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1. Introduction 
Expectations are central to our understanding of the behavior of the economy and 

any explanation of inflation dynamics needs to examine the process of expectation 

formation.  

     Economists have recognized that expectations play a determining role in 

economic theories. For example, Keynesian believe that the IS curve is volatile 

because firm’s expectations about the future probability of their investment projects 

are themselves highly volatile; they are subject to “animal spirits”. In his permanent 

income hypothesis, Friedman (1957) stressed the role of expected future incomes in 

determination of consumption expenditure. In fact, many important macroeconomic 

relationships include element of expectations. When such relationships are combined 

to build a full macroeconomic model, policy implications of that model will depend on 

how expectations are being specified. 

     The economic outcomes that agents can expect from economic policy are 

affected by the way expectations are formed and how they vary over time. It matters 

whether agents form their expectations by looking at the past or by looking forward 

by either trusting economic policymakers’ promises or forecasting economic 

conditions. On the other hand, policy makers need to take expectation of economic 

agents into account when deciding on policy actions. For that purpose, an 

understanding of expectation formation is needed. Therefore, failure to investigate 

these issues fully could lead to flawed economic policy.  

     Public expectations about the central bank’s objectives are important for price 

stability. If private agents are not sure that the central bank prefers lower to higher 

inflation, expectations about future policy actions and future inflation will highly 

become sensitive to the central bank’s inflation target and thus result in economic 

instability (Bernanke, 2003). Furthermore, the reputation of a central bank has an 

impact on inflationary expectations. The change of the central bank’s regime gives 

rise to a change in the level of inflation expectations. Changing patterns of inflation 

expectations formation may be resulting from learning process about new monetary 

regimes.  

     Any unfavorable economic shock raises actual inflation and causes private agents 

to raise forecasts of future inflation. Higher inflation expectations will in turn increase 

inflation. In this situation, policymakers need to have policy tools to anchor 
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expectations. Some economists believe that if the central bank announces an explicit 

target for inflation and credibly demonstrates that it will take actions to return inflation 

to the target when economic shocks occur, firms and households are less likely to 

increase their long run inflation expectations even if a shock increases inflation for a 

couple of months. The result is that with inflation expectations well-anchored, any 

given shock, whether it is from aggregate demand or supply, will not lead to increase 

in inflation but only to a change in relative prices. 

     Inflation expectations are very unstable in Iran’s economy because the Central 

Bank is unable to adhere to an inflation target in practice. Thus, inflation expectations 

are not well-anchored and any oil price increase, which seems apparently to be a 

favorable shock, results in money creation, fueled by government spending out of oil 

revenues, and inflation and causes private agents to raise inflation expectations. This 

in turn will increase inflation. As a result, poor anchored inflation expectations make 

price stability much more difficult to achieve in the long run and decrease the Central 

Bank’s ability to stabilize output and employment in the short run. 

     This research tries to examine how market participants form their inflation 

expectations in the Iranian economy over the period 1959-2003. The Iranian 

economy depends largely on oil revenues so that any change in oil prices can directly 

affect all economic sectors. An increase in oil prices will result in money creation and 

inflation. Furthermore, the large number of government-controlled enterprises, 

benefited from subsidies, which increase budget deficit through borrowing from the 

Central Bank and thus have increased the monetary base. During this period, money 

supply has become 10127 fold while real GNP recorded only a 10 fold increase, 

resulting in a relatively high inflation with an average inflation rate of about 15 

percent. With such very high liquidity, any decision or news announced by the 

government or the Central Bank could severely change distribution of resources in 

the economy. In such circumstances, it matters for the Central Bank to know how 

private agents form their expectations. Moreover, optimal monetary policy depends 

considerably on the assumed nature of expectations formation process. 

     Empirical analyses on the formation of expectations can be divided into two 

categories: first, those studies that have been done by asking people about the future 

values of inflation (survey studies). Second, those studies that have tried to extract 

expectations from past data, on the assumption that people look to past experience 

as a guide to the future. This study will go the latter way. 
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     This study compares two approaches to modeling inflation expectations: simple 

forecast and a multi-equation model. In the first case, parametric and nonparametric 

methods are applied and then it is evaluated whether nonparametric models yield 

better estimates of inflationary expectations than do parametric alternatives. The 

agents are assumed to use an optimal parametric autoregressive moving average 

(ARMA) model or nonparametric models including Additive, Multiple Adaptive 

Regression Splines, Projection-Pursuit Regression, and Neural Networks for 

forecasting. In fact, out-of-sample estimates of inflation generated by the parametric 

and nonparametric models will be compared.  

     In the case of a multi-equation model, this study will focus on the structural model 

of Phillips curve. The expected inflation generated by the rational, near rational and 

learning schemes will be examined in the augmented Philips curve equation.  

 

The main focus of this study is on the following general questions: 

(I) Do inflation expectations play a main role in determining the wages? 

(II) How do private agents form their expectations? Are they rational, near rational, or 

do they use a learning mechanism? 

(III) Are neural networks better suited for modeling expectations than nonparametric 

alternatives?  

(IV) What implications arise from (II)? 

(V) What conclusions can be drawn based on the findings above? 

     This thesis is organized as follows. Following this introduction in chapter one, an 

overview of the theoretical concepts of expectation formation including adaptive 

expectations, rational expectations and learning approach will be given in chapter 

two. The merits and demerits of the each approach are discussed in details.  

     In chapter three, expectation formation using statistical predictors is examined. 

Parametric models including autoregressive moving average (ARMA) models, state-

space model, the Kalman filter, and nonparametric models including the additive 

model (AD), multiple adaptive regression splines (MARS), and projection-pursuit 

regression (PPR) will be discussed.  
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     An innovation based on computational intelligence has been the use of neural 

networks as a semi parametric approach to describe learning procedures. This is 

presented in chapter four. The basics of neural networks are first explained. Then the 

process of learning in these models using the backpropagation algorithm is 

demonstrated. The interest is in examining whether rational expectations are 

learnable by use of neural networks. 

     Chapter five presents the results of an empirical analysis. The data as well as a 

background of Iranian economy are described. In this chapter, first simple statistical 

predictors will be used for forecasting and a then multi-equation model including the 

augmented Phillips curve equation will be used to examine inflation expectations 

generated by the rational, near rational and learning approaches. Finally, chapter six 

presents a brief summary, conclusions and policy implications. 
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2 Modeling expectation formation 
In this chapter, different approaches to modeling inflation expectations are presented. 

First, theoretical concepts of adaptive expectations are demonstrated. Then, the 

rational expectations hypothesis is discussed in details. The merits and demerits of 

rational expectations as well as different versions and different tests of this 

hypothesis are also considered. Finally, the learning approach and its role in 

macroeconomics are explained. Approaches to learning including eductive learning, 

adaptive learning, and rational learning are also illustrated. 

 

 

2.1 Theoretical concepts 

2.1.1 Adaptive expectations 

One of the most familiar traditional models of expectation formation is adaptive 

expectations. This model can be stated using the following equation, where e
tP  is this 

period’s expected inflation; 1
e

tP− is last period’s expected inflation; and 1tP−  last 

period’s actual inflation: 

     1 1 1( )e e e
t t t tP P P P− − −= + λ −                                                                            (1) 

with λ  being a value between 0 and 1. According to this hypothesis, current 

expectations of inflation reflect past expectations and an “error-adjustment” term. The 

parameter value of λ depends on what we think about the likely source of last 

period’s error. If it was a permanent shift in the process forming P, then we set 

1λ = so that 1
e

t tP P −= . This is static expectations: this year’s inflation is expected to 

be the same as last year’s. If last period’s error was just due to a random event, we 

set 0λ = , so there is no adjustment, and we should not change expectations at all 

( 1
e e

t tP P −= ). People will change expected inflation if there is a difference between 

what they were expecting it to be last period and what it actually was last period. In 

fact, expected inflation is revised by some fraction of most recent forecast errors. If 

the expected inflation was, say 5 percent, but the actual inflation 10 percent, people 

raise their expectations by some fraction λ of the difference between 5 and 10. Using 

the Koyck transformation, the equation (1) can be transformed into 
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     1 2 3 4(1 (1 (1 (1 ...e
t t t t tP P P P P2 3

− − − −= − λ) + λ − λ) + λ − λ) + λ − λ)         (2) 

Now we can examine the relationship between e
tP and tP . Suppose that tP has 

been constant for a long time at 0P . Then, suppose that at time period T, the inflation 

jumps up to 1P and stays there indefinitely. At T, all the terms on the right-hand side 

of equation (2) are equal to 0P , so the expected inflation for T is given by 0P , that 

is 0
e

TP P= : 

     0 0 0 0 0(1 (1 (1 (1 ...e
TP P P P P P2 3= − λ) + λ − λ) + λ − λ) + λ − λ) =  

Once T is over, expectations are formed by equation (2) with t set equal to T+1. 

Therefore, the first term on the right-hand side for period T+1 is 1P : 

     1 1 0 0 0(1 (1 (1 (1 ...e
TP P P P P2 3
+ = − λ) + λ − λ) + λ − λ) + λ − λ)  

Since 1 0P P> , it is easy to verify that 1 1 0
e e

T TP P P P+> > = . There is some 

correction in T+1 for the error made at T, but is not complete. At the start of following 

period, two of the right-hand terms of equation (2) include 1P .The remaining error is 

again partly corrected but the absolute value of correction is less. This process 

continues until the second term on the right-hand side of equation (1) diminishes to 

make the difference ( e
t tP P− ) arbitrarily small  

     There are merits and demerits of the adaptive expectations hypothesis (AEH). On 

the one hand, the hypothesis has the advantages of being simple to operate as a 

“rule of thumb”. It is at the best appropriate in a stable environment where the price 

level moves up and down in a fairly random fashion, with the possibility of somewhat 

more permanent shifts in the background. On the other hand, however, it has two 

disadvantages: first, it is a backward-looking approach (no account of fully-

announced future policies). Second, it has systematic errors based on the previous 

forecast with some correction for previous forecast errors. Individuals do not 

systematically learn from previous forecast errors, they do ignore information that 

would help them improve the accuracy of their forecasts. Thus, the AEH assumes 

suboptimal behavior on the part of economic agents. For example, consider the 

Phillips curve equation: 

 

     1 1( * )t t tP P U U ε− −= − − +  

tP  = Actual inflation at time t 
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*U  = Natural of unemployment  

 

Assume that (for simplicity):  

     1 2 3* ...t t tU U U U− − −= = =  

then 

     1t t tP P ε−= +  

 

with adaptive expectations: 

     1 1(1 )e e
t t tP P Pλ λ− −= + −  

           1 2 2(1 )( (1 ) ) ...e
t t tP P Pλ λ λ λ− − −= + − + − +   

If 0 .5λ =  

     1 2 30 .5 0 .2 5 0 .1 2 5 ...e
t t t tP P P P− − −= + + +  

            1 1 1 1 1 20 .5 0 .2 5[ ] 0 .1 2 5[ ] ...t t t t t tP P Pε ε ε− − − − − −= + − + − − +    (3) 

 

Equation (3) shows that the AEH ignore past forecast errors in forming expectations. 

Under adaptive expectations, if the economy suffers from constantly rising inflation 

rates, people would be assumed to sequentially underestimate inflation. This may be 

regarded unrealistic- surely rational people would sooner or later realize the trend 

and take it into account in forming their expectations. Moreover, models of adaptive 

expectations never reach an equilibrium; instead they only move toward it 

asymptotically. 

 

2.1.2 Rational expectations 

The rise of Rational Expectations 

The rational expectations hypothesis responds to this criticism by assuming that 

individuals use all information available in forming expectations. During the late 

1960s, rational expectations economics started changing the face of 

macroeconomics. Robert Lucas, Tomas Sargent, and Neil Wallace started to 

dominate the macroeconomic discussion. Notions such as the Lucas critique, the 

Lucas supply curve, and the Sargent-Wallace policy irrelevance proposition became 

integral parts of the macroeconomics discourse.  
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There are different reasons behind the rise of rational expectations (RE). Sent (1998) 

argues that the main factors are as follows:   

     1. Expiration of the Phillips curve: in the late 1960s to early 1970s, policy makers 

used a trade-off between inflation and unemployment to lower unemployment. 

However, they faced high inflation rates accompanied by high unemployment rates in 

the 1970s. In other words, the result of policy making was higher inflation with no 

benefits in terms of lower unemployment. Rational expectations economists were 

able to explain the expiration of the Phillips curve. They, using the rational 

expectation hypothesis, demonstrated that government actions caused an adverse 

shift of the Phillips curve. 

     2. Policy irrelevance:  orthodox prescriptions of economic policy crumbled, since 

much of the effectiveness of these policies were based on the government’s ability to 

fool people. Rational expectations economists asserted that people can foil 

government policies by learning their mistakes. They justified the ineffectiveness of 

government intervention in the context of the failure of traditional Keynesian policies 

in the 1970s. Also, they recognized the limitations of their profession maintaining that 

the economy would basically be stable if it were not subjected to the shocks 

administered by the government.  

     3. Using available techniques: rational expectation economists used sophisticated 

mathematical techniques in order to predict. They learned and used the techniques of 

intertemporal optimization developed by mathematicians and control scientists. They 

also improved the tools of optimal prediction and filtering of stochastic processes. 

Some of these techniques such as classical linear prediction theory¹ was developed 

in 1940s to1950s but did not immediately become part of economists’ toolkits. 

However, Peter Whittle made more accessible to economists this theory that was 

heavily used by rational expectation economists. This delay explains the lagged 

effect of Muth’s contributions. Thus rational expectation economists were able to 

calculate rational expectation equilibria using new techniques. 

     4. Restoring symmetry: the hypothesis of adaptive expectations had been used 

heavily up until the late 1960s. According to this hypothesis, individuals used 

forecasting errors in revising their expectations. Econometricians were presumed to 

be fully knowledgeable whereas the agents were assumed to make systematic 

----------------------------------------- 
1. The mathematical theory for interpreting distributed lags in terms of economic parameters and 
incorporating the rational expectations hypothesis in economic models. 
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forecasting errors period after period. Thus there was an asymmetry among 

economists or econometricians and the agents in that econometricians fit models that 

forecast better than agents. Rational expectations hypothesis (REH) removed this 

asymmetry making the econometricians part of the agents’ behavior. Therefore, 

rational expectation economists placed econometricians and agents on an equal 

footing by postulating that forecasts made by the agents within the model were no 

worse than those the econometricians who had the model. 

     5. Optimizing over information: according to REH, optimization over perceptions 

implied agents did the best they could and formed their views of future using 

available information, including their understanding of how the economy works. 

Rational expectation theorists extended expectation theory into the optimizing 

behaviors theory. If perceptions were not optimally chosen, unexploited utility or 

profit-generating possibilities would exist within the system. Hence, these economists 

insisted on the disappearance of all such unexploited possibilities. 

     6. Endogenizing expectations: Keynes (1936) doubted that expectations could be 

modeled accurately. So he considered expectations as given. Also, Keynes followers 

assumed that people made guesses about the future by looking exclusively 

backward. In fact, the hypothesis of adaptive expectations is backward-looking in that 

it allows the possibility of systematic forecasting errors for many periods in 

succession. This is a suboptimal use of available information and is not consistent 

with the idea of optimization. Even though people used adaptive expectations, no 

widely accepted economic theory was offered to explain the amount of the 

adjustment parameter. The mechanism of rational expectations’ formation is 

endogenously motivated and expectations or forecasts are correct on average if 

errors individuals remain satisfied with their mechanism. This hypothesis asserted 

that the resulting predictions might still be wrong, but the errors would be random. If 

errors follow a pattern, they contain information that could be used to make more 

accurate forecasts. Therefore errors were presumed to cancel out when all individual 

expectations are added together. 

     7. Making public predictions: some authors believed that the rise of rational 

expectations could fight the threat of indeterminacy of economic outcomes. This 

indeterminacy resulted from this fact that making both self-falsifying and self-fulfilling 

predictions about people was possible. Since outcomes depended partly on what 

people expected those outcomes to be if people’s behavior depended on their 
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perceptions, economic systems were thought to be self-referential. This led some 

economists to despair that economic models could produce so many outcomes that 

they were useless as instruments for generating predictions. Rational expectations 

,however, was a powerful hypothesis for restricting the range of possible outcomes 

since it focused only on outcomes and systems of beliefs that were consistent with 

one another. Under rational expectations, correct public predictions could be made 

because rational expectations predictions were presumed to be essentially the same 

as the predictions of the relevant economic theory. Also, the hypothesis consisted of 

expectational response of the agents and the influence of predictions on behavior of 

the agents. 

     8. Countering bounded rationality: rational expectations theory was born at the 

same time in the same situation as the concept of bounded rationality, namely, in the 

1960s at the Graduate School of Industrial Administration (GSIA) at Carnegie Mellon 

University. Holt, Modigliani, Muth, and Simon were colleagues and worked on the 

Planning of Control of Industrial Operation Project, which consisted of developing and 

applying mathematical techniques to business decision making. Though Simon and 

Muth had both participated in the project, Simon saw the strong assumption 

underlying this project as an instance of satisfying, whereas Muth saw this special 

case as a paradigm for rational behavior under uncertainty. Some argue that Muth, in 

his announcement of rational expectations, explicity labeled this theory as a reply to 

the doctrine of Simon’s bounded rationality.  

     9. Restricting distributed lags: in the late 1960s, rational expectation economists 

were confronted with theoritical models that analyzed individual behavior in a context 

without uncertainty and randomness. At the same time, since they treated their data 

probabilistically, they had to incorporate uncertainty and randomness in optimizing 

economic theory and using the outcome to understand, interpret, and restrict the 

distributed lags that abounded in the decision rules of dynamic macroeconomic 

models. They promised to tighten the link between theory and estimation.  

     10. Incorporating vector autoregression: the final causal background of rational 

expectations is related to the belief that it created a connection between vector 

autoregressions and economic theory. Some argue the REH was able to revive 

theory by showing that vector autoregressions was not necessarily atheoritical and 

could provide a statistical setting within which the restrictions implied by theoretical 

models could be imposed. In particular, rational expectation theorists exploited cross-
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equation restrictions to connect the vector autoregressive parameters of decision 

rules with theoretical parameters of taste, technology, and other stochastic 

environments.  

 
 
Rational expectations and processes 

The rational expectation hypothesis (REH) assumes economic variables are 

generated by recurring processes (Attfield et al, 1991). Over time, economic agents 

learn the process determining a variable and they will use this knowledge and all 

information available (that is related to the variable) to form expectations of that 

variable. As a result, the agents’ subjective probability distribution coincides with the 

objective probability distribution of events¹. In other words, the expectations of agents 

will be the same as the conditional mathematical expectations based on the true 

probability model of the economy. For example, suppose the value of variable Y in 

period t is determined by its own lagged value and by lagged values of other 

variables X and Z in the following way: 

 

     0 1 1 2 1 3 1t t t tY Y X Zα α α α− − −= + + +                                                                           (4) 

where 0α , 1α , 2α  and 3α  are constant coefficients. Consider a person who, at the 

end of period t-1, is trying to form an expectation about the value that Y is going to 

take in period t. She knows that the process determining Y is given by equation (4): 

knowledge of this process is said to be part of her information set at the end of period 

t-1. She also knows the values of all lagged variables of X, Y, Z, that also are part of 

her information set at the end of period t-1. If she is rational, her expectation of what 

Y is going to be in period t, on the basis of her information set at the end of period t-1, 

will be formed as follows:   

 

     1 0 1 1 2 1 3 1t t t t tE Y Y X Zα α α α− − − −= + + +                                                                     (5) 

where 1tE − is the expectation of tY  formed on the basis of the information available at 

the end of period t-1. The rational expectation of tY  formed at period t-1 (denoted as  

------------------------------------------ 
1. This is the strong version of the rational expectations hypothesis, due to Muth, (Pesaran, 1987). 
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1[  | ]t tE Y I −  is the mathematical expectation of tY  conditional on the available 

information at the end of period t-1 ( 1tI − ). If Y does indeed continue to follow the 

process shown in equation (5) then this person’s expectation will be perfectly 

accurate, the person’s forecasting or expectational error is zero. This result is not 

general because in this case we assumed the process determining Y is deterministic. 

However, most processes in real world are stochastic; that is, they include an 

unpredictable element of randomness in human responses. One way to incorporate 

this element in equation (4) is to add to it a random term ( tv ): 

 

    0 1 1 2 1 3 1t t t t tY Y X Z vα α α α− − −= + + + +                                                                     (6) 

tv  may be positive or negative. Since this variable is seen as the result of a large 

number of random factors affecting human behavior, it is natural to think of small 

values of tv  rather than large values. In fact, we assume that variable tv  has a 

probability distribution centered at zero and a constant, finite variance { 2
vσ }. The 

value of v in period t is unknown at the end of period t-1; it is not part of the 

information set at period t-1. But it is clear that a rational forecaster has to form some 

expectation of the value that v is going to take in period t. The rational expectation of 

Y in accordance with equation (6) is as follows: 

 

     1 0 1 1 2 1 3 1 1t t t t t t tE Y Y X Z E vα α α α− − − − −= + + + +                                                        (7) 

where 1t tE v− is the expectation of tv  formed on the basis of all the information 

available at the end of period t-1. The best guess a rational agent can make of tv  is 

that it will equal its mean value 1 0t tE v− = .  Thus, the rational expectation of Y in 

period t, based on information available at the end of period t-1, can be written as: 

 

     1 0 1 1 2 1 3 1t t t t tE Y Y X Zα α α α− − − −= + + +                                                                     (8) 

Thus the rational expectation of the variable Y in period t is its mathematical 

expectation given the available information. Rational expectations, as Muth (1961) 

explained, should be generated by the same stochastic process that generates the 

variable to be forecast. 
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In equation (8), if the process determining Y remains unchanged, it follows that the 

expectational error will be the random component v of Y: 

 

    1t t t tY E Y v−− =                                                                                                         (9) 

 
 
The general characteristics of Rational Expectations 

A number important implications follow from the fact that, if the process determining 

Y is understood, the error of rational expectation of Y is the same as the random 

component of the process determining Y. They are as follows: 

 
(a) The errors of rational expectations are on average zero 
 
It is clear from equation (9) that once the process determining Y is allowed to be 

stochastic the rational expectation of Y will not always be perfectly accurate, for the 

random component v is inherently unpredictable. The best a rational forecaster could 

do is expect the mean value of v and that is defined to be zero. In fact, the error may 

be positive, negative or zero. But on average or over a large number of periods the 

negative errors will cancel out with the positive ones, leaving an average error of 

zero. 

 

(b) The errors of rational expectations exhibit no pattern 
 
If expectations are rationally formed, the forecasting error will equal the random 

element in the process being forecast. This random variable, and hence forecasting 

error, may be surprises or news in the system. If it exhibits no pattern, then the 

forecasting error does not exhibit any pattern either. But what happen if v exhibits a 

pattern in the following way: 

 

     1 1t t tv vβ ε−= +                                                                                                      (10) 

The current value of v is linked to the previous period’s value of v. tε  is a random 

error with zero mean which can not be predicted on the basis of any information 

available at the end of period t-1; 1β  is a coefficient, the value of which lies between -

1 and +1. If v is being determined according to equation (10) then rational people will 

form their expectation of current period’s value of v in accordance with that process. 
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And since the value of v in the previous period, t-1, will be part of the available 

information at the end of period t-1, it follows that the forecast of v will diverge from 

the actual value of v by an unknown, unpredictable element tε . The error term ( tε ) 

exhibits no pattern and has a mean value of zero. Thus even if v does exhibit a 

pattern, the rational forecast of Y would, on average, still be correct and the 

forecasting error would exhibit no pattern. As for the timing of a change in the method 

of forming expectations, the rational expectations hypothesis suggests that as long 

as there is no change in the process determining a variable, the method of forming 

expectations will not change. But if the actual process determining a variable is 

known to have changed, then the method by which expectations are formed will 

change in line with it. 

 
(c) Rational expectations are the most accurate expectations 
 

Rational expectations is the most efficient method of forecasting in that the variance 

of the forecasting errors will be lower under rational expectations than under any 

other method of forecasting or forming expectations. Because forecasts of a variable 

on the basis of rational expectations hypothesis will use all available information on 

the process determining that variable. In other words, as expectations are formed the 

unpredictable part of Y can not regularly be predicted. So any method of expectation 

formation will be inaccurate to a degree determined by the likely range of values that 

v can take. But it is possible to be even more inaccurate by forecasting without 

reference or with only partial reference to the process determining the variable. 

 
 
General critique of the rational expectations hypothesis 
 
Criticisms of the REH are as follows (Attfield et al, 1991): 
 
(a) The plausibility of rationality 
 
REH assumes people to use all the information about the process determining a 

variable when forming expectations. Is it really plausible? Can we really assume that 

all decision-makers are intelligent enough to use and fully understand all the 

available information? In reality people often ignore economic matters. This criticism 

is that a major assumption behind rational expectations is implausible. 
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The advocates of REH respond to this criticism in this way: first of all the idea that the 

typical individual is capable of making the best of opportunities open to him is a 

common one in economics. For example, in demand theory it is assumed that the 

typical person chooses to consume goods at a point given by the tangency of an 

indifference curve and a budget constraint. The mathematics behind this choice 

strategy is highly sophisticated for most people. Yet it is assumed that people act as 

if they understand it. If such assumption leads to a theory which makes accurate 

predictions, then the assumption of mathematical awareness is thereby shown to be 

a useful one. People forming expectations use firms- who specialize in or provide the 

service of making economic forecasts- or government bodies-who make forecast 

public. 

     Some economists also criticize the role of rationality in REH. Advocates of the 

hypothesis state that the role of rationality has been used in REH in that the process 

of acquiring information has been carried out up to the point where the marginal cost 

of acquiring more information equals the marginal benefit of making more accurate 

forecasts. But this point does not necessarily correspond to the point at which the 

forecasting error is equal to the purely random component of the determining 

process. It may be that knowledge about some determining variable could be 

obtained and extra accuracy thereby achieved, but only at a price which it is not 

worth paying. In that case the forecasting error will tend to be absolutely greater than 

the random element in the determining process. Advocates of REH accept this 

criticism but they assert that for most purposes it is not of great significance. The 

reason for this is that forecasting errors themselves are observed at no cost. For 

example, any error in your forecast about the level of prices is observed as a costless 

side-effect of shopping. In other words, it must be worthwhile to exploit this 

information fully until its marginal benefit is zero. 

 
(b) The availability of information 
 
REH assumes that the process Y is known and that the values of variables in that 

process are known at the end of period t-1. But what happens if we do not know the 

process determining the variable (Y) and if we are not able to acquire the necessary 

information? Advocates of the REH state that it is true that people cannot 

automatically know which variables are important in the process determining Y but it 

is also true that the REH doesn’t claim that they do. What the hypothesis argues is 
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that on average and after a period of time, economic agents will learn from past 

experience what the process is. They will combine this developed knowledge with 

current available information to form their expectations¹. For example, if, at the end of 

period t-1 the rational agent does not know the true value of X in period t-1, and if the 

value of X in period t-1 determines the value Y in this period, the agent will have to 

form expectations of the value X in period t-1. Suppose the process determining Y is 

as follows: 

 
     0 1 1 2 1 3 1t t t t tY Y X Z vα α α α− − −= + + + +                                                                 (11) 

Suppose that the value of 1tX −  is unknown at the end of period t-1. And let the 

process determining X in any period t as follows: 

 
     0 1 1 2 1t t t tX V Wβ β β ε− −= + + +                                                                              (12) 

where V and W are other variables, the β’s are coefficients, and ε  is a random error 

term with mean zero. The rational forecast of the unknown value of X in period t-1 will 

be as follows: 

 
     1 1 0 1 2 2 2t t t tE X V Wβ β β− − − −= + +                                                                           (13) 

1 1t tE X− −  will be used in place of 1tX −  in equation (11). Thus if 1tX −  is unknown the 

rational expectations of Y in period t will be: 

 
     1 0 1 1 2 0 1 2 2 2 3 1( )t t t t t tE Y Y V W Zα α α β β β α− − − − −= + + + + +                                      (14) 

The forecasting error will therefore be given by: 
 
     1 2 1t t t t tY E Y v α ε− −− = +                                                                                         (15) 

Since tv  and 1tε −  are random errors with means of zero, neither of which can be 

even partly predicted on the basis of any information available at the end of period t-

1. The rational forecast or expectation of Y in equation (14) is, in general, the most 

accurate forecast. 

 

----------------------------------------------- 
1.Friedman(1979), criticizing the REH, asserted that what is typically missing in rational expectations 
models is a clear outline of the way in which economic agents derive the knowledge which then they 
use to formulate expectations meeting requirement. 
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(c) Limits to the applicability of rational expectation 

Many important economic events can be seen as unique, or at least exceptional or 

unusual due to the particular political circumstances of day. In what sense can the 

REH be said to apply to these exceptional cases? The advocates of rational 

expectations assert that the REH can best be applied to variables or events which 

can be seen as a part of recurring process. However, this class of events may be a 

larger one than is commonly thought. For example, governments desire to have a 

high level of economic activity at the time of general elections and may switch some 

policies. Such switches of policy could be seen as part of a fairly regular and 

reasonably predictable process. So an event which could be portrayed as unique 

from another viewpoint may well be part of an underlying recurring process. 

 
(d) Testability of REH 

Some economists have criticized that REH is not testable. Rational expectations 

theorists state that there are several layers to this criticism. First, if REH is taken 

rather loosely to imply that people make the best of their available information, then it 

may always be possible to define the available information so that the hypothesis 

becomes immune to falsification. This criticism is valid if tests of REH tended to 

employ the loose form of the hypothesis. But if they tend to employ strong versions of 

the hypothesis in which people’s knowledge of the process determining a variable is 

assumed to be the same as the best estimate that can be made of that process by 

econometric techniques then this criticism is hardly a strong one. Because this 

assumption leads to predictions which are both clear and different from the 

predictions derived from other theories about expectations.  

     An important criticism is that expectations about a variable are almost always only 

part of a model. Thus there are joint tests of the REH itself and the rest of the model. 

If the model fails the tests to which it is subjected one can always ‘rescue’ the REH 

by arguing that it is the rest of the model which is wrong. It is at times possible to 

distinguish between the restrictions imposed on the data by REH itself and the 

restrictions imposed by the rest of the model. However, the usefulness of the REH, in 

this way, can be tested informally and less satisfactory. If, time after time, this kind of 

models were rejected then we can reject the REH.  
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The final type of criticism of testability of REH is what is known as ‘observational 

equivalence’. For many rational expectations models which ‘fits the data’ there will 

always be a non-rational expectations model which fits the data equally well. The 

data themselves cannot discriminate between two theories, which are therefore said 

to be observationally equivalent. The implication of this is that, even if a rational 

expectations model ‘passes’ conventional empirical tests, this does not necessarily 

imply that one should accept the hypothesis. Whether you do or do not, depends on 

whether you find it more ‘plausible’ than the non-rational expectations model on some 

other unspecified grounds.  

 
(e) Multi rational expectations equilibria 

The models of Muth and Lucas assume that at any specific time, a market or the 

economy has only one equilibrium (which was determined ahead of time), so that 

people form their expectations around this unique equilibrium. If there is more than 

one possible equilibrium at any time then the more interesting implications of the 

theory of rational expectations do not apply. In fact, expectations would determine the 

nature of the equilibrium attained, reversing the line of causation posited by rational 

expectations theorists. 

 

(f) Ability of agents in action 

In many cases, working people and business executives are unable to act on their 

expectations of the future. For example, they may lack the bargaining power to raise 

nominal wages or prices. Alternatively, wages or prices may have been set in the 

past by contracts that cannot easily be modified. (In sum, the setting of wages and 

prices of goods and services is not as simple or as flexible as in financial markets.). 

This means that even if they have rational expectations, wages and prices are set as 

if people had adaptive expectations, slowly adjusting to economic conditions.  

 

Different versions of RE 

Many definitions of rational expectations (RE) have been proposed since Muth (1961) 

published his seminal article on this concept. In its stronger forms, RE operates as a 

coordination devise that permits the construction of a “representative agent” having 

“representative expectations.” Generally, two definitions for RE is used are applied 

research: the weak form and the strong form.  
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Weak-form RE 

The weak version of RE is independent of the content of the agent’s information set. 

Suppose there are N agents (i=1,...,N) in an economy and Et,i Yt+k denote agent i’s 

subjective (personal) expectation formed at the end of period t of Yt+k (k≥1). Also let E 

[Yt+k│It,i] denote the objectively true expectation for Yt+k conditional on the 

information available to agent i at the end of period t (It,I ).The agents are said to have 

weak-form rational expectations for variable Yt+k if the following condition holds: 

 

For each i = 1,…, N,  Et,i Yt+k = E[Yt+k│It,i] + єt,i   where єt,i   are serially and mutually 

independent finite-variance error terms that satisfy E[єt,i│It,i] = 0. 

 
Weak-form RE has some features. First, it is applicable only if there are “objectively 

true” conditional expectations. Weak-form RE assumes that agents make optimal use 

of all available information. Second, it is consistent with the idea of “economically 

rational expectations”, proposed by Feige and Pearce (1976), in which agent’s 

information sets are the result of cost-benefit calculations by the agents regarding 

how much information to obtain. Finally, many economists are willing to use this 

version, as a useful benchmark assumption consistent with the idea that agents are 

arbitrageurs who make optimal use of information.  

 

Strong-form RE 

Muth (1961) used a stronger version of RE in that he placed a restriction on the 

information sets of agents in theoretical economic models. This version guarantees 

the existence of “objectively true” conditional expectations but at the cost of 

transforming RE into an incredible concept in relation to the form of expectations that 

real economic agents could reasonably be supposed to have.  

     Agents in a theoretical model of a multi-agent economy will be said to have 

strong-form RE if they have weak-form RE and, in addition, their information sets at 

the end of period t contain the following information: 
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(a) The true structural equations and classification of variables for the model, 

including the actual decision rules used by each private and public 

(government) agent to generate actions and/or expectations; 

(b) The true values for all deterministic exogenous variables of the model; 

(c) The true probability distributions governing all exogenous stochastic terms; 

(d) Realized values for all endogenous variables observed by the modeler 

through the end of period t. 

 

Strong-form RE has some interesting features. First, it is assumed that agents are 

smart and as well informed about the economy. The issue that agents know a priori 

the actual decision rules used by each other agent is incredible. This version can 

therefore be interpreted as an idealized Nash equilibrium¹ benchmark for agents’ 

expectations that agents may (or may not) eventually arrive at through some process 

of reasoning and/or learning.  

     Second, in practice theorists modeling economic systems assume that they have 

an extraordinary amount of information about the true working of the economy. As a 

result, under strong-form RE, economic agents are presumed to have a great deal 

more information than would actually be available to any econometrician who 

attempted to test these models against data (Sargent, 1993). 

     Third, many economists are uncomfortable with the more common assumption in 

the strong-form RE. Nevertheless, this version becomes more acceptable if it is 

viewed as a possible ideal limiting point for the expectations of boundedly rational 

agents with limited information who engage in learning in successive time periods. 

     Finally, considering perfect foresight² RE is interesting. Agents in a theoretical 

model of a multi-agent economy will be said to have perfect foresight RE if the 

following two conditions hold: 

------------------------------------------------ 
1. If there is a set of strategies with the property that no player can benefit by changing her strategy 
while the other players keep their strategies unchanged, then that set of strategies and the 
corresponding payoffs constitute the Nash Equilibrium. 
 
2. It must be noted that perfect-foresight RE differs from the perfect foresight assumption used in 
“Walrasian equilibrium models.” In the latter kind of models, perfect foresight is the assumption that 
households and firms correctly foresee the market-clearing levels and solve their optimization 
problems conditional on these levels. 
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(a) Agents have strong-form RE; 

(b) There are no exogenous shock terms affecting the economy, so that all 

expectations are correct without error, e.g. Et,iYt+k = Yt+k 

 

There are some implications of strong-form RE. First, if there is a change in the way 

a variable moves, then the way in which expectations of this variable are formed also 

changes. For example, a change in the government’s monetary policy rule leads to a 

change in the movements of the Fed Funds rate. Second, forecasts are not always 

exactly correct, but forecast errors are not predictable in advance and they average 

out to zero. Third, two reasons why expectations can fail to be rational in the strong-

form sense: (a) agents fail to use all available relevant information and (b) agents fail 

to make optimal use of all available relevant information. 

 

An example of strong-form RE 
 

Suppose an economy is described by the Lucas Model (Caplan, 2000): 

 

(IS)                                    yt = -art + ut                                                                     (1) 

(LM)                             mt-pt = byt-cit +vt                                                                  (2) 

(Fisher equation)                it = rt +Etpt+1-pt                                                                (3) 

(AS)                                  yt = y* + α (pt- Et-1pt)                                                        (4) 

(Monetary Policy Rule) mt+1= mt+φt+1                                                                       (5) 

(Strong-Form RE)       Etpt+1= E [pt+1│It )                                                                   (6) 

Where yt= output, pt= price level, mt= money supply, rt = real interest rate, it = 

nominal rate, ut, vt , and φt = random variables with mean 0, y* = potential output,  

Etpt+1= the subjective forward-looking expectation of representative agent at time t 

regarding the price level in period t+1, E [pt+1│It )= the objectively true conditional 

expectation,  It= information set that is available to the representative agent at the 

end of period t whose contents are assumed to be consistent with strong-form RE. 
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All variables are logs of their level values. In the period t predetermined variables are 

mt and Et-1pt for t > 1. The exogenous variables are: y*, ut, vt and φt ; the positive 

exogenous constants a, b, c, and α ; an initial value m1=m0+ φ1for the period 1 

money supply m1, where m0 is exogenously given, and initial value for E0p1. 

     Model equation (6) is incomplete as it stands, in that the “true conditional 

expectation” on the right hand side needs to be determined in a manner consistent 

with strong-form RE. That is, given this expectation, the subsequent way in which the 

price level for period t+1 is actually determined by the model equations must conform 

to this expectation in the sense that the objectively true It-conditioned expectation of 

the model-generated solution for the price level in period t+1 must coincide with the 

expectation assumed for this price level in model equation (6). To complete this 

model with strong-form RE, we must solve a fixed point problem of the form f(x) = x, 

where x = E [pt+1│It)¹. To determine the needed expectational form, E [pt+1 │It), the 

method of undetermined coefficients is used. 

     Conjecture a possible solution form for pt as a parameterized function of other 

variables, where the parameter values are unknown. Then, determine values for 

these unknown parameters that ensure strong-form RE. For simplicity assume that y* 

= 0. Combining model equations (1) through (4) plus (6) leads to  

------------------------------------------------ 
1. It must be noted that there is a problem for the RE solution, it is not unique. In fact, multi rational 
expectations are likely to exist for models that include equations that are nonlinear in the endogenous 
variables. This spreads some doubts about the “rationality” of these RE solutions. For example, 
consider the following model of an economy: 
                             yt = a + b Et-1yt + єt ,                                                                                               (1) 
                              t≥ 1, a >0, 0<b<1, E [єt │I t -1] = 0 
If a representative agent forms his expectations for yt in period t-1 in accordance with strong-form RE, 
that is,                             Et-1yt = E [yt │It -1]                                                                                         (2) 
 In this case the yt generating process in (1) takes the form  
                            yt= a + b E [yt │It -1]  + єt  , t≥ 1                                                                                 (3) 
The right side of equation (3) can be expressed as a function M(x) of x, where x = E [yt │It -1]. Taking 
conditional expectations of both sides of (3), one can obtains a relation of the form  
                           x = E [M(x) │It -1] 
                              ≡ ft (x) ,    t ≥ 1                                                                                                         (4) 
Suppose that the RE solution for output of a model economy in period t satisfies a fixed point problem 
having form (4) and that two distinct solutions x' and x" exist- that is, ft (x') = x' and ft (x") = x". Thus, if 
all agents in the economy at the end of period t-1 anticipate output level x' for period t, the objectively 
true expected output level for the economy in period t will be x'; and if instead, all agents in the 
economy at the end of period t-1 anticipate output level x" for period t, the objectively true expected 
output level for the economy in period t will be x". 
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     pt = (1/1+c) mt + (c/1+c) E [pt+1│It] – β [pt- E [pt│It-1]]+ wt                                    (7) 

where      β=α[(b+c/a)/(1+c)]; wt= (1/1+c)[(ct/a)ut –vt]                                               (8) 

Suppose it is conjectured that the solution for pt takes the form  

      pt= q1mt + q2wt + q3φt         , t ≥ 1,                                                                       (9) 

 
Lead equation (9) one period and taking conditional expectation of both sides: 
 
      E[pt+1│It] = q1E[mt+1│It]   , t≥ 0,                                                                           (10) 
 

Taking conditional expectation of both sides of equation (5) leads to E[mt+1│It] = mt, 
hence 
 
      E[pt+1│It] = q1mt  , t ≥ 0                                                                                       (11) 

Now lag equation (11) one period and lag equation (5) one period to substitute mt- φt 

in for mt-1, thus obtaining  

     E[pt│It-1] = q1[mt – φt] , t ≥ 1                                                                                 (12) 

 

Combining equations (9) and (12), one then has 
 

     pt - E[pt│It-1] = [q1 + q3] φt + q2wt, t ≥ 1                                                                 (13) 

 
Using equations (11) and (13) to substitute out for the expectations in the price 

equation (7) and combining terms leads to 

 

     pt = [(1/1+c) +(c/1+c)q1] mt + [1-βq2]wt – β[q1+q3] φt ,t≥1                                   (14) 

 

Now we have two distinct equations-equations (9) and (14) that state pt as linear 

function of mt, wt, and φt. To make these equations consistent, set the three 

coefficients in (9) equal to the three coefficients in (14). It yields: 

     q1 = 1;                                                                                                                  (15) 

     q2 = (1/1+β);                                                                                                        (16) 

     q3 = - (β/1+ β);                                                                                                     (17) 
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Thus it follows that one possible solution for pt consistent with strong-form RE is: 

 

     pt = mt + (1/1+β)wt - (β /1+ β) φt                                                                         (18) 

 

Equation (18) shows that the price level is directly proportional to the money supply,  

a positive function of investment shocks, a negative function of money demand 

shocks, and a negative function of unexpected money supply increases. The  

corresponding strong-form RE for pt, to be  substituted in on the right hand side of  

model equation(6), is then found by taking the It-conditional expectation of each side 

of equation (18)  bumped up one period, which yields  

 

     E[pt+1│It] = E[mt+1│It] = mt , t ≥ 1                                                                        (19) 

 

Combining model equation (4) (with y* = 0) with (18) and (19), it follows that the 

solution for period t output consistent with strong-form RE is given by  

 

                yt = α[ (1/1+β) φt + (1 /1+β) wt ]                                                                (20) 

 

Output is an increasing function not of money, but of unexpected money shocks as 

well as of shocks ut and vt to the IS and LM curves. 

  

Equation (20) has some conclusions for economic policymaking. From Lucas’ point of 

view, if the Central Bank decides to lower the unemployment rate by an expansionary 

monetary policy, then according to the REH the policy will be ineffective. People will 

see what the Central Bank is doing and raise their expectations of future inflation. 

This is in turn will counteract the expansionary effect of the increased money supply. 

All that the Central Bank can do is to raise the inflation rate, with at most temporary 

decreases in unemployment. 

   

Different tests of REH 
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Following Sargent (1993), four different tests of Muthian rationality may be 

distinguished. Letting e
t k tx−  signify the expectation reported in the survey for a 

variable Xt made at time t-k.  

 
1. Unbiasedness: the survey expectation should be an unbiased predictor of the 

variable. That is, a regression of the form  

          
e

t t k t tx a b x−= + + ε   

 

Should yield coefficient estimates a=0 and b=1. This is necessary condition. A 

sufficient condition is as follows 

       e
t t k t t t tx x E−− = = μ + ε  

The hypothesis to test is μ = 0 
 

2. Efficiency: the survey expectation should use information about the past 

history of the variable in the same way that the variable actually evolves 

through time. That is, in the two regressions, 

          
e

t k tx−  =  a1Xt-1+ a2Xt-2+ ...+ anXt-n+ єt 

                 Xt  = b1Xt-1+ b2Xt-2+ ...+ bnXt-n+ ut  

It must be true that ai = bi for all i. This test is called orthogonality test. Another 

possibility for examining the efficiency property is that the forecast error is tested for 

serial correlation. 

 

3. Forecast error unpredictability: The forecast error, that is, the difference 

between the survey expectation and the actual realization of the variable, 

should be uncorrelated with any information available at the time the forecast 

is made. 

 

4. Consistency: when forecasts are given for the same variable at different times 

in the future, the forecasts should be consistent with one another. For 

example, in the regressions, 

         2
e

t tx−  = c1 2 1
e

t tx− −  + c2Xt-2+ ...+ cnXt-n+ єt 
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          1
e

t tx− = a1Xt-1+ a2Xt-2+ ...+ anXt-n+ ut 

 

It must be true that ci = ai for all i. 
 

These tests are different ways of testing properties of conditional expectations in that 

whether the reported survey expectations are consistent with being conditional 

expectations. For example, consider the efficiency test and suppose that a1≠b1. 
Substracting the first equation from the second yields the expression 

 

     Xt  - 1
e

t tx−  = forecast error = (a1- b1) Xt-1 

Since, by hypothesis a1≠b1, this implies that the forecast error is correlated with Xt-1, 

which violates the orthogonality of conditional expectations as long as Xt-1 is 

contained in the information set. Although it would be desirable for any expectation 

mechanism to satisfy at least some of these four properties, conditional expectations 

must satisfy all of them. 

2.1.3 Learning processes 

Role of learning in macroeconomics 

Learning in macroeconomics refers to models of expectation formation in which 

agents revise their forecasting rules over time as new data becomes available. 

Learning plays a key rule in macroeconomics. Rational expectations can be 

assessed for stability under different kinds of learning such as least squares learning. 

Learning can be useful when there is a structural change in economy. Suppose a 

new government appears. Agents need to learn about the new regime. Besides, 

learning can be used as a selection criterion when a model has more than one 

equilibrium solution. (Bullard, 1991) Let us illustrate this point using a model of 

hyperinflation. Assume a government prints money to finance a constant budget 

deficit, then  

     1t t t tPG M M −= −                                                                                                   (1) 

where tP  is the price level, t tG G= is the constant real deficit, and tM is the money 

stock. Suppose the demand function for money is as follows 
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where 1
1 (log( ))t

t t t
t

PE p E
P
+

+ = is the expected rate of inflation and real output has 

been assumed constant. Considering equilibrium in the money market and 

substituting (2) into (1) will result in  

 

     1 1( ) ( ) tp
t t t tG f E p f E p e−

+ −= −                                                                              (3) 

(since 
1 1

log , tpt t
t

t t

P Pp e
P P− −

= = ) 

It can be shown that equation (3) has two RE equilibria: the high inflation equilibrium 

and the low inflation equilibrium. If we assume rational expectations, the high inflation 

equilibrium is locally stable and the lower one is unstable. These rankings will be 

reversed if we assume adaptive expectations. If it is considered that stability is not 

the appropriate selection criteria in a rational expectations model then there is no 

mechanism to choose between the two equilibrium solutions. In such cases, learning 

provides a selection criterion. 

     Researchers have frequently faced the issue of multiplicity of RE equilibria in 

nonlinear models. Assume a nonlinear model 1( )e
t ty F y +=  has the S-shape shown 

below 
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                Figure 1.1: Multiplicity of solutions in nonlinear models 
 
The multiple steady states ( )y F y= occur at the intersection of the graph of (.)F  

and 45-degree line. This possibility can appear in models with monopolistic 

competition, increasing returns to scale production or externalities. Other 

specifications of this model can present multiple perfect foresight equilibia taking the 

form of regular cycles in addition to a steady state or sunspot eqilibria, taking the 

form of a finite state Markov process (Evans and Honkapohja, 2001). An interesting 

question may now be posed: which of the steady states are stable under learning.  

Approaches to learning 

Following Evans and Honkapohja (1999, 2001), the approaches to learning can be 

categorized into three groups: eductive learning, adaptive learning, and rational 

learning. 

2.1.3.1 Eductive learning 

In the eductive approach, we examine whether expectations converge to the rational 

expectations equilibrium through a process of reasoning. Consider the following 

example based on Decanio(1979) 

Consider the demand and supply in a market are given by 

     t t tq a bp w= − +                                                                                                   (4) 
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     e
t t tq c dp v= + +                                                                                                     (5) 

Here tq and tp are the actual quantity and price level, tw and tv are random 

disturbances which are assumed to be white noise and a, b, c, and d are constant. 

Demand is downward-sloping linear function of the market price and supply depends 

positively and linearly on expected price due to a production lag. e
tp  denotes the 

expectations of the representative supplier (average expectations). The good is 

assumed to perishable and markets clear. The reduced form for the prices is given by  

     e
t t tp A Bp u= − +                                                                                                   (6) 

where 
a cA

b
−

= ,
dB
b

=  , and t t
t

w vu
b
−

= .  

First we examine the model under RE. The RE hypothesis can be formally stated as  

t-1 1( |I )e
t t t tp E p E p−= =                                                                                                (7) 

So that expectations are the true mathematical conditional expectations, conditional 

on available information at the end of period t-1. The information set includes past 

data { 1tu − , 2tu − ,…,Pt-1,Pt-2,…}=It-1 and knowledge of the model. We can compute RE 

by substituting (7) in (6) and obtain  

     1t t t tp A BE p u−= − +                                                                                             (8) 

Taking conditional expectations Et-1 of both sides yields 1 1t t t tE p A BE p− −= −  so that 

expectations are given by  

     1 1t t
AE p

B− =
+

 

And the unique RE solution is of this form: 
1t t

Ap v
B

= +
+

. 

The RE equilibrium for the model is a random variable that is of the form constant 

plus noise. Under RE the appropriate way to form expectations depends on the 

stochastic process followed by the exogenous variables, tv in this case. 

     Now we consider the model under eductive learning. Suppose agents form their 

expectations initially in an arbitrary manner, for example, static expectations 

     0
1 1t t tE p p− −=                                                                                                           (9) 
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The question is whether they can modify their behavior so that rational expectation 

equilibrium, given by
1

A
B+

, would be attainable. Plugging (9) into (8) results in the 

actual evolution of prices 

     1t t tp A Bp u−= − +                                                                                               (10) 

It is assumed that after some passage of time agents realize (reason or deduce) that 

prices are evolving according to (10) and form new expectation 

     1
1 1t t tE p A Bp− −= −                                                                                                (11) 

The evolution of the system is changed by this new expectation 

     2
1 1( )t t t t tp A B A Bp u A BA B p u− −= − − + = − + +  

Observing the new evolution of prices, agents revise their expectations to  

     2 2
1 1t t tE p A BA B p− −= − +                                                                                     (12) 

So that prices evolve as follows by plugging (12) into (8) 

     2 2 3
1 1( )t t t t tp A B A BA B p u A BA B A B p u− −= − − + + = − + − +                       (13) 

If we repeat this process, the expectations after n iterations will be 

     2 3
1 1...n n n

t t tE p A BA B A B A B A B p− −= − + − + + +                                              (14) 

                2 3
1(1 ... )n n

tA B B B B B p −= − + − + + +  

Since ( 2 3 11 ...
1

nB B B B
B

− + − + + =
+

) and 1
n

tB p − →0 for |B|<1 and large n, 

expectations will converge to rational expectations 

     1 1
n
t t

AE p
B− =

+
 

The rational expectations, in this case, is said to be iteratively E-stable. It is clear that 

convergence to rational expectations is not guaranteed if |B|>1. Guesnerie, 1992; 

Evans, 1985, 1986; Peel and Chappell, 1986; and Bullard and Mitra, 2000), 

employing the iterative expectations method in different models, examined 

convergence to rational expectations. 

2.1.3.2 Adaptive learning 

Agents would learn from data via regression about the model and the policy regime. 

Although this would produce expectations formation very similar to adaptive 
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expectations, it will not necessarily ever converge to rational expectations (Benjamin 

Friedman, 1979). Bray and Savin (1986) and Fourgeaud, Gourieroux and Pradel 

(1986) initially applied least-squares learning mechanism to see whether it would 

converge to rational expectations. Here, for simplicity, it will be assumed that the 

reduced form for prices is as follows 

     1
e

t t t tp A Bp Cz u−= − + +                                                                                     (15) 

where 1tz −  denotes observable exogenous variables. The rational expectations will 

be 1
1 1

n t
t t

A CzE p
B

−
−

+
=

+
 and prices evolve as  

     1 11 1t t t t t
A Cp z u z u

B B
α β− −= + + = + +

+ +
                                                       (16) 

where 
1

A
B

α =
+

 and 
1

C
B

β =
+

  

     It should be noted that this model has a unique RE since tp does not depend on 

expected future prices. Now assume that agents know the true model but are 

unaware of the parameter values α  and β . According to least-squares learning, 

agents are assumed to run least-squares regressions of tp on 1tz −  and an intercept. 

Rational forecast will be generated from the estimated model ( 1 1 1 1
n
t t t t tE p zα β− − − −= + ). 

Agents revise the expectations by reestimating the model as more data becomes 

available. The coefficients ( ,t tα β ) will converge to the unique RE (α ,β ) if B<1. The 

conditions for convergence of recursive least-squares expectations (B<1) can be 

weaker than those under iterative expectations (|B|<1). 

Agents perceive the reduced form as  

     '
t t ty x eβ= +                                                                                                            (17) 

Where the least squares estimated coefficients are given by  

     
1 1

' 1

0 0
( )( )

t t

t i i i i
i i

x y x xβ
− −

−

= =

= ∑ ∑                                                                                             (18) 

The recursive least-squares estimates can be shown to be 

     1 '
1 1 1 1 1( )t t t t t t t tR x y xβ β γ β−
− − − − −= + −                                                                               (19) 

and 

     '
1 1 1 1( )t t t t t tR R x x Rγ− − − −= + −                                                                                        (20) 



 32

with the gain
1

t t
γ = , an important factor in determining the speed of convergence to 

the true parameter, and where tR is an estimate of the moment matrix for tx . For 

suitable initial conditions 
1

1 '

0

t

t i i
i

R t x x
−

−

=

= ∑ .  

     Considering the recursive least-squares of the mean tEz μ=  can help to 

understand the least-squares updating formula. The least-squares estimate is the 

sample mean
1

1 t

t n
n

z z
t =

= ∑ . If we subtract the sample mean at t-1 from both sides of 

tz and rearrange, then  

     1 1
1( )t t t tz z z z
t− −= + −                                                                                           (21) 

Since 
1

1

1
1

1

1
1

t

t n
n

t

t n
n

z z
t

z z
t

=
−

−
=

=

=
−

⎧ ∑⎪
⎨

∑⎪⎩

1

1 1
1

1
1

1

( 1 )

t t

t n t n
n n

t

t n
n

t z z z z
t

t z z

−

= =
−

−
=

= = +

− =

⎧ ∑ ∑⎪
⎨

∑⎪⎩
 

1 1 1 1 1
1( 1) ( ) ( )t t t t t t t t t t ttz t z z t z z z z z z z z
t− − − − −− − = → − = − → − = − →

1 1
1( )t t t tz z z z
t− −= + −  

Adaptive methods of learning have the same structure which is given by 

 

     1 1( , , )t t t t t tQ Xθ θ λ θ θ− −= +                                                                                   (22) 

Where 
1

t t
λ =  in the case of least-squares, θ  is a vector of parameters, Q  is a 

function and tX  is the vector of variables in the structural model. Adaptive 

expectations is in fact a special case of least-square adaptive learning (21) if the gain 

parameter ( tλ λ= ) is constant.  

The evolution of tX will depend on 1tθ − , in the case of a linear system 

     1 1 1( ) ( )t t t t tX A X B Wθ θ− − −= +                                                                               (23) 

where tW is a vector of disturbance term. 
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     Stability results for linear and nonlinear systems have been derived by Marcet and 

Sargent (1989a, 1989b), Evans and Honkapohja (1998). Sergent (1999) asserts that 

if it is assumed that the US authorities employed constant-gain least-squares learning 

about the Phillips curve and maximized a social objective function to pick inflation, 

this fits US post-war data including the ‘great inflation’ well while rational expectations 

do not. 

 

Stability under adaptive learning 

When expectations are modeled by least-squares learning there is convergence to 

the rational expectation equilibrium (REE) as t→ ∞ provided that that a stability 

condition is met. This condition can usually be obtained by the expectational stability 

(E-stability) approach. Consider the agents’ view of stochastic process for the market 

price as 1t t tp z uα β −= + +  which is called the perceived law of motion (PLM). 

Expectations are based on the PLM and hence given by 1
e
t tp zα β −= + , where 

(α ,β ) may not be the REE values. Agents are boundedly rational because they do 

not initially know parameters (α ,β ) and they try to learn the REE solution over time. 

Inserting the PLM into the reduced form yields the corresponding actual law of motion 

(ALM):  

     1( ) ( )t t tp A B C B z uα β −= − + − +                                                                  (24) 

This ALM has the same form as the PLM but with different values of the parameters. 

In fact, the above equation yields a mapping from the PLM parameters (α ,β ) into 

the ALM parameters T (α ,β ) = ( A Bα− ,C Bβ− ). 

     Only at the REE values does one have T (α ,β ) = (α ,β ). Expectational stability 

looks at whether the REE is the stable outcome of a process that parameters of the 

PLM are adjusted slowly toward the parameters of the ALM that they induce. This 

adjustment is described by a differential equation and E-stability corresponds to local 

stability of the REE under these dynamics.  

     Consider a vector version of the model. Using the T mapping, E-stability is defined 

by the ordinary differential equation  

     
d T

d
α α α
β β β⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦τ                                                                   (25) 
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An REE is said to be E-stable if it is a locally asymptotically stable fixed point (or 

equilibrium point or steady state) of this differential equation. Hereτ  denotes virtual 

time (it is distinct from real time t and is measured in discrete periods). Plugging in 

the form of the mapping the system of differential equations will then be: 

     ( 1)d A B
d
α α= − +
τ

 ,                                                                                           (26) 

     ( 1)i
i i

d C B
d
β β= − +
τ

, for i = 1, 2,…, n,                                                      (27) 

where n is the dimension of the vector of exogenous variables. Clearly, the unique 

fixed point is E-stable if B<1. Least-squares learning converges locally to an REE if 

and only if that REE is E-stable. Intuitively, a model is stable or learnable if the new 

data generated by one more observation under learning is on average closer to the 

REE than the current belief derived from past data. 

 

2.1.3.3 Rational learning 

The rational approach to learning recognizes the benefits and costs of more accurate 

forecasts for an agent so that rational expectations may not be achieved unless 

calculation costs are zero (Feige and Pierce, 1976; Evans and Ramsey, 1992). 

However the widely used method to model rational learning has been based on 

Bayes’ theorem. It is a method of updating belief, implying that beliefs change by 

learning. Data or new facts only influence the posterior belief, P (A|B), through the 

likelihood function P (B|A) 

     
P(B|A)P(A)( |B)=

 P(B)
P A                                                                                         (28) 

where P(A) is prior belief. Many researchers used Bayes’ rule to model learning in 

the economic literature including learning about a new regime (see Cyert and 

Degroot,1974; Backus and Driffill, 1985; Lewis, 1998; and Ellison and Valla, 2000). 

Consider the following example presented by Lewis (1988). 

     Assume the reduced form for the exchange rate is given by  

     1( )t t t t ts m E s sα += + −                                                                                        (29) 

where tm is the money supply at time t, ts exchange rate and α  is a positive 

constant. Also assume the money supply is as follows 
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     0
0t tm θ ε= +                                                                                                         (30) 

where 0θ  is a constant and 0 2
0~N(0, )tε σ . Suppose at t=0 agents come to believe 

that the supply money process may have changed due to a new regime. The new 

process has the same form (30) except with different mean and variance: 

     1
1t tm θ ε= +  for t≥0                                                                                              (31) 

We assume 1 0θ θ< and 1 0θ = , so that the process can be interpreted as going from 

‘loose’ to ‘tight’ money. It is also assumed agents believe that if the policy has 

changed it will not be changed back and they also know the parameters of the 

potential new process. We can obtain the solution by solving (31) forward 

     
0

(1 ) i
t t t i

i

s E mγ γ
∞

+
=

= − ∑                                                                                         (32) 

where 
1
αγ
α

=
+

 

Expected money supply equals 

0 1,(1 )t t i tE m Pθ+ = −  for any i>0 and t≥0                                                                   (33) 

where 1,tP is agents’ assessed probability at time t that the process changed at time 0.      

Finally the exchange rate is obtained as  

     1, 0(1 ) (1 )t t ts m Pγ γ θ= − + −                                                                                 (34) 

To obtain the best estimate of 1,tP , agents combine their prior beliefs about the 

probability together with their observations of money outcomes each period to update 

their posterior probabilities according to the Bayes’ rule 

     1, 1 1
1,

1, 1 1 0 , 1 0

( | )
( | ) ( | )

t t
t

t t t t

P f I
P

P f I P f I
θ

θ θ
−

− −

=
+

                                                                      (35) 

where 0,tP is the conditional probability of no change at t=0, 1( | )tf I θ  is the probability 

of observing the information set tI given that tm follows the ith process. The ratio of 

posterior probabilities of each process, the posterior odds, is given by 

     

2

1, 1, 1 1 1, 1 1 1
2

0 , 0 , 1 0 0 , 1 0

0 0

1 1( ) exp( ( ) )( | ) 2
( | ) ( )1 1( ) exp( ( ) )2

t t t t

t t t t

m
P P f m P
P P f m P m

θ σ σ
θ θ

σ σ

− −

− −

⎡ ⎤⎡ ⎤−⎢ ⎥⎡ ⎤ ⎢ ⎥⎣ ⎦⎢ ⎥= = ⎢ ⎥
−⎢ ⎥⎡ ⎤⎣ ⎦ −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

                (36) 
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The first term on the right-hand side of equation (36) indicates that the change from t-

1 to t in the relative conditional probabilities depends on the observation of the 

current money supply at time t. For instance, for some observation of current money 

supply, say m , the probability of being under either policy process is the same; 

i.e., 1 0( | ) ( | )t tf m f mθ θ= , so that the posterior probabilities, 1,

0,

t

t

P
P

,equal the prior 

probabilities, 1, 1

0, 1

t

t

P
P

−

−

, and therefore the conditional probabilities do not change.  

However, observations of money different from m convey information, the last term 

on the right-hand side of (36), about the regimes causing probabilities to be revised. 

To analyze the behavior of the probabilities, equation (36) can be written as  

     1, 1, 1 1

0, 0, 1 0

( | )log( ) log( ) log( )
( | )

t t t

t t t

P P f m
P P f m

θ
θ

−

−

= +                                                               (37) 

Equation (37) is a linear difference equation in the dependent variable, 1,

0,

log( )t

t

P
P

. For 

simplicity assume that 1 0σ σ σ= = , then 

     
2 2

1 0
2

0

( | ) ( )log
( | ) 2

k k k

k

f m m m
f m

θ θ
θ σ

⎡ ⎤− −
= ⎢ ⎥
⎣ ⎦

                                                                    (38)  

Given the initial probabilities 1,0P and 0,0P , and plugging (38) into (37), we obtain the 

solution to the difference equation as 

     
2

1, 1,0 0 0
2

10, 0,0

2log( ) log( )
2

t
t k

kt

P P m
P P

θ θ
σ=

⎡ ⎤−
= + ⎢ ⎥

⎣ ⎦
∑                                                             (39) 

Equation (39) indicates that the behavior of the probabilities depends on the actual 

observations of the process. For example, when the money supply observed today is 

strongly negative, agents think it is more likely that policy has changed.  

Taking expectations of (39) and defining iθ  as the true θ gives 

     
2

1, 1,0 0 0
2

0, 0,0

2log( ) log( )
2

t i

t

P P
E t

P P
θ θθ

σ
⎡ ⎤−

= + ⎢ ⎥
⎣ ⎦

                                                             (40) 

Equation (40) shows that the expected value of the ‘true’ process rises over time. For 

example, if policy has changed so that  1 0iθ θ= =  , then the log probability increases 
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to infinity due to the term
2
0

22
tθ
σ

 as t goes to infinity. Similarly, when policy has not 

changed so that  0iθ θ=  the log probability goes to negative infinity due to the 

term
2
0
22

tθ
σ

−
 as t goes to infinity. Also, it can be demonstrated that the expected value 

of the log ratio of probabilities converges and its speed depends positively on
2
0
2

θ
σ

. 

Therefore, the speed of market learning depends upon the squared signal-to-noise 

ratio. 

     Using the above analysis, Lewis (1988) investigates the effects of the probability 

behavior on the exchange rate and forecast errors. Taking expectation of the 

exchange rate at t-1 and subtracting from (34) we obtain the forecast errors of 

exchange rate corresponding to each potential process 

     0
1 0 1, 1 1,(1 ) ( )t t t t t ts E s P Pγ ε θ γ− −− = − + −   if 0iθ θ=                                              (41) 

     1
1 0 0, 1 0,(1 ) ( )t t t t t ts E s P Pγ ε θ γ− −− = − + −  if 1iθ θ=                                               (42) 

The expected value of the last component of the equations (41) and (42) shows 

dependence on the conditional probabilities. Whilst agents are learning, the evolution 

of theses probabilities depends on the random observations of the money process, 

and does not equal the true values.  

Taking expectations of forecast errors in equation (42) conditional upon a change in 

policy to 1θ  and initial probabilities, gives the expected evolution of forecast errors, 

for a large number of km as 

     1 1 0 0, 1 1 0, 1( | ) [ ( | ) ( | )] 0t t t t tE s E s E P E Pθ θ θ γ θ− −− = − − <                                          (43) 

The inequality is negative since the discount rate,γ , is less than one and  

0, 1 0, 1 1( | ) ( | )t tE P E Pθ θ−< . Hence, if agents do not completely realize that the policy 

has changed to a ‘tighter’ money supply process, the exchange rate will be expected 

to be weaker than subsequently occurs. Lewis’ model shows well how learning about 

a regime change using Bayes’ rule can imitate the outcomes of the Peso problem¹. 

 
-------------------------------------- 

1. The peso problem, which was initially examined by Milton Friedman in his analysis of the behavior 
of the Mexican currency, refers to a situation where rational agents anticipate the possibility of future 
changes in the data-generating mechanism of economic variables. 
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3. Expectation formation using statistical predictors 
 
Chapter three presents expectation formation using statistical predictors. Statistical 

predictors are used by economic agents to generate forecasts on future values of 

variable of interest. From this point of view, statistical predictors may be regarded as 

simple approaches to expectation formation that are more complex than simple 

adaptive expectations but less demanding than the concept of rational expectations. 

Basically, statistical predictors are backward-looking functions of past observations 

that provide estimates of future values. Broadly, for statistical predictor, a distinction 

can be made between parametric and nonparametric approaches. The parametric 

approaches including autoregressive integrated moving average (ARIMA) models, 

state space models, and Kalman filter and nonparametric regressions such as the 

additive model (AD), multiple adaptive regression splines (MARS), projection-pursuit 

regression (PPR) are discussed.  

 

3.1 Parametric prediction models 

The parametric regression approach is based on the prior knowledge of the 

functional form relationship. If knowledge is correct, the parametric method can 

model most data sets well. However, if the wrong functional form is chosen a priori, 

this will result in larger bias as compared to competitive models. Parametric linear 

models, as a type of parametric regression, are frequently used to describe the 

association between the dependent variable and explanatory variables. They require 

the estimation of a finite number of parameters. We will apply ordinary least square 

(OLS) and two-stage least square (2SLS) estimators for linear models. Also, 

parametric linear dynamic models such as autoregressive and moving-average 

models which are based on a atheoretical or data-driven approach will be employed. 

Now we review some basic theory for time series and present a brief discussion of 

state-space model and Kalman filter. 

 

3.1.1 ARIMA modeling 

Autoregressive integrated moving average (ARIMA) or (Box-Jenkins) models are the 

basis of many fundamental ideas in time-series analysis. In order to analyze a time 
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series, it must be assumed that the structure of the stochastic process which 

generates the observations is essentially invariant through time. The important 

assumption is that of stationarity, which requires the process to be in a particular 

state of ‘statistical equilibrium’ (Box and Jenkins, 1976). A stochastic process is said 

to be second-order (or weak) stationary if its first and second moments are finite and 

do not change through time 

     [ ]tE X μ=  

     2[ ]tVar X σ=  

     [ , ] [( )( )]t t k t t kCov X X E X Xμ μ+ += − −  

                           kγ=  

Note that 0γ equals the variance, 2σ . The set of autocovariance coefficients { kγ } for 

k=0,1,2,... constitute the autocovariance function (acv.f.) of the process. The 

autocorrlation coefficients, { kρ } are also obtained as 

     
0

k
k

γρ
γ

=  

The set of autocorrlation coefficients, { kρ } constitute the autocorrlation function 

(ac.f.). If the time series tX is stationary, kρ measures the correlation at lag k 

between tX and t kX + . Another useful function in model identification is the partial 

autocorrelation function. It measures the excess correlation at lag k which has not 

already been accounted for by autocorrelations at lower lags.  

     The pure random process ( tε ) is a sequence of uncorrelated, identically 

distributed random variables with zero mean and constant variance. This process is 

stationary and has the following ac.f. 

     {1      0
0     otherwise

k
kρ

==  

It is also called uncorrelated white noise or innovation process. Using this process, 

the random walk model is stated as 

     1t t tX X ε−= +  

Where { tε } denotes a pure random process. Since the variance increases through 

time, the series tX is not stationary. However, it would be stationary if we take the 

first differences of the series ( 1t tX X −− ) tε= . 



 40

 

Autoregressive (AR) processes 

A process { tX } is said to be an autoregressive process of order p, AR (p), if it s a 

weighted linear sum of the past p values plus a random shock so that 

     1 1 2 2 ...t t t p t p tX X X Xα φ φ φ ε− − −= + + + + +  

where α  and 1φ to pφ are unknown parameters. The process { tε } denotes a white 

noise with zero mean and variance 2
εσ . Using the lag operator L with k

t t kL x x −= , the 

AR (p) model can then be written in a more concise form as 

     ( ) t tL Xφ α ε= +  

where 2
1 2( ) 1 ... p

pL L L Lφ φ φ φ= − − − − is a polynomial in L of order p. The statistical 

properties of AR process are determined by values of the parameters 1φ ,..., pφ . For 

instance, the condition for stationary can be expressed in terms of the roots of the 

polynomial ( )zφ by factorizing this polynomial in terms of its p roots 1
i

i
z α= as 

     1 2( ) (1 )(1 )...(1 )pz z z zφ α α α= − − − . 

The process is stationary if and only if | | 1kα < for all k=1,...,p- that is the roots of 

( ) 0zφ = should lie outside the unite circle. 

The simplest type of AR process is AR (1), given by 

     1t t tX Xφ ε−= +  

Here, for simplicity, we assume that 0α = . It is clear that if 1φ = , the model reduces 

to a random walk, when the model is non-stationary. This process, by recursive 

substitution of the lagged values of tX , can be rewritten as 

     
2

1
1

0

t
t j

t t j
j

X Xφ φ ε
−

−
−

=

= +∑ , t=2,...,n. 

If | | 1φ > , then the impact of the white noise ε grows over time, the series will be 

explosive and hence non-stationary. However, if | | 1φ < the impact dies out over time 

and the process will be stationary. 

It can be shown that the variance and the ac.f. of a stationary  AR(1) process 

(with | | 1φ < ) are given by 
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2

0 21
σγ
φ

=
−

 

     
0

kk
k

γρ φ
γ

= =  

The autocorrelations approach exponentially a value of zero as k→∞. For 1φ = the 

series tX , which is non-stationary, does not have a finite variance and it has a 

trending behavior. For the AR(p) process, the partial ac.f. is zero at all lags greater 

than p which implies that we can determine the order of an AR process by looking for 

the lag value at which the sample ac.f. “cuts off” (not significantly different from zero). 

 

Moving average (MA) processes 

A process { tX } is called a moving average process of order q, MA (q), if  

     1 1 ...t t t q t qX α ε θ ε θ ε− −= + + + +                                                                            (1) 

where tε is white noise. This process may be written in the form  

     ( )t tX Lα θ ε= +  

where 2
1 2( ) 1 ... q

qL L L Lθ θ θ θ= + + + +  is a polynomial in L of order q.  

This process is stationary for all parameter values with the following properties 

     [ ]tE X α=  

     2 2
0

1
(1 )

q

j
j

γ σ θ
=

= +∑  

     2

1
( )

q

k k j j k
j k

γ σ θ θ θ −
= +

= + ∑  for k≤q and 0kγ =  for k>q. 

In order to ensure that there is a unique MA model, we need to impose some 

restrictions on the parameters, called invertibility condition, of the model. In fact, if a 

MA model can be expressed as an autoregressive model, then the MA model is 

called invertible. In this case the error terms tε  in (1) are equal to the 

innovations 1( | )t t t tX E X Iε −= − , where 1tI −  is the information set available at time t-

1, 1 1 2{ , ,...}t t tI X X− − −= , so that 

     1 1 1( | ) ...t t t q t qE X I α θ ε θ ε− − −= + + +  
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The invertibility condition can be expressed in terms of the roots of the polynomial 

( )zθ  by factorizing the MA polynomial in terms of its q roots as  

     1 2( ) (1 )(1 )...(1 )qz z z zθ β β β= − − −  

Invertibility is equivalent to the condition that | | 1jβ < for all j=1,...,q (Heij et al, 2004)- 

that is the roots of ( ) 0zθ = should lie outside the unite circle. 

     The simplest type of the MA (q) model is the first order case, MA (1), given by 

     1t t tX ε θε −= +  

Here, for simplicity, we assume that 0α = . This process is stationary for all values of 

θ  with an ac.f. given by 

     2

1                      0

      1(1+ )
0                     1

k

k

k

k

θρ θ

⎧ =
⎪⎪= =⎨
⎪
⎪ >⎩

 

Hence the ac.f. ‘cuts off’ at lag 1. For the MA (1) process to be invertible, tε should be 

expressed in terms of current and past values of the observed process. Therefore 

     1t t tXε θε −= −                                                                                                        (2) 

     1 1 2t t tXε θε− − −= −                                                                                                   (3) 

Plugging (3) into (2) results in 

     2
1 2 1 2( )t t t t t t tX X X Xε θ θε θ θ ε− − − −= − − = − +  

By further substitutions we obtain 

     2 2 1
1 2 2 1... ( ) ( )t t

t t t tX X X Xε θ θ θ θ ε− −
− −= − + − + − + −  

Invertibility requires that, in the limit, the error term on the right-hand side vanishes. 

This holds if and only if | | 1θ < . 

 

Autoregressive moving average process: ARMA (p,q) 

An autoregressive moving average process: ARMA (p,q) is obtained by combining p 

autoregressive terms and q moving average terms and can be written as 

( ) ( )t tL X Lφ α θ ε= +  

with AR polynomial 2
1 2( ) 1 ... p

pL L L Lφ φ φ φ= − − − − and 
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MA polynomial 2
1 2( ) 1 ... q

qL L L Lθ θ θ θ= + + + + . An ARMA model is stationary 

provided that the roots of ( ) 0Lφ = lie outside the unite circle. This process is 

invertible if the roots of ( ) 0Lθ =  lie outside the unite circle. Low order ARMA models 

are of much interest since many real data sets are well approximated by them rather 

than by a pure AR or pure MA model. In general, ARMA models need fewer 

parameters to describe the process.  

 

In most cases economic time series are non-stationary and therefore we cannot 

apply ARMA models directly. One possible way to remove the problem is to take 

difference so as to make them stationary. Non-stationary series often become 

stationary after taking first difference ( 1 (1 )t t tX X L X−− = − ). If the original time 

series is differenced d times, then the model is said to be an ARIMA (p, d, q) where ‘I’ 

stands for integrated and d denotes the number of differences taken. Such a model is 

described by 

     ( )(1 ) ( )d
t tL L X Lφ α θ ε− = +  

The combined AR operator is now ( )(1 )dL Lφ − . The polynomials ( )zφ  and 

( )zθ have all their roots outside the unit circle. The model is called integrated of order 

d and the process is said to have d unit roots. 

 

3.1.2 State-space modeling 

State space models originate from control theories (Kalman, 1960) but have been 

received much attention in the economics literature since 1990s. A state space model 

includes two equations: measurement (or observation) equation and transition (or 

state) equation. The measurement equation specifies the relationship between the 

observed and unobserved (state) variables while transition equation models the 

dynamics of state variables. For a linear Gaussian state space model, the Kalman 

filtering approach provides optimal estimates for the state variables based on the 

information from the transition equation and the observations. 

State-space model 
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Following Harvey (1991, 1993), let ty  be a 1N ×  vector of observed variables at 

time t which is related to an 1m×  state vector, tα , through a measurement equation 

     ,t t t t ty Z dα ε= + +          1,...,t T=                                                                     (1) 

where tZ  is an N m×  matrix, td  an 1N ×  vector and tε  an 1N ×  vector of serially 

uncorrelated disturbances with mean zero and covariance matrix tH . The unknown 

vector tα  is assumed to follow a first order Markov process, 

     1 ,t t t t t tT c Rα α η−= + +          1,...,t T=                                                                (2) 

where tT  is an m m×  matrix, tc  an 1m× vector, tR  an m g×  matrix, and tη  a 

1g × vector of serially uncorrelated disturbances with mean zero and covariance 

matrix tQ . Equation (2) is called the transition equation. The matrices tZ , td ,and tH  

in the measurement equation and the matrices tT , tc , tR ,and tQ  in the transition 

equation are referred to as the system matrices. The model is said to be time 

invariant or time homogeneous if the system matrices do not change over time, 

otherwise, it is time variant. For instance, the AR (1) plus noise model  

     t t ty μ ε= +  

     1t t tμ φμ η−= +      

is a time invariant state space model with tη  being the state. 

Kalman filter 

The Kalman filter can be applied to the state-space form equations to estimate time-

varying parameters. The estimations can be carried out in three steps: prediction, 

updating and smoothing. The first step is to calculate the optimal estimator of the 

state vector given all the currently available information. Reaching the end of series, 

optimal predictions of state vector for the next period can be made. Updating step is 

done as new observation becomes available. Using a backward recursion, the 
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estimators are smoothed based on the full sample in the final step. These steps are 

presented below in more detail. 

 

Let ta  denote the optimal estimate of the state vector, tα , based on all observations 

(t=1,…,t), and tP  the m m×  covariance matrix of the estimate error, that is  

     '[( )( ) ]t t t t tP E a aα α= − −  

Now assume that we are at time t-1, and that 1ta −  and 1tP−  are given. The optimal 

estimate of tα  is then given by the prediction equations 

     | 1 1t t t t ta T a c− −= +
 

and 

     ' '
| 1 1 ,t t t t t t t tP T P T R Q R− −= +          1,...,t T=                                                   

While the corresponding estimate of ty  is  

     |t-1 |t-1 ,t t t ty Z a d= +%          1,...,t T=                                                   

Once the new observations of ty  becomes available, the estimator of the state can 

be updated with updating equations 

     ' 1
| 1 | 1 ,t t t t t t t ta a P Z F v−
− −= +  

and  

     ' 1
| 1 | 1 | 1,t t t t t t t t t tP P P Z F Z P−
− − −= −          1,...,t T=                                                   

where | 1t t t t t tv y Z a d−= − −  is the prediction error and '
| 1t t t t t tF Z P Z H−= +  the MSE 

of the prediction error. 

     The prediction and updating equations utilize information available at time t in 

estimating the state vector while the smoothing step is done using the information 

available after time t. Applying the fixed-interval smoothing algorithm, the last step 

start with the final quantities, Ta  and TP  , and work backwards. The smoothing 

equations are 

     *
|T 1|T 1 1( )t t t t t t ta a P a T a c+ + += + − −  

and 

     * *'
|T 1|T 1|( )t t t t t t tP P P P P P+ += + −  

where 
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     * ' -1
1 1|t ,t t t tP PT P+ +=          1,...,t T=                                                   

with T|T Ta a=  and T|T TP P=  . 

 

Estimating the state vector 

Estimation of parameters in the state equation (vector ψ  which is referred to as 

hyperparameters), assuming initial values of ta and tP  ( 0a and 0P )¹, can be carried 

out by the method of maximum likelihood. For a multivariate 

     t-1
1

( ; ) ( |Y )
T

t
t

L y p yψ
=

=∏  

where t-1( |Y )tp y  denotes the distribution of ty  conditional on 

}{t-1 1 2 1Y , ;,...,t ty y y− −= . For a Gaussian model, the likelihood function above can be 

written as 

     ' -1
t t t

1 1

1 1log ( ) log 2 log|F |- |F |
2 2 2

T T

t
t t

NTL v vψ π
= =

= − − ∑ ∑  

 

Time-varying parameter models and state-space form 

It is possible to analyze the time-varying parameter model which can be cast in state-

space form. Consider a linear model 

     ' ,t t ty x β ε= +         1,...,t T=                                                   

where tx  is a 1k ×  vector of exogenous variables and β  the corresponding  1k ×  

vector of unknown parameters. We can use the state-space model and Kalman filter 

to estimate the time-varying parameter model. In this case, β  is allowed to evolve 

over time according to various stochastic processes. Now let us examine different 
----------------------------------------------- 

1. The initial values for a stationary and time-varying transition equation are given as 1
0 ( )a I T c−= −  

and 1 '
0( ) [ ] ( )vec P I T T vec RQR−= − ⊗ . If the transition equation is non-stationary, the initial values must 

be estimated from the model. To do so, there are two approaches. The first assumes the initial state is 

fixed with 0 0P =  and is estimated as unknown parameters in the model. The second assumes that the 

initial state is random and has a diffuse distribution with 0P Iκ= , whereκ  goes to ∞ . 
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forms of time-varying parameter model. 

Consider first, the random walk model. Here the time-varying coefficients follow a 

random walk. The state space form is as follows 

     ' ,t t t ty x β ε= +         1,...,t T=                                                   

     1t t tβ β η−= +  

where 2~ (0, )t NIDε σ  , 2~ (0, )t NID Qη σ  , and tβ denotes the state vector. The 

k k×  positive semi-definite matrix Q  determines to what extent it may vary. In case  

0Q = , the model reduces to an ordinary linear regression model because 1t tβ β −= . 

But if Q  is positive definite, all coefficients will be time-varying. 

     The second time-varying form might be referred to as return to normality model. In 

this model, the time-varying coefficients are generated by a stationary vector AR (1) 

process. The state-space form could be represented as 

     ' ,t t t ty x β ε= +         1,...,t T=                                                   

     1( )t t tβ β φ β β η−− = − +  

where 2~ (0, )t NIDε σ  , 2~ (0, )t NID Qη σ . The stationary coefficients evolve 

around a constant mean, β . If the matrix 0φ = , the model is called random-

coefficient model. In this case, the coefficients have a fixed mean (β ) but are 

allowed to evolve randomly around it. 

     Applying the Kalman filter and letting *
t tβ β β= − , the return to normality model 

could be rewritten as  

     ' '( ) ,t t t t ty x x α ε= +         1,...,t T=                                                   

and 

     1
* *

1

00
0

t t

tt t
t

Iβ β
ηβ β

α
φ

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = +⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
 

A diffuse prior is used for tβ  , meaning that starting values are constructed from the 

first k  observations. The initial values of *
tβ  is given by a zero vector and the initial 

values of covariance matrix is given as 
1 '

0( ) [ ] ( )vec P I T T vec RQR−= − ⊗ . 
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3.2 Nonparametric prediction models 

Over the last decade, increasing attention has been devoted to nonparametric 

regression as a new technique for estimation and forecasting in different sciences 

including economics. This section will examine nonparametric regression.  

     Why is nonparametric regression important? A comparison between parametric 

and nonparametric estimation is needed to answer this question. In parametric 

regression estimation such as linear regression one assumes the regression function 

is known and depends only on a few parameters, and one uses data to estimate 

these parameters. As a result, we can easily interpret the coefficients but this method 

has a limited flexibility and is useful only when the underlying relationship is close to 

the pre-specified estimation function in the model. In fact if the true underlying 

regression function is not linear then a linear regression estimate will produce a large 

error for every sample size. 

     Nonparametric regression analysis relaxes the assumption of linearity in 

regression analysis and allows to explore data more flexibly. However, in high 

dimensions the variance of the estimates increases rapidly, known as the “curse of 

dimensionality”, due to the sparseness of data. To overcome this problem, some 

nonparametric methods have been proposed such as the additive model (AD), 

multiple adaptive regression splines (MARS), projection-pursuit regression (PPR). 

 

3.2.1 Nonparametric Smoothers 

The general nonparametric regression model (Fox, 2000, 2005) is as follows: 

     '( )i i iy f X ε= +   

           1 2( , ,..., )i i ik if x x x ε= +         2~ (0, )i NIDε σ  

 

The regression function is (.)f unspecified in advance and is estimated directly. In 

fact, there is no parameter to estimate. It is implicitly assumed that (.)f  is a smooth, 

continuous function. If there is only one predictor ( )i i iy f x ε= +  then it is called 

‘scatter plot smoothing’ because it traces a smooth curve through a scatter plot of y 

against x.  

    There are several smoothers such as local averaging, kernel smoother, Weighted 

Scatterplot Smoothing (lowess) and spline Smoother that fit a linear or polynomial 
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regression to the data points in the vicinity of x and then use the smoothed value as 

the predicted value at x. 

 

3.2.1.1 Local Averaging 

In local averaging procedures, we move a window continuously over the data, 

averaging the observations that fall in the window. The estimated values ˆ ( )f x  at a 

number of focal values of x are calculated and connected. It is possible to use a 

window of fixed width or to adjust the width of window to include a constant number 

of observations. Local averages are usually subject to boundary bias, roughness and 

distortion (when outliers fall in the window).  

 

3.2.1.2 Kernel Smoother 

A Kernel smoother is an extension of local averaging and usually produces a 

smoother result. At the focal value 0x , it is of the form 

     

0

1
0

0

1

ˆ ( )

n
i

i
i

n
i

i

x xy K
bf x x xK

b

=

=

−⎛ ⎞
⎜ ⎟
⎝ ⎠= −⎛ ⎞

⎜ ⎟
⎝ ⎠

∑

∑
      

where b is a bandwidth parameter, and K a kernel function. The Gaussian kernel 

( ( ))NK z and the tricube kernel ( ( ))TK z are popular choices of kernel functions. 

     
2 21( )

2
z

NK z e
π

−=  

     { 3 3(1-|z| )  for     |z |<1
0            for     |z| 1 ( )TK z ≥=  

For the Gaussian kernel the bandwidth b is the standard deviation of a normal 

distribution and for the tricube kernel b is the half-width of a window enclosing the 

observations for the local regression. Although the kernel smoother has a better 

performance as compared to the local average regression, it is still subject to 

boundary bias. 

     It is implicitly assumed that the bandwidth b is fixed, but it is possible for kernel 

smoothers to be adapted to nearest-neighbor bandwidths. We can adjust b (x) so that 

a constant number of observations m are included in the window. The fraction m/n is 

called the span of the kernel smoother and is chosen based on a cross-validation 



 50

approach. The kernel estimator can produce smoother results using larger 

bandwidths. In fact, there is a direct relationship between the span and smoothing 

degree: the larger the span, the smoother the result.  

 

3.2.1.3 Lowess Smoother 

As mentioned above, the kernel estimation has some problems. Local polynomial 

regression tries to overcome these difficulties and provides a generally adequate 

method of nonparametric regression which extends to additive regression (Fox, 

2005). An implementation of local polynomial regression is lowess (Cleveland, 1979). 

The algorithm used by lowess smoothing applies robust locally linear fits. It is similar 

to local averaging but the data points that lie in the window are weighted so that 

nearby points get the most weight and a robust weighted regression is used. 

     We can examine local polynomial regression in two cases: simple regression and 

multiple regression. 

Simple Regression: suppose we want to estimate the simple regression 

( )i i iy f x ε= +  at a particular x-value, for example 0x . Local polynomial regression 

extends kernel estimation to a polynomial fit at 0x , using local kernel weights, 

0[( ) / ]i iw K x x b= − . We implement a pth -order weighted-least-squares polynomial 

regression of y on x, 

     2
1 0 2 0 0( ) ( ) ... ( ) p

i i i p i iy x x x x x x eα β β β= + − + − + + − +  

to minimize the weighted residual sum of squares, 2
1

n
i ii

w e
=∑ . This procedure is 

repeated for representative values of x. As in kernel regression, the bandwidth b can 

either be fixed or variable, b(x), and the span of the local-regression smoother is 

selected based on a cross-validation approach. 

Multiple Regression: in this case, '( )i i iy f X ε= +  , we need to define a      

 a multivariate neighborhood around a focal point '
0 01 02 0( , ,..., )kx x x x= . Furthermore, 

Euclidean distance is employed in the lowess function as: 

2
0 0

1

( , ) ( )
k

i ij j
j

D x x z z
−=

= −∑  where the ijz  are the standardized predictors, 

ij ij j jz x x s= −  , jx  is the mean of the jthpredictor and js is its standard deviation. 

Calculating weights are based on the scaled distances:   
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     0( , )i
i

D x xw W
b

⎡ ⎤= ⎢ ⎥⎣ ⎦
 

Where w (.) is a weight function. In some cases, b needs to be adjusted to define a 

neighborhood including the [ns] nearest neighbors of 0x (where the square brackets 

denote rounding to the nearest integer). 

 

As a simple example, a local linear fit takes the form: 

 

     2
1 1 01 2 2 02 0( ) ( ) ... ( )i i i k ik k iy x x x x x x eα β β β= + − + − + + − +  

 

The combinations of predictor values are used repeatedly to create the regression 

surface. 

 

3.2.1.4 Spline Smoother 

Suppose we have n pairs ( , )i ix y . A smoothing spline equation is considered as  

     [ ] max

min

2 2
''

1

( ) ( ) ( )
n x

i i x
i

ss h y f x h f x dx
=

⎡ ⎤= − + ⎣ ⎦∑ ∫  

The equation consists of two terms. The first term is the residual sum of squares and 

the second term is a roughness penalty. The object is to find the function ˆ ( )f x with 

two continuous derivatives that minimized the penalized sum of squares. Here h is a 

smoothing parameter. For h=0, ˆ ( )f x will interpolate the data if the ix are distinct; this 

is similar to a local-regression estimate with span=1/n. If h is very large, then f̂ will 

be selected so that "ˆ ( )f x is everywhere 0, which implies globally linear least-

squares fit to the data. This is again similar to local regression with infinite 

neighborhoods.  

     The Spline Smoother is more attractive than local regression because there is an 

explicit objective-function to optimize. But it is not easy to generalize splines to 

multiple regression. Generally, the smoothing parameter h is selected indirectly by 

setting the equivalent number of parameters for the smoother .Both smoothing-spline 

and local-regression fits with the same degree of freedom are usually very similar. 
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3.2.2 Nonparametric Models 

3.2.2.1 Additive model (AD) 

Nonparametric regression based on kernel and smoothing spline estimates in high 

dimensions faces two problems, that is, the curse of dimensionality and 

interpretability. Stone (1985) proposed the additive model to overcome these 

problems. In this model, since each of the individual additive terms is estimated using 

a univariate smoother, the curse of dimensionality is avoided. Furthermore, while the 

nonparametric form makes the model more flexible, the additivity allows us to 

interpret the estimates of the individual terms. Hastie and Tibshirani (1990) proposed 

generalized additive models for a wide range of distribution families. These models 

allow the response variable distribution to be any member of the exponential family of 

distributions. We can apply additive models to Gaussian response data, logistic 

regression models for binary data, and loglinear or log-additive models for Poisson 

count data. 

     A generalized additive model has the form 

 

     1 1 2 2( ) ( ) ... ( )p pY f X f X f Xα ε= + + + + +  

 

where (.)jf  are unspecified smooth (partial-regression)functions. We fit each 

function using a scatterplot smoother and provide an algorithm for simultaneously 

estimating all j functions. Here an additive model is applied to a logistic regression 

model as a generalized additive model. Consider a logistic regression model for 

binary data. The mean of the binary response ( ) Pr( 1 )X Y Xμ = =  is related to the 

explanatory variables via a linear regression model and the logit link functions: 

     1 1
( )log ...

1 ( ) j j
X X X

X
μ α β β
μ

⎛ ⎞
= + + +⎜ ⎟−⎝ ⎠

 

The additive logistic model replaces each linear term by a more general functional 

form 

     1 1
( )log ( ) ... ( )

1 ( ) j j
X f X f X

X
μ α
μ

⎛ ⎞
= + + +⎜ ⎟−⎝ ⎠

  

In general, the conditional mean ( )Xμ  of a response Y is related to an additive 

function of the explanatory variables via a link function g: 
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     [ ( )]g Xμ = 1 1( ) ... ( )j jf X f Xα + + +  

The functions jf  are estimated in a flexible way using the backfitting algorithm. This 

algorithm fits an additive model using regression-type fitting mechanisms. 

Consider the jth  set of partial residuals  

     ( ( ))j k k
k j

Y f Xε α
≠

= − +∑  

Then ( ) ( )j j j jE X f Xε = . This observation provides a way for estimating each 

(.)jf  given estimates { }ˆ (.),jf i j≠  for all the others. The iterative process is called 

the backfitting algorithm (Friedman and Stuetzle, 1981). 

 

3.2.2.2 Multiple Adaptive Regression Splines (MARS) 

This approach (Friedman (1991), Hastie et al (2001)) fits a weighted sum of 

multivariate spline basis functions and is well suited for high-dimensional problems, 

where the curse of dimensionality would likely create problems for other methods. 

The MARS uses the basis functions ( )x t +− and ( )t x +− in the following way 

     ( )x t +− ={ x-t       if     x>t
0         otherwise  

     ( )t x +− ={ t-x       if     x<t
0         otherwise  

The “+” denotes positive part. Each function is piecewise linear or linear spline, with a 

knot at value t. These functions are called a reflected pair for each input jX with 

knots at each observed value ijx of that input, and then the set of basis functions is 

defined as  

     }{( ) ,( )j jC X t t X+ += − −  

The strategy for model-building is a forward stepwise linear regression using 

functions from the set C and their products. Thus the MARS model has the form 

     0
1

( ) ( )
M

m m
m

f X h Xβ β
=

= +∑  
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where the coefficients mβ are estimated by minimizing the residual sum-of-squares 

and each ( )mh X  is a function in C. By setting 0 ( ) 1h X = (constant function), the 

other multivariate splines are products of univariate spline basis functions: 

     ( , ) ,
1

( ) ( )
mk

m i s m s m
s

h X h x t
=

=∏      1 m k≤ ≤  

where the subscript ( , )i s m  means a particular explanatory variable, and the basis 

spline in that variable has a knot at ,s mt . mk  is the level of interactions between 

( , )i s m  variables and the values of m, 1 2, ,..., mk k k , are the knot sets. Explanatory 

variables in the model can be linearly or non-linearly and are chosen for inclusion 

adaptively from the data. The model will be additive if the order of interactions equals 

one ( 1k = ). 
     A backward deletion procedure is used in the MARS model to prevent overfitting. 

The basis functions which have little contributions to the accuracy of fit are deleted 

from the model at each stage, producing an estimated best model ˆ ( )f λ  of each size 

λ. We can apply a generalized cross-validation criterion to estimate the optimal value 

of λ in the following way 

     
2

1
2

ˆ( ( ))
( )

(1 ( ) / )

N
i ii

y f x
GCV

M N
λλ

λ
=

−
=

−
∑  

The value of M (λ) includes the number of basis functions and the number of 

parameters used in selecting the optimal positions of the knots. 

 

3.2.2.3 Projection-Pursuit Regression (PPR) 

If the explanatory vector X is of high dimension, the additive model does not cover 

the effect of interactions between the independent variables. Projection-Pursuit 

Regression (Friedman and Stuetzle, 1981) applies an additive model to projected 

variables, projecting predictor variables X in M, as follows 

     
1

( )
M

T
m m

m

Y g w X ε
=

= +∑       2( ) 0, var( )E ε ε σ= =  

where mw  are unit p-vectors of unknown parameters. The functions mg are 

unspecified and estimated along with the direction mw using some flexible smoothing 
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method. The PPR model employs the backfitting algorithm and Gauss-Newton 

search to fit Y.  

     The functions ( )T
m mg w X are called the ridge functions because they are constant 

in all but one direction. They vary only in the direction defined by the vector mw . The 

scalar variable ( )T
m mV w X=  is the projection X onto the unit vector mw . The aim is to 

find mw to yield the best fit to the data. If M is chosen large enough then the PPR 

model can approximate arbitrary continuous function of X  (Diaconis and 

Shahshahani, 1984). However, in this case there is a problem of interpretation of the 

fitted model since each input enters into the model in a complex and multifaceted 

way (Hastie et al, 2001). As a result, the PPR model is a good option only for 

forecasting. 

     To fit a PPR model, we need to minimize the error function  

    2

1 1

[ ( )]
N M

T
i m m i

i m

E y g w x
= =

= −∑ ∑  

over functions mg  and direction vectors mw . The g and w are estimated by iteration. 

Imposing complexity constraints on the mg is needed to avoid overfitting. There are 

two stages to estimate g and w. First, to obtain an estimate of g, suppose there is 

one term (M=1). We can form the derived variables T
i iv w x= for any value of w. This 

implies a one-dimensional smoothing problem and any scatterplot smoother such as 

smoothing spline can be used to estimate g. Second, we minimize E over w for any 

value of g. These two steps are iterated until convergence. If there is more than one 

term in the PPR model then the model is built in a forward stage-wise manner that at 

each stage a pair ( , )m mw g is added.  
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4. Neural Networks 
 
In chapter four, first the basics of neural networks are presented. Then the process of 

learning in these models using backpropagation algorithm is discussed in details. The 

convergence of learning to the rational expectations using different approaches was 

presented before. In this chapter, an innovation based on computational intelligence 

is used to describe learning procedure. The convergence of learning to the rational 

expectations equilibrium using neural networks is examined. In fact, we are 

interested in knowing whether the private agents are able to learn to form rational 

expectations with help of neural networks. 

 

4.1 Basics of neural networks 

Many recent methods to developing data-driven models have been inspired by the 

learning abilities of biological systems. For instance, most adults drive a car without 

knowledge of the underlying laws of physics and humans as well as animals can 

recognize patterns for the tasks such as face, voice or smell recognition. They learn 

them only through data-driven interaction with the environment. The field of pattern 

recognition considers such abilities and tries to build artificial pattern recognition 

systems that can imitate human brain. The interest to such systems led to extensive 

studies about neural networks in the mid-1980s (Cherkassky and Mulier, 2007). 

     Why use Neural Networks? Neural network modeling has seen an explosion of 

interest as a new technique for estimation and forecasting in economics over the last 

decades. They are able to learn from experience in order to improve their 

performance and to adapt themselves to changes in the environment. In fact, they 

can derive trends and detect patterns from complicated or imprecise data, and then 

model complex relationships between explanatory variables (inputs) and dependent 

variables (outputs). They are resistance to noisy data due to a massively parallel 

distributed processing.  

     The basics of neural networks from a biological point of view are now considered 

(Gleitman, 1991). The neuron is the basic functional element of the brain. An 

individual neuron has three principal components: a cell body, dendrites, and an 

axon. The dendrites are tree-like respective networks of nerve fibers that carry 

electrical signals into the cell body. The cell body sums and thresholds these 
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incoming signals. The axon is a single long fiber that carries the signal from the cell 

body out to other neurons. The connection between dendrites of two neurons is 

called a synapse. 

     Each individual neuron receives electrical stimuli from other neurons through the 

dendrites, which is then amplified or de-amplified by the synapse and summated. If 

the sum of all stimuli exceeds the neuron’s resistance threshold, then the neuron 

fires, producing a stimulus that passes through the axon to another neuron. Figure 

4.1 shows a schematic diagram of two biological neurons. 

Dendrites Axon 

Cell Body
(Soma)                          Synapse

 
 
                 Figure 4.1: Schematic Diagram of Biological Neurons 

     In a typical network, we have a set of inputs ix , a set of weights iw , a threshold, u, 

a transfer function, f, and a signal neuron output, y, where i is the degree (number of 

inputs) of the neuron. The weights represent the amplification or de-amplification of 

the process. The sign of this weight is positive if the effect is excitatory, and negative 

if it is inhibitory; the magnitude of the weight represents the strength of the 

interaction.  

     Consider a single neuron with a set of weights iw . The neuron produces an output 

which is a function of the weighted sum of the inputs from the incoming neurons. 

 

1 1 2 2( ... )n ny f w x w x w x= + + +  

Here y is the output of neuron. The inputs ix  to the neuron could be outputs of the 

neurons feeding into this neuron or could come from sensory cells. The weights 
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iw are the interaction strengths. The output of neuron is a function of the weighted 

sum of its inputs (see Figure 4.2): 

w1

w2 y=f(wx)        

w3

wx= w1x1+w2x2+…+wnxn

x1

x2

x3

f

 
                         Figure 4.2: The Model of a neuron  

The choice of the transfer function f(.)  varies in different models. For the binary 

representation, a common choice is to state the output is 1 if the weighted sum of 

input exceeds some threshold (u), and is 0 otherwise, 

{ 1 1 2 21     if  ...
0     otherwise

n nw x w x w x uy + + + >=  

This transfer function is called hard-limiting function. An alternative transfer function 

for the neurons in a neural network is log-sigmoid function. This squashes the linear 

combinations of inputs within the interval [0, 1]. The log-sigmoid equation is as 

follows:  
-xF (x) = 1/(1+ e  )  

This nonlinear function is often used to construct the neural networks. It is 

mathematically well behaved, differentiable and strictly increasing function 

(Zilouchian, 2001). We could shift the threshold to the other side and could write the 

output function as 

{ 1 1 2 21     if  ... 0
0     otherwise

n nw x w x w x by + + + + >=  
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Here b u= − and it is called a bias. It can be treated as another weight to an input 

which always has the value one. Figure 4.3 shows the behavior of the log-sigmoid 

and hard-limiting transfer functions. 

1                                      1                   

F(x)                                 F(x)

0                                      0                   
0                                     0    

(a)                x                        (b)             x   

 
Figure 4.3: A log-sigmoid function (a) and a hard-limiting function (b)  

Also, figure 4.4 illustrates a neuron model with bias. This model is of the usual feed-

forward type since there are no feedback loops (Hagan et al, 1996). The information 

moves in only one direction, forward, from the input neurons, through the hidden 

neurons and to the output neurons. 
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W1

W2                                                               y=f (wx+b)

W3

x1

x2

x3

wx+b SF        

{ 1 1 2 21     if  ... 0
0     otherwise

n nw x w x w x by + + + + >=

 
                  Figure 4.4: The model of a neuron with bias  
 
 
Now we are interested in examining the learning process of neural networks.  

 

4.2 Learning in neural network model 

Stochastic approximation (or gradient descent) is one of the basic nonlinear 

optimization strategies commonly used in statistical and neural network methods 

(Cherkassky and Mulier, 2007). The gradient-descent methods are based on the first 

–order Taylor expansion of a risk functional 

     ( ) ( , ( , )) ( , )R w L y f x w p x y dxdy= ∫                                                                      (1) 

where ( )R w is the risk functional, ( , ( , ))L y f x w the loss function and ( , )p x y the joint 

probability density function. For regression, a common loss function is the squared 

error 

     2( , ( , )) ( ( , ))L y f x w y f x w= −                                                                              (2) 

Learning is then defined as the process of estimating the function 0( , )f x w that 

minimizes the risk functional  

     2( ) ( ( , )) ( , )R w y f x w p x y dxdy= −∫  
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using only the training data. Although the gradient-descent methods are 

computationally rather slow, their simplicity has made them popular in neural 

networks. We will examine two cases to describe such methods: linear parameter 

estimation and nonlinear parameter estimation. 

 

4.2.1 Linear Parameter Estimation 

Consider a linear (in parameters) approximating function and the loss function 

specified above. For the task of regression, it can be shown that the empirical risk is 

as follows 

     2

1 1

1 1( ) ( , , ) ( ( , ))
n n

emp i i i i
i i

R w L x y w y f x w
n n= =

= = −∑ ∑                                               (3) 

This function is to be minimized with respect to the vector of parameters w . Here the 

approximating function is a linear combination of fixed basis functions 

     
1

ˆ ( , ) ( )
m

j j
j

y f x w w g x
=

= =∑                                                                                     (4) 

For some (fixed) m . The updating equation for minimizing ( )empR w with respect to 

w is 

     ( 1) ( ) ( ( ), ( ), )kw k w k L x k y k w
w

γ ∂
+ = −

∂
                                                            (5) 

where ( )x k and ( )y k are the sequences of input and output data samples presented 

at iteration step k . The gradient above can be written as  

     
ˆ ˆ( , , ) 2( ) ( )

ˆ j
j j

L yL x y w y y g x
w y w
∂ ∂ ∂

= = −
∂ ∂ ∂

                                                           (6) 

Now the local minimum of the empirical risk can be computed using the gradient (6). 

Let us start with some initial values (0)w . The stochastic approximation method for 

parameter updating during each presentation of kth training sample is as: 

• Step 1: Forward pass computations. 

                     ( ) ( ( ))j jz k g x k= ,     j=1,..,m                                                              (7) 

                     
1

ˆ( ) ( ) ( )
m

j j
j

y k w k z k
=

=∑ .                                                                      (8) 

• Step 2: Backward pass computations. 
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                      ˆ( ) ( ) ( )k y k y kδ = −                                                                           (9) 

                      ( 1) ( ) ( ) ( )j j k jw k w k k z kγ δ+ = −    j=1,..,m                                     (10) 

where the learning rate kγ is a small positive number decreasing with k . In the 

forward pass, the output of the approximating function is computed whereas in the 

backward pass, the error term (9), which is called “delta” in neural network 

literature, for the presented sample is calculated and utilized to modify the 

parameters. The parameter updating equation (10), known as delta rule, updates 

parameters with every training sample. 

     Figure 4.5 demonstrates the forward and backward passes of the neural 

network. Based on the delta rule (equation 10), the change in connection strength 

is proportional to the error and the activation of the input layer. 
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(a) Forward pass

1Z (k)

1

M

mZ (k)

0 (k)w

1(k)w

m (k)w

ŷ(k)

1Z (k)

1

M

mZ (k)

ˆ( ) (k)-y(k)k yδ =

( ) ( ) ( )j k jw k k z kγ δΔ =

( 1) ( ) ( )j j jw k w k w k+ = + Δ

(b) Backward pass

 
           Figure 4.5: Neural network interpretation of the delta rule 

 

4.2.2 Nonlinear Parameter Estimation 

The standard method used in the neural network literature is the backpropagation 

algorithm which is an example of stochastic approximation strategy for nonlinear 

approximating functions. As it was considered already, the mapping from inputs to 

output given by a single layer of hidden units is as follows 
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     0 0
1 1

( , , ) ( )
n d

j j i ij
j i

f x w V w w g v x v
= =

= + +∑ ∑                                                             (11) 

In contrast to (4), the set of functions is nonlinear in the parameters V. We seek 

values for the unknown parameters (weights) V and w that make the model fit the 

training data well. To do so, the sum of squared errors as a measure of fit must be 

minimized: 

     2

1

( ( , , ) )
n

emp i i
i

R f x w V y
=

= −∑                                                                               (12) 

The stochastic approximation procedure for minimizing empR with respect to the 

parameters V and w is 

     ( 1) ( ) ( ( ), ( ), ( ), ( )),k VV k V k L x k y k V k w kγ+ = − ∇                                              (13) 

     ( 1) ( ) ( ( ), ( ), ( ), ( )), 1,..., ,k ww k w k L x k y k V k w k k nγ+ = − ∇ =                            (14) 

where ( )x k and ( )y k are the kth training samples, presented at iteration step k. The 

loss function L is 

     21( ( ), ( ), ( ), ( )) ( ( , , ) )
2

L x k y k V k w k f x w V y= −                                                  (15) 

where the factor ½ is included only for simplifying gradient calculations in the learning 

algorithm. We need to decompose the approximation function (11) for computations 

of the gradient of loss function (15) as follows 

     
0

d

j i ij
i

a x v
=

=∑ ,    j=1,...,m                                                                                      (16) 

     ( )j jz g a= ,     j=1,...,m                                                                                       (17) 

     0 1z = , 

     
0

ˆ
m

j j
j

y w z
=

=∑                                                                                                         (18) 

For simplicity, we drop the iteration step k, consider calculation/parameter update for 

one sample at a time and incorporate the terms 0w  and 0 jv into the summations 

( 0 1x ≡ ). The relevant gradients, based on the chain rule of derivatives, are 

      
ˆ

ˆ
j

ij j ij

aR R y
v y a v

∂∂ ∂ ∂
=

∂ ∂ ∂ ∂
,                                                                                            (19) 
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ˆ

ˆj j

R R y
w y w
∂ ∂ ∂

=
∂ ∂ ∂

.                                                                                                   (20) 

In order to calculate each of the partial derivatives, we need equations (15) to (18). 

Therefore, 

     ˆ
ˆ
R y y
y

∂
= −

∂
                                                                                                         (21) 

     'ˆ
( )j j

j

y g a w
a
∂

=
∂

                                                                                                  (22) 

     j
i

ij

a
x

v
∂

=
∂

                                                                                                              (23) 

     
ˆ

j
j

y z
w
∂

=
∂

                                                                                                             (24) 

If we plug the partial derivatives (21)-(24) into (19) and (20), the gradient equations 

are 

     'ˆ( ) ( )j j i
ij

R y y g a w x
v
∂

= −
∂

                                                                                   (25) 

     ˆ( ) j
j

R y y z
w
∂

= −
∂

                                                                                                (26) 

Using these gradients and the updating equations, we can construct a computational 

method to minimize the empirical risk. Starting with some initial values w (0) and V 

(0), the stochastic approximation method updates weights upon presentation of a 

sample (x (k), y (k)) at iteration step k with learning rate kγ  as 

• Step 1: Forward pass computations. 

“Hidden layer” 

                              
0

( ) ( ) ( )
d

j i ij
i

a k x k v k
=

=∑ ,     j=1,.., m                                           (27) 

                               ( ) ( ( ))j jz k g a k= ,     j=1,.., m                                                  (28) 

                               0 ( ) 1z k =  

“Output layer” 

                                  
0

ˆ( ) ( ) ( )
m

j j
j

y k w k z k
=

=∑ .                                                        (29) 
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• Step 2: Backward pass computations. 

“Output layer” 

                                  0 ˆ( ) ( ) ( )k y k y kδ = −                                                         (30) 

                      0( 1) ( ) ( ) ( )j j k jw k w k k z kγ δ+ = −    j=0,..,m                                (31) 

“Hidden layer” 

                               '
1 0( ) ( ) ( ( )) ( 1)j j jk k g a k w kδ δ= + ,   j=0,..,m                            (32) 

                      1( 1) ( ) ( ) ( )ij ij k j iv k v k k x kγ δ+ = − , i=0,…,d,   j=0,..,m                       (33) 

In the forward pass, the output of the approximating function is computed whereas in 

the backward pass, the error term for the presented sample is calculated and utilized 

to modify the parameters in the output layer. Since it is possible to propagate the 

error at the output back to an error at each of the internal nodes ja  through the chain 

rule of derivatives, the procedure is called error backpropagation. In fact it is a 

propagation of the error signals from the output layer to the input layer. Figure 4.6 

below demonstrates the forward and backward passes of the backpropagation 

training. 
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(a) Forward pass

1Z (k)
1

M

mZ (k)

m

j
j=0

ŷ(k)= ( ) ( )jw k z k∑
2

m

2Z (k)

1(k)x

2 (k)x

d (k)x

M

( ) ( ( ))j jz k g a k=
( ) ( ( ). ( ))j ja k x k v k=

(a) Backward pass

11(k)δ
1

M

2

m

1(k)x

2 (k)x

d (k)x

ˆ( ) (k)-y(k)k yδ =

12 (k)δ

1m (k)δM

0( 1) ( ) ( ) ( )j j k jw k w k k z kγ δ+ = −
'

1 0( ) ( ) ( ( )) ( 1)j j jk k g a k w kδ δ= +
1( 1) ( ) ( ) ( )ij ij k j iv k v k k x kγδ+ = −

 
     Figure 4.6: Backpropagation training 

The updating steps for output layer are similar to those for the linear case. Besides, 

the updating rule for the hidden layer is the same as the linear one but for the delta 

term (32). For this reason, backpropagation update rules (32) and (33) are usually 

called the “generalized delta rule”. The parameter updating algorithm holds if the 

sample size is large (infinite). However, if the number of training samples are finite, 

the asymptotic conditions of stochastic approximation are (approximately) satisfied by 

the repeated presentation of the finite training sample to the training algorithm. This is 
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called recycling and the number of such repeated training samples is called the 

number of cycles (or epochs). 

     It is possible to use the backpropagation algorithm for networks with several 

output layers and networks with several hidden layers. For instance, if additional 

layers are added to the approximation function, then errors are ‘propagated’ from 

layer to layer by repeated application of generalized delta rule. 

     It should be noted that a neural network model can be identified as a pursuit 

projection regression (PPR) model (Hastie et al, 2001). In fact, the neural network 

with one hidden layer has the exactly the same form as the PPR model. The only 

difference is that the PPR model uses nonparametric functions ( ( )mg v ) while the 

neural network employs a simpler function which is based on a sigmoid transfer 

function. 

 

4.3 Learning of rational expectations using a neural network 

The approaches to learning in macroeconomics including eductive learning, adaptive 

learning, and rational learning were discussed in chapter two. An innovation based 

on computational intelligence has been the use of neural networks as a semi 

parametric approach to describe learning procedure (Salmon, 1995; Packalén 1998; 

Barucci and Landi, 1998; Heinemann, 2000). What we are interested in examining is 

whether rational expectations are learnable with help of neural networks.  

     Assume the reduced form for prices is as follows 

     ( )e
t t t tp p h xα ε= + +                                                                                             (1) 

Here tp and e
tp are as before, tx denotes a vector of exogenous variables which is 

assumed to have independent and identical distribution (i.i.d) and to be bounded for 

all t, i.e., tx  takes only values in a set k
x RΩ ⊂ . The unobservable error, tε , is also 

i.i.d random variable which satisfies ( ) 0tE ε = , 2 2( )tE εε σ= , ( | ) 0t tE xε =  and is 

bounded for all t. Last, ( )h x is a continuous function for all xx∈Ω .  

Taking expectation of both sides of the reduced form gives rational expectation  

     
( ) ( )( | ) ( )
1 1

t t t
t t t

h x h xE p x E xε ϕ
α α
+⎡ ⎤= = =⎢ ⎥− −⎣ ⎦

                                                           (2) 
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If 1α ≠ , there exists a unique rational expectation of tp  which is given by the rational 

expectation function ( )txϕ . If agents do not know the reduced form of the model and 

the form of ( )h x , rational expectation may not be reachable. However, they may 

learn to form RE using the past values of tp and tx . In other words, it is assumed that 

agents have an auxiliary model showing the relationship between the exogenous 

variables ( tx ) and the endogenous variable ( tp ).  

If ( )h x is linear in tx , the reduced form (1) becomes the linear 

model e
t t t tp p xα β ε= + + , where β is a vector of parameters. If it is assumed 

agents use the auxiliary model 'p xδ= where δ are estimated using recursive least 

squares, the following results hold (Bray and Savin, 1986; Marcet and Sargent, 1989)  

(a) If the estimator δ̂ for δ converges, this results in rational expectations, i.e. 
'

ˆ
1
βδ
α

=
−

. 

(b) The estimator for δ will converge towards 
'

1
β
α−

if and only if 1α < . 

If the function ( )h x is not linear, ( )txϕ is not linear too. In such cases, agents, having 

no prior knowledge about the functional form of ( )txϕ , may use an auxiliary model 

such as neural networks which is flexible enough to approximate the rational 

expectation function ( )txϕ .  

 

The following equations describe the neural network by mapping inputs jx to the 

output y as 

     ,0 ,
1

k

i i i j j
j

n w w x
=

= +∑  

     ( )i iS L n=
1

1 ine−=
+

 

     0
1

m

i i
i

y q q S
=

= +∑  

        ( , )f x θ= ,                                                                                                           (3) 
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where '
1( ,..., )kx x x= , '

0 1 1,0 1, 2 ,( , , ,..., , ,..., )k m kq q w w q wθ = and ( )iL n shows the log-

sigmoid transfer function. A linear combination of the input variables jx , with the 

coefficient vectors ,i jw , as well as the constant term, ,0iw , form the variable in . This 

variable is squashed by log-sigmoid function, and becomes a neuron iS . The set of m 

neurons are combined in a linear way with the coefficient vector iq , and taken with a 

constant term 0q  to forecast y. 

     The model with one layer of hidden units and log-sigmoid transfer function is able 

to approximate any continuous function if a sufficient number of hidden units are 

used (Hornik, 1989). The interesting feature of neural networks is their ability to learn. 

Therefore, there exists a neural network and a vector of parameters *θ such 

that *( ) ( , )tx f xϕ θ= . However, since the exact number of hidden units required to 

obtain a perfect approximation is not known with certainty, a perfect approximation of 

rational expectation function ( )txϕ can not be guaranteed.  

 

Objectives of learning 

Assume agents use the neural network of the form (3) as an auxiliary model. If the 

expectation of p  which is given by ( , )ep f x θ= is found to be incorrect, agents will 

improve the predictive power of their model by changing the values of parameters. 

This process, in fact, is called learning. 

     The mean squared error (MSE) of expectations is a measure for success of 

learning. It is defined as the expected value of the squared deviation of the agents’ 

expectation ( , )ep f x θ= from its actual value ( , ) ( )p f x g xα θ ε= + + . Denoting this 

MSE as θλ we obtain 

     [ ]
2

2 2 ( )( , ) ( ) ( , ) (1 ) ( , )
1

g xE f x g x f x E f xθ
ελ α θ ε θ α θ

α
+⎡ ⎤= + + − = − −⎢ ⎥−⎣ ⎦

 

           
2

2(1 ) ( ) ( , )
1

E x f xεα ϕ θ
α

⎡ ⎤= − + −⎢ ⎥−⎣ ⎦
                                                            (4) 

The optimal vector of parameters *θ is achieved by minimizing θλ with respect to θ  

     * arg min ( )θ λ θ=                                                                                                  (5) 
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Using θ∇  for the gradient vector of ( )λ θ , the necessary condition for this problem 

can be written as  

     2( ) 2(1 ) ( , ) ( ) ( , ) 0
1

E f x x f xθ θ
ελ θ α θ ϕ θ
α

⎧ ⎫⎡ ⎤∇ = − − ∇ + − =⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭
                      (6) 

It is clear that equation (6) may have a multiple solutions. In case of existence of a 

solution θ satisfying the necessary condition, a (local) minimum of MSE is obtained if 

the Jacobian matrix ( )Jλ θ is positive semidefinite. 

  { }2 2 '( ) ( ) ( , ) ( ) ( , ) ( , ) ( , )
1

J E f x x f x E f x f xλ θ θ θ θ
εθ λ θ θ ϕ θ θ θ
α

⎧ ⎫⎡ ⎤=∇ =− ∇ − + ∇ ∇⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭
 (7) 

A (local) minimum at *θ is (locally) identified if *( )Jλ θ is positive definite. Otherwise, 

at least one eigenvalue of *( )Jλ θ is equal to zero, such that the minimum is not 

(locally) identified. 

     Now consider the set LΘ which includes all vectors of parameters for neural 

network implying a (local) minimum of MSE  

     LΘ ={ | ( ) 0,qR θθ λ θ∈ ∇ = ( )Jλ θ is positive semidefinte} 

If a neural network can perfectly approximate the unknown rational expectation 

function ( )xϕ , there exist vectors of parameters implying 2( ) ελ θ σ= . Since all hidden 

units in the neural network stated here employ identical activation functions, there will 

be no unique vector having this property. To remove this problem, let  
GΘ = { 2| ( )qR εθ λ θ σ∈ = } denote the set of all these vectors of parameters. Any 

Gθ ∈Θ implies that the expectations formation using the neural network model and 

rational expectation function ( )xϕ are identical. This is not true for the 

remaining \L Gθ ∈Θ Θ : All θ result in (local) minima of the ( )λ θ , but they do not 

imply ( ) ( , )x f xϕ θ= . These vectors of parameters result in approximate unknown 

rational expectation functions and the resulting equilbria are called rational 

expectation equilibria. (Sargent 1993).  

 

Learnability of the rational expectations  

Learning implies that agents estimate the parameters of the neural network model 

using exogenous and endogenous variables. Here the question may arise whether 
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the agents can learn to form rational expectations or equivalently whether there will 

result asymptotically correct parameters values. Do the estimated parameter vectors 

converge to a Gθ ∈Θ  or at least to a Lθ ∈Θ ?  

Substituting the expectation function ( , )e
t tp f x θ=  into the reduced form (1), we get 

the actual value of endogenous variable  

     ( , ) ( )t t t t tp f x h xα θ ε= + + . 

If ( , ) ( )t tf x xθ ϕ≠ , the agents’ expectation turns out to be incorrect and tp diverges 

from the rational expectation equilibrium. Assume the learning algorithm used by 

agents is the ‘backpropagation’ algorithm. It changes the vector of parameters 

tθ according to the product of the actual expectation error 

( , )e
t t t tp p p f x θ− = − and the gradient of the neural network with respect to tθ : 

     [ ]1 1 ( , )( ( , )t t t t t t t tf x p f xθθ θ γ θ θ+ += + ∇ −                                                            (8) 

Here tγ is a declining learning rule that satisfies k
t tγ −= , 0 1k< ≤ . It implies that 

changes of tθ becomes smaller over time and this helps us to answer the question 

whether agents will asymptotically learn to form (approximate) rational expectations 

or equivalently whether tθ  converge to a Lθ ∈Θ . Since the analysis of the stochastic 

difference equation (8) is difficult, we follow Ljung (1977) in approximating tθ using 

the differential equation 

     ( ) ( ( ))Qθ τ θ τ=& ,                                                                                                    (9) 

where  

     [ ]{ }( ) ( , ) ( , )Q E f x p f xθθ θ θ= ∇ −  

               [ ]{ }( , ) ( ) (1 ) ( , )E f x g x f xθ θ ε α θ= ∇ + − −  

As equation (9) is a deterministic differential equation, all conclusions resulting from 

(9) about the stochastic difference equation (8) are valid in a probabilistic sense. In 

other words, the time path of tθ according to (8) is asymptotically equivalent to the 

trajectories of θ resulting from (9). This means that for t→∞, tθ from (8) will- if ever- 

converge only to stationary points of (9) which are (locally) stable. It will not converge 

to stationary points that are unstable.  
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Analyzing the asymptotic properties of the learning algorithm (8) requires to examine 

the stationary points of the differential equation (9). Since α is constant, ( )Q θ can be 

written as  

     [ ]{ }( ) ( , ) ( ) (1 ) ( , )Q E f x g x f xθθ θ ε α θ= ∇ + − −  

               
( )(1 ) ( , ) ( , )
1

g xE f x f xθ
εα θ θ

α
⎧ + ⎫⎡ ⎤= − ∇ −⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭

 

              (1 ) ( , ) ( ) ( , )
1

E f x x f xθ
εα θ ϕ θ
α

⎧ ⎫⎡ ⎤= − ∇ + −⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭
 

              
1 ( )

2(1 ) θλ θ
α

= − ∇
−

                                                                                   (10) 

According to equation (10), differential equation (9) is a gradient system¹, the 

potential of which is proportional to ( )λ θ  from (4). Therefore: 

Proposition 1: Any θ implying the mean squared error ( )λ θ from (4) takes an extreme 

value is a stationary point of the differential equation (10). 

 

We can state the conditions for (local) stability of a fixed point using the Jacobian 

matrix of ( )Q θ . Hence, according to (8), we obtain 

 

Proposition 2: let *θ  be a stationary point of differential equation (9). The probability 

that for t→∞, tθ according to (8), will converge to *θ is positive only if the real parts of 

all eigenvalues of the following Jacobian matrix are nonpositive 

     *
*

'

( )( ) |QJ
θ

θθ
θ

∂
=

∂
 

Since the equation (9) is a gradient system, we obtain together with (7)  

     ( ) ( 1) ( )J Jλθ α θ= −                                                                                            (11) 

From equation (11) we get 

---------------------------------------------- 

1. A gradient system in is an autonomous ordinary differential equation ( )x gradF x= −& where F: 
→R. (Hirsch, Smale and Devaney, 2004) For the dynamic system ( )Qθ θ=& we have 

( ) ( )F Qθ θ θ−∇ = where [ ] 1( ) 2(1 ) ( )F θ α λ θ−= −  
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Proposition 3: let *θ  be any element of the set LΘ , i.e. *θ  implies a local minimum of 

the mean-squared error ( )λ θ  .The probability that tθ  from (8) converges to *θ  

asymptotically is positive only if ( 1) 0α − < . 

The set LΘ includes the rational expectation equilibrium if the neural network can 

perfectly approximate the unknown rational expectation function. As a result, 

according to Proposition 3, this rational expectation function will be learnable 

if ( 1) 0α − < . This result is similar to that of linear models. 

     Now consider the learnability of the correct rational expectations graphically. To 

do so, we need to examine the stability condition 1α < . In case the expectation of the 

endogenous variable ( , )e
t tp f x θ= (under) overestimates the actual value p , the 

learning algorithm (8) changes tθ in a way that given tx , there results a lower (higher) 

expectation. Convergence to the correct rational expectation depends on the value 

ofα . Figure 4.7(a) shows that the expectation error e
t tp p− becomes smaller if 1α < . 

In this case, the learning algorithm may converge. With 1α > , figure 4.7(b), this error 

becomes larger and as a result such an algorithm would never converge. In this case 

the learning process directs towards (local) maxima of the mean squared error ( )λ θ . 

But there exists no *θ satisfying the sufficient conditions for a maximum. 
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                   Figure 4.7: Learnability of correct expectations 

Propositions 2 and 3 provide necessary and sufficient conditions for a parameter 

vector * Lθ ∈Θ to be a locally stable fixed point of differential equation (9). They are 

conditions for the probability that tθ converges to an element of LΘ to be nonzero. 

However, this does not mean that tθ will converge almost surely to an element of LΘ . 

Thus, we need an additional case guaranteeing convergence. This can be done by 
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augmenting algorithm (8) with a projection facility. But formulating a projection facility 

in nonlinear models is quite complex task.  
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5. Empirical Results 
 
Much research has been done in the field of expectations in economics. We will 

examine different approaches to the formation of expectations. This study has tried to 

extract expectations from past data, on the assumption that people look to past 

experience as a guide to the future. 

     Two approaches will be analyzed in this section: simple forecast and a multi-

equation model. In the first case, we apply parametric and nonparametric methods 

and then evaluate whether nonparametric models yield better estimates of 

inflationary expectations than do parametric alternatives. In fact, out-of-sample 

estimates of inflation generated by the parametric and nonparametric models will be 

compared. In the case of a multi-equation model, expected inflation will be 

considered in the augmented Philips curve. The expectation hypothesis will be tested 

and our main concern is whether inflation expectations play a main role in the 

determination of the wages. Finally the best model will be selected based on the two 

criteria, i.e. the standardized expected inflation coefficient and adjusted R-squared. 

 

Background 

Iran has an area of 1,648,000 km². According to the Central Bank, Iran’s population 

was 33.5 million people in 1976 and increased radically in 1980s so that it reached at 

49.4 million in 1986. The population was estimated at 66.4 millions in 2003 which 

43.9 million people (66 percent of total population) live in urban areas. More than 

two-third of the population is under the age of 30, and the literacy rate is 82%.  

     The Iranian economy is oil-reliant so that any change in oil price can directly affect 

all economic sectors. It should be noted that Iran ranks second in the world in natural 

gas reserves and third in oil reserves. It is also OPEC’s second largest oil exporter. 

The economic sectors include the services sector, industry (oil, mining and 

manufacturing) and the agricultural sector. During the recent decades, the services 

sector has contributed the largest percentage of the GNP, followed by industry and 

agricultural sectors. The share of the services sector was 51 percent of GNP in 2003 

while those of the industry and agricultural sectors were 35.1 and 13.9 percent of 

GNP respectively. 
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     The Iranian economy has been subject to a number of critical events over the past 

five decades including the 1979 revolution, the eight-year war with Iraq (1980-88), 

volatility in global oil prices, and the 1993 balance of payment crisis. These events 

plus government controls of the major parts of the economy have substantially 

changed the behavior of the macroeconomic variables. 

     Over the period 1959-2003¹, the economy has experienced a relatively high 

inflation averaging about 15 percent per year. The inflation rate has even been more 

than 21 percent on average after the 1973 oil crisis. Furthermore, there is a general 

agreement over the underestimating of the measured inflation due to price controls 

and government subsidies. Although there are some differences between official data 

and private estimates, the official figures seem to show reasonably economic trends. 

Another major problem is high unemployment in Iran. The unemployment rate 

increased from 2.8 percent in 1959 to 8.7 percent in 1974 and this increase has 

continued so that it peaked at 14.7 percent in 2001. Unemployment has been on 

average more than 12 percent for the period 1974-2003 (see Figure 5.1). High 

inflation along with high unemployment, which is referred to as stagflation, have been 

the major concerns in Iran’s economy. Although the oil shock is the source of 

stagflation in developed countries, the massive currency depreciation is the main 

factor for the case of Iran (Bahmani-Oskooee, 1996). In order to remove these 

 

 

 

 

 

 

 

 

 

 

 

 
                  Figure 5.1: Unemployment rate (U) and Inflation rate (RGNPI) 
------------------------------------------------- 
1. It should be noted that the Iranian calendar starts on 21st of March. However, for convenience, the 

“1959-2003” notation, instead of “1959/1960-2003/2004”, is used. 
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problems, the government has taken some actions including trade liberalization, tax 

reform, exchange rate unification and financial sector reform. However, little progress 

has been made in the areas of privatization and subsidy reform. 

     Oil revenues have been one of the main sources of money creation, fueled by 

government spending. Another important factor for increasing liquidity (M2) is 

subsidies on energy, food, bank credit and the large number of government-

controlled enterprises which increase the budget deficit through borrowing from the 

Central Bank, and thus increase the monetary base. Money supply growth has been 

24.48 percent on average for the period 1959-2003, whereas real GNP growth 

recorded only on average 6.12 percent during the same period. Furthermore, money 

supply has become 10127 fold while real GNP recorded only a 10 fold increase 

during the same period (see Figure 5.2). As the same time population has been 

growing, resulting in an increasing demand which adds to inflation pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 5.2: Liquidity (M2) and real Gross National Product (gnp)  
 

     The empirical evidence implies that inflation is persistent in Iran. In other words, 

the effects of a shock to inflation results in a changed level of inflation for an 

extended period. To see this, the inflation rate is regressed on its own lags.  

     1 20.44 0.49t t tπ π π− −= +  
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As the sum of coefficients on lagged inflation (0.93) is close to one, shocks to 

inflation have long-lasting effects on inflation. 

     Since any decision or news announced by the government or the Central Bank 

could severely change the distribution of resources in the economy, it matters for the 

Central Bank to know how private agents form their expectations. Moreover, optimal 

monetary policy depends considerably on the assumed nature of expectations 

formation process. 
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5.1 Simple forecast 

It is assumed agents use the lagged values of inflation and real GNP growth to 

forecast inflation. Figures 5.3.a and Figures 5.3.b demonstrate a local linear 

regression fit of inflation rate (rgnpi), defined as the rate of change of GNP deflator, 

on the lagged inflation rate (rgnpilag1) and lagged real GNP growth rate (rgnplag1) 

using the Lowess function for a variety of spans. If the fitted regression looks too 

rough, then we try to increase the span but if it looks smooth, then we will examine 

whether the span can be decreased without making the fit too rough. The objective is 

to find the smallest value of span (s) that provides a smooth fit. A trial and error 

procedure suggests that the span s=0.5 is suitable and it seems to provide a 

reasonable compromise between smoothness and fidelity to the data.  
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Figure 5.3.a: Local linear regression fit of inflation rate (rgnpi) on the lagged 
inflation rate (rgnpilag1) using Lowess function for a variety of spans 
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Figure 5.3.b: Local linear regression fit of inflation rate (rgnpi) on the lagged 
real GNP growth rate (rgnplag1) using Lowess function for a variety of spans 
 

A test of nonlinearity is performed by contrasting the nonparametric regression model 

with the linear simple-regression model. We regress inflation on rgnpilag1 (Case 1) 

and rgnplag1 (Case2) separately. As a linear model is a special case of a nonlinear 

model, two models are nested. An F-test is formulated by comparing alternative 

nested models. The results is as follows 

 

Linear model vs Nonparametric regression (Case1): F=8.78(p-value=0.008) 

Linear model vs Nonparametric regression (Case2): F=6.48(p-value=0.04) 

 

It is obvious that the relationship between the dependent variable and explanatory 

variables are significantly nonlinear. It should be noted that the variable rgnplags1 will 

not be significant if a linear regression is considered. It is generally not easy to 

discover nonlinearity in multiple regressions because the explanatory variables are 

usually correlated. In this case, partial-residual plots or component+residual plots can 

help to detect nonlinearity. These plots are given in figure 5.4.a and figure 5.4.b, 

suggesting a nonlinear relationship between inflation and the explanatory variables.  

 



 83

0 10 20 30 40

-1
0

0
10

20
30

Component+Residual Plot

rgnpilag1

C
om

po
ne

nt
+R

es
id

ua
l(r

gn
pi

)

 
Figure 5.4.a: Partial residual plot for the lagged inflation rate (rgnpilag1) from 
the fit to the multiple regression of the inflation rate (rgnpi) on rgnpilag1 and 
rgnplag1 
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Figure 5.4.b: Partial residual plot for the lagged real GNP growth rate (rgnplag1) 
from the fit to the multiple regression of the inflation rate (rgnpi) on rgnpilag1 
and rgnplag1 
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Since nonparametric regression based on smoothing functions faces the curse of 

dimensionality, the additive model has been proposed. 

The result of fitting an additive model using Lowess smoother can be written as  

     (rgnpilag1) (rgnplag1)rgnpi S S= +  
           F                  (4.13)                  (4.43) 

       p-value             (0.01)                  (0.03) 

where S denotes the Lowess smoother function. It is obvious that both smoothers are 

significantly meaningful. Furthermore, the linear model is nested by the additive 

model with p-value being equal to 0.01. Figure 5.5 illustrates plots of the estimated 

partial-regression functions for the additive regression model. The points in each 

graph are partial residuals for the corresponding explanatory variable, removing the 

effect of the other explanatory variable. The broken lines demonstrate pointwise 95-

percent confidence envelopes for the partial fits. 
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Figure 5.5: Plots of the estimated partial-regression functions for the additive 
regression of the inflation rate (rgnpi) on the lagged real GNP growth rate 
(rgnplag1) and the lagged inflation rate (rgnpilag1) 
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We use MARS model to fit a piecewise linear model with additive terms to the data. 

The results indicate that pairwise interaction terms (by degree=2 and degree=3) 

make little difference to the effectiveness of explanatory variables. Finally we 

computed the residuals of this model to compare to the alternative models.  

     The additive model seems to be too flexible and it is not able to cover the effect of 

interactions between explanatory variables. To remove this problem, the Projection-

Pursuit Regression model has been proposed. The PPR model applies an additive 

model to projected variables. Figure 5.6 shows plots of the ridge functions for the 

three two-term projection pursuit regressions fitted to the data. As MARS model, 

residuals of PPR model have been computed. 
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Figure 5.6: Plots of the ridge regression for three two-term projection pursuit 
regressions fitted to the data. 
 

Although MARS model is an accurate method, it is sensitive to concurvity. Neural 

networks do not share this problem and are better able to predict in this situation. In 

fact, as neural networks are nonlinear projection methods and tend to 

overparameterize, they are not subject to concurvity. We examined several neural 
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network models and the results indicate that a 2-3-1 network has a better 

performance.  

     The Wilcoxon test has been used to compare the squared error of a neural 

network model and a rival model. The performance of PPR and AD models appears 

to differ from the neural network model, implying that the NN model can significantly 

outperform the PPR model and it has a better performance than the AD model, but 

not by much. Furthermore, the NN model is significantly better than the linear model 

(LM). However, there is no possibility that the NN model can outperform the MARS 

model. Table 5.1 presents the result of model comparison based on Wilcoxon test. 

 

                     Table 5.1: Model Comparison based on Wilcox test  
             p-value 
       PPR      vs.   NN             0.01 
       LM        vs.   NN             0.00 
       MARS   vs.   NN               1 
       AD        vs.   NN              0.38 

 

Now we compare the NN model to the parametric autoregressive moving average 

(ARMA) model for inflation. Riddell and Smith (1982) used an “economically rational” 

expectations approach, proposed by Feige and Pearce (1976), by applying the Box-

Jenkins (1970) model to the inflation series and then computing the predicted values 

as the expected inflation.  

     A collection of ARMA (p, q) models, for different orders of p and q, have been 

estimated and then the best model was selected according to the Akaike information 

criterion (AIC) and the Schwarz information criterion (SIC). Examining the ARMA 

models for the inflation series indicates that ARMA (1, 1) is the best-fitting model (see 

Table 5.2). 
 

                        Table 5.2: Model Selection based on AIC and SIC 
   ARMA(p, q)         AIC        SIC 
   ARMA(3, 3)        7.30        7.60 
   ARMA(3, 2)        7.37        7.63 
   ARMA(2, 3)        7.34        7.60 
   ARMA(2, 2)        7.30        7.52 
   ARMA(2, 1)        7.26        7.43 
   ARMA(1, 2)        7.24        7.41 
   ARMA(1, 1)        7.20        7.33 
   ARMA(0, 1)        7.50        7.59 
   ARMA(1, 0)        7.76        7.85 
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     Diagnostic checking, the correlogram (autocorrelations) of inflation from the 

regression tests was examined and confirmed the results. The last 5 observations 

are used for comparing the ex post forecasts generated by the two models. 

Furthermore, the Root Mean Square Error (RMSE) is used to evaluate ex post 

forecasts. We apply the feed-forward backpropagation as learning algorithm and a 1-

2-1 network, where only lagged inflation is used as input. The results imply that the 

forecasting performance of the NN model (RMSE=0.05) is significantly better than 

that of the ARMA model (RMSE=11.73). It should be noted that the results from the 

inflation lags exceeding one and more number of hidden layers are almost the same. 

Therefore, the NN model outperforms the parametric ARMA model. 
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5.2 A multi-equation model 
 

How do private agents form their inflation expectations? A variety of expectation 

formation schemes in the context of a multi-equation model will be considered to 

answer this question. 

     The multi-equation model to be estimated consists of three equations. The first 

equation is the wage equation: 

     0 1 2 3 4
eW U OGα α α α π α π= + + + +                                                                   (1) 

        1 0α < , 2 3 4, , 0α α α >  

where W is nominal wage growth rate, U  unemployment rate, OG  output gap, π  

inflation rate, and eπ expected inflation rate. Equation (1) is the expectations-

augmented Phillips curve. The output gap is defined as the percentage deviation of 

real GNP from its long-term trend (derived by the Hodrick-Prescott filter¹) 

     
*

*

y yOG
y
−

=  

where y  is real GNP and *y  is the potential output of the economy. The 

unemployment rate (U) is a proxy for excess supply of labor. An increase in U will 

result in a decrease in W so that one expects 1 0α < . Since y is a proxy for the 

demand for labor and there is a positive relationship between y  and OG , one would 

expect 2 0α > . The increases in wages caused by increases in prices are given by 

the equation .LW MP P=  , where LMP  is the marginal product of labor. The role of 

price inflation and expected price inflation in the determination of wages has been 

emphasized by many researchers (Gordon, 1971; Lahiri, 1981; Chen and  

----------------------------------------- 

1. The Hodrick-Prescott (HP) filter is a two-sided linear filter which computes the potential output *
ty  of 

actual ty  by minimizing the variance of ty  around *
ty , subject to a penalty that constrains the second 

difference of *
ty . The HP filter selects *

ty  to minimize: 

1
* 2 * * * * 2

1 1
1 2

( ) (( ) ( ))
T T

t t t t t t
t t

y y y y y yλ
−

+ −
= =

− + − − −∑ ∑  

The parameter,λ , controls the smoothness of the *
ty  series. The larger the parameter, the smoother 

the series. 
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Flaschel, 2006). 

     In a competitive economy, the expected inflation should have a coefficient equal 

to unity while in noncompetitive situations it lies between zero and unity depending 

on the strength of unions and other noncompetitive elements in the bargaining 

process. (Turnovsky and Wachter, 1972). Furthermore, the expected inflation 

coefficient will be unity only if workers can fully account for the amount of expected 

inflation in their current wage settlements (Turnovsky, 1972). According to the natural 

rate hypothesis, there is no way for the government to keep the unemployment rate 

permanently below the natural rate. Therefore, there is no long-run trade-off between 

inflation and unemployment, which implies that the coefficient of expected inflation 

will be unity.  

 

Equation (2) is the aggregate demand function  

     0 1 2 2 3 1 4( / )y M P g c Dβ β β β β−= + + + +                                                             (2)  

     1 2 3, , 0β β β > , 4 0β <  

where 2 /M P  is real money ( 2M  broad money and P  the implicit price deflator), g  

real government expenditure, c  real consumption, and D  dummy variable. This 

function can be derived as a solution of IS-LM relationships, with the lagged value of 

c introduced to make the implied consumption function of permanent-income 

hypothesis and the dummy variable included to capture the effect of the 1979 

revolution on production. All variables in equation (2) except the dummy variable will 

be employed in the growth rates. 

 

Equation (3) determines price level changes as 

     0 1 2 2 3 4
mM X Tπ γ γ γ γ π γ= + + + +                                                                      (3) 

      1 3 4, , 0γ γ γ > , 2 0γ <  

where X  is the labor productivity measured as the ratio of real GNP to employment, 
mπ  import inflation, and T  is the trend variable. The variables 2M  and X  will be 

used in the growth rates. Bahmani-Oskooee (1995), Liu and Adedeji (2000), 

Valadkhani (2006) and Bonato (2007) have supported money supply growth as one 

of the main determinants of inflation in Iran. It should be noted that wages are not the 
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cause of inflation in Iran because labor unions have not enough power and play no 

determining role in the economy. 

     Since all equations are over-identified, applying the ordinary least square (OLS) 

method to the equations will be inappropriate. One solution to this problem is to use 

two-stage least square procedure (2SLS). 

     Table 5.3 displays summary statistics of the data including the mean, the 

maximum, the minimum, and the standard deviation for the period 1959-2003 (see 

appendix I for the data source and definitions). 
 

 

                     Table 5.3: Descriptive Statistics of the data (1959-2003) 
 

Variable Mean Maximum Minimum  Std.  
dev. 

Wage growth arte (%)                      (W)  16.59      47.47     -6.24   11.76 
Unemployment rate (%)                   (U)    9.28      14.70       2.80     4.27 
Output Gap (%)                               (OG)    0.28      38.80    -28.44    15.52 
Inflation rate (%)                              (π )   14.96      44.75      -2.62    12.49 

Real GNP growth rate (%)               ( y )     6.12      46.12    -22.93    12.06 

Nominal growth rate of M2 (%)     ( 2M )  24.48      57.06       6.02      9.47 

Real growth rate of M2 (%)           ( 2 /M P )    9.20      38.85    -14.45    11.72 

Real growth rate of government expenditure (%) 
( g ) 

   6.45      61.76    -20.57    13.89 

Real growth rate of consumption (%) ( c )    4.97      31.47    -10.13      7.18 

Import price growth rate (%)             ( mπ )  13.59      71.89      -2.06    14.82 

Productivity growth rate (%)             ( X )    3.54      43.05    -24.70    11.69 
 

 

Before running the regressions, we examined whether the data are stationary. The 

empirical results of the Augmented Dicky-Fuller test indicate that all the variables 

employed are stationary, and thus this issue helps us to avoid the problem of the 

spurious relationships (see Table 5.4). 
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                        Table 5.4: Results of Augmented Dicky-Fuller test 
            Augmented ADF test statistic 
  levels  p-value  growth rates  p-value 
W      
Case 1  21.18      1     - 3.35    0.01 
Case 2  20.67      1      -3.61    0.04 
Case 3  21.44      1      -0.85    0.34 
u      
Case 1  -1.54     0.50      -6.62    0.00 
Case 2  -1.43     0.84      -6.65    0.00 
Case 3   0.26     0.76      -6.45    0.00 
OG      
Case 1  -3.09     0.03      -5.83    0.00 
Case 2  -4.16     0.01      -5.76    0.00 
Case 3  -3.13     0.00      -5.90    0.00 
P      
Case 1   2.58      1      -2.10    0.25 
Case 2   2.73      1      -4.54    0.00 
Case 3   2.80     0.99      -0.90    0.32 
gnp      
Case 1  -0.49     0.88     -4.69    0.00 
Case 2  -1.47     0.83     -4.80    0.00 
Case 3   1.68     0.98     -2.30    0.02 

2M      

Case 1   7.29      1    -3.23    0.02 
Case 2   7.06      1    -3.22    0.09 
Case 3   7.41      1    -0.96    0.30 

g      
Case 1   -2.09     0.25     -2.40    0.15 
Case 2   -2.13     0.51     -4.47    0.00 
Case 3    0.14     0.72     -2.07    0.03 
c      
Case 1    0.72     0.99     -4.14    0.00 
Case 2   -2.16     0.50     -4.13    0.01 
Case 3    2.42     0.99     -3.13    0.00 
X      

Case 1   -2.50     0.12     -4.52    0.00 
Case 2   -2.46     0.35     -4.74    0.00 
Case 3    0.19     0.74    -.2.49    0.01 

mp      

Case 1    2.54     0.11     -2.87    0.05 
Case 2   -2.99     0.15     -3.09    0.12 
Case 3   -2.44     0.01     -1.99    0.04 

     
    Case 1: constant & no trend model 
    Case 2: constant & trend model 
    Case 3: no constant & no trend model 
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5.2.1 Rational expectations 

According to the rational expectation hypothesis (Muth, 1961), people expect inflation 

based on the information available and their expectation is the same as the prediction 

of the relevant economic theory. Following McCallum (1976), we apply the rational 

expectations hypothesis to the model. The rationality assumption could be written as 

     1 1 1( | )e
t t t t tEπ π π η+ + += Ω = −  

     ( ) 0tE η =  

where tΩ is the information set as of time t including the predetermined and lagged 

variables of the system. Muth assumes that the error term tη  is uncorrelated with 

each variable that appears in the information set.  

     A variety of estimates of the wage equation are obtained using different 

information sets for the expected inflation. We apply six different information sets 

which are known to market participants to see whether estimates of the wage 

equation, and especially the coefficient of eπ , are sensitive to any restrictions on the 

information sets. The private agents may not have access to some information when 

forming expectations. In case I, lagged values of the exogenous variables of the 

system have been used. Case II is the same as Case 1 but in addition including 

dummy and trend variables. Contemporaneous values of exogenous variables are 

assumed to be known in Case III and in Case IV lagged exogenous variables are 

added to the instrument set in Case III. Expected inflation is generated under the 

assumption that private agents are “partly rational” in forming expectations in Case V. 

We assume that 1tπ −  and 2tπ −  are used to create expected inflation. Finally, in case 

VI only 1tπ +  is included in the instrument set and thus the wage equation will be 

estimated by ordinary least squares (OLS). 

     Consider the estimated multi-equation model for rational expectations which has 

been presented in Table 5.5. Since there was evidence of autocorrelation in the wage 

equation, the estimated function was corrected for this problem using the Eviews 

procedure. In the income equation, lagged real consumption was excluded from 

specification because this variable was not significant. 
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                  Table 5.5: Multi-Equation model for Rational Expectations 

   Case I   Case II  Case III  Case IV  Case V  Case VI 

Wage equation  
     Const. 
   (t-value) 

   19.92 
   (2.59) 

   19.54 
   (2.57) 

   13.13 
   (1.63) 

   14.48 
   (2.56) 

   20.07 
   (3.03) 

   16.34 
   (1.74) 

        U 
  (t-value) 

   -0.70 
  (-1.00) 

   -0.69 
   (-1.00) 

   -0.24 
   (-0.33) 

   -0.72 
   (-1.04) 

   -0.67 
   (-1.06) 

   -0.33 
   (-0.40) 

      OG 
  (t-value) 

    0.32 
   (2.43) 

    0.33 
    (2.42) 

    0.25 
    (1.69) 

    0.34 
    (2.52) 

    0.36 
    (2.75) 

    0.24 
    (1.69) 

       π  
  (t-value) 

    0.30 
   (1.22) 

    0.34 
    (1.37) 

    0.53 
    (1.66) 

    0.48 
    (1.30) 

    0.31 
    (1.46) 

    0.25 
    (1.85) 

      
eπ  

  (t-value) 
    0.05 
   (0.33) 

    0.02 
    (0.18) 

   -0.12 
   (-0.69) 

   -0.04 
   (-0.18) 

    0.03 
    (0.24) 

    0.02 
    (0.18) 

      
2R      0.59     0.59     0.59     0.56     0.56     0.56 

   DW      2.07     2.06     1.75     2.06     2.02     1.73 

Income equation 
    Const. 
  (t-value) 

   0.224 
   (0.139) 

    0.223 
   (0.138) 

    0.143 
   (0.090) 

    0.278 
   (0.173) 

    0.156 
   (0.095) 

    0.680 
   (0.447) 

  2 /M P  
  (t-value) 

   0.441 
   (2.897) 

    0.441 
   (2.899) 

    0.445 
   (3.029) 

    0.430 
   (2.844) 

    0.478 
   (2.909) 

    0.358 
    (2.780) 

        g  
  (t-value) 

   0.359 
   (3.009) 

    0.359 
   (3.008) 

    0.357 
   (3.065) 

    0.365 
   (3.063) 

    0.335 
   (2.629) 

    0.401 
   (3.686) 

      D57 
   (t-value) 

 -20.455 
  (-2.493) 

  -20.455 
  (-2.493) 

  -20.412 
  (-2.518) 

  -20.418 
  (-2.491) 

  -20.708 
   (-2.481) 

  -20.182 
   (-2.537) 

      
2R      0.57     0.57     0.57     0.57     0.56     0.57 

    DW      1.96     1.96     1.95     1.97     1.93     2.05 

Price equation 
    Const. 
  (t-value) 

  -5.428 
 (-1.733) 

  -5.428 
 (-1.733) 

  -5.612 
 (-1.863) 

  -5.428 
 (-1.733) 

  -5.070 
 (-1.557) 

  -4.943 
 (-1.630) 

     2M  
  (t-value) 

   0.362 
  (3.088) 

   0.362 
  (3.088) 

   0.363 
   (3.135) 

   0.362 
  (3.088) 

   0.362 
  (3.051) 

   0.357 
  (3.034) 

      X  
  (t-value) 

  -0.366 
 (-3.853) 

  -0.366 
  (-3.853) 

  -0.366 
  (-3.897) 

  -0.366 
  (-3.853) 

  -0.368 
  (-3.833) 

  -0.371 
 (-3.888) 

      
mπ  

  (t-value) 
   0.309 
  (3.828) 

   0.309 
  (3.828) 

   0.308 
  (3.872) 

   0.309 
  (3.828) 

   0.310 
  (3.800) 

   0.339 
  (4.326) 

       T  
  (t-value) 

   0.377 
   (3.941) 

   0.377 
  (3.941) 

   0.383 
  (4.155) 

   0.377 
  (3.941) 

   0.365 
  (3.658) 

   0.333 
  (3.790) 

     
2R      0.75     0.75     0.76     0.75     0.74     0.74 

   DW      2.00     2.00     2.00     2.00     2.01     1.98 
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     All coefficients of the explanatory variables in the wage equation have the 

expected signs but they are not statistically significant. The size of the coefficient of 

expected inflation ( eπ ) is very small and even negative in cases III and IV. This 

implies that the expectation hypothesis is rejected for the rational expectations 

model. It should be noted that all coefficients of the explanatory variables in the 

income and price equations are of the appropriate sign and are statistically 

significant. 

     Although the idea of rational expectations is attractive, it does not hold in the case 

of Iran. Apparently access to the information is not symmetric and inflation 

expectations cannot be formed in a rational manner. The structure of the economy is 

unstable in a way that is imperfectly understood by both the public and policymakers 

and the policymakers’ objective function seems to be not completely known by 

private agents. 

     Now we examine whether the Hodrick-Prescott (HP) filter might stand as a proxy 

for a rational expectations series. The reasoning behind this is that both the HP filter 

and rational expectations use all available information. This method has been 

supported by some studies (Orr et al, 1995; Martins and Scarpetta, 1999; Ash et al, 

2000). Some rationality tests including unbiasedness and efficiency are applied to the 

HP-filtered series. Assume that f
tπ  denotes a proxy for a rational forecast of tπ , 

where tπ  is inflation rate series and f
tπ  the corresponding HP filtered series. To test 

for unbiasedness, we first run the following regression 

0 1
f

t t ta aπ π ε= + +  

Then we examine the necessary condition of unbiasedness by testing the joint 

hypothesis 0 0a =  and 1 1a = . The sufficient condition is given by  

e
t t t t tEπ π− = = μ + ε  

The hypothesis to test is μ = 0.  The estimated regression of tπ  on f
tπ  is as follows  

0.69 1.04 f
t tπ π= − +  

(t)         (-0.34)   (9.09) 

The joint test of the hypothesis 0 0a =  and 1 1a =  can not be rejected with 

2 0.163χ = (p-value=0.92). Furthermore, calculating the mean forecast error 
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( =3.25e-14E ), the sufficient condition holds with 2.97 14t e= − (p-value=1). As a 

result, the HP series may be assumed to be unbiased. 

To test for efficiency, a test of the joint hypothesis 1 2 0b b= =   is conducted based on 

the following regression 

1 1 1 2 2 2( ) ( )e e e
t t t t t t tb bπ π π π π π− − − −− = − + − + ε  

The estimated coefficients ( 1̂b  and 2̂b ) are -0.040 and 0.045 respectively. The joint 

hypothesis 1 2 0b b= =  can not be rejected with chi-square ( 2χ ) being equal to 0.167 

(p-value=0.91). Therefore, the filtered series f
tπ  may be regarded to be efficient. 

Since our results indicate that the series f
tπ is unbiased and efficient, we may 

conclude that f
tπ  is rational in the sense of Muth (1960) and it can be used as a 

proxy for rational expectations in the case of Iran. Ash et al. (2000) applied the 

rationality tests to the US data and came to the conclusion that the HP series are 

‘weakly rational’, i.e. the series is unbiased but inefficient. 

 

5.2.2 Backward-looking expectations 

As backward-looking models can help to explain inflation inertia, many studies have 

applied these models for inflation expectations (Ball, 1991; Roberts, 1997, 1998; 

Rudebusch and Svensson, 1999). On the other hand, since past inflation data is a 

cheap and relatively informative signal about the central bank policies, the agents 

can easily use these models by extrapolating from observed past inflation. However, 

it is asserted that they are subject to the Lucas critique. Rudebusch and Svensson 

(1999) concluded that this critique seems to be irrelevant since empirically the 

estimated parameters do not show significant instability. Stanley (2000) also 

concluded that there is little evidence supporting the empirical relevance of the Lucas 

critique. Linde (2001a) arrives at the conclusion that instability tests cannot detect the 

relevance of the Lucas critique in small samples. On the other hand, the results of 

some studies indicate that forward-looking models are also to be subject to this 

critique (Linde 2001b, Rudd and Whelan 2007). Therefore, there is no general 

agreement to choose backward-looking or forward-looking models if instability tests 

are considered as a criterion.  
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5.2.2.1 Adaptive expectations 

According to adaptive expectations, expectations are revised upward or downward 

based on the most recent error (Cagan, 1956). As it was mentioned in chapter two, 

adaptive expectations is defined as  

     1 1 1( )e e e
t t t tπ π λ π π− − −= + −  

Setting 1λ = , adaptive expectations will result in a special type of expectation 

scheme called static expectations ( 1
e
t tπ π −= ). Private agents most likely consider 

the lagged inflation rates in forecasting inflation (McCallum, 1976). 

     Since there is some inertia in the inflation process, some researchers have 

proposed the use of a less-than-fully rational model of expectations called the optimal 

univariate model (Riddell and Smith, 1982; Staiger et al, 1997; Ball, 2000). It is 

assumed that agents use only the past values of inflation but in a way different from 

the backward-looking models. Applying the Box-Jenkins approach to select an 

autoregressive moving average (ARMA) model for inflation, agents make optimal 

univariate forecasts. Although they ignore other relevant variables, they use inflation 

data as best they can. This model is not subject to the Lucas critique because the 

univariate process for inflation can be different as the monetary regime changes. 

Since such model use only the lagged values of inflation, we compare it to the static 

and adaptive alternatives here and then to all expectation models in the last part of 

this chapter. 

     Table 5.6 shows the estimated multi equation model for static, adaptive and 

univariate expectations. Using three lags of inflation, adaptive expectations are 

generated for the case in which 0.3λ = , 0.5  and0.7 . Applying the Box-Jenkins 

approach, the expected inflation is given by ARMA (1, 1) process without a constant.  

     The results imply that all coefficients in the wage equation are statistically 

significant with the expected signs for all cases in which the expectations are 

generated by the static, adaptive and optimal univariate models (except the 

coefficient of e
tπ  when adaptive expectations ( 0.7λ = ) is considered (This model will 

be excluded when various expectation formation schemes are compared to select the 

best model.). As the coefficient of expected inflation in most cases is significant, we 

can conclude that the expectation hypothesis is supported by each of these near 

rational expectations models. Therefore, inflation expectations play a major role in 

the determination of wages.  
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Table 5.6: Multi-Equation Model for Static, Univariate and Adaptive 
Expectations 

                Adaptive expectations      Static 
expectations
. 

 Univariate 
expectations

  0.3λ =    0.5λ =    0.7λ =  

Wage equation  
    Const. 
  (t-value) 

    19.66 
    (2.52) 

     20.73 
     (2.50) 

     21.90 
     (2.98) 

    21.87 
    (2.97) 

    21.97 
    (3.09) 

       U 
  (t-value) 

   -1.59 
   (-2.02) 

    -1.90 
    (-2.14) 

     -1.79 
     (-2.25) 

    -1.77 
    (-2.19) 

    -1.63 
    (-2.07) 

      OG 
  (t-value) 

    0.38 
    (2.72) 

      0.31 
     (2.29) 

      0.38 
     (2.79) 

     0.36 
     (2.64) 

     0.35 
     (2.60) 

      π  
  (t-value) 

    0.62 
    (3.58) 

      0.48 
     (3.08) 

      0.54 
     (3.25) 

     0.50 
     (3.10) 

     0.46 
     (2.91) 

     
eπ  

 (t-value) 
    0.36 
    (2.68) 

      0.69 
     (2.14) 

      0.46 
     (2.24) 

     0.56 
     (2.06) 

     0.68 
     (1.78)* 

     
2R      0.57       0.58       0.51      0.52       0.52 

   DW      1.86       1.84       1.80      1.81       1.82 

Income equation 
    Const. 
  (t-value) 

   -0.285 
    (-.172) 

   -0.247 
    (-.149) 

   -0.393 
  (-0.228) 

   -0.365 
  (-0.213) 

   -0.337 
  (-0.197) 

  2 /M P  
  (t-value) 

    0.540 
    (3.244) 

    0.533 
    (3.230) 

    0.645 
    (3.268) 

    0.639 
   (3.256) 

    0.633 
   (3.242) 

      g  
  (t-value) 

    0.307 
    (2.474) 

    0.310 
    (2.516) 

    0.240 
    (1.691)* 

    0.244 
    (1.722)* 

    0.247 
   (1.753)* 

    D57 
 (t-value) 

  -20.822 
   (-2.526) 

  -20.799 
   (-2.527) 

  -21.626 
   (-2.526) 

  -21.599 
   (-2.527) 

  -21.572 
   (-2.528) 

     
2R       0.55      0.55      0.54      0.54      0.55 

   DW       1.86      1.87      1.84      1.84      1.85 

Price equation 
    Const. 
  (t-value) 

   -4.713 
   (-1.497) 

   -4.713 
   (-1.497) 

   -3.698 
   (-1.104) 

   -3.698 
   (-1.104) 

   -3.698 
   (-1.104) 

     2M  
  (t-value) 

    0.356 
    (2.989) 

    0.356 
    (2.989) 

    0.358 
    (2.966) 

    0.358 
    (2.966) 

    0.358 
    (2.966) 

      X  
  (t-value) 

   -0.371 
   (-3.848) 

   -0.371 
   (-3.848) 

   -0.379 
   (-3.866) 

   -0.379 
   (-3.866) 

   -0.379 
   (-3.866) 

     
mπ  

  (t-value) 
    0.340 
    (4.278) 

    0.340 
    (4.278) 

    0.339 
    (4.219) 

    0.339 
    (4.219) 

    0.339 
    (4.219) 

       T  
  (t-value) 

    0.326 
    (3.581) 

    0.326 
    (3.581) 

    0.293 
    (2.989) 

    0.293 
    (2.989) 

    0.293 
    (2.989) 

      
2R       0.73      0.73      0.71      0.71      0.71 

    DW       1.98      1.98      2.03      2.03      2.03 
      * Not significant at 5 percent level. 
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     Although the magnitude of the coefficient of eπ  for static expectations is less than 

that of adaptive alternatives, its adjusted R-squared is larger than for the adaptive 

ones. Comparing univariate type of formation expectation to the other alternatives, 

we find that 2R  for the univariate model is marginally larger than for the static and 

the adaptive schemes. Furthermore, the coefficient of expected inflation in the 

univariate model is much larger than the static case and even lager than for the 

adaptive expectation models. 

     Instability tests including the Chow breakpoint test and the Chow forecast test for 

some specific years have been conducted and the results imply that there are no 

structural breaks and thus the Lucas critique is irrelevant.  
 

5.2.2.2 Forming expectations using a mix of extrapolative and regressive 
expectations 

Some studies have utilized the hybrid model of expectations (Modigliani and Sutch, 

1966; Hara and Kamada, 1999; Westerhoff, 2006). The basic idea is that the agents’ 

final expectations may combine extrapolative and regressive elements. It is assumed 

that agents use a weighted average of extrapolative and regressive expectations to 

forecast inflation as 

     (1 )e ex re
t t t t tW Wπ π π= + −  

     1 1( )ex
t t t nπ π τ π π− −= + −  

     1 1( )re
t t n tπ π κ π π− −= + −  

     2
1

1
1 ( )t

t n

W
π π−

=
+ −

 

where ex
tπ and re

tπ are extrapolative and regressive expectations respectively. If 

inflation rises from its“normal” level ( nπ ), then this increase is extrapolated and 

expected inflation increases. But there is a possibility that some agents expect the 

inflation to regress to its previous level. As it is obvious, the relative impact of 

extrapolative and regressive expectations (W ) is time-varying and thus agents’ 

expectations will be nonlinear then. The more lagged inflation deviates from its 

“normal” level, the less weight the agents put on extrapolative expectations and the 

more weight on regressive expectations.  
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Table 5.7 reports the estimated multi equation model for a mix of extrapolative and 

regressive expectations for the cases whichτ  and κ  are set to be 0.3, 0.5, and 0.7. 

As for other backward-looking models, all the parameter estimates are of the 

appropriate sign with the associated t-ratios in excess of 2.0.  

 

Table 5.7: Multi-Equation Model for a mix of extrapolative and regressive 
expectations with time-varying weights 

  0.3τ κ= =  0.5τ κ= =   0.7τ κ= =  

Wage equation 
        Const. 
      (t-value) 

      21.16 
      (2.87) 

      21.51 
      (2.88) 

      21.82 
      (2.94) 

           U 
     (t-value) 

      -1.72 
      (-2.20) 

     -1.78 
     (-2.20) 

      -1.76 
      (-2.13) 

         OG 
     (t-value) 

       0.39 
       (2.84) 

      0.38 
      (2.80) 

       0.38 
       (2.78) 

           π  
     (t-value) 

       0.58 
       (3.48) 

      0.56 
      (3.40) 

       0.53 
       (3.26) 

          
eπ  

     (t-value) 
       0.41 
       (2.47) 

      0.44 
      (2.36) 

       0.44 
       (2.12) 

         
2R         0.54       0.54        0.54 

        DW         1.83       1.84        1.86 
Income equation 
        Const. 
      (t-value) 

     -0.314 
    (-0.186) 

   -0.307 
   (-0.182) 

     -0.297 
     (-0.176) 

        2 /M P  
      (t-value) 

      0.578 
     (3.206) 

   0.576 
   (3.203) 

      0.574 
     (3.198) 

           g  
       (t-value) 

      0.281 
     (2.109) 

   0.281 
   (2.218) 

      0.283 
     (2.128) 

         D57 
      (t-value) 

    -21.118 
    (-2.514) 

  -21.112 
  (-2.514) 

    -21.104 
    (-2.515) 

         
2R        0.55     0.55        0.55 

        DW        1.84     1.84        1.85 
Price equation 
        Const. 
      (t-value) 

     -4.305 
    (-1.319) 

   -4.305 
   (-1.319) 

      -4.305 
     (-1.319) 

          2M  
      (t-value) 

      0.356 
     (2.957) 

    0.356 
    (2.957) 

       0.356 
       (2.957) 

          X  
      (t-value) 

    -0.374 
    (-3.837) 

   -0.374 
   (-3.837) 

      -0.374 
     (-3.837) 

          
mπ  

      (t-value) 
     0.340 
     (4.246) 

     0.340 
    (4.246) 

       0.340 
      (4.246) 

           T  
       (t-value) 

     0.313 
     (3.305) 

     0.313 
    (3.305) 

       0.313 
      (3.305) 

         
2R         0.72      0.72        0.72 

        DW         2.00      2.00        2.00 
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Now consider the case that agents apply another procedure to update the weights. 

They use a weighted linear combination of extrapolative and regressive expectations 

to forecast inflation as  

     e ex ex re re
t t t t tW Wπ π π= +  

where ex
tW  and re

tW  are the relative weights of extrapolative and regressive 

expectations respectively. It is assumed that these weights are updated via a 

discrete-choice model as 

     
exp( )

exp( ) exp( )

ex
ex t

t ex re
t t

aW
a a

δ
δ δ

=
+

 

     
exp( )

exp( ) exp( )

re
re t

t ex re
t t

aW
a a

δ
δ δ

=
+

 

where ex
ta  and re

ta  are the attractiveness of extrapolative and regressive expectations 

defined as 

     2
1 1( )ex ex

t t ta π π− −= − −  

     2
1 1( )re re

t t ta π π− −= − −  

The parameter 0δ ≥  measures degree of agents’ sensitivity to choosing the most 

attractive predictor. In case 0δ = , agents cannot distinguish between extrapolative 

and regressive expectations so that 0.5ex re
t tW W= = . Therefore, we may interpret an 

increase in δ  as an increase in the rationality of the agents. 

 

Estimating the multi equation model in the case mentioned above, it is concluded that 

if δ  is selected to be equal to zero, then the coefficient of expected inflation is 

significant. Moreover, market participants seem to be able to distinguish between the 

two predictors and there is possibility to increase rationality of agents as we 

increaseδ . Table 5.8 shows the results for the cases 0δ = , 1δ = , and 5δ = . The 

results of comparing the discrete-choice rule ( 0δ = ) to time-varying weights 

counterparts imply that the adjusted coefficient of determination ( 2R ) in the wage 

equation for the discrete-choice rule (0.55) exceeds that of time-varying peers but its 

coefficients of eπ (0.28) is less than that of time-varying weighting rules. 
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Table 5.8: Multi-Equation Model for a mix of extrapolative and regressive 
expectations with discrete-choice updating weights 

      0δ =      1δ =       5δ =  
Wage equation 
        Const. 
      (t-value) 

      20.43 
     (2.91) 

     21.39 
     (3.15) 

      21.50 
      (3.11) 

           U 
      (t-value) 

      -1.46 
     (-2.03) 

     -1.55 
    (-2.16) 

       -1.60 
      (-2.18) 

         OG 
      (t-value) 

       0.39 
      (2.91) 

      0.41 
     (3.09) 

        0.41 
       (3.06) 

           π  
      (t-value) 

       0.58 
      (3.50) 

      0.58 
     (3.45) 

        0.59 
       (3.43) 

          
eπ  

      (t-value) 
       0.28 
      (2.50) 

      0.28 
     (2.31) 

        0.29 
       (2.29) 

         
2R         0.55       0.50         0.50 

        DW         1.83       1.80         1.79 
Income equation 
        Const. 
     (t-value) 

     -0.325 
    (-0.192) 

     -0.422 
    (-0.245) 

      -0.422 
     (-0.245) 

        2 /M P  
     (t-value) 

      0.580 
     (3.210) 

     0.652 
    (3.278) 

       0.652 
      (3.277) 

           g  
      (t-value) 

      0.279 
     (2.097) 

     0.237 
    (1.658) 

       0.237 
      (1.658) 

         D57 
      (t-value) 

    -21.126 
    (-2.514) 

    -21.654 
    (-2.525) 

    -21.654 
     (-2.525) 

         
2R         0.55        0.54        0.54 

        DW         1.84        1.83        1.83 
Price equation 
        Const. 
      (t-value) 

      -4.305 
     (-1.319) 

    -3.698 
   (-1.104) 

       -3.698 
      (-1.104) 

          2M  
      (t-value) 

       0.356 
      (2.957) 

     0.358 
    (2.966) 

        0.358 
       (2.966)* 

          X  
      (t-value) 

      -0.374 
     (-3.837) 

    -0.379 
   (-3.866) 

       -0.379 
      (-3.866) 

          
mπ  

      (t-value) 
       0.340 
      (4.246) 

      0.339 
    (4.219) 

       0.339 
      (4.219) 

           T  
      (t-value) 

       0.313 
      (3.305) 

     0.293 
    (2.989) 

        0.293 
       (2.989) 

         
2R         0.72       0.71         0.71 

        DW         2.00       2.03         2.03 
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5.2.3 Forming expectations using a learning model 

Since the optimal monetary policy depends considerably on the assumed nature of 

the expectations formation process, some researchers have considered more 

realistic ways of modeling expectation formation, i.e. the learning approach (Sargent, 

1999; Evans and Honkapohja, 2001; Orphanides and Williams, 2004; Basdevant, 

2005; Evans and McGough, 2006; Waters, 2007). They believe that neither 

backward-looking models and nor models with rational expectations are reasonable 

and realistic because the former assumes that historical econometric relationships 

are invariant to changes in the economic policy and that agents do not react to 

systematic mistakes they made while the latter assumes that agents fully know the 

structure of the economy and form their expectations accordingly. 

     Since private agents are not endowed with a priori knowledge of inflation 

behavior, they must learn about it over time as new data becomes available (Sargent, 

1999). Although much research has been done on adaptive learning models in recent 

years, they are largely theoretical. In this research, expected inflation is generated 

through a least square learning rule and then expected inflation is being analyzed in 

the augmented Phillips curve equation as for previous models. An econometric tool to 

study learning is the Kalman filter which can be used to estimate time-varying 

economic relationships.  

     Some economists, especially in 1990s, have presumed that the Phillips curve is 

dead since inflation and unemployment fell. During that period, some favorable 

supply shocks happened such as a reduction in oil prices, labor-market changes 

which resulted in reducing the natural rate of unemployment, and improvements in 

production technology. However, other scientists maintain that the Phillips curve is 

still relevant (Mankiw, 2001; Eller and Gordon, 2003; Fischer, 2007).  

     The traditional Phillips curve focuses mainly on backward-looking behavior, while 

the New Keynesian Phillips curve considers forward-looking behavior. In fact, the 

main difference between these two is in the way expectations are estimated. The 

Phillips curve equation has not changed, only the expected inflation term is estimated 

in a different way (Fischer, 2007).  

     The learning approach assumes that the agents’ expectations of inflation are on 

average correct but a limited set of information is used. Different information sets are 

used to test whether estimates of the wage equation are sensitive to any change in 
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the information sets. First it is assumed that agents forecast inflation using 1tπ − and 

1ty −  through recursive least squares (RLS) 

     |t+1 1, 2, 1 2, 1t t t t t t tb b b yπ π ε− −= + + +  

where |t+1tπ is the inflation rate in the next period expected by the agents at time t. 

Agents forecast inflation in the next period by updating the parameters period by 

period. The process of updating is based on RLS as follows (Bullard 1992, Sargent 

1999, Evans and Honkapohja 2001) 

 

     1 1 '
1 1( )t t t t t t tB B t R X X Bπ− −
− −= + −  

     1 '
1 1( )t t t t tR R t X X R−
− −= + −  

 

where '
1, 2, 3,( , , )t t t tB b b b= and 1 1(1, , )t t tX yπ − −= . The equations above correspond to 

the following state space model: 

 

     |t+1 1, 2, 1 2, 1t t t t t t tb b b yπ π ε− −= + + +  

     , , 1 ,i t i t i tb b v−= +  

The expected inflation is computed as the predicted value for |t+1tπ . 

 

Table 5.9 presents the results of different information sets used for learning. In Case 

1, it is assumed that agents use only lagged inflation 1tπ −  to create expected inflation. 

Case2, which has been explained above, includes 1tπ −  and 1ty − . Finally in Case 3, 

market participants apply 1tπ −  and 2,( 1)tM − . There is little difference in the results as 

the information sets change. 

 

All coefficients of the explanatory variables in the multi equation model have the 

expected signs and are statistically significant. The size of the coefficient of expected 

inflation ( eπ ) in the wage equation is relatively large. Moreover, the values of 

adjusted R-squared for the wage equation for learning models are larger than other 

alternative models, implying that learning models seem to be better suited modeling 

expectation formation than the traditional approaches. 
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                            Table 5.9: Multi-Equation Model for learning 

    Case I   Case II   Case III 

Wage equation 
    Const. 
  (t-value) 

    15.79 
    (1.97) 

   15.19 
   (1.90) 

   15.17 
   (1.90) 

        U 
   (t-value) 

    -1.59 
    (-2.02) 

   -1.57 
   (-2.05) 

   -1.56 
   (-2.03) 

      OG 
   (t-value) 

     0.39 
    (2.72) 

    0.36 
    (2.63) 

    0.36 
    (2.62) 

       π  
   (t-value) 

     0.62 
    (3.58) 

    0.60 
    (3.61) 

    0.60 
    (3.60) 

      
eπ  

  (t-value) 
     0.61 
    (2.68) 

    0.66 
    (2.99) 

    0.65 
    (2.92) 

       
2R       0.57     0.60     0.59 

    DW       1.86     1.80     1.82 

Income equation 
    Const. 
  (t-value) 

   -0.285 
   (-0.172) 

   -0.287 
   (-0.173) 

  -0.285 
  (-0.172) 

  2 /M P  
  (t-value) 

    0.540 
    (3.224) 

    0.540 
    (3.224) 

   0.540 
   (3.224) 

       g  
  (t-value) 

    0.307 
    (2.474) 

    0.307 
   (2.471) 

   0.307 
   (2.474) 

     D57 
  (t-value) 

  -20.822 
   (-2.526) 

  -20.824 
  (-2.526) 

  -20.822 
  (-2.526) 

      
2R       0.56      0.56     0.56 

    DW       1.87      1.87     1.87 

Price equation 
    Const. 
   (t-value) 

   -4.713 
  (-1.497) 

   -4.713 
  (-1.497) 

   -4.713 
  (-1.497) 

     2M  
  (t-value) 

   0.356 
   (2.989) 

    0.356 
   (2.989) 

    0.356 
   (2.989) 

      X  
  (t-value) 

   -0.371 
  (-3.848) 

   -0.371 
  (-3.848) 

   -0.371 
  (-3.848) 

      
mπ  

 (t-value) 
    0.340 
   (4.278) 

    0.340 
   (4.278) 

    0.340 
   (4.278) 

       T  
  (t-value) 

   0.326 
   (3.581) 

    0.326 
   (3.581) 

    0.326 
   (3.581) 

      
2R      0.74      0.74      0.76 

    DW      1.99      1.99      1.99 
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5.2.4 Forward-looking expectations 

The basic New Keynesian Phillips curve (NKPC) can be represented as (Gali and 

Gertler, 1999; Galí, Gertler and López-Salido, 2001) 

     1t t t tE mcπ β π λ+= +  

where 1t tEπ +  is the expected rate of inflation at time t+1 based upon information 

available at time t and tmc is real marginal cost. This model can be derived from the 

Calvo price-setting mechanism (Calvo, 1983). Monopolistically competitive firms 

would set prices as a fixed markup over marginal cost. Since marginal cost can be 

related to the output gap, the NKPC can be specified as 

     1t t t tE yπ β π λ+= +  

where ty is the output gap. Empirical evidence demonstrates that there are three 

problems regarding the NKPC (Mankiw, 2001): (1) It results in “disinflationary 

booms”, (2) Inflation inertia can not be explained, and (3) It is not able to give a 

proper description of the impulse response functions to monetary policy shocks. In 

order to remove these problems, the hybrid NKPC, which includes an additional 

lagged inflation term, has been suggested. 

     In this section, the hybrid New Keynesian Phillips curve will be analyzed¹ (Fuhrer 

and Moore, 1995) 

     1 1t f t t b t tE kyπ γ π γ π+ −= + +  

In the backward-looking Phillips curve, agents form their expectations using lagged 

inflation rates. These are included into current wage and price contracts. In the hybrid 

NKPC, past inflation matters just due to its correlation with 1t tEπ + . This term ( 1t tEπ + ) 

can be proxied by the fitted values from a regression of 1tπ +  on the information set 

including 1tπ −  and ty . Although the backward-looking Phillips curve and the NKPC 

are apparently similar, policy implications will be different under each of these views. 

The estimated equation is as follows 

-------------------------------------- 
1. The New Keynesian models usually include the NKPC, the IS curve equation and the Taylor-type 

interest rate rule (see Clarida et al., 1999 or Gali, 2000) However, since there is no data on interest 

rate in Iran after the 1979 Islamic revolution, we dropped the IS curve equation and the Taylor rule 

from our specification. It should be noted that after 1979 profit rates, instead of interest rate, have 

been introduced but such rates are not compatible with pre-revolution’s interest rate data. 
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      1 12.52 0.61 0.23 0.02t t t tE OGπ π π+ −= + + +  

(t-value)  (1.68)    (8.63)                (2.74)         (0.28) 

     2 0.77R = , . 1.54DW =  

 

In this model, inflation outcome is related to both forward-looking and backward-

looking terms. The large estimate of the forward-looking coefficient and the small 

estimate of the backward-looking coefficient should not be interpreted in favor of the 

forward-looking behavior. Such estimates can be obtained even if the true model is 

purely backward-looking (Rudd and Whelan, 2005). This situation may occur 

because of model misspecification and especially due to omitted variable bias. If an 

omitted variable z  which is one of the determinants of inflation is correlated with 1tπ +  

and the variables employed to instrument for it, the estimates of the forward-looking 

coefficient will be biased upwards (see appendix II for further detail of the effects of 

omitted variable bias). 

     Empirical evidence about the hybrid NKPC gives the contrasting results. For 

instance, Gali and Gertler (1999) using marginal cost find that forward-looking 

behavior is dominant while Fuhrer (1997) and Roberts (2001) using output gap as a 

proxy for the marginal cost conclude that forward-looking behavior is unimportant. 

Therefore, in case one uses marginal cost then the forward-looking term will be 

dominant while models based on output gap tend to reject the forward-looking 

behaviors.  
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Selecting the best model 
Two criteria are used to compare the models: the standardized expected inflation 

coefficient, i.e. the expected inflation coefficient ( 4α ) divided by the standard 

deviation of expected inflation, and adjusted R-squared ( 2R ). Table 5.10 reports the 

results. 

 

Table 5.10: Comparing inflation expectations schemes in the wage equation 

Expectations schemes The coefficient 

of eπ  ( 4α ) 
4

( )eS
α

π        2R  

Static Exp.       0.3682   0.0292    0.572 

Univariate Exp.       0.6953   0.0658    0.587 

Adaptive Exp. ( 0.3λ = )       0.4660   0.0421    0.518 

Adaptive Exp. ( 0.5λ = )       0.5606   0.0580    0.523 

Mix Exp. ( 0.3τ κ= = )       0.4110   0.0344    0.548 

Mix Exp. ( 0.5τ κ= = )       0.4477   0.0383    0.547 

Mix Exp. ( 0.7τ κ= = )       0.4469   0.0389    0.545 

Mix Exp (discrete-choice rule, 0δ = )       0.2869   0.0218    0.550 

Mix Exp (discrete-choice rule, 1δ = )       0.2803   0.0215    0.509 

Mix Exp (discrete-choice rule, 5δ = )       0.2963   0.0230    0.504 

Learning (Case 1)       0.6137   0.0810    0.572 

Learning (Case 2)       0.6590   0.0865    0.598 

Learning (Case 3)       0.6498   0.0856    0.593 

 

The learning approach is better suited for modeling inflation expectations than other 

alternative models if the two criteria mentioned above are considered. The learning 

approach (Case 2) has the maximum adjusted R-squared and the standardized 

expected inflation coefficient among other models.  

     The message of the learning models is: “being more aggressive to inflation”. 

According to Orphanides and Williams (2002), the optimal monetary policy under a 

learning process should be more aggressive and narrowed to inflation stability. In 

case a learning model is considered, any inflation shock can feed into the future 

which contradicts with stabilization polices. In such conditions, a tight monetary policy 

geared at solidly anchored inflation expectations is recommended. 
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6. Summary and Conclusions 
The role of expectations in the inflation process has been hotly debated over the 

years. Although economists agree that inflation expectations matter, there is not yet 

consensus about which inflation expectations matter (Mankiw, 2007). Does current 

inflation depend on the current expectation of future inflation (forward-looking new 

Keynesian models) or on the past expectations of current inflation (backward-looking 

models)? Failure to investigate this issue fully could lead to flawed economic policy. 

    The Iranian economy has experienced a relatively high inflation with an average 

inflation rate of about 15 percent over the period 1959-2003. It has even been more 

than 21 percent on average after the 1973 oil crisis. There is also a general 

agreement over the underestimating of the measured inflation due to price controls 

and government subsidies. Since the economy depends largely on oil revenues, any 

change in oil prices can directly affect all economic sectors. 

    The purpose of this study was to examine how market participants form their 

inflation expectations in the Iranian economy over the period 1959-2003. Inflation 

expectations are very unstable in Iran’s economy because the Central Bank is unable 

to adhere to an inflation target in practice. Thus, inflation expectations are not well-

anchored and any oil price increase, which seems apparently to be a favorable 

shock, results in money creation, fueled by government spending out of oil revenues, 

and inflation and causes private agents to raise inflation expectations. This in turn will 

increase inflation. As a result, poor anchored inflation expectations make price 

stability much more difficult to achieve in the long run and decrease the Central 

Bank’s ability to stabilize output and employment in the short run. Furthermore, 

subsidies on energy, food, bank credit and the large number of government-

controlled enterprises, which increase the budget deficit through borrowing from the 

Central Bank, have increased the monetary base. Money supply has become 10127 

fold over the period 1959-2003 while real GNP recorded only a 10 fold increase 

during the same period. With such very high liquidity, any decision or news 

announced by the government or the Central Bank could severely change distribution 

of resources in the economy. In such circumstances, it matters for the Central Bank 

to know how private agents form their expectations. Moreover, optimal monetary 

policy depends considerably on the assumed nature of expectations formation 

process. 
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    Empirical analyses on the formation of expectations can be divided into two 

categories: first, those studies that have been done by asking people about the future 

values of inflation (survey studies). Second, those studies that have tried to extract 

expectations from past data, on the assumption that people look to past experience 

as a guide to the future. This study followed the latter way. 

    The study found that the expectation hypothesis is accepted for the models under 

backward-looking expectations and learning approach. In other words, the expected 

inflation generated by the backward-looking expectations and learning approach are 

significant in the augmented Philips curve equation, and thus inflation expectations 

play a major role in the determination of the wages. It should be noted that the 

expectation hypothesis was rejected for rational expectations model. 

    Although the idea of rational expectations is attractive, it does not hold in the case 

of Iran. Since having access to the information is not apparently symmetric, inflation 

expectations can not be formed in a rational manner. The structure of the economy is 

unstable in ways that are imperfectly understood by both the public and policymakers 

and the policymakers’ objective function is not completely known by private agents.  

    One interesting result was that the Hodrick-Prescott (HP) filtered series can be 

used as a proxy for rational expectations. Applying some rationality tests regarding 

unbiasedness and efficiency to the HP-filtered series, the results indicated that the 

filtered series is unbiased and efficient. Therefore, the filtered series is rational in the 

sense of Muth (1960). 

    This study compared two approaches to modeling inflation expectations: simple 

forecast and a multi-equation model. The results of simple statistical predictors 

revealed that the Neural Network model yields better estimates of inflationary 

expectations than do parametric autoregressive moving average (ARMA) and linear 

models. The agents were assumed to use a parametric autoregressive moving 

average (ARMA) model, proposed by Feige and Pearce (1976), or nonparametric 

models to form their expectations. Comparing to the nonparametric alternatives, the 

results of Wilcoxon tests demonstrated that the forecasting performance of 

Projection-Pursuit Regression and Additive models appeared to differ from the Neural 

Network model, implying that the Neural Network model can significantly outperform 

Projection-Pursuit Regression model and it has a better performance than Additive 

model, but not by much. However, there was no possibility that the Neural Network 

model can outperform the Multiple Adaptive Regression Splines model. 
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    The results of estimated multi equation model indicated that the static 

expectations, adaptive expectations, optimal univariate expectations, a mix of 

extrapolative and regressive expectations with time-varying weights (and with 

discrete-choice updating weights) and learning approach are acceptable. Among 

near rational expectation schemes and the learning approach, the learning model 

was better suited for modeling inflation expectations than other alternative methods if 

the criteria, adjusted R-squared and the standardized expected inflation coefficient, 

are considered. 

     The hybrid New Keynesian Phillips Curve (NKPC), as an alternative to the 

augmented Phillips curve, was also considered. The results of estimated model 

indicated that the forward-looking term is dominant. However, this result should not 

be interpreted in favor of the forward-looking behavior. Such estimates can be 

obtained even if the true model is purely backward-looking (Rudd and Whelan, 2005). 

This situation may occur because of model misspecification and especially due to 

omitted variable bias. It should be noted that the New Keynesian models usually 

include the NKPC, the IS curve equation and the Taylor-type interest rate rule. 

However, since there is no data on interest rate in Iran after the 1979 Islamic 

revolution, we dropped the IS curve equation and the Taylor rule from our 

specification. After the 1979 profit rates, instead of interest rate, have been 

introduced but such rates are not compatible with pre-revolution’s interest rate data. 

    Since the learning approach was better suited for modeling inflation expectations 

than other alternative methods, the Central Bank should be more aggressive towards 

inflation. The optimal monetary policy under a learning process should be more 

aggressive and narrowed to inflation stability (Orphanides and Williams, 2002). 

Furthermore, as any decrease in inflation is highly desirable and is one of the main 

macroeconomic goals, solidly anchored inflation expectations are suggested. To do 

so we need to keep monetary policy tight for a considerable period. However, it 

should be noted that conducting such a policy will also decrease output and 

employment.  

    The Central Bank should be independent so that it is able to adhere to an inflation 

target in practice. In this case, the monetary policy will be more credible so that it 

makes the private agents’ expectations more responsive to signals from the Central 

Bank and the agents know what to expect following a set of published inflation 

targets. 
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    According to the findings mentioned above, further research to design optimal 

monetary policy under adaptive learning is necessary. Furthermore, since the Neural 

Network model outperformed the linear, autoregressive moving average (ARMA), 

and nonparametric models (except MARS), there is a need for an empirical 

investigation on adaptive learning of rational expectations using Neural Networks. In 

this case, the question may arise whether the agents’ expectations can converge to 

rational expectations with the help of Neural Networks. 
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Appendix I: Data source and definitions 

The data are annually for the period 1959-2003 and are collected from the Central 

Bank of Iran. 

W = index of the wage of construction workers (1997=100) 

U = unemployment rate 

y = real GNP (at the constant 1997 prices) 

P = GNP deflator (1997=100) 

2M  = 1M (currency +demand deposit) + quasi money 

g = real government consumption expenditure (at the constant 1997 prices) 

c = real private consumption expenditure (at the constant 1997 prices) 
mP  = import price index (1997=100) 

X = labor productivity (  real GNP
total empolyment

) 
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Appendix II: Effects of omitted variable bias 

Assume that the true model is a back-ward looking Phillips curve of the form 

1t t t t tx z uπ βπ λ μ−= + + +                                                                                       (1) 

where tx  is output gap and tz denotes a vector of additional determinants of inflation. 

Suppose λ  and μ  are positive. Now we fit the following equation using GMM and 

the instruments which includes tz  

1 1
f b

t t t t tw E w xπ π π γ+ −= + +                                                                                     (2) 

GMM and two-stage least squares are equivalent in a linear model. Therefore, in the 

first-stage regression we obtain the fitted values of 1tπ +  on 1tπ − , tx and tz as 

1 1 1 2 2
ˆ ˆ ˆˆt t t tx zπ δ π δ δ+ −= + +                                                                                           (3) 

which 1ˆtπ +  is a proxy for 1t tEπ + . Then 1ˆtπ + is used in a second-stage regression as 

1 1 ˆˆ ˆ ˆf b
t t t t tw w xπ π π γ ε+ −= + + +                                                                                  (4) 

Plugging equation (3) into (4) and rewriting 

1 1 2 3
ˆ ˆ ˆˆˆ ˆ ˆ ˆ( ) ( )f b f f

t t t t tw w w x w zπ δ π δ γ δ ε−= + + + + +                                                   (5) 

Comparing equation (5) with the true model (1), we can obtain the following 

asymptotic properties 

1̂ˆ ˆlim( )f bp w wδ β+ = ,                                                                                              (6) 

2̂ ˆˆlim( )fp w δ γ λ+ = ,                                                                                                (7) 

3̂ˆlim fp w δ μ= .                                                                                                         (8) 

Since inflation is highly autocorrelated, it is likely the coefficients 1̂δ  , 2̂δ  , and 3̂δ  from 

equation (3) will typically have the same sign as their respective coefficients β , λ , 

and μ  from the true model (1). As a result, it is clear that the estimated value of ˆ fw  

will be positive, even if the true model does not include a forward-looking term. 

Furthermore, the estimated coefficients ˆ bw  and γ̂  will be biased upward, as 

compared to the true coefficientsλ  andμ , because the effect of 1tπ − and tx  on tπ is 

already partly captured by 1ˆtπ + . In case this term receives a positive sign, then 

1tπ − and tx  will be crowded out of the second-stage regression.  
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