentialwasbest predictedby channels located in the central region
of the NAcc (see Supplementary Fig. 5).

Discussion
We recorded intracranially from the human NAcc using an audi-
tory deviancy paradigm to assess the processing of sensory
deviations, allowing us to test whether NAcc contributes to the

computation of statistics in local auditory irregularities. We
also determined whether NAcc activity generated to deviant
events was linked to a modulation of cortical activity. We ob-
served that human NAcc activity reliably tracks the statistics of
the local auditory scene and predicts later cortical activity.

We found that the strength of deviation coded in theNAcc dis-
played larger responses if theyoccurred following longer trains of
standards. We employed a bipolar montage to insure that the re-
corded NAcc activity was not due to far-field activity from nearby
non-NAcc structures. As a further subcortical control, the anter-
ior thalamic recordings did not signal deviancy from expectancy
nor amplitude variation as a function of DS. Thus, the amplitude
variation in the NAcc indicates that this activity is dependent on
information regarding temporal succession, an effect possibly
originating in the hippocampal formation. Indeed, the strong
anatomical and functional connection with the hippocampus
(HC; Finch 1996; Goto and Grace 2008) makes the NAcc an ideal
structure to track representations of the recent past stored in
the HC (Lisman and Grace 2005), an idea supported by Strange
et al. (2005) and Axmacher et al. (2010). Lisman and Grace (2005)
proposed a model of novelty detection and memory formation
consisting in a functional loop between HC–ventral tegmental
area (VTA). This model assumes feedforward and feedback con-
nections. Our NAcc and scalp data in deviation trials provide sup-
port for such a functional loop. In contrast, activity evoked by
standard stimuli does not influence the late cortical response,
suggesting that information about a correct prediction as in the
case of a standard trial does not activate the HC–VTA loop.

One question is whether the HC sends information about the
quality of deviation or a general signal of deviancy (Strange et al.
2005). Dolan and Fletcher (1997) showed a functional dissociation
between medial temporal and dorsolateral prefrontal (dlPFC)
areas during encoding auditory–verbal stimuli, with a medial
temporal area more responsive to general novelty and dlPFC re-
sponsive to associations between category and exemplars. The
present findings support the idea that the NAcc might receive a
general novelty signal from the HC. This HC signalmight indicate
that a PE was committed but not the quality in terms of DS. Sup-
port for this interpretation emerges fromStrange et al. (2005)who

Figure 4. (A) The strengthof the deviation (difference in tone pitch betweenprevious standard and the deviant sound) is coded in the posterior P3. The amplitude following

a deviant stimulus increases as a function of DS in the temporal interval of the P3. The black line shows the slope parameter derived from a linear regression at each time

point for the posterior P3, and the gray-dashed line for the frontal P3. Thehorizontal lines show the 97.5%and 2.5%CIs derived fromapermutationprocedure. (B)We tested

whether the amplitude of the scalp potential modulated by the number of preceding standard trials and hence, auditory regularity. The black line shows the slope

parameter derived from a linear regression at each time point for the posterior P3, and the gray-dashed line for the frontal P3. The horizontal lines show the 97.5%

and 2.5% CIs derived from a permutation procedure.
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showed that the HC response is modulated by entropy. This
quantifies expected information rather than the information it-
self and their study showed that unpredictable stimulus streams
led to greater activity in the anterior HC.

We observed the NAcc discriminates deviant events at an
earlier latency than previously reported (Axmacher et al.
2010). This might be explained by the simplicity of the stimuli
used in our study, and the differences in modality since visual
stimuli elicit mismatch-related components with a prolonged
latency compared with auditory oddball stimulation (Comerch-
ero and Polich 1999). We speculate that the processing of the
visual stimuli called for a cognitive evaluation reducing any
automatic early components as observed in the current study.
The passive listening in our current study underscores the
rapid pre-attentive and automatic process represented in the
NAcc signal.

The NAcc is proposed to play a prominent role in goal-direc-
ted behavior by integrating inputs from other limbic structures
and the prefrontal cortex (Goto and Grace 2008). Since our task
design did not require behavioral responses, the influence of
detecting local auditory irregularities for directing subsequent
behavior cannot be inferred directly. However, the fact that the
early mismatch signal in the NAcc selectively correlates with
the central–parietal P300 underscores the notion that the NAcc
is central to behavioral adjustments. The scalp P300 component
is linked to memory storage and detecting behavioral-relevant
targets (Knight 1996, 1998; Polich and Criado 2006; Polich 2007).
Our study used weak deviants that typically activate only the
centro-parietal P300 response to deviant events. This might sug-
gest that contextual deviancy detection occurs in a hippocam-
pal–NAcc network, and this information is used to trigger the
activation of a broader attentional network manifested in a
scalp P300 potential.

A role for NAcc activity in goal-directed behavior is further
supported by differences in the P300 prediction as a function of
the subregions of the NAcc assessed in our study. P300 scalp pre-
diction ismaximal in central NAcc sites pointing to differences in
functional significance of subregions of the human NAcc. In rats,
lesions to the NAcc core decreased habituation to a novel envir-
onment due to failure in the detection of perturbations (Cardinal
et al. 2001). Furthermore, studies in rats show that the core region
is involved in inhibitory control of goal-directed behavior (Pothui-
zen et al. 2005) and is especially necessary for processing of stim-
uli deviating from expectancy.

Patient intracranial studies carry a possibility of impacting
critical processes relevant to mismatch detection and other cog-
nitive functions. All 5 patientswere awake, attentive, and respon-
sive during the recording session. Hence, we consider the
likelihood of an impact on this automatic process to be relatively
small. Furthermore, despite the small number of participants,
the effect is strong enough to reliably detect a mismatch signal
across subjects.

Taken together, our findings demonstrate that, within an on-
going stream of information, the NAcc contributes to coding the
statistics of the auditory environment manifested by a gradual
variation of amplitude of the local field potential in the NAcc.
This NAcc gradient predicts generation of a subsequent scalp
P300 dependent on cortical–hippocampal circuits. These findings
emphasize the importance of the NAcc in the automatic integra-
tion of sensory information. Furthermore, the relationship be-
tween NAcc and the P300 provides evidence for a role of NAcc
activity in mnemonic functions possibly by binding neural activ-
ity that is shared between medial temporal lobe and dopamin-
ergic midbrain structures.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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Deep brain stimulation of the nucleus basalis of Meynert
attenuates early EEG components associated with
defective sensory gating in patients with Alzheimer
disease – a two-case study
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Abstract

Alzheimer0s disease (AD) is associated with deterioration of memory and cognitive function and a degeneration of neurons of the
nucleus basalis of Meynert (NBM). The NBM is the major input source of acetylcholine (ACh) to the cortex. The decreasing
cholinergic innervation of the cortex due to degeneration of the NBM might be the cause of loss of memory function. NBM-Deep
brain stimulation (NBM-DBS) is considered to serve as a potential therapeutic option for patients with AD by supporting residual
cholinergic transmission to stabilize oscillatory activity in memory-relevant circuits. However, whether DBS could improve sensory
memory functions in patients with AD is not clear. Here, in a passive auditory oddball paradigm, patients with AD (N = 2) listened
to repetitive background tones (standard tones) randomly interrupted by frequency deviants in two blocks with NBM-DBS OFF
and then NBM-DBS ON, while age-matched healthy controls (N = 6) repeated the experiment twice. The mismatch negativity in
NBM-DBS OFF significantly differed from controls in both blocks, but not under NBM-DBS, which was likely due to a pronounced
P50 increase overlapping with the N1 in NBM-DBS OFF. This early complex of EEG components recovered under stimulation to
a normal level as defined by responses in controls. In this temporal interval, we found in patients with NBM-DBS ON (but not with
NBM-DBS OFF) and in controls a strong repetition suppression effect to standard tones – with more attenuated responses to fre-
quently repeated standard tones. This highlights the role of NBM-DBS for sensory gating of familiar auditory information into sen-
sory memory.

Introduction

Alzheimer0s disease (AD) is associated with progressive deteriora-
tion of memory and cognitive function and is the most common
cause of dementia in middle and late life as a result of organic brain

disease (Terry & Davies, 1980)]. Previous studies have shown that
in patients with AD, neurons of the nucleus basalis of Meynert
(NBM) undergo massive degeneration (Whitehouse et al., 1982).
The NBM is densely connected with a variety of cortical and sub-
cortical structures. In the primate brain, the NBM receives its major
input from the ventral tegmental area, substantia nigra pars com-
pacta, retrorubral field, raphe nuclei and the locus coeruleus, sero-
tonergic projections from the dorsal raphe nucleus and ventral
tegmentum, and cholinergic projections from pedunculopontine and
laterodorsal tegmental nuclei. The human NBM provides the major
source of cholinergic innervation to the neocortex (Mesulam et al.,
1983), with projections to the frontal, parietal, cingulate cortex,
amygdala, anterior auditory cortex and the temporal pole (Gratwicke
et al., 2013).
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Acetylcholine (ACh) is one important neuromodulator released in
the cortex. It is presumed that the neuromodulatory impact of ACh
encompasses the enhancement of cortical plasticity (Rasmusson,
2000) and is involved in many cognitive functions including atten-
tion (Voytko et al., 1994; McGaughy et al.,1996; Sarter & Bruno,
2000; Furey et al., 2008; Herrero et al., 2008) and memory encod-
ing/learning (Miasnikov et al., 2001, 2008; Thiel et al., 2002;
Warburton et al., 2003; Weinberger, 2003; Froemke et al., 2007).
The cholinergic receptor blocker scopolamine results in a specific
learning impairment, possibly through the limitation of the acquisi-
tion of new information and the storage of new memories (Aggelo-
poulos et al., 2011). Pharmacological increase in cerebral ACh
concentration (via an acetylcholinesterase inhibitor) has been
employed in the treatment of brain injury and advanced dementia.
Inhibition of acetylcholinesterase leads to an increase in cerebral
ACh concentration and has been reported to have a neuroprotective
effect on rats with cerebral infarcts or mild traumatic brain injury
(TBI) (Fujiki et al., 2005, 2008). Other acetylcholinesterase inhibi-
tors have also been used for the treatment of Alzheimer’s disease
(Howes & Perry, 2011).
Hence, in patients with AD, a decreasing cholinergic innervation of

the cortex due to the degeneration of the NBM might be the cause of
progressive loss of memory function. At present, among pharmacolog-
ical approaches to increase the cholinergic level in patients with AD,
the deep brain stimulation of the NBM (NBM-DBS) is considered to
be a potential therapeutical option. The rationale of NBM-DBS is to
support residual cholinergic transmission by stabilizing oscillatory
activity in memory-relevant circuits and improves cognitive functions
(Kuhn et al., 2015a,b; Hardenacke et al., 2016). NBM-DBS is an
experimental, in selected cases therapeutically effective, non-lesional
treatment method delivering current rectangular pulses into dysfunc-
tional brain structures via chronically implanted stimulation elec-
trodes. NBM-DBS is a recognized method applied in movement
disorders and is increasingly evaluated as a possible therapeutic option
for psychiatric diseases such as refractory obsessive-compulsive disor-
ders, Gilles de la Tourette syndrome, major depression and substance-
related addiction (Kuhn et al., 2010; Hardenacke et al., 2013). How-
ever, whether DBS has the potential to improve sensory memory func-
tions in patients with AD is not clear.
In humans, sensory memory can be evaluated with auditory odd-

ball paradigms in which a sensory memory to frequently presented
standard tones is established and violated by randomly interspersing
deviant tones differing in tone frequency. In EEG recordings, the
amplitude difference between standard tones and rare and randomly
presented deviant tones can be measured in the form of an ERP
component called the mismatch negativity (MMN). The MMN is
considered a correlate of the automatic detection of changes in the
acoustic environment (Lind�ın et al., 2013) and is regarded as the
classical prediction error signal elicited during passive listening
(N€a€at€anen et al., 1978). The MMN is defined as difference wave
with the amplitude modulation to frequent standard tones subtracted
from the enhanced amplitude modulation to infrequent deviant
tones. Previous scalp MMN studies reported response differences
between standard and deviant tones peaking between 100 and
250 ms (reviewed in ref. (N€a€at€anen et al., 2007), which overlaps
largely with the timing of the P50, and N1, and even the later P300
response.
Converging evidence suggests that the MMN has interacting gen-

erators in the secondary auditory cortex on the superior temporal
plane and superior temporal gyrus as well as in the prefrontal cortex
(Deouell, 2007; Shalgi & Deouell, 2007), but the distinct contribu-
tion of each part of this network is not clear as subcortical regions

also generate mismatch signals that interact with cortically measured
mismatch components (D€urschmid et al., 2016). To detect a change,
it is necessary to have an overview of the recent past or to make a
comparison between an incoming stimulus and a short-lived sensory
memory trace. As such, the MMN is considered to reflect storage of
information in sensory memory (Gaeta et al., 1999; Pekkonen et al.,
2001) and speed of acoustic sensory discrimination (Engeland et al.,
2002). In patients with AD, the MMN amplitude decrease as a func-
tion of the interstimulus interval is more strongly pronounced than
in healthy controls. This suggests that the memory trace decays fas-
ter in the patients with AD than in age-matched healthy controls
(Pekkonen et al., 1994). Together with behavioural changes, the
MMN seems to be largely affected in patients with AD. For exam-
ple, Cheng et al. (2012) and Hsiao et al. (2014) reported larger
source amplitudes and shorter peak latencies in the right temporal
magnetic mismatch responses of young controls compared to elderly
controls and patients with AD. Also, Lind�ın et al. (2013) found a
reduced MMN in patients with amnestic mild cognitive impairment,
but not in controls. However, the MMN seems to be preserved
under ignore condition (Kazmerski et al., 1997), when attention to
the stimuli was not required. Engeland et al. (2002) found that
nicotine, a cholinergic agonist, enhancing a number of cognitive
processes, shortened the MMN latency, and hence enhances pre-
attentive temporal processing. Scopolamine, a centrally acting
cholinergic antagonist, reduced the MMN amplitude (Pekkonen
et al., 2001). Previous studies also showed that the amplitude of the
P50 component is elevated in patients with mild cognitive impair-
ment or early AD, as compared to healthy controls (Polich et al.,
1990; Golob & Starr, 2000; Golob et al., 2007, Cheng et al., 2012).
A stronger P50 in patients with AD could explain the observed dif-
ferences in the MMN. The larger amplitude may indicate an impair-
ment of pre-attentive inhibition of repetitive auditory inputs (Cheng
et al., 2012). It is unclear whether amplitude modulation of patients
with AD or mild cognitive impairment (MCI) reflects a pathology of
cortical neurons or is instead a functional consequence of the pathol-
ogy of remote structures such as the NBM.
In this study, we investigated brain responses to repetitive stimuli

in an oddball paradigm in patients with AD treated with NBM-DBS
and compared them with responses in age-matched healthy controls
to test two hypotheses. The first hypothesis was that patients would
show different mismatch responses with or without NBM-DBS, and
that such differences cannot be ascribed to a repeated auditory stim-
ulation, as in our control group. Second, we hypothesized that the
response to standard tones in particular would be altered in patients
with AD without NBM-DBS, possibly due to an amplitude modula-
tion in the P50/N1 complex.

Methods

Participants

Patients

The youngest two patients with AD (P1: 63 years.; P2: 61 years)
from the former MEYND-DBS (Kuhn et al., 2015a,b; Hardenacke
et al., 2016) cohort participated in the experiment after providing
their written informed consent. Recordings took place at the Univer-
sity of Cologne and were approved by the local ethics committee
(Otto von Guericke University Magdeburg). A low-frequency NBM-
DBS (20 Hz, 1V) was implemented. Details of implantation of the
low-frequency stimulation are described in Kuhn et al. (2015a,b).
The initial MEYND-DBS study started 6 years before the study
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described here. Unfortunately, the remaining six patients were not
able to participate due to their progressively deteriorated dementia.

Controls

Six controls (mean age 59 years; std 1.2) were recruited from a pool
of healthy normal subjects at the Otto-von-Guericke University of
Magdeburg and participated in the experiment after providing their
written informed consent.

Paradigm

Participants listened to stimuli consisting of 180 ms long (10 ms
rise and fall time) harmonic sounds with a fundamental frequency
(F0) of 500 or 550 Hz and the three first harmonics with descending
amplitudes (�6, �9, �12 dB relative to the fundamental), with a
stimulus onset asynchrony of 600 ms (see Fig. 1). The stimuli were
generated using MATLAB software (The MathWorks, Natick, MA).
The stimuli were presented using the loudspeakers of the notebook.
The participants were asked to ignore auditory stimuli and watched
an engaging visual slide show on the screen of the notebook.
Sequences consisted of 600 trials with 100 deviant tones randomly
embedded in standard tones. The trains of standard tones had a min-
imum length of three and a maximum length of seven standard
tones in a row and each of the five different train lengths had the
same probability (20%).

NBM-DBS OFF vs. NBM-DBS ON

Twenty minutes before running the experiment, the NBM-DBS was
switched off and participants were familiarized with the experiment.
Then, the auditory stimulation was started while the stimulation
remained off (NBM-DBS OFF condition). Twenty minutes before
the next presentation, the NBM-DBS stimulation was switched on
(NBM-DBS ON condition). We ran the same experiment in the con-
trols two times with a break of 20 min. We reasoned that if we do
not observe differences in controls across blocks but that the
patients’ EEG components converged to a normal amplitude modu-
lation as defined by controls, then differences in patients between
NBM-DBS OFF and NBM-DBS ON can be ascribed to the stimula-
tion but not to the temporal order. However, fatigue may affect the
patients with AD differently. Hence, we directly tested the impact of
fatigue on EEG components. We reasoned that if fatigue may influ-
ence amplitude modulation, then changes in EEG components can
be explained by the frequent repetition during stimulation and hence
within the first block.

EEG recording

During presentation of the oddball paradigm, we recorded EEG
activity from 21 channels according to the 10–20 setting with a

sampling rate of 256 Hz. At both the University in Cologne and
Magdeburg, the same portable EEG system set-up by the same per-
sonnel was used. Scalp impedances were kept below 5 kΩ. Data
were referenced against left and right mastoid (channels 22 and 23)
during recording. The resulting raw data were segmented in epochs
ranging from �1 to 2 s around the stimulus onset. Epochs with
amplitudes > 40 lV were rejected. Data of both patients and con-
trols were notch-filtered offline around 20 Hz (� 2 Hz) and its three
harmonics to remove artifacts due to NBM-DBS stimulation in the
ON condition and 50 Hz (� 2 Hz) and its three harmonics to
remove line noise. This notch filter was applied to both patients and
controls to make EEG activity comparable across blocks and groups.
We then bandpass filtered the data between 1 and 40 Hz. All epochs
were baseline corrected by subtracting mean activity in the 100 ms
preceding stimulus onset.

Data analysis

In general, we reasoned that if we do not observe differences in
controls across blocks but patients’ EEG components converged
under stimulation to normal amplitude modulation, as defined by
controls, then differences in patients between NBM-DBS OFF and
NBM-DBS ON could be attributed to the stimulation but not to the
temporal order. We estimated the effect due the NBM-DBS in the
following way. We first selected channels showing a stimulus-
responsive activity modulation in either standard or deviant tones (I
– Stimulus-responsive activity modulation). In the next step, we veri-
fied that both patients did not differ in their response across blocks
and stimulus types (II – Response Similarity between Patients).
Then, we quantified the mismatch response and tested for differ-
ences between patients and controls across blocks (III – Mismatch
signal). Next, we tested for effects of NBM-DBS on responses to
standard and deviant tones separately (IV – Response differences to
deviant and standard tones between groups and blocks). In the last
step, we analyzed the evolution of sensory gating by means of repe-
tition suppression (V – Repetition Suppression).

I – Stimulus-responsive activity modulation

We first identified stimulus-responsive channels showing a signifi-
cant (compared to an empirical distribution, see below) amplitude
modulation to auditory stimulation. For each EEG channel, we aver-
aged across patients and controls and calculated the average baseline
activity B across the 100 ms preceding the stimulus onset. We then
averaged the absolute stimulus response across the 200 ms follow-
ing the stimulus onset encompassing largely the P50 and N1 compo-
nents (see Fig. 2). The resulting average stimulus-response A was
subtracted from B. The difference between A and B was compared
against an empirical distribution derived from randomly shifted time
series (1000 permutations). We compared the empirical values
against the surrogate distribution to correct for the multiple tests

Fig. 1. Depiction of the experimental paradigm. Patients and controls listened to stimuli consisting of 180-ms-long (10 ms rise and fall time) sounds. High-
probability standard tones (500 Hz) mixed with low-probability deviants [550 Hz; stimulus onset asynchrony (SOA) = 600 ms] were presented unpredictably
(pseudorandom sequence: minimum three consecutive standard tones in two blocks. Patients started with NBM-DBS OFF followed with NBM-DBS ON after a
20 min break.
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applied. In each permutation, the time series of each channel and
each trial were shifted (circular shift of the entire trial time series
between �0.1 and 0.6 s) separately, and new (surrogate) trial aver-
ages were calculated from the shifted trials. We then calculated the
difference between Asurrogate and Bsurrogate leading to 1000 difference
values. Channels exceeding the 97.5th percentile of the channel-spe-
cific surrogate distribution were classified as showing a significant
stimulus response.

II – Response similarity between patients

Due to the small number of patients, we could not compare patients
with controls across subjects. Hence, our random variable in each
test was trials. This provides a sufficiently high number of data
points (500 standard tone trials for each subject in each block and
100 deviant tone trials for each subject in each block) for the use of
inference statistical tests like t- and F-tests. A prerequisite for each
test was that patients did not differ in their response to the stimula-
tion in either the first or in the second block, to exclude the possibil-
ity that differences between blocks can be ascribed to only one
patient. Within the mean activity averaged across the responsive
channels, we carried out a two-way ANOVA with factor stimulus type
(standard vs. deviant tones) and patient (patient 1 vs. patient 2) at
each time point, separately for the NBM-DBS OFF and ON (with
single trials as random variable). This yielded a time series of F-
values representing the interaction effect of stimulus type and patient
between �100 and 600 ms. The Finteraction value parameterizes the
difference between patients in their response to the two different
stimulus types. To set a threshold for significant Finteraction values,
an empirical distribution of the interaction effect was constructed by
randomly reassigning the labels (standard vs. deviant tones and
patient 1 vs. 2) to the single trials in 1000 permutations. To rule out

fatigue as a potential influencing variable, we compared the first
third of trials against the last third of trials in the patient group. We
carried out a time point by time point t-test in order test each EEG
component separately. A high t-value would indicate a robust
change in a given EEG component due to the frequent repetition in
the first block. The resulting t-values time series was compared
against a surrogate distribution derived from a randomly shifted time
series (1000 permutations).

III – Mismatch signal

To determine the strength of the mismatch response, we carried out
a t-test comparing standard and deviant tones at each time point
(random variable is trials) separately for patients and controls, both
in the 1st/OFF block and the 2nd/ON block. This yielded four time
series representing the mismatch response (see Fig. 3). The area
encompassed by these time series is typically interpreted as a differ-
ential response to deviants compared to standard tones, due to a pre-
diction error. We asked whether patients0 mismatch response differs
from controls both in the 1st/OFF block or the 2nd/ON block. A
significant difference in the NBM-DBS OFF from controls but not
in the NBM-DBS ON condition would indicate a normalized audi-
tory processing under stimulation. Therefore, we converted the area
encompassed by each time series within the 250 ms following stim-
ulus onset into a frequency distribution of amplitude values. Fig-
ure 3 shows a red and blue area under the t-value time series for 1st
block of controls and NBM-DBS OFF block of patients, respec-
tively. We used receiver operation curve (ROC) analysis to evaluate
the overlap of each pair of frequency distributions. We estimated
the area under the ROC (AUC) for the frequency distributions. Each
AUC was compared against a surrogate distribution. In 1000 runs,
we randomly reassigned labels (group, block, stimulus type) and cal-
culated the 1000 AUCsurrogate values.

Fig. 2. Depiction of responses to deviant (left) and standard tones (right)
collapsed across both groups (patients and controls) and both blocks (OFF/
1st and ON/2nd). The upper row shows the topographical distribution of the
N1 response between 90 and 150 ms (grey shaded area). Fz, Cz, C3 and C4
showed significant amplitude modulation compared with baseline activity
(�100 ms preceding stimulus onset) with a pronounced negative-going
deflection as indicated by blue areas. The lower row shows the responses of
all channels (grey lines) to deviant and standard tones. The dashed red line
marks the stimulus onset. The light blue time series shows the mean response
across all channels, and the purple time series shows the mean response
across all significant channels.

Fig. 3. Depiction of Mismatch responses. For each group (patients and con-
trols) in each block (OFF/1st and ON/2nd), we quantified the mismatch
response by calculating the t-values as the difference between responses to
standard and deviant tones for each time point. Here, we tested whether con-
trols showed a difference in their mismatch response across blocks and
whether patients differed from the response of the controls. To estimate the
difference, we estimated the overlap of the integral under the t-value time
series. For example, the blue line shows the mismatch response in patients
without stimulation (OFF). The red line shows the mismatch response in con-
trols in the 1st block. The amount of overlap between both integrals was
assessed by receiver operating curve. While the response of patients in the
OFF block was significantly different from controls the response of patients
in the ON block was not.
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IV – Response differences to deviant and standard tones between
groups and blocks

We tested whether the difference in MMN can be attributed to the
response to deviant or to standard tones separately. Specifically, we
asked whether responses to either of the stimuli evolved differen-
tially between the groups across blocks. We expected a difference in
the response to one of the stimuli in the patient group as compared
to the control group. At each time point, we calculated a two-way
ANOVA with the factors group (patients vs. controls) and block
(‘OFF’/1st vs. ‘ON’/2nd). A significant interaction would indicate
that patients and controls evolve differently in their response across
blocks. Specifically, we expected a stronger variation in the patient
group than in the control group. We reasoned that effects in the
patient group across blocks, which were not paralleled by differ-
ences in the control group across blocks, could be attributed to the
stimulation but not to repetition of the same experiment itself. The
observed F-values were compared against a surrogate distribution,
which was constructed by randomly reassigning the labels (group
and block) in 1000 runs. In addition to the ANOVA, we compared
both the patient and control group regarding their effect size. Again,
our rationale was that if there is a difference between the blocks in
the patient group but not in the control group, then most likely dif-
ferences in EEG components are due to NBM-DBS. We estimated
the effect size at each time point as the difference between the mean
across trials and subjects in the first block (NBM-DBS ON in
patients) and the mean across trials and subjects in the second block
(NBM-DBS OFF in patients), divided by the common standard
deviation. The effect size is a statistical measure, reflecting how
much two standardized means are different between two popula-
tions. The larger the effect size is, the more the two populations are
distinct in a studied parameter.

V – Repetition suppression

Next, we assessed whether patients and controls show different pat-
terns of adaptation to standard tones. Within the temporal interval of
the significant interaction, we grouped standard tones according to
the number of repetitions (1–7). The averaged absolute amplitude
modulation to standard tones was correlated with the number of rep-
etitions separately for each group (patients vs. controls) and sepa-
rately for each block. Again, we assessed the difference in the
patient group across blocks with the difference in the control group
across both blocks. To assess significance of the difference of
Pearson0s correlation coefficient in the patient group in the ‘OFF’
vs. ‘ON’ block, we compared the difference value against a surro-
gate distribution. In 1000 runs, we first reassigned the labels (num-
ber of repetitions) randomly to the trials. Then, we regrouped trials
according to the newly assigned labels and correlated them with the
number of repetition separately for each block. Then, we calculated
the difference between all combinations of the resulting 1000 r val-
ues between both blocks. The difference values Dr of the patient
group between NBM-DBS OFF and NBM-DBS ON were compared
against resulting Drsurrogate values.

Results

I – Stimulus-responsive activity modulation

We first identified channels showing a significant amplitude modula-
tion to the auditory stimulation. EEG channels Fz, Cz, C3 and C4
showed significant modulation to both standard and deviants tones

compared to baseline (Bonferroni corrected for multiple
comparisons).

II – Response similarity between patients

The threshold Finteraction value derived from the surrogate distribu-
tion was 5.5. The empirical Finteraction values did not reach signifi-
cance, indicating no differences between patients with respect to
their response to standard and deviants tones. The maximal
Finteraction values observed in NBM-DBS OFF were 2.2 and 4.2 in
NBM-DBS ON. The Finteraction value of 4.1 of the three-way interac-
tion (stimulus type 9 patient 9 block) did not reach significance
either (all P-values > 0.1).

III – Mismatch signal

Figure 3 shows the mismatch responses of patients under NBM-
DBS OFF (blue), NBM-DBS ON (green), and in controls in the 1st
block (red) and in the 2nd block (light blue). We quantified the mis-
match response as the integral under the t-values time series and
compared these areas using receiver operating curve (ROC) statis-
tics. We found the mismatch response in the patient group under
NBM-DBS OFF was significantly earlier than the mismatch
response under NBM-DBS ON, and also earlier than the mismatch
response of controls both in the 1st and 2nd block (see Table 1 for
a complete list of AUC values and P-values within the surrogate
distribution). The mismatch response of patients under NBM-DBS
ON did not differ from the controls either in the 1st or in the 2nd
block. As the mismatch response depends both on the response to
deviant and standard tones, we assessed both separately in the next
step.

IV – Response differences to deviants and standard tones
between groups and blocks

We assessed whether patients and controls evolved differently in
their responses to the stimulus types across blocks. We found a sig-
nificant interaction between the factors of group (patients vs. con-
trols) and block (OFF 1st vs. ON 2nd), in response to frequent
standard tones but not to deviant tones ranging from 75 to 140 ms
(see Fig. 4). The peak Finteraction value was 7.75 at 124 ms
(P < 0.00001), indicating an altered response to standard tones
under NBM-DBS OFF compared to NBM-DBS ON and controls in
both blocks. The response to standard tones recovers under stimula-
tion to a normal level comparable to the response in controls. For
post hoc tests, we averaged the response in the time range from 75
to 140 ms in each trial and compared patients and controls in both
blocks. We found a significant difference between NBM-DBS OFF
and NBM-DBS ON [t3721 = 4.8; P < 0.0001], between patients
OFF and controls in the 2nd block [t3762 = 5.3; P < 0.0001], and
between patients OFF and controls in the first block [t1874 = 5.3;
P = 0.01; significant at an uncorrected level]. However, there were no

Table 1. Provides a summary of differences in MMN between groups and
blocks as the area under the receiver operating curve

Comparison

PG OFF
vs. PG
ON

PG
OFF vs.
CG 1st

PG OFF
vs. CG
2nd

PG ON
vs. CG
1st

PG ON
vs. CG
2nd

CG 1st
vs. CG
2nd

AUC 0.74 0.8 0.85 0.55 0.64 0.59
P 0.003 0.0003 0.00002 0.25 0.06 0.13
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differences between patients ON and controls (both P-values > 0.1)
and between both blocks of controls (P = 0.1). The maximal effect
size d in the temporal interval of the P50-N1 of the patient group was
d = 0.2 (P < 0.00001; CI99% �0.09 to 0.09) at 28 ms. The maximal
effect size in the control group was d = 0.06 at 128 ms and hence fell
below the significance threshold. This effect cannot be ascribed to fati-
gue as in the temporal interval of the P50-N1, we did not find a signifi-
cant change over the first block (see Fig. 4).

V – Repetition suppression

In the temporal interval lasting from 75 to 140 ms, we observed a
significant effect of interaction between the factors of group and
block, indicating a significant reduction in the N1 response to the
standard tones in the patient group without stimulation. In this tem-
poral interval, we observed a negative correlation of amplitude with
the number of repetitions in the control group, both in the 1st and
the 2nd block. We did not observe a significant difference between
both blocks (DrCG = 0.08; P = 0.6; see Fig. 5). We observed a pos-
itive correlation in the OFF block in the patients. In contrast, we
observed a negative correlation resembling the pattern in controls in
the ON block. The correlation in patients in the OFF block was sig-
nificantly different from the correlation in patients in ON block
(Dr = �1.1; P = 0.0005) and from correlation in the controls in the
1st (Dr = �0.92; P = 0.003) and the 2nd block (Dr = �0.84;
P = 0.006). The correlation in patients in the ON block was not sig-
nificantly different from correlation in controls in the 1st (Dr = 0.17;
P = 0.7) and the 2nd block (Dr = 0.25; P = 0.77).

Discussion

We assessed neural responses of AD patients with and without
NBM-DBS stimulation to standard and deviant tones in a passive
oddball paradigm to study the effect of electrical stimulation on
auditory processing. We used a group of age-matched healthy controls
to quantify the effect of a repeated auditory stimulation with the same
paradigm. We reasoned that changes in the patient group between

OFF and ON NBM-DBS, which are not paralleled by the repeated
auditory stimulation in the control group, can be attributed to the DBS
and not to the repetition of the same paradigm itself. We found that
the mismatch response occurred significantly earlier without NBM-
DBS compared to the NBM-DBS ON condition and compared to con-
trols in the 1st and 2nd block. This earlier MMN is most likely due to
the altered response to the standard tones in the NBM-DBS OFF con-
dition. Indeed, we found a different response to the standard tones in
the patient group when the NBM-DBS was switched off. Here, we
observed a stronger positive-going deflection in the P50 interval over-
lapping with a therefore markedly reduced N1 component. Under
NBM-DBS stimulation, this response resembled the response in age-
matched healthy controls. In contrast, we did not find such a pattern in
the response to the deviant tones.
The mismatch negativity is a prominent EEG component most

likely signalling prediction errors and originates in the frontal and
temporal cortex. Other AD studies have indeed found changes in
MMN, too (Cheng et al., 2012, Hsiao et al., 2014; Lind�ın et al.,
2013), but MMN responses were rather delayed in these studies. The
differences in response delays can be explained by task differences.
For example, Cheng et al. (2012) used 1000 Hz sine wave tones both
for standard and deviant tones but with a shorter stimulus presentation
time (50 ms) for deviant tones compared to standard tones (100 ms).
The earlier MMN in our study is a direct result of the altered response
to standard tones when the stimulation is switched off.
Our early positive deflection in the time range of the P50 matches

the results found in previous studies in which the P50 is altered in
MCI and AD. The enhanced P50 response is well described in
patients with AD and MCI (Green et al., 2015). Another study com-
pared amnestic MCI patients treated with cholinesterase inhibitors to
untreated patients and found larger P50 amplitudes in untreated
patients with MCI (Irimajiri et al., 2007). Another interesting study
compared the brain responses of healthy subjects with and without
AD relatives (Boutros et al., 1995a). The authors found significantly
higher P50 and P300 responses to frequent stimuli in subjects whose
relatives had AD as compared with subjects who had no relatives
suffering from AD. Additionally, P50 amplitudes have been shown

Fig. 4. Depiction of response stimuli separately for each group and block. We compared responses to both stimulus types separately across blocks and patients
at each time point. The upper right plot shows the Finteraction-value time series (red line). The blue line shows the significance threshold (CI99% = 5.5). We
found a significant effect of interaction to standard tones between patients and controls indicating a significant difference between blocks in patients compared
to controls. This indicates that under NBM-DBS response to standard tones in patients normalizes while in controls response remains stable across blocks. This
effect cannot be ascribed to the influence of fatigue in the patients group on EEG components. We compared the 1st with the last third of trials in the patients
group with a time point by time point t-test (thin blue line in the lower inset). The dashed magenta lines give the 99.9% confidence interval. Only the amplitude
in the temporal interval of the P300 decreases across the NBM-OFF block. Within the P50-N1 interval, we did not find differences which can be ascribed to
fatigue.
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to be even higher to frequent stimuli compared to deviant stimuli in
healthy subjects (Boutros et al., 1995b). The authors argue that this
increase in P50 amplitude reflects the system’s recognition of novel
stimuli or gating of sensory input. The MEG homologue (the M50)
also showed a larger amplitude in the elderly subjects (Cheng et al.,
2012). In this study, as was also the case in our study, the subjects
were also asked to ignore the auditory stimulation. The elevated
M50 response indicates an impairment of pre-attentive inhibition of
repetitive auditory inputs. Furthermore, this pre-attentive P50
increase has been shown to be age dependent (Azumi et al., 1995;
Amenedo & Diaz, 1998). This age-dependent pattern first has been
observed in attentive oddball paradigm in which the amplitude of
the P50 was higher in elderly compared with young subjects (Golob
et al., 2007). Another study tested whether the P50 deficit is due to
a primary deficit in P50 generation in patients with AD, and the
authors did not find differences in patients with AD compared to
elderly controls with very long inter-stimulus intervals. The authors
argued that if there is a P50 deficit in patients with AD, it is the
result of the accumulative effect of repetitive stimulation rather than
a primary deficit in P50 generation (Fein et al., 1994). Our specific
difference in amplitude between the patient group and control group
across blocks manifests rather later, specifically in the temporal
interval of the N1. However, we sought to estimate the time course
of the interaction effect and did not chose peak amplitude values in
a predefined interval. The P50 is often defined by its peak in a nar-
row temporal interval around 50 ms following stimulus onset (see
Irimajiri et al. (2007) for an example). Our parameter of differences
between groups across blocks (i.e. the interaction effect) already
increases in the temporal interval of the P50. However, we com-
pared differences against a rather conservative significance threshold
derived from the surrogate distribution. Taken together with the van-
ishing N1 response, as indicated by the peak interaction of groups
and blocks, we hypothesize that the P50 superimposes on the N1.
This pattern may explain why especially the N1 latency in other
studies discriminated demented Parkinsonian patients from demented
patients with AD (Goodin & Aminoff, 1987). In sum, the increase
in the P50 indicates a deficit filtering out known information.

Another pattern associated with recognition of familiar informa-
tion is the reduction in the neuronal response to stimulus repetition,
which is known as repetition suppression effect. It is assumed that
rapid and precise processing of environmental sounds contributes to
communication functions. This repetition effect is associated with
decreased reaction times (Murray et al., 2008). Here, we found a
decrease in amplitude with an increasing number of standard tones
in a row in controls and patients under NBM-DBS but not when
NBM-DBS was switched off, indicating that DBS indeed improves
sensory gating. It is well established that evoked responses recorded
from sensory cortex show decreases with stimulus repetition that do
not generalize to novel or different stimuli (Eliades et al., 2014) and
hence it is assumed that repetition suppression may improve audi-
tory perception in complex listening environments. It is assumed
that repetition suppression is a prerequisite to generate predictions
of the incoming stimulus (Costa-Faidella et al., 2011) and can be
found as early as the N1, where the repetition effect occurs regard-
less of attention. In contrast, repetition effects on later components
like the P2 are more dependent on attention (Hsu et al., 2014). This
repetition effect most likely originates in the temporal cortex
(Murray et al., 2008). FMRI studies have found activity in the ante-
rior MTL during repeated stimuli inversely related to performance
in a recognition task. The failure of response suppression to familiar
information may be a sensitive marker of memory impairment in
ageing and prodromal AD (Pihlajam€aki et al., 2011). Also, MTL
activity increased in patients with AD as compared to normal con-
trols in fMRI recordings(Pihlajam€aki et al., 2008), suggesting that
the typical episodic memory impairment seen in mild AD may man-
ifest as a failure of normal repetition suppression.
The primary goal of our study was to assess a potential beneficial

impact of NBM-DBS on sensory gating, which is, despite the lim-
ited generalizability due to the small number of patients, an impor-
tant opportunity in light of the small number of publications on
NBM-DBS in AD. However, in this very rare occasion to record
from AD patients with NBM-DBS, we found consistent responses
across patients and statistics across trials gave a robust difference
between groups when compared across blocks. Furthermore, a direct
comparison of DBS and cholinesterase inhibitors could help to clar-
ify what is the most helpful tool to treat these patients.
Our consistent results lead to the critical conclusion that NBM-DBS

has a beneficial effect on the recognition of familiar stimuli. This
result highlights the role of NBM-DBS in the treatment of patients
with AD and its role in the clinical context should be investigated
more in the future. In sum, our results support the hypothesis that
NBM-DBS has a positive impact on sensory gating into memory.
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Fig. 5. Depiction of repetition adaptation effects. We evaluated whether N1
responses to standard tones adapted with the number of repetitions. We
grouped trials according to their number of repetitions. In the time range of sig-
nificant interaction (see Fig. 3), we correlated the amplitude with the number
of repetitions. Controls showed a negative correlation in this time range which
was not significantly different from repetition effect in patients under NBM-
DBS. Patients showed a positive correlation without NBM-DBS most likely
due to the reduction in N1 and overlap with the P50. This correlation was sig-
nificantly different from patients under NBM-DBS and controls in both blocks.
Asterisks denote a statistically significant difference.
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Predictive coding theories posit that neural networks learn statistical
regularities in the environment for comparison with actual outcomes,
signaling a prediction error (PE) when sensory deviation occurs. PE
studies in audition have capitalized on low-frequency event-related
potentials (LF-ERPs), such as the mismatch negativity. However, local
cortical activity is well-indexed by higher-frequency bands [high-γ band
(Hγ): 80–150 Hz]. We compared patterns of human Hγ and LF-ERPs in
deviance detection using electrocorticographic recordings from subdural
electrodes over frontal and temporal cortices. Patients listened to trains
of task-irrelevant tones in two conditions differing in the predictability
of a deviation from repetitive background stimuli (fully predictable vs.
unpredictable deviants). We found deviance-related responses in
both frequency bands over lateral temporal and inferior frontal cor-
tex, with an earlier latency for Hγ than for LF-ERPs. Critically, frontal
Hγ activity but not LF-ERPs discriminated between fully predictable
and unpredictable changes, with frontal cortex sensitive to unpredict-
able events. The results highlight the role of frontal cortex and Hγ
activity in deviance detection and PE generation.

predictive coding | prediction error | mismatch negativity | frontal cortex |
high γ-activity

The ability to detect unexpected environmental events results
from a comparison of the actual state of our sensory world

with predictions based on immediate and long-term contextual
knowledge. Predictive coding theory, first articulated within the
visual domain, postulates that distributed neural networks learn
statistical regularities of the natural world, generating a prediction
error (PE) signal as deviations from these predictions occur (1).
Because of the difficulty of recording high-frequency activity in
scalp EEG recordings, studies on PE in audition have focused on
low-frequency event-related potentials (LF-ERPs). The mismatch
negativity (MMN) is considered the classic PE signal elicited
during passive listening to deviant sounds interrupting the con-
text provided by a sequence of repeated standard stimuli (2).
Converging evidence suggests that the MMN has interacting
generators in the secondary auditory cortex on the superior
temporal plane and superior temporal gyrus (STG) as well as in
the prefrontal cortex (3, 4), but the distinct contribution of each
part of this network, especially the prefrontal part, is not clear.
Evidence from neuropsychological event-related potentials and
neuroimaging studies supports a key role of the prefrontal cortex
in contextual processing (5, 6), suggesting a crucial role of this
brain region in predictive coding.
Importantly, low-frequency scalp-recorded responses, like the

MMN, do not reveal the full spectrum of the neuronal response
to prediction violation. Whereas recording high frequencies with
scalp EEG has major methodological issues related to low signal
to noise (7, 8), numerous studies using electrocorticography
(ECoG; recorded on the cortical surface) have shown high
γ-band (Hγ) response to be a localized index for functionally

selective activity (9, 10). It is not clear whether cortical neuronal
activity responsible for deviance detection is best indexed by low- or
higher-frequency bands. This differentiation is critical, because the
Hγ has distinct response properties compared with LF-ERPs (11).
Using intracranial recordings, involvement of low frequency-evoked
activity and Hγ-induced activity in auditory PE signals were found in
temporal regions (12, 13), where Hγ amplitude was shown to in-
crease earlier than lower-frequency bands (12). In inferior frontal
regions, previous ECoG studies (12, 14) did not find evidence for
Hγ frontal activity in response to local deviations [as opposed to
global ones; discussed in the work by El-Karoui et al. (14)], although
low-frequency effects were reported in some (15, 16) but not all
(17) studies.
Using the high temporal and spectral resolution of direct

cortical recordings from subdural ECoG electrodes, we compared
frontal and temporal cortical patterns of LF-ERPs and Hγs in five
patients listening to trains of task-irrelevant auditory stimuli in two
conditions. The conditions differed in the predictability of de-
viation from repetitive background stimuli (fully predictable: four
standards always followed by a deviant vs. unpredictable: deviants
randomly embedded in trains of standard stimuli). Subjects were
instructed to ignore the sounds and watch a visual slideshow. We
focused on the amplitude and latency variation of both LF-ERPs
and Hγs as metrics of the PE (mismatch signal). Based on previous
findings, we hypothesized that Hγ activity signals the mismatch
earlier than LF-ERPs and that the temporal (auditory) cortices

Significance

To survive, organisms must constantly form predictions of the fu-
ture based on past regularities. When predictions are violated,
action may be needed. Different scales of environmental regularity
need to encompass both subsecond repetitions and complex
structures spanning longer timescales. How different parts of the
brain monitor these temporal regularities and produce prediction
error signals is unclear. Utilizing subdural electrocorticographic
electrodes with an auditory paradigm involving local and global
regularities, we show that frontal cortex is sensitive to the big
picture, responding with high γ-band activity exclusively to
globally unpredictable changes, whereas the temporal cortex
equally responds to any change in the immediate history. These
results reveal a hierarchy of predictive coding recorded directly
from the human brain.
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would be sensitive to local probabilities and not affected by the
predictable vs. unpredictable manipulation. In contrast, the frontal
cortex, assumed to be sensitive to higher-order regularities, would
be differently affected by periodic vs. nonperiodic deviations. This
differential frontal response could be either a stronger response to
predictable than unpredictable deviants, signaling a mechanism of
suppression of orienting response toward the expected repeating
deviant, or a stronger response to unpredictable deviants compared
with predictable deviants, signaling the PE.

Results
Participants (n = 5) (Methods) listened to sound trains of high-
probability standards (P = 0.8; F0 = 500 Hz) mixed with low-
probability deviants (P = 0.2; F1 = 550 Hz) in blocks of 400
sounds, with a stimulus onset asynchrony (SOA) of 600 ms. The
order of the sounds was either pseudorandom, with a minimum
of three standard tones before a deviant, or regular, such that
exactly every fifth sound was a deviant (Fig. 1A). Thus, in the
regular condition, deviants were fully predictable, whereas in the
irregular condition, exact prediction was not possible. In both
conditions, the participants were instructed to ignore the sounds
and watch a slideshow of a variety of visual images changing at
an unpredictable slow pace (∼3 s per picture; unsynchro-
nized with the auditory stimuli). The pictures were displayed
on a liquid crystal display (LCD) monitor positioned over the
patient’s bed. Channel time series were used for the following
analysis steps that are explained in more detail in Methods. We
first selected channels showing stimulus-responsive activity
modulation in the Hγ and the LF-ERP band (Methods, I: Stimulus-
responsive activity modulation and Fig. 1). In each of these chan-
nels, we calculated a time point by time point ANOVA on stimulus
type (standard or deviant) and determined the Fstimulus type value
time series (Methods, II: Mismatch signal). We used a principal
component analysis (PCA) and found the course of Fstimulus type
across time accounting for the highest variance within the set of
stimulus-responsive channels (Methods, III: PCA). We selected
channels loading highly on the principal component (Methods, IV:
Data reduction). We then compared time points of onset and peak
(maximal) F values across channels (Methods, V: Comparison of
mismatch signal timing) and verified the results on a group level
(within subject) [Methods, VI: Group (within-subject) analysis]. We
verified that differences in onset and peak latency between fre-
quency bands are independent of anatomical locations [region of
interest (ROI)] (Methods, VII: ROI-specific analysis). Finally,
we tested in which anatomical location a predictability effect is
represented (Methods, VIII: Predictability effect). In Methods, we
provide detailed descriptions of each of these steps. The steps were
taken separately for the LF-ERPs and Hγ signals. We studied 287
channels across all subjects. Stimulus-related activity was found for
the Hγ (n = 40 channels; 13%) and the LF-ERP (n = 116 chan-
nels; 40%) (Table 1 shows numbers of stimulus-responsive chan-
nels per subject) bands across multiple frontal and temporal
recording sites (Fig. 1B). The Fstimulus type values in highly loading
LF-ERP channels (n = 14) passed the empirical threshold around
143 ms (SD across channels = 44.9 ms) and peaked around 221 ms
on average (SD = 8.8 ms) (Fig. 1C); the small SD is because of the
fact that these are the channels loading highly on a single temporal
PCA component. That is, these channels should necessarily have
high resemblance in their temporal structure. F values in stimulus-
responsive Hγ channels loading highly on the first Hγ principal
component (n = 7) passed the empirical threshold around 72 ms
(SD = 34 ms) and peaked around 141 ms on average (SD = 9 ms).
The temporal differences between LF-ERP and Hγ for onset la-
tency (t20 = 3.8; P = 0.0011) as well as for peak F values (t20 =
13.92; P < 0.0001) (Fig. 1C) across channels were significant.
These differences were replicated in a within-subject group anal-
ysis (Hγ: 100.8 ms; SD = 70.4 ms; LF-ERP: 286.1 ms; SD = 140.2
ms; Wilcoxon rank sum test for onset P = 0.024; peak latency
difference: Hγ: 139.3 ms; SD = 90.3 ms; LF-ERP: 343.5 ms; SD =
168.1 ms; Wilcoxon rank sum test for peak P = 0.039) (Fig. 1D).

ROI Analysis. We tested for the differential effect of the mismatch
signal over frequency bands, comparing electrodes placed over the
lateral temporal lobe and electrodes placed over the lateral frontal
cortex. Fig. 2 shows the Fstimulus type variation across time averaged
across highly loading channels separately for the frontal and tem-
poral Hγ and LF-ERP bands. We found a significant effect of
frequency band (Fonset = 6.53; P = 0.02 and Fpeak = 27.5; P <
0.0001; df = 1, 28) (Fig. 2 and Table 2 show average onset and peak
latencies of Hγ and LF-ERP band differences between ROIs)
but no main effect of ROI or effect of interaction (P > 0.1).
Hence, Hγ activity shows an earlier discrimination between
deviants and standards than LF-ERP in both lateral temporal
and frontal cortex.

Predictability Effects. Fig. 2 shows the amplitude variation (averaged
across highly loading channels) in response to standard and deviant
trials for the LF-ERP and the Hγ band in the frontal and temporal
ROIs together with the time point by time point F statistic for the

Fig. 1. Temporal profile of mismatch signal of Hγ and LF-ERP bands.
(A) Participants listened to stimuli consisting of 180-ms-long (10 ms rise and fall
time) sounds. High-probability standards (500 Hz) mixed with low-probability
deviants [550 Hz; stimulus onset asynchrony (SOA) = 600 ms] were presented
either unpredictably (pseudorandom sequence: minimum three consecutive
standards) or fully predictable (regular: exactly every fifth sound was a deviant).
(B) Stimulus-responsive regions in the Hγ and low-frequency (LF) band for all
subjects. C, Left shows the principal components (PCs) of F-value time se-
ries of all task active channels for (Upper) the Hγ and (Lower) the LF bands.
C, Right shows channels of Fstimulus type time series of highly loading
channels. Differences in color were chosen to better distinguish the F time
course of different channels. The time course of the PC reveals a statisti-
cally significant difference (asterisk) in latency with an earlier maximum of
the peak F values (black dots) in the Hγ band than in the LF-ERP band. (D,
Upper) Averaged subject-specific F-value time course for the Hγ (red) and
event-related potential (blue). (D, Lower) Onset and peak latency of PCs.
Onset and peak latencies differ significantly across subjects between Hγs and
LF-ERPs. Error bars indicate the SE across subjects. E, Upper shows Fstimulus type

time series separately averaged across highly loading frontal Hγ (magenta),
temporal Hγ (blue), temporal LF (black), and frontal LF channels (red).
(E, Lower) Mean onset and peak latencies of F values for each frequency band
and anatomical ROI (Table 2 shows mean onset and peak latency). Error bars
show SE across channels.
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main effects of stimulus type, predictability, and their interaction
across highly loading channels. Because the channels were selected
to show a stimulus type effect in the first stages of the analysis,
significance values of the main effect of stimulus type in this analysis
may be inflated. However, the focus here is on the critical effects
of predictability on neural responses. Table 3 summarizes maximal
F values and corresponding P values for each ROI and frequency
band. The threshold F value derived from the empirical distribution
center is around 4.4 for all tests. LF-ERPs differentiate between
standards and deviants starting around 200 ms but do not show
amplitude variation as a function of predictability (Fig. 2) or an in-
teraction between stimulus type and predictability. In contrast, the
frontal Hγ channels show an effect of interaction between
stimulus types (standards vs. deviants) and predictability (Fig. 2)
driven by the stronger response to deviants than standards when
the deviants were unpredictable than when they were predict-
able. The corresponding within-subject analysis also revealed a
significant interaction in frontal but not the temporal sites for
Hγ activity (Fig. S1) as indicated by a strong Hγ mismatch re-
sponse (MMR) to unpredictable deviants but nearly no MMR
for predictable deviations in frontal electrodes. Furthermore,
only frontal Hγ showed sustained activity (Methods and Fig. S2).
These results indicate that frontal Hγ discriminates between
predicted and unpredicted deviants, with a selective response
to unpredicted deviations.

Discussion
We examined the role of frontal and temporal cortices in generation
of a PE signal for auditory deviants operationalized as the difference
between the response to deviant and standard stimuli. Deviations
from auditory background stimuli modulated the response to the
sounds in both the lower frequencies event-related potentials,
typically associated with the scalp-recorded MMN, and the
power of the Hγ band recorded directly from the cortex. The PE
signal emerged earlier in the Hγ amplitude than in the LF-ERPs
and was evident at both temporal and frontal channel locations.
However, only the frontal cortex Hγ differentiated between fully
predictable and unpredictable deviations, emphasizing the key
role of frontal cortex in PE.
The effect that we found with ECoG started at ∼140 ms and

peaked at 230 ms. Previous scalp MMN studies reported response
differences between standard and deviant stimuli onsetting and
peaking between 100 and 250 ms (reviewed in ref. 18). The LF-
ERPs effects observed in our study are at the longer latency
range of these scalp findings, which may reflect the difference
between scalp and epicortical recordings. For example, most
studies of MMN have not dissociated N1 refractoriness effects
from the memory-based MMN (19, 20). When measures are
taken to isolate the MMN from N1 refractoriness effects, the
MMR has a longer latency than when the traditional MMN
(deviant–standard) derivation is used (20–23). We used the tra-
ditional contrast of deviant–standard. However, our ECoG
electrodes, located on the lateral surface of the brain, are less
sensitive to refractoriness-sensitive N1 or earlier (24) sources
located on the supratemporal plane within the sylvian fissure (25,
26) than at frontal/central scalp electrodes, where the scalp
MMN is typically measured. Hence, whereas ECoG allows high

accuracy in spatial localization of effects, scalp recordings may
provide a more global picture of the evolution of deviance re-
lated activity in time at the cost of spatial uncertainty. In ad-
dition, we cannot rule out the possibility that the special
conditions of ECoG intensive care unit recordings might have
slowed neural responses relative to laboratory conditions typical
of EEG.
Studies using the mismatch paradigm with scalp EEG or

magnetoencephalography (MEG) support the presence of sepa-
rate temporal and frontal generators of the MMR (3, 27, 28).

Fig. 2. Predictability effect. Frontal and temporal Hγ and LF-ERP activities
differ with respect to effect of predictability. Colored lines show the evoked
response to stimuli separately for frontal and temporal Hγs and LF-ERPs. Zero
marks the auditory stimulus presentation. Blue lines show response to fully
predictable standards, green lines show response to unpredictable standards,
red lines show response to fully predictable deviants, and cyan lines show re-
sponse to unpredictable deviants. Shaded areas denote the SE across highly
loading channels. Corresponding F-value time series for the ANOVA across
channels are set above, depicting the strength of statistical significance of the
main effect for stimulus type (first row), the main effect for predictability
(second row), and the effect of interaction (third row) in gray scale. Darker
shades denote higher F values; time windows with F values smaller than the
corresponding statistical significance threshold are shown in white.

Table 1. Number of stimulus-responsive LF-ERPs and Hγ channels per subject

Patient
Stimulus-responsive LF-ERP channels

(temporal/frontal/parietal)
Stimulus-responsive Hγ channels

(temporal/frontal/parietal)
Total no. of
electrodes*

I 31 (14/12/5) 18 (6/7/5) 60
II 25 (12/1/12) 6 (4/1/1) 59
III 19 (10/5/4) 9 (4/3/2) 52
IV 10 (4/3/3) 2 (1/1/0) 56
V 31 (17/2/12) 5 (2/1/2) 60
P

116 40 287

*Excluding electrodes rejected for epileptic activity or excessive artifacts.
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However, because of the ill-posed inverse problem, EEG and
MEG are not well-suited for localizing brain sources with cer-
tainty or spatially resolving adjacent sources. Moreover, re-
cording high-frequency activity from the scalp is limited by low
signal to noise ratio in this band (7, 8). Functional MRI data
using similar paradigms support the presence of both temporal
and prefrontal activity, but whether they have distinct response
profiles could not be clearly discerned, partly because of the lack
of temporal resolution of functional MRI (3, 29).
The use of intracranial recording directly from the surface or

depth of the cortex allows simultaneously high spatial and temporal
resolution of local neural activity in the human cortex. Previous
intracranial findings using a mismatch paradigm have converged on
showing responses to deviants over the STG (30, 31). In contrast,
although some studies reported MMRs over inferior frontal cortex,
others did not find such evidence (3), perhaps because of the
sparse and variable spatial sampling of ECoG, and in some cases,
the reported frontal responses could have been caused by volume
conduction from temporal sources (15). Most of these previous
studies have only examined low-frequency event-related responses.
However, Edwards et al. (12) have also shown that broadband
temporal Hγ responses to deviants are stronger than for standards.
Eliades et al. (31) suggested that this effect is a result of adaptation
to the repeating standard. Our results, showing clear deviant-
related responses over both the temporal and frontal cortex for
both frequency bands, support a frontal cortex contribution to the
MMR. Moreover, the dissociation between the pattern of response
to the predictable and unpredictable stimuli across the two regions
provides evidence for distinct processing in these two regions.
Indeed, the major finding of our study is that predictability af-

fected the PE response of the frontal cortex as measured by the Hγ
activity, whereas no such modulation was found in temporal elec-
trodes. Although the response measured over temporal cortex
revealed a mismatch signal, regardless of the global structure of the
sequence (i.e., its predictive value), the frontal PE was seen almost
exclusively in response to unpredictable deviants.
The lack of predictability effects at the level of the auditory

cortex is in line with previous scalp EEG studies using a similar
task design. Volosin and Horváth (32) found the P3 response to
be sensitive to periodicity, whereas early components, such as the
N1 and the MMN, which are generated by sources in the audi-
tory cortex, are unaffected, especially when participants were
instructed to ignore the auditory stimulation (33, 34). Effects
of predictability at the MMN time window also depend on the
interstimulus interval (ISI). Sussman et al. (35) found that the
scalp MMN was suppressed when the sequence in the fully
predictable condition had very short ISIs (100 ms), such that
repeating sequences of stimuli could be integrated and perceived
as united auditory objects. In contrast, longer ISIs, in the range
used here, yielded similar MMN amplitudes in response to both
fully predictable and unpredictable deviants. One explanation
for the dissociation between predictable and unpredictable de-
viants that we found at the frontal sites could be that the frontal
cortex integrates over longer timescales than the auditory cortex.
Under this premise, although for the auditory cortex, with the
ISIs used, the unit of processing would be the individual tone and
the deviant tone would be an oddball in both predictable and
unpredictable sequences, for the frontal cortex, the predictable

sequence would be seen as repeating identical units, each com-
posed of four low tones and one high tone.
A recent intracranial study using depth electrodes also examined

local and global deviations. El-Karoui et al. (14) used a design in
which local and global deviations were embedded in the same se-
quence. Trials were composed of a rapid sequence (SOA = 150 ms)
of either five identical tones (SSSSS) or four identical tones followed
by one deviant tone (SSSSD). In some blocks, SSSSS trials were
frequent (80%), and SSSSD trials were rare (20%), whereas in the
other blocks, this probability was reversed. The final D tone com-
pared with a final S tone represents local deviation in either block. It
was also a global deviant when the SSSSD trials were rare. The final
S tone is always a local standard, but it represents a global deviant
when SSSSS trials are rare and a global standard when SSSSS trials
are frequent, arguably allowing for a pure measurement of a global
effect. For local deviations, both LF-ERP responses and broadband
Hγ responses were restricted to mainly superior temporal lobe
contacts, with the exception of one frontal electrode that showed Hγ
response. In contrast, global deviations elicited more widespread
and protracted responses, including low-frequency effects and
Hγ augmentation in temporal and left frontal contacts and a
frontotemporoparietal depression in the β-band.
In our study, all deviants may be considered local deviants, but

only in the nonpredictive block are they also global deviants.
Consistent with the work by El-Karoui et al. (14), in our study,
both local and global deviations elicited a response in both the
LF-ERP and Hγ bands in lateral temporal contacts. Further-
more, in both studies, global deviations included a significant
frontal cortex response. However, unlike in the work by El-
Karoui et al. (14), we observed an LF-ERP frequency response
to local deviation (predictable or not) in frontal electrodes, as
did others (15, 16, 36). There are two limitations that preclude
direct comparisons between our study and the work by El-Karoui
et al. (14). First, our study compared responses to predictable
and unpredictable tones that were both irrelevant to the task and
in an unattended modality. This scenario probed the automatic
response to the environment to enable orienting attention to
critical or unexpected events. The global deviation in the study
by El-Karoui et al. (14) was the target, and subjects had to count
and memorize the total number of global deviations. Conse-
quently, their global effect is a target-related response and not an
automatic response. Second, although the design of the study
by El-Karoui et al. (14) was a 2 × 2 design, they only examined
the main effects of local and global deviation and did not ex-
amine the interaction that would be important if local devi-
ants elicit stronger responses in blocks when they are also
global deviants.
The findings of earlier responses in the γ-band than in the lower

frequencies are consistent with the findings in the work by Crone
et al. (11), which found that the functional response properties of Hγ

Table 3. F values per ROI and frequency band

Effect type Temporal Frontal

Hγ
MEst F(1,32) = 13.9; P < 0.00001* F(1,20) = 5.07; P = 0.004*
MEbt n.s. n.s.
IEst-x-bt n.s. F(1,20) = 8.2; P < 0.00001*

LF-ERP
MEst F(1,24) = 7.56; P = 0.011* F(1,8) = 27.86; P < 0.00001*
MEbt n.s. n.s.
IEst-x-bt n.s. n.s.

Summary of maximal F values per ROI and frequency band and corre-
sponding P values. Only significant F values are reported. Differences in df
are because of the different numbers of significant electrodes selected per
ROI and frequency band. IEst-x-bt, effect of interaction between stimulus type
and block type; MEbt, main effect of block type; MEst, main effect of stimulus
type; n.s., not significant.
*Statistically significant.

Table 2. Onset and peak F values

Amplitude Hγ frontal Hγ temporal LF-ERP frontal LF-ERP temporal

Onset 92 85 202 141
Onset SD 31 65 102 68
Peak 132 143 306 229
Peak SD 15 85 20 59

Summary of mean latency and SD of peak F-value latency across channels
per ROI and frequency band in milliseconds.
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activity are distinct from lower-frequency modulations in timing and
spatial location. Specifically, lower frequencies, such as α-activity,
reach peak amplitude later than Hγ. The fact that Hγ activity signals
the PE earlier than LF-ERPs in our data could be because of en-
hanced signal to noise ratio in the higher band. However, the distinct
effect of predictability, found only in the Hγ signals, suggests that the
two frequency bands reflect different neuronal mechanisms.

Limitations and Future Research. We did not find sensitivity to pe-
riodic structure in auditory cortex contacts, such as it was shown for
the rat or macaque auditory cortex (37, 38). Yaron et al. (37) found
neurons responding differently to fully predictable and unpredict-
able standards and deviants. However, the largest fraction of
neurons in the rat auditory cortex responded similarly in the fully
unpredictable condition. The registered cortical signal in ECoG
recordings is determined by population activity. Hence, the activity
patterns of a minority of neurons may be missed by ECoG mac-
roelectrodes. Nevertheless, even if a periodicity effect in the human
temporal cortex is present at a finer neuronal level, this effect is
more prominent in the human frontal cortex.
The predictability in our study results from periodicity–every

fifth sound was a deviant. However, context effects on the MMN
or adaptation can be experimentally studied by manipulating
different sources of expectation, which may depend on disso-
ciable neural mechanisms. For example, Todd et al. (39, 40)
found that, when the identities of the standard and deviants were
switched during the experiment, the MMN for the initial order
was larger than for the subsequent order, especially when longer
sequences were played before the switch. This “primacy effect”
suggests a long-term memory of the initial standard. Other studies
found that, for fast, isochronous sequences (SOA = 150 ms), two
MMNs occur for a pair of deviants only when some deviants also
occur alone (41, 42), suggesting that, when the second deviant is
highly expected, MMN is attenuated. This expectancy suppres-
sion seems to be dissociable from pure repetition suppression
(43). Another source of expectancy may depend on the variance
of the standards (44).
Our critical conclusion is that frontal and temporal cortices

have different functions in signaling the deviation or PE. Frontal
Hγ selectively signals unpredictable deviants with sustained Hγ
activation, whereas temporal Hγ shows responses to both un-
predictable and fully predictable deviants. This result highlights a
selective role of frontal structures in computing a PE. A feature-
based adaptation mechanism, as seen in the auditory cortex
(13, 31, 45), is expected to produce a response independent of
the degree of periodicity of occurrence of deviants. Because on
average, the probability of stimuli in the predictable and un-
predictable sequences was identical, a purely adaptation-based
model (31) would not predict the differential activity that we
found in frontal electrodes. Thus, the frontal cortex Hγ provides
evidence of a selective PE to unpredictable events. The selective
Hγ amplitude modulation to unpredictable deviants might also
reflect a switch of attention (4). However, both functional ex-
planations (selective response to unpredictable events or a switch
of attention) indicate that frontal Hγ activity reflects a mecha-
nism that tracks the expected input and generates a response
when predictions are violated.
In sum, our findings support the notion that Hγ activity in the

frontal cortex signals detection of unpredictable deviations from
the auditory background.

Methods
Patients. Five epilepsy patients (mean age = 33 y old; SD = 9.23) undergoing
presurgical monitoring with subdural electrodes participated in the experi-
ment after providing their written informed consent. Experimental and
clinical recordings were taken in parallel. Recordings took place at the
University of California, San Francisco and approved by the local ethics
committees (Committee for the Protection of Human Subjects at the Uni-
versity of California, Berkeley).

Stimuli. Participants listened to stimuli consisting of 180-ms-long (10 ms rise
and fall time) harmonic sounds with a fundamental frequency (F0) of 500 or
550 Hz and the three first harmonics with descending amplitudes (−6, −9,
and −12 dB relative to the fundamental). The stimuli were generated using
Cool Edit 2000 software (Syntrillium). The stimuli were presented from
loudspeakers positioned at the foot of the subject’s bed at a comfortable
loudness. High-probability standards (P = 0.8; F0 = 500 Hz) were mixed with
low-probability deviants (P = 0.2; F1 = 550 Hz) in blocks of 400 sounds, with
an SOA of 600 ms (Fig. 1A). The order of the sounds was either pseudo-
random, with a minimum of three standard tones before a deviant, or
regular, such that exactly every fifth sound was a deviant. Thus, in the
regular condition, deviants were fully predictable, whereas in the irregular
condition, exact prediction was not possible. In both conditions, the partic-
ipants were instructed to ignore the sounds and watch a slideshow of a
variety of visual images changing at an unpredictable slow pace (∼3 s per
picture; unsynchronized with the auditory stimuli). The pictures were dis-
played on an LCD monitor positioned over the patient’s bed.

Data Processing. Details of data recording and data preprocessing are in SI
Methods. The resulting time series were used to characterize brain dynamics
over the time course of auditory mismatch detection in terms of the LF-ERPs
and Hγ activity. For each trial (−1–2 s around stimulus onset—sufficiently
long to prevent any edge effects during filtering), we band pass filtered
each electrode’s time series at two frequency bands: a low-frequency band
(LF-ERP: 1–20 Hz; the “LF-ERP range” traditionally used for scalp MMN
studies) and a high-frequency band (Hγ range: 80–150 Hz) (selection of
frequency bands is discussed below and in Fig. S3 A and B). We obtained the
Hγ analytic amplitude AHGðtÞ by Hilbert transforming the Hγ filtered time
series. We smoothed both the LF-ERP and the Hγ band time series, such that
amplitude value at each time point n is the mean of 10 ms around each time
point n. We then baseline corrected the trial activity by subtracting the
mean activity from the 100 ms preceding the stimulus onset in each trial of
each channel.
I: Stimulus-responsive activity modulation. We first identified stimulus-responsive
channels showing a significant (compared with an empirical distribution; see
below) amplitude modulation in either the Hγ or LF-ERP band or both after the
onset of standard stimuli, deviant stimuli, or both. Standard and deviant trials
were averaged separately. For each type of stimulus, we first calculated the
average baseline activity BHγ and BLF across 100 ms preceding the stimulus
onset. For the Hγ activity, we subtracted BHγ from the activity modulation AHγ

averaged across 250 ms after the stimulus onset (Fig. S3C). For the LF-ERP band,
we subtracted BLF from the activity modulation ALF in three different intervals
centered on the main peaks of the mean response (I, 0–60 ms; II, 60–120 ms; and
III, 120–250 ms in Fig. S3C). This early time window allowed us to select fast-
responding channels in both frequency ranges (confirmation that the selected
length of stimulus response intervals had no effect on the selection stimulus-
responsive channels is in SI Methods and Fig. S4). The difference between B and
A was compared against an empirical distribution (SI Methods).
II: Mismatch signal. Within each stimulus-responsive channel and separately for
Hγs and LF-ERPs, we carried out a one-way ANOVA with factor stimulus type
(standard vs. deviant) at each time point, with single trials as random variable.
This analysis yielded a time series of F values for each channel representing the
main effect of stimulus type between −100 and 600 ms. In both conditions, we
left out the first two trains, because the periodicity can only be detected after a
repeated completion of whole trains of stimuli. The F value of the main effect
“stimulus type” parameterizes the mismatch signal with high F values, indicating
a large difference in amplitude between the standard and deviant stimuli. To set
a threshold for significant difference, an empirical distribution of the main effect
was constructed by randomly reassigning the labels (standard or deviant) to the
single trials in 1,000 permutations.
III: PCA. Using a PCA, we identified consistent temporal patterns of Hγ/LF-ERP
activity among the entire set of stimulus-responsive channels pooled
across patients. The PCA was used to find the course of the mismatch
signal (Fstimulus type) across time, accounting for the highest variance within
the set of stimulus-responsive channels.
IV: Data reduction. Channel time series strongly resembling themismatch signal
determined in III (highly loading on the first principal component of the PCA)
are those that exhibit large differences between standard and deviant stimuli
in terms of amplitude. The degree of resemblance with the mismatch signal is
given as Pearson’s r. We chose Pearson’s r exceeding the 75th percentile of
all positive r values as the cutoff criterion for highly loading channels. We set
this level as a tradeoff, because setting the criterion too high would exclude
too many channels and reduce generalization across the cortex, whereas
setting it too low would include channels with minor effects.
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V: Comparison of mismatch signal timing. In each highly loading channel (ex-
ceeding the cutoff criterion), we tested which frequency band (LF-ERP vs. Hγ)
showed a mismatch signal first by determining the onset and peak latency of
significant F values. The onset latency of the mismatch signal was determined as
the first point in which the F value exceeded the confidence interval of the
empirical distribution. Both latency of maximal F values in the Hγ and LF-ERP
band and the onset of significant F values were used to quantify temporal
differences of the PE between the frequency bands. Onsets and peak latencies
were compared in a two-sample (because of different numbers of channels per
frequency band) t test comparing the two frequency bands.
VI: Group (within-subject) analysis. To verify that the results presented are valid
at a group level and not driven by single subjects, a PCA was used in each
subject to find the course of the mismatch signal across time, accounting for
the highest variance for both the LF-ERP and the Hγ bands. The onset and
peak latencies of the LF-ERP and Hγ principal components were compared in
a within-subject analysis using a Wilcoxon rank sum test.
VII: ROI-specific analysis. In the next step, we tested whether differences regarding
the onset and maximum of deviance detection between frequencies depend on
anatomical locations. An interaction between the frequency band and the ROI
effects would indicate such dependence. The pool of all LF-ERP and Hγ stimulus-
responsive channels were grouped according to a frontal and temporal ROI to
analyze ROI-specific patterns of PE. Steps III and IVwere then performed separately

for each ROI. We determined the peak and onset latencies of themismatch signals
for each channel and frequency band as described in step V and conducted a two-
way ANOVA across channels with the factors frequency band (Hγ vs. LF-ERP) and
ROI (temporal vs. frontal).
VIII: Predictability effect. Finally, to test the effect of the predictability of de-
viance, we used a time point by time point ANOVA to look for an interaction
of the block type (predictable and unpredictable) with the effect of stimulus
type across channels separately for each ROI and frequency band limited to
the channels that loaded highly on the first principal component (from step
IV). Because the channels were selected to show a stimulus type effect in the
first stages of the analysis, significance values of the main effect of stimulus
type in this analysis may be inflated (“double dipping” effect). However, the
critical effects of predictability and the interaction are not. The significance
values were assessed using bootstrap procedures as outlined above.
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SI Methods
Data Recording. The ECoG was recorded at the University of
California, San Francisco using 64 platinum–iridium–electrode
grids arranged in an 8 × 8 array with 10-mm center to center
spacing (Ad-Tech Medical Instrument Corporation) (grid loca-
tion is shown in Fig. 1). Exposed electrode diameter was 2.3 mm.
The data were recorded continuously throughout the task at a
sampling rate of 2,003 Hz.

Data Preprocessing. We used Matlab 2013b (Mathworks) for all
offline data processing. All filtering was done using zero-shift infinite
impulse response (IIR) filters [Butterworth filter of order 4: filtfilt()
function in Matlab]. We excluded channels exhibiting ictal activity
or excessive noise from additional analysis. In the remaining “good”
channels (Table 1), we then excluded time intervals containing
artefactual signal distortions, such as signal steps or pulses, by visual
inspection. Finally, we rereferenced the remaining electrode time
series by subtracting the common average reference

xCARðtÞ= 1
n

Xn

c=1

xcðtÞ

calculated from each channel time series xc.

Empirical Distribution of Stimulus-Responsive Activity Modulation.
The difference between B and A was compared against an em-
pirical distribution derived from randomly shifted time series
(1,000 permutations). In each iteration, time series of each
channel and each trial were shifted (circular shift of the entire
trial time series between −0.1 and 0.6 s) separately, and new
(surrogate) trial averages (B and A) were calculated from the
shifted trials. Channels exceeding the 97.5th percentile of the
channel-specific surrogate BHγ −AHγ distribution were classified
as showing a significant Hγ modulation after the standard or
deviant stimuli or both. Note that, in contrast to the analytic
amplitude of the Hγ band, which is always equal or larger than
zero, the LF-ERP band is a time series of activity and comprises
both positive and negative going deflections (e.g., like P1-N1).
Hence, channels with an LF-ERP amplitude modulation in in-
terval I or III greater than the 97.5th percentile (significantly
elevated amplitude over baseline) and channels with an LF-ERP
amplitude modulation in interval II smaller than the 2.5th per-
centile were classified as showing a significant LF-ERP modu-
lation after the standard or deviant stimuli or both. Extending
the critical windows up to 300, 400, 500, or 600 ms did not affect
the selection of channels or the principal components.

Selection of Frequency Bands.To test which frequency band was the
most informative in signaling the PE, we filtered all time series of
each channel in each trial in 39 bands between 2 and 180 Hz (log
spaced), each with a bandwidth of 10% of the center frequency.
We applied the same pipeline as in the main analysis up to stage
V, except that all channels were included in this analysis (skipping
stage I). On average, 8.15 channels were chosen in each fre-
quency band (SD = 1.2) based on their high loading on the first
principal component within each band. The profile of the re-
sponse shows that the PE is concentrated in the low-frequency
(∼1–20 Hz) and Hγ (∼80–150 Hz) range, whereas the response
between 20 and 80 Hz is lower (Fig. S3). Thus, for the main
analysis, a low (1–20 Hz) band and a high band (80–150 Hz) were
tested (Methods).

SustainedActivity.Fig. 2 suggests that, in contrast to temporal activity,
frontal Hγ activity to unpredictable deviants plateaus, indicating
sustained activity. We tested posthoc whether frontal Hγ activity to
unpredictable deviants persists longer than temporal Hγ (Fig. S4).
Hence, we compared the length (time in milliseconds) of Hγ activity
over baseline between the frontal and temporal ROIs across
channels. We standardized frontal and temporal activity between
zero and one.
With

Y roi = X roi −minðX roiÞ,

we set Yroi—denoting all time series of ECoG channels in a given
ROI—above zero. The next step,

Zroi = Y roi ×
1

maxðY roiÞ,

compresses all values of Yroi, such that the resulting matrix Zroi
ranges between zero and one. This standardization preserves
the typical time course but enables a joint baseline distribution
(100 ms preceding stimulus presentation). We estimated the
upper confidence interval (CI; CI97.5%) from the baseline dis-
tribution across all channels in both ROIs. For each channel,
we determined the duration of activity over baseline (greater
than CI97.5%) in milliseconds. The durations were compared in
a t test between ROIs across channels. On average, Hγ activity
measured in frontal electrodes persists longer over baseline
(M = 337 ms; SD = 176 ms) than temporal Hγ (M =148 ms;
SD = 102 ms; t15 = 2.85; P = 0.012).
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Fig. S1. Frontal and temporal Hγ differ with respect to effect of predictability on a group level. (Middle) Colored lines show the evoked response to stimuli
separately for frontal and temporal Hγ. Zero marks the auditory stimulus presentation. Blue lines show response to fully predictable standards, green lines
show response to unpredictable standards, red lines show response to fully predictable deviants, and cyan lines show response to unpredictable deviants.
Shaded areas denote the SE across subjects. (Top) Corresponding F-value time series for the ANOVA across subjects were set, depicting the strength of statistical
significance of the main effect for stimulus type (first row), the main effect for predictability (second row), and the effect of interaction (third row) in gray
scale. F values smaller than the F value corresponding with the statistical significance threshold are shown in white. Bottom shows evoked Hγ responses of a
representative subject (S03). Colored lines show the average across channel.
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Fig. S2. Comparison of amplitude modulation time over baseline. (Left) Depiction of standardized amplitude modulation to unpredictable deviants of the Hγ
(HG) band in the frontal (green) and temporal (blue) ROIs. We standardized the amplitude to (i) correct for differences in modulation and (ii) estimate the CI of
a joint baseline distribution (red lines). (Right) Frontal Hγ amplitude was longer activated over baseline (>97.5%) than temporal Hγ amplitude.

Fig. S3. (A) Depiction of differences of mismatch signal as a function of frequency. Each line shows the average of highly loading channels on the frequency-
specific principal component accounting for the highest variance across time. Note that the profile of the response (maximal F) displayed in B shows that the PE
is concentrated at low frequency (LF; ∼1–20 Hz) and Hγ (∼80–150 Hz), whereas the response between 20 and 80 Hz is lower. (C) Depiction of grand averages of
Hγ and LF amplitude modulation. In each frequency band, the amplitude modulation to the onset of auditory stimulation was averaged across trials and then,
across all channels pooled across all subjects. In each frequency band, we compared the first 250 ms with 100 ms baseline preceding the onset of standard and
deviant tones. We obtained the Hγ analytic amplitude AHGðtÞ by Hilbert transforming the Hγ filtered time series. Note that, in contrast to the analytic am-
plitude of the Hγ band, which is always equal to or larger than zero, the LF band is a time series of activity and has both positive and negative going deflections
(e.g., like P1-N1). Hence, channels with an LF amplitude modulation in interval I or III greater than the 97.5th percentile (significantly elevated amplitude over
baseline) and channels with an LF amplitude modulation in interval II smaller than the 2.5th percentile were classified as showing a significant LF-ERP
modulation after the standard or deviant stimuli or both.
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Fig. S4. Depiction of F-value time series averaged across stimulus-responsive channels as a function of length of activation period. Amplitude modulation of
Hγ and low-frequency (LF) activity of 300–500 ms after stimulus onset was compared with baseline activity (−100–0 ms). Selected principal components es-
timated within the set of stimulus-responsive channels in each interval are similar.
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Abstract
Predictive coding (PC) has been suggested as one of the main mechanisms used by brains to interact with complex
environments. PC theories posit top-down prediction signals, which are compared with actual outcomes, yielding in turn
prediction error (PE) signals, which are used, bottom-up, to modify the ensuing predictions. However, disentangling
prediction from PE signals has been challenging. Critically, while many studies found indirect evidence for PC in the form
of PE signals, direct evidence for the prediction signal is mostly lacking. Here, we provide clear evidence, obtained from
intracranial cortical recordings in human surgical patients, that the human lateral prefrontal cortex evinces prediction
signals while anticipating an event. Patients listened to task-irrelevant sequences of repetitive tones including infrequent
predictable or unpredictable pitch deviants. The broadband high-frequency amplitude (HFA) was decreased prior to the
onset of expected relative to unexpected deviants in the frontal cortex only, and its amplitude was sensitive to the
increasing likelihood of deviants following longer trains of standards in the unpredictable condition. Single-trial HFA
predicted deviations and correlated with poststimulus response to deviations. These results provide direct evidence for
frontal cortex prediction signals independent of PE signals.

Key words: frontal cortex, high gamma activity, predictive coding, prestimulus activity, temporal cortex
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“Prediction is very difficult, especially if it’s about the future”
Niels Bohr

Introduction
Making predictions about upcoming events is a crucial brain
function. Predictive coding (PC) theories postulate that the
brain iteratively optimizes an internal model of the environ-
ment based on sensory inputs (Rao and Ballard 1999; Bastos
et al. 2012; Lee and Noppeney 2014; Heilbron and Chait 2018)
and generates prediction error (PE) signals if predictions are
violated (Winkler and Schröger 2015), to improve the future
interaction with the environment. Most PC schemes suggest
separate prediction and PE signals/neurons, but separating the
2 in practice has proved challenging (for a comprehensive
introduction and review, see Heilbron and Chait (2018)). One
important reason is that most evidence for an anticipatory pre-
event prediction comes from the ultimate PE signals, elicited
after the (un)predicted event has occurred. Hence, recording
predictive signals prior to the onset of the stimuli would be
strong evidence for prospective, active predictions.

A critical question is also whether predictions are formed
automatically (by default) even when the stimuli are not
attended. Here, we utilized the high-temporal and -spectral res-
olution of direct cortical recordings from subdural ECoG electro-
des to compare frontal and temporal prediction signals in 5
patients exposed with trains of task-irrelevant and meaning-
less auditory stimuli in 2 conditions, while attending a visual
slide show. The conditions differed in the predictability of devi-
ation from repetitive background stimuli. In “regular”
sequences, every deviant followed exactly 4 standards, whereas
in “irregular” sequences, deviants were randomly embedded in
trains of standard stimuli.

In a previous report, we concentrated on poststimulus activ-
ity variations as a response to fully predictable and unpredict-
able deviants (i.e., on the PE) using the same data set
(Dürschmid et al. 2016). Here, we show that in frontal cortex
modulation of prestimulus broadband high-frequency ampli-
tude (HFA) heralds ensuing deviants and correlates with the
poststimulus PE signal. In contrast, and commensurate with
poststimulus activity, prestimulus activity in temporal cortex is
insensitive to sequence statistics but reflects only the immedi-
ate history.

Methods
Patients

Five epilepsy patients (mean age 33, SD = 9.23) undergoing pre-
surgical monitoring with subdural electrodes participated in
the experiment after providing their written informed consent.
Experimental and clinical recordings were taken in parallel.
Recordings took place at the University of California, San
Francisco (UCSF) and were approved by the local ethics com-
mittees (“Committee for the Protection of Human Subjects at
UC Berkeley”). The analysis of the poststimulus effects from
these patients with the same data set was previously reported
by Dürschmid et al. (2016).

Stimuli

Participants listened to stimuli consisting of 180ms long (10ms
rise and fall time) harmonic sounds with a fundamental frequency
of 500 or 550Hz and the 3 first harmonics with descending

amplitudes (−6, −9, −12dB relative to the fundamental). The sti-
muli were generated using Cool Edit 2000 software (Syntrillium).
The stimuli were presented from loudspeakers positioned at the
foot of the subject’s bed at a comfortable loudness.

Procedure

While reclined in their hospital bed, participants watched an
engaging slide show while sound trains were played in the
background. Sound trains included high-probability standards
(P = 0.8; f0 = 500Hz) mixed with low-probability deviants (P =
0.2; f0 = 550Hz) in blocks of 400 sounds, with a stimulus onset
asynchrony (SOA) of 600ms. In different blocks, the order of
the sounds was either pseudorandom, with a minimum of 3
standard tones before a deviant (irregular condition), or regular,
such that exactly every fifth sound was a deviant (Fig. 1A).
Thus, under the regular condition, standards and deviants
were fully predictable, whereas under the irregular condition,
exact prediction was not possible.

Data Recording

The electrocorticogram (ECoG) was recorded at UCSF using 64
platinum–iridium electrode grids arranged in an 8 × 8 array
with 10mm center-to-center spacing (Ad-Tech Medical
Instrument Corporation; see Fig. 2 for grid location). Grids were
positioned based solely on clinical needs. Exposed electrode
diameter was 2.3mm. The data were recorded continuously
throughout the task at a sampling rate of 2003 Hz.

Preprocessing

We used Matlab 2013b (The Mathworks) for all offline data pro-
cessing. All filtering were done using zero phase-shift IIR filters.
We excluded channels exhibiting ictal activity or excessive
noise from further analysis. In the remaining “good” channels,
we then excluded time intervals containing artifactual signal
distortions such as signal steps of pulses by visual inspection.
Finally, we rereferenced the remaining electrode time series by
subtracting the common average reference

∑( ) = ( )
=

x t
n

x t
1

c

n

cCAR
1

calculated over the n good channels c from each channel time
series xc. The resulting time series were used to characterize brain
dynamics over the time course of auditory stimulus prediction.
For each trial (−1 to 2 s around stimulus onset—sufficiently long
to prevent any edge effects during filtering) we band-pass filtered
each electrode’s time series in the broadband high frequency
range (80–150Hz; see Supplementary Material). We obtained the
analytic amplitude ( )A tf of this band by Hilbert-transforming the
filtered time series (HFA). We smoothed the HFA time series such
that amplitude value at each time point t is the mean of 10ms
around each time point t. We then baseline-corrected by sub-
tracting from each data point the mean activity of the −700 to
−600ms preceding the stimulus onset (i.e., 100ms prior to trial
N− 1) in each trial and each channel.

Prestimulus time series of HFA were used for the following
analysis steps (explained in detail in the following). We first
parameterized the prediction of upcoming stimuli as the inter-
action of Stimulus type (standard, deviant) and Block type (reg-
ular, irregular) using a time-resolved ANOVA (“I—Estimation of
Prediction”). Next, we assessed the involvement of frontal or
temporal cortices in this prediction effect (“II—Comparison
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Between Temporal and Frontal Cortices”). Finally, we tested for
an increasing predictability of deviants under the irregular con-
dition following longer trains of standards (“III—Increase in
Predictability as a Function of Train Length”).

I—Estimation of Prediction

Given the fixed repetition of 4 standards followed by a deviant
under the regular condition, the occurrence of both standards
and deviants should be predictable. We assumed that in areas
with predictive activity, the activity P prior to (expected) devi-
ants should be different from the brain activity prior to fre-
quent standards:

≠P Pstandard deviant

Conversely, since under the irregular condition the system
does not know a priori which stimulus will be heard the most
frequent class (standard tone) is predicted, and, as a result, the
activity P prior to the standards and deviants is equal:

≈P Pstandard deviant

Statistically, the difference between conditions can be
expressed as an effect of interaction using a 2-way ANOVA
with the factors stimulus type (upcoming standard vs. upcom-
ing deviant) and block type (regular vs. irregular), with the stim-
ulus type effect expected to be larger in the regular than
irregular condition. We ran this 2-way ANOVA for each electrode
(with trials as random variable), at every time point, with HFA as
the dependent variable. This leads to 3 F-value time series
(2 main effects and one interaction: Fstimulus type, Fblock type,
Finteraction) for each channel with the Finteraction capturing the pre-
diction effect. The level of significance was corrected for multi-
ple comparisons as described below.

Only deviants following the third and the fourth standard in a
row (S3 and S4, respectively; see Supplementary Material for a full
list of trials subjected to analysis) under the irregular condition
were included in the analysis. All deviants following S5,…,SN
were excluded (see Fig. 1 and Supplementary Material). This
results in a pool of deviant trials which consist of regular deviants
which always occurred after S4 and irregular deviants following
S3 and S4. Note that due to the design of the quasi-random
sequence under the irregular condition, with the constraint of at
least 3 standards before a deviant, the probability of deviants
occurring after S3 and S4 was nearly identical (0.17 and 0.2 respec-
tively; see discussion of the hazard function in the following).

The pool of standard trials included only S3 and S4 trials
under both the regular and irregular conditions. We did not

include the first and second standards after a deviant, since
during the prestimulus interval of S1 a deviant is presented and
the prestimulus interval of S2 might still be influenced by the
preceding deviant due to the short ISI. We excluded S5,…,SN
trials under the irregular condition since we hypothesized that
the occurrence of deviants would be increasingly expected due
to the “hazard function.” That is, we hypothesized that while
longer trains of standards under the irregular condition
increase the local probability of the standard, the occurrence of
deviants also becomes more likely: since a deviant has not
occurred for an extended sequence of events, its likelihood
increases. By not including irregular deviant following S5,…,SN
we also made the conditions more comparable for analysis, as
under the regular conditions deviants never appeared after 5 or
more standards. We focused on high-frequency broadband
HFA, which in our previous study showed earlier poststimulus
deviation signals than low-frequency ERPs (Dürschmid et al.,
2016) and differentiated between fully predictable and unpre-
dictable deviation in frontal and temporal cortices (for predic-
tion signal in other bands of the time–frequency spectrum see
Supplementary Material).

II—Comparison Between Temporal and Frontal Cortices

Principal component analysis
As noted in step I, the Finteraction captures the prediction effect.
We tested whether the Finteraction effect is localized to the tem-
poral or the frontal cortex in the following way. The Finteraction
time series were calculated in all channels separately over fron-
tal and temporal regions of interest (ROIs). A principal compo-
nent analysis (PCA) was used to find the course of a common
Finteraction across time, accounting for the highest variance, sep-
arately within the set of frontal and temporal channels.
Channels loading highly on the first principal component are
those that exhibit the strongest variation in terms of interac-
tion amplitude across time.

Data reduction
We chose the channels for which the Pearson correlation r with
the principal component exceeded the 75th percentile of all
positive r-values. We set this level as a trade-off between a
higher statistical power of a smaller number of channels and a
stronger generalization across the cortex with a higher number
of channels. We averaged the Finteraction-values in these chan-
nels and checked whether the averaged Finteraction-values in
each region exceeded the empirically determined threshold
derived from a surrogate distribution. This surrogate distribution

Figure 1. Paradigm. Participants watched a slide show while hearing passively sequences of sounds. High-probability standards mixed with low-probability deviants

were presented either unpredictably or were fully predictable (exactly every fifth sound was a deviant). Standards (S1−n) are numbered based on their position relative

to the previous deviant. Only standards following at least 2 standards were used for analysis (marked by rectangles)
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Figure 2. Time-resolved analysis of variance. (A) Frontal (gray) and temporal (green) regions of interest (ROIs). (B) Baseline-corrected HFA modulation prior to both

stimulus types under both conditions (shaded areas denote the standard error across channels). (C) Mean F (ME—main effects, IE—Interaction effects) time series of

channels loading highly on the frontal (gray frame) and temporal (green frame) Finteraction first principal components. The horizontal dashed blue line indicates the

critical Finteraction value based on permutation. The shaded area in the left panel indicates the temporal interval of significant interaction. (D) Finteraction time series for

frontal and temporal electrodes (indicated by arrows) together with the t-values (black line) of the difference between the 2 ROIs in the degree of Type X Block interac-

tion. Frontal cortex shows stronger interaction before stimulus onset. (E) Correlation between prestimulus and poststimulus HFA across channels over the frontal

and temporal cortices. Left: Pearson’s correlation values for each of the 2 ROIs. The dashed line gives the 99% confidence interval of the surrogate distribution.

Middle: covariation of prestimulus and poststimulus amplitude of electrodes over the frontal ROI. Each dot represents one electrode. The blue line shows the linear

fit to the data. Right: covariation of prestimulus and poststimulus amplitude of electrodes over the temporal ROI. Only in the frontal ROI pre and poststimulus ampli-

tude are significantly correlated.
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of the interaction effect was constructed by randomly reassign-
ing the labels (standard, deviant, regular, irregular) to the single
trials in 1000 permutations for each channel. This leads to 1000
surrogate Finteraction time series. Significance criterion was an
Finteraction-value with P < 0.01 within the surrogate distribution of
all Finteraction values. We next compared Finteraction effects
between frontal and temporal electrodes with an unpaired t-test
at each time point between the 2 groups of electrodes (frontal
vs. temporal). To determine significance, in 1000 runs we ran-
domly reassigned the labels (temporal vs. frontal) and applied
the unpaired t-test.

Group (within-subject) analysis
In the first analysis, we have chosen channels loading highly
on the first principal component which are those that exhibit
the strongest variation in terms of interaction amplitude across
time, regardless of which subject they were taken from. As sta-
tistical significance in the analysis across electrodes might be
driven by single subjects, we verify that the results presented
are valid at a group level. To that end, we repeated the above
stages at the single-subject level, using a 2-step procedure
(common in fMRI studies). At the first level, we ran the above
ANOVA in each subject separately, across trials. Then, as done
in the previous section, we ran a PCA on the Finteration time
series for each subject within region, maintained the channels
with the highest loading on the first PC, and averaged their
Finteraction time series. This led to 2 time series for each subject,
one for the temporal channels and one for the frontal. Then,
we ran a second level analysis to determine, at each time point
and for each region, whether the Finteraction exceeded the signifi-
cance level, at the group level (i.e., with subjects as random
variable). Significance was determined relative to a
permutation-derived surrogate distribution of the interaction
effect. The distribution was constructed by randomly reassign-
ing the labels (standard, deviant, regular, irregular) to the single
trials in 1000 permutations for each channel. This leads to 1000
surrogate Finteraction time series. Significance criterion was an
Finteraction-value with P < 0.01 within the surrogate distribution
of all Finteraction values.

III—Increase in Predictability as a Function of Train
Length

Throughout the experiment, we pseudorandomly varied the
train length of standards under the irregular condition. This
resulted in standard trains of 3–8 standards before deviants.
We directly tested whether predictability varies as a function of
train length under the irregular condition, congruent with a
hazard function (the probability of a deviant increases from 0
after 1 and 2 standards, to 0.17 (1/6) after 3 consecutive stan-
dards, and gradually increases to 1 after 8 consecutive stan-
dards have occurred in a row). We hypothesized that if HFA
modulation correlates with predictability of the next stimulus,
then longer standard trains would result in stronger modula-
tion of HFA before the occurrence of deviants. Specifically, we
correlated the HFA preceding deviants with the length of the
standard train before deviant under the irregular condition.
While in the previous analysis, we only used deviants following
S3 and S4, here all deviants entered the analysis. To assess sig-
nificance, Pearson’s correlation coefficient of each channel was
compared against a surrogate distribution. This surrogate dis-
tribution was constructed by randomly reassigning the actual
train lengths of single-trial predeviant HFA values in 1000 runs.

For each channel, the confidence intervals (CI; 99.5%) of a nor-
mal distribution were determined.

Results
Comparison Between Temporal and Frontal Cortices

We studied 287 channels across all subjects, of which 120 were
centered over frontal and temporal cortices. HFA was subject to
a Stimulus Type (predeviant, prestandard) × Block Type (regu-
lar, irregular) ANOVA at every time point from −700 to +200ms
and we evaluated the interaction term (Finteraction) as a signa-
ture of predictive activity, separately for all frontal (Nfrontal = 54)
and all temporal channels (Ntemporal = 66; Fig. 2A). Within each
region, we kept the channels loading highly on the first tempo-
ral principle component of the Finteraction, time series and com-
pared their mean with the empirical surrogate distribution
(Step I of data analysis in methods; Fig. 2C). Frontal HFA (Nelec = 7)
activity showed significant Finteraction values (maximal Finteraction =
7.76 P < 0.00001, at −51.4ms) with neither a significant effect of
stimulus type (maximal Fstimulus type = 2.44) nor of block type (max-
imal Fblocktype = 3.36) (left panel in Fig. 2C). Temporal activity (Nelec

= 10) did not show significant F-values for any of the 3 effects
(maximal Fstimulus type = 3.37; maximal Fblock type = 2.02; maximal
Finteraction = 3.47) (right panel in Fig. 2C). The high Finteraction-values
in frontal cortex correspond in time with a decrease in HFA from
−100ms before and until the onset of deviants, compared with the
onset of standards, in the regular blocks (where deviants and stan-
dards were predictable) but not in the irregular blocks (Fig. 2B, see
Supplementary Material for parallel results at a single-trial level).
Finteraction effects were significantly larger in frontal than temporal
sites (t15 = 6.49, permutation based P < 0.00001 at −11ms; Fig. 2D).
These results were confirmed at the group level (Supplementary
Fig. 2): Finteraction-values in the frontal lobe exceeded the empirical
significance threshold (Fcrit = 4.2) between −0.099 and 0.02 s (Fmax =
6.8) prior to the onset of the deviants. Finteraction averaged across
this interval were significantly different between frontal and tem-
poral cortices (P < 0.05; signed-rank test (for paired samples)).

Correlation Between Prestimulus and Poststimulus
Responses

Previously, we found that postdeviant HFA was reduced under
the regular condition compared with the irregular condition in
frontal electrodes (Dürschmid et al. 2016). Since we now found
that predictable deviants under the regular condition are her-
alded by a prestimulus HFA decrease, we tested if the 2 phe-
nomena are correlated. First, both in the frontal (Nelectrodes = 54)
and the temporal ROIs (Nelectrodes = 66) we correlated HFA pre-
ceding stimulus onset (average across −100 to 0ms) with the
amplitude following stimulus onset (average across 0–300ms)
across channels. The 2 resulting Pearson’s correlation values
were tested against a surrogate distribution. This surrogate dis-
tribution was constructed by randomly assigning the prestimu-
lus values of each channel with poststimulus values from
another channel in 1000 iterations. Based on the distribution of
r-values in this permutation analysis, the critical r-value denot-
ing statistical significance was r = 0.5. Prestimulus amplitude
correlated with poststimulus amplitude in frontal cortex (r =
0.83; P = 0.000002) but not in the temporal cortex (r = 0.28; see
Fig. 2E). Next, we tested whether the prestimulus/poststimulus
relation is also true at a single-trial level. Hence, we correlated
within each electrode the average amplitude in the prestimulus
and poststimulus interval across trials. Each individual
Pearson’s r was compared against a surrogate distribution and
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excluded if smaller than the critical value (rcrit = 0.1). This sur-
rogate distribution was constructed by randomly reassigning
the prestimulus value of one trial to poststimulus value of
another trial by randomly permuting the prestimulus values in
1000 iterations. On average, electrodes in the frontal cortex
showed higher r-values than temporal ones (frontal: 0.39; tem-
poral: 0.28; t102 = 3.9, P = 0.0002).

Increase in Predictability as a Function of Train Length

The train length of standards under the irregular condition var-
ied pseudorandomly, allowing us to test whether prestimulus
predictive activity varies gradually as a function of train length.
We surmised that 2 effects could be operative. Temporally local
effects suggest that the probability of a standard tone increases
the more standard tones which are played in a row. In contrast,
using a more global strategy, the so-called “hazard function”
suggests that, given that deviations will happen eventually,
expectation of a deviant increases the longer it is since the last
deviation. To test whether and where such effects prevail, we
correlated predeviant HFA with train length of standards before
deviants. Figure 3 shows that the direction of correlation
between HFA and standard train length was different between
temporal electrodes, showing mostly positive correlations, and
frontal electrodes, showing mostly negative correlations.
Individually, only the negative correlations in frontal channels
reached the permutation critical r-values of rcrit = ±0.19 (white
dots in Fig. 3). Considering that the analysis of the regular ver-
sus irregular condition indicated that a decrease in HFA indi-
cates proactive prediction of a deviant, these results suggest
that frontal electrodes “apply” predictions even under the irreg-
ular condition based on the more global hazard function
strategy.

Discussion
PC theories suggest that the brain continuously uses available
information to predict forthcoming events and reduce sensory
uncertainty (Arnal and Giraud 2012). However, the evidence
supporting this notion comes mainly from postevent PE find-
ings (Summerfield et al. 2008; Fogelson et al. 2009; Alink et al.
2010; den Ouden et al. 2010; Todorovic et al. 2011; Winkler and
Czigler 2012; Sanmiguel et al. 2013; Bendixen et al. 2014, 2015;
Dürschmid et al. 2016), providing only indirect evidence for pre-
diction, since prediction-based neural activity should precede a
predicted event. Here, we provide direct evidence for the

prediction of rare deviant events manifested by prestimulus
HFA modulation, suggesting an automatic anticipation of the
upcoming deviant.

Regular, and thus predictable, deviations were preceded by
HFA decrease exclusively in the lateral frontal cortex, observed
at both the group and single-trial levels. This complements our
previous results, showing that lateral frontal (but not temporal)
sites show reduced postevent PE signals to predictable com-
pared with unpredictable stimuli (Dürschmid et al. 2016).
Moreover, the predictive prestimulus power reduction corre-
lated with the postdeviant HFA reduction, across both channels
and trials, indicating a link between prestimulus HFA decrease
and reduced response to predictable deviants (i.e., better pre-
diction leading to less PE). Finally, we found evidence that the
frontal but not the temporal cortex followed the statistics of
the irregular sequence as well (the “hazard rate”). In sum, these
results provide evidence for automatic generation of proactive,
anticipatory processes in frontal cortex, which may provide the
basis for reduced orienting response to predictable events in an
unattended stream. More generally, the results corroborate a
hierarchy of prediction in the human brain (Dürschmid et al.
2016). This hierarchy is in line with the notion that early stages
of information processing is represented based on bottom-up
signals, whereas in higher levels of cortical processing devia-
tions from expectation are registered while predictable compo-
nents are “filtered out” (Heilbron and Chait 2018).

The Frontal Cortex Follows Complex Statistics of the
Input

The comparison between predictable versus irregular deviants
pointed to HFA reduction as a signature for predicting a devia-
tion. This observation allowed us to investigate whether antici-
patory predictions are generated during irregular, random
sequences as well. We found that in frontal cortex, prestimulus
HFA decreased as the train of uninterrupted standards became
longer. Considering our first conclusion that HFA reduction
reflects increasing likelihood of a deviant, this pattern matches
well the so-called “hazard function,” in which an imminent
event becomes more likely to occur the longer it has not
occurred. This suggests that the frontal cortex predictive capac-
ity is not limited to highly structured sequences, but rather,
that it generates complex predictions based on sequence prob-
abilities, even in a task-irrelevant irregular stream of events.
This progressive increase in deviant prediction resembles the
progressive increase in the contingent negative variation (CNV)
as a function of distance from the last deviant reported by
Chennu et al. (2013), although the CNV effect in Chennu et al.
(2013) was only seen when subjects attended the stimuli (espe-
cially deviants), whereas in our case stimuli were task irrele-
vant. The temporal cortex in our study showed a trend toward
an opposite effect with an increased prestimulus HFA activity
the longer the standard train was. This is consistent with the
notion that temporal cortex is based on recent history, such
that with longer standard trains, “more of the same” (i.e.,
another standard) is expected.

Previous Attempts to Corroborate Proactive Prediction

Several studies approached the question of proactive prediction
by investigating stimulus omissions (see Heilbron and Chait
(2018) for an up-to-date review and discussion). Most omission-
locked responses can be considered as violations of a general
prediction for the occurrence of a stimulus at a given time

Figure 3. Prefrontal electrodes reflect the hazard function in irregular

sequences. Each circle depicts channel positions with the color coding

Pearson’s correlation coefficient between train length and predeviant HFA.

Channels with a white dot show a statistically significant correlation. HFA sig-

nificantly decreased after longer trains of standards in frontal cortex, while

HFA tended to increase with longer trains of standards in temporal cortex.
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(a temporal prediction). Sanmiguel et al. (2013) had subjects
generate environmental sounds by pressing a button. EEG
responses to occasional sound omissions were found only
when the same sound was repeatedly elicited by the button
presses and was thus predictable due the subjects’ intention
which does not speak for nonintentional automatic prediction.
In a passive task with visual distraction, Bendixen et al. (2015)
presented sequential tone pairs in rapid succession. The intra-
pair frequencies were identical, whereas the frequencies
altered between pairs. Omission-locked responses were found
when the identity of the omitted stimulus could be predicted
(because it was the second sound in the pair), but not when
only its timing could be predicted (because it was the first in
the pair). However, subjects may have perceived each pair as
an auditory object, and the omission of the second sound in
the pair, which elicited the critical omission response, might be
a post hoc response to a duration change rather than an antici-
patory response.

Rather than looking at poststimulus or postomission
responses, our results address the prestimulus time, a time
window at which activity modulation has to be ascribed to pre-
diction per se since no error could have been computed.
Similarly, Kok et al. (2017) decoded from MEG recordings the
orientation of visual grating stimuli, which could be predicted
by a preceding auditory stimulus (valid visual stimulus) or not
(invalid visual stimulus). Subtracting the signal of valid from
invalidly cued gratings revealed differences before stimulus
presentation, suggesting the pre-activation of an anticipated
sensory template. Grisoni et al. (2017) found EEG evidence for
prestimulus anticipatory motor preparation to specific action-
verbs predicted by meaningful sentences, but the automatic
nature of this prediction is not clear as subjects likely listened
to the meaningful sentences. While these studies provide con-
verging evidence for proactive prediction, using MEG or EEG
data, the source and type of signal of this predictive activity
remain unclear. Taking the advantage of the high signal-to-
noise ratio, and the improved spatial resolution of the ECOG
data, our findings show that predictable deviants are preceded
by frontal cortex HFA decrease not seen in sensory cortex.

Implications for Models of the Poststimulus Mismatch
Response

How is prestimulus modulation of the HFA signals related to
accounts of the mismatch response elicited by the deviant?
Two mechanisms differing with respect to the degree of mem-
ory involvement have been proposed by Fishman and
Steinschneider (2012). Poststimulus effects like the mismatch
negativity may involve different states of neural adaptation
(stimulus-specific adaptation (Ulanovsky et al. 2003; Farley
et al. 2010)) due to repeated presentation. This creates a model
of the recent history, and under an assumption of stationarity,
provides a reasonable prediction of future events (May and
Tiitinen 2010). Other models (Näätänen et al. 2005) suggest that
beyond adaptation, stimulus repetition increases the absolute
excitability of neurons tuned to values not included in the
repeated stimulus. By both accounts, new stimuli elicit a stron-
ger response if not congruent with the current model, which
generates a PE signal. However, our observation of predictive
predeviant modulation of activity cannot be explained by either
mechanism. First, we compared the response with deviants fol-
lowing a similar number of standards in the random and pre-
dictable conditions, and overall deviants and standards had the
same probability under both conditions. Thus, either adaptation

or lateral excitation should have been similar across conditions.
Second, since the effect occurred before the deviant, it cannot be
due to activation of nonadapted/excited neurons sensitive to the
pitch of the deviant or by a process of comparison. Instead, the
results provide evidence of high-level prediction, modifying the
poststimulus comparison between the actual input and the
ongoing prediction.

Implications for Models of PC

Dynamic causal modeling (DCM) of EEG or MEG studies sug-
gested a hierarchical feedforward-feedback cascade in which
the inferior frontal cortex sits at the top, providing top-down
predictions to (and receiving PE signals from) the superior tem-
poral gyrus, which in turn provides top-down predictions to
(and receives PE signals from) the early auditory cortex (Garrido
et al. 2009). Recently, Phillips et al. (2015) and Phillips et al.
(2016) validated the models, originally tested on EEG/MEG data,
with ECoG data from 2 patients. However, Phillips et al.’s mod-
els suggested that the prediction signal affecting the IFG is lim-
ited to temporal deviations (duration deviations and gaps in
their study), but not pitch, intensity, or location deviations,
whereas our findings showed clear effects of predictability in
the ventral frontal cortex when the deviation was in pitch.

Our prestimulus predictive effects were not limited to tem-
poral predictions. In fact, suppression of HFA indexed both the
identity (standard or deviant) of the next stimulus in addition
to its timing. Moreover, this was observed even though all sti-
muli were task-irrelevant, meaningless, did not require a
response, and had no reward value. Previous findings of antici-
patory response typically involved active preparation for an
upcoming imperative stimulus, reflected in the CNV recorded
on the scalp (Trillenberg et al. 2000; Janssen and Shadlen 2005),
listening to meaningful verbal material (Grisoni et al. 2017) or
reward-prediction signals of different types (Fiorillo et al. 2003).
The current finding provides evidence for ongoing, task-
independent, anticipatory predictive signals, operative even
before the stimulus occurred.

Previous studies argued that predictions and PE signals are
compartmentalized across cortical layers and segregated by
spectral content. They suggested that predictions are generated
and fed-back by deep (infragranular) layers of the cortex at rela-
tively lower frequencies of alpha/beta, whereas PE are fed for-
ward from superficial (supragranular) layers at high (gamma)
frequencies (Bastos et al. 2012, 2015). The fact that our proac-
tive prediction signal was found in the HFA modulation may
seem at odds with this model. However, for several reasons we
remain agnostic about how the HFA modulation relates to the
more detailed, laminar models of PC. First, the HFA signal
should not be mistaken for any narrowband power modulation.
Multiple studies using intracranial signals, as well as computa-
tional modeling, suggested that the high-frequency broadband
signal is a good correlate of population neural firing rate
(Mukamel et al. 2005; Liu and Newsome 2006; Manning et al.
2009; Miller, Sorensen et al. 2009; Ray and Maunsell 2011), mak-
ing HFA modulation the preferred proxy for asynchronous
(nonperiodic) areal activation in ECOG studies (Miller, Sorensen
et al. 2009; Privman et al. 2013; Miller et al. 2014; Coon and
Schalk 2016; Kupers et al. 2018). That is, although we parame-
terize this signal using frequency decomposition, no oscillation
(i.e., narrowband periodic activity) is implied. In fact, as argued
by Miller and colleagues, the measured HFA may reflect a fre-
quency nonspecific power increase across the spectrum, while
changes in the lower frequencies are masked by stronger
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oscillatory activity in the lower ranges (Miller et al. 2007; Miller,
Zanos et al. 2009). Second, our knowledge about the relation-
ship between activity at specific laminae and how they are
reflected in the mesoscopic measurement of the surface elec-
trode is highly limited. Third, whereas the columnar model of
PC suggested by Bastos et al. (2012, 2015) specifies some of the
components (feedback predictions, feedforward PEs) in fre-
quency content terms, it does not provide that detail about the
dynamics of the interlaminar connections (e.g., projection of
“expectation neurons” in supragranular layers to deep layers
forming the predictions). In fact, the columnar organization vis
a vis components of the PC model is still debated (Spratling
2010; Heilbron and Chait 2018). Fourth, it is not clear whether
the prestimulus HFA modulation reflects the same prediction
signal specified in PC models, or the outcome of this predictive
signal (e.g., inhibition of firing rate in anticipation of a deviant).
Specifically, current PC models do not account for long-term
prospective predictions across hundreds of milliseconds as we
see here. Thus, we believe that any speculations from our data
to these models would be premature.

Maintaining Parallel and Inconsistent Predictions

Under the PC framework, prediction signals should be trans-
mitted to lower nodes of the network, and PE signals should be
carried forward to higher nodes in the network, to allow modifi-
cation of the current model and influence the next prediction.
However, our findings challenge this simple information flow,
which must address multiple levels of possibly conflicting pre-
dictions (Pieszek et al. 2013). For instance, just prior to a deviant
in the regular condition, and also after a long train of standards
under the irregular condition, processes based on local effects
predict another standard, whereas predictions based on the
global statistics predict a deviant. In this situation, it seems
efficient to prevent PE signals elicited at the temporal (auditory)
cortex from propagating up the hierarchy and modifying a
veridical model of the environment. Similarly, it seems that the
prediction of an upcoming deviant based on global statistics,
present at the frontal cortex, does not propagate down the net-
work to mitigate the PE signal invoked by the expected deviant
in the temporal cortex (Schröger et al. 2015). Our results there-
fore suggest that the flow of information up and down the hier-
archy of the network is not as simple as gleaned from typical
DCM diagrams (Garrido et al. 2009; Phillips et al. 2015, 2016). We
speculate on the functional advantage of maintaining segre-
gated predictions. Specifically, maintaining predictions that
account for global regularities allows the prefrontal cortex to
efficiently direct attention only to unexpected events (Sussman
et al. 2003), whereas for the auditory cortex, detecting all local
changes is advantageous for parsing the auditory input into
meaningful chunks (e.g., in speech perception)

Relationship Between the Predictive Prestimulus
Activity and Attention

Previous selective attention studies have shown prestimulus
activation (increased firing rate or BOLD response) prior to task
relevant stimuli (Colby et al. 1996; Beck and Kastner 2009) and
deactivation prior to task-irrelevant stimuli (Langner et al.
2011; Rodgers and DeWeese 2014). Our study did not use a clas-
sic selective attention task but could be considered as involving
a competition between the primary task of viewing a slide
show, and the potential distraction caused by the auditory
stream, especially by deviant events. Thus, the HFA decrease

observed prior to an expected deviant could reflect the same fil-
tering mechanism previously observed during selective atten-
tion. Under this premise, the current results suggest that this
inhibitory anticipation can be generated selectively, and in pre-
dictive manner, in an unattended stream.

In sum, pre and poststimulus HFA responses reveal a
unique role for prefrontal cortex in utilizing global regularity to
control responses to deviant stimuli. Frontal HFA selectively
signals upcoming regular deviants with a decreased amplitude
prior to deviant onset. Subsequently, only unpredictable devi-
ants elicit a strong HFA response, putatively related to trigger-
ing an orienting response to an environmental perturbation. At
the same time, the sensory cortex continues to veridically
respond to any change in the stream. Our results highlight a
selective role of frontal structures in actively computing predic-
tions to better navigate the environment.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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Supplementary Material 

 

Assignment of trials to conditions 

To reveal predictive signals prior to the onset of the stimulus, we evaluated the HFB amplitude 

modulation (HFA) in the pre-stimulus interval. The trials were grouped according to their identity in the 

post-stimulus interval (Supplementary Table 2). Column “Stimulus Type” and “Condition” give the 

group labels subjected to the 2 way within-channel ANOVA for stimulus type (deviant vs. standard) by  

condition (regular vs. irregular), respectively. The 2 way ANOVA was conducted at each time point in 

the prestimulus interval (-.7 to .2 sec). As indicated in the table, prestimulus interval always followed 

a standard (S2, S3, or S4). The HBA time series in the prestimulus interval were corrected by subtracting 

the mean of the100 ms preceding the prestimulus interval (baseline interval, from -.7 to -.6, which are 

the terminal .1 sec following S1, S2 or S3 respectively). In this baseline interval we expect the prediction 

for the next stimulus to be for a standard in all cases. Note that in the irregular condition deviants may 

occasionally occur following a train of only 3 deviants. Hence, in the case a deviant could be predicted 

during the baseline interval of the prestimulus interval, even though S4 actually follows. However, under 

the premise that all train lengths are evenly distributed, the likelihood of a deviant following S3 is low. 

That is, it is much more likely (~ 6 times so) that a standard will occur after 3 standards even in the 

irregular condition. Note also that the response to the stimulus presented prior to the pre-stimulus 

interval (stimulus onset at -600 ms) should not be influenced by repetition suppression as we limited the 

analysis to the deviants following S3 and S4 and excluded deviants following S5 to SN. 
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Supplementary Table 2: Labels of trials used in statistical analyses. Intervals are labeled, by the last 

stimulus presented.  

 Baseline 

interval 

Prestimulus 

interval  

Poststimulus 

interval 

Stimulus 

type 

Condition 

Temporal 

interval in 

sec   

-.7 to -.6  -.6 to 0 0 to .2   

Regular 

condition 

S3 S4 D4regular 1 1 

S1 S2 S3regular 0 

 S2 S3 S4regular 

      

Irregular 

condition 

S2 S3 D3irregular 1 

 

0 

S3 S4 D4irregular 

S1 S2 S3irregular 0 

S2 S3 S4irregular 

 

Specificity of predictive code in the High frequency activity 

In this study we focus on HFA activity since HFA activity signaled prediction errors earlier and 

distinguished between fully and unpredictable deviants in the post-deviant interval in our previous study 

[Fehler! Verweisquelle konnte nicht gefunden werden.]. However, we additionally verified that a 

prediction signal operationalized as the Finteraction value is represented mainly in the HFA range, in the 

following way. For each trial (-1 sec to 2 sec around stimulus onset – sufficiently long to prevent any 

edge effects during filtering) we band-pass filtered each electrode’s time series at 42 frequency bands 

(log-spaced between 3 and 200 Hz) with a bandwidth of 10% of the center frequency. We obtained the 

analytic amplitude 𝐴𝑓(𝑡) of each frequency f by Hilbert-transforming the filtered time series. We 

smoothed the time series such that the amplitude value at each time point n is the mean of 10 ms around 

each time point n. We then baseline corrected the prestimulus trial (N-1) activity by subtracting the mean 

activity from the -700 to -600 ms preceding the stimulus onset in each trial of each channel (i.e., 100 ms 

prior trial N-1; as stated above this could be the last 100ms of S1, S2 or S3). This prediction signal can 
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be equally high in different frequency bands but can be distributed across networks of different spatial 

extension and hence different sets of electrodes. Averaging across the whole set of all electrodes would 

favor frequency bands with a larger set of electrodes showing a high Finteraction value. Hence, in each 

frequency we averaged the Finteraction-value across the prestimulus interval separately for each electrode. 

We then took the 5% of electrodes with the highest averaged Finteraction-value in this prestimulus interval 

and averaged the Finteraction-value time series across the selected channels. This results in one Finteraction-

value time series for each frequency which were tested for significance against a surrogate distribution. 

This surrogate distribution of the interaction effect was constructed by randomly reassigning the labels 

(standard, deviant, regular, irregular) to the single trials in 1000 permutations for each channel. This 

leads to 1000 surrogate Finteraction –value time series for each frequency. Significance criterion was a 

Finteraction-value with p< .01 within the surrogate distribution.  

In the initial step of this analysis we chose a prestimulus interval ranging from -400 to 0 ms. The 

rationale was to separate any prediction signal (expected in the end of the prestimulus interval) from 

differences in response to the stimulus presented in the prestimulus interval. However, a shorter interval 

disadvantages low frequencies if one takes into account that at least 3 cycles of the underlying oscillation 

are necessary to evaluate an amplitude modulation. For example, the θ activity has a center frequency 

of 6 Hz and hence a cycle length of 166 ms. To fully cover 3 cycles an interval of at least 498 ms is 

necessary to evaluate amplitude modulation. In contrast, longer intervals decrease the possibility to 

detected transient fluctuations in higher frequencies. Therefore, we systematically varied the interval 

upon which we selected the 5% of best electrodes (-600/-500/-400/-300/-200 to 0 ms)  in five different 

frequency bands (θ: 4-8Hz, α: 8-12Hz, β: 12-30 Hz, γ: 40-80 Hz, and HFA: 80-150Hz).  
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Supplementary Figure 1: Finteraction values in 5 different prestimulus intervals across the best 5% of 

electrodes. Only high γ activity shows significant prediction signals in each of the five prestimulus 

intervals as indicated by the averaged Finteraction values exceeding the confidence interval of the 

surrogate distribution derived from a permutation procedure in which trial labels (standard, deviant, 

regular, irregular) were randomly reassigned.  
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Group Analysis 

 

Supplementary Figure 2:  Time resolved analysis of variance at the group level.  Mean Finteraction 

time series across subjects. For each subject, the channel loading highest on the frontal (gray frame) 

and temporal (green frame) Finteraction 1st principal component was chosen. The horizontal dashed red 

line indicates the critical Finteraction value based on permutation. The framed area in the left panel 

indicates the temporal interval of significant interaction. Shaded areas denote the standard error across 

subjects. Right: mean Finteraction values (gray – frontal, green – temporal) averaged across the interval 

of significant interaction. Frontal cortex shows stronger interaction before stimulus onset. Error bars 

denote the standard error across subjects.  

 

Single trial ROC analysis 

We analyzed whether pre-stimulus amplitudes predicted the upcoming regular deviant at a single trial 

level. We computed the predictive index that approximates the probability with which an ideal observer 

can predict the upcoming stimulus (standard sound vs. deviant sound) from the pre-stimulus HFA on a 

single trial level, separately for the fully predictable and the unpredictable conditions.  

We used Receiver Operating Characteristics (ROC) as a descriptive analysis to define whether and 

where  pre-stimulus HFA predicted the upcoming stimulus at a single trial level. The Area Under the 

ROC Curve (AUC) value is a proxy for how strongly the distribution of HFA prior to standard and 

deviant trials overlap. This index was estimated at each time point for each channel , based on the 
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distributions of single trial amplitudes for all deviants and all standards, yielding an AUC time series 

for each channel. We next estimated whether AUC values varied as a function of anatomical location. 

AUC values where averaged across the 100 msec prior to onset of deviants and these values were 

correlated with both the relative x (posterior-anterior) - and y (ventro-dorsal) coordinates across all 

electrodes, separately for predictable and unpredictable sequences.  

In the regular condition, the predictive power increased along the ventral to dorsal axis, as well as from 

posterior to anterior electrodes (Supplementary Figure 3A). AUC values are significantly correlated 

with anatomical location on both the x- and y-dimension in the fully predictable condition (ry = -.3, 

p=.001; rx = -.33, p=.0002) but not the unpredictable condition (ry = -.07, p=.44; rx = .22, p=.21; see 

Supplementary Figure 3). 

Next, we defined the time course of AUC values for the frontal and temporal cortex.  The AUC time 

series were subjected to PCA to find the course of AUC across time separately for the two regions of 

interest of the lateral cortex. In each region we determined channels loading highly on the respective 

first principal component and averaged the AUC time series across these channels, pooled across all 

subjects. We tested for significant deviations of the averaged AUC time series from predictive index at 

chance level (50%) using a permutation test. For this test, the empirical distribution of the main effect 

was constructed by randomly reassigning the labels (standard, deviant) to the single trials in 1000 

permutations. We evaluated the statistical significance of the predictive index for each time point in 

each ROI in two ways. First, for each region and time point, to be considered as significant prediction, 

the averaged predictive index had to exceed the 95th percentile of the empirical distribution. Second, to 

assess the difference between regions, we used a time point-by-time point t-test to test for differences 

of AUC values between 2 regions separately in both conditions (regular vs. irregular) across channels. 

Again, we determined an empirical significance threshold for t values by randomly reassigning the two 

ROI labels in 1000 permutations of the same time point-by-time point ANOVA.  

The above analysis pooled across subjects to achieve a higher power at the expense of generalization. 

However, we also tested statistical significance at a group level with subjects as random variable. For 

that aim, in each subject, in each of the two regions and in each condition, we chose the channels with 
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the maximal AUC value in the pre-stimulus interval (-600 to 0 ms) and compared their mean against a 

surrogate distribution.  

 Dorsal frontal channels exceeded the 99% significance threshold (AUCci99 = .595) in the time range 

between -79 and -10 ms before the onset of the regular deviant (see Supplementary Figure 3C) but not 

the irregular deviants (Supplementary Figure 3D). A time-point-by-time-point t-test with AUC as 

dependent variable revealed a highly significant difference of AUC values between ROIs at the electrode 

level between -69 and -7 ms (max t6 = 5.6; p = 2.3-5 at -41 ms) and at the group level between -91 and 

58 ms  (max t4 = 11.3; p = 3.3-16 at -10 ms).   
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Supplementary Figure 3:  A Correlation of AUC values prior to onset of deviants with y- and x-

coordinates (left and below channel location, respectively) in the fully predictable condition. B shows 

the same for the unpredictable condition. AUC values are significantly correlated with anatomical 

location on both the x- and y-dimension in the fully predictable condition (denoted by the asterisks) 

but not the unpredictable condition.  C-D Area under the curve (AUC) time series of the Receiver 

Operation Characteristics Curve (ROC) for predicting predictable (C) and unpredictable deviants (D) 

for channels loading highly on the 1st principal component. The left panel in both C and D show the 

analysis across channels and the right panel at the group level. Chance AUC is 0.5 and the dashed red 

horizontal line depicts the critical AUC for significance based on permutation analysis.  The lower 

panel in C and D shows the t-value denoting the differences of AUC values between frontal and 

temporal ROI. Only frontal channels show a significant AUC value prior to predictable deviants. 

Furthermore, only in the predictable condition predictive signals are higher in the frontal cortex both 

at the level of channels and at the group level. E shows the distribution of HFA averaged across 100 

msec prior to predictable (orange) and unpredictable (magenta) deviants for all channels and all trials 

separately for the frontal (left) and temporal (right) ROI. The red horizontal lines show the mean the 

black lines the median of the HFA single trial distributions. 
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The Nucleus Accumbens (NAcc) is an important structure for the transfer of information
between cortical and subcortical structures, especially the prefrontal cortex and the
hippocampus. However, the mechanism that allows the NAcc to achieve this integration
is not well understood. Phase-amplitude cross-frequency coupling (PAC) of oscillations
in different frequency bands has been proposed as an effective mechanism to form
functional networks to optimize transfer and integration of information. Here we assess
PAC between theta and high gamma oscillations as a potential mechanism that facilitates
motor adaptation. To address this issue we recorded intracranial field potentials directly
from the bilateral human NAcc in three patients while they performed a motor learning
task that varied in the level of cognitive control needed to perform the task. As in rodents,
PAC was observable in the human NAcc, transiently occurring contralateral to a movement
following the motor response. Importantly, PAC correlated with the level of cognitive
control needed to monitor the action performed.This functional relation indicates that the
NAcc is engaged in action monitoring and supports the evaluation of motor programs
during adaptive behavior by means of PAC.

Keywords: phase-amplitude coupling, nucleus accumbens, cognitive control, action monitoring, learning

1. INTRODUCTION
The nucleus accumbens (NAcc) is part of the ventral striatum
and plays a pivotal role in integration of information (Goto et al.,
2008) from the limbic system, particularly between the prefrontal
cortex (PFC) and the hippocampus (HC). The NAcc is considered
the interface by which the HC gates input from the prefrontal cor-
tex (French et al., 2002). In rats the PFC and HC converge onto
single NAcc-neurons (Finch et al., 1996; Goto et al., 2008) and the
PFC-NAcc and HC-NAcc connections are mutually dependent.
For instance, long term potentiation of the HC-NAcc associa-
tion entails a long term depression of the PFC-NAcc association
(Grace et al., 2007). It is assumed that this selective strengthening
of the HC-NAcc connection is important for the rapid facili-
tation of goal-directed behaviors and for supporting automized
actions (Goto et al., 2005; Belujon et al., 2008). Such automized
actions are especially evident in motor learning tasks in which
the NAcc integrates information for the planning of movements
(Mogenson et al., 1980; Grace et al., 2000). Münte et al. (2007)
speculated that the human NAcc evaluates the information used
for the adjustment of response strategies. Accordingly, lesions in
the NAcc limit the flexibility required for changes in behavior dur-
ing learning (Grace et al., 2007). However, knowledge about the
specific neural mechanisms utilized to integrate information from
the PFC and the HC in the human brain is still limited.

Phase-amplitude cross-frequency coupling (PAC) of oscilla-
tions has been suggested as an effective mechanism for recruiting
local networks to form functional global networks and to gate
information (Buzsaki et al., 2004; Canolty et al., 2006, 2010;
Cohen et al., 2009; Staudigl et al., 2012). PAC describes the depen-
dency of the amplitude of a high frequency on the phase of a low
frequency. In rats and mice there is a tight connection between
the phase of the theta band (θ) of local field potentials (LFP) and
single unit activity (SUA) (Chrobak et al., 1998; Sirota et al., 2003;
Siapas et al., 2005) presumably allowing neurons to form a larger
assembly of neurons by means of transient coupling (Chrobak
et al., 1998). These studies suggest that the interaction between
PFC and HC may occur via PAC. O’Donnell et al. (1995) showed
that hippocampal hyper- and depolarization leads to hyper- and
depolarization in the NAcc. In the state of depolarization neurons
in the NAcc are more likely to fire action potentials in response
to stimulation of the PFC (French et al., 2002; Goto et al., 2008)
providing evidence for PAC with an enhancement of high fre-
quency amplitudes during troughs in θ activity. Tort et al. (2008)
showed transient θ phase—high gamma (γ) coupling in the rat’s
striatum during movement through a maze. Furthermore, Tort
et al. (2009) demonstrated a function link between performance
improvement and the strength of theta-gamma coupling dur-
ing the course of learning. However, until now it has not been
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established whether NAcc shows PAC between θ and high γ activ-
ity in a functionally specific manner in humans. This would
indicate that integration of information within the NAcc could
rely on transient coupling between frequencies.

We studied the NAcc activity in three human subjects directly
by means of subcortical electrodes in a serial reaction time task
(Nissen et al., 1987) in which the participants had to track and
respond to a sequence of numeric stimuli in a fixed and a ran-
dom order condition which modulated different cognitive control
demands. From Tort et al. (2009) one can hypothesize that PAC
transiently occurs in the NAcc and is modulated by the level
of cognitive control. We tested the following hypotheses: PAC
emerges in the NAcc. Second, PAC discriminates between phases
of high and low cognitive control. Third, PAC varies systemati-
cally with behavioral performance measures across experimental
conditions (high and low cognitive control—HCC and LCC) .

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
3 patients (mean age 38.3 years (SD = 12.34), 2 female, all right
handed) with a history of intractable epilepsy participated in
this study. We directly recorded from the bilateral NAcc and
the anterior Thalamus (ANT). For details on surgery and deep
brain stimulation approach please see Appendix 6.1 and Table A1
summarizing the clinical background of the patients.

2.2. PARADIGM
We carried out a serial reaction time task (see Figure 1) which
required a single finger movement that was specified by a numeric
stimulus presented on a monitor screen. Stimulus presentations
were controlled by MATLAB. Patients were instructed to respond
with their right thumb, index finger, middle finger, or little finger,
which rested respectively on the spacebar, “j,” “k,” and “;” keys

FIGURE 1 | Subjects were presented with stimuli indicating which

finger to move. Each block contained 60 trials (presentation of a single
number). Colors denote the type of the sequence. Together, the subjects
were presented with three blocks of a fixed sequence, two blocks of a
random sequence, and one block in which they could choose a sequence
on their own.

of a computer keyboard. Four different numbers (1, 2, 3, 5) were
presented on the screen (height 2 cm, 0.15◦ visual angle). These
numbers indicated the finger they had to use to press the key.
Six blocks of 60 trials, each comprising the presented number
and the corresponding finger movement, were conducted with
each patient. The four numbers were presented in a fixed or ran-
dom order depending on the block number, with 3 fixed order
blocks followed by 2 random sequence blocks and a final block of
self-paced finger movements. In the fixed order blocks a repeti-
tive sequence of six numbers was presented in all three blocks. In
sum, the participant performed 30 repetitions of the 6-number-
sequence. In the random blocks the four numbers were presented
randomly. In the self-paced block a fixation cross was presented
instead of the numbers. The participants were not informed about
the type of sequence. The interstimulus interval (ISI) was vari-
able and depended on the reaction time of the participants, with
a fixed time between response and next stimulus of 700 ms plus
a jitter of ±110 ms. In this interval the stimulus remained pre-
sented. Thus, block and trial length depended on the participants
reaction time (mean block length per participant: Pat01: 117 s
(std: 18.4), Pat02: 93 s (std: 25.6), Pat03: 96 s (std: 26.03); mean
trial length per participant: Pat01: 1.6 s (std: 0.52), Pat02: 1.01 s
(std: 0.31), Pat03:1.03 s (std: 0.21). Blocks were separated by a
1 min rest. During this resting period an X was presented on the
screen. A + presented for 5 s informed the participant about the
beginning of a new block.

2.3. COGNITIVE CONTROL
These 3 types of sequences (fixed, random and self-paced) dif-
fered with respect to the need for ongoing monitoring of actions
and performance outcomes and subsequently, adjustments of
behavior and learning which we tagged cognitive control in
accordance to MacDonald et al. (2000) and Ridderinkhof et al.
(2004).

2.3.1. Fixed sequence
The fixed sequence allowed the participant to learn the sequence.
During the early phase (cognitive phase Fitts et al., 1973) of
learning, when the fixed sequence is unknown, a high level of
cognitive control is necessary to establish a strategy to complete
the task (Fitts et al., 1973) namely to associate the stimulus with
the response. The longer the training the less necessary cognitive
control is, since the stimulus-response association was learned
and the participant knows which finger to move before the actual
stimulus is presented on the screen.

2.3.2. Random sequence
The sudden onset of a novel or unpredictable event captures
attention and disrupts ongoing performance (Barcelo et al.,
2006). In our experiment switching from the fixed to the ran-
dom sequence marks such onset of several unpredictable events.
This interruption of stimulus predictability signals the need for
a change in strategy from a learned and hence, automatic to
an unlearned mode. The occurrence of errors makes cognitive
control necessary which leads to post-error slowing in healthy
participants and more careful responses after errors (Notebaert
et al., 2009). Hence, less errors are expected during phases of high
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cognitive control. In healthy participants, differences in cognitive
control are reflected by a reduction of initially long reaction times
after the completion of several repitions of the 6-item sequence
of the same fixed sequence (Nissen et al., 1987; Knopman et al.,
1991). The presentation of random sequences after the fixed
sequences will force the participant to abandon a learning strategy
and elevate reaction times to a plateau value.

2.3.3. Self-paced sequence
During the last block, the participants could chose the sequence
on their own with no obligation. Since the selected movement had
not to be adjusted according to an external stimulus we expected
short reaction times which would indicate less action monitoring
or cognitive control. In sum, we classified trials of high cognitive
control (HCC - initial tracking of the fixed sequence and tracking
the random sequence) and low cognitive control (LCC - tracking
the learned fixed sequence and during the self-paced sequence).

2.4. DATA COLLECTION
Intracranial recordings were obtained using a Walter Graphtek
(Walter Graphtek GmbH, Lübeck, Germany) system, with a sam-
pling rate of 512 Hz, a resolution of 0.25 μV, and analog band-
width of 200 Hz. We referenced online to the right earlobe. The
ground electrode was placed at P8. During recording, a highpass
filter of 0.19 Hz and a lowpass filter of 240 Hz was used. In the left
and right NAcc and ANT (a total of 16 recording electrodes), adja-
cent electrodes were combined with each electrode referenced to
the neighboring contact (i.e., 1–2, 2–3, 3–4, with “1” representing
the most ventral and “4” representing the most dorsal electrode
contact). This resulted in a bipolar montage with each NAcc/ANT
monitored by three electrode positions. This montage was used to
enhance the spatial resolution of the intracranial recordings and
to ensure that the recorded activity originated from nearby tissue.

2.5. GENERAL DATA ANALYSIS
We used Matlab 2008a (Mathworks, Natick, USA) for all offline
data processing. The resulting time series for the electrodes
located in the NAcc were segmented in epochs of −1 to 2 s
relative to the event (stimulus and response). In separate anal-
yses these epochs were aligned to the motor response or onset

of the instructive stimulus. These time series were used to
characterize event-related brain dynamics in terms of PAC. We
inspected the signal visually for artifacts and decided not to
reject any epochs. Since we focused on single frequency bands
we avoided signal drifts by applying bandpass filters for the
frequency bands of interest (see below). All filtering was done
using a 4th order butterworth filter (IIR-filter). All steps of data
analysis were applied also to the recordings from the anterior
thalamus.

2.6. BEHAVIORAL DATA
Two behavioral parameters—reaction times (RT) and error rate
(pe)—were assessed as indicators of cognitive control. The DBS
procedure allows for the recording of only a limited pool of
subjects (here N = 3). This limited number of subjects may influ-
ence strongly statistical test results so that effects can be missed
even though potentially observable in a larger set of subjects.
An ANOVA comparing RT differences across blocks—which may
indicate differences in cognitive control—therefore, used RT of
each trial in each subject as the random variable (n = 180) and
blocks as factors (p = 6). Reaction times of each subject were z-
scored across trials. Individual reaction times are summarized in
Table 1. The summed number of errors in each participant was
used to calculate pe for each block except the self-paced block
(errors cannot be made since the sequence was generated by the
participant itself) we calculated

pe = Nerrors

Ntrials
(1)

Table 1B | Error rate.

Patient Block # 1 Block # 2 Block # 3 Block # 4 Block # 5

1 4 6 7 5 1

2 1 1 2 4 1

3 3 2 1 0 2

Table shows the number of errors for each subject and block.

Table 1A | Reaction times in ms.

Patient Block # 1 Block # 2 Block # 3 Block # 4 Block # 5 Block # 6

1 1027 (301) 1090 (261) 1077 (255) 1108 (284) 1057 (212) 645 (395)

z-score 0.079 (0.934) 0.268 (0.786) 0.229 (0.769) 0.323 (0.858) 0.170 (0.640) −1.071 (1.191)

2 881 (214) 658 (106) 628 (146) 639 (122) 721 (180) 210 (182)

z-score 0.991 (0.823) 0.135 (0.407) 0.022 (0.562) 0.063 (0.469) 0.377 (0.692) −1.588 (0.700)

3 814 (290) 642 (158) 604 (148) 655 (116) 680 (135) 510 (191)

z-score 0.804 (1.431) −0.045 (0.782) −0.230 (0.733) 0.022 (0.574) 0.143 (0.667) −0.695 (0.943)

The table shows the mean reaction times and standard deviations of reaction times for each subject and block. Each value encompasses 60 trials. Since subjects

differ in their reaction times (see Results) we z-scored the reaction times across all trials for each subject. This means that individual RTs were transferred into

standard values by z-transformation individually for each subject. The second row of each patient shows the mean (std) of the z-scored reaction times. The subjects

showed a different evolution of RTs across the experiment. But this concomitant in each group analysis—that individual subjects show only a trend which resembles

the result of the group analysis or may slightly deviate from the trend in the group—does not challenge the statement resulting from the ANOVA for a group of

participants. Even though we could only dispose of a very small group, the trend of behavioral changes in terms of RTs remains.
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with Nerrors designating the set of trials with false responses and
Ntrials as the total number of trials in a given block. A χ2 test sta-
tistically compared the blockwise pe. These values were related to
PAC in a correlation analysis to test the specific hypothesis of a
functional relationship between PAC and behavioral performance
(see Section 2.7).

2.7. FREQUENCY ANALYSIS
In the first step we analysed whether oscillations show signifi-
cant amplitude variations following the stimulus or the motor
response. The rationale was to exclude the possibility that
expected effects of PAC could be the result of the variation of
only one frequency. We filtered the epochs in each trial in a broad
range of frequencies ranging from 4 to 150 Hz (center frequen-
cies) with a step of 2 Hz (band width of 4 Hz). By means of the
absolute Hilbert transform we estimated the envelope of the oscil-
latory activity for each filtered time series in each trial. We then
grouped the trials according to the HCC and LCC condition (see
Section: Cognitive Control). In each frequency band and at each
time point we compared the amplitude values across subjects
and trials with a t-test. To assess statistical significance we cor-
rected the significance threshold with a false discovery rate (FDR).
Therefore, we fitted a cumulative normal distribution function to
all p-values < the uncorrected significance threshold (p < 0.05;
see Figure 4). All comparisons between HCC and LCC whose
p-values < 0.05 in this new distribution were considered statisti-
cally significant. We furthermore asked, whether the amplitude in
experimental conditions evolves differently with respect to their
baseline. In each trial we calculated the differences between the
baseline (average of 500 ms before motor response) and the aver-
aged activity in the temporal interval of 500 ms following the
motor response. We then tested by means of a t-test for differences
between the experimental conditions (HCC-LCC).

2.8. PHASE-AMPLITUDE CROSS-FREQUENCY COUPLING (PAC)
2.8.1. Calculation of PAC
To define whether frequencies interact and whether this inter-
action shows a temporal pattern, we quantified the relationship
between the phase of the θ frequency band and the amplitude of a
high frequency band in a manner comparable to the approach of
Tort et al. (2009). Specifically, for a given electrode e we used the
temporal interval i around the button press in the fixed and ran-
dom sequence trials (Ntrials = 300) since in both the subject had
to respond according to an external cue. In this interval i we sep-
arated the θ oscillation into 30 phase bins (−π to π; Nbins = 30)
and calculated the averaged high frequency amplitude within each
phase bin (see Figure 2A). We filtered the raw signal in the θ

(4–8 Hz (Axmacher et al., 2010)) band and a high frequency
band covering the γ and high γ bands. The high frequency band
was divided into narrow sub-bands with center frequencies rang-
ing from 25 to 175 Hz, a bandwidth of 30 Hz and a step size of
2 Hz. We used the Hilbert transform to estimate the high fre-
quency amplitude time series and the θ phase time series. From
this the amplitude-phase-histograms were derived with the 2π-
θ-cycle split into 30 phase bins of equal width (0.21 rad or 12◦)
in consecutive temporal intervals. We first calculated the cross-
frequency spectrogram (amplitude variation of a high frequency

oscillations as a function of the phase of a low frequency oscilla-
tion) within each subject. This means that the θ-phase values over
the temporal interval (166 ms) were sorted into 30 equally spaced
phase bins. The window size of each temporal interval was set
such that a full cycle of the center frequency (6 Hz) of the θ range
(4–8 Hz) was covered (166 ms). Next, the high gamma amplitudes
observed at the various time points were separately averaged for
each phase bin. As the next step in each subject we fitted a cosine
function to the resulting high gamma amplitude values over phase
bins. To prove the dependency of the high gamma amplitude on
a same θ phase across subjects we averaged the resulting fit func-
tions (see Figure 2). As the final step in our analysis we statistically
compared whether more variance is explained by the variance
across subjects or more variance is explained by the averaged fit
functions (see next paragraph). If the latter was the case then all
subjects’ high gamma amplitude depended on the same θ phase
and the Modulation Index was high. For example, if coupling did
not rely on the same θ phase then the variance across subjects
would be higher compared to the variance across the θ cycle. In
sum, first the subject specific electrophysiology was evaluated fol-
lowed by the statistics within the entire group of subjects in which
we tested whether despite averaging the fit function more variance
is explained by the fit function than by the variability across sub-
jects. The same analysis was also conducted with 2 underlying θ

FIGURE 2 | Phase-amplitude cross-frequency coupling describes the

dependency of high frequency amplitude on phase of low frequency

oscillation. (A) θ oscillation was separated into 30 phase bins covering the
entire cycle (−π to π; red bars). In each bin the magnitude of the high γ

analytic amplitude (green line) of the ongoing high γ band (blue line) was
calculated. (B) Depiction of high γ amplitude as a function of θ phase for
three subjects (colored asterisks) in one temporal interval. For each subject
the mean high γ amplitude corresponding to each of the θ phase bins was
calculated across trials. Afterwards, the variance across the mean over
subjects (dashed line) was calculated. In the left plot (contralateral NAcc)
the variance of the high frequency amplitude across the θ bins is greater as
compared to the variance across subjects for a given bin resulting in an
enhanced averaged variance as compared to the ipsilateral NAcc (right plot).
(C) The variation of high γ amplitude as a function of θ phase was predicted
by a cosine function assuming a unimodal dependency of high γ amplitude
on the θ phase. A cosine function was fitted to individual high γ amplitudes
(solid lines) and pooled across subjects (bold black line). In the left plot a
high modulation index results from higher variation across the θ cycle than
amplitude differences between subjects. (D) PAC defines the θ phase the
high γ amplitude is coupled to. Both plots show the same coupling
strength, however, with different coupling phases. In the left plot the high γ

amplitude is coupled to the descending part of the θ cycle whereas in the
right plot the coupling phase is the ascending part of the θ cycle.
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cycles. These analyses yielded roughly the same results, but with a
poorer temporal resolution. The window of analysis was shifted in
time by 10 ms between −600 and 600 ms around both the stimu-
lus and the motor responses. This led to 121 temporal intervals
(Ninterval). Subsequently, in each interval the phase-amplitude
distribution (distribution of high gamma amplitude values across
theta phase-bins) was averaged across the electrodes separately for
each hemisphere (contra- and ipsilateral to the performing hand)
and for stimulus and response alignment.

2.8.2. Quantification of PAC
To quantify PAC we used the variance σ2

PAC of the mean
high frequency amplitude and the Modulation Index (MI; see
Figures 2B,C). σ2

PAC is suited to be an exploratory measure since
no specific model is assumed. In contrast the MI assumes a
specific form of dependency of high frequency amplitude on
the θ cycle and is defined by the strength of coupling and the
phase to which the high frequency amplitude is coupled. In
each temporal interval i we calculated the high γ amplitude dis-
tribution across the θ cycle per subject. We then averaged the
high frequency amplitude across participants. This averaged high
frequency amplitude is shown in Figure 2B as a dashed line.
We calculated the variance σ2 of the averaged high frequency
amplitude as a function of the θ phase

σ2
(Hγ/θ)

= 1

Nbins

Nbins∑

i = 1

(ai − a)2 (2)

with ai representing the mean high γ amplitude for a given phase
bin across participants and a representing the averaged amplitude
of ai over θ phases.The larger σ2 the larger are the differences of
the high frequency amplitude at different θ phases. A high value
of variance indicates a high concordance of PAC across partic-
ipants. In Figure 2B we show this for two cases. The left plot
shows a high variance of the averaged high frequency amplitude.
The right plot shows that individual fluctuations of the high fre-
quency amplitude are canceled out in the average. This leads
to a small variance indicating a lack of coupling. To compare
across different high frequency bands we normalized the ampli-
tude values by z-scoring. We used the variance to compare the
modulation of high frequencies by θ phase across all anatomi-
cal regions. Note that a high σ2 only indicates that at different
θ phases the high frequencies differ in amplitude: it does not
explain whether the variance of the high frequency amplitudes
is accounted for the θ cycle. Therefore, in each high frequency
showing a significant variance level we determined the goodness
of a cosine fit (F-value). The cosine function (representing the
θ cycle) was fitted to the z-scored high frequency amplitude val-
ues in each subject. The best cosine fit function minimizes the
sum of squares of errors. We termed the test statistic modulation
index according to Tort et al. (2009). However, in our analysis the
MI represents an ANOVA and hence, specifies whether more of
the variance in the high frequency amplitude (MScos - explained
by the θ cycle) is explained by the variation across the θ cycle
or across the participants (MSerror—unexplained by the θ cycle).
Therefore, we averaged the cosine fit functions across subjects and

assessed whether despite averaging more variance of the high fre-
quency amplitude is explained by the θ cycle than the variance
across subjects.

The variance between the θ phases is given as

MScos = SScos

dfcos
(3)

with SScos as the sum of squares of high frequency amplitude
between θ phases and dfcos as the degrees of freedom. The variance
within the θ phases is given as

MSerror = SSerror

dferror
(4)

with SSerror as the sum of squares of high frequency amplitude
within θ phases and dferror as the degrees of freedom. MSerror takes
the variability across subjects into account. The MI is given as the
ratio between both as

MI = MScos

MSerror
(5)

The larger the MI more of the variance in the high frequency
amplitude is explained by the variation across the θ cycle than
across the participants. In fact this MI is comparable to an
ANOVA which directly compares an effect of a condition (here
θ cycle) in relation to a random variable (here individual high γ

amplitude values) in each factor of the condition (here each sin-
gle phase bin of the θ cycle). If each subject would show coupling
however, with a strong coupling phase angle shift this would result
in a low MI. Also strong gamma bursts in one subject and hence
not a smooth variation of the high gamma amplitude across the θ

cycle would result in a low MI since the variation across subjects
increases compared to the variation across the θ cycle.

Furthermore, PAC is defined not only by the coupling strength
but also by the phase of the θ cycle at which the high gamma
amplitude reaches its maximum. In Figure 2D we show differ-
ences in coupling phase with the same coupling strength. Here all
subjects show strong coupling since the variation of high gamma
amplitude values in each subject is accounted for the θ cycle. The
bold line shows the average of the individual cosine fit functions.
Despite averaging across subjects more variance is accounted for
the θ cycle than for variance across subjects at each phase. In the
left plot high gamma amplitude is coupled to the descending part
of the θ cycle whereas in the right plot the high gamma amplitude
is coupled to the ascending part of the cycle. The coupling phase
was estimated by determining the θ phase where the averaged
cosine fit function reaches its maximum.

2.8.3. Statistical test of PAC
To estimate the empirical distribution of σ2 in each temporal
interval we calculated the variance of original time series filtered
in the high γ range but randomly shifted in time as a function of
the original θ phase in 500 randomizations. The 97.5th percentile
of this distribution was used as the critical value when apprais-
ing the significance of our results. To estimate the empirical
distribution of MI in each temporal interval we calculated the
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MI on the same set of randomizations as used for σ2. The 97.5th
percentile of this distribution was used as the critical value when
appraising the significance of our results.

2.8.4. Functional relation between PAC and behavioral performance
We tested the specific hypothesis that a functional relationship
between PAC and cognitive control exists. To this end we assessed
the correlation between both RTs and pe with PAC. In sliding win-
dows of 50 consecutive trials with a step of 2 trials we calculated
the grand average of reaction times (1. average of RT over trials, 2.
average across subjects) and the pe. In separate analyses we tested
both behavioral measures pe and RTs for possible correlations
with MI and coupling phase.

2.9. PRECLUSION OF θ PHASE RESETTING
In each subject we investigated whether the coupling can be
attributed to a resetting of the θ phase. At each time point across
trials in each subject we calculated the phase concentration κ of
circular data which is the reciprocal to the variance in a nor-
mal distribution to exclude the possibility that PAC results from
phase realignment of the θ oscillation across trials. A high κ-value
indicates a preferred θ phase across trials at a given time point.
Statistical significance was assessed by a permutation procedure.
In 500 runs the trial-wise time series were shifted in time sepa-
rately. In each run κ was calculated. The confidence intervals for
phase concentration κ were derived from the resulting 500 κ time
series.

2.10. SPECIFICITY OF θ-HIGH γ COUPLING
We furthermore sought to preclude the possibility that the high
frequency amplitude was coupled to the phase of frequencies
other than θ. In the 200 ms following the motor response we cal-
culated the variance of amplitude of all high frequency bands in
the γ/high γ range (center frequencies: 55–165 Hz, bandwidth:
30 Hz, step size: 2 Hz) as a function of the phase of low frequen-
cies ranging from 3 to 16 Hz (bandwidth: 4 Hz, step size: 1 Hz).
Here, we first calculated the high frequency amplitude distribu-
tion across the cycle of each low frequency and then averaged
across the subjects as shown in Figure 2. We then calculated the
variance of the averaged high frequency amplitude distribution.
The variance is high if all participants show a comparable distri-
bution of the high frequency amplitude across the cycle of a given
low frequency cycle. In contrast, the variance is low if participants
did not show a comparable dependency of the high frequency
amplitude on the low frequency cycle.

3. RESULTS
3.1. BEHAVIORAL RESULTS
First, we tested whether the participants performed differently
throughout the task (see Materials and Methods) indicating dif-
ferences in cognitive control. We assumed that tracking and
responding to an unknown (i.e., block 1), a well-learned (i.e.,
block 2–3) or an unpredictable sequence (i.e., block 4–5) call for
different cognitive control demands. Unknown and unpredictable
sequences demand a high cognitive control since recent patterns
cannot be extracted. Differences in reaction times across blocks
(see Table 1) were confirmed with an ANOVA (F(5, 1074) = 87.11,

p < 0.0001; see Figure 3A). Figure 3C shows the mean reaction
times for each trial bin. Post-hoc paired t-tests confirmed changes
in reaction time between blocks. These results were summarized
in Table 2. The relative comparison between blocks shows that
blocks 2 and 4 show more similar mean RTs than blocks 1 and
4. However, it is of note that blocks 1 and 2 are statistically dif-
ferent as well and even though not statistically significant there
is a trend from block 2 to 3 and all the more important from 3
to 4. Therefore, the overall trend across the experiments suggests
that there is a course from HCC to LCC during the second and
third block to HCC in both random sequence blocks and again to
LCC in the self-paced block in terms of reaction times. In sum,
we interpret the results in an absolute way (global course across
the experiment) given that we recorded behavioral data from (i)
non-healthy subjects which participated in (ii) only one block due
to the limited recording time. Furthermore, blocks differed with
respect to the error rate pe which was confirmed with a χ2 test
(mean pe per block: 0.044, 0.050, 0.056, 0.050, 0.022, p < 0.005,

FIGURE 3 | Depiction of behavioral results. x-axis: sequence type.

Numbers within the bars show the number of the block. HCC and LCC
above the bars indicate the level of cognitive control necessary to perform
the task (HCC—high cognitive control and LCC—low cognitive control)
(A) Reaction times were pooled across subjects and trials. Each bar
encompasses reaction times of 180 trials (1 block). Error bars represent the
standard error across trials. The color of the bar indicates the sequence
type as in Figure 1. Trialwise reaction times vary in accordance with
sequence type. For more clarity post-hoc differences are summarized in
Table 2. Participants show increasingly faster response with training the
fixed sequence. Following the fixed sequence reaction times are slower
during the random sequence. (B) Error rates per block pooled across
subjects. Error rates are only shown for fixed and random blocks since no
error can be calculated for self-paced blocks. (C) Depiction of the evolution
of RT across the trial bins. The error bars in both plots denote the standard
error of the mean. (D) Depiction of the evolution of error rate across the
trial bins. The error bars in both plots denote the standard error of the mean
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Table 2 | Post-hoc statistical t-tests.

Comparison t-value p-value

1–2 5.03 <0.0001

1–3 6.09 <0.0001

1–4 4.91 <0.0001

1–5 3.96 <0.0001

1–6 15.09 <0.0001

2–3 1.52 0.13

2–4 −.22 0.82

2–5 −1.54 0.12

2–6 13.41 <0.0001

3–4 −1.8 0.06

3–5 −3.05 0.002

3–6 12.04 <0.0001

4–5 −1.33 0.19

4–6 13.73 <0.0001

5–6 14.72 <0.0001

The left column shows which blocks were tested. The middle column gives

the t-value for significance of mean differences and the right column the

corresponding p-value.

please see Table A2 for the pairwise comparisons). Figure 3B
shows the continuous increase of pe from block 1 (HCC) to block
3 (LCC) and a decrease of pe from LCC to HCC in block 4 and
5. Note, in the self-paced block 6 no errors could be made and
hence pe could not be calculated. In Figure 3D we show the error
rate for each trial bin.

3.2. AMPLITUDE VARIATION
To exclude the possibility that PAC results can solely result from
significant amplitude variations in one frequency we compared
amplitude variations in a broad range of frequencies ranging from
θ to high γ, which neither for the amplitude variation at each time
point nor the test for different evolution with respect to the base-
line passed the significance threshold FDR-corrected for multiple
comparisons (see Figure 4).

3.3. HIGH γ AMPLITUDE VARIES AS A FUNCTION OF θ PHASE IN THE
CONTRALATERAL NAcc

Our general hypothesis was that the high γ amplitude varies
as a function of θ phase in the NAcc. We tested the statis-
tical significance of σ2

PAC in the bilateral NAcc and the bilat-
eral ANT associated both with the numeric stimulus and the
response. We found an increase in σ2

PAC shortly after the motor
response solely in the contralateral NAcc (see Figure 5) but not
in the ipsilateral NAcc nor in the ANT. Figure 6 specifically
shows σ2

PAC and MI for the contralateral NAcc. The increase in
the contralateral NAcc was statistically significant, exceeding the
97.5th percentile of our computed distribution of gamma vari-
ances σ2

PAC (CI97.5 = 0.57; Figure 6A). By calculating the MI we
then tested whether the variance of the high frequency ampli-
tude is accounted for the θ cycle (see Figure 6A). As for σ2

PAC
we found an increased MI following the motor response. The
increase in the contralateral NAcc was statistically significant,
exceeding the 97.5th percentile of our computed distribution of

MIrandom (CI97.5 = 18, see Figure 6A). The increased σ2
PAC of

high gamma (100–140 Hz) amplitude in the contralateral NAcc
could be accounted for the θ phase. This coupling was absent
for the ipsilateral NAcc and following the stimulus, as well. We
assumed that this is a result of different reaction times between
subjects [F(2, 1077) = 136.54, p < 0.0001]. We furthermore veri-
fied that coupling was restricted to the θ-high γ interaction (see
Figure 12) and that an increase of coupling could be found in
each subject (see Figure 13). The individual coupling patterns
all show a different temporal layout following the coupling on
the population level. However, only in the temporal interval of
coupling on the population level in all subjects the MI tends
to increase.

3.4. COUPLING STRENGTH REFLECTS COGNITIVE CONTROL
Our second question was whether the MI changes as a function
of cognitive control. We tested this for the MI between θ (4–8 Hz)
and high gamma band (112–142 Hz) since both bands showed the
strongest coupling increase collapsed across all trials. An initial
comparison of the MI in HCC versus LCC trial bins (each con-
taining 10 non-overlapping trials) revealed that MI is significantly
greater in HCC trial bins (t16 = −2.54; p = 0.016, see Figure 7).
In the next step we tested whether the MI shows a systematic vari-
ation as a function of the experimental condition (HCC: block 1,
4, and 5 and LCC: block 2, 3, and 6). Therefore, we calculated the
MI for the contralateral NAcc for each temporal interval across
trial bins. Trial bins contained 50 trials with a step size of 2. Thus,
we calculated the MI first for the trials 1–50, then for trials 3–
53, and continued until trial 300–349 (see Figure 8A). Between
0 and 200 ms we determined when the maximal MI occurred.
In periods of high cognitive control (HCC) the MI exceeded
the statistical significance threshold (see Figure 8B). Coupling
decreased in the low cognitive control condition (late fixed trial
bins and final self-paced movement block). Importantly, cou-
pling peaks earlier during the LCC sequences (mean coupling
time = 90 ms) compared to HCC sequences (mean coupling time
= 140 ms, see Figure 8C; t99 = −8.27, p < 0.1–12). The point in
time of maximal coupling and MI covaried significantly (r = 0.7;
p < 0.0001 see Figure 8D). Note, that differences in MI can-
not be explained by longer RTs since trials were aligned to the
motor response.

3.5. FUNCTIONAL RELATION BETWEEN PAC AND BEHAVIOR
3.5.1. MI correlates with error rate
A further strong indication for functional relation between PAC
and behavior would be provided by a covariation of MI with
performance. It is assumed that the NAcc is engaged in action
monitoring. We assume that high cognitive control allows for
high action monitoring which should result in a low probabil-
ity of making an error. In contrast, low cognitive control should
result in a comparatively high probability of making an error. We
therefore tested whether the PAC represented by the MI (cou-
pling strength) or the coupling phase predicts the probability
of making an error pe or reaction times. To achieve a contin-
uous measure in the consecutive trial bins containing 50 trials
as described above we calculated pe. Subjects showed on aver-
age a reduced pe at the beginning of the experiment and while
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FIGURE 4 | (A) Depiction of local field potentials locked to the response
and the stimulus presentation both for the contra- and ipsilateral
recording sites. The LFP in each trial was filtered between 3 and 200 Hz.
Each colored line represents one subject. (B) Depiction of spectrograms
for the low cognitive control condition (left-LCC) and the high cognitive
control condition (right-HCC). In each subject we estimated the
spectrogram by means of the Hilbert transform. In each trial aligned to
the motor response/stimulus, we calculated the envelope of the bandpass
filtered time series (4–150 Hz, bandwidth: 4 Hz, step: 2 Hz). The upper
plots show the average across subjects and trials both aligned to the
response and the stimulus in the HCC and LCC. For a better comparison
of the amplitude across frequencies the spectrogram was z-scored for

depiction only. All analysis were conducted on the non-standardized time
series. The colorbar denotes the strength of amplitude in μV (z-score).
(C) depicts the statistical evaluation by means of a t-test. At each time
point in each frequency we calculated the p-value for the difference
between LCC and HCC across subjects and trials (left plot). The right
plot shows the time points and frequencies with a p-values < 0.05 (blue)
on an uncorrected significance threshold. We corrected for multiple
comparisons by taking the distribution of p-values < 0.05 into account.
The 0.05% confidence interval of this new distribution (last row) served
as a new significance threshold. Note that no p-value fell below this
threshold indicating that between the HCC and the LCC condition no
significant difference in amplitude modulation was found.

performing the random trials where the modulation index was
high, which accords with the view that action monitoring is high
when subjects first begin to track the fixed sequences and during
the random sequences (HCC). The MI was significantly corre-
lated with pe (r = −0.21; p < 0.05). Additionally, since the trial
bins were not statistically independent we determined the signifi-
cance of Pearson’s correlation coefficient r against the distribution
of r values calculated from 500 shuffles of trials. We found that
the observed r value could not have been derived from a chance
distribution (p = 0.01). This indicates a statistical significance. In
Figure 9 we depict the pe averaged across our three subjects (gray
curve) together with the MI (blue curve). In contrast, MI did

not vary with reaction times in the same trial bins (r = −0.15;
p > 0.05).

3.5.2. Coupling phase correlates with reaction times
Hasselmo et al. (2002) proposed a model of the functional rel-
evance of the rat hippocampal θ rhythm in which the encoding
and retrieval of memory information occur in different phases.
He argues that this mechanism is important for the reversal
of prior learning. Furthermore, we tested whether the coupling
phase varies as a function of cognitive control. In each trial bin
we determined the point in time of maximal MI, and evalu-
ated the cosine function which served as the basis for the MI.
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FIGURE 5 | Depiction of the variation of high γ amplitude

across θ cycle for bilateral NAcc and bilateral anterior

Thalamus. The recorded time series in the contra- and ipsilateral
NAcc and Thalamus were aligned to the motor response or the
instructive stimulus. In each frequency band ranging from 25 to
175 Hz (centerfrequencies) we calculated the variance of high

frequency amplitudes across the θ cycle (4–8 Hz) as a function of
time. Variance increased significantly solely following the motor
response in the contralateral NAcc (p-value corrected for the
number of recording sites). Variance values corresponding with a
p-value smaller than pcorr are depicted color-coded ranging from
blue (small variance) to red (high variance).

FIGURE 6 | Depiction of θ-high γ PAC for the contralateral NAcc. (A) The
first row gives the σ2

(Hγ/θ)
as a function of time (x-axis) and frequency

(y-axis). (B) The second row shows the modulation index. The second
column shows the frequency band (≈100–140 Hz; red line) with significant
increase of σ2

(Hγ/θ)
and PAC. The blue lines denote the 97.5th percentile

used as confidence interval of the normal distribution for σ2 and
F -distribution for MI. Note that the variance and the Modulation index
exceeded the significance threshold for more than 200 ms and each point is
the result of a temporal interval of 166 ms. This means that coupling is
present in non-overlapping temporal intervals and hence, extents across
several cycles.

FIGURE 7 | The modulation of the high γ frequency by the θ phase differs

between trials with low (LCC) vs. high (HCC) cognitive control

(p < 0.05). The modulation index was calculated in non-overlapping trial bins
of 10 trials. In trial bins containing only trials from the HCC condition the
modulation was enhanced compared to trial bins of LCC trials. Error bars
denote the standard error across trial bins. ∗p < 0.05.

The θ phase that corresponded with the maximal value of the
cosine function representing the peak of the high γ amplitude
was taken to be the coupling phase. We found the coupling phase
discriminates between trial bins of HCC and LCC (see Figure 10).

Frontiers in Human Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 635 | 9

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Dürschmid et al. Frequency coupling in the NAcc

FIGURE 8 | Coupling strength varies with sequence type (A) Variance of
high γ as a function of θ phase (upper plot) and modulation of high γ by θ

phase (lower plot). Both plots show the variance and the modulation as a
function of time (x-axis) and trial bin (y-axis). Trial bins are arranged from top
to bottom. Both show that across subjects coupling is elevated at the
beginning of the fixed and during the random trials. For consecutive trialbins
each containing 50 trials we calculated the modulation index. Following the
motor response the MI varied with sequence type. The sequence type is
indicated by the colored bar left to the magnification: black corresponds to
fixed, red to random and blue to self paced trials. The alternating red-black
bar denotes those trialbins containing both fixed and random trials. Note that
including only a small proportion of random trials elevates the modulation
index. Alternating blue-black bar denotes those trialbins containing both
random and self-paced trials. (B) Depiction of points in time at which
modulation peaks for trialbins. The right panel shows the dependency of

maximal modulation index on trial bin in the 0–200 ms interval (see Figure 5

right column ) following the motor response. (C) In fixed trials coupling is
earlier then in random trials. Only trial bins containing either fixed or random
trials were used in this analysis. (D) Time of coupling between θ and high γ

depends on coupling strength. (E) shows the individual summed square
errors of each subject from the mutual cosine fit function as a function of trial
bin. The greater error of subject 1 does not mean that this subject does not
exhibit a sine shaped dependency of the high gamma activity as shown in
Figure 2C. As the blue line deviates more strongly from the black bold line
compared to the red and green line the summed mean error is greater than
for subjects 2 and 3. However, it shows a clear sine shaped dependency. This
means that subject 1 either contributes less to the strength of the MI or
probably attenuates the MI but this does not challenge the visual impression
that the high gamma amplitude is coupled to a resembling phase as subject
2 and 3. ∗∗∗p < 0.001.

In trial bins containing fixed trials the mean θ phase is 1.72,
while for random trials it is 2.29. A Watson–Williams test for
circular data confirmed the significance of this coupling phase
difference (F(1, 99) = 23.6; p < 0.0001). Again, since the phase
scores of each trial bin are not statistically independent, we calcu-
lated the significance of phase differences against the distribution
of F values calculated from 500 shuffles of trials. We found that
the observed p value could not have been derived from a chance
distribution (p < 0.0001). As for the MI we tested whether the
change of phase as a function of cognitive control has a signif-
icance for the observed behavior. We used ρ as the correlation

coefficient between one circular and one linear random variable.
In contrast to the MI we found the coupling phase is signifi-
cantly correlated with the reaction times (ρ = 0.55, p < 0.001;
see Figure 10A). ρ could not have been found within the set of
500 trial shuffles (p < 0.001). However, the coupling phase did
not predict pe (ρ = 0.15, p > 0.05).

Note that there is a slight phase angle shift between the sub-
jects. However, as revealed by the MI, this phase shift does not
influence that more variance is explained by the variation across
the theta cycle than between subjects. This is explicitly considered
in our MI measure. In trial bins (see paragraph on Functional
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FIGURE 9 | Coupling strength predicts the probability to make an error

as indicated by the correlation analysis. Here we depict both correlated
measures to illustrate the resembling course over time. The gray line gives
the probability to make an error across subjects. The blue line shows the
Modulation Index.

Relation between PAC and behavioral performance) of HCC
(long reaction times and a low error rate as at the beginning
of the experiment and during random sequence trials) subject’s
coupling phase is the same, namely around the trough of the θ

oscillation (see Figure 10B). In contrast, during phases of LCC
(during late trials of the fixed sequence and during self-paced
sequence trials) subjects show a great variation of the coupling
phase. This is indicated by the greater errorbars during trialbins
of LCC (see Figure 10B). In each trial bin we grouped the high
gamma amplitude according to the 30 θ phase bins for the tempo-
ral interval ranging from 0 to 200 ms. We fitted a cosine function
to the resulting 30 high gamma amplitude values. The coupling
phase of the θ oscillation was defined as the phase at which the
high gamma amplitude was maximal. This leads to 3 coupling
phases one per each subject in each trial bin. To better illustrate
the in-phase coupling we collapsed the rising and the falling part
of the θ cycle. Therefore, the y-axis in Figure 10B ranges from 0 (θ
peak) to ±π (θ trough). The x-axis gives the number of trial bins.
The upper plot in Figure 9B shows the average and the standard
error (error bar) of coupling phases across subjects for each trial
bin. The red line shows the standard error. This line demonstrates
that the standard error across subjects is low in trial bins of HCC
and high in trial bins of LCC.

3.6. θ PHASE RE-ALIGNMENT
We tested for each subject whether PAC results can be a mere
result of theta phase re-alignment. Here, we compared the phase
concentration of the θ oscillation with an empirical distribution
(see Materials and Methods). We did not find a statistically signif-
icant phase re-alignment in none of the subjects neither following
the stimulus nor the motor response (see Figure 11).

3.7. SPECIFICITY OF θ-HIGH γ COUPLING
We tested whether θ and high gamma activity exclusively show
coupling or whether other frequency combinations also show
coupling. We found the variance of the high frequency bands
(≈100–140 Hz) across the phase of the θ (4–8 Hz ) band was
higher than any other frequency combination (see Figure 12).

FIGURE 10 | (A) Cognitive demands in different sequence types are
reflected by difference in coupling phase. In each trialbin we determined
the modulating phase of the θ cycle. Black dots denote the phase the high
γ amplitude is coupled to for each trial bin. The sequence type is indicated
by the colored line: black corresponds to fixed, red to random and blue to
self paced trials. The alternating red-black line denotes those trial-bins
containing both fixed and random trials. Alternating blue-black line denotes
those trial-bins containing both random and self-paced trials. Phase
differences were investigated comparing trial bins containing exclusively
fixed and random trials, respectively (solid black and solid red intervals).
Black arrows mark the mean θ phase. Coupling phases differ significantly
between fixed and random trial bins. Please note that at the beginning of
the entire experiment, when the sequence to be learned is unknown high
gamma amplitude peaks at the same frequency as during the unpredictable
random sequence. (B) During HCC high gamma amplitude is coupled to the
θ trough across subjects while during LCC the coupling phase is different
across subjects as indicated by the greater errorbars during trialbins of LCC.
In each trial bin we grouped the high gamma amplitude according to the 30
θ bins for the temporal interval ranging from 0 to 200 ms. We fitted a cosine
function to the resulting 30 high gamma amplitude values. The coupling
phase of the θ oscillation was defined as the phase at which the high
gamma amplitude was maximal. This leads to 3 coupling phases one per
each subject in each trial bin. To better illustrate the in-phase coupling we
collapsed the rising and the falling part of the θ cycle. Therefore, the y-axis
ranges from 0 (θ peak) to ±π (θ trough). The x-axis gives the number of trial
bins. The upper plot shows the average and the standard error of mean
(SEM) of coupling phases across subjects for each trial bin. To better
visualize this dependency of the SEM on the cognitive control we inserted
the course of SEM over trial bins (red line) shows the standard error. This
line demonstrates that the standard error across subjects is low in trial bins
of HCC and high in trial bins of LCC.

This yields a comparable narrow frequency interaction as found
by Tort et al. (2008).

4. DISCUSSION
4.1. SUMMARY OF RESULTS
We investigated the dynamics of PAC in the human NAcc and
show, that in the NAcc contralateral to a movement the θ phase
modulates the high gamma amplitude (≈100–140 Hz) following
a motor response. Importantly, this previously undescribed oscil-
latory pattern in the human NAcc increases with cognitive control
and predicts behavioral adaptation as reflected in the reduction
in error rates. Compared to reaction times the error rates show a
more sluggish change which may explain the resemblance of the
error rate if averaged across blocks. This means that changes in
terms of RTs are more closely confined to the definition of blocks
while the error rate changes with a greater time lag. However,
the temporally resolved course revealed strong changes during the
course of the experiment. We observed the strongest PAC in the
first part of a task in which subjects responded to an unfamiliar
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FIGURE 11 | Depiction of theta phase concentration as a function of

time (red line) together with the confidence intervals derived from a

permutation procedure (black lines). The upper plot shows the
concentration parameter κ as a function of time for trials aligned to the
stimulus. The lower plot shows the same for trials aligned to the response.
High concentration values indicate a preferred θ phase across trials at a
given time point. Concentration values exceeding the upper confidence
interval would indicate a statistically significant alignment of the θ phase
across trials. In both plots no significant θ phase alignment can be
observed.

FIGURE 12 | Coupling following the motor response is restricted to the

θ and high γ range. In the time range between 0 and 200 ms (see A right
column) we calculated coupling strength between narrow high frequency
bands (centerfrequencies: 50 to 180 Hz, bandwidth: 30 Hz, step size: 2 Hz)
and narrow low frequency bands (centerfrequencies: 3 to 16 Hz, bandwidth:
4 Hz, step size: 1 Hz).

fixed order stimulus sequence, and during responses to stimuli
presented in a random order that required high load of cogni-
tive control. In contrast, in periods with low cognitive control
demands, i.e., when subjects responded to already learned stimu-
lus sequences and during self-paced sequences, PAC was reduced.
This pattern of response locked PAC cannot be accounted for
reaction time differences since analyzed epochs were locked to
the subject’s responses, and no PAC was observed when epochs
were locked to the stimulus presentations. Hence, coupling takes
place in the temporal interval following a decision. This pattern
is consistent with coupling patterns observed in rats by Tort et al.
(2008). These investigators found enhanced coupling between θ

FIGURE 13 | Depiction of subject specific MIs in the contralateral NAcc

following the motor response. Each line represents the modulation index
as a function of time of one subject. 0 marks the response time. Following
the motor response in each subject an increase of modulation strength is
observable. The black bars represent the upper confidence intervals derived
from a permutation procedure in each subject. Following the motor
response in each subject a statistically significant coupling was found.

and high gamma (80–120 Hz) within and between the striatum
and the hippocampus. Coupling was strongest in epochs where
a decision had to be made and thus were related to cognitive
demands. Tort et al. (2008) hypothesized that PAC is a mechanism
coordinating striatal and hippocampal learning circuits. As men-
tioned above, the hippocampus is strongly connected with the
NAcc and a selective strengthening of this connection is assumed
to be important for rapid facilitation of goal-directed behavior
(Goto et al., 2005). The result that PAC decreases with learn-
ing indicates that PAC is related with the facilitated goal-directed
behavior as proposed by Goto et al. (2005). That PAC occurs
whenever a high level of cognitive control has to be applied sup-
ports the notion that PAC qualifies for facilitation. Thus, our data
indicate that PAC can be a mechanism of information integra-
tion, since it occurs during high cognitive control supporting the
hypothesis that PAC provides an effective mechanism to recruit
local networks from functional related global networks to gate
information (Buzsaki et al., 2004; Canolty et al., 2006).

4.2. INTERPLAY OF FREQUENCIES FOR INTEGRATION OF
INFORMATION

It is assumed that the control of motor behavior in NAcc is
accompanied by release of dopamine (Wilson et al., 1983). Münte
et al. (2007) found the human NAcc involved in error-related
modulation which preceded scalp error-related negativity (ERN).
On a behavioral level NAcc activity inhibits specific conditioned
motor behavior (Wilson et al., 1983). In the present study the
patients probability of making errors systematically varies dur-
ing the course of the experiment. This variation matches with the
course from HCC to LCC to HCC and again to LCC. We hypoth-
esize that the variation of making errors signals a change in motor
behavior and hence points to adaptation to the external demands
as a result of learning. The error probability was especially low at
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the start of the experiment and during the random sequence task.
The PAC in the contralateral human NAcc correlates with this
change, which suggests that theta/high gamma coupling strength
might be related with adaptation of behavior in later trials. This
gains support by the PAC modulation occuring in early trials
followed by behavioral adaptation. Once adapted in terms of reac-
tion times and error rate no PAC modulation takes place. Thus,
we speculate that the control for a specific action or motor rou-
tine as during an unknown or random sequence can be provided
by enhanced coupling of θ-high gamma oscillations in the NAcc.
This increased coupling becomes important when a subject has
to switch from a previously established and automized motor
routine to an unpredictable motor sequence. In contrast, a reduc-
tion in coupling, as observed during the tracking of the learned
sequence, might facilitate automization. In our study enhanced
action monitoring is especially important during learning of the
fixed sequence and during the random sequence, since automatic
behavior has to be interrupted. To achieve this, the NAcc has
to integrate information between different cerebral units. This
could be the information necessary to control the gating into
the motor system from the limbic system and the prefrontal
cortex (Mogenson et al., 1980). The NAcc neuronal activity is
mutual depend on hippocampal input (O’Donnell et al., 1995)
as well as PFC activity (French et al., 2002). Thus, the com-
plex connections with limbic, prefrontal and motor structures
make the NAcc an ideal site for the integration of informa-
tion which is supported by the phase-amplitude cross-frequency
coupling mechanism.

4.3. PAC IS STRONGEST FOLLOWING A DECISION
Tort et al. (2008) reports that in the rat’s striatum and hip-
pocampus PAC was strongest during the decision phase while
rats navigated through a maze. In contrast, in our experiment the
period of movement was short because there was only a single
button press. This can explain differences in the timing of PAC
patterns. In the present study, PAC occurred shortly after the deci-
sion was made and correlated with the probability of making an
error, suggesting that changes in response selection based rela-
tive to past experiences calls for the coordination of information
carried by different frequencies. Based on our results, we pro-
pose that the human NAcc signals the unpredictability of a future
external event to which a response will have to be given, thereby
indicating the necessity of stopping an automated response. This
is accomplished by integrating information in the θ and high
gamma band. In support of this contention Berns et al. (2001)
found the reward system and especially the human NAcc respon-
sive to different levels of predictability. In particular, the NAcc
was more active during an unpredictable sequence, in line with
our finding that PAC was elevated at the beginning of learn-
ing and during the tracking of the random sequence. Further,
O’Donnell et al. (1995) found differences in activity in the stria-
tum, especially in the putamen and the nucleus caudatus adjacent
to the NAcc, for automated vs. unfamiliar motor behaviors. The
increased coupling following a decision under a condition of high
cognitive control might represent a type of associative memory
which combines information about events (button press) and the
context (stimulus presentation) (Tort et al., 2009). Here one can

image that the association which is acquired more easily under
higher cognitive control provides the subject with the possibil-
ity to respond faster. Furthermore, we observed two patterns of
the course of coupling. In the first, coupling decreased during
fixed trials and in the second coupling increased during random
trials and both differ with respect to the predictability of the
upcoming event and hence which finger to move. This says that
during fixed trials the subjects are informed based on the mem-
ory of past trials which finger is to move and hence the finger
movement options are limited to one finger. In contrast in the
random trials the subject has to hold up three finger movement
options (3 since 4 different stimuli are presented with the con-
straint that no stimulus was consecutively repeated twice). This
might also explain why PAC increases constantly during random
trials. Alternatively, this pattern can be a result of the monitoring
of the recent action which is underscored by the temporal rela-
tion. This interpretation is supported by the involvement of the
human NAcc in action monitoring—the error detection and cor-
rection (Münte et al., 2007). The correlation of the modulation
strength with the error rate indicates that NAcc activity is involved
in action monitoring. Action monitoring in turn involves a com-
parison between the representations of an appropriate response
and the response actually made (Scheffers and Coles, 2000). These
diverge if a response error was committed. Error monitoring is
accompanied by prominent scalp potentials (Nieuwenhuis et al.,
2001) and the activity in the NAcc is involved in error-related
modulations (Münte et al., 2007) . The authors have shown that
the early surface potential which indicated the error detection
was preceded by NAcc activity. Accordingly, activity in the NAcc
should contribute to ERN when the error rate is high. Moreover,
the NAcc activity involved in error detection should occur ear-
lier than the PAC modulation since the error signal on the scalp
level is evoked around 100 ms and is delayed by the NAcc by
about 40 ms (Münte et al., 2007). Importantly, PAC modulation
occurs when the error rate is small. This makes the PAC a comple-
mentary event to the error-related modulation. We speculate that
PAC modulation occurs when the comparison process between
the appropriate and the actual response revealed that no error
was made. Therefore, PAC could be the signal involved in con-
firmation of the correct response which facilitates goal-directed
behavior in later trials. Due to the vicinity to the motor response
one could argue that PAC is a mere mechanical artifact, how-
ever coupling is observed only in one region and shows a tight
functional correlation with behavioral measures. Furthermore, in
case of an artificial result we expected coupling to be represented
across a broad band of low coupling and high coupled frequen-
cies. However, coupling was restricted to the θ – high gamma
range. Hence, we precluded PAC to be a result of an artifact as
a possible explanation. Based on this, we speculate that PAC in
the NAcc signals a deviation from expectancy: a negative rein-
forcement that implies the need to stop an automated motor
routine in which learned responses are pre-activated to reduce
reaction times.

4.4. DIFFERENCES IN COUPLING PHASE
During the course of the experiment the coupling phase of θ oscil-
lations varied systematically, with coupling close to the θ trough
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during early learning and tracking the random sequence (high
cognitive control), and coupling to the descending part of the θ

cycle during tracking a well-learned fixed sequence (low cognitive
control). A comparable result was found in a study conducted by
Belluscio et al. (2012). In this study high γ activity (90–150 Hz)
peaked near the θ trough during running but was coupled to
the peak of the θ oscillations during REM-sleep. The authors
hypothesized that modulation of the high gamma band by the
θ band is state dependent. Here, we show that coupling in the
human NAcc is also state dependent. The average coupling phase
varies as a function of cognitive control applied by the sub-
jects and parallels the results of Belluscio et al. (2012). This
strengthens our hypothesis that PAC might provide a mecha-
nism to integrate information. Hasselmo et al. (2002) highlighted
the functional importance of different phases in the θ cycle
for memory with the descending phase necessary for retrieval
of memory and the trough for encoding of new information.
They state that encoding of new information is facilitated if θ

activity shifts in phase to accelerate the process of encoding. In
our study when new information has to be encoded and the
motor response has to be adjusted due to the new environmental

requirements we observe strong coupling of the high gamma
activity to the θ trough. The epochs in which new information has
to be encoded are the trials in the early part of the fixed sequence
and the random sequence which differ from the trials late in
the fixed sequence with respect to the possibility of memory
retrieval. Retrieval is only possible when the fixed sequence has
been learned distinguishing between the two distinct cognitive
states.

5. CONCLUSION
Together these results show that motor learning is accompanied
by a complex interplay of θ and high gamma activity. In the NAcc
contralateral to the performing hand the coupling of these fre-
quencies varies systematically with the experimental conditions
which allowed the participants to perform differently.
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6 APPENDIX
6.1 PROCEDURE: SURGERY AND DEEP BRAIN STIMULATION
We performed a bilateral stereotactically guided implanta-
tion of quadripolar brain electrodes (model 3387, Medtronic,
Minneapolis, MI, USA) in the Nucleus Accumbens (NAcc) and
in the anterior nuclear group of the thalamus (ANT) of 3 patients
for treatment of a longterm pharmacoresistant epilepsy. General
anesthesia was employed during the surgery. The implantation
was conducted due to clinical reasons and as part of the treatment
of the epilepsy.

Treatment planning standards and the surgical procedure are
described elsewhere in detail Voges et al. (2002). Briefly, the target
for the deep brain stimulation electrode was defined using stan-
dard coordinates as the point 2 mm rostral to the anterior border
of the anterior commissure at the level of the mid-sagittal plane,
3–4 mm ventral and 6–8 mm lateral of the midline (Mai et al.,
2004), with these coordinates modified according to individual
planning MRIs. An important landmark is the vertical limb of
Broca diagonal band, which can be clearly visualized in coronal
MRI-scans. The target was placed 2-0.5 mm lateral to this struc-
ture. Using a deep fronto-lateral approach, the two distal contacts
of the DBS-electrode were placed in the caudo-medial accum-
bens, the third contact within the transition-area medial to the
border of the abutting internal capsule, and the fourth highest
contact in the most medial part of the capsule or in the transi-
tion area to the caudate. The contacts within the NAcc are placed
in the caudo-medial part, which according to histochemical crite-
ria represents the remnant of the shell area in the primate (Sturm
et al., 2003). In contrast to rodents, in the primate the shell area
has regressed and is no longer clearly distinguishable, except by
the typical receptors that it carries.

In addition, electrodes were implanted in the bilateral ante-
rior nuclei of thalamus (ANT) of all the patients. The anterior
thalamic nucleus is located 5 mm lateral to and 12 mm above the
midcommisural point according to the Schaltenbrand atlas. Since
the anterior nucleus of the thalamus is readily visible on the floor
of the lateral ventricle in MRI images, the exact location of this
target could be directly specified in each patient. Intraoperatively
the localization of the leads was documented by stereotactic x-ray
imaging using x-ray tubes installed in the OR.

In addition, we performed postoperative CT-examination
(2 mm slice thickness). After a transformation of postoperative
CT- and X-ray images to align them with the stereotactic treatment
planning-MRI, we defined the stereotactic coordinates of each
electrode lead contact and visualized these anatomical positions on
corresponding sections of two stereotactic brain atlases of (Morel
et al., 2007). The localization of the electrodes is depicted in
Figure A1. To further indicate the coordinates of the most caudal
NAcc electrode, we transformed all patients MRI images to MNI-
space. The resulting individual MNI coordinates were (x, y, z): Pat
01: left (−6.9 5.2 −11.9), right (4.3 5.4 −10.4); Pat 02: left (−8.6
3.5 −8.6), right (9.6 3.7 −9.6); Pat 03: left (−8.3 7.5 −11.0), right
(−6.27.3−11.0).Postoperatively theelectrode leadswereexternal-
ized to allow electrical test stimulation with different parameters
and recording from the depth contacts during different psycho-
logical tasks. Finally the four electrode-leads were connected
to a single impulse-generator (IPG; Activa-PC, Medtronic) T
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FIGURE A1 | Anatomical location of bilateral NAccs.

Table A2 | post-hoc statistical analysis of the error rate.

comparison p-value

1–2 0.81
1–3 0.64
1–4 0.81
1–5 0.25
2–3 0.82
2–4 1
2–5 0.17
3–4 0.82
3–5 0.11
4–5 0.17

The p-values refer to the pairwise comparisons of frequency by means of the χ2

of the summed number of errors across subjects per block.

placed subcutaneously beneath the right clavicle. To evaluate
our hypotheses we analyzed data from the bilateral NAcc elec-
trodes. To provide evidence of the specificity of our results for
the NAcc we also performed a control analysis of the recordings
from the bilateral thalamus. We found results described for the
contralateral NAcc were not duplicated in the thalamus.
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Abstract

Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this
issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC) in neuronal networks during motor
performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG) from 6 patients
who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task,
auditory motor coordination task, go/no-go). Performance improved in all subjects and all tasks during the first block and
plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial
paCFC between theta (h; 4–8 Hz) phase and high gamma (HG; 80–180 Hz) amplitude. Electrodes showing this covariation
pattern (Pearson’s r ranging up to .45) were located contralateral to the limb performing the task and were observed
predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate
that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network
interactions in the h and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor
cortices support performance improvement with practice.
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Introduction

Phase-amplitude cross-frequency coupling (paCFC) of oscilla-

tions in different frequency bands has been proposed as an

effective mechanism to form functional networks that recruit local

neuronal populations across a global spatial scale [1–4]. Phase-

amplitude CFC between HG (80–150 Hz) amplitude to h (4–

8 Hz) phase was first described by [2] and later confirmed by other

authors in rats [5,6] and humans [7]. During paCFC amplitudes

of higher frequency oscillations, reflecting local cortical processing,

are modulated by the phase of low frequency oscillations [8–12].

This mechanism has been proposed to engage and coordinate

local processing modules across spatially distributed brain areas

supporting cognition and motor performance [4,9,13–17].Further

support for this proposal comes from recent clinical studies linking

altered paCFC to debilitating psychiatric and motor disorders

[18–21]. Moreover, paCFC is prominent during language and

motor tasks [2,4] and the frequency of the slower phase coupling

oscillation is task dependent [12]. However, beyond clinical studies

evidence for a functional role of paCFC in the process of

organizing human cognition and behavior is limited predomi-

nantly to the memory domain (see [22] for a review). Axmacher

and colleagues [23] reported that inter-individual differences in

working memory performance correlated with differences in

paCFC precision, supporting the functional relevance of CFC

for memory processing. Tort and colleagues [6] examined the

dynamic modification of functional relations between performance

and CFC in rat hippocampus and found coupling strength

between h and gamma (c: 25–100 Hz) correlated with maze

learning.

A stronger link between paCFC and behavior in humans would

be supported by a correlation between paCFC and trial-by-trial

variations in performance. To address this, we examined the

relation between paCFC and motor performance improvement.

We recorded the electrocorticogram (ECoG) in human patients

(N = 6; mean age = 20.5, std = 5.5; 2 female) undergoing epilepsy

diagnosis while they learned skilled motor behaviors. To assess the

link between paCFC and behavior we compared changes in

paCFC to changes in performance over an extended time scale

during motor skill acquisition, and correlated performance and

paCFC at the single trial level. We show that paCFC in

intracranial subdural recordings between h (4–8 Hz) and HG

(80–180 Hz) in the human cortex tracks level of motor perfor-

mance across different motor tasks.
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Results

Phase amplitude cross frequency coupling
We investigated potential links between paCFC and motor

performance in six subjects each performing one of three repetitive

motor tasks described next. The three different behavioral tasks

(Figure 1) were a serial reaction time task (SRT 2 subjects), a

go/no-go task (GNG 3 subjects), and an auditory motor

coordination task (AMCT 1 subject). All three tasks required the

coordination of finger movements with an external stimulus. We

assessed motor performance as reaction time in the SRT and

GNG tasks and as the temporal deviation from the target time

point in the AMC task. The cognitive requirements for

performance improvement are different in all three tasks: learning

the motor sequence in the SRT, learning the stimulus-response

association in the GNG and improving movement timing in the

AMCT. However, the motor component is performance improve-

ment with practice. The dynamics of the different performance

measures were assessed in a group statistic, by comparing the

average behavioral outcomes between fixed trial bins (see Figure 2).

We recorded the ECoG while subjects performed two blocks of

one of each task with the hand contralateral to the electrode grid.

The ECoG-time series were filtered in the h -band (4–8 Hz) and in

the HG-band (80–180 Hz) yielding two separate filtered signals

(see Methods). We calculated the analytic amplitude of the HG-

band time series by taking the absolute value of the Hilbert

transform of the filtered time series. The analytic amplitude is a

new time series representing the amplitude envelope of the HG-

oscillations at any moment in time. We performed the analysis on

the 500 ms interval immediately following the stimulus onset. This

interval includes the preparation of the responses indicated by the

stimulus and includes approximately three h-cycles.

We first asked whether the amplitude envelope of the local HG

oscillations is phase coupled to the local h-band oscillations.

Figure 3A shows the time course of sine waves fitted to the single

trial variations of HG analytic amplitude pooled across all

electrodes in one subject. As predicted, HG analytic amplitude

varied systematically over the h-cycle. Figure 3B shows single

subject sine wave fits to the HG analytic amplitude averaged over

trials and electrodes. Each fit was significant (pv0.001) and the

HG amplitude variations were consistent over subjects with only a

slight deviation of subject 1 (see Figure 3B). The frequencies of

the fitted sine waves are in the h band (.95 Hz, SE: .02 Hz) and

the phase angle is .6 rad (SE: .23 rad, see Methods for an

explanation of the sine wave parameters

angle). The maximum of the HG-analytic amplitude centers

around the trough in the h-cycle (mean = 2.56 rad, std = .56 rad,

skewness = 2.16).

Figure 1. Paradigms employed (details described in Methods). A) Serial reaction time task: The numbers on the screen indicate the finger to
be used for the key press. B) Go/no-go: Green indicates a go and red indicates a no-go trial. C) Auditory motor coordination: Subjects were instructed
to press a key in the middle of the interval between two consecutive tones. The interval length was either one second or two seconds and was held fixed
for one minute. Each subject carried out two blocks (see Methods).
doi:10.1371/journal.pone.0089576.g001

Figure 2. Here we depict the separation of the whole
experimental session into trial bins. The experimental session in
each patient consisted of 2 blocks separated by a short break. In each
block we defined two trial bins each containing 30 trials (blue). We
compared the PLV across the four trial bins to assess the evolution of
connectivity length of and HG activity during motor performance
improvement.
doi:10.1371/journal.pone.0089576.g002
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Covariation of paCFC with performance improvement
To investigate if cross frequency coupling (paCFC) covaries with

motor performance variations, we first calculated the trough to

peak ratio (h-trough to HG peak ratio - TPR; see Methods) over

all electrodes on the grids as a metric for paCFC and related it to

behavioral performance. Figure 4A shows the development of

TPR and motor performance over the time course of the two

experimental blocks each subject completed. Both TPR and

performance increased during the experiment, as indicated by the

fitted exponential functions. A statistical test confirmed this

finding. In this test, we first compared average motor performance

in the initial 30 trials of the first block with performance in the final

30 trials and found a significant improvement (Wilcoxon rank sum

test across all subjects: p v .05, Figure 4B, See Figure 2 for the

structure of the experimental session and Table 1 for mean

performance measures for each trial bin). However, performance

plateaued in the second block as indicated by no significant

difference (p = 0.18). The difference between the first and the

second block is indicated by a significant block-by-trial-bin

interaction in a two way ANOVA across subjects (F(1,20) =

11.28; p = .003, dferror = (Nsubj -1)*Ntrialbin). The next question

was whether TPR exhibits the same behavior (Figure 4C). In

concordance with behavioral performance we found, that the TPR

increased between the first and the last 30 trials of the first block

(Wilcoxon rank sum test across all subjects: p v .05) but did not

change between the first and the last 30 trials of the second block

(p = 0.3). A significant block-by-trial-bin interaction in a two way

ANOVA (F(1,20) = 5.95; p = .03) confirmed that TPR changed

during the first block and plateaued during the second block. This

suggests that, on average, paCFC covaries with motor perfor-

mance with paCFC and motor performance increasing early in

the first experimental block and both plateauing in the second

block.

Support for a functional relation between paCFC and motor

performance would be provided by a trial-by-trial TPR with

performance correlation. In order (i) to test for this correlation and

(ii) to disentangle cortical regions showing varying paCFC with

performance, we pooled the data in six anterior and frontal

regions of interest (ROIs); the anterior and posterior medial frontal

gyrus, the anterior and the posterior inferior frontal gyrus, and the

superior and inferior sensorimotor cortex (see Figure 5) for all five

subjects with a square 868 (N = 4)/16616 (N = 1) grid implanta-

tion (see Figure S2). In each ROI we pooled the TPR values across

electrodes and determined the p-values of the trial-by-trial

correlation with performance of each ROI (Figure 5 for details

see Methods and Figure S1). Significant correlation of TPR with

motor performance (corrected for multiple comparisons) was

observed in pre-/motor cortex and in anterior and posterior

inferior frontal sulcus. We predicted two sources of variability in

single trial correlation between TPR and motor paCFC: one that

is performance improvement related and varies systematically over

time and another one that is not related to performance

improvement and varies randomly from trial to trial. The first

analysis supported performance improvement related trial-by-trial

correlations reflecting the co-evolution of coordination between

brain networks and improvements of motor performance. We then

calculated in the same ROIs the partial correlation of TPR with

performance. This analysis factored out the fraction of correlation

between TPR and performance which can be attributed to

random trial-by-trial covariations and is performance improve-

ment unrelated. This performance improvement unrelated corre-

lation of TPR with motor performance was observed in

sensorimotor cortex and in premotor cortex, in the posterior

middle temporal sulcus (corrected for multiple comparisons) and

overlaps with the performance improvement related correlation.

Discrimination of performance improvement from
Random Performance Fluctuations

To disentangle these two potential and functionally distinct

causes of paCFC-performance covariations and disentangle the

spatially wide ROIs we performed two different correlation

analyses separately for each recording electrode. First, we

Figure 3. The amplitude of the HG oscillations is phase coupled to the h -band (4–8 Hz) oscillations in all subjects across paradigms.
A) Time courses of sine wave functions fitted to the single trial amplitude envelopes of the HG oscillations of one subjects collapsed over electrodes.
B) Sine wave functions fitted to the trial-averaged HG oscillation amplitudes envelopes of each subject. Each solid line represents the fit for one
subject. Each dot represents the individual trial average of the HG oscillation in one of 20 intervals equally spaced over a h cycle. The black dashed
line shows the averaged sine waves across subjects. The vertical blue dashed line denotes the averaged phase angle the HG amplitude peaks across
subjects. The maximum of the h cycle is at phase 0 and the minimum at +p.
doi:10.1371/journal.pone.0089576.g003
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calculated the partial correlation of TPR with performance.

Second, we calculated the standard Pearson correlation between

TPR and motor performance. Pearson correlation captured the

performance improvement related plus the performance improve-

ment unrelated correlation. Combined with partial correlation this

was used to distinguish between the two effects. Electrodes that

capture performance improvement related TPR with performance

correlations should show a partial correlation different from zero

and a Pearson correlation different from the partial correlation (see

Methods). Importantly, we reasoned that if we observed a

significant Pearson correlation in an electrode that significantly

changes if we discount time related correlations (in partial

correlation), then the TPR

electrode is partly due to performance improvement related TPR

random trial-by-trial fluctuations of TPR correlated with motor

performance (significant partial correlation - uncorrected for

multiple comparisons). Clusters of electrodes showing high

correlations are located in sensorimotor cortex, in premotor

cortex, in lateral prefrontal cortex and in ventral anterior temporal

cortex. Figure 6B shows the distribution of electrodes with

performance improvement related trial-by-trial correlations be-

tween TPR and motor performance. Clusters of performance

improvement related electrodes were apparent in premotor cortex,

in lateral prefrontal cortex and in ventral anterior temporal cortex.

Importantly, the variation of TPR with performance improvement

was not a result of a shift of the HG amplitude peak relative to the

h trough and hence the coupling phase remained stable during

performance improvement (see Appendix S1).

Discussion

Phase-amplitude cross-frequency coupling has been proposed to

support interaction within functional networks [4]. Here we show

that fluctuations of h and HG paCFC are tightly linked to motor

performance improvement at the single-trial level and show robust

performance improvement clusters over pre-motor and motor

cortices.

Performance improvement and theta and high gamma
activity

During motor performance improvement h and HG activity

show a clear development of coupling that asymptotes in strength

as motor behavior performance improvement plateaus. paCFC is

highly dynamic and task-specific [4,24] and it has been proposed

that paCFC enables adaptive behavior [2]. Here we report data

from three different motor behavior experiments showing that

paCFC dynamics reflect adaptive behavior supporting a relation-

ship between paCFC and motor performance improvement on a

trial-to-trial level. Notably, despite the differences in tasks similar

cortical regions associated with performance improvement or

random trial-to-trial performance are identified by paCFC

evolution. The dynamic nature of paCFC and the task-specific

coupling patterns have been shown in a variety of studies with task

dependent differences in coupling frequencies and coupling phase

[12,24–27]. Here, we add an important paCFC characteristic. We

show that even though the preferred phase as indicated by

coupling phase stability does not change the activity pattern of

both frequencies varies with behavioral changes.

Figure 4. Covariation of average paCFC with performance over the time course of the experiment. A) The development of TPR and
motor performance during the time course of the experiment. Results are collapsed across all six subjects/three experiments. Data for the first block
and second block are shown in the left and second half of the plot. Each point represents the average in one of 100 time bins. Exponential functions
fitted to the data z-scored over both blocks indicate a similar time course for performance and TPR. B) Subject averaged motor performance during
the first and last sets of 30 trials in the first (early learning) and the second (late learning) experimental block. C) Subject averaged TPR. Data was z-
scored within blocks and TPR was averaged over all electrodes.
doi:10.1371/journal.pone.0089576.g004

Table 1. Behavioral data.

Paradigm trial bin

Patient 1 2 3 4

SRT

SRT01 917 (271) 767 (227) 748 (219) 707 (161)

SRT02 1472 (300) 1017 (284) 859 (207) 966 (232)

AMCT

AMCT01 117 (66) 98 (65) 147 (197) 142 (129)

Go/No-Go

GNG01 343 (46) 323 (117) 331 (109) 302 (128)

GNG02 426 (185) 301 (42) 260 (28) 301 (66)

GNG03 433 (168) 379 (178) 286 (40) 393 (89)

For SRT (serial reaction time task) and GNG (Go/No-Go) task reaction time is
shown (standard deviation) in msec. For AMCT (auditory-motor coordination
task) the absolute deviation from precision is shown also in msec. Each trialbin
encompasses 30 trials.
doi:10.1371/journal.pone.0089576.t001
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Biological mechanism
Oscillatory dynamics are proposed [1] to be inherent to the

interplay of brain regions for cognitive control in memory and

learning [21]. For example h activity observed in hippocampal and

neocortical regions varies as a function of the state of the subjects

[28]. The neocortex exhibited more prominent h activity during

wakefulness compared to REM sleep. Performance improvement

during practice can be achieved by distributed h networks - which

are up-regulated during wakefulness

nating local activity. Here, the concept of information integration

means that h oscillatory activity accumulates and integrates the

results of local processing as reflected in HG activity in the

premotor/motor region. HG activity, either an indication of

spiking activity or very fast network oscillations [25,29], may be

involved in planning and initiation of motor responses [30]. This

frequency possibly reflects the activation of cortico-subcortical

networks involved in the feedback control of discrete movements

[31]. Taken together we speculate that information on planning of

motor responses is integrated into memory by paCFC which

results in performance improvement during the process of

performance improvement.

Conclusion
We identified cross-frequency coupling in the human cortex

which is associated with motor performance variability per se. In

this network a smaller area is integrated whose oscillatory

dynamics reflect the progress in performance improvement. This

learning related network suggests the establishment of a memory

trace which is accumulated during practice and which is

represented in a mutually adapted level of activity of h and HG

activity [16,32–34]. In this respect paCFC provides a mechanism

subserving motor memory formation [2].

Materials and Methods

Patients
Six epilepsy patients undergoing pre-surgical monitoring with

subdural electrodes participated in the experiments after providing

their written informed consent. Experimental and clinical record-

ings were taken in parallel. Recordings took place at the University

of California San Francisco (UCSF), CA, USA (4 Patients), Johns

Hopkins University, Baltimore, USA (1 Patient) and the Epilepsy

Center Bethel (ECB), Bielefeld (1 Patient), Germany and were

approved by the local ethics committees (‘‘Committee for the

Protection of Human Subjects at UC Berkeley’’, ‘‘Johns Hopkins

Medicine Institutional Review Board’’ and ‘‘Ethical Committee of

the University of Magdeburg’’).

Experimental Paradigms
We carried out three different motor tasks (serial reaction, go/

no-go, auditory-motor coordination) with six different patients

(Fig. 1). Each patient participated in one of the tasks. All

paradigms required coordination of key presses on a computer

keyboard to an external stimulus. Patients performed the task

sitting upright in their bed using the hand contralateral to the grid.

Serial Reaction Task. The serial reaction task (SRT)

consisted of a series of visually cued finger taps. The subjects

had their fingers placed on different keys of a laptop keyboard

(right hand: space bar, j, k, and ; - left hand: space bar, f, d,

and a). Trials started with one of the numbers 1, 2, 3, or 5

appearing on a laptop-screen cueing the movement of thumb,

index finger, middle finger, or little finger, respectively. Numbers

were presented until a key was pressed but maximally for 2 seconds.

In each subject the four numbers were presented in a fixed

sequence (six items long) or random order depending of the block

number but only fixed blocks were used. Each block took

approximately 10 minutes. Two patients participated in this task

(SRT01 - 02). They were instructed to press keys as fast and

accurate as possible. One block took approximately six minutes.

Auditory-Motor Coordination Task. The second motor-

paradigm was an auditory-motor coordination task (AMCT). One

patient participated and was instructed to respond as accurately as

possible halfway between successive auditory clicks presented at a

constant rate. Seven click sequences, each 60 s long, were

presented in a block. The inter-click-interval in a sequence was

either 500 ms, 1000 ms or 2000 ms and the participant was

Figure 5. Depiction of the results from the ROI-analysis. A) ROIs with significant performance improvement unrelated TPR/performance
correlations. B) ROIs with significant performance improvement related TPR/performance correlations. ROIs with significant correlations (Bonferroni
correct for six comparisons) are marked with an asterisk. The 6 ROIs are the anterior and posterior medial frontal gyrus, the anterior and the posterior
inferior frontal gyrus, and the superior and posterior sensorimotor cortex. The blue margin shows the grid coverage across all subjects with a square
grid implanted.
doi:10.1371/journal.pone.0089576.g005
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informed that the interclick-interval changes. The seven click

sequences with the differing interclick-interval were presented

randomly within each block. Only sequences with a interclick-

interval of 1000 and 2000 ms entered the analysis. The clicks were

presented with speakers plugged into the laptop

placed in front of the patient at 1 m distance. One block lasted

7 min.

Go/No-Go task. Three patients participated in the go/no-go

(GNG) task (GNG01 - 03). In each trial the patients were

presented with either a green or red square of 100 ms duration

Figure 6. Electrodes with significant trial-by-trial correlations of TPR with performance. The significance threshold was determined in a
permutation procedure (see Methods) A) Learning unrelated correlations of TPR with performance. B) Learning related correlations of TPR with
performance. Darker colors indicate stronger correlations. See Methods for calculations on separating performance and learning related effects. The
blue shape in the first and second row show the outline of all superimposed square grids. The black shapes in the third row denotes the grid
locations for the participant in the AMCT. Spatial distortions result from the projection onto the cortex (for details see Figure S2).
doi:10.1371/journal.pone.0089576.g006
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and 900 - 1200 ms stimulus onset asynchrony. The subjects were

instructed to respond as quickly as possible to green squares by

pressing a key on a laptop keyboard but to withhold responses

when a red square was presented (in block 1–3: 20% of the trials;

in block 4: 50% of the trials). The participants were familiarized

with the task in an initial short practice session. Only correct Go-

trials of the first two blocks entered the analysis. Each block lasted

approximately eight minutes.

Data recording
At UCSF the electrocorticogram (ECoG) was recorded either

from 64 platin-iridium-electrode grids arranged in an 868 array

with 10 mm center-to-center spacing (FTT01, FTT02, GNG01,

GNG02 GNG03) or from a 256 electrode grid (both Ad-Tech

Medical Instrument Corporation, Racine, Wisconsin) arranged in

a 16616 array with 4 mm center-to-center spacing (GNG02).

Exposed electrode diameter was 2.3 mm in the 64 electrodes grid

and 1.8 mm in the 256 electrodes grid. The electrode signals were

recorded with a 256 channel preamplifier (PZ2-256, Tucker-Davis

Technologies (TDT), Inc) with the electrode furthest from the

motor cortex used as a reference. The data from the pre-amplifier

were sampled at 3051.7 Hz on a digital signal processor (RZ2 4

DSP, Tucker-Davis Technologies (TDT), Inc) with 16-bit resolu-

tion and stored to hard disk. Trigger signals indicating button

presses and stimulus onsets were sent from the stimulus laptop via

a USB-1208FS DAQ (Measurement Computing, Norton, MA)

plus a photodiode attached to the screen and recorded on the DSP

synchronized to the brain data. Trigger timing was additionally

recorded on the stimulus laptop by querying the computers

performance counter using the Psychophysics Toolbox (www.

psychtoolbox.org). In Bielefeld (AMCT) the ECoG signal was

recorded at 1000 Hz sampling frequency (16 Bit resolution) with a

Nihon Kohden system (Tokyo, Japan) equipped with auxiliary

analogue channels for synchronous recording of the trigger signals

and the output from the sound card. Here 5 stripes were

implanted each equipped with two parallel rows of 5 electrodes

each (see Figure 6).

Data analysis
We used Matlab 2008a (Mathworks, Natick, USA) for all offline

data processing. We first preprocessed the recorded brain data and

then we derived measures quantifying adaptation of oscillatory

neural dynamics during motor skill learning. All filtering was done

using IIR filters (Butterworth filter of order 4). Preprocessing

served to remove non-physiological artifacts from the recorded

data and to prepare them for further analysis. First we excluded

channels exhibiting ictal activity or excessive noise from further

analysis. In the remaining good channels we then excluded

time intervals containing artifactual signal distortions such as steps

of pulses by visual inspection. Finally, we re-referenced the

remaining electrode time-series by subtracting the common

average reference

xCAR(t)~
1

n

Xn

c~1

xc(t) ð1Þ

calculated over the n good channels c from each channel time

series. The resulting time series were then used to characterize

brain dynamics over the time course of motor behavior

performance improvement in terms of the TPR:

For each trial starting at stimulus onset we calculated the TPR

to quantify the evolution of phase-amplitude cross-frequency

interactions of cortical oscillations during motor skill learning.

Therefore, we band-pass filtered each electrode

two frequency bands, in the h-range (4–8 Hz) and in the HG (80–

180 Hz) range since coupling was task relevant between these

frequencies across a variety of experimental tasks [2]. We detected

h-troughs, the local minima, in the h-range filtered time series in

the interval between 0 to 500 ms after stimulus onset (Figure 7).

We obtained the HG analytic amplitude AHG(t) by Hilbert-

transforming the HG filtered time series. For each detected h-

trough we then estimated the depth of the through Dh and the

simultaneous HG amplitude as the average of the h-filtered and

the AHG time series over an interval of 83 ms (half h oscillation)

centered on the trough. Note that multiple h troughs fit into the

500 ms analysis leading to multiple estimates per trial. We

averaged the individual estimates Dh(t) and AHG(t) to obtain

one measure for h trough depth Dh and one for HG amplitude

AHG for each trial j. From these values we calculated TPR for

each trial j as:

TPRj~ log
Dh,j

AHG,j

ð2Þ

Taking the log of the ratio makes the distribution of TPRs

symmetric. Note that the TPR includes both stimulus-locked and

non-stimulus-locked brain activity. It summarizes the global cross

frequency interaction on the grids.

Phase-Amplitude Coupling
paCFC was tested by splitting the h oscillations of the 500 ms

analysis window into 20 equally spaced phase bins ranging from -p
to p (18uor 0.314 rad) in each subject and each electrode. In each

phase bin we averaged the amplitude envelope of the local HG. A

cosine wave function

Figure 7. Calculation of the trough to peak ratio (TPR). We
quantified paCFC as the ratio between h trough (local minima of the h

h trough. Around each detected trough we spanned a window (half h
cycle h activity (black bold line) and HG amplitude
(green line) was averaged.
doi:10.1371/journal.pone.0089576.g007
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ŷy~a � cos (v �HGzw) ð3Þ

with a representing the amplitude, v representing the frequency

and w representing the phase angle was fitted to the resulting 20

HG amplitude (y) values. v close to 1 indicates that HG amplitude

variation is accounted for the h cycle.

ROI analysis
In each patient we grouped electrodes according to the same

anatomical landmarks in 6 regions of interest (see Figure S1): The

anterior (in sum 34 electrodes across subjects) and posterior (44

electrodes) medial frontal gyrus, the anterior (49 electrodes) and

the posterior inferior frontal gyrus (81 electrodes), and the superior

(48 electrodes) and inferior (46 electrodes) sensorimotor cortex. We

averaged the TPR-values within each ROI across electrodes. In

each patient we determined the p-value for Pearson’s correlation

coefficient r and the partial correlation coefficient rho (r) between

the averaged TPR values and behavioral performance across

trials. Each ROI in which the mean p-value across subjects fell

below the p-value corrected for multiple comparisons (pcorr =
:05

6
)

was considered statistically significant.

Separating performance from learning effects
We separated performance from learning effects by applying a

permutation test statistic. The reasoning for applying a permuta-

tion test was two-fold. First, we sought to correct the p-values for

each electrode due to the many individual correlation tests

applied. We tested this against a distribution which did not rely on

the same temporal interval (500 ms following the stimulus

presentation) for which the correlation coefficient was calculated.

Second, we wanted to identify electrodes in which Pearsons

correlation coefficient r was significantly higher than the partial

correlation coefficient r. This means that we looked for electrodes

with a significant difference between r and r. Since the

significance can only be determined in relation to a distribution

we estimated this distribution from our data. Hence, the null

hypothesis to be rejected was that the difference between

electrodes r and r was derived from a random distribution. The

recorded time series were filtered in the h (4–8 Hz) and in the HG

(80–180 Hz) frequency. Subsequently, we calculated the HG

envelope of the HG time series in each electrode and each trial by

taking the absolute value of the Hilbert transform of the filtered

time series. The analytic amplitude is a new time series

representing the amplitude envelope of the HG-oscillations at

any moment in time. We then determined 20 time windows

around the stimulus onset each with a width of 500 ms and

400 ms overlap. In order to conduct the TPR permutation test

statistic we calculated Dh and AHG (see above) around each h
trough in the time window in each electrode and trial which yields

20 Dh and 20 AHG values in each trial from which one Dh and one

AHG value was randomly chosen in each permutation. In each

trial the TPR was calculated from the random Dh and AHG values

and correlated (partial correlation) with behavioral measures. In

500 permutation we estimated a distribution of partial correlation

which served to assess the significance of the observed partial

correlation coefficient. Electrodes exceeding the 95% percentile

were considered significantly predictive for performance. In a

comparable way learning effects were obtained. In general we

tried to find the subset of electrodes within the pool of electrodes

which are correlated with performance. Specifically we sought to

find those electrodes whose Pearson’s correlation coefficient is

significantly greater than the partial correlation coefficient (r).

Therefore we again chose randomly one Dh and one AHG value

per trial and correlated (Pearson’s correlation – r) the randomly

obtained TPR values with behavioral measures. In each permu-

tation we calculated the difference dr{r between the randomly

obtained r and r. In 500 permutations we estimated a distribution

of dr{r which served to assess the significance of the observed

dr{r. Electrodes exceeding the 95% percentile were considered

significantly predictive for performance improvement. Note that

this analysis results in spatially more limited clusters than in the

ROI-analysis since in the ROI-analysis Pearson’s r was used and

not the difference of r{r.

Supporting Information

Appendix S1 Supplementary Material.

(PDF)

Figure S1 Prediction of behavior changes as a function
of the phase. Red and black asterisks show the number of

signicant electrodes for each of the 20 phase bins for the

performance/paCFC correlation and partial correlation, respec-

tively.

(TIF)

Figure S2 We grouped electrodes into 6 regions of
interest.Each outline denotes the grid coverage of one
subject. The bold outline shows the summed coverage across all

subjects. The anterior and posterior medial frontal gyrus (FMa,

FM), the anterior and the posterior inferior frontal gyrus (FIa, FI),

and the superior and inferior sensorimotor cortex (MI,MII). The

outline of the grid location of the AMCT participant is given in

Figure 5.

(TIF)
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1. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science

304: 1926–1929.

2. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, et al. (2006) High

gamma power is phase-locked to theta oscillations in human neocortex. Science

313: 1626–1628.

3. Canolty RT, Ganguly K, Kennerley SW, Cadieu CF, Koepsell K, et al. (2010)

Oscillatory phase coupling coordinates anatomically dispersed functional cell

assemblies. Proc Natl Acad Sci U S A 107: 17356–17361.

4. Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling.

Trends Cogn Sci 14: 506–515.

5. Tort ABL, Kramer MA, Thorn C, Gibson DJ, Kubota Y, et al. (2008) Dynamic

cross-frequency couplings of local field potential oscillations in rat striatum and

hippocampus during performance of a t-maze task. Proc Natl Acad Sci U S A

105: 20517–20522.

6. Tort ABL, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H (2009)

Theta-gamma coupling increases during the learning of item-context associa-

tions. Proc Natl Acad Sci U S A 106: 20942–20947.

7. Axmacher N, Cohen MX, Fell J, Haupt S, Dmpelmann M, et al. (2010)

Intracranial eeg correlates of expectancy and memory formation in the human

hippocampus and nucleus accumbens. Neuron 65: 541–549.

8. Klausberger T, Magill PJ, Márton LF, Roberts JDB, Cobden PM, et al. (2003)

Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo.

Nature 421: 844–848.

9. Jensen O, Colgin LL (2007) Cross-frequency coupling between neuronal

oscillations. Trends Cogn Sci 11: 267–269.

Oscillatory Dynamics Track Motor Performance

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e89576



10. Cardin JA, Carln M, Meletis K, Knoblich U, Zhang F, et al. (2009) Driving fast-

spiking cells induces gamma rhythm and controls sensory responses. Nature 459:

663–667.

11. Haider B, McCormick DA (2009) Rapid neocortical dynamics: cellular and

network mechanisms. Neuron 62: 171–189.

12. Voytek B, Canolty RT, Shestyuk A, Crone NE, Parvizi J, et al. (2010) Shifts in

gamma phaseamplitude coupling frequency from theta to alpha over posterior

cortex during visual tasks. Front Hum Neurosci 4: 191.

13. Grafton ST, Woods RP, Tyszka M (1994) Functional imaging of procedural

motor learning: Relating cerebral blood ow with individual subject performance.

Human Brain Mapping 1: 221–234.

14. Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, et al. (1997)

Anatomy of motor learning. i. frontal cortex and attention to action.

J Neurophysiol 77: 1313–1324.

15. Jueptner M, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997)

Anatomy of motor learning. ii. subcortical structures and learning by trial and

error. J Neurophysiol 77: 1325–1337.

16. Brovelli A, Lachaux JP, Kahane P, Boussaoud D (2005) High gamma frequency

oscillatory activity dissociates attention from intention in the human premotor

cortex. Neuroimage 28: 154–164.

17. Aron AR (2010) From reactive to proactive and selective control: Developing a

richer model for stopping inappropriate responses. Biol Psychiatry.

18. Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in

schizophrenia. Nat Rev Neurosci 11: 100–113.

19. Allen EA, Liu J, Kiehl KA, Gelernter J, Pearlson GD, et al. (2011) Components

of cross-frequency modulation in health and disease. Front Syst Neurosci 5: 59.

20. Crowell AL, Ryapolova-Webb ES, Ostrem JL, Galifianakis NB, Shimamoto S,

et al. (2012) Oscillations in sensorimotor cortex in movement disorders: an

electrocorticography study. Brain 135: 615–630.

21. de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, et al.

(2013) Exaggerated phase-amplitude coupling in the primary motor cortex in

parkinson disease. Proc Natl Acad Sci U S A 110: 4780–4785.

22. Lisman JE, Jensen O (2013) The - neural code. Neuron 77: 1002–1016.

23. Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, et al. (2010)

Cross-frequency coupling supports multi-item working memory in the human
hippocampus. Proc Natl Acad Sci U S A 107: 3228–3233.

24. Yanagisawa T, Yamashita O, Hirata M, Kishima H, Saitoh Y, et al. (2012)

Regulation of motor representation by phase-amplitude coupling in the
sensorimotor cortex. J Neurosci 32: 15467–15475.

25. Scheffer-Teixeira R, Belchior H, Leo RN, Ribeiro S, Tort ABL (2013) On high-
frequency field oscillations (.100 hz) and the spectral leakage of spiking activity.

J Neurosci 33: 1535–1539.

26. Miller KJ, Hermes D, Honey CJ, Hebb AO, Ramsey NF, et al. (2012) Human
motor cortical activity is selectively phase-entrained on underlying rhythms.

PLoS Comput Biol 8: e1002655.
27. Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzski G (2012) Cross-

frequency phase-phase coupling between and oscillations in the hippocampus.
J Neurosci 32: 423–435.

28. Cantero JL, Atienza M, Stickgold R, Kahana MJ, Madsen JR, et al. (2003)

Sleep-dependent theta oscillations in the human hippocampus and neocortex.
J Neurosci 23: 10897–10903.

29. Ray S, Maunsell JHR (2011) Different origins of gamma rhythm and high-
gamma activity in macaque visual cortex. PLoS Biol 9: e1000610.

30. Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, et al. (1998)

Functional mapping of human sensorimotor cortex with electrocorticographic
spectral analysis. i. alpha and beta eventrelated desynchronization. Brain 121 (Pt

12): 2271–2299.
31. Cheyne D, Bells S, Ferrari P, Gaetz W, Bostan AC (2008) Self-paced movements

induce highfrequency gamma oscillations in primary motor cortex. Neuroimage
42: 332–342.

32. Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor

memory. Nature 382: 252–255.
33. Muellbacher W, Ziemann U, Wissel J, Dang N, Koer M, et al. (2002) Early

consolidation in human primary motor cortex. Nature 415: 640–644.
34. Simon SR, Meunier M, Piettre L, Berardi AM, Segebarth CM, et al. (2002)

Spatial attention and memory versus motor preparation: premotor cortex

involvement as revealed by fmri. J Neurophysiol 88: 2047–2057.

Oscillatory Dynamics Track Motor Performance

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e89576



1

Supplementary Material

Interpretation of partial and Pearson correlation

A geometric interpretation is given by the fact that Pearson correlation, as a similarity measure between
random variables, is closely related to the angle between two vectors. The two vectors are the two possible
regressions between the two variables. Correlation is high when the angle between the regressions is
small. Partial correlation introduces a third variable, in our case time. It measures the angle of the two
regression lines in the plane perpendicular to the third variable. Thus, in a 3D space spanned by TPR,
performance, and time the plane in which the two possible regressions between TPR and performance
can have different orientations with the time axis. If the time axis is orthogonal to the plane, then the
correlation between TPR and performance is fully independent of time and unrelated to learning. On
the contrary, if the two regression lines are in the same plane as the time axis, then the correlation
between TPR and performance is fully time dependent and due to learning. In practice, we can expect
to most likely observe mixed effects with regressions oriented between the extremes, indicating mixed
contributions of learning and learning unrelated correlations. Importantly, our reasoning is that if we
observe a significant Pearson correlation in an electrode that significantly changes if we discount time
related correlations (in partial correlation), then the TPR with performance correlation in this electrode
is at least partly due to learning related TPR with performance correlations. With this combination
of partial and Pearson’s correlation we also discount the possibility that the correlation effects are only
due to a paCFC variation over time. One prerequisite to conduct the correlation approach described
here is that motor performance is linearly independent across trials. We assessed this by estimating the
autocorrelation function for the performance measures in each subject. We found the autocorrelation
function exceeding the 95 percent confidence interval with a time lag greater than 1 only for the one
subject in the AMC task. This is likely a result of the task itself since the subject is required to respond
within the same temporal frame. To verify that the significance of the correlation coefficients is not prone
to an inter-trial dependency of performance (autocorrelation) we tested in each subject for each electrode
showing a significant Pearsons correlation whether it was drawn from a random distribution. In 500
runs we randomly shuffled both the TPR values and performance measures of each trial and calculated
the correlation coefficient r. Then we estimated the probability that the observed r values could have
been derived from the random distribution. The p-values were all smaller than .002 indicating that the
observed r values are not a result of a possible inter-trial dependency of the performance measures.

Stability of coupling phase

The previous analyses showed that performance covaries with paCFC. However, calculating the paCFC
at one phase (see Section 4.2) the changes with performance can either be a result of a shift of the
HG amplitude peak relative to the θ trough or the result of simultaneous adaption of both frequency
components. To test the hypothesis that the covariation is not a result of the HG peak shift we used the
fitted phase angle of the trial-wise sine fit functions (see Figure 2) . By means of a linear regression we
tested whether there are systematic changes of the phase angle over time. In each subject we compared the
slope of the linear regression with an empirical distribution of slopes derived from randomizing the order
of trials 500 times. Both for the channels showing correlation and partial correlation no systematic change
was found as indicated by slopes within the confidence intervals. This suggests that performance/paCFC
covariation is a result of simultaneous adaptation of both frequency components rather than a shift of
the HG amplitude peak.



2

Specificity of θ-HG interaction

We investigated whether HG nested to the θ trough is exclusively predictive for performance. In the three
experimental tasks we additionally assessed the specificity of the θ/HG coupling compared to θ/β or θ/γ
coupling. For a broad frequency range encompassing β, γ, and high θ range we extracted all frequencies
with a band width of 6 Hz and a resolution of 2 Hz; center frequencies: 13-190 Hz). For each sub band
(Nsubbands = 89, 13 belonging to the β band, 21 the γ and 65 to the HG range) we calculated the paCFC
with the θ activity and assessed the correlation with behavior for each channel across subjects. The
number of electrodes showing a significant (p < .05, uncorrected) performance/paCFC correlation varied
as a function of frequency band (Nθ/β = 193, Nθ/γ = 187, Nθ/Hγ = 289; χ2 = 29.4; p < .0001). The
corresponding r-values were compared using a one-way ANOVA with the factor frequency band. The
frequency bands predicted behavior differently (F(2,666) = 10.9, p < .0001). Posthoc tests revealed that
the prediction of behavior by the θ/HG coupling was better than the prediction by θ/β coupling or θ/γ
coupling (p corrected for Nsubbands < .0001), suggesting a specific effect of the θ/HG coupling for the
prediction of motor behavior. Necessity of Interaction We then tested whether θ or HG alone predicted
behavior. We compared performance/θ, performance/HG, and performance/paCFC correlation coeffi-
cients. As for the specificity analysis, we calculated for each electrode the Pearson’s r for correlation of
performance with θ, HG, and paCFC and compared r-values of electrodes showing significant correlation.
Since Pearsons r is not a metric measure we transformed r values using the inverse hyperbolic tangent

arctanh(r) :
1

2
ln

(1 + r)

(1− r)
for|r| < 1 (1)

The levels covaried differently with behavior (F(2,501) = 19.67, p < .0001). Post-hoc tests revealed
a significant difference between paCFC and θ (t(373) = -4,81; p < .0001) and paCFC and HG (t(416) =
-4.7; p < .0001) at a Bonferroni corrected significance level. We did not find such difference comparing
HG with θ (p = .5). Hence, paCFC predicted performance better than θ or HG activity alone. This
indicates that the motor performance improvement variation of θ-HG coupling is a result of cooperative
modulation of neuronal activity in the two frequency bands rather than the result of a variation of either
θ or HG band activity alone.

We next asked whether the trial-by-trial correlation strength depends on the θ phase at which the
paCFC is calculated. The previous analysis showed that HG-amplitude varies with the θ phase. Impor-
tantly, a variation of performance/paCFC correlation strength as a function of θ phase, could underscore
the neurophysiological relevance of paCFC for behavioral adaptation. Therefore, we determined trial-by-
trial performance/paCFC correlations at 20 different equally spaced θ phase bins. To test the hypothesis
we compared the probability to detect significant electrodes across θ phase bins for correlation and partial
correlation. We compared the phase specificity by fitting a cosine function to the probability of significant
electrodes (see Figure S1). Both for correlation and partial correlation the fit was highly significant (p <
.001) with the maximum of significant electrodes close to the trough (φcorrelation = .4, φpartialcorrelation
= .6). Figure S1 shows the probability of significant correlations both for the performance/paCFC cor-
relation and partial correlation.
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Abstract

Mind-wandering (MW) is a subjective, cognitive phenomenon, in which thoughts move away from the task toward an
internal train of thoughts, possibly during phases of neuronal sleep-like activity (local sleep, LS). MW decreases cortical
processing of external stimuli and is assumed to decouple attention from the external world. Here, we directly tested how
indicators of LS, cortical processing, and attentional selection change in a pop-out visual search task during phases of MW.
Participants’ brain activity was recorded using magnetoencephalography, MW was assessed via self-report using randomly
interspersed probes. As expected, the performance decreased under MW. Consistent with the occurrence of LS, MW was
accompanied by a decrease in high-frequency activity (HFA, 80–150 Hz) and an increase in slow wave activity (SWA, 1–6 Hz).
In contrast, visual attentional selection as indexed by the N2pc component was enhanced during MW with the N2pc
amplitude being directly linked to participants’ performance. This observation clearly contradicts accounts of attentional
decoupling that would predict a decrease in attention-related responses to external stimuli during MW. Together, our results
suggest that MW occurs during phases of LS with processes of attentional target selection being upregulated, potentially to
compensate for the mental distraction during MW.

Key words: high-frequency activity, local sleep, mind-wandering, N2pc, visual spatial attention
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Introduction
Depending on the time spent awake and the richness of experi-
ences rodents and humans enter local sleep-like states, which
manifests both as high amplitude slow wave activity (SWA)
in the delta/theta range (1–6 Hz) and brief neuronal silencing
(Vyazovskiy et al. 2011). Local sleep (LS) refers to the occurrence
of use-dependent, sleep-like slow oscillations in neuronal pop-
ulations while being awake. These slow oscillations are tempo-
rally and spatially isolated and occur more often with sustained
cortical use or prolonged wakefulness. On a neuronal level, LS
is accompanied by neuronal silencing, i.e., short periods where
neurons interrupt and then resume their firing pattern. The
occurrence of these offline periods in behaviourally relevant
cortical areas, e.g., motor cortex during a reaching task, can lead
to performance errors (Vyazovskiy et al. 2011). Electrophysiolog-
ically, LS leads to localized peaks in slow wave oscillations (1–6
Hz, increased SWA), which served as a proxy for LS in previous
human EEG studies (Murphy et al. 2011; Bellesi et al. 2014; Castel-
novo et al. 2016). Recent intracranial recordings in nonhuman
primates indicate that local epicortical high-frequency activity
(HFA) consists of both infragranular single-unit and supragran-
ular calcium-dependent dendritic processes (Leszczyński et al.
2020) and is a key marker of cortical activation (Ray et al. 2008).
When local neuronal assemblies interrupt and then resume their
firing patterns (LS), this interruption leads to a reduction of
amplitude in the HFA range. In humans, increased SWA as well
as worsened performance have been observed after extended
practice and prolonged wakefulness (Hung et al. 2013; Bernardi
et al. 2015). Phenomenologically, LS is assumed to unearth mind-
wandering (MW) (Andrillon et al. 2019), during which attention
shifts inwards to self-centered matters (Smallwood and Schooler
2006). MW encompasses that (i) we retrieve episodic memory
while (ii) we are occupied with another task, and (iii) that we
become aware of this episodic material (Smallwood and Schooler
2006). However, becoming aware of something cannot be con-
fused with directing attention to it. But in practice it is challeng-
ing to disentangle consciousness and attention. Hence, in this
study, we also pursue the question how tightly consciousness
is coupled with attention or whether attention can be allocated
elsewhere while we are conscious of a different matter. Andrillon
et al. (2019) proposed that LS, occurring in attentional networks,
might trigger the deactivation of those networks and the recruit-
ment of the default mode network (DMN), which in combination
then leads to MW. Whether LS indeed leads to MW is not clear.
Here, we provide an initial study in which we test whether and
how LS and MW are related. Both LS and MW increase behavioral
errors (Carriere et al. 2008; Smallwood et al. 2008; Bernardi et al.
2015; Seli 2016; Leszczynski et al. 2017) promoting the predic-
tion of perceptual and attentional decoupling (Schad et al. 2012;
Christoff et al. 2016). Perceptual decoupling is attested by reduced
electrophysiological responses to the perceptual input during
MW (Smallwood et al. 2008; Kam et al. 2011, 2018; Christoff et al.
2016). However, reduced electrophysiological responses are often
interpreted as evidence for a reduction in attention (“attentional
decoupling” - Smallwood 2011; Schad et al. 2012) even if the
respective EEG components are not associated with attention.
Importantly, since off periods (LS and MW) during waking are
potentially harmful (He et al. 2011; Kucyi et al. 2013; Yanko
and Spalek 2014; Brandmeyer and Delorme 2018) the survival in
general would be endangered if the brain ´s need for rest is met
entirely during waking at the expense of the ability to flexibly
shift attention to key features in the environment (Vyazovskiy
and Harris 2013). Here, we explicitly ask how the brain’s ability

to shift attention varies during off periods (LS and MW) and
whether MW leads indeed to an attentional decoupling.

To this end, we employ an established electrophysiological
response attributed to the focusing of visual attention onto a
target searched among distractors, the EEG component N2pc
(Luck and Hillyard 1994a; Eimer 1996; Luck et al. 1997; Hopf
et al. 2000; Mazza et al. 2009; Boehler et al. 2011). The N2pc
is characterized by a more negative deflection at posterior EEG
channels contralateral to the visual field in which the target was
presented. Theoretically there are at least 2 principal scenarios
which can be tested using the N2pc. On the one hand, the
attentional decoupling account predicts that the N2pc as an
index of attentional selection gradually decreases with MW. On
the other hand, it could be hypothesized that the N2pc increases
with MW. That is, MW and external distractors are assumed to
share a common underlying mechanism (Forster and Lavie 2014;
Unsworth and McMillan 2014) and the N2pc is known to increase
with an increasing amount of distracting information (Mazza
et al. 2009).

Using the high spatiotemporal and spectral resolution of
magnetoencephalographic recordings (MEG) we investigated
how cortical dynamics varied with self-reports ranging from
being ON (uninterrupted focus on the external environment) to
OFF (MW) the task. The task was to search for a color-defined
pop-out (target) among task-irrelevant distractors. Moreover, we
hypothesized that if associated with LS, MW leads to SWA and
neuronal silencing. The latter we would expect to be reflected in
a reduction in HFA (80–150 Hz). HFA is a correlate of population
neural firing rate (Mukamel et al. 2005; Liu and Newsome 2006;
Manning et al. 2009; Miller et al. 2009; Ray and Maunsell 2011)
and preferred proxy for asynchronous areal activation (Miller
et al. 2009; Privman et al. 2013; Coon and Schalk 2016; Kupers
et al. 2017) and thus ideally suited to test neuronal silencing.

Materials and Methods
Participants

A total of 16 subjects (5 female, range: 18–39 years, M: 27.13, SD:
5.85) participated after providing their written informed consent.
One subject who did not experience MW was excluded, resulting
in 15 subjects in the final analyses. All participants reported
normal or corrected-to-normal vision and none reported any
history of neurological or psychiatric disease. All recordings took
place at the Otto-von-Guericke University of Magdeburg and
were approved by the local ethics committee (“Ethical Committee
of the Otto-von-Guericke University Magdeburg”) and each par-
ticipant was compensated with money. The sample size in our
study was chosen according to previous studies examining the
N2pc (e.g., Boehler et al. (2011): N = 15; Hopf et al. (2000): N = 12).
Since our analytical approach for the N2pc is in part based on
these studies, we required a similar sample size. Regarding the
HFA, previous studies often used intracortical recordings. Here,
sample sizes are typically limited to similar numbers of subjects
(e.g., Tallon-Baudry et al. (2005): N = 14; Golan et al. (2016): N = 14).

Paradigm

Participants were presented with a stimulus array of red, green,
and blue grating patterns each consisting of 3 colored and 2
gray stripes viewed through a circular aperture (Fig. 1). The gray
stripes matched the gray of the background. While either of the
green and red gratings served as target, blue gratings always
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Figure 1. Single trial with focus question (see text for detail).

served as distractor items. Stimulus arrays consisted of 18 grat-
ings arranged in 2 blocks of 9 gratings left and right below
the fixation cross. Stimuli were placed below fixation since it
has been shown that search displays evoke a stronger N2pc
amplitude when displayed in the lower visual field (Luck et al.
1997; Hilimire et al. 2011). Participants were instructed to keep
fixation on the fixation cross located at 1.9◦ visual angle (va)
above the stimulus array. The size of each grating was 1.15◦ va,
distance between single gratings (edge-to-edge) was 0.69◦ va. The
left and right block of gratings each had a size of 4.83◦ by 4.83◦

va, the horizontal distance between both blocks (inner edges)
amounted to 5.15◦ va. Diagonal distance between the fixation
cross and the center of the nearest upper grating was 2.81◦ va.
Target gratings could be tilted left or right in 10 steps of 1.5◦,
with the smallest tilt being 1.5◦ and the maximal tilt being 15◦

from the vertical axis. Orientation and tilt angle of the nontarget
and distracter gratings varied randomly. Stimulus generation and
experimental control was done using Matlab R2009a (Mathworks,
Natick, USA) and the Psychophysics Toolbox (Brainard 1997; Pelli
1997; Kleiner et al. 2007). Colors were matched for isoluminance
using heterochromatic flicker photometry (Lee et al. 1988).

Procedure

At the beginning of each of the 12 blocks, participants were
instructed to attend either only to the red or green grating and
report via button press toward which side it was tilted (left:
index finger, right: middle finger of the right hand). Target color
assignment alternated blockwise. In blocks with the red grating
as target the green grating served as nontarget which had to
be ignored and vice versa. The target could appear at each of
the 18 locations. The location of the nontarget was constrained
to the mirrored location in the opposite grating block to keep
equal distances to the fixation cross for both target and nontarget

gratings. Each trial started with a fixation period of 1250 ms (±250
ms) before the stimulus array was presented for 100 ms. Partic-
ipants were asked to respond as fast and accurately as possible.
Afterwards the next trial started. The experiment started with
a training block of 20 trials to familiarize participants with the
procedure. After 20 consecutive trials, a blinking pause allowed
participants to blink and rest their eyes. These pauses lasted 7 s.
Each block consisted of 100 trials.

Experience Sampling

Throughout the experiment we presented thought probes in
pseudorandomly chosen trials (20% of all trials) asking partici-
pants to rate their attentional focus, in the single trial immedi-
ately preceding the probe, on a 5-point scale from 1 (“thoughts
were anywhere else”—OFF) to 5 (“thoughts were totally at
the task”—ON). The experience sampling approach allows the
analysis of only a limited number of trials since more focus
queries would prevent MW. Responses to focus questions were
given with all 5 fingers of the left hand (thumb: 5, index finger:
4, middle finger: 3, ring finger: 2, little finger: 1). The probes
were presented following orientation discrimination, with the
restriction that 2 probes were separated by a minimum of one
intervening search trial (this minimal distance of one intervening
trial between probes occurred only for 7% of the focus queries).
The probes were initiated by an auditory stimulus (500 Hz, ca.
85 dB for 200 ms). To increase statistical power, we grouped the
5 MW ratings in 3 groups of mental state (OFF: 1&2, MID: 3, ON:
4&5). Statistical analyses between mental states were performed
on this subset of trials immediately preceding the focus query.
Note that an increased number of thought probes (>20%) would
lead to a decrease in time between single probes. This would
leave little to no time for participants to let their minds wander,
especially since the single trial duration in our experiment was
only a few seconds.
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MEG Recording

Participants were equipped with metal-free clothing and seated
in a dimmed, magnetically shielded recording booth. Stimuli
were presented via rear projection onto a semi-transparent
screen placed at a viewing distance of 100 cm in front of
the participants with an LCD projector (DLA-G150CLE, JVC,
Yokohama, Japan) that was positioned outside the booth.
Responses were given with the left and right hand via an MEG
compatible LUMItouch response system (Photon Control Inc.,
Burnaby, DC, Canada). Acquisition of MEG data was performed
in a sitting position using a whole-head Elekta Neuromag
TRIUX MEG system (Elekta Oy, Helsinki, Finland), containing
102 magnetometers and 204 planar gradiometers. Sampling rate
was set to 2000 Hz. Vertical EOG was recorded using one surface
electrode above and one below the right eye. For horizontal EOG,
one electrode on the left and right outer canthus was used.
Preparation and measurement took about 2 h.

Preprocessing and Artifact Rejection

We used Matlab 2013b (Mathworks, Natick, USA) for all offline
data processing. The 102 magnetometers were involved in our
analyses. All filtering (see below) was done using zero phase-
shift IIR filters (fourth order; filtfilt.m in Matlab). First, we filtered
the data between 1 and 200 Hz. To discard trials of excessive,
nonphysiological amplitude, we used a threshold of 3pT, which
the absolute MEG values must not exceed (−1 to 2 s around stim-
ulus onset—sufficiently long to prevent any edge effects during
filtering). We then visually inspected all data, excluded epochs
exhibiting excessive muscle activity, as well as time intervals
containing artifactual signal distortions, such as signal steps or
pulses. We refrained from applying artifact reduction procedures
that affect the dimensionality and/or complexity of the data like
independent component analysis. Time series of remaining trials
were used to characterize HFA (80–150 Hz), SWA (1–6Hz), and
the N2pc (1–30 Hz, main frequency range for cognitive event-
related-potential (ERP) components, see Luck (2014)). Resulting
time series were used to characterize brain dynamics over the
time course of visual target detection. Each trial (−1 to 2 s around
stimulus onset) was baseline corrected relative to the 100 ms
interval prior to the stimulus onset.

Statistical Analysis

Statistical analyses between mental states were performed on
the trials immediately preceding the probe. Under the assump-
tion that MW might comprise several trials, the focus query could
have interrupted participants in the beginning, the middle, or at
the end of an MW episode. Hence, including more than the trial
directly preceding the focus question would have weakened the
separation of mental states. To determine statistical significance,
we compared each statistical parameter against a surrogate dis-
tribution, which was constructed by randomly yoking labels of
the trials and repeating the analysis of variance (ANOVA), t-
tests, and calculation of Pearson’s correlation coefficient. Con-
sequently, reported P values represent the statistical significance
relatively to the constructed surrogate distribution. We tested for
statistically significant temporal intervals in 4 analyses: stimulus
response of HFA, difference of the HFA between mental states,
the N2pc, and difference of the N2pc between mental states.
We considered only intervals with consecutive sample points
exceeding 10 ms as significant (see Maris and Oostenveld (2007)).

To correct statistical significance for multiple comparisons we
applied Bonferroni correction. Since activity at each time point
t linearly depends on activity at time point t-1, 2 adjacent tests
cannot be regarded as independent. Hence, we determined how
many individual components are contained in both the grand
average HFA and N2pc and corrected the alpha value by the
number of components that significantly explained variance. We
carried out a principal component analysis (PCA) and determined
the eigenvalues of the resulting components. Components with
an eigenvalue larger than 1 were considered to explain a signifi-
cant amount of variance within our data. In the HFA activity we
found 5 and in the N2pc 4 individual components. Hence, the
corrected P value for the HFA is 0.05/5 = 0.01 and for the N2pc
0.05/4 = 0.0125.

I – Behavioral Results

We tested whether the ratio of ON and OFF ratings changed
across the experiment to rule out the possibility that changes
in cortical dynamic are a result of a change across the experi-
ment and not of fluctuations of the mental state throughout the
experiment. We divided the 12 experimental blocks in 4 parts
by averaging ratings in 3 consecutive blocks since individual
subjects did not make use of each of the 5 ratings in single blocks
and compared the number of ON and OFF ratings across these 4
parts with a 4 × 2 ANOVA with the factors block (I, II, III, and IV)
and mental state (ON vs. OFF).

Performance, measured as percent correct responses, was
averaged across tilt angles for each subject and compared
between mental states with a one-way ANOVA. Performance
during focus trials was then correlated with N2pc amplitude (see
below) to test whether N2pc strength predicts performance.

Reaction times (RTs) were grouped for the 3 mental states
and averaged across subjects. The averaged RTs where then
compared using a one-way ANOVA with the factor mental state
(OFF, MID, ON).

II – HFA Response (Neuronal Silencing)

We then obtained the HFA response. For each trial we band-pass
filtered each magnetometer ´s time series in the broadband high-
frequency range (80–150 Hz). We obtained the analytic ampli-
tude Af (t) of this band by Hilbert-transforming the filtered time
series. In the following, HFA refers to this Hilbert transform.
We smoothed the HFA time series such that amplitude value
at each time point t is the mean of 25 ms around each time
point t. We then baseline-corrected by subtracting from each data
point the mean activity of the 100 ms preceding the stimulus
onset in each trial and each channel. Afterwards, we identified
stimulus-responsive channels showing a significant (compared
to an empirical distribution, see below) amplitude modulation
in the HFA following the onset of the visual search array. Since
we expected an HFA amplitude modulation within the first 300
ms following the stimulus presentation, we first calculated the
average HFA modulation, averaged across the 300 ms following
the stimulus onset, from which we then subtracted the baseline
activity preceding the stimulus onset. Second, after stimulus-
responsive channels were determined, a one-way ANOVA (OFF,
MID, ON) was conducted at each time point between 100 ms
prestimulus and 600 ms poststimulus to test for HFA differences
between mental states. To facilitate interpretability, we report
F-values after stimulus presentation. The F-value of the main
effect “mental state” parameterizes neuronal silencing in the
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HFA response, with high F-values indicating a large difference
in HFA amplitude between mental states. To set a threshold
for significant difference, an empirical distribution of the main
effect was constructed by randomly reassigning the labels (OFF
– MID – ON) to the single trials in 1000 permutations. Peak
responses (maximal average HFA response following stimulus
onset) in each of the mental states were compared against a
surrogate distribution. In each iteration, time series of each chan-
nel were circularly shifted time series of participants between
-500 and 300 ms separately, and new (surrogate) trial averages
were calculated. From these trial averages we calculated the peak
value in the time range of 0 to 300 ms following stimulus onset.
Mental states exceeding the 97.5th percentile were classified as
showing significant HFA modulation.

The HFA is a frequency band, whose amplitude is modulated
by stimulus presentation both in the auditory (Crone et al. 2001)
and visual modality (Lachaux et al. 2005). Hence, the HFA is
a stimulus-responsive band. The usual 2-step approach is to
(i) assess stimulus-responsive channels and then (ii) test for
condition differences. The prediction from recent MW literature
is that the sensory representation of an onsetting stimulus is
low when subjects report that their minds wandered. Using the
HFA, we can test which regions are stimulus-responsive. Slow
wave oscillations, in contrast, are instantaneous in the sense that
they occur locally but might travel across cortical regions during
sleep. These occasionally appearing SWA peaks are different
from ongoing activity that should be modulated by stimulus
onsets. Hence, SWA-peaks are not assumed to carry stimulus
information. Instead, synchronized occurrences of OFF periods
result in the high-amplitude electro- or magnetoencephalogram
(EEG/MEG) slow waves that are typical for early, nonrapid eye
movement sleep. The electrographic manifestation of sleep—
high-amplitude EEG/MEG slow waves—arises from such syn-
chronized alternation between on and off periods across large
cortical neuronal populations.

III – High-Amplitude Slow Wave Oscillation

For each trial we band-pass filtered each magnetometer ´s time
series in the frequency range of slow wave oscillations (1–6 Hz)
and z-scored the obtained analytic amplitude Af (t) of this band
by Hilbert-transforming the filtered time series. In the following
text, SWA refers to this Hilbert transform. We used z-scoring for
the SWA for 2 reasons. First, SWA peaks are single temporally
and spatially isolated events (Vyazovskiy et al. 2011), while the
HFA is an ongoing time series (Crone et al. 2001). Second, unlike
the HFA, the SWA is not stimulus-responsive. SWA pattern can
occur even in the baseline period. In contrast to the HFA, we did
not expect the number of SWA peaks to be modulated by the
stimulus onset. Hence, the z-score method allows to assess the
local occurrence of SWA independently of stimulus onset across
the entire recording time. We then counted the number of peaks
of the SWA defined as local maxima exceeding 3 SD in each trial
at each channel in the time from 500 ms prestimulus to 500 ms
poststimulus. Next, we identified channels with a high number
of SWA peaks. To account for the occurrence of SWA peaks local
in time, a surrogate distribution was constructed by randomly
exchanging channel labels in each subject and calculating new
(surrogate) channel averages across participants. In each of 1000
iterations we randomly exchanged channel labels in each subject
and new (surrogate) channel averages were calculated across
participants. Channels exceeding the 97.5th percentile of the
channel-specific surrogate distribution were classified as show-
ing a significant SWA modulation (SWA channels). The number

of SWA peaks was averaged separately for the 3 mental states
across SWA channels in each participant. We then carried out
a one-way ANOVA with factor mental state (OFF – MID – ON)
at each time point, with single participants as random variable.
The F-value of the main effect “mental state” parameterizes
the occurrence of SWA with high F-values indicating a large
difference in the number of SWAs between mental states. To
set a threshold for significant difference, an empirical distri-
bution of the main effect was constructed by randomly reas-
signing the labels (OFF – MID – ON) to the single trials in 1000
permutations.

The rationale for the different analytic approaches for SWA
and HFA, even though they reflect presumably similar processes,
is the following: Modulation of the HFA is usually assessed as
its variation across time. In contrast, SWA are single events local
in time. The difference in analytic approaches is also due to the
fact that low-frequency characteristics can be detected easier in
macroscopic recordings than high-frequency patterns which is
why they can be localized more feasible in time (i.e., as single
events in time). However, both measures are strongly related
since an increase of SWA in the rodent’s LFP is paralleled by
neuronal silencing. In our study we can assess SWA but not
multiunit activity that could directly index neuronal silencing.
The neural signature closest to the MUA, however, is the HFA,
which has been regarded a good measure of neuronal spiking
(Liu and Newsome 2006; Berens et al. 2008) and consists of both
infragranular single-unit and supragranular calcium-dependent
dendritic processes (Leszczyński et al. 2020). This is also consis-
tent with the idea that HFA reflects aggregated local neuronal
output (Buzsáki et al. 2012) due to reliably high correlations
between HFA and multiunit activity. Hence, the HFA became a
classical indicator of cortical activation.

IV – N2pc

To assess the allocation of spatial attention, we employ the so-
called N2pc, which is a marker of attentional selection in visual
search paradigms (Luck and Hillyard 1994a; Eimer 1996; Luck
et al. 1997; Hopf et al. 2000). The N2pc is an event-related compo-
nent of the EEG and MEG response that is elicited contralateral to
the target when subjects covertly (i.e., without eye-movements)
shift their spatial attention to the respective target presented
in the left or right visual field. Specifically, shifting the focus of
attention to the left visual hemifield will lead to an enhanced
response—typically around 200–300 ms after stimulus-onset—at
right-hemisphere sensors and vice versa. Importantly, a stronger
N2pc (higher amplitude) is associated with a stronger focusing
to the respective target item and/or better suppression of sur-
rounding distractor items (Luck et al. 1997; Mazza et al. 2009).
The N2pc is recorded at sensors showing a maximum difference
in response to left versus right visual field targets, typically
at parietal/occipital recording sides. For EEG, there is usually
a single maximum (negativity) contralateral to the target. For
MEG, the respective dipole creates both an efflux and an influx
maximum contralateral to the target that will be combined (Hopf
et al. 2000; Boehler et al. 2011). The N2pc can then be dis-
played as the respective left-minus-right difference waveform
with the signal often being averaged across both hemispheres
for simplification (i.e., only one single waveform for the N2pc
combining attended left and right visual field targets) (e.g., Mazza
et al. 2009; Lagroix et al. 2015; Donohue et al. 2018). Extraction
of the N2pc waveform was adapted from Boehler et al. (2011).
For each participant, 4 channels were selected. One in each
hemisphere reflecting the efflux maximum and one in each
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Table 1. Mean number and percentage of thought probes, categorized
as ON, MID, or OFF

Mean % SD % Mean N SD N

ON 51.25 27 107.14 46.75
MID 33.1 18.7 76 42.64
OFF 15.67 16.8 34.92 36.27

hemisphere reflecting the influx maximum. Selection of chan-
nels was limited to an occipital-parietal region of interest (ROI)
which is in line with the N2pc ROI in the previous literature
(e.g., Hopf et al. 2000; Boehler et al. 2011; Donohue et al. 2016).
Efflux and influx channels of both hemispheres were combined
by subtracting the signal of the influx channel from the sig-
nal of the efflux channel. To extract the N2pc, we subtracted
this combined signal for targets in the right visual field from
the combined signal for targets in the left visual field, again
separately for both hemispheres. The final N2pc waveform was
generated by averaging together the N2pc generated over the
left and right hemisphere. In the next step we tested whether
the N2pc was significantly elevated over baseline. We baseline-
corrected the N2pc time series of each subject by subtracting
from each data point the mean activity of the 200 ms preceding
the stimulus onset. We then tested whether the average N2pc
shows a significant (compared to an empirical distribution, see
below) amplitude modulation following the onset of the visual
search array. We first calculated the average activity modulation
AN2pc averaged across the 200–300 ms following the stimulus
onset from which we subtracted the baseline activity BN2pc pre-
ceding the stimulus onset. The difference between B and A
was compared against a surrogate distribution. In each itera-
tion, time series of each subject were circularly shifted between
−500 and 300 ms separately, and new (surrogate) trial averages

(B and A
)
were calculated. Time points exceeding the 97.5th per-

centile of the channel-specific surrogate AN2pc −BN2pc distribution
were classified as showing a significant N2pc modulation fol-
lowing stimulus onset. The first time point of significant N2pc
modulation in each subject was used as N2pc onset. Using a
time point-by-time point ANOVA between -100 and 600 ms with
the factor mental state (OFF, MID, ON) we tested whether the
N2pc differs between focus conditions. The F-value of the main
effect “mental state” parameterizes the variation of the N2pc
as a function of mental states with high F-values indicating a
large difference in N2pc amplitude between mental states. To
set a threshold for significant difference, an empirical distri-
bution of the main effect was constructed by randomly reas-
signing the labels (OFF – MID – ON) to the single trials in 1000
permutations.

V – Local Sleep-N2pc Correlation

First, HFA and N2pc onset times were compared via t-test to ana-
lyze temporal discrimination between both. Second, to examine
the interaction between HFA and N2pc over the different mental
states, HFA and N2pc time series were averaged separately for the
3 mental states in each participant for the interval between onset
and offset (interval between significant elevation over baseline).
We then carried out a 2-way ANOVA with factor MEG response
(N2pc – HFA) and mental state (OFF – MID – ON) at each time
point, with single participants as random variable. Third, for each
mental state N2pc (averaged across the interval of significant

amplitude modulation for all trials) was correlated with HFA
response (averaged across the interval of significant amplitude
modulation for all trials). The resulting Pearson’s correlation val-
ues were tested against a surrogate distribution. This surrogate
distribution was constructed by randomly assigning the HFA
values of each participant with the N2pc values from another
participant in 1000 iterations.

Results
I – Behavioral results

Excluding times for individual pauses, thought probes were pre-
sented on average every 10.34 s (SD = 5.09; range: 3.7–29.6 s). MW
ratings differed in frequency (F2,42 = 10.11, P < 0.001; ON 51.25%
(SD: 27%), MID 33.1% (SD: 18.7%), and OFF 15.67% (SD: 16.8%);
Table 1) with more ON than MID ratings (t14 = 2.21, P = 0.035)
and more MID than OFF ratings (t14 = 2.56, P = 0.016). The ratio
of ratings did not vary across blocks: main effect of block (F3,112

= 0.03, P = 0.99) and interaction (F3,112 = 0.6; P = 0.6) were not
significant (Fig. 2A). While ON ratings did not vary across blocks
(all P’s > 0.1), OFF ratings increased from block I to II (t14 = 2.5; P =
0.02) but remained constant afterwards. Performance varied with
mental state (F2,42 = 5.14, P = 0.01) with worse performance during
OFF trials (M: 70.2%, SD: 18.8%) than during MID trials (M: 80.2%,
SD: 7%; t14 = 2.62, P = 0.01) or ON trials (M: 84.7%, SD: 7%; t14 = 2.09, P
= 0.03). No differences were observed between ON and MID trials
(t14 = 1.76, P = 0.1; Fig. 2B). Performance varied also as a function
of tilt angle. Participants made more errors at small angles and
performance increased fast with increasing angles. To increase
statistical power, we averaged trials across all tilt angles (Fig. 2C).
Also, reaction times differed significantly between mental states
(F2,42 = 2.75 P = 0.003) with longer RTs during OFF (M: 898 ms,
SD: 1028 ms) compared with ON (M: 433 ms, SD: 146 ms; t14 =
1.72, P = 0.04), a trend of statistical significance between OFF
and MID trials (M: 489 ms, SD 212 ms; t28 = 1.48, P = 0.07), but
no differences between ON and MID trials (t28 = 0.87, P = 0.38;
Fig. 2D).

II – HFA Response (Neuronal Silencing)

A total of 15 occipital magnetometers showed stimulus response
in the HFA between 81 and 234 ms poststimulus (HFAmax = 1.24fT
at 161 ms, P < 0.001, Fig. 3A,B,C). The HFA differed between
mental states between 145 and 171 ms poststimulus (Fcrit = 2.74;
Fmax = 3.18 at 151 ms, P = 0.02, Fig. 3D) with smaller HFA in OFF
(M: .47fT, SD: .93fT) versus ON (M: 1.24fT, SD: .82fT; t14 = 2.16,
P = 0.02) and versus MID trials (M: 1.25fT, SD: 1.28fT; t14 = 2.04,
P = 0.03) but no difference between ON and MID (t14 = 0.53, P
= 0.69). Importantly, in contrast to ON (critical peak amplitude
= 0.63fT, HFAmax = 1.29fT at 149 ms; P < 0.001) and MID trials
(HFAmax = 1.33fT at 152 ms; P < 0.001), HFA did not show a
significant peak response in OFF trials (HFAmax = 0.5fT at 151 ms,
P = 0.15). We then tested whether the HFA is simply not different
from but equals baseline activity. Specifically, we estimated the
Bayes factor (BF) to determine the amount of evidence for a
change over baseline (amplitude values across all time points
and subjects in the 100 ms prior to stimulus onset). The BF
was estimated at each time point separately for the ON and
OFF condition. We found no evidence for the H1 and therefore
no evidence for a change (BFmax = 0.76 at 142 ms) in the OFF
condition. But strong evidence in the ON condition (BFmax = 43.01
at 152 ms; see Fig. 3D).
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Mind-wandering Wienke et al. 7

Figure 2. Behavioral data, A: participants made more ON and MID than OFF ratings (small inset). Only between the first and the second quarter of the experiment was

a significant increase in OFF ratings, which then remained constant. Numbers at the bottom of bar graphs indicate the corresponding quarter (i.e., first, second, third or

fourth) of the experiment. B: subjects made more errors during OFF trials than during ON and MID trials. C: Performance was lowest at small tilt angles and increased

with increasing angles. This pattern was identical for all trials (black) as well as for the trials in which a thought probe was presented (blue), irrespective of mental state.

D: Reaction times were significantly longer in OFF vs. ON trials. The error bars and shaded areas represent the standard error of the mean (SEM). ∗ P < 0.05, ∗∗P < 0.01.

III – High-Amplitude Slow Wave Oscillations

A total of 28 MEG sensors covering a frontal-parietal (Ncrit = 0.3
Hz; NSWA = 0.43 Hz; P < 0.0001) and an occipital channel cluster
(NSWA = 0.38; P < 0.0012, Fig. 3E) showed a significant number
of SWA. In frontal-parietal sensors we observed a trend toward
differences in frequency of SWA between mental states (F2,42 =
2.7; P = 0.07, Fig. 3E), but a highly significant difference in occipital
sensors (F2,42 = 5.9; P < 0.0001, Fig. 3E) with more SWA peaks in
OFF (NSWA = 0.51) versus ON (NSWA = 0.27; t14 = 3.4; P = 0.004)
and versus MID trials (NSWA = 0.25; t14 = 2.6; P = 0.02) in the
boccipital region.

IV – N2pc

Attentional target selection elicited an N2pc between 179 and 319
ms poststimulus (N2pccrit = 4fT, N2pcmax = 61.7fT at 258 ms, P <

0.001; Fig. 4A,B) with no differences between hemispheres (tcrit =
±2.74, tmax = -1.74 at 71 ms, P = 0.94). The N2pc differed between
mental states between poststimulus (Fcrit = 3.53, Fmax = 7.62 at
256 ms poststimulus, P < 0.001; Fig. 4C) with a larger amplitude
in OFF (M: 78.69fT, SD: 46.16) versus MID (M: 50.65fT, SD: 28.89; t14

= 3.44, P = 0.01) and versus ON (M: 38.82fT, SD: 19.73; t14 = 4.1, P
= 0.002) but no significant difference between ON and MID trials
(t14 = 0.39, P = 0.69).

V – Local Sleep-N2pc Correlation

The number of SWA peaks correlated with the N2pc in OFF trials
both in the fronto-parietal and the occipital channel cluster (rcrit
= 0.53, fronto-parietal: r = 0.71; P = 0.0044; occipital: r = 0.6; P =
0.014) but not in ON (fronto-parietal: r = −0.29, P = 0.13; occipital:
r = 0.45, P = 0.04) or MID trials (fronto-parietal: r = −0.04, P =
0.56; occipital: r = 0.19, P = 0.22; Fig. 5A). Note that peaks of SWA
and the N2pc were both well separable from each other, though
their topographies did show some overlap at occipital sensors.
Specifically, the SWA peaks were evenly distributed across time
intervals before and after stimulus onset and were not time-
locked to the N2pc, which could have confused measures of SWA
peaks with the occurrence of the N2pc amplitude. A respec-
tive analysis was performed for the occipital SWA peaks. We
compared the number of SWA occurrences in the N2pc interval
(200–300 ms) against that of a prestimulus interval (-100–0 ms)
and that of a later poststimulus interval after the N2pc (400–500
ms) and found no difference in neither comparison (t14 = 1.66;

P = 0.12 and t14 = 0.93; P = 0.37). That is, the SWA peaks do not
correlate in time with stimulus onset or N2pc emergence.

Importantly, the HFA (reflecting initial visual response)
showed a significantly earlier onset than the N2pc (HFA: 83
ms poststimulus, SD: 14 ms; N2pc: 198 ms poststimulus, SD:
17 ms; t14 = 20.1, P < 0.001, Fig. 5B, left). Average HFA and N2pc
showed a strong interaction with mental states with the N2pc
increasing with decreasing HFA (F2,87 = 11.17, P < 0.001; Fig. 5B,
right). Similarly to SWA, only in OFF trials HFA correlated with
the N2pc (rcrit = ±0.42, r = −0.54, P = 0.04), indicating that
a low HFA amplitude is associated with an increased N2pc
amplitude but not in ON (r = 0.07, P = 0.71) or MID trials (r =
0.31, P = 0.27, Fig. 5C). This enhancement of the N2pc appeared
to be behaviorally relevant as in OFF trials, the N2pc was
correlated to performance (rcrit = ±0.53, r = 0.57, P = 0.02) but
not in ON (r = −0.14, P = 0.29) or MID trials (r = −11, P = 0.33;
Fig. 5D).

Discussion
We examined how indicators of LS, cortical processing, and
attentional selection change during MW. Participants performed
a visual search paradigm, yielding robust increases in the
HFA response in occipital MEG sensors, followed by the N2pc
responses reflecting attentional target selection. The onset of
the HFA increase in occipital MEG sensors was as early as ∼90
ms and depended on how focused participants were on the
task. Specifically, under MW, the HFA response was strongly
decreased (i.e., no significant difference from baseline). But what
caused the reduced HFA response during MW? If changes in the
activation of the attention network would be the cause for the
HFA reduction, we would also expect to observe a modulation
at fronto-parietal sensors. Hence, we think that this very early
occipital HFA reduction most likely corresponds with neuronal
silencing (Vyazovskiy et al. 2011) reflecting local sleep. In parallel,
the number of SWA periods increased with MW, consistent
with participants experiencing phases of local sleep. In line
with previous studies, the performance decreased under MW
with manual reaction times being substantially prolonged. In
contrast, neural markers of attentional selection were even
more pronounced during MW and closely linked to behavioral
responses. That is, even though low in performance during OFF
trials, subjects that showed a higher N2pc amplitude performed
better than those with a less pronounced N2pc. In general,
processes of attentional target selection, as indexed by the N2pc,
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Figure 3. HFA A: Grand Average event related magnetic field (ERMF, 80–150 Hz) averaged across all focus trials and subjects between 0 and 300 ms poststimulus (top)

shows 15 occipital sensors with significant response after stimulus onset. HFA onset and time course (bottom) are highly similar. B: Averaged across all trials and

subjects, we found an HFA between 81 and 234 ms poststimulus (gray shaded area). The inset shows the time frequency representation averaged across all 15 MEG

sensors. C: HFA response averaged across significant sensors for each subject. The dotted black line represents average across subjects. D top: HFA for each mental

state, averaged across subjects. Gray inset represents time of significant differences in amplitude between mental states. The horizontal line represents critical peak

amplitude modulation. D middle: Time course of F-values. The horizontal line represents critical F-value for statistical significance. D bottom: Bayes factor for amplitude

modulation above baseline for ON and OFF condition. E: 28 Sensors showed significant SWA (left). The number of SWA peaks in occipital sensors (green, lower right)

was significantly elevated during OFF trials (red: frontal sensors). The vertical lines represent stimulus onset. The shaded areas around curves represent SEM.

were rather increased during MW, potentially compensating for
mental distraction.

Grating stimuli reliably evoked high-frequency activity in our
noninvasive MEG recordings strongly resembling HFA responses
in intracranial recording in early visual cortex with a modulation
over baseline between 50 and 350 Hz, a fast increasing flank
peaking around 200 ms, and a slowly decreasing flank in early
visual cortex (Burke et al. 2014; Szczepanski et al. 2014; Golan
et al. 2016, 2017; Gerber et al. 2017; Helfrich et al. 2018; Bartoli et al.
2019). The high similarity of the HFA response across subjects
indicates that MEG in contrast to EEG can reliably pick up HFA

responses to visual stimuli, which even has been shown at the
single trial level (Westner et al. 2018).

The HFA reduction during MW might not result from
attentional decoupling but rather reflects neuronal silencing.
Previous studies showed reduced electrophysiological responses
during MW (Christoff et al. 2016) potentially due to attentional
decoupling during MW but without deciphering the causal
relation between MW and reduced cortical responses. The
authors assumed that MW attenuates the cortical response
(Christoff et al. 2016)—the HFA—since attentional resources are
shifted inwards (Smallwood and Schooler 2006) in line with an
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Mind-wandering Wienke et al. 9

Figure 4. N2pc A: Grand average event related magnetic field (ERMF; 1–30 Hz) averaged across analyzed trials between 200 and 300 ms poststimulus. The circles represent

probable location of underlying dipoles. B: N2pc averaged across analyzed trials and subjects. We found a significant N2pc between 179 and 319 ms poststimulus (gray

inset). C top: Grand average ERMF between 200 and 300ms for the 3 mental states. Please note that the topographical field distribution and sensor locations are well in

line with the literature with an occipito-temporal maximum evolving between 200 and 300 ms (Hopf et al. 2000; Boehler et al. 2011) and are highly consistent across the

mental states. C middle: N2pc for each mental state, averaged across subjects. We found significant differences in N2pc amplitude between mental states (gray inset)

between 213 and 298 ms poststimulus. C bottom: time course of F-values. The horizontal line represents critical F-value.

The vertical lines represent stimulus onset. The shaded areas around curves represent SEM.

attentional decoupling account. However, we hypothesize that
participants experience MW, since use-dependent neuronal
silencing reduces sensory representation of the visual envi-
ronment in the first place. First, any attentional reduction of
the HFA should also predominantly be found in fronto-parietal
structures (Szczepanski and Kastner 2013; Szczepanski and
Knight 2014; Perrone-Bertolotti et al. 2020) where we did not find
any strong stimulus-driven modulation in our study. Second,
and most importantly, attentional modulations of cortical
responses are amply attested with a reduction of responses
(Smallwood et al. 2008; Kam et al. 2011, 2018) often using a
contrast between task relevant versus irrelevant stimuli (Müsch
et al. 2014). But task-irrelevant stimuli still evoked a comparable
HFA response even though smaller in amplitude. Also, in audition
even though ignoring the stimulation and attending a second
task, clear stimulus-driven responses can be seen in frontal
and temporal cortex (Dürschmid et al. 2016). Hence, although
modulated by attention, ERPs and HFA response in previous
studies were preserved. In contrast, the here observed HFA
increase in occipital MEG sensors was virtually absent under
MW (no significant difference from baseline). Hence, we assume
the strong reduction in HFA during MW is most likely not driven
by attention but rather corresponds with neuronal silencing
(Vyazovskiy et al. 2011) reflecting local sleep.

Importantly, only local sleep would potentially allow for
independent regulation of attentional resources. A global state
change, in contrast, would downregulate attentional resources
concomitantly. Hence, the strong interaction between N2pc and
HFA speaks in favor of the occurrence of brief periods of local
sleep, which is typically observed for single units during NREM
sleep (Vyazovskiy et al. 2011; Siclari et al. 2017) even in the
absence of signs of drowsiness. The HFA, a localized index of
functionally selective activity (Crone et al. 1998; Miller et al.
2007) and most likely reflecting multiunit activity, seems almost
completely absent during MW in regions strongly responding
to stimulation. In addition, in sleep-restricted humans, the

waking EEG typically shows increased low-frequency power
(SWA) reflecting the duration of prior wakefulness (Finelli et al.
2000; Leemburg et al. 2010; Vyazovskiy et al. 2011). Moreover, a
homolog phenomenon to neuronal silencing can be observed in
brain regions that were disproportionately used during waking
(Rector et al. 2009) and involved in prior learning (Hung et al.
2013). Both strong signatures of local sleep—i.e., HFA reduction
and SWA increase—did not overlap spatially but occurred locally
(Bellesi et al. 2014), which points at different functions.

SWA could serve as a carrier wave that allows or drives the
transfer of information between structures such as the hip-
pocampus and neocortex. It occurred over centro-parietal, sen-
sory, and motor area regions relative to the rest of the brain
in a previous study (Castelnovo et al. 2016). In line with those
results, we found an increase in centro-parietal and in occipital
cortex. The parallel SWA increase between these regions argues
strongly for a common plasticity-dependent component to sleep
regulation (Murphy et al. 2011). Importantly, these signatures of
local sleep occur even in subjects which are not sleep deprived
(Quercia et al. 2018). The here observed SWA does probably
indicate sleep need (Huber et al. 2004) but it varies locally in
time, since subjective ON and OFF task ratings were evenly
distributed across the entire experiment. Hence, we can rule out
the possibility that the observed signatures of LS only increased
with time and thus without any strong relation to MW.

Local sleep periods are of behavioral relevance since they
are associated with cognitive lapses (Nir et al. 2017) that are
marked by prolonged reaction times (Bernardi et al. 2015; Nir
et al. 2017). The response time prolongation during such lapses
probably arises due to reduced stimulus-triggered activity in
visual areas causing a lower quality perceptual representation
of the target stimulus (Weissman et al. 2006). Consistent with
subjects experiencing attentional lapses, we also found reaction
times to be substantially longer during MW. The observed
motor slowing might in part explain behavioral errors in
previous studies on MW as well. MW manifests behaviorally
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Figure 5. Local sleep-N2pc correlation A: Correlation between SWA count and N2pc amplitude was significant only during OFF trials. The horizontal line represents

critical correlation value (left). Scatterplots showing the correlation between SWA count and N2pc for OFF trials in frontal (red, upper) and occipital sensors (green, lower

right). B: Onset times for HFA and N2pc differed significantly (left). Average HFA and N2pc amplitude for each mental state. Note that the HFA is scaled up in this plot

to compensate for lower amplitudes (right). C: Correlation between HFA and N2pc reached significance only during OFF trials. The horizontal lines represent critical

correlation values (left). Scatterplot showing the correlation between HFA and N2pc during OFF trials (right). D: Correlation between performance and N2pc reached

statistical significance only during OFF trials. The horizontal lines represent critical correlation values (left). Scatterplot showing the correlation between performance

and N2pc strength during OFF trials (right). The error bars represent the SEM. ∗∗∗P < 0.001.

especially in highly automated task like reading or the Sustained-
Attention-to-Response-Task (SART) (Smallwood et al. 2008; Seli
2016). Hence, behavioral decrements in SART experiments could
result from a slowing of a general control of manual responses
which could hypothetically be beneficial to prevent overhasty
decisions when sensory evidence is low. Lower sensory evidence
on MW trials would also be in line with an upregulation of
the N2pc attention allocation response. That is, though low
in performance, subjects with stronger N2pc perform better,
underscoring the behavioral relevance of an upregulation of
attentional resources to keep performing the task under MW.

Indeed, our major finding is that during local sleep the
strength of SWA and neuronal silencing predicts how attentional
reallocation is modulated. Previously, MW was found to
positively correlate with task-irrelevant distraction indicating
that MW reveals individual susceptibility to task-irrelevant
distraction including both internal and external sources (Forster
and Lavie 2014). Specifically, it was suggested that MW and
external distraction reflect distinct, yet correlated constructs
related to working memory (Unsworth and McMillan 2014).
Hence, the N2pc increase is in line with previous studies showing
that target-distractor disambiguation increases with distractor
load (Mazza et al. 2009) and suggesting a stronger influence of

distractors under momentary attention lapses (Weissman et al.
2006). These results indicate that MW does not inflict attentional
decoupling (Smallwood and Schooler 2006). Given the earlier
onset of HFA compared to the N2pc, the reduction in HFA during
MW (worse stimulus representation) might consequently lead to
the upregulation of the N2pc (more target enhancement and/or
distractor suppression needed). Since experience sampling
can only be applied in a subset of trials, a trial-wise measure
of MW cannot be provided. Hence, we cannot dissolve the
number of trials by which neuronal silencing is ahead the N2pc
upregulation.

The N2pc was originally interpreted as suppression of distrac-
tors (Luck and Hillyard 1994b), but others argued that the N2pc
reflects target selection (Eimer 1996) and is now considered a
composition of overlapping processes of both target processing
(target negativity, Nt) and distractor suppression (distractor pos-
itivity, Pd) (Hickey et al. 2009; Hilimire et al. 2012; Gaspar and
McDonald 2014). Since we presented the target simultaneously
with a color pop-out nontarget in the opposite visual field, both
the target selection (Nt contralateral to the target) as well as
distractor suppression (Pd contralateral to the pop-out nontarget)
will contribute to the amplitude of the observed N2pc waveform.
Importantly, we observed an enhanced N2pc when the subjects

D
ow

nloaded from
 https://academ

ic.oup.com
/cercorcom

m
s/article/2/1/tgab001/6101454 by guest on 18 M

arch 2021



Mind-wandering Wienke et al. 11

were in a state of MW. Since our stimuli always contained both
laterally presented targets and distractors, we cannot unambigu-
ously decide as to whether the enhanced N2pc was caused by a
stronger target enhancement, increased distractor suppression,
or both, or whether the N2pc would be rather generally sup-
pressed in the focused state. In general, the N2pc component
seems to strongly depend on stimulation parameters, showing
larger activation differences between hemispheres when more
than one item per visual field is presented, the discrimination
task is more complex (e.g., a feature conjunction task), and
the target is in the lower visual field (Luck et al. 1997). Hence,
we chose our visual search display accordingly to maximize
the observed N2pc amplitudes with the target being located in
the lower visual field, multiple surrounding irrelevant distractor
items, and a task requiring high spatial scrutiny. Most impor-
tantly, the target was always an easily detectable color pop-out
item, requiring no time-consuming search process that might
have smeared out N2pc responses over time. In fact, the N2pc was
elicited at the expected time range of 200 ms irrespective of the
mental state. That is, the initial target selection was not delayed
under conditions of MW as it has been previously reported when
target saliency was low (Töllner et al. 2011), during periods of
attentional blink or shortly after task switches (Corriveau et al.
2012; Lagroix et al. 2015). Still, there was a substantial increase
in response time (about 400 ms), when subjects reported to be
“OFF” task which might have reflected lower sensory evidence,
a delayed processing of the information provided by the N2pc,
or could be caused by parallel interfering processes of MW.
In fact, Lagroix et al. (2015) suspected that a response time
increase caused by the attentional blink (about 300 ms) was not
fully accounted for by N2pc latency differences (about 30 ms).
However, later steps of information processing which might be
impacted by MW—such as extraction of information or response
planning—might play a role. Importantly, only when participants
experienced MW (OFF task), the amplitude of the N2pc was
positively correlated with performance. That is, a larger N2pc,
typically associated with a stronger focusing onto the target and
potentially reflecting better distractor suppression (Mazza et al.
2009; Donohue et al. 2016), might have partially compensated
for the MW. Alternatively, it is reasonable to assume that the
enhancement of the N2pc amplitude might not reflect a stronger
selective distractor suppression but the participation of more
neurons in the attention process. One might speculate that the
attentional tuning is less strict and, hence, broader under MW
with more (less selective) neurons responding to the attention
focusing process, and in consequence leading to a larger N2pc.
Since we have no baseline measure (MW without N2pc increase),
it is difficult to determine how much the enhancement of the
N2pc might have helped performance under MW. Still, at the
between-subjects level, under MW, a higher N2pc amplitude was
associated with a better performance speaking for a behavioral
relevance of the N2pc increase.

When investigating MW, a major challenge is how to reli-
ably capture phases of reduced focusing on the task. Frequently
prompting thought probes during the course of the experiments
will most likely discourage MW, hence, we chose to assess the
participants mental state on only 20% of the trials. As a con-
sequence, trial numbers are inherently limited for comparing
neural responses between mental states. Furthermore, partici-
pants reported for the majority of trials (51%) to be “on task”,
which might be caused by the perceptually rather demanding
discrimination task, or also be influenced by participants trying
to respond in a socially desirable way. Nevertheless, the markers
of local sleep (SWA increase, HFA reduction) match participants

self-reports with being “off the task” and might also provide
future measures depending less on self-report.

Our critical conclusion is that MW is strongly linked to cor-
tical dynamics associated with local sleep and that attentional
resources needed for visual search are upregulated to circumvent
restrictions caused by limited sensory evidence. Occipital HFA,
which shows a strong stimulus response comparable to intracra-
nial recordings, falls out when participants have the subjective
impression of being off the task, commensurate with an increase
in periods of SWA increase. Attentional decoupling as predicted
for being off the task is expected to produce a decrease in the
N2pc (Schad et al. 2012; Christoff et al. 2016). But reduced sensory
evidence compels stronger attentional allocation to key features
in the environment and hence a stronger target-distractor dis-
ambiguation during MW. Hence, these results indicate that MW
does not lead to a global blackout of HFA but cortical regions gen-
erating the target-distractor disambiguation also flexibly react
to internal distractions. These functional explanations indicate
that expected input to visual stimulation is tracked and stronger
reallocation of spatial attention is generated when sensory evi-
dence is scarce, presumably by frontal cortical areas. In sum, we
provide evidence that MW is strongly related to local sleep and
establish a direct link between boosted attentional resources due
to local sleep during waking.
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Leszczyński M, Barczak A, Kajikawa Y, Ulbert I, Falchier AY, Tal I,
Haegens S, Melloni L, Knight RT, Schroeder CE. 2020. Dissocia-
tion of broadband high-frequency activity and neuronal firing
in the neocortex. Sci Adv. 6:1–13.

Leszczynski M, Chaieb L, Reber TP, Derner M, Axmacher N, Fell J.
2017. Mind wandering simultaneously prolongs reactions and
promotes creative incubation. Sci Rep. 7:1–9.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercorcom

m
s/article/2/1/tgab001/6101454 by guest on 18 M

arch 2021



Mind-wandering Wienke et al. 13

Liu J, Newsome WT. 2006. Local field potential in cortical area
MT: stimulus tuning and behavioral correlations. J Neurosci.
26:7779–7790.

Luck SJ. 2014. An Introduction to the Event-Related Potential Technique.
2nd ed. Cambridge, MA: MIT Press.

Luck SJ, Girelli M, McDermott MT, Ford MA. 1997. Bridging the gap
between monkey neurophysiology and human perception: an
ambiguity resolution theory of visual selective attention. Cogn
Psychol. 33:64–87.

Luck SJ, Hillyard SA. 1994a. Spatial filtering during visual search:
evidence from human electrophysiology. J Exp Psychol Hum
Percept Perform. 20:1000–1014.

Luck SJ, Hillyard SA. 1994b. Electrophysiological correlates of fea-
ture analysis during visual search. Psychophysiology. 31:291–308.

Manning JR, Jacobs J, Fried I, Kahana MJ. 2009. Broadband Shifts in
Local Field Potential Power Spectra Are Correlated with Single-
Neuron Spiking in Humans. J Neurosci. 29:13613–13620.

Maris E, Oostenveld R. 2007. Nonparametric statistical testing of
EEG- and MEG-data. J Neurosci Methods. 164:177–190.

Mazza V, Turatto M, Caramazza A. 2009. Attention selection,
distractor suppression and N2pc. CORTEX. 45:879–890.

Miller KJ, denNijs M, Shenoy P, Miller JW, Rao RPN, Ojemann
JG. 2007. Real-time functional brain mapping using electrocor-
ticography. Neuroimage. 37:504–507.

Miller KJ, Sorensen LB, Ojemann JG, Den Nijs M. 2009. Power-law
scaling in the brain surface electric potential. PLoS Comput Biol.
5:e1000609.

Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R. 2005.
Neuroscience: coupling between neuronal firing, field poten-
tials, and fMRI in human auditory cortex. Science. 309:951–954.

Murphy M, Huber R, Esser S, Riedner BA., Massimini M, Ferrarelli
F, Felice Ghilardi M, Tononi G. 2011. The cortical topography of
local sleep. Curr Top Med Chem. 11:2438–2446.

Müsch K, Hamamé CM, Perrone-Bertolotti M, Minotti L, Kahane
P, Engel AK, Lachaux JP, Schneider TR. 2014. Selective attention
modulates high-frequency activity in the face-processing net-
work. Cortex. 60:34–51.

Nir Y, Andrillon T, Marmelshtein A, Suthana N, Cirelli C, Tononi G,
Fried I. 2017. Selective neuronal lapses precede human cogni-
tive lapses following sleep deprivation. Nat Med. 23:1474–1480.

Pelli DG. 1997. The VideoToolbox software for visual psy-
chophysics: transforming numbers into movies. Spat Vis.
10:437–442.

Perrone-Bertolotti M, El Bouzaïdi Tiali S, Vidal JR, Petton M, Croize
AC, Deman P, Rheims S, Minotti L, Bhattacharjee M, Baciu M
et al. 2020. A real-time marker of object-based attention in the
human brain. A possible component of a “gate-keeping mech-
anism” performing late attentional selection in the ventro-
lateral prefrontal cortex. Neuroimage. 210:116574.

Privman E, Malach R, Yeshurun Y. 2013. Modeling the electrical
field created by mass neural activity. Neural Netw. 40:44–51.

Quercia A, Zappasodi F, Committeri G, Ferrara M. 2018. Local use-
dependent sleep in wakefulness links performance errors to
learning. Front Hum Neurosci. 12:1–17.

Ray S, Maunsell JHR. 2011. Different origins of gamma rhythm
and high-gamma activity in macaque visual cortex. PLoS Biol.
9:e1000610.

Ray S, Niebur E, Hsiao SS, Sinai A, Crone NE. 2008. High-frequency
gamma activity (80–150Hz) is increased in human cortex dur-
ing selective attention. Clin Neurophysiol. 119:116–133.

Rector DM, Schei JL, Van Dongen HPA, Belenky G, Krueger
JM. 2009. Physiological markers of local sleep. Eur J Neurosci.
29:1771–1778.

Schad DJ, Nuthmann A, Engbert R. 2012. Your mind wanders
weakly, your mind wanders deeply: objective measures reveal
mindless reading at different levels. Cognition. 125:179–194.

Seli P. 2016. The attention-lapse and motor decoupling accounts
of SART performance are not mutually exclusive. Conscious
Cogn. 41:189–198.

Siclari F, Baird B, Perogamvros L, Bernardi G, LaRocque JJ, Riedner
B, Boly M, Postle BR, Tononi G. 2017. The neural correlates of
dreaming. Nat Neurosci. 20:872–878.

Smallwood J. 2011. Mind-wandering while reading: attentional
decoupling, mindless reading and the Cascade model of inat-
tention. Lang Linguist Compass. 5:63–77.

Smallwood J, Beach E, Schooler JW, Handy TC. 2008. Going AWOL
in the brain: mind wandering reduces cortical analysis of exter-
nal events. J Cogn Neurosci. 20:458–469.

Smallwood J, Schooler JW. 2006. The restless mind. Psychol Bull.
132:946–958.

Szczepanski SM, Crone NE, Kuperman RA, Auguste KI, Parvizi J,
Knight RT. 2014. Dynamic changes in phase-amplitude cou-
pling facilitate spatial attention control in Fronto-parietal cor-
tex. PLoS Biol. 12:e1001936.

Szczepanski SM, Kastner S. 2013. Shifting attentional priorities:
control of spatial attention through hemispheric competition.
J Neurosci. 33:5411–5421.

Szczepanski SM, Knight RT. 2014. Insights into human behavior
from lesions to the prefrontal cortex. Neuron. 83:1002–1018.

Tallon-Baudry C, Bertrand O, Hénaff M-A, Isnard J, Fischer C. 2005.
Attention modulates gamma-band oscillations differently in
the human lateral occipital cortex and fusiform gyrus. Cereb
Cortex. 15:654–662.

Töllner T, Zehetleitner M, Gramann K, Müller HJ. 2011. Stimulus
saliency modulates pre-attentive processing speed in human
visual cortex. PLoS One. 6:e16276.

Unsworth N, McMillan BD. 2014. Similarities and differences
between mind-wandering and external distraction: a latent
variable analysis of lapses of attention and their relation to
cognitive abilities. Acta Psychol (Amst). 150:14–25.

Vyazovskiy VV, Harris KD. 2013. Sleep and the single neuron: the
role of global slow oscillations in individual cell rest. Nat Rev
Neurosci. 14:443–451.

Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G.
2011. Local sleep in awake rats. Nature. 472:443–447.

Weissman DH, Roberts KC, Visscher KM, Woldorff MG. 2006. The
neural bases of momentary lapses in attention. Nat Neurosci.
9:971–978.

Westner BU, Dalal SS, Hanslmayr S, Staudigl T. 2018. Across-
subjects classification of stimulus modality from human MEG
high frequency activity. PLoS Comput Biol. 14:1–14.

Yanko MR, Spalek TM. 2014. Driving with the wandering mind:
the effect that mind-wandering has on driving performance.
Hum Factors. 56:260–269.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercorcom

m
s/article/2/1/tgab001/6101454 by guest on 18 M

arch 2021


