Das Selenoprotein PrpU als Vermittler zwischen oxidativem und reduktivem Glycin-Metabolismus von

Eubacterium acidaminophilum

ULB Sachsen-Anhalt

Dissertation

zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der Naturwissenschaftlichen Fakultät I der Martin-Luther-Universität Halle-Wittenberg

von

Anja Poehlein geb. am 26.09.1978 in Halle/Saale

Gutachter:

- 1. Prof. J. R. Andreesen
- 2. Prof. G. Sawers
- 3. Prof. M. Hagemann

Tag der Verteidigung: 10.09.2008

Inhaltsverzeichnis

	Ι
Inhaltsverzeichnis	2
Abkürzungsverzeichnis	7
1. Einleitung	1
2. Material & Methoden	12
2.1. Organismen und Plasmide	12
2.2. Kultivierung von Bakterien	16
2.2.1. Vollmedien für <i>E. coli</i>	
2.2.2. M9-Minimalmedium (SAMBROOK et al., 1989)	
2.2.3. Medium für die Anzucht von E. acidaminophilum	
2.2.3. Medienzusätze	
2.2.4. Zellanzucht	
2.2.5. Messung des Bakterienwachstums	
2.2.6. Lagerung von Bakterienkulturen	
2.3. Isolierung von Nukleinsäuren	19
2.3.1. Isolierung von Gesamt-DNA aus E. acidaminophilum (SAITO and MIURA 1963), mod	
2.3.2. Isolierung von Plasmid-DNA	
2.3.2.1. Minipräparation von Plasmid-DNA aus E. coli (BIRNBOIM and DOLY 1979)	
2.3.2.2. Plasmidisolation mit dem QIAprep [®] Spin Miniprep Kit (Qiagen, Hilden)	
2.3.2.3. Plasmid Midipräparation	
2.3.3. Isolierung von RNA	
2.4. Standardtechniken für das Arbeiten mit Nukleinsäuren	21
2.4.1. Behandlungen von Geräten und Lösungen	
2.4.2. Phenol/Chloroform-Extraktion und Fällung von Nukleinsäuren	
2.4.3. Fällung von Nukleinsäuren	
2.4.4. Auftrennung von Nukleinsäuren	
2.4.4.1. Standard-Agarose-Gelelektrophorese von DNA	
2.4.4.2. Denaturierende Agarose-Gelelektrophorese von RNA	
2.4.5. Größenbestimmung von Nukleinsäuren	

2.4.6. Konzentrationsbetimmung von DNA und RNA	23
2.4.7. Reinigung von PCR-Produkten	24
2.4.8. Gewinnung von DNA-Fragmenten aus Agarose-Gelen	24
2.4.9. Verdau von DNA mit Restriktionsendonucleasen	24
2.4.10. Dephosphorylierung von DNA	24
2.4.11 Ligation von DNA-Fragmenten	24
2.4.12. Mikrodialyse von DNA-Lösungen (MARUSYK and SERGEANT 1980)	25
2.5. Polymerase-Kettenreaktion (PCR)	25
2.5.1. Standard-PCR	25
2.5.2. Identifikation unbekannter Genomabschnitte mittels Vektorette-PCR (RILEY et al., 1990)	26
2.6. Herstellung und Selektion rekombinanter <i>E. coli</i> -Klone	27
2.6.1. Transformation durch Elektroporation (DOWER et al., 1988)	27
2.6.1.1. Herstellung kompetenter Zellen	27
2.6.1.2. Übertragung von DNA in <i>E. coli</i> durch Elektroporation	27
2.7. Hybridisierung von Nukleinsäuren	27
2.7.1 Herstellung von DIG-markierten Sonden	27
2.7.2. DNA-Hybridisierung (SOUTHERN 1975)	
2.7.4. Dot-Blot-Hybridisierung	
2.7.5 Kolonie-Hybridisierung	
2.8. Methoden zur DNA-Analyse	29
2.8.1. DNA-Sequenzierung am ABI377-Sequenzer	
2.8.2. Auswertung von Sequenzdaten	
2.9. Methoden zur RNA-Analyse	30
2.9.1. Reverse Transkription (RT-PCR)	
2.9.2 Bestimmung des Transkriptionsstartpunktes mittels primer extension	
2.10. Proteinchemische Methoden	30
2.10.1. Bestimmung der Proteinkonzentration (BRADFORD 1976)	
2.10.2. Denaturierende Polyacrylamid-Gelelektrophorese (LAEMMLI 1970)	
2.10.3. Denaturierende Tris-Tricine-Polyacrylamid-Gelelektrophorese (SCHÄGGER 2006)	
2.10.4. Coomassie-Färbung von Proteinen	
2.10.5 Trocknung von Protein-Gelen	
2.10.6. Transfer von Proteinen auf PVDF-Membranen und Western-Blot Analyse	
2.10.6.1. Nachweis von Strep-tag [®] II-Fusionsproteinen	
2.10.7. Heterologe Synthese von Proteinen mit Hilfe des <i>Strep</i> -tag [®] II-Expressionssystems	

2.10.7.1. Kultivierung, Induktion der Proteinsynthese und Ernte der Zellen	
2.10.7.2. rapid screening von Expressionskulturen	
2.10.7.3. Zellaufschluss und Gewinnung des Rohextraktes	
2.10.7.4. Affinitätschromatographie an StrepTactin-Sepharose	
2.11. Bestimmung von Enzymaktivitäten	
2.11.1. Thioredoxin-System-Test mit DTT und NADP (MEYER et al., 1991), mod	
2.11.2. Thioredoxin-System-Test mit NADPH und Lipoamid (MEYER et al., 1991), mod	
2.11.3 Test auf Diaphorase-Aktivität nach KLEIN and SAGERS (1967)	
2.11.4 Glycin-Decarboxylase, lichtoptischer Test nach KLEIN and SAGERS (1967)	
2.11.5. Bestimmung der β-Galactosidase-Aktivität (MILLER 1992), mod	
2.11.5.1. Zellanzucht	
2.11.5.2. Aktivitätsbestimmung	
2.12. Geräte und Chemikalien	37
3. Experimente und Ergebnisse	
3.1. Glycin-, Sarcosin- und Betain-Reduktase-Gencluster in <i>E. acidaminophilum</i>	
3.1.1. Vollständige Klonierung des Gencluster I der Glycin-Reduktase	
3.1.2. Vollständige Klonierung des Gencluster VI der Betain-Reduktase	
3.1.3. Vollständige Klonierung des Gencluster V/II der Betain-Reduktase	41
3.1.4. Verknüpfung der Gencluster	
3.2. Das Glycin-Decarboxylase-Operon aus <i>E. acidaminophilum</i>	44
3.2.1. Vollständige Klonierung des Glycin-Decarboxylase-Operons aus E. acidaminophilum	
3.2.2. Transkriptionsanalysen des Glycin-Decarboxylase-Operons durch RT-PCR	
3.2.3. primer-extension Experimente zur Bestimmung der Transkriptionsstartpunkte	
3.2.4. Putative Transkriptions- und Translationssignale des Glycin-Decarboxylase-Operons	49
3.2.5. Transkriptionsanalysen zu unterschiedlichen Wachstumsbedingungen	
3.2.5.1. Transkriptionsanalysen zu unterschiedlichen Wachstumsphasen	
3.2.5.2. Transkriptionsanalysen bei der Kultivierung mit unterschiedlichen Kohlenstoffquellen	54
3.3. Interaktionsstudien von PrpU mit Hilfe von bakteriellen two-hybrid-Systemen	55
3.3.1. Einführung in das BacterioMatch [®] Two-Hybrid-System	56
3.3.2. Einführung in das bakterielle lexA-basierende two-hybrid-System (DMITROVA et al., 1998)	57
3.3.3. Klonierung in die Plasmide pBT und pTRG des BacterioMatch®Two-Hybrid-Systems	58
3.3.4. Klonierung in die Plasmide pMS604 und pDP804 des lexA-basierende two-hybrid-Systems	60
3.3.5 Transformation der konstruierten Hybrid-Plasmide in die Reporterstämme	61
3.3.6. Bestimmung der β-Galactosidase-Aktivitäten	62
3.3.7. Detektion der PrpU-Derivate mittels Western-Blot	64

3.3.8. Auswertung der Interaktionsstudien aller untersuchten Proteine	66
3.3.9. Identifikation von Homodimeren im Reporterstamm <i>E. coli-</i> SU101	68
3.4. Synthese von Proteinen aus <i>E. acidaminophilum</i> in <i>E. coli</i>	70
3.4.1. Synthese der Komponenten der Glycin-Decarboxylase als <i>Strep-</i> tag [®] II-Fusionsprotein	70
3.4.1.1. Klonierung in die Expressionsvektoren pASK-IBA3 und pASK-IBA5	70
3.4.1.2. Testexpression von gcvP1α, gcvP1β, gcvP2 und gcvP4 als Strep-tag [®] II-Translationsfusion in E. coli	71
3.4.1.3. Reinigung der heterolog synthetisierter Proteine	72
3.4.1.4. Coexpression der Gene der α- und β-Untereinheit des P1-Proteins von <i>E. acidaminophilum</i>	73
3.4.1.5. Konstruktion eines Vektors zur simultanen Reinigung der α- und β-Untereinheit des P1-Proteins	75
3.4.1.6. Klonierung des gcvP1-Gens von E. acidaminophilum in den Expressionsvektor pASK-IBA53ke	76
3.4.2. Lipoylierung des P2-Proteins der Glycin-Decarboxylase von <i>E. acidaminophilum</i>	79
3.4.2.1. Synthese des P2-Proteins in Gegenwart von Liponsäure	79
3.4.3. Expression der Gene des Thioredoxin-Systems von <i>E. acidaminophilum</i> als <i>Strep</i> -tag [®] II-Fusionsprote	ine 80
3.4.3.1. Klonierung von <i>trxB</i> und <i>trxA</i> in den Expressionsvektor pASK-IBA3	80
3.4.3.2. Synthese und Reinigung von heterologer Thioredoxin-Reduktase und heterologem Thioredoxin	81
3.4.4. Expression der Gene der Selenoproteine PrpU und GrdA und deren Cystein-Mutanten in E. coli	82
3.4.4.1. Klonierung von grdA3 und prpU in das Expressionsplasmid pASK-IBA3plus	82
3.4.4.2. Testexpression der Gene der Selenoproteine PrpU und GrdA als Strep-tag® II-Translationsfusion in E. coli	83
3.4.4.3. Synthese und Reinigung von Wildtyp-PrpU und -GrdA und deren Cystein-Varianten	84
3.5. <i>pull-down</i> Experimente	85
3.6. Aktivitätstests zur Bestimmung der Funktion von PrpU	87
3.6.1. Stimulierung der Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase	87
3.6.2. Glycin-Decarboxylase-Test	89
4. Diskussion	91
4.1. Die Transkription des Glycin-Decarboxylase-Operons	91
4.2. Die Glycin-Decarboxylase - ein Komplex, der normalerweise aus vier Proteinen besteht	102
4.2.1. Das P1-Protein der Glycin-Decarboxylase-die eigentliche Decarboxylase	103
4.2.2. Das P2-Protein der Glycin-Decarboxylase-das hydrogen carrier Protein	111
4.2.3. Das P4-Protein der Glycin-Decarboxylase-die Aminomethyl-Transferase	117
4.3. Interaktionsstudien mit Hilfe von bakteriellen two-hybrid-Systemen und pull-down-assays	121
4.3.1. Interaktionen der Komponenten der Glycin-Decarboxylase	122
4.3.2. Interaktionsstudien von PrpU und den Vertretern des Thioredoxin-Systems	124
4.4. Glycin-, Sarcosin- und Betain-spezifische Gencluster	128

4.5. Ausblick	138
5. Zusammenfassung	140
6. Literaturverzeichnis	142
7. Anhang	161
A.I. Verwendete Oligonukleotide	161
A.II. Sequenz des Glycin-Decarboxylase-Operons und der angrenzenden Bereiche	168
A.III. Sequenz eines neuen Ausschnittes des Glycin-Reduktase-spezifischen Gencluster I	176
A.IV. Sequenz eines erweiterten Ausschnittes des Glycin-Reduktase-spezifischen Gencluster III	180
A.V. Sequenz eines Ausschnittes des Sarcosin-Reduktase-spezifischen Gencluster IV	182
A.VI. Sequenz eines erweiterten und verbundenen Ausschnittes des Betain-spezifischen Gencluster II/V	184
A.VII. Sequenz eines neuen Ausschnittes des Creatin-Reduktase-spezifischen Gencluster VI-5'-Bereich	189
A.VIII. Sequenz des neuen Ausschnittes des Creatin-Reduktase-spezifischen Gencluster VI-3'-Bereich	191
A.IX. β-Galactosidase-Aktivitäten der untersuchten E. coli-SU202 und E. coli-SU101 Stämme	193
A.IX.1. β-Galactosidase-Aktivitäten des pMSP1α-Derivates in Kombination mit allen pDP804-Derivaten	193
A.IX.2. β-Galactosidase-Aktivitäten des pMSP1β-Derivates in Kombination mit allen pDP804-Derivaten	194
A.IX.3. β-Galactosidase-Aktivitäten des pMSP2-Derivates in Kombination mit allen pDP804-Derivaten	195
A.IX.4. β-Galactosidase-Aktivitäten des pMSP4-Derivates in Kombination mit allen pDP804-Derivaten	196
A.IX.5. β-Galactosidase-Aktivitäten des pMSGrdA-Derivates in Kombination mit allen pDP804-Derivaten	197
A.IX.6. β-Galactosidase-Aktivitäten des pMSTR-Derivates in Kombination mit allen pDP804-Derivaten	198
A.IX.7. β-Galactosidase-Aktivitäten des pMSTrx-Derivates in Kombination mit allen pDP804-Derivaten	199
A.IX.8. β-Galactosidase-Aktivitäten des pMSP1αβ-Derivates in Kombination mit allen pDP804-Derivaten	200
A.IX.9. β-Galactosidase-Aktivitäten der pMSP604-Derivate im Stamm E. coli-SU202	201
A.IX.10. β-Galactosidase-Aktivitäten der pDP804-Derivate im Stamm E. coli-SU101	202
A.IX.11. β-Galactosidase-Aktivitäten der pDP804-Derivate im Stamm E. coli-SU202	203
A.IX.12. β-Galactosidase-Aktivitäten der Kontrollen	204
A.X. Absorptionsspektren von heterolog synthetisierter Thioredoxin-Reduktase und von GrdA	205
A.XI. mRNA-Sekundärstrukturen des potentiellen Glycin-Riboswitch aus C. difficile und C. sticklandii	206

Abkürzungsverzeichnis

A	Adenin
Abb.	Abbildung
AHT	Anhydrotetracyclin
Amp ^r	Ampicillin-Resistenz
AS	Aminosäure(n)
ATP	Adenosin-5'-triphosphat
bp	Basenpaar(e)
BSA	Rinderserum-Albumin
С	Cytosin
Cam ^r	Chloramphenicol-Resistenz
cDNA	komplementäre DNA
CIAP	calf intestine alkaline phosphatase
	(Alkalische Phosphatase aus Kälberdarm)
Da	Dalton
dATP	Desoxyadenosin-5'-triphosphat
DEPC	Diethylpyrocarbonat
dest.	destilliert
DIG	Digoxigenin
DMF	Dimethylformamid
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DNase	Desoxyribonuklease
dNTP	Desoxynukleosid-5'-triphosphat
DTT	Dithiothreitol
dUTP	Desoxyuridin-5'-triphosphat
EDTA	Ethylendiamintetraessigsäure
EF-Tu	Elongationsfaktor Tu
G	Guanin
GDP	Guanosin-5'-diphosphat
GMP	Guanosin-5'-monophosphat
GTP	Guanosin-5'-triphosphat
HABA	4'-Hydroxyazobenzol-2-carbonsäure
HPLC	high performance liquid chromatography
	(Hochleistungs-Flüssigkeitschromatographie)
HRP	horseradish peroxidase (Meerrettich-Peroxidase)

Ι	Inosin
IPTG	Isopropyl-β-thiogalactopyranosid
Kan ^r	Kanamycin-Resistenz
kb	Kilobasenpaar(e)
kDa	Kilodalton
LB	Lysis-Broth
MALDI	matrix-assisted laser-desorption ionization
	(Matrix-unterstützte Laserdesorption-Ionisation)
mcs	multiple cloning site
MG	Molekulargewicht
mod.	modifiziert
MOPS	3-Morpholino-propansulfonsäure
mRNA	Messenger-Ribonukleinsäure
MS	Massenspektrometrie
Ν	beliebiges Nukleotid
nt	Nukleotid(e)
NTP	Nukleosidtriphosphat
OD	Optische Dichte
ONPG	o-Nitrophenyl-β-D-galactosid
ORF	open reading frame (offener Leserahmen)
PAGE	Polyacrylamid-Gelelektrophorese
PCR	polymerase chain reaction (Polymerase-Kettenreaktion)
PEG	Polyethylenglycol
PMSF	Phenylmethylsulfonylfluorid
psi	pounds per sqare inch
PVDF	Polyvinylidendifluorid
RBS	Ribosomenbindestelle
RNA	Ribonukleinsäure
RNase	Ribonuklease
RT	Raumtemperatur (25 °C)
RT	Reverse Transkription
SDS	sodium dodecyl sulfate (Natriumdodecylsulfat)
SLA	Spurenelementlösung A
SSC	Standard-Saline-Citrat
Т	Thymin
Tab.	Tabelle
TAE	Tris-Acetat-EDTA

TE	Tris-EDTA
TEMED	N, N, N', N'-Tetramethylethylendiamin
Tet ^r	Tetracyclin-Resistenz
Tm	Schmelztemperatur
Tris	Tris(hydroxymethyl)-aminomethan
tRNA	Transfer-Ribonukleinsäure
U	Unit (Einheit der Enzymaktivität)
U	Uridin
Upm	Umdrehungen pro Minute
UTP	Uridin-5'-triphosphat
UV	Ultraviolett
V	Volt
Vol.	Volumen
v/v	Volumen pro Volumen
w/v	Masse pro Volumen
wt	Wildtyp
X-Gal	$5\text{-}Brom\text{-}4\text{-}chlor\text{-}3\text{-}indolyl\text{-}\beta\text{-}galactopyranosid$

1. Einleitung

Das Wort Glycin leitet sich vom griechischen Adjektiv "glykys" ab, was süß bedeutet. Glycin, auch als Aminoessigsäure bezeichnet, ist die kleinste und am einfachsten strukturierte proteinogene Aminosäure. Sie gehört zur Gruppe der hydrophilen Aminosäuren und ist als einzige nicht chiral und somit nicht optisch aktiv. Glycin gehört zu den nicht essentiellen Aminosäuren und ist ein wichtiger Bestandteil nahezu aller Proteine und übernimmt eine wichtige Position im Stoffwechsel aller Organismen. Es kann über die Wege der Serin-Hydroxymethyltransferase und der Glycin-Decarboxylase zur Energiekonservierung genutzt werden, stellt aber auch eine sehr wichtige Quelle für C₁-Einheiten für die Synthese von Purinen, aber auch von Häm-Vorstufen, Creatin, Porphyrinen und Glutathion dar. Im Zuge der Akzeptorregeneration bei der Photorespiration wird über Glyoxylat Glycin und Serin in den Mitochondrien gebildet, wo die Komponenten der Glycin-Decarboxylase 10 % der cytosolischen Proteine ausmacht. Der Anteil von Glycin in Proteinen kann, wie z. B. beim Kollagen oder der Spinnenseide (GOSLINE et al., 1986) bis zu 35 % betragen. Mehr als 45 mol% beträgt der Anteil an Glycin am antifreeze Protein (AFP), was von Hypogastrura haveyi (Schnee-Floh) als Schutz vor Kälte bzw. Eiskristallen gebildet wird (GRAHAM and DAVIES 2005). Auf Grund seiner geringen Größe begünstigt es hier die Ausbildung der für dieses Protein charakteristischen Tripel-Helix-Struktur. Im Zentralnervensystem dient Glycin als inhibitorischer Neurotransmitter. Glycinerge Neuronen kommen hauptsächlich im Rückenmark vor und hemmen dort die Motoneuronen des Vorderhorns, wodurch es zur Herabsetzung der Muskelaktivität der von diesen Zellen innervierten Muskeln kommt (LÖFFLER and PETRIDES 2003; STRYER 1996).

In die Gruppe der Firmicutes ist die heterogene Gattung der Clostridien einzuordnen, die mindestens 19 verschiedene Cluster umfasst (COLLINS et al., 1994). Eubacterium acidaminophilum gehört wie Clostridium difficile, Clostridium sticklandii und Clostridium litorale zu diesen obligat anaeroben, Gram-positiven Organismen, die dem Cluster XI der Clostridien angehören (BAENA et al., 1999). E. acidaminophilum ist z. B. in der Lage, Glycin und die Derivate Sarcosin (N-Methylglycin) und Betain (N, N, N-Trimethylglycin) in einer internen Stickland-Reaktion (STICKLAND 1934) zur Energiekonservierung zu nutzen (ZINDEL et al., 1988). Auch Creatin und Hydantoine werden über Sarcosin verstoffwechselt. Die Stickland-Reaktion ist eine gekoppelte Oxidations-Reduktions-Reaktion, bei der meist Paare von Aminosäuren metabolisiert werden, eine als Elektronen-Donor, eine andere, meist Glycin, Prolin oder Leucin, als Elektronen-Akzeptor. Glycin kann bei dieser Art des Stoffwechselweges sowohl als Elektronen-Donor als auch als -Akzeptor fungieren, während Sarcosin und Betain von E. acidaminophilum nur reduziert werden können. Dieser Organismus ist in der Lage, alle drei Aminosäure-Derivate zu verstoffwechseln, dabei kann Glycin E. acidaminophilum nach Supplementierung mit Selenit auch als alleinige Energie- und Kohlenstoffquelle dienen (ZINDEL et al., der Reduktion von Sarcosin und Betain entstammen die bereitgestellten 1988). Im Fall Reduktionsäquivalente der Oxidation von Formiat durch die Formiat-Dehydrogenase (GRÄNTZDÄRFFER et al., 2003), während die für die Reduktion von Glycin notwendigen Elektronen der vollständigen Oxidation

von Glycin durch die Glycin-Decarboxylase (2 e⁻), die Methylen-THF-Dehydrogenase (NADPH+H⁺), und die Formiat-Dehydrogenase (2 e⁻) entstammen und ebenfalls letztendlich in Form von NADPH+H⁺ über das Thioredoxin-System der Glycin-Reduktase zugeführt werden (ANDREESEN 1994a; 1994b; 2004; FREUDENBERG and ANDREESEN 1989; GRÄNTZDÄRFFER *et al.*, 2003; ZINDEL *et al.*, 1988).

Die Glycin-, Sarcosin- und Betain-Reduktase aus *E. acidaminophilum* sind Mehrkomponenten-Systeme, die aus jeweils drei Proteinen, dem Selenoprotein A, dem substratspezifischen Selenoprotein B ($P_{BGlycin}$, $P_{BSarcosin}$ und $P_{BBetain}$) und dem Protein C bestehen (Abb. 1), deren Bezeichnung sich historisch gesehen aus den einzelnen Protein-Fraktionen während der Isolierung der einzelnen Komponenten ergibt (ANDREESEN 2004).

Abb. 1: Schematische Darstellung der Reduktion von Glycin, Sarcosin und Betain durch die Glycin-, Sarcosinund Betain-Reduktase in *E. acidaminophilum* (ANDREESEN 2004): GrdB_47 kDa-Untereinheit des $P_{BGlycin}$, GrdE_Proprotein der 25- und 22 kDa-Untereinheiten von B_{Glycin} , GrdF_47 kDa-Untereinheit von $B_{Sarcosin}$, GrdG: Proprotein der 25- und 22 kDa-Untereinheiten von $B_{Sarcosin}$, GrdH_45 kDa-Untereinheit von Selenoprotein B_{Betain} , GrdI_48 kDa-Untereinheit von B_{Betain} , GrdA_Selenoprotein A, GrdC_57 kDa-Untereinheit von Protein C, GrdD_48 kDa-Untereinheit von Protein C, Trx_Thioredoxin.

Das Selenoprotein A (GrdA) der jeweiligen Reduktase ist nach der Aminosäurezusammensetzung ein saures Protein mit einer apparenten molekularen Masse zwischen 12-20 kDa, welches Selenocystein im redoxaktiven Motiv CxxU aufweist (ANDREESEN 2004; LÜBBERS and ANDREESEN 1993; SONNTAG 1998; STADTMAN 1966; WAGNER *et al.*, 1999). Die substratspezifischen Selenoproteine P_{BGlycin} und P_{BSarcosin} sind aus drei Untereinheiten mit Größen von 47, 25 und 22 kDa aufgebaut, während das P_{BBetain} nur aus zwei Untereinheiten mit Größen von 45 und 48 kDa aufgebaut ist (MEYER *et al.*, 1995; WAGNER 1997; WAGNER *et al.*, 1999). Die 47 kDa-Untereinheiten der Glycin- und Sarcosin-Reduktase werden von den Genen *grdB* und *grdF* codiert, während die 22 und 25 kDa-Untereinheiten aus einer Proproteinspaltung der *grdE* und *grdG*-Genprodukte durch Cysteinolyse hervorgehen (BEDNARSKI *et al.*, 2001; EVERSMANN 2004). Die 47 und 48 kDa-Untereinheit der Betain-Reduktase werden durch *grdH* und *grdI* codiert, wobei die 48 kDa-

Untereinheit nicht gespalten wird, da ihr das Spaltungsmotiv fehlt. Die 47 kDa-Untereinheit der Glycin- und der Sarcosin-Reduktase und die 45 kDa-Untereinheit der Betain-Reduktase enthalten jeweils ein Selenocystein, was Teil eines redoxaktiven Sequenzmotives (UxxCxxC) im aktiven Zentrum der Enzyme ist (WAGNER et al., 1999). Das für Se-carboxymethyliertes GrdA spezifische Protein C besteht aus zwei Untereinheiten, die durch die Gene grdC und grdD codiert werden, die im Allgemeinen eine molekulare Masse von 54-60 kDa aufweisen (KOHLSTOCK 2001; KOHLSTOCK et al., 2001; SCHRÄDER and ANDREESEN 1992). Die primären und sekundären Amine Glycin und Sarcosin werden kovalent unter Ausbildung einer Schiff'schen Base von einer noch unbekannten Carbonylgruppe im C-terminalen Bereich der 47 kDa-Untereinheit des P_{BGlycin} bzw. P_{BSarcosin} gebunden, während Betain als tertiäres Amin nur über ionische Wechselwirkungen an die 45 kDa-Untereinheit des P_{BBetain} gebunden wird (ANDREESEN 1994a; 1994b; 2004; WAGNER 1997; WAGNER et al., 1999). Eine Polarisierung der N-C-Bindung der Substrate Glycin und Sarcosin wird durch die Ausbildung der Schiff'schen Base erreicht, während die positive Ladung des Stickstoffs im Betain eine ausreichende Polarisierung der N-C-Bindung dieses Substrates bedingt. Nach der Substratbindung erfolgt ein nucleophiler Angriff der dissoziiert vorliegenden Selenolgruppe des Selenocysteins an das α-Atom der polarisierten C-N-Bindung, was zur Spaltung dieser führt. Hierbei kommt es zur Freisetzung von NH₃, Methylamin bzw. Trimethylamin bei Umsetzung der Substrate Glycin, Sarcosin und einem für alle drei Verbindungen identischen Protein **B**-gebundenen und Betain Carboxymethylselenoether (ANDREESEN 2004; WAGNER 1997; WAGNER et al., 1999). Im nächsten Schritt erfolgt eine Umetherung, wobei ein Selenoprotein A (GrdA)-gebundener Carboxymethylselenoether entsteht, welcher durch gemeinsame Katalyse der Proteine A und C in einen Protein C-gebundenen Acetylthioester überführt wird (ANDREESEN 2004; ARKOWITZ and ABELES 1991). Das nach dieser Reaktion oxidiert vorliegende Selenid-Sulfid an Protein A (GrdA) wird durch Bereitstellung von Reduktionsäquivalenten in Form von NADPH+H⁺ durch das Thioredoxin-System wieder zur Selenol-/Thiol Gruppe reduziert, wodurch das Protein A wieder zur Aufnahme eines neuen Carboxymethylselenoether bereit ist (DIETRICHS et al., 1991; LÜBBERS and ANDREESEN 1993; MEYER et al., 1991). Der Acetylthioester, welcher letztendlich an dem Cys³⁵⁹der kleinen Untereinheit (GrdD) des Protein C gebunden ist, wird durch Phosphorylyse zu Acetylphosphat freigesetzt und dieses durch die Aktivität der Acetat-Kinase zu Acetat und ATP umgesetzt (ANDREESEN 2004; KOHLSTOCK 2001; KOHLSTOCK et al., 2001; SCHRÄDER and ANDREESEN 1992). Die Gene der Komponenten der jeweiligen Reduktasen sind mit den Genen des Thioredoxin-Systems und spezifischen Aminosäure-Transportern in Substrat-spezifischen Genclustern assoziiert (KOHLSTOCK 2001; LÜBBERS and ANDREESEN 1993; SONNTAG 1998; WAGNER et al., 1999).

Die Reduktionsäquivalente zur Reduktion entstammen u. a. der Oxidation von Glycin durch die Glycin-Decarboxylase, einem Multienzymkomplex, der fast immer aus vier Komponenten besteht, die in Bakterien meist mit P1, P2, P3 und P4 bezeichnet werden (FREUDENBERG and ANDREESEN 1989; FREUDENBERG *et al.*, 1989b; GARIBOLDI and DRAKE 1984) Die eukaryotischen Proteine werden entsprechend mit P, H, L und T bezeichnet (KIKUCHI and HIRAGA 1982; MOTOKAWA and KIKUCHI 1971; SATO *et al.*, 1969). Die Bezeichnung ergibt sich dabei jeweils aus der Funktion der einzelnen Komponenten. Das P- bzw. P1-Protein ist ein Pyridoxalphosphat (PLP) abhängiges Enzym und wird als eigentliche Decarboxylase angesehen. Die meisten aus Prokaryoten isolierten P1-Proteine liegen als $\alpha_2\beta_2$ -Tetramer vor (FREUDENBERG and ANDREESEN 1989; GARIBOLDI and DRAKE 1984), während die Proteine aus Escherichia coli (OKAMURA-IKEDA et al., 1993) und Synechocystis sp. Stamm PCC 6803 (HAGEMANN et al., 2005; HASSE et al., 2007) genau wie die aus Eukaryoten isolierten Proteine durch Genfusionen und somit als gleich großes Homodimer vorliegen (ANDREESEN 1994a; ENGELMANN et al., 2008; KOPRIVA and BAUWE 1994a; KUME et al., 1991; MOTOKAWA and KIKUCHI 1972). Die Bindung des Cofaktors PLP erfolgt nichtkovalent an der β-Untereinheit der Tetrameren bzw. im C-terminalen Bereich der dimeren Proteine. Diese Domäne des Proteins ist durch eine Glycin-reiche Sequenz und ein stark konserviertes tetrameres Glycin-Motiv gekennzeichnet. Das P- bzw. P1-Protein katalysiert aber nur zusammen mit dem H- bzw. P2-Protein, dem Elektronen-übertragenden Protein (hydrogen carrier protein), die oxidative Abspaltung der Carboxylgruppe des Glycins in Form von CO₂. Das H- bzw. P2-Protein ist ein kleines, hitzestabiles Protein, das als funktionelle Gruppe α -Liponsäure (6,8-Dithioloctansäure) trägt, welche über eine Amidbindung mit der ε -Aminogruppe eines ebenfalls ubiquitär stark konservierten Lysin-Restes verbunden ist (FREUDENBERG and ANDREESEN 1989; FUJIWARA et al., 1979; MOTOKAWA and KIKUCHI 1969; PARES et al., 1994; PARES et al., 1995). Dieses Protein stellt den zentralen Drehpunkt des Enzymsystems dar, da es mit seiner funktionellen Gruppe mit den drei übrigen Komponenten des Komplexes in Wechselwirkung treten kann (Abb. 2) (COHEN-ADDAD et al., 1995; NAKAI et al., 2003a; OLIVER et al., 1990). Auf das durch Reduktion freie distale Schwefelatom der Liponsäure-Gruppe wird die bei der gemeinsamen Katalyse beider Proteine frei werdende Aminomethylgruppe übertragen, welche damit später zum Substrat des T- bzw. P4-Proteins wird. Diese auch als Aminomethyl-Transferase bezeichnete Komponente ist Tetrahydrofolat (THF)-abhängig und katalysiert die Spaltung der an der Liponsäuregruppe des H- bzw. P2-Protein gebundenen Aminomethylgruppe, was zur Freisetzung von NH₃ und der Übertragung der entstandenen Methylengruppe auf THF führt. Als Ergebnis dieser Reaktion entsteht 5,10-Methylen-THF. Das L- bzw. P3-Protein (Dihydrolipoamid-Dehydrogenase) katalysiert die Reoxidation der reduziert vorliegenden Dithiole der Liponsäuregruppe des H- bzw. P2-Proteins, wodurch dieses Protein als Disulfid zu einer erneuten Aufnahme einer weiteren Aminomethylgruppe zur Verfügung steht (ANDREESEN 1994a; 1994b; HIRAGA and KIKUCHI 1980b; KIKUCHI 1973; KIKUCHI and HIRAGA 1982). Durch die Reaktion dieser Komponente werden zwei Elektronen über P3-gebundenes FAD auf NAD⁺ bzw. NADP⁺ übertragen (ANDREESEN 1994a; 1994b; FAURE et al., 2000; NEUBURGER et al., 2000).

Das L-Protein, die Dihydrolipoamid-Dehydrogenase ist nicht nur ein Bestandteil der Glycin-Decarboxylase, sondern auch der Pyruvat-Dehydrogenase, der α -Ketoglutarat-Dehydrogenase, der Verzweigtketten- α -Ketosäure-Dehydrogenase und der Acetoin-Dehydrogenase (CRONAN and LA PORTE 1996; OPPERMANN *et al.*, 1991; STEIERT *et al.*, 1990; TURNER *et al.*, 1992b).

Abb. 2: Reaktionsmechismus der Glycin-Decarboxylase (PARES *et al.*, 1994, mod.): Dargestellt ist die reversible Decarboxylierung von Glycin durch die Glycin-Decarboxylase:P1_P1- bzw. P-Protein; P2_P2- bzw. H-Protein, P3_P3- bzw. L-Protein; P4_P4- bzw. T-Protein.

Die Glycin-Decarboxylase ist ein ubiquitär verbreiteter Enzymkomplex und stellt das Schlüsselenzym des Glycin-Metabolismus dar. Dieser dient in Bakterien hauptsächlich der Energiekonservierung und der Bereitstellung von C₁-Einheiten für die Synthese von Serin, Purinen, Methionin, Thymin und anderen methylierten Verbindungen (MUDD and CANTONI 1964; NEIDHARDT 1996). In Eukaryoten sind als Teil der Regenerierung des bei der Photosynthese entstehenden Glyoxylats die Komponenten der Glycin-Decarboxylase in den Mitochondrien lokalisiert, wo sie bei Pflanzen bis zu 10 % des löslichen Proteins ausmachen (BOURGUIGNON *et al.*, 1988) und mit einem stöchiometrischen Verhältnis von 2 P-Protein-Dimeren : 27 H-Protein-Monomeren : 1 L-Protein-Dimer : 9 T-Protein-Monomeren bestimmt wurden (NEUBURGER *et al.*, 1989; OLIVER *et al.*, 1990; OLIVER and RAMAN 1995). Hier ist dieser Enzymkomplex maßgeblich am Abbau des Glycins beteiligt, das in großen Mengen während der Photorespiration durch die Transaminierung von Glyoxylat entsteht (BERRY *et al.*, 1978; MAREK and STEWART 1983). Die ebenfalls mitochondrial lokalisierte Serin-Hydroxymethyltransferase katalysiert die Synthese von Serin aus Glycin und 5,10-Methylen-THF, das aus der Oxidation eines zweiten Glycins durch die Glycin-Decarboxylase entstanden ist (NEUBURGER *et al.*, 1989; PETERSON 1982). Bei C₄-Pflanzen wird das P-Protein nur in den Leitbündel-Zellen gebildet, wo eine Photorespiration ablaufen kann (ENGELMANN *et al.*, 2008).

Im Menschen führt eine Mutation in einem der vier für die Komponenten der Glycin-Decarboxylase codierenden Gene zu einer Störung des Glycin-Metabolismus. Diese Erkrankung wird Nonketotische Hyperglycinämie (NKH) genannt. Diese wird autosomal rezessiv vererbt und ist neben der Phenylketonurie die am häufigsten auftretende Erbkrankheit, die einen Defekt des Aminosäure-Stoffwechsels verursacht. Betroffene Patienten haben einen stark erhöhten Glycin-Spiegel im Plasma und der Cerebrospinalflüssigkeit, was u. a. zu Lethargie, mentaler Retardierung und Muskelhypotonie führt (KURE *et al.*, 1997; TADA 1993;

TADA *et al.*, 1969). Bei 85 % aller NKH-Erkrankungen ist eine Mutation des Gens des P-Proteins zu finden, während 15 % aller Mutationen hauptsächlich das Gen des T-Proteins betreffen (DINOPOULOS *et al.*, 2005; TOONE *et al.*, 2001; TOONE *et al.*, 2002).

Da E. acidaminophilum Glycin besser als Elektronen-Akzeptor nutzen kann (1 ATP pro aufgenommenen 2 Elektronen anstelle von 1 ATP pro 6 gebildeten Elektronen bei der Glycin-Decarboxylase), während andere Aminosäuren wie z. B. Serin, Alanin oder Aspartat als Elektronen-Donor fungieren (GRANDERATH 1988; ZINDEL et al., 1988), ist eine spezifische Regulation des Glycin-Metabolismus, speziell auch der Glycin-Oxidation durch die Glycin-Decarboxylase essentiell für diesen Organismus. In der vorangegangenen Diplomarbeit (POEHLEIN 2003) wurde durch Northern-Blot-Analysen gezeigt. dass der Transkriptionsstartpunkt des Glycin-Decarboxylase-Operons von E. acidaminophilum ca. 1000 Nukleotide upstream des Startcodons von gcvP4 gelegen sein muss. In Bacillus subtilis wird die Transkription des Glycin-Decarboxylase-Operons durch eine upstream des Operons gelegene mRNA-Sekundärstruktur reguliert, die als Riboswitch bezeichnet wird (MANDAL et al., 2004; PHAN and SCHUMANN 2007). Diese, auch als cis-agierenden RNA-Elemente bezeichneten Strukturen, sind in der 5'-nichttranslatierten Region von Genen lokalisiert und beeinflussen die Transkription und Translation dieser direkt (KUBODERA et al., 2003; WINKLER 2005; WINKLER and BREAKER 2003; 2005). Riboswitche sind im Allgemeinen aus zwei voneinander abhängigen, aber dennoch klar zu unterscheidenden Domänen aufgebaut. Zum einen ist das eine Aptamer-Domäne, welche auch bei kaum verwandten Organismen in Sequenz und der sich ergebenden Struktur stark konserviert ist. Durch Bindung eines Target-Moleküls kommt es zur Konformationsänderung dieses Aptamers, was eine Änderung der Struktur der direkt downstream gelegenen regulatorischen Domäne bewirkt, die auch als Expressions-Plattform bezeichnet wird (Abb. 3). Durch die Konformation dieser Domäne bedingt, kommt es so zu einer positiven oder negativen Beeinflussung der Transkription downstream lokalisierter Gene durch Ausbildung eines Rho-unabhängigen Terminators oder Maskierung der Shine-Dalgarno-Sequenz (SHINE and DALGARNO 1974; WINKLER 2005a; WINKLER and BREAKER 2003). Die Länge der Aptamer-Domäne aller bisher beschriebenen Riboswitche variiert zwischen ca. 70 bis 200 Nukleotiden, die sogenannte Expressionsplattform (Abb. 3) zeigt hingegen eine wesentlich größere Diversität in der Sequenz, der Struktur und vor allem in der Größe. Nicht selten können diese auch innerhalb einer Riboswitch-Klasse sehr verschieden sein (MIRONOV et al., 2002). Die regulatorische Domäne bindet Metabolite und biologische Cofaktoren, wie z. B. Thiamin Pyrophosphat (TPP) (NOESKE et al., 2006; WINKLER et al., 2002a), Vitamin B₁₂ (NAHVI et al., 2004), S-Adenosylmethionin (WINKLER et al., 2003), Aminosäuren (MANDAL et al., 2004; SUDARSAN et al., 2003) und Purin-Derivate (FUJIWARA et al., 1979; MANDAL and BREAKER 2004a; NOESKE et al., 2007).

Abb. 3: Schematische Darstellung einer Riboswitch-Struktur mit Aptamer-Domäne und Expressions-Plattform.

Der Glycin-Riboswitch, welcher die Transkription von Genen reguliert, die für Proteine des Glycin-Katabolismus oder dessen Transport codieren, hat eine Besonderheit. Er besteht aus zwei strukturell sehr ähnlichen, durch einen Linker verbundenen Aptameren (MANDAL *et al.*, 2004; PHAN and SCHUMANN 2007). Glycin wir dabei kooperativ an beide Aptamere gebunden, was sich in einem Hill-Coeffizienten von n = 1,6 ausdrückt (FORSEN and LINSE 1995). Durch Bindung dieses Metaboliten an das Aptamer 1 kommt es zur drastischen Steigerung der Affinität des Aptamer 2 um das 1000-fache gegenüber dieser Aminosäure (KWON and STROBEL 2008; LIPFERT *et al.*, 2007). Strukturell sehr ähnliche Moleküle wie Sarcosin, Alanin oder Serin werden nur sehr schlecht gebunden (MANDAL *et al.*, 2004).

Während alle bisher beschriebenen Riboswitch Klassen nur in Bakterien identifiziert werden konnten, stellt der TPP-Riboswitch, auch als Thi-Box-Riboswitch bezeichnet, eine Ausnahme dar, da er in allen drei Domänen des Lebens identifiziert werden konnte. Neben seiner starken Verbreitung in bakteriellen Genomen ist er in den Archaea, in den Thermoplasmatales der Euryarchaeota, identifiziert worden, was mit großer Wahrscheinlichkeit als Ergebnis eines horizontalen Gentransfers anzusehen ist (MIRANDA-RIOS 2007). Als bislang einziger Riboswitch ist er auch in Eukaryoten, speziell in den Genomen von Pflanzen und Pilzen zu finden (BARRICK and BREAKER 2007; SUDARSAN *et al.*, 2003a). Hier ist er im 3'-nichttranslatierten Bereich von pre-mRNAs lokalisiert und beeinflusst deren *splicing*. In Prokaryoten ist er mit Genen der Thiamin-Synthese, dessen Phosphorylierung und Transport assoziiert, wo er sowohl deren Transkription, aber auch die Translation regulieren kann.

In Tabelle 1 ist eine Übersicht aller bisher beschriebenen Riboswitch-Klassen dargestellt.

Riboswitch/Ligand	Zielgene	Regulation
TDD Bibogwitch ¹	Southess. Dhesselend is and Transmost was Thisterin	Abbruch der Transkription
IFF-KIDOSWIICII	Synthese, Phosphorynerung und Transport von Thiannin	Verhinderung der Translationsinitiation
EMN Diboowitch ²		Abbruch der Transkription
FIMIN-RIDOSWIICH	Biosynthese und Transport von Ribonavin	Verhinderung der Translationsinitiation
Coenzym-B ₁₂ -	Cobalamin-Biosynthese	Abbruch der Transkription
Riboswitch ³	Transport und Biosynthese von Porphyrin und Cobalt	Verhinderung der Translationsinitiation
SAM Diboswitch ⁴	Biosynthese und Transport von Methionin und S-Adenosyl-Methionin	Abbruch der Transkription
SAM-KIDOSWICH	Schwefelmetabolismus	Verhinderung der Translationsinitiation
SAM _{MK} -Riboswitch ⁵	SAM-Synthase	Abbruch der Transkription
SAM _{II} -Riboswitch ⁶	Biosynthese und Transport von Methionin und S-Adenosyl-Methionin	Abbruch der Transkription
Lysin-Riboswitch ⁷	Synthese und Transport von Lysin, Lysin-Katabolismus	Abbruch der Transkription
Glycin-Riboswitch ⁸	Glycin-Decarboxylase, Transport von Glycin, Na ⁺ /Alanin-Symporter	Transkriptionsinitiation
Adenin-Riboswitch9	Transport und Synthese von Purinen	Abbruch der Transkription
		Abbruch der Transkription
Guanin-Riboswitch ¹⁰	Transport und Synthese von Purinen	Transkriptionsinitiation
2'-Deoxy-Guanosin- Riboswitch ¹¹	Ribonukleotid-Reduktase	Abbruch der Transkription
PreQ1-Riboswitch ¹²	Biosynthese von Queosin	Abbruch der Transkription
MoCo/Tuco-	Transport von Molybdat oder Wolframat, Biosynthese von Molybdän-	
Riboswitch ¹³	Cofaktoren	Verhinderung der Translationsinitiation
GlcN6P-Riboswitch ¹⁴	Glucosamin-6-Phosphat Synthase	Verdau der mRNA

Tab. 1: Übersicht aller bisher beschriebenen Riboswitch-Klassen (BARRICK and BREAKER 2007; mod.)

¹⁻¹⁴ die Literatur zu den einzelnen Riboswitch-Klassen ist auf der nächsten Seite aufgelistet

- ¹ (BARRICK and BREAKER 2007; NOESKE et al., 2006; SUDARSAN et al., 2006; WINKLER et al., 2002a)
- ² (VITRESCHAK et al., 2002; WICKISER et al., 2005b; WINKLER et al., 2002b)
- ³ (NAHVI *et al.*, 2004; VITRESCHAK *et al.*, 2003)
- ⁴ (GRUNDY and HENKIN 1998; 2003; 2006; RODIONOV *et al.*, 2004)
- ⁵ (FUCHS *et al.*, 2006; 2007; GILBERT *et al.*, 2008)
- ⁶ (CORBINO *et al.*, 2005; LIM *et al.*, 2006)
- ⁷ (GRUNDY et al., 2003; KOCHHAR and PAULUS 1996; RODIONOV et al., 2003; SUDARSAN et al., 2003)
- ⁸ (KWON and STROBEL 2008; MANDAL *et al.*, 2004; PHAN and SCHUMANN 2007)
- ⁹ (LEMAY et al., 2006; MANDAL and BREAKER 2004a; NOESKE et al., 2005; WICKISER et al., 2005a)
- ¹⁰ (BATEY *et al.*, 2004; NOESKE *et al.*, 2007; NOESKE *et al.*, 2005)

¹¹ (KIM *et al.*, 2007)

- ¹² (MEYER *et al.*, 2008; ROTH *et al.*, 2007)
- ¹³ (REGULSKI et al., 2008; WEINBERG et al., 2007)
- ¹⁴ (TINSLEY *et al.*, 2007; WINKLER *et al.*, 2004)

Bis auf den Glucosamine-6-Phosphat-Riboswitch nehmen alle bisher beschriebenen Riboswitch-Klassen direkt Einfluss auf die Transkription bzw. Translation downstream gelegener Gene durch Ausbildung von Terminator- oder Antiterminatorstrukturen bzw. Maskierung oder Demaskierung der Ribosomen-Bindestelle (HENKIN and YANOFSKY 2002; VITRESCHAK et al., 2002). Während nahezu alle Riboswitche in Gegenwart entsprechenden Metabolite eine Terminatorstruktur und bei dessen Abwesenheit eine der Antiterminatorstruktur ausbilden, ist es im Falle der Glycin-, Lysin- und Adenin-spezifischen Riboswitche umgekehrt. So wird eine unnötige Expression downstream lokalisierter Gene verhindert. Diese auch als intrinsische Terminatoren bezeichneten Sekundärstrukturen sind durch einen GC-reichen stemloop und einen aus mind. 5-9 Uridinen bestehenden 3'-Bereich gekennzeichnet. Der Terminator hat direkten Einfluss auf die Stabilität des Elongationskomplexes und verhindert die Transkription downstream gelegener Bereiche. Der Antiterminator, der meist aus der linken Hälfte des Terminators und upstream lokalisierter Sequenzen besteht, ermöglicht hingegen die Transkription der im 3'-Bereich lokalisierten Gene (GOLLNICK and BABITZKE 2002; HENKIN and YANOFSKY 2002). Viele Riboswitch-Strukturen nehmen auch direkt Einfluss auf die Translation. Im Bereich der Expressions-Plattform kommt es zur Ausbildung einer so genannte sequestering Helix, die eine Basenpaarung mit der Sequenz der Ribosomen-Bindestelle eingeht und so die Translation der downstream lokalisierten Gene verhindert, da die Shine-Dalgarno-Sequenz in dieser Form für das Ribosom nicht zugänglich ist. Durch Konformationsänderung des Aptamers, z. B. durch Metabolitbindung, kann es jedoch auch zu einer Basenpaarung eines Bereiches der sequestering Helix mit einem Teil des Aptamers kommen. Durch Ausbildung dieser so genannte antisequestering Helix wird die Translation der Gene im 3'-Bereich des Riboswitches ermöglicht (GRUNDY and HENKIN 2006; MARZI et al., 2007; VITRESCHAK et al., 2002; 2004).

Für *E. acidaminophilum* stellt der Glycin-Metabolismus, bestehend aus Glycin-Decarboxylase und Glycin-Reduktase bzw. Sarcosin- oder Betain-Reduktase, eine der wichtigsten Energie- und Kohlenstoffquellen dar (ANDREESEN 1994a; 1994b; 2004; ZINDEL *et al.*, 1988). Während alle bisher beschriebenen und charakterisierten Glycin-Decarboxylasen aus den vier beschriebenen Komponenten bestehen (HIRAGA and KIKUCHI 1980b; KOCHI and KIKUCHI 1974; MOTOKAWA and KIKUCHI 1972; OKAMURA-IKEDA *et al.*, 1993;

RAJINIKANTH *et al.*, 2007; STAUFFER *et al.*, 1986), konnte für *E. acidaminophilum* weder das P3-Protein noch eine eigenständige Dihydrolipoamid-Dehydrogenase-Aktivität gefunden werden (DIETRICHS *et al.*, 1991; FREUDENBERG *et al.*, 1989a) Auch konnte auf DNA-Ebene kein für dieses Protein codierendes Gen identifiziert werden (LECHEL 1999; POEHLEIN 2003). Aus diesem Organismus konnte eine Thioredoxin-Reduktase mit Dihydrolipoamid-Dehydrogenase-Aktivität isoliert werden, die das Fehlen des P3-Proteins in Verbindung mit einem etwas atypischen Thioredoxins (HARMS *et al.*, 1998b) zu kompensieren scheint. Die bei der Oxidation des Glycins durch die Glycin-Decarboxylase freiwerdenden Elektronen werden über NADPH+H⁺ und das Thioredoxin-System, bestehend aus Thioredoxin-Reduktase und Thioredoxin, direkt auf das Protein A (GrdA) der Glycin-Reduktase übertragen (DIETRICHS *et al.*, 1991; FREUDENBERG *et al.*, 1989a; FREUDENBERG *et al.*, 1989b; MEYER *et al.*, 1991). Diesen Thioredoxinen fehlt das voluminöse Tryptophan vor dem proximalen Cystein, so dass eine Interaktion mit dem ebenfalls voluminösen Selenocystein von GrdA erleichtert wird (HARMS *et al.*, 1998b).

Neben dem Selenoprotein A (GrdA) und dem substratspezifischen Protein B der einzelnen Reduktasen zeichnet sich E. acidaminophilum durch mindestens sechs weitere Selenocysteinhaltige Proteine aus. Eines dieser Proteine ist das von WAGNER (1997) durch 75^{Se}-Markierungen angereicherte ca. 11 kDa große (GRÖBE 2001; LECHEL 1999) Selenoprotein PrpU (putative redoxactive protein with selenocysteine U, das bisher nur in E. acidaminophilum identifiziert werden konnte. Das Gen dieses Proteins konnte kloniert und die Präsenz des Selenocystein-codierenden in frame UGA-Codon bestätigt werden (GRÖBE 2001; LECHEL 1999). Durch Vergleiche mit in den Datenbanken gespeicherten Proteinsequenzen konnten keine Homologen zu Proteinen anderer Organismen identifiziert werden. Bisher konnte diesem Protein, das eine potentielle redoxaktive Sequenz von 134-A-C-A-T-U-D-139 aufweist, keine Funktion zugeordnet werden. Eine Beteiligung von PrpU an der Entgiftung reaktiver Sauerstoffspezies konnte nicht gezeigt werden (GRÖBE et al., 2007; PARTHER 2003). Das von LECHEL (1999) klonierte und von GRÖBE (2001) in der Sequenz korrigierte Gen ist downstream der Gene der Glycin-Decarboxylase und des Gens einer Formyl-THF-Synthetase in einem aus insgesamt sechs Genen bestehenden Operon lokalisiert und wird gemeinsam mit diesen transkribiert (LECHEL 1999; POEHLEIN 2003). Downstream dieses Operons sind zwei orf's für hypothetische Proteine und ein Gencluster für an der Folat-Biosynthese beteiligte Enzyme lokalisiert (LECHEL 1999). In E. acidaminophilum sind oftmals Gene, die gemeinsame Stoffwechselwege katalysieren, in einer Operon-ähnlichen Struktur zusammengefasst (GURSINSKY et al., 2000; SONNTAG 1998).

Ausgehend von diesen Erkenntnissen sollte im Rahmen der vorliegenden Arbeit u. a. eine mögliche Beteiligung von PrpU am Glycin-Metabolismus von *E. acidaminophilum*, die möglicherweise in der Kompensation des Fehlens einer eigenständigen Dihydrolipoamid-Dehydrogenase zu sehen ist, geprüft werden. Die Komponenten der Glycin-Decarboxylase, des Thioredoxin-Systems, GrdA und PrpU sollten heterolog in *E. coli* synthetisiert und durch Etablierung eines Enzym-Tests die Funktion von PrpU im Metabolismus von *E. acidaminophilum* geklärt werden. Durch gezielte Interaktionsstudien sowie Transkriptionsanalysen sollte diesem Protein eine Funktion zugeordnet werden.

Des Weiteren sollten im Rahmen dieser Arbeit die von LÜBBERS und ANDREESEN (1993), SONNTAG (1998) WAGNER *et al.* (1999) und KOHLSTOCK *et al.* (2001) identifizierten Gensätze der Komponenten der Glycin-, Sarcosin und Betain-Reduktase sowie des Thioredoxin-Systems vollständig kloniert werden, um so zu sehen, ob eventuell noch essentielle Komponenten übersehen wurden. Es sollten aber auch die Protein-Komponenten aus *E. acidaminophilum* mit der Glycin- und D-Prolin-Reduktase aus *C. sticklandii* verglichen werden (GRÄNTZDÖRFFER *et al.*, 2001; KABISCH *et al.*, 1999).

_

2. Material & Methoden

2.1. Organismen und Plasmide

Im Rahmen dieser Arbeit eingesetzte Bakterienstämme sind in Tabelle 2, Vektoren und hergestellte Hybrid-Plasmide in Tabelle 3 aufgeführt.

Stamm	Genotyp bzw. Phänotyp	Referenz
Eubacterium acidaminophilum DSM 3953	Wildtyp	ZINDEL <i>et al.</i> , (1988)
<i>Escherichia coli</i> XL1-Blue MRF`	Δ(mcrA) 183, Δ(mcrCB-hsdSMR- mrr) 173, endA1 supE44, thi-1, recA1, gyrA96, relA1, lac[F´proAB, lacI ^a ZΔM15, Tn10(<u>Tet^R</u>)]	Stratagene, Amsterdam
<i>Escherichia coli</i> XL1-Blue MRF`	Δ(mcrA) 183, Δ(mcrCB-hsdSMR- mrr) 173, endA1 supE44, thi-1, recA1, gyrA96, relA1, lac[F´proAB, lacI ^q ZΔM15, Tn10(<u>Kan^R</u>)]	Stratagene
Escherichia coli SU101	Derivat von JL1434, chromosomales <i>lacZ</i> -Gen unter Kontrolle eines <i>lexA</i> - Wildtyp-Operators, <i>sulA</i> -Promotor	DMITROVA <i>et al.</i> , (1998)
Escherichia coli SU202	Derivat von JL1434, chromosomales <i>lacZ</i> -Gen unter Kontrolle eines <i>lexA</i> - Hybrid-Operators, <i>sulA</i> -Promotor A(merA)183 A(merCB hsdSMB)	DMITROVA <i>et al.</i> , (1998)
Escherichia coli-Reporterstamm (BacterioMatch®Two-Hybrid- System)	mrr)173 endA1 hisB supE44 thi-1 recA1 gyrA96 relA1 lac [F´lacIq HIS3 aadA Kan ^R]	Stratagene
Escherichia coli BL21(DE3)	B F- $ompT hsdS(r_B-m_B-) dcm_+$ Tet ^R gal λ (DE3)	Stratagene
Escherichia coli BL21(DE3)- CodonPlus-RIL	B F- $ompT hsdS(r_B-m_B-) dcm_+$ Tet ^R gal λ (DE3) endA Hte [argU ileY leuW Cam ^r]	Stratagene
Escherichia coli XL10-Gold	Tet ^r Δ (mcrA)183 Δ (mcrCB-hsdSMR- mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lacHte [F´ proAB lacIaZ Δ M15 Tn10 (Tetr) Amv Cam ^R]	Stratagene

Tab. 2: Übersicht über verwendete Bakterienstämme

Tab. 3: Übersicht über verwendete Plasmide

Plasmid	relevante Merkmale ¹	Referenz, Quelle
	Klonierungsplasmide	
pUC18	Amp ^R , <i>lacPoz</i> `	YANISCH-PERRON <i>et al.</i> , (1985)
pASK-IBA3	Expressionsvektor, Amp ^R , f1-IG, <i>bla</i> , <i>ori</i> , t _{lpp} , <i>tet</i> -repressor, <i>tet</i> A-Promotor/Operator, <i>Strep</i> -tag [®] II C-terminal	IBA, Göttingen
pASK-IBA5	Expressionsvektor, Amp ^R , f1-IG, <i>bla</i> , <i>ori</i> , t _{lpp} , <i>tet</i> -repressor, <i>tetA</i> -Promotor/Operator, <i>Strep</i> -tag [®] II N-terminal	IBA
pASK-IBA53ke	Expressionsvektor, Ap ^R , f1-IG, <i>bla</i> , <i>ori</i> , t _{lpp} , <i>tet</i> -repressor, <i>tetA</i> -Promotor/Operator, <i>Strep</i> -tag [®] II C-terminal und N-terminal	diese Arbeit
	Synthese von Selenoproteinen in <i>E. coli</i>	
pASBC4	pACYC184:: <i>selB</i> , <i>selC</i>	Gursinsky 2002 Gursinsky 2008
	Strep-tag [®] II -Klonierungen	
pP1aNW	pASK-IBA5::gcvP1a	diese Arbeit
pP1bCW	pASK-IBA3::gcvP1β	diese Arbeit
pP1bNW	pASK-IBA5::gcvP1β	diese Arbeit
pP2CW	pASK-IBA3::gcvP2	diese Arbeit
pP4CW	pASK-IBA3::gcvP4	diese Arbeit
pP4NW	pASK-IBA5::gcvP4	diese Arbeit
ρΡ1αβ53	pASK-IBA53ke:: $gcvP1\alpha\beta$ mit zusätzlicher RBS	diese Arbeit
ρcΡ1αβ53	pASK-IBA53ke::gcvP1αβ	diese Arbeit
pP1abCW	pASK-IBA3::gcvP1αβ	diese Arbeit
pP1abNW	pASK-IBA5::gcvP1αβ	diese Arbeit
pTRCW	pASK-IBA5:: <i>trxB</i>	diese Arbeit
pTrxCW	pASK-IBA5:: <i>trxA</i>	diese Arbeit
pPrpUCW	pASK-IBA3::prpU	diese Arbeit
pPrpUCW+	pASK-IBA3plus:: <i>prpU</i>	diese Arbeit
pPMI3	pASK-IBA3:: <i>prpU</i> U ₃₃ ->C	D. GRÖBE, pers. M.
pPACW	pASK-IBA3::grdA3	diese Arbeit
pPACW+	pASK-IBA3plus::grdA3	diese Arbeit
pPACM	pASK-IBA3::grdA3 U ₃₆ ->C	diese Arbeit
pPACM+	pASK-IBA3plus::grdA3 U ₃₆ ->C	diese Arbeit

Fortsetzung Tab. 3

lexA-basierendes two-hybrid-System			
pDP804	Amp ^R , LexA ₁₋₈₇ 408Jun-Zipper Fusion, P15A Replikon	DMITROVA <i>et al.</i> , (1998)	
pMS604	Tet ^R , LexA ₁₋₈₇ WT-Fos-Zipper Fusion, ColE1 Replikon	DMITROVA <i>et al.</i> , (1998)	
pMSP1a	pMS604::gcvP1a	diese Arbeit	
pMSP1β	pMS604::gcvP1β	diese Arbeit	
pMSP2	pMS604::gcvP2	diese Arbeit	
pMSP4	pMS604::gcvP4	diese Arbeit	
pMSPrpU	pMS604::prpU	diese Arbeit	
pMSGrdA	pMS604::grdA	diese Arbeit	
pMSTR	pMS604:: <i>trxB</i>	diese Arbeit	
pMSTrx	pMS604::trxA	diese Arbeit	
pMSP1αβ	pMS604::gcvP1αβ	diese Arbeit	
pDPP1a	pDP804::gcvP1α	diese Arbeit	
pDPP1β	pDP804:: <i>gcvP1β</i>	diese Arbeit	
pDPP2	pDP804::gcvP2	diese Arbeit	
pDPP4	pDP804::gcvP4	diese Arbeit	
pDPPrpU	pDP804::prpU	diese Arbeit	
pDPGrdA	pDP804::grdA	diese Arbeit	
pDPTR	pDP804:: <i>trxB</i>	diese Arbeit	
pDPTrx	pDP804::trxA	diese Arbeit	
pDPP1αβ	pDP804::gcvP1αβ	diese Arbeit	
	BacterioMatch [®] Two-Hybrid-System		
pBT	<i>bait</i> -Vektor; Chl ^R , <i>lacUV5</i> -Promotor, P15A Replikon, Fusion mit λ cI-Phagenprotein möglich	Stratagene	
pTRG	<i>target</i> -Vektor; Tet ^R , <i>lpp/lacUV5</i> -Promotor, ColE1 Replikon, Fusion mit der RNAP α möglich	Stratagene	
pBT-LGF-2	pBT-Kontrollplasmid; Chl ^R , <i>lacUV5</i> -Promotor, P15A Replikon, λcI -LGF2-Fusion	Stratagene	
pTRG-Gall11p	pTRG-Kontrollplasmid; Tet ^R , <i>lpp/lacUV5</i> -Promotor, ColE1 Replikon, RNAP α- Gall11p-Fusion	Stratagene	
pBTP1a	pBT::gcvP1a	diese Arbeit	
pBTP1β	pBT::gcvP1β	diese Arbeit	
pBTP2	pBT::gcvP2	diese Arbeit	
pBTP4	pBT::gcvP4	diese Arbeit	

Fortsetzung Tab. 3

pBTPrpU	pBT:: <i>prpU</i>	diese Arbeit
pBTGrdA	pBT::grdA	diese Arbeit
pBTTR	pBT:: <i>trxB</i>	diese Arbeit
pBTTrx	pBT:: <i>trxA</i>	diese Arbeit
ρΒΤΡ1αβ	pBT::gcvP1αβ	diese Arbeit
pTRGP1a	pTRG::gcvP1a	diese Arbeit
pTRGP1β	pTRG::gcvP1β	diese Arbeit
pTRGP2	pTRG::gcvP2	diese Arbeit
pTRGP4	pTRG::gcvP4	diese Arbeit
pTRGPrpU	pTRG::prpU	diese Arbeit
pTRGGrdA	pTRG::grdA	diese Arbeit
pTRGTR	pTRG:: <i>trxB</i>	diese Arbeit
pTRGTrx	pTRG:: <i>trxA</i>	diese Arbeit
pTRGP1αβ	pTRG::gcvP1αβ	diese Arbeit
	Klonierung der Gene des Glycin-Decarboxylase-Operons	
pUsP4H3	pGem [®] -T Easy::1,4 kb PCR-Fragment	diese Arbeit
pUsP4SA	pGem [®] -T Easy::1,6 kb PCR-Fragment	diese Arbeit
pUsP4VP	pGem [®] -T Easy::1,3 kb PCR-Fragment	diese Arbeit
pAP694	pUC18-Derivat::1,7 kb Sau3A-Fragment	diese Arbeit
pAP2218	pUC18-Derivat::5,5 kb Sau3A-Fragment	diese Arbeit
	<u>Klonierung Gencluster</u>	1° A 1 °/
pUsGrdE1	pGem -1 Easy::3,1 kb PCR-Fragment	diese Arbeit
pDsGrdA4	pGem ^o -T Easy::1,5 kb PCR-Fragment	diese Arbeit
pDsGrdC2	pGem [®] -T Easy::4,4 kb PCR-Fragment	diese Arbeit
pUsGrdF2	pGem [®] -T Easy::3,5 kb PCR-Fragment	diese Arbeit
	Vlaniamung hausshaaning Cono	
PDD AE	nGem [®] -T Easy ··· () 8 kb PCR - Fragment	diese Arbeit
prpoaea	pCom [®] T Easy	diago Arbait
pRPOBEa	poem -1 Easy::1,2 k0 PCK-Fragment	ulese Ardell
pEFTUEa	pGem [®] -T Easy::1,3 kb PCR-Fragment	diese Arbeit

Abgesehen von denen auf den Plasmiden pUC18, pGEM[®]-T Easy, pMS604, pDP804, pBT, pTRG und pASK-IBA3/5 stammen die angeführten Gene aus *E. acidaminophilum*

2.2. Kultivierung von Bakterien

2.2.1. Vollmedien für E. coli

Für die Kultivierung von *E. coli* wurde Lysis-Broth-Medium (LB-Medium) verwendet (SAMBROOK *et al.*, 1989).

LB-Medium:		Trypton Hefeextrakt NaCl	1 0,5 1	% % %
LB-Agar:		LB-Medium Agar	1,5	%
2.2.2. M9-Minimalmedium (SAMBROOK et a.	<i>l.</i> , 1989)			
M9-Minimalmedium				
5xM9-Salze:				
Na ₂ HPO ₄ x7 H ₂ O	2,00	g	48	mM
KH ₂ PO ₄	15,00	g	22	mM
NaCl	2,5	g	9	mM
NH ₄ Cl	5,00	g	19	mM
MgSO ₄ x 7 H ₂ O (1 M)	2,00	ml	2	mM
CaCl ₂ x 2 H ₂ O (1 M)	0,10	ml	0,1	mM
Glucose (20 % [w/v])	20,00	ml	0,4	%
Aminosäure-Mix I	10,00	ml	0,04	mg/ml
Aminosäure-Mix II	10,00	ml	0,04	mg/ml
Thiamin-HCl (10 % [w/v])	1,00	ml	0,01	%
H ₂ O _{dest.}	ad 1000	ml		

Aminosäure-Mix I (4 mg/ml):

L-Alanin, L-Arginin, L-Asparagin, L-Aspartat, L-Cystein, Na-L-Glutamin, Na-Glutaminat, Glycin, L-Histidin-HCl, L-Isoleucin, L-Leucin, L-Lysin-HCl, L-Methionin, L-Prolin, L-Serin, L-Threonin, L-Valin

<u>Aminosäure-Mix II (4 mg/ml; pH 8,0):</u> L-Phenylalanin, L-Thyrosin, L-Tryptophan

2.2.3. Medium für die Anzucht von E. acidaminophilum

E. acidaminophilum wurde in einem Medium nach ZINDEL et al., (1988, mod.) anaerob kultiviert.

Medium nach ZINDEL et al., (1	1988),	mod.:
-------------------------------	--------	-------

KH ₂ PO ₄	0,20	g	1,5	mМ
NaCl	1,00	g	17	mM
KCl	0,50	g	6,7	mM
MgSO ₄ x 7 H ₂ O	0,50	g	2	mM
CaCl ₂ x 2 H ₂ O (1 M)	0,10	ml	1	mM
NH ₄ Cl	0,25	g	3,5	mM
SL A^1 (s. u.)	1,00	ml		
Resazurin (0,1%ig (w/v) in H ₂ O dest.)	1,00	ml	1	mg/ml
D-(+)-Biotin (1 mg/l)	0,1	ml	0,1	mg/l
C-Quelle	x (s. u	ı.)		
H ₂ O _{dest.}	ad 1000	ml		
pH 7,4-7,8				

Das Medium wurde zunächst 15 min gekocht und anschließend 30 min mit N₂ begast, nach der von HUNGATE (1969) beschriebenen Methode jeweils 9 ml in Hungate-Röhrchen mit Butylgummistopfen abgefüllt und autoklaviert (25 min, 121 °C). Danach wurden pro Röhrchen 500 μ l einer sterilen 8,4% igen NaHCO₃ (w/v) zugegeben und der pH-Wert durch Zugabe von 1 N HCl auf 7,4-7,8 eingestellt. Vor dem Beimpfen der einzelnen Röhrchen wurden noch 2-3 Tropfen Biotin (10 mg/ ml) und 100 μ l 6% iges Na₂S (w/v) zugegeben.

Folgende C-Quellen wurden verwendet:

Glycin	50	mM
Serin/Na-Formiat/Sarcosin	10/40/60	mМ
Serin/Na-Formiat/Betain	10/40/60	mМ
Alanin/Sarcosin	30/50	mМ
Alanin/Betain	30/50	mМ
Na-Formiat/Glycin	50/40	mМ
Serin/Sarcosin	20/10	mМ
Serin/Betain	20/10	mМ

¹Spurenelementlösung SL A (HORMANN and ANDREESEN 1989) mod.

FeCl ₂ x 4 H ₂ O	1,500	g	7,5 x 10 ⁻⁶	М
ZnCl ₂	0,070	g	5,1 x 10 ⁻⁷	М
MnCl ₂ x 4 H ₂ O	0,100	g	5,1 x 10 ⁻⁷	М
H_3BO_3	0,006	g	9,7 x 10 ⁻⁸	М
CoCl ₂ x 6 H ₂ O	0,190	g	8,0 x 10 ⁻⁸	М
CuCl ₂ x 2 H ₂ O	0,002	g	1,2 x 10 ⁻⁸	М
NiCl ₂ x 6 H ₂ O	0,024	g	1,0 x 10 ⁻⁷	М
$Na_2WO_4 \ge 2 H_2O$	0,033	g	1,0 x 10 ⁻⁷	М
Na ₂ SeO ₃ x 5 H ₂ O	0,260	g	1,0 x 10 ⁻⁶	М
$Na_2MoO_4 \ge H_2O$	0,036	g	1,5 x 10 ⁻⁷	М
HCl (25 % (v/v))	10,0 ml		7,5 x 10 ⁻²	М
H ₂ O _{dest.}	ad 1000 ml			

Die angegebenen Konzentrationen der Spurenelemente ergeben sich nach Zusatz von 1 ml Lösung zum oben beschriebenen Medium.

2.2.3. Medienzusätze

Bei Bedarf wurden den Medien die in Tabelle 4 aufgeführten Zusätze beigemischt.

Medienzusatz	Stammlösung ¹	Konzentration im Medium
Ampicillin	125 mg/ml in H2O dest.	125 µg/ml
Tetracyclin	12,5 mg/ml in 50 % Ethanol	12,5 µg/ml
Kanamycin	50 mg/ml in H2O dest.	$30 \mu g/ml$
Chloramphenicol	50 mg/ml in Ethanol	35 μg/ml
Anhydrotetracyclin	20 mg/ml in DMF	0,2 µg/ml
X-Gal	20 mg/ml in DMF	48 μg/ml
IPTG	40 mg/ml in H2O dest.	40 µg/ml

Tab 4.: Übersicht über verwendete Medienzusätze

¹Die Stammlösungen wurden bei –20 °C gelagert.

2.2.4. Zellanzucht

Die aerobe Anzucht der in Tabelle 2 aufgeführten *E. coli*-Stämme erfolgte in LB-Medium bei 37 °C bzw. 30 °C und 150-200 Upm auf einem Rundschüttler (Typ KS 500, Janke & Kunkel, IKA-Labortechnik, Staufen) oder einem Reziprokschüttler (Typ HS 500 H, Janke & Kunkel).

Die strikt anaerobe Anzucht von *E. acidaminophilum* wurde in mit Butylsepten verschlossenen Kulturröhrchen nach HUNGATE (1969) oder in Serumflaschen mit Latexsepten durchgeführt. Das Medium wurde mit 10 % Inokulum beimpft und bei 30 °C unbewegt inkubiert.

2.2.5. Messung des Bakterienwachstums

Das Bakterienwachstum wurde photometrisch durch Messung der optischen Dichte (OD) als Absorptionswert bei einer Wellenlänge von 600 bzw. 550 nm gegen unbeimpftes Medium direkt in Hungate-Röhrchen mit einem Spectronic 20+-Spetrometer (Ochs Laborbedarf, Bovenden) oder in Plastik-Küvetten mit einem Spektralphotometer Spekol 1200 (Carl-Zeiss-Technology, Jena) bestimmt.

2.2.6. Lagerung von Bakterienkulturen

Zur langfristigen Lagerung von *E. coli*-Kulturen wurden diese in LB-Medium mit 15 % (v/v) Glycerin bei -80 °C eingefroren.

Kurzfristige Lagerungen waren sowohl auf Vollmediumplatten als auch in Flüssigkultur bei 4 °C möglich. Anaerob in Hungate-Röhrchen gewachsene Kulturen von *E. acidaminophilum* konnten nach Lagerung bei 4 °C für mindestens drei Monate als Inokulum für neue Kulturen verwendet werden.

2.3. Isolierung von Nukleinsäuren

2.3.1. Isolierung von Gesamt-DNA aus E. acidaminophilum (SAITO and MIURA 1963), mod.

Zur Isolierung von Gesamt-DNA wurden 3 g gefrorene Zellen in 4 ml Saline-EDTA-Lösung (0,15 M NaCl, 0,1 mM EDTA; pH 8,0) suspendiert, mit 6 mg Lysozym versetzt und bei 37 °C 30 min inkubiert. Anschließend wurde der Ansatz für 1 h bei –20 °C eingefroren und nach dem Auftauen mit 25 ml Tris-SDS-Puffer (0,1M Tris/HCl, 0,1 M NaCl, 1 % SDS; pH 9,0) versetzt. Zur vollständigen Lyse der Zellen folgte mehrmaliges Einfrieren und Auftauen (4-5-mal). Die Suspension wurde auf zwei Zentrifugenröhrchen (SS34, Sorvall) aufgeteilt und mit je 15 ml Tris-gesättigtem Phenol (pH 8,0) versetzt, vorsichtig gemischt

und anschließend für 20 min auf Eis inkubiert und dabei gelegentlich leicht geschüttelt. Zur groben Phasentrennung erfolgte anschließend eine Zentrifugation (5 min, 3000 g, 4 °C). Nach erneuter Zentrifugation der Oberphase (10 min, 20.000 g, 4 °C), der Überstand mit 2,5 Vol. Ethanol versetzt und über Nacht bei –20 °C inkubiert. Nach Zentrifugation (15 min, 20.000 g, 4 °C) wurde das Pellet in 25 ml 0,1xSSC gelöst, anschließend mit 2,5 ml 1xSSC (150 mM NaCl, 15 mM Na-Citrat; pH 7,0) sowie 11 µl RNaseA (10 mg/ml) versetzt und 1 h bei 37 °C inkubiert. Nach anschließender Phenol-Extraktion und Zentrifugation (10 min, 20.000 g, 4 °C) gewonnene Pellet wurde nacheinander mit eiskalter 70, 80 und 90% iger (v/v) Ethanol-Lösung gewaschen und nach dem Trocknen in 20 ml 0,1xSSC aufgenommen. Nach Zusatz von 2,2 ml Acetat-EDTA-Lösung (3 M Na-Acetat, pH 7,0; 1

mM EDTA) folgten eine Fällung mit 0,54 Vol. Isopropanol und eine Zentrifugation (30 min, 20.000 g, 20 °C). Das Pellet wurde erneut mit 70, 80 und 90%iger (v/v) Ethanol-Lösung gewaschen und in 10 ml TE-Puffer (10 mM Tris/HCl, pH 8,0; 1 mM EDTA) gelöst.

2.3.2. Isolierung von Plasmid-DNA

2.3.2.1. Minipräparation von Plasmid-DNA aus E. coli (BIRNBOIM and DOLY 1979)

Das Zellsediment einer 3-5 ml Übernachtkultur wurde in 100 μ l Lösung 1 (25 mM Tris, pH 8,0; 50 mM Glucose, 10 mM EDTA) vollständig resuspendiert. Anschließend erfolgte die Lyse der Zellen durch Zugabe von 200 μ l frisch hergestellter Lösung 2 (0,2 N NaOH, 1 % (w/v) SDS) und mehrmaligem Invertieren. Nach einer 5-minütigen Inkubation erfolgte das Neutralisieren durch Zugabe von 150 μ l eiskalter Lösung 3 (3 M K-Acetat; 2 M Essigsäure), vorsichtiges Mischen und 3-5-minütigem Inkubieren der Probe auf Eis. Nach Zentrifugation (10 min, 10.000 g) wurden dem so gewonnenen Überstand 5 μ l RNaseA-Stammlösung (10 mg/ml) zugegeben. Es folgte eine Inkubation von 15 min bei 37 °C inkubiert. Anschließend wurden eine Phenol/Chloroform-Extraktion (2.3.2.) und eine Isopropanolfällung (2.3.4.) durchgeführt. Das erhaltene Pellet wurde getrocknet und in 30-50 μ l H₂O_{dest.} aufgenommen.

2.3.2.2. Plasmidisolation mit dem QIAprep[®] Spin Miniprep Kit (Qiagen, Hilden)

Zur Gewinnung qualitativ hochwertiger Plasmid-DNA für Sequenzierungen und Klonierungen wurden 5 ml (für *high-copy* Plasmide) bzw. 10-15 ml (für *low copy* Plasmide) einer Übernachtkultur entsprechend den Anweisungen des Herstellers aufgearbeitet.

2.3.2.3. Plasmid Midipräparation

Um größere Mengen qualitativ hochwertiger Plasmid-DNA zu gewinnen, wurde der 'Qiagen[®] Plasmid Midi Kit' (Qiagen, Hilden) eingesetzt, wobei eine leicht modifizierte Vorschrift des Herstellers zum Einsatz kam. Dabei wurden der dreifachen Menge des empfohlenen Kulturvolumens jeweils die dreifache Menge der Puffer P1, P2 und P3 zugesetzt. Die Säule wurde jeweils mit einem Drittel des Überstandes beladen, nach Vorschrift gewaschen, eluiert und stets neu äquilibriert.

2.3.3. Isolierung von RNA

Die RNA-Isolierung aus *E. acidaminophilum* erfolgte mit Hilfe des 'RNeasy[®] Mini Kit' (Qiagen, Hilden) nach Angaben des Herstellers aus einer 10 ml Kultur, welche in der logarithmischen Wachstumsphase geerntet wurde. Hierbei erfolgte nach der RNA-Präparation ein DNA-Verdau mit RNase freier DNase I (MBI Fermentas, St. Leon-Rot) nach Angaben des Herstellers.

2.4. Standardtechniken für das Arbeiten mit Nukleinsäuren

2.4.1. Behandlungen von Geräten und Lösungen

Hitzestabile Lösungen und Geräte wurden vor dem Verwenden bei 121 °C für 25 min autoklaviert.

Hitzelabile Lösungen wurden sterilfiltriert. Geräte, die nicht autoklaviert werden konnten, wurden mit 70% igem (v/v) Ethanol benetzt oder abgeflammt.

Für Arbeiten mit RNA wurde $H_2O_{dest.}$ vor dem Autoklavieren zunächst mit 0,1 % (v/v) Diethylpyrocarbonat (DEPC) versetzt, 12 h bei 37 °C inkubiert und anschließend zweimal autoklaviert. DEPC inaktiviert RNasen durch kovalente Modifikation (FEDORCSAK and EHRENBERG 1966) und zersetzt sich während des Autoklavierens zu CO₂ und Ethanol (KUMAR and LINDBERG 1972). Nicht autoklavierbare Gefäße und Geräte wurden nacheinander mit 3 % (v/v) H_2O_2 und DEPC behandeltem $H_2O_{dest.}$ ausgespült.

2.4.2. Phenol/Chloroform-Extraktion und Fällung von Nukleinsäuren

Zur Entfernung von Proteinen aus wässrigen DNA-Lösungen wurde der Lösung 1 Vol. Phenol/Chloroform/Isoamylalkohol (25:24:1) zugesetzt, folgend wurde sorgfältig gemischt und der Ansatz für 2 min bei 12.000 g zentrifugiert. Der wässrige Überstand enthielt die gereinigte DNA. Um verbliebene Phenolreste aus der Lösung zu entfernen, wurde 1 Vol. Chloroform/Isoamylalkohol (24:1) zugesetzt, gründlich gemischt und, wie oben beschrieben, zentrifugiert.

2.4.3. Fällung von Nukleinsäuren

Zur weiteren Aufreinigung und Konzentrierung wurden Nukleinsäure-haltige Lösungen einer Ethanolfällung unterzogen. Dazu wurden 0,1 Vol. 3 M Na-Acetat (pH 5,2) und 2-3 Vol. 96% iger (v/v) Ethanol zugesetzt. Die Fällung der Nukleinsäuren erfolgte bei –20 °C über Nacht bzw. bei –80 °C für mind. 30 min. Anschließend wurde bei 12.000 g und 4 °C für 30 min zentrifugiert. Das erhaltene Pellet wurde anschließend mit 70% igem Ethanol (v/v) gewaschen und weitere 5 min bei 12.000 g und 4 °C zentrifugiert. Das Pellet wurde nun mind. 10 min luftgetrocknet und anschließend in sterilem H₂O_{dest.} oder TE-Puffer (2.3.1.) aufgenommen. Für die Aufarbeitung von Sequenzreaktionen wurde auf Raumtemperatur erwärmter Ethanol verwendet. Die Zentrifugation erfolgte bei 25 °C. Bei der Isopropanolfällung wurden statt Ethanol 0,7 Vol. Isopropanol zugesetzt und, wie oben beschrieben, verfahren, hierbei war keine Inkubation erforderlich.

2.4.4. Auftrennung von Nukleinsäuren

2.4.4.1. Standard-Agarose-Gelelektrophorese von DNA

Die Auftrennung von DNA erfolgte nach SAMBROOK *et al.*, (1989) in 0,8-3% igen Agarosegelen in TAE-Puffer (40 mM Tris/Acetat, pH 8,0; 1 mM EDTA). Die Proben wurden vor dem Lauf mit 0,2 Vol. Stopp-Lösung (0,25 % (w/v) Bromphenolblau; 0,25 % (w/v) Xylencyanol; 40 % (v/v) Glycerin) versetzt, und die Auftrennung erfolgte bei 80 V in horizontalen Elektrophoreskammern (Peqlab, Erlangen). Anschließend wurde das Gel 20-30 min in Ethidiumbromid (1 μ g/ml in H₂O_{dest}) inkubiert und folgend kurz mit Wasser gespült. Die Visualisierung der DNA erfolgte mit Hilfe eines Image MastersTM VDS (TFX-20.M, MWG-Biotech, Ebersberg) dadurch konnte die DNA betrachtet und fotografiert werden.

2.4.4.2. Denaturierende Agarose-Gelelektrophorese von RNA

Die Auftrennung von RNA-Proben erfolgte unter denaturierenden Bedingungen in einem 3 % (v/v) Formaldehyd enthaltenden Agarosegel (0,8-1%ig) in MOPS-Puffer (20 mM MOPS, pH 7,0; 5 mM Na-Acetat). Vor dem Auftragen wurden die RNA-Proben mit 1 Vol. Probenpuffer (50 % Formamid [v/w], 6 % Formaldehyd [v/w], 1xMOPS-Puffer, 0,1 % Bromphenolblau [w/w] 10 % Glycerin [w/w]) versetzt, 10 min bei 70 °C und anschließend 5 min auf Eis inkubiert. Die Elektrophorese erfolgte bei 60 V in horizontalen Kammern (Peqlab, Erlangen) für ca. 2 h.

2.4.5. Größenbestimmung von Nukleinsäuren

Die annähernde Größe linearer DNA- oder RNA-Fragmente wurde durch direkten Vergleich mit elektrophoretisch aufgetrennten Molekülen definierter Größe (Marker) bestimmt. Zum Einsatz kamen dabei folgende Standards (Werte jeweils auf 0,01 kb gerundet):

<u>λ-DNA/PstI-verdaut:</u>

14,06 / 11,50 / 5,08 / 4,75 / 4,51 / 2,84 / 2,56 / 2,46 / 2,44 / 2,14 / 1,99 / 1,70 / 1,16 / 1,09 / 0,81 / 0,51 / 0,47 / 0,45 / 0,34 / 0,26 / 0,25 kb

<u>GeneRulerTM 1kb DNA Ladder</u> (MBI Fermentas, St. Leon-Rot): 10,00 / 8,00 / 6,00 / 5,00 / 4,00 / 3,50 / 3,00 / 2,50 / 2,00 / 1,50 / 1,00 / 0,75 / 0,50 / 0,25 kb

<u>GeneRulerTM 100 bp DNA Ladder Plus</u> (MBI Fermentas, St. Leon-Rot): 3,00 / 2,00 / 1,50 / 1,20 / 1,03 / 0,90 / 0,80 / 0,70 / 0,60 / 0,50 / 0,40 / 0,30 / 0,20 / 0,10 kb

<u>GeneRulerTM 100 bp DNA Ladder (</u>MBI Fermentas, St. Leon-Rot): 1,03 / 0,90 / 0,80 / 0,70 / 0,60 / 0,50 / 0,40 / 0,30 / 0,20 / 0,10 kb

2.4.6. Konzentrationsbetimmung von DNA und RNA

Die Konzentration von Nukleinsäuren wurde photometrisch durch Messung der Absorption bei 260 nm bestimmt (Gene Quant, Pharmacia, Freiberg; Spekol 1200, Carl Zeiss Technology, Jena). Bei einer Absorption von 1 wurde von folgender Konzentration ausgegangen (SAMBROOK *et al.*, 1989):

doppelsträngige DNA	$50\mu g/ml$
RNA	$40 \; \mu g/ml$
Oligonukleotide	31 µg/ml

Durch photometrische Messungen wurde außerdem die Reinheit von Nukleinsäuren bestimmt. Bei proteinfreien DNA-Lösungen sollte das Verhältnis von $OD_{260 nm}$ zu $OD_{280 nm}$ bei 1,8 liegen.

Weiterhin konnte die Konzentration von Plasmiden oder DNA-Fragmenten im Agarosegel (s. 2.5.1.) durch Vergleich der Bandenintensitäten mit DNA bekannter Konzentration abgeschätzt werden. Als Mengenstandard dienten 'ds Control-DNA' aus dem AutoreadTM Sequencing Kit (Pharmacia, Freiburg) sowie M13 DNA (Pharmacia, Freiburg).

2.4.7. Reinigung von PCR-Produkten

Zur Entfernung von Primern, Salzen und Proteinen aus PCR-Produkten wurden die Ansätze unter Anwendung des QIAquick[®] PCR Purification Kit (Qiagen, Hilden) nach Angaben des Herstellers aufgearbeitet.

2.4.8. Gewinnung von DNA-Fragmenten aus Agarose-Gelen

PCR-Produkte und Plasmide wurden mit Hilfe des QIAquick[®] Gel Extraction Kit (Qiagen, Hilden) nach Angaben des Herstellers aus Agarosegelen isoliert.

2.4.9. Verdau von DNA mit Restriktionsendonucleasen

Die Spaltung von DNA erfolgte für 2-3 h (analytischer Verdau von Plasmid-DNA) bzw. über Nacht (Verdau von Vektoren, PCR-Fragmenten, chromosomaler DNA) bei der laut Anbieter optimalen Reaktionstemperatur des jeweiligen Restriktionsenzyms. Nach erfolgter Reaktion wurden diese, sofern möglich, mittels Hitzedenaturierung (20 min, 65 °C) inaktiviert und / oder einer Reinigung wie unter 2.4.7. beschrieben, unterzogen.

2.4.10. Dephosphorylierung von DNA

Zur Vermeidung der Selbstligation linearisierter Vektor-DNA erfolgte nach Abschluss der DNA-Spaltung eine Dephosphorylierung mit Alkalischer Phosphatase aus Kälberdarm (CIAP, Promega, Mannheim). Dazu wurde dem Restriktionsansatz 1 U Enzym zugegeben und anschließend 2 h bei 37 °C inkubiert. Danach erfolgte die Inaktivierung des Enzyms durch 20-minütige Inkubation bei 65 °C.

2.4.11 Ligation von DNA-Fragmenten

Zunächst wurden Vektor und Fragmente im Verhältnis 1:6 (insges. 16 μ l) 10 min bei 45 °C zur Freilegung der kohäsiven Enden inkubiert und anschließend sofort auf Eis abgekühlt. Daraufhin erfolgte die Zugabe von 2 μ l 10 x Ligationspuffer und 2 U T4-Ligase (Roche Diagnostics, Mannheim). Der Reaktionsansatz wurde bei 16 °C über Nacht inkubiert.

2.4.12. Mikrodialyse von DNA-Lösungen (MARUSYK and SERGEANT 1980)

Die Mikrodialyse diente zur Entsalzung von DNA-Lösungen, speziell von Ligationsansätzen, die zur Elektroporation eingesetzt werden sollten. Dazu wurde steriles H_2O_{dest} in eine sterile Petrischale gefüllt und der Membranfilter (Porengröße 0,025 µm, Millipore GmbH, Eschborn) mit der glänzenden Seite nach oben auf die Flüssigkeitsoberfläche gelegt. Anschließend wurde die zu entsalzende DNA-Probe auf den Membranfilter pipettiert und nach 30 min wieder abgenommen.

2.5. Polymerase-Kettenreaktion (PCR)

2.5.1. Standard-PCR

Es kamen je nach Verwendung des zu amplifizierenden PCR-Produktes verschiedene Polymerasen zum Einsatz. *Taq*-DNA-Polymerase (Promega, Mannheim) wurde für analytische Zwecke eingesetzt, während Amplifikate, die zur Klonierung genutzt werden sollten, mit PhusionTM High-Fidelity DNA Polymerase (NEB, Frankfurt), welche eine 3'-5'-Exonuklease-Aktivität (*proofreading*) besitzt, synthetisiert wurden. Die Reaktion erfolgte in einem TRIO-Thermocycler (Biometra, Göttingen). Im Folgenden ist die Zusammensetzung für einen Standardansatz aufgeführt:

Komponenten	Ansatz mit <i>Taq-</i> DNA- Polymerase	Ansatz mit Phusion™ High- Fidelity DNA Polymerase
Primer	30 pmol	15 pmol
dNTP´s	0,2 mM	0,1 mM
Puffer	1 x	1 x
Polymerase	1 U	1 U
template-DNA	50 ng	50 ng
Reaktionsvolumen	100 µl	50 µl

Tab. 5: Zusammensetzung eines PCR-Ansatzes

Die PCR-Ansätze wurden mit 60 µl Mineralöl als Verdunstungsschutz überschichtet und eine PCR mit folgendem Programm durchgeführt:

Taq-DNA-Polymerase:

Denaturierung:	120 s;	95 °C	
Denaturierung:	30 s;	95 °C ⊂	
Annealing:	30 s;	47-68 °C	> 34 x
Extension:	30 s-270 s;	72 °C]

Phusion[™] High-Fidelity DNA Polymerase:

Denaturierung:	30 s;	98 °C	
Denaturierung:	10 s;	98 °C	
Annealing:	30 s;	47-68 °C	>10 x
Extension:	30 s-270 s;	72 °C	J
Denaturierung:	10 s;	98 °C	
Annealing:	30 s;	55-68 °C	$\geq 24 \text{ x}$
Extension:	30 s-270 s;	72 °C	J
Extension:	420 s;	72 °C	

Die Extensionszeit richtete sich nach der Größe der zu erwartenden Produkte, je 1 kb wurden für die *Taq*-DNA-Polymerase etwa 60 s und für die Phusion[™] High-Fidelity DNA Polymerase ca. 30 s kalkuliert. Die Annealingtemperatur wurde in der Regel so gewählt, dass sie mindestens 5-10 °C unter der Schmelztemperatur der Primer lag, wobei jeweils der geringere Wert maßgebend war.

Die Berechnung der Schmelztemperatur erfolgte dabei nach folgender Formel (BERTRAM and GASSEN 1991):

$$Tm = 2 \degree C x$$
 Anzahl der A/T-Paare + 4 $\degree C x$ Anzahl der G/C-Paare

Die verwendeten Oligonukleotide wurden von der Firma Invitrogene (Karlsruhe) bzw. Metabion (Martinsried) bezogen und sind in der Tabelle 14 (s. S. 163, Anhang A.I.) aufgeführt. Für *primer-extinsion*-Experimente wurden HPLC gereinigte, FAM-markierte Oligonukleotide verwendet.

2.5.2. Identifikation unbekannter Genomabschnitte mittels Vektorette-PCR (RILEY et al., 1990)

2,5 µg chromosomale DNA von *E. acidaminophilum* wurden mit den Restriktionsendonucleasen DraI, NaeI, NruI, SmaI und SspI in einem Gesamtvolumen von 20 µl vollständig geschnitten. Anschließend erfolgte die Ligation mit 1 µl der so genannten *bubble* DNA bei 16 °C über Nacht in einem Endvolumen von 50 µl (1 x Reaktionspuffer, 2 U T4-DNA-Ligase, 5 % PEG-4000). Diese Ligationsansätze konnten direkt als *template* für PCR-Reaktionen (2.5.1.; Tab. 5) eingesetzt werden. Hierzu wurden jeweils ein spezifischer Primer aus dem bereits bekannten Genabschnitt und der Primer UV (s. S. 163, Anhang A.I.), welcher im *missmatch* Bereich der *bubble*-DNA bindet, zur Amplifikation verwendet.

Zur Herstellung der *bubble*-DNA wurden je 500 μ M der Oligonukleotide ABPFW und ABPRV (s. S. 163, Anhang A.I.) in einem Endvolumen von 84 μ l für 10 min bei 65 °C inkubiert, nach Zugabe von 6 μ l MgCl₂ (25 mM) erfolgte eine langsame Abkühlung des Ansatzes (RT), welcher anschließend bei –20 °C gelagert werden konnte.

2.6. Herstellung und Selektion rekombinanter E. coli-Klone

2.6.1. Transformation durch Elektroporation (DOWER et al., 1988)

2.6.1.1. Herstellung kompetenter Zellen

Zur Herstellung kompetenter Zellen wurden 200 ml selektives LB-Medium 1% ig mit einer über Nacht gewachsenen Vorkultur beimpft und bei 37 °C bis zu einer OD₆₀₀ von 0,5-0,8 schüttelnd kultiviert. Die Zellen wurde 15 min auf Eis abgekühlt und anschließend zentrifugiert (20 min, 4.500 g, 4 °C). Das Pellet wurde zweimal mit je 200 ml eiskaltem H₂O dest. und einmal mit 30 ml 10% igem (v/v) Glycerin gewaschen, anschließend mit 0,5-0,7 ml 10% igem (v/v) Glycerin resuspendiert und in 40 μ l-Aliquots aufgeteilt. Die Lagerung der kompetenten Zellen erfolgte bei –80 °C.

2.6.1.2. Übertragung von DNA in E. coli durch Elektroporation

Die Elektroporation erfolgte mit einem Gene PulserTM (BioRad, München). 40 µl der elektrokompetenten Zellen wurden auf Eis aufgetaut, 5-10 µl eines Ligationsansatzes oder 2 µl einer Plasmid-Miniprep (1:50 verdünnt) mit diesen Zellen gemischt und nach 1-minütiger Inkubation auf Eis in eine vorgekühlte, sterile Elektroporationsküvette (0,2 cm Elektrodenabstand) überführt. Nach 30 s Inkubation auf Eis erfolgte die Elektroporation bei 25 µF und einer Feldstärke von 12,5 kV/cm. Nach Zugabe von 1 ml LB-Medium wurde der Ansatz 45-60 min bei 37 °C inkubiert und 50-200 µl dieses Ansatzes auf Selektivmedium ausgestrichen und über Nacht bei 37 °C inkubiert.

2.7. Hybridisierung von Nukleinsäuren

2.7.1 Herstellung von DIG-markierten Sonden

Die Markierung von PCR-Fragmenten erfolgte mit dem DIG DNA Labeling Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit Digoxigenin-11dUTP.
2.7.2. DNA-Hybridisierung (SOUTHERN 1975)

Zunächst wurde die DNA in einem Agarosegel elektrophoretisch aufgetrennt, dann mit Ethidiumbromid gefärbt und fotografiert. Um den Transfer großer DNA-Fragmente zu erleichtern, wurde zuvor eine Depurinierung der DNA durch 20-minütige Inkubation in 0,25 N HCl durchgeführt. Anschließend erfolgte die Denaturierung der doppelsträngigen DNA durch 20-minütige Inkubation in Denaturierungslösung (0,5 M NaOH; 1,5 M NaCl), an die sich eine 20-minütige Inkubation in Neutralisierungslösung (1 M Tris/HCl, pH 7,5; 1,5 M NaCl) anschloss. Danach wurde das Gel in 10xSSC (2.3.1.) getränkt. Der Transfer der Nukleinsäuren erfolgte mit Hilfe einer Vakuumblot-Apparatur (Appligene-Oncor, Heidelberg) für 3 h bei 50 mbar mit 10xSSC auf eine ebenfalls in Transferpuffer getränkte, ungeladene Nylonmembran (porablot NYamp, Macherey und Nagel, Düren). Die Membran konnte direkt für die Hybridisierung verwendet oder getrocknet und bei Raumtemperatur aufbewahrt werden.

Prähybridisierung (≥ 2 h) und Hybridisierung (ü. Nacht; 0,5 µg DNA-Sonde) erfolgten in Standard-Hybridisierungspuffer (5xSSC; 1 % Blocking Reagenz (Roche Diagnostics, Mannheim); 0,1 % (v/v) N-Laurylsarcosin; 0,02 % (w/v) SDS) in einem Hybridisierungsofen (OV4, Biometra, Göttingen). Für homologe DNA-Sonden wurde eine Hybridisierungstemperatur von 50-68 °C gewählt.

Nach Abschluss der Hybridisierung wurde die Membran 2x5 min bei Raumtemperatur in 2xSSC; 0,1 % (w/v) SDS und 2x15 min bei Hybridisierungstemperatur in 0,1xSSC; 0,1 % (w/v) SDS gewaschen. Die anschließende Detektion erfolgte mit dem 'DIG Luminescent Detection Kit' (Roche Diagnostics) nach den Angaben des Herstellers. Das Ergebnis wurde auf einem 'Lumi-Film Chemiluminescent Detection Film' (Roche Diagnostics) festgehalten.

2.7.4. Dot-Blot-Hybridisierung

Ca. 100 ng der rekombinanten Plasmide wurden 10 min bei 65 °C denaturiert und anschließend unter Verwendung einer Dot-Blot-Apparatur (Biorad, München) auf eine zuvor mit 15xSSC (2.3.1.) äquilibrierte ungeladene Nylonmembran (porablot NYamp, Macherey und Nagel) transferiert. Nach erfolgtem Transfer wurden alle Kavitäten der Apparatur zweimal mit je 150 µl 15xSSC gespült. Die Fixierung der DNA erfolgte durch 2-minütige UV-Bestrahlung (Transilluminator TF-20M, Vilber Lourmat, Marne la Vallée/Frankreich).

2.7.5 Kolonie-Hybridisierung

Die Kolonie-Hybridisierung erfolgte auf ungeladenen Nylonmembranen (porablot Nyamp). Diese wurden auf Agar-Platten aufgelegt, mit rekombinanten *E. coli*-Klonen beimpft und bei 37 °C über Nacht inkubiert. Mit den Bakterienkolonien nach oben wurden die Membranen anschließend wie folgt auf Lösungs-

getränkten Filterpapierstapeln inkubiert: 5 min Denaturierungslösung (0,5 M NaOH; 1,5 M NaCl; 0,1 % (w/v) SDS), 5 min Neutralisierungslösung (1 M Tris/HCl, pH 7,5; 1,5 M NaCl) und 2 min 2xSSC. Danach wurde die DNA durch 2-minütige UV-Bestrahlung fixiert. Zur Entfernung von Zellresten erfolgte zusätzlich eine 30-minütige Behandlung der Membranen (*prewashing*) bei 50 °C in 5xSSC; 0,5 % (w/v) SDS; 1 mM EDTA. Alle weiteren Arbeitsschritte (Prähybridisierung, Hybridisierung, Waschen und Detektion) wurden analog zur DNA-Hybridisierung (2.7.2.) durchgeführt.

2.8. Methoden zur DNA-Analyse

2.8.1. DNA-Sequenzierung am ABI377-Sequenzer

Sequenzreaktionen mit dem 'dRhodamine Terminator Cycle Sequencing Ready Reaction Kit['] (PE Applied Biosystems, Langen) wurden nach den Anweisungen des Herstellers im TRIO-Thermoblock (Biometra, Göttingen) durchgeführt. Die Analyse wurde mit Hilfe des automatisierten Laser-Fluoreszenz-Sequenzierers ABI PRISM 377 (Applied Biosystems, Langen) von Frau U. LINDENSTRAUß durchgeführt.

2.8.2. Auswertung von Sequenzdaten

Die ermittelten Sequenzdaten wurden mit den Computerprogrammen DNASIS (Version 5.00), Clone4 (Clone Manager-Version 4.0 und 4.1, Scientific & Educational Software, Durham/NC, USA) ausgewertet. Mit Hilfe der Programme FASTA (PEARSON and LIPMAN 1988) und dem Algorithmus BLAST (*basic local alignment search tool*, (ALTSCHUL *et al.*, 1990; ALTSCHUL *et al.*, 1997) wurden über das "*National Center for Biotechnological Information*" (http://www.ncbi.nlm.nih.gov) die in den Datenbanken EMBL und SwissProt gespeicherten DNA- bzw. Proteinsequenzen mit den Nukleinsäure- bzw. daraus abgeleiteten Aminosäuresequenzen klonierter DNA-Fragmente verglichen.

Das Programm MFOLD (MATHEWS 2006; MATHEWS and TURNER 2006; http://mfold.burnet.edu.au/) diente zur Analyse von RNA-Sekundärstrukturen, welche sich aus der vorliegenden DNA-Sequenz ergaben. Vollständige Sequenzvergleiche und multiple Alignments von Proteinen wurden mit dem Programm CLUSTAL W (1.74, Matrix *"blossum"* (THOMPSON *et al.,* 1997) über das European Bioinformatics Institute (http://www.ebi.ac.uk/clustalw/index.html) durchgeführt. Paarweise Sequenzvergleiche wurden mit dem Programm LALIGN (http://www.ch.embnet.org/software/LALIGN_form.html) durchgeführt (HUANG and MILLER 1991). Die Bestimmung physikalischer Daten der bearbeiteten Proteine anhand der Aminosäuresequenz erfolgte mit Hilfe von Programmen des Institutes für Bioinformatik, Genf (http://www.expasy.org).

2.9. Methoden zur RNA-Analyse

2.9.1. Reverse Transkription (RT-PCR)

Der Nachweis von Transkripten erfolgte durch Reverse Transkription der mRNA in cDNA und anschließende Amplifikation des DNA-Fragmentes mittels PCR. Die Reverse Transkription erfolgte mit dem 'RevertAidTM H Minus First Strand cDNA Synthesis Kit['] (Fermentas, St. Leon-Rot) nach Vorgaben des Herstellers. Es wurden 0,5-5 µg DNA-freie Gesamt-RNA in die Reaktion eingesetzt. Als Kontrollen der RT-Ansätze diente RNA, die nicht in cDNA umgeschrieben wurde, sowie chromosomale DNA aus *E. acidaminophilum*.

2.9.2 Bestimmung des Transkriptionsstartpunktes mittels primer extension

1-5 µg Gesamt-RNA aus *E. acidaminophilum* wurden mit 2 pmol eines 6-FAM-markierten Primers nach Angaben des Herstellers mit dem 'RevertAid[™] H Minus First Strand cDNA Synthesis Kit' (MBI Fermentas) in cDNA umgeschrieben. Die Länge der erhaltenen cDNA-Fragmente wurde mit Hilfe des internen GeneScan-500 (ROX) Größenstandards (PE Applied Biosystems, Langen) bestimmt, welcher den Ansätzen beigefügt wurde. Die Auswertung der Fragmentanalyse erfolgte mit der GENESCAN2.1-Software. Die Fragmentlängen-Analyse wurde von der Firma Seqlab (Göttingen) übernommen.

2.10. Proteinchemische Methoden

2.10.1. Bestimmung der Proteinkonzentration (BRADFORD 1976)

20 µl Proteinprobe wurden mit 1 ml BRADFORD-Reagenz (0,007 % (w/v) Serva Blau G-250; 5 % (v/v) Ethanol; 8,5 % (v/v) H_3PO_4) gemischt und 10 min bei RT inkubiert. Anschließend wurde die Absorption bei 595 nm mit einem Spekol 1200 (Carl-Zeiss-Technology, Jena) in Plastik-Küvetten vermessen. Mit Rinderserum-Albumin (BSA) wurde eine Eichgerade im Konzentrationsbereich von 1-10 µg / 20 µl Probe erstellt.

2.10.2. Denaturierende Polyacrylamid-Gelelektrophorese (LAEMMLI 1970)

Die visuelle Analyse der Proteine erfolgte in 10-17,5% igen SDS-Polyacrylamidgelen (LAEMMLI 1970) in vertikalen Minigel-Apparaturen (Biometra, Göttingen) bzw. HOEFFER SE 200 Mighty Small-Apparatur

(GE Healthcare, München). Nach Angaben des Herstellers wurden Sammelgel (5 % (w/v) Acrylamid (37,5:1); 125 mM Tris/HCl, pH 6,8; 0,1 % (w/v) SDS) und Trenngel (10-17,5 % (w/v) Acrylamid (37,5:1); 376 mM Tris/HCl, pH 8,8; 0,1 % (w/v) SDS) vorbereitet, die Proben mit 0,5 Vol. 5xSDS-Probenpuffer (315 mM Tris/HCl, pH 6,8; 10 % (w/v) SDS; 50 % Glycerin; 0,05 % (w/v) Bromphenolblau; 25 % (v/v) β -Mercaptoethanol) versetzt und nach Denaturierung (10 min, 95 °C) bei 25 mA in SDS-Laufpuffer (25 mM Tris; 192 mM Glycin; 0,1 % (w/v) SDS) aufgetrennt.

Als Größenstandard diente PageRuler[™] Unstained Protein Ladder (200, 150, 120, 100, 85, 70, 60, 50, 40, 30, 25, 20, 15, 10 kDa; MBI Fermentas).

2.10.3. Denaturierende Tris-Tricine-Polyacrylamid-Gelelektrophorese (SCHÄGGER 2006)

Die Auftrennung von kleinen Proteinen erfolgte in 10% igen SDS-Polyacrylamidgelen nach SCHÄGGER (2006). Das Sammelgel (4 % (w/v) Acrylamid (29:1), Gelpuffer (1M Tris/HCl; 0,1 % SDS (w/v); pH 8,45) und das Trenngel (10 % (w/v) Acrylamid (29:1), Gelpuffer (1M Tris/HCl; 0,1 % SDS (w/v); pH 8,45) und 10 % Glycerin (v/v) wurden entsprechend vorbereitet und die Proben wie unter 2.10.2. bearbeitet. Die Auftrennung erfolgte in Anodenpuffer (0,2 M Tris/HCl; pH 8,9) und Kathodenpuffer (0,1 M Tris/HCl; 0,1 M Tricin; 0,1 % SDS (w/v); pH 8,25) bei 25 mA.

2.10.4. Coomassie-Färbung von Proteinen

Zur Anfärbung der aufgetrennten Proteine wurden die SDS-Polyacrylamid-Gele 30-60 min in Coomassie-Färbelösung (0,2 % (w/v) Serva Blau R250; 0,05 % (w/v) Serva Blau G250; 42,5 % (v/v) Ethanol; 5 % (v/v) Methanol; 10 % (v/v) Essigsäure inkubiert und anschließend innerhalb von 1-2 h durch einen schnellen Entfärber (40 % (v/v) Methanol, 10 % (v/v) Essigsäure) bzw. über Nacht mit einem langsamen Entfärber (7 % (v/v) Essigsäure) entfärbt.

2.10.5 Trocknung von Protein-Gelen

Die Gele wurden zunächst 10 min in Trockenlösung (40 % (v/v) Methanol; 10 % (v/v) Essigsäure; 3 % (v/v) Glycerin) inkubiert und anschließen luftblasenfrei zwischen zwei Zellophan-Folien (Biometra, Göttingen), welche zuvor ebenfalls in dieser Lösung inkubiert wurden, gespannt und für mindestens zwei Tage getrocknet.

2.10.6. Transfer von Proteinen auf PVDF-Membranen und Western-Blot Analyse

Nach elektrophoretischer Auftrennung von Proteinen wurden diese mit Hilfe einer Fastblot B34-Apparatur (Biometra) auf eine Polyvinylidendifluorid (PVDF)-Membran (Pierce, Rockford/IL, USA) transferiert. Nach Beenden der Elektrophorese wurden die Gele zunächst 10 min in Transferpuffer (50 mM Na-Borat pH 9,0; 10 % (v/v) Methanol) inkubiert und die auf Gelgröße zurechtgeschnittene Membran nacheinander je 1 min in Methanol, Wasser und Transferpuffer geschwenkt. Anschließend wurde von der Anode aus folgende Schichtung luftblasenfrei vorgenommen: drei Lagen Transferpuffer-getränktes Whatman-Papier (Schleicher & Schüll, Dassel), PVDF-Membran, Polyacrylamidgel, drei Lagen getränktes Whatman-Papier. Der Transfer erfolgte für 60 min bei 4 °C und 1,2 mA pro cm² Membranfläche. Als Größenstandard diente PageRulerTM Prestained Protein Ladder (170, 130, 100, 70, 55, 40, 35, 25, 15, 10 kDa; MBI Fermentas).

2.10.6.1. Nachweis von Strep-tag® II-Fusionsproteinen

Der Nachweis von *Strep*-tag[®] II-Fusionsproteinen erfolgte mit Hilfe des *Strep*-tag[®] HRP Detection Kit (IBA, Göttingen) nach Angaben des Herstellers.

2.10.7. Heterologe Synthese von Proteinen mit Hilfe des Strep-tag® II-Expressionssystems

Die Überproduktion und Reinigung rekombinanter Proteine als *Strep*-tag[®] II-Fuionen erfolgte mit Hilfe der Vektoren pASK-IBA3 und pASK-IBA5 (IBA, Göttingen) sowie der Stämme *E. coli* BL21(DE3)-CodonPlus-RIL und *E. coli* BL21(DE3).

2.10.7.1. Kultivierung, Induktion der Proteinsynthese und Ernte der Zellen

Je 1 1 LB-Medium (mit Ampicillin und Chloramphenicol) wurde mit einer Start-OD_{600nm} von 0,1 (Inokulation durch eine über Nacht gewachsene Vorkultur) schüttelnd bei 37 °C bis zum Erreichen einer OD_{600nm} von 0,5 inkubiert. Nach einer 3-stündigen Induktion des *tet*-Promotors mit Anhydrotetracyclin (0,2 μ g/ml Endkonzentration) wurden die Zellen 15 min auf Eis abgekühlt und anschließend durch Zentrifugation pelletiert (30 min, 5.000 g, 4 °C). Die geernteten Zellen wurden bei –80 °C gelagert. 2.10.7.2. *rapid screening* von Expressionskulturen

Das Zellpellet von 1 ml Kultur wurde in PufferW (100 mM Tris/HCl, pH 8; 2 mM EDTA) resuspendiert (0,1 Vol. der OD_{600nm}). 8 µl des Zell-Lysates wurden mit Probenpuffer (2.10.2.) versehen und 10 min bei 96 °C

inkubiert. Anschließend wurden die Proteine durch SDS-Polyacrylamid-Gelelektrophorese (2.10.2.) separiert und durch Coomassie-Färbung (2.10.4.) sichtbar gemacht.

2.10.7.3. Zellaufschluss und Gewinnung des Rohextraktes

Die pelletierten Zellen von 1 1 Kultur wurden in 10 ml PufferW (2.10.7.2.) resuspendiert und nach Zugabe von 1 mg/ml Lysozym, 0,1 μ M PMSF und 5 μ g/ml DNase erfolge eine 30-minütige Inkubation bei 37 °C. Der Zellen wurden mittels zwei Passagen durch eine French-Presse (20K-Zelle, SLM Instruments, Rochester/NY, USA) bei 1260 psi aufgeschlossen. Nach Zugabe von Avidin (25 mg/ml) zur Maskierung von Biotin, welches ansonsten irreversibel an das Affinitätsmaterial bindet, folgte eine 30-minütige Inkubation auf Eis. Die unlöslichen Komponenten wurden durch Zentrifugation (30 min, 19.000 g, 4 °C) abgetrennt, der Überstand (Rohextrakt) wurde auf Eis gelagert.

2.10.7.4. Affinitätschromatographie an StrepTactin-Sepharose

Die Reinigung der *Strep*-tag[®] II-Fusionsproteine erfolgte an StrepTactin-Sepharose (1 ml Säulen-Volumen in Polypropylen-Säulen; Qiagen, Hilden). Nach dem Äquilibrieren der Säulenmatrix mit 5 ml PufferW (2.10.7.2.) erfolgten die Auftragung des Rohextraktes und das Entfernen der ungebundenen Proteine durch Waschen mit 5x1 ml PufferW. Die gebundenen Proteine wurden mit 5x0,5 ml PufferE (PufferW mit 2,5 mM α -Desthiobiotin (Sigma, Taufkirchen) eluiert. Die Säulenmatrix wurde durch Zugabe von 3x5 ml PufferR (PufferW mit 1 mM HABA, Sigma, Taufkirchen) und anschließendes Waschen mit 2x4 ml PufferW regeneriert und konnte so 3-5-mal wiederverwendet werden.

2.11. Bestimmung von Enzymaktivitäten

2.11.1. Thioredoxin-System-Test mit DTT und NADP (MEYER et al., 1991), mod.

Die Messung erfolgte anaerob in mit Naturkautschuk-Septen (Sigma-Taufkirchen) verschlossenen Halbmikro-Glasküvetten. Die Extinktionsänderung bei 340 nm wurde mit einem Spektrophotometer (Uvikon 630, Kontron Instruments, Mailand/Italien) verfolgt. Hierzu wurde der Puffer zunächst 5 min mit Stickstoff begast, der Ansatz anschließend nach Zugabe von NADP, Thioredoxin-Reduktase und DTT 5 min bei 30 °C vorinkubiert und schließlich durch Thioredoxin gestartet.

Tris-HCl-Puffer (100 mM), pH 8,0	870	μl
Na ₂ -EDTA (10 mM)	20	μl
Thioredoxin-Reduktase (aus E. acidaminophilum)	10	μg
Thioredoxin (aus E. acidaminophilum)	5	μg
NADP (20 mM)	25	μl
DTT (0,5 M)	10	μl
ad.	1000	μl

2.11.2. Thioredoxin-System-Test mit NADPH und Lipoamid (MEYER et al., 1991), mod.

Dieser Test wurde analog zu 2.11.1 durchgeführt. Nach Zugabe von NADPH wurde eine eventuelle Blindreaktion abgewartet und dann die Reaktion mit Lipoamid gestartet.

Tris-HCl-Puffer (100 mM), pH 8,0	820	μl
Na ₂ -EDTA (10 mM)	20	μl
Na-Dithionit (25 mM)	10	μl
Thioredoxin-Reduktase (aus E. acidaminophilum)	10	μg
Thioredoxin (aus E. acidaminophilum)	5	μg
NADPH (20 mM)	10	μl
Lipoamid (25 mM in DMSO [100 % v/v])	60	μl
ad.	1000	μl

2.11.3 Test auf Diaphorase-Aktivität nach KLEIN and SAGERS (1967)

Dieser Test wurde analog zu 2.11.1 durchgeführt. Die Reaktion wurde durch Zugabe von NADPH gestartet und die Extinktionsänderung bei 555 nm verfolgt.

KP-Puffer (100 mM, pH 7,8)	500	μl
Benzylviologen (100 mM)	50	μl
Proteinprobe	5-100	μg
NAD(P)H (20 mM) oder DTT (0,5 M)	25 µl bzw. 10	μl
ad.	1000	μl

2.11.4 Glycin-Decarboxylase, lichtoptischer Test nach KLEIN and SAGERS (1967)

Dieser Test wurde anaerob (2.11.1.) durchgeführt und durch Zugabe von Glycin gestartet und die Extinktionsänderung bei 365 nm verfolgt. Als Probe wurden zum einen Rohextrakt von *E. acidaminophilum* und zum anderen die Decarboxylase-Proteine P1, P2 und P4 (aus *E. acidaminophilum*) und Diaphorase (500 μ g/ml; 5 U/mg; Sigma, Taufkirchen) eingesetzt.

KP-Puffer (100 mM, pH 8)	680	μl
DTE (100 mM)	50	μl
THF (50 mM in 0,01 N NaOH)	50	μl
NAD(P) (20 mM)	50	μl
Probe	75	μl
Pyridoxalphosphat (25 mM)	10	μl
Glycin (1 M; puriss.)	50	μl
ad.	1000	μl

Berechnung der spezifischen Aktivitäten

Nach Starten der jeweiligen Reaktionen wurden die Anfangsgeschwindigkeiten der einsetzenden Reaktion bestimmt.

Mit Hilfe der Extinktionsänderung wurde die Volumenaktivität der Probe berechnet.

$$A_{\rm v} = \frac{\Delta E / \min \cdot V_{\rm T}}{d \cdot \varepsilon \cdot V_{\rm P}}$$

 $A_v = Volumenaktivität [U/ml]$

 $\Delta E / min = Extinktionsänderung pro Minute$

d = Schichtdicke [cm]

 ε = molarer Extinktionskoeffizient [M₋₁ cm₋₁]

V_T = Volumen des Testansatzes [ml]

V_P = Volumen der eingesetzten Probe [ml]

Die spezifische Aktivität (U/mg) konnte anhand der ermittelten Proteinkonzentration (2.10.1) berechnet werden.

2.11.5. Bestimmung der β-Galactosidase-Aktivität (MILLER 1992), mod.

2.11.5.1. Zellanzucht

6 ml M9-Medium (2.2.2) mit Amp (100 μ g/ml), Tet (10 μ g/ml) und IPTG (1 mM) wurden mit ca. 500 μ l einer Vorkultur angeimpft (Start OD₆₀₀ von 0,1 wurde eingestellt) und bis zum Erreichen einer OD₆₀₀ von 0,8 schüttelnd bei 37 °C inkubiert. Nach 5 minütigem Abkühlen auf Eis erfolgte die Ernte in je 1 ml Aliquots durch Zentrifugation (5 min, 10.000 g). Die Lagerung der Zellpellets erfolgte bei -20 °C.

2.11.5.2. Aktivitätsbestimmung

Die Zellpellets von 1 ml Kulturvolumen wurden in 880 μl Puffer Z (60 mM Na₂HPO₄; 40 mM NaH₂PO₄; 10 mM KCl; 1 mM MgSO₄) resuspendiert und mit 4 μl β-Mercaptoethanol und 10 min bei RT inkubiert. Nach Zugabe von 80 μl Chloroform (100 % v/v) und 40 μl 0,1 % (w/v) SDS erfolgte nach 10 s Vortexen eine weitere Inkubation für 10 min bei RT. Anschließend wurden die Proben einer Zentrifugation unterzogen (10 min, 10.000 g). Je 65 μl des Überstandes wurden mit 35 μl Puffer Z gemischt und in die Kavität einer Microtiterplatte gegeben (nach GIFFITH and WOLF 2002, mod.). Die Reaktion wurde durch Zusatz von 50 μl Substratlösung (ONPG; 4 mg/5 ml) gestartet und die Extinktionsänderung mit einem Microplate-Reader (Model 3550, BioRad München) bei 415 nm aufgezeichnet.

Die Berechnung der Aktivität erfolgte nach dieser Formel:

$$A = \frac{\Delta E}{\min \bullet \epsilon \bullet d} \bullet 1000$$

A = Volumenaktivität [U/ml]

 $\Delta E / min = Extinktionsänderung pro Minute$

d = Schichtdicke [cm]

 ε = molarer Extinktionskoeffizient [M₋₁ cm₋₁]

Eine internationale Enzymeinheit (U) entspricht dem Umsatz von 1 µmol Substrat pro Minute. Die folgend aufgeführten Extinktionskoeffizienten wurden verwendet:

Benzylviologen:	$\epsilon_{555} = 1,56 \text{ x } 10^4 \text{ M}^{-1} \text{ x cm}^{-1}$
DTNB:	$\epsilon_{412} = 1,36 \text{ x } 10^4 \text{ M}^{-1} \text{ x cm}^{-1}$
$NAD(H_2)$:	$\epsilon_{365} = 3.3 \text{ x } 10^3 \text{ M}^{-1} \text{ x cm}^{-1}$
NADP(H ₂):	$\epsilon_{365} = 3,4 x \ 10^3 \ M^{-1} \ x \ cm^{-1}$
ONP:	$\epsilon_{420} = 3,31 \text{ x } 10^3 \text{ M}^{-1} \text{ x cm}^{-1}$

2.12. Geräte und Chemikalien

Neben den bereits in den vorausgehenden Kapiteln erwähnten Materialien fanden Geräte folgender Hersteller Verwendung:

Abimed (Langenfeld):	automatische Pipetten
A&D Company (Tokio/Japan):	Feinwaagen FX-200, ER-182A
Beckman (Palo Alto/CA, USA):	Ultrazentrifuge L8-60M
Bender & Hobein AG (Ismaning):	Vortex Genie 2
Biometra (Göttingen):	Power Pack P25
Eppendorf-Netheler-Hinz (Hamburg):	Tischzentrifuge 5415 C, Thermomixer 5436
Hamilton (Bonaduz/Schweiz):	Mikroliterspritzen
Hermle Labortechnik (Wehingen):	Zentrifuge Z 323 K
Hettich (Tuttlingen):	Zentrifuge 30 RF
Julabo Labortechnik (Seelbach):	Wasserbad UC-5B/5
Knick (Berlin):	Mikroprozessor pH-Meter 761
Sorvall (Hanau):	Zentrifuge RC 5BPlus
Roth (Karlsruhe):	Magnetrührer R 1000

Die verwendeten Chemikalien wurden, falls nicht anders vermerkt, von den Firmen Difco (Detroit, USA), Gerbu (Gaiberg), Gibco (Eggenstein), Merck (Darmstadt), Pierce (Rockford, USA), Roche (Mannheim), Roth (Karlsruhe), Serva (Heidelberg), Sigma (Taufkirchen) bezogen. Weiterhin wurden Chemikalien und Enzyme folgender Firmen bzw. Anbieter eingesetzt:

Appligene-Oncor (Heidelberg): MBI Fermentas (St. Leon-Rot): Messer Griesheim (Krefeld): New England Biolabs (Frankfurt/Main): Roth (Karlsruhe) Serva (Heidelberg): Lysozym, Ampicillin Restriktionsenzyme, λ-DNA, dNTP's Stickstoff (4.0), Wasserstoff (3.0), Formiergas Restriktionsenzyme Lysozym, Ampicillin BSA, Pepton, Hefeextrakt

3. Experimente und Ergebnisse

3.1. Glycin-, Sarcosin- und Betain-Reduktase-Gencluster in E. acidaminophilum

E. acidaminophilum kann Glycin und die Glycin-Derivate Sarcosin, Creatin, Creatinin und Betain durch einen als Sticklandreaktion (STICKLAND 1934) bezeichneten Stoffwechselweg als Energie- und Kohlenstoffquelle nutzen (ZINDEL et al., 1988). Während Glycin sowohl als Elektronen-Akzeptor (Glycin-Reduktase) als auch als Elektronen-Donor (Glycin-Decarboxylase) fungieren kann, ist nur eine Reduktion von Sarcosin und Betain, katalysiert durch die Sarcosin- bzw. Betain-Reduktase, möglich (HORMANN and ANDREESEN 1989), die in zwei der drei Proteinkomplexe übereinstimmen (ANDREESEN 2004). Die Glycin-Reduktase ist ebenso wie die Glycin-Decarboxylase ein Multienzymkomplex, der aus dem substratunspezifischem Selenoprotein A (GrdA) (DIETRICHS et al., 1991), dem substratspezifischem Selenoprotein B (GrdB und GrdE) (WAGNER et al., 1999) und dem substratunspezifischen Protein C (GrdC und GrdD) (SCHRÄDER and ANDREESEN 1992) besteht. Die Gene, welche für die einzelnen Proteinkomponenten der Glycin-, Sarcosin- und Betain-Reduktase codieren, sind zusammen mit den Genen der Komponenten des Thioredoxin-Systems und Genen, die z. T. für Aminosäuretransporter codieren, in Genclustern organisiert (GRÄNTZDÖRFFER et al., 2001; KOHLSTOCK et al., 2001; LÜBBERS and ANDREESEN 1993; SONNTAG 1998). Von einer Vielzahl dieser Gene sind im Genom von E. acidaminophilum zwei leicht unterschiedliche Kopien zu finden, u. a. von grdB, trxB, trxA grdT und grdC. Von dem für das Selenoprotein A (GrdA) codierenden Gen scheinen sogar noch mehr Kopien vorzuliegen.

Im Rahmen dieser Arbeit sollte die im Gencluster I vorkommende dritte Kopie von *grdA* vollständig kloniert und das Vorhandensein einer möglichen weiteren Kopie von *grdE* geklärt werden. Der durch RUDOLF (2003) und STEINER (2004) identifizierte Gensatz VI sollte sowohl im 5[']- als auch im 3[']-Bereich vervollständigt werden. *Downstream* der im Betain-Reduktase-spezifischen Gensatz V/II lokalisierten zweiten Kopie von *grdC* sollte eine mögliche weitere Kopie von *grdD* gesucht werden.

Leider ergab sich keine Zusammenarbeit mit einem Laboratorium, das vollständige Genomsequenzierungen durchführt.

3.1.1. Vollständige Klonierung des Gencluster I der Glycin-Reduktase

Im Gencluster I der Glycin-Reduktase sind die Gene $grdB_1$, $trxB_1$, $trxA_1$, $grdA_1$ sowie die für die Untereinheiten des Protein C codierenden Gene $grdC_1$ und $grdD_1$ lokalisiert (Abb. 4). Upstream von $grdB_1$ befindet sich ein unvollständiger offener Leserahmen, dessen abgeleitete Aminosäuresequenz signifikante Homologien zu dem auf diesem Gensatz lokalisierten $grdA_1$ aufweist. In Gencluster III ist eine weitere Kopie

von *grdA* zu finden, welche *upstream* von $grdE_1$ und *downstream* von $grdB_2$ flankiert wird. Es konnte also davon ausgegangen werden, dass auch in Gencluster I diese Genanordnung vorzufinden ist.

Ein Sequenzvergleich der bereits kloniert vorliegenden Kopien von *grdA* zeigte, dass alle drei Kopien auf Nukleinsäureebene sehr ähnlich sind, weshalb durch PCR-Reaktionen und nicht mit Hilfe von Hybridisierungstechniken nach fehlenden Genabschnitten bzw. Genen gesucht werden sollte.

Abb. 4: Übersicht über die im Glycin-Reduktase-spezifischen Gencluster I und III lokalisierten Gene (KOHLSTOCK *et al.*, 2001; LÜBBERS and ANDREESEN 1993; SONNTAG 1998). Dargestellt sind die im Gencluster I und III organisierten Gene sowie die Position der für die Amplifikation des *upstream*-Bereichs von $grdB_1$ verwendeten Primer Pr1_TrxB1Ear und Pr2_GrdEEaf. Die dargestellten Gene codieren für folgende Proteine: $grdX_GrdX$ (hypothetisch), $grdE_Proprotein der 25$ - und 22 kDa-Untereinheit des Protein B der Glycin-Reduktase, $grdA_S$ Selenoprotein A der Glycin, Sarcosin und Betain-Reduktase, $grdB_47$ kDa -Untereinheit des Protein B der Glycin-Reduktase, $grdA_S$ Sarcosin und Betain-Reduktase, $trxA_S$ Thioredoxin $grdC_57$ kDa-Untereinheit des Protein C der Glycin, Sarcosin und Betain-Reduktase, $grrM_A$ hypothetisches Protein unbekannter Funktion, $grrX_RNA$ -Methylase (hypothetisch), grrY, $grrZ_hypothetische Proteine unbekannter Funktion$

Da von einem hohen Grad der Übereinstimmung der beiden möglichen grdE-Gene ausgegangen wurde, sollte mit einem forward-Primer, welcher am 5'-Ende von $grdE_1$ bindet (GrdEEaf) und einem reversen Primer, welcher am 5'-Ende von $trxB_1$ bindet (TrxB1Ear), der Bereich upstream von $grdB_1$ amplifiziert werden (Abb. 4). Mit diesen Primern wurde durch eine PCR-Reaktion an chromosomaler DNA von *E. acidaminophilum* ein ca. 3,1 kb Fragment generiert, welches anschließend in den Vektor pGem®-T Easy kloniert und in *E. coli* XL1-Blue MRF^{*} transformiert wurde. Dieses Hybrid-Plasmid wurde mit pUsGrdB1 bezeichnet. Durch Sequenzierung dieses Plasmides konnte der fehlende Bereich von $grdA_3$ identifiziert und *upstream* davon eine zweite Kopie von grdE, welche mit $grdE_2$ bezeichnet wurde, nachgewiesen werden (s. S. 43, Abb. 7; Anhang A.III.). Für das Genom von *E. acidaminophilum* wurden somit vier Kopien für grdAund zwei Kopien für grdE beschrieben.

Durch Vektorette-PCR (RILEY *et al.*, 1990) mit PhusionTM High-Fidelity DNA Polymerase (2.5.1.) an chromosomaler DNA von *E. acidaminophilum* mit den Primerpaaren usGrdE2/1 und UV (Anhang A.I.) sowie usGrdE2/2 und UV sollte der Bereich *upstream* von $grdE_2$ identifiziert werden. Durch Sequenzierung der mit diesen beiden Primerpaaren amplifizierten Fragmente (1 kb und 1,2 kb) konnte nur der Bereich *upstream* von $grdE_1$ (Gencluster III) amplifiziert werden (s. S. 43, Abb. 7; Anhang A.IV.).

3.1.2. Vollständige Klonierung des Gencluster VI der Betain-Reduktase

Der erst von RUDOLF (2003) und STEINER (2004) identifizierte und mit Gencluster VI bezeichnete Sarcosinspezifische Gensatz trägt eine weitere, die vierte Kopie von *grdA*, eine zweite Kopie von *grdT* (Gen eines mutmaßlichen Sarcosin-Transporters) sowie des Gen einer Creatinase (*creA*) und den 3'-Bereich der zweiten Kopie von *grdF* (Abb. 5).

Abb. 5: Übersicht über die im Glycin-Reduktase spezifischen Gencluster IV und VI lokalisierten Gene. Dargestellt sind die im Gencluster IV und VI organisierten Gene sowie die Position der für die Amplifikation des *upstream*-Bereichs von $grdF_2$ verwendeten Primer Pr1_GrdG1Eaf und Pr2_GrdT2Ear. Die dargestellten Gene codieren für folgende Proteine: $orfS_Z$ wei-Komponenten-Sensor-Histidin-Kinase, $orfR_N$ trC-ähnlicher Responseregulator, orfX, $orfY_$ hypothetische Proteine, $grdG_P$ roprotein der 22- und 25 kDa Untereinheit des substratspezifischen Protein B der Sarcosin-Reduktase, $grdF_47$ kDa-Untereinheit der Sarcosin-Reduktase, $grdT_G$ lycin-Betain-Transporter, $creA_C$ reatinase, $grdA_S$ Selenoprotein A der Glycin, Sarcosin und Betain-Reduktase.

Ausgehend davon, dass *upstream* von $grdF_2$ eine mögliche weitere Kopie von grdG zu finden ist, wurde durch eine PCR-Reaktion mit einem *forward* Primer aus dem 5'-Bereich von $grdG_1$ (Gencluster IV; GrdG1Eaf) und einem *reversen* Primer aus dem 5'-Bereich von $grdT_2$ (Gencluster VI; GrdT2Ear) ein Fragment mit einer Größe von ca. 3,5 kb amplifiziert, welches folgend in den Vektor pGem®-T Easy kloniert und in *E. coli* XL1-Blue MRF^{*} transformiert und mit pUsGrdF2 bezeichnet wurde. Auf diesem Hybridplasmid lag jeweils eine zweite Kopie der Gene grdF und grdG vollständig kloniert vor. Das hier beschriebene PCR-Produkt wurde anschließend nochmals mit PhusionTM High-Fidelity DNA Polymerase (2.5.1.) generiert und ebenfalls vollständig sequenziert (s. S. 43, Abb. 7; Anhang A.VII.).

Der Genabschnitt *upstream* von $grdG_2$ wurde durch Vektorette-PCR (RILEY *et al.*, 1990) mit PhusionTM High-Fidelity DNA Polymerase (2.5.1.) an chromosomaler DNA von *E. acidaminophilum* mit den Primern usGrdG2Ea1 und UV sowie usGrdG2Ea2 amplifiziert. Die generierten PCR-Produkte mit Größen von 0,8 kb und ca. 0,9 kb wurden vollständig sequenziert und die erhaltenen Sequenzen verknüpft. Dabei wurde der Bereich *upstream grdG*₂ amplifiziert, jedoch konnte in einem 0,9 kb großen Basenbereich kein offener Leserahmen identifiziert werden.

Somit sind im Genom von *E. acidaminophilum* auch zwei Kopien der Gene grdG und grdF identifiziert worden (s. S. 43, Abb. 7).

Auch der *downstream*-Bereich der sich auf dem Gencluster VI befindenden vierten Kopie von *grdA* sollte identifiziert werden. Durch eine PCR am Gesamtpool der Sau3A-Genbank von *E. acidaminophilum* (POEHLEIN 2003) mit den Primern usGrdA3/2 konnte ein ca. 1,5 kb PCR-Produkt amplifiziert werden,

welches in den Vektor pGem®-T Easy kloniert und in *E. coli* XL1-Blue MRF` transformiert wurde. Durch Sequenzierung des Plasmid-Inserts (pDsGrdA4) konnte *downstream* von $grdA_4$ ein putatives Gen einer Adenine-spezifischen DNA-Methylase identifiziert werden (s. S. 43, Abb. 7; Anhang A.VIII.). Es konnten somit insgesamt vier Kopien des für das Selenoprotein A der drei Reduktasen codierenden Gens im Genom von *E. acidaminophilum* nachgewiesen werden.

3.1.3. Vollständige Klonierung des Gencluster V/II der Betain-Reduktase

Durch die vollständige Klonierung von $grdT_1$ (STEINER 2004) konnten der von SONNTAG (1998) identifizierte Gensatz V des Betain-spezifischen Genclusters und der von LÜBBERS (1993) identifizierte Gensatz II zu einem gemeinsamen Betain-spezifischen Gencluster, folgend mit Gensatz V/II bezeichnet, zusammengefasst werden (Abb. 6). Auf diesem Gencluster waren neben den Genen grdH und grdI, die für die Betain-spezifische Reduktase-Untereinheiten codieren, wie schon erwähnt, die zweite Kopie von grdT, ein für einen Aminosäuretransporter codierendes Gen, jeweils eine zweite Kopie der Gene des Thioredoxin-Systems und eine zweite Kopie von grdC lokalisiert. Es konnte auch hier davon ausgegangen werden, dass *downstream* dieses Gens eine weitere Kopie von grdD zu finden ist.

Durch PCR an chromosomaler DNA von *E. acidaminophilum* mit einem im 3[']-Bereich von $grdT_1$ (Gencluster V/II) abgeleiteten *forward* Primer (GrdT1Eaf) und einem im 3[']-Bereich von $grdD_1$ (Gencluster I; (Abb. 6) abgeleiteten *reverse* Primer (GrdD1Ear) konnte ein ca. 4,4 kb PCR-Produkt amplifiziert werden, welches anschließend in den Vektor pGem®-T Easy kloniert, mit pDsGrdC2 bezeichnet und vollständig sequenziert wurde.

Abb. 6: Übersicht über die im Glycin-Reduktase spezifischen Gencluster I und Betain-Reduktase spezifischen Gencluster V/II lokalisierten Gene (KOHLSTOCK *et al.*, 2001; LÜBBERS and ANDREESEN 1993; SONNTAG 1998; STEINER 2004). Dargestellt sind die im Gencluster I und V/II organisierten Gene sowie die Position der für die Amplifikation des *downstream*-Bereichs von *grdC*₂ verwendeten Primer Pr1_GrdT1Eaf und Pr2_GrdD1Ear. Die dargestellten Gene codieren für folgende Proteine: *grdX*_GrdX (hypothetisch), *grdE*_Proprotein der 25- und 22 kDa-Untereinheit des Protein B der Glycin-Reduktase, *grdA*_ Selenoprotein A der Glycin, Sarcosin und Betain-Reduktase, *grdB*_47 kDa -Untereinheit des Protein B der Glycin, Sarcosin und Betain-Reduktase, *trxB*_Thioredoxin-Reduktase, *trxA*_Thioredoxin *grdC*_57 kDa-Untereinheit des Protein C der Glycin, Sarcosin und Betain-Reduktase, *grdB*_48 kDa-Untereinheit des Protein M Betain-Reduktase, *orf1*_hypothetisches Protein unbekannter Funktion, *ldc*_Lysin-Decarboxylase, *grdR*_Regulatorprotein (hypothetisch), *grdI*_48 kDa-Untereinheit des Protein B der Betain-Reduktase. *grdT*_Glycin-Betain-Transporter

Dieses PCR-Produkt repräsentierte den 3'-Bereich von $grdT_1$, die vollständigen Sequenzen der Gene $trxB_2$, $trxA_2$ sowie $grdC_2$ und downstream die Sequenz einer zweiten Kopie von grdD. Diese PCR-Reaktion wurde mit Phusion[™] High-Fidelity DNA Polymerase (2.5.1.) wiederholt. Auch hier wurde ein ca. 4,4 kb Fragment generiert, welches ebenfalls vollständig sequenziert wurde (s. S. 43, Abb. 7; Anhang A.VI.). Somit konnte gezeigt werden, dass auch die Gene grdC und grdD in zweifacher Kopienzahl im Genom von E. acidaminophilum vorzufinden sind. Auch der Genbereich downstream von grdD₂ sollte im Rahmen dieser Arbeit identifiziert werden. Durch Vektorette-PCR (RILEY et al., 1990) mit den Primern dsGrdD2EA1 und dsGrdD2EA2 jeweils in Kombination mit dem Primer UV sowie durch PCR mit diesen Primern und den Vektor-spezifischen Primern UPRN sowie RPRN und dem Gesamtplasmidpool der Sau3A-Genbank von E. acidaminophilum als template, konnten nur PCR-Produkte generiert werden, die den 3'-Bereich von grdD1 und den downstream gelegenen orf1 (KOHLSTOCK 2001) repräsentieren. Da beide Kopien der Gene grdD zu 100 % identisch waren, konnten keine grdD₂-spezifischen Primer generiert werden. Auch das screening der Sau3A-Genbank von E. acidaminophilum mit den Primern GrdT1Eaf und GrdD1Ear erbrachte keine Resultate. Die Sequenz des Genbereiches downstream $grdD_2$ bleibt also weiterhin unbekannt. Einzig die Gene der beiden Untereinheiten der Betain-spezifischen Reduktase, grdI und grdH, sind nach bisherigem Wissensstand nur als singulär vorkommende Gene im Genom von E. acidaminophilum vertreten.

3.1.4. Verknüpfung der Gencluster

Da nichts über die Lokalisation der beschriebenen Gensätze im Genom von *E. acidaminophilum* bekannt war, sollte durch PCR-Reaktionen mit Cluster-spezifischen Primern versucht werden, eventuell einzelne Gensätze zu verknüpfen und somit die Sequenzen *upstream* und *downstream* dieser zu identifizieren. Dazu wurden jeweils im 3'-Bereich der Gene bzw. offenen Leserahmen $grdE_2$, grrX, orfS, $grdG_2$ sowie *ldc* und im 5'-Bereich von orfU, grrZ, orfY, *dadM* sowie grdD2 jeweils zwei Primer abgeleitet. Die entsprechenden Primer sind aus Gründen der Übersichtlichkeit hier nicht im Einzelnen aufgeführt, sondern nur der Tabelle 14 (s. S. 163, Anhang A.I.) zu entnehmen. Es wurden jeweils zwei Primer im Abstand von ca. 100-150 bp abgeleitet, um schon anhand der Größe der generierten PCR-Fragmente auf eine spezifische Amplifikation schließen zu können und somit eine Vorauswahl zu treffen.

Durch PCR-Reaktionen mit allen sich mit diesen Oligonukleotide ergebenden Primerpaarungen (144 Kombinationen) an chromosomaler DNA von *E. acidaminophilum* wurde eine Vielzahl an Fragmenten amplifiziert. Bei einer Vielzahl der PCR-Reaktionen wurden keine Produkte erhalten, bei anderen PCRs hingegen wurden z. T. zwei bis fünf Fragmente amplifiziert. Nur bei sehr wenigen PCR-Reaktionen wurden nur ein bzw. zwei deutliche Fragmente generiert, die anschließend sequenziert wurden.

Durch die Primerpaare OrfREar und LdcEar, OrfSEar und GrrZEaf1 sowie OrfREar und GrrYEar2 wurden PCR-Produkte mit ungefähren Größen von 0,8 kb; 1,2 sowie 1,1 kb amplifiziert, die den 5'-Bereich des von SONNTAG (1998) beschriebenen *orfR* und den 3'-Bereich von *orfS* repräsentierten. Durch diese Amplifikate

konnte die Sequenz des *orfS upstream* um 900 bp erweitert werden. Die abgeleitete Aminosäure-Sequenz dieses *orfS* zeigte signifikante Homologien zu Zwei-Komponenten-Sensor-Histidin-Kinasen diverser Organismen. Die Nukleotid- und daraus abgeleitete Aminosäuresequenz sind im Anhang A.V. dargestellt. Durch PCR-Reaktionen mit den Primern LdcEar2 und GrrYEar1 sowie GrrYEar1 und dsGrdD2Ea2 konnten Fragmente mit Größen von ca. 0,5 kb bzw. 1,2 kb generiert werden. Diese PCR-Produkte repräsentierten den 5'-Bereich des von SONNTAG (1998) im Gencluster III beschriebenen *grrY* und die vollständige Sequenz des ebenfalls von SONNTAG (1998) beschriebenen *grrX. Upstream* war ein offener Leserahmen, welcher mit *grrW* bezeichnet wurde, lokalisiert, dessen abgeleitete Aminosäuresequenz Homologien zu nicht näher klassifizierten hypothetischen Proteinen diverser Organismen aufzeigte. Die Sequenz dieser PCR-Produkte ist im Anhang A.IV. dargestellt, die Lage der beschriebenen ORFs auf den für Glycin-, Sarcosin- und Betain-spezifischen Reduktase-Genclustern ist in Abbildung 7 dargestellt.

Abb. 7: Übersicht über die Organisation der Glycin-, Sarcosin- und Betain-Reduktase spezifischen Gencluster aus *E. acidaminophilum*. Die Orientierung der Gene ist durch die Richtung der Pfeile angegeben. Die dargestellten Gene codieren für folgende Proteine: $grdX_GrdX$ (hypothetisch), $grdE_Proprotein der 25$ - und 22 kDa-Untereinheit des Protein B der Glycin-Reduktase, $grdA_S$ Selenoprotein A der Glycin, Sarcosin und Betain-Reduktase, $grdB_47$ kDa-Untereinheit des Protein B der Glycin-Reduktase, $trxB_Thioredoxin-Reduktase$, $trxA_Thioredoxin grdC_57$ kDa-Untereinheit des Protein C der Glycin, Sarcosin und Betain-Reduktase, $grdD_48$ kDa-Untereinheit des Protein C der Glycin, Sarcosin und Betain-Reduktase, $orf1_hypothetisches$ Protein unbekannter Funktion, $grrW_hypothetisches$ Protein unbekannter Funktion, $grrX_RNA$ -Methylase (hypothetisch), grrY, $grrZ_hypothetische Proteine unbekannter$ $Funktion, <math>orfS_Zwei-Komponenten-Sensor-Histidin-Kinase$, $orfR_NtrC-ähnlicher Responseregulator, orfX, orfY_hypothetische Proteine, <math>grdG_Proprotein der 22$ - und 25 kDa-Untereinheit des Protein B der Sarcosin-Reduktase, $grdT_Glycin-Betain-Transporter$, $creA_Creatinase$, $dadM_Adenin$ spezifische DNA-Methylase, $ldc_Lysin-Decarboxylase$, $grdR_Regulatorprotein (hypothetisch), grdI_48$ kDa-Untereinheit des Protein B der Betain-Reduktase, $grdH_45$ kDa-Untereinheit des Protein B der Betain-Reduktase. Mit den Primern GrrZEaf2 und usGrdE2/1 konnte ein PCR-Produkt mit einer Größe von ca. 1,1 kb amplifiziert werden. Dieses PCR-Produkt repräsentiert den 5'-Bereich von $grdE_2$ sowie einen *upstream* gelegenen offenen Leserahmen, dessen abgeleitete Aminosäuresequenz starke Homologie zu dem für *C. sticklandii* beschriebenen Protein GrdX (GRÄNTZDÖRFFER *et al.*, 2001) aufwies (s. S. 43, Abb. 7; Anhang A.III.). Die Gene der Gencluster I und III konnten so jedoch nicht verknüpft werden.

Durch Sequenzierung ausgewählter PCR-Produkte konnte gezeigt werden, dass sich keiner der bisher beschriebenen Gencluster mit einem andern durch diese Methode verknüpfen ließ. Des Weiteren zeigte sich, dass bei jeder PCR-Reaktion (deren Amplifikate sequenziert wurden) mind. einer der verwendeten Primer unspezifisch gebunden hatte. Es wurden keine PCR-Produkte amplifiziert, die größer als 2,5 kb waren.

Es ist davon auszugehen, dass die Gencluster mehr als 7 kb voneinander entfernt auf dem Genom von *E. acidaminophilum* lokalisiert sind und ein Bereich dieser Größe nicht durch PCR-Reaktionen mit *Taq*-DNA-Polymerase amplifiziert werden kann.

3.2. Das Glycin-Decarboxylase-Operon aus E. acidaminophilum

3.2.1. Vollständige Klonierung des Glycin-Decarboxylase-Operons aus E. acidaminophilum

Die Glycin-Decarboxylase ist ein meist aus vier Proteinen bestehender Multienzymkomplex. Die als P1-Protein bezeichnete Komponente katalysiert zusammen mit dem P2, dem Elektronen-transferierenden Protein, die Abspaltung von CO_2 und die Übertragung der Aminomethylgruppe auf die zunächst oxidierte Liponsäuregruppe des P2-Proteins. Die Aminomethyl-Transferase, auch als P4-Protein bezeichnet, überträgt die C₁-Einheit der Aminomethylgruppe auf THF, es kommt dadurch zur Bildung von 5,10-Methylentetrahydrofolat und der Freisetzung von NH₃. Die durch Reoxidation der Liponsäuregruppe, katalysiert durch das P3-Protein, die Dihydrolipoamid-Dehydrogenase, freiwerdenden Elektronen werden meist auf NAD⁺, z. T. aber auch auf NADP⁺ übertragen.

Basis der in der vorliegenden Arbeit dargelegten Untersuchungen ist ein in der vorangegangenen Diplomarbeit (POEHLEIN 2003) beschriebenes PCR-Produkt mit einer Größe von 4,2 kb. Auf diesem Fragment waren die Gene gcvP2 (Elektronen-transferierendes Protein; P2-Protein), gcvP1a (α -Untereinheit des P1-Proteins) und $gcvP1\beta$ (β -Untereinheit des P1-Proteins) vollständig, das Gen des P4-Proteins, gcvP4hingegen nur unvollständig lokalisiert. Die Gene der Formyl-THF-Synthetase (*thf*), des Selenoproteins PrpU (prpU) und der 3'-Bereich des Gens für die β -Untereinheit des P1-Proteins ($gcvP1\beta$) lagen auf den beiden aus einer Sau3A-Genbank (POEHLEIN 2003) von *E. acidaminophilum* isolierten Plasmiden pAP2218 bzw. pAP694 kloniert vor (s. S. 46, Abb. 8). Diese sechs Gene wiesen die gleiche Transkriptionsrichtung auf. Die ersten Schritte weiterführender Arbeiten waren die vollständige doppelsträngige Sequenzierung dieses PCR-Produktes durch *primer-walking* und die vollständige Klonierung des Gens der Aminomethyl-Transferase (*gcvP4*).

Der Vergleich der bereits bekannten Sequenz von *gcvP4* aus *E. acidaminophilum* mit Genen und Proteinen anderer Organismen zeigte, dass noch ein ca. 200-250 bp umfassender Bereich fehlte, um dieses Gen vollständig zu klonieren. Durch Southern-Hybridisierungen mit chromosomaler DNA aus *E. acidaminophilum* wurde gezeigt, dass *gcvP4* auf einem 1,3 kb HindIII-Fragment lokalisiert war (Daten nicht gezeigt). Die entsprechende Schnittstelle im bereits sequenzierten Genbereich befindet sich ca. 450-500 bp *downstream* des 5'-Endes von *gcvP4*. Durch Klonierung dieses Fragmentes sollte der Bereich also um ca. 800-850 bp erweitert und somit das Gen des P4-Proteins vollständig vorliegen.

Zur Erstellung der partiellen HindIII-Genbank wurde chromosomale DNA von *E. acidaminophilum* mit HindIII vollständig verdaut, die Fragmente mit einer Größe von ca. 1,3 kb wurden aus einem Agarosegel eluiert und in mit ebenfalls HindIII linearisierten pUC18-Vektor ligiert und anschließend in *E. coli* XL1-Blue MRF['] transformiert. 1000 der resultierenden Klone wurden auf Nylonmembranen ausgestrichen und einer Kolonie-Hybridisierung mit einer mit den Primern gcvP4f und gcvP4r (ca. 0,5 kb) amplifizierten, mit Digoxigenin markierten Sonde unterzogen. Auf diese Weise konnte kein Klon identifiziert werden, der den gesuchten Genbereich repräsentierte. Durch PCR an dem für die Klonierung der partiellen HindIII-Genbank verwendeten Ligationsansatz mit den Primern Seq414r und UPRN konnte ein ca. 1,4 kb Fragment amplifiziert werden, welches anschließend in den Vektor pGem®-T Easy kloniert und in *E. coli* XL1-Blue MRF['] transformiert wurde. Das durch Plasmidpräparation aus den entstandenen Klonen isolierte Hybrid-Plasmid wurde mit pUsP4H3 bezeichnet, der gesuchte Bereich von *gcvP4* und die Region *upstream* waren darauf lokalisiert. Durch Sequenzierung konnte der fehlende Bereich des *gcvP4*-Gens (482 bp) identifiziert werden. Das anhand der DNA-Sequenz abgeleitete Molekulargewicht des Proteins betrug 41,1 kDa (372 Aminosäuren).

Durch Screening der bestehenden Sau3A-Genbank von *E. acidaminophilum* (POEHLEIN 2003) sollte ein noch größerer Bereich *upstream* von *gcvP4* kloniert werden, der wieder einen *orf* beinhaltete. Die 50, jeweils 96 Klone repräsentierenden Plasmidpools wurden einer Dot-Blot-Hybridisierung und die 96 Klone der Pools, die die stärksten Signale zeigten, einer Kolonie-Hybridisierung mit einer Digoxigenin markierten Sonde (GcvP4f1 und GcvP4r) unterzogen. Trotz deutlicher Signale bei der Dot-Blot-Hybridisierung konnte durch Kolonie-Hybridisierung und anschließender Sequenzierung einiger Klone kein Fragment isoliert werden, auf welchem der gesuchte Bereich lokalisiert war. Im Rahmen dieser Versuche wurde ein Plasmid isoliert, auf dem u. a. der 3'-Bereich eines Gen einer Serin-Hydroxymethyltransferase lokalisiert war, diese wurde jedoch nicht näher charakterisiert. Durch PCR mit den Primern UPRN und Seq48r an den durch die Dot-Blot-Hybridisierung detektierten Plasmidpools der Sau3A-Genbank von *E. acidaminophilum* konnte ein ca. 1,6 kb großes Fragment amplifiziert werden, welches anschließend in den Vektor pGem[®]-T Easy kloniert und mit pUsP4SA bezeichnet wurde. Durch Sequenzierung dieses Plasmides konnte *upstream* von *gcvP4* das 3'-Ende eines offenen Leserahmens identifiziert werden, dessen abgeleitete Aminosäuresequenz deutliche

Homologien zu NLP/P60-Proteinen (Zellwand assoziierte Reduktase mit SH3-Domäne) diverser Organismen zeigte (s. S. 46, Abb. 8). Durch Vektorette-PCR (RILEY *et al.*, 1990) an mit den Restriktionsendonukleasen DraI, SmaI, SspI, NaeI und NruI geschnittener und mit der *bubble*-DNA ligierter chromosomaler DNA von *E. acidaminophilum* (2.5.1.) mit den Primern VPusP41r und UV und anschließender Klonierung der generierten Fragmente (1,3 kb) in den Vektor pGem[®]-T Easy (pUusP4VP) konnte dieser Genbereich vollständig kloniert werden. *Upstream* wurde das 5'-Ende eines weiteren offenen Leserahmens identifiziert, dessen abgeleitete Aminosäuresequenz Homologien zu 3-Oxoacyl-(Acyl-Carrier-Protein)-Reduktasen (FabG) aus verschiedenen Organismen aufwies.

Abschließend wurde die Genregion, welche durch die Plasmide pUsP4H3, pUsP4SA und pUsP4VP repräsentiert wird, durch Vektorette-PCR (RILEY *et al.*, 1990) mit PhusionTM High-Fidelity DNA Polymerase (s. o.) mit den Primerpaaren VPusP4r1 und UV sowie VPusP4r2 und UV, und PCR an chromosomaler DNA von *E. acidaminophilum* mit den Primern SequsGcvP4f1 und 48r sowie SequsGcvP4f2 und 48r amplifiziert und vollständig sequenziert. Durch diesen Schritt sollten Fehler, die durch die Amplifikation mit *Taq*-DNA-Polymerase auf Grund ihrer Fehlerrate (1 Fehler auf ca. 1000 bp) entstanden sein könnten, ausgeschlossen werden.

Die Gene des Glycin-Decarboxylase-Operons, gcvP4, gcvP2, $gcvP1\alpha$, $gcvP1\beta$, thf und prpU sowie das Gen nlpP weisen die gleiche Transkriptionsrichtung auf, das Gen fabG hingegen ist entgegengesetzt orientiert. In Abbildung 8 sind die klonierten Gene des Glycin-Decarboxylase-Operons und der Region *upstream* dargestellt.

Abb. 8: Schematische Darstellung des Glycin-Decarboxylase-Operons und der angrenzenden Genregionen. Die in der vorgelegten Arbeit klonierten Fragmente sind rot dargestellt, die Transkriptionsrichtung der Gene ist durch die jeweilige Pfeilrichtung wiedergegeben. Die klonierungsrelevanten Schnittstellen HindIII (H) und Sau3A (S) sind verdeutlicht. *fabG_3-Oxoacyl-(Acyl-Carrier-Protein)-Reduktase*, *nlpP_Zellwand assoziierte Reduktase mit SH3-Domäne*, *gcvP4_P4-Protein*, *gcvP2_P2-Protein*, *gcvP1a_a-Untereinheit des P1-Proteins*, *gcvP1\beta_β-Untereinheit des P1-Proteins*, *thf_Formyl-THF-Synthetase*, *prpU_PrpU.*

Die vollständige Sequenz der in Abbildung 8 dargestellten Genregion ist in Anhang A.II. dargestellt, putative Promotorelemente, Ribosomen-Bindestellen und Terminationsstrukturen wurden gekennzeichnet. Auffallend ist jedoch der 1 kb große intergene Bereich *upstream* von *gcvP4*, der offensichtlich keinen *orf* enthält.

In der vorangegangenen Diplomarbeit wurde durch Southern-Hybridisierungen gezeigt, dass die Gene gcvP4, $gcvP1\alpha$ und $gcvP1\beta$ als singuläres Gen im Genom von *E. acidaminophilum* zu finden sind, dieses Ergebnis konnte im Rahmen der hier beschriebenen Untersuchungen für das Gen des P4-Proteins bestätigt und ebenso für das Gen gcvP2 gezeigt werden. Als Sonde diente jeweils ein mit Digoxigenin markiertes PCR-Produkt, welches mit den Primern gcvP2f und gcvP2r (gcvP2) bzw. gcvP4f und gcvP4r (gcvP4) generiert wurde.

3.2.2. Transkriptionsanalysen des Glycin-Decarboxylase-Operons durch RT-PCR

In früheren Arbeiten wurde durch Northern-Hybridisierungen auch ein gemeinsames Transkript der Gene des Glycin-Decarboxylase-Operons (s. 3.2.1.) zusammen mit den Genen *thf* und *prpU* nachgewiesen (POEHLEIN 2003). Es war daraus ebenso ersichtlich, dass auch ein relativ großer Bereich *upstream* von gcvP4 zu diesem Transkript gehörte. Durch RT-PCR sollten diese Daten überprüft werden.

DNase-behandelte Gesamt-RNA aus *E. acidaminophilum* wurde dazu mit *random* Hexamer-Primer mittels Reverser Transkriptase in cDNA umgeschrieben, welche als *template* für die PCR-Reaktionen genutzt wurde. Als Kontroll-Reaktionen zum Ausschluss von DNA-Kontaminationen durch unvollständigen DNase-Verdau dienten Ansätze mit hitzeinaktivierter Reverser Transkriptase bzw. PCR-Reaktionen direkt an der DNase-behandelten RNA, aber auch Reaktionen ohne *template* (Wasserprobe). Als Positivkontrolle diente die PCR mit den entsprechenden Primern an chromosomaler DNA von *E. acidaminophilum*.

Die RT-PCRs der einzelnen Gene wurden mit den Primerpaaren SeqGcvF1 und Seq884R (gcvP4), SeqGcv228F und Seq360r (gcvP2), Seq1400F und Seq1819r (gcvP1a), Seq1973F und Seq2140r ($gcvP1\beta$), NTERMTHFS52 und THFS350r (thf), RTPrpUf und RTPrpUr (prpU), RTusP4f11 und RTusP4r2 (fabG) sowie RTusP4f13 und VPusP4f1 (nlpP) durchgeführt. Die RT-PCRs hinsichtlich der intergenen Bereiche der untersuchten Gene erfolgte mit den Primern Seq918F und SeqGcvR14 (gcvP4-gcvP2), Seq337F und Seq1203r (gcvP2-gcvP1a) sowie Seq1400F und SeqGcv20r (gcvP1a- $gcvP1\beta$). Für jede RT-PCR konnte ein Produkt erhalten werden, dessen Größe der Lage der entsprechenden Primerpaare in den Genen und dem Produkt, welches in der jeweiligen PCR-Reaktion an chromosomaler DNA generiert wurde, entsprach. Dies lässt auf eine Transkription aller untersuchten Gene schließen. Durch RT-PCR mit den Primern Seq918f und SeqGcvR20 (s. S. 48, Abb. 9; Spuren 32 und 34; $gcvP1\beta$ - $gcvP1\beta$) sowie dem Primerpaare GlyDC219f und RTPrpUr (s. S. 48, Abb. 9; Spuren 41 und 43; $gcvP1\beta$ -prpU) konnte die Existenz eines gemeinsamen Transkriptes der Gene der Glycin-Decarboxylase mit den Genen der Formyl-THF-Synthetase sowie PrpU bestätigt werden. Die hier beschriebenen RT-PCRs sind in Abbildung 9 dargestellt.

Abb. 9: RT-PCRs zur Transkriptionsanalyse des Glycin-Decarboxylase-Operons von *E. acidaminophilum*. Die durch die RT-PCRs amplifizierten Genbereiche sind über den jeweiligen Produkten dargestellt, die Auftragung der einzelnen Reaktionen erfolgte immer in der Reihenfolge Pos.-Kontrolle, Neg.-Kontrolle und RT-PCR. M1_GeneRuler[™] 100 bp DNA Ladder plus, M2_Lambda DNA/PstI Marker. Diese Abbildung wurde aus drei Gelbildern zusammengestellt.

Wie bereits erwähnt, war aus den vorangegangenen Northern-Hybridisierungen zu erkennen, dass bedingt durch die Transkriptgröße der Transkriptionsstartpunkt des Transkriptes dieses Glycin-Decarboxylase-Operons weit vor dem Start-Codon des *gcvP4*-Gens liegen muss. Für diesen Versuchsteil wurde eine reverse Transkription DNase-behandelter RNA aus *E. acidaminophilum* mit dem Primer Seqgcv48r durchgeführt. Durch RT-PCRs mit den Primern RTusP4f1-10 (alle *upstream gcvP4* jeweils im Abstand von 100-150 bp lokalisiert) in Kombination mit dem Primer Seqgcv48r wurde gezeigt, dass der mRNA-Startpunkt ca. 1000 bp *upstream* des Translationsstartpunktes von *gcvP4* gelegen sein muss (Abb. 9; Spur 8 und 10; *usgcvP4*). Auf eine genaue Bestimmung der Transkriptionsstartpunkte wird detailliert im nächsten Abschnitt eingegangen.

3.2.3. primer-extension Experimente zur Bestimmung der Transkriptionsstartpunkte

Zur genauen Bestimmung des Transkriptionsstartpunktes des Glycin-Decarboxylase-Operons und zum Nachweis etwaiger Einzeltranskripte der einzelnen Gene wurden *primer-extension*-Experimente mit Fluoreszenz-markierten Oligonukleotiden durchgeführt. Die jeweiligen Primer waren 100-150 Nukleotide *downstream* der Startcodons der Gene *gcvP2* (Pr-Ext-P2), *gcvP1a* (Pr-Ext-P1a) und *gcvP1β* (Pr-Ext-P1b) bzw. 500 Nukleotide *upstream* von *gcvP4* (Pr-Ext-P4) lokalisiert. Die Reaktionen mit den Primern Pr-Ext-P2 und Pr-Ext-P1a ergab trotz Wiederholung der Versuche keine Signale, was gegen Einzeltranskripte dieser

Gene spricht. Die Analyse mit dem Primer Ext-P1b ergab ein cDNA-Fragment mit einer Größe von 91 Nukleotide, was jedoch nicht als Transkriptionsstartpunkt, sondern als Abbruchprodukt der Reversen Transkriptase zu werten ist, da die so bestimmte Base 48 Nukleotide *downstream* des Startcodons von $gcvP1\beta$ zu finden war. Die *primer-extension*-Analyse mit dem gcvP4-spezifischen Primer ergab ein deutliches Signal bei einer Fragmentgröße von 622 Nukleotide (Abb. 10), was einem Thymin 1125 bp *upstream* des Startcodons von gcvP4 entsprach.

Abb. 10: Bestimmung des Transkriptionsstartpunktes des Glycin-Decarboxylase-Operons. Dargestellt ist die Fragmentlängenanalyse der Fluoreszenz-markierten cDNA Fragmente (A), welche durch *primer-extension* erhalten wurden, darunter ist der ROX-Standard (B) dargestellt.

Mit einem zweiten Primer, der 960 Nukleotide *upstream* von *gcvP4* (Pr-Ext-P4/2) lokalisiert war, konnte dieser mögliche Transkriptionsstartpunkt des Glycin-Decarboxylase-Operons bestätigt werden (Daten nicht gezeigt).

LECHEL (1999) postulierte 55 Nukleotide *upstream* von *thf* ein Cytosin bzw. 111 Nukleotide *upstream* von *prpU* ein Guanin als mögliche Transkriptionsstartpunkte der ebenfalls beobachteten Einzeltranskripte beider zum Glycin-Decarboxylase-Operon gehörenden Gene.

3.2.4. Putative Transkriptions- und Translationssignale des Glycin-Decarboxylase-Operons

Durch die in Abschnitt 3.2.3. beschriebenen *primer-extension*-Analysen wurde ein möglicher Transkriptionsstartpunkt 1115 Nukleotide *upstream* von *gcvP4* postuliert. 9 Nukleotide in 5'-Richtung des möglichen mRNA-Transkriptes befand sich eine putative –10-Region (5'-ATGAAT-3') 18 Nukleotide in 5'-Richtung eine mögliche –35-Region (TGTAAA). Beide potentiellen Promotor-Elemente zeigen jedoch nur eine geringe Übereinstimmung mit der Konsensussequenz (5'-TTGACA_{-17±1}.TATAAT-3') σ^{70} -abhängiger *E. coli*-Promotoren (HARLEY and REYNOLDS 1987) bzw. σ^{A} -abhängiger *B. subtilis*-Promotoren (HELMANN

1995). Das von GRAVES and RABINOWITZ (1986) postulierte Promotorelement Gram-positiver Organismen mit der Sequenz 5'-TNTG-3' konnte *upstream* des möglichen Transkriptionsstartpunktes nicht identifiziert werden.

Upstream der Startcodons der Gene *gcvP2*, *gcvP1* α und *gcvP1* β konnten keine potentiellen Promotorelemente identifiziert werden, was die Vermutung bekräftigt, dass diese Gene nicht monocistronisch transkribiert werden. 7 Nukleotide *upstream* des von LECHEL (1999) postulierten Transkriptionsstartpunktes von *thf* bzw. *prpU* konnten potentielle Promotoren mit der Sequenz 5'-TTATAA. _{13 bp}.CAAAGC-3' bzw. 5'-CGGAGA_{-16 bp}.TAATAT-3' identifiziert werden, die jedoch beide eher geringe Homologien zu oben erwähnten Promotoren aufwiesen.

Upstream des *nlpP*-Gens konnte im Abstand von 91 ein möglicher Promotor mit der Sequenz 5[']-TTGACA_{.17} _{bp}-TATAAT-3['] lokalisiert werden, der mit der Konsensussequenz σ^{70} -abhängiger *E. coli*-Promotoren 100 % übereinstimmt, ein möglicher Promotor des *fabG*-Gens konnte nicht identifiziert werden. Da beide letztgenannten Gene nicht unmittelbarer Gegenstand der in der vorgelegten Arbeit beschriebenen Untersuchungen waren, wurde auf eine Bestimmung des Transkriptionsstartpunktes durch *primer-extension* verzichtet.

Die während der vorangegangenen Diplomarbeiten (LECHEL 1999; POEHLEIN 2003) postulierten rhoabhängigen (3'-Bereich von $gcvP1\beta$) bzw. rho-unabhängigen Terminationsstrukturen (PLATT 1986) im *downstream*-Bereich der Gene *thf* bzw. *prpU* konnten im Rahmen dieser Arbeit bestätigt werden. Für die Gene gcvP4, gcvP2 und $gcvP1\alpha$ konnten keine putativen Terminationselemente identifiziert werden, was die Vermutung bekräftigt, dass die Gene der Glycin-Decarboxylase polycystronisch transkribiert werden.

Downstream des *nlp*P-Gens konnte ebenfalls ein möglicher rho-unabhängiger Terminator postuliert werden (Abb. 11).

Abb. 11: Putative Terminatorstrukturen *downstream* der Gene *nlpP* (A), *gcvP1* β (B), *thf* (C) und *prpU* (D). Die Stopcodons (UAA) der jeweiligen Gene sind unterstrichen, die Änderung der freien Energie wurde mit dem Programm MFOLD kalkuliert.

Die Gene des Glycin-Decarboxylase-Operons gcvP4, gcvP2, gcvP1a, $gcvP1\beta$, thf und prpU weisen genau wie die Gene fabG und nlpP das Startcodon ATG auf und mit Ausnahme von gcvP4, welches das Stopcodon TAG besitzt, enden alle anderen Gene mit einem TAA-Codon. Upstream der Gene konnten mögliche Ribosomen-Bindestellen (SHINE and DALGARNO 1974) mit den Sequenzen 5'-AGGTGG_{N5}ATG-3' (fabG), 5'-GGAGGU_{N3}ATG-3' (nlpP), 5'-AGGAGGA_{N8}ATG-3' (gcvP4), 5'-AGGAGGA_{N7}ATG-3' (gcvP2), 5'-AGGAGGG_{N6}ATG-3' (gcvP1a), 5'-GGAGGU_{N11}ATG-3' (gcvP1\beta), 5'-AGGAGGU_{N6}ATG-3' (thf) und 5'-AGGAGGG_{N7}ATG-3' (prpU) identifiziert werden, da sie signifikante Übereinstimmungen mit der Konsensussequenz 5'-AGGAGGU_{Nx}ATG-3' aufweisen.

Im intergenen Bereich zwischen *nlpP* und *gcvP4* (Position 1921-2160 der im Anhang A.II. dargestellten Sequenz) wurde ein Sequenzmotiv identifiziert, welches sehr hohe Homologien zu der von MANDAL (2004) für *B. subtilis* postulierten, als Riboswitch fungierenden mRNA-Sekundärstruktur aufwies (Abb. 12). Auf eine mögliche Funktion dieser Struktur soll in einem späteren Kapitel in der Diskussion genauer eingegangen werden.

Abb. 12: Sekundärstruktur des Glycin-abhängiger Riboswitches. Sekundärstruktur des Glycin-Riboswitches aus *E. acidaminophilum* und darunter dessen Lage *upstream* des Glycin-Decarboxylase-Operons. Die orange unterlegten Nukleotide repräsentieren die intrinsische Terminatorstruktur, die sich bei Formation des Aptamer II durch Bindung von Glycin nicht ausbilden kann.

3.2.5. Transkriptionsanalysen zu unterschiedlichen Wachstumsbedingungen

Die Transkription der Gene des Glycin-Decarboxylase-Operons sollte bei unterschiedlichen Wachstumsbedingungen, d.h. während verschiedener Wachstumsphasen von *E. acidaminophilum* auf Standard-Medium (50 mM Glycin; ZINDEL *et al.*, 1988) und der Kultivierung dieses Organismus in diversen Medien mit unterschiedlichen Kohlenstoffquellen untersucht werden. Für dieses Bakterium war bisher kein Gen bekannt, welches als *housekeeping* Gen für die Transkriptionsanalysen genutzt werden kann. Der erste Schritt weiterführender Arbeiten war daher die Suche nach einem geeigneten *housekeeping* Gen. Als mögliche Kandidaten sollten die Gene *selB*, *rpoA*, *rpoB*, *tuf* bzw. das der 16S-rRNA getestet werden. Während die Sequenzen von *selB* (GURSINSKY *et al.*, 2000) und der 16S-rDNA (BAENA *et al.*, 1999) bekannt waren, mussten die anderen Gene hingegen noch identifiziert werden.

Dazu wurden aus Aminosäurealignments der Proteine RPOA, RPOB und EF-TU der Organismen Listeria innocua, Listeria monocytognes, Oceanobacillus iheyensis, Staphylococcus aureus, Clostridium perfringens, Clostridium botulinum, Clostridium acetobutylicum, Clostridium tetani, C. difficile und Thermoanaerobacter tengcongensis aus hochkonservierten Bereichen die degenerierten Primer RPOAf und RPOAr (*rpoA*), RPOBf und RPOBr (*rpoB*) sowie EFTUf und EFTUr (*tuf*) abgeleitet. Durch PCR an chromosomaler DNA von *E. acidaminophilum* wurden PCR-Produkte der erwarteten Größe generiert und diese nach Klonierung in pGem®-T Easy sequenziert. Die aus den erhaltenen Nukleotidsequenzen abgeleiteten Aminosäuresequenzen wiesen hohe Homologien zu den Proteinen RPOA, RPOB bzw. EF-TU aus diversen Organismen auf (Daten nicht gezeigt). Die erhaltenen Hybridplasmide wurden mit pRPOAEa (*rpoA*), pRPOBEa (*rpoB*) und pEFTUEa (*tuf*) bezeichnet.

3.2.5.1. Transkriptionsanalysen zu unterschiedlichen Wachstumsphasen

Für die Transkriptionsanalysen wurde *E. acidaminophilum* jeweils im 10 ml Maßstab in Medium mit 50 mM Glycin als einzige Kohlenstoffquelle kultiviert (2.2.3.), die Ernte der Zellen erfolgte zu zwei Zeitpunkten der lag-Phase (L1 und L2), zu drei Zeitpunkten der exponentiellen Phase (E1, E2 und E3) und während der stationären Phase (St). Nach Isolation der Gesamt-RNA und einer DNase-Behandlung erfolgte die reverse Transkription mit Hexamer-Primern. Die so gewonnenen cDNAs dienten als *template* für PCR-Reaktionen mit den Primern RTSelBEaf und RTSelBEar (*selB*), RT16SEaf und RT16SEar (16SrDNA), RTRPOAEaf und RTRPOAEar (*rpoA*), RTRPOBEaf und RTRPOBEar (*rpoB*) sowie RTEFTUEaf und RTEFTUEar (*tuf*). Es erfolgte jeweils eine Doppelbestimmung, d. h. die Präparation der Gesamt-RNA aus jeweils zwei unterschiedlichen Kulturen. Als Negativ-Kontrolle diente jeweils eine PCR-Reaktion mit allen genannten Primerpaaren an den für die Reverse Transkription verwendeten RNAs, als Positiv-Kontrolle diente chromosomale DNA von *E. acidaminophilum* als *template* der einzelnen PCR-Ansätze. Die Gene *rpoA*, *rpoB* und *selB* zeigte keine konstitutive Expression, es war deutlich zu erkennen, dass die Transkription der

jeweiligen Gene während der stationären Phase deutlich vermindert war. Die Expression des Gens der 16SrRNA hingegen war so stark, dass dieses ebenfalls nicht als *housekeeping* Gen verwendet werden konnte (Daten nicht gezeigt). Die Expression des Gens für EF-TU hingegen war während der stationären Phase nur geringfügig vermindert, so dass dieses Gen als Referenz für die folgenden Transkriptionsanalysen am geeignetsten schien.

Die Transkription der Gene des Glycin-Decarboxylase-Operons, gcvP4, gcvP2, gcvP1a, $gcvP1\beta$, thf, prpU sowie der Bereich upstream von gcvP4 sollte ebenfalls während der einzelnen Wachstumsphasen von *E. acidaminophilum* analysiert werden. Die oben beschriebenen cDNAs wurden dazu als *template* für PCR-Reaktionen mit den Primerpaaren SeqGcvF1 und Seq884R (gcvP4), SeqGcv228F und Seq360r (gcvP2), Seq1400F und Seq1819r (gcvP1a), Seq1973F und Seq2140r ($gcvP1\beta$), NTERMTHFS52 und THFS350r (*thf*), RTPrpUf und RTPrpUr (prpU) sowie RTusP4f8 und Seq48r ($upstream \ gcvP4$) eingesetzt. Die dabei generierten PCR-Produkte sind in Abbildung 13 dargestellt.

Abb. 13: Transkriptionsanalysen des Glycin-Decarboxylase-Operons zu unterschiedlichen Wachstumsphasen von *E. acidaminophilum* auf Glycin. Dargestellt sind die einzelnen auf den unterschiedlichen Wachstumsphasen basierenden RT-PCR-Produkten. Die zugrunde liegenden Wachstumsphasen sind über den einzelnen Spuren und die untersuchten Gene auf der linken Seite der Abbildung dargestellt: L1_Zellernte zu Beginn der lag-Phase, L2_Zellernte in später lag-Phase, E1, E2 und E3_Zellernte während der exponentiellen Phase, St_Zellernte während der stationären Phase, pK_Positiv-Kontrolle (PCR an chromosomaler DNA).

Alle untersuchten Gene des Glycin-Decarboxylase-Operons wurden während aller getesteten Wachstumsphasen exprimiert. Die stärkste Transkription war während der exponentiellen Phase zu erkennen, geringfügig schwächer ausgeprägt war diese innerhalb der lag-Phase. Die schwächste Transkription aller Gene war innerhalb der stationären Phase zu erkennen.

Für die Analyse der Transkription der Gene des Glycin-Decarboxylase-Operons bei Wachstum von *E. acidaminophilum* auf unterschiedlichen Medien erfolgte die Kultivierung dieses Organismus mit folgenden Kohlenstoffquellen: Glycin (50 mM); Serin (10 mM), Na-Formiat (40 mM) und Betain (60 mM); Serin (10 mM), Na-Formiat (40 mM) und Sarcosin (60 mM); Alanin (30 mM) und Sarcosin (50 mM); Alanin (30 mM) und Betain (50 mM); Formiat (50 mM) und Glycin (40mM); Serin (20 mM) und Sarcosin (10 mM) sowie Serin (20 mM) und Betain (10 mM). Die Ernte der einzelnen Kulturen (10 ml) erfolgte während der exponentiellen Phase und nach Isolation der Gesamt-RNA erfolgte eine Behandlung mit DNase. 1 μ g dieser DNA-freien RNA wurde durch Hexamer-Primer und Reverse Transkriptase in cDNA umgeschrieben, welche als *template* für PCR-Reaktionen mit den Primern SeqGcvF1 und Seq884R (*gcvP4*), SeqGcv228F und Seq360r (*gcvP2*), Seq1400F und Seq1819r (*gcvP1a*), Seq1973F und Seq2140r (*gcvP1β*), NTERMTHFS52 und THFS350r (*thf*), RTPrpUf und RTPrpUr (*prpU*) sowie RTusP4f8 und Seq48r (*upstream gcvP4*) genutzt wurde. Die bei diesen RT-PCRs generierten Produkte sind in Abbildung 14 dargestellt.

Abb. 14: Transkriptionsanalysen des Glycin-Decarboxylase-Operons bei Kultivierung von *E. acidaminophilum* auf unterschiedlichen Medien (A) und Western-Blot-Nachweis von PrpU (B). Dargestellt sind die einzelnen auf den unterschiedlichen Medien basierenden RT-PCRs. Die zugrunde liegenden Medien sind über den einzelnen Spuren und die untersuchten Gene sind auf der linken Seite der Abbildung dargestellt: Gly_Glycin (50 mM); SerForBet_Serin (10 mM), Na-Formiat (40 mM) und Betain (60 mM); SerForSar_Serin (10 mM), Na-Formiat (40 mM) und Sarcosin (50 mM); AlaBet_Alanin (30 mM) und Betain (50 mM); ForGly_Formiat (50 mM) und Glycin (40 mM); SerSar_Serin (20 mM) und Sarcosin (10 mM); SerBet_Serin (20 mM) und Betain (10 mM); pK_Positiv-Kontrolle (RT-PCR_PCR an chromosomaler DNA; Western-Blot_Detektion von heterolog synthetisierten *Strep*-tag[®] II-fusioniertem PrpU).

Generell konnte eine Transkription der Gene des Glycin-Decarboxylase-Operons bei Kultivierung von *E. acidaminophilum* auf allen acht untersuchten Medien gezeigt werden. Jedoch wurde eine starke Induktion der Transkription nach Wachstum mit Glycin bzw. Formiat und Glycin im Medium festgestellt. Weiterhin wurde gezeigt, dass bei der Kultivierung auf den Medien mit Serin, sowohl mit und ohne Formiat, und Alanin jeweils eine stärkere Expression aller Gene durch Betain als Elektronen-Akzeptor induziert zu sein scheint im Vergleich zur Anzucht von *E. acidaminophilum* auf Medien mit Sarcosin als Elektronen-Akzeptor.

Um die Ergebnisse der RT-PCRs zu bestätigen, wurde zusätzlich eine Western-Blot-Analyse mit Anti-PrpU-Antikörper an Gesamtprotein der Zellen, die auf den diversen beschriebenen Medien kultiviert wurden, durchgeführt. Die Auftrennung der Zell-Lysate (aus dem Pellet von 10 ml Kultur) erfolgte durch SDS-Polyacrylamid-Gelelektrophorese, nach dem Transfer der Proteine erfolgte der Nachweis von PrpU mit spezifischem Antikörper. Auch hier war eine stärkere Synthese von PrpU bei Kultivierung auf Glycinhaltigen Medien zu erkennen. Schwächer ausgeprägt war die Proteinsynthese bei Kultivierung auf den anderen getesteten Medien, aber auch hier konnte eine stärkere Synthese von PrpU bei Wachstum auf Betain-haltigen Medien im Vergleich zur Kultivierung auf Sarcosin-haltigen Medien festgestellt werden.

3.3. Interaktionsstudien von PrpU mit Hilfe von bakteriellen *two-hybrid*-Systemen

Um die Funktion von PrpU im Stoffwechsel von *E. acidaminophilum* näher klassifizieren zu können, sollte mit Hilfe von bakteriellen *two-hybrid*-Systemen nach potentiellen Interaktionspartnern gesucht werden. Auf Grund der einfacheren und vor allem schnelleren Handhabung dieser Systeme im Vergleich zum Hefe-*twohybrid*-System sollten in der vorliegenden Arbeit bakterielle *two-hybrid*-Systeme zur Anwendung kommen. Für die Interaktionsstudien stand das *lexA*-basierende bakterielle *two-hybrid*-System (DMITROVA *et al.*, 1998) und das BacterioMatch[®]Two-Hybrid-System (Stratagene, Amsterdam) zur Verfügung. Mit beiden Systemen sollten mögliche Interaktionen von PrpU mit der Aminomethyl-Transferase (GcvP4), dem *hydrogen-carrier*-Protein (GcvP2), der eigentlichen Decarboxylase, bestehend aus α - und β -Untereinheit (GcvP1 α und GcvP1 β) des P1-Proteins der Glycin-Decarboxylase, mit den beiden Proteinen Thioredoxin-Reduktase (TrxB) und Thioredoxin (TrxA) des Thioredoxin-Systems, mit dem Selenoprotein A (GrdA) des Glycin-Reduktase-Systems und mit sich selbst untersucht und die Ergebnisse beider Systeme miteinander verglichen werden.

3.3.1. Einführung in das BacterioMatch®Two-Hybrid-System

BacterioMatch®Two-Hybrid-System stellt eine schnelle und effiziente Möglichkeit dar, Das Heterodimerisierung von Proteinen in vivo zu detektieren. Das so genannte bait-Protein, also das Protein von Interesse, wird mit Hilfe des Plasmides pBT über eine Translationsfusion mit dem λ cI-Repressor-Protein verknüpft. Dieses besitzt eine amino-terminale DNA-Bindedomäne und carboxy-terminale Dimerisierungsdomäne (Abb. 15). Die Transkription steht hierbei unter Kontrolle des lac-UV5-Promotors. Die target-Proteine (die möglichen Interaktionspartner) werden mit Hilfe des Plasmides pTRG ebenfalls über eine Translationsfusion amino-terminal mit der α -Untereinheit der RNA-Polymerase verknüpft, wobei hier die Transkriptionskontrolle dem Tandem-Promotor *lpp/lac-UV5* zukommt (Abb. 15). Beide Promotoren sind IPTG-induzierbar, der Expressionsspiegel, gegeben durch den *lpp/lac-UV5*-Promotors, liegt hierbei aber über dem des lac-UV5-Promotors.

Der Reporterstamm trägt F'-episomal die beiden Reportergene amp^r und *lacZ* und *upstream* davon einen aktivierbaren *lac*-Promotor und einen einzelnen λ Operator, welcher die normalerweise mit diesem Promotor assozierte CRP-Bindestelle ersetzt. Es handelt sich hierbei um einen modifizierten, nicht durch IPTG induzierbaren *lac*-Promotor. Die Shine-Dalgarno-Sequenz (SHINE and DALGARNO 1974) ist ebenfalls in dieser Region, *upstream* der Reportergene zu finden.

Abb. 15: Darstellung der Funktionsweise des BacterioMatch[®]Two-Hybrid-Systems. Dargestellt ist die Promotor-Operator-Region des Reporterstammes und die *downstream* lokalisierten Reportergene *amp^r* und *lacZ*. A: Interaktion des *bait*- und *target*-Proteins und somit Positionierung des λ cI-Repressor-Protein und der α -Untereinheit der RNA-Polymerase im Operator-Promotor-Bereich der Reporter-Gene und damit verbundene Transkriptions-Initiation dieser. B: keine Interaktion zwischen *bait*- und *target*-Protein und somit keine Stabilisierung der Bindung der RNA-Polymerase am Operator-Bereich der Reporter-Gene, was in Repression der Transkription resultiert.

Durch Interaktion des *bait*- und *target*-Proteins kommt es zur Bindung des mit dem *bait*-Protein fusionierten λ cI-Repressor-Proteins an den λ -Operator und der damit verbundenen Stabilisierung der Bindung der mit dem *target*-Protein fusionierten RNA-Polymerase am Promotor-Bereich der Reporter-Gene *amp^r* und *lacZ* und der damit einhergehenden Transkriptions-Initiation (Abb. 15) (DOVE and HOCHSCHILD 1998; DOVE *et al.*, 1997). Im Fall der fehlenden Interaktion der *bait*-und *target*-Proteine kommt es zu keiner bzw. nur zu einer sehr schwachen Bindung der RNA-Polymerase an den Promotor und somit zu einer Repression der Transkription beider Reportergene.

Protein-Protein-Interaktionen können bei diesem System zum einen durch die initiierte Ampicillin-Resistenz, aber zum anderen auch über das *lac*Z-System und der damit verbundenen Möglichkeit der Blau-Weiß-Selektion bzw. der Messung der β -Galactosidase-Aktivität detektiert, aber auch quantifiziert werden.

Die Dimerisierungsdomäne des aus Hefe stammenden Translations-Aktivators Gal4 und eine durch Mutation des Gal11-Proteins konstruierte Domäne dienen bei diesem *two-hybrid*-System als Positivkontrolle für die Funktionsfähigkeit des Systems.

3.3.2. Einführung in das bakterielle lexA-basierende two-hybrid-System (DMITROVA et al., 1998)

Mit Hilfe des *lexA*-basierenden *two-hybrid*-Systems obliegt die Möglichkeit, sowohl die Heterodimer-Bildung zweier verschiedener Proteine, als auch die Homodimer-Bildung eines einzelnen Proteins zu identifizieren.

Ein zu untersuchendes Protein wird über eine Translationsfusion mit der auf dem Plasmid pMS604 codierten DNA-Bindedomäne des Wild-Typ LexA-Repressors verknüpft, das zweite Protein wird ebenfalls translational mit einer in ihrer Spezifität veränderten DNA-Bindedomäne des LexA-Repressors fusioniert, welche von dem Plasmid pDP804 codiert wird (Abb. 16). Die Transkriptionskontrolle erfolgt in beiden Fällen durch den IPTG-induzierbaren *lacUV5*-Promotor. Die Kontrolle der Transkription des chromosomal lokalisierten *lacZ*, dem Reporter-Gen dieses Systems, erfolgt im Reporterstamm SU202 über einen *lexA*-Hybrid-Operator, bestehend aus einer mutierten (CCGT) und einer Wild-Typ-Hälfte (CTCG). Die Transkription des Reporter-Gens im Stamm SU101 wird durch einen *lexA*-Hybrid-Operator bestehend aus zwei Wild-Typ-Hälften, (CTCG) reguliert (DMITROVA *et al.*, 1998).

Abb. 16: Darstellung der Funktionsweise des *lexA*-basierenden *two-hybrid*-Systems in den Reporterstämmen *E. coli*-SU202 (A) und *E. coli*-SU101 (B). Dargestellt ist der *upstream* des Reporter-Gens (*lacZ*) gelegenen Operatorbereich, bestehend aus einer Wildtyp-*lexA*-Operator-Hälfte und einer mutierten *lexA*-Operatorhälfte im Reporterstamm *E. coli*-SU202 und aus zwei Wildtyp-*lexA*-Operator-Hälften im Reporterstamm *E. coli*-SU101. A: Durch Interaktion von *bait* und *target* kommt es zur Bindung beider LexA-Repressor-Domänen an den *lexA*-Hybrid-Operator des Reporterstammes *E. coli*-SU202 und somit zur Repression der Transkription des lacZ-Gens. B: Durch Homo-Dimerbildung kommt es zur Bindung zweier Wildtyp-*lexA*-Repressor-Domänen an den *lexA*-Hybridoperator des Reporterstammes *E. coli*-SU101 und somit zur Repression der Transkription des Reporter-Gens.

Durch Interaktion des an die Wildtyp-LexA-Repressor-Hälfte fusionierten *bait*-Proteins mit dem an die mutierte Hälfte des LexA-Repressors fusionierten *target* Proteins werden beide Repressor-Hälften so zusammengeführt, dass sie an den LexA-Hybrid-Operator binden können. Im Fall des Reporter-Stammes *E. coli*-SU202 besteht dieser aus einer Wildtyp-*lexA*-Operator-Hälfte und einer mutierten Operator-Hälfte, was eine spezifische Bindung beider Repressor-Domänen an die jeweilige Operator-Hälfte ermöglicht (Abb. 16). Dies führt zur Repression des konstitutiv exprimierten *lacZ*-Gens. Interagieren die Proteine von Interesse nicht, kommt es nicht zur Bindung beider Repressor-Hälften an den Hybrid-Operator und somit auch nicht zur Repression des Reporter-Gens (Abb. 16).

Der Reporter-Stamm *E. coli*-SU101 ist für die Erkennung von Homodimer-Bildung von Proteinen prädestiniert. Der *upstream* des *lacZ*-Gens gelegene *lexA*-Hybrid-Operator besteht aus zwei Wildtyp-Operator-Hälften, was die Bindung von zwei Wildtyp-LexA-Repressor-Domänen ermöglicht. Durch Oligomerisierung eines mit dieser Repressor-Domäne fusionierten Proteins kommt es zur Bindung der Repressors an den Hybrid-Operator und zur Repression der Transkription des Reporter-Gens.

Auch bei diesem *two-hybrid*-System lassen sich die Protein-Protein-Interaktionen mit Hilfe des *lacZ*-Systems durch Blau-Weiß-Selektion detektieren und durch Bestimmung der β -Galactosidase-Aktivität quantifizieren.

3.3.3. Klonierung in die Plasmide pBT und pTRG des BacterioMatch®Two-Hybrid-Systems

Um Interaktionsstudien von PrpU mit den Proteinen der Glycin-Decarboxylase (GcvP4, GcvP2, GcvP1 α und GcvP1 β), mit dem Thioredoxin-System (Thioredoxin-Reduktase und Thioredoxin) und GrdA der Glycin-Reduktase und den Komponenten untereinander durchführen zu können, mussten die entsprechenden Gene der einzelnen Proteine sowohl in den Vektor pBT (*bait*) als auch in den Vektor pTRG (*target*) kloniert werden. Die Proteine werden dann durch IPTG-Induktion als Translationsfusionen mit der α -Untereinheit der RNA-Polymerase (pTRG) bzw. mit dem λ -cI-Repressor synthetisiert (pBT). Im Fall der Selenoproteine PrpU und GrdA sollten die Cystein-Varianten für die Interaktionsstudien herangezogen werden. Für eine heterologe Synthese von Selenoproteinen aus *E. acidaminophilum* in *E. coli* ist das Plasmid pASBC4 unabdingbar (GURSINSKY 2002; GURSINSKY *et al.*, 2008), ohne dass es zum vorzeitigen Translationsabbruch bzw. dem Einbau von Cystein oder Tryptophan kommt. Da es sich sowohl beim Vektor pTRG als auch bei pASBC4 um ein pACYC-Derivat handelt und beide eine Tetracyclin-Restistenz tragen, kommt es auf Grund dessen zu einer Inkompatibilität beider Plasmide.

Das P1-Protein der Glycin-Decarboxylase von *E. acidaminophilum* ist wie bei den meisten Prokaryoten als $\alpha_2\beta_2$ -Tetramer vorzufinden (FREUDENBERG and ANDREESEN 1989). Beide Untereinheiten sollten sowohl einzeln als auch bei Co-Synthese beider Untereinheiten auf potentielle Interaktionspartner untersucht werden.

Die zu klonierenden Gene wurden durch PhusionTM High-Fidelity DNA Polymerase (2.5) generiert. Die Primerpaarungen, die sowohl für die Klonierung in das Plasmid pBT als auch in das Plasmid pTRG zur Anwendung kamen, sind in Tabelle 6 aufgelistet. Für die Synthese der Gene der Cysteinvarianten der Selenoproteine dienten die Plasmide pPMI3 im Fall von *prpU* (GRÖBE 2001) und pMUA36 im Fall von *grdA* (pers. Mitteilung J. JÄGER), in allen anderen Fällen chromosomale DNA von *E. acidaminophilum* als *template*. Nach Restriktion der erhaltenen PCR-Produkte mit den Restriktionsendonukleasen NotI und XhoI, bzw. im Fall von *gcvP1a* mit NotI und BamH1 bzw. NotI und SpeI und im Fall der gemeinsamen Klonierung von gcvP1a und gcvP1 β mit NotI und SalI erfolgte die Ligation in mit den entsprechenden Restriktionsendonukleasen linearisierten Vektoren pBT und pTRG. Nach Transformation der insgesamt 18 Ligationsansätze in *E. coli* XL1-Blue MRF[°] wurden aus jeweils drei der resultierenden Klone die Plasmide isoliert und die Inserts durch Sequenzierung überprüft. Die Bezeichnungen der durch Klonierung der einzelnen Gene in die Vektoren pBT und pTRG konstruierten Hybrid-Plasmide sind ebenfalls in Tabelle 6 aufgelistet.

		Plasmidbezeichnung		
	Primerpaare	pBT	pTRG	
GcvP1a	EaPTrxNotIf und EaP1aBamH1r ¹ EaPTrxNotIf und EaP1aSpeIr ²	pBTP1a	pTRGP1a	
GcvP1β	EaP1BNotIf und EaP1BXhoIr	pBTP1β	pTRGP1β	
GcvP2	EaP2NotIf und EaP2XhoIr	pBTP2	pTRGP2	
GcvP4	EaP4NotIf und EaP4XhoIr	pBTP4	pTRGP4	
PrpU	EaPrpUNotIf und EaPrpUXhoIr	pBTPrpU	pTRGPrpU	
GrdA	EaGrdANotIf und EaGrdAXhoIr	pBTGrdA	pTRGGrdA	
TrxB	EaTRNotIf und EaTRXhoIr	pBTTR	pTRGTR	
TrxA	EaPTrxNotIf und EaTrxXhoIr	pBTTrx	pTRGTrx	
GcvP1 a \beta	EaP1aNotIf und EaP1ßSalIr	pBTP1αβ	pTRGP1αβ	

	••						
m 1 /	TTI + 1 / ++1	11 1 1	D 1	10 11	1	1/1	DI 11
I OD 6	• I bowcroht ubow	dia vanvandatan	Unimonnooning	on und Vozolohnur	ILDON NOD DO	thonond on	Dogmod
	I DEISICHT HUDEI	THE VELWEINPEEPE	FILLIPI DAALITIV	en mar nezenamm	IV HEF FESH	песеннен	ЕТЯХНИИР
			I I IIIICI Paul ulle	cii unu Deleiennui	ic act tobu	inci chuch	I IUDIMUU
			1 0		0		

¹ für die Klonierung in das Plasmid pBT

² für die Klonierung in das Plasmid pTRG

Anschließend erfolgte eine Co-Transformation der einzelnen rekombinanten pBT-Derivate mit dem pTRG-Leervektor und umgekehrt ein Co-Transformation der konstruierten pTRG-Derivate mit dem pBT-Leervektor in den Reporterstamm. Anschließend wurden die Transformationsansätze auf LB-CTCK-Medium (LB-Selektiv-Agar mit Chloramphenicol, Tetracyclin, Carbenicillin und Kanamycin) ausgestrichen und kultiviert. Es sollte gestestet werden, ob die Proteine auch allein in der Lage sind, die Transkription der Reportergene (*amp^r* und *lacZ*) zu initiieren, was durch eine damit verbundenen Ampicillin-Restistenz zu zeigen ist. Bei nahezu allen Transformationsansätzen kam es zu einer mehr oder weniger stark ausgeprägten Koloniebildung. Auf Grund dieser hohen Hintergrundaktivität sind die zu untersuchenden Proteine nicht für die Untersuchung von Protein-Protein-Interaktionen mit dem BacterioMatch[®]Two-Hybrid-System geeignet (Stratagene, Amsterdam). Da die Daten, welche durch dieses System zu erhalten wären, nicht aussagekräftig und vor allem nicht zu vergleichen wären, wurde während der vorliegenden Arbeit nicht mit diesem System weitergearbeitet, sondern für die Interaktionsstudien nur mit dem *lexA*-basierenden *two-hybrid*-System (DMITROVA *et al.*, 1998) fortgefahren.

3.3.4. Klonierung in die Plasmide pMS604 und pDP804 des lexA-basierende two-hybrid-Systems

Um eine mögliche Beteilung des Selenoproteins PrpU am Aminosäure-Metabolismus von *E. acidaminophilum* zu zeigen, sollten mit Hilfe des *lexA*-basierenden *two-hybrid*-System mit ausgewählten Proteinen des Glycin-Metabolismus mögliche Interaktionspartner identifiziert werden. Die Gene der Glycin-Decarboxylase (*gcvP4, gcvP2, gcvP1a* und *gcvP1β*), des Thioredoxin-Systems (*trxA* und *trxB*), von GrdA der Glycin-Reduktase (*grdA*) und von PrpU (*prpU*) mussten dafür in die Vektoren pMS604 und pDP804 kloniert werden. Genau wie bei dem BacterioMatch[®]Two-Hybrid-System sollten anstelle der Wildtyp-Selenoproteine PrpU und GrdA deren Cysteinvarianten untersucht werden. Auch die beiden Untereinheiten des P1-Proteins sollten sowohl getrennt, als auch gemeinsam synthetisiert, betrachtet werden.

Für die Klonierung der einzelnen Gene in das Plasmid pMS604 wurden die einzelnen Gene durch PCR mit Phusion[™] High-Fidelity DNA Polymerase (2.5) unter Verwendung der in Tabelle 7 aufgeführten Primerpaare.

	pMS604		pDP804		
Gen	pMS604	Plasmid	pDP804	Plasmid	
gcvP1a	EaP1aAgeIf und EaP1aSalIr	pMSP1a	EaP1aBssHIIf und EaP1aBglIIr	pDPP1a	
gcvP1β	EaP1ßAgeIf und EaP1ßXhoIr	pMSP1β	$EaP1\beta BssHIIf$ und $EaP1\beta BgIIIr$	pDPP1β	
gcvP2	EaP2AgeIf und EaP2XhoIr	pMSP2	EaP2BssHIIf und EaP2BglIIr	pDPP2	
gcvP4	EaP4AgeIf und EaP4XhoIr	pMSP4	EaP4BssHIIf und EaP4BamH1r	pDPP4	
prpU	EaPrpUAgeIf und EaPrpUXhoIr	pMSPrpU	EaPrpUBssHIIf und EaPrpUBglIIr	pDPPrpU	
grdA	EaGrdAAgeIf und EaGrdAXhoIr	pMSGrdA	EaGrdABssHIIf und EaGrdABglIIr	pDPGrdA	
<i>trxB</i>	EaTRAgeIf und EaTRXhoIr	pMSTR	EaTRBssHIIf und EaTRBglIIr	pDPTR	
trxA	EaTrxAgeIf und EaTrxXhoIr	pMSTrx	EaTrxBssHIIf und EaTrxBglIIr	pDPTrx	
gcvP1aβ	EaP1αAgeIf und EaP1ßSalIr	pMSP1αβ	$EaP1\alpha BssHIIf$ und $EaP1\beta BgIIIr$	pDPP1αβ	

Tab. 7: Übersicht über die verwendeten Primerpaarungen

Für die Synthese der Gene *prpU* und *grdA* dienten auch hier die Plasmide pPMI3 (GRÖBE 2001) und pMUA36 (pers. Mitteilung J. JÄGER) als *template*, für die Amplifikation der anderen Gene chromosomale DNA aus *E. acidaminophilum*. Nach Restriktion der erhaltenen PCR-Produkte mit den

Restriktionsendonukleasen AgeI und XhoI bzw. im Fall von $gcvP1\alpha$ und $gcvP1\alpha\beta$ mit AgeI und SalI erfolgte die Ligation in AgeI-XhoI-linearisierten pMS604.

Für die Klonierung in das Plasmid pDP804 wurde dieses mit BssHII und BgIII linearisiert und die zu klonierenden PCR-Produkte ebenfalls mit diesen Restriktionsendonukleasen bzw. mit BssHII und BamH1 behandelt und in das linearisierte Plasmid ligiert. Es erfolgte die Transformation der 18 Ligationsansätze in *E. coli* XL1-Blue MRF[^] und die Isolation der rekombinanten Plasmide aus jeweils drei der entstandenen Klone. Die Inserts dieser Hybrid-Plasmide wurden durch Sequenzierung mit vektorspezifischen Primern (s. S. 163, Anhang A.I.) überprüft. Die Bezeichnung der jeweiligen Plasmide ist in Tabelle 7 aufgeführt.

3.3.5 Transformation der konstruierten Hybrid-Plasmide in die Reporterstämme

Mit Hilfe des *lexA*-basierenden *two-hybrid*-Systems (DMITROVA *et al.*, 1998) kann sowohl die Fähigkeit eines Proteins Homodimere zu bilden (im Stamm *E. coli* SU101) als auch die Interaktion zweier verschiedener Proteine (im Stamm *E. coli* SU202) untersucht werden.

Um zunächst alle zu untersuchenden Proteine auf Selbstinteraktion zu testen, wurden die neun konstruierten pMS604-Derivate pMSP1α, pMSP1β, pMSP2, pMSP4, pMSPrpU, pMSGrdA, pMSTR, pMSTrx und pMSP1αβ in den Reporterstamm *E. coli* SU101 transformiert und jeweils drei der resultierenden Klone durch Kolonie-PCR mit den vektorspezifischen Primern pMS604f und pMS604r überprüft. Hierdurch sollte gezeigt werden, dass jeweils die korrekten Plasmide transformiert wurden.

Als Negativkontrolle zum Ausschluss gewisser Hintergrundaktivitäten wurden auch die neun erhaltenen pDP-Derivate pDPP1 α , pDPP1 β , pDPP2, pDPP4, pDPPrpU, pDPGrdA, pDPTR, pDPTrx und pDPP1 $\alpha\beta$ in den Reporterstamm *E. coli* SU101 transformiert und ebenfalls jeweils drei erhaltene Klone mittels Kolonie-PCR mit den vektorspezifischen Primern pDP804f und pDP804r überprüft.

Für die Protein-Protein-Interaktionsstudien, speziell von PrpU mit den Komponenten der Glycin-Decarboxylase (GcvP1α, GcvP1β, GcvP2 und GcvP4), mit dem Thioredoxin-System (Thioredoxin-Reduktase und Thioredoxin) und Protein A der Glycin-Reduktase wurden jeweils alle neun konstruierten pMS604-Derivate mit allen erhaltenen pDP804-Derivaten gemeinsam in den Reporterstamm *E. coli* SU202 transformiert, sodass 81 verschiedene Kombinationen entstanden. Jeweils drei der erhaltenen Klone wurden durch Kolonie-PCR mit den vektorspezifischen Primern pMS604f und pMS604r, aber auch mit den Primern pDP804f und pDP804r überprüft. Es wurde geprüft, ob jeweils die richtigen Plasmide miteinander kombiniert wurden, aber vor allem, ob auch zwei heterologe Plasmide in den jeweiligen Stämmen zu finden waren. Als Negativkontrollen wurden jeweils alle neun pMS604-Derivate und alle neun pDP804-Dervate allein in den Reporterstamm *E. coli*-SU202 transformiert und ebenfalls durch Kolonie-PCR mit den jeweils vektorspezifischen Primern überprüft.

3.3.6. Bestimmung der β-Galactosidase-Aktivitäten

Im folgenden Abschnitt soll zunächst detailliert auf die Analyse der Protein-Protein-Interaktionen von PrpU mit den untersuchten Proteinen eingegangen werden.

Die Kultivierung der unter 3.3.5. beschriebenen Stämme erfolgte im 6 ml Maßstab (in 20 ml Zentrifugenröhrchen) in M9-Minimalmedium (2.2.2.) mit Ampicillin (für die pDP804-Derivate), Tetracyclin (für die pMS604-Derivate) und IPTG zur Transkriptionsinitiation der Genfusionen durch Induktion des *lacUV5*-Promotors. Die Zellen wurden schüttelnd bei 37 °C bis zum Erreichen einer OD_{600nm} von 0,8 inkubiert. Von jedem Stamm (3.3.5) wurden drei unterschiedliche Klone jeweils an drei unterschiedlichen Tagen kultiviert, die Ernte erfolgte zu je dreimal 1 ml durch Zentrifugation (für eine Dreifachbestimmung). Die Bestimmung der β-Galactosidase-Aktivität erfolgte, wie unter 2.11.5 beschrieben, die ermittelten Werte

sind in Tabelle 8. zusammengefasst.

Plasmid-Kombinationen	pinationen ermittelte β-Galactosidase-Aktivität (relativ) ¹					
$pMSPrpU +^2$		Klon 1 Klon 2			Klon 3	
pDPP1a	244	(± 14)	184	(±9)	150	(±15)
pDPP1β	434	(±13)	350	(±15)	350	(±16)
pDPP2	105	(± 9)	83	(±21)	75	(±14)
pDPP4	322	(± 29)	290	(±28)	257	(±7)
pDPPrpU	309	(± 29)	202	(±13)	128	(±12)
pDPGrdA	60	(± 5)	99	(±24)	37	(±21)
pDPTR	322	(± 22)	324	(±41)	311	(± 44)
pDPTrx	109	(± 38)	111	(±43)	143	(± 14)
pDPP1αβ	320	(± 43)	288	(±38)	370	(± 27)
$pDPPrpU +^{3}$						
pMSP1a	268	(±16)	246	(± 19)	241	(± 18)
pMSP1β	413	(± 34)	373	(± 45)	325	(± 55)
pMSP2	81	(± 39)	43	(± 10)	85	(± 12)
pMSP4	294	(±71)	258	(± 23)	212	(±1)
pMSPrpU	309	(± 29)	202	(± 13)	128	(± 12)
pMSGrdA	147	(± 31)	245	(± 18)	257	(± 21)
pMSTR	294	(± 20)	335	(± 18)	286	(± 53)
pMSTrx	173	(± 33)	80	(± 17)	124	(±4)
pMSP1αβ	296	(± 30)	357	(± 2)	343	(± 18)

Tab. 8. β-Galactosidase-Aktivitäten der untersuchten *E. coli* -SU202-Stämme

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

² die untersuchten Stämme enthielten jeweils das Plasmid pMSPrpU und eins der neun aufgeführten pDP804-Derivate

³ diese Stämme enthielten jeweils das Plasmid pDPPrpU und eins der neun aufgeführten pMS604-Derivate

Um die ermittelten Werte für die Interaktionsstudien von PrpU auswerten zu können, wurden die für die Positivkontrolle (Interaktion des Jun- und Fos-Zippers) ermittelten relative β -Galactosidase-Aktivitäten von ca. 1,88 (Anhang A.IX.12., Durchschnitt aller Werte) und die für den Reporterstammes *E. coli*-SU202 ohne Hybridplasmid ermittelte relative β -Galactosidase-Aktivität von ca. 511 (Anhang A.IX.12., Durchschnitt

aller Werte) zur Auswertung herangezogen. Als Negativkontrollen dienten die *E. coli*-SU202-Reporterstämme, die jeweils nur ein pMS604- bzw. ein pDP804-Derivat trugen. Durch diese Versuche sollten mögliche Hintergrundaktivitäten ausgeschlossen werden. Die Daten dieser Messungen sind im Anhang A.IX.9-11. zu finden, genau wie die grafische Darstellung der Messergebnisse. Die relativen β -Galactosidase-Aktivitäten der untersuchten Stämme sind zur besseren Übersicht auch in Abbildung 17 grafisch dargestellt.

Abb. 17: Relative β -Galactosidase-Aktivitäten der *E. coli*-SU202-Reporterstämme. Dargestellt sind die relativen β -Galactosidase-Aktivitäten von jeweils drei *E. coli*-SU202-Reporterstämmen (Klon 1, 2 und 3), die das Plasmid pMSPrpU kombiniert mit allen pDP804-Derivaten (A) bzw. das Plasmid pDPPrpU kombiniert mit allen pMS604-Derivaten tragen (B). Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standardabweichungen sind als schmale Balken dargestellt.
Die deutlichste Verringerung der β-Galactosidase-Produktion war bei gemeinsamer Synthese von PrpU (pMSPrpU) mit GrdA (pDPGrdA) zu messen, wobei hier die Werte der drei Klone zwischen 37, 60 bzw. 99 (relative β-Galactosidase-Aktivität) schwankten. Diese deutliche Absenkung der β-Galactosidase-Aktivität war bei der Überproduktion dieser beiden Proteine durch das jeweils andere Plasmid (pDPPrpU und pMSGrdA) nicht zu finden, hier wurden relative β-Galactosidase-Aktivität von 147, 245 bzw. 257 bestimmt. Eine Erklärung hierfür könnte ein durch unterschiedliche Kopienzahl der Plasmide pDPPrpU (pACYC-Derivat) und pMSGrdA (pUC-Derivat) bedingter Unterschied in der Menge der heterolog synthetisierten Proteine sein (DMITROVA *et al.*, 1998; PORTE *et al.*, 1995).

Ebenfalls eine deutlich verminderte β -Galactosidase-Produktion war bei gemeinsamer Synthese der Proteine PrpU und GcvP2 zu erkennen. Die ermittelten Werte der Expression von *prpU* durch das Plasmid pMSPrpU und von *gcvP2* durch das Plasmid pDPP2 von 105, 83 bzw. 75 sind mit denen der Expression beider Gene durch das jeweils andere Plasmid (pDPPrpU und pMSP2) vergleichbar. Bei dieser Expressions-Variante wurden relative β -Galactosidase-Aktivitäten von 81, 43 bzw. 85 (s. S. 62, Tab. 8) ermittelt. Eine etwas schwächer ausgeprägte Repression des *lacZ*-Gens konnte bei gemeinsamer Synthese von PrpU und TrxA festgestellt werden. Bei Kombination dieser beiden Proteine wurden relative β -Galactosidase-Aktivitäten von 109, 111 bzw. 143 (pMSPrpU in Kombination mit pDPTrx) und Aktivitäten von 173, 80 bzw. 124 (pDPPrpU kombiniert mit pMSTrx) gemessen.

Bei gemeinsamer Synthese beider PrpU-Derivate durch die Plasmide pMSPrpU und pDPPrpU wurden für die drei getesteten Klone sehr inhomogene Werte ermittelt. Die relativen β -Galactosidase-Aktivitäten schwankten zwischen 128, 202 bzw. 309. Während man bei einer relativen β -Galactosidase-Aktivität von 128 noch von einer schwachen Interaktion, sprich Homodimer-Bildung, ausgehen kann, zeigen die anderen beiden getesteten Klone keine Interaktion von PrpU mit sich selbst.

Für die Kombinationen von PrpU, synthetisiert sowohl durch das Plasmid pMSPrpU als auch durch pDPPrpU, mit allen anderen Proteinen, genauer mit GcvP1 α , GcvP1 β , GcvP4, Thioredoxin-Reduktase und GcvP1 $\alpha\beta$ wurden relative β -Galactosidase-Aktivitäten von 200 bis zu 450 bestimmt, was darauf hindeutet, dass zwischen diesen Proteinen keine Interaktion stattfand bzw. detektierbar war.

Zusammenfassend lässt sich sagen, dass mit Hilfe des *lexA*-basierenden *two-hybrid*-Systems Interaktionen von PrpU mit dem Lipoamid-tragenden P2-Protein der Glycin-Decarboxylase, mit dem redoxaktiven Selenoprotein A (GrdA) der Glycin-Reduktase und mit Elektronencarrier Thioredoxin identifiziert werden konnten.

3.3.7. Detektion der PrpU-Derivate mittels Western-Blot

Zur Überprüfung der Synthese der PrpU-Translationsfusionen (ca. 20 kDa) wurden die Zell-Lysate (von 1 ml Kultur) welche entweder das Plasmid pMSPrpU oder pDPPrpU trugen, in einem 12,5% igen SDS-Polyacrylamid-Gel aufgetrennt und die Proteine anschließend auf PVDF-Membranen übertragen. Der

Nachweis der PrpU-Derivate erfolgte mittels des spezifischen Anti-PrpU-Antikörpers. Die Ergebnisse dieses Versuches sind in Abbildung 18 dargestellt.

Abb. 18: Western-Blot-Nachweis der in *E. coli*-SU202 (A, B, C, D) und in *E. coli*-SU101 (D) synthetisierten PrpU-Derivate. SDS-Lysate ganzer Zellen, die die entsprechenden pMS604- und pDP804-Derivate trugen, wurde durch 12,5% ige SDS-Polyacrylamidgel separiert und auf PVDF-Membranen übertragen. Die Detektion des heterolog synthetisierten PrpU erfolgte mittels Western-Blot mit spezifischem Anti-PrpU-Antikörper. Es wurden jeweils die drei getesteten Klone eines Expressionsstammes nebeneinander aufgetragen (gekennzeichnet mit 1, 2 und 3), darüber ist die jeweilige Kombination der pMS604- bzw. pDP804-Derivate angegeben. Sofern nicht anders erwähnt, stammen die Zell-Lysate aus dem Reporterstamm *E. coli*-SU202. Als Positiv-Kontrolle (pK) diente heterolog in *E. coli* synthetisiertes mit *Strep*-tag[®] II fusioniertes PrpU

Wie in Abbildung 18 deutlich zu erkennen ist, konnte heterolog produziertes PrpU nur bei Synthese durch das Plasmid pMSPrpU deutlich detektiert werden. Die Überproduktion des Proteins durch das pDP804-Derivat pDPPrpU konnte auch durch mehrfache Wiederholung des Western-Blots und Überprüfung von weiteren Klonen nur als sehr schwaches Produkt detektiert bzw. sichtbar gemacht werden (Abb. 18 C; pDPPrpU+pMSTR). Die Protein-Banden waren nur auf den Original-Blots zu erkennen. Nach dem Fotografieren bzw. Scannen waren diese kaum noch bzw. nicht mehr zu erkennen. Durch Auftragung größerer Mengen an Gesamtprotein kam es nicht mehr zu einer ordentlichen Auftrennung der Proteine im SDS-Polyacrylamid-Gel, so dass hierauf verzichtet wurde. Die unterschiedlich ausgeprägte Synthese der beiden PrpU-Derivate ist durch die unterschiedliche Kopienzahl der beiden zugrunde liegenden Plasmide zu erklären (DMITROVA *et al.*, 1998).

3.3.8. Auswertung der Interaktionsstudien aller untersuchten Proteine

Auf Grund der Vielzahl der untersuchten Proteine und der damit verbundenen großen Anzahl an Messwerten soll im folgenden Abschnitt nur kurz und in Form einer Übersicht auf alle untersuchten Protein-Protein-Interaktionen eingegangen werden. Die während der β -Galactosidase-*assays* erhaltenen Messwerte und die grafische Darstellung dieser sind im Anhang A.IX.1-8. zu finden. Eine Übersicht über die möglichen Protein-Protein-Interaktionen ist in Abbildung 19 (s. S. 67) dargestellt. Sämtliche in diesem Abschnitt beschriebenen Protein-Protein-Interaktionsuntersuchungen erfolgten im Reporterstamm *E. coli*-SU202.

Eine sehr starke Interaktion konnte für das P2- und das P4-Protein der Glycin-Decarboxylase detektiert werden, diese war jedoch nur bei der Expression von *gcvP4* durch das Plasmid pMSP4 und der Expression von *gcvP2* durch das Plasmid pDPP2 zu finden, bei Expression beider Gene durch das jeweils andere Plasmid (pMSP2 und pDPP4) war keine Repression des *lacZ*-Gens zu detektieren. Ebenfalls eine starke Interaktion wurde zwischen den Proteinen GcvP1 β und GcvP1 α beobachtet, auch hier nur bei der Synthese des P1-Proteins durch das Plasmid pMSP1 β und nicht bei der Überproduktion durch das Plasmid pDPP1 β .

Eine deutlichere Verringerung der β -Galactosidase-Produktion war auch für die Expression von *gcvP1* β durch das Plasmid pMSP1 β und gemeinsamer Synthese der α - und β -Untereinheit des P1-Proteins durch pDPP1 $\alpha\beta$, feststellbar. Auch hier war diese Verringerung bei der Überproduktion des GcvP1 β -Derivates durch das Plasmid pDPP1 β nicht zu finden. Des Weiteren wurde für das P2-Protein der Glycin-Decarboxylase eine sehr starke Interaktion mit sich selbst, also eine Homodimer-Bildung beobachtet, etwas schwächer ausgeprägt wurde diese für Thioredoxin gefunden.

Wie im Abschnitt 3.2.6. bereits beschrieben, wurden starke Interaktionen zwischen den Proteinen PrpU und P2 der Glycin-Decarboxylase, zwischen PrpU und dem Thioredoxin, aber auch zwischen letzterem und GcvP2, und zwischen GrdA der Glycin-Reduktase und dem P2-Protein gezeigt. Diese hier beschriebenen Interaktionen zeigten sich sowohl bei der Synthese der jeweiligen Proteine durch die entsprechenden pMS604-Derivate als auch bei der Synthese durch das jeweilige pDP804-Derivat. Hierbei ist aber zu erwähnen, dass bei Expression von *grdA* durch das Plasmid pMSGrdA und Expression von *gcvP2* durch pDPP2 die relative β -Galactosidase-Aktivität deutlich höher war als bei Synthese dieser Proteine durch die Plasmide pDPGrdA bzw. pMSP2, was auf eine wesentlich geringere Interaktion schließen lässt.

Auch die Interaktion der Komponenten des Thioredoxin-Systems, der Thioredoxin-Reduktase und des Thioredoxins, konnte nur bei der Plasmid-Kombination pMSTR mit pDPTrx detektiert werden. Die

pMS-Derivate	pMSP1α (GcvP1α)	pMSP1β (GcvP1β)	pMSP2 (GcvP2)	pMSP4 (GcvP4)	pMSPrpU (PrpU)	pMSGrdA (GrdA)	pMSTR (TR)	pMSTrx (Trx)	pMSP1αβ (GcvP1α)
pDPP1α (GcvP1α)	(+)	++							
pDPP1β (GcvP1β)		(+)							
pDPP2 (GcvP2)	(+)		++	++	+	(+)		+	
pDPP4 (GcvP4)									
pDPPrpU (PrpU)			+					+	
pDPGrdA (GrdA)			+	(+)	++	(+)		+	
pDPTR (TR)									
pDPTrx (Trx)			+		+	+	+	Ŧ	
pDPP1αβ (GcvP1α)		++							

deutliche Absenkung der β -Galactosidase-Aktivität war bei der umgekehrten Kombination (pDPTR mit pMSTrx) nicht zu finden.

Abb. 19: Übersicht über mögliche Protein-Protein-Interaktionen der mit Hilfe des *lexA*-basierenden *two-hybrid*-Systems untersuchten Proteine: Dargestellt sind die Kombinationen der jeweiligen pMS604-Derivate mit den einzelnen pDP804-Derivaten im Reporterstamm *E. coli*-SU202. Die Interaktionen der einzelnen Proteine wurde wie folgt klassifiziert: ++_sehr starke Interaktion, +_starke Interaktion, (+)_schwache Interaktion. In Klammern, unter den einzelnen Hybrid-Plasmiden, sind die entsprechenden Proteine aufgezeigt.

Eine nur sehr schwach ausgeprägte Interaktion, d. h. nur gering verminderte β -Galactosidase-Aktivitäten, konnte bei paralleler Synthese der Proteine GcvP1 α und GcvP2 bzw. GcvP4 und GrdA detektiert werden. Hierbei ist wiederum anzumerken, dass diese Interaktionen nur bei der Überproduktion des jeweils erst genannten Proteins durch die entsprechenden pMS604-Derivate und nicht bei der Synthese durch die pDP804-Derivate feststellbar waren.

Für die α - und β -Untereinheit des P1-Proteins der Glycin-Decarboxylase sowie für GrdA der Glycin-Reduktase wurde gezeigt, dass diese Proteine zur Homodimer-Bildung neigen. Die *lacZ*-Expression ist hierbei aber nur geringfügig gemindert.

3.3.9. Identifikation von Homodimeren im Reporterstamm E. coli-SU101

Wie bereits in Abschnitt 3.3.2. beschrieben, können mit Hilfe des Reporterstammes *E. coli*-SU101 und den pMS604-Derivaten die einzelnen Proteine auf Homodimerisierung getestet werden. Die bei diesem Versuch erhaltenen relativen β -Galactosidase-Aktivitäten sind in Tabelle 9 zusammengefasst.

	ermittelte β -Galactosidase-Aktivität (relativ) ²							
	Klon	1	Klo	n 2	Klon 3			
pMSP1a	11	(± 10)	12	(± 5)	10	(± 2)		
pMSP1β	249	(± 12)	258	(± 17)	209	(± 27)		
pMSP2	31	(± 19)	31	(±11)	24	(± 2)		
pMSP4	35	(± 13)	22	(± 5)	19	(± 5)		
pMSPrpU	48	(± 21)	41	(± 18)	41	(± 24)		
pMSGrdA	33	(± 12)	41	(± 16)	36	(± 14)		
pMSTR	78	(± 26)	71	(± 18)	49	(± 26)		
pMSTrx	12	(± 2)	15	(± 5)	13	(± 2)		
pMSP1αβ	256	(± 18)	185	(±11)	184	(±7)		

Tab. 9. β-Galactosidase-Aktivitäten der untersuchten *E. coli* -SU101-Stämme¹

¹ die untersuchten Stämme enthielten jeweils nur ein pMS604-Derivat

² dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

Die deutlichste Repression der *lacZ*-Expression war bei der Synthese der α -Untereinheit des P1-Proteins der Glycin-Decarboxylase und bei Synthese des Thioredoxin-Derivates zu erkennen. Hier wurden relative β -Galactosidase-Aktivitäten von 10, 11 bzw. 12 (pMSP1 α) bzw. 12, 13 bzw. 15 (pMSTrx) ermittelt, was für eine stark ausgeprägte Homodimer-Bildung dieser beiden Proteine spricht. Die hier identifizierte Homodimerisierung des Thioredoxins konnte, wie in Abschnitt 3.3.8. beschrieben, auch im Stamm *E. coli*-SU202 detektiert werden, die Oligomerisierung von GcvP1 α wurde ebenfalls bestätigt, war allerdings bei der Synthese durch die Plasmide pMSP1 α und pDPP1 α in diesem Reportersystem wesentlich schwächer ausgeprägt. Geringfügig schwächer sind die Homodimer-Bildungen einzustufen, die für die Proteine GcvP2, GcvP4, PrpU und GrdA identifiziert wurden. Für das P2-Protein der Glycin-Decarboxylase und GrdA der

Glycin-Reduktase konnten somit die Ergebnisse, die mit Hilfe der entsprechenden *E. coli*-SU202 Stämme erhalten wurden, bestätigt werden. Die mit den *E. coli*-SU101-Reporterstämmen erhaltenen Resultate für die Proteine GcvP4 und PrpU unterscheiden sich hingegen von denen, welche mit den *E. coli*-SU202-Reporterstämmen erhalten wurden, da dort für beide Proteine keine Homodimerisierung festgestellt werden konnte. Die Aussage ist für PrpU kritisch zu betrachten, da hier, wie in Abschnitt 3.3.7. beschrieben, für die drei untersuchten Klone sehr verschiedene Werte erhalten wurden, wobei man bei getrennter Betrachtung bei Klon 1 von einer Homodimer-Bildung ausgehen müsste.

Abb. 20: Relative β -Galactosidase-Aktivitäten der *E. coli*-SU101-Reporterstämme. Dargestellt sind die relativen β -Galactosidase-Aktivitäten von jeweils drei *E. coli*-SU101-Reporterstämmen (Klon 1, 2 und 3), die ein pMS604-Derivat tragen. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standardabweichungen sind als schmale Balken dargestellt.

Die hier gezeigte, als schwach einzustufende Interaktion der Thioredoxin-Reduktase mit sich selbst, widerspricht den mit Hilfe der entsprechenden *E. coli*-SU202-Reporterstämmen erhaltenen Ergebnissen.

Wie in Tabelle 9 (s. S. 68) und Abbildung 20 zu erkennen ist, wurde für die β -Untereinheit des P1-Proteins keine Homodimerisierung gezeigt, während die Daten mit dem Reporterstamm *E. coli*-SU202 auf eine schwache Interaktion dieser Untereinheit mit sich selbst hinweisen.

Bei der gemeinsamen Expression von $gcvP1\alpha$ und $gcvP1\beta$ konnten die mit Hilfe des Reporterstamms *E. coli*-SU202 erhaltenen Resultate, welche keine Homodimerisierung zeigten, im Reporterstamm *E. coli*-SU101 bestätigt werden.

3.4. Synthese von Proteinen aus E. acidaminophilum in E. coli

E. acidaminophilum konnte bisher keiner genetischen Manipulation unterzogen werden, da bis zum heutigen Zeitpunkt kein Transformationssystem für diesen Organismus etabliert werden konnte. Die Proteinkomponenten der Glycin-Decarboxylase, die Komponenten des Thioredoxin-Systems, GrdA der Glycin-Reduktase und das Selenoprotein PrpU sollten daher heterolog in *E. coli* synthetisiert werden, um durch *in-vitro*-Untersuchungen die Funktion des Proteins PrpU im Metabolismus von *E. acidaminophilum* klären zu können.

3.4.1. Synthese der Komponenten der Glycin-Decarboxylase als Strep-tag® II-Fusionsprotein

Die Proteine P1, P2 und P4 der Glycin-Decarboxylase von *E. acidaminophilum* sollten mit Hilfe des *Strep*-tag[®] II-basierenden Expressions- und Reinigungssystem angereichert und gereinigt werden. Der aus acht Aminosäuren (NH₂-WSHPQFEK-COOH) bestehende *Strep*-tag[®] II kann C-oder N-terminal mit Proteinen fusioniert werden, und durch seine sehr hohe Affinität zu StrepTactin (optimiertes, durch Mutagenese erzeugtes Streptavidin-Derivat) wird eine schnelle und effiziente Ein-Schritt-Reinigung erzielt (SCHMIDT and SKERRA 1994; VOSS and SKERRA 1997). Dieses Expressionssystem wurde gewählt, da für diverse Proteine von *E. acidaminophilum* bereits gute Expressions- und Reinigungsergebnisse erzielt wurden (GURSINSKY 2002; PARTHER 2003).

3.4.1.1. Klonierung in die Expressionsvektoren pASK-IBA3 und pASK-IBA5

Die Expression der in die Vektoren des *Strep*-tag[®] II-Expressionssystems klonierten Gene wird durch die Promotor-Operator-Region des *tetA*-Gens kontrolliert und durch den auf diesen Plasmiden konstitutiv exprimierten *tet*-Repressor streng reguliert. Die Induktion der Genexpression erfolgt durch Anhydrotetracyclin in nicht antibiotisch wirksamen Konzentrationen (SKERRA 1994). Klonierung in den Vektor pASK-IBA3 resultiert in C-terminalen Fusionen der zu synthetisierenden Proteine mit dem *Strep*-tag[®] II, in pASK-IBA5 hingegen in N-terminale Fusionen. Zur Synthese der Komponenten der Glycin-Decarboxylase aus *E. acidaminophilum* sollten beide Vektoren zur Anwendung kommen.

Die zu klonierenden Gene wurden durch PCR mit PhusionTM High-Fidelity DNA Polymerase (2.5.1.) an chromosomaler DNA von *E. acidaminophilum* amplifiziert, die Primerpaare P1alphaIBA3r und P1alphaIBA3f (GcvP1 α), P1betaIBA3r und P1betaIBA3f (GcvP1 β), P2IBA3r und P2IBA3f (GcvP2) und P4IBA3r und P4IBA3f (GcvP4) wurden für die folgende Klonierung in den Vektor pASK-IBA3 verwendet. Die Amplifikation der entsprechenden Gene zur Klonierung in das Plasmid pASK-IBA5 erfolgte mit den Primerpaarungen P1alphaIBA5r und P1alphaIBA5f (GcvP1 α), P1betaIBA5f (GcvP1 β), P2IBA5r und P1betaIBA5f (GcvP1 β), P2IBA3r und P2IBA3f (GcvP1 β), P4IBA3r und P4IBA3f (GcvP1 α), P1betaIBA5f (GcvP1 α), P1betaIBA5f (GcvP1 α), P1betaIBA5f (GcvP1 β), P2IBA3r und P2IBA3f (GcvP1 β), P4IBA3f (GcvP1 α), P1betaIBA5f (GcvP1 α), P1betaIBA5f (GcvP1 α), P1betaIBA5f (GcvP1 β), P2IBA3r und P2IBA3f (GcvP1 α), P1betaIBA5f (GcvP1 α), P1betaIBA5f (GcvP1 α), P1betaIBA5f (GcvP1 β), P2IBA3r und P2IBA3f (GcvP1 α), P1betaIBA5f (Gcv

P2IBA5r und P2IBA5f (GcvP2) und P4IBA5r und P4IBA5f (GcvP4). Anschließend wurden die erhaltenen PCR-Fragmente einem Restriktionsverdau mit BsaI unterzogen und in die ebenfalls mit dieser Restriktionsendonuclease linearisierten Vektoren pASK-IBA3 und pASK-IBA5 ligiert. Hierbei erfolgte eine gerichtete Klonierung, da BsaI außerhalb seiner Erkennungssequenz schneidet, wobei unterschiedliche 5'-Überhänge entstehen können.

Die ligierten Konstrukte wurden jeweils in *E.coli* XL1-Blue MRF^{*} transformiert und anschließend aus je 3 Kolonien die Plasmide isoliert und die Sequenzen der entsprechenden klonierten Gene auf Richtigkeit überprüft. Je ein Plasmid mit korrektem Insert wurde gewählt und mit pP1αCW und P1αNW (GcvP1α in pASK-IBA3 und pASK-IBA5), pP1βCW und pP1βNW (GcvP1β in pASK-IBA3 und pASK-IBA5), pP2CW und pP2NW (Gcv2 in pASK-IBA3 und pASK-IBA5), pP4CW und pP4NW (GcvP4 in pASK-IBA3 und pASK-IBA5) bezeichnet.

3.4.1.2. Testexpression von gcvP1α, gcvP1β, gcvP2 und gcvP4 als Strep-tag[®] II-Translationsfusion in E. coli

E. acidaminophilum hat einen G+C-Gehalt von 45,2 %, während *E. coli* einen G+C-Gehalt von 51,1 % aufweist (DÖRING *et al.*, 2001). Zur besseren heterologen Synthese der Komponenten der Glycin-Decarboxylase aus *E. acidaminophilum* sollte daher der Stamm *E. coli* BL21(DE3)-CodonPlus-RIL zur Anwendung kommen. Dieser Stamm eignet sich gut zur Überproduktion von Proteinen aus Organismen mit niedrigem G+C-Gehalt, da er auf einem pACYC184-Derivat die Gene *argU* (*dnaY*), *ileY* und *leuW* trägt. Diese codieren für tRNA-Species, welche nur sehr selten in *E. coli* vorkommen: tRNA₄^{Arg}, welche die Codons AGA und AGG erkennt, tRNA₂^{IIe}, für die Erkennung von AUA und tRNA₃^{Leu} für die Codons CUA und CUG.

Die Plasmide, welche die Gene der einzelnen Komponenten der Glycin-Decarboxylase aus *E. acidaminophilum* tragen (3.4.1.1.), wurden in den Stamm *E. coli* BL21(DE3)-CodonPlus-RIL transformiert und jeweils 8 Klone einer Testexpression im 20 ml Maßstab unterzogen. Nach dreistündiger Induktion des *tet*-Promotors mit Anhydrotetracyclin wurde eine Probe genommen und die Produktion rekombinanter Proteine mittels SDS-PAGE und Western-Blot-Nachweis des *Strep*-tag[®] II mittels StrepTactin-HRP-Konjugat überprüft. Für alle untersuchten Stämme konnten zusätzliche Proteinbanden mit Größen von ca. 50 kDa für die α -Untereinheit und ca. 54 kDa für die β -Untereinheit des P1-Proteins, von ca. 15 kDa für das P2-Protein und ca. 42 kDa für das P4-Protein sichtbar gemacht bzw. detektiert werden. Diese zusätzlichen Proteinbanden waren ohne Induktion bzw. in den Kontrollen (pASK-IBA3 und pASK-IBA5 ohne Inserts) nicht zu erkennen (Daten nicht gezeigt).

Es konnten für die einzelnen Gene (gcvP1a, $gcvP1\beta$, gcvP2 und gcvP4), exprimiert in pASK-IBA3 und pASK-IBA5 keine signifikanten Unterschiede im Expressionslevel der jeweils untersuchten Stämme festgestellt werden, daher wurde jeweils nur ein Stamm für weitere Untersuchungen verwendet.

Des Weiteren sollte die optimale Induktionsdauer für die einzelnen Expressionen ermittelt werden. Hierzu erfolgte wiederum eine Testexpression im 20 ml Maßstab. Nach Induktion mit Anhydrotetracylin wurde nach 1, 2, 3, 4, 5 und 16 h eine Probe genommen und anschließend die Synthese der rekombinanten Proteine mittels SDS-PAGE und Western-Blot-Nachweis des *Strep*-tag[®] II mittels StrepTactin-HRP-Konjugat überprüft. Hierbei zeigte sich für alle überprüften Stämme, dass bereits bei einer Induktion über 4h die Menge des rekombinant gebildeten Proteins im Vergleich zur Induktion über 3 h leicht zurückging. Bei der Induktion über Nacht waren die zusätzlichen Proteinbande nur noch sehr schwach ausgeprägt. Die optimale Induktionsdauer betrug also 3 h. Die Änderung der Temperatur von 37 °C auf 30 °C zeigte hingegen keinen Einfluss auf die Expressionsraten, so dass im Folgenden die Synthese der Komponenten der Glycin-Decarboxylase aus *E. acidaminophilum* immer bei 37 °C und einer Induktionsdauer von 3h erfolgte.

3.4.1.3. Reinigung der heterolog synthetisierter Proteine

Die Anzucht der einzelnen Stämme zur Überproduktion der Proteinkomponenten der Glycin-Decarboxylase erfolgte im 1 l-Maßstab. Hierzu wurde LB-Selektivmedium mit einer über Nacht ebenfalls in LB-Selektivmedium gewachsenen Vorkultur inokuliert, sodass die Start-OD₆₀₀ der Hauptkultur 0,1 betrug, anschließend wurde diese Kultur bei einer Temperatur von 37 °C bis zu einer OD₆₀₀ von ca. 0,6 kultiviert und der *tet*-Promotor für 3 h mit Anhydrotetracyclin induziert. Hiernach erfolgten die Ernte der Zellen (jeweils 100 ml Kultur wurde pelletiert) und die Überprüfung der Expression mittels SDS-PAGE.

Der aus dem Pellet von je 100 ml Hauptkultur präparierte Rohextrakt (2.10.7.3.) wurde auf StrepTactin-Affinitätssäulen aufgetragen, ungebundene Proteine durch Waschen der Säulen mit 5x1 ml PufferW entfernt und anschließend die gebundenen, heterolog synthetisierten *Strep*-tag[®] II-Fusionsproteine mit 2,5 mM Desthiobiotin im Puffer von der Säule eluiert. Alle Schritte erfolgten bei 4 °C und unter Gravitationsfluss.

Anschließend wurden die einzelnen Säulenläufe mittels SDS-PAGE und Western-Blot-Nachweis des *Strep*-tag[®] II mittels StrepTactin-HRP-Konjugat überprüft und die Proteinkonzentrationen der einzelnen Elutionsfraktionen mittels Bradeford bestimmt.

Die Proteine GcvP1 β , GcvP2 und GcvP4 konnten im Fall der C-terminalen und N-terminalen Fusion mit dem *Strep*-tag[®] II in nahezu homogener Form erhalten werden (s. S. 73, Abb. 21). Dabei war allerdings zu erkennen, dass bei allen 3 Proteinen die Fusion mit dem C-terminalen *Strep*-tag[®] II in höheren Proteinmengen resultierte. Im Fall des heterolog exprimierten *gcvP1a* konnte nur bei C-terminaler Fusion mit dem *Strep*-tag[®] II lösliches Protein erhalten werden. Das N-terminal mit dem *Strep*-tag[®] II fusionierte Protein lag hingegen nur als *inclusion bodies* im Pellet nach der Rohextrakt-Präparation vor. Alle Proteine eluierten innerhalb der dritten Elutionsfraktion (500 µl), wobei aus jeweils 100 ml Kulturvolumen 2 mg GcvP1a (4 µg/µl), 1,25 mg GcvP1 β (2,5 µg/µl), 1 mg GcvP2 (2 µg/µl) und 1,2 mg GcvP4 (2,4 µg/µl) bei der Synthese durch pASK-IBA3 und 0,25 mg GcvP1 β (0,5 µg/µl), 0,75 mg GcvP2 (1,5 µg/µl) und 0,75 mg GcvP4 (1,5 µg/µl) bei Überproduktion mit Hilfe des Plasmides pASK-IBA5 gereinigt werden konnten.

Abb. 21: Reinigung der rekombinanten Proteine GcvP4 (A), GcvP2 (B), GcvP1a (C) und GcvP1b (D) an StrepTactin-Sepharose nach Synthese durch Expressionsvektoren pASK-IBA3 und pASK-IBA5. Die Proben wurden in einem 12,5% igem SDS-Polyacrylamidgel (A, C und D) bzw. in einem Schägger-Gel (B) aufgetrennt und durch Coomassie-Färbung sichtbar gemacht. M_Molekulargewichtsmarker, C-t_C-terminale Fusion mit dem *Strep*-tag[®] II. Es wurden jeweils 5 µl der dritten Elutionsfraktion der Affinitätschromatographie an StrepTactin_Sepharose aufgetragen.

Bei der Reinigung von GcvP1a waren stets neben der dem rekombinanten Protein entsprechenden Proteinbande eine Vielzahl an zusätzlichen Proteinen zu erkennen, welche nach Western-Blot-Nachweis mittels StrepTactin-HRP-Konjugat als *Strep*-tag[®] II-Fusionsproteine identifiziert werden konnten (aller kleiner als 55 kDa), was auf einen proteolytischer Abbau des rekombinanten Proteins hinweist (Daten nicht gezeigt). Durch Western-Analysen konnte zusätzlich gezeigt werden, dass dieser Abbau bereits während der Kultivierung der entsprechenden Stämme einsetzte.

3.4.1.4. Coexpression der Gene der α- und β-Untereinheit des P1-Proteins von E. acidaminophilum

Wie bei den meisten Prokaryoten liegt auch das P1-Protein der Glycin-Decarboxylase aus *E. acidaminophilum*, wie bereits erwähnt, als $\alpha_2\beta_2$ -Tetramer vor (FREUDENBERG and ANDREESEN 1989).

Auch durch veränderte Wachstumsbedingungen der Stämme mit den Plasmiden zur Überproduktion von GcvP1 α (Absenkung der Temperatur und Verkürzung der Induktionszeiten des *tet*-Promotors der Expressionsvektoren auf 1 h) konnte der proteolytische Abbau des rekombinanten Proteins nicht verhindert werden. Durch eine simultane Synthese beider Untereinheiten sollte nun eine möglicherweise stabilisierende Wirkung der β -Untereinheit auf die α -Untereinheit des P1-Proteins untersucht werden, um somit eventuell eine größere Menge an intaktem GcvP1 α zu erhalten bzw. den Abbau zu verhindern.

Da die Gene für beide Untereinheiten im Genom von *E. acidaminophilum* direkt benachbart liegen, konnte mit den Primern P1alphaIBA3f und P1betaIBA3r (für die Klonierung in pASK-IBA3) und den Primern P1alphaIBA5f und P1betaIBA5r (für die Klonierung in pAK-IBA5) jeweils ein PCR-Produkt erhalten werden, welches die Gene *gcvP1a* und *gcvP1β* entsprechend ihrer Orientierung im Genom von *E. acidaminophilum* repräsentierte. Die Klonierung erfolgte, wie unter 3.4.1.1. beschrieben. Die resultierenden Plasmide wurden mit pP1aβCW für die Klonierung in pASK-IBA3 und mit pP1aβNW für die Klonierung in pASK-IBA5 bezeichnet.

Die Testexpressionen und Reinigungen erfolgten analog zu 3.4.1.2 und zu 3.4.1.3. Aus 250 ml Kulturvolumen konnten für die Expressionsvarianten in pASK-IBA3 nur sehr geringe Mengen von 0,25 mg (0,5 μ g/ μ l) an heterolog synthetisiertem GcvP1 β in löslicher Form in der entsprechenden Elutionsfraktion (E3) angereichert werden (Abb. 22).

Abb. 22: Reinigung von rekombinantem GcvP1β an StrepTactin-
Sepharose nach Coexpression von gcvP1α und gcvP1β im
Expressionsvektor pASK-IBA3.5 μg Protein wurden in einem 12,5% igen SDS-Polyacrylamid-Gel

aufgetrennt und durch Coomassie-Färbung sichtbar gemacht. M_Molekulargewichtsmarker, E3_Elution 3 nach Affinitätschromatographie an StrepTactin-Sepharose.

Bei der Cosynthese durch pASK-IBA5 war der gesamte Anteil und bei der Synthese durch pASK-IBA3 der größte Anteil hingegen als *inclusion bodies* im Pellet nach der Rohextrakt-Präparation zu finden (Daten nicht gezeigt). Des Weiteren war zu erkennen, dass bei der Überproduktion beider Proteine im Vektor pASK-IBA3 nur die β -Untereinheit von der StrepTactin-Affinitätssäule eluierte. Das ist insofern nicht verwunderlich, da bei dieser Expressionsvariante die β -Untereinheit mit dem *Strep*-tag[®] II-fusioniert ist. Durch Western-Blot-Nachweis des *Strep*-tag[®] II mittels StrepTactin-HRP-Konjugat in Zell-Lysaten der Expressionskultur konnte gezeigt werden, dass bei Coexpression von *gcvP1a* und *gcvP1β* durch das Plasmid pASK-IBA5 ein proteolytischer Abbau des rekombinanten GcvP1a-Proteins bei der simultanen Synthese beider Untereinheiten nicht mehr zu erkennen war, eine parallele Reinigung beider Proteine gelang so jedoch nicht.

3.4.1.5. Konstruktion eines Vektors zur simultanen Reinigung der α- und β-Untereinheit des P1-Proteins

Da die gemeinsame Synthese beider Untereinheiten der Glycin-Decarboxylase aus *E. acidaminophilum* in den Vektoren pASK-IBA3 und pASK-IBA5 nicht zu den gewünschten Resultaten führte, sollte nun ein Vektor konstruiert werden, der sowohl eine N-terminale Fusion des *Strep*-tag[®] II mit der α -Untereinheit als auch eine C-terminale Fusion des *Strep*-tag[®] II mit der β -Untereinheit ermöglichte, um beide Proteine simultan zu synthetisieren, aber auch gemeinsam zu reinigen.

Die Vektoren pASK-IBA3 und pASK-IBA5 unterscheiden sich nur hinsichtlich der Lage der Sequenz für den *Strep*-tag[®] II. Während diese im pASK-IBA5 *upstream* der *multi cloning site* gelegen ist, ist die Sequenz im pASK-IBA3 *downstream* dieser zu finden (Abb. 23).

Abb. 23: Konstruktion des Vektors pASK-IBA53ke. Dargestellt sind die beiden Expressionsvektoren pASK-IBA3 und pASK-IBA5, wichtige Gene sind grau dargestellt, die *multi cloning site* dunkelgrün und der *Strep*-tag[®] II weinrot. Die für die Konstruktion des Vektors pASK-IBA53ke wichtigen Schnittstellen EcoRI und HindIII sind rot hervorgehoben, die für die Klonierung der zu exprimierenden Gene geeigneten BsaI Schnittstellen sind schwarz gekennzeichnet.

Durch Restriktion beider Plasmide mit den Restriktionsendonukleasen EcoRI und HindIII wurde jeweils ein 100 bp und ein 3147 bp (pASK-IBA3) bzw. ein 100 bp und ein 3160 bp Fragment (pASK-IBA5) erhalten. Im Falle des Vektors pASK-IBA3 befindet sich die Sequenz des *Strep*-tag[®] II auf dem 100 bp Fragment, während sie nach Verdau des Vektors pASK-IBA5 auf dem 3160 bp Fragment zu finden ist. Nach Ligation dieser beiden Fragmente wurde ein Plasmid erhalten, welches sowohl die C-terminale als auch die N-terminale Translationsfusion von z.B. zwei Untereinheiten eines Proteins mit dem *Strep*-tag[®] II erlaubt. Das so erhaltene Hybrid-Plasmid weist genau wie die beiden Ausgangsvektoren zwei BsaI-Schnittstellen auf, über die eine gerichtete Klonierung der Zielgene zwischen beide *Strep*-tag[®] II-Sequenzen möglich ist. Nach Überprüfung der Sequenz der *multi cloning site* wurde dieser Expressionsvektor mit pASK-IBA53ke bezeichnet.

3.4.1.6. Klonierung des gcvP1-Gens von E. acidaminophilum in den Expressionsvektor pASK-IBA53ke

Wie in Abbildung 8 (s. S. 46) zu erkennen ist, liegen die Gene $gcvP1\alpha$ und $gcvP1\beta$, welche für die beiden Untereinheiten des P1-Proteins der Glycin-Decarboxylase aus *E. acidaminophilum* codieren, im Glycin-Decarboxylase-Operon direkt benachbart und werden nur durch ein Base, ein Cytosin, getrennt. Die Ribosomen-Bindestelle für $gcvP1\beta$ befindet sich im 3'-Bereich von $gcvP1\alpha$.

Für die Klonierung in den Expressionsvektor pASK-IBA53ke wurden 2 verschiedene Ansätze gewählt. Zum einen sollten die Gene gcvP1a und $gcvP1\beta$ so in den Vektor kloniert werden, wie sie im Genom von *E. acidaminophilum* angeordnet sind. Hierzu wurden beide Gene mit den Primern P1alphaIBA5f und P1betaIBA3r durch PCR mit PhusionTM High-Fidelity DNA Polymerase (2.5.1) an chromosomaler DNA von *E. acidaminophilum* amplifiziert, mit BsaI verdaut und in ebenfalls mit BsaI geschnittenen pASK-IBA53ke ligiert (s. S. 77, Abb. 24).

Zum anderen sollte mit Hilfe eines Primers eine zusätzliche Ribosomen-Bindestelle zwischen beide Gene eingefügt werden. Mit den Primerpaaren P1alphaIBA5f und P1 α KE+BsaI ($gcvP1\alpha$) und P1betaIBA3r und P1 β KE+BsaI ($gcvP1\beta$) wurden beide Gene durch PCR mit PhusionTM High-Fidelity DNA Polymerase (2.5.1) an chromosomaler DNA von *E. acidaminophilum* amplifiziert, ebenfalls mit BsaI verdaut und gemeinsam in mit BsaI linearisierten pASK-IBA53ke ligiert.

Die Endonuclease BsaI schneidet außerhalb ihrer Erkennungssequenz jede beliebige Sequenz, wobei ein 4 nt längerer 5'-Überhang entsteht. Die Überhänge der über die Primer P1 α KE+BsaI und P1 β KE+BsaI eingefügten BsaI-Schnittstellen wurden so konstruiert, dass im Fall der Amplifikation von *gcvP1* α ein Überhang von fünf Adeninen und im Fall von *gcvP1* β einer mit fünf Thyminen entsteht. Dies gewährleistet eine gerichtete Klonierung beider Gene in den Vektor pASK-IBA53ke.

А

Abb. 24: Schematische Darstellung der Klonierung von gcvP1a und $gcvP1\beta$ ohne (A) und mit zusätzlicher Ribosomen-Bindestelle (B) in das Expressionsplasmid pASK-IBA53ke. Die *multi cloning site* des Vektors pASK-IBA53ke ist dargestellt, die Sequenzen der Primer P1alphaIBA5f, P1betaIBA3r, P1aKE+BsaI und P1 β KE+BsaI zur Amplifikation der DNA-Abschnitte, welche für die Gene gcvP1a und $gcvP1\beta$ codieren, sind angegeben. Die klonierungsrelevanten BsaI-*sites* sind fett gedruckt und unterstrichen, die nach Restriktionsverdau entstandenen Überhänge grau unterlegt und doppelt unterstrichen. Die zusätzlich eingefügte Ribosomen-Bindestelle ist grün unterlegt. Die C-und N-terminalen Aminosäuresequenzen der Proteine GcvP1a und GcvP1 β sind angegeben sowie die Sequenz des *Strep*-tag[®] II, welche zusätzlich rot unterlegt ist. RBS_Ribosomen-Bindestelle, Ter_Transkriptionsregulator. Nach Ligation und Transformation wurden jeweils aus drei der entstandenen Klone die Plasmide isoliert und die Sequenz der Inserts überprüft. Jeweils ein Hybrid-Plasmid wurde mit pcP1 $\alpha\beta53$ (ohne zusätzliche Ribosomen-Bindestelle) und pP1 $\alpha\beta53$ (mit zusätzlicher Ribosomen-Bindestelle) bezeichnet.

Beide Plasmide wurden ebenfalls in *E. coli* BL21(DE3)-CodonPlus-RIL transformiert, und die Testsynthese und Reinigung erfolgten wie in Abschnitt 3.4.1.2. beschrieben.

Bei der Überproduktion mit Hilfe des Plasmides pcP1 $\alpha\beta53$ waren bei der Testsynthese (3.4.1.2.) deutlich zwei zusätzliche Proteinbanden zu erkennen. Diese Proteine lagen allerdings in unlöslicher Form als *inclusion bodies* vor und waren nach dem Zellaufschluss im Pellet zu finden (Daten nicht gezeigt).

Nur bei der Expressionsvariante mit zusätzlicher Ribosomen-Bindestelle zwischen beiden Genen konnten nach Reinigung an StrepTactin-Sepharose in der 3. Elutionsfraktion zwei Proteine angereichert werden, deren Größe den Proteinen GcvP1 α (50,2 kDa) und GcvP1 β (54,4 kDa) mit *Strep*-tag[®] II entsprachen (Abb. 25). Aus 100 ml Kulturvolumen wurden 1,35 mg (2,7 µg/µl) Protein, bestehend aus rekombinanten GcvP1 α und GcvP1 β , durch Affinitätschromatographie angereichert.

Abb. 25: Reinigung der rekombinanten Proteine GcvP1a und GcvP1βan StrepTactin-Sepharose nach Koexpression von gcvP1a und gcvP1βim Expressionsvektor pASK-IBA53ke.2 µg Protein wurde in einem 7,5%igen SDS-Polyacrylamid-Gel aufgetrenntunddurchCoomassie-Färbungsichtbargemacht.M_Molekulargewichtsmarker,E3_Elution3nachAffinitätschro-matographie an StrepTactin-Sepharose.

Durch simultane Überproduktion im Expressionsvektor pASK-IBA53ke und anschließender Affinitätschromatographie an StrepTactin-Sepharose konnte sowohl die α - als auch die β -Untereinheit des P1-Proteins der Glycin-Decarboxylase aus *E. acidaminophilum* als rekombinante Proteine gereinigt werden. Der proteolytische Abbau der α -Untereinheit des P1-Proteins konnte so verhindert werden.

3.4.2. Lipoylierung des P2-Proteins der Glycin-Decarboxylase von E. acidaminophilum

Das P2-Protein der Glycin-Decarboxylase ist die zentrale Komponente dieses Enzymkomplexes (s. S. 5, Abb. 2) und trägt als prosthetische Gruppe Liponsäure. Diese ist mit einem ubiquitär hoch konservierten Lysin-Rest über eine Peptidbinding mit dem Protein fest verknüpft ist (FREUDENBERG and ANDREESEN 1989; KOPRIVA *et al.*, 1996b; NAGARAJAN and STORMS 1997; PARES *et al.*, 1995). Man unterscheidet zwei Wege der Lipoylierung von Proteinen, den endogenen und den exogenen Weg. Bei erstem wird nach Aktivierung von Octansäure durch Bindung an das ACP (Acyl-Carrier-Protein) diese durch LipA zweimal sulfuniliert und in Liponsäure umgewandelt und anschließend durch LipB (Lipoyl-(Acyl-Carrier-Protein)-Protein-*N*-Lipoyltransferase) auf das Apoprotein übertragen. Beim exogenen Weg wird durch die Zellmembran aufgenommene Liponsäure durch Lipoat-Protein-Ligase A (LplA) unter ATP-Verbrauch direkt auf das Zielprotein übertragen (MORRIS *et al.*, 1994). Für *E. coli* konnten sowohl die Gene *lipA* und *lipB* als auch das Gen *lplA* beschrieben werden (MORRIS *et al.*, 1995; REED and CRONAN 1993). Für *E. acidaminophilum* konnte der konservierte, für die Lipoylierung essentielle Lysinrest nachgewiesen werden (POEHLEIN 2003).

3.4.2.1. Synthese des P2-Proteins in Gegenwart von Liponsäure

E. coli ist in der Lage, Liponsäure direkt über die Zellmembran aufzunehmen und mit Hilfe der Lipoat-Protein-Ligase A (LplA) diese auf die entsprechenden Zielproteine zu übertragen (MORRIS *et al.*, 1995). Bei der heterologen Überproduktion des P2-Proteins aus *E. acidaminophilum* sollte durch Zugabe von Liponsäure zum Kultivierungsmedium des entsprechenden Expressionsstammes (*E. coli* BL21(DE3)-CodonPlus-RIL mit dem Plasmid pP2CW) die Lipoylierung des überproduzierten P2-Proteins gewährleistet werden.

Die Synthese des P2-Proteins in *E. coli* erfolgte in 1 l LB-Selektivmedium (125 μ g/ml Amp und 30 μ g/ml Chl) und unter Zugabe von 500 μ g/ml Liponsäure 30 min vor Induktion des *tet*-Promotors mit 0,2 μ g/ml Anhydrotetracyclin. Die Präparation des Rohextraktes erfolgte aus dem Pellet von 100 ml Kultur, die Reinigung des heterolog synthetisierten P2-Proteins durch Affinitätschromatographie an StrepTactin-Sepharose, wurde wie unter 3.4.1.3. beschrieben, durchgeführt. Das gereinigte Protein wurde anschließend durch SDS-Polyacrylamid-Gelelektrophorese und Western-Blot-Nachweis des *Strep*-tag[®] II mittels StrepTactin-HRP-Konjugat überprüft.

Durch MALDI-MS-Analyse konnten für das heterolog synthetisierte P2-Protein (C-terminal mit *Strep*-tag[®] II fusioniert) Massen von ca. 15,154 kDa und 15,342 kDa bestimmt werden (A. SCHIERHORN, pers. Mitteilung). Aus der Aminosäuresequenz leiteten sich ein theoretischer Wert für das P2-Apoprotein von 15,285 bzw. 15,145 kDa und ein Wert von 15,342 bzw. 15,202 kDa (mit bzw. ohne Initiationsmethionin) für

das P2-Holoenzym ab. Das P2-Protein der Glycin-Decarboxylase konnte also in der Holoform, d. h. mit Liponsäure als funktionelle Gruppe heterolog in *E. coli* synthetisiert werden.

3.4.3. Expression der Gene des Thioredoxin-Systems von *E. acidaminophilum* als *Strep*-tag[®] II-Fusionsproteine

Essentiell für die Funktion des Multienzym-Komplexes der Glycin-Decarboxylase ist neben den Komponenten P1, P2 und P4 das vierte zu diesem System gehörende Protein, die Dihydrolipoamid-Dehydrogenase. Dieses Enzym reoxidiert die Thiole der Liponsäuregruppe des P2-Proteins, welche nach Spaltung der Aminomethylgruppe reduziert vorliegen, zum Disulfid. Die resultierenden Elektronen werden dabei über gebundenes FAD auf NAD⁺ bzw. NADP⁺ übertragen (ANDREESEN 1994b). Für *E. acidaminophilum* konnte bisher als Ausnahme keine eigenständige Dihydrolipoamid-Dehydrogenase isoliert bzw. beschrieben werden (DIETRICHS *et al.*, 1991; FREUDENBERG *et al.*, 1989a; MEYER *et al.*, 1991; POEHLEIN 2003). Die Dihydrolipoamid-Dehydrogenase-Aktivität wurde bei diesem Organismus stattdessen von dem Thioredoxin-System, bestehend aus Thioredoxin-Reduktase und Thioredoxin, wahrgenommen. Mit dessen Hilfe werden die bei der Glycin-Oxidation freiwerdenden Elektronen direkt oder über NADP(H) auf das Protein A der Glycin-Reduktase übertragen (ANDREESEN 1994b; MEYER *et al.*, 1991). Um eine mögliche Funktion von PrpU als Komponente im Aminosäurestoffwechsel von *E. acidaminophilum* zu klären, mussten auch die beiden Komponenten des Thioredoxin-Systems, die Thioredoxin-Reduktase und das Thioredoxin, heterolog in *E. coli* überproduziert und gereinigt werden, zumal die Interaktionsstudien bereits darauf hingewiesen hatten, dass PrpU mit Thioredoxin interagiert.

3.4.3.1. Klonierung von trxB und trxA in den Expressionsvektor pASK-IBA3

Zur Überproduktion der Komponenten des Thioredoxin-Systems aus *E. acidaminophilum* wurde das Expressionsplasmid pASK-IBA3 gewählt, da mit diesem Vektor für die Komponenten der Glycin-Decarboxylase gute Resultate erzielt wurden. Das Gen *trxB*, welches für die Thioredoxin-Reduktase codiert, wurde mit den Primern TRXB-F und TRXB-R und das Gen *trxA*, codierend für Thioredoxin, wurde mit den Primern TRXA-F und TRXA-R durch PCR mit PhusionTM High-Fidelity DNA Polymerase (2.5) an chromosomaler DNA von *E. acidaminophilum* amplifiziert. Es wurden Fragmente mit einer Größe von 1 kb (*trxB*) und einer Größe von 0,3 kb (*trxA*) erhalten, was den Größen beider Gene entspricht (Daten nicht gezeigt). Die amplifizierten PCR-Produkte sowie das Plasmid pASK-IBA3 wurden mit BsaI verdaut, miteinander ligiert und in *E. coli* XL1-Blue MRF' transformiert. Aus jeweils drei der entstandenen Klone wurden die Plasmide isoliert und die Sequenz der Inserts überprüft. Ein Plasmid mit korrektem Insert wurde mit pTRCW (Thioredoxin-Reduktase) und das andere mit pTrxCW (Thioredoxin) bezeichnet.

3.4.3.2. Synthese und Reinigung von heterologer Thioredoxin-Reduktase und heterologem Thioredoxin

Zur heterologen Synthese der Thioredoxin-Reduktase und des Thioredoxins aus *E. acidaminophilum* wurde auch hier *E. coli* BL21(DE3)-CodonPlus-RIL verwendet, welcher speziell für die Überproduktion von Proteinen aus Organismen mit niedrigem G+C-Gehalt geeignet ist (3.4.1.2.).

Beide Hybrid-Plasmide wurden jeweils in *E. coli* BL21(DE3)-CodonPlus-RIL transformiert und jeweils 6 Klone einer Testsynthese im 20 ml Maßstab, wie unter 3.4.1.2. beschrieben, unterzogen. Sowohl für die Synthese von Thioredoxin-Reduktase als auch für die Überproduktion von Thioredoxin konnte bei allen 6 getesteten Stämmen eine zusätzliche Proteinbande bei 35 kDa (Thioredoxin-Reduktase) bzw. 13 kDa (Thioredoxin) mittels SDS-PAGE sichtbar und im Western-Blot-Nachweis des *Strep*-tag[®] II durch StrepTactin-HRP-Konjugat detektiert werden (Daten nicht gezeigt).

Die Synthese beider Proteine erfolgte analog zu 3.4.1.3. im 1 l Maßstab in LB-Selektivmedium (125 μ g/ml Amp und 30 μ g/ml Chl) und Induktion des *tet*-Promotors mit 0,2 μ g/ml Anhydrotetracyclin.

Die Präparation des Rohextraktes und die Reinigung der heterolog überproduzierten Proteine erfolgte auch hier aus dem Pellet von 100 ml Kultur. Nach Affinitätschromatographie an StrepTactin-Sepharose eluierte die Thioredoxin-Reduktase innerhalb der dritten und vierten Fraktion (Abb. 26 A) mit einem Proteingehalt von 5,6 μ g/ μ l. Die proteinhaltigen Fraktionen waren durch eine intensive Gelbfärbung gekennzeichnet, was auf den FAD-Gehalt der rekombinanten Thioredoxin-Reduktase zurückzuführen ist. Die heterolog FAD-haltige synthetisierte Thioredoxin-Reduktase zeigte ein für Proteine charakteristisches Absorptionsspektrum (Anhang A.X.) Das rekombinante Thioredoxin eluierte vollständig innerhalb der dritten Fraktion (Abb. 26 B) mit einem Proteingehalt von 2 $\mu g/\mu l$. Aus jeweils 100 ml Kulturvolumen konnten 2,8 mg rekombinante Thioredoxin-Reduktase und 1 mg rekombinantes Thioredoxin durch Affinitätschromatographie an StrepTactin-Sepharose gereinigt werden.

Abb. 26: Reinigung der rekombinanten Proteine Thioredoxin-Reduktase (A) und Thioredoxin (B) an StrepTactin-Sepharose nach Überproduktion im Expressionsvektor pASK-IBA3. Die Proben wurden in einem 12,5% igen SDS-Polyacrylamidgel (A) bzw. in einem Schägger-Gel (B) aufgetrennt und durch Coomassie-Färbung sichtbar gemacht. M_Molekulargewichtsmarker, E-TR_Elution 4 der Affinitätschromatographie von Thioredoxin-Reduktase (2 μ g) und E-Trx_Elution 3 der Affinitätschromatographie von Thioredoxin (5 μ g).

3.4.4. Expression der Gene der Selenoproteine PrpU und GrdA und deren Cystein-Mutanten in E. coli

Die Proteine PrpU und GrdA weisen in ihrer Aminosäuresequenz ein Selenocystein auf. Der Einbau dieser seltenen Aminosäure erfolgt cotranslational durch ein UGA-Codon. Das Vorhandensein einer Selenocystein-spezifischen-tRNA und des Selenocystein-spezifischen Elongationsfaktors SelB (FORCHHAMMER *et al.*, 1991; LEINFELDER *et al.*, 1988) ist dafür essentiell. Durch ihn erfolgt die Erkennung der SECIS-Struktur (*selenocysteine insertion sequence*), einer mRNA-Sekundärstruktur, welche *downstream* des für Selenocystein in die Polypeptidkette ist. *E. coli*-SelB ist nicht in der Lage, SECIS-Elemente aus *E. acidaminophilum* zu erkennen, hier kommt es entweder zum Einbau von Tryptophan, der so genannten Tryptophan-Supression (FORCHHAMMER *et al.*, 1989; HIRSH and GOLD 1971; LEINFELDER *et al.*, 1988) bzw. zum Abbruch der Translation und somit zu einem verkürzten Protein (SCOLNICK *et al.*, 1968). Erst durch die Arbeiten von GURSINSKY (2002) war es möglich, die Gene der Selenoproteine aus *E. acidaminophilum* heterolog in *E. coli* zu exprimieren. Durch parallele Expression von *selB_{EA}* und *selC_{EA}* mit dem Gen des entsprechenden Selenoproteins in *E. coli* erfolgte die Erkennung des SECIS-Elementes aus *E. acidaminophilum* durch SELB_{Ea} und ein Einbau von Selenocystein in das heterolog synthetisierter Protein (GURSINSKY 2002; GURSINSKY *et al.*, 2008).

3.4.4.1. Klonierung von grdA3 und prpU in das Expressionsplasmid pASK-IBA3plus

Da die Gene *selB* und *selC* aus *E. acidaminophilum* auf einem pACYC184-Derivat codiert sind (YANISCH-PERRON *et al.*, 1985), ist es nicht möglich, die Selenoproteine im Stamm *E. coli* BL21(DE3)-CodonPlus-RIL zu synthetisieren, da das in diesem Expressionsstamm enthaltene RIL-Plasmid (3.4.1.2.) ebenfalls ein pACYC184-Derivat ist, was zu einer Inkompatibilität beider Plasmide führt. Vorangegangene Arbeiten (GRÖBE 2001) zeigten, dass eine Synthese von Wildtyp-Selenoproteinen mit Hilfe des Expressions-Vektors pASK-IBA3 im Stamm *E. coli* XL1-Blue MRF nur zu sehr geringen Expressionsraten führte. Aus diesem Grund sollte neben diesem Vektor eine variierte Form dieses Expressionsplasmides, pASK-IBA3plus, zur Anwendung kommen. Eine veränderte Translations-Initiations-*site* ermöglicht eine wesentlich höhere Produktion an heterolog synthetisiertem Protein (www.iba-go.de).

Für spätere Untersuchungen sollten sowohl die Selenocystein- als auch die Cystein-Varianten der Gene *prpU* und *grdA* heterolog überexprimiert werden. Da sich während dieser Arbeit die C-terminale Fusion mit dem *Strep*-tag[®] II als besser geeignet erwies, sollte auch die Synthese und Reinigung dieser beiden Proteine über eine C-terminale Translationsfusion erfolgen.

Durch GRÖBE (2001) wurden bereits das Wildtyp-*prpU* und dessen Cystein-Variante (Umwandlung des *in frame* TGA-Codons zu dem Cystein-Codon TGC durch gerichtete Mutagenese) in das Expressionsplasmid pASK-IBA3 kloniert. Nur im Fall der Cystein-Variante konnte mittels SDS-PAGE und Western-Blot-

Nachweis des *Strep*-tag[®] II mittels StrepTactin-HRP-Konjugat eine Synthese von heterologem PrpU detektiert werden. Eine Überproduktion des Wildtyp-PrpU konnte nicht nachgewiesen werden. Das Gen *grdA*, welches für das Selenoprotein GrdA codiert, lag zu Beginn dieser Arbeit als Wildtyp- bzw. Cystein-Variante, kloniert in das Expressionsplasmid pASK-IBA3, vor (J. JÄGER, pers. Mitteilung). Es konnten während dieser Arbeit weder für das Wildtyp-Protein noch für die Cystein-Mutante mit diesen vorliegenden Konstrukten eine Synthese nachgewiesen werden (Daten nicht gezeigt). Aus diesem Grund sollten die Gene beider Proteine als Wildtyp-Variante und im Fall von GrdA auch die Cystein-Variante erneut in pASK-IBA3 und zusätzlich in pASK-IBA3plus kloniert werden, um diese Proteine heterolog zu synthetisieren.

Die Gene *prpU* und *grdA* wurden durch PCR mit den Primern prpUIBA3f und prpUP2I3 bzw. GrdAIBA3f und GrdAIBA3r amplifiziert, wobei chromosomale DNA im Fall der Amplifikation der Wildtyp-Gene bzw. das Plasmid pMUA36 (J. JÄGER, pers. Mitteilung) im Fall der Amplifikation der Cystein-Variante von *grdA* als *template* dienten. Die erhaltenen PCR-Produkte wurden mit BsaI bzw. mit BpiI (*grdA*) verdaut und in die mit BsaI behandelten Vektoren pASK-IBA3 und pASK-IBA3plus ligiert und anschließend in *E. coli* XL1-Blue MRF. Aus jeweils drei der entstandenen Kolonien wurden die Plasmide isoliert und das Insert mittels Sequenzierung überprüft. Die Hybrid-Plasmide wurden entsprechend der Klonierung in pASK-IBA3 mit pPrpUCW (*prpU*), pPACW bzw. pPACM (Wildtyp-*grdA* bzw. Cystein-Mutante von *grdA*) und pPrpUCW+ (*prpU*), pPACW+ bzw. pPACM+ (Wildtyp-*grdA* bzw. Cystein-Mutante von *grdA*) im Fall der Klonierung in pASK-IBA3plus bezeichnet. Bei der Sequenzierung aller Plasmide, welche die Wildtyp-Gene von *grdA* trugen, zeigte sich, dass in jedem Fall *grdA3* amplifiziert und kloniert wurde. Auf die Anzahl der im Genom von *E. acidaminophilum* vorkommenden Kopien von *grdA* und weiteren Genen des Glycin-Metabolismus wurde im Abschnitt 3.1. näher eingegangen.

3.4.4.2. Testexpression der Gene der Selenoproteine PrpU und GrdA als *Strep*-tag[®] II-Translationsfusion in *E. coli*

Wie bereits erwähnt, konnte die heterologe Synthese von Selenoproteinen nur mit Hilfe des von GURSINSKY *et al.* (2008) etablierten Plasmides pASBC4 in *E. coli* durchgeführt werden. Auf Grund der Inkompatibilität dieses Plasmides mit dem im Expressionstamm *E. coli* BL21(DE3)-CodonPlus-RIL enthaltenen RIL-Plasmid war die Expression in diesem Stamm nicht möglich. Daher wurde zunächst eine Testsynthese der beiden Selenoproteine PrpU und GrdA im Stamm *E. coli* XL1-Blue MRF` durchgeführt.

Die Testsynthese erfolgte in 20 ml LB-Selektivmedium, als Inokulum diente eine ebenfalls in LB-Selektivmedium gewachsene Übernacht-Kultur. Nach dreistündiger Induktion des *tet*-Promotors der Expressionsplasmide erfolgte die Analyse der Proben durch SDS-PAGE bzw. Western-Blot-Nachweis des *Strep*-tag[®] II mittels StrepTactin-HRP-Konjugat. Für das heterolog exprimierte *grdA* konnte in einer 17,5% igen SDS-PAGE eine zusätzliche Proteinbande mit einer Größe von ca. 20 kDa im Vergleich zur nichtinduzierten Probe bei der Synthese durch pASK-IBA3plus sichtbar gemacht werden. Eine Bande

analoger Größe konnte ebenfalls im Western-Blot nachgewiesen werden. 20 kDa entspricht der Größe von heterolog exprimiertem *grdA* fusioniert mit dem *Strep*-tag[®] II. Bei der Überproduktion mit Hilfe des Vektors pASK-IBA3 konnte keine zusätzliche Bande identifiziert werden. Also war die Verwendung von pASK-IBA3plus notwendig.

Für PrpU konnte weder in der SDS-PAGE noch durch Western-Blot eine zusätzliche Bande bei Synthese durch pASK-IBA3 bzw. pASK-IBA3plus sichtbar bzw. detektiert werden (Daten nicht gezeigt). Daher erfolgte eine weitere Testsynthese der Proteine PrpU und GrdA im Stamm *E. coli* BL21(DE3). Die Überproduktion beider Proteine erfolgte auch hier mit Hilfe der Plasmide pASK-IBA3 und pASK-IBA3plus. Die Analyse der nach Testexpression gewonnenen Proben erfolgte ebenfalls durch SDS-PAGE und Western-Blot-Nachweis des *Strep*-tag[®] II mittels StrepTactin-HRP-Konjugat. Bei der Synthese beider Proteine durch das Plasmid pASK-IBA3plus konnte für PrpU eine zusätzliche Bande bei ca. 12 kDa und für GrdA eine bei ca. 20 kDa sichtbar detektiert werden. Bei Expression mittels pASK-IBA3 konnte auch in diesem Stamm weder für *prpU* noch für *grdA* eine Überproduktion der Proteine nachgewiesen werden (Daten nicht gezeigt). Da die Expression des Wildtyp-*grdA* im Stamm *E. coli* XL1-Blue MRF[°] wesentlich schwächer war, als im Stamm *E. coli* BL21(DE3), wurde letzterer auch für die weiteren Versuche für die Expression von Wildtyp-*grdA* verwendet.

Die Synthese der Cystein-Mutanten von PrpU und GrdA erfolgte im Stamm *E. coli* BL21(DE3)-CodonPlus-RIL. Für beide Proteine wurden nach Testsynthese und anschließender SDS-PAGE bzw. Western-Blot-Analyse zusätzliche Banden mit Größen von ca. 12 kDa (PrpU) bzw. ca. 20 kDa (GrdA) visualisiert bzw. detektiert.

3.4.4.3. Synthese und Reinigung von Wildtyp-PrpU und -GrdA und deren Cystein-Varianten

Die Überproduktion beider Wildtyp-Proteine erfolgte im Stamm *E. coli* BL21(DE3) analog zu 3.4.1.3. im 1 l Maßstab in LB-Selektivmedium (125 μ g/ml Ampicillin und 30 μ g/ml Chloramphenicol) und dreistündiger Induktion des *tet*-Promotors mit 0,2 μ g/ml Anhydrotetracyclin. Die Überproduktion der Cystein-Mutanten von PrpU und GrdA erfolgte im Stamm *E. coli* BL21(DE3)-CodonPlus-RIL.

Die Präparation des Rohextraktes erfolgte aus dem Pellet von 100 ml Kultur (Cystein-Varianten von PrpU und GrdA), von 200 ml (Wildtyp-GrdA) bzw. von 250 ml Kultur bei Wildtyp-PrpU. Nach Bindung des Rohextraktes an StrepTactin-Sepharose wurden die ungebundenen Proteine durch Waschen mit 5x1 ml PufferW entfernt und die überproduzierten und mit *Strep*-tag[®] II-fusionierten Proteine mit 6x0,5 ml PufferW mit 2,5 mM Desthiobiotin eluiert. Alle Schritte erfolgten bei 4 °C und unter Gravitationsfluss.

Anschließend wurden die einzelnen Säulenläufe mittels SDS-PAGE und Western-Blot-Nachweis des *Strep*-tag[®] II mittels StrepTactin-HRP-Konjugat überprüft und die Proteinkonzentrationen der einzelnen Elutionsfraktionen mittels BRADFORD-Test bestimmt.

Abb. 27: Reinigung der rekombinanten Selenoproteine PrpU (A) und GrdA (B) und deren Cystein-Varianten an StrepTactin-Sepharose nach Synthese im Expressionsvektor pASK-IBA3plus. Die Proben wurden in einem Schägger-Gel (SCHÄGGER 2006) aufgetrennt und durch Coomassie-Färbung sichtbar gemacht. M_Molekulargewichtsmarker, WT_Elutionsfraktion der Wildtyp-Proteine, MU_Elutionsfraktion der Cystein-Variante der Proteine PrpU und GrdA nach Affinitätschromatographie an StrepTactin-Sepharose. Es wurden jeweils 2 µg der Wildtyp-Proteine und jeweils 5 µg der Cystein-Varianten beider Proteine aufgetragen.

In Abbildung 27 ist zu erkennen, dass sowohl die Wildtyp-Proteine PrpU und GrdA als auch deren Cystein-Varianten innerhalb der dritten Elutionsfraktion mit Proteinkonzentrationen von 1 μ g/ μ l (PrpU-WT), 2 μ g/ μ l (PrpU-MU), 1 μ g/ μ l (GrdA-WT) und 2,5 μ g/ μ l (GrdA-MU) eluierten, wobei die beiden GrdA-Varianten nicht bis zur Homogenität gereinigt werden konnten. Somit konnten aus 250 ml Kulturvolumen 0,5 mg Wildtyp-PrpU und aus 100 ml Kulturvolumen 1 mg der Cystein-Variante von PrpU gereinigt werden. 0,5 mg Wildtyp-GrdA wurden aus 200 ml und 1,25 mg der Cystein-Variante von GrdA wurden aus 100 ml Kulturvolumen 1 mg der Cystein-Variante von GrdA wurden aus 100 ml Kulturvolumen gereinigt. Am Beispiel des Selenoproteins PrpU wurde durch MALDI-MS-Analyse bestimmt, dass das heterolog synthetisierte Wildtyp-Protein aus einem Gemisch von Cystein-, Selenocystein-und Tryptophan-Varianten besteht (A. SCHIERHORN, pers. Mitteilung). Die Cystein-Variante des heterolog synthetisierten GrdA zeigte das bereits von DIETRICH *et al.* (1991) beschriebene Absorptionsspektrum mit Maxima bei 228, 277 und 411 nm sowie Schultern bei 252, 258, 265 und 268 nm (Anhang A.X.).

3.5. *pull-down* Experimente

Mit Hilfe des *lexA*-basierenden *two-hybrid*-Systems konnten die Proteine P2 der Glycin-Decarboxylase, GrdA der Glycin-Reduktase und das Thioredoxin des Thioredoxin-Systems als putative Interaktionspartner des Selenoproteins PrpU identifiziert werden. Bei diesen Versuchen wurden gezielt ausgewählte Protein-Protein-Interaktionen untersucht. Durch *pull-down* Experimente sollten im Gesamtpool der cytosolischen Proteine aus *E. acidaminophilum* nach Interaktionspartner gesucht und die Ergebnisse der Interaktionsstudien durch das *lexA*-basierende *two-hybrid*-System bestätigt werden. Vorteil dieses Versuches gegenüber dem *two-hybrid*-System war, dass die Proteine aus *E. acidaminophilum* nicht als Translationsfusionen, sondern nativ vorlagen, und man davon ausgehen konnte, dass diese Proteine korrekt gefaltet waren.

Zunächst wurde die Cystein-Variante von *prpU* mit Hilfe des Plasmides pPMI3 (GRÖBE 2001) im Stamm *E. coli* BL21(DE3)-CodonPlus-RIL heterolog exprimiert. Die Kultivierung erfolgte schüttelnd in 500 ml LB-Selektivmedium bei 37 °C, nach dreistündiger Induktion des *tet*-Promotors mit Anhydrotetracyclin erfolgte die Ernte der Zellen. Die Präparation des Rohextraktes erfolgte aus dem Pellet von 100 ml Hauptkultur, wie unter 2.10.7.3. beschrieben. Nach Auftragung auf eine StrepTactin-Affinitätssäule wurden ungebundene Proteine durch Waschen der Säulen mit 5x1 ml PufferW entfernt und anschließend die gebundenen, heterolog synthetisierten und mit *Strep*-tag[®] II-fusionierten Proteine mit 2,5 mM Desthiobiotin im Puffer von der Säule eluiert. Alle Schritte erfolgten bei 4 °C und unter Gravitationsfluss. Der Säulenlauf wurde durch SDS-Polyacrylamid-Gelelektrophorese überprüft. Wie in Abbildung 28 A zu erkennen, konnte PrpU homogen gereinigt werden, es eluierte fast vollständig innerhalb der dritten Elutionsfraktion mit einer Konzentration von 2 μ g/ μ l.

Aus 2 g Glycin-gewachsener Zellen von *E. acidaminophilum* wurde der Rohextrakt, wie unter 2.10.7.3. beschrieben, präpariert und anschließend auf eine StrepTactin-Affinitätssäule aufgetragen. Die nichtgebundenen Proteine wurden durch Waschen der Säule mit 1,5 ml PufferW separiert. Durch diesen Schritt sollten die Proteine, die starke Wechselwirkungen mit der StrepTactin-Sepharose, aber nicht mit PrpU eingehen, aus dem Rohextrakt entfernt werden. Somit sollten falsch-positive Interaktionen ausgeschlossen werden.

1,5 ml des so präparierten Rohextraktes aus *E. acidaminophilum* wurden mit 500 µl homogen gereinigtem, mit *Strep*-tag[®] II-fusioniertem PrpU (1 mg) 30 min bei RT inkubiert und das Proteingemisch anschließend einer erneuten Affinitätschromatographie an StrepTactin-Sepharose unterzogen. Die Elutionsfraktionen dieses Säulenlaufes wurden durch SDS-Polyacrylamid-Gelelektrophorese visualisiert (Abb. 28 B).

Abb. 28: Reinigung der Cystein-Variante des rekombinanten Selenoproteins PrpU an StrepTactin-Sepharose (A) und *pull-down* Experimente mit Rohextrakt aus *E. acidaminophilum* (B). Nach Affinitätschromatographie an StrepTactin-Sepharose wurden die Proben in einem Schägger-Gel (A, B) aufgetrennt und durch Coomassie-Färbung sichtbar gemacht. M_Molekulargewichtsmarker, FT_Durchlauf, W1_1. Waschfraktion, E_Elutionsfraktionen

Wie in Abbildung 28 B zu erkennen ist, konnten neben einer ca. 12 kDa großen Bande, die dem heterolog synthetisierten, *Strep*-tag[®] II-fusionierten PrpU zuzuordnen ist, weitere Proteinbanden mit Größen von ca. 14, 16, 40, 70 und 73 kDa sichtbar gemacht werden. Durch Sequenzbestimmung mittels MALDI-MS-Analyse konnten diese dem P2-Protein der Glycin-Decarboxylase (14,1 kDa), GrdA der Glycin-Reduktase (16,6 kDa) und der Thioredoxin-Reduktase (34,3 kDa) aus *E. acidaminophilum* zugeordnet werden. Den beiden größeren Banden konnten keine bekannten Proteine aus *E. acidaminophilum* zugeordnet werden (A. SCHIERHORN, pers. Mitteilung).

Als Kontrolle wurde eine Affinitätschromatographie an StrepTactin-Sepharose nur mit Rohextrakt von *E. acidaminophilum* durchgeführt, hier konnten keine Proteinbanden in den Elutionsfraktionen identifiziert werden (Daten nicht gezeigt).

Weitere *pull-down* Experimente wurden auch mit heterolog synthetisiertem, an StrepTactin-Sepharose gereinigtem P2-Protein, GrdA und Thioredoxin mit Rohextrakt von *E. acidaminophilum* durchgeführt. Bei diesen Versuchen konnten keine potentiellen Interaktionspartner identifiziert werde (Daten nicht gezeigt).

3.6. Aktivitätstests zur Bestimmung der Funktion von PrpU

Wie bereits erwähnt, ist der Glycin-Decarboxylase-Enzymkomplex von *E. acidaminophilum* durch das Fehlen der Dihydrolipoamid-Dehydrogenase und der Übernahme dieser essentiellen Funktion durch die NADP(H)-abhängige Thioredoxin-Reduktase im Zusammenspiel mit dem Thioredoxin und dem GrdA der Glycin-Reduktase gekennzeichnet (DIETRICHS *et al.*, 1991; FREUDENBERG *et al.*, 1989a; MEYER *et al.*, 1991). Die bisher dargelegten Untersuchungen wiesen auf eine direkte Beteiligung des Selenoproteins PrpU am Glycin-Metabolismus von *E. acidaminophilum* hin. Durch Enzym-*assays* mit Hilfe der heterolog synthetisierten Proteinen der Glycin-Decarboxylase (GcvP4, GcvP2 und GcvP1αβ), des Thioredoxin-Systems (Thioredoxin-Reduktase und Thioredoxin), dem Selenoprotein GrdA und PrpU selbst, sollten diese Resultate in der gesamten Kette verifiziert werden. Zum einen sollte eine mögliche Stimulierung der Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase durch PrpU (analog zum GrdA) gezeigt und zum anderen eine Komplementation des Glycin-Decarboxylase-Enzymkomplexes durch PrpU aufgezeigt werden.

3.6.1. Stimulierung der Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase

Mit Hilfe des Thioredoxin-System-Tests mit NADPH und Lipoamid konnte von DIETRICHS (1991) und MEYER (1991) gezeigt werden, dass sowohl Thioredoxin als auch GrdA als so genannte Aktivator-Proteine der Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase fungieren. Da ein Vergleich der

88

Aminosäure-Sequenzen von PrpU und Thioredoxin eine gewisse Ähnlichkeit beider Proteine aufzeigte (POEHLEIN 2003), sollte mit diesem Versuch gezeigt werden, ob PrpU ebenfalls in der Lage ist, die Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase zu stimulieren.

Die Wildtyp- und die Cystein-Varianten der Proteine GrdA und PrpU sowie die Thioredoxin-Reduktase und das Thioredoxin wurden heterolog in *E. coli* synthetisiert und durch Affinitätschromatographie in StrepTactin-Sepharose gereinigt (3.4.4.2; 3.4.3.2.). Die Aktivität der Proteine des Thioredoxin-Systems wurde zunächst durch die von MEYER (1991) beschriebenen Komplementationstests überprüft.

Zunächst wurde die Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase alleine, in Kombination mit dem Thioredoxin bzw. bei Anwesenheit von Thioredoxin und GrdA, ermittelt. Dabei wurden jeweils 10 µg heterolog synthetisierte, homogen gereinigte Thioredoxin-Reduktase und GrdA sowie 5 µg Thioredoxin eingesetzt. Die hierbei ermittelten spezifischen Aktivitäten sind in Tabelle 10 dargestellt.

 Tab. 10: Stimulierung der Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase (Thioredoxin-System-Test mit NADPH und Lipoamid (MEYER et al., 1991); 2.11.2.)

Protein-Kombinationen	ermittelte spez. Aktivität U/mg ¹			
TR	0,36 (±0,04)			
TR+Trx	0,67 (±0,10)			
TR+Trx+GrdA	0,91 (±0,09)			
TR+Trx+PrpU	0,64 (±0,12)			
TR+Trx+GrdA+PrpU	0,87 (±0,15)			
TR+ PrpU	0,40 (±0,04)			

¹ Die Messwerte basieren auf dem Durchschnitt einer Dreifach-Bestimmung

Die von DIETRICH (1991) und MEYER (1991) beschriebene Stimulation der Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase durch Thioredoxin und vermehrt noch durch GrdA konnte für die heterolog synthetisierten Proteine ebenfalls gezeigt werden. Während die Thioredoxin-Reduktase eine Aktivität von 0,36 U/mg zeigte, konnte diese durch Zugabe von Thioredoxin nahezu verdoppelt werden (0,67 U/mg). Eine weitere Steigerung der Aktivität konnte durch das Protein GrdA erzielt werden (0,91 U/mg). Es konnte weiterhin gezeigt werden, dass PrpU die Funktion von GrdA als Elektronencarrier in diesem Fall nicht ersetzen kann. Die spezifischen Aktivitäten von 0,64 U/mg, die bei diesem Ansatz (Thioredoxin-Reduktase+Thioredoxin+PrpU) ermittelt wurden, sind mit denen zu vergleichen, die bei dem Ansatz mit Thioredoxin-Reduktase und Thioredoxin erhalten wurden. Jedoch lagen die hier ermittelten Werte deutlich unter denen von DIETRICH (1991) und MEYER (1991) bestimmten Messergebnissen. Dies könnte u. a. durch die heterologe Proteinsynthese und die Fusion mit dem für die Reinigung essentiellen *Strep*-tag[®] II bedingt sein. Wie in Tabelle 10 (s. S. 68) zu erkennen ist, konnte durch Zugabe von PrpU zuletzt beschriebenem Messansatz (Thioredoxin-Reduktase+Thioredoxin+GrdA) keine weitere Erhöhung der Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase verzeichnet werden. Auch PrpU allein konnte die Aktivität der Thioredoxin-Reduktase ohne Thioredoxin nicht stimulieren. Die Zugabe von größeren Mengen PrpU (bis zu 100 µg) zu allen hier beschriebenen Meßansätzen hatte ebenfalls keinen Effekt auf die Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase.

Auch die Kombination der Messansätze mit den Wildtyp-Varianten der Selenoproteine GrdA und PrpU erbrachte keine Unterschiede zu den in Tabelle 10 dargestellten Messwerten (Daten nicht gezeigt).

3.6.2. Glycin-Decarboxylase-Test

Mit Hilfe des lichtoptischen Tests (KLEIN and SAGERS 1967a) zur Bestimmung der Glycin-Decarboxylase-Aktivität sollte die oxidative Decarboxylierung von Glycin durch die heterolog synthetisierten Komponenten der Glycin-Decarboxylase aus *E. acidaminophilum* gezeigt werden. Des Weiteren sollte mit diesem Test eine mögliche Beteiligung von PrpU z. B. durch Ersetzen der in diesem Organismus fehlenden, eigenständigen Dihydrolipoamid-Dehydrogenase gezeigt werden. Grundlage dieses Testes ist die Übertragung der bei der Decarboxylierung des Glycins durch die Komponenten der Glycin-Decarboxylase freiwerdenden Elektronen auf NAD⁺ bzw. NADP⁺.

Zunächst wurde dieser Test (2.11.4.) mit Rohextrakt aus *E. acidaminophilum* durchgeführt, um die optimalen Pufferbedingungen zu testen. Die höchste Glycin-Decarboxylase-Aktivität konnte dabei bei der Verwendung von 100 mM Kaliumphosphat-Puffer, pH 8,0 gemessen werden. Hierbei wurden spezifische Aktivitäten von 0,042 U/mg (±0,001) erhalten, was mit den von FREUDENBERG (1987) bestimmten Werten von 0,041 U/mg sehr gut übereinstimmt. Unter diesen Pufferbedingungen wurden alle weiteren Tests durchgeführt.

Zu Beginn dieses Versuches sollte die Aktivität der zum Enzymkomplex der Glycin-Decarboxylase gehörenden Proteine, der beiden Untereinheiten des P1-Proteins; GcvP1a und GcvP1β, des P2- und des P4-Proteins durch den von KLEIN und SAGERS (1967) beschriebenen Test, komplettiert durch eine kommerziell erworbene Diaphorase (Sigma, Taufkirchen), überprüft werden. Die Aktivität der Diaphorase wurde vorab durch den ebenfalls von KLEIN und SAGERS (1967) beschriebenen Test überprüft.

Leider konnte durch diesen Test keine Glycin-Decarboxylase-Aktivität der heterolog synthetisierten Proteinkomponenten der Glycin-Decarboxylase aus *E. acidaminophilum* gemessen werden. Auch eine Erhöhung der Proteinmengen im Messansatz führte zu keinem Resultat. Daher konnte eine mögliche Beteiligung von PrpU an diesem Stoffwechselweg auf diesem Weg nicht gezeigt werden.

Da bei diesem Versuchsansatz nur die Glycin-Decarboxylase-Reaktion im Gesamten betrachtet wird, das gemessene Resultat also als Ergebnis aller Einzelreaktionen zu sehen ist, kann keine Aussage getroffen werden, welches der drei überproduzierten Proteine inaktiv war, oder ob sogar zwei oder alle drei Proteine keine oder nur eine unzureichende Aktivität zeigten. Die eigentliche Decarboxylierung, katalysiert durch die Proteine P1 und P2, war nur durch den Einsatz radioaktiver Agenzien wie 1-¹⁴C-Glycin bzw. ¹⁴C-Bicarbonat (KLEIN and SAGERS 1966a; MOTOKAWA and KIKUCHI 1969) zu bestimmen, was im Rahmen dieser Arbeit nicht mehr möglich war. Der durch das P4-Protein katalysierte Transfer der Aminomethylgruppe auf THF konnte nur mit Hilfe der Proteine P1, P2 und P3 bzw. einer Diaphorase gezeigt werden (KLEIN and SAGERS 1967a).

Es sei schon an diesem Punkt der Ausführungen erwähnt, dass die ersten Schritte weiterführender Arbeiten in der Bestimmung der Aktivitäten der einzelnen Enzymkomponenten liegen sollten, und wenn möglich, in der Optimierung der Reinigung der Proteine und der Testbedingungen zu Bestimmung der Glycin-Decarboxylase-Aktivität der heterolog synthetisierten Komponenten der Glycin-Decarboxylase aus *E. acidaminophilum*.

4. Diskussion

4.1. Die Transkription des Glycin-Decarboxylase-Operons

Im Genom von *E. acidaminophilum* sind die Gene der Komponenten der Glycin-Decarboxylase in identischer Transkriptionsrichtung in einem Operon mit der Anordnung *gcvP4* (Aminomethyl-Transferase), *gcvP2* (*hydrogen carrier Protein*), *gcvP1a* (α -Untereinheit der Decarboxylase) und *gcvP1β* (β -Untereinheit der Decarboxylase), gefolgt von den Genen *thf* (Formyl-THF-Synthetase) und *prpU* (PrpU), organisiert (s. S. 46, Abb. 8).

Die bei E. acidaminophilum vorliegende Organisation der Gene konnte sowohl in den Genomen von Clostridium sticklandii, Thermoanaerobacter tengcongensis (BAO et al., 2002), Thermus thermophilus als auch in Thermotoga maritima (NELSON et al., 2001) gefunden werden (Abb. 29). Während bei Neisseria meningitidis die Gene gcvT und gcvH in gleicher Transkriptionsrichtung assoziiert vorliegen, ist das Gen gcvP in einem anderen Genomabschnitt lokalisiert (Abb. 29). Das native P-Protein aus diesem Organismus besteht aus einem Homodimer wie z. B. bei E. coli (PARKHILL et al., 2000). Bei Pyrococcus horikoshii hingegen sind nur die beiden Gene des aus zwei Untereinheiten bestehenden P1-Proteins miteinander assoziiert, sowohl das Gen der Aminomethyl-Transferase als auch des H-Proteins (hydrogen carrier Protein) liegen mit identischer Transkriptionsrichtung jeweils in nicht miteinander assoziierten Bereichen des Genoms vor (KAWARABAYASI et al., 1998). Bei C. difficile und B. subtilis sind die Gene $gcvPl\alpha$ und $gcvP1\beta$ downstream von gcvP4 lokalisiert, und bei beiden Organismen ist das Gen des P2-Proteins nicht mit diesen Genclustern assoziiert (SEBAIHIA et al., 2006; TAKAMI et al., 2000). Eine Sonderstellung nehmen hierbei jedoch die Gene des P4-Proteins und der α -Untereinheit des P1-Proteins aus C. difficile ein, da beide miteinander verschmolzen zu sein scheinen und für eine putative bi-functionale Glycin-Dehydrogenase/Aminomethyl-transferase codieren (Abb. 29). Diese Art der Verschmelzung dieser beiden Komponenten konnte bisher nur für diesen Organismus auf Nukleinsäureebene gezeigt werden. Dieses Phänomen ist jedoch sowohl bei dem Stamm C. difficile 630 als auch bei dem Stamm C. difficile QCD-97b34 zu finden. Bei Yersinia pestis sind die Gene aller Komponenten der Glycin-Decarboxylase ebenfalls mit identischer Transkriptionsrichtung in einem Cluster organisiert, jedoch sind gcvH und gcvT downstream von gcvP lokalisiert, weisen also eine umgekehrte Orientierung zu der bisher beschriebenen Genanordnungen auf (PARKHILL et al., 2001). In Vibrio cholerae liegt das Gen gcvT upstream der Gene gcvH und gcvP in entgegengesetzter Transkriptionsrichtung und ist von diesen durch zwei offene Leserahmen getrennt. Während das eine, in gleicher Transkriptionsrichtung wie gcvT liegende Gen für ein hypothetisches Protein codiert, ist upstream von gcvH in identischer Transkriptionsrichtung das Gen einer Serin-Hydroxymethyltransferase zu finden (Abb. 29). Die Gene gcvH und gcvP liegen im Genom von Mycobacterium tuberculosis in identischer Transkriptionsrichtung vor, jedoch getrennt durch vier offene

Leseraster, welche für hypothetische Proteine codieren. Das Gen gcvT weist die entgegengesetzte Transkriptionsrichtung auf und ist nicht mit diesem Genomabschnitt assoziiert.

Abb. 29: Organisation der Gene der Komponenten der Glycin-Decarboxylase in den Genomen diverser Organismen: Die Anordnung der Gene der Glycin-Decarboxylase (gcvP4, gcvP2, gcvP1a und $gcvP1\beta$) und wenn direkt assoziiert, der Dihydrolipoamid-Dehydrogenase (lpd) in den Genomen folgender Organismen ist dargestellt: *E. acidaminophilum, C. sticklandii* (A. KREIMEYER, pers. Mitteilung), *E. coli* (OKAMURA-IKEDA *et al.,* 1993), *P. horikoshii* (KAWARABAYASI *et al.,* 1998), *C. difficile* (SEBAIHIA *et al.,* 2006), *B. subtilis* (TAKAMI *et al.,* 2000), *N. meningitidis* (PARKHILL *et al.,* 2000), *Y. pestis* (PARKHILL *et al.,* 2001), *V. cholerea, M. tuberculosis* (FLEISCHMANN *et al.,* 2002) und *T. denticola* (SESHADRI *et al.,* 2004). Assoziierte Gene sind durch eine Linie verbunden. Bei nicht-assoziierten Genen wurden ebenfalls die Transkriptionsrichtung und die Lokalisation im jeweiligen Genom berücksichtigt. Zweifarbige Pfeile stehen für die Verschmelzung von zwei Genen.

Nur für *Treponema denticola* konnte eine fast direkte Assoziation des Gens des P3-Proteins (*lpd*), der Dihydrolipoamid-Dehydrogenase, gezeigt werden. Für *E. acidaminophilum* konnte weder auf Nukleinsäurenoch auf Proteinebene eine eigenständige Dihydrolipoamid-Dehydrogenase nachgewiesen werden (DIETRICHS *et al.*, 1991; FREUDENBERG *et al.*, 1989a; MEYER *et al.*, 1991; POEHLEIN 2003). Sowohl bei *E. coli* als auch bei *V. cholerae* und *M. tuberculosis* konnte im Genom nur eine Kopie dieses Gens nachgewiesen werden. Bei allen drei Organismen ist dieses mit den Genen der Komponenten des Pyruvat-Dehydrogenase-Komplexes assoziiert, wo es bei *E. coli* durch einen eigenständigen, direkt vor dem Gen gelegenen Promotor reguliert wird. Dieses Protein ist bei *E. coli* sowohl Komponente der Pyruvat-Dehydrogenase, 2-Oxoglutarat-Dehydrogenase, des verzweigten Aminosäurestoffwechsels (*branched-chain fatty acid metabolism*) und des Acetoinstoffwechsels sowie der Glycin-Decarboxylase (CRONAN and LA PORTE 1996; OPPERMANN *et al.*, 1991; STEIERT *et al.*, 1990). Bei *N. meningitidis* und *Y. pestis* befindet sich eine Genkopie einer Dihydrolipoamid-Dehydrogenase in enger Assoziation mit den Genen der Proteine des Pyruvat-Dehydrogenase-Komplexes und eine weitere Kopie in einem Cluster mit den Genen für die Proteine des 2-Oxoglutarat-Komplexes. Die Genome von B. subtilis und C. difficile hingegen weisen sogar drei Gene auf, die für eine Dihydrolipoamid-Dehydrogenase codieren. Bei B. subtilis sind diese Gene jeweils in einem Gencluster, codierend für die Komponenten des Pyruvat-Dehydrogenase-Komplexes, des Fettsäurestoffwechsels bzw. des Acetoinstoffwechsels, organisiert. Bei C. difficile ist ebenfalls jeweils eine Genkopie im Cluster des Pyruvat- und des Acetoinstoffwechsels lokalisiert, die dritte Kopie hingegen ist 8 kb upstream von gcvH zu finden, wo sie von Genen für eine CO-Dehydrogenase, Formiat-THF-Ligase, Methenyl-THF-Cyclohydrolase bzw. Methylen-THF-Dehydrogenase flankiert wird. Durch die letzten drei Enzyme kann u. a. aus Formiat 5,10-Methylen-THF gebildet werden, was durch die Synthase-Aktivität der Glycin-Decarboxylase zu Glycin umgewandelt werden kann. Möglicherweise ist dieses Gen einer Dihydrolipoamid-Dehydrogenase die P3-Komponente des Glycin-Decarboxylase-Komplexes von C. difficile.

Für das Operon von E. coli konnte die gleiche Anordnung der Gene wie bei E. acidaminophilum gezeigt werden (Abb. 29), jedoch besteht auch bei diesem Organismus das P-Protein aus einem Homodimer, welches demzufolge nur durch ein entsprechend großes Gen codiert wird (OKAMURA-IKEDA et al., 1993). Die Gene der Glycin-Decarboxylase aus E. coli werden polycistronisch transkribiert, ein möglicher Transkriptionsstartpunkt des Operons wurde 104 nt upstream des Startcodons (ATG) von gcvT identifiziert, eine Terminatorstruktur, in diesem Fall Rho-abhängig, konnte nur downstream von gcvP identifiziert werden. Putative Promotorelemente bzw. Terminationsstrukturen konnten für die Gene gcvH und gcvP nicht gefunden werden (OKAMURA-IKEDA et al., 1993; STAUFFER et al., 1993). Auch die Gene des Glycin-Decarboxylase-Operons aus E. acidaminophilum werden polycistronisch transkribiert. Durch Northern-Blot-Analysen konnte sowohl eine gemeinsame Transkription der vier Gene gcvP4, gcvP2, gcvP1a sowie gcvP1β der Glycin-Decarboxylase als auch eine polycistronische Transkription mit den downstream lokalisierten Genen thf und prpU, welche für eine Formyl-THF-Synthetase und das Selenoprotein PrpU codieren, gezeigt werden (LECHEL 1999; POEHLEIN 2003). Durch RT-PCRs, die ebenfalls eine gemeinsame Transkription der Gene der Glycin-Decarboxylase mit thf und prpU zeigten, konnten nun die Resultate der Northern-Blot-Analysen bestätigt werden (s. S.48, Abb. 9). Durch Northern-Blot-Analysen konnten putative Einzeltranskripte für gcvP1a, $gcvP1\beta$, thf sowie prpU gezeigt werden. primer-extension-Analysen hingegen ergaben mögliche Transkriptionsstartpunkte nur upstream von gcvP4, thf und prpU, und eine Analyse der Nukleotidsequenz des Glycin-Decarboxylase-Operons ergab hingegen Terminatorstrukturen nur downstream von $gcvP1\beta$, thf und prpU und putative Promotorelemente nur upstream von gcvP4, thf und prpU. Diese Resultate sprechen für eine polycistronische Transkription der Gene gcvP4, gcvP2, $gcvP1\alpha$ und $gcvP1\beta$ zusammen mit thf und prpU und einer zusätzlichen monocystronischen Transkription der Gene thf und prpU. Zudem sprechen sie gegen Einzeltranskripte der Gene der Glycin-Decarboxylase-Komponenten, sodass die seinerzeit detektierten Transkripte möglicherweise unspezifisch bzw. Abbauprodukte sein können.

Die *upstream* der Transkriptionsstartpunkte von *gcvP4*, *thf* und *prpU* postulierten Promotorelemente 5[']-TGTAAA_{-16 bp-}ATGAAT-3['], 5[']-TTATAA_{-13 bp-}CAAAGC-3['] bzw. 5[']-CGGAGA_{-16 bp-}TAATAT-3['] zeigen

nur sehr geringe Übereinstimmung zu der Konsensussequenz 5'-TTGACA_{.17±1} _{bp}.TATAAT-3' aus *E. coli* (HARLEY and REYNOLDS 1987) bzw. *B. subtilis* (HELMANN 1995). Auch ein von GRAVES und RABINOWITZ (1986) bzw. HELMANN (1995) postuliertes Promotorelement mit der Sequenz 5'-TNTG-3', welches bei stark von der Konsensussequenz abweichenden -10- und -35-Motiven einen positiven Effekt auf die Stärke des Promotorelement von *thf* war dieses Motiv nicht zu finden, und in den anderen beiden Fällen wurde ein nicht optimaler Abstand zu dem -10-Motiv gefunden. Diese Aspekte sprechen für sehr schwache Promotoren und eine andere Regulation der Transkription des Glycin-Decarboxylase-Operons.

Sehr ungewöhnlich ist der durch *primer-extension*-Analyse 1125 nt *upstream* von *gcvP4* bestimmte Transkriptionsstartpunkt, welcher aber durch jeweils eine Doppelbestimmung mit zwei im Abstand von ca. 260 bp gelegenen Primern und vor allem durch RT-PCRs bestätigt werden konnte (s. 3.2.2. und 3.2.3.). Somit ist der Startpunkt der mRNA des Glycin-Decarboxylase-Operons im 3'-Bereich des *upstream* gelegenen Gens *nlpP* lokalisiert. Eine Analyse der Nukleotidsequenz des 1014 bp umfassenden intergenen Bereiches zwischen dem Stopcodon von *nlpP* und dem Startcodon von *gcvP4* ergab einerseits keinen Hinweis auf einen nicht gefundenen ORF, andererseits zeigte dieser aber signifikante Sequenzhomologien zu dem von BARRICK *et al.* (2004) bzw. MANDAL *et al.* (2004) beschriebenen Glycin-anhängigen Riboswitch, der oft im 5'-nichttranslatierten Bereich von Genen des Glycin-Metabolismus wie der Glycin-Decarboxylase oder der Serin-Hydroxymethyltransferase bzw. von Efflux-Systemen wie z. B. Na⁺/Alanin-Symporter zu finden ist. Die Analyse der Bereiche *upstream* der Glycin-Decarboxylase-Operons von *C. difficile* und *C. sticklandii* ergab ebenfalls einen sehr großen intergenen Bereich von 806 bp bzw. 979 bp und ein Sequenzvergleich zeigte ebenfalls signifikante Übereinstimmungen (Abb. 30) mit den für Glycin-abhängigen Riboswitches postulierten Konsensussequenzen (KWON and STROBEL 2008; MANDAL *et al.*, 2004).

B.sub V.cho E.aci C.dif C.sti	RCRGGAGAG _AUGAGCGAAUGACAGCAAGGGGAGAGACCUGACCGAAAACCUCGGGA _UUGUUCCGUUGAAGACUGCAGGAGAGUGGUUGUUAACCAGAUUUUAACAUCUGAGG _UACGGACAAAUGAAGGC <mark>ACGGGAGAG</mark> AUAUUCAUGCUUAUUCAAAUAAACAU _AUUUCCAAAUGAGAUUAGCGAGAGAGUCCUUUAUACGAA CAAUUGAGGUUA <mark>UCGGGAGAU</mark> CUCUU	CRCCGAAGRRG CAGGCGCCGAAGGAG CAAAUAACCCGCCGAAGAAG GGAUGGCCGACGAGG AAGGCGCCGAAGAAG AUGAGAGCCGAAGAAG	CAA CAAACUGC JUAA SCAAUAUAAGAGAAUUGCCAAUUCCU JAAAUUUUAAGAAAUGCCAAUUUU SAAAUACUAUAUGCUCAUCCAGCCUAUA	GGA JUAU JUAG AUGU
B.sub V.cho E.aci C.dif C.sti	AA CUYUCAGGY RRGGAC3 _GUGAUCUCUCAGGC	GY CYCUG CUUGCUCGACGCAA - CUCUG UGUAGUUGGAGGAAC CUCUG GUU - GCUCGAUGGAGCUCUG CGCUAAUUGAUGGGACUCUG GGUAACU - GAUGGAA	GARAG GAGAGUGUUUGUGCGGAUGCGCAAAC- GAGAGAACCGUUUAAUCGGU GAGAGAUCGCACAUUAACGUGCGA GAGAGACUUAAGUUAAGAUACUAUAAG GAAAUAUCCCGUUAUAGGA	CR CA CG CA 3UCA
B.sub V.cho E.aci C.dif C.sti	CCCAAGGRGYAA AA CUCUCAGGY RFF CCUUUGGGCACGUCUUUGCGUAUGCAAAGUAAACUUUCAGGUGCCAC CCCAAGGAGCAACUCUCGCGCAUAUGCAGAGUGAAACUCUCAGGGAAAAC CCCAAGGACAAACUCUCGCACAUUGCAAGUUUGCAUGUAAAACUCUCAGGUAA-AGZ CCCAAGGACAAAGUGCAAAGUGUAAAGUUUGCAUGUAAAACUCUUCAGGUAA-AGZ CCCAAGGACCAAAAUAAUAUUAAAUUAUUAAAUCUUUCAGGUAU-ACZ CCCAAGGACCAAAUAAUAUUAAAUUAUUAAAUCUUUCAGGUAU-ACZ CCCUAGGACCAAUAUCGCAGAUAUUAUGUGAUAGAAUCUUCAGGUAAAAZUUUUCAGGUAU-ACZ CCCUAGGACCAAUAUCGCAGAUAUUAUUAUGUGAUAGAAUCUUCCAGGUGAAAAZUCUCUCAGGUAUAAAAA	GACAGRRR GACAGAGAACCUUCAUUUUA GACAGAGAGUGAAAGGCCA GACAGAGAAUAUAGUGGCGU AACAGGGAUAUAUAGGCUAG AACAGGAAUAUAGGAGAUGC	ACAUGAGGUGUUUCUCUGUCCUUUU IAUCU IAUGUAUUUUCAUGCGAAUUUGUCAUUG GAUUAUUUUCCAUGCUGAUAUAUCUUU 2UUUUUAGUGUCUUUAUAUUCUCUUUC	 }UA JUU JUU

Abb. 30: Glycin Riboswitch Alignment: gezeigt ist ein Nukleinsäure-Alignment der *upstream* Bereiche potentieller Glycin-Decarboxylase-Operons aus *B. subtilis*, *V. cholerae*, *E. acidaminophilum* (der Beginn der dargestellten Sequenz ist 1913 nt *upstream* des Startcodons von *gcvP4* zu finden; s. Anhang A.II.), *C. difficile sowie C. sticklandii*. Über dem Alignment ist die aus 104 untersuchten potentiellen Glycin-Riboswitchen resultierende Consensussequenz konservierter Bereiche dargestellt (KWON and STROBEL 2008; MANDAL *et al.*, 2004). Rot dargestellte Nukleotide bedeuten eine 97% ige, blau eine 90% ige und grün eine 75% ige Konservierung der entsprechenden Basen. Schwarz dargestellte Nukleotide sind nicht konserviert.

Durch diese charakteristischen und stark konservierten Sequenzmotive ergibt sich eine für den Glycin-Riboswitch typische Tandem-artige Sekundärstruktur, die sich aus zwei zueinander sehr ähnlichen Aptameren, welche über einen Linker verbunden sind, zusammensetzt (Abb. 31 B). Dabei sind die zentralen Bereiche sowie die *stem*-Strukturen P3 und P3a beider Aptamere sowohl in der Nukleotidabfolge als auch in ihrer Länge stark konserviert, und es ist eine Symmetrie dieser Strukturen zwischen beiden Aptameren zu erkennen (KWON and STROBEL 2008; MANDAL *et al.*, 2004). Die Sequenzen der P1 *stem*-Strukturen sind nur im oberen Bereich stark konserviert, und nur die Länge des P1 *stems* des Aptamer 2 ist konserviert.

Abb. 31: Sekundärstrukturen Glycin-abhängiger Riboswitches: A: Die Sekundärstruktur des Glycin-Riboswitch aus *E. acidaminophilum* und darunter dessen Lage *upstream* des Glycin-Decarboxylase-Operons sind dargestellt. Die bei *B. subtilis* bzw. *V. cholerae* an ausgewählten Positionen vorkommenden Basen bzw. Basenpaarungen sind dunkelbzw. hellgrün dargestellt und umrandet. Die zur Untersuchung der Funktionalität des Glycin-Riboswitch beider Organismen erzeugten Mutanten wurden im Fall von *B. subtilis* mit M1-6_{BS} und im Fall von *V. cholerae* mit M1-8_{VC} gekennzeichnet (KWON and STROBEL 2008; MANDAL *et al.*, 2004). Die orange unterlegten Nukleotide repräsentieren die intrinsische Terminatorstruktur, die sich bei Formation des Aptamer II durch Bindung von Glycin nicht ausbilden kann. B: die sich aus der Konsensussequenz von 104 Glycin-abhängigen Riboswitchen ergebende Sekundärstruktur der resultierenden mRNA sind dargestellt (KWON and STROBEL 2008; MANDAL *et al.*, 2004). Nukleotide, die zu 97 %, 90 % bzw. 75 % konserviert sind, wurden in rot, blau bzw. grün dargestellt. Schwarze Linien verdeutlichen Strukturen, die in der Nukleotidabfolge bzw. ihrer Länge nicht konserviert sind. Die schwarz umrandeten *loop*-Strukturen sind nur bei einigen der durch Bioinformatik analysierten Riboswitche zu finden und ebenfalls weder in Sequenz noch Länge konserviert.

Auch der potentielle Riboswitch *upstream* des Glycin-Decarboxylase-Operons von *E. acidaminophilum* weist die typische Tandem-artige Sekundärstruktur auf, wie in Abbildung 31 A zu erkennen ist. Sowohl Aptamer I als auch II sind durch einen zusätzlichen P3b-*stem* gekennzeichnet und Aptamer I weist keinen zusätzlichen P4-*stem* auf. MANDAL (2004) postulierten *downstream* des Glycin-Riboswitch von *B. subtilis* einen potentiellen intrinsischen Terminator (GUSAROV and NUDLER 1999; YARNELL and ROBERTS 1999), der nur in Abwesenheit von Glycin als solcher fungiert und teilweise mit dem P1-*stem* des Aptamer II überlappt. Im 3'-Bereich des Glycin-Riboswitch von *E. acidaminophilum* konnte ebenfalls ein solcher Terminator identifiziert werden, welcher ebenso teilweise mit dem P1-*stem* des Aptamer II überlappt (Abb. 31 A). Die *upstream* der Glycin-Decarboxylase-Operons von *C. difficile* und *C. sticklandii* identifizierten Riboswitche weisen nahezu identische Sekundärstrukturen im Vergleich zu dem nun in *E. acidaminophilum* identifizierten auf. Diese sind ebenfalls durch P3b-*stems* an beiden Aptameren und durch das Fehlen eines P4-*stems* gekennzeichnet (Anhang A.XI.).

Von SURDASAN et al. (2006) wurde für den 5'-nichttranslatierten Bereich des metE-Gens aus Bacillus clausii, welches für eine Methionin-Synthase codiert, ebenfalls eine Tandem-artige Riboswitch-Struktur beschrieben. Diese besteht jedoch aus einem S-Adenosylmethionin-Riboswitch (SAM-Riboswitch) und einem Coenzym B₁₂-Riboswitch (AdoCbl-Riboswitch), die beide völlig unabhängig voneinander agieren und unterschiedliche Metabolite erkennen bzw. binden. Der Glycin-Riboswitch dagegen ist bisher der einzige, der sich durch seine Tandem-artige Struktur auszeichnet und durch kooperative Bindung von Glycin die Transkription des downstream gelegenen Gens bzw. der Gene reguliert (BARRICK and BREAKER 2007; MANDAL et al., 2004; SUDARSAN et al., 2006; WINKLER and BREAKER 2005). Durch Bindung eines Glycin-Moleküls an das Aptamer I kommt es zur signifikanten Steigerung der Affinität des Aptamer II gegenüber Glycin um das 100-1000-fache, wodurch eine erhöhte Sensibilität gegenüber Schwankungen in der Metabolit-Konzentration erreicht wird (KWON and STROBEL 2008; MANDAL et al., 2004; PHAN and SCHUMANN 2007). Die Dissoziations-Konstante (K_D) von Glycin-Riboswitchen gegenüber Glycin wird mit ca. 30 µM beschrieben (MANDAL et al., 2004). Dieser Wert liegt über den Dissoziations-Konstanten von 300 nM, 100 nM, 300 nM bzw. 1 µM, die für die AdoCbl-, Thiaminpyrophosphat-, Adenin- bzw. L-Lysin-Riboswitche beschrieben wurden (MANDAL and BREAKER 2004a; MIRONOV et al., 2002; NAHVI et al., 2002; RODIONOV et al., 2003). Deutlich geringer sind die K_D-Werte der FMN-, SAM- bzw. Guanin-Riboswitche, die nur bei 4 bzw. 5 nM liegen (MIRONOV et al., 2002; WINKLER et al., 2003). Die etwas höhere Dissoziations-Konstante gegenüber Glycin ist verständlich, da diese Verbindung zwar Substrat der Glycin-Decarboxylase und der Glycin-Reduktase ist, aber auch in erheblichem Maße ein sehr wichtiger Bestandteil von Proteinen ist. Der K_D-Wert des Glycin-Riboswitch, der ausschließlich Gene des Glycin-Metabolismus reguliert (KWON and STROBEL 2008; MANDAL et al., 2004; PHAN and SCHUMANN 2007), muss also deutlich über der Dissoziations-Konstante der Riboswitche der anderen hier erwähnten Substrate liegen. Eine sehr hohe Dissoziations-Konstante von 300 µM weist hingegen der Glucosamin-6-Phosphatabhänge Riboswitch auf, der sich somit deutlich von den anderen unterscheidet (WINKLER et al., 2004).

Die konservierten Sequenzmotive und die daraus resultierenden Sekundärstrukturen, speziell der P1-, P3und P3a-stem beider Aptamere (Abb. 31 B), sind essentiell für die spezifische Erkennung und kooperative Bindung des Glycins (KWON and STROBEL 2008; MANDAL et al., 2004). Eine Mutation der C-G-Basenpaarung im P1-stem des V. cholerae Riboswitch (Abb. 31 A) zu einer WATSON-CRICK-Basenpaarung (U-A; $M1_{VC}$) führte zu einer verminderten Kooperativität, was sich einem Hill-Coeffizienten von n=1,1ausdrückte (FORSEN and LINSE 1995), während eine Doppel-Mutation dieser Position (M2_{VC}) zu einer wobble-Basenpaarung (U·G) einen kompletten Verlust der Kooperativität (n=0,8) zur Folge hatte. Hingegen hatte eine Mutation der entsprechenden Stelle in Aptamer II ($M3_{VC}$) keinerlei Auswirkung auf die Kooperativität beider Aptamere. Die hier untersuchten Nukleotide bzw. Nukleotidpaarungen sind zu 97 % konserviert (KWON and STROBEL 2008; MANDAL et al., 2004) und sind an entsprechender Stelle auch im Riboswitch von E. acidaminophilum (Abb. 31 A), aber auch bei C. difficile und C. sticklandii (Anhang A.XI.) zu finden. Auch der P3a-stem beider Aptamere scheint essentiell für die kooperative Bindung von Glycin zu sein. Eine Mutation der A-U-Basenpaarung im P3a-stem von Aptamer I des Glycin-Riboswitch von V. cholerae zu einer G·U-wobble-Basenpaarung (M4_{VC}) führt ebenso zu einer stark verminderten Kooperativität (n=1,1) wie die Mutation zu einer G-C-WATSON-CRICK-Basenpaarung (M5_{VC}), bei der ein Hill-Coeffizient von n=1,2 bestimmt wurde (KWON and STROBEL 2008). Im Vergleich dazu hatte die Mutation des direkt benachbart liegenden Basenpaares A-U in eine G-U-wobble-Basenpaarung ($M6_{VC}$) keinerlei Auswirkung auf die Kooperativität. Bei E. acidaminophilum ist an dieser Position diese G-Uwobble-Basenpaarung zu finden. Die Analyse von 104 Glycin-abhängigen Riboswitchen (KWON and STROBEL 2008) ergab jedoch nur in 70 % der Fälle an dieser Stelle ein Purin (R) (Abb. 31 B). Die potentiellen Riboswitch-Strukturen aus C. difficile und C. sticklandii weisen beide an dieser Position A-U-WATSON-CRICK-Basenpaarung auf (Anhang A.XI.). Im P3a-stem des Aptamer II hingegen scheint nicht die Basenfolge, sondern die Art der Basenpaarung wichtig für die Kooperativität zu sein. Während eine Mutation der G-C-Basenpaarung zu einer G-U-wobble-Basenpaarung ($M8_{VC}$) zu einem kompletten Verlust der Kooperativität führte (n=0,6), konnte dieser mit einer durch eine Doppelmutation wiederhergestellten WATSON-CRICK-Basenpaarung (A-U; $M7_{VC}$) kompensiert und ein Hill-Coeffizient von n=1,4 bestimmt werden (KWON and STROBEL 2008). Auch die drei potentiellen Riboswitche aus E. acidaminophilum, C. difficile und C. sticklandii weisen an dieser Position eine WATSON-CRICK-Basenpaarung auf (Abb. 31 A, Anhang A.XI.).

Die Aptamere der diversen Riboswitche erkennen die entsprechenden Metabolite mit sehr hoher Genauigkeit. So werden z. B. vom AdoCbl-Riboswitch Analoga, denen die 5'-Deoxy-Adenosylgruppe fehlt, nicht erkannt (NAHVI *et al.*, 2002). Auch der TPP-Riboswitch bzw. der FMN zeigen eine 1000-fach erhöhte Affinität gegenüber Thiaminpyrophosphat im Vergleich zu Thiaminphosphat oder Thiamin (WINKLER *et al.*, 2002a) bzw. gegenüber Riboflavinen, denen eine Phosphatgruppe fehlt (WINKLER *et al.*, 2002b). Während der SAM-Riboswitch nur eine stark verminderte Affinität gegenüber *S*-Adenosylhomocystein besitzt (WINKLER *et al.*, 2003), bindet der Lysin-Riboswitch stereospezifisch nur L-Lysin (SUDARSAN *et al.*, 2003). Die Aptamere des Guanin- und Adenin-Riboswitch sind völlig identisch, beide unterscheiden sich nur in

einem Nukleotid. So ermöglicht im Guanin-Aptamer ein Cytosin und im Adenin-Aptamer ein Uracil eine spezifische Erkennung des entsprechenden Nukleotides über eine WATSON-CRICK-Basenpaarung (MANDAL et al., 2003; MANDAL and BREAKER 2004a). Auch der Glycin-Riboswitch erkennt mit hoher Genauigkeit Glycin, aber auch Glycin-Methylester, und mit stark verminderter Affinität Glycin-Ethyl- und Glycin-t-Buthylester. Die Derivate Glycinamid bzw. Sarcosin hingegen werden wie Alanin bzw. β-Alanin nicht erkannt (KWON and STROBEL 2008; MANDAL et al., 2004). MANDAL et al. (2004) postulieren jeweils ein Guanin im Core-Element beider Aptamere des Glycin-Riboswitch von B. subtilis als essentiell für die Erkennung und Bindung von Glycin. Eine Mutation beider Basen zu einem Cytosin ($M1_{BC}$ und $M2_{BC}$) führte zum vollständigen Verlust der Fähigkeit Glycin, zu binden. Während die Riboswitch-Strukturen von C. difficile und C. sticklandii diese beiden Guanine aufweisen, ist bei E. acidaminophilum nur im Aptamer I diese Base zu finden. Es ist jedoch nur bei 80 % der analysierten Riboswitch-Strukturen in Aptamer II an dieser Position ein Guanin zu finden, sodass davon auszugehen ist, dass Letzterem eine geringere Bedeutung zuzuschreiben ist, wie schon von MANDAL et al. (2004) postuliert wurde. Auch der P1-stem und der P2-stem des Aptamer I scheinen essentiell für die Bindung von Glycin zu sein. Während eine Zerstörung beider stems durch Mutationen, die zu zwei wobble-Basenpaarungen im P1-stem (M3_{BC}) bzw. einer im P2-stem (M5_{BC}) führten, kam es ebenfalls zum Verlust der Erkennung von Glycin. Durch Wiederherstellung der WATSON-CRICK-Basenpaarung dieser Positionen durch Doppelmutationen ($M4_{BC}$ und $M6_{BC}$) konnte dieses kompensiert werden (MANDAL et al., 2004). Die Riboswitch-Strukturen von E. acidaminophilum, C. difficile und C. sticklandii zeigen an diesen Positionen ebenfalls WATSON-CRICK-Basenpaarungen. Eine Ausnahme ist eine G·U-wobble-Basenpaarung des P1-stems von C. sticklandii, die jedoch auf Grund der Länge des potentiellen stems keine großen Auswirkung auf dessen Ausbildung bzw. Stabilität haben sollte.

Eine deutliche Transkriptions-Induktion der Gene des Glycin-Decarboxylase-Operons durch Glycin wurde für B. subtilis gezeigt (PHAN and SCHUMANN 2007). In Abwesenheit von Glycin konnten große Mengen eines ca. 200 Nukleotide umfassenden Transkriptes, welches den Bereich des Riboswitch repräsentierte, detektiert werden, ein das gesamte Operon umfassende Transkript hingegen war nur in geringer Menge vorhanden. In Anwesenheit von Glycin zeigte sich hingegen eine vermehrte Transkription aller Gene des Operons (PHAN and SCHUMANN 2007). In Abwesenheit von Glycin scheint es zum Abbruch der Transkription an einer im 3'-Bereich des Riboswitch gelegenen Terminatorstruktur zu kommen, welche sich durch Bindung von Glycin an die beiden Aptamere des Riboswitch nicht ausbilden kann, was eine Transkription des gesamten downstream gelegenen Operons zur Folge hat (MANDAL et al., 2004; PHAN and SCHUMANN 2007). Auch die Transkription des Glycin-Decarboxylase-Operons von E. acidaminophilum scheint durch Glycin induziert zu sein. So konnte eine starke Transkription aller Gene bei Kultivierung des Organismus auf Glycin-haltigen Medien (50 mM Glycin bzw. 50 mM Na-Formiat u. 40 mM Glycin) nachgewiesen werden. Bei Wachstum auf Medien mit den Glycin-Analogen Betain und Sarcosin war nur eine schwache Transkription der Gene zu finden, die jeweils bei Kultivierung mit Sarcosin in Kombination mit diversen Elektronen-Donatoren (Alanin und Serin bzw. Na-Formiat als zusätzlicher Elektronen-Donor) schwächer ausfiel als bei Wachstum auf Betain. Allerdings wäre hier gemessen an B. subtilis die

entgegengesetzte Beobachtung zu erwarten gewesen. Wie bereits erwähnt, binden die Aptamere des Glycin-Riboswitch mit sehr hoher Affinität Glycin, dessen Analoge jedoch nur mit verminderter Affinität bzw. gar nicht. KNWON *et el.* (2008) zeigten, dass die Affinität des Glycin-Riboswitch gegenüber Sarcosin nur sehr gering ist. Da Betain im Vergleich zu Glycin drei zusätzliche Methylgruppen aufweist, Sarcosin hingegen nur eine, wäre eine noch geringere Affinität gegenüber Betain zu erwarten gewesen, was sich an einer schwächeren Induktion in Anwesenheit von Betain gezeigt hätte.

Wie bereits erwähnt, kann E. acidaminophilum Glycin in einer gekoppelten Stickland-Reaktion (STICKLAND 1934) metabolisieren, wobei die Aminosäure sowohl als Elektronen-Donor als auch -Akzeptor dient. Die Derivate Sarcosin (N-Methylglycin) bzw. Betain (N, N, N-Trimethylglycin) hingegen können nur als Elektronen-Akzeptoren genutzt werden, hier ist die Zugabe eines zusätzlichen Elektronen-Donors wie z. B. Serin oder Na-Formiat oder auch beider gleichzeitig unumgänglich (ZINDEL et al., 1988). Normalerweise kann Serin durch die Serin-Hydroxymethyltransferase in Glycin und dann weiter durch die Glycin-Decarboxylase metabolisiert werden. Obwohl im Rahmen dieser Arbeit das Gen einer Serin-Hydroxymethyltransferase identifiziert wurde, konnte in früheren Arbeiten für dieses Enzym jedoch nur sehr geringe spezifische Aktivitäten von 0,00028 bzw. 0,00012 U/mg Protein im Rohextrakt von Zellen, die auf Glycin bzw. Serin gewachsen sind, bestimmt werden. Vielmehr wird Serin von diesem Organismus durch die Serin-Dehydratase zu Pyruvat metabolisiert, welches dann durch die Pyruvat-Ferredoxin-Oxidoreduktase zu CO₂ und Acetyl-CoA umgewandelt wird. Aus Letzterem wird über Acetyl-Phosphat die Bildung von Acetat und eine Energiegewinnung über Substratkettenphosphorylierung ermöglicht (GRANDERATH 1988; ZINDEL et al., 1988). So wurde für das einleitende Enzym dieses Stoffwechselweges, die Serin-Dehydratase, eine spezifische Aktivität von 0,039 U/mg Protein, und für die Pyruvat-Ferredoxin-Oxidoreduktase 0,095 U/mg Protein im Rohextrakt von Zellen, die auf Serin-Medium kultiviert wurden, bestimmt (ZINDEL et al., Alanin wird durch die Aktivität der Alanin-Dehydratase zu Pyruvat und 1988). Auch Reduktionsäquivalenten (NADH+H⁺) metabolisiert und so als Elektronen-Donor genutzt (GRANDERATH 1988). Sind sowohl Serin als auch Na-Formiat im Medium vorhanden, werden beide parallel von E. acidaminophilum als Elektronen-Donor für die Reduktion der Glycin-Derivate Betain und Sarcosin durch die Betain- und Sarcosin-Reduktasen genutzt (GRANDERATH 1988), wobei das Na-Formiat durch die Aktivität von Formiat-Dehydrogenasen (GRAENTZDOERFFER et al., 2003) zu CO₂ oxidiert wird und Reduktionsäquivalente auf Glycin oder Eisen-Schwefel-Carrier übertragen und eventuell in Form von NADPH+H⁺ freiwerden. Das dem Medium zugegebene Formiat kann aber über die Formyl-THF-Synthetase, die Methenyl-THF-Cyclohydrolase und die Methylen-THF-Dehydrogenase zu Methylen-THF umgewandelt werden (s. S. 127, Abb. 37). Dieses dient als Substrat der Glycin-Decarboxylase/Synthase, durch deren Reaktion Glycin entsteht. FREUDENBERG und ANDREESEN (1989) zeigten für die Komponenten der Glycin-Decarboxylase aus E. acidaminophilum eine Synthase-Aktivität, die allerdings nur bei 12 % der Decarboxylase-Aktivität lag. Zum einen kann die Transkription der Glycin-Decarboxylase-Gene auf Glycinfreien Medien eine Synthase-Aktivität bedeuten, zum anderen kann aber auch von einer Grundexpression dieser Gene ausgegangen werden. Solch eine sehr schwache Grundexpression wurde auch für das
gcv-Operon von B. subtilis auch ohne Glycin im Wachstumsmedium gezeigt (PHAN and SCHUMANN 2007). Die geringe basale Expression ist wahrscheinlich u. a. durch den als sehr schwach einzustufenden Promotor des gcv-Operons bedingt. Dieser für B. subtilis von PHAN und SCHUMANN (2007) postulierte Promotor (5'-ATGTAT₋₁₇ bp-TATAGT-3') zeigt genau wie der *upstream* des Glycin-Decarboxylase-Operons aus acidaminophilum postulierte Promotor (5'-TGTAAA-16 bp-ATGAAT-3') nur sehr geringe Е. Übereinstimmung mit der Konsensussequenz σ^{70} -abhängiger *E. coli*-Promotoren (HARLEY and REYNOLDS) 1987) bzw. σ^{A} -abhängiger *B. subtilis*-Promotoren (HELMANN 1995) auf. Eine Veränderung des -10-Elementes aus B. subtilis zur 5'-TATAAT-3'-Konsensussequenz hatte weder eine Auswirkung auf das Grundlevel der Transkription des gcv-Operons noch auf die Induktion durch Glycin. Die Veränderung der -35-Region zur 5'-TTGACA-3'-Konsensussequenz hingegen führte zu einer wesentlich gesteigerten Transkriptionsinduktion durch Glycin, was jedoch mit einem um das 10-fache erhöhten Grundlevel verbunden war. Eine Veränderung beider Promotor-Regionen zur -10 und -35-Konsensussequenz führte ebenfalls zu einem stark erhöhten Grundlevel und einer wesentlich höheren Induktionsrate durch Glycin im Vergleich zum Wildtyp-Promotor (PHAN and SCHUMANN 2007). Der Glycin-abhängige Riboswitch verhindert jedoch in Abwesenheit von Glycin die Transkription der Gene der Glycin-Decarboxylase-Komponenten, durch dessen Katalyse es zur Metabolisierung von Glycin zu NH₃, Methylen-THF, CO₂ und Reduktionsäquivalenten in Form von NADH+H⁺ bzw. NADPH+H⁺ kommen kann (ANDREESEN 1994a; 1994b). Ein, dem Glycin-Riboswitch vorgeschalteter starker Promotor würde so die Funktionalität und Wirkungsweise desselben stören bzw. aufheben.

Da die Western-Blot-Analysen die gleichen Resultate zeigten, das heißt, starke Expression von *prpU* bei Anwesenheit von Glycin und verminderte Expression auf Glycin-freien Medien (s. S. 54, Abb. 14 B), ist die Regulation der Transkription bzw. der Translation dieser Gene mit großer Wahrscheinlichkeit auf der Ebene der Transkription und nicht auf der Ebene der Translation zu suchen, was für alle Glycin-abhängigen Riboswitche typisch ist (BARRICK and BREAKER 2007; KWON and STROBEL 2008; SUDARSAN *et al.*, 2006). Es ist also sehr wahrscheinlich, dass die Expression der Gene des Glycin-Decarboxylase aus *E. acidaminophilum* ebenfalls durch einen Glycin-abhängigen Riboswitch reguliert wird.

Im *upstream*-Bereich des Glycin-Decarboxylase-Operons von *E. coli* konnten keine Sequenzen identifiziert werden, die auf eine Glycin-Riboswitch-Struktur hinweisen. Für diesen Organismus ist eine komplizierte Regulation der Transkription dieser Gene durch diverse Proteine beschrieben worden. Das durch Glycin-Oxidation entstandene 5,10-Methylentetrahydrofolat ist für *E. coli* ein wichtiger C₁-Donor, u. a. für die Biosynthese von Purinen, Methionin, Thymin und anderen methylierten Verbindungen. Der Promotor des *gcvTHP*-Operons aus *E. coli* ist in die Klasse III der Aktivator-abhängigen Promotoren einzuordnen, da für ihn vier regulatorische Proteine beschrieben wurden, deren Bindestellen sich mehr als 90 bp *upstream* der RNA-Polymerase-Bindestelle befinden (BUSBY and EBRIGHT 1999). Eines dieser regulatorischen Proteine ist PurR (*purine repressor protein*), ein Transkriptionsregulator der Gene des Nukleotidstoffwechsels (ROLFES and ZALKIN 1988), der in Anwesenheit von Purinen und deren Vorstufen hemmend auf die Expression der Gene des Glycin-Decarboxylase-Operons wirkt (STAUFFER *et al.*, 1994; STAUFFER and

STAUFFER 1994; WILSON et al., 1993a). Die DNA-Bindestelle dieses Repressors liegt direkt im Promotorbereich, von Position -3 bis +17, sodass er wahrscheinlich direkt mit der RNA-Polymerase interagiert (WILSON et al., 1993a). CRP (cAMP receptor protein) ist ein Aktivator des gcvTHP-Operons, seine Bindestelle befindet sich an Position -324 bis -303 relativ zum Transkriptionsstartpunkt des Operons (WONDERLING and STAUFFER 1999). Das zur LysR-Familie (SCHELL 1993) der Regulatoren gehörende Protein GcvA ist in Gegenwart von Glycin als Aktivator und in Gegenwart von Purinen auch als Repressor an der Transkription der Gene der Glycin-Decarboxylase beteiligt (WILSON et al., 1993a; WILSON et al., 1993b). Das GcvA-Protein bindet an drei Stellen in der Kontroll-Region des gcvTHP-Operons, von bp -271 bis -242 (Bindestelle 3), von bp -241 bis -214 (Bindestellen 2) und von bp -69 bis -34 upstream des Transkriptionsstartpunktes (JOURDAN and STAUFFER 1999b). Während die Bindung von GcvA an alle drei Bindestellen eine hemmenden Wirkung zur Folge hat, wird der Bindung an Bindestelle 2 bzw. 3 eine aktivierende Wirkung auf die Transkription in Gegenwart von Glycin zugeschrieben (WILSON and STAUFFER 1994; WILSON et al., 1995; WONDERLING et al., 2000). Das gcv-spezifische Protein GcvR agiert als Repressor, wobei aber eine direkte Interaktion mit dem C-terminalen Ende von GcvA essentiell ist (GHRIST et al., 2001; GHRIST and STAUFFER 1995; 1998). Es kommt hierbei zur Bildung eines Heterooligomers, welches durch das Vorhandensein von Purinen stabilisiert bzw. durch Glycin destabilisiert wird (HEIL et al., 2002). In diesem Fall kann das an den Bindungsstellen 2 und 3 gebundene GvcA-Homodimer direkt mit der α-C-terminalen Domäne (α-CTD) der RNA-Polymerase wechselwirken (Abb. 32) und so die Transkription der Gene induzieren. (GHRIST et al., 2001; JOURDAN and STAUFFER 1998; 1999a; STAUFFER and STAUFFER 2005). Für das Lrp-Protein (leucine response regulatory protein), welches an der Regulation des Aminosäure-Metabolismus beteiligt ist (CALVO and MATTHEWS 1994), gibt es eine Vielzahl an Bindestellen im Promotorbereich des Operons. Diese sind zwischen den Bindungsstellen 1 und 2 des GcvA-Proteins (JOURDAN and STAUFFER 1999b) lokalisiert. Durch Bindung mehrerer Lrp-Proteine an diese kommt es zur Biegung der DNA in diesem Bereich, was in einer loop-Bildung resultiert und die Interaktion aller an der Regulation beteiligten Proteine ermöglicht (STAUFFER and STAUFFER 1998a; 1998b; 1999).

Abb. 32: Modell der Repression und Aktivierung des *gcvTHP*-Operons aus *E. coli* (nach HEIL *et al.*, 2002). Dargestellt ist ein Bereich des Promotors des *gcvTHP*-Operons aus *E. coli* und die Interaktion der an der Regulation der Transkription des *gcvTHP*-Operons beteiligten Proteine. Folgende Abkürzungen wurden verwendet: Lrp: *leucine response protein*; GcvA: *gcv*-spezifischer Aktivator (mit Bindestellen 1, 2 und 3); GcvR: *gcv*-spezifischer Repressor.

In Gegenwart von Glycin wird die Transkription des *gcvTHP*-Operons von *E. coli* induziert, durch das Vorhandensein von Purinen dagegen reprimiert. Diese Art der Transkriptionsregulation scheint in diesem Fall vorteilhafter zu sein als die Regulation über einen Glycin-sensitiven Riboswitch. *E. coli* nutzt Glycin nicht als Energiequelle, sondern das bei dessen Oxidation entstehende 5,10-Methylen-THF als wichtigen C₁-Donor u. a. für den Purin-Stoffwechsel. Ein Glycin-Riboswitch scheint jedoch dort von Vorteil zu sein, wo Glycin hauptsächlich als Energiequelle genutzt wird, wie es bei *E. acidaminophilum* der Fall ist.

4.2. Die Glycin-Decarboxylase - ein Komplex, der normalerweise aus vier Proteinen besteht

Die Glycin-Decarboxylase ist ein Multienzymkomplex, der normalerweise aus vier Komponenten besteht und die reversible Decarboxylierung von Glycin katalysiert und daher auch als Glycin-Decarboxylase/Synthase bezeichnet wird (ANDREESEN 1994a). Durch die oxidative Katalyse dieses Enzymkomplexes wird Glycin zu CO₂, Methylen-THF, NAD(P)H+H⁺ und NH₃ abgebaut (FREUDENBERG and ANDREESEN 1989). Bei der Umkehrreaktion kommt es zur Synthese von Glycin. Die Synthase-Aktivität wurde bisher für die Organismen A. globiformes (KOCHI and KIKUCHI 1974; 1976), C. acidiurici (GARIBOLDI and DRAKE 1984) sowie E. acidaminophilum (FREUDENBERG and ANDREESEN 1989) beschrieben. Dabei konnte jeweils nur eine wesentlich geringe Synthese-Rate im Vergleich zur Decarboxylierung festgestellt werden. So lag die Synthase-Aktivität der Glycin-Decarboxylase aus E. acidaminophilum nur bei ca. 12 % der Decarboxylase-Aktivität (FREUDENBERG and ANDREESEN 1989). Der Enzymkomplex besteht aus vier eigenständigen, jedoch voneinander abhängigen Komponenten. Proteine prokaryotischer Herkunft werden meist mit P1, P2, P3 und P4 bezeichnet (FREUDENBERG and ANDREESEN 1989; GARIBOLDI and DRAKE 1984; KLEIN and SAGERS 1966a; 1966b; 1967a; 1967b; KOCHI and KIKUCHI 1969), für Eukaryoten beschriebene werden entsprechend ihrer Funktion immer mit P, H, L und T (BOURGUIGNON et al., 1988; MACHEREL et al., 1992; OLIVER and RAMAN 1995; SALCEDO et al., 2005; TURNER et al., 1993) benannt. Die terminologische Trennung prokaryotischer und eukaryotischer Proteine ist jedoch nicht überall in der Literatur zu finden, so werden u. a die Proteine aus E. coli (OKAMURA-IKEDA et al., 1999a; 1999b; OKAMURA-IKEDA et al., 2003; OKAMURA-IKEDA et al., 1993) oder dem Cyanobacterium Synechocystis (HASSE et al., 2007) stets mit P, H, L und T bezeichnet, wobei letzterer Organismus als Vorläufer der pflanzlichen Chloroplasten angesehen wird (MARTIN et al., 2002), was diese Bezeichnung der einzelnen Proteinkomponenten zu erklären vermag. In der vorliegenden Arbeit wurde stets die in der Literatur verwendete Bezeichnung der einzelnen Proteine übernommen.

Das P1-Protein, ein Pyridoxalphosphat-abhängiges Enzym, ist die eigentliche Decarboxylase, die jedoch nur gemeinsam mit dem P2-Protein die oxidative Abspaltung der Carboxylgruppe des Glycins in Form von CO₂ katalysiert (FREUDENBERG and ANDREESEN 1989; HIRAGA and KIKUCHI 1980a; KIKUCHI and HIRAGA

1982). Das P2-Protein ist ein kleines hitzestabiles Protein, welches kovalent gebundene Liponsäure als funktionelle Gruppe trägt, auf welche die nach der Decarboxylierung entstandene Aminomethylgruppe übertragen wird. Die so reduziert vorliegende funktionelle Gruppe wird dadurch zum Substrat für das P4-Protein, eine Aminomethyl-Tranferase, welche die Abspaltung von NH₃ und die Übertragung der Methylengruppe auf den C₁-Gruppen Carrier THF katalysiert, was in der Entstehung von 5,10-Methylen-THF resultiert (ANDREESEN 1994a; 1994b). Die für die Aktivität des Enzymkomplexes essentielle Komponente ist das P3-Protein, die Dihydrolipoamid-Dehydrogenase. Durch sie wird die reduziert vorliegende Liponsäuregruppe des P2-Proteins reoxidiert. NAD⁺ stellt für dieses Enzym, welches zwei redoxaktive Cysteingruppen und FAD enthält, das natürliche Substrat dar, auf welches die Elektronen übertragen werden (FREUDENBERG et al., 1989a). Eine Ausnahme hierbei stellt E. acidaminophilum dar. Aus diesem Organismus konnte bisher keine eigenständige Dihydrolipoamid-Dehydrogenase beschrieben werden. Es wurde eine NADP⁺-abhängige Thioredoxin-Reduktase (TR) mit Dihydrolipoamid-Dehydrogenase-Aktivität beschrieben, welche die Funktion des P3-Proteins übernimmt und die Elektronen über das Thioredoxin-System dem reduktiven Weg des Glycin-Abbaus zuführt. Die Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase wird in vitro noch durch die Proteine Thioredoxin und GrdA stimuliert (DIETRICHS et al., 1991; FREUDENBERG et al., 1989a; MEYER et al., 1991; POEHLEIN 2003). Man findet in der Literatur jedoch weitere Beispiele für Thioredoxin-Reduktasen mit Dihydrolipoamid-Dehydrogenase-Aktivität. So beschreibt z. B. ARNER et al. (1996) für Thioredoxin-Reduktase aus diversen Säuger-Geweben oder auch DIETRICHS et al. (1991) für das Enzym aus C. litorale diese eigentlich atypische Aktivität. Anzumerken ist hier jedoch, dass E. acidaminophilum der einzige Organismus ist, für den keine eigenständige Dihydrolipoamid-Dehydrogenase gefunden wurde und diese Funktion also von anderen Proteinen übernommen bzw. ersetzt werden muss (DIETRICHS et al., 1991; FREUDENBERG et al., 1989a; MEYER et al., 1991; POEHLEIN 2003).

Der Glycin-Decarboxylase-Komplex besteht, wie bereits erwähnt, aus vier Komponenten, und nur in Gegenwart aller Enzyme kann ein aktiver Komplex gebildet werden, durch den es zum oxidativen Abbau von Glycin zu NH₃, CO₂ und Methylen-THF kommt. Zum besseren Verständnis der Vorgehensweise bei der heterologen Synthese der einzelnen Komponenten, wodurch deren Funktion überprüft werden sollte, aber um auch den Grad der Konservierung der charakteristischen Motive darzulegen, sollen die einzelnen Proteine des Glycin-Decarboxylase-Komplexes im Folgenden näher beschrieben werden.

4.2.1. Das P1-Protein der Glycin-Decarboxylase-die eigentliche Decarboxylase

Die beiden Untereinheiten des P1-Proteins aus *E. acidaminophilum* werden durch die Gene *gcvP1* α und *gcvP1* β codiert und weisen ein Molekulargewicht von 49 bzw. 53,1 kDa auf (*accession number* AAU84893.1 bzw. AAU84894.1). In Tabelle 11 sind einige der in der EMBL-Datenbank enthaltenen Proteine, welche signifikante Ähnlichkeiten zur α - und β -Untereinheit des P1-Proteins aus

E. acidaminophilum aufweisen, wiedergegeben. Auf Grund der nahezu täglich ansteigenden Anzahl an Genomsequenzierungen wird hier nur eine Auswahl an Proteinen aus Prokaryoten aufgelistet, aber auch der Vergleich mit Proteinen aus Eukaryoten, wie z. B. *Homo sapiens, Arabidopsis thaliana, Drosophila melanogaster* oder *Saccharomyces cerevisiae* gezogen, um die starke Konservierung dieses Proteins aufzuzeigen.

Organismus	Untereinheit	Protein: AS/MG (kDa)	accession- number	Identität (%) ¹
Alkaliphilus oremlandii Ohll As	α	116 / 10 7	A8MEG6	64
And and a second and a second and a second s	β	440 / 49,7	A8MEG7 1	70
Thermoangerobacter tengcongensis MB4	ά	480 / 34,1	O8RCW1	70 59
Incritional control in the control is in the	β	449 / 50,4	QORCW1	65
Alkaliphilus metalliredigens OYMF	α	485 / 55,4	ABR47556 1	58
	β	447749,1	ABR47557.1	65
Clostridium botulinum A3 str. Loch Maree	α	446 / 49 6	CP000962.1	58
	β	484 / 53 8	CP000962.1	63
Clostridium difficile 630	α	457 / 51 1	O186L1	58
	β	485 / 53 8	Q186L4	63
Clostridium sticklandii	α	445 / 49 2		53
	β	485 / 53.4		62
Geobacillus thermodenitrificans NG80-2	α	448 / 49.7	A4IQV4	52
-	β	490 / 56.4	A4IQV3	63
Bacillus cereus	α	447 / 49,4	Q818M4	52
	β	491 / 54,9	P62029	59
Thermus thermophilus HB8	α	438 / 47,1	Q5SKW8	42
	β	474 / 52,7	Q5SKW7	52
Escherichia coli K12		957 / 104,4	A1AF92	35 / 41
Drosophila melanogaster		985 / 109,7	Q9VH09	38 / 44
Arabidopsis thaliana		1037 / 112,9	O80988	37 / 44
Saccharomyces cerevisiae YJM789		1034 / 114,5	P49095	35 / 43
Homo sapiens		1020 / 112,7	Q2M2F8	33 / 42

Tab. 11: Vergleich des P1-Proteins aus E. acidaminophilum mit homologen Proteinen aus Datenbanken

¹ im Vergleich zur α - und β -Untereinheit des P1-Proteins aus *E. acidaminophilum*; bei Proteinen, die nur aus einer Untereinheit aufgebaut sind, erfolgte jeweils ein Vergleich des aminoterminalen Bereiches mit der α - Untereinheit und des C-terminalen Bereiches mit der β -Untereinheit des P1-Proteins aus *E. acidaminophilum*

Die höchste Identität, 64 % für die α -Untereinheit und 70 % für die β -Untereinheit, ergab sich beim Vergleich mit den Proteinen aus *Alkaliphilus oremlandii* OhILAs, einem ebenfalls zur Gruppe der

Clostridien gehörenden Organismus. Auffällig ist, dass der Vergleich des Proteins aus *E. acidaminophilum* denen aus *C. difficile* und *C. sticklandii* trotz der Zugehörigkeit der drei Organismen zum Cluster XI der Clostridien nicht den höchsten Grad an Identität aufzeigt. Möglicherweise unterscheiden sich diese Organismen doch stärker voneinander, als bisher angenommen, zumal *E. acidaminophilum* als einziger dieser drei Clostridien auf Glycin als einziges Substrat zu wachsen vermag. Weiterhin fällt auf, dass die höchsten Identitäten der mit den beiden Untereinheiten des P1-Proteins aus *E. acidaminophilum* verglichenen Proteinen bei 64 % (α -Untereinheit des P1-Proteins aus *A. oremlandii* OhILAs) bzw. bei 70 % (β -Untereinheit des P1-Proteins aus *A. oremlandii* OhILAs) liegen. Organismen, deren Proteine höhere Identitäten zu den Polypeptiden aus *E. acidaminophilum* aufweisen, konnten nicht identifiziert werden. Denkbar wäre, dass Organismen, die noch näher mit *E. acidaminophilum* verwandt sind, bisher noch nicht sequenziert bzw. noch nicht isoliert wurden

Das P1 bzw. P-Protein der Glycin-Decarboxylase ist die eigentliche Decarboxylase, sie katalysiert aber nur zusammen mit dem P2-Protein effektiv die Decarboxylierung des Glycins. Die CO₂-Austauschreaktion wird durch Zugabe des P2-Proteins sogar 100-fach stimuliert und der Km für Glycin wird um 25 % reduziert (HIRAGA and KIKUCHI 1980a). Die Komponenten der Glycin-Decarboxylase sind ubiquitär verbreitet, so wurde auch das P1- bzw. P-Protein bisher sowohl aus prokaryotischen als auch aus eukaryotischen Organismen isoliert. Die meisten Proteine bakterieller Herkunft liegen als $\alpha_2\beta_2$ -Tetramer vor, Ausnahmen sind hier die Proteine aus E. coli und Synechocystis sp. Stamm PCC 6803 (HASSE et al., 2007; OKAMURA-IKEDA et al., 1993). Die Proteine der beiden letztgenannten Organismen sind genau wie die eukaryotischen Proteine aus einem Homodimer aufgebaut. Für das Protein aus E. acidaminophilum wurde von FREUDENBERG und ANDREESEN (1989) über SDS-PAGE eine Größe von 49 kDa für die α-Untereinheit und 54,1 kDa für die β-Untereinheit und Größen von 113,6 kDa bzw. 225 kDa für das dimere bzw. tertramere Protein bestimmt. Durch die Analyse der unter Anhang A. II. dargestellten Sequenzen wurde für die Plα-Untereinheit eine Größe von 49 kDa und für die P1β-Untereinheit eine Größe von 53,1 kDa kalkuliert. Diese Werte konnten auch für die heterolog synthetisierten Proteine mittels SDS-PAGE bestimmt werden (s. S. 78, Abb. 25). Diese Werte sind mit den 230 kDa, die für das aus zwei α -Untereinheiten mit je einer Größe von 58 kDa und zwei β -Untereinheiten mit je 65 kDa bestehende $\alpha_2\beta_2$ -Tetramer vergleichbar, was von GARIBOLDI und DRAKE (1983) für das P1-Protein von C. acidiurici beschrieben wurde. Dieser Organismus ist in der Lage, Purine zu Formiat und Glycin abzubauen. Auch das P-Protein aus T. thermophilus, welches ebenfalls eine $\alpha_2\beta_2$ -Struktur besitzt, weist eine molekulare Masse von 200 kDa auf, wobei der α -Untereinheit 47,1 kDa und der β-Untereinheit 52,7 kDa zuzuschreiben sind (NAKAI et al., 2003b; 2005). Auch für Aquifex aeolicus (DECKERT et al., 1998) und B. subtilis (KUNST et al., 1997) wurde eine $\alpha_2\beta_2$ Konformation für das native P1-Protein beschrieben.

Homodimere ähnlicher Größe wie die zuvor beschriebenen Tetramere findet man u. a. bei *E. coli*. Für das monomere Protein wird hier eine Größe von 104,2 kDa und für das Dimer eine Größe von ca. 180 kDa angenommen (OKAMURA-IKEDA *et al.*, 1993). Ebenfalls als Homodimer liegen die Proteine aus *M. tuberculosis* (COLE *et al.*, 1998) und *S. thyphimurium* (STAUFFER *et al.*, 1989) vor. In Eukaryoten hingegen

106

liegen die P-Proteine generell als Homodimer vor und sind durch eine aus 35-86 Aminosäuren bestehende mitochondriale *leader*-Sequenz gekennzeichnet. Die Größen der eukaryotischen Monomere sind mit denen der prokaryotischen Dimere zu vergleichen. So wurde u. a. für das humane P-Protein eine Größe von 112,9 kDa und für das Pendant aus Huhn eine Größe von 111,8 kDa für die jeweiligen Monomere bestimmt (HIRAGA and KIKUCHI 1980b; KUME *et al.*, 1991). Auch aus Pflanzen wurden P-Proteine isoliert und beschrieben, so wurde z. B. für das monomere Protein aus *Pisum sativum* eine Größe von ca. 105 kDa und eine ungewöhnlich lange mitochondriale *leader*-Sequenz von 86 Aminosäuren und für zwei der fünf in *Flaveria pringlei* vorkommenden P-Proteine eine molekulare Masse von 106 kDa und eine *leader*-Sequenz von 33 bzw. 36 Aminosäuren aufgezeigt (BAUWE *et al.*, 1995; OLIVER *et al.*, 1990; TURNER *et al.*, 1992).

Wie bereits erwähnt, ist das P1-Protein der Glycin-Decarboxylase ein PLP-abhängiges Enzym. Vertreter dieser Gruppe werden in Faltungstypklassen (I-V) eingeteilt, wobei das P1- bzw. P-Protein auf Grund von Sequenzhomologien zur Klasse I zu zählen ist (GRISHIN *et al.*, 1995; JANSONIUS 1998; MEHTA and CHRISTEN 2000; SCHNEIDER *et al.*, 2000). Enzyme der Faltungsklasse I wurden bisher immer genau wie die P-Proteine aus Eukaryoten als Homodimer beschrieben. Die α - und β -Untereinheit der tetrameren Proteine weisen starke Sequenzhomologien zu den aminoterminalen bzw. carboxytermianlen Bereichen der nur aus einer Untereinheit bestehenden Proteine auf. Aber auch beide Proteine untereinander sind strukturell sehr ähnlich, so zeigt die α -Untereinheit des P1-Proteins aus *E. acidaminophilum* eine 26%ige Ähnlichkeit zur β -Untereinheit desselben Proteins. Wahrscheinlich sind die beiden Untereinheiten durch Genspaltung und anschließende Veränderung, welche mit dem Verlust eines aktiven Zentrums einherging, entstanden (ANDREESEN 1994a; NAKAI *et al.*, 2005). Die Kristallstruktur des aus einem $\alpha_2\beta_2$ -Tetramer bestehenden P-Proteins aus *T. thermophilus* wird daher auch eher als Homoteramer und nicht als Heterotetramer beschrieben (NAKAI *et al.*, 2003b; 2005).

NAKAI *et al.* (2005) beschreiben eine große hydrophobe Oberfläche von 11058 Å² zwischen der α - und β -Untereinheit des P-Proteins aus *T. thermophilus*, was die Coexpression der Gene beider Untereinheiten unumgänglich macht und erklärt, dass bei getrennter Synthese beide Proteine nur in unlöslicher Form vorlagen (NAKAI *et al.*, 2003b). Wie in Tabelle 11 und Abbildung 33 (s. S. 108-110) zu erkennen ist, weisen die Proteine aus *E. acidaminophilum* und *T. thermophilus* starke Sequenzhomologien auf, was eine ähnliche Struktur der Proteine beider Organismen vermuten lässt, vor allem aber auch erklärt, warum beide Untereinheiten des P1-Proteins aus *E. acidaminophilum* auch nur bei gemeinsamer Expression der Gene in löslicher Form vorlagen und bei einzelner Synthese die α -Untereinheit nur als *inclusion bodies* vorzufinden gewesen ist.

Das tetramere P-Protein von *T. thermophilus* besitzt zwei aktive Zentren, die jeweils an der Grenzfläche zwischen der α - und β -Untereinheit lokalisiert sind. Der Boden der aktiven Zentren wird hauptsächlich durch Aminosäuren der β -Untereinheit (Gly⁵⁷⁰ β , Ala^{571 β}, Glu^{574 β}, His^{604 β}, Ser^{606 β}, Thr^{648 β}, Thr^{652 β}, Asp^{677 β}, Ala^{679 β}, Asn⁶⁸⁰ β , His^{699 β}, Asn^{701 β}, His^{703 β} und Lys^{704 β}), der obere Bereich hingegen nur von einer sehr kleinen Domäne der β -Untereinheit (Ser^{511 β} und Cys^{512 β}) und einer großen Domäne der α -Untereinheit (Tyr^{95 α}, Thr^{96 α}, Tyr^{98 α},

Gln^{308a}, Tyr^{309a}, Thr^{320a} and Thr^{321a}) gebildet. Wie in Abbildung 33 zu erkennen ist, sind diese Bereiche sowohl bei den Eukaryoten als auch den Prokaryoten hoch konserviert. Die Bindung des Cofaktors PLP induziert eine open-closed-Konformationsänderung zweier Regionen, die den aktiven Zentren benachbart sind. Die erste Region ist ein mobiler *loop*, der durch die Aminosäuren 305-322 der α -Untereinheit gebildet wird, die zweite ist eine mobile Subdomäne, welche von den Aminosäuren 591-671 der
ß-Untereinheit gebildet wird. Auch diese Bereiche sind, wie man in Abbildung 33 erkennen kann, stark konserviert. Der Cofaktor tritt durch extensive nichtkovalente Bindungen mit den Aminosäureresten der aktiven Zentren in Wechselwirkung und ist im aktiven Zustand durch ein internes Aldimin (Schiff'sche Base) kovalent mit einem stark konservierten Lysinrest verbunden. Die Phosphatgruppe des PLP ist in eine Vielzahl von Wasserstoffbrückenbindungen und Ionenpaarungen involviert und fixiert so u. a. den Cofaktor im aktiven Zentrum des Enzyms (NAKAI et al., 2005). Der für die Bindung des PLP essentielle Lysin-Rest ist meist im Abstand von sechs Aminosäuren zu einem drehbaren tetrameren Glycin-Motiv lokalisiert, weil so ein beweglicher Arm entsteht. Dieses Motiv befindet sich wiederum in einem Glycin-reichen Bereich der β-Untereinheit der tetrameren Proteine bzw. dem C-terminalen Bereich der aus einem Homodimer aufgebauten Proteine (ANDREESEN 1994a; NAKAI et al., 2005; OKAMURA-IKEDA et al., 1993). Die hier beschriebenen Sequenz-Motive konnten bei allen in Abbildung 33 aufgeführten und miteinander verglichenen Organismen gefunden werden. Bei E. acidaminophilum konnte der an der PLP-Bindung beteiligte stark-konservierte Lysinrest an Position 272 und das tetramere Glycin-Motiv an den Positionen 279-282 der β-Untereinheit identifiziert werden (s. S. 110, Abb. 33). Die Bindung von Glycin, dem Substrat der P1-bzw. P-Proteine, erfolgt über die aktiven Zentren, über van der Waals Kräfte mit Aminosäure-Resten der oberen Teile der Zentren. Es kommt hierbei zur Ausbildung einer Schiff schen Base zwischen dem Cofaktor PLP und dem Substrat Glycin, die dadurch wieder freiwerdende E-Aminogruppe des zuvor an der Bindung von PLP beteiligten Lysin-Restes geht nun eine Ionen-Paar-Bindung mit der Phosphatgruppe des PLP ein (NAKAI et al., 2005). Bevor jedoch die eigentliche von diesem Enzym katalysierte Reaktion, die Decarboxylierung und Aminomethylierung der Liponsäure des P2-Proteins, abläuft, kommt es zur Ausbildung eines ternären Komplexes, bestehend aus P1-Protein, PLP, Glycin und der an das P2-Protein gebundenen Liponsäure (FUJIWARA and MOTOKAWA 1983). Die Erkennung der Liponsäure-Gruppe erfolgt über einen 18 Å tiefen, dem aktiven Zentrum benachbart liegenden Kanal, welcher aus Aminosäureresten der α - und β -Untereinheit gebildet wird. Er besteht aus meist hydrophoben Resten, die mit der aliphatischen Kette des Lipoamid-Armes in Wechselwirkung treten können. Die Disulfid-Brücke des Lipoamid liegt so den Seitenketten der Aminosäure-Reste Tyr^{95a}, Tyr^{95a}, Gln^{308a} und His^{604β} (aus *T. thermophilus*, Abb. 33) sehr nahe, wobei einer dieser Aminosäure-Reste als möglicher Protonen-Donor für die Reduktion der Disulfid-Brücke fungieren kann (NAKAI et al., 2005). Die am Eingang diese Kanals gelegenen positiv geladenen Aminosäure-Reste Lys^{146 α}, Arg^{280 α}, Arg^{306 α}, Arg^{311 α}, Arg^{312 α}, Lys^{314 α}, Lys^{316 α}, Arg^{894 β} and Lys^{902 β} (Protein aus T. thermophilus) sind, wie in Abbildung 33 zu erkennen, bei allen Organismen stark konserviert. Eine Ausnahme bildet hier das Lys^{316 α}, das nur bei *T. thermophilus* zu finden ist.

٨						α1	3 ₁₀ - η1	3 ₁₀ - η2	α2
A C. sti E. aci A. ore T. ten A. met C. bot					MH MH MIVMF MF MF	PYLENTEQEIKAMLDI KYIPNTEADKKSMLES RYIPNTDADTKRMLEY PYLPISEDEKEMLKY PYIPNTVEDEKKMLAP PYIPNTEKETKEILDE	FIGVKSTEELFED-I SIGVSSIEDLFSD-I VIGVNNLEDLFND-I FIGKNSIEELFEV-I AIGLPSIESLFED-I VISIKSVDELFSD-I	PASLKLSRKLNLS PAELKLGRELNLG PKELQLGRELDLE PKEVRLNRPLNLG PENVRLNRELNLG	DSLSEFETRKH 55 EPMSELELVKH 55 GPYSEMETLRH 55 KPMSELEVRKR 54 KSLSEFELVKY 55 SSLSFLEVEKR 54
C. dif G. the B. cer					NKENKF MLH MLH	SYIPATSEDKSKMLKV RYLPMTEEDKQEMLKT RYLPMTEEDKKEMLQT DYTPHTEEEIREMLRF	VVGLNSVDELFSD-I FIGVASIDELFAD-I FIGVQTIDELFSD-I RVGAASLEDLFAH-I	PEEVKLKRDLNLE PEQVRFRGELNVK PESVRFKGDLKIK PKEI-LSPPIDLP	IGKSELEVEKR 59 RAKSEPELWKE 56 EAKSEPELLKE 56 EPLPEWKVLEE 54
H. Sap D. mel A. tha E. col S. cer	MERARRLAYRGIVKRLVNDTKRHRNAET	PHLVPHAPARYVSS	AGPCWAPRSRDSSG MQRFLGRSSQSLLLF LSPFISTPRSVNHTA HSQSILLKTAATDIT 2 n2	GGDSAAAGASRLL RCGHRYLATTPVE AAFGRHQQTRSIS MTQT ISTQYSRIFNPDL a5	ERLEPRHDFAR EVIFPTKSDFPS VDAVKPSDTFPR LSQLENSGAFIE KNIDRPLDTFAR 81	RHIGPGDADQREMLDI RHIGPRKTDVVAMLDI RHNSATPDEQTHMAKI RHIGPDAAQQOEMLNA RHIGPSPSDVKKMLKI af	LGLASIDELIEKI FLGFKSLAELTEKAN FCGFDHIDSLIDAT AVGAQSLNALTGQIN FMGYSDLNAFIEEL B2	PANIRLERPLA PQSIQLKRELD PKSIRLDSMKFSK PKDIQLATPPQ PPNILKRRPLK ~7	MEDFVCHNELLAT IIC LDKPLNEHELIRR 93 FDAGLTESQMIQH 137 VGAPATEYAALAE 7(LEAPSKGFCEQEMLQH 126
C. sti E. aci A. ore T. ten A. met C. bot C. dif G. the B. cer	UZ FKDIASKNTSIEDKVCFLGAGIYDHYI MNELADKNKSDFVCFRGAGAYDHYI MKELSGKNTNIDELTCFLGAGAYDHYI LGSYADENKNLSQLVSFLGAGVYDHYI MKSLSNQNKSIEDLTCFMGAGAYDHII LKALALKNKSMEDMTCFLGAGIYDHYI LKALALKNKSMEDMTCFLGAGIYDHYI LSQMASKNANLKEYASFLGAGVYDHYA LRRLAAQNLPAHKAFLGGGVRSHW	-SVIPQLISRAEFF -SLINHMLLRQEFF -SIKHLAGRSEFF -SVVKHIISRSEFY -SVVKHITGRSEFY -SVVKHITGRSEFY -AVVDHVLMRSEFY -VIVDHVISRSEFY -VIVDHVISRSEFY -VVDHVLARGEFL	S10-115 ISYTPYQPE ISQGTI IAYTPYQPE ISQGTI IAYTPYQPE ISQGTI IAYTPYQPE ISQGTI IAYTPYQPEVSQGTI IAYTPYQPEVSQGTI IAYTPYQPE ISQGEI IAYTPYQPE ISQGEI IAYTPYQPE ISQGEI	UQAAFEYQSMICE LQMIFEYQTMICD LQAIFEYQTMICD LQAIFEYQTMITN LQVIFEYQTMIAN LQVFEFQSMICA LQAIFEFQTMICE LQAIFEFQTMICE	LTGMDVSNISLY LTGMDVINASMY LTGMDVINASMY LTGMEVINASMY LTGMEVSNASMY LTGMEVSNASMY LTGMDVANSSMY LTGMDVANSSMY LAGLEIANASMY	UO DGATAAAEASVLACVS DVGTATVEAAVMAVQI DGATACGEAAVMAADD DGASACAEAAMMACD2 DGASAIAEAAAMAVD2 DGATATAEAAILAIAS DGATALEACVLLSAAH DGGTALAEAVLLSAAH DGGTALAEQVLLAIAF	PZ STRRKKVLVSNI WKKCKSIVVSKI WTRRKSIVVSSI ATRR	UX VSPETRAVLKTYF VAPETRLILHTYL VHPEVRKVLKTYM VHPESRRVLNTYA VHPETLSVLRTYL VHPEYRAVLETYA VHPEYRAVLETYA VHPEYRAVLRAYL	QYRNMDVVEVSSIE 189 KQNDIEVIEVDTAD 187 ELRDIELVEVNMAE 189 HFKEVEVVEIEDAD 192 NFKNIKIVEIESKD 189 KYRDYNMIEIDLEE 188 QYKDCEIVEIDFCNEY 199 NGQRLEVKEIPY-N-G 190 KGQNLEVVEINHKD 190 EAVGAKLLTLPLEG 188
H. sap D. mel A. tha E. col S. cer	~ LHAISSKNQIWRSYIGMGYYNCSVF IRDISLKNQLWRSYIGMGYHNCHVF MVDLASKNKVFKSFIGMGYYNTHVF LKAIASRNKRFTSYIGMGYTAVQLF LEKIANKNHYKVKNFIGKGYYGTILF	QTILRNLLENSGWI HTIIRNMFENPGWT TVILRNIMENPAWY PVILRNMLENPGWY PVIQRNLLESPEWY	TQYTPYQPEVSQGRI TQYTPYQPEIAQGRI TQYTPYQAEISQGRI TAYTPYQPEVSQGRI TSYTPYQPEISQGRI	LESLLNYQTMVCD LESLLNYQTLVTD LESLLNFQTVITD LEALLNFQQVTLD LEALLNFQTVVSD	ITGLDMANASLL LTGLDVANASLL LTGLPMSNASLL LTGLDMASASLL LTGLPVANASLL	DEGTAAAEALQLCYRH DEGTAAAEAMCLATRH DEGTAAAEAMAMCNNI DEATAAAEAMAMAKRV DEGTAAGEAMLLSFNI	INKRRKFLVDPF INKRKKLYLSNF ILKGK-KKTFVIASN /SKLKNANRFFVASI ISRKK-KLKYVIDKK	2CHPQTIAVVQTRA 2VHPQTLSVVKTRT 1CHPQTIDVCKTRA 2VHPQTLDVVRTRA 1LHQQTKSVLHTRA	KYTGVLTELKLPCEMD 252 EALELEIVVGPIEQAD 227 DGFDLKVVTSDLKDID 273 ETFGFEVIVDDAQKV- 206 KPFNIEIIEVDCSDIK 263
C. sti E. aci A. ore T. ten A. met C. bot C. dif G. the B. cer	β4 GQTDIDDLKSKLDKDTAGVLLQYPNEFG GVTDMDKLTAAVGDETAGVIVQNPNFFG GVTDIDHLKSLVSKETAAVIIQSPNFFG GVTDIEKLKEVIGPNTAAVIVQYPNEFG GTTDVDKVLNSLDKNVAAVIIQSPNFLG GTTDIEKLKASVDKDTACVLIQTPNFFG GVTDLEVLAAEMGDDVACVVIQYPNEFG GVTDLDVLQSEVDDTVACVIVQYPNEFG GRTPLPEVGEEVGAVVVQNPNELG	a8	β5 3 I HENKSLMILYTOPI AHDKKALLIDVVDPI I HENKGLLISVVDPI THEQKANLITVHPI I HEQKGLLIMSVDPI THENKAMLIMSVDPI THENKAMLIMSVDPI VHEKKSLFVVASNPI VHQKSLFIVSSNPI AHGAGALFVAVADPI	10- η4 α9 IALGLLKSPGELG ISLGIVKRPGDIG ISLGILKSPGEIG ISLGILKSPGEIG ISLGILKSPGEIG ISLGVLKTPGEIG LALGVLTPPGEFG LSLGALTPPGKFG LSLGVLKPPGAYG	β6 ADMALGDGQDLG ADIVVGDAQCFG VDIVVGEGQSLG ADIAVGEGQALG ADIAVGEQQLG ADIVVGDQQCLG ADIVVGDQQCLG ADIVVGDAQFG ADIVVGDAQFG ADIVIGDAQFFG ADIAVGDGQSLG	3 ₁₀ -η5 β7 LPLNFGGPTLGFINVE SALNFGGPYLGFLATT NGLHYGGPYLGFLATT NTLSFGGPYLGFLATT NTLSFGGPYLGFLATT NPLNFGGPYVGFLASE IPMQFGGPHCGYFATT LPMGFGGPHCGYFATT LPMGFGGPHFGFLATE	310- η6 β CDKLLRKMPGR IVGC CSKMARKMPGR IVGC TSKLIRKMPGR IVGC TKKLMRKMPGR IVGC CKKLMRKMPGR IVGC CAPLMRK IPGRLVGC CKAFMRK IPGRLVGC CKAFWRCIPGRLVGE	8 β9 3 SVDSNGNRAFVLT TEDTDGKRGFVLT SNDIDGKRGFVLT TTDVNGERGFVLT TTDVNGERGFVLT SLDVEGKRGFVLT TTDEEGRRGFVLT TTDEEGRRGFVLT TVDSDGKRGFVLT TVDVEGRRGFILT	10-η7 α10 310-η8 LQAREQHIRRQDATSN 326 LQAREQHIRREKATSN 326 LQAREQHIRRDKATSN 327 LQAREQHIRRDKATSN 327 LQAREQYIRRAKAKSN 321
H. sap D. mel A. tha E. col S. cer	FSGKDVSGVLFQYPDTEG LPSRELAGILLQYPDTYG YSSGDVCGVLVQYPGTEG LDHQDIFGVLLQQVGTTG KAVDVLKNPDVSGCLVQYPATDG	KVEDFTELVER DVKDFEDIAAL EVLDYAEFVKN EIHDYTALISE SILPPDSMKQLSDA	AHQSGSLACCATDLI AKKNGTLVVVATDLI AHANGVKVVMATDLI LKSRKIVVSVAADIN LHSHKSLLSVASDLN	LALCILRPPGEFG LSLTLLRPPAEFG LALTVLKPPGEFG MALVLLTAPGKQG MALTLLKPPAHYG	VDIALGSSORFG ADIAVGTSORLG ADIVVGSAORFG ADIVFGSAORFG ADIVLGSSORFG	VPLGYGGPHAAFFAVH VPLGYGGPHAGFFACH VPMGYGGPHAAFFAAH VPMGYGGPHAAFFAAH VPMGYGGPHAAFFAVI	RESLVRMMPGRMVGV (QSLVRLMPGRMIGV SQEYKRMMPGRIIG) (DEYKRSMPGRIIGV IDKLNRKIPGRIVG)	TRDATGKEVYRLA TRDMDGNDAYRLA SVDSSGKQALRMA SKDALGKTALRMA SKDRLGKTALRLA	LQTREQHIRRDKATSN 379 LQTREQHIRRDKATSN 354 MQTREQHIRRDKATSN 400 MQTREQHIRREKANSN 333 LQTREQHIRREKANSN 398

Fortsetzung nächste Seite

	α11	α12	β10	β11	α13	β12	β13	α14			
C. sti E. aci A. ore T. ten A. met C. bot C. dif G. the B. cer	ICSDQTLNAIRAGMYLAVVGH ICSNQGLCTLTVAIYLSTMGH ICSNQGLVALMASMYLTILGH ICSNHSLNALTAAVYLATIGH ICSNQALNALAAAVYLTTLGH ICSDQTAVAIGAAVYMATLGH ICSNQALNALVASIYMATMGH ICSNQALNALAASVALSALGH ICSNQALNALAASVAMTALGH ITTNAQLTALMGAMYLAALGH	KEGIKEVAKSCLNKANYAYKEI (SGLKEVALQCMNKAQYAYKKI (KGIKEVANQSTQKAHYAFNEI (KGIKEVAYQCLQKAHYAYTVI (AGLKEVALQSTQKAHYALKEI (EGIKEVAKQCVAKSHYAYNEI (EGFKEVGMQSMKKAHYTYNKI (RGVKEMATMNMQKAHYAKSEI (QGVKEMARQNISKAQYAKRQI PEGLREVALKSVEMAHKLHALI	QKLENVQALFEGP TESGKFKPLYNKPI TKSGKFKPLFNKPI TKSGKYQLAFNQPI IKSGKYRPVFNKPI VQTGKYKPIFKGKI QKRG-LLSPFAGPI EAKG-FTVTFAGPI LEVPGVRPFTPKPI	FREFALKTKASS FREFALTSDVA FREFALTSDDF FREFALKTDKDV FREFAVKTDVT FREFAVKTDVT FREFAVGELSE FREFVIRLNQPV FREFVIRLNQPV FREFVIRLNQPV FREFALALPKDF	SEKVLQALLEAGIL AADVNAKLAESNIL PTQVNKELLKNGIL AEINKKLLEEGIL AEVVQSGLLEKDIL CEINDKLLENNIL CEINDKLLENNIL JDVNARLRQKGII KEVNDALLQKNII PEAVRRALAERGFH	GYSLSSTDYGLEI GYELECDYPEAKI GYELRKEYAEMEI GYDLQRDYEKYKI GYHLEKFDPKLKI GYDLGKVYSEYEI GGYNLEYNYPELKI GGYNLGFDYPELAI GGYDLGRDYKEHEI GATPVPREYGEI	VAILIAVTEKRT NGLLFCVTEKRT NGLLLCVTEKRT NMLLAFTEKRT NSMLLCVTEKRT NSMLLCVTEKRS NHLVAVTELRT NHMLVAVTELRT NLALFAATELHE	KEEIDKLVSVIGGVR KEEIDCLAQVMEVNC KEEIDKLAKVMEVI- KEEIDRLKSLLEVM- KGEIEQLARVLGGIK REDIDNLVKVMEAI- KEEIDKLVGIMEGL- KEEIDRFVNELGDGH KEEIDTLVNEMGAIQ EEDLLALREALKEVL	- 445 - 446 - 449 - 447 - 447 - 446 - 457 A 448 - 447 A 438		
H. sap D. mel A. tha E. col S. cer	ICTAQALLANMAAMFAIYHG ICTAQALLANMSAMYAIYHG ICTAQALLANMAAMYAVYHG ICTSQVLLANIASLYAVYHG ICTAQALLANVASSYCVYHG	SHGLEHIARRVHNATLILSEGI PEGLKAMANRIHHFTLTLQTGV PAGLKSIAQRVHGLAGIFSLGI PIGLKRIANRIHRLTDILAAGI PKGLQNISRRIFSLTSILANAI	KRAGHQLQHDL YLGAGHEVINKNI NKLGV-AEVQELPI QQKGLKLRHAH ENDSCPHELINKTV	FDTLKIQCGC FDTLHIRLGGGG FDTVKIKCS FDTLCVEVA FDTLCVEVA	SVKEVLGRAAQRQ SLEDLKERAEHKR DAHAIADAASKSE DKAGVLARAEAAE SSEQLLDKALKEF	INFRLFED INLRYLED INLRVVDS NINLRSDIL	GTLGISLDETVN DTVGVALDETVS TTITASFDETTT NAVGITLDETTT TTISLALDETTT	EKDLDDLLWIFGC VADVDDLLWVFKA LDDVDKLFKVFAS RENVMQLFSVLLG KADVENLLKVFDI	489 466 511 442 513		
B E. aci A. ore A. met C. sti C. bot T. ten C. dif G. the B. cer	αl MKN-YNKLVFEVSKEGKKAYS MKSDYNKLIFFISKEGRKAYS MKK-YNQLSFELSKPGRIAYQ MSYDKMIFELSAHGRKAII -MKDYNKVIFELSSEGRKGYF MLKEYNSLIFELSKEGKKAYT -MKEYNSLLIDISKKGRKAYS MHN-DQPLIFERSKPGRIAYS MKNQDQALIFEVSKEGRIGYS MSFPLIFERSRKGRRGLF	α2 310-η SLPKCDVPELDAASVIPAGYLS SLPKCDVEEVNLSSLIPKEFLS DIPACDVPEVNLSEILPAEMIF SLPBLDVPEVELSKLLPKNLLF SLPLDVPEVELSKLLPKNLLF SLPKLDIDDIKIEDMIDQDMAF SLPKLDVPAVDVSELVPADYLF SLPKLDVEEVKLEDVFESDYIF SLPKLDVEEVKLEDVFESDYIF SLPKLDVEEVKLEDVFESDYIF	SEEPK_PELSEVDU DKELD_PEVSEVDU 2DQDVE_PELSQGDU 2EKSANLPEVSQLDJ 2EKEVD_PEVSEVDU 2QSELN_PEVSELDI 2VEDAE_PEVSELDI 2VEDAE_PEVSELDI 2EVPPR_PEVDELTI	α3 /I RHFTNLSQKNH /I RHYTQLSNKNY /WRHYTLLSNKNY /VRHYTALSNKNY /I RHYTLLSQKNY /VRHYTLLSNKNH /WRHYTLLSNKNH /MRHYTALSNRNH /WRHYTQLSRRQY	GLDGGFYPLGSCT GVDTGFYPLGSCT SLDAGFYPLGSCT TVDNGFYPLGSCT GVDIGFYPLGSCT GVDTGFYPLGSCT GVDSGFYPLGSCT GVDSGFYPLGSCT GVDTFYPLGSCT	α4 MKYNPK INEDMCR. MKYNPK INEDMAVI MKYNPK INEE IAAI MKYNPK INEDIVAI MKYNPK INEDMAAI MKYNPK INEDMAAI MKYNPK INENVARI MKYNPK INESVARI MKYNPK INESVARI	3 IPGLVNVHPYQP LPGFANIHPYQP LAGFSHIHPYQP USGFSKIHPLQD LSGFSKIHPLQD LPGFTELHPYQP LPNFTGMHPYQS LAGFAHIHPLQP FAGFANIHPLQD LFADLHPYQD	10-η2 α5 EETVQGSLEVMYNLA EETVQGALELMYKLD EETVQGALALTYELD VETVQGELEIMYNLA ENISQGALELMYDLK EETVQGALKLMYELE SDTAQGSLSLMYDLS EETVQGALELMYDLQ PRTAQGALRLMWELG	QSLAEISGMI KMLAEVAGMH QMLSEITGMI NMLSEITGMI GKLCEITGLI KALCEITGMI RRLAEITGMI EHLKEITGMI EHLIEITGMI EYLKALTGMI	β1 JEVTLQPAAG RWTLQPVAG JEFTLQPAAG DFTLQPAAG DFTLQPAAG DFTLQPAAG JEVTLQPAAG JEVTLQPAAG JTVTLQPAAG JAITLEPAAG	139 140 139 138 139 140 139 140 132
H. sap D. mel A. tha E. col S. cer	ESSAELVAF EASVEHILA GKPVPFTAF DNHGLDIDTLDF ENSS(ESMGEECRGIPGSVFKRTSPF ARKDVLKNSIENSKFLRTSPY ESLAPEVQNSIPSSLTRESPY (DVAHDSRSIQP-AMLRDDEII QFLSEDYSNSFPREFQRTDEII	THQVFNSYHSETN QHPIFQSYHSESRI THPIFNMYHTEHEI THPVFNRYHSETEN RNEVFHMHHSETAN	URYMKKLENKD WRYMKKLENKD LRYIHKLQSKDI MRYMHSLERKDI MLRYLHRLQSRDI	SLVHSMIPLGSCT SLVHSMIPLGSCT SLCHSMIPLGSCT JALNQAMIPLGSCT JSLANSMIPLGSCT	MKLNSSSELAPITU MKLNSTTEMMPCSJ MKLNATTEMMPVTU MKLNAAAEMIPITU MKLNSTVEMMPITU	WKEFANIHPFVP FRHFTDIHPFAP WPSFTDIHPFAP WPEFAELHPFCP WPQFSNIHPFQP	LDQAQGYQQLFRELE VEQAQGFHQMFKELE VEQAQGYQEMFENLG PEQAEGYQQMIAQLA SNQVQGYKELITSLE	KDLCELTGYI HDLCEITGYI DLLCTITGFI DWLVKLTGYI KDLCSITGFI	QVCFQPNSG)RISFQPNSG)SFSLQPNAG)AVCMQPNSG)GISLQPNSG	617 594 639 573 637
E. aci A. ore A. met C. sti C. bot T. ten C. dif G. the B. cer	α6 AHGEYAGLLSIKEYHKKRGD- AHGELVGLMVIKAYHKKRGD- SHGEMTGLMIIKAYHESRGD- AHGEYTGLLIKAYHEKRGD- AHGEYTGLLIKAYHEKRGD- AHGELTGLMIIKAYHENRD- SHGEFTGLMIIKAYHENRGD- AHGEWTGLMLIRAYHEANGD- AHGEWTGLMLIRAYHEANGD- AHGELTGILIIRAYHEDRGC	β2 LKRTKIIVPDSAHGTNPASAA LKRTKIIIPDSAHGTNPASAA HKRKKIICPDSAHGTNPASAA EKRTKIIVPDSAHGTNPASAA KKRKKIIVPDSAHGTNPASAA HKRTKVIIPDSAHGTNPASAA FGRTKVIVPDSAHGTNPASAA FRRTKVIVPDSAHGTNPASAA FRRTKVIVPDSAHGTNPASAA GRTRRVVLVPDSAHGSNPATAS	β3 VAGLEIVEIESNS(VAGFDVVEIKSNPI VAGFDIIEVKSND(IVAGFDVIELETNAI VAGFDVIELKSREI VAGFDVIEIKSREI VAGFETVVRSTAI VAGFETTVKSNEI MAGYQVREIPSGPI	α8 CGVDIENLKSVI CGVDIENLKSVI CGVDVESLKAVI CGSIDIEKLKAVI CGRVSIEELKKVI CGALDLEALKAVI CGLVDLEDLKRVV CGLVDLEDLKRVV CGVDLEALKREI	β4 SDEVAGFMLT SDEVAGLMLT SDEVAGLMLT NDEVAGLMLT NDEVAGLMLT NDEVAALMLT GPDTAALMLT GPHVAALMLT	-O NPSTLGLFEVNITI NPSTLGLFETNIK NPSTLGLFETNIK NPSTLGLFEKDIK NPSTLGLFEKNIK NPSTLGLFEKNIK NPNTLGLFEQIVI NPNTLGLFERILI	α9 EITKLIHEAGGL DIADLVHDAGGL EMAQLVHEAGGL EVASLVHEAGGL EIARLVHEAGGL EIARLVHEAGGL EIATLVHEAGGL EMAEIVHEAGGK EMAEIVHNAGGK EISRLCKEAGVQ	β5 3 ₁₀ - η3 CYYDGANLNAIMGKT LYYDGANTNAIMGVT LYYDGANTNAIMGVT LYYDGANLNAIMGIX LYYDGANLNAIMGIS LYYDGANLNAIMGIT LYYDGANLNAILGKA LYYDGANLNAILGKA LYYDGANLNAIMGWA	α10 β6	HFNLHKTFS HYNIHKTFS HINIHKTFS XILNHKTFS XILNHKTFS HINIHKTFS HINIHKTFT HINIHKTFT HINIHKTFT	275 276 275 274 275 276 275 275 276 269
H. sap D. mel A. tha E. col S. cer	AQGEYAGLATIRAYLNQKGE AQGEYAGLRAIRSYHEHRNE AAGEYAGLMVIRAYHMSRGD AQGEYAGLLAIRHYHESRNE AQGEYTGLRVIRSYLESKGE	-GHRTVCLIPKSAHGTNPASAH -GHRNICLIPISAHGTNPASAQ -HHRNVCIIPVSAHGTNPASAA -GHRDICLIPASAHGTNPASAA -NHRNVCLIPVSAHGTNPASAA	IMAGMKIQPVEVDKY MAGMKVEPIRILSI MCGMKIITVGTDAH IMAGMQVVVVACDKI MAGLKVVPVNCLQI	ZGNIDAVHLKAM ZGSIDMAHLRAKZ ZGNINIEEVRKAZ ZGNIDLTDLRAKZ ZGSLDLVDLKNKZ	YDKHKENLAAIMIT AEEHAHELSCLMIT AEANKDNLAALMVT AEQAGDNLSCIMVT AEQHSKELAAVMIT	YPSTNGVFEENIS YPSTMGVFEETVA YPSTHGVYEEGID YPSTHGVYEETIR YPSTYGLFEPGIQ	DVCDLIHQHGGQ DICTLIHKHGGQ EICNIIHENGGQ EVCEVVHQFGGQ HAIDIVHSFGGQ	VYLDGANMNAQVGIC VYLDGANMNAQVGLC VYMDGANMNAQVGLT VYLDGANMNAQVGIT VYLDGANMNAQVGLT	RPGDFGSDVS RPGDYGSDVS SPGFIGADVS SPGFIGADVS SPGDLGADVS	SHLNLHKTFC SHLNLHKTFC SHLNLHKTFC SHLNLHKTFC CHLNLHKTFS	756 733 778 712 776

Fortsetzung nächste Seite

E. aci TPHGGGGGGGGG DUWAHLAFLF WUWAKDDRYUDYDR PNSMAC KNPYGNYGCLA WAYNAMA SUKEVSEA WULANYMHKLKAE KUPYDQVC	E. aci THHGGGGGAGP LUXAHLAFLF - V-VVAKKDERVLDYDRPNSMGKIKNFYGNYGVCERAYAVKSMAASEKEVSEAAVLNNNYMHKIKKE - YLDFUDGU		β7 31	₀ - η4 β8	β9	α11	α12	β10	β11	α13	
$ \begin{array}{c} a & a \\ a & a \\ c & a $	A. ore THROGOGEOSCHVERKELEVEL-SVIERKGEEVLDVPRYSIGNISHES FGHPGLURAYTISSTER SKALLANNIMMERKELKKYLPIEQVCKNEPVLAGL-KKELAMSTLAINAR A. ore THROGOGEOSCHVERKELVEL-SVIERKGEEVLDVPRYSIGNISSFGHPGLURAYTISSTER SKALLANNIMMERKKYLPIEQVC	E agi	TDUCCCODCACDICUKAU			UNEVONVOUCI DAVAVUU OMOAS			VUREVIDCI DC		407
$ \begin{array}{c} \text{A} one thresholds and the second secon$	A. Ore i THOGGGPGSGVGWGRIDUPFL-TVVEKKEDRYIDUPGSIGVGTFFGGPGVTKAFATILSMCDIFFGARGALLADUNARIALEX-IIFIQU-TVEKUGVGVGWGRGJUPGGVGWGRGDIVGWGRGDVGWGRGDUPGSGVGWGRGDIVGWGRGDVGWGRGDUPGSGVGWGRGDIVGWGRGDVGWGRGDUPGGVGWGRGUFGGWGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	E. aci	TPHGGGGPGAGPIGVAAHI	VEED COUTEVE	CEEVUL DYDRDVCLCKT	KNFIGNIGVCLRAIAIVKSMGA	ALDEVCEYAVI NANYMULVI VE	-IKLPIDQVC-	VUREVICCI NE	DII CUCTI DI AVDI I DVC	407
A. ##1 TPHGOGGOGGSUVGVKHIAFELGUVKKDSTLATUKKDSTISTISTEGUNGTLERAVGUKKDSTLATUKANANARSERAUTAAN THESTERUCTURGUKKDSTUSTISTISTISTISTISTISTISTISTISTISTISTISTIS	A. met TPHGGGGGGGGGVGVKKHLAPFLP-VERVERVDKVTLLYVPKKDSTGSVKFVFGTLRYVVTLMAADGLAVSTNUTAAUMADULAUTAAUTAAUMADULAUTAAUTAAUMADULAUTAAUMATAUTAAUTA	A. DIE	TDUCCCCDCSCDUCUPKDI	NDELD-LDMAEKK.	GEEIVLDIDRPISIGRI	CTEVCNECUTURAEAVII SMCCI	CI KKASEMANI NANYI MULI KDI		KHEFVLGGL-NE	FIAFMETINIAKRILDIG	408
C bit TPHGGGGGGGVGVKHLARK L-V TVERKENDR I LDUNKEDSLKK ISSUENVKLAT HUMARGUNKANT I LIMMARGUNKASSENVUKANT KESKED - UNTRESSET - KENPHILAULAKSEN AKUNANT KESKED - UNTRESSET - KENPHILAULAKSEN AKUNANT KESKED - UNTRESSET - KENPHILAULAKSEN AKUNANT KESKED - UNTRESSEN - KENPHILAULAKSEN AKUNANT KESKED - UNTRESSEN - KENPHILAULAKSEN VARANT KESKED - UNTRESSEN - KENPHILAULAKSEN VARANT KESKED - UNTRESSEN VARANT KESKED - UNTRESSEN VARANT KESKED - KENPHILAULAKSEN VARANT KESKED - UNTRESSEN VARANT KESKED - KENPHILAULAKSEN VARANT KESKED - UNTRESSEN VARANT KESKED - VERGGGGGGGGGVGVGVKANTALPY - VELVERGEGFYLDTRESI KENPFYLORGINVANT KENPT VARANT KERVED VARANT KARVER VARANT	C. bot TPHGGGGGGSBPUGVKKHLARFLA-VTVDEKENDER LDVRREDSGGATELDVENVMKAYSTELLMAKELSABENAVLIANNIKESLED - UNIGKDDIC	A. met	TPHCCCCPCSCPUCVKKH		EDRIIDIDREQSIGRV	KEVCNECTI I DAVIVTI SMOOI	CI DAUGENAUTNANYMOMI KDI			VSTCITTI FIARDIDIC	406
The degree of the degree of the transformation of the transformat	T. ten TPHGGGGPGGPGVGKKELAPFL-VPTVEEKDGYFLDVDRLSIGKVRFYCNFUVMIKAYS TILTMGREGIKRASELAVLNAN IKEELGY-KWADVKRTCWHFVLAGL-AEKSGDWRTLDVAKR C. dif TPHGGGGPGGPUGVKKELAPFL-IVVIEKKEDKYVLNVDRKSIGKVRFYCNFOUVDRAYT ILTMGREGIKRASELAVLNAN IKEELGY-KWADVKRTCKHFVLAGL-AEKSGDWRTLDVAKR G. the GPHGGGGPGSGVUGVKELDFFL-EVVIEKKEDKYVLNVDRKSIGKVKFYCNFOUVDRAYT ILTMGREGIKRASELAVLNAN IKEELGY-VLAVAVKRTC	C bot	TPHCCCCCPCSCDVCVKKHI	AEFLD-VDTVFKF	NDKFILDVNRFDSLCKI	RSIVCNECVMVKAVTVILTMCKI	CLKSASENAVINANYIKESLED	- IQLAVDRUC-	KHEVILSTL-KE	NDHHIATI.DIAKRI.IDYO	400
C. dif TPHOGOGPGAGPVGVKKELVPFLF-I VVERKEDKYVLNYDREKSICKLKNFYCNFGVLVRAYTVILLTMGRDGLKEASEMAULAANYLKESIKDD-VILLPIDTLCKHEFVLGGL-PRGEANLKTTDLAKELLDY 40 G. the GPHOGOGPGSVGVKADDIFFLF-KVVLAKGENGYLDDRPQSIGWKEFYCNFGUNKATTITREMEPDGLKAVSEYKVLAANYMMRLADF-DDLPYNHEKHEFVLSGR-RQKKLGVRTLDIAKELDDF 40 B. cer GPHOGOGPGSVGVKADDIFFLF-KVVLAKGENGYLDDRPQSIGWKEFYCNFGUNKATTITREMEPDGLKAVSEYKVLAANYMMRLADF-DDLPYNHE	C. dif TPHGGGGPGAGPVGVKKELVPFLB - IPVIERKEDKVVLNYDREKSIGKIKNFYGNFGVLVRAYTYILTMGRDGLKEASEMAVINANYIKESIKDD - NILPIDTICKHEFVLGGL-PRGBANIKTIDIAKR G. the GPHGGGGPGSGFVGVKADLIPFL - KVVIAKGENGYYLDDAPQSIG QVKPFYGNFGINVRAYTYILTMGNDFDGLKANSEYAVLNANYMRRLADY - DLPYNRHCKHEFVLGGR-RQKKLGVRTLDIAKR B. cer GPHGGGGPGSGPVGVKALLAPYL - VELVERGEEGFYLDFPRVSIG RVKPFYGNFGINVRAYTYIRSMCPDGLKANSEYAVLNANYMMRRLAPP-NDLPPDRECKHEFVLSGR-RQKKLGVRTLDIAKR VPHGGGPGSGPVGVKALLAPYL - VELVERGEEGFYLDFPRVSIG RVKSFYGNFLALVRAWAYIRTLGLEGLKKAAALAVINARYLKELKKGGRVPYDGPSHHEFVAQPEGFRALDIAKG H. sap IPHGGGGPGMCPIGVKKHLAPPLPYISLKRNEDACPVGTVSAFPWGSSSILPISWAYIKMGGKGLKQATETTILNANYMAKRLEHYRILFRGARGYVGHEFILDTPPKKSANIEAVDVAKR D. mel IPHGGGGPGMCPIGVKAHLAPYL-SHPVISLSSSEEHS-FGVVSAFPWGSSSILPISWAYIKMGGKGLKQATETTILNANYMAKRLEHYRILFRGARGYVGHEFILDTPPKKSANIEAVDVAKR A. tha IPHGGGGPGMCPIGVKAHLAPPUCSVQ1EGMLTRGSSAILPISWSYIKIMGSGLTDASKIAILNANYMAKRLEHYRULFGNGGWAHFFILDIRDLKKSANIEAVDVAKR S. cer IPHGGGGPAGPICVKAHLAPPUCSVQ1EGMLTRGSASILPISWYIMMGGCLKKSQV1LINANYLAKRLGDAFVVTRGGCWAHFFILDIRDLKKSANIEAVDVAKR S. cer IPHGGGGPAGPICVKAHLAPPUCSVQ1EGMLTR	T ten	TPHCCCCPCSCPVCVKKEI	ADFLP-VPTVEEK	DGRYFI.DYDRPI.SIGKV	RSEYGNENWMIKAYSYTLTMGA	GLKRASELAVI.NANYI.KEKI.KG	-YKVAVDKTC-	MHEFVI.AGIAF	KSCOVETLOVAKELTOYC	408
G. the B. cer GPHGGGGPGSGPVGVKADLIPFLP-KFVIAKGENGYYLDDDRPQSIGRVKPFYGNFGINVRATYIRSMGPGLRAVSEYAVLNANYMRRLADF-UDLPYNRHCKHEFVLSGK-RQKKLGVRTLDIAKLLDF 40' GPHGGGGPGSGPVGVKADLIPFLP-KILEKTEGGFYLDDRRKSIGVKSFYGNFGINVRATYIRSMGPGLRAVTEXALANYMARLADF-UDLPYNRHC	G. the B. cer GPHGGGGPGSGPVGVKADLIPFLP-KPVIAKGENGYYLDDDRPQSIGRVKPFYGNFGINVRAYTYIRSMGPDGLKAVSEYAVLNANYMMRLADY-TDLPYNRCKHEFVLSGK-RQKKLGVRTLDIAKR GPHGGGGPGSGPVGVKADLIPYLP-KPILEKTEDGYRFNVDRPEAIGRVKPFYGNFGINVRAYTYIRSMGPDGLKAVSEYAVLNANYMMRLADY-TDLPYNRCKHEFVLSGR-RQKKLGVRTLDIAKR VPHGGGGPGSGPVGVKAHLAPYLP-VELVERGEEGFYLDFDRFKSIGRVRSFYGNFLALVRAWAYIRTLGLEGLKKAAALAVLNARVLKELKKGVRPVDGSMHEFVLSGR-RQKKLGVRTLDIAKR VPHGGGGPGGPGFGVKAHLAPFLP-VELVERGEEGFYLDFDRFKSIGRVRSFYGNFLALVRAWAYIRTLGLEGLKKAAALAVLNARVLKELKKGVRPVDGSMHEFVLSGR-RQKKLGVRTLDIAKR D. mei IPHGGGGPGGGPGFGVKAHLAPFLPSHPVTSLSSEEHS-FGVSAAFWGSSSILPISWSYIKIMGSGCIKAATUNARKLECHVTKIKADSOVAVKR A. tha IPHGGGGPGGGPGFGVKAHLAPFLPSHPVTTGGIPQPEKTAPLGAISAAFWGSSAILPISWSYIKIMGSGCITDASKIALLANAVKAKLECHVTVFKAAPSQVAHEFTLDITPFKKSANTEAVDVAKR B. col IPHGGGGPGAGAPICVKAHLAPFLPSHPVTPGSVQIEGMLTRQGAVSAAFFGSSSILPISWSYIKMGSGCITDASKIALLANAVKAKLECHVTVFKGVGTVAHEFTIDIRGKNTAGEPEDVAKR B. col IPHGGGGPGAGAPICVKAHLAPFUPGHSVVQIEGMLTRQGAVSAAFFGSSSILPISWSYIKMGSGCITDASKIALLANAVKAKLEKHVPVFRGVGRVAHEFTIDIRFKKTAGEPEDVAKR B. col IPHGGGGPGAGAPICVKAHLAPFUPGHSVVQIEGMLTRQGAVSAAFFGSSSILPISWYIRMMGSGCIKASQVALLNANYIASRLQAPFVLYIGRDGRVAHEFTIDIRFKKTAGEPEDVAKR B. col IPHGGGGPGAGAPICVKAHLAPFUPGHSVVQIEGMLTRQGAVSAAFFGSSSILPISWYIRMMGSGCIKASQVALLNANYIASRLQAPFVLYIGRDGRVAHEFTIDIRFKKTAGEPEDVAKR B. col IPHGGGGPGAGAPICVKHIIPHLFKDVVDMITGIGSKSIDSVSSAFYUNALVLDISYAYIKMMGNEGIFSSVIALLSNYMMTRLKDHVKIFFVMMSTLKHCHFFVUERFYAKG-VEAIDVAKR B. col YHPPTYYPPIIVHAAINIEPTETSKETUDDIALAKLAEEACPPILKNAPGHTVVKLDBVKAKAARALVLKVEREQ	C. dif	TPHGGGGPGAGPVGVKKEI	VPFLP-IPVIERK	EDKYVLNYDREKSIGKI	KNFYGNFGVLVRAYTYILTMGRI	GLKEASEMAVLNANYIKESIKD	-YILPIDTLC-	KHEFVLGGL-PR	GEANIKTIDIAKRILDYG	407
B. cer GPHOGOGPGSGPVOVKADLIPYLP-KJTLEKTEDGYRFNYDRPEAIGRVKPFYONGGINVRAYTYIRSMGPDOLRAVTYAVLNANYMMRRLAPF-EDLPFDRHCKHEFVLSGR-RQKKLGVRTLDIAKRLLDFG 401 VPHGGGGFGGCPVOVKALLAPYLF-VELVERGEEGFYLDFDRPKSIGRVASTYGHFLALVRAWAYIRTLGLEGLKKAAALAVLAAR/LKELLKEKGRVPYDGPGMHEFVLSGR-RQKKLGVRTLDIAKRLLDFG 401 B. sap IPHGGGGFGGCPTOVKAHLAPYLF-VELVERGEEGFYLDFDRPKSIGRVASTYGHFLALVRAWAYIRTLGLEGLKKAAALAVLAAR/LKELLKEKGRVPYDGPGMHEFVLSGR-RQKKLGVRTLDIAKGLEAD D. mel IPHGGGGFGGCPTOVKAHLAPYLFGPVSDLSSEHS-FGVVSAAFFGSSALLPISWSYIKLMGSGEIKAATOVAILNANYMSKELEHYKTIYKAPNSQVAHEFILDTEPFKSANIEAVDVAKLMOVG 864 B. cha THRGGGGFGGCPTOVKAHLAPFLSEPVVDGSVVQIEGHTP-SSEHS-FGVVSAAFFGSSALLPISWSYIKLMGSGEITDASKIAILNANYMAKRLEHYVIJERGNGTVAHEFILDTEPFKSANIEAVDVAKLMOVG 864 B. col IPHGGGGFGGPTOVKAHLAPFVSGSVVQIEGHTRQGAVSAAFFGSSALLPISWYIKMGSGEITDASKIAILNANYMARRLEHYVIJERGNGTVAHEFILDTEPFXGKALMAPVV S. cer IPHGGGGFGAPTOVKAHLAPFVSGSVVQIEGHTRQGAVSAFFGSSALLPISWYIKMGSGEITDASKIAILNANYMARRLEHYVIJERGNGTVAHEFILDTEPFXAKLMDYG 844 S. cer VHPPTVYPIIVKSHIIHHLKHDVVMITGIGGSKSIDSVSSFYGNAVLJFYYIYKMKGSGEITDASKIAILNANYMARRLEHYVIJERGNGTVAHEFILDTEPVAKRMOVG 91: F. aci YHEPTYYPIIVKEXMITETSVETUDE IDALKIAEBAKKPGILKNNPQTTVKRLDEVKAKADLIIKVQG	B. cer GPHGGGPGSGPVGVKADLIPYLP-KBILEKTEDGYRPNYDRPEAIGRVKPFYGNFGINVRAYTYIRSMGPDGLRAVTEYAVLNANYMRRLAPF-YDLPFDRHCKHEFVLSGR-RQKKLGVRTLDIAKR H. sap IPHGGGPGMGPIGVKKHLAPFLP-VPLVERGEEGFYLDPDRFKSIGRVESFYGNFLALVRAWAYIRTLGLEGLKKAAALAVLNARYLKELLKEKGWRVPYDGPSMHEFVAQPPEGFRLDLAKG D. mel IPHGGGPGMGPIGVKKHLAPFLPHPWISLKRNEDACPVGTVSAAFWGSSSILPISWAYIKMGGKGLKQATETAILNANYMAKRLETHYRILFRGARGYVGHEFILDTRPFKKSANIEAVDVAKR A. tha IPHGGGPGMGPIGVKAHLAPFLCHPVVSPLSSEEHS-FGVVSAAFWGSSSILPISWAYIKMGSGLKDAATOVAILNANYMSKRLECHYKTYKAPNSQLVAHHFILDIRDLKSANIEAVDVAKR A. tha IPHGGGGPGMGPIGVKAHLAPFLCHPVVSPLSSEEHS-FGVVSAAFWGSSSILPISWAYIKMGSGLKDASVAILNANYMSKRLECHYKTYKAPNSQLVAHHFILDIRDLKSANIEAVDVAKR S. cer IPHGGGGPGMGPIGVKAHLAPFLCHVVSPLQGAVSAFWGSSSILPISWAYIKMGSAGLKASOVAILNANYMAKRLEKHYPVIFRGVNCVAHHFILDIRDLKSANIEAVDVAKR S. cer IPHGGGGPAGPIGVKAHLAPFLCHVVSWUTGIGSSSIDSVSSAFYGNALULPISYYIKMGSAGLKASOVAILNANYMAKRLEKHYPVIFRGVNCVAHHFILDIRDLKSANIGAILVKRGS S. cer IPHGGGGPAGAGPICVKSHLIPHLKHDVVDMITGIGGSKSIDSVSSAFYGNALVLPISYAYIKMGSAGLKASOVAILNANYMAKRLEKHYPVIFRGVNCNAHHCILIRPLKEETGISELDIAK S. cer IPHGTVFPLIVPLIVAAMI EPTETEGRETLDEFIDALLKIAEEAKKDPOILKNAPGT	G. the	GPHGGGGGPGSGPVGVKADI	IPFLP-KPVIAKG	ENGYYLDDDRPOSIGRV	KPFYGNFGINVRAYTYIRSMGPI	GLKAVSEYAVINANYMMRRIAD	-YDLPYNRHC-	KHEFVLSGK-RC	KKLGVRTI DI AKRI LDFG	407
vpHggggggggvgvKahLaPYLP-veLveRgeegFyLDFDRPKSIGRVRSFYGNFLALVRAWAYIRTLGLEGIKKAAALAVLNARYLKELLKEKGTRVPYDGPSMHEFVAQPPEGFRALDLAKGLELG 391 H. sap IPHGGGGPGMGPIGVKKHAAPLDRHPVISLKRNEDACPVGTVSAAPKSSSILPISWAYTKMGGKGIKQATETAILNANYMKRLETHYRIIFRGARGYVGHEFTLDTRPFKSANIEAVVAKRLQOVG 881 A. tha IPHGGGGPGMGPIGVKKHAAPLDRHPVISLKRNEDACPVGTVSAAPKSSSILPISWAYTKMGSGGTDASKRATQVAILNANYMKRLEGHYKTYYAAPNSQLVAHEFTLDTRDFKKSANIEAVVAKRLQOVG 881 b. tha IPHGGGGPGMGPIGVKAHLAPTLKCHPVSPLSSEHAS-FGVVSAAPFGSASILPISWYYIKMGSGGTDASKATAVKRLKKHVPVFFROVKOVVAHEFTLDTRDFKKSANIEAVVAKRLQOVG 881 s. col IPHGGGGPGMGPIGVKAHLAPTVDCHPVSPLSSEHAS-FGVVSAAPFGSASILPISVYIKMGSGGTDASKATAVKRLKKHVPVFFROVKOVVAHEFTLDTRGFKTALGATEPEVVAKRLOVG 881 s. col IPHGGGGPGMGPIGVKAHLAPTVDCHTVGHSVVQIEGMLTRQGAVSAAPFGSASILPISVYIKMGNEGIPFSVIALANNIMMTRLKDHYKIEFVVEFROVKOVVAHEFTLDKRFKTAGAGASH 911 s. col IPHGGGGPGMGPIGVKAHLAPTVDVOMITGIGGSKS - IDSVSAP VENALVLDISVAYKKMGNEGIPFSVIALANNIMMTRLKDHYKIEFVVEFROVKOVAHEGTLDKRFKTAGA-VEALVKMGOVG 844 A. col YHPPTVYPELIVHQAIMIEPTETEGREFLDEFIDALKTAEEAKKPELKKNNPH TUKKLDEVKAKARULIKVGG	VPHGGGGPGGPVGVKAHLAPYLP -VELVERGEGFYLDFDRKSIGRVRSFYGNFLALVRAWAYIRTLGLEGLKKAAALAVLNARVLKELLKEKGTRVPYDGPSWHEFVAQPPEGFRALDLAKG H. sap IPHGGGPGMCPIGVKKHLAFFLPNHPVISLKRNEDACPVGTVSARPwGSSSILPISWAYIKMMGKGLKQATETAILNANYMAKRLETHYRILFRGARGYVGHEFILDTRPFKSANIEAVDVAKR A. tha IPHGGGPGMCPIGVKAHLAFFLPNHPVISLKRNEDACPVGTVSARPwGSSSILPISWAYIKMMGKGLKQATETAILNANYMAKRLEHYKTLYKAPNSQLVAHEFILDIRDLKSANIEAVDVAKR A. tha IPHGGGPGMCPIGVKAHLAFFLPSHPVIPTGGIPQPEKTAPLGAISAAPWGSSLILPISWSYIKLMGSRGLTDASKIAILNANYMAKRLEKHYPVLFRGVNGTVAHEFILDIRDLKSANIEAVDVAKR E. col IPHGGGPGAGPIGVKAHLAFFLPSHPVIPTGGIPQPEKTAPLGAISAAPWGSSLILPISWSYIKLMGSRGLTDASKIAILNANYMAKRLEKHYPVLFRGVNGTVAHEFILDIRDLKSANIEAVDVAKR S. cer IPHGGGPGAGPIGVKAHLAFFLPSHPVIPTGGIPQBEKTAPLGAISAAPWGSSLILPISWYIKMGNEGIPFSVIALINANYMAKRLEKHYPVLFRGVNGTVAHEFILDIRDLKSANIEAVDVAKR S. cer IPHGGGPGAGPIGVKAHLAFFLPHHPVUFGSVQIEGMLTRQGAVSAAPFGSSSLIPISWAYIKMGNEGIPFSVIALINANYMAKRLEKHYPVLFRGVNG	B. cer	GPHGGGGPGSGPVGVKADI	IPYLP-KPILEKT	EDGYRFNYDRPEATGRV	KPFYGNFGINVRAYTYIRSMGPI	GLRAVTEYAVI NANYMMRRI API	-YDLPFDRHC-	KHEFVLSGR-RC	KKLGVRTLDTAKRLLDFG	408
H. sap IPH0GGGPGMGPTGVKKHLAFFLPNHPVTSLKRNEDACPUGTVSAFWGSSTLFTSWAYTKMMGGKGLKQATETATIANAYMAKRLETHYRILFRGARGYVGHEFTLDTRPFKKSANIEAVIVAKRLQDYG 887 M. sap IPH0GGGPGMGPTGVKAHLAFTLPSHPVTSL <sseehs-rgvvsaffgssatlftswaytkmmgggutdasktatlnanymakrlethyrilfrgargyvgheftldtrpfkksanieavivakrlqdyg< td=""> 887 A. tha IPH0GGGPGMGPTGVKAHLAFTLSHPVTSLSSEEHS-RGVVSAFFGSSATLFTSWAYTKMMGGGUTDASKTATLNANYMAKRLECHYFVFRGVNGVVAHEFTLDTRPFKKSANIEAVIVAKRLQDYG 887 S. cer IPH0GGGPGMGPTGVKAHLAFTVDGHVSUSLGGAVSAFGSASTLFTSWAYTKMMGAGUKKASQVATLNANYTASRLQDAFPVLYTGRDGRVAHEFTLDTRPFKKSANIEAVIVAKRLQDYG 887 S. cer IPH0GGGPGMGPTGVKAHLAFTVDGHVDMTTGTGGSKSTDSVSSAFYGNALVLDTSVAYTKMGNGEGTDASKTATLNANYMAKRLEKHYFVLFWEMSTLKHCAHEFTVLEEYAKG-VFALVVAKRLQDYG 887 A. ore YHPPTYPFLIVNEMSTLKHCWHDVTDMTTGTGGKSKTDSVSSAFYGNALVLDTSVAYTKMGNGEGTPFSVTATLNANYMAKRLEKHYFVLFWEMSTLKHCAHEFTVLEEYAKG-VFALVVAKRLQDYG 886 A. ore YHPPTYPFLIVNEMSTLKHCAHEFTVLDETTSSETTUDGTDALKKTAEE YENALVLTSVAFF 110 S. cer YHPPTYPFLIVNEAMWEPTETTSSETLDGTDALKKTAEE YENELKAFF 110 110 110 S. cer YHPPTYPFLIVNEAMWEPTTTSSETLDGTDALKKTAEE YENALVLTSSFKAFF 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 1</sseehs-rgvvsaffgssatlftswaytkmmgggutdasktatlnanymakrlethyrilfrgargyvgheftldtrpfkksanieavivakrlqdyg<>	H. sap D. mel H. sap D. mel H. sap D. mel H. stap D. mel H. stap H. stap H		VPHGGGGPGSGPVGVKAHI	APYLP-VPLVERG	EEGFYLDFDRPKSIGRV	RSFYGNFLALVRAWAYIRTLGL	GLKKAAALAVI NARYI KELI KE	GYRVPYDGPS-	MHEFVAO	PPEGERALDLAKGLLELG	398
H. sap D. mel PHGGGGPGMGPIGVKHLAPFLENHPVISLKRNEDACPVGTVSAFWGSSILPISWAYKMMGKGLKQATETAILANYMKRLETHYRILFRGARGVVGHEFILTTPFKKSANIEAVDVAKRLODYG B. mel IPHGGGGPGMGPIGVKHLAPFLCHPVVSPLSEBHS-FGVVSAFWGSSILPISWSYKIMMGSGLKQATETAILANYMKRLEGHYKTYKAPNSQLVAHEFILTLAFKKSANIEAVDVAKRLODYG 86. col IPHGGGGPGMGPIGVKHLAPFLSYPUTGGSVVJTEGMLTRQGAVSAFFGSASILPISWSYKIMMGSGLKKASQVAILANYMKRLEGHYKTYKAPNSQLVAHEFILTLAFKFNTAGEPEVVKRKIMDVG 91. 5. col IPHGGGGPGAGAPICVKSHLIPHLKHDVVDHTGIGGSSTDSVSSFYGNALVLPISVSYIKIMGSGLKKASQVAILANYMKRLEGHYKTYKAPNSQLVAHEFILTLAFKFNTAGEPEVKKRKIMDVG 91. 5. col IPHGGGGPGAGAPICVKSHLIPHLKHDVVDHTGIGGSSTDSVSSFYGNALVLPISVSYIKMMGNEGHPFSVIAMLNSNYMMTRLKDHYKIFVNEMSTLKHCAHEFIVDLKEYKAKG-VEALDVAKRLDDYG 91. 6. aci YHPPTVYFPIIVPENTKCRFTLDFFIDALKKIAEAKKDPQILKNAFQTTLVKKLDEVKAKADLILKYQG	H. sap TPHGGGGPGMCPTCVKKHLAFFLPNHPVISLKRNEDACPVGTVSAF -wGSSSILPISWAYIKMMGGKGLKQATETAILNANYMAKRLETHYRLFRGARGYVGHEFILDTRPFKKSANIEAVDVAKR D. mel IPHGGGGPGMCPTCVKAHLAFPLPGHPVUSPLSEEHS-FGVVGAFFGSSALPISWSYIKIMGSGLKRATOVAILNANYMKRLEQHYKTYKAPNSQLVAHEFILDIRDLKKSANIEAVDVAKR A. tha IPHGGGGPGMCPTCVKAHLAFFLSHPVIPTGGIPQPEKTAPLGAISAFWGSALLPISYTYLAMGSGGLTDASKIAILNANYMKRLEKHYPVLFRGVNGTVAHEFILDIRDLKKSANIEAVDVAKR E. col IPHGGGGPGMCPTCVKAHLAFFVDGRSVVQIECMLTRQGAVGAFF-FGSSALPISWMYIRMMGGLGFSSVIANLNNYMKRLEKHYPVLFRGVNGRVAHEFILDIRPLKETGISELDIAKR S. cer IPHGGGGPGMCPTCVKAHLAFFVDGRSVVQIECMLTRQGAVGAFFFGSSALPISWMYIRMMCGLFSSVIANLNSNYMMTRLKDHYKILFVNEMSTLKHCAHEFIVDLREYKAKG-VEAIDVAKR E. aci YHPPTVYFPIIVHQAIMIEPTETEGRETLDEFIDALLKIAEEAKKDPQILKNAPQTTLVKRLDEVKAAKDLILKYQG										
D. me ¹ D. me ¹ A. tha DHGGGGPGMCPIGVKAHLAPYLPGHPVVSPLSSEEHS-FGVVSAHFGSSAILPISVSYTKLMGSREIKRATOVAILNANYMSKLEOHYKTYKAPNSQLVAHEFILDIRDLKKSANIEAVDVAKRLMDYG B. col DHGGGGPGMCPIGVKNALAPFLSHWIPTGGIPQEKTAPLGAISAHFGSSAILPISVSYTKLMGSGITDASKIAILANYMAKLEHYPVLPRGVNGTVAHEFILDIRDLKKSANIEAVDVAKRLMDYG 91: S. cor DHGGGGPAGPIGVKSHLIPHLKHDVVDMITGIGGSKSIDSVSSHYCNALVLPISYAYIKMMGSGITDASKIAILANYMAKLEHYPVLPRGVNGTVAHEFILDIRDLKKSANIEAVDVAKRLDYG 91: B12 B13 A14 A15 C16 C16 C16 C16 C16 C16 C17 C17 C17 C17 C17 C17 C17 C17	D. mel IPHGGGGPGMGPIGVKAHLAPYLPGHPVVSPLSSEEHS-FGVVSAAPFGSSAILPISWSYIKLMGSRGKRATQVAILNANYMSKRLEQHYKTLYKAPNSQLVAHEFTLDIRDKKSANIEAVDVAKR A. tha IPHGGGGPGMGPIGVKAHLAPFLBSHVIPTGGIPQPEKTAPLGAISAAPWGSALLPISYTYIAMMGSGITDASKIAILNANYMSKRLEQHYKTLYKAPNSQLVAHEFTLDIRGKNTAGIEPEDVAKR E. col IPHGGGGPGAGPIGVKAHLAPFVPGHSVVQIEGMLTRQGAVSAAPFGSSSILPISWSYIKLMGSRGLKASQVAILNANYIASRLQDAPPVLYTGRDGRVAHEFTLDIRGKNTAGIEPEDVAKR S. cer IPHGGGGPAGAPICVKSHIIPHLFKHDVDWITGIGGSKSIDSVSSAPYGNAUVLPISYAYIKMMGAEGLKFSSVIAMLNSNYMTRIKDHYKILFVNEMSTLKHCAHEFTVDLREYKAKG-VEAIDVAKR F. aci YHPPTVYFPIIVHQAIMIEPTETEGRETLDETIDALKKAEAKEDPQILKNAPQTTLVKRLDEVKAKDLILKYQG	H. sap	IPHGGGGPGMGPIGVKKHI	APFLPNHPVISLK	RNEDACPVGTVSAA	PWGSSSILPISWAYIKMMGGH	GLKOATETAILNANYMAKRLET	IYRILFRGARG-	YVGHEFILDTRPFK	KSANIEAVDVAKRLODYG	888
A. tha IPHGGGGPGMCDTGVKNHLAPTLSHPVIPTGGIPQPEKTAPLGATSAAPWGSALILPISYTIAMMGSGGITDASKIAILNANYMAKLEKHYVVLPRGVNGTVAHETIDLAGFKNTAGIEPDVAKRLMDYG 91: E. col IPHGGGPGMCDTGVKNHLAPTLSHPVIPTGGIPQPEKTAPLGATSAAPFGSASILPISWMTIRMMGAEGIKKASQVATLANNYTASKIQDAFPVLYTGRDGRVAHECILDTRPLKEETGISELPIAKKLDYG 84: S. cer IPHGGGPGACPTCVKNH IPHLRKDVVDNTTGIGGSXSIDSVSSAPYGSASILPISWMTIRMMGAEGIKKASQVATLANNYTASKIQDAFPVLYTGRDGRVAHECILDTRPLKEETGISELPIAKKLDYG 84: S. cer IPHGGGPAAPTCVKNH IPHLRKDVVDNTTGIGGSXSIDSVSSAPYGSASILPISWMTIRMMGAEGIKKASQVATLANNYTASKIQDAFPVLYTGRDGRVAHECILDTRPLKEETGISELPIAKKLDYG 84: A. cer JHPTVYFPLIVHQAIMIEPTETGGRETLDETIDALKIAEGAKKDPQILKNAPQTTLVKRLDEVKAKADILKYQG	A. tha IPHGGGGPGMGPIGVKNHLAPFLPSHPVIPTGGIPQPEKTAPLGAISAAPWGSALILPISYTYIAMMGSGGLTDASKIAILNANYMAKRLEKHYPVLPRGVNGTVAHEFIIDLRGFKNTAGIEPEDVAKR E. col IPHGGGGPGMGPICVKAHLAPFVPGHSVVQIEGMLTRQGAVSAAPFGSASILPISWMYIRMMGAEGLKKASQVAILNANYIASRLQDAPPVLYTGRDGRVAHECILDIRPLKEETGISELDIAKR S. cer IPHGGGGPGAGAPICVKSHLIPHLPKHDVVDMITGIGGSKSIDSVSAPYGNALVLPISYAYIKMMGNEGLPFSSVIAMLNSNYMMTRLKDHYKILFVNEMSTLKHCAHEFIVDLREYKAKG-VEAIDVAKR β_1^2 β_1^3 α_1^4 α_1^5 α_1^6 E. aci YHPPTVYFPLIVHQAIMIEPTETGRETLDEFIDALLKIAEEAKKDPQILKNAPQTTLVKKLDEVKAAKDLILKYQG	D. mel	IPHGGGGPGMGPIGVKAHI	LAPYLPGHPVVSPL	SSEEHS-FGVVSAA	PFGSSAILPISWSYIKLMGSF	GLKRATOVAILNANYMSKRLEQ	IYKTLYKAPNSQ	LVAHEFILDIRDLK	KSANIEAVDVAKRLÄDYG	865
E. col IPH6GGGPGMGPTGVKAHLAFVPGHSVVQIEGMLTRQGAVSAAPFGSASILPISWMYTRMMGAEGLKKASQVAILNANYTASRLQDAFPVLYTGRDGRVAHECILDTRPLKEETGISELDIAKRLIDYS 84: S. cer IPH6GGGPAGAPICVKSHITHLEXHDVDMITGIGGSKSIDSVSSAPYGNALVLPISYAYTKMMGNEGLPFSSVIAMLNSNYMMTRLKDHYKILFVNEMSTLKHCAHEFTVDLREYKAKG-VEAIDVAKRLODYG 91: β12 β13 α14 α15 α16 C. aci YHPPTVYFPLIVHQAINIEPTETESRETLDEFIDALKIAEAKKDPQILKNAPQTTUVKLDEVKAAKDLILKYQG	E. col IPHGGGGPGMGPIGVKAHLAPFVPGHSVVQIEGMLTRQGAVSAAPFGSASILPISWMYTRMMGAEGLKKASQVAILNANYIASRLQDAFPVLYTGRDGRVAHECILDIRPLKEETGISELDIAKR S. cer IPHGGGGPAGAPICVKSHLIPHLEKHDVVDMITGIGGSKSIDSVSSAPYGNALVLPISYAYIKMMGNEGLPSSVIAMLNSNYMMTRLKDHYKILFVNEMSTLKHCAHEFTVDLREYKAKG-VEAIDVAKR $\frac{\beta l2}{\beta} \frac{\beta l3}{\beta} \frac{\alpha l4}{\alpha} \frac{\alpha l5}{\alpha} \frac{\alpha l6}{\alpha}$ E. aci YHPPTVYFPLIVHQAIMIEPTETEGRETLDEFIDALLKIAEEAKKDPQILKNAPQTTLVKRLDEVKAAKDLILKYQG	A. tha	IPHGGGGPGMGPIGVKNHI	LAPFLPSHPVIPTG	GIPQPEKTAPLGAISAA	PWGSALILPISYTYIAMMGSC	GLTDASKIAILNANYMAKRLEKI	IYPVLFRGVNG-	TVAHEFIIDLRGFK	NTAGIEPEDVAKRLMDYG	913
S. cer IPHGGGGPAGAPICVKSHI IPHLEKHDVDMITGIGGSKSIDSVSSAPYGNALVLPISYAYIKMMGNEGLPFSSVIAMLNSNYMMTRIKDHYKI FVNEMSTIKHCAHEFTVDLREYMAKG-VEAIDVAKRLODYG 91: <u> </u>	S. cer IPHGGGGPAGAPICVKSHLIPHLPKHDVVDMITGIGGSKSIDSVSAPYGNALVLPISYAYIKMMONEGLPFSSVIAMLNSNYMMTRLKDHYKILFVNEMSTLKHCAHEFIVDLREYKAKG-VEAIDVAKR β12 β13 α14 α15 c. aci YHPPTVYFPLIVHQAIMIEPTETEGRETIDEFIDALLKIAEEAKKDPQILKNAPQTTLVKRLDEVKAAKDLILKYQG	E. col	IPHGGGGPGMGPIGVKAHI	LAPFVPGHSVVQIE	GMLTRQGAVSAA	PFGSASILPISWMYIRMMGA	GLKKASQVAILNANYIASRLQD	FPVLYTGRDG-	RVAHECILDIRPLK	EETGISELDIAKRLIDYG	842
B12 B13 a14 a15 a16 E. aci YHPPTVYFPI IVHQAIMI EPTETEGRETLDE IDALLKI AEEAKK DPQI LKNAPQT TLVKR LDEVKAAKDLI LKYQG 484 A. ore YHPPTYFPI IVNEAMMI EPTETES VETLDQFIDALNKI ADEAKE TPELLKNAPH THVRRI DEKAARNLI VKWEREQ 486 A. met YHPPTYFPI IVREAMMI EPTETES KETLDQFIDALNKI ADEAKE TPELLKNAPH THVRRI DEAKAARNLI VKWEREQ 486 C. sti FHPPTVYFPI IVREAMMI EPTETES KETLDQFIDALNKI ADEAKE TPELVSSAPQH SVGKLDEAKAARSPVUKWQRSQ 486 C. sti FHPPTVYFPI IVDEALMI EPTETES KETLDQFIDAMKKI AVEAKE NPELVSSAPQH SVSRUDEAKAARSPVUKWQRSQ 486 C. sti FHPPTVYFPI IVDEALMI EPTETES KETUDQFIDAMKKI AVEAKE NPEI FKTAPHH SPASRI DEALAARKPU ITYKPSL 485 C. bti HPPTTYFPI IVEEALMI EPTETEKET LDAFAETI IK IAKEAKE NPEI LKEAPHN TPVRL LDVKAARKPI LRWQK 484 T. ten FHPPTIYFPI IVEECIMI EPTETES SET LDAFIDARIQ IAKEAKE PEELLKTAPHN TVVKR LDETTAARKPI LRWQK 485 C. dif YHPPTMYPI I INBALMI EPTETES KET LDGF IDAMIK JAKEAKE PEELLKTAPHN TVVKR LDETTAARKPI LRWQK 485 G. the FHPPTIYFPI IVEECIMI EPTETES KET LDGF IDAMIQ IAKEAKE PEELLKTAPHN TVVKR LDETTAARKENPALKKPI LRWQK 490	β12 β13 α14 α15 α16 E. aci YHPPTVYFPI IVHQAIMIEPTETEGRETLDEF IDALLKIAEEAKKDPQILKNAPQTTLVKRIDEVKAAKDLILKYQG	S. cer	IPHGGGGPAGAPICVKSHI	IPHLPKHDVVDMI	TGIGGSKSIDSVSSA	.PYGNALVLPISYAYIKMMGNH	GLPFSSVIAMLNSNYMMTRLKD	IYKILFVNEMST	LKHCAHEFIVDLREYK	AKG-VEAIDVAKRLQDYG	911
E. aci YHPPTVYFPLIVHQAIMIEPTETEGRETLDEFIDALKIAEEAKKDPQILKNAPQTTUVKRLDEVKAAKDLILKYQG	<i>E. aci</i> YHPPTVYFPI IVHQAIMIEPTETEGRETLDEF IDALLKIAEEAKKDPQILKNAPQTTLVKRLDEVKAAKDLILKYQG										-
E. aci YHPPTVYFPLIVHQAIMIEPTETGRETLDEFIDALLKIAEEAKKDPQILKNAPQTTLVKRLDEVKAAKDLILKYQG	E. aci YHPPTVYFPLIVHQAIMIEPTETEGRETLDEFIDALLKIAEEAKKDPQILKNAPQTTLVKRLDEVKAAKDLILKYQG		R17 R12	a .	1 /	or15	a16				
 <i>HPPTVYPPLIVHQAIMIEPTETEGRETLDEFIDALKKIAEEAKKDPQILKNAPQTTLVKRLDEVKAAKDLIKYQG</i>	E. aci YHPPTVYFPIIVHQAIMIEPTETEGRETLDEFIDALLKIAEEAKKDPQILKNAPQTTLVKRLDEVKNAKDLILKYQG		β12 β13	α	14	α15	α16				
A. ore YHPPTIYPPIIVNEAMMIEPTETESVETLDQFIDALNKIADEAKETPELLKNAPHHTHVRRIDEAKAARSDVVKWQRSQ486 A. met YHPPTVYPPIIVREAMMFEPTETESKETLDQFADALIKIAQEAKDNPELVSSAPQHTSVGRLDEAKAARSDVVKWQRSQ	A. ore YHPPTIYFPIIVNEAMMIEPTETESVETLDQFIDALNKIADEAKETPELLKNAPHHTHVRKIDEAKAARNLIVKWEREQ		β12 β13		14 	α15	α16 -				
A. met YHPPTVYFPIIVREAMMKEPTETESKETLDQFADALIKIAQEAKDNPELVSAPQHTSVGRLDEAKAARSPVVKNQRSQ	A. met YHPPTVYFPIIVREAMMFEPTETESKETLDQAADALIKIAQEAKDPELVSSAPQHISVGRLDEAKAARSPVVKWQRSQ	E. aci	β12 β13 YHPPTVYFPLIVHQAIMI		14 IDALLKIAEEAKK	α15 DPQILKNAPQT	α16 TLVKRLDEVKAAKDLILKYQG			48	4
C. sti FHPPTVYFPIIVDSAIMLEPTETESKOTMDEFINAMKQIAKEAKENPEIFKTAPHHSPASKIDEALAARKPVLTYKPSL485 C. bot VHPPTVYFPIIVEEALMIEPTESESKETVDEFIDAMKKIAVEAKENPEILHEAPVKAPVRRLDQVKAARKPILRWQK	C. 5C1 FHPPTVYFPLIVDSAIMLEPTETESKOTMDEFINAMKQIAKEAKENPEIFKTAPHHSPASRIDEALAARKPVLTYKPSL C. bot VHPPTVYFPLIVEEALMIEPTESESKETVDEFIDAMKKIAVEAKENPELLHEAPVKAPVRRLDQVKAARKPILRWQK T. ten FHPPTIYFPLIVEEALMIEPTETETKETLDAFAETLIKIAKEAKENPELLKEAPHNTPVRRLDEVKLAARNPVLRWTK	E. aci A. ore	β12 β13 YHPPTVYFPLIVHQAIMIH YHPPTIYFPLIVNEAMMI	C C C C C C C C C C C C C C C C C C C	14 IDALLKIAEEAKK IDALNKIADEAKE	al5	α16 TLVKRLDEVKAAKDLILKYQG- THVRRIDEAKAARNLIVKWER	2Q		48 48	4
C. bot VHPPTVYPPIIIEEALMIEPTESESKETVDEFIDAMKKIAVEAKENPELLHEAPVKAPVRLDQVKAARKPILRWQKAPVRLDQVKAARKPILRWQK	C. bot VHPPTVYFPIIIEEALMIEPTESESKETVDEFIDAMKKUAVEAKENPELLHEAPVKAPVRLDQVKMARKPILKWQK	E. aci A. ore A. met	β12 HPPTVYFPLIVHQAIMIH YHPPTIYFPLIVNEAMMIH YHPPTVYFPLIVREAMMFH	C C C C C C C C C C C C C C C C C C C	14 IDALLKIAEEAKK IDALNKIADEAKE ADALIKIAQEAKD	al5 DPQILKNAPQT TPELLKNAPHH NPELVSSAPQH	α16 TLVKRLDEVKAAKDLILKYQG- THVRRIDEAKAARNLIVKWER TSVGRLDEAKAARSPVVKWQR	2Q 3Q		48 48 48	4 6
T. ten FHPPTIYFPIIVEEALMLEPTETETKETLDAFAETLIKLAKEAKEPELLKEAPHNTPVRLDEVLAARNPVIRMTK	T. ten FHPPTIYFPLIVEEALMIEPTETETKETLDARAETLIKUAKEAKEPELLKEAPHNTPVRKLDEVLAARNPVURWTK C. dif YHPPTMYFPLIINEALMIEPTESESIETLDSFIEAMKSVAKEAKEEPELLKTAPHNTLVKRVDDARAVKKPILTWSQR G. the FHPPTIYFPLIVEECMMIEPTETESKETLDAFIDAMIQIAKEAEETPEIVQEAPHTTVVKRLDETTAARKDFALSKNEKLIPTVVKRLDETTAARKDFALSKNEKLIPTVVKRLDETTAARKDFALSKNEKLIPTVVKRLDETTAARKDFALSKNEKLIP	E. aci A. ore A. met C. sti	β12 YHPPTVYFPLIVHQAIMIH YHPPTIYFPLIVNEAMMIH YHPPTVYFPLIVREAMMFH FHPPTVYFPLIVDSAIMII	C C C C C C C C C C C C C C C C C C C	14 IDALLKIAEEAKK IDALNKIADEAKE ADALIKIAQEAKD INAMKQIAKEAKE	als	α16 TLVKRLDEVKAAKDLILKYQG- THVRRIDEAKAARNLIVKWER TSVGRLDEAKAARSPVVKWQR SPASRIDEALAARKPVLTYKP	 2Q 3L		48 48 48 48	4 6 5
C. dlf YHPPTMYPPTIINEALMIEPTESESIETLDS#IEAMKSVAREAREFPELLKTAPHNTLVKRVDDARAVKPILTMSSR	C. GII YHPPTMYFPLIINEALMIEPTESESIETLDSMIEAMKSVAKEAKEEPELLKTAPHNTLVKKVDDARAVKKPILTWSQR	E. aci A. ore A. met C. sti C. bot	β12 YHPPTVYFPLIVHQAIMIH YHPPTIYFPLIVNEAMMIH YHPPTVYFPLIVREAMMFH FHPPTVYFPLIVDSAIMIH VHPPTVYFPLIIEEALMII	a SPTETEGRETLDEF SPTETESVETLDQF SPTETESKETLDQF SPTETESKQTMDEF SPTESESKETVDEF	14 IDALLKIAEEAKK IDALNKIADEAKE ADALIKIAQEAKD INAMKQIAKEAKE IDAMKKIAVEAKE	als	α16 TLVKRLDEVKAAKDLILKYQG THVRRIDEAKAARNLIVKWER TSVGRLDEAKAARSPVVKWQR SPASRIDEALAARKPVLTYKP APVRRLDQVKAARKFILRWQK	20 20 51		48 48 48 48 48 48 48 48 48 48 48 48 48	4 6 5 4
G. The FHEPTIYFPIIVEECMMIEPTETESKETLDAFIDAMIQIAKEAEE 190 B. cer YHEPTIYFPIIVEECIMIEPTETESKETLDGFIDKMIQIAKEAEE 190 FHEPTIYFPIIVEECIMIEPTETESKETLDGFIDKMIQIAKEAEE 190 G. the YHEPTIYFPIIVEECIMIEPTETESKETLDGFIDKMIQIAKEAEE 190 B. cer YHEPTIYFPIIVEECIMIEPTETESKETLDGFIDKMIQIAKEAEE 190 YHEPTIYFPIIVEECIMIEPTETESKETLDGFIDKMIQIAKEAEE 190 G. the FHEPTIYFPIIVEECIMIEPTETESKETLDGFIDKMIQIAKEAEE 190 H. sap FHAPTMSWPVAGTLMVEPTESEDKAELDRFCDAMISIRCEIADIEECRIDPRVNPLKMSPHSLTCVTSS-HWDRP-YSREVAAFPLPFVKPENKFWPT IARIDDIYGDQHLVCTCPPMEVYESPFSEQKRASS 1020 D. mel FHAPTMSWPVAGTLMIEPTESEDKEELDRFCDAMISIREEIAEIEAGRMDKAVNPLKMSPHTQAQVISD-KWDRP-YTREQAAFPAIFVKPDAKIWPT VGRIDDAYGDKHLVCTCPPILPDL	G. The FHEPTIYFPIIVEECUMIEPTETESKETLDAFIDAMIQIAKEAEETPEIVQEAEHTTVVKRLDETTAARKRDFALSKNEKLIPTVVKRLDETTAARKRDFALSKNEKLIP	E. aci A. ore A. met C. sti C. bot T. ten	β12 YHPPTVYFPLIVHQAIMII YHPPTIYFPLIVNEAMMII YHPPTVYFPLIVREAMMFI FHPPTVYFPLIVDSAIMII VHPPTVYFPLIIEEALMII FHPPTIYFPLIVEEALMII	a SPTETEGRETLDEF SPTETESVETLDQF SPTETESKETLDQF SPTETESKQTMDEF SPTESESKETVDEF SPTETETKETLDAF	14 IDALLKIAEEAKK IDALNKIADEAKE ADALIKIAQEAKD INAMKQIAKEAKE IDAMKKIAVEAKE AETLIKIAKEAKE	als	α16 TLVKRLDEVKAAKDLILKYQG THVRRIDEAKAARNLIVKWER TSVGRLDEAKAARSPVVKWQR SPASRIDEALAARKPVLTYKP APVRRLDQVKAARKPILRWQK TPVRRLDEVLAARNPVIRWTK	2Q 3Q 5L		48 48	4 6 5 4 5
 B. CEF YHPPITYFPINVEECIMIEPTETESKETLIGETISKETTISK	B. CEF INFPIINFPLANEECIMIEPTETESKETLUGETDAMUQIAKEVELENPEVQEARHIIVIKKLDEIMAAKKVUKYEKPAPQQ	E. aci A. ore A. met C. sti C. bot T. ten C. dif	β12 YHPPTVYFPLIVHQAIMII YHPPTIYFPLIVNEAMMII YHPPTVYFPLIVDSAIMII FHPPTVYFPLIUDSAIMII FHPPTVYFPLIIEEALMII FHPPTIYFPLINEALMII	a PTETEGRETLDEF PTETESVETLDQF PTETESKQTMDEF PTETESKQTMDEF PTETEKETLDAF PTETESSIETLDSF	14 IDALLKIAEBAKK ADALIKIADEAKE INAMKQIAKEAKE IDAMKKIAVEAKE AETLIKIAKBAKE IEAMKSVAKEAKE	a15DPQILKNAPQTNPELKNAPHHNPEIFKTAPHHNPELLHEAPVKNPELLKEAPHN	α16 TLVKRLDEVKAAKDLILKYQG- THVRRIDEAKAARNLIVKWER: TSVGRLDEAKAARSPVKWQR: SPASRIDEALAARKPVLTYKP: APVRRLDQVKAARKPILRWQK TPVRRLDEVLAARNPVIRWTK TLVKRVDDARAVKKEILTWSQ	2Q 3Q 5L		48 48	4 6 6 5 4 5 5 9
<pre>FHPPIVIPPIVEALMVEPIEIEARETLEARAEAMGALLKKPKE</pre>		E. aci A. ore A. met C. sti C. bot T. ten C. dif G. the	β12 YHPPTVYFPLIVHQAIMII YHPPTIYFPLIVNEAMMII YHPPTVYFPLIVREAMMFI FHPPTVYFPLIVDSAIMII VHPPTVYFPLIIEEALMII FHPPTIYFPLIVEEALMII FHPPTIYFPLIVEEALMII FHPPTIYFPLIVEEALMII	a PTETEGRETLDEF PTETESVETLDQF PTETESKETLDQF PTETESKETUDEF PTETESKETUDEF PTETETKETLDAF PTESESIETLDSF PTETESKETLDAF	14 IDALLKIAEEAKK ADALIKIADEAKE INAMKQIAKEAKE IDAMKIAVEAKE AETLIKIAKEAKE IEAMKSVAKEAKE IDAMIQIAKEAEE	a15	α16 TLVKRLDEVKAAKDLILKYQG- THVRRIDEAKAARNLIVKWER: TSVGRLDEAKAARSPVVKWQR: SPASRIDEALAARKPVLTYKP: APVRRLDQVKAARKPILTWQ! TPVRRLDEVLAARNPVIRWTK TLVKRVDDARAVKKPILTWSQ! TVVKRLDETTAARKRDFALSK:	2Q Q SL Z		48 49 49 49 49 40	4 6 6 5 4 5 5 0 0
H. sap FHAPTMSWPVAGTLMVEPTESEDKAELDRFCDAMISIRQEIADIEEGRIDPRVNPLKMSPHSLTCVTSS-HWDRP-YSREVAAFPLPFVKPENKFWPT IARIDDIYGDQHLVCTCPPMEVYESPFSEQKRASS 1020 D. mel FHAPTMSWPVAGTLMIEPTESEDKEELDRFCDAMISIREEIAEIEAGRMDKAVNPLKMSPHTQAQVISD-KWDRP-YTREQAAFPAIFVKPDAKIWPT VGRIDDAYGDKHLVCTCPPILPDL 985	FREEIVIFELIVALAANVBEIDIDAADIDAAANGALDAAPAGADAAPAE	E. aci A. ore A. met C. sti C. bot T. ten C. dif G. the B. cer	β12 β13 YHPPTVYFPLIVHQAIMIH YHPPTVYFPLIVNEAMMIH YHPPTVYFPLIVNEAMMIF YHPPTVYFPLIVEEALMIH YHPPTVYFPLIVDSAIMIH YHPPTVYFPLIVDSAIMIH YHPPTVYFPLIVEEALMIH YHPPTIYFPLIVEEALMIH YHPPTYFPLIVEEALMIH YHPPTYFPLIVEEALMIH YHPPTYFPLIVEEALMIH YHPPTIYFPLIVEEALMIH YHPPTYFPLIVEEL YHPPTYFPLIVEEL	a PTETEGRETLDEF PTETESVETLDQF PTETESKETLDQF PTETESKETVDEF PTETESKETLDAF PTESSIETLDSF PTETESKETLDAF PTETESKETLDGF	14 IDALLKIAEEAKK IDALNKIADEAKE ADALIKIAQEAKD INAMKQIAKEAKE AETLIKIAKEAKE IEAMKSVAKEAKE IDAMIQIAKEAEE IDAMIQIAKEAEE	α15DPQILKNAPQTNPELVSAPQHNPEIFKTAPHHNPEILHEAPVK	α16 TLVKRLDEVKAAKDLILKYQG- THVRRIDEAKAARSPVVKWQR: SPASRIDEALAARKPVLTYKP: APVRRLDQVKAARKPILRWQK TVVRLDEVLAARNEVIRWTK: TLVKRVDDARAVKKPILTWSQI TVVKRLDETTAARKRDFALSKI TVVKRLDETTAARKRDFALSKI TVIKRLDETTAARKRDFALSKI	2Q 3Q 3L Retrip APVQ		48 48	4665455094
D. mel FHAPIMSWPVAGILMVEPIESEDKAELDRECHAMISIRGEIADIEEGRIDERVNPLKMSPHSLICVISS-HWDRE-ISREVHAFPLPFVRPENRFWFI IARIDDIEGQHUVEESPFSLQKRASS 1020 D. mel FHAPIMSWPVAGILMIEPTESEDKEELDRECHAMISIRGEIAEIEAGRMDKAVNPLKMSPHTQAQVISD-KWDRP-YTREQAAFPAIFVKPDAKIWPT VGRIDDAYGDKHLVCTCPPILVIESPFSLQKRASS 1020		E. aci A. ore A. met C. sti C. bot T. ten C. dif G. the B. cer	β12 SHPPTVYFPLIVHQAIMIH YHPPTIYFPLIVNEAMMII YHPPTVYFPLIVREAMMFI FHPPTVYFPLIVEALMIH FHPPTIYFPLIVEEALMIH YHPPTMYFPLIINEALMIH FHPPTIYFPLIVEECIMIH YHPPTIYFPLIVEECIMIH FHPPTIYFPLIVKEALMVI	C C C C C C C C C C C C C C	14 IDALLKIAEEAKK IDALNKIADEAKE ADALIKIAQEAKD INAMKQIAKEAKE IDAMKKIAVEAKE IEAMKSVAKEAKE IDAMIQIAKEAEE IDAMIQIAKEAEE IDKMIQIAKEVEE AEAMGALLKKKKE	α15DPQILKNAPQTNPELVSAPQHNPEIFKTAPHHNPELLHEAPVK	α16 TLVKRLDEVKAAKDLILKYQG- THVRRIDEAKAARSPVVKWQR: SVGRLDEAKAARSPVVKWQR: SPASRIDEALAARKPVLTYKP APVRRLDEVLAARNEVILWKK TLVKRVDDARAVKKPILTWSQI TVVKRLDETTAARKRDFALSKI TVVKRLDETMAARKPVLRYEKI TPVRRLDELRANKHPKLTYFDI	2Q 3L Re		48 49 48 48 48 48 48 48 49 48 47	4 6 6 5 4 5 5 0 9 4
D. WEI FRAFINSWE-VAGILMIEFIESEDREEDDRECDAMISTREETAETAETAETAETAETAETAETAETAETAETAETAETA	n, Sap = rap improve - vacing version conversion of the rap level interversion of the variable of the rap level interversion of the variable of the rap level interversion of the variable of the variabl	E. aci A. ore A. met C. sti T. ten C. dif G. the B. cer	β12 SHPPTVYFPLIVHQAIMIH YHPPTIYFPLIVNEAMMII YHPPTVYFPLIVEAMMIF FHPPTVYFPLIVEALMIH FHPPTIYFPLIVEEALMIH FHPPTIYFPLIVEEALMIH FHPPTIYFPLIVEECIMIH SHPPTIYFPLIVEECIMIH SHPPTVYFPLIVKEALMVH SHAPTMSKPD VACTIMU	C C C C C C C C C C C C C C	14 IDALLKIAEEAKK IDALNKIADEAKE ADALIKIAQEAKE IDAMKIAVEAKE AETLIKIAKEAKE IEAMKSVAKEAKE IDAMIQIAKEAEE IDAMIQIAKEAEE AEAMGALLKKPKE	α15DPQILKNAPQTNPELVSSAPQHNPEIFKTAPHHNPELLHEAPVKPELLKTAPHN	α16 TLVKRLDEVKAAKDLILKYQG- THVRRIDEAKAARSPVVKWQR: TSVGRLDEAKAARSPVVKWQR: APVRRLDQVKAARKPULTYKP: TPVRRLDEVLAARNPVIRWTK: TLVKRVDDARAVKKPILTWSQ! TVVKRLDETTAARKRDFALSK! TVVRLDETTAARKRDFALSK! TPVRRLDELRANKHPKLTYFD! TPVRRLDELRANKHPKLTYFD!	2Q 3Q L 2Q		48 49 48 48 48 49 48 48 48 49 48 47 47 48 47 48 48 49 41 42 43 44 45 46 47 48 47 48	4 6 6 5 5 4 5 5 0 9 4
	D, where the product of the theory of the prediction of the product of the pro	E. aci A. ore A. met C. sti C. bot T. ten C. dif G. the B. cer H. sap D. mol	β12 β13 YHPPTVYFPLIVHQAIMII YHPPTIYFPLIVNEAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREAMMIH YHPPTYFPLIVEEALMIH YHPPTYFPLIVEEALMIH YHPPTYFPLIVEECMIH YHPPTYFPLIVRECIMIH YHPPTVYFPLIVRECIMIH YHPPTVYFPLIVRECIMIH YHPPTVYFPLIVRECIMIH YHPPTNYFPLIVRECIMIH YHPPTN	C C C C C C C C C C C C C C	14 IDALLKIAEEAKK IDALNKIADEAKE ADALIKIAQEAKD INAMKQIAKEAKE IDAMKIAVEAKE IEAMKSVAKEAKE IDAMIQIAKEAEE IDAMIQIAKEVEE AEAMGALLKKPKE CDAMISIRQEIADIEEG	α15DPQILKNAPQTTPELLKNAPHHNPELFKAPHHNPELFKAPHHNPELLKEAPHN	α16 TLVKRLDEVKAAKDLILKYQG- THVRRIDEAKAARNLIVKWER TSVGRLDEAKAARSPVVKWQR: SPASRIDEALAARKPVLTYKP APVRRLDQVKAARKPILRWQK TPVRRLDEVLAARNPVIRWTK TLVKRVDDARAVKKPILTWSQ TVVKRLDETTAARKRDFALSK TVVKRLDETTAARKRDFALSK TVVRRLDETMAARKPVLRYEK TPVRRLDELRANKHPKLTYFD HWDRP-YSREVAAFPLPFVKPE KNDRD-VIDEOAAFPALEFVKPE	2Q 3Q		48 48 48 48 48 48 48 48 48 48 48 48 48 4	4 6 5 4 5 5 0 9 4 0 5
A. CHA INTERPOLATION - FOR THE DEPOLATION CONTRACT AND A CONTRACT		E. aci A. ore A. met C. sti C. bot T. ten C. dif G. the B. cer H. sap D. mel A the	β12 β13 YHPPTVYFPLIVHQAIMII YHPPTVYFPLIVNEAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREAMMIH YHPPTVYFPLIVREALMIH YHPPTYFPLIVREALMIH YHPPTYFPLIVRECIMIH YHPPTVYFPLIVRECIMIH FHAPTMSWPVAGTLMVH FHAPTMSWPVAGTLMIH FUCPTMSWPVAGTLMIH	a PTETEGRETLDEF PTETESVETLDQF PTETESKQTMDEF PTETESKQTMDEF PTETESKQTMDEF PTETESKTUDEF PTETESESIETLDSF PTETESESIETLDSF PTETESKETLDAF PTETESKETLDAF PTETESKETLDAF PTESEKKELDRF PTESEDKAELDRF	14 IDALLKIAEEAKK IDALNKIADEAKE IDANKIAQEAKE IDAMKQIAKEAKE IDAMKSIAVEAKE IEAMKSVAKEAKE IDAMIQIAKEAEE IDKMIQIAKEVEE AEAMGALLKKPKE CDAMISIRQEIADIEEG CDAMISIREEIAEIEAG	α15DPQILKNAPQTTPELLKNAPHHNPEIFKTAPHHNPELLHEAPVK	α16 	Q Q IL VEKLIP QAPVQ G VEFWPT IARID KEWPT VGRID KEWPT VGRID	DIYGDQHLVCTCPPME DAYGDKHLVCTCPPME	48 48 48 48 48 48 48 48 48 48	4 6 6 5 4 5 5 0 9 4 0 5 7
B. COL FIRETNOTE AND THOUSE AND T		E. aci A. ore A. met C. sti C. bot T. ten C. dif G. the B. cer H. sap D. mel A. tha F. col	β12 β13 YHPPTVYFPLIVHQAIMII YHPPTVYFPLIVNEAMMIH YHPPTVYFPLIVDSAIMII YHPPTVYFPLIVDSAIMIF FHPPTVYFPLIVDSAIMIF FHPPTVYFPLIVEEALMIH YHPPTVYFPLIVEEALMIH YHPPTYFPLIVEEALMIH YHPPTYFPLIVEEALMIH YHPPTYFPLIVEEALMIH FHPPTIYFPLIVEECIMIF FHPPTYFPLIVEECIMIF FHAPTMSWPVAGTLMVF FHAPTMSWPVAGTLMIF FHAPTMSWPVAGTLMIF FHAPTMSWPVAGTLMIF FHAPTMSWPVAGTLMIF FHAPTMSWPVAGTLMIF FHAPTMSWPVAGTLMIF	C C C C C C C C C C C C C C	14 IDALLK IAEEAKK IDALNK IADEAKE ADALIK IAQEAKD INAMKQ IAKEAKE IDAMKK IAVEAKE IEAMKSVAKEAKE IEAMKSVAKEAKE IDAMIQ IAKEVEE AEAMGALLKKPKE CDAMIS IRQE IADIEEG CDAMIS IREE IAEIEAG CDAMIS IREE IAQIEGA	a15DPQILKNAPQTTPELLKNAPHHNPELVSSAPQHNPELLHEAPVKPELLKEAPHNEWLENAPHT RIDPRVNPLKMSPHSLTCVTSS- RMDKAVNPLKMSPHSLTCVTSS- RMDKAVNPLKMSPHSLTCVTSS- NADVQNNVLKGAPHPPSLLMAD	α16 TLVKRLDEVKAAKDLILKYQG- THVRRIDEAKAARNLIVKWER: TSVGRLDEAKAARSPVKWQR: SPASRIDEALAARKPVLTYKP: APVRRLDQVKAARKPILTWQC TVVRLDEVLAARNPVIRWTK: TLVKRVDDARAVKKPILTWSQI TVVKRLDETTAARKDFALSKI TVVKRLDETTAARKPVLRYEKI TVVKRLDETAARKPVLRYEKI TPVRRLDELRANKHPKLTYFDI TPVRRLDELRANKHPKLTYFDI MDRP-YSREVAAFPLPFVKPEI KWDRP-YSREVAAFPLPFVKPEI TWKRLP-YSREVAAFPLPFVKPEI TWKRP-SREVAAFPLPFVCPL TWKRP-YSREVAFPLPFVCPL TWKRP-YSREVAFPLPFVCPL TWKRP-YSREVAFPLPFVCPL TWKRP-YSREVAFPLPFVCPL TWKRP-YSREVAFPLPFVCPL TWKRP-YSREVAFPL TWKRPL TWKRP-YSREVAFPL TWKRP-YSRE	Q Q SL TEKLIP QAPVQ GG KFWPT IARID KIWPT VGRID SKFWPT TGRUD XKFWPT TGRUD	DIYGDQHLVCTCPPME DAYGDKHLVCTCPPII NYYGDRKLVCTLPPII NYYGDRKLVCTLPPI	48 48 48 48 48 48 48 48 48 48 48 48 48 4	4 6 6 5 5 0 9 4 0 5 7 7

Abb. 33: Aminosäure-Alignments verschiedener P1- bzw. P-Proteine: Gezeigt ist ein Alignment prokaryotischer P1-Proteinen aus *E. acidaminophilum* (POEHLEIN 2003), *A. oremlandii* OhILAs, *A. metalliredigens* QYMF, *C. sticklandii*, *C. botulinum* A3 str. Loch Maree, *T. tengcongensis* MB4 (BAO *et al.*, 2002), *C. difficile* (SEBAIHIA *et al.*, 2006), *G. thermodenitrificans* NG80-2 (FENG *et al.*, 2007), *B. cereus* (IVANOVA *et al.*, 2003) *T. thermophilus* HB8 (NAKAI *et al.*, 2003b) und *E. coli* (OKAMURA-IKEDA *et al.*, 1993) sowie eukaryotischer P-Proteinen aus *H. sapiens* (KUME *et al.*, 1991), *D. melanogaster* (ADAMS *et al.*, 2000), *A. thaliana* (LIN *et al.*, 1999) und *S. cerevisiae* YJM789 (WEI *et al.*, 2007). Die Sequenzen wurden mit CLUSTALW verglichen (2.8.2.). Identische Aminosäuren wurden dunkelgrau, Reste mit ähnlichen biophysikalischen Eigenschaften (unpolar / polar, ungeladen / basisch / sauer) wurden hellgrau unterlegt. Unter A sind die jeweiligen α -Untereinheiten bzw. der N-Terminus der entsprechenden Proteine, die nur aus einer Untereinheit aufgebaut sind, dargestellt. Unter B sind die jeweiligen β -Untereinheiten bzw. der C-Terminus der entsprechenden Proteine aufgezeigt. Blaue Röhren oberhalb der Sequenzen kennzeichnen α -Helices, rote Pfeile β -Faltblätter und orangefarbene Balken 3₁₀-Helices.

Die Aminosäure-Reste des P2-Proteins, die den Liponsäure-Arm umgeben, sind meist negativ geladen und ebenfalls hochkonserviert (NAKAI *et al.*, 2003b), hierauf wird jedoch im folgenden Abschnitt bei der Besprechung des P2-Proteins näher eingegangen.

P1-Holoenzyme weisen charakteristische Absoptionsspektren mit Maxima bei 330 nm und 428 nm auf, die Apoenzyme, welche also kein PLP gebunden haben, hingegen zeigen kein entsprechendes Absorptionsmaximum (HIRAGA and KIKUCHI 1980a; KLEIN and SAGERS 1967b). Durch Zugabe des Substrates, also von Glycin, kommt es zur Verschiebung des 430 nm Peaks zu 420 nm (HIRAGA and KIKUCHI 1980b) und durch Zugabe des P2-Proteins, dem Cosubstrat des P1-Proteins (NAKAI et al., 2005; OLIVER et al., 1990), kommt es zur Abschwächung des Peaks bei 428 nm und im Zuge dessen zur Intensivierung des Absorptionsmaximums bei 330 nm (HIRAGA and KIKUCHI 1980a; 1982). Während das P-Proteins aus Mensch als Holoenzym gereinigt werden konnte und der Cofaktor PLP nicht durch Dialyse, sondern nur durch Reduktion mit Borhydrid entfernt werden konnte (HIRAGA and KIKUCHI 1980a), wurde das P1-Protein aus Micromonas micros (Peptococcus glycinophilus) nur als Apoenzym gereinigt, welches sich aber durch die Zugabe von PLP reaktivieren ließ (KLEIN and SAGERS 1967b). Das native P1-Protein aus E. acidaminophilum konnte auch nur durch Zugabe von PLP zum Aufreinigungspuffer in aktiver Form gereinigt werden, der Verlust des Cofaktors führte hier jedoch zur irreversiblen Inaktivierung des Enzyms (FREUDENBERG and ANDREESEN 1989). Da für das in dieser Arbeit heterolog synthetisierte P1-Protein aus diesem Organismus nicht die typischen Absoptionsspektren detektiert werden konnten, ist davon auszugehen, dass es zum Verlust des PLP während der Aufreinigung gekommen sein muss, was auch durch Zugabe des Cofaktors zum Puffer nicht verhindert werden konnte.

4.2.2. Das P2-Protein der Glycin-Decarboxylase-das hydrogen carrier Protein

GcvP2 codiert für das P2-Protein aus *E. acidaminophilum*, welches ein Molekulargewicht von 14,1 kDa aufweist (*accession number* AAU84892.1). Eine Auswahl aus in der EMBL-Datenbank aufgeführten Proteinen, welche signifikante Homologien zu dem P2-Protein aus *E. acidaminophilum* aufweisen, wurde in Tabelle 12 aufgeführt. Zum Vergleich wurden auch Proteine eukaryotischer Herkunft, wie z. B. aus *H. sapiens*, *A. thaliana*, *D. melanogaster* oder *Pisum sativum* herangezogen. Eine 57%ige Identität zeigte das Protein aus *E. acidaminophilum* zu dem Polypeptid aus *Alkaliphilus metalliredigens* QYMF, aber auch zu *Thermoanaerobacter pseudethanolicus* ATCC und *Moorella thermoacetica* ATCC, die alle drei ebenso in die Gruppe der Clostridien einzuordnen sind. Auch hier zeigen die P2-Proteine aus *C. difficile* und *C. sticklandii* nicht die höchste Identität im Vergleich zu dem P2-Protein aus *E. acidaminophilum*. Das Protein aus *C. difficile* weist im Vergleich zu den anderen aufgeführten prokaryotischen Proteinen die geringste Identität auf.

Organismus	Protein: AS/MG (kDa)	accession- number	Identität (%) ¹
Alkaliphilus metalliredigens QYMF	127 / 14,1	A6TMY7	57
Thermoanaerobacter pseudethanolicus ATCC	126 / 13,9	ABY95615.1	57
Moorella thermoacetica ATCC	130 / 14,1	Q2RH47	57
Oceanobacillus iheyensis HTE831	446 / 49,7	Q8ENT9	55
Bacillus licheniformis ATCC	127 / 14,3	Q65F75	55
Clostridium botulinum A3 str. Loch Maree	130 / 14,6	ACA56591.1	54
Clostridium sticklandii	126 / 14,2		53
Thermus thermophilus HB8	128 / 14,1	Q5SKW9	49
Escherichia coli K12	130 / 13,8	P0A6T9	48
Clostridium difficile 630	120 / 13,5	Q186L3	47
Arabidopsis thaliana	156 / 17,1	O82179	51
Drosophila melanogaster	165 / 18,2	Q9U616	48
Homo sapiens	173 / 18,9	NM_004483.3	44
Pisum sativum	165 / 17,8	P16048	44

Tab. 12: Vergleich des P2-Proteins aus E. acidaminophilum mit homologen Proteinen aus Datenbanken

¹ im Vergleich zum des P2-Proteins aus *E. acidaminophilum*

Das P2- bzw. H-Protein ist ein kleines, saures und hitzestabiles Protein mit Liponsäure (6,8-Dithioloctansäure) als funktionelle Gruppe (ANDREESEN 1994b; FUJIWARA *et al.*, 1979; MACHEREL *et al.*, 1990). Das P2-Protein der Glycin-Decarboxylase ist das entscheidende Enzym in der Abfolge der durch die einzelnen Komponenten des Enzymkomplexes katalysierten Reaktionen. Mit seinem bei *Pisum sativum* ca. 14 Å langen Lipoamid-Arm tritt es mit den anderen drei Komponenten in Wechselwirkung und ist somit der zentrale Punkt (COHEN-ADDAD *et al.*, 1997; COHEN-ADDAD *et al.*, 1995). Es wird sogar als Cosubstrat der anderen Proteine, speziell des P1-Proteins, angesehen (FUJIWARA and MOTOKAWA 1983; KIM and OLIVER 1990; NAKAI *et al.*, 2005; OLIVER *et al.*, 1990). Die bei der Decarboxylierung des Glycins freiwerdende Aminomethylgruppe wird durch das P1-Protein auf das distale Schwefelatom der oxidiert vorliegenden Liponsäuregruppe des P2-Proteins übertragen, welche dadurch in die methylaminierte Form übergeht und zum Substrat für das P4-Protein wird. Dieses katalysiert die Spaltung der Aminomethylgruppe und die Übertragung der C₁-Einheit als Methylengruppe auf THF und die Freisetzung von NH₃. Die nun im reduzierten Zustand vorliegende funktionelle Liponsäuregruppe des P2-Proteins wird durch die Dihydrolipoamid-Dehydrogenase, dem P3-Protein, oxidiert, wobei das NAD(P) reduziert wird (ANDREESEN 1994a; 1994b).

Das P2-bzw. H-Protein wurde bisher für Prokaryoten und Eukaryoten beschrieben. Die Proteine aus *C. acidiurici* und *A. globiformis* wurden mit einer Größe von ca. 20 kDa beschrieben (GARIBOLDI and DRAKE 1984; KOCHI and KIKUCHI 1976), was von der Größe des von FREUDENBERG und ANDREESEN

(1989) aus *E. acidaminophilum* isolierten P2-Proteins (ca. 13 kDa), abweicht. Die Größe von 13 kDa konnte anhand der Sequenzdaten (siehe Anhang A.II.) und SDS-Page nach heterologer Synthese des P2-Proteins aus *E. acidaminophilum* (s. S. 73, Abb. 21 B) bestätigt werden. Proteine anderer prokaryotischer Vertreter weisen ähnliche molekulare Gewichte auf, so wurde z. B. das Protein aus *M. micros* (*P. glycinophilus*) mit einer Größe von 12,6 kDa (ROBINSON *et al.*, 1973) oder das Enzym aus *T. thermophilus* mit einer Größe von ca. 14,1 kDa (NAKAI *et al.*, 2003a) beschrieben. Die Proteine aus Eukaryoten werden mit Größen von 12 kDa für das humane H-Protein (FUJIWARA *et al.*, 1991a; HIRAGA and KIKUCHI 1980a), 17 kDa für das Protein aus der Ratte (MOTOKAWA and KIKUCHI 1969), 13,9 kDa für die Enzyme diverser *Flaveria*-Arten (KOPRIVA *et al.*, 1996a; KOPRIVA *et al.*, 1996b), 13,9 kDa für das H-Protein aus dem Huhn (FUJIWARA *et al.*, 1986) und mit 14,1 kDa für den Vertreter aus *P. sativum* (KIM and OLIVER 1990; MACHEREL *et al.*, 1990) beschrieben. Anhand dieser Aufzählung ist zu erkennen, dass dieses Protein ubiquitär verbreitet ist und alle beschriebenen Vertreter ähnliche Größen aufweisen. Die Abbildung 34 zeigt, dass es Sequenzbereiche gibt, die zwischen allen Domänen des Lebens stark konserviert sind.

Die bisher aufgelösten Strukturen der H-Proteine aus *P. sativum* und *T. thermophilus* werden beide als *hybrid-barrel sandwich* Struktur beschrieben, die aus zwei antiparallelen β -Faltblättern besteht, welche um 140° gedreht sind. Die beiden aus sechs bzw. drei β -Strängen bestehenden Faltblätter sind durch einen flexiblen *loop* einer *hairpin*-Struktur, die aus einer α -Helix besteht, verbunden (COHEN-ADDAD *et al.*, 1997; COHEN-ADDAD *et al.*, 1995; GUILHAUDIS *et al.*, 1999a; NAKAI *et al.*, 2003a; PARES *et al.*, 1994; PARES *et al.*, 1995). Mit der ε -Aminogruppe eines in dieser Struktur lokalisierten Lysin-Restes ist die funktionelle Gruppe, die Liponsäure, über eine Amidbindung verknüpft und somit an der Oberfläche des Proteins lokalisiert. Dieser Aminosäure-Rest ist bei allen bisher beschriebenen Organismen hoch konserviert (Abb. 34, rot unterlegt) und essentiell für die Funktionalität des Proteins (COHEN-ADDAD *et al.*, 1995; FUJIWARA *et al.*, 1979; NAKAI *et al.*, 2003a; PARES *et al.*, 1994; PARES *et al.*, 1995). Dieser stark konservierte Lysin-Rest konnte auch für das Protein aus *E. acidaminophilum* identifiziert werden und ist in der Abbildung 34 rot unterlegt.

		β1	β2	β3	α1	β4	β5	
E_aci	MSKI	VQGLYYTTHH	EWVKVD-0	INKAYVGIT	DYAQHAL	GDIVYVELP	EVGEEFG	52
A_ore	MSL1	PQDLLYSKEH	<mark>e</mark> wvkqe-i	OGKLRI <mark>GI</mark> T	DFAQDEL(GDIVFVELP	EIGEELK	51
C_sti	MST:	SK-VYFTKDH	EWIKVE-0	GNVAYIGIT	dy <mark>aq</mark> kal(GEIVYVE <mark>L</mark> P	EVDSEFS	50
C_dif	MKL1	LPELKYSKDH	EWVKVID(GDVVYIGIT.	DY <mark>AQ</mark> DQL	GEILFVE <mark>T</mark> P	EVEDTVT	52
A_met	MKVI	MAGLYYSKDH	EWVKVE-0	GNKAYIGIT	df <mark>aq</mark> sqlo	GDIVFVEQP	EVDDSFE	51
C_bot	MKV1	LNNLLYTGDH	<mark>E</mark> WIRVE-I	ONKAYIGIS	DCAQRML:	SDIVFVELP	EVDDEIA	51
T_pse	MEV	IEGLYYSKDH	EWVKVE-0	JDKAYIGIT	DY <mark>AQ</mark> HSL	GNIVYIELP	EVGAELS	51
M_the	MNF1	PAHLHYSKDH	EWVEVD-0	GNRARIGIT	DYAQESL	GDIVFVE <mark>L</mark> P	QVGDELA	51
B_lic	MST1	PKELRYSEEH	EWVKTE-0	GDKVRIGIT	DFAQSEL	GDIVFVE <mark>L</mark> P	EVGDEIK	51
E_col	MMSNI	PAELKYSKEH	<mark>e</mark> wlrkeai	OGTYTVGIT	EHAQELL(GDMVFVDLP	EVGATVS	54
T_the	MDI	PKDRFYTKTH	<mark>E</mark> WALPEGI	O-TVLVGIT	dy <mark>aq</mark> dalo	GDVVYVELP	EVGRVVE	51
. .								0.0
P_sat	MALRMWASSTANALKLSSSSRLHLSPTFSISRCFSNV	LDGLKYAPSH	EWVKHEG	S-VATIGIT.	DHAQDHLO	GEVVFVELP	EPGVSVT	86
A_tha	MACRLFWASRVASHLRISVAQRGFSSVV	LKDLKYADSH	EWVKIDGI	N-KATFGIT	DHAQDHL	GDVVYVELP	DVGHSVS	.7.7
H_sap	MALRVVRSVRALLCTLRAVPLPAAPCPPRPWQLGVGAVRTLRTGPAL	LSVRKFTEKH	EWVTTENC	G-IGTVGIS	NFAQEAL	GDVVYCSLP	EVGTKLN	96
D_mel	MVFITKFARIGLQAARQLSVTPLGAVQARAIHLTSLL	AKERRYTNKH	<mark>e</mark> wvevvs(GSNAIVGIS	SYAQEAL	GDVVFAQLP	EP G TELK	86

	β6	β7	β8	α2	α3	β 	39 	3 ₁₀ - η1	$\mathbf{e}^{\mathbf{\alpha}4}$	_	
E_aci	VEDAYGVIES	SV <mark>K</mark> AASDAYA	PLS <mark>G</mark> KIVE	VNSELEI	APESIN	EAPYEK-WL	VAIEM	SDASELEK	LMDASAYE	DFCNKEA	128
A_ore	VDDPFGSVES	SV <mark>K</mark> TVSELYA	PVS <mark>G</mark> KVVE	INDDLEI	SPEYVN	ESPYEKAWM	IIVIEP	SDEKELEE	LLSAENYE	EAFIQD	126
C_sti	LGDVFSVVE	SV <mark>K</mark> AASDIFM	pvd <mark>g</mark> kvve	VNEALSI	DEPEKIN	QDANDI-WI	MAVEL	ENSIESYE	LMSESEYI	AMYEKEA	126
C_dif	KGVDFGVV <mark>E</mark> S	S <mark>K</mark> VASDLIS	PVN <mark>G</mark> EVLE	VNEKLEI	DEPECIN	EDPYEN-WI	LKVKL	ADVAELDT	LLSDKEY-		120
A_met	AGDDFGVV <mark>E</mark> S	SV <mark>K</mark> AASDLYI	PLS <mark>G</mark> TVVE	VNEELAI	DPAKVN	EDPYGS-WM	IIAIEM	TKEDELKN	LLTPSDYE	EKVCDEEA	127
C_bot	KGETFATI <mark>E</mark> S	SV <mark>K</mark> AASDSYM	PVS <mark>G</mark> TIVE	INEELEI	NPAALN	EDPYGS-WI	IAVEM	SDKSELEE	LIKPEVYE	EKICEELDKEA	130
T_pse	AGDVLGVVE	SV <mark>K</mark> AASDVYT	PVD <mark>G</mark> KVLE	VNNAIVI	DPSLVN	NDPYGS-WM	IALVEL	KDKSQLDN	LMTAEEYK	(KFLDEE	126
M_the	TGDSFGVV <mark>E</mark> S	SV <mark>K</mark> SASDVYA	PVG <mark>G</mark> KVVA	VNEALLI	APQDIN	ADPYGKGWM	IIELEL	SDPSEVES	LMDASAYI	LELVKEEKGE-	130
B_lic	ADEPFGSVE	SV <mark>K</mark> TVSELYA	PIN <mark>G</mark> KVVE	VNEDLEI	SPEFVN	ESPYEKAWM	IIVVEP	SDASEIEN	LMTAGQYE	EDMIKED	127
E_col	KGEAVAVA <mark>E</mark> S	SV <mark>K</mark> AASDIYA	PVS <mark>G</mark> EIVA	vndalsi	SPELVN	SEPYAGGWI	FKIKA	SDESELES	LLDATAYE	CALLEDE	130
T_the	KGEAVAVV <mark>E</mark> S	SV <mark>K</mark> TASDIYA	PVA <mark>G</mark> EIVE	VN LALEK	TPELVN	QDPYGEGWI	FRLKP	RDMGDLDE	LLDAGGYÇ)EVLESEA	128
P_sat	KGKGFGAV <mark>E</mark> S	SV <mark>K</mark> ATSDVNS	PIS <mark>G</mark> EVIE	VNTGLTO	KPGLIN	SSPYEDGWM	IIKIKP	TSPDELES	LLGAKEYI	TKFCEEEDAAH	165
A_tha	QGKSFGAV <mark>E</mark> S	SV <mark>K</mark> ATSDINS	PVS <mark>G</mark> KVVE	VNEELTE	SPGLVN	SSPYEQGWI	IKVEL	SDAG <mark>E</mark> AEK	LMDSDKYS	SKFCEEEDAKH	156
H_sap	KQDEFGAL <mark>E</mark> S	SV <mark>K</mark> AASELYS	PLS <mark>G</mark> EVTE	INEALAE	NPGLVN	KSCYEDGWL	IKMTL	SNPSELDE	LMSEEAYE	EKYIKSIEE	173
D_mel	QDDECGAL <mark>E</mark> S	SV <mark>K</mark> AASEVYS	PVS <mark>G</mark> KVIE	KNAEVEI	TPALVN	SSCYEKGWL	FKVDL	KNPK <mark>E</mark> LEA	LMTEDQYK	(AFLSSSGDH-	165

Abb. 34: Aminosäure-Alignment verschiedener P2- bzw. H-Proteine: Gezeigt ist ein Alignment prokaryotischer P2-Proteinen aus *E. acidaminophilum* (POEHLEIN 2003), *A. metalliredigens* QYMF, *T. pseudethanolicus* ATCC, *M. thermoacetica* ATCC, *O. iheyensis HTE831* (LU *et al.*, 2001), *C. botulinum* A3 str. Loch Maree, *B. licheniformis* ATCC (REY *et al.*, 2004), *C. sticklandii*, *C. difficile* (*SEBAIHIA et al.*, 2006), *T. thermophilus* HB8 (NAKAI *et al.*, 2003a) und *E. coli* (OKAMURA-IKEDA *et al.*, 1993) sowie eukaryotischer H-Proteinen aus *H. sapiens* (LEVY *et al.*, 2007), *D. melanogaster* (ADAMS *et al.*, 2000), *A. thaliana* (HEAZLEWOOD *et al.*, 2004; LIN *et al.*, 1999) und *P. sativum* (KIM and OLIVER 1990). Die Sequenzen wurden mit CLUSTALW verglichen (2.8.2.). Identische Aminosäuren wurden dunkelgrau, Reste mit ähnlichen biophysikalischen Eigenschaften (unpolar / polar, ungeladen / basisch / sauer) wurden hellgrau unterlegt. Blaue Röhren oberhalb der Sequenzen kennzeichnen α -Helices, rote Pfeile β -Faltblätter und orangefarbene Balken 3₁₀-Helices. Der für die Stabilisierung des Liponsäure-Armes wichtige Glutamat-Rest wurde grün unterlegt, der für die Erkennung der Liponsäure-Bindedomäne wichtige Glutamat- bzw. Glycin-Rest wurden blau markiert.

Die sich an der Oberfläche des Proteins befindende oxidierte und reduzierte Form des Lipoamid-Armes ist frei beweglich. Nach Beladung mit der Aminomethylgruppe kommt es zu einer 90°-Drehung (COHEN-ADDAD *et al.*, 1995) und einer damit verbundenen Verlagerung der Methylamin-tragenden prosthetischen Gruppe in eine Vertiefung auf der Oberfläche des Proteins. Durch Wechselwirkungen mit einem stark konservierten Glutamat-Rest kommt es zur Stabilisierung des Lipoamid-Armes in dieser Spalte. Dieser Aminosäure-Rest konnte bei allen in Abbildung 34 (grün unterlegt) dargestellten Organismen identifiziert werden. Durch Wasserstoffbrückenbindungen und hydrophobe Wechselwirkungen mit den Aminosäure-Resten Ser¹², Ala²⁷, Ala³¹, Leu³⁵, Ala⁶⁴ und Asp⁶⁷ (bezogen auf das Protein aus *P. sativum*) wird der Liponsäure-Arm vor nucleophilen Angriffen von OH-Ionen geschützt und so die nichtenzymatische Freisetzung von NH₃ und Formaldehyd verhindert (COHEN-ADDAD *et al.*, 1997; COHEN-ADDAD *et al.*, 1995; GUILHAUDIS *et al.*, 1999b; NAKAI *et al.*, 2003a; PARES *et al.*, 1994; PARES *et al.*, 1995; ROCHE *et al.*, 1999). Eine zusätzliche Stabilisierung erfolgt durch die Bindung der Liponsäure-Arm des Proteins aus *P. sativum* weniger beweglich macht im Vergleich zu anderen Proteinen, wie z. B. dem Protein aus *P. sativum* weniger beweglich macht im Vergleich zu anderen Proteinen, wie z. B. dem Protein aus *T. thermophilus* (COHEN-ADDAD *et al.*, 1997; COHEN-ADDAD *et al.*, 2003a).

Während Ser¹² nur bei *P. sativum* und *A. thaliana* und Asp⁶⁷ bei 2/3 der in Abbildung 34 aufgezeigten Organismen zu finden ist, sind die anderen hier beschriebenen Aminosäuren sehr stark konserviert oder wie im Fall von Ala⁶⁴ durch die eine ähnliche Ladung aufweisende Aminosäure Glutamat substituiert. Das lässt vermuten, dass die Methylamin-tragende funktionelle Gruppe, bei allen P2-bzw. H-Proteinen, geschützt in

115

einer Vertiefung des Proteins liegt. Die H-Proteine aus *T. thermophilus* bzw. *P. sativum* sind zu 44 % identisch und haben nachweislich eine nahezu identische Struktur (NAKAI *et al.*, 2003a). Da das P2-Protein aus *E. acidaminophilum* eine 49% ige bzw. 44% ige Identität zu beiden Proteinen aufweist, kann auch hier vermutet werden, dass alle drei Proteine ähnliche Strukturen aufweisen.

Die Übertragung der funktionellen Gruppe auf das Apoprotein kann zumindest bei E. coli auf zwei getrennten Wegen erfolgen, einem endogenen und einem exogenen. Bei ersterem wird Octansäure aus dem Fettstoffwechsel an ACP (Acyl-Carrier-Protein) gebunden und somit aktiviert und anschließend durch das lipA-Genprodukt durch zweimalige Sulfurierung in Liponsäure umgewandelt und durch LipB (Lipoyl-(Acyl-Carrier-Protein)-Protein-N-Lipoyltransferase) auf das Apoprotein, im Fall der Glycin-Decarboxylase auf das P2-bzw. H-Protein übertragen. Extrazelluläre, über die Zellmembran aufgenommene Liponsäure, wird durch LplA, die Lipoat-Ligase A, in einem ATP und Mg²⁺-abhängigen Prozess auf das Zielprotein übertragen (MILLER et al., 2000; MORRIS et al., 1994; 1995). Ein in Abstand von elf Aminosäuren C-terminal von dem für die Bindung der Liponsäure essentiellen Lysin-Restes gelegener Glycin-Rest ist laut FUJIWARA et al. (1996) essentiell für die Faltung lipoylierter Proteine, wie z. B. die E2-Komponente des Pyruvat-Dehydrogenase-Komplexes und die Beladung dieser mit Liponsäure. Eine gerichtete Mutation dieses Glycin-Restes beim Protein aus dem Rind führte zu einer stark verminderten Synthese des Proproteins (nur 12-17 %). Ein Glutamat-Rest, welcher drei Aminosäure-Reste und ein Glycin-Rest (Abb. 34, türkis unterlegt), welcher 15 Aminosäuren N-terminal des essentiellen Lysin-Restes gelegen ist, sind ebenfalls sehr wichtig für die Struktur des Proteins und für die Erkennung der Liponsäure-Bindedomäne durch die Liponsäure-übertragenden Proteine (FUJIWARA et al., 1991a; FUJIWARA et al., 1996). Die Liponsäure-Bindedomäne diverser lipoylierter Proteine weisen starke Sequenzhomologien auf, sodass dass die Erkennung dieser bei allen Proteinen sehr ähnlich ist (BROCKLEHURST and PERHAM 1993). Das hier beschrieben Glutamat und erstgenanntes Glycin sind, wie in Abbildung 34 zu erkennen, bei allen Organismen stark konserviert, das 15 Aminosäuren N-terminal des essentiellen Lysin-Restes gelegene Glycin hingegen ist nur bei den Eukaryoten stark konserviert, bei den Prokaryoten weisen neben dem Protein aus E. acidaminophilum nur sechs der aufgeführten Proteine diesen Aminosäure-Rest auf.

Ähnlich verläuft die Lipoylierung der Apoproteine von Eukaryoten. Nach dem Transfer der *precursor* in die Mitochondrien erfolgt die Aktivierung durch das Lipoat-aktivierende Enzym und die Übertragung der funktionellen Gruppe durch die Lipoyl-AMP:N^e-Lysin-Lipoyl-Transferase (FUJIWARA *et al.*, 1990; 1991b; 1994; FUJIWARA *et al.*, 1999; FUJIWARA *et al.*, 2001). Aus *E. coli* konnten bisher die an der *de novo* Biosynthese der Liponsäure beteiligten Genprodukte LipA und LipB sowie die Lipoat-Protein-Ligase A nachgewiesen werden (BROOKFIELD *et al.*, 1991; FUJIWARA *et al.*, 2005; HAYDEN *et al.*, 1992; MORRIS *et al.*, 1994; 1995; VANDEN BOOM *et al.*, 1991). Bei fehlender Supplementation des Kultivierungsmediums (mit Liponsäure) des Stammes zur heterologen Expression von *gcvP2* aus *E. acidaminophilum* konnten keine lipoylierten P2-Derivate nachgewiesen werden. Erst nach Zugabe von Liponsäure während der Kultivierung dieses Stammes konnte durch MALDI-MS-Analyse gezeigt werden, dass ca. 40 % des heterolog synthetisierten Proteins in der Lipoamid-tragenden Form vorlagen. Somit wurde gezeigt, dass die *de novo*

Synthese von Liponsäure durch die Proteine LipA und LipB nicht ausreichend war, um das heterolog synthetisierte Protein zu lipoylieren, sondern extrazellulär verfügbare Liponsäure genutzt und wahrscheinlich durch das *lplA*-Genprodukt auf das Apoprotein übertragen wurde. MACHEREL *et al.* (1996) beschrieben für das heterolog in *E. coli* synthetisierte H-Protein aus *P. sativum* eine 70% ige, FUJIWARA (1992) hingegen nur eine 10% ige Lipoylierung für das aus Rind stammende H-Protein bei Überproduktion in *E. coli* und Supplementation des Kultivierungsmediums mit Liponsäure.

Dieser verhältnismäßig geringe Anteil an lipoyliert vorliegendem P2-Protein aus E. acidaminophilum kann ein möglicher Grund für die nicht vorhandene Aktivität der Glycin-Decarboxylase des gesamten aus heterolog synthetisierten Proteinen bestehenden Komplexes sein, da das P2-Apoprotein als kompetetiver Inhibitor des P1-Proteins beschrieben wird (FAURE et al., 2000; NEUBURGER et al., 2000). So war es auch schwierig, das in einem funktionalen Enzymkomplexes gefundene molare Verhältnis von 1,0:15,3:1,3 für die Proteine P1, P2 und Thioredoxin-Reduktase und Thioredoxin (FREUDENBERG et al., 1989b) im enzymatischen Test einzustellen. Auch für Eukaryoten, so z. B. für P. sativum, wurde ein vergleichbares Verhältnis von 1:14:4,5:0,5 (2:27:9:1) für die P-, H-, T- und L-Proteine gezeigt (BOURGUIGNON et al., 1993; OLIVER et al., 1990). Fraglich ist hier jedoch, ob diese Verhältnisse zufällige Artefakte darstellen oder ob sie tatsächlich so in vivo zu finden sind. Da aber die für beide Organismen beschriebenen Protein-Verhältnisse (P- und H-Protein) sehr ähnlich sind, spricht einiges dafür, dass die tatsächliche in vivo-Situation wiedergegeben ist. Fest steht, dass der Anteil an P2-Protein deutlich höher ist im Vergleich zu den anderen Komponenten der Glycin-Decarboxylase aus E. acidaminophilum. Von FREUDENBERG et al. (1989) wurde gezeigt, dass das P2-Protein aus E. acidaminophilum sowohl im Cytoplasma aber auch an der Zellmembran lokalisiert ist und sowohl mit der Glycin-Decarboxylase aber auch mit der Glycin-Reduktase assoziiert ist. Dies mag eine mögliche Erklärung für die stark erhöhte Anzahl an P2-Proteinen im Vergleich zu den Proteinen der Glycin-Decarboxylase von E. acidaminophilum sein. Die Proteine P1, P2 und P4 der Glycin-Decarboxylase bilden 3,1 %, 3,5 % bzw. 4 % der löslichen Proteine des Rohextraktes Glycin-gewachsener Zellen von E. acidaminophilum (ANDREESEN 1994b; FREUDENBERG and ANDREESEN 1989).

Ein nicht zu vernachlässigender Teil des Aktivitätsverlustes den heterolog synthetisierten P2-Proteines aus *E. acidaminophilum* ist sicherlich dem *Strep*-tag[®] II zu schulden, HASSE *et al.* (2007) beschreiben einen Aktivitätsverlust des mit einem His-Tag fusionierten H-Proteins aus *Synechocystis* sp. von 35-45 % gegenüber dem Derivat ohne Tag.

In einigen *Flaveria*-Arten wurden vier bis fünf Kopien des für das H-Protein codierenden Gens identifiziert (KOPRIVA and BAUWE 1995; KOPRIVA *et al.*, 1996a), für *Flaveria trinervia* wurde ein Gen beschrieben, nach dessen Transkription durch Nutzung zweier verschiedener *splice*-Akzeptorstellen (alternatives *splicing*) zwei unterschiedliche H-Proteine translatiert werden (KOPRIVA *et al.*, 1996b; KOPRIVA *et al.*, 1995). Für andere *Flaveria*-Arten hingegen, wurde genau wie für *E. coli* und die meisten annotierten Organismen nur ein Gen identifiziert, was für das H-Protein codiert (KOPRIVA *et al.*, 1996a; OKAMURA-IKEDA *et al.*, 1993). Durch Southern-Hybridisierungen konnte gezeigt werden, dass auch in *E. acidaminophilum* nur ein singuläres Gen existiert, welches für das P2-Protein codierend.

4.2.3. Das P4-Protein der Glycin-Decarboxylase-die Aminomethyl-Transferase

Das 1,1 kb umfassende nur einmal vorkommende Gen *gcvP4* codiert für das P4-Protein der Glycin-Decarboxylase aus *E. acidaminophilum*. Dieses ca. 41,1 kDa große Protein zeigt genau wie das P1-Protein aus diesem Organismus die höchste Identität zu dem Homologen aus *A. oremlandii* OhILAs, diese ist hier mit 61 % zu beziffern. Wie aus Tabelle 13 ersichtlich wird, konnten auch signifikante Ähnlichkeiten zu Proteinen anderer Prokaryoten, aber auch zu denen aus Eukaryoten verifiziert werden.

Organismus	Protein: AS/MG (kDa)	accession- number	Identität (%) ¹
Alkaliphilus oremlandii OhILAs	368 / 41,2	A8MEG4.1	61
Thermoanaerobacter tengcongensis MB4	374 / 42,2	Q8RCV9	59
Thermosinus carboxydivorans Nor1	365 / 40,2	EAX48994.1	57
Peptostreptococcus micros ATCC 33270	367 / 40,3	EDP24232.1	56
Bacillus halodurans C-125	365 / 40,3	Q65F75	55
Clostridium difficile 630	367 / 40,8	Q186L1	54
Clostridium sticklandii	365 / 41,4		54
Thermotoga maritima MSB8	364 / 40,3	Q5SKW9	44
Escherichia coli K12	364 / 40,1	P0A6T9	38
Pyrococcus horikoshii OT3	401 / 46,2	O58888	36
Pisum sativum	408 / 44 3	P49364	37
	408 / 44,5	001/10/	26
Drosopnila melanogaster	405 / 43,4	Q9VKR4	30
Arabidopsis thaliana	408 / 44,4	O65396	35
Homo sapiens	403 / 43,9	A8K3I5	33

Tab. 13: Vergleich des P4-Proteins aus E. acidaminophilum mit homologen Proteinen aus Datenbanken

¹ im Vergleich zum des P4-Proteins aus *E. acidaminophilum*

Das P4 bzw. T-Protein der Glycin-Decarboxylase ist eine Tetrahydrofolat-abhängige Aminomethyl-Transferase. Sie katalysiert die Spaltung der an die Liponsäure-Gruppe des P2-Proteins gebundenen Aminomethylgruppe und den Transfer der Methylengruppe auf THF sowie die damit verbundene Freisetzung von NH₃. Bei Abwesenheit von THF kommt es mit einer bis zu 2000-fach erniedrigten Reaktionsgeschwindigkeit zur Freisetzung von NH₃ und Formaldehyd (ANDREESEN 1994a; 1994b; FUJIWARA *et al.*, 1984). FREUDENBERG und ANDREESEN (1989) isolierten das P4-Protein aus *E. acidaminophilum* und bestimmten ein molekulares Gewicht von 42 kDa. Dieser Wert konnte anhand der für das entsprechende Gen ermittelten Sequenzdaten, welche unter Anhang A.II. dargestellt sind, bestätigt werden. Während die T-Proteine aus *H. sapiens* und der Ratte Größen von ca. 44 kDa bzw. 33 kDa aufweisen (HAYASAKA *et al.*, 1993; MOTOKAWA and KIKUCHI 1974), wurden für die entsprechenden Vertreter aus dem Huhn und dem Rind Größen von ca. 41 kDa und 37 kDa beschrieben (OKAMURA-IKEDA *et al.*, 1982; OKAMURA-IKEDA *et al.*, 1991). Auch die aus den Pflanzen *Solanum tuberosum* und *P. sativum* isolierten Aminomethyl-Transferasen haben ein molares Gewicht von ca. 45 kDa (KOPRIVA and BAUWE 1994b; WALKER and OLIVER 1986) und sind somit mit den hier aufgeführten Proteinen (ohne mitochondriale Leadersequenz), speziell auch mit dem aus *E. acidaminophilum* stammenden zu vergleichen. Die bisher aufgelösten Strukturen von T-Proteinen aus dem Menschen und *T. maritima* werden als Kleeblatt-Struktur mit einer zentralen Vertiefung beschrieben, welche von drei Domänen gebildet wird. Die erste Domäne besteht aus einem sechssträngigen β -Faltblatt, welches ein einfaches *greek-key* Motiv enthält sowie auf einer Seite von drei und der anderen Seite von zwei α -Helices umgeben ist. Die zweite Domäne besteht aus einem aus fünf Strängen bestehenden antiparallelen β -Faltblatt, welches ebenfalls von α -Helices flankiert wird. Die dritte Domäne wird als verdrehtes sechssträngiges *jelly-roll* Motiv beschrieben, das in engem Kontakt zu den β -Faltblättern der anderen beiden Domänen steht und somit die ringartige Struktur des Proteins schließt (LEE *et al.*, 2004; LOKANATH *et al.*, 2005; OKAMURA-IKEDA *et al.*, 2005; ORUN *et al.*, 2003).

Hierbei sind bei dem E. coli T-Protein mind. die ersten 16 Aminosäuren des N-Terminus essentiell für die Faltung und die damit verbundene Aktivität des Proteins. Bei T-Proteinen, die N-terminal um 4, 7 bzw. 11 Aminosäuren verkürzt waren, konnten nur Aktivitäten von 42, 9 bzw. 4 % gegenüber dem Wildtyp-T-Protein gemessen werden, bei einer Verkürzung um 16 Aminosäure-Reste war ein vollständiger Aktivitätsverlust aufgetreten. Speziell für die Δ 7-Mutante war ein 25-fach erhöhter K_M-Wert und ein 10-fach erniedrigter k_{cat}-Wert in Bezug auf das aus E. coli stammende H-Protein zu finden (OKAMURA-IKEDA et al., 1999a). Das THF, welches für die Funktionalität des P4 bzw. T-Proteins essentiell ist, wird im aktiven Zentrum gebunden, welches bei dem humanen Protein primär durch die Aminosäure-Reste Met⁵⁶, Leu¹⁰², Ile¹⁰³, Val¹¹⁵, Glu²⁰⁴ und Arg²³³ gebildet wird (Abb. 35). Dabei kommt es über Wassermoleküle bzw. Wasserstoffbrückenbindungen zur direkten Interaktion mit den Aminosäure-Resten Leu⁸⁸, Arg²⁹² und Tyr³⁷¹. Dieses Ergebnis von OKAMURA-IKEDA et al. (2005) deckt sich im Wesentlichen mit den Resultaten von OKAMURA-IKEDA et al. (1999a), die durch cross-linking Versuche mit rekombinantem T-Protein aus E. coli und dem mit ¹⁴C-markiertem THF-Analogon Methylentetrahydropteroyltetraglutamat (5,10-CH₂-H₄PteGlu₄) die Aminosäure-Reste Lys⁷⁸, Lys⁸¹ und Lys³⁵² als essentiell für die Bindung des Substrates beschrieben haben. Wie anhand des in Abbildung 35 dargestellten Alignments diverser P4-bzw. T-Proteine zu erkennen ist, sind die an der Ausbildung des aktiven Zentrums des humanen T-Proteins beteiligten Aminosäure-Reste Met⁵⁶, Val¹¹⁵, Glu²⁰⁴ und Arg²³³ und das an der Bindung von THF beteiligte Leu⁸⁸ bei allen aufgeführten Proteinen, so auch bei P4 aus E. acidaminophilum konserviert. Die Reste Leu¹⁰², Ile¹⁰³ sowie die an der Bindung von THF beteiligten Reste Arg²⁹² und Tyr³⁷¹, aber auch die drei für das aus *E. coli* stammende T-Protein beschriebenen Lysin-Reste, sind hingegen nur sehr schwach konserviert.

			α1	β1		α2	β3	β4	
T_mar T_car B_hal A_ore T_ten C_sti C_dif P_mic P_hor E_col E_aci A_tha		MS MKGCDSLL MKGCDSLL 	-MKRTPLFEKHVE D-KKTPLYDIHVA YELKKTPLFDIYEQ YELKKTPLFDAHNF INLKKTPLYEIYPK IRLKRTPLFEVYGN IELKRVSLYNIHKE IAAKKTPLYEKHIS INVRVHIFDWHKE MAQQTPLYEQHTI INVKKTALYDLHVK	ELGAKMVDFAG ASGAKIIEFGG QYGGKVIDFGG QYGGKLVDFAG CYNAKIIDFAG QYDPKIVPFAG SYGGEVVDYAG ELGAKLVEFAG SYGGEVVDYAG EHARKIEFFAG CGARMVDFHG CYGGKIIEFCG	WEMPLYYTS WLMPVQYTG WALPVQFSS WEMSVQFEG WEMPIEFKG WEMPIEFKG WLLPVKYEG WEMPIWYSS WALPTQYEGGG WSMPIQYKD - WALPTQYEGGG	IFEEVMAVRKS IIEEHRAVRQ2 IKEEHEAVRN IISEHEAVRN IEEHEAVRN IEEHEAVRN IKEEHEAVRN QIDEHHAVRN INAEHEAVRN INAEHEAVRT	SVGMFDVSH AAGLFDVSH AAGLFDVSH AAGLFDVSH SAGLFDVSH SAGLFDVSH JAGLFDVSH JAGLFDVSH DAGMFDVSH AAGMFDVSH AAGMFDVSH	MGEFLVKG MGEVEVTG MGEIEVRG MGEIEVKG MGEIEVKG MGEVVKG MGEVFRG MTIVDLRG MGEVEVKG MCGLSLKG	59 61 62 68 61 63 60 64 94
<i>D_mel</i> <i>H_sap</i>	MQRAVSVVARLGFRLQ	PAALGGLRHASSAAG AFPPALCRPLSCAQE	EGQRTALYDFHVA VLRRTPLYDFHLA	MIGGKMVFFAG 2KGGKIVNFGG AHGGKMVAFAG	WSMFIQIRD- YALPVQYSDQS WSLPVQYRD-S	SIIASHLHTRQV SHTDSHLHTRQV	IGSIFDVSH IGSIFDVSH ICSLFDVSH	MLQSRIFG MLQTKILG	94 84 91
		β5	β6	β7	α4		β8	β9	
T_mar T_car B_hal A_ore T_ten C_sti C_dif P_mic P_hor E_col E_aci	PEAVSFIDFLITNDFSSLP PDATDFVNRLVTNDASRLA AQALNYLQRLVTNDVSKIK KDAEAFVQYLVTNDVAALE KDAFPFLQNLLTNDLSKLN KDAEEFCQKICTNDISKLE AESEKFIQNLVTNDISTLG KDALKFLQYVTNDISKPP SRTREFLRYLLANDVAKLT KEAEKFINYLVPNDITVLE	-DGKAIYSVMCNENG -VNQVMYTPMCYDHG -DGQAQYTAMCYENG -DNQIVYTFMCYPDG -DNQVLYTFMCNHNG -DNQILYSFMCYENG -INDIIYTPMCYENG -GQVIYSLLCNENG -AISGTYTLVLNERG KSGKALYSGMLNASG -PNQVLYTCFCYPHG	GIIDDLVYKVSF GVUDDLLVYRLGE GVUDDLLVYRSS GVUDDLLVYKSN TVVDDILVYKSS GVUDDLLYKFSC GVUDDLLYKKGS AIKDETLVFNGG GVUDDLLVYRYT GVIDDLLVYKYTN	CDEALMVVNAA CQEYLLVINAA CQYYLVVNAS INYYLLVVNAS CDOMLVVNAG CDOMYIVVNAA CDOMYIVVNAA INEYLMICDSD CDFFRLVVNSA IEDYLLVINAA	NIEKDFNWIK- NIDKDYAWMV- NIDKDIAWME- NSDKDFAWMN- NIEKDYKWML- NIEKDYEWIV- NIDKDVAWI NTDKDFAWFL- AFEKLYAWFTY TREKDLSWIT- NVDKDYAWIV-	SHSKNI QHAAN ENKGAN ENKGAN NNAGIN KQSEGN KQSEGN /LKRTIEQFTKI QHAEPF ENSKGE	FDVEVSNIS GVSITNVS CVSITNVS CVEINIS CVEINIS CVVILKNIS DUEIELKT FGIEIT-VR FDVSLKNIS	DTTALIAF DVTAELAL NQTAQLAL DSVSQVAV DKIAELAI DNIGQVAV SEVSQLAI SETAQIAL YDIAMFAV DDLSMIAV PEVSEIAL	162 155 155 162 156 155 154 156 154
A_tha P_sat D_mel H_sap	KDCVPFLETLVVADVAGLA KDVVSFLEKLVIADVAALA KDAAACLESVCTADILGTP SDRVKLMESLVVGDIAELR	-PGTGSLTVFTNEKC -HGTGTLTVFTNEKC -EGSGSLTVFTNEAC -PNQGTLSLFTNEAC	GAIDDSVITKVTE GAIDDSVITKVTE GILDDLIVNKVSE GILDDLIVTNTSE	DEHIYLVVNAG DDHLYLVVNAG KELYVVSNAA GHLYVVSNAG	CRDKDLAHIEE CRDKDLAHIEE MKEQDMGIMKT CWEKDLALMQI	EHMKAFKSKGGI EHMKAFKAKGGI FAVDNFKSQGKI DKVRELQNQGRI	DVSWHIHDE DVSWHIHDE DVSIEFLTP DVGLEVLDN	RSLLAL RSLLAL ADQSLVAV ALLAL	186 186 178 182
	β9 α5 -	β10	β11		β12		α6	β13	
T_mar T_car B_hal A_ore T_ten C_sti C_dif P_mic P_hor E_col E_aci	β9 α5 QGPKAQETLQELVEDGL QGPRAEAILQRLTDEDL QGPVAENVLQTLTEEPL QGPKAEEIVQELTDTDL QGPKAEEILQKLTDTDL QGPKAEAILQKFTDTDL QGPKAEKILQKLAK-DVDL QGPKAEAILAKDLFGIDI QGPNAQAKAATLFN-DAQR QGPNAEKILQKLTDTDL	β10 E-EIAYYSFRKSI-V S-TIKYYWLRRHVRV A-DIKFFRFVDGVNI S-EIKFFYFKNDVVI S-EIKFFYALRNVDI N-SIKFYKSIPSTKV ANEIKFFTFKENVQI NEMWWFQARWVEI QAVEGMKPFFGV A-QVKFFYCKKDVNI	β11 AGV-ETLVSRTGY DGI-DCLISRTGY AGV-NVLLSRTGY NGA-NCLISRTGY KGI-NTIVSRTGY CGC-PCLVSRTGY GDCGKFLVSRTGY GDCGKFLVSRTGY QAG-DLFIATTGY GGA-SCLISRTGY	TGEDGFELML TGEDGFEIYC TGEDGFEIYC TGEDGFEIYW TGEDGFEIYM TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYI TGEAGYEIAL TGEDGFEIYT	β12 E	AKNAPKY PEEAGRI NEHAVTAI NEHAVTI NEHAVTI GEDMNKI SKRGEPEKALHY NEKAADI NEDVSKI	α6 /wDALMNLL wKRLMEVG wKLILEAG wKLILEAG wKLILDES wNEVLKVG wDEILKIG wRERILEEG FWRALVEA- wKLILDES	β13 RKIDGRPA KPLGLVPA KEHGVVPC KDRGLKPA KDYGLKPA PEEDILPI GED-ICPA KEDGVMPC KKYGIKPC GVKPC PEEDILPI	222 225 225 226 232 227 226 228 2246 223 228
T_mar T_car B_hal A_ore T_ten C_sti C_dif P_mic P_hor E_col E_aci A_tha P_sat D_mel H_sap	β9 α5 QGPKAQETLQELVEDGL QGPRAEAILQRLTDEDL QGPVAENVLQTLTEEPL QGPKAEEILQKLTDTDL QGPKAEEILQKLTDTDL QGPKAELLQKLTDIDL QGPKAEKILQKLAK-DVDL QGPNAQAKAATLFN-DAQR QGPNAEKILQKLTDTDL QGPLAAPVLQHLTKEDL QGPLAAPVLQHLTKEDL QGPLAAPVLQHLTKEDL QGPLAAPVLQHLTKEDL QGPLAAPVLQHLTKEDL QGPLAAPVLQHLTKEDL QGPTAAQVLQAGVADDL	β10 S-EIAYYSFRKSI-V S-TIKYYWLRRHVRV A-DIKFFRFVDGVNI S-EIKFFYFKDKVKI S-EIKFFYALRNVDI N-SIKFYKSIPSTKV ANEIKFFTFKENVQI N-EMWWFQARWVEI QAVEGMKPFFGV A-QVKFFYCKKDVNI S-KLYFGNFQILDI S-KLYFGEFRVLDI D-QLYFMSSFVTTI RKLPFMTSAVMEV	β11 AGV-ETLVSRTGY DGI-DCLISRTGY AGV-NVLLSRTGY NGA-NCLISRTGY CGC-PCLVSRTGY CGC-PCLVSRTGY GDCGKFLVSRTGY DGI-KMLLSRSGY QAG-DLFIATTGY GGA-SCLISRTGY NGST-CFLTRTGY NGSQ-CFLTRTGY AGIPNVRITRCGY	TGEDGFELML TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYT TGEDGFEISV TGEDGFEISV TGEDGFEISV TGEDGVEISV	β12 E D F S EDANPYHPDES P S P S P S P S P S P S P S P S P P S P S P S P S P S P P S P P S P S P P P P P P P P P P P	AKNAPKV PEEAGRI AEDAPVI NDKVDAI NEHAVTI GEDMNKI SKRGEPEKALH GEDMNKI SKRGEPEKALH NEVAADI NEVANI DEHAVDI SENGVEI SENGVEI SENGVEI SENGVEI	α6 /WDALMNLL WKRLMEVG WKKLIEAG WKLILEAG WKLILDES WKLILDES WKLILDES WREVLKVG WERILEEG WRALVEA- WKLILDES AKAILEKS AKALLEKS AKALLEKS ATAILKNP	β13 RKIDGR PA KPLGLVPA KEHGVVPC KDRCLKPA KDYGLKPA HOYGLKPA KEDGVMPC KKYGIKPC GVKPC PEEDILPI EGK-VRLT EGK-VRLT EGK-IRLT VLKLA EVKLA	222 225 225 226 227 228 228 228 228 228 221 2254 2254 2254
T_mar T_car B_hal A_ore T_ten C_sti C_dif P_mic P_hor E_col E_aci A_tha P_sat D_mel H_sap	β9 α5 GPKAQETLQELVEDGL QGPRAEAILQRLTDEDL QGPVAENVLQTLTEEPL QGPKAEEIVQELTDTDL QGPKAEEIQKLTDTDL QGPKAEAILQKLTDTDL QGPKAEKILQKLAK-DVDL QGPNAQAKAATLFN-DAQR QGPNAEKILQKLTDTDL QGPLAAPVLQHLTKEDL QGPLAAPVLQHLTKEDL QGPLAAPVLQHLTKEDL QGPLAAPVLQHLTKEDL QGPTAAQVLQAGVADDL	β10 E-EIAYYSFRKSI-V S-TIKYYWLRRHVRV A-DIKFFRFVDGVNI S-EIPFFYFKNDVVI S-EIKFFYFKDKVKI S-EIKFFYALRNVDI N-SIKFYKSIPSTKV ANEIKFFTFKENVQI N-SIKFYKSIPSTKV ANEIKFFTFKENVQI SKLYFGNFQILDI SKLYFGNFQILDI SKLYFGFFVLDI CLYFMSSFVTI RKLPFMTSAVMEV	β11 AGV-ETLVSRTGY DGI-DCLISRTGY AGV-NVLLSRTGY NGA-NCLISRTGY KGI-NTIVSRTGY CGC-PCLVSRTGY GDCGKFLVSRTGY GDCGKFLVSRTGY GACDLFIATGY GGA-SCLISRTGY NGST-CFLTRTGY NGSQ-CFLTRTGY NGSQ-CFLTRTGY AGIPNVRITICGY	TGEDGFELML TGEDGFEIYC TGEDGFEIYC TGEDGFEIYW TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYT TGEDGFEISV TGEDGFEISV TGEDGFEISV	β12 E		α6 /WDALMNLL JKRLMEVG JWKLIEAG JWKLILEAG JWKLILDES JWNEVLKVG JWDEILKIG /WRALVEA- JWKLILDES JKLILDES JKAILEKS JKALLEKS JKALLEKS JTAILKNP	β13 RKIDGRPA KPLGLVPA KEHGVVPC KDRGLKPA KDYGLKPA PEEDILPI GED-ICPA KEDGVMPC KKYGIKPC GVKPC PEEDILPI EGK-VRLT EGK-IRLT VLKLA EVKLA β13	222 225 225 2222 2222 2222 2222 2222 2
T_mar T_car B_hal A_ore T_ten C_sti C_dif P_mic P_hor E_col E_aci A_tha P_sat D_mel H_sap T_mar T_car B_hal A_ore T_ten C_sti C_dif P_sat D_mel H_sap	β9 α5 QGPKAQETLQELVEDGL QGPRAEAILQRLTDEDL QGPKAEEIVQELTDTDL QGPKAEEIVQELTDTDL QGPKAEEIQKITDIDL QGPKAEEIQKITDIDL QGPKAEEIQKITDIDL QGPKAEKILQKLKDTDL QGPKAEKILQKLTDTDL QGPKAEKILQKLTDTDL QGPNAEKILQKLTDTDL QGPNAEKILQKLTDTDL QGPLAAPVLQHLTKEDL QGPLAAPVLQH CLQARDTLRFEALPLYQH GLQARDTLRFEALPLYQH GLQARDTLRFEALPLYQH GLQARDTLRFEALPLYQH QLQARDTLRFEALPLYQH QLQARDTLRFEALPLYQH QLQARDTLRFEALPLYQH QLQARDTLRFEALPLYQH QLQARDTLRFEALPLYQH QLQARDTLRFEALPLYQH QLQARDTLRFEALPLYQH QLQARDTLRFEALPLYQH QLQARDTLRFEALPLYQH QLQARDTLRFEALPLYQH QLQARDTLRFEALPLYQH QLQARDTLRFFANLPLYQH QLQARDTLRFFANLPLYQH QLQARDTLRFFANLPLYQH QLQARDTLRFFANLPLYQH QLQARDTLRFFANLPLYQH QLQARDTLRFFANLPLYQH QLQARDTLRFFANLPLY QLQARDTLRFFANLPLY QLQARDTLRFFANLPLY QLQARDTLRFFANLPLY QLQARDTLRFFANL	β10 S-TIKYYWLRRHVRV A-DIKFFRFVDGVNI S-EIPFYFKNDVVI S-EIFFYFKDKVKI S-EIKFFYALRNVDI N-SIKFYKSIPSTKV ANEIKFFTFKENVQI NEMWFQARWVEI QAVEGMKPFFGV A-QVKFFYCKKDVNI SKLYFGNFQILDI SKLYFGFRVLDI DQLYFMSSFVTTI RKLPFMTSAVMEV DMD	β11 AGV-ETLVSRTGY DGI-DCLISRTGY AGV-NVLLSRTGY NGA-NCLISRTGY KGI-NTIVSRTGY CGC-PCLVSRTGY CGC-PCLVSRTGY GDCGKFLVSRTGY GAG-DLFIATTGY GGA-SCLISRTGY NGST-CFLTRTGY NGST-CFLTRTGY NGSQ-CFLTRTGY AGIPNVRITRCGY FGVSGCRVTRCGY FGVSGCRVTRCGY SFLAGIGFAVKV SPLEAGLGFFVKF TPLEAGLGFFVKF TPLEAGLGFFVKF TPLEAGLGFFVKF TPLEAGLGFFVKI SPLEAGLGFFVKI SPLEAGLGYFVKI	TGEDGFELML TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYC TGEDGFEIYT TGEDGFEISV TGEDGFEISV TGEDGFEISV TGEDGFEISV TGEDGVEISV	β12 E		α6 /WDALMNILL JKKRLMEVG JWKLILEAG JWKLILEAG JWKLILDES IWNEVLKVG JWELILEAG JWKLILDES JKLILDES JKLILDES JKLILDES JKLILE	β13 RKIDGRPA KPLGLVPA KEHGVVPC KDRGLKPA KDYGLKPA PEEDILPI GED-ICPA KEDGVMPC KKYGIKPC GVKPC PEEDILPI EGK-VRLT EGK-VRLT EGK-VRLT EGK-VRLT EGK-VRLT AGYTCHA- TGYEVYV- QGYEVKV- HGYEVZL- HGYEVZL- HGYEVZL- HGYEVZL- HGYEVZL- HGYEVZL- HGYEVZL- HGYEVZL- HGYEVZL- HGYEVZ	22222222222222222222222222222222222222

	β16	β17	β18	β13		
T_mar T_car	NGERVGEITSGNFSP AGRVIGTVTSGTYAP	FLGKSIALALVS-KSV FLDKNLALAILETEFS	VKIGDQLGVVFPG SAPGTEVAVEIRG	GKLVEALVVKKPI - KLVEAKVVTKPI	YRGSVRREV	364 365
B_hal A_ore	DNQKIGFVTTGTQSP GDKVIGVVTTGYNSP	FLKKNVGLALLQAEHS FLKKNIGYALIDAEYA	SELGTEVIVHVRK AALGTPIDIQVRK	-RQLIAKVVATP KTLKAEVVSKK	YKRGN	365
T_ten C_sti C_dif	ENDKIGIVTTGYQSP GDKTVGFVTTGCASP	TLKKNIGLALIDSKY TLQKSIGLALIDAQY TTGKILGMGIIDSEY	AQIGNQIEVIIRN VALGNEIYIDIRN AKVGNEIGIAIRK	-KPLKAVIVDKN -KKVPAKIVSRN -KVVPAVIVKKP	YKKNYKK YKK YKKQYKK	365 367
P_mic P_hor	GDKEIGFVTTGYMSP NGEMIGEVTSGTLSP	LGKTIANVIVDADQA LLNVGIGIAFVKEEYA	AEIGNEVQVEIRN AKPGIEIEVEIRG	-KKVPAVLISKKI -QRKKAVTVTPPI	LKK YDPKKYGLFRET	367 401
E_COI E_aci	GDKKVGFVTTGYQSP	STGKVVALAIVDTEY	IGIGEIAIVQIRN FEMGTQLEIQIRK	-REMPORVIRPOR -NRVPAEVVAKKI	YNKSYKK	371
A_tha P_sat D_mel	SGNKIGEITSGGFSP GGNNIGEVTSGGFSP GQQVGQVTSGCPSP	NLKKNIAMGYVKSGQI CLKKNIAIGYVKSGLI SAGRNIAMGYVAENLI	HKTGTKVKILVRG HKAGTKVKIIIRG KAPGTKVEFKVRD	-KPYEGSITKMPE -KQNEGVVTKMPE -KLYEAEVTKMPE	VATKYYKPT VPTKYYKPS VKANYYNRPKK-	408 408 405
H_sap	EGTKIGTVTSGCPSP	SLKKNVAMGYVPCEYS	SRPGTMLLVEVRR.	-KQQMAVVSKMPI	VPTNYYTLK	403

Abb. 35: Aminosäure-Alignment verschiedener P4- bzw. T-Proteine: Gezeigt ist ein Alignment von prokaryotischen P4-Proteinen aus *E. acidaminophilum* (diese Arbeit; POEHLEIN 2003) *A. oremlandii* OhILAs, *T. tengcongensis* MB4 (BAO *et al.*, 2002), *T. carboxydivorans* Nor1, *P. micros* ATCC 33270, *B. halodurans* C-125 (TAKAMI *et al.*, 2000), *C. sticklandii*, *C. difficile* (SEBAIHIA *et al.*, 2006), *T. maritima* MSB8 (LEE *et al.*, 2004), *E. coli* K12 (OKAMURA-IKEDA *et al.*, 1993) und *P. horikoshii* OT3 (LOKANATH *et al.*, 2005) sowie von T-Proteinen aus eukaryotischen Quellen wie *H. sapiens* (HAYASAKA *et al.*, 1993), *D. melanogaster* (ADAMS *et al.*, 2000), *A. thaliana* (THEOLOGIS *et al.*, 2000) und *P. sativum* (BOURGUIGNON *et al.*, 1993). Die Sequenzen wurden mit CLUSTALW verglichen (2.8.2.). Identische Aminosäuren wurden dunkelgrau, Reste mit ähnlichen biophysikalischen Eigenschaften (unpolar / polar, ungeladen / basisch / sauer) wurden hellgrau unterlegt. Blaue Röhren oberhalb der Sequenzen kennzeichnen α -Helices, rote Pfeile β -Faltblätter. Die an der Bindung des THF beteiligten Aminosäure-Reste wurden durch dunkelblaue (Protein aus *T. maritima*) bzw. hellblaue (Protein aus *H. sapiens*) Kreise oberhalb und die an der Bindung der Liponsäuregruppe beteiligten Aminosäuren durch dunkelrote Vierecke unterhalb der Sequenzen gekennzeichnet.

Laut LEE *et al.* (2004) interagieren die Seiten-Ketten der Aminosäure-Reste Asp⁹⁶, Tyr¹⁰⁰, Tyr¹⁶⁹, Tyr¹⁸⁸, Glu¹⁹⁵, Arg²²⁷ und Arg³⁶² sowie der Carbonyl-Sauerstoff des Val¹¹⁰ direkt mit THF. Die Aminosäuren Tyr⁸³, Asn¹¹² Tyr¹⁶⁸, Tyr²³⁶, Leu²³⁷ sowie Tyr²³⁹ hingegen interagieren nur indirekt über Wassermoleküle mit THF. Während Tyr¹⁶⁸, Tyr¹⁶⁹, Tyr²³⁶, Leu²³⁷ und Arg³⁶² spezifisch für das aus *T. maritima* stammende T-Protein sind, konnte gezeigt werden, dass Tyr⁸³ und Tyr¹⁰⁰ innerhalb der Prokaryoten stark konserviert, also auch bei *E. acidaminophilum* zu finden sind (Abb. 35). Die anderen hier aufgeführten Aminosäure-Reste sind bei allen in Abbildung 35 verglichenen Proteinen stark konserviert.

Durch Interaktion der Aminomethyl-Transferase mit dem *hydrogen carrier* Protein kommt es zur Destabilisierung desselben und somit zur Lockerung der Wechselwirkung des Methylamin-tragenden Liponsäure-Arms mit der Vertiefung auf der Oberfläche des P2-Proteins (GUILHAUDIS *et al.*, 2000). Es kommt danach zur Bindung der Liponsäure in einer 15 Å tiefen Tasche auf der Oberfläche des T-Proteins, welche direkt neben der Binde-Tasche des THF gelegen ist. Hierbei interagiert die Seitenkette des Asp²²⁸ direkt über eine Wasserstoffbrücken-Bindung mit der Liponsäure, und die Aminosäuren Phe²⁰, Tyr¹⁸⁸, Leu²²⁴, Arg²²⁷ und Leu²³⁸ umgeben den aliphatischen Teil des Cofaktors (LEE *et al.*, 2004). Die hier beschriebenen Reste sind bei allen in Abbildung 35 gezeigten Proteinen, also auch bei dem aus *E. acidaminophilum* stammenden, zu finden.

Der Transfer der C_1 -Einheit auf THF wird wahrscheinlich durch einen nukleophilen Angriff auf den Methylen-Kohlenstoff des mit der Aminomethylgruppe beladenen Liponsäure-Armes durch das THF

initiiert. Hierbei scheint das Asp^{101} des humanen T-Proteins, welches dem Asp^{96} , des aus *T. maritima* stammenden T-Protein entspricht, essentiell zu sein und wurde auch für das aus *P. horikoshii* stammende Protein als Initiator beschrieben (LEE *et al.*, 2004; LOKANATH *et al.*, 2005; OKAMURA-IKEDA *et al.*, 2005). Dieser Aminosäure-Rest, der sich im P4-Protein aus *E. acidaminophilum* an Position 104 befindet, ist auch bei allen anderen aufgeführten Proteinen zu finden (Abb. 35).

In der Literatur wird das P4- bzw. T-Protein als ein sehr instabiles und leicht aggregierendes Protein beschrieben (FREUDENBERG and ANDREESEN 1989; GUILHAUDIS *et al.*, 2000). Das P4-Protein aus *E. acidaminophilum* ließ sich nur sehr schwer nativ bis zur Homogenität reinigen, und dies war oft mit einem sehr hohen Aktivitätsverlust verbunden (FREUDENBERG and ANDREESEN 1989). GUILHAUDIS *et al.* (2000) berichteten, dass sich das T-Protein aus *P. sativum* nur in Gegenwart des H-Proteins aus diesem Organismus oder bei hohen Ammonium-Acetat Konzentrationen als lösliches Protein synthetisieren und reinigen ließ. COHEN-ADDAD *et al.* (1997) berichteten Gleiches über das nativ gereinigte T-Protein aus diesem Organismus. Auch das T-Protein aus Rattenleber-Mitochondrien wird als sehr instabil beschrieben (MOTOKAWA and KIKUCHI 1974).

Während der heterologen Synthese und Reinigung des *Strep*-tag[®] II-fusionierten P4-Proteins aus *E. acidaminophilum* war keine Aggregation des Proteins festzustellen. Da die Aktivität dieses Proteins aber nur mit Hilfe der anderen drei Komponenten des Glycin-Decarboxylase-Komplexes nachzuweisen ist, kann nicht ausgeschlossen werden, dass auch dieses Protein nur in inaktiver Form gereinigt werden konnte und die Etablierung des Glycin-Decarboxylase-Tests mit den heterolog synthetisierten Komponenten aus diesem Grund nicht möglich war.

4.3. Interaktionsstudien mit Hilfe von bakteriellen two-hybrid-Systemen und pull-down-assays

Wie im Ergebnisteil bereits erwähnt ist, sollte mit Hilfe von bakteriellen *two-hybrid*-Systemen nach möglichen Interaktionspartnern von PrpU gesucht werden. Als mögliche Kandidaten wurden hier die Komponenten der Glycin-Decarboxylase, des Thioredoxin-Systems und das Selenoprotein A der Glycin-Reduktase gewählt, weil hier ebenfalls redoxaktive Zentren vorhanden sind. Beide bakteriellen *two-hybrid*-Systeme die hierbei zur Anwendung kommen sollten, bedienen sich einer unterschiedlichen Art der Detektion von Protein-Protein-Interaktionen. Während beim BacterioMatch[®]Two-Hybrid-System durch Translationsfusionen mit dem λ cI-Repressor-Protein (*bait*-Protein) und der α -Untereinheit der RNA-Polymerase (*target*-Protein) bei Interaktion beider Proteine eine Transkriptionsinitiation der Reportergene *amp^R* und *lacZ* induziert wird (DOVE and HOCHSCHILD 1998; DOVE *et al.*, 1997), kommt es bei dem *lexA*-basierenden *two-hybrid*-System zu einer Repression des *lacZ* bei Protein-Protein-Interaktion. Bei letzterem System erfolgt eine Translationsfusion des einen Proteins mit der Wildtyp DNA-Bindedomäne eines LexA-Repressors, während das zweite Protein mit einer mutierten Variante fusioniert wird (DMITROVA *et al.*, *al.*, *al.*)

122

1998). Bei diesem System kann es nur zur Repression der Transkription kommen, wenn beide Varianten des Repressors an den entsprechenden, vor dem Reportergen lokalisierten LexA-Hybrid-Operator binden (s. S. 57, Abb. 16) (DMITROVA *et al.*, 1998; LADANT and KARIMOVA 2000). Dies ist ein entscheidender Vorteil gegenüber dem BacterioMatch[®]Two-Hybrid-System, für das gleich zwei entscheidende Nachteile aufzuzählen sind. Zum einen besitzt die N-terminale DNA-Bindedomäne des λ cI-Repressor-Proteins eine langsame, aber immanente Neigung zur Dimer-Bildung, was eine Repression der Transkription der Reportergene zur Folge hat. Zum anderen, und das ist für die hier geschilderten Untersuchungen ausschlaggebend, ist dieses System für Proteine ungeeignet, welche zur Homodimer-Bildung neigen, da es durch λ cI-Repressor-Dimere ebenfalls zur Repression der Transkription kommt, welche sich auch durch Heterodimer-Bildung mit dem *target*-Protein nicht aufheben lässt (LADANT and KARIMOVA 2000). Die Daten, welche durch Interaktionsstudien mit dem *lexA*-basierenden *two-hybrid*-System erhalten wurden (3.3.8; 3.3.9), zeigen, dass nahezu alle untersuchten Proteine mit großer Wahrscheinlichkeit Homodimere ausbilden. Auch durch Vorversuche mit dem BacterioMatch[®]Two-Hybrid-System konnte dieses bestätigt werden, was zum Ausschluss dieses Systems führte, sodass die in dieser Arbeit dargelegten Untersuchungen nur mit dem von DMITROVA *et al.* (1998) etablierten *lexA*-System vorgenommen wurden.

4.3.1. Interaktionen der Komponenten der Glycin-Decarboxylase

Bisher wurde in der Literatur nur einmal ein hochmolekularer Komplex, welcher aus Mitochondrien von *P. sativum* isoliert wurde und Glycin-Decarboxylase-Aktivität zeigte, beschrieben. Dieser Komplex bestand vermutlich aus den Komponenten der Glycin-Decarboxylase und der Serin-Hydroxymethyltransferase (NEUBURGER *et al.*, 1989). Alle weiteren Versuche, die vier Komponenten der Glycin-Decarboxylase im Komplex zu isolieren, schlugen fehl (FREUDENBERG and ANDREESEN 1989; GUILHAUDIS *et al.*, 2000; NEUBURGER *et al.*, 1991; OLIVER *et al.*, 1990), was auf eine eher weniger stark ausgeprägte Interaktion der einzelnen Komponenten schließen lässt.

Das P1-Protein der Glycin-Decarboxylase aus *E. acidaminophilum* besteht aus zwei Untereinheiten, und das aktive Protein stellt sich als $\alpha_2\beta_2$ -Tetramer dar, welches sich auch in dieser Form nativ aus erwähntem Organismus isolieren ließ (FREUDENBERG and ANDREESEN 1989). Mit Hilfe des bakteriellen *two-hybrid*-Systems konnten bei getrennter Expression der entsprechenden Gene schwache Interaktionen, sowohl der α - als auch der β -Untereinheit des P1-Proteins mit sich selbst, und eine starke Interaktion der α - mit der β -Untereinheit gezeigt werden. Bei gemeinsamer Expression von *gcvP1* α und *gcvP1* β durch die Plasmide pMSP1 $\alpha\beta$ sowie pDPP1 $\alpha\beta$ konnte die Bildung von Homodimeren hingegen nicht gezeigt werden. Da aber, wie bereits erwähnt, das mature Protein die Struktur eines $\alpha_2\beta_2$ -Tetramer aufweist, ist es möglich, dass die mit den beiden Untereinheiten fusionierten LexA-Domänen auf Grund der Ausbildung des Tetramers nicht an den LexA-Hybridoperator binden konnten oder dass durch die Translationsfusionen bedingt, die korrekte Faltung und die damit verbundene Tetramer-Bildung nicht möglich gewesen ist. Allerdings konnte eine

123

Interaktion der β -Untereinheit mit dem P1-Protein bei gemeinsamer Überproduktion der α - und β -Untereinheit durch das pDP-Derivat (pDPP1 $\alpha\beta$) gezeigt werden. Bei dieser Konstellation ist die α -Untereinheit über das pDP-Derivat mit der DNA-Bindedomäne des Wild-Typ LexA-Repressors fusioniert. Möglich ist, dass in diesem Fall eine Interaktion der α - mit der β -Untereinheit gezeigt wurde, da die resultierenden Werte mit denen, die bei getrennter Überproduktion beider Untereinheiten (pMSP1 β +pDPP1 α) erhalten wurden, zu vergleichen sind.

Das P2- bzw. H-Protein wird als zentraler Punkt der Glycin-Decarboxylase beschrieben, da es mit den anderen drei Komponenten in Wechselwirkung tritt, es wird sogar zusammen mit dem Glycin als Cosubstrat des P1-Proteins bezeichnet (ANDREESEN 1994a; COHEN-ADDAD et al., 1997; FUJIWARA and MOTOKAWA 1983; NAKAI et al., 2005). Durch direkte Interaktion von zwei P2- und einem P1-Protein kommt es wahrscheinlich zu einer geringfügigen Konformationsänderung des P1-Proteins, was zur Aktivierung desselben führt (HIRAGA and KIKUCHI 1980a; NEUBURGER et al., 2000; YAMAMOTO et al., 1991). Die Interaktion beider Proteine scheint zumindest bei den Vertretern aus P. sativum so stark zu sein, dass diese sich durch Gelfiltration oder Sucrosedichtezentrifugation nicht löste (HIRAGA and KIKUCHI 1980a). Eine zwar nur sehr schwach ausgeprägte Interaktion des aus E. acidaminophilum stammenden P2-Proteins konnte zumindest mit der α-Untereinheit des P1-Proteins aus diesem Organismus gezeigt werden. Durch dieses Resultat konnten die Ergebnisse von FREUDENBERG et al. (1989) bestätigt werden, die durch immunogold labeling Experimente eine starke Assoziation dieser beiden Proteine gezeigt haben. NAKAI et al. (2003) beschreiben auf der Oberfläche des H-Protein aus T. thermophilus eine stark negativ geladene Region, welche primär durch die α -Helices 1 und 3 sowie das β -Faltblatt 4 (s. S. 114, Abb. 34) gebildet wird und ihre Ladung durch die Aminosäure-Reste Asp², Asp²⁹, Asp³³, Asp³⁷, Glu⁸⁸, Asp⁹³ sowie Glu⁹⁷ bedingt ist, als möglichen Bereich der Interaktion zwischen dem H- und dem P-Protein aus diesem Organismus.

Am stärksten ausgeprägt war die Interaktion zwischen dem P2- und dem P4-Protein. Bei Expression von *gcvP2* durch das pDP-Derivat und Expression von *gcvP4* durch das pMS-Derivat war eine fast vollständige Repression der Transkription des *lacZ*-Gens im Reporterstamm *E. coli* SU202 zu erkennen (3.3.8; Anhang A.IX.4.). Die Stärke der Interaktion dieser beiden Proteine ist mit der der beiden Leucin-Zipper Jun und Fos zu vergleichen, die bei dem *lexA*-basierenden *two-hybrid*-System als Positivkontrolle anzusehen ist (Anhang A.IX.12.) (DMITROVA *et al.*, 1998). Bei Expression der beiden Gene durch das jeweils andere Plasmidderivat war jedoch keine Interaktion der beiden Proteine zu erkennen, was möglicherweise durch die unterschiedliche Kopienzahl der beiden Plasmide und der dadurch resultierenden unterschiedlichen Konzentration der entsprechenden Genprodukte zu erklären ist (DMITROVA *et al.*, 1998). Die Aminomethyl-Transferase und das *hydrogen carrier* Protein gehen meist einen sehr stabilen Komplex (COHEN-ADDAD *et al.*, 1997) mit einem stöchiometrischen Verhältnis von 1:1 ein (COHEN-ADDAD *et al.*, 1997; GUILHAUDIS *et al.*, 1999a; OLIVER *et al.*, 1990) ein. Die Interaktion des H-Proteins mit dem T-Protein erfolgt dabei wahrscheinlich über eine Region, die direkt neben der Spalte gelegen ist, über welche die Methylamin-tragende Liponsäuregruppe des H-Proteins gebunden wird. Diese Vertiefung auf der Oberfläche des Proteins wird zum einen durch den N-Terminus der Domäne 1 (4.2.3.) und zum anderen durch einen Bereich der

Domäne 3 gebildet (LEE et al., 2004). Dem N-terminalen Bereich des T-Proteins scheint bei der Ausbildung dieser Vertiefung, aber vor allem bei der Interaktion mit dem H-Protein, eine essentielle Funktion zuzukommen. Ein intermolekulares cross-linking zwischen dem Lys²⁸⁸ des T-Proteins und dem Asp⁴³ des H-Proteins; beide aus E. coli stammend, war nur bei den Wildtyp-Proteinen zu beobachten. Das um sieben Aminosäuren N-terminal verkürzte T-Protein zeigte kein cross-linking mit dem H-Protein. Auch eine intramolekulare Verknüpfung zwischen dem Asp³⁴ und dem Lys²¹⁶ des E. coli-T-Proteins war nur in Gegenwart des H-Proteins zu beobachten. Diese Resultate deuten darauf hin, dass das H-Protein bei Interaktion mit der Aminomethyl-Transferase eine Konformationsänderung am T-Protein hervorruft und dass die N-terminale Region des T-Proteins essentiell für diese Strukturänderung und der damit verbundenen Interaktion mit dem H-Protein ist (OKAMURA-IKEDA et al., 1999a; OKAMURA-IKEDA et al., 2003). Bei dem T-Protein aus P. horikoshii scheint ein Bereich der Domäne III, hier besonders die konservierten Aminosäure-Reste Arg³²⁷, Tyr³³⁰ und Arg³⁷⁶, sowie die Reste Lys²⁰, Phe²⁴, Gly²⁶, Ser³⁵, Ile³⁶, Leu²⁴⁸, Gly²⁴⁹, Asp²⁵², Thr²⁵³, Arg²⁵⁵ und Leu²⁶² der Domänen I und II an der Interaktion mit dem H-Protein beteiligt zu sein (LOKANATH et al., 2005). Auch für das T-Protein aus T. maritima wurde eine sehr ähnlich gelagerte Region beschrieben, welche maßgeblich durch die Aminosäure-Reste Phe²⁰, Leu²²⁴, Arg²²⁷, Asp²²⁸, Leu²³⁸ sowie Tyr²³⁹ gekennzeichnet ist (LEE et al., 2004). Das durch oben erwähnte cross-linking Versuche charakterisierte Lys²⁸⁸ des E. coli-T-Proteins befindet sich innerhalb der beiden hier beschriebenen möglichen Interaktionsflächen zwischen T- und H-Protein, was die erwähnten Aussagen bestätigt (LEE et al., 2004; LOKANATH et al., 2005). Auch das durch diese cross-linking Experimente bestimmte Asp⁴³ des E. coli H-Proteins befindet sich innerhalb eines Bereiches, der als mögliche Interaktionsfläche des H-Proteins aus T. *thermophilus* mit dem T-Protein angesehen wird. Diese Region wird hauptsächlich durch die β-Faltblätter 4, 6 und 7 gebildet, wobei deren negativer Charakter den Aminosäure-Resten Glu⁴², Glu⁶⁰ sowie dem Asp⁶⁷ zuzuschreiben ist, die bei in nahezu allen in Abbildung 34 (s. S. 114) verglichenen Proteinen an dieser Stelle lokalisiert sind, (NAKAI et al., 2003a).

Die hier beschriebenen, als relativ spezifisch einzuordnenden Interaktionen der Komponenten der Glycin-Decarboxylase aus *E. acidaminophilum* zeugen von der Funktionalität des *lexA*-basierenden *two-hybrid*-Systems (DMITROVA *et al.*, 1998) bei der Untersuchung von Interaktionen von Proteinen aus diesem Organismus.

4.3.2. Interaktionsstudien von PrpU und den Vertretern des Thioredoxin-Systems sowie mit GrdA

Die Glycin-Decarboxylase aus *E. acidaminophilum* ist durch das bislang einzigartige Fehlen der Dihydrolipoamid-Dehydrogenase gekennzeichnet. Dieser Organismus besitzt eine NADP⁺-abhängige Thioredoxin-Reduktase (TR) mit Dihydrolipoamid-Dehydrogenase-Aktivität, welche die Funktion des P3-Proteins übernimmt und die Elektronen über das Thioredoxin-System dem reduktiven Weg des Glycin-Abbaus zuführt. Die Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase kann *in vitro* durch das Thioredoxin und das Selenoprotein A (GrdA) der Glycin-Reduktase stimuliert werden. (ANDREESEN 1994a; 1994b; DIETRICHS *et al.*, 1991; HARMS *et al.*, 1998a; MEYER *et al.*, 1991). Weiterhin ist dieser Organismus durch das Vorhandensein des 11 kDa großen putativen redoxaktiven Selenoproteins PrpU gekennzeichnet, zu dem bis zum heutigen Tag kein homologes Protein in den Datenbanken zu finden ist (ANDREESEN *et al.*, 1999; LECHEL 1999; POEHLEIN 2003; WAGNER 1997).

Durch Interaktionsstudien von PrpU mit den Komponenten der Glycin-Decarboxylase, des Thioredoxin-Systems und GrdA sollte eine mögliche Beteiligung dieses bislang nur für *E. acidaminophilum* beschriebenen Proteins an dem Glycin-Metabolismus dieses Organismus gezeigt werden. Bei den durchgeführten Interaktionsstudien zeigten sich deutliche Interaktionen von PrpU mit dem P2-Protein der Glycin-Decarboxylase, mit dem GrdA der Glycin-Reduktase und mit dem Thioredoxin des Thioredoxin-Systems. Auch das P2-Protein mit Liponsäure als Dithiol-haltige Verbindung zeigte eine deutliche Interaktion mit PrpU, aber auch mit GrdA (CxxU) und dem besonderen Thioredoxin (<u>G</u>CxxC), wo das Tryptophan des redoxaktiven Motivs gegen ein kleines Glycin ausgetauscht ist (HARMS *et al.*, 1998b). Diese beiden Proteine zeigten wiederum ebenfalls eine Interaktion miteinander, aber auch mit PrpU und dem P2-Protein der Glycin-Decarboxylase. GrdA und das P2-Protein wurden auch durch die durchgeführten *pulldown- assays* als mögliche direkte Interaktionspartner von PrpU bestätigt.

Das Selenoprotein PrpU ist durch das putativ redoxaktive Sequenzmotiv -A-C-A-T-U-D- gekennzeichnet, welches dem der Thioredoxin-Reduktase (x-C-A-T-C-D) sehr ähnlich ist. Dieses Motiv ist genau wie andere Sequenzmotive, wo zwei Cystein-Reste durch zwei andere Aminosäure-Reste getrennt ist (oder eines dieser Cysteine durch ein Serin, ein Threonin bzw. ein Selenocystein ersetzt ist), bei Proteinen zu finden, die für die Formierung, die Isomerisierung und Reduktion von Disulfid-Bindungen oder andere Redox-Funktionen verantwortlich sind (FOMENKO and GLADYSHEV 2003). Die ubiquitär von den Archaeen bis zum Menschen vorkommenden Thioredoxine weisen ebenfalls ein redoxaktives Sequenzmotif in der Form CxxC auf. Neben ihrer Hauptfunktion als Protein-Disulfid-Reduktasen/Isomerasen dienen sie als Elektronen-Donor für diverse Enzyme wie die Ribonukleotid-Reduktase, Peroxiredoxin oder Methionin-Sulfoxid-Reduktase (ARNER and HOLMGREN 2000). In anaeroben, Aminosäure-verwertenden Mikroorganismen stellen sie zusammen mit der Thioredoxin-Reduktase einen wichtigen Elektronencarrier dar (HARMS et al., 1998b). Bei der Verstoffwechselung von Glycin durch die Stickland-Reaktion werden die bei der Oxidation von Glycin durch die Glycin-Decarboxylase auf der Liponsäure übertragenen Redoxäquivalente über das Thioredoxin-System, bestehend aus Thioredoxin-Reduktase und Thioredoxin, der Glycin-Reduktase zugeführt (ANDREESEN 1994a; 1994b; 2004; MEYER et al., 1991; STICKLAND 1934). Das nach der Reduktion von Glycin, Betain oder Sarcosin oxidiert vorliegenden GrdA kann so über das Thioredoxin-System wieder reduziert werden.

Das Selenoprotein PrpU weist auf Aminosäure-Ebene deutliche Sequenzhomologien zu dem Thioredoxin aus *E. acidaminophilum*, aber auch zu einem Selenocystein-haltigem Thioredoxin aus *T. denticola* (SESHADRI *et al.*, 2004) auf (Abb. 36). Dies legt die Vermutung nahe, dass PrpU eine ähnliche Funktion wie das Thioredoxin besitzt und als möglicher Elektronencarrier fungieren kann.

A	
PrpU_Ea	MAFKIEGGDVKKALEVSIDESIKDRIANACATUDINAVLAVAWGVKEEISASEAEAVDKTLAELAGSSIALE 72
TrxA_Ea	MSALLVEIDKDQFQAEVLEAEGYVLVDYFSDGCVPCKALMPDVEELAAKYEGKVAFRKFNTSSARRLAIS 70
PrpU_Ea	SGYKVDFMKGGCKVKDDKAVLIYRYQITEKP 103
TrxA_Ea	QKILGLPTITLYKGGQKVEEVTKDDATRENIDAMIAKHVG 110
B PrpU_Ea TrxU_Td	MAFKIEGGDVKKALEVSIDESIKDRIANA <mark>CATU</mark> DINAVLAVAWGVKEEISASEAEAVDKTLAELA 65 MIMAVLDITNANFDETVKTAKPVLIDFWAPWUPGCVQLSPELQAAEAELGDKAVIAQS 58
PrpU_Ea	GSSIALESGYKVDFMKGGCKVKDDKAVLIYRYQITEKP 103
TrxU_Td	NVDNARELAVKFKFMSIPTLIVLKDGKEVDRHTGYMDKKSLVNFVSKHI 107

Abb. 36: Aminosäure-Alignments von PrpU mit Thioredoxinen aus *E. acidaminophilum* (A) und *T. denticola* (B). Gezeigt ist ein Alignment von PrpU mit dem Thioredoxin (TrxA) aus *E. acidaminophilum* (A) und PrpU mit dem selenocysteinhaltigen Thioredoxin (TrxU) aus *T. denticola* (B). Identische Aminosäuren wurden dunkelgrau, Reste mit ähnlichen biophysikalischen Eigenschaften (unpolar / polar, ungeladen / basisch / sauer) wurden hellgrau unterlegt. Die redoxaktiven Sequenzmotive wurden rot umrandet.

Auffällig ist, dass PrpU bisher nur für E. acidaminophilum, sowohl auf Nukleinsäure- als auch auf Aminosäure-Ebene als ⁷⁵Se-markierte Verbindung nachgewiesen wurde (LECHEL 1999; WAGNER 1997) und mit großer Wahrscheinlichkeit bei C. litorale durch Southern-Hybridisierungen ebenfalls auf Nukleinsäure-Ebene nachgewiesen werden konnte (LECHEL 1999). Eine Isolierung des entsprechenden Gens aus C. litorale war auch im Rahmen der vorliegenden Arbeit nicht möglich. Im Gegensatz zu E. acidaminophilum konnte für C. litorale eine eigenständige Dihydrolipoamid-Dehydrogenase als mögliche P3-Komponente der Glycin-Decarboxylase nachgewiesen werden, aber auch dieser Organismus besitzt eine Thioredoxin-Reduktase mit einer für dieses Enzym normalerweise atypischen Dihydrolipoamid-Dehydrogenase-Aktivität (MEYER et al., 1991). Beide Organismen besitzen also eine Thioredoxin-Reduktase mit Dihydrolipoamid-Dehydrogenase-Aktivität und mit großer Wahrscheinlichkeit das Selenoprotein PrpU. Dieses und die Tatsache, dass prpU in E. acidaminophilum in einem gemeinsamen Operon mit den Genen der Glycin-Decarboxylase organisiert ist und zusammen mit diesen transkribiert wird, legt die Vermutung nahe, dass PrpU als Vermittler zwischen Glycin-Decarboxylase und Glycin-Reduktase fungiert. Möglicherweise ist es direkt oder auch indirekt an der Reoxidation der Liponsäure-Gruppe des P2-Proteins der Glycin-Decarboxylase beteiligt. Eine Stimulierung der Dihydrolipoamid-Dehydrogenase-Aktivität der heterolog synthetisierten Thioredoxin-Reduktase konnte durch ebenfalls heterolog überproduziertes Thioredoxin und GrdA aufgezeigt werden. Eine mögliche Aktivitätssteigerung durch die Zugabe von PrpU zum Reaktionsansatz mit Thioredoxin-Reduktase, Thioredoxin und GrdA oder durch PrpU, Thioredoxin-Reduktase und Thioredoxin anstelle von GrdA konnte nicht nachgewiesen werden. In Tissierella

creatinophila konnte GrdA keine Stimulierung der Dihydrolipoamid-Dehydrogenase-Aktivität bewirken (HARMS *et al.*, 1998b; HARMS *et al.*, 1998c).

Bekräftig wird diese zuvor getroffene Aussage durch die Ergebnisse von FREUDENBERG und ANDREESEN (1989), die zeigten, dass das P2-Protein nicht nur mit den Glycin-Decarboxylase-Komponenten, sondern auch mit dem Glycin-Reduktase-Komplex assoziiert ist, wo P2 mit dem Thioredoxin-System, GrdA und auf Grund dieser Ergebnisse auch mit PrpU interagiert und die für die Reduktion von Glycin notwendigen Elektronen liefert, wodurch P2 reduziert wird.

So ergibt sich für *E. acidaminophilum* der in Abbildung 37 dargestellte hypothetische Reaktionsmechanismus.

Abb. 37: Ausschnitt aus dem Glycin-Metabolismus von *E. acidaminophilum* (ANDREESEN 1994a, 2004; GRAENTZDOERFFER *et al.* 2003; modifiziert): Wichtige Proteine wurden durch Kreise gekennzeichnet. Folgende Abkürzungen wurden verwendet: P1, P2, P4-Proteinkomponenten der Glycin-Decarboxylase, PrpU_Selenoprotein PrpU (mit dem redoxaktiven Motiv CxxU), P_A , P_B , P_C -Komponenten der Glycin,- Sarcosin- und Betain-Reduktase (wobei P_A das redoxaktiven Motiv CxxU und P_B redoxaktiven Motiv UxxC enthält), Trx_Thioredoxin, TR_Thioredoxin-Reduktase, AK_Acetatkinase, PLP_Pyridoxalphosphat, THF_Tetrahydrofolat. (D): Stoffwechselwege, die durch Methylen-THF-Dehydrogenase, Methenyl-THF-Cyclohydrolase, Formyl-THF-Synthetase und Formiat-Dehydrogenase katalysiert werden. Die als gestrichelte Pfeile dargestellten Reaktionen stellen die von FREUDENBERG und ANDREESEN (1989) gezeigte freie Form des P2-Proteins, welches vom Decarboxylase-Komplex dissoziiert und mit dem Reduktase-Komplex.

E. acidaminophilum ist bisher der einzige Organismus, für den keine eigenständige Dihydrolipoamid-Dehydrogenase beschrieben werden konnte (ANDREESEN 1994b; FREUDENBERG and ANDREESEN 1989; FREUDENBERG *et al.*, 1989a; MEYER *et al.*, 1991) und in dessen Genom das Selenoprotein PrpU nachgewiesen werde konnte (GRÖBE 2001; LECHEL 1999; WAGNER 1997). Im Rahmen vorangegangener Arbeiten (LECHEL 1999; POEHLEIN 2003) konnte gezeigt werden, dass das Gen des 11 kDa Selenoproteins PrpU *downstream* der Gene der Glycin-Decarboxylase lokalisiert ist. Die Gene *gcvP4*, *gcvP2*, *gcvP1a*, *gcvP1β* sowie die Gene *thf* (Formyl-THF-Synthetase) und *prpU* sind in einem Operon, dem Glycin-Decarboxylase-Operon, organisiert und werden polycistronisch transkribiert. Die Gene dieser Transkriptionseinheit, somit auch *prpU*, sind zwar konstitutiv auf niedrigem Niveau exprimiert, es ist aber eine deutliche Induktion der Transkription durch Glycin zu erkennen (s. S. 54, Abb. 14 A). Durch das *lexA*-basierende *two-hybrid*-System konnte eine deutliche Interaktion von PrpU mit dem P2-Protein der Glycin-Decarboxylase, dem Thioredoxin des Thioredoxin-Systems und mit dem Selenoprotein GrdA der Glycin-Reduktase gezeigt werden (s. S. 63, Abb. 17). Durch *pull-down*-Experimente konnten ebenfalls die Proteine GcvP2 und GrdA als Interaktionspartner identifiziert werden (s. S. 88, Abb. 28).

Die hier zusammengefassten Resultate und die Tatsache der fehlenden eigenständigen Dihydrolipoamid-Dehydrogenase in *E. acidaminophilum* (ANDREESEN 1994b; FREUDENBERG and ANDREESEN 1989; FREUDENBERG *et al.*, 1989a; MEYER *et al.*, 1991) zeigen, dass PrpU sicherlich eine Vermittlerrolle zwischen der Glycin-Decarboxylase und der Glycin-Reduktase zukommt. Denkbar wäre hier eine direkte Übertragung der an die Liponsäuregruppe des P2-Proteins gebundenen Elektronen auf GrdA, oder die Übertragung dieser Elektronen über das Thioredoxin-System (Thioredoxin-Reduktase und Thioredoxin) und PrpU. Hierbei würde PrpU die Funktion von GrdA als Elektronenüberträger ersetzen, denn MEYER *et al.* (1991) zeigten, dass GrdA die Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase im Zusammenspiel mit dem Thioredoxin zumindest *in vitro* steigern konnte. Im Rahmen dieser Arbeit konnte die Steigerung dieser Aktivität der Thioredoxin-Reduktase durch Thioredoxin und PrpU nicht gezeigt werden, was eine solche Funktion des Proteins jedoch nicht ausschließt. Mit großer Wahrscheinlichkeit ist die Inaktivität des Proteins auf die heterologe Expression von *prpU* durch das *Strep*-tag[®] II-System zurückzuführen. PrpU kann möglicherweise auch an der Reaktivierung von GrdA, d. h. an der Vorbereitung dieses Proteins zur Aufnahme eines weiteren, bei der Reduktion von Glycin durch die Glycin-Reduktase entstehenden Carboxymethyl-Selenoethers (ANDREESEN 2004; ARKOWITZ and ABELES 1990) beteiligt sein.

4.4. Glycin-, Sarcosin- und Betain-spezifische Gencluster

In *E. acidaminophilum* sind häufig Gene, die für die einzelnen Komponenten eines bestimmten Stoffwechselweges codieren, in spezifischen Genclustern organisiert. So sind neben den Genen der Glycin-Decarboxylase, die, wie bereits in Abbildung 8 (s. S. 46) beschrieben, in einem Operon organisiert sind, auch die Gene der Glycin-, Sarcosin, bzw. Betain-Redukase in spezifischen Genclustern angeordnet (s. S. 43, Abb. 7). So findet man in *E. acidaminophilum* zwei für die Glycin-Reduktase spezifische Gencluster. In Gensatz I sind die Gene des Glycin-spezifischen Protein B ($P_{BGlycin}$) der Glycin-Reduktase (*grdB*₁) sowie das Gen des Proproteins der 22 und 25 kDa Untereinheit dieser Komponente (*grdE*₂) zu finden. Beide Gene werden durch eines der vier *grdA*-Gene, die anscheinend Substrat-unspezifische redoxaktive Komponente der Glycin-Reduktase, getrennt. Downstream sind die Gene des Thioredoxin-Systems (trxA und trxB) lokalisiert, gefolgt von einer weiteren Kopie von grdA sowie den Genen beider Untereinheiten der ebenfalls anscheinend Substrat-unspezifischen Komponenten des Protein C der Glycin-Reduktase (grdC und grdD) (KOHLSTOCK et al., 2001; LÜBBERS and ANDREESEN 1993; SONNTAG 1998; WAGNER et al., 1999). Ein zweites, ebenfalls Glycin-spezifisches $grdE_1A_2B_2$ -Gencluster, ist von Genen hypothetischer Proteine flankiert, und die Transkription dieses Operons ist nach Northern-Blot-Analysen bzw. RT-PCRs in Frage zu stellen (SONNTAG 1998). Des Weiteren ist in E. acidaminophilum ein Sarcosin-spezifisches Gencluster zu finden, welches ebenfalls von Genen hypothetischer Proteine und Genen für einen Zwei-Komponenten-Regulator umgeben ist (SONNTAG 1998). Wie bereits erwähnt, kann E. acidaminophilum auch Betain als Elektronen-Akzeptor verwerten, die Gene des für Betain spezifischen Protein B (P_{BBetain}) sind ebenfalls in einem Gencluster organisiert. In diesem Gensatz sind die Gene beider Untereinheiten von P_{BBetain} (grdI sowie grdH), das Gen eines möglicherweise für diesen Gensatz spezifischen Regulatorproteins (grdR) sowie das eines Aminosäuretransporters ($grdT_1$), die Gene des Thioredoxin-Systems (trxA und trxB) sowie jeweils eine zweite Kopie der Gene (grdC und grdD) beider Untereinheiten des Substrat-unspezifischen Protein C der Glycin-Reduktase lokalisiert (LÜBBERS and ANDREESEN 1993; SONNTAG 1998; STEINER 2004). In E. acidaminophilum ist in einem für die Creatin-Reduktase spezifischen Gensatz das Gen einer Creatinase (creA) und die zweite Kopie eines für einen Aminosäuretransporter ($grdT_2$) codierenden Gens lokalisiert (RUDOLF 2003). Zudem ist nach den hier berichteten Ergebnissen jeweils eine weitere Kopie der Gene codierend für das Proprotein der 22 und 25 kDa Untereinheit ($grdG_2$) und der 47 kDa-Untereinheit ($grdF_2$) des Protein B (P_{BSarcosin}) der Sarcosin-spezifischen Reduktase zu finden. E. acidaminophilum kann Creatin durch eine Creatinase zu Sarcosin und Harnstoff metabolisieren, wobei Sarcosin dann über die Sarcosin-Reduktase weiter zu Methylamin und Acetylphosphat reduziert wird, welches anschließend zu Acetat umgewandelt wird und mit der Energiekonservierung in Form von ATP verbunden ist (HARMS et al., 1998c; ZINDEL et al., 1988). Die Creatinase aus E. acidaminophilum zeigt eine 79% ige Identität zu dem Protein von Bacillus sp. BSD-8 und eine 77% ige Identität zu der Creatinase aus Arthrobacter sp. (NISHIYA et al., 1998; RUDOLF 2003). In C. difficile, einem humanpathogenen Organismus (SEBAIHIA et al., 2006), der ebenso in die Gruppe XI der Clostridien einzuordnen ist (BAENA et al., 1999), sind die Gene der Glycin-Reduktase ebenfalls in einem Gencluster organisiert. Auch hier sind wie bei E. acidaminophilum die Gene des Glycinspezifischen Protein B (P_{BGlvcin}) der Glycin-Reduktase (grdB) sowie das Gen des Proproteins der 22 und 25 kDa Untereinheit dieser Komponente (grdE) durch das Gen des Substrat-unspezifischen Selenoprotein A (grdA) der Glycin-Reduktase getrennt (s. S. 130, Abb. 38). Downstream sind die Gene trxB und trxA des Thioredoxin-Systems sowie grdC und grdD der beiden Untereinheiten von Protein C der Glycin-Reduktase lokalisiert. In diesem Organismus sind ebenfalls die Gene grdG und grdF der Sarcosin-spezifischen Reduktase zu finden, diese sind jedoch nur mit Genen hypothetischer Proteine assoziiert. In C. sticklandii, welches ebenfalls dem Cluster XI der Clostridien zuzuordnen ist (BAENA et al., 1999; PASTER et al., 1993), sind die Gene der Glycin-Reduktase ebenfalls in einem Gencluster organisiert (Abb. 38). Upstream der Gene trxB und trxA des Thioredoxin-Systems liegen die Gene grdE und grdB des Glycin-spezifischen Protein B,

welche genau wie bei *E. acidaminophilum* und *C. difficile* durch *grdA* getrennt werden (Abb. 38). Auch die Gene *grdC* und *grdD* beider Untereinheiten des Protein C sind in diesem Cluster lokalisiert (GRÄNTZDÖRFFER *et al.*, 2001).

Abb. 38: Möglichkeiten der Organisation der Gene der Glycin,- Sarcosin- und Betain-spezifischen Gencluster: Die Anordnung der Gene der Glycin,- Sarcosin- und Betain-spezifischen Gencluster und des Thrioredoxin-Systems in den Genomen folgender Organismen ist dargestellt: *C. sticklandii* (S. KREIMEYER, pers. Mitteilung), *C. litorale* (KREIMER and ANDREESEN 1995; KREIMER *et al.*, 1997), *C. botulinum* (SEBAIHIA et al., 2007), *C. bolteae* (SONG *et al.*, 2003) sowie *T. denticola* (ROTHER et al., 2001) Assoziierte Gene sind durch eine Linie verbunden. Bei nichtassoziierten Genen erfolgten ebenfalls eine Beachtung der Transkriptionsrichtung und die relative Lokalisation im jeweiligen Genom gesehen zu den entsprechenden anderen Genen.

In *Clostridium litorale*, ebenfalls ein Vertreter des Clostridiencluster XI, der eine 96% ige Ähnlichkeit auf 16S rDNA-Ebene im Vergleich zu *E. acidaminophilum* aufweist (BAENA *et al.*, 1999; FENDRICH *et al.*, 1990), sind die Gene der Glycin-Reduktase ebenfalls in einem Cluster mit der Anordnung *grdEABtrxBA* organisiert (KREIMER and ANDREESEN 1995; KREIMER *et al.*, 1997). Ob die Gene *grdC* und *grdD*, die beide mit großer Wahrscheinlichkeit benachbart liegen (KOHLSTOCK *et al.*, 2001), ebenfalls mit den anderen

Genen der Glycin-Reduktase assoziiert sind, konnte bisher nicht geklärt werden (Abb. 38). Auf Grund des hohen Verwandtschaftsgrades zu E. acidaminophilum, C. difficile sowie zu C. sticklandii wäre aber davon auszugehen. Da C. litorale sowohl auf Medien mit Sarcosin als auch mit Betain unter Zugabe von Elektronen-Donatoren in Form von Aminosäuren bzw. H₂ wächst (FENDRICH et al., 1990), müssen im Genom dieses Organismus auch die Gene der Sarcosin-bzw. Betain-Reduktase vorhanden sein. C. litorale zeigte jedoch Probleme bei der Anzucht, auch wenn der Stamm von der DSMZ erneut bezogen wurde, daher war eine nähere Untersuchung an dieser Stelle nicht möglich. In Clostridium botulinum sind die Gene der Glycin-Reduktase ebenfalls in einem Cluster organisiert. Im Genom (SEBAIHIA et al., 2007) dieses Organismus sind die Gene grdE und grdB im Gegensatz zu den bisher beschriebenen Clostridien direkt assoziiert und nicht durch grdA getrennt. Letzteres ist upstream der Gene trxB und trxA des Thioredoxin-Systems wie bei E. acidaminophilum zu finden, welche wiederum upstream der Gene grdE und grdB lokalisiert sind. Wie bei allen hier beschriebenen Genanordnungen sind auch die Gene grdC und grdD in diesem Gencluster organisiert (Abb. 38), deren Genprodukte aus dem z. B. während der Reduktion von Glycin durch die Glycin-Reduktase entstehenden Selenoether einen Thioester bilden, der anschließend phosphorylytisch gespalten wird (KOHLSTOCK et al., 2001). In diesem Gencluster, upstream des Gens eines hypothetischen Proteins (grdX), ist mit entgegengesetzter Transkriptionsrichtung eine weitere Kopie des Gens der Thioredoxin-Reduktase (trxB) lokalisiert. Die gleiche Anordnung der Gene der Komponenten der Glycin-Reduktase ist in Clostridium bolteae zu finden (Abb. 38), ein Organismus, der auf Grund von 16SrDNA-Analysen in das Clostridiencluster XIVa einzuordnen ist (SONG et al., 2003). Im Genom dieses Clostridien-Vertreters sind auch die Gene grdI und grdH der Betain-Reduktase sowie grdG und grdF der Sarcosin-Reduktase zu finden. Bisher wurden die Komponenten der Glycin-, Sarcosin- bzw. Betain-Reduktase nur für Gram-positive Organismen und hier ausschließlich für Vertreter der Clostridien beschrieben (ANDREESEN 1994b; 2004; ARKOWITZ and ABELES 1991; STADTMAN 1978). Für Treponema denticola, ein gram negatives, den Spirochäten zugehöriges Bakterium, wurden die Komponenten der Glycin-Reduktase beschrieben (ROTHER et al., 2001). Im Genom dieses Organismus (SESHADRI et al., 2004) sind jeweils zwei Kopien beider Gene des Protein B einmal in der Anordnung grdBE und einmal in der Anordnung grdEB zu finden. GrdA ist auch hier, genau wie in C. botulinum und C. bolteae, downstream von trxB und trxA loklisiert, diese sind hier jedoch nicht mit grdB und grdE assoziiert. In einem weiteren, nicht assoziierten Abschnitts des Genoms sind die Gene grdC und grdD lokalisiert, downstream beider Gene ist mit entgegengesetzter Transkriptionsrichtung eine zweite Kopie eines Gens eines in diesem Fall Selenocystein-haltigen Thioredoxins (trxU) lokalisiert (Abb. 38). Dieses Thioredoxin zeigt, wie bereits erwähnt, signifikante Homologie zu PrpU aus E. acidaminophilum (s. S. 126, Abb. 36 B).

In *E. acidaminophilum* konnten insgesamt vier Genkopien des Selenoprotein A der Glycin-Reduktase vollständig kloniert und sequenziert werden. Alle vier weisen ein *in-frame*-TGA-Codon auf, was für den cotranslationalen Einbau von Selenocystein codiert (GURSINSKY *et al.*, 2007; GURSINSKY *et al.*, 2000). Dieses Selenocystein ist Teil des redoxaktiven Zentrums (CxxU) von GrdA. An dieser Position des Proteins

kommt es wahrscheinlich zur Ausbildung des Carboxymethyl-Selenoethers (ARKOWITZ and ABELES 1990), welcher anschließend in einen Thioester überführt wird, der an Protein C gebunden ist (ANDREESEN 2004; ARKOWITZ and ABELES 1991; KOHLSTOCK *et al.*, 2001). Die vier resultierenden, ca. 17 kDa großen Genprodukte unterscheiden sich nur sehr wenig in ihrer Aminosäuresequenz. Auffallend ist ein 16 Aminosäuren N-terminal der redoxaktiven Sequenz (CxxU) lokalisiertes stark konserviertes Cystein, dem bisher keine Funktion zugeordnet werden konnte (ANDREESEN 2004). Die durch *grdA*₂ und *grdA*₃ codierten Proteinvarianten unterscheiden sich nur in einer Aminosäure, im Vergleich dazu unterscheiden sich die Genprodukte von *grdA*₁ bzw. *grdA*₄ in acht bzw. drei Aminosäuren von den anderen beiden Varianten (Abb. 39). Es erfolgte allerdings ein Austausch gegen Aminosäuren ähnlicher biophysikalischer Eigenschaften (unpolar / polar, ungeladen / basisch / sauer) bzw. zu Aminosäuren, die in den GrdA-Varianten der in Abbildung 39 verglichenen Organismen ebenfalls an dieser Position zu finden sind.

	↓ ↓ ↓ ↓↓	
E_acil	MSLFDGKKVIIIGDRDGIPGPAIAECLKGTA-AEVVYSATECFVUTAAGAMDLENONRVKGFADOFGAENLVVLVGAAEAESAGLAA	E 87
E_aci2	MSIFDGKKVIIIGDRDGIPGPAMAECLKGTG-AEVVYSATECFVUTAAGAMDLENQNRVKSFTEQYGAENMIVLVGAAEAESAGLAA	E 87
E_aci3	MSIFDGKKVIIIGDRDGIPGPAMAECLKGTG-AEVVYSATECFVUTAAGAMDLENONRVKSFTEQYGAENMIVLVGAAEAESAGLAA	E 87
E_aci4	MSLFDGKKVIIIGDRDGIPGPAMAECLKGTG-AEVVYSATECFVUTAAGAMDLENONRVKSFTEQYGAENMIVLVGAAEAESAGLAA	E 87
C_lit	MSLFDGKKVIIIGDRDGIPGPAMAECLKGIN-VEVVYSATECFVUTAAGAMDLENQNWVKNFTDQYGAENIIVLVGAAEAESAGLAA	E 87
C_sti	MSRFTGKKIVIIGDRDGIPGPAIEECLKPID-CEVIFSSTECFVUTAAGAMDLENQKRIKEATEKFGAENLVVLIGAAEAEAAGLAA	E 87
C_Bot	MSLFEGKKVIIIGDRDGIPGPAIEKCIEGTG-AEVVFSSTECFVUTAAGAMDLENQKRVKTLTEKHGAENILVILGAAEGEAAGLAA	E 86
C_dif	${\tt MSLLSNKKVLIIGDrdgIpgPaiee} CVKTVEGAEVVFSSTECFVUTAAGAMDLENONRVKDAADKFGAENVVILLGAAEAEAAGLAA$	E 87
C_por	-MILQGKKVIAIGDRDGIPGPAIEECVKSAG-AEIAFSSTECFVUTAAGAMDLEIQQKVKDAAESIGADNLVVVLGGAEAESSGLSA	E 87
T_den	MVDLKTKKVIIIGDRDGVPGEAIKLCAESAG-AEVVYAATECFVUTSAGAMDLENQKRVKDLAEKYGPENVIVLLGGAEAESSGLAC	E 87
C_hyd	MAILAGKKVIAVGDRDGVPGPAIAECAKSAG-AEVVFATTECFVUTAAGTMDLQNQARIKELAEELGGENIVVLLGAAEPDTASLAA	E 87
	+ + +	
E_acil	TVTA <mark>gdptfagplagVqLgLrvfHave</mark> pefKdavdsavydeqig <mark>mmemv</mark> ldVdsiia <mark>e</mark> mksireqfgkfnd 158	
E_aci2	TVTA <mark>gdptfagplagVqLgLrvfHave</mark> pefKdsvdsavydeqig <mark>mmemv</mark> ldVdsiia <mark>e</mark> mksireqfgkynd 158	
E_aci3	TVTA <mark>gdptfagplagVqLgLrvfHave</mark> pefKdsvdsavydeqig <mark>mmemv</mark> ldVdsiia <mark>e</mark> mksireqfckfnd 158	
E_aci4	TVTA <mark>gdptfagplagVqLgLrvfHave</mark> pefKdsvdaavydeqig <mark>mmemv</mark> ldVdsiia <mark>e</mark> mksireqfcqfnd 158	
C_lit	TVTAGDPTFAGPLAGVQLGLRVFHAVEPEFKGAVDSAIYDEQIGMMEMVLDVDSIIEEMKSIRADYCKFND 158	
C_sti	TVTAGDPTFAGPLAGVELGLRVYHAVEPEFKDEVDAQIFDDQVGMMEMVLNVDEIIEEMQSIRSQFCKFND 158	
C_Bot	TVTNGDPTFAGPLSNVQLGLRVYHAVEPEFKEEVNEEVYEEEIGMMEMVLEVDEIIEEMTDIRTEFCKFLD 157	
C dif	TVTAGDPTFAGPLAGVALGUSVYHVVEEPIKSLEDESVYEDOISMMEMVLEVEELEEEMSGIREEFCKE 156	
c_uii		
C_por	TVTTGDPTYAGPLAGVELGLKVYHVVEDELKAEFDEAIYEDQ-GMMEMVLDVDGIKEEMNRVRG 149	
C_por T_den	TVTTGDPTYAGPLAGVELGLKVYHVVEDELKAEFDEAIYEDQ-GMMEMVLDVDGIKEEMNRVRG 149 TVTVGDPTFAGPLAGVSLGLLCYHVAEPEIKSQIDPAVYEEQVSMMEMVMDVNAIIAEISEYRNKGCKFL- 157	

Abb. 39: Aminosäure-Alignment verschiedener GrdA-Proteine: Gezeigt ist ein Alignment der vier GrdA-Varianten aus *E. acidaminophilum* sowie der Proteine aus *C. litorale* (KREIMER and ANDREESEN 1995), *C. sticklandii* (GRÄNTZDÖRFFER *et al.*, 2001), *C. botulinum* (SEBAIHIA *et al.*, 2007), *C. difficile* (SEBAIHIA *et al.*, 2006), *Clostridium. purinolyticum* (GARCIA and STADTMAN 1991), *T. denticola* (ROTHER *et al.*, 2001), *Carboxydothermus denitrificans* (WU *et al.*, 2005). Die Sequenzen wurden mit CLUSTALW verglichen (2.8.2.). Identische Aminosäuren wurden dunkelgrau, Reste mit ähnlichen biophysikalischen Eigenschaften (unpolar / polar, ungeladen / basisch / sauer) wurden hellgrau unterlegt. Das redoxaktive-Motiv (CxxU) ist rot umrandet. Die Aminosäure-Austausche in den vier GrdA-Varianten von *E. acidaminophilum* sind durch schwarze Pfeile über den entsprechenden Aminosäuren gekennzeichnet. Ein weiteres, stark konserviertes Cystein ist durch einen roten Pfeil gekennzeichnet.

Während das aus einer Untereinheit aufgebaute Selenoprotein A gemeinsamer Bestandteil der Glycin-, Sarcosin- und Betain-Reduktase ist, sind für das spezifische Substrat-bindende Selenoprotein GrdB große Substrat-spezifische Varianten zu finden. Während das $P_{BGlycin}$ und das $P_{BSarcosin}$ trimere Untereinheitenstrukturen von 47, 25 und 22 kDa aufweisen, ist das $P_{BBetain}$ nur ein Dimer aus einer 45 und einer 48 kDa Untereinheit (MEYER *et al.*, 1995; WAGNER *et al.*, 1999) das keine substratbindende Carbonylgruppe enthält (ANDREESEN 2004). Die Unterschiede in der Untereinheitenstruktur dieser drei Proteine sind möglicherweise in der Art der Bindung der Substrate zu sehen, die im Fall von Glycin und Sarcosin über die Ausbildung einer Schiff'schen Base mit der 47 kDa Untereinheit verwirklicht wird, während Betain als tertiäre Ammoniumverbindung über ionische Wechselwirkungen an die 45 kDa Untereinheit gebunden wird.

Die Glycin-Reduktase und Sarcosin-Reduktase aus E. acidaminophilum sowie die Glycin-Reduktase und D-Prolin-Reduktase aus C. sticklandii gehören der Gruppe der pyruvoylhaltigen Reduktasen an, die die Reduktion von Aminosäuren oder Aminosäurederivate (Glycin, Sarcosin, D-Prolin) katalysieren. Die 25 und 22 kDa Untereinheiten des Selenoprotein B der Glycin- und Sarcosin-Reduktase gehen durch Spaltung der grdE bzw. grdG-Genprodukte hervor. In vivo erfolgt die autokatalytische Spaltung der Proproteine posttranslational durch Cysteinolyse an einem Cystein-Rest, der zugleich als precursor einer Pyruvoylgruppe dient. Zur Spaltung ist ein zweites Cystein essentiell, welches in einem Abstand von vier Aminosäuren (Cterminal) der Spaltstelle lokalisiert ist (BEDNARSKI et al., 2001; EVERSMANN 2004). Diese Art der Spaltung konnte ebenfalls für das Proprotein (PrdA) der D-Prolin-Reduktase aus C. sticklandii gezeigt werden (KABISCH et al., 1999). Denkbar wäre jedoch auch eine Beteiligung von GrdA an der Spaltung der Proproteine, da grdA mit Ausnahme von C. botulinum und T. denticola (s. S. 130, Abb. 38) immer zwischen grdE und grdB lokalisiert ist. GrdA könnte durch sein Redoxmotiv CxxU als reduzierendes System der Proproteinspaltung dienlich sein. Allerdings konnte in vitro keine Beteiligung dieses Proteins an der Spaltung von GrdE bzw. PrdA gezeigt werden. Dies war jedoch mit großer Wahrscheinlichkeit auf eine inkorrekte Faltung der heterolog synthetisierten Proteinvarianten zurückzuführen (BEDNARSKI et al., 2001; EVERSMANN 2004).

GrdE bzw. die aus dem Proprotein resultierenden Spaltprodukte scheinen eine stabilisierende Wirkung auf die Expression von *grdB* zu haben. Nur bei Coexpression von *grdE* und *grdB* konnte bei der heterologen Synthese von GrdB der Zerfall des Proteins verhindert bzw. stark reduziert werden (GRÖBE *et al.*, 2007; PARTHER 2003). Den aus dem Proprotein GrdE resultierenden 22- und 25 kDa-Untereinheiten der Glycin-Reduktase, aber auch denen der Sarcosin-Reduktase sowie dem GrdI der Betain-Reduktase sind somit sicherlich u. a eine Chaperon-ähnliche Funktion zuzuschreiben.

Die aus den beiden Kopien des *grdB*-Gens resultierenden Genprodukte weisen eine Identität von 98,4 % auf (SONNTAG 1998). Auch das Genprodukt des im Rahmen dieser Arbeit klonierten *grdE*₂ zeigt eine vergleichbare Identität von 96,8 % zu dem Genprodukt des von SONNTAG (1998) klonierten *grdE*₁. Die Genprodukte der Gene *grdG*₁ und *grdG*₂, welche für das Proprotein der 22 und 25 kDa-Untereinheit der Sarcosin-spezifischen Reduktase codieren, sind im Vergleich dazu nur zu 86 % identisch (s. S. 134, Abb. 40). Beide Proteine zeigen jedoch signifikante Ähnlichkeiten von 59,5 % (GrdG₁) bzw. 62,7 % (GrdG₂) zu GrdE₁, dem Proprotein der 22 und 25 kDa-Untereinheit der Glycin-spezifischen Reduktase.

GrdG1	MRLELGKIFIKDVQFGEKTTVEKGVLYVNKQEIIDLAMQDDRIKSVNVELARPGESVRIAPVKDVIEPRVKVEGSGAMFPGMTNKVKT	89
GrdG2	MRLELGKIKITDVQFGEKTKVENGTLYVNKKELVDIAMKDDRILSVNIELARPGESVRIAPVKDVIEPRVKVDGSGGMFPGMISKVKT	89
GrdG1	VGSGRTHALVGSTVLTCGKIVGFQEGVIDMSGPIAKYCPFSETNNVCIVVEPVEGLETHAYEAAARMVGLKAAEYVGKAGLDVEPDEV	176
GrdG2	VGSGRTHALVGAAVLTCGSIVGFQEGIIDMSGPAAKYTPFSETFNVCVVIEPKEGLETHAYEEAARMAGLKIGTFVGEAGRHVEPDEV	176
	Spaltstelle	
	22 kDa-Untereinheit 25 kDa-Untereinheit	t
GrdG1	VVYETKPLLEQIKEYPDLPKVAYVHMLQSQGLLHDTYYYGVDAKQFIPTFMYPTEIMDGAITSGNCVAPCDKVTTFHHLNNPVIEDLY	264
GrdG2	VVYETKPLLEQVAQYPDLPKVGYIHMLQSQGLLHDTYYYGVDAKQMVPTFMYPTEIMDGAITSGNCVAPCDKVTTFHHLNNPVIEDLY	264
GrdG1	KRHGKDLNSVGVILTNENVYLADKERCSDMVGKLVEFLGIDGVLITEEGYGNPDTDLMMNCKKCTQAGAKVVLITDEFPGRDGKSQSV	353
GrdG2	KRHGKDINFIGVILTNENVFLADKERSSDMVGKFVEFLGLDGVLITEEGYGNPDTDLMMNCKKATDAGASVVLITDEFPGRDGKSQSL	353
GrdG1 GrdG2	ADATPEADAVASCGQGNLIEHFPAMDKVIGMLDYVETMIGGYKGCINEDGSFDAELQIIIASTIANGYNKLTARFY 428 ADAVTEADALVSCGOGNLIIEFPPMDKIIGTLDYIETMIGGYEGSLRPDGSIEAELOIVIASTIANGYNKLAARTY 428	

Abb. 40: Aminosäure-Alignment der zwei GrdG-Varianten der Sarcosin-Reduktase aus *E. acidaminophilum*: Gezeigt ist ein Alignment von GrdG₁ (SONNTAG 1998) und GrdG₂ (diese Arbeit) aus *E. acidaminophilum*. Die Sequenzen wurden mit CLUSTALW verglichen (2.8.2.). Identische Aminosäuren wurden dunkelgrau, Reste mit ähnlichen biophysikalischen Eigenschaften (unpolar / polar, ungeladen / basisch / sauer) wurden hellgrau unterlegt. Der Cystein-Rest der Spaltstelle ist rot dargestellt.

Auch die beiden durch $grdF_1$ und $grdF_2$ codierten 47 kDa-Untereinheiten der Sarcosin-Reduktase unterscheiden sich stärker voneinander als die beiden Varianten der 47 kDa-Untereinheit der Glycin-Reduktase. Beide Genprodukte weisen nur eine 76,5% ige Identität zueinander auf und zeigen signifikante Homologien zu der 47 kDa-Untereinheit der Glycin-spezifischen Reduktase. Für GrdF₁ konnte eine Identität von 63,3 % und für GrdF₂ eine von 64,2 % gegenüber GrdE₂ (SONNTAG 1998) festgestellt werden. Auch zu der 48 kDa-Untereinheit der Betain-Reduktase sind signifikante Ähnlichkeiten von 47,4 % (GrdF₁) bzw. 49,4 % (GrdF₂) zu erkennen. Dies ist wahrscheinlich durch die Art des Reaktionsmechanismus aller drei Reduktasen, der in der Spaltung einer C-N-Bindung des Substrates liegt, zu begründen. Die stärkere Ähnlichkeit der Komponenten der Glycin-Reduktase und Sarcosin-Reduktase zueinander als zu den der Betain-Reduktase ist durch die unterschiedliche Struktur der Substrate und die Unterschiede in der Bindung (s. o.) dieser an die jeweiligen Enzyme zu begründen.

Das redoxaktive Motiv UxxCxxC ist sowohl in der 47 kDa-Untereinheit der Glycin- und Sarcosin-Reduktase als auch der 48 kDa-Untereinheit der Betain-Reduktase zu finden. Im Vergleich von $GrdF_1$ und $GrdF_2$ ist in diesem Bereich eine besonders hohe Ähnlichkeit beider Proteine zu erkennen (Abb. 41). Auch die Glycin- und Betain-Reduktase weisen dieses charakteristische Sequenzmotiv auf.

Abb. 41: Aminosäure-Alignment der zwei GrdF-Varianten der Sarcosin-Reduktase aus *E. acidaminophilum*: Gezeigt ist ein Alignment von $GrdF_1$ (SONNTAG 1998) und $GrdF_2$ (diese Arbeit) aus *E. acidaminophilum*. Die Sequenzen wurden mit CLUSTALW verglichen (2.8.2.). Identische Aminosäuren wurden dunkelgrau, Reste mit ähnlichen biophysikalischen Eigenschaften (unpolar / polar, ungeladen / basisch / sauer) wurden hellgrau unterlegt. Zusätzlich ist ein Sequenzausschnitt der aktiven Zentren beider GrdB-Varianten der Glycin-Reduktase und von GrdH der Betain-Reduktase dargestellt.

In den 47 bzw. 48 kDa-Untereinheiten der Glycin- und Sarcosin-Reduktase bzw. Betain-Reduktase diverser Organismen, wie z. B. *C. sticklandii* (GRÄNTZDÖRFFER *et al.*, 2001), *C. litorale* (KREIMER and ANDREESEN 1995) oder *C. difficile* (SEBAIHIA et al., 2006) ist ebenfalls dieses redoxaktive Motiv zu finden. Auffallend hierbei ist, dass innerhalb des aktiven Zentrums neben dem charakteristischen UxxCxxC-Motiv eine Vielzahl an konservierten Serinen und Threoninen zu finden ist (Abb. 41). Diesen konnte im Fall der Glycin- und der Sarcosin-Reduktase bzw. der Betain-Reduktase bislang keine Funktion zugeordnet werden (ANDREESEN 2004). Nach Bindung des jeweiligen Substrates an diese Untereinheit der entsprechenden Reduktasen kommt es zu einem nucleophilen Angriff der Selenolgruppe des im aktiven Zentrum lokalisierten Selenocysteins auf das α -C-Atom der C-N-Bindung, was zu einen an Protein B gebundenen Carboxymethylselenoether führt. Anschließen erfolgt eine Umetherung auf das Selenoprotein A, was dadurch zum Substrat für GrdC und GrdD wird. Durch Reduktionsäquivalente wie z. B. NADPH+H⁺, die u. a. aus der Oxidation von Aminosäuren stammen und über das Thioredoxin-System bereit gestellt werden, kommt es zur Reduktion des Selenid-Sulfides an Selenoprotein A zur Selenol/Thiol-Gruppe. GrdA ist hiernach zur Aufnahme eines neuen Carboxymethylselenoether bereit (ANDREESEN 2004).

GrdA und GrdF sind zwei von bisher acht verschiedenen für *E. acidaminophilum* beschriebenen Selenoproteinen (ANDREESEN *et al.*, 1999; GRÄNTZDÄRFFER *et al.*, 2003; GRÖBE *et al.*, 2007; GURSINSKY 2002; GURSINSKY *et al.*, 2008; GURSINSKY *et al.*, 2000; SÖHLING *et al.*, 2001; WAGNER *et al.*, 1999). Die Gene *grdA* und *grdF* weisen beide ein *in-frame* UGA-Codon auf, was den cotranslationalen Einbau von Selenocystein in das entsprechende Genprodukt vermittelt. Essentiell ist eine bei Prokaryoten unmittelbar
downstream des UGA-Codons lokalisierte mRNA-Sekundärstruktur. Durch Bindung des Selenocysteinspezifischen Elongationsfaktors SelB an diese Struktur kommt es zur Konformationsänderung desselben und der damit verbundenen Wechselwirkung mit dem Ribosom, wodurch die Inkorporation von Selenocystein in die Polypeptidkette ermöglicht wird. Diese als SECIS-Element (*selenocystein insertion sequence*) bezeichnete Struktur konnte *downstream* des für Selenocystein codierenden UGA-Codons der im Rahmen dieser Arbeit klonierten Gene von $grdA_3$ bzw. $grdF_2$. lokalisiert werden. Das potentielle SECIS-Element von $grdA_3$ zeigt eine 100% ige Übereinstimmung in der Sequenz und damit verbunden in der Sekundärstruktur mit den von GURSINSKY (2002) für $grdA_2$ und $grdA_1$ postulierten SECIS-Elementen. Im Vergleich dazu zeigt das SECIS-Element von $grdA_4$ einen Basenaustausch (G-A) an Position +6 (UGA = +1), was jedoch keine Änderung der Sekundärstruktur im Vergleich zu den anderen grdA-Varianten zur Folge hat. Die potentiellen SECIS-Element von $grdF_1$ (GURSINSKY 2002; SONNTAG 1998) *und* $grdF_2$ (diese Arbeit) sind in Sequenz und somit auch in der Sekundärstruktur identisch. Die aus der Sequenz resultierenden mRNA-Sekundärstrukturen der Gene $grdA_3$ bzw. $grdF_2$ sind in Abbildung 42 dargestellt.

Abb. 42: Putative mRNA-Sekundärstrukturen der Selenoproteine GrdA und GrdF: Das Selenocystein-spezifische UGA-COdon ist fett dargestellt. *grdA*_Gen des Selenoprotein A, *grdF*_Gen der 47 kDa-Untereinheit des P_{BSarcosin}.

Die mRNA-Sekundärstruktur von *grdA* zeigt im Vergleich zu *grdF* nicht die typische Struktur eines SECIS-Elementes. Diese sind durch einen apikalen *loop*, bestehend aus 3-14 Nukleotiden, welche im Abstand von 16 - 37 Nukleotide vom UGA-Codon lokalisiert ist, gekennzeichnet. Zudem ist mindestens eine der ersten beiden Basen dieser Schleife ein Guanin (ZHANG and GLADYSHEV 2005). Während im SECIS-Element von *grdF* ein Abstand von 18 Nukleotiden zwischen UGA und der apikalen Schleife zu finden ist, sind es im *grdA*-SECIS-Element nur 12. Jedoch ist die erste Base dieser Schleife auch hier ein Guanin. Die Strukturen der potentiellen SECIS-Elemente der *grdA*-Gene aus *C. difficile*, *C. sticklandii* und *C. litorale* weisen ebenfalls nicht die hier beschriebenen Charakteristika auf. GURSINSKY *et al.* (2008) postulierte jedoch für das SelB aus *E. acidaminophilum*, eine wesentlich geringere Sequenzspezifität bzw. größere Toleranz gegenüber strukturellen Variationen im Vergleich zu SelB aus *E. coli* und anderen Organismen. Veränderungen in der Sequenz der apikalen Schleife hatten kaum Auswirkungen auf die Effizienz der Selenocystein-Inkorporation (GURSINSKY 2002; GURSINSKY *et al.*, 2008).

Die Resultate von SONNTAG (1998) zeigen eine spezifische Induktion der Transkription der Glycin-, Sarcosin- und Betain-spezifischen Gensätze durch die jeweiligen Substrate Glycin, Sarcosin und Betain. So wurde u. a. postuliert, dass die Transkription des Betain-spezifischen Gensatzes durch GrdR, ein mögliches Regulatorprotein, in Gegenwart von Betain induziert wird. Die mögliche Beteiligung von GrdR an der Transkriptionsregulation wurde jedoch nicht experimentell belegt (SONNTAG 1998). Datenbankrecherchen zeigten, dass u. a. in *C. bolteae* (SONG *et al.*, 2003), ebenfalls *upstream* der Gene *grdI* und *grdH* ein offener Leserahmen lokalisiert ist, dessen abgeleitete Aminosäuresequenz signifikante Homologien zu GrdR aus *E. acidaminophilum* aufweist. Auch in den Genomen anderer Organismen, in denen die Gene *grdI* und *grdH* identifiziert werden konnten, ist ein mögliches GrdR-Analogon direkt assoziiert. Diese Erkenntnisse unterstreichen die von SONNTAG (1998) aufgestellte Hypothese. Des weiteren wurde dem Genprodukt von *orfX*, welcher *upstream* der Gene der Sarcosin-spezifischen Reduktase lokalisiert wird, eine mögliche Beteiligung an der Regulation der Transkription dieser Gene zugeschrieben, da es gemeinsam mit diesen transkribiert wird (SONNTAG 1998). Auffällig ist, dass dieses hypothetische Protein eine signifikante Ähnlichkeit von 39,7 % zu dem Genprodukt von *grdX* hat (Abb. 43), einem Gen, welches *upstream* der Gene der Glycin-Reduktase im Gencluster I von *E. acidaminophilum* (s. S. 43, Abb. 7) lokalisiert ist.

OrfX MDKLIITNNSLVYEKFNKDIET-----LYLDKSSLYQLLECVRDLVYMGHSLYTHPLSGSIKPNETPYKSVVISKSKGVLMLESVAII 83 GrdX --MEIITNNPLVKEKLLQKAERPDRVKNITFLSDCDYIGVLHNVRNLVHSGYKILTHPLYGSVKPNETPYRTIFVEPGTG-LDMDSLKLI 87 OrfX EKSMDSALRFMKNYPTPPWTENILKDFRIVDLSLIENAVSRMGNI 128

Orfx EKSMDSALRFMKNYPTPPWTENILKDFRIVDLSLIENAVSRMGNI 128 Grdx ESAIQTVETFQKNYKTPVWDEKVTDDFQVVDLDLIAHTLNGIKF- 131

Abb. 43: Aminosäure-Alignment der Genprodukte von *orfX* und *grdX* aus *E. acidaminophilum*: Gezeigt ist ein Alignment von OrfX (SONNTAG 1998) und GrdX (diese Arbeit) aus *E. acidaminophilum*. Die Sequenzen wurden mit CLUSTALW verglichen (2.8.2.). Identische Aminosäuren wurden dunkelgrau, Reste mit ähnlichen biophysikalischen Eigenschaften (unpolar / polar, ungeladen / basisch / sauer) wurden hellgrau unterlegt.

Denkbar ist, dass beide Proteine als Sensor der Substrate Glycin und Sarcosin, die beide eine sehr ähnliche Struktur aufweisen, agieren und so gezielt an Regulation der Transkription der entsprechende Gene beteiligt sind. Diese Aussage könnte dadurch bekräftigt werden, dass *grdX* immer *upstream* der Glycin-spezifischen Reduktase und des Thioredoxin-Systems, falls diese assoziiert sind, lokalisiert ist. Dies erstreckt sich nicht nur auf die Organismen der in Abbildung 38 (s. S. 130) dargestellten Gencluster, sondern ist bei allen Organismen mit Glycin-Reduktase-spezifischen Genen, deren Sequenzen in den Datenbanken gespeicherten sind, zu finden.

Die aus den jeweiligen Genen resultierenden Genprodukte zeigen signifikante Homologien zueinander. Dabei ist ein konserviertes Sequenzmotiv (I/EI/MI/VTNNxxVxE) nahe dem N-Terminus des Proteins zu erkennen. Des Weiteren ist ein konserviertes Motiv (LT/SHPLM/S/YGSVKPNETPY/FR/K) im zentralen Bereich der Proteine zu finden (Abb. 44), wobei die drei konservierten Proline auffallen, die möglicherweise als Helixbrecher agieren können. Bisher konnte diesen Sequenzmotiven jedoch keine Funktion zugeordnet werden, diese ist auch nur in den hypothetischen GrdX-Proteinen zu finden.

C_dif	MIIITNNPKVKEEVQGREVLFKDTTYIGILEASRDLIHEGYELLSHPLYGSVKPNETPYRTVILKKGNRLDINS	76
E_aci	MEIITNNPLVKEKLLQKAERPDRVKNITFLSDCDYIGVLHNVRNLVHSGYKILTHPLYGSVKPNETPYRTIFVEPGTGLDMDS	85
C_sti	MIIITNNKLVDEYYGGKNVELLEGSYQDVLYSVRDYVHKNYKLLTHPLSGSVKPNETPFKSVALEIGDKLDFNS	76
C_bot	MNNKVIMVTNNKLVSEKFNEKCQVEFILGDVNEVFNTVRDYVHKGHELLTHPLMSSVKPNETPYRTVVISKYYKNVVDMES	83
C_dif E_aci C_sti C_bot	LTLIEEAIITASKFQNNKKTPKWTESVQDDFRVIDYDIFYNTIQRMQYE 123 LKLIESAIQTVETFQKNYKTPVWDEKVTDDFQVVDLDLIAHTLNGIKF- 131 VEMIENAIYTYSKLQNDSITPNWTETVLEDFKVIDLDLIKHALKI 119 LNYIEESIHSLEKFQKSCGTPAWNDNILKDFRLIDYDLIYNALN 125	

Abb. 44: Aminosäure-Alignment verschiedener putativer GrdX-Proteine: Gezeigt ist ein Alignment von putativen GrdX-Proteinen aus *C. difficile* (SEBAIHIA *et al.*, 2006), *E. acidaminophilum* (diese Arbeit), *C. sticklandii* (GRÄNTZDÖRFFER *et al.*, 2001) und *C. botulinum* (SEBAIHIA *et al.*, 2007). Die Sequenzen wurden mit CLUSTALW verglichen (2.8.2.). Identische Aminosäuren wurden dunkelgrau, Reste mit ähnlichen biophysikalischen Eigenschaften (unpolar / polar, ungeladen / basisch / sauer) wurden hellgrau unterlegt.

Im 5'-nichttranslatierten Bereich der sechs im Genom von *E. acidaminophilum* identifizierten Gensätze der Komponenten der Glycin-, Sarcosin- und Betain-Reduktase bzw. des Gencluster III und VI (s. S. 43, Abb 7) konnten keine Sequenzen bzw. Sequenzbereiche identifiziert werden, die einen Hinweis auf eine Riboswitch, wie er für die Gene des Glycin-Decarboxylase-Operons (4.1.) diskutiert wurde, geben. Ein Glycinabhängiger Riboswitch ist teilweise auch *upstream* der Gene des Thioredoxin-Systems zu finden (MANDAL *et al.*, 2003; MANDAL *et al.*, 2004), jedoch konnten auch *upstream* von $trxB_1$ oder $trxB_2$, die unter 4.1. beschriebenen signifikanten Sequenzhomologien, nicht gefunden werden. Auffällig jedoch ist, dass *upstream* von *grdX* in allen in den Datenbanken gespeicherten Sequenzen putative rho-unabhängige Terminatorstrukturen (PLATT 1986) zu finden sind, die nicht dem *upstream* lokalisierten Gen zugeordnet werden können. Möglicherweise ist die Transkription dieser Gensätze durch einen bisher noch nicht beschriebenen Riboswitch reguliert.

4.5. Ausblick

Die im Rahmen dieser Arbeit dargelegten Ergebnisse geben einen Hinweis auf die Funktion von PrpU und dessen Beteiligung am Glycin-Metabolismus von *E. acidaminophilum*. Um einen detaillierteren Einblick in die Funktionsweise von PrpU zu erlangen, sind jedoch weiterführende Experimente notwendig, von denen im Folgenden einige vorgeschlagen werden sollen.

Zunächst ist es sehr wichtig, die Gene der Glycin-Decarboxylase in aktiver Form in *E. coli* zu exprimieren und die einzelnen Komponenten auf ihre Aktivität z. B. durch den Einsatz radioaktiver Agenzien wie 1-¹⁴C-Glycin bzw. ¹⁴C-Bicarbonat zu testen. Auch eine Coexpression von *gcvP2* und *gcvP4* mit Hilfe des Plasmides pASK-IBA53a bzw. die Kultivierung der Expressionsstämme und die sich anschließende

Reinigung der einzelnen Proteine unter anaeroben Bedingungen wären hier denkbar. Wenn dies jedoch nicht zum Erfolg führt, ist auch eine native Reinigung der einzelnen Proteine aus *E. acidaminophilum* möglich. Weiterhin ist die Optimierung der Testbedingungen zur Bestimmung der Glycin-Decarboxylase-Aktivität zum einen für die heterolog synthetisierten Genprodukte und zum anderen für die nativ gereinigten Proteine sehr wichtig. Auch der Einsatz von nativ aus *E. acidaminophilum* gereinigtem PrpU in diesen Test ist denkbar, um nur das Wildtyp-Selenoprotein und nicht ein Gemisch aus Cystein-, Selenocystein- und Tryptophan-Varianten (durch Cystein- bzw. Tryptophan-Supression) zu haben.

Durch Immunopräzipitation von PrpU aus dem Rohextrakt von E. acidaminophilum und anschließender Bestimmung der Glycin-Decarboxylase-Aktivität des verbleibenden Rohextraktes könnte eine direkte Beteiligung von PrpU an der Glycin-Oxidation gezeigt werden. Durch die Bestimmung von Proteinen, die bei diesem Versuch möglicherweise mit PrpU copräzipitieren, könnten die im Rahmen dieser Arbeit erhaltenen Ergebnisse der Interaktionsstudien (two-hybrid-System und pulldown-assay) bestätigt werden. Durch Kristallisation und Aufklärung der Struktur von PrpU sind Vergleiche mit anderen Proteinen möglich und so könnten möglicherweise Rückschlüsse auf die Funktion des bisher einzigartigen Proteins gezogen werden. Durch heterologe Expression von trxU aus T. denticola und anschließende Aktivitätstests könnte PrpU mit diesem Protein verglichen werden. Interessant wäre es zu klären, ob die Expression der Gene des Glycin-Decarboxylase-Operons tatsächlich durch einen upstream des Operons gelegenen Glycin-sensitiven Riboswitch reguliert wird. Dazu wären lacZ-Fusionen mit der den Bereich des Riboswitches umfassenden Region denkbar, um die Induktion der Transkription durch Glycin zu zeigen. So könnte auch geklärt werden, ob der potentielle Riboswitch eine stark verminderte Affinität gegenüber den Glycin-Derivaten Sarcosin und Betain, aber auch anderen Aminosäuren wie z. B. Alanin oder Aspartat zeigt. Durch in vitro Transkription der den Riboswitch umfassenden mRNA-Fragmente könnten Bindestudien mit Glycin, seinen Derivaten Sarcosin und Betain, aber auch anderen Aminosäuren wie Alanin, Aspartat, Valin u. a. durchgeführt werden, um so die spezifische Bindung von Glycin durch diesen potentiellen Riboswitch zu zeigen.

Da es nach bisherigem Stand so aussieht, dass das Genom von *E. acidaminophilum* nicht in absehbarer Zeit sequenziert wird, wäre es interessant zu schauen, ob tatsächlich alle Gene der Reduktase-Gensätze kloniert wurden. So sollte z. B. *downstream* von $grdD_2$ ein Anschlussklon gesucht werden, aber auch speziell die Bereiche *upstream* von grdX und $grdG_2$ sollten durch Anschlussklone identifiziert werden. Weiterhin sollte durch RT-PCRs und anschließende Sequenzierung der erhaltenen Produkte geklärt werden, welche Gene tatsächlich transkribiert werden, da sich nahezu alle Genkopien auf DNA-Ebene geringfügig unterscheiden. Die beiden Kopien von grdC und grdD unterscheiden sich jedoch nicht, daher wäre hier eine Aussage durch diesen Versuch nicht möglich. Entscheidend wäre es auch, zu klären ob grdX überhaupt transkribiert wird und möglicherweise polycistronisch mit weiteren Genen des Gensatzes I transkribiert wird. Durch *primerextension*-Analysen könnte man die Transkriptionsstartpunkte speziell der Gensätze I und VI identifizieren um so möglicherweise Hinweise auf die Regulation der Transkription der einzelnen Gensätze zu erhalten und zu schauen, ob diese auch hier durch einen bislang jedoch noch nicht beschriebenen Riboswitch reguliert werden.

5. Zusammenfassung

- Im Rahmen dieser Arbeit konnte das f
 ür das P4-Protein der Glycin-Decarboxylase codierende gcvP4-Gen vollst
 ändig kloniert, sequenziert und ein ca. 2400 bp umfassender Bereich upstream dieses Gens identifiziert werden. Die Gene gcvP4, gcvP2, gcvP1a und gcvP1β der Komponenten der Glycin-Decarboxylase sind gemeinsam mit den Genen thf (Formyl-THF-Synthetase) und prpU (PrpU) in einem Operon organisiert. Upstream davon sind die Gene nlpP (Zellwand-assoziierte Reduktase mit SH3-Dom
 äne) und fabG' (3-Oxoacyl-(Acyl-Carrier-Protein)-Reduktasen) lokalisiert.
- Durch *primer-extension*-Analysen konnte ein Transkriptionsstartpunkt 1120 Nukleotide *upstream* des Startcodons von *gcvP4* identifiziert werden. *Upstream* der Gene *gcvP2*, *gcvP1α* und *gcvP1β* wurden keine Transkriptionsstartpunkte gefunden. Diese Resultate bestätigen die Ergebnisse der vorangegangen Diplomarbeit, dass die Gene der Glycin-Decarboxylase polycistronisch transkribiert werden. Dies konnte ebenfalls durch RT-PCRs bestätigt werden.
- Durch Analyse des großen upstream von gcvP4 lokalisierten Bereiches konnten signifikante Sequenzhomologien zu der Konsensussequenz des Glycin-abhängigen Riboswitches gefunden werden. Diese Homologien konnten ebenfalls upstream der gcvP4-Gene von C. difficile und C. sticklandii identifiziert werden.
- 4. Durch Transkriptionsanalysen konnte gezeigt werden, dass die Gene gcvP4, gcvP2, gcvP1α und gcvP1β der Glycin-Decarboxylase sowie die Gene thf und prpU während aller Wachstumsphasen von E. acidaminophilum auf Glycin-haltigem Medium stark exprimiert wurden. Eine vergleichsweise schwache Transkription dieser Gene war während der stationären Phase zu erkennen.
- 5. Bei Kultivierung von *E. acidaminophilum* auf unterschiedlichen C-Quellen konnte eine deutliche Induktion des Glycin-Decarboxylase-Operons durch Glycin gezeigt werden. Eine schwächere Transkription dieser Gene konnte nach Kultivierung auf Betain-haltigen Medien gezeigt werden. Diese war nach Anzucht von *E. acidaminophilum* auf Sarcosin-haltigen Medien noch schwächer ausgeprägt. Die Resultate der Transkriptionsanalysen konnten durch Western-Blot-Analyse mit spezifischem Anti-PrpU-Antikörper bestätigt werden.
- 6. Durch Protein-Protein-Interaktionsstudien mit Hilfe des *lexA*-basierenden *two-hybrid*-Systems konnten Interaktionen von PrpU mit GcvP2 der Glycin-Decarboxylase, dem Thioredoxin des Thioredoxin-Systems und dem Selenoprotein GrdA der Glycin-Reduktase gezeigt werden. Das BacterioMatch[®]Two-Hybrid-System (Stratagene) erwies sich als ungeeignet.
- Mit Hilfe des *lexA*-basierenden *two-hybrid*-System konnten Interaktionen der Komponenten der Glycin-Decarboxylase untereinander identifiziert werden, d. h. der α- und β-Untereinheit des P1-Proteins, bzw.

des P2-Proteins mit diesen Untereinheiten, aber auch des P2-Proteins mit dem P4-Protein der Glycin-Decarboxylase. Des Weiteren wurden Interaktionen der Proteine GcvP2, PrpU, GrdA sowie Thioredoxin jeweils untereinander gezeigt. Es konnten auch Interaktionen der beiden Komponenten des Thioredoxin-Systems (Thioredoxin-Reduktase und Thioredoxin) gezeigt werden.

- 8. Die Gene der Komponenten der Glycin-Decarboxylase konnten heterolog in *E. coli* als *Strep*-tag[®] II-Fusionsproteine exprimiert werden. Die beiden Untereinheiten des P1-Proteins konnten nur durch gemeinsame Synthese mit Hilfe des Plasmides pASK-IBA53a als lösliche Form überproduziert werden. Das in Rahmen dieser Arbeit konstruierte Plasmid pASK-IBA53a ermöglicht die gemeinsame Synthese von zwei Proteinen, wobei das eine N-terminal und das zweite C-terminal mit dem *Strep*-tag[®] II fusioniert ist. Das P2-Protein konnte als lipoyliertes Holoenzym heterolog synthetisiert werden. Alle vier Proteine lagen nach heterologer Synthese und Affinitätschromatographie im Glycin-Decarboxylase-Test nur in der inaktiven Form vor.
- 9. Die Gene *trxB* und *trxA* sowie die Gene der Selenoproteine PrpU und GrdA konnten heterolog als *Strep-tag[®]* II-Translationsfusionen in *E. coli* exprimiert werden. Die Proteine PrpU und GrdA konnten als Cystein-Mutanten, aber dank des von GURSINSKY *et al.* (2008) entwickelten Systems auch in der Wildtyp-Form synthetisiert werden, wobei jedoch ein Protein-Gemisch aus Cystein-, Selenocystein- und Tryptophan-Varianten entstand.
- Die Stimulierung der Dihydrolipoamid-Dehydrogenase-Aktivität der Thioredoxin-Reduktase durch Thioredoxin und GrdA konnte mit den heterolog synthetisierten Proteinen gezeigt werden, eine Beteiligung von PrpU an dieser Reaktion konnte hingegen nicht detektiert werden.
- 11. Im Gensatz I konnte der zu Beginn dieser Arbeit unvollständig vorliegende offene Leserahmen einer dritten Kopie von grdA vollständig kloniert und sequenziert und upstream davon eine zweite Kopie von grdE und das Gen grdX identifiziert werden. Im Creatin-spezifischen Gensatz VI konnten jeweils eine zweite Kopie der Gene grdF und grdG für eine Sarcosin-Reduktase identifiziert werden. Downstream des im Gensatz VI gelegenen grdA₄ konnte das Gen einer DNA-Methyltransferase identifiziert werden. Im Gensatz V/II ist downstream von grdC₂ eine zweite Kopie von grdD lokalisiert. Somit enthält das Genom von *E. acidaminophilum* jeweils zwei Kopien der Gene der Glycin-Reduktase und der Sarcosin-Reduktase sowie des Thioredoxin-Systems und beider Untereinheiten des Protein C, sowie vier Kopien von grdA, dem gemeinsamen Selenoprotein aller drei Reduktasen. Dieses Protein hat mindestens eine duale Funktion: Träger des gebildeten Carboxymethyl-Intermediates und redoxaktives Protein, das mit GrdC und dem Thioredoxin und eventuell mit beiden Proproteinen GrdE und GrdG interagiert, um eine Cysteinolyse zu induzieren.

6. Literaturverzeichnis

- ADAMS, M. D., CELNIKER, S. E., HOLT, R. A. et al., (2000) The genome sequence of Drosophila melanogaster. Science 287:2185-2195
- ALTSCHUL, S. F.,GISH, W.,MILLER, W. et al., (1990) Basic local alignment search tool. J. Mol. Biol. 215:403-410
- ALTSCHUL, S. F., MADDEN, T. L., SCHÄFFER, A. A. et al., (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25:3389-3402
- ANDREESEN, J. R. (1994a) Acetate via glycine: A different form of acetogenesis. DRAKE, H. L. (ed) *Acetogenesis*. Chapman & Hall, New York, London, pp 568-629
- ANDREESEN, J. R. (1994b) Glycine metabolism in anaerobes. Antonie Van Leeuwenhoek 66:223-237
- ANDREESEN, J. R. (2004) Glycine reductase mechanism. Curr. Opin. Chem. Biol. 8:454-461
- ANDREESEN, J. R., WAGNER, M., SONNTAG, D. et al., (1999) Various functions of selenols and thiols in anaerobic gram-positive, amino acids-utilizing bacteria. *Biofactors* <u>10</u>:263-270
- ARKOWITZ, R. A., ABELES, R. H. (1990) Isolation and characterization of a covalent selenocysteine intermediate in the glycine reductase system. J. Am. Chem. Soc. <u>112</u>:870-872
- ARKOWITZ, R. A., ABELES, R. H. (1991) Mechanism of action of clostridial glycine reductase: isolation and characterization of a covalent acetyl enzyme intermediate. *Biochemistry* <u>30</u>:4090-4097
- ARNER, E. S., HOLMGREN, A. (2000) Physiological functions of thioredoxin and thioredoxin reductase. *Eur. J. Biochem.* <u>267</u>:6102-6109
- ARNER, E. S., NORDBERG, J., HOLMGREN, A. (1996) Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase. *Biochem. Biophys. Res. Commun.* 225:268-274
- BAENA, S.,FARDEAU, M. L.,WOO, T. H. et al., (1999) Phylogenetic relationships of three amino-acidutilizing anaerobes, Selenomonas acidaminovorans, 'Selenomonas acidaminophila' and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. Int. J. Syst. Bacteriol. <u>49</u>:969-974
- BAO, Q., TIAN, Y., LI, W. et al., (2002) A complete sequence of the *T. tengcongensis* genome. *Genome Res.* <u>12</u>:689-700
- BARRICK, J. E., BREAKER, R. R. (2007) The distributions, mechanisms, and structures of metabolitebinding riboswitches. *Genome Biol.* <u>8</u>:239
- BARRICK, J. E., CORBINO, K. A., WINKLER, W. C. et al., (2004) New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. *Proc. Natl. Acad. Sci. USA* <u>101</u>:6421-6426
- **BATEY, R. T., GILBERT, S. D., MONTANGE, R. K.** (2004) Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. *Nature* <u>432</u>:411-415
- BAUWE, H.,CHU, C. C.,KOPRIVA, S. et al., (1995) Structure and expression analysis of the gdcsPA and gdcsPB genes encoding two P-isoproteins of the glycine-cleavage system from Flaveria pringlei. Eur. J. Biochem. 234:116-124

- **BEDNARSKI, B., ANDREESEN, J. R., PICH, A.** (2001) *In vitro* processing of the proproteins GrdE of protein B of glycine reductase and PrdA of D-proline reductase from *Clostridium sticklandii*: formation of a pyruvoyl group from a cysteine residue. *Eur. J. Biochem.* <u>268</u>:3538-3544
- **BERRY, J. A.,OSMOND, C. B., LORIMER, G. H.** (1978) Fixation of O₂ during photorespiration: Kinetic and steady-state studies of the photorespiratory carbon oxidation cycle with intact leaves and isolated chloroplasts of C(3) plants. *Plant Physiol.* <u>62</u>:954-967
- **BERTRAM, S., GASSEN, H. G.** (1991) Gentechnische Methoden: eine Sammlung von Arbeitsanleitungen für das molekularbiologische Labor. Gustav Fischer Verlag, Jena
- BIRNBOIM, H. C., DOLY, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Res.* <u>7</u>:1513-1523
- BOURGUIGNON, J., NEUBURGER, M., DOUCE, R. (1988) Resolution and characterization of the glycinecleavage reaction in pea leaf mitochondria. Properties of the forward reaction catalysed by glycine decarboxylase and serine hydroxymethyltransferase. *Biochem. J.* <u>255</u>:169-178
- **BOURGUIGNON, J., VAUCLARE, P., MERAND, V. et al.**, (1993) Glycine decarboxylase complex from higher plants. Molecular cloning, tissue distribution and mass spectrometry analyses of the T protein. *Eur. J. Biochem.* <u>217</u>:377-386
- BRADFORD, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* <u>72</u>:248-254
- **BROCKLEHURST, S. M., PERHAM, R. N.** (1993) Prediction of the three-dimensional structures of the biotinylated domain from yeast pyruvate carboxylase and of the lipoylated H-protein from the pea leaf glycine cleavage system: a new automated method for the prediction of protein tertiary structure. *Protein Sci.* <u>2</u>:626-639
- BROOKFIELD, D. E., GREEN, J., ALI, S. T. et al., (1991) Evidence for two protein-lipoylation activities in Escherichia coli. FEBS Lett. 295:13-16
- BUSBY, S., EBRIGHT, R. H. (1999) Transcription activation by catabolite activator protein (CAP). J. Mol. Biol. 293:199-213
- CALVO, J. M., MATTHEWS, R. G. (1994) The leucine-responsive regulatory protein, a global regulator of metabolism in *Escherichia coli*. *Microbiol*. *Rev.* <u>58</u>:466-490
- COHEN-ADDAD, C., FAURE, M., NEUBURGER, M. et al., (1997) Structural studies of the glycine decarboxylase complex from pea leaf mitochondria. *Biochemie* <u>79</u>:637-643
- COHEN-ADDAD, C., PARES, S., SIEKER, L. et al., (1995) The lipoamide arm in the glycine decarboxylase complex is not freely swinging. *Nature Struct. Biol.* <u>2</u>:63-68
- COLE, S. T., BROSCH, R., PARKHILL, J. et al., (1998) Deciphering the biology of *Mycobacterium* tuberculosis from the complete genome sequence. *Nature* <u>393</u>:537-544
- COLLINS, M. D., LAWSON, P. A., WILLEMS, A. et al., (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. <u>44</u>:812-826
- CORBINO, K. A., BARRICK, J. E., LIM, J. *et al.*, (2005) Evidence for a second class of *S*-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. *Genome Biol.* <u>6</u>:70

- **CRONAN, J. E., LA PORTE, D.** (eds) (1996) Tricarboxylic acid cycle and glyoxylate bypass. In: *Escherichia coli* and *Salmonella typhimurium*: cellular and molecular biology. ASM Press, American Society for Microbiology, Washington DC
- **DECKERT, G., WARREN, P. V., GAASTERLAND, T.** *et al.*, (1998) The complete genome of the hyperthermophilic bacterium *Aquifex aeolicus*. *Nature* <u>392</u>:353-358
- **DIETRICHS, D., MEYER, M., RIETH, M.** *et al.*, (1991) Interaction of selenoprotein P_A and the thioredoxin system, components of the NADPH-dependent reduction of glycine in *Eubacterium acidaminophilum* and *Clostridium litorale*. *J. Bacteriol*. <u>173</u>:5983-5991
- **DINOPOULOS, A.,KURE, S.,CHUCK, G.** *et al.*, (2005) Glycine decarboxylase mutations: a distinctive phenotype of nonketotic hyperglycinemia in adults. *Neurology* <u>64</u>:1255-1257
- **DMITROVA, M., YOUNES-CAUET, G., OERTEL-BUCHHEIT, P. et al.,** (1998) A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in *Escherichia coli*. *Mol. Gen. Genet.* 257:205-212
- DÖRING, V., MOOTZ, H. D., NANGLE, L. A. *et al.*, (2001) Enlarging the amino acid set of *Escherichia coli* by infiltration of the valine coding pathway. *Science* 292:501-504
- **DOVE, S. L., HOCHSCHILD, A.** (1998) Conversion of the omega subunit of *Escherichia coli* RNA polymerase into a transcriptional activator or an activation target. *Genes Dev.* <u>12</u>:745-754
- **DOVE, S. L., JOUNG, J. K., HOCHSCHILD, A.** (1997) Activation of prokaryotic transcription through arbitrary protein-protein contacts. *Nature* <u>386</u>:627-630
- **DOWER, W. J., MILLER, J. F., RAGSDALE, C. W.** (1988) High efficiency transformation of *E. coli* by high voltage electroporation. *Nucleic Acids Res.* <u>16</u>:6127-6145
- ENGELMANN, S., WILUDDA, C., BURSCHEIDT, J. et al., (2008) The gene for the P-subunit of glycine decarboxylase from the C4 species *Flaveria trinervia*: Analysis of transcriptional control in transgenic *Flaveria bidentis* (C4) and *Arabidopsis thaliana* (C3). *Plant Physiol.* <u>146</u>:1773-1785
- **ENGLER-BLUM, G.,MEIER, M.,FRANK, J.** *et al.*, (1993) Reduction of background problems in nonradioactive Northern and Southern blot analyses enables higher sensitivity than ³²P-based hybridizations. *Anal. Biochem.* <u>210</u>:235-244
- **EVERSMANN, B.** (2004) Molekulare und biochemische Untersuchungen zu Komponenten der D-Prolin-Reduktase und Glycin-Reduktase von *Clostridium sticklandii*: Analyse der Pyruvyl-bildenden Proenzyme GrdE und PrdA der Glycin und D-Prolin-Reduktase. Dissertation, Martin-Luther-Universität Halle-Wittenberg; <u>http://sundoc.bibliothek.uni-halle.de/diss-online/04/04H208/index.htm</u>
- FAURE, M.,BOURGUIGNON, J.,NEUBURGER, M. et al., (2000) Interaction between the lipoamide-containing H-protein and the lipoamide dehydrogenase (L-protein) of the glycine decarboxylase multienzyme system 2. Crystal structures of H- and L-proteins. Eur. J. Biochem. <u>267</u>:2890-2898
- FEDORCSAK, I., EHRENBERG, L. (1966) Effects of diethyl pyrocarbonate and methyl methanesulfonate on nucleic acids and nucleases. *Acta Chem. Scand.* <u>20</u>:107-112
- **FENDRICH, C.,HIPPE, H., GOTTSCHALK, G.** (1990) *Clostridium halophilium* sp. nov. and *C. litorale* sp. nov., an obligate halophilic and a marine species degrading betaine in the Stickland reaction. *Arch. Microbiol.* <u>154</u>:127-132

- FENG, L.,WANG, W.,CHENG, J. et al., (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc. Natl. Acad. Sci. USA <u>104</u>:5602-5607
- FLEISCHMANN, R. D., ALLAND, D., EISEN, J. A. et al., (2002) Whole-genome comparison of *Mycobacterium* tuberculosis clinical and laboratory strains. J. Bacteriol. <u>184</u>:5479-5490
- FOMENKO, D. E., GLADYSHEV, V. N. (2003) Identity and functions of CxxC-derived motifs. *Biochemistry* 42:11214-11225
- FORCHHAMMER, K., BOESMILLER, K., BÖCK, A. (1991) The function of selenocysteine synthase and SELB in the synthesis and incorporation of selenocysteine. *Biochemie* <u>73</u>:1481-1486
- FORCHHAMMER, K.,LEINFELDER, W., BÖCK, A. (1989) Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. *Nature* <u>342</u>:453-456
- FORSEN, S., LINSE, S. (1995) Cooperativity: over the Hill. Trends Biochem. Sci. 20:495-497
- **FREUDENBERG, W., ANDREESEN, J. R.** (1989) Purification and partial characterization of the glycine decarboxylase multienzyme complex from *Eubacterium acidaminophilum*. J. Bacteriol. <u>171</u>:2209-2215
- FREUDENBERG, W., DIETRICHS, D., LEBERTZ, H. et al., (1989a) Isolation of an atypically small lipoamide dehydrogenase involved in the glycine decarboxylase complex from *Eubacterium acidaminophilum*. J. Bacteriol. <u>171</u>:1346-1354
- **FREUDENBERG, W., MAYER, F., ANDREESEN, J. R.** (1989b) Immunocytochemical localization of proteins P1, P2, P3 of glycine decarboxylase and of the selenoprotein P_A of glycine reductase, all involved in anaerobic metabolism of *Eubacterium acidaminophilum*. *Arch. Microbiol.* <u>152</u>:182-188
- **FUCHS, R. T., GRUNDY, F. J., HENKIN, T. M.** (2006) The S_(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase. *Nature Struct. Mol. Biol.* <u>13</u>:226-233
- **FUCHS, R. T., GRUNDY, F. J., HENKIN, T. M.** (2007) S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the S_{MK} box translational riboswitch RNA. *Proc. Natl. Acad. Sci. USA* <u>104</u>:4876-4880
- FUJIWARA, K., MOTOKAWA, Y. (1983) Mechanism of the glycine cleavage reaction. Steady state kinetic studies of the P-protein-catalyzed reaction. J. Biol. Chem. <u>258</u>:8156-8162
- FUJIWARA, K.,OKAMURA-IKEDA, K.,HAYASAKA, K. et al., (1991a) The primary structure of human Hprotein of the glycine cleavage system deduced by cDNA cloning. Biochem. Biophys. Res. Commun. <u>176</u>:711-716
- FUJIWARA, K.,OKAMURA-IKEDA, K., MOTOKAWA, Y. (1984) Mechanism of the glycine cleavage reaction. Further characterization of the intermediate attached to H-protein and of the reaction catalyzed by Tprotein. J. Biol. Chem. 259:10664-10668
- FUJIWARA, K.,OKAMURA-IKEDA, K., MOTOKAWA, Y. (1986) Chicken liver H-protein, a component of the glycine cleavage system. Amino acid sequence and identification of the N epsilon-lipoyllysine residue. J. Biol. Chem. <u>261</u>:8836-8841
- **FUJIWARA, K.,OKAMURA-IKEDA, K., MOTOKAWA, Y.** (1990) cDNA sequence, in vitro synthesis, and intramitochondrial lipoylation of H-protein of the glycine cleavage system. *J. Biol. Chem.* <u>265</u>:17463-17467

- **FUJIWARA, K.,OKAMURA-IKEDA, K., MOTOKAWA, Y.** (1991b) Lipoylation of H-protein of the glycine cleavage system. The effect of site-directed mutagenesis of amino acid residues around the lipoyllysine residue on the lipoate attachment. *FEBS Lett.* <u>293</u>:115-118
- **FUJIWARA, K.,OKAMURA-IKEDA, K., MOTOKAWA, Y.** (1992) Expression of mature bovine H-protein of the glycine cleavage system in *Escherichia coli* and *in vitro* lipoylation of the apoform. *J. Biol. Chem.* <u>267</u>:20011-20016
- FUJIWARA, K.,OKAMURA-IKEDA, K., MOTOKAWA, Y. (1994) Purification and characterization of lipoyl-AMP:N epsilon-lysine lipoyltransferase from bovine liver mitochondria. J. Biol. Chem. <u>269</u>:16605-16609
- FUJIWARA, K., OKAMURA-IKEDA, K., MOTOKAWA, Y. (1996) Lipoylation of acyltransferase components of alpha-ketoacid dehydrogenase complexes. J. Biol. Chem. <u>271</u>:12932-12936
- **FUJIWARA, K., OKAMURA, K., MOTOKAWA, Y.** (1979) Hydrogen carrier protein from chicken liver: purification, characterization, and role of its prosthetic group, lipoic acid, in the glycine cleavage reaction. *Arch. Biochem. Biophys.* <u>197</u>:454-462
- FUJIWARA, K., SUZUKI, M., OKUMACHI, Y. *et al.*, (1999) Molecular cloning, structural characterization and chromosomal localization of human lipoyltransferase gene. *Eur. J. Biochem.* <u>260</u>:761-767
- FUJIWARA, K., TAKEUCHI, S., OKAMURA-IKEDA, K. et al., (2001) Purification, characterization, and cDNA cloning of lipoate-activating enzyme from bovine liver. J. Biol. Chem. <u>276</u>:28819-28823
- FUJIWARA, K., TOMA, S., OKAMURA-IKEDA, K. *et al.*, (2005) Crystal structure of lipoate-protein ligase A from *Escherichia coli*. Determination of the lipoic acid-binding site. *J. Biol. Chem.* <u>280</u>:33645-33651
- GARCIA, G. E., STADTMAN, T. C. (1991) Selenoprotein A component of the glycine reductase complex from *Clostridium purinolyticum*: nucleotide sequence of the gene shows that selenocysteine is encoded by UGA. J. Bacteriol. <u>173</u>:4908
- GARIBOLDI, R. T., DRAKE, H. L. (1984) Glycine synthase of the purinolytic bacterium, *Clostridium* acidiurici. Purification of the glycine-CO₂ exchange system. J. Biol. Chem. <u>259</u>:6085-6089
- GHRIST, A. C., HEIL, G., STAUFFER, G. V. (2001) GcvR interacts with GcvA to inhibit activation of the *Escherichia coli* glycine cleavage operon. *Microbiology* <u>147</u>:2215-2221
- GHRIST, A. C., STAUFFER, G. V. (1995) Characterization of the *Escherichia coli gcvR* gene encoding a negative regulator of *gcv* expression. *J. Bacteriol*. <u>177</u>:4980-4984
- GHRIST, A. C., STAUFFER, G. V. (1998) Promoter characterization and constitutive expression of the *Escherichia coli gcvR* gene. J. Bacteriol. <u>180</u>:1803-1807
- GILBERT, S. D., RAMBO, R. P., VAN TYNE, D. et al., (2008) Structure of the SAM-II riboswitch bound to Sadenosylmethionine. Nature Struct. Mol. Biol. <u>15</u>:177-182
- GOLLNICK, P., BABITZKE, P. (2002) Transcription attenuation. Biochim. Biophys. Acta 1577:240-250
- GOSLINE, J. M., DEMONT, M. E., DENNY, M. W. (1986) The structure and proporties of spider silk. Endeavour <u>10</u>:37-43
- **GRAENTZDOERFFER, A.,RAUH, D.,PICH, A.** *et al.*, (2003) Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from *Eubacterium acidaminophilum* that are associated with components of an iron-only hydrogenase. *Arch. Microbiol.* <u>179</u>:116-130

- GRAHAM, L. A., DAVIES, P. L. (2005) Glycine-rich antifreeze proteins from snow fleas. Science 310:461
- **GRANDERATH, K.** (1988) Physiologische und enzymatische Untersuchungen zum Abbau von Aminosäuren und organischen Säuren durch *Eubacterium acidaminophilum*. Diplomarbeit, Georg-August-Universität zu Göttingen
- **GRÄNTZDÄRFFER, A., RAUH, D., PICH, A.** *et al.*, (2003) Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from *Eubacterium acidaminophilum* that are associated with components of an iron-only hydrogenase. *Arch. Microbiol.* <u>179</u>:116-130
- GRÄNTZDÖRFFER, A., PICH, A., ANDREESEN, J. R. (2001) Molecular analysis of the *grd* operon coding for genes of the glycine reductase and of the thioredoxin system from *Clostridium sticklandii*. Arch. *Microbiol*. <u>175</u>:8-18
- **GRAVES, M. C., RABINOWITZ, J. C.** (1986) *In vivo* and *in vitro* transcription of the *Clostridium pasteurianum* ferredoxin gene. Evidence for "extended" promoter elements in gram-positive organisms. *J. Biol. Chem.* <u>261</u>:11409-11415
- GRIFFITH, K. L., WOLF, R. E., JR. (2002) Measuring beta-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. *Biochem. Biophys. Res. Commun.* <u>290</u>:397-402
- GRISHIN, N. V., PHILLIPS, M. A., GOLDSMITH, E. J. (1995) Modeling of the spatial structure of eukaryotic ornithine decarboxylases. *Protein Sci.* <u>4</u>:1291-1304
- **GRÖBE, D.** (2001) Analysen zur Translation von Seleno-Proteinen aus *Eubacterium acidaminophilum* in *Escherichia coli*. Diplomarbeit, Martin-Luther-Universität Halle-Wittenberg
- **GRÖBE, T., REUTER, M., GURSINSKY, T.** *et al.*, (2007) Peroxidase activity of selenoprotein GrdB of glycine reductase and stabilisation of its integrity by components of proprotein GrdE from *Eubacterium acidaminophilum*. *Arch. Microbiol*. <u>187</u>:29-43
- **GRUNDY, F. J., HENKIN, T. M.** (1998) The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. *Mol. Microbiol.* <u>30</u>:737-749
- GRUNDY, F. J., HENKIN, T. M. (2003) The T box and S box transcription termination control systems. *Front. Biosci.* <u>8</u>:d20-31
- **GRUNDY, F. J., HENKIN, T. M.** (2006) From ribosome to riboswitch: control of gene expression in bacteria by RNA structural rearrangements. *Crit. Rev. Biochem. Mol. Biol.* <u>41</u>:329-338
- GRUNDY, F. J., LEHMAN, S. C., HENKIN, T. M. (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. *Proc. Natl. Acad. Sci. USA* <u>100</u>:12057-12062
- **GUILHAUDIS, L.,SIMORRE, J. P.,BLACKLEDGE, M.** *et al.*, (2000) Combined structural and biochemical analysis of the H-T complex in the glycine decarboxylase cycle: evidence for a destabilization mechanism of the H-protein. *Biochemistry* <u>39</u>:4259-4266
- GUILHAUDIS, L., SIMORRE, J. P., BLACKLEDGE, M. et al., (1999a) Investigation of the local structure and dynamics of the H subunit of the mitochondrial glycine decarboxylase using heteronuclear NMR spectroscopy. *Biochemistry* <u>38</u>:8334-8346
- GUILHAUDIS, L.,SIMORRE, J. P.,BOUCHAYER, E. et al., (1999b) Backbone and sequence-specific assignment of three forms of the lipoate-containing H-protein of the glycine decarboxylase complex. J. Biomol. NMR 15:185-186

- **GURSINSKY, T.** (2002) Selenoprotein-codierende mRNAs aus *Eubacterium acidaminophilum*: Erkennung durch den Selenocytein-spezifischen Elongationsfaktor SelB und Translation in *Escherichia coli*. Dissertation. Martin-Luther-Universität Halle
- GURSINSKY, T.,GRÖBE, D.,SCHIERHORN, A. et al., (2007) Factors and SECIS requirements for the synthesis of selenoproteins from a Gram-positive anaerobe in *Escherichia coli*. Appl. Environ. Microbiol.
- GURSINSKY, T.,GRÖBE, D.,SCHIERHORN, A. et al., (2008) Factors and SECIS requirements for the synthesis of selenoproteins from a Gram-positive anaerobe in *Escherichia coli*. Appl. Environ. Microbiol.
- GURSINSKY, T.,JÄGER, J.,ANDREESEN, J. R. et al., (2000) A selDABC cluster for selenocysteine incorporation in Eubacterium acidaminophilum. Arch. Microbiol. <u>174</u>:200-212
- HAGEMANN, M., VINNEMEIER, J., OBERPICHLER, I. et al., (2005) The glycine decarboxylase complex is not essential for the Cyanobacterium *Synechocystis* sp. strain PCC 6803. *Plant Biol.* <u>7</u>:15-22
- HARLEY, C. B., REYNOLDS, R. P. (1987) Analysis of *E. coli* promoter sequences. *Nucleic Acids Res.* 15:2343-2361
- HARMS, C.,LUDWIG, U., ANDREESEN, J. R. (1998a) Sarcosine reductase of *Tissierella creatinophila*: purification and characterization of its components. *Arch. Microbiol.* <u>170</u>:442-450
- HARMS, C., MEYER, M. A., ANDREESEN, J. R. (1998b) Fast purification of thioredoxin reductases and of thioredoxins with an unusual redox-active centre from anaerobic, amino-acid-utilizing bacteria. *Microbiology* <u>144</u> 793-800
- HARMS, C., SCHLEICHER, A., COLLINS, M. D. et al., (1998c) Tissierella creatinophila sp. nov., a grampositive, anaerobic, non-spore-forming, creatinine-fermenting organism. Int. J. Syst. Bacteriol. <u>48</u> 983-993
- HASSE, D., MIKKAT, S., THRUN, H. A. *et al.*, (2007) Properties of recombinant glycine decarboxylase P- and H-protein subunits from the cyanobacterium *Synechocystis* sp. strain PCC 6803. *FEBS Lett.* <u>581</u>:1297-1301
- HAYASAKA, K.,NANAO, K.,TAKADA, G. et al., (1993) Isolation and sequence determination of cDNA encoding human T-protein of the glycine cleavage system. Biochem. Biophys. Res. Commun. <u>192</u>:766-771
- HAYDEN, M. A., HUANG, I., BUSSIERE, D. E. et al., (1992) The biosynthesis of lipoic acid. Cloning of *lip*, a lipoate biosynthetic locus of *Escherichia coli*. J. Biol. Chem. <u>267</u>:9512-9515
- HEAZLEWOOD, J. L., TONTI-FILIPPINI, J. S., GOUT, A. M. et al., (2004) Experimental analysis of the *Arabidopsis* mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. *Plant Cell* <u>16</u>:241-256
- **HEIL, G., STAUFFER, L. T., STAUFFER, G. V.** (2002) Glycine binds the transcriptional accessory protein GcvR to disrupt a GcvA/GcvR interaction and allow GcvA-mediated activation of the *Escherichia coli* gcvTHP operon. *Microbiology* <u>148</u>:2203-2214
- **HELMANN, J. D.** (1995) Compilation and analysis of *Bacillus subtilis* sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. *Nucleic Acids Res.* 23:2351-2360
- **HENKIN, T. M., YANOFSKY, C.** (2002) Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. *Bioessays* <u>24</u>:700-707

- HIRAGA, K., KIKUCHI, G. (1980a) The mitochondrial glycine cleavage system. Functional association of glycine decarboxylase and aminomethyl carrier protein. *J. Biol. Chem.* <u>255</u>:11671-11676
- HIRAGA, K., KIKUCHI, G. (1980b) The mitochondrial glycine cleavage system. Purification and properties of glycine decarboxylase from chicken liver mitochondria. *J. Biol. Chem.* <u>255</u>:11664-11670
- HIRAGA, K., KIKUCHI, G. (1982) The mitochondrial glycine cleavage system: inactivation of glycine decarboxylase as a side reaction of the glycine decarboxylation in the presence of aminomethyl carrier protein. J. Biochem. <u>92</u>:1489-1498
- HIRSH, D., GOLD, L. (1971) Translation of the UGA triplet in vitro by tryptophan transfer RNA's. J. Mol. Biol. <u>58</u>:459-468
- HORMANN, K., ANDREESEN, J. R. (1989) Reductive cleavage of sarcosine and betaine by *Eubacterium* acidaminopholum via enzyme systems different from glycine reductase. Arch. Microbiol. <u>153</u>:50-59
- HUANG, X., MILLER, W. (1991) A time-efficient, linar-space local similarity algorithm. *Adv. Appl. Math.* <u>12</u>:12337-12357
- HUNGATE, R. E. (1969) A role tube method for cultivation of strict anaerobes. *Methods Microbiol.* <u>3b</u>:117-132, Academic Press, New York, London
- **IVANOVA, N.,SOROKIN, A.,ANDERSON, I.** *et al.*, (2003) Genome sequence of *Bacillus cereus* and comparative analysis with *Bacillus anthracis. Nature* <u>423</u>:87-91
- JANSONIUS, J. N. (1998) Structure, evolution and action of vitamin B₆-dependent enzymes. *Curr. Opin. Struct. Biol.* <u>8</u>:759-769
- JOURDAN, A. D., STAUFFER, G. V. (1998) Mutational analysis of the transcriptional regulator GcvA: amino acids important for activation, repression, and DNA binding. *J. Bacteriol.* <u>180</u>:4865-4871
- JOURDAN, A. D., STAUFFER, G. V. (1999a) GcvA-mediated activation of *gcvT-lacZ* expression involves the carboxy-terminal domain of the alpha subunit of RNA polymerase. *FEMS Microbiol. Lett.* <u>181</u>:307-312
- JOURDAN, A. D., STAUFFER, G. V. (1999b) Genetic analysis of the GcvA binding site in the gcvA control region. *Microbiology* <u>145</u>:2153-2162
- KABISCH, U. C., GRANTZDORFFER, A., SCHIERHORN, A. *et al.*, (1999) Identification of D-proline reductase from *Clostridium sticklandii* as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein. *J. Biol. Chem.* <u>274</u>:8445-8454
- **KIKUCHI, G.** (1973) The glycine cleavage system: composition, reaction mechanism, and physiological significance. *Mol. Cell. Biochem.* <u>1</u>:169-187
- KIKUCHI, G., HIRAGA, K. (1982) The mitochondrial glycine cleavage system. Unique features of the glycine decarboxylation. *Mol. Cell. Biochem.* <u>45</u>:137-149
- KIM, J. N., ROTH, A., BREAKER, R. R. (2007) Guanine riboswitch variants from *Mesoplasma florum* selectively recognize 2'-deoxyguanosine. *Proc. Natl. Acad. Sci. USA* <u>104</u>:16092-16097
- KIM, Y., OLIVER, D. J. (1990) Molecular cloning, transcriptional characterization, and sequencing of cDNA encoding the H-protein of the mitochondrial glycine decarboxylase complex in peas. J. Biol. Chem. <u>265</u>:848-853

- KLEIN, S. M., SAGERS, R. D. (1966a) Glycine metabolism. I. Properties of the system catalyzing the exchange of bicarbonate with the carboxyl group of glycine in *Peptococcus glycinophilus*. J. Biol. Chem. 241:197-205
- KLEIN, S. M., SAGERS, R. D. (1966b) Glycine metabolism. II. Kinetic and optical studies on the glycine decarboxylase system from *Peptococcus glycinophilus*. J. Biol. Chem. <u>241</u>:206-209
- KLEIN, S. M., SAGERS, R. D. (1967a) Glycine metabolism. III. A flavin-linked dehydrogenase associated with the glycine cleavage system in *Peptococcus glycinophilus*. J. Biol. Chem. <u>242</u>:297-300
- KLEIN, S. M., SAGERS, R. D. (1967b) Glycine metabolism. IV. Effect of borohydride reduction on the pyridoxal phosphate-containing glycine decarboxylase from *Peptococcus glycinophilus*. J. Biol. Chem. <u>242</u>:301-305
- KOCHHAR, S., PAULUS, H. (1996) Lysine-induced premature transcription termination in the *lysC* operon of *Bacillus subtilis*. *Microbiology* <u>142</u>:1635-1639
- KOCHI, H., KIKUCHI, G. (1969) Reactions of glycine synthesis and glycine cleavage catalyzed by extracts of *Arthrobacter globiformis* grown on glycine. *Arch. Biochem. Biophys.* <u>132</u>:359-369
- KOCHI, H., KIKUCHI, G. (1974) Mechanism of the reversible glycine cleavage reaction in *Arthrobacter* globiformis. I. Purification and function of protein components required for the reaction. J. Biochem. <u>75</u>:1113-1127
- KOCHI, H., KIKUCHI, G. (1976) Mechanism of reversible glycine cleavage reaction in Arthrobacter globiformis. Function of lipoic acid in the cleavage and synthesis of glycine. Arch. Biochem. Biophys. 173:71-81
- KOHLSTOCK, M. (2001) Protein C von *Eubacterium acidaminophilum*: Sequenzanalyse und Funktion der Thiole von GrdD für die Freisetzung von Acetylphosphat. Dissertation, Martin-Luther-Universität Halle-Wittenberg; <u>http://sundoc.bibliothek.uni-halle.de/diss-online/01/01H132/index.htm</u>
- KOHLSTOCK, U. M., RÜCKNAGEL, K. P., REUTER, M. et al., (2001) Cys359 of GrdD is the active-site thiol that catalyses the final step of acetyl phosphate formation by glycine reductase from *Eubacterium acidaminophilum*. Eur. J. Biochem. <u>268</u>:6417-6425
- KOPRIVA, S., BAUWE, H. (1994a) P-protein of glycine decarboxylase from *Flaveria pringlei*. *Plant Physiol*. <u>104</u>:1077-1078
- KOPRIVA, S., BAUWE, H. (1994b) T-protein of glycine decarboxylase from *Solanum tuberosum*. *Plant Physiol*. <u>104</u>:1079-1080
- KOPRIVA, S., BAUWE, H. (1995) H-protein of glycine decarboxylase is encoded by multigene families in *Flaveria pringlei* and *F. cronquistii* (Asteraceae). *Mol. Gen. Genet.* <u>249</u>:111-116
- KOPRIVA, S., CHU, C.-C., BAUWE, H. (1996a) Molecular phylogeny of *Flaveria* as deduced from the analysis of nucleotide sequences encoding the H-protein of the glycine cleavage system. *Plant, Cell and Environ.* <u>19</u>:1028-1036
- KOPRIVA, S., CHU, C. C., BAUWE, H. (1996b) H-protein of the glycine cleavage system in *Flaveria*: alternative splicing of the pre-mRNA occurs exclusively in advanced C4 species of the genus. *Plant J*. <u>10</u>:369-373
- KOPRIVA, S., COSSU, R., BAUWE, H. (1995) Alternative splicing results in two different transcripts for Hprotein of the glycine cleavage system in the C4 species *Flaveria trinervia*. *Plant J*. <u>8</u>:435-441

- **KREIMER, S., ANDREESEN, J. R.** (1995) Glycine reductase of *Clostridium litorale*. Cloning, sequencing, and molecular analysis of the *grdAB* operon that contains two in-frame TGA codons for selenium incorporation. *Eur. J. Biochem.* 234:192-199
- **KREIMER, S.,SÖHLING, B., ANDREESEN, J. R.** (1997) Two closely linked genes encoding thioredoxin and thioredoxin reductase in *Clostridium litorale*. *Arch. Microbiol*. <u>168</u>:328-337
- KUBODERA, T.,WATANABE, M.,YOSHIUCHI, K. *et al.*, (2003) Thiamine-regulated gene expression of *Aspergillus oryzae thiA* requires splicing of the intron containing a riboswitch-like domain in the 5'-UTR. *FEBS Lett.* <u>555</u>:516-520
- KUMAR, A., LINDBERG, U. (1972) Characterization of messenger ribonucleoprotein and messenger RNA from KB cells. *Proc. Natl. Acad. Sci. USA* <u>69</u>:681-685
- KUME, A.,KOYATA, H.,SAKAKIBARA, T. *et al.*, (1991) The glycine cleavage system. Molecular cloning of the chicken and human glycine decarboxylase cDNAs and some characteristics involved in the deduced protein structures. *J. Biol. Chem.* <u>266</u>:3323-3329
- KUNST, F.,OGASAWARA, N.,MOSZER, I. et al., (1997) The complete genome sequence of the gram-positive bacterium *Bacillus subtilis*. *Nature* <u>390</u>:249-256
- KURE, S., TADA, K., NARISAWA, K. (1997) Nonketotic hyperglycinemia: biochemical, molecular, and neurological aspects. *Jpn. J. Hum. Genet.* <u>42</u>:13-22
- KWON, M., STROBEL, S. A. (2008) Chemical basis of glycine riboswitch cooperativity. RNA 14:25-34
- LADANT, D., KARIMOVA, G. (2000) Genetic systems for analyzing protein-protein interactions in bacteria. *Res. Microbiol.* <u>151</u>:711-720
- LAEMMLI, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* <u>227</u>:680-685
- LECHEL, A. (1999) Klonierung, Sequenzierung und Analyse des 10 kDa Selenoproteins codierenden Gens *prpU* und seiner angrenzenden Genregion aus *Eubacterium acidaminophilum*. Diplomarbeit, Martin-Luther-Universität Halle-Wittenberg,
- LEE, H. H.,KIM, D. J.,AHN, H. J. et al., (2004) Crystal structure of T-protein of the glycine cleavage system. Cofactor binding, insights into H-protein recognition, and molecular basis for understanding nonketotic hyperglycinemia. J. Biol. Chem. <u>279</u>:50514-50523
- LEINFELDER, W., FORCHHAMMER, K., ZINONI, F. et al., (1988) Escherichia coli genes whose products are involved in selenium metabolism. J. Bacteriol. <u>170</u>:540-546
- LEMAY, J. F., PENEDO, J. C., TREMBLAY, R. et al., (2006) Folding of the adenine riboswitch. Chem. Biol. 13:857-868
- LEVY, S., SUTTON, G., NG, P. C. et al., (2007) The diploid genome sequence of an individual human. *PLoS Biol.* <u>5</u>:e254
- LIM, J., WINKLER, W. C., NAKAMURA, S. et al., (2006) Molecular-recognition characteristics of SAMbinding riboswitches. Angew. Chem. Int. Ed. Engl. <u>45</u>:964-968
- LIN, X., KAUL, S., ROUNSLEY, S. et al., (1999) Sequence and analysis of chromosome 2 of the plant *Arabidopsis thaliana*. *Nature* <u>402</u>:761-768
- LÖFFLER, G., PETRIDES, P. E. (2003) Biochemie und Pathobiochemie. Springer Verlag, Heidelberg

- LOKANATH, N. K., KUROISHI, C., OKAZAKI, N. *et al.*, (2004) Purification, crystallization and preliminary crystallographic analysis of the glycine-cleavage system component T-protein from *Pyrococcus horikoshii* OT3. *Acta Crystallogr. D. Biol. Crystallogr.* <u>60</u>:1450-1452
- LOKANATH, N. K., KUROISHI, C., OKAZAKI, N. et al., (2005) Crystal structure of a component of glycine cleavage system: T-protein from *Pyrococcus horikoshii* OT3 at 1.5 Å resolution. *Proteins* <u>58</u>:769-773
- LU, J., NOGI, Y., TAKAMI, H. (2001) *Oceanobacillus iheyensis* gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. *FEMS Microbiol. Lett.* 205:291-297
- LÜBBERS, M., ANDREESEN, J. R. (1993) Components of glycine reductase from *Eubacterium acidaminophilum*. Cloning, sequencing and identification of the genes for thioredoxin reductase, thioredoxin and selenoprotein P_A. *Eur. J. Biochem.* <u>217</u>:791-798
- MACHEREL, D., BOURGUIGNON, J., DOUCE, R. (1992) Cloning of the gene (*gdcH*) encoding H-protein, a component of the glycine decarboxylase complex of pea (*Pisum sativum L.*). *Biochem. J.* 286:627-630
- MACHEREL, D., BOURGUIGNON, J., FOREST, E. et al., (1996) Expression, lipoylation and structure determination of recombinant pea H-protein in *Escherichia coli*. Eur. J. Biochem. 236:27-33
- MACHEREL, D., LEBRUN, M., GAGNON, J. et al., (1990) cDNA cloning, primary structure and gene expression for H-protein, a component of the glycine-cleavage system (glycine decarboxylase) of pea (*Pisum sativum*) leaf mitochondria. *Biochem. J.* <u>268</u>:783-789
- MANDAL, M., BOESE, B., BARRICK, J. E. et al., (2003) Riboswitches control fundamental biochemical pathways in *Bacillus subtilis* and other bacteria. *Cell* <u>113</u>:577-586
- MANDAL, M., BREAKER, R. R. (2004a) Adenine riboswitches and gene activation by disruption of a transcription terminator. *Nature Struct. Mol. Biol.* <u>11</u>:29-35
- MANDAL, M., BREAKER, R. R. (2004b) Gene regulation by riboswitches. *Nature Rev. Mol. Cell. Biol.* <u>5</u>:451-463
- MANDAL, M., LEE, M., BARRICK, J. E. et al., (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. *Science* <u>306</u>:275-279
- MAREK, L. F., STEWART, C. R. (1983) Photorespiratory glycine metabolism in corn leaf discs. *Plant Physiol.* <u>73</u>:118-120
- MARTIN, W., RUJAN, T., RICHLY, E. *et al.*, (2002) Evolutionary analysis of *Arabidopsis*, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. *Proc. Natl. Acad. Sci. USA* <u>99</u>:12246-12251
- MARUSYK, R., SERGEANT, A. (1980) A simple method for dialysis of small-volume samples. Anal. Biochem. <u>105</u>:403-404
- MARZI, S., MYASNIKOV, A. G., SERGANOV, A. *et al.*, (2007) Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. *Cell* <u>130</u>:1019-1031
- MEHTA, P. K., CHRISTEN, P. (2000) The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes. *Adv. Enzymol. Relat. Areas Mol. Biol.* <u>74</u>:129-184
- MEYER, M., DIETRICHS, D., SCHMIDT, B. et al., (1991) Thioredoxin elicits a new dihydrolipoamide dehydrogenase activity by interaction with the electron-transferring flavoprotein in *Clostridium litorale* and *Eubacterium acidaminophilum*. J. Bacteriol. <u>173</u>:1509-1513

- MEYER, M., GRANDERATH, K., ANDREESEN, J. R. (1995) Purification and characterization of protein P_B of betaine reductase and its relationship to the corresponding proteins glycine reductase and sarcosine reductase from *Eubacterium acidaminophilum*. *Eur. J. Biochem.* <u>234</u>:184-191
- MILLER, J. H. (1992) A short course in bacterial genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
- MILLER, J. R., BUSBY, R. W., JORDAN, S. W. et al., (2000) Escherichia coli LipA is a lipoyl synthase: in vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Biochemistry <u>39</u>:15166-15178
- MIRANDA-RIOS, J. (2007) The THI-box riboswitch, or how RNA binds thiamin pyrophosphate. *Structure* 15:259-265
- MORRIS, T. W., REED, K. E., CRONAN, J. E., JR. (1994) Identification of the gene encoding lipoate-protein ligase A of *Escherichia coli*. Molecular cloning and characterization of the *lplA* gene and gene product. *J. Biol. Chem.* <u>269</u>:16091-16100
- MORRIS, T. W., REED, K. E., CRONAN, J. E., JR. (1995) Lipoic acid metabolism in *Escherichia coli*: the *lplA* and *lipB* genes define redundant pathways for ligation of lipoyl groups to apoprotein. *J. Bacteriol*. <u>177</u>:1-10
- MOTOKAWA, Y., KIKUCHI, G. (1969) Glycine metabolism by rat liver mitochondria. IV. Isolation and characterization of hydrogen carrier protein, an essential factor for glycine metabolism. *Arch. Biochem. Biophys.* <u>135</u>:402-409
- MOTOKAWA, Y., KIKUCHI, G. (1972) Isolation and partial characterization of the components of the reversible glycine cleavage system of rat liver mitochondria. *J. Biochem.* <u>72</u>:1281-1284
- **MOTOKAWA, Y., KIKUCHI, G.** (1974) Glycine metabolism by rat liver mitochondria. Isolation and some properties of the protein-bound intermediate of the reversible glycine cleavage reaction. *Arch. Biochem. Biophys.* <u>164</u>:634-640
- MUDD, S. H., CANTONI, G. L. (1964) Biological transmethylation, methyl-group neogenesis depent upon tetrafolic acid. *Comp. biochem.* <u>15</u>:1-47
- **NAHVI, A.,BARRICK, J. E., BREAKER, R. R.** (2004) Coenzyme B₁₂ riboswitches are widespread genetic control elements in prokaryotes. *Nucleic Acids Res.* <u>32</u>:143-150
- NAHVI, A., SUDARSAN, N., EBERT, M. S. et al., (2002) Genetic control by a metabolite binding mRNA. *Chem. Biol.* <u>9</u>:1043
- NAKAI, T., ISHIJIMA, J., MASUI, R. *et al.*, (2003a) Structure of *Thermus thermophilus* HB8 H-protein of the glycine-cleavage system, resolved by a six-dimensional molecular-replacement method. *Acta Crystallogr. D. Biol. Crystallogr.* <u>59</u>:1610-1618
- NAKAI, T.,NAKAGAWA, N.,MAOKA, N. *et al.*, (2003b) Coexpression, purification, crystallization and preliminary X-ray characterization of glycine decarboxylase (P-protein) of the glycine-cleavage system from *Thermus thermophilus* HB8. *Acta Crystallogr. D. Biol. Crystallogr.* <u>59</u>:554-557
- NAKAI, T., NAKAGAWA, N., MAOKA, N. et al., (2005) Structure of P-protein of the glycine cleavage system: implications for nonketotic hyperglycinemia. Embo J. 24:1523-1536
- **NEIDHARDT, F. D.** (ed) (1996) *Escherichia coli* and *Salmonella typhimurium*: cellular and molecular biology. ASM Press, Waschington, DC

- NELSON, K. E., EISEN, J. A., FRASER, C. M. (2001) Genome of *Thermotoga maritima* MSB8. *Methods Enzymol.* <u>330</u>:169-180
- NEUBURGER, M., BOURGUIGNON, J., DOUCE, R. (1989) Isolation of a large complex from the matrix of pea leaf mitochondria involved in the rapid transformation of glycine into serine. *FEBS Lett.* 207:18-22
- **NEUBURGER, M., JOURDAIN, A., DOUCE, R.** (1991) Isolation of H-protein loaded with methylamine as a transient species in glycine decarboxylase reactions. *Biochem. J.* <u>278</u>765-769
- **NEUBURGER, M., POLIDORI, A. M., PIETRE, E.** *et al.*, (2000) Interaction between the lipoamide-containing H-protein and the lipoamide dehydrogenase (L-protein) of the glycine decarboxylase multienzyme system. 1. Biochemical studies. *Eur. J. Biochem.* <u>267</u>:2882-2889
- NISHIYA, Y., TODA, A., IMANAKA, T. (1998) Gene cluster for creatinine degradation in Arthrobacter sp. TE1826. Mol. Gene. <u>257</u>:581-586
- NOESKE, J.,BUCK, J.,FURTIG, B. et al., (2007) Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Nucleic Acids Res. 35:572-583
- NOESKE, J.,RICHTER, C.,GRUNDL, M. A. *et al.*, (2005) An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. *Proc. Natl. Acad. Sci. USA* <u>102</u>:1372-1377
- NOESKE, J., RICHTER, C., STIRNAL, E. *et al.*, (2006) Phosphate-group recognition by the aptamer domain of the thiamine pyrophosphate sensing riboswitch. *Chembiochem*. <u>7</u>:1451-1456
- OKAMURA-IKEDA, K., FUJIWARA, K., MOTOKAWA, Y. (1982) Purification and characterization of chicken liver T-protein, a component of the glycine cleavage system. J. Biol. Chem. <u>257</u>:135-139
- OKAMURA-IKEDA, K., FUJIWARA, K., MOTOKAWA, Y. (1999a) The amino-terminal region of the *Escherichia coli* T-protein of the glycine cleavage system is essential for proper association with Hprotein. *Eur. J. Biochem.* <u>264</u>:446-453
- OKAMURA-IKEDA, K., FUJIWARA, K., MOTOKAWA, Y. (1999b) Identification of the folate binding sites on the *Escherichia coli* T-protein of the glycine cleavage system. J. Biol. Chem. <u>274</u>:17471-17477
- OKAMURA-IKEDA, K., FUJIWARA, K., YAMAMOTO, M. et al., (1991) Isolation and sequence determination of cDNA encoding T-protein of the glycine cleavage system. J. Biol. Chem. <u>266</u>:4917-4921
- **OKAMURA-IKEDA, K.,HOSAKA, H.,YOSHIMURA, M.** *et al.*, (2005) Crystal structure of human T-protein of glycine cleavage system at 2.0 Å resolution and its implication for understanding non-ketotic hyperglycinemia. *J. Mol. Biol.* <u>351</u>:1146-1159
- **OKAMURA-IKEDA, K.,KAMEOKA, N.,FUJIWARA, K.** *et al.*, (2003) Probing the H-protein-induced conformational change and the function of the N-terminal region of *Escherichia coli* T-protein of the glycine cleavage system by limited proteolysis. *J. Biol. Chem.* <u>278</u>:10067-10072
- OKAMURA-IKEDA, K.,OHMURA, Y.,FUJIWARA, K. et al., (1993) Cloning and nucleotide sequence of the *gcv* operon encoding the *Escherichia coli* glycine-cleavage system. *Eur. J. Biochem.* <u>216</u>:539-548
- OLIVER, D. J., NEUBURGER, M., BOURGUIGNON, J. et al., (1990) Interaction between the component enzymes of the glycine decarboxylase multienzyme complex. *Plant Physiol*. <u>94</u>:833-839
- OLIVER, D. J., RAMAN, R. (1995) Glycine decarboxylase: protein chemistry and molecular biology of the major protein in leaf mitochondria. J. Bioenerg. Biomembr. 27:407-414

- **OPPERMANN, F. B., SCHMIDT, B., STEINBÜCHEL, A.** (1991) Purification and characterization of acetoin:2,6dichlorophenolindophenol oxidoreductase, dihydrolipoamide dehydrogenase, and dihydrolipoamide acetyltransferase of the *Pelobacter carbinolicus* acetoin dehydrogenase enzyme system. *J. Bacteriol.* <u>173</u>:757-767
- ORUN, O.,KOCH, M. H.,KAN, B. et al., (2003) Structural characterization of T-protein of the *Escherichia* coli glycine cleavage system by X-ray small angle scattering. Cell. Mol. Biol. <u>49</u>:453-459
- PARES, S.,COHEN-ADDAD, C.,SIEKER, L. et al., (1994) X-ray structure determination at 2.6-Å resolution of a lipoate-containing protein: the H-protein of the glycine decarboxylase complex from pea leaves. Proc. Natl. Acad. Sci. USA <u>91</u>:4850-4853
- PARES, S.,COHEN-ADDAD, C.,SIEKER, L. C. et al., (1995) Refined structures at 2 and 2.2 Å resolution of two forms of the H-protein, a lipoamide-containing protein of the glycine decarboxylase complex. Acta Crystallogr. D. Biol. Crystallogr. <u>51</u>:1041-1051
- PARKHILL, J., ACHTMAN, M., JAMES, K. D. et al., (2000) Complete DNA sequence of a serogroup A strain of *Neisseria meningitidis* Z2491. *Nature* <u>404</u>:502-506
- PARKHILL, J., WREN, B. W., THOMSON, N. R. et al., (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature <u>413</u>:523-527
- **PARTHER, T.** (2003) Die Peroxidase-Aktivität Selenocystein-haltiger Proteine des strikt anaeroben Bakteriums *Eubacterium acidaminophilum*. Dissertation, Martin-Luther-Universität Halle-Wittenberg; <u>http://sundoc.bibliothek.uni-halle.de/diss-online/03/03H127/index.htm</u>
- PASTER, B. J., RUSSELL, J. B., YANG, C. M. et al., (1993) Phylogeny of the ammonia-producing ruminal bacteria *Peptostreptococcus anaerobius*, *Clostridium sticklandii*, and *Clostridium aminophilum* sp. nov. *Int. J. Syst. Bacteriol.* <u>43</u>:107-110
- PEARSON, W. R., LIPMAN, D. J. (1988) Improved tools for biological sequence comparison. *Proc. Natl. Acad. Sci. USA* <u>85</u>:2444-2448
- **PETERSON, R. B.** (1982) Regulation of glycine decarboxylase and L-serine hydroxymethyltransferase activities by glyoxylate in tobacco leaf mitochondrial preparations. *Plant Physiol.* <u>70</u>:61-66
- PHAN, T. T., SCHUMANN, W. (2007) Development of a glycine-inducible expression system for *Bacillus* subtilis. J. Biotechnol. <u>128</u>:486-499
- PLATT, T. (1986) Transcription termination and the regulation of gene expression. Annu. Rev. Biochem. <u>55</u>:339-372
- **POEHLEIN, A.** (2003) Klonierung und Analyse der Gene der Glycin-Decaboxylase aus *Eubacterium* acidaminophilum. Diplomarbeit, Martin-Luther-Universität Halle-Wittenberg
- **REGULSKI, E. E., MOY, R. H., WEINBERG, Z. et al.**, (2008) A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. *Mol. Microbiol.* <u>68</u>:918-932
- **REY, M. W., RAMAIYA, P., NELSON, B. A.** *et al.*, (2004) Complete genome sequence of the industrial bacterium *Bacillus licheniformis* and comparisons with closely related *Bacillus* species. *Genome Biol.* <u>5</u>:R77
- RILEY, J., BUTLER, R., OGILVIE, D. et al., (1990) A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. *Nucleic Acids Res.* <u>18</u>:2887-2890

- ROBINSON, J. R., KLEIN, S. M., SAGERS, R. D. (1973) Glycine metabolism. Lipoic acid as the prosthetic group in the electron transfer protein P2 from *Peptococcus glycinophilus*. J. Biol. Chem. <u>248</u>:5319-5323
- ROCHE, O., HINSEN, K., FIELD, M. J. (1999) Theoretical study of the conformation of the H-protein lipoamide arm as a function of its terminal group. *Proteins* <u>36</u>:228-237
- RODIONOV, D. A., VITRESCHAK, A. G., MIRONOV, A. A. et al., (2003) Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? *Nucleic Acids Res.* <u>31</u>:6748-6757
- RODIONOV, D. A., VITRESCHAK, A. G., MIRONOV, A. A. et al., (2004) Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. *Nucleic Acids Res.* 32:3340-3353
- **ROLFES, R. J., ZALKIN, H.** (1988) *Escherichia coli* gene *purR* encoding a repressor protein for purine nucleotide synthesis. Cloning, nucleotide sequence, and interaction with the *purF* operator. *J. Biol. Chem.* <u>263</u>:19653-19661
- ROTHER, M.,BÖCK, A., WYSS, C. (2001) Selenium-dependent growth of *Treponema denticola*: evidence for a clostridial-type glycine reductase. *Arch. Microbiol.* <u>177</u>:113-116
- **RUDOLF, J.** (2003) Klonierung einer weiteren Kopie des Selenoprotein A aus *Eubacterium acidaminophilum* und vergleichende 2-D Elektrophorese Stress-induzierter cytoplasmatischer Proteine verschiedener Clostridien. Diplomarbeit, Martin-Luther-Universität Halle-Wittenberg
- SAITO, H., MIURA, K. I. (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. *Biochim. Biophys. Acta* <u>72</u>:619-629
- SALCEDO, E., SIMS, P. F., HYDE, J. E. (2005) A glycine-cleavage complex as part of the folate one-carbon metabolism of *Plasmodium falciparum*. *Trends Parasitol*. <u>21</u>:406-411
- SAMBROOK, J., FRITSCHE, E. F., MANIATIS, T. (1989) Molecular cloning: a laboratory manual. MOLAN, N. (ed). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
- SCHÄGGER, H. (2006) Tricine-SDS-PAGE. Nature Protoc. 1:16-22
- SCHELL, M. A. (1993) Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. <u>47</u>:597-626
- SCHNEIDER, G.,KACK, H., LINDQVIST, Y. (2000) The manifold of vitamin B₆ dependent enzymes. *Structure* <u>8</u>:R1-6
- SCHRÄDER, T., ANDREESEN, J. R. (1992) Purification and characterization of protein P_C, a component of glycine reductase from *Eubacterium acidaminophilum*. *Eur. J. Biochem*. <u>206</u>:79-85
- SEBAIHIA, M., PECK, M. W., MINTON, N. P. et al., (2007) Genome sequence of a proteolytic (Group I) *Clostridium botulinum* strain Hall A and comparative analysis of the clostridial genomes. *Genome Res.* <u>17</u>:1082-1092
- SEBAIHIA, M., WREN, B. W., MULLANY, P. et al., (2006) The multidrug-resistant human pathogen *Clostridium difficile* has a highly mobile, mosaic genome. *Nature Genet*. <u>38</u>:779-786
- SESHADRI, R., MYERS, G. S., TETTELIN, H. et al., (2004) Comparison of the genome of the oral pathogen *Treponema denticola* with other spirochete genomes. *Proc. Natl. Acad. Sci. USA* <u>101</u>:5646-5651
- SKERRA, A. (1994) Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in *Escherichia coli*. *Gene* <u>151</u>:131-135

- SÖHLING, B., PARTHER, T., RÜCKNAGEL, K. P. et al., (2001) A selenocysteine-containing peroxiredoxin from the strictly anaerobic organism *Eubacterium acidaminophilum*. *Biol. Chem.* <u>382</u>:979-986
- SONG, Y.,LIU, C.,MOLITORIS, D. R. et al., (2003) Clostridium bolteae sp. nov., isolated from human sources. Syst. Appl. Microbiol. 26:84-89
- SONNTAG, D. (1998) Selenoprotein-codierende Gene in *Eubacterium acidaminophilum*: Organisation und Transkription der Glycin-, Sarkosin- und Betain-Redukatse-spezifischen Gensätze. Dissertation, Martin-Luther-Universität Halle-Wittenberg
- SOUTHERN, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. <u>98</u>:503-517
- STADTMAN, T. C. (1966) Glycine reduction to acetate and ammonia: identification of ferredoxin and another low molecular weight acidic protein as components of the reductase system. Arch. Biochem. Biophys. <u>113</u>:9-19
- STADTMAN, T. C. (1978) Selenium-dependent clostridial glycine reductase. Methods Enzymol. 53:373-382
- STAUFFER, G. V., STAUFFER, L. T., PLAMANN, M. D. (1989) The Salmonella typhimurium glycine cleavage enzyme system. *Mol. Gen. Genet.* 220:154-156
- STAUFFER, L. T., FOGARTY, S. J., STAUFFER, G. V. (1994) Characterization of the *Escherichia coli gcv* operon. *Gene* <u>142</u>:17-22
- STAUFFER, L. T., GHRIST, A., STAUFFER, G. V. (1993) The *Escherichia coli gcvT* gene encoding the T-protein of the glycine cleavage enzyme system. *DNA Seq.* <u>3</u>:339-346
- STAUFFER, L. T., STAUFFER, G. V. (1994) Characterization of the *gcv* control region from *Escherichia coli*. *J. Bacteriol*. <u>176</u>:6159-6164
- STAUFFER, L. T., STAUFFER, G. V. (1998a) Roles for GcvA-binding sites 3 and 2 and the Lrp-binding region in *gcvT::lacZ* expression in *Escherichia coli*. *Microbiology* <u>144</u>:2865-2872
- **STAUFFER, L. T., STAUFFER, G. V.** (1998b) Spacing and orientation requirements of GcvA-binding sites 3 and 2 and the Lrp-binding region for *gcvT::lacZ* expression in *Escherichia coli*. *Microbiology* <u>144</u> 1417-1422
- **STAUFFER, L. T., STAUFFER, G. V.** (1999) Role for the leucine-responsive regulatory protein (Lrp) as a structural protein in regulating the *Escherichia coli gcvTHP* operon. *Microbiology* <u>145</u>:569-576
- STAUFFER, L. T., STAUFFER, G. V. (2005) GcvA interacts with both the alpha and sigma subunits of RNA polymerase to activate the *Escherichia coli gcvB* gene and the *gcvTHP* operon. *FEMS Microbiol. Lett.* 242:333-338
- STEIERT, P. S., STAUFFER, L. T., STAUFFER, G. V. (1990) The *lpd* gene product functions as the L protein in the *Escherichia coli* glycine cleavage enzyme system. *J. Bacteriol.* <u>172</u>:6142-6144
- **STEINER, D.** (2004) Osmotoleranz bei anaeroben Bakterien des *Clostridium*-Clusters XI. Diplomarbeit, Martin-Luther-Universität Halle-Wittenberg
- STICKLAND, L. H. (1934) Studies in the metabolism of the strict anaerobes (genus *Clostridium*): The chemical reactions by which *Cl. sporogenes* obtains its energy. *Biochem. J.* <u>28</u>:1746-1759
- STRYER, L. (1996) Biochemie. Spektrum Akademischer Verlag, Heidelberg

- SUDARSAN, N., HAMMOND, M. C., BLOCK, K. F. et al., (2006) Tandem riboswitch architectures exhibit complex gene control functions. *Science* <u>314</u>:300-304
- SUDARSAN, N., WICKISER, J. K., NAKAMURA, S. et al., (2003) An mRNA structure in bacteria that controls gene expression by binding lysine. *Genes Dev.* <u>17</u>:2688-2697
- **TADA, K.** (1993) Molecular lesion and pathophysiology of hyperglycinemia: glycine cleavage system, physiology and pathology. *Seikagaku* <u>65</u>:248-259
- TADA, K., NARISAWA, K., YOSHIDA, T. et al., (1969) Hyperglycinemia: a defect in glycine cleavage reaction. *Tohoku J. Exp. Med.* <u>98</u>:289-296
- **TAKAMI, H.,NAKASONE, K.,TAKAKI, Y. et al.**, (2000) Complete genome sequence of the alkaliphilic bacterium *Bacillus halodurans* and genomic sequence comparison with *Bacillus subtilis*. *Nucleic Acids Res.* <u>28</u>:4317-4331
- **THEOLOGIS, A., ECKER, J. R., PALM, C. J.** *et al.*, (2000) Sequence and analysis of chromosome 1 of the plant *Arabidopsis thaliana*. *Nature* <u>408</u>:816-820
- **THOMPSON, J. D., GIBSON, T. J., PLEWNIAK, F. et al.**, (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res.* <u>25</u>:4876-4882
- TINSLEY, R. A., FURCHAK, J. R., WALTER, N. G. (2007) Trans-acting *glmS* catalytic riboswitch: locked and loaded. *RNA* <u>13</u>:468-477
- **TOONE, J. R., APPLEGARTH, D. A., COULTER-MACKIE, M. B.** *et al.*, (2001) Recurrent mutations in P- and T-proteins of the glycine cleavage complex and a novel T-protein mutation (N145I): a strategy for the molecular investigation of patients with nonketotic hyperglycinemia (NKH). *Mol. Genet. Metab.* <u>72</u>:322-325
- **TOONE, J. R., APPLEGARTH, D. A., KURE, S.** *et al.*, (2002) Novel mutations in the P-protein (glycine decarboxylase) gene in patients with glycine encephalopathy (non-ketotic hyperglycinemia). *Mol. Genet. Metab.* <u>76</u>:243-249
- **TURNER, S. R.,HELLENS, R.,IRELAND, R.** *et al.*, (1993) The organisation and expression of the genes encoding the mitochondrial glycine decarboxylase complex and serine hydroxymethyltransferase in pea (*Pisum sativum*). *Mol. Gen. Genet.* 236:402-408
- **TURNER, S. R., IRELAND, R., RAWSTHORNE, S.** (1992) Cloning and characterization of the P subunit of glycine decarboxylase from pea (*Pisum sativum*). J. Biol. Chem. <u>267</u>:5355-5360
- VANDEN BOOM, T. J., REED, K. E., CRONAN, J. E., JR. (1991) Lipoic acid metabolism in *Escherichia coli*: isolation of null mutants defective in lipoic acid biosynthesis, molecular cloning and characterization of the *E. coli lip* locus, and identification of the lipoylated protein of the glycine cleavage system. *J. Bacteriol.* <u>173</u>:6411-6420
- VITRESCHAK, A. G., RODIONOV, D. A., MIRONOV, A. A. et al., (2002) Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. *Nucleic Acids Res.* <u>30</u>:3141-3151
- VITRESCHAK, A. G., RODIONOV, D. A., MIRONOV, A. A. et al., (2004) Riboswitches: the oldest mechanism for the regulation of gene expression? *Trends Genet*. 20:44-50
- VOSKUIL, M. I., VOEPEL, K., CHAMBLISS, G. H. (1995) The -16 region, a vital sequence for the utilization of a promoter in *Bacillus subtilis* and *Escherichia coli*. *Mol. Microbiol*. <u>17</u>:271-279

- WAGNER, M. (1997) Untersuchungen zu Proteinkomponenten der substratspezifischen Untereinheit der Glycin-, Sarkosin- und Betain-Reduktase aus *Eubacterium acidaminophilum*. Dissertation, Martin-Luther-Universität Halle-Wittenberg
- WAGNER, M.,SONNTAG, D.,GRIMM, R. et al., (1999) Substrate-specific selenoprotein B of glycine reductase from *Eubacterium acidaminophilum*. Biochemical and molecular analysis. *Eur. J. Biochem.* 260:38-49
- WALKER, J. L., OLIVER, D. J. (1986) Glycine decarboxylase multienzyme complex. Purification and partial characterization from pea leaf mitochondria. *J. Biol. Chem.* <u>261</u>:2214-2221
- WEI, W., MCCUSKER, J. H., HYMAN, R. W. et al., (2007) Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc. Natl. Acad. Sci. USA <u>104</u>:12825-12830
- WEINBERG, Z., BARRICK, J. E., YAO, Z. et al., (2007) Identification of 22 candidate structured RNAs in bacteria using the CM finder comparative genomics pipeline. *Nucleic Acids Res.* <u>35</u>:4809-4819
- WICKISER, J. K., CHEAH, M. T., BREAKER, R. R. et al., (2005a) The kinetics of ligand binding by an adenine-sensing riboswitch. *Biochemistry* <u>44</u>:13404-13414
- WICKISER, J. K., WINKLER, W. C., BREAKER, R. R. et al., (2005b) The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. *Mol. Cell* <u>18</u>:49-60
- WILSON, R. L., STAUFFER, G. V. (1994) DNA sequence and characterization of GcvA, a LysR family regulatory protein for the *Escherichia coli* glycine cleavage enzyme system. *J. Bacteriol.* <u>176</u>:2862-2868
- WILSON, R. L., STAUFFER, L. T., STAUFFER, G. V. (1993a) Roles of the GcvA and PurR proteins in negative regulation of the *Escherichia coli* glycine cleavage enzyme system. J. Bacteriol. <u>175</u>:5129-5134
- WILSON, R. L., STEIERT, P. S., STAUFFER, G. V. (1993b) Positive regulation of the *Escherichia coli* glycine cleavage enzyme system. J. Bacteriol. <u>175</u>:902-904
- WILSON, R. L., URBANOWSKI, M. L., STAUFFER, G. V. (1995) DNA binding sites of the LysR-type regulator GcvA in the gcv and gcvA control regions of Escherichia coli. J. Bacteriol. <u>177</u>:4940-4946
- WINKLER, W., NAHVI, A., BREAKER, R. R. (2002a) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. *Nature* <u>419</u>:952-956
- WINKLER, W. C. (2005) Riboswitches and the role of noncoding RNAs in bacterial metabolic control. *Curr. Opin. Chem. Biol.* <u>9</u>:594-602
- WINKLER, W. C., BREAKER, R. R. (2003) Genetic control by metabolite-binding riboswitches. *Chembiochem.* <u>4</u>:1024-1032
- WINKLER, W. C., BREAKER, R. R. (2005) Regulation of bacterial gene expression by riboswitches. *Annu. Rev. Microbiol.* <u>59</u>:487-517
- WINKLER, W. C., COHEN-CHALAMISH, S., BREAKER, R. R. (2002b) An mRNA structure that controls gene expression by binding FMN. *Proc. Natl. Acad. Sci. USA* <u>99</u>:15908-15913
- WINKLER, W. C., NAHVI, A., ROTH, A. et al., (2004) Control of gene expression by a natural metaboliteresponsive ribozyme. *Nature* <u>428</u>:281-286
- WINKLER, W. C., NAHVI, A., SUDARSAN, N. et al., (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. *Nature Struct. Biol.* <u>10</u>:701-707

- WONDERLING, L. D., STAUFFER, G. V. (1999) The cyclic AMP receptor protein is dependent on GcvA for regulation of the *gcv* operon. J. Bacteriol. <u>181</u>:1912-1919
- WONDERLING, L. D., URBANOWSKI, M. L., STAUFFER, G. V. (2000) GcvA binding site 1 in the *gcvTHP* promoter of *Escherichia coli* is required for GcvA-mediated repression but not for GcvA-mediated activation. *Microbiology* <u>146</u>2909-2918
- WU, M., REN, Q., DURKIN, A. S. et al., (2005) Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet. 1:65
- YAMAMOTO, M.,KOYATA, H.,MATSUI, C. *et al.*, (1991) The glycine cleavage system. Occurrence of two types of chicken H-protein mRNAs presumably formed by the alternative use of the polyadenylation consensus sequences in a single exon. *J. Biol. Chem.* <u>266</u>:3317-3322
- **YANISCH-PERRON, C., VIEIRA, J., MESSING, J.** (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. *Gene* <u>33</u>:103-119
- ZHANG, Y., GLADYSHEV, V. N. (2005) An algorithm for identification of bacterial selenocysteine insertion sequence elements and selenoprotein genes. *Bioinformatics* <u>21</u>:2580-2589
- **ZINDEL, U., FREUDENBERG, W., RIETH, M. et al.**, (1988) *Eubacterium acidaminophilum* sp. nov., a versatile amino acid degrading anaerobe producing or utilizing H₂ or formate. Description and enzymatic studies. *Arch. Microbiol.* <u>150</u>:254-266

7. Anhang

A.I. Verwendete Oligonukleotide

Tab. 14: Übersicht der verwendeten Oligonukleotide

Primer	Orien-	Sequenz $(5 \rightarrow 3)$
	uerung	Sequenzierung gcv-Operon
Seqgcvf1	\rightarrow	TAC ACT AAT GAA GAC TAT CTG
Seqgcvr1	\leftarrow	TCA ATA AAT TCA TCA AGA GTT
Seqgcvf6	\rightarrow	CCT TAA TGC CAT AAT GGG CAA
Seqgcvr6	\leftarrow	TCT TGG GGT TGT ATT TCA TCG
Seqgcvf7	\rightarrow	ACG GAG GAA CTG TAG ACG ACC
Seqgcvr7	\leftarrow	CCT CTA AGT CCA TCA AGC ACG
Seqgcv8f	\rightarrow	AGA TAC TGA TGG CAA GAG AGG
Seqgcvr8	\leftarrow	CGT CCA TAC CAG TCA AAT CGC
Seqgcvf9	\rightarrow	ATA CTG ATG GCA AAG AGA GGG
Seqgcvr9	\leftarrow	CAC GAC ACT CCT ATG CTC TCG
Seqgcvf10/1	\rightarrow	CGA AAT ACC TCT TCA AGG ACC
Seqgcvf10/2	\rightarrow	GTC AAA TTC TTC TAC TGC AGG
Seqgcvf10/3	\rightarrow	CGA AAT AGC TCT TCA AGG ACC
Seqgcvr10/1	←	CCG CCT GCC TCG TGT ATA AGC
Seqgcvr10/2	←	GGT CGC CTC CTT TTT TTG GGG
Seqgcvf11	\rightarrow	GCC TAC TGA GAC TGA AGG CCG
Seqgcvr11	←	ATC GTA CAA TCG AAT TCC CGC
Seqgcvf12	\rightarrow	GGC TTC AGA TGC TTA CGC TCC
Seqgcvr12	←	GGA GCG TAA GCA TCT GAA GCC
Seqgcvf13	\rightarrow	TGA GGC AAT AGC AGG AGT AGC
Seqgcvr13	←	CGT GCT GTG CGT AGT CTG TAG
Seqgcvf14	\rightarrow	GAC CTA ACG CTG AGA AAA TAC
Seqgcvr14	←	AAC CTT AAC CCA GTC ATG GTG
Seqgcvf15	\rightarrow	GAC CTA ACG CTG AGA C
Seqgcvr15	←	CCT ACA TAT GCC TTG TTT CCG
Seqgcvr16	←	GTA GCA CCT ACA TAT GCC TTG
Seqgcvr17	\leftarrow	ACA TCT GCT GCA GCT ACA TCG
Seqgcvr18	\leftarrow	GAA GTC CGT TTT TAG CCT CAG
Seqgcvr19	\leftarrow	GAA GTC CGT TTT TTA GAC CTC AG
Seqgcvr20	\leftarrow	ATG CCT TTT TCC CTT CTT TAG
Seqgcvr21	\leftarrow	AAT GCC TGG AAG AAT AGT TGG
Seqgcv48r	←	TAT TCC GCC GCC CTC GTA TTG

SequsGcvP4f1	\rightarrow	GAT TTG ACT GCT TGG GAT TTG	
SequsGcvP4r1	\leftarrow	GCT GGT TTT ATC CTC ATT GGC	
SequsGcvP4f2	\rightarrow	CCG CAC AGT TCA AAG TCT CAG	
Seq228f	\rightarrow	TCA CAG ACT ACG CAC AGC ACG	
Seqgcv246r	\leftarrow	AAG CAG GTC GTC TAC AGT TCC	
Seq337f	\rightarrow	AGG CGG CTT CAG ATG CTT ACG	
Seq360r	\leftarrow	GAG CGT AAG CAT CTG AAG CCG	
Seq414r	\leftarrow	TAT TTT CTC AGC GTT AGG TCC	
SeqGcv540r	\leftarrow	AAA AAA GGC GAG AGA ATG GGC	
SeqGcv593r	\leftarrow	CCC ATT CAT TAC GAT TCA AAC	
Seq614f	\rightarrow	CCT CTT CAG CGA CAT ACC AGC	
Seq884r	\leftarrow	AGC CCA CTT TCT TGT CTC CTG	
Seq892f	\rightarrow	TTT GCG ATT TGA CTG GTA TGG	
Seq918f	\leftarrow	TCA GGA GAC AAG AAA GTG GGC	
Seq1183f	\rightarrow	GAG TGT TTG AAG ATG TTG AGG	
Seq1203r	←	CTC AAC ATC TTC AAA CAC TCC	
Seq1400f	\rightarrow	AAT GCC TGG AAG AAT AGT TGG	
SeqGcvF1460f	\rightarrow	GAC TGC TGT TCT GGG AGG AGG	
Seq1501r	\leftarrow	GCC TTT TCT CTT ATG TGC	
Seq1819r	\leftarrow	GTC ACG CAG AAA AGA AGT CCG	
Seq1937f	\rightarrow	ACA GCC TTC CAA AAT GCG ACG	
Seq2140r	\leftarrow	TCT TTG GGT TGT ATT TCA TCG	
Seq2444r	←	ACT ATT TCA AGA CCA GCA ACG	
SeqGcvF2554f	\rightarrow	TTC TCT CGC CTT TTT TTC AGC	
Seq2664r	\leftarrow	GTC TCC AGG TCT TGT CTT GCC	
		für Sonden Southern gcvP4 und gcvP2	
gcvP2f	\rightarrow	TNG GIA THA CIG AYT AYG C	
gcvP2r	\leftarrow	CRT AIG GRT CYT CRT TNA	
gcvP4f1	\rightarrow	TTY GAY GTI TCN CAY ATG GG	
gcvP4r	\leftarrow	AAI CCR TYY TCJ CCH GTR TA	
		Sequenzierung Gencluster	
SeqGrdA3r1	\leftarrow	AAC TGC GTG GAA TAC TCT TAG	
SeqGrdA3r2	\leftarrow	CGA GTC AAC ATC AAG AAC CAT	
SeqdsGrdA4/1	\rightarrow	CAA TGT GTG CTG GGA AAG GGG	
SeqdsGrdA4/2	\leftarrow	ATT GTC CGC TTT CAC TTT TTC	
SeqGrdG2/1	\rightarrow	AAT GGC AGG ACT CAA AAT AGG	
SeqGrdG2/2	\rightarrow	ATT TGT AGG AGA AGC GGG AAG	

SeqGrdG2/3	\rightarrow	ATT ACC	GAG	TGG	ACG	CAA	AGC									
					Klo	nieru	ng in	pASK	K-IBA	.3 uno	l pAS	SK-IB	A5			
P1alphaIBA3f	\rightarrow	ATG GTA	GGT	CTC	AGC	GCC	CAT	AAG	TAT	ATC	CCA	AAT	ACA	GAG	G	
P1alphaIBA3r	\leftarrow	ATG GTA	GGT	CTC	ATA	TCA	GCA	ATT	CAC	CTC	CAT	AAC	CTG	AG		
P1alphaIBA5f	\rightarrow	ATG GTA	GGT	CTC	AGC	GCC	CAT	AAG	TAT	ATC	CCA	AAT	ACA	GAG	G	
P1alphaIBA5r	\leftarrow	ATG GTA	GGT	CTC	ATA	TCA	GCA	ATT	CAC	CTC	CAT	AAC	CTG	AG		
P1aKE+BsaI	\rightarrow	CGC ATO	CAT	TTT	TTG	AGA	CCT	TAG	CAA	TTC	ACC	TCC	ATA	AC		
P1betaIBA3f		ATG GTA	GGT	CTC	AAA	TGA	AGA	ACT	ACA	ATA	AGC	TTG	TAT	TTG	AG	
P1betaIBA3r	\leftarrow	ATG GTA	GGT	CTC	AGC	GCT	GCC	TTG	ATA	TTT	TAG	TAT	AAG	GTC	TT	
P1betaIBA5f	\rightarrow	ATG GTA	GGT	CTC	AGC	GCC	AAG	AAC	TAC	AAT	AAG	CTT	GTA	TTT	GAG	
P1betaIBA5r	\leftarrow	ATG GTA	GGT	CTC	ATA	TCA	GCC	TTG	ATA	TTT	TAG	TAT	AAG	GTC	TT	
P1βKE+BsaI	\leftarrow	GCG TAC GCT T	GTA	AAA	AAG	AGA	CCG	AGG	GCA	AAA	AAT	GAA	GAA	CTC	CAA	TAA
P2IBA3f	\rightarrow	ATG GTA	GGT	CTC	AAA	TGA	GCA	AAA	TAG	TAC	AAG	GAC	TTT	ATT	AC	
P2IBA3r	\leftarrow	ATG GTA	AGC	CTC	CTT	GTT	GCA	GAA	GTC	TT						
P2IBA5f	\rightarrow	ATG GTA	GGT	CTC	AGC	GCC	AGC	AAA	ATA	GTA	CAA	GGA	CTT	TAT	TAC	
P2IBA5r	\leftarrow	ATG GTA	GGT	CTC	ATA	TCA	AGC	CTC	CTT	GTT	GCA	GAA	GTC	TT		
P4IBA3f	\rightarrow	ATG GTA	GGT	CTC	AAA	TGG	AAA	ATG	TTA	AAA	AGA	CAG	CCC	TTT	A	
P4IBA3r	\leftarrow	ATG GTA	TTT	TTT	GTA	GCT	TTT	GTT	GTA	GAA	TTT	С				
P4IBA5f	\rightarrow	ATG GTA	GGT	CTC	AGC	GCC	GAA	AAT	GTT	AAA	AAG	ACA	GCC	CTT	TA	
P4IBA5r	\leftarrow	ATG GTA	GGT	CTC	ATA	TCA	TTT	TTT	GTA	GCT	TTT	GTT	GTA	GAA	TTC	
prpUIBA3f	\rightarrow	AGG AGG	GGT	CTC	TAA	TGG	CAT	TTA	AAA	TTG	AAG	G				
prpUP2I3	\leftarrow	CTT AAA	GGT	CTC	AGC	GCT	AGG	CTT	CTC	AGT	TAT	TTG				
GrdAIBA3f	\rightarrow	ATG GTA	GAA	GAC	AAA	ATG	AGT	TTG	TTT	GAC	GGC	AAA	AAA	GTC	A	
GrdAIBA3r	\leftarrow	ATG GTA	GAA	GAC	AAG	CGC	TGT	CGT	TGA	ACT	TAC	CAA	ACT	GCT	С	
TRXB-F	\rightarrow	GAA CAA	GGT	CTC	TAA	TGC	AAA	ATG	TAT	ACG	ATT	Т				
TRXB-R	\leftarrow	GAC TAP	GGT	CTC	AGC	GCT	CTC	TTC	GAA	GTT						
TRXA-F	\rightarrow	GAA CTO	GGT	CTC	AAA	TGA	GCG	CAT	TAC	TAG	TTG	A				
TRXA-R	\leftarrow	CTC CAC	GGT	CTC	AGC	GCT	GCC	AAC	GTG	CTT	AGC	TAT	CA			
]	Kloni	erung	; in V	ektore	en dei	two-	hybri	d-Sys	teme			
EaP1aBssHIIf	\rightarrow	ATG CAT	GCG	CGC	GCC	ATA	AGT	ATA	TCC	CAA	ATA	CA				
EaP1aBglIIr	\leftarrow	GCA TGO	ATA	GAT	CTT	TAT	TAG	CAA	TTC	ACC	TCC	ATA	AC			
EaP1βBssHIIf	\rightarrow	ATG CAT	GCG	CGC	GCA	AGA	ACT	ACA	ATA	AGC	TTG	TA				
EaP1βBglIIr	\leftarrow	GCA TGC	ATA	GAT	CTT	TAT	TAG	CCT	TGA	TAT	TTT	AGT	AT			
EaP2BssHIIf	\rightarrow	ATG CAT	GCG	CGC	GCA	GCA	AAA	TAG	TAC	AAG	GAC	TT				
EaP2BglIIr	\leftarrow	GCA TGO	ATA	GAT	CTT	TAT	TAA	GCC	TCC	TTG	TTG	CAG	AA			
EaP4BssHIIf	\rightarrow	ATG CAT	GCG	CGC	GCG	AAA	ATG	TTA	AAA	AGA	CAG	CC				
EaP4BamH1r	←	GCA TGC	ATG	GAT	CCT	TAC	TAT	TTT	TTG	TAG	CTT	TTG	TT			

EaPrpUBssHIIf	\rightarrow	ATG	CAT	GCG	CGC	GCG	CAT	TTA	AAA	TTG	AAG	GCG	GA	
EaPrpUBglIIr	\leftarrow	GCA	TGC	ATA	GAT	CTT	TAT	TAA	GGC	TTC	TCA	GTT	ATT	TGA
EaGrdABssHIIf	\rightarrow	ATG	CAT	GCG	CGC	GCA	GTT	TGT	TTG	ACG	GCA	AAA	AA	
EaGrdABglIIr	\leftarrow	GCA	TGC	ATA	GAT	CTT	TAT	TAG	TCG	TTG	AAC	TTA	CCA	AA
EaTRBssHIIf	\rightarrow	ATG	CAT	GCG	CGC	GCG	AAA	ATG	TAT	ACG	ATT	TGG	CC	
EaTRBglIIr	\leftarrow	GCA	TGC	ATA	GAT	CTT	TAT	TAC	TCT	TCG	AAG	TTA	GCC	TC
EaTrxBssHIIf	\rightarrow	ATG	CAT	GCG	CGC	GCA	GCG	CAT	TAC	TAG	TTG	AAA	TA	
EaTrxBglIIr	←	GCA	TGC	ATA	GAT	CTT	TAT	TAG	CCA	ACG	TGC	TTA	GCT	AT
EaP1aAgeIf	\rightarrow	ATG	CAT	GCA	CCG	GTG	CAT	AAG	TAT	ATC	CCA	AAT	A	
EaP1@SalIr	\leftarrow	GCA	TGC	ATG	TCG	ACT	TAT	TAG	CAA	TTC	ACC	TCC	ATA	AC
EaP1βAgeIf	\rightarrow	ATG	CAT	GCA	CCG	GTG	AAG	AAC	TAC	AAT	AAG	CTT	G	
EaP1ßXhoIr	\leftarrow	GCA	TGC	ATC	TCG	AGT	TAT	TAG	CCT	TGA	TAT	TTT	AGT	AT
EaP2AgeIf	\rightarrow	ATG	CAT	GCA	CCG	GTG	AGC	AAA	ATA	GTA	CAA	GGA	С	
EaP2XhoIr	\leftarrow	GCA	TGC	ATC	TCG	AGT	TAT	TAA	GCC	TCC	TTG	TTG	CAG	AA
EaP4AgeIf	\rightarrow	ATG	CAT	GCA	CCG	GTG	GAA	AAT	GTT	AAA	AAG	ACA	G	
EaP4XhoIr	\leftarrow	GCA	TGC	ATC	TCG	AGT	TAC	TAT	TTT	TTG	TAG	CTT	TTG	TT
EaPrpUAgeIf	\rightarrow	ATG	CAT	GCA	CCG	GTG	GCA	TTT	AAA	ATT	GAA	GGC	G	
EaPrpUXhoIr	←	GCA	TGC	ATC	TCG	AGT	TAT	TAA	GGC	TTC	TCA	GTT	ATT	TGA
EaGrdAAgeIf	\rightarrow	ATG	CAT	GCA	CCG	GTG	AGT	TTG	TTT	GAC	GGC	AAA	A	
EaGrdAXhoIr	\leftarrow	GCA	TGC	ATC	TCG	AGT	TAT	TAG	TCG	TTG	AAC	TTA	CCA	AA
EaTRAgeIf	\rightarrow	ATG	CAT	GCA	CCG	GTG	GAA	AAT	GTA	TAC	GAT	TTG	G	
EaTRXhoIr	\leftarrow	GCA	TGC	ATC	TCG	AGT	TAT	TAC	TCT	TCG	AAG	TTA	GCC	TC
EaTrxAgeIf	\rightarrow	ATG	CAT	GCA	CCG	GTG	AGC	GCA	TTA	CTA	GTT	GAA	A	
EaP1aNotIf		ATG	CAT	GCG	CGG	CCG	CTA	TGC	ATA	AGT	ATA	TCC	CAA	AT
EaP1aBamH1r	\leftarrow	GCA	TGC	ATG	GAT	CCT	TAT	TAG	CAA	TTC	ACC	TCC	ATA	AC
EaP1aSpeIr	\leftarrow	GCA	TGC	ATA	CTA	GTT	TAT	TAG	CAA	TTC	ACC	TCC	ATA	AC
EaP1ßNotIf	\rightarrow	ATG	CAT	GCG	CGG	CCG	CTA	TGA	AGA	ACT	ACA	ATA	AGC	TT
EaP2NotIf	\rightarrow	ATG	CAT	GCG	CGG	CCG	CTA	TGA	GCA	AAA	TAG	TAC	AAG	GA
EaP4NotIf	\rightarrow	ATG	CAT	GCG	CGG	CCG	CTA	TGG	AAA	ATG	TTA	AAA	AGA	CA
EaPrpUNotIf	\rightarrow	ATG	CAT	GCG	CGG	CCG	CTA	TGG	CAT	TTA	AAA	TTG	AAG	GC
EaPGrdANotIf	\rightarrow	ATG	CAT	GCG	CGG	CCG	CTA	TGA	GTT	TGT	TTG	ACG	GCA	AA
EaTRNotIf	\rightarrow	ATG	CAT	GCG	CGG	CCG	CTG	TGG	AAA	ATG	TAT	ACG	ATT	TG
EaPTrxNotIf	\rightarrow	ATG	CAT	GCG	CGG	CCG	CTA	TGA	GCG	CAT	TAC	TAG	TTG	AA

		RT-PCRs upstream von gcvP4	
RTusP4f1	\rightarrow	AAG AGA TAG AGT GAA ACG GTG	
RTusP4r1	←	ACT TTC TCC TTC GGT GTC GCA	
RTusP4f2	\rightarrow	AAT CAG AAT ACG GAC CAA ATG	
RTusP4r2	←	ATA ACA GGG GCA TCT AAA GGG	
RTusP4f3	\rightarrow	TGC GAC ACC GAA GGA GAA AGT	
RTusP4r3	←	CGC ATA TGC CTC GTA TAT GTC	
RTusP4f4	\rightarrow	GTT TGA ATC GTA ATG AAT GGG	
RTusP4r4	←	CAG TGT GGG ACT GCT AGC AAA	
RTusP4f5	\rightarrow	AAA GCG AAA CTA AGA CAG GAC	
RTusP4f6	\rightarrow	GCC TCC TAT GAC GGT AAG	
RTusP4f7	\rightarrow	CTT TTT TTA TTT TTG CTA TGG	
RTusP4f8	\rightarrow	ATG CTG ACG AGT ATA TGA ATC	
RTusP4f9	\rightarrow	ATA TGG CAT ACT AAG GCA AGC	
RTusP4f10	\rightarrow	GCC AAT GAG GAT AAA ACC AGC	
RTusP4f11	\rightarrow	TTC GGC TTC GGT AAT GTC AGT	
RTusP4f12	\rightarrow	GCC CGC ACT ATC TCT ATT TCC	
RTusP4f13	\rightarrow	TAT CAT CAG GGT TTG CGC AAG	
RTusP4f14	\rightarrow	TTA CAT CAA ACA ATC GCA AAG	
RTusP4f15	\rightarrow	AAT CGA AAT TTG ACA TAT ACG	
		primer-extensions	
Pr-Ext-P4	←	CAT TTG GTC CGT ATT CTG ATT	
Pr-Ext-P4/2	←	GCT TAT ATG GTG TTT TTT CCA TAG C	
Pr-Ext-P2	\leftarrow	CGT GCT GTG CGT AGT CTG TAG	
Pr-Ext-P1a	←	GCT GGT ATG TCG CTG AAG AGG	
Pr-Ext-P1b	←	CTC TTC ACT GCT TAG GTA TCC	
		Klonierung upstream-Bereich von gcvP4	
VPusP4r1	\leftarrow	CAA ATC CCA AGC AGT CAA ATC	
VPusP4r2	←	CTG AGA CTT TGA ACT GTG CGG	
		Klonierung Gencluster	
UsGrdA3/1	\rightarrow	TAC TCT GCT CCA ACA CCG CTC	
UsGrdA3/2	\rightarrow	TTG GCA GGT TTG GAT ACT TGG	
UsGrdA3/3	\rightarrow	GAT GCT CCG TCT CTT CCT GCG	
usGrdA3r1	\leftarrow	TCA TTG AAC TTG CAG AAC TGC	
usGrdA3r2	\leftarrow	AAT TTT GCT CAT GTG TTT ACC	
DsGrdC/1	\rightarrow	AAT AAT AGC AGC GGG TGG AGC	
DsGrdC/2	\rightarrow	AAC CAA AGA GGA GGC GGA AAC	

dsGrdC2/3	\rightarrow	ATG ATA GTA GGA AAG GGA AGC
dsGrdC2/4	\rightarrow	GGC AAA GTG GAG TCA GGA AGC
DsOrf1/1	\rightarrow	AGG CTC AAC AAG AAG AAT GGC
DsOrf1/2	\rightarrow	TAA AGA GCG TGA GCA AGA ACC
GrdEEaf	\rightarrow	ATG CGT TTA GAA ATT GGA AAT
usGrdE2/1	\rightarrow	TAT TCT CAC ACT CTC TCC TGG
usGrdE2/2	\rightarrow	TACT CT GCT CCA ACA CCG CTC
TrxB1Ear	\leftarrow	CTT CAT CTT GGC TCT GGC TCC
GrdT1Eaf	\rightarrow	GTT ACG CTA TTG CTT CTA TGC
GrdT2Ear	\leftarrow	CCG CCC ATT TGA GGA TTA GTG
GrdD1Ear	←	TTA AGC TAC TAT GCC TGC ATC
dsGrdD2EA1	\rightarrow	ATA GTA ATG GTA AAC GAA GCC
dsGrdD2EA2	\rightarrow	TAA CAG GAA CAA TCT CAG GCG
GrdG1Eaf	\rightarrow	ATG CGT CTT GAA CTT GGA AAG
usGrdG2Ea1	\rightarrow	TAC ATA AAG CGT TCC ATT CTC
usGrdG2Ea2	\rightarrow	CCG ACC CAT CCA CCT TGA CTC
dsGrdF1/1f	\rightarrow	TCA CAC CAA GGA GGG AGA GGA
dsGrdF1/2f	\rightarrow	ACG GTA TTT GAA GGC TAA CGC
dsGrdF1/r	\leftarrow	GGA AAA TAT ACG GAG CCC AGC
usGrdF2/1	\rightarrow	GGA CAA CCG AGG ATA ACA TTC
usGrdF2/2	\rightarrow	CCC TAT TTC CTC ACC CTT TGC
OrfREar	\leftarrow	CAA CTC CAC ACC GTC CAT TCC
LdcEar1	\rightarrow	CTC CGC TTA CCT CCC CTT CCG
LdcEar2	\leftarrow	TTC AAG TGC CGC TAC AAG TGC
DnmtEaf1	\rightarrow	AGA GAT ATG GAT ACT GCC GGG
DnmtEaf2	\rightarrow	CAG AAA AAG TGA AAG CGG ACA
GrrZEaf1	\rightarrow	GAA AGC CTC CTG ATT GAA AAG
GrrZEaf2	\rightarrow	GGA TGA GGG AAT ACA CAG GGC
GrrYEar1	\leftarrow	TGT CTC TTG CGG TAT GTC TGC
GrrYEar2	\leftarrow	TAC CTC TTC ACT GCC TAC CGC
		Amplifikation Kontrollgene für Transkriptionsanalysen
EFTUf1	\rightarrow	GTI GAY TGY CCD GGH CAY GC
EFTUf1	\leftarrow	CTG AGI TTC GAG CAT CCT CA
RPOAf	\rightarrow	GAA CCD YTI GAR AGR GGH TA
RPOAr	\leftarrow	GTR TTD ATD CCI GCY CTY TT
RPOBf	\rightarrow	ATH AAY GGH GCI GAR AGR GT
RPOBr	\leftarrow	CGT GRA YTG IGA GAG RGT RA

8																
							Trai	nskrip	otions	analy	sen					
RTRPOAEaf	\rightarrow	GGC TAA	GAT	TGA	CGG	TGA	CGG									
RTRPOAEar	\leftarrow	CAT AGC	CTC	TTC	CCT	TGT	CCA									
RTRPOBEaf1	\rightarrow	GCG GAG	AGG	GTA	ATA	GTC	AGC									
RTRPOBEaf2	\rightarrow	ACA AGG	TGG	TGG	AGT	TTC	AGC									
RTRPOBEar1	\leftarrow	GGT TGC	TTT	GTG	GTT	CTG	TCA									
RTRPOBEar2	\leftarrow	CGG AGC	AAA	CGA	GAA	GGA	CAT									
RTEFTUAEaf	\rightarrow	TGA CAC	TCC	AAT	AAT	AAA	AGG									
RTEFTUEar	\leftarrow	TCC TCT	TTC	AAC	TCT	TCC	TGT									
RTSelBEaf	\rightarrow	GGT TCT	GCT	TGT	GGT	GTC	TGC									
RTSelBEar	\leftarrow	CCT GTG	CCG	CTT	ATT	GAG	TCC									
RTPrpUEaf	\rightarrow	GGA GTG	AAA	GAA	GAA	ATA	AGC									
RTPrpUEar	\leftarrow	TCA TCT	TTT	ACC	TTA	CAT	CCG									
								Vekto	orette-	PCR						
ABPFW		GAA GGA GGA GAG	GAG	GGA	CGC	TGT	CTG	TCG	AAG	GTA	AGG	AAC	GGA	CGA	GAG	AAG
ABPRV		GAC TCT	CCC	TTC	TCG	AAT	CGT	AAC	CGT	TCG	TAC	GAG	AAT	CGC	TGT	CCT
UV		CGA ATC	GTA	ACC	GTT	CGT	ACG	AGA	ATC	GCT						
						Vekto	or-spe	zifisc	he Se	quen	zierpr	imer				
UPRN	\rightarrow	AGG GTT	TTC	CCA	GTC	ACG	ACG	TTG								
RPRN	←	CAA TTT	CAC	ACA	GGA	AAC	AGC	TAT	G							
Sp6		ATT TAG	GTG	ACA	CTA	TAG	AAT	ACT	CAA	GC						
T7		GTA ATA	CGA	CTC	ACT	ATA	GGG	CGA	ATT	GG						
pMS604f	\rightarrow	AAT TGT	TTC	CGG	CGC	ATC	ACG									
pMS604r	\leftarrow	TTT ATC	CGC	CTC	CAT	CCA	GTC									
pDP804f	\rightarrow	AAG AAG	GGT	TGC	CGC	TGG	TAG	GTC								
pDP804r	\leftarrow	ATC ACC	TTC	CTC	CAC	CTT	CATO	CC								
Strep-up	\leftarrow	AGT AGC	GGT	AAA	CGG	CAG	ACA									
Strep-down	\rightarrow	CAG TGA	TAG	AGA	AAA	GTG	AAA									

A.II. Sequenz des Glycin-Decarboxylase-Operons und der angrenzenden Bereiche

1	G R R	G F V S	D W E	A E T	I D T F	L N S
	CAGGAGAGGA	AGGCTTCTGC	GACAGGGTAA	GCCGAAGCCA	TTACAGTCAT	TTTTCTAAAC
	VSI	GANN	VLV	DVS	GFER	ICL
61	TTTGCCTATA	CGGCCGTAAT	AAATGTTCGT	GTAGCTGACA	TGGTTTGAGG	GACTATGTTT
121	D V M	A D V E	S R V	S V D	A K F A	L G S
			AGCCIAGACI			C N V
181	TCTCCGGGAC	TCGCAATTCC	TCTCGAAGTT	TAAGCTCTCG	AAGGGACCTT	CTCGACAACA
241	N I I	V N Y G	K C A	F N E	A I S R	G I G
	TCAAATAATA	ATGTAACATA	GGAAACGTCC	GTTTCAAAAG	CCGATACCTC	GCCGGATAGG
301	K S A GAAATCTACG	G T I I GGGACAATAT	A T K TAACGTCAGA	K M fabG AAAA GTA AAT TTA	AT <u>GGTGGA</u> CC TACCACCTGG	TAAGGTTTAA ATTCCAAATT
361	AGTTTTGTCT	TATTCGTCTT	GTATTCAAGT	AAAATGTAGT	TTGTTAGCGT	TTCTATTTCA
	TCAAAACAGA	ATAAGCAGAA	CATAAGTTCA	TTTTACATCA	AACAATCGCA	AAGATAAAGT
421	ААСТТАТААТ	AACAATTTCC	САТААТТАТТ	TAAACGATCG	TCAGGGTGTG	ACGGGCGTGA
	ТТСААТАТТА	TTGTTAAAGG	GTATTAATAA	ATTTGCTAGC	AGTCCCACAC	TGCCCGCACT
481	TAGAGATAAA	GGTATAATTG	ACGTTTCCGT	CCGCGTTCAG	CAACGGAAAC	GCGCAATTAT
	ATCTCTATTT	CCATATTAAC	TGCAAAGGCA	GGCGCAAGTC	GTTGCCTTTG	CGCGTTAATA
541	ACGTGTAAAG	TGTCGTTATT	TTTAACGCTA	AAGTCTTTAG	CTTTAAACTG	TATATGCTCC
	TGCACATTTC	ACAGCAATAA	AAATTGCGAT	TTCAGAAATC	GAAAT <u>TTGAC</u>	ATATACGAGG
601	GTATACGCAT	АТТАСААТТА Таатсттаат	TTTATTTACA	ΑΑΤΑΤΤΤΤΤΤ ΤΤΑΤΑΓΑΓΑ	ATGAACATGT	TCACTCCGAC
001	ATAGGCACTT		CTGTTTTTTGT		CCATA nin	
661	TATCCGTGAA	AAGATAACAA	GACAAAAACA	TTACAT <u>GGAG</u>	<u>GGT</u> AT ATG AT M	ТАААААААТС І К К І
721	TTACTGAGCG	CATCGCTCAT	ACTGATGCTC	CTTAATATGG	GAATATCATC	AGGGTTTGCG
	L L S	A S L	I L M L	L N M	G I S	S G F A
781	CAAGAGGTCC	CAAATGCATA	TGTCAAAGTC	AGCAGCTTAA	ATGTAAGAAA	TGGCGCAGAT
	Q E V	PNA	Y V K V	S S L	N V R	N G A D
841	ATTAATTCGC	AGGTTATAGG	AAAAGTAGTA	TCAGGTCAGA	AGCTTGAAAT	TATCGAGCAG
	I N S	Q V I	G K V V	S G Q	K L E	I I E Q
901	TCTGGCAAAT	GGTCAAAAGC	AAGGCTTGAA	AACGGAAGTA	TAGGCTGGGT	TTATTCTGAA
	S G K	W S K	A R L E	N G S	I G W	V Y S E
961	TACATAAGTT	CAAACGGCAG	TACATACTTG	CAAAACAGCG	GTTCGCAGGT	TGTTAGCAGA
	Y I S	S N G	S T Y L	Q N S	G S Q	V V S R
1021	GGTGGTTCAA	GATCATCAAG	CCTAATGGTT	GTTGCAAATG	CAAAGCTTGG	AGCAAAGTAT
	G G S	R S S	S L M V	V A N	A K L	G A K Y
1081	TCAAGAGGCG	CTGAAGGTCC	TGACAGATTT	GACTGCTTGG	GATTTGTAAA	GTATGTTTAT
	S R G	A E G	P D R F	D C L	G F V	K Y V Y

1141	AAAGAAGTGT	TTGGCAAAGT	GCTGCCGCAC	AGTTCAAAGT	CTCAGAGTCA	GTTGGGCAGT
	K E V	FGK	V L P H	S S K	SQS	Q L G S
1201	GCTGTTTCGA A V S	GAGAAGCTGT R E A	TCAAACTGGG V O T G	GACATTGTAG D I V	TATTTGCCAC V F A	GGCAGGCAGC T A G S
			· £		.↓	
1261	AGCAG <u>TGTAA</u> S S V	ATCACTCGGG N H S	AATATAT <u>ATG</u> G I Y M	AATGATGGCA N D G	AG <u>T</u> TTATACA K F I	TGCCTCCTCC H A S S
1321	ТАТСАСССТА	ассттстсат	ТТСССАСАТС	AGCTCCGGGC	аттаттасас	GGCCTTTAGG
1981	Y D G	K V V	I S D M	S S G	Н Ү Ү	R A F R
1381	GGAGCCAGAC	GGCTTAATTA	AATAATGAGT	ATAGTGACAG	AGCATAGAGT	ACCATGTGCT
	G A R	R L N	- ATTACTCA	TATCACTGTC	TCGTATCTCA	TGGTACACGA
				>>>>>	>>>>>>	<<<<<<
1441	CTGTCTTTTT	TTATTTTTGC	TATGGAAAAA	ACACCATATA	AGCTACACAA	ТАТААТАТАА
	GACAGAAAAA <<<<<	AATAAAAACG	ATACCTTTTT	TGTGGTATAT	TCGATGTGTT	ATATTATATT
1501	GTGAGACAAA	TAAACTGATT	TGCATAAAAT	AATGATGCAA	CATAAGCTGT	AAAAGCAATA
1001	CACTCTGTTT	ATTTGACTAA	ACGTATTTTA	TTACTACGTT	GTATTCGACA	TTTTCGTTAT
1561	атсстсасса	GTATATGAAT	Сааттаттаа	аттаатсаса	тсссаттата	аатататссс
1001	TACGACTGCT	CATATACTTA	GTTAATAATT	TAATTACTGT	AGGGTAATAT	TTATATACCG
1621	atactaacco	AACCTTCCAT	тааатата	ͲͲᇗᇗᡘᇗᇗᇗᇗ	тсстсттса	ΔΔΔΩΤΔΔΔΤΔ
TOTT	TATGATTCCG	TTCGAACCTA	ACTTTACTAT	AATTGTTTTT	AGGACAAACT	TTTCATTTAT
1681	TTTCAGTGCC	AATGAGGATA	AAACCAGCAC	AAACAAGCTC	AATTTCCAAT	CAGCTGAAAT
	AAAGTCACGG	TTACTCCTAT	TTTGGTCGTC	TTTGTTCGAG	TTAAAGGTTA	GTCGACTTTA
1741	CAAAGAGATA	GAGTGAAACG	GTGTATTATT	AAGATACAAA	GAGTAAAAGC	CGGGTTGGGC
	GTTTCTCTAT	CTCACTTTGC	CACATAATAA	TTCTATGTTT	CTCATTTTCG	GCCCAACCCG
1801	ATGAGCTTCG	CTTGCCTTTT	GAAATGCAAT	GCAAGGTTCA	GAAAATTTAG	TTAAATTAAT
	TACTCGAAGC	GAACGGAAAA	CTTTACGTTA	CGTTCCAAGT	CTTTTAAATC	ΑΑΤΤΤΑΑΤΤΑ
1861	ATCTTTGGTT	GAAATGAAGT	TTAATGTATT	ATATTATAAC	CTTAAATCAG	AATACGGACA
	TAGAAACCAA	CTTTACTTCA	AATTACATAA	TATAATATTC	GAATTTAGTC	TTATGCCTGG
1921	AATGAAGGCA	CGGGAGAGAT	ATTCATGCTT	АТТСАААТАА	ACATGGATGG	CCGACGGGGC
	TTACTTCCGT	GCCCTCTCTA	TAAGTACGAA	TAAGTTTATT	TGTACCTACC	GGCTGCCCCG
1981	AATATAAGAG	AATTGCCAAT	TCCTTATAGA	ATCTTTCAGG	CGAAAATATC	GTTGCTCGAT
	TTATATTCTC	TTAACGGTTA	AGGAATATCT	TAGAAAGTCC	GCTTTTATAG	CAACGAGCTA
2041	GGAGCTCTGA	AGAGATCGCA	CATTAACGTG	CGACACCGAA	GGAGAAAGTG	CAAAGTGTAA
	CCTCGAGACT	TCTCTAGCGT	GTAATTGCAG	GCTGTGGCTT	CCTCTTTCAC	GTTTCACATT
2101	AGATTTGCAT	GTAAAACTCT	CAGGTAAAGA	GACAGAGAAT	ATAGTGGCGT	ATGTATTTTC
	TCTAAACGTA	CATTTTGAGA	GTCCATTTCT	CTGTCTCTTA	TATCACCGCA	TACATAAAAG
2161	ATGCGAATTT	GTCATTGTAT	TCTTTTTTTA	TACCCATAAT	ACGATAATTT	TGTAATTTAT
	TACGCTTAAA	CAGTAACATA	AGAAAAAAT	ATGGGTATTA	TGCTATTAAA	ACATTAAATA
2221	GGGAGCGATT	GCAAGTGTTT	GAATCGTAAT	GAATGGGTAT	AGAGGTAATG	AAAAGGTACT
	CCCTCGCTAA	CGTTCACAAA	CTTAGCATTA	CTTACCCATA	TCTCCATTAC	TTTTCCATGA
2281	AGTGAAGAGA	AACCAGTTGT	AATTTTAAGA	GAGAGCGGCT	ATGCACCACT	GATGAATTGC
	TCACTTCTCT	TTGGTCAACA	TTAAAATTCT	CTCTCGCCGA	TACGTGGTGA	CTACTTAACG

2341	TTGCTTTATA	ATCAACAGAT	TAGTTATACA	TAAAGCGAAA	CTAAGACAGG	ACTGCTGTTC
	AACGAAATAT	TAGTTGTCTA	AGCAATATGT	ATTTCGCTTT	GATTCTGTCC	TGACGTCAAG
2401	TGGG <u>AGGAGG</u>	<u>A</u> TTTTTA ATG	GAAAATGTTA	AAAAGACAGC	CCTTTACGAT	CTTCATGTGA
	ACCCTCCTCC	TAAAAAT M	E N V	K K T	A L Y D	L H V
2461	AATACGGGGG	CAAAATAATT	GAATTCTGTG	GTTGGGCTCT	GCCTACTCAA	TACGAGGGCG
	K Y G	G K I I	E F C	G W A	L P T Q	Y E G
2521	GCGGAATAAA	CGCTGAGCAC	GAGGCTGTTA	GAACTGCAGC	TGGTATGTTC	GACGTATCTC
	G G I	N A E H	E A V	R T A	A G M F	DVS
2581	ACATGGGTGA	GGTTGAAGTT	AAGGGTAAGG	AAGCTGAAAA	ATTCATAAAT	TAT <mark>CTT</mark> GTGC
	H M G	E V E V	K G K	E A E	K F I N	Y L V
2641	CTAATGATAT	AACTGTATTG	GAGCCAAACC	AGGTTCTATA	CACTCAGTTC	TGCTATCCTC
	PND	I T V L	E P N	Q V L	Y T Q F	C Y P
2701	ACGGAGGAAC	TGTAGACGAC	CTGCTTGTTT	ACAAATACAC	TAATGAAGAC	TATCTGCTTG
	H G G	T V D D	L L V	Y K Y	T N E D	Y L L
2761	TTATAAACGC	TGCTAACGTA	GACAAGGACT	ATGCATGGAT	AGTTGAGAAT	TCTAAAGGCT
	V I N	A A N V	D K D	Y A W	I V E N	S K G
2821	TTGATGTAAG	TCTTAAGAAT	ATATCTCCTG	AGGTTTCCGA	AATAGCTCTT	CAAGGACCTA
	F D V	S L K N	I S P	E V S	E I A L	Q G P
2881	ACGCTGAGAA	AATACTTCAG	AAGCTTACAG	ATACTGATCT	TGCACAGGTT	AAATTCTTCT
	N A E	K I L Q	K L T	D T D	L A Q V	K F F
2941	ACTGCAAGAA	GGACGTTAAC	ATAGGCGGAG	CAAGCTGCCT	TATATCTAGA	ACAGGCTACA
	Y C K	K D V N	I G G	A S C	L I S R	T G Y
3001	CTGGTGAAGA	CGGCTTCGAG	ATATATACTT	CAAACGAAGA	TGTTTCAGCT	GTATGGGAAA
	T G E	D G F E	I Y T	S N E	D V S A	V W E
3061	AGCTTATGGA	AGCAGGAAAA	GATCTTGGAA	TCAAGCCAGC	AGGACTTGGA	TGTAGAGATA
	K L M	E A G K	D L G	I K P	A G L G	C R D
3121	CTCTAAGATT	CGAAGTTGCA	CTTCCACTAT	ACGGAAACGA	GCTAGGAGAA	GACATATCTC
	T L R	F E V A	L P L	Y G N	E L G E	D I S
3181	CACTTGAAGC	TGGACTAGGA	TACTTCGTTA	AGCTAGACAA	AGAGGCTGAC	TTCATAGGCA
	P L E	A G L G	Y F V	K L D	K E A D	F I G
3241	AGGAAGCTCT	TAAGAAGCAA	AAGGCTGAAG	GTCTTAAGAG	AAAGCTTGTT	GGACTTGAGC
	K E A	L K K Q	K A E	G L K	R K L V	G L E
3301	TAAAAGGCAA	AGGTATAGCA	AGACATGAGT	GCGAAGTTTA	CTCAGGAGAC	AAGAAAGTGG
	L K G	K G I A	R H E	C E V	Y S G D	K K V
3361	GCTTTGTAAC	TACTGGATAC	CAATCTCCAA	GCACTGGCAA	AGTAGTGGCT	CTTGCTATAG
	G F V	T T G Y	Q S P	S T G	K V V A	L A I
3421	TAGATACAGA	ATACACTGAA	ATGGGAACAC	AGCTTGAAAT	TCAAATAAGA	AAGAACAGAG
	V D T	E Y T E	M G T	Q L E	I Q I R	K N R
3481	TGCCTGCAGA	AGTGGTTGCT	AAGAAATTCT	ACAACAAAAG	CTACAAAAAA	TAGTTTTTTG
	V P A	E V V A	K K F	YNK	SYKK	–AAAAAAC

3541	TTCGTCGGAT	AGTGGATATT	TAAGCGCCCG	TATAGTATCA	TATTAGTGTG	CTAAAGTAAC
	AAGCAGCCTA	TCACCTATAA	ATTCGCGGGC	TATACATAGT	ATAATCACAC	GATTTCATTG
3601	GGGTGTTACA CCCACAATGT	AATAAAAAAT TTATTTTTTA P2	GAAATGCCAA CTTTACGGTT	TAAAAAATAC ATTTTTTTATG	АТТТАТАТТТ ТАААТАТААА	CTG <u>AGGAGGA</u> GACTCCTCCT
3661	ATTTATC <u>ATG</u>	AGCAAAATAG	TACAAGGACT	TTATTACACA	ACTCACCATG	ACTGGGTTAA
	TAAATAG M	S K I	V Q G	L Y Y T	T H H	D W V
3721	GGTTGACGGA	AACAAGGCAT	ATGTAGGTGC	TACAGACTAC	GCACAGCACG	CTCTAGGAGA
	K V D G	N K A	Y V G	A T D Y	A Q H	A L G
3781	TATAGTATAC	GTTGAGCTTC	CAGAAGTGGG	AGAAGAATTT	GGCGTTGAAG	ATGCATACGG
	D I V Y	V E L	P E V	G E E F	G V E	D A Y
3841	CGTTATAGAA	TCAGTTAAGG	CGGCTTCAGA	TGCTTACGCT	CCACTAAGCG	GAAAAATAGT
	G V I E	S V K	A A S	D A Y A	PLS	G K I
3901	TGAAGTTAAC	AGCGAGCTTG	AAGATGCTCC	TGAGAGCATA	AACGAAGCTC	CATACGAAAA
	V E V N	S E L	E D A	P E S I	N E A	PYE
3961	ATGGCTTGTA	GCTATAGAAA	TGAGCGACGC	ATCAGAACTA	GAAAAACTAA	TGGACGCTAG
	K W L V	A I E	M S D	A S E L	E K L	M D A
4021	CGCTTACGAA S A Y E	GACTTCTGCA D F C	ACA <u>AGGAGG</u> C N K E	TTAAG <mark>ATG</mark> CA A - M	α ΤΑΑGΤΑΤΑΤC Η Κ Υ Ι	CCAAATACAG PNT
4081	AGGCGGATAA	GAAGTCTATG	CTCGAGAGCA	TAGGAGTCTC	GTCTATAGAA	GACCTCTTCA
	E A D	K K S M	L E S	I G V	S S I E	D L F
4141	GCGACATACC	AGCTGAGCTT	AAGCTGGGAA	GAGAGCTTAA	CCTTGGCGAG	CCTATGTCGG
	S D I	P A E L	K L G	R E L	N L G E	P M S
4201	AGCTTGAGCT	AGTGAAGCAT	ATGAACGAGC	TTGCTGATAA	AAACAAATCA	GACTTTGTTT
	E L E	L V K H	M N E	L A D	K N K S	D F V
4261	GCTTCAGAGG	AGCAGGTGCA	TATGATCACT	ACATTCCGTC	GCTTATAAAT	CACATGTTGC
	C F R	G A G A	Y D H	Y I P	S L I N	H M L
4321	TCCGTCAGGA	ATTCTTCACT	GCATACACTC	CTTATCAGCC	AGAGATAAGC	CAGGGTACGC
	L R Q	E F F T	A Y T	P Y Q	P E I S	Q G T
4381	TTCAGATGAT	ATTCGAATTC	CAGACAATGC	TTTGCGATTT	GACTGGTATG	GACGTTGCCA
	L Q M	I F E F	Q T M	L C D	L T G M	D V A
4441	ACGCATCTAT	GTATGATGTT	GGAACTGCTA	CTGTAGAAGC	AGCGGTTATG	GCTGTTCAAA
	N A S	M Y D V	G T A	T V E	A A V M	A V Q
4501	ACAAGAAAAA	GTGCAAGAAT	GTAGTTGTGT	CAAAGGCCGT	TGCACCAGAG	ACAAGACTTA
	N K K	K C K N	V V V	S K A	V A P E	T R L
4561	TACTTCACAC	ATATCTTAAG	CAAAATGATA	TAGAAGTAAT	TGAAGTTGAC	ACTGCAGATG
	I L H	T Y L K	Q N D	I E V	I E V D	T A D
4621	GCGTAACCGA	TATGGACAAG	CTGACTGCGG	CTGTTGGAGA	TGAAACTGCT	GGCGTAATAG
	G V T	D M D K	L T A	A V G	D E T A	G V I
4681	TTCAAAATCC	AAACTTCTTT	GGAGTGTTTG	AAGATGTTGA	GGCAATAGCA	GGAGTAGCTC
	V Q N	P N F F	G V F	E D V	E A I A	G V A
4741	ATGACAAGAA	AGCTCTTCTT	ATTGACGTTG	TTGATCCGAT	ATCTCTTGGA	ATCGTAAAAA T V K
--	---	---	--	---	--	---
4801	GACCGGGAGA		GATATAGTAG	TAGGAGATGC		GGTAGCGCAC
1001	R P G	D I G A	D I V	V G D	A Q C F	G S A
4861	TGAACTTTGG L N F	CGGACCATAT G G P Y	ATAGGCTTCC	TTACAACTAA	ATCTAAAATG KSKM	GCAAGAAAAA A R K
4921	TGCCTGGAAG	AATAGTTGGA	CAGACAGAAG	ATACTGATGG	CAAGAGAGGA	тттсттстта
	M P G	R I V G	Q T E	DTD	GKRG	FVL
4981	CTCTTCAAGC T L Q	TAGAGAGCAG A R E Q	CACATAAGAA H I R	GAGAAAAGGC R E K	AACATCCAAC A T S N	ATATGCTCGA I C S
5041	ACCAAGGTCT N Q G	GTGCACTCTT L C T L	ACAGTTGCAA T V A	TATACCTTTC I Y L	AACAATGGGC S T M G	AAAAGCGGAC K S G
5101	TTAAAGAAGT L K E	TGCGCTTCAG V A L Q	TGCATGAACA C M N	AGGCTCAGTA K A Q	TGCTTACAAG Y A Y K	AAGCTTACTG K L T
5161	AATCAGGCAA E S G	ATTCAAACCT K F K P	CTATACAATA L Y N	AGCCTTTCTT K P F	CAAGGAGTTT F K E F	GCTCTTACAA A L T
5221	GCGATGTAGC S D V	TGCAGCAGAT A A A D	GTAAATGCAA V N A	AGCTTGCTGA K L A	AAGTAACATA E S N I	CTTGGAGGAT L G G
5281	ACGAGCTTGA Y E L	GTGTGACTAT E C D Y	CCTGAGGCTA P E A	AAAACGGACT K N G	TCTTTTCTGC L L F C	GTGACAGAGA V T E
						$\alpha \alpha \tau \tau D 1 R$
5341	AGAGAACAAA K R T	AGAAGAGATA K E E I	GACTGCCTTG D C L	CTCAGGTTAT A Q V	<u>GGAGGT</u> GAAT M E V N	TGCTAAC <u>ATG</u> C – M
5341 5401	AGAGAACAAA K R T AAGAACTACA K N Y	AGAAGAGATA K E E I ATAAGCTTGT N K L	GACTGCCTTG D C L ATTTGAGGTT V F E V	CTCAGGTTAT A Q V TCTAAAGAAG S K E	GGAGGTGAAT M E V N GGAAAAAGGC G K K	TGCTAAC <u>ATG</u> C - M ATACAGCCTT A Y S L
5341 5401 5461	AGAGAACAAA K R T AAGAACTACA K N Y CCAAAATGCG P K C	AGAAGAGATA K E E I ATAAGCTTGT N K L ACGTGCCAGA D V P	GACTGCCTTG D C L ATTTGAGGTT V F E V GCTTGATGCT E L D A	CTCAGGTTAT A Q V TCTAAAGAAG S K E GCAAGCGTGA A S V	GGAGGTGAAT M E V N GGAAAAAGGC G K K TCCCTGCGGG I P A	TGCTAACATG C - M ATACAGCCTT A Y S L ATACCTAAGC G Y L S
5341 5401 5461 5521	AGAGAACAAA K R T AAGAACTACA K N Y CCAAAATGCG P K C AGTGAAGACC S E E	AGAAGAGATA K E E I ATAAGCTTGT N K L ACGTGCCAGA D V P CAAAGCTTCC P K L	GACTGCCTTG D C L ATTTGAGGTT V F E V GCTTGATGCT E L D A TGAGCTTAGC P E L S	CTCAGGTTAT A Q V TCTAAAGAAG S K E GCAAGCGTGA A S V GAAGTGGATG E V D	GGAGGTGAAT M E V N GGAAAAAGGC G K K TCCCTGCGGG I P A TAATAAGACA V I R	TGCTAACATG C - M ATACAGCCTT A Y S L ATACCTAAGC G Y L S CTTTACAAAC H F T N
5341 5401 5461 5521 5581	AGAGAACAAA K R T AAGAACTACA K N Y CCAAAATGCG P K C AGTGAAGAGC S E E CTTTCTCAAA L S Q	AGAAGAGATA K E E I ATAAGCTTGT N K L ACGTGCCAGA D V P CAAAGCTTCC P K L AGAACTTTGG K N F	GACTGCCTTG D C L ATTTGAGGTT V F E V GCTTGATGCT E L D A TGAGCTTAGC P E L S TCTTGACGGT G L D G	CTCAGGTTAT A Q V TCTAAAGAAG S K E GCAAGCGTGA A S V GAAGTGGATG E V D GGATTCTATC G F Y	GGAGGTGAAT MVNGGAAAAAGGC GKKTCCCTGCGGGG IPATAATAAGACA VIRCGCTTGGATC PG	TGCTAACATG C - M ATACAGCCTT A Y S L ATACCTAAGC G Y L S CTTTACAAAC H F T N ATGTACTATG S C T M
5341 5401 5461 5521 5581 5641	AGAGAACAAA K R T AAGAACTACA K N Y CCAAAATGCG P K C AGTGAAGAGC S E E CTTTCCAAA L S Q AAAATACAATC K Y N	AGAAGAGATA K E E I ATAAGCTTGT N K L ACGTGCCAGA D V P CAAAGCTTCC P K L AGAACTTTGG K N F	GACTGCCTTG D C L ATTTGAGGTT V F E V GCTTGATGCT E L D A TGAGCTTAGC P E L S TCTTGACGGT G L D G CGAAGACATG N E D M	CTCAGGTTAT A Q V TCTAAGAAG S K E GCAAGCGTGA A S V GAAGTGGATG E V D GGATTCTATC G F Y TGCAGAATTC C R I	GGAGGTGAATMEVNGGAAAAAGGCGKTCCCTGCGGGGAKTAATAAGACAVICGCTTGGATCPLCAGGACTTGTPG	GEVPTPTGCTAACATG C-MATACAGCCTT AYSATACCTAAGC GYLATACCTAAGC GYLSCTNATGTACTATG SCGAATGTACAC VNV
5341 5401 5461 5521 5581 5641 5701	AGAGAACTAAA K R T AAGAACTACA K N Y CCAAAATGCG P K C AGTGAAGAGC S E E CTTTCTCAAA L S Q AAATACAATC K Y N	AGAAGAGATA K E E I ATAAGCTTGT N K L ACGTGCCAGA D V P CAAAGCTTCC P K L AGAACTTTGG K N F CAAAGATAAA P K I CTGAAGAGACA	GACTGCCTTG D C L ATTTGAGGTT V F E V GCTTGATGCT E L D A TGAGCTTAGC P E L S TCTTGACGGT G L D G CGAAGACATG N E D M TGTACAAGGA T V Q G	CTCAGGTTAT A Q V TCTAAGAAG S K E GCAAGCGTGA A S V GAAGTGGATG E V D GGATTCTATC G F Y TGCAGAATC C R I	GGAGGTGAAT MNGGAAAAAGGC GKCCCTGCGGGG IPTAATAAGACA VICGCTTGGATC PGCAGGACTTGT PGCAGGACTTGT VM	GEVPTPTGCTAACATG C-MATACAGCCTT AYSATACCTAAGC GYLATACCTAAGC HFTNATGTACTATG SCATGTACTATG SCTMGAATGTACAC VNVHCCTGGCTCAG NLA
5341 5401 5461 5521 5581 5641 5701 5761	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AGAAGAGATA ATAAGCTTGT N K L ACGTGCCAGA D V P CAAAGCTTCC P K L AGAACTTTGG K N F CAAAGATAAA P K I CTGAAGAGAC P E E	GACTGCCTTG D C L ATTTGAGGTT V F E V GCTTGATGCT E L D A TGAGCTTAGC P E L S TCTTGACGGT G L D G CGAAGACATG N E D M TGTACAAGGA T V Q G	CTCAGGTTAT A Q V TCTAAGAAG S K E GCAAGCGTGA A S V GAAGTGGATG C V D GGATCTATC C R I TGCAGAATTC C R I TCCCTTGAAG S L E	GGAGGTGAAT MNGGAAAAAGGC GKCCCTGCGGGG IPTAATAAGACA VICGCTTGGATC PGCGCTTGGATC PGCAGGACTTGT PGTAATGTACAA QP	GEVPTPTGCTAACATG C-MATACAGCCTT AYSLATACCTAAGC GYLSCTTTACAAAC HFTNATGTACTATG SCTMGAATGTACAC VNVHCCTGGCTCAG NLAQGGGAGCTCAC AGAH
5341 5401 5461 5521 5581 5641 5701 5761 5821	AGAGACAAA K R T AAGAACTACA K N Y CCAAAATGCG P K C AGTGAAGAGC S E E CTTTCTCAAA C S Y N AAATACAATC K Y N CCTTACCAGC P Y Q AGCCTTGCAG S L A	AGAAGAGATA ATAAGCTTGT N K L ACGTGCCAGA D V P CAAAGCTTCC P K L AGAACTTTGG K N F CAAAGATAAA P K I CTGAAGAGAGAC P E E AAATTTCCGG E I S	GACTGCCTTG D C L ATTTGAGGTT V F E V GCTTGATGCT E L D A TGAGCTTAGC P E L S CGAAGACATG N E D M TGTACAAGGA T V Q G TATGGACGAG G M D E TTCAATAAAG L S I K	CTCAGGTTAT A Q V TCTAAGAG S K E GCAAGCGTGA GAAGTGGATG C V D GGATCTATC C R I TGCCTTGAAG S L E GTTACTCTC V T L	GGAGGTGAAT M E V N GGAAAAAGGC G K K TCCCTGCGGGG I P A TAATAAGK CGCTTGGATC P L GGAGGACTTGT P G TAATGTACAA Q P AGCCGGCAGC Q P AAAAAAGAGG K K	GEVPTPTGCTAACATG C-MATACAGCCTT AYSLATACCTAAGC GYLSCTTTACAAAC HFTNATGTACTATG SCTMGAATGTACAC VNVHCCTGGCTCAG NLAQGGGAGCTCAC AGAHCGACCTAAAG GDLK

5941	GCTGGTCTTG	AAATAGTAGA E T V	GATCGAGTCT E I E S	AACTCTCAAG	GCGGAGTAGA G G V	CATCGAAAAC D T E N
		<u> </u>				
6001	CTTAAGTCCG L K S	TTCTAAATGA V L N	CGAGGTTGCA D E V A	GGCTTCATGC G F M	TTACAAACCC L T N	AAGTACTCTT P S T L
6061	GGACTCTTCG	AGGTAAACAT	AACAGAAATA	ACTAAGCTTA	TACACGAGGC	AGGCGGACTT
	G L F	E V N	ITEI	T K L	IHE	A G G L
6121	TGCTATTATG	ATGGAGCAAA	CCTTAATGCC	ATAATGGGCA	AGACAAGACC	TGGAGACATG
0101	СҮҮ	D G A	N L N A	I M G	K T R	P G D M
C101						maamaaaaaa
0101	GGATTIGAIG G F D	V M H	F N L H	K T F	S T P	H G G G
6241	GGCCCAGGAG	CTGGTCCTAT	AGGAGTTAAA	GCTCATCTTG	CTGAGTTCCT	TCCAGTACCA
	GPG	AGP	IGVK	Апц		
6301	GTAGTAGCCA	AGAAGGACGA	CAAGTTCGTT	CTTGACTATG	ACAGACCGAA	TTCTATGGGT
	V V A	ккр	DKFV	L D Y	DRP	N S M G
6361	AAGATTAAAA	ACTTCTACGG	CAACTACGGT	GTTTGCCTAA	GAGCATATGC	TTATGTAAAA
	K I K	N F Y	G N Y G	V C L	R A Y	A Y V K
6421	ТСААТСССТС	CAACCCCACT	таассаасто	ACCCAACCTC	СССТАТТСАА	тассалстас
0121	S M G	A S G	L K E V	S E A	A V L	N A N Y
6401						
6481	ATGATGCACA M M H	AGCTCAAGGG	AGAGTACAAG G E Y K	CTTCCATACG	D O V	CAAACACGAA CKHE
				<u> </u>	D Q V	
6541	TTCGTGCTTG	ATGGACTTAG	AGGAAGCGAG	CTTGAAGTTA	CTACGCTTGA	TGTTGCGAAG
	F'VL	DGL	RGSE	LEV	Т. Т. Г.	D V A K
6601	AGACTTCTTG	ACTATGGCTA	CCATCCACCA	ACAGTATACT	TCCCTCTCAT	AGTGCATCAA
	R L L	N Y G	Y H P P	т v ү	FPL	I V H Q
6661	GCTATAATGA	TTGAGCCTAC	TGAGACTGAA	GGCCGTGAAA	CTCTTGATGA	ATTTATTGAT
	A I M	IEP	ТЕТЕ	GRE	T L D	E F I D
6721	CCCCTTCTAA	асатасстса	AGACCCTAAC	ΔΔΔCΔͲCCͲC	Δαδτάσταδ	ΔΔΔΤΩΩΔΟΩΔ
0721	A L L	K I A	E E A K	K D P	Q I L	K N A P
6781	CAGACTACTC	TTGTTAAGAG	ACTTGATGAA R L D E	GTTAAGGCTG V K A	CTAAAGACCT	TATACTAAAA
	<u>y</u> 1 1			V 10 11		
6841	TATCAAGGCT	AAAATAGAAT	AGCTTATAAA	AACACATGCC	GG <u>CAAAGC</u> CC	ATTTGCCGGC
	Y Q G	-TTATCTTA	TCGAATATTT	TTGTGTGTACGG	CCGTTTCGGG	TAAACGGCCG
						thf
6901	ATGTGTTAAA	ATGGATGTAT	ATCAAAAAAA	ATAGAAATTC	AGGAGGTTAG	AGG ATG AAAA
	-TACACAA1"1"1"	TACCTACATA	'I'AG'I''I''I''I''I''I''I''	'TATCTTTAAG	TCCTCCAATC	TCC M K
6961	CTGACGTTCA	AATAGCACAG	GAAGCCAAGA	TGCTTCCAAT	AATGGAAGTT	GCAAAACAAA
	T. D. V	ų i a Q	EAK	мгъ	тык А	ак Q
7021	TAGGTCTAGG	TGAGGATGAT	ATCGAACTTT	ACGGCAAGTA	TAAGGCGAAG	ATATCTCTTG
	I G L	GEDD	IEL	Y G K	УКАК	ISL
7081	ACGTTTACAA	GAGACTTGCT	GACAAGCCGG	ACGGAAAGCT	AGTTCTGGTT	ACAGCTATAA
	DVY	KRLA	DKP	DGK	LVLV	TAI

7141	ACCCAACTCC	AGCAGGAGAA	GGAAAGACTA	CTACAAACGT	AGGTCTTAGC	ATGGGTCTTA
	N P T	P A G E	G K T	T T N	V G L S	M G L
7201	ACAAGATAGG	TAAAAAGACT	ATAACAGCTC	TTAACGAGCC	ATCACTTGGA	CCATGCTTTG
	N K I	G K K T	I T A	L N E	P S L G	PCF
7261	GTGTTAAGGG	AGGAGCAGCT	GGAGGCGGAT	ACGCTCAGGT	AGTTCCTATG	GATGACATAA
	G V K	G G A A	G G G	Y A Q	V V P M	D D I
7321	ACCTTCACTT	CACTGGAGAC	ATCCACGCTA	TAACTACAGC	TCACAACCTG	CTTGCAGCTC
	N L H	F T G D	I H A	I T T	A H N L	L A A
7381	TTATGGACAA	CCACATAAAG	CAGGGCAACG	CTCTTGGAAT	AGACATAAAC	AAGATAACTT
	L M D	N H I K	Q G N	A L G	I D I N	K I T
7441	GGAAAAGGGT	TCTTGACATG	AATGACAGAG	CTCTTAGAGA	CATAGTTATA	GGCCTTGGCG
	WKR	V L D M	N D R	A L R	D I V I	G L G
7501	GCACAGCCAA	CGGAATCCCA	AGACAAGACG	GATTCGATAT	AACTGTTGCA	TCTGAGATAA
	G T A	N G I P	R Q D	G F D	I T V A	S E I
7561	TGGCTATAAT	GTGTCTTGCT	ACAAGCCTTT	CAGACCTTAA	AGACAGACTT	TCAAGAATGA
	M A I	M C L A	T S L	S D L	K D R L	S R M
7621	TAGTAGGCTA	TACAAGCCGA	CGATTAGCCG	TTACTGCTGA	CAGCTTAACG	CTCAGGGGAG
	I V G	Y T S R	R L A	V T A	D S L T	L R G
7681	CTCTTGCACT	TCTTCTTAAG	GATGCTCTTA	AGCCAAACCT	TGTACAGACT	CTAGAAAACA
	A L A	L L L K	D A L	K P N	L V Q T	L E N
7741	CTCCAGCTAT	AATACACGGC	GGACCATTTG	CAAACATAGC	TCACGGCTGT	AACTCTGTAA
	T P A	I I H G	G P F	A N I	A H G C	N S V
7801	CGACTACTAA	GACAGCTCTT	AAGATAGCTG	ACTACGTAGT	TACAGAAGCC	GGTTTTGGTG
	T T T	K T A L	K I A	D Y V	V T E A	G F G
7861	CTGACCTTGG	AGCTGAGAAG	TTCTTCGACA	TCAAGTGCCG	TTTTGCAGAT	CTTAAGCCTG
	A D L	G A E K	F F D	I K C	R F A D	L K P
7921	ACGTAGCTGT	AATAGTTGCT	ACAGTTAGAG	CTCTTAAGAA	CCACGGCGGA	GTAGCTAAAG
	D V A	V I V A	T V R	A L K	N H G G	V A K
7981	CAAACCTTGG	GGCTGAAAAC	ATGAAGGCTC	TTGAGGACGG	CTTTGGAAAC	TTGGAAAGAC
	A N L	G A E N	M K A	L E D	G F G N	L E R
8041	ATATTGAAAA	CGTGCACAAG	TTCGGAGTGC	CTGCAGTAGT	TGCTATAAAC	GCATTCCCTA
	H I E	N V H K	F G V	P A V	V A I N	A F P
8101	CAGACACTGA	AAAAGAGCTT	AAGTTCGTTG	AAGATGCCTG	CAGAAAACTA	GGCGCAGACG
	T D T	E K E L	K F V	E D A	C R K L	G A D
8161	TAGTGCTTTC	AGAAGTATGG	GCAAAAGGCG	GAGAAGGCGG	AGTTGAGCTT	GCTAAGAAGG
	VVL	S E V W	A K G	G E G	G V E L	A K K
8221	TAGTTGAAGT	AACTGAAAAA	GGCGCAGCAA	AATTCAAGCC	GCTATATCCA	GCAGAAATGC
	V V E	V T E K	G A A	K F K	P L Y P	A E M
8281	CTCTAAAGCA	AAAGATAGAG	ACAATAGCAA	AAGAAATATA	CAGAGCGGAC	GGAGTAGAGT
	PLK	Q K I E	T I A	K E I	Y R A D	G V E

8341	TCTCGGCTAA	GGCTTCAAAA	GAGCTTGATA	AATTCGAGAA	GCTTGGATTT	GGAAATCTTC		
	FSA	K A S K	ELD	KFE	K L G F	G N L		
8401	CAATATGCGT	AGCTAAGACT	CAGTATTCAT	TCTCTGACAA	TCCAAACCTT	AAAGGAGCTC		
	P I C	VAKT	Q Y S	FSD	N P N L	K G A		
8461	CAAAGGGCTT CACTGTATCA GTAAGCAATG		CAAGAATATC	AGCTGGTGCA	GGCTTCATA			
	P K G	FTVS	V S N	ARI	S A G A	GFI		
8521	TTGTGCTTAC	TGGAGACATA	ATGACTATGC	CTGGACTTCC	AAAGGTTCCA	GCTGCAAACC		
	V V L	TGDI	М Т М	P G L	PKVP	A A N		
8581	ACATGGATGT	ACTTGAAAGC	GGAGAAATAG	TAGGTCTGTT	CTAATATGGA	TATCAA G TTT		
	H M D	V L E S	G E I	V G L	F -ATACCT	ATAGTTCAAA		
8641	AATAAGTAAT	AGAACCATCC	ТСТТААТСТА	TTTGGGGAAA	ACCTAGGTTT	TCCCCTCTTT		
	TTATTCATTA	TCTTGGTAGG	AGAATTAGAT	AAACCCCTTT	TGGATCCAAA	AGGGGAGAAA		
				>>>>>	<<<	<<<<<		
					prpl	J		
8701	TATACACACA	GCTATAGAAA	AATTCTATCA	TCAAGGAGGG	CATTATA	GCATTTAAAA		
	ATATGTGTGT	CGATATCTTT	TTAAGATAGT	AGTTCCTCCC	GTAATAT M	A F' K		
8761	TTGAAGGCGG	AGACGTTAAG	AAAGCTCTGG	AAGTGAGCAT	AGATGAGTCA	ATAAAAGACA		
	IEG	g d v k	K A L	E V S	IDES	IKD		
8821	GGATAGCTAA	CGCCTGCGCA	ACC TGA GATA	TCAACGCAGT	CCTGGCAGTT	GCTTGGGGAG		
	RIA	N A C A	T <u>U</u> D	I N A	V L A V	A W G		
8881	TGAAAGAAGA	AATAAGCGCT	AGTGAAGCTG	AAGCAGTAGA	CAAGACTCTT	GCAGAACTTG		
	VKE	EISA	S E A	EAV	DKTL	A E L		
8941	CAGGTTCAAG	CATAGCACTT	GAGTCTGGAT	ACAAGGTTGA	TTTCATGAAG	GGCGGATGTA		
	A G S	S I A L	E S G	Y K V	DFMK	G G C		
9001	AGGTAAAAGA	TGACAAGGCC	GTGCTTATAT	ACAGATATCA	AATAACTGAG	AAGCCTTAAG		
	K V K	D D K A	V L I	Y R Y	Q I T E	K P -		
9061	TTTCATATTT	TAAGAATCAA	ΑΑΤΑΑΤΑΤΤΤ	ATAATGCAAA	GTCAAAACAG	татаааасаа		
	AAAGTATAAA	ATTCTTAGTT	ТТАТТАТААА	TATTACGTTT	CAGTTTTGTC	ATATTTTGTT		
9121	ATCTATGGGA	CAGGCCGTTT	ATAAACGGCC	TGTTTTGGTG	ATAATCTTAA	GTATATGGTC		
	TAGATACCCT	GTCCGGCAAA	TATTTGCCGG	ACAAAACCAG	TATTAGAATT	CATATACCAG		
	>	>>>>>>	<<<<<<	<<<<				

Abb. 45: Nukleotidsequenz des Glycin-Decarboxylase-Operons aus *E. acidaminophilum* und der angrenzenden Genregionen. Der nicht-codierende Strang ist in 5-3-Richtung, die resultierenden Aminosäuren sind im Ein-Buchstaben-code jeweils unter der dritten Base des entsprechenden Codons dargestellt. Die einzelnen Startcodons sind fett gedruckt, putative Ribosomen-Bindestellen doppelt unterstreichen, mögliche Promotorelemente (-10, und -35-Regionen) sind einfach unterstrichen. Durch primer extension identifizierte Transkriptionsstartpunkte sind durch Pfeile gekennzeichnet. Potentielle Terminationsstrukturen sind durch Pfeilspitzen gekennzeichnet. Die intergenen Bereiche sind doppelsträngig dargestellt. Das Selenocystein-Codon ist genau wie die Aminosäure fett gedruckt und doppelt unterstrichen. Die angegebene Sequenz ist unter der *accession number* AY722711.1 in der EMBL-Datenbank eingetragen. Die dargestellten Gene codieren für folgende Proteine: *fabG_3-Oxoacyl-(Acyl-Carrier-Protein)-Reduktase*, *nlpP_Zellwand assoziierte* Reduktase mit SH3-Domäne, *gcvP4_P4-Protein, gcvP2_P2-Protein, gcvP1a_a-Untereinheit* des P1-Proteins, *thf_Formyl-THF-Synthetase*, *prpU_PrpU*.

A.III. Sequenz eines neuen Ausschnittes des Glycin-Reduktase-spezifischen Gencluster I

1	AGCCTTGCTA	AAAGGCCGCC	GAAGGGACAA	GTCTTGATTT	ACCCAAAAGG	ATCAAGGTGA
	TCGGAACGAT	TTTCCGGCGG	CTTCCCTGTT	CAGAACTAAA	TGGGTTTTCC	TAGTTCCACT
61	AATTCTCAGG	CAAAAGGACC	ATATTCGGAC	AGACTCTGGA	TAAAAACAGA	GAAACATGAC
	TTAAGAGTCC	GTTTTCCTGG	TATAAGCCTG	TCTGAGACCT	ATTTTTGTCT	CTTTGTACTG
121	TTGGGATGGT	TTTGTTTTTT	CTGTTTTTTT	TTATACTCAA	AATCCGCTTT	GGAGTTTGTA
	AACCCTACCA	AAACAAAAAA	GACAAAAAAA	AATATGAGTT	TTAGGCGAAA	CCTCAAACAT
181	TTGCGGCACA	GGAAATAATA	GCGGGTTTAG	AGTTTTGAAA	ATTCGGAAAA	CATTTTCA <u>GA</u>
	AACGCCGTGT	CCTTTATTAT	CGCCCAAATC	TCAAAACTTT	TAAGCCTTTT	GTAAAAGTCT
241	<u>GGAGG</u> TAATA CCTCCATTAT	grax AAC ATG GAGA TTG M E	TTATAACTAA I I T	TAATCCTCTT N N P L	GTGAAGGAAA V K E	AGCTTCTCCA K L L
301	AAAGGCAGAG	AGACCTGACA	GGGTAAAAAA	CATAACGTTT	TTATCGGACT	GCGATTATAT
	Q K A E	R P D	R V K	N I T F	L S D	C D Y
361	CGGAGTACTC	CACAATGTCA	GAAATCTTGT	GCATTCTGGT	TACAAGATAC	TCACCCATCC
	I G V L	H N V	R N L	V H S G	Y K I	L T H
421	TTTGTATGGA	AGCGTAAAGC	CAAATGAAAC	ACCATACAGA	ACGATATTTG	TGGAACCGGG
	P L Y G	S V K	PNE	T P Y R	T I F	V E P
481	AACAGGTCTT	GATATGGACT	CCCTGAAGCT	TATTGAAAGC	GCAATTCAAA	CAGTTGAGAC
	G T G L	D M D	S L K	L I E S	A I Q	T V E
541	ATTCCAGAAG	AACTACAAGA	CACCTGTATG	GGACGAAAAA	GTAACAGACG	ACTTTCAGGT
	T F Q K	N Y K	T P V	W D E K	V T D	D F Q
601	TGTAGACTTG	GATCTTATTG	CACACACACT	TAACGGGATC	AAATTCTAGA	GAGTGGCACG
	V V D L	D L I	A H T	L N G I	K F -T	CTCACCGTGC
661	CTTGAGATTC	GCTGACAATA	TTTATTATCT	GCAAAGGTAA	ACGCTTGCAA	GGGCCAAAGC
	GAACTCTAAG	CGACTGTTAT	AAATAATAGA	CGTTTCCATT	TGCGAACGTT	CCCGGTTTGC
721	TGGAGCAGAG	ТААТАТАТТТА	TTTTTTCAAT	TTTTCAATAT	ATT <u>GAAGGAG</u>	<u>G</u> TACTTTTAT
	ACCTCGTCTC	АТТАТАТААТ	AAAAAAGTTA	AAAAGTTATA	TAACTTCCTG	CATGAAAATA
781	grdE₂ ATGCGTTTGG M R L	AACTTGGAAA E L G	TATCTTCATC N I F I	AAAGACATTC K D I	AGTTCGCTGC Q F A	AGAGACAAAA A E T K
841	GTAGAAAATG	GGGTTCTTTA	TGTAAATAAA	GACGAAATGA	TTAAAAAATT	AAGCACAATT
	V E N	G V L	Y V N K	D E M	I K K	L S T I
901	GAACACATCA	AATCAGTAGA	TCTTGACATC	GCACGTCCAG	GAGAGAGTGT	GAGAATAACT
	E H I	K S V	D L D I	A R P	G E S	V R I T
961	CCTGTTAAGG	ATGTTATAGA	GCCAAGGGTT	AAGGTTGAAG	GACCTGGCGG	AATATTCCCG
	PVK	D V I	E P R V	K V E	G P G	G I F P
1021	GGAGTAATAA	GCAAGGTTGA	GACTGATGGT	TCAGGAAGAA	CTCACGTGCT	TCAGGGCGCT
	G V I	S K V	E T D G	S G R	T H V	L Q G A
1081	GCGGTAGTAA	CAACTGGAAA	GGTAGTTGGA	TTCCAGGAAG	GTATAGTAAA	CATGAGCGGT
	A V V	T T G	K V V G	F Q E	G I V	N M S G

1141	GTTGGAGCAG	AGTATACTCC	TTTCTCGAAG	ACTTTAAACC	TTGTAGTGAT	AGCTGAGCCA
	V G A	E I I	PFSK		Цνν	IAEP
1201	GAAGATGGAA E D G	TAGAGCAGCA I E Q	CAGACACGAA H R H E	GAGGTTCTGA E V L	GAATGGTTGG R M V	ACTAAACGCC G L N A
1001						
1201	GGCGTATATC G V Y	L G E	A G R N	V T P	D E V	K V Y E
1321	ACTGATACAA T D T	TATTCGAAGG I F E	AGCAGCAAAG G A A K	TATCCAAACC Y P N	TGCCAAAGGT L P K	AGGATATGTA V G Y V
1381	TACATGCTTC Y M L	AAACTCAGGG Q T Q	TCTTCTACAC G L L H	GACACATATG D T Y	TATACGGCGT V Y G	AGATGCGAAG V D A K
1441	AAAATAGTTC	CAACAATACT	ATACCCAACA	GAAGTAATGG	ATGGAGCCAT	ACTAAGCGGA
	K I V	ΡΤΙ	L Y P T	E V M	D G A	I L S G
1501	AACTGCGTTT	CGTCATGCGA	CAAGAACCCA	ACATACGTAC	ACTGCAACAA	CCCGATGGTT
	N C V	S S C	DKNP	ТҮV	H C N	N P M V
1561	GAAGAGCTTT E E L	ACGCAGTGCA Y A V	CGGAAAAGAG H G K E	ATCAACTTTG I N F	TTGGTGTTAT V G V	AATAACAAAC IITN
1621	GAAAACGTAT E N V	ACCTTGCTGA Y L A	CAAGGAAAGA D K E R	TCTTCAGACT S S D	GGACAGCAAA W T A	GCTTTGCAAG K L C K
1681	TTCCTGGGAC	TTGACGGTGC	AATAGTATCA	CAGGAAGGCT	TTGGAAACCC	AGATACAGAC
1001	F L G	L D G	A I V S	Q E G	F G N	PDTD
1741	CTTATAATGA	ACTGCAAGAA	GATAGAAATG	GAAGGCGTTA	AGACTGTAAT	ATCTACAGAC
1741	CTTATAATGA L I M	ACTGCAAGAA N C K	GATAGAAATG K I E M	GAAGGCGTTA E G V	AGACTGTAAT K T V	ATCTACAGAC I S T D
1741 1801	CTTATAATGA L I M GAGTACGCAG	ACTGCAAGAA N C K GAAGAGACGG	GATAGAAATG K I E M AGCATCTCAG	GAAGGCGTTA E G V TCACTTGCTG	AGACTGTAAT K T V ATGCTGATGT	ATCTACAGAC I S T D AAGAGCTAAC
1741 1801	CTTATAATGA L I M GAGTACGCAG E Y A	ACTGCAAGAA N C K GAAGAGACGG G R D	GATAGAAATG K I E M AGCATCTCAG G A S Q	GAAGGCGTTA E G V TCACTTGCTG S L A	AGACTGTAAT K T V ATGCTGATGT D A D	ATCTACAGAC I S T D AAGAGCTAAC V R A N
1741 1801 1861	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA	ACTGCAAGAA N C K GAAGAGACGG G R D GCAACGGTAA	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC	$\begin{array}{ccc} AGACTGTAT\\ K & T & V \end{array}$ $\begin{array}{ccc} ATGCTGATGT\\ D & A & D \end{array}$ $TTCCTCCAAT$	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT
1741 1801 1861	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A	ACTGCAAGAA N C K GAAGAGACGG G R D GCAACGGTAA S N G	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V	AGACTGTAT K T V ATGCTGATGT D A D TTCCTCCAAT L P P	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T
1741 1801 1861 1921	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCACA	ACTGCAAGAA N C K GAAGAGACGG G R D GCAACGGTAA S N G TCCAGTACAT	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V	$\begin{array}{c c} AGACTGTAT\\ K & T & V \\ \\ ATGCTGATGT\\ D & A & D \\ \\ TTCCTCCAT\\ L & P & P \\ \\ \\ TCGACGGAGC \end{array}$	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT
1741 1801 1861 1921	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCACA I G H	ACTGCAAGAA N C K GAAGAGACGG G R D GCAACGGTAA S N G TCCAGTACAT I Q Y	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA I D T I	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V GCAGGCGGGAT A G G	AGACTGTAAT K T V ATGCTGATGT D A D TTCCTCCAAT L P P TCGACGGAGC F D G	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT A L R A
1741 1801 1861 1921 1981	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCACA I G H	ACTGCAAGAA N C K GAAGAGACGGG G R D GCAACGGTAA S N G TCCAGTACAT I Q Y	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA I D T I AATCCAGGCT	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V GCAGGCGGAT A G G	$\begin{array}{c c} AGACTGTAT \\ K & T & V \\ \\ ATGCTGAT \\ D & A & D \\ \\ TTCCTCCAT \\ L & P & P \\ \\ TCGACGACGAC \\ F & D & G \\ \\ \\ CTACATCAA \\ \end{array}$	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT A L R A GCTTGGCTTC
1741 1801 1861 1921 1981	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCACA I G H GACGGAAGCG D G S	ACTGCAAGAA N C K GAAGAGACGG G R D GCAACGGTAA S N G TCCAGTACAT I Q Y TAGAAGTTGA V E V	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA I D T I AATCCAGGCT E I Q A	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V GCAGGCGGAT A G G ATAACAGGAG I T G	AGACTGTAT K T V ATGCTGATGT D A D TTCCTCCAAT L P P TCGACGGAGC F D G CTACAATCGA A T I	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT A L R A GCTTGGCTTC E L G F
1741 1801 1861 1921 1981 2041	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCCACA I G H GACGGAAGCG D G S	ACTGCAAGAA N C K GAAGAGACGGG G R D GCAACGGTAA S N G TCCAGTACAT I Q Y TAGAAGTTGA V E V	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA I D T I AATCCAGGCT E I Q A ATACTAATCC	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V GCAGGCGGGAT A G G ATAACAGGAG I T G	$\begin{array}{c c} AGACTGTAT \\ K & T & V \\ \\ ATGCTGAT \\ D & A & D \\ \\ TTCCTCAT \\ P & P \\ \\ TCGACGAGG \\ F & D & G \\ \\ \\ CTACAT \\ A & T & I \\ \\ \\ \\ CGTACAT \\ \\ \end{array}$	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT A L R A GCTTGGCTTC E L G F CAAAAGAAGC
1741 1801 1861 1921 1981 2041	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCACA I G H GACGGAAGCG D G S GGATACCTAT G Y L	ACTGCAAGAA N C K GAAGAGACGG G R D GCAACGGTAA S N G TCCAGTACAT I Q Y TAGAAGTTGA V E V CTGCTAAAGG S A K	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA I D T I AATCCAGGCT E I Q A ATACTAATCC G Y -AGG	GAAGGCCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V GCAGGCGGAT A G G ATAACAGGAG I T G	$\begin{array}{c c} AGACTGTAT\\ K & T & V \\ \\ ATGCTGATGT \\ D & A & D \\ \\ TTCCTCCAT \\ L & P & P \\ \\ TCGACGGAGC \\ F & D & G \\ \\ \\ CTACAATGA \\ A & T & I \\ \\ \\ CGTAAATAAG \\ GCATTATC \\ \\ \end{array}$	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT A L R A GCTTGGCTTC E L G F CAAAAGAAGC GTTTTCTTCG
1741 1801 1861 1921 1981 2041 2101	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCACA I G H GACGGAAGCG D G S GGATACCTAT G Y L	ACTGCAAGAA N C K GAAGAGACGG G R D GCAACGGTAA S N G TCCAGTACAT I Q Y TAGAAGTTGA V E V CTGCTAAGG S A K	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA I D T I AATCCAGGCT E I Q A ATACTAATCC G Y -AGG	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V GCAGGCGGGAT A G G ATAACAGGAG I T G	$\begin{array}{c c} AGACTGTAT\\ K T V\\ \\ ATGCTGATGT\\ D A D\\ \\ TTCCTCAT\\ P P\\ \\ TCGACGGAGC\\ F D G\\ \\ \\ CTACATCAA\\ T I\\ \\ \\ CGTATTATC\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT A L R A GCTTGGCTTC E L G F CAAAAGAAGC GTTTTCTTCG ATATTTGACG
1741 1801 1861 1921 1981 2041 2101	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCACA I G H GACGGAAGCG D G S GGATACCTAT G Y L TTCATTATAA AAGTAATAT	ACTGCAAGAA N C K GAAGAGACGG G R D GCAACGGTAA S N G TCCAGTACAT I Q Y TAGAAGTTGA V E V CTGCTAAGG S A K	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA I D T I AATCCAGGCT E I Q A ATACTAATCC G Y -AGG ATTACGCAA <u>A</u> TAATGCGTT	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V GCAGGCGCGGAT A G G ATAACAGGAG I T G AAACCGAAAA TTTGGCTTTT	AGACTGTAAT K T V ATGCTGATGT D A D TTCCTCCAAT L P P TCGACGGAGC F D G CTACAATCGA A T I CGTAAATAAG GCATTTATTC grdA ₃ TGGTATGTCA ACCA M S	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT A L R A GCTTGGCTTC E L G F CAAAAGAAGC GTTTTCTTCG ATATTTGACG I F D
1741 1801 1861 1921 1981 2041 2101 2161	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCACA I G H GACGGAAGCG D G S GGATACCTAT G Y L TTCATTATAA AAGTAATATT	ACTGCAAGAA N C K GAAGAGCGG G R D GCAACGGTAA S N G TCCAGTACAT I Q Y TAGAAGTTGA V E V CTGCTAAAGG S A K TATAAAATT ATATTTTTAA	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA I D T I AATCCAGGCT E I Q A ATACTAATCC G Y -AGG ATTACGCAA <u>A</u> TAATGCGTTT	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V GCAGGCGGAT A G G ATAACAGGAA I T G AAACCGAAAA TTTGGCTTT GGAGAGACTT CCTCTCTGAA	$\begin{array}{c c} AGACTGTAT\\ K & T & V \\ \\ ATGCTGATGT \\ D & A & D \\ \\ TTCCTCCATGT \\ P & P \\ \\ TCGACGGAGC \\ F & D & G \\ \\ \\ CTACATCGA \\ A & T & I \\ \\ \\ CGTAATTATC \\ \hline \\ grdA_3 \\ \\ TGGT \\ ACCA & M & S \\ \\ \\ AGGTCCTGCT \\ \end{array}$	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT A L R A GCTTGGCTTC E L G F CAAAAGAAGC GTTTTCTTCG ATATTTGACG I F D ATGGCAGAAT
1741 1801 1861 1921 1981 2041 2101 2161	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCACA I G H GACGGAAGCG D G S GGATACCTAT G Y L TTCATTATAA AAGTAATATT	ACTGCAAGAA N C K GAAGAGACGG G R D GCAACGGTAA S N G TCCAGTACAT I Q Y TAGAAGTTGA V E V CTGCTAAGG S A K TATAAAATT ATATTTTTAA	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA I D T I AATCCAGGCT E I Q A ATACTAATCC G Y -AGG ATTACGCAA <u>A</u> TAATGCGTTT GGTGACAGAG G D R	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V GCAGGCGGGAT A G G ATAACAGGAG I T G AAACCGAAAA TTTGGCTTTT <u>GGAGAG</u> ACTT CCTCTCTGAA	$\begin{array}{c c} AGACTGTAAT\\ K & T & V \\ \\ ATGCTGATGT\\ D & A & D \\ \\ TTCCTCCAAT\\ L & P & P \\ \\ TCGACGGAGC\\ F & D & G \\ \\ \\ CTACAATCGA \\ A & T & I \\ \\ \\ CGTAAATAAG \\ GCATTTATC \\ grdA_3 \\ \\ TGGTAATGTCA \\ ACCA & M & S \\ \\ \\ \\ AGGTCCTGCT \\ P & G & P & A \end{array}$	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT A L R A GCTTGGCTTC E L G F CAAAAGAAGC GTTTTCTTCG ATATTTGACG I F D ATGGCAGAAT M A E
1741 1801 1861 1921 1981 2041 2101 2161 2221	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCACA I G H GACGGAAGCG D G S GGATACCTAT G Y L TTCATTATAA AAGTAATATT GCAAAAAAGT G K K	ACTGCAAGAA N C K GAAGAGACGGG G R D GCAACGGTAA S N G TCCAGTACAT I Q Y TAGAAGTTGA V E V CTGCTAAAGG S A K TATAAAATT ATATTTTTAA CATCATAATC V I I I	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA I D T I AATCCAGGCT E I Q A ATACTAATCC G Y -AGG ATTACGCAA <u>A</u> TAATGCGTTT GGTGACAGAG G D R	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V GCAGGCGGAT A G G ATAACAGGAAAA TTTGGCTTTT <u>GGAGAG</u> ACTT CCTCTCTGAAC	AGACTGTAAT K T V ATGCTGATGT D A D TTCCTCCAAT L P P TCGACGGAGC F D G CTACAATCGA A T I CGTAAATAAG GCATTTATTC grdA ₃ TGGTAATGTCA ACCA M S AGGTCCTGCT P G P A AGAATGCTTT	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT A L R A GCTTGGCTTC E L G F CAAAAGAAGC GTTTTCTTCG ATATTTGACG I F D ATGGCAGAAT M A E GTC TGA ACAG
1741 1801 1861 1921 1981 2041 2101 2161 2221	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCACA I G H GACGGAAGCG D G S GGATACCTAT G Y L TTCATTATAA AAGTAATAT GCAAAAAAGT G K K GTCTAAAAGG C L K	ACTGCAAGAA N C K GAAGAGACGG G R D GCAACGGTAA S N G TCCAGTACAT I Q Y TAGAAGTTGA V E V CTGCTAAAGG S A K TATAAAATT ATATTTTTAA CATCATAATC V I I I	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA I D T I AATCCAGGCT E I Q A ATACTAATCC G Y -AGG ATTACGCAA <u>A</u> TAATGCGTTT GGTGACAGAG G D R GAAGTAGTAT E V V	GAAGGCGTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V GCAGGCGGAT A G G ATAACAGGAA I T G AAACCGAAAA TTTGGCTTTT GGAGAGACTT CCTCTCCAAC D G I ACTCTGCAAC	AGACTGTAT K T V ATGCTGATGT D A D TTCCTCCAAT L P P TCGACGGAGC F D G CTACAATCGA A T I CGTAAATAG GCATTTATTC <i>grdA</i> 3 TGGTATGTCA ACCA M S AGGTCCTGCT P G P A AGAATGCTTT T E C F	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT A L R A GCTTGGCTTC E L G F CAAAAGAAGC GTTTTCTTCG ATATTTGACG I F D ATGGCAGAAT M A E GTC TGA ACAG V <u>U</u> T
1741 1801 1861 1921 1981 2041 2101 2161 2221 2281	CTTATAATGA L I M GAGTACGCAG E Y A GCTGTTGCAA A V A ATAGGCCACA I G H GACGGAAGCG D G S GGATACCTAT G Y L TTCATTATAA AAGTAATATT GCAAAAAAGT G K K GTCTAAAAGG C L K	ACTGCAAGAA N C K GAAGAGACGG G R D GCAACGGTAA S N G TCCAGTACAT I Q Y TAGAAGTTGA V E V CTGCTAAGG S A K TATAAAAATT ATATTTTTAA CATCATAATC V I I I CACTGGAGCA G T G A	GATAGAAATG K I E M AGCATCTCAG G A S Q CGCCAACATG N A N M CGACACTATA I D T I AATCCAGGCT E I Q A ATACTAATCC G Y -AGG ATTACGCAA <u>A</u> TAATGCGTTT GGTGACAGAG G D R GAAGTAGTAT E V V	GAAGGCCTTA E G V TCACTTGCTG S L A GTAATAGTAC V I V GCAGGCCGAT A G G ATAACAGGAG ATAACAGGAG AAACCGAAAA TTTGGCTTTT GGAGAGAGACTT CCTCTCTGAA ACGGAATACC D G I ACTCTGCAAC Y S A	$\begin{array}{c c} AGACTGTAT\\ K & T & V \\ \\ ATGCTGATGT \\ D & A & D \\ \\ TTCCTCCAT \\ P & P \\ \\ TCGACGGAGC \\ F & D & G \\ \\ \\ CTACATCGA \\ T & I \\ \\ \\ CGTACATCGA \\ A & T & I \\ \\ \\ CGTACATCGA \\ A & T & I \\ \\ \\ CGTACATCGA \\ \\ \\ \\ AGACTCTGT \\ \\ \\ \\ AGAATGCTTT \\ \\ \\ \\ \\ \\ GAGCTTTACT \\ \\ \\ \\ \end{array}$	ATCTACAGAC I S T D AAGAGCTAAC V R A N GGATAAGACT M D K T TCTAAGAGCT A L R A GCTTGGCTTC E L G F CAAAAGAAGC GTTTTCTTCG ATATTTGACG I F D ATGGCAGAAT M A E GTC TGA ACAG V <u>U</u> T GAGCAGTACG

2341	GTGCAGAGAA	CATGATAGTT	CTTGTTGGTG	CAGCAGAAGC	TGAATCAGCA	GGACTAGCTG
	G A E	N M I V	L V G	A A E	A E S A	G L A
2401	CAGAGACTGT	TACAGCAGGA	GACCCTACAT	TCGCAGGACC	ACTTGCAGGA	GTCCAGTTGG
	A E T	V T A G	D P T	F A G	P L A G	VQL
2461	GACTAAGAGT	ATTCCACGCA	GTTGAACCAG	AATTCAAAGA	TTCGGTAGAC	TCAGCAGTAT
	G L R	V F H A	V E P	E F K	D S V D	S A V
2521	ACGATGAGCA	AATAGGCATG	ATGGAAATGG	TTCTTGATGT	TGACTCGATA	ATAGCTGAAA
	Y D E	Q I G M	M E M	V L D	V D S I	I A E
2581	TGAAGTCAAT	AAGAGAGCAG	TTCTGCAAGT	TCAATGACTA	ATT <u>GAGGAGG</u>	TAAACACATG
	M K S	I R E Q	F C K	F N D	-AACTCCTCC	ATTTGAG M
2641	AGCAAAATTA	AAGTAGTTCA	TTATATAAAC	CAATTCTTCG	CAGGTGTTGG	TGGAGAAGAA
	S K I	K V V	H Y I N	Q F F	A G V	G G E E
2701	AAAGCTGACA	TCGAGCCTTT	CATAGCTGAG	TCACTTCCAC	CAGTAAGCCA	GAGCCTTGCA
	K A D	I E P	F I A E	S L P	PVS	Q S L A
2761	ACCCTTGTAA	AGGATGATGC	AGAAGTTGTT	GGAACAGTAG	TTTGCGGAGA	CTCATACTTC
	T L V	K D D	A E V V	G T V	V C G	D S Y F
2821	GGAGAAAACC	TTGTAGAAGC	TAAAAACAGA	ATACTTGAAA	TGATCAAGTC	TTTCAATCCA
	G E N	L V E	A K N R	I L E	M I K	S F N P
2881	GACATAGTAG	TAGCTGGACC	AGCTTTCAAC	GCAGGAAGAT	ACGGAGTTGC	TGCTGCAACT
	D I V	V A G	P A F N	A G R	Y G V	A A A T
2941	GTAACTAAGG	CTGTTCAAGA	CGAGCTTGGA	ATACCAGCAG	TAACTGGTAT	GTACATCGAA
	V T K	A V Q	D E L G	I P A	V T G	M Y I E
3001	AACCCAGGCG	CTGACATGTT	СААGАААТАС	GCATACATCA	TATCTACTGG	AAACTCAGCT
	N P G	A D M	F K K Y	A Y I	I S T	G N S A
3061	GCAGCAATGA	GAACAGCTCT	TCCAGCAATG	GCTAAGTTCG	CTATGAAGCT	TGCTAAAGGC
	A A M	R T A	L P A M	A K F	A M K	L A K G
3121	GAAGAAATAG	GCGGACCAGC	AGCAGAAGGA	TACATCGAAA	GAGGTATCAG	GGTTAACATG
	E E I	G G P	A A E G	Y I E	R G I	R V N M
3181	TTCAAAGAAG	ACAGAGGAGC	TAAGAGAGCT	GTCGCTATGC	TTGTTAAGAA	GCTTAAAGGC
	F K E	D R G	A K R A	V A M	L V K	K L K G
3241	GAAGAGTATG	AAACTGAGTA	TCCAATGCCT	TCATTTGACA	AGGTTGAGCC	AGGAAAAGCT
	E E Y	E T E	Y P M P	S F D	K V E	P G K A
3301	ATAAAAGACA	TGTCTAAAGC	TAAAATAGCT	ATAGTAACTT	CTGGTGGTAT	AGTTCCAAAA
	I K D	M S K	A K I A	I V T	S G G	I V P K
3361	GGAAACCCAG	ACAGAATAGA	GTCTTCATCA	GCTTCTAAGT	ATGGCAAGTA	TGACATACAA
	G N P	D R I	E S S S	A S K	Y G K	Y D I Q
3421	GGAATAGATG	ATCTTACTTC	AGAAGGCTGG	GAGACAGCTC	ACGGCGGACA	CGACCCAATC
	G I D	D L T	S E G W	E T A	H G G	H D P I
3481	TACGCTAACG	AAGATGCAGA	CAGGGTTATA	CCAGTAGACG	TGCTTAGAGA	CATGGAGAAA
	Y A N	E D A	D R V I	P V D	V L R	D M E K

3541	GAAGGCGTAA	TAGGCGAGCT	TCACAGATAC	TTCTACTCAA	CAACTGGTAA	CGGTACTGCT
	E G V	IGE	L H R Y	FYS	T T G	N G T A
3601	GTTGCAAGCT	CTAAGAAATT	CGCTGAAGAA	TTCACTAAGG	AACTAGTAGC	AGACGGCGTT
	V A S	SKK	FAEE	FTK	E L V	A D G V
3661	GATGCTGTTA	TACTAACTTC	TACA TGA GGC	ACTTGTACTA	GATGCGGTGC	ATCTATGGTT
	DAV	ILT	s t <u>u</u> g	ТСТ	R C G	A S M V
3721	AAAGAAATAG	AAAGATCTGG	AATACCAGTA	GTTCACATAG	CTACAGTTAC	TCCAATATCT
	KEI	ERS	GIPV	VHI	A T V	TPIS
3781	СТААСАСТТС	GAGCCAACAG	аатасттеса	GCTATAGCAA	тасстсассс	ACTTGGAAAC
5701	I. T. V	G A N	R T V P		трн	P L G N
	v	0 11 11			± ± 11	
3841	CCAGCTCTTT	CTCATGAAGA	GGAAAAAGCT	CTTAGAAGAA	AGATAGTTGA	GAAGGCTCTT
	PAL	SHE	ЕЕКА	LRR	K I V	EKAL
3901	GAAGCCCTTC	AAACTGAGGT	TGAAGAGCAA	ACGGTATTCG	AAAGAAACTA	TTAATATCAA
	EAL	QΤΕ	VEEQ	T V F	ERN	Y -ATAGTT
3961	TAAATGCAGG	CAAGGGCTTT	TGCCCCTGCC	TGCAATATAT	AAGTATTTTC	AAGGTATCTT
	ATTTACGTCC	GTTCCCGAAA	ACGGGGACGG	ACGTTATATA	TTCATAAAAG	TTCCATAGAA
					>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
4021	TTATTGGATT	AAAAGATATT	TTGAAAATGT	CTTTGAATAG	TCACATTAGA	GATGAAAACG
	ААТААССТАА	TTTTCTATAA	TTCTTTTACA	GAAACTTATC	AGAGTAATCT	CTACTTTTGC
	>>><	<<<<<<	<<<<<<			
4081	TCAAAGGCTG	GTAAGATACA	таааттсата	ACGATTTTTT	ΑΑΑΑΑΤΤΤΤΑ	атаатсстаа
	AGTTTCCGAC	CATTCTATGA	ATTTAAGTAT	TGCTAAAAAA	TTTTTTTAAAT	TATTACGATT
			trxB ₁			
4141	GTATCTTAAG	GAGGAAGTCA	CA GTG GAAAA	TGTATACGAT	TTGGCCATAA	TAGGTTCAGG
	CATAGAATTC	CTCCTTCAGT	GT V E	N V Y D	LAI	IGS
4201	TCCTGCAGGG	CTGGCAGCAG	CTCTATACGG	AGCCAGAGCC	AAGATGAAG	
	G P A G	LAA	A L Y	G A R A	к м к	

Abb. 46: Nukleotidsequenz eines neuen Ausschnittes des Glycin-Reduktase-spezifischen Gencluster I aus *E. acidaminophilum*; Erweiterung zu KOHLSTOCK *et al.* (2001), LÜBBERS und ANDREESEN (1993) und WAGNER *et al.* (1999). Der nicht-codierende Strang ist in 5 -3 -Richtung, die resultierenden Aminosäuren sind im Ein-Buchstaben-code jeweils unter der dritten Base des entsprechenden Codons dargestellt. Die einzelnen Startcodons sind fett gedruckt, putative Ribosomen-Bindestellen doppelt unterstreichen. Potentielle Terminationsstrukturen sind durch Pfeilspitzen gekennzeichnet. Die intergenen Bereiche sind doppelsträngig dargestellt. Das Selenocystein-Codon ist genau wie die Aminosäure fett gedruckt und doppelt unterstrichen. Das Selenocystein-Codon ist genau wie die Aminosäure fett gedruckt und doppelt unterstrichen. Die dargestellten Gene codieren für folgende Proteine: $grdX_GrdX$ (hypothetisch), $grdE_2_P$ roprotein der 25- und 22 kDa-Untereinheit des Protein B der Glycin-Reduktase, $grdA_3_$ Selenoprotein A, $grdB_1_47$ kDa -Untereinheit des Protein B der Glycin-Reduktase. Die vollständige Sequenz dieses Genclusters ist unter der *accession number* L04500 in der EMBL-Datenbank eingetragen.

grrW 1 GCGGACTTTT GCGTTCACTA CAATTCGGAA AACCCATATT TTTATGCACT CTGGGTGTGC C V H Y N S E NPY FYALWVC DF Α 61 AGGAAATGCG GTTATGTTGA GTTTGAAAAC AGGTTTGAAA GCATAAGCAA AGCAGGGGCA GΥV EFEN RFE S I S R KC KAGA 121 GACAAAATAA AAAAAGAGGT TACGCCCAAA TGGACTCCAA GAGATTATGG AGGCAAAAGA ККЕ V Τ Ρ Κ WΤΡ R D Y DKI GGKR GATATAGCAC AAGCCATGCA AATATACAAG CTGGCGCTGT ATCAGGCGGA GCTTCTTCAA 181 Q I Y K ELLQ ΤА Q A M L A L Y Q A D 241 AAGGAATATT CTAACAAGGC CGTACTGTGC CTTATGATAG CATGGCTTTA CAGGTATGAA Κ ΕY S N K AVLC ь м і A W L YRYE 301 AACGACACTG CGAGCGAAAC GAGATTCATG AAATCTGCGC TTGAGCTTTA TGCTAAAGCA TRFM ΝΟΤ ASE KSA L E L YAKA 361 TATTCGGCTG AAGATTTCCC AATAGGCGGT ATGGATTCAG CAAAGCTTTC ATACCTCATA тоя PTGG MDS AKT Y S A SYLT 421 GGGGAGTTAA ACAGAAGATG CGGAAATTTT CGGGAGTCGA TTAAATGGTT TGACAAAGCG G E L N R R C G N F R E S I K W F D K A 481 ATTAACGACC CAAATGTAAA AAAATCAATT CATATAAAAA AGAAAGCCAG AGAGCAGTGG IND PNV KKSI HIK KKA REQW 541 CATAAAGCTG CAGAGTATTA CAAGGCGGCA AAGCCTGCCG AATAACAAAG TTGGGAGTTG нка A E Y Y K A A K P A E -GTTTC AACCCTCAAC grrX 601 ATTTGCTAGT ATGCCTTTAA ATATAGTGCT TGTGGAGCCT GAAATTCCTC AAAACACAGG TAAACGATCA M P L NIV LVEP ΕΙΡ ΟΝΤ 661 AAACATAATA AGAACATGCG CCGTAACAGG TGCAAAGCTG CATCTTGTGA GACCTCTTGG R T C ΑVΤ GAKL GNI I H L V R P L TTTTGTAATG AACGACAAGT ACCTCAAAAG GGCCGGGCTT GATTATTGGG ACATGGTGGA 721 GFVM NDK Y L K RAGL DYW DMV TATAAATTAC TATGACAGCT TTGAAGAGCT TAAGGTCAGA TTTCCTGGTT CGTCATATCA 781 Y D S FEE LKVR DINY FPG S S Y 841 CTTTGCCACC ACTAAATGCC AAAACAGGCA TAGCGATGTC AAATACAAGG ACGAGTGCTT ΗFΑ Т ТКС QNR H S D V КҮК DEC 901 TATTGTTTTT GGGAAGGAGA CGAAAGGTCT TCCTAAGGAA CTTTTGGAAC AAAACGCAGA FTVF G K E ТКG LPKE LLE ONA TGAATGCATA AGGGTTCCCA TGCTTAAAGA TTCAAAGGCT AGATCACTGA ATCTTTCAAA 961 M L K R V P d S K A DECI R S L NLS CAGCGTGGCC ATAGTCGTGT ATGAAGCGCT AAGACAGCTG GGTTATCCTG GATTGGAATA 1021 N S V A I V V Y E A L R Q L G Y P GLE grrY 1081 ATTGAGAAAG TCGGGGAGAA GATTGATAAT GGATATTAAG ATTATTTCAG ACAGCCTAGC -AACTCTTTC AGCCCCTCTT CTAACTAT M D I K I I S DSL

A.IV. Sequenz eines erweiterten Ausschnittes des Glycin-Reduktase-spezifischen Gencluster III

1141	1 AGACATACCG CAAGAGACAG CCAGGGCGCT T		TGACATTGAA	GTAATGCCAC	TGACCATAAT	
	A D I P	Q E T	ARA	LDIE	V M P	LTI
1201	ATTTGATGAT	GCTCAGTATG	AGGATGGAGT	TGAAATCACT	CCGGCAGAAA	TGTACAAAAA
	IFDD	A Q Y	E D G	VEIT	PAE	М Ү К
1261	AATCGGAAGC	ATCAGGCAAG	CTGCCCACTT	CATTCTCAAG	TTAACACCAC	AGAAATTTGA
	K I G S	IRQ	ААН	FILK	LTP	QKF
1321	AGAAGCCTTC	AGGAAATATG	TGAATGAAGG	CTACACCGTA	ATATATATAG	GTTCCTCATC
	EEAF	R K Y	V N E	G Y T V	I Y I	G S S
1381	AAGGGCTTCG	GGCACTTTCC	AGTCTGCACT	GGTTGCAAAA	AATGCGGTAG	GCAGTGAAGA
	S R A S	G T F	Q S A	L V A K	N A V	G S E
1441	GGTACACGTT	TTTGACACAT	ACCTTTTAAG	CTATGCCAGC	GGAATGATTG	CAGTCGAGGC
	EVHV	FDT	Y L L	S Y A S	G M I	A V E
1501	TGCCAGAATG	GCCAAGGAAG	GCAAGAATCC	AGAGCAGATA	CTGAAAAGGT	CGCAGAGCAT
	A A R M	A K E	G K N	PEQI	L K R	S Q S
1561	GAAGGAACGC	ATGGGGTGCT	TATTTACAGT	AGACACGCTT	GACTATCTAA	AGCGAGGAGG
	MKER	M G C	LFT	V D T L	D Y L	K R G
1621	CAGGCTTTCT	GCAACAAAAG	CCGCAATAGG	CACAATACTA	AATGTAAAGC	CCTTGTTGAC
	GRLS	АТК	A A I	GTIL	N V K	P L L
1681	ACTCGAAGAT	GGAATAGTAA	AGCACCTTAA	GAATGTAAGG	GGGACAAAAA	AGGCTCTTGA
	TLED	G I V	КНЦ	K N V R	G T K	K A L
1741	AGAGATGTTG	GATATCATCA	TATCGGAAGC	GGGAGAATCT	CCCGAGCAGA	TAACGATTTC
	EEML	DII	I S E	A G E S	PEQ	ITI
1801	TCATGGACTT	GATATGGAAC	TGTTCTCGAA	TTTGCAGGAT	ATGGCGGCCG	AGCGCATGGA
	SHGL	DME	L F S	N L Q D	MAA	ERM
1861	CATGGATAGA	ATTCAGACAT	CACAGATAGG	GGCTGTAATA	GGGATACATA	CAGGACCAAG
	DMDR	ΙQΤ	SQI	GAVI	GIH	T G P
1921	CGTAGCAGCA	GCTTTTTATC	ТТАААААТА	А		
	S V A A	A F Y	L K K	-		

Abb. 47: Nukleotidsequenz eines erweiterten Ausschnittes des Glycin-spezifischen Gencluster III aus *E. acidaminophilum*; Erweiterung zu WAGNER *et al.* (1999). Der nicht-codierende Strang ist in 5'-3'-Richtung, die resultierenden Aminosäuren sind im Ein-Buchstaben-code jeweils unter der dritten Base des entsprechenden Codons dargestellt. Die einzelnen Startcodons sind fett gedruckt und unterstrichen, putative Ribosomen-Bindestellen doppelt unterstreichen. Die intergenen Bereiche sind doppelsträngig dargestellt. Die dargestellten Gene codieren für folgende Proteine: $grrW_h$ pyothetisches Protein, $grrX_RNA$ -Methylase (hypothetisch), $grrY_h$ pyothetisches Protein. Die vollständige Sequenz dieses Genclusters ist unter der *accession number* Y14275 in der EMBL-Datenbank eingetragen.

A.V. Sequenz eines Ausschnittes des Sarcosin-Reduktase-spezifischen Gencluster IV

	orfS					
1	GCAGAATGGG	TTGGAGTGTC	GACACCTTTT	ATTAAGGATA	CATCCTCGGA	AAAGGTCATA
	A E W	V G V	S T P F	I K D	T S S	E K V I
61	CTTATAACAT	CGTTTCTTAT	AAGCCTCCTT	TTCATTTGCA	TATACCTGGT	GTATTCTTGG
	LIT	SFL	ISLL	FIC	I Y L	V Y S W
121	AACAGGCTTC	TAAAGAGCGA	GGTTCTGAAA	AAAACGAGCG	AGCTGAGTCT	GAGCCGCCAG
	N R L	L K S	E V L K	K T S	E L S	L S R Q
181	AGACTCCAGA	CAACCTTCGA	CAGCATTACT	GATTGTATGG	TTGTTCTTGA	TAGCAGTCTT
	R L Q	T T F	D S I T	D C M	VVL	D S S L
241	AAGGTGGAAA	CTGTCAACAG	GGCTTTCACG	GAATTTACAG	GACTGCAGGA	GCATGAGCTA
	K V E	T V N	R A F T	E F T	G L Q	E H E L
301	ATTGGCAGAA	GCTTCCTGGA	CTTCGAAGAC	TTATCTGCTA	AGGAATGCCT	GCCGCTTATA
	I G R	S F L	D F E D	L S A	K E C	L P L I
361	AAAGACACGC	TAAAGACCAG	TTCAAAGCAT	AGCTTAGAAT	TTCAGCATGA	AGACATAATA
	K D T	L K T	S S K H	S L E	F Q H	E D I I
421	TACAGCATGA	GCACTTTTCC	TCTTAACTGG	GATGATCCGG	ATATGGAAAG	CGCGCTAGTT
	Y S M	S T F	P L N W	D D P	D M E	S A L V
481	ATGGTTAAGG	ATATAACACA	TATGAAGCTG	AGCGAGCAAA	AACTTCTGCA	GGACAACAAG
	M V K	D I T	H M K L	S E Q	K L L	Q D N K
541	ATGCTCGCCA	TAGGTCAGCT	GGCTTCGGGA	GTGGCGCATG	AAATAAGAAA	TCCACTCGGA
	M L A	I G Q	L A S G	V A H	E I R	N P L G
601	ATAATAAGGA	GCCATTGCTA	TGTCCTTAGA	CATTCACAGA	ATGTCAATGA	AGCTGAAATC
	I I R	S H C	Y V L R	H S Q	N V N	E A E I
661	CAGGGTTCTG	TTGCTGCTAT	TGAAAATTCT	GTGACAAGGG	CCAGCGGAAT	AATCGAAAAC
	Q G S	V A A	I E N S	V T R	A S G	I I E N
721	CTGCTGAATT	TTGTAAGGAT	ATCCAGCGAC	AAGTGCCAGC	TTACAAATGT	AAGGATTTTT
	L L N	F V R	I S S D	K C Q	L T N	V R I F
781	CTGGAAAGCA	TAATAGCCCT	TGAAAGGAAA	ACTCTGGAGA	AGAATTCAAT	AGACGTAAGC
	L E S	I I A	L E R K	T L E	K N S	I D V S
841	GTGGAGTGCC	CAGATGATAT	CTCCTGCTGC	CTGCATCAGG	ATTCGCTTAA	GCATGTGTTC
	V E C	P D D	I S C C	L H Q	D S L	K H V F
901	ATCAACCTGA	TTTCAAACTC	AATGGATGCT	ATTGAGTCAG	GCGGCAGAAT	ATCCATAAAA
	I N L	I S N	S M D A	I E S	G G R	I S I K
961	TCATATACGA	AAGAAGATTC	GGTTGTATTC	GAGTTCAGCG	ACAACGGTGA	TGGCATAAAA
	S Y T	K E D	S V V F	E F S	D N G	D G I K
1021	GAAAAAGACA	TAAAGAATAT	TTTCAACCCG	TTCTTCACTA	CAAAGCCGGC	AGGAAAGGGC
	E K D	I K N	I F N P	F F T	T K P	A G K G
1081	ACAGGCCTGG	GACTCTATAT	AACATACAAT	GAAGTCAAAA	AATGCGGAGG	CTCTATAACA
	T G L	G L Y	I T Y N	E V K	K C G	G S I T

1141	GCAAGCAGCA	AACCCGGAGA	GGGCACTACA	TTCCGGATAG	AAATACCGTT	AAG <u>GGAGGA</u> A	
	A S S orfR	K P G	EGTT	FRI	EIP	LREE	
1201	AAAG <mark>ATG</mark> AAA K D E	TCGGACTCAA I G L	GCTTCAGAAT K L Q N	ACTAATAGTT T N S	GATGATGAAG -	ATGAATACAG	
	МК	S D S	SFR	ILIV	DDE	DEY	
1261	AGACATACTA	AAAAGAATAC	TGGAAATCAA	TGCATACGAT	GCTGACACCG	CGGTCAGTGG	
	R D I L	K R I	L E I	N A Y D	A D T	A V S	
1321	CCAGGATGCA	CTTGTAAAGA	TAAAAAAAGA	TGAGTACGAT	CTTGTGCTTA	GCGATCTAAT	
	G Q D A	L V K	I K K	D E Y D	L V L	S D L	
1381	AATGCCGGGA	ATGGACGGTG	TGGAGTTGCT	AGGCGAAATA	АААААААТАА	AAAAGGACAT	
	I M P G	M D G	V E L	L G E I	К К І	K K D	
1441	CGAGGTGATA	CTTGTCACGG	GCTATGGCAG	CATCGAGAAT	GCAGTCGAAG	CCATGAGGAA	
	I E V I	L V T	G Y G	S I E N	A V E	A M R	
1501	GGGAGCCTTT	TCATACTTTG	TAAAAGGGAA	TGCTCCTGAG	GAGCTGCTCG	GCGAAATCGA	
	K G A F	S Y F	V K G	N A P E	E L L	G E I	
1561	AAAGGTTCGT	GAAAGCGCGG	CGCTGCAAAA	CAAGATGAAG	CAGCATATCA	GCGATAGCCT	
	E K V R	E S A	A L Q	N K M K	Q H I	S D S	
1621	GGGCGGAGAG	TTCCTACTTG	GCACAAGGAG	CGAGAAGTTC	AAAAAGGCAC	TTCAGACCGC	
	L G G E	F L L	G T R	S E K F	K K A	L Q T	
1681	AGAAAAGGCC	GCAAAGAGTA	ATATTACAAT	ACTGCTTCTG	GGAGAGTCTG	GTGTTGGTAA	
	A E K A	A K S	N I T	I L L L	G E S	G V G	
1741	GGAGGTATTT	GCAAAATATA	TTCATAGCTG	CAGCGAAAGA	AAGGATAAGC	CTTTTATAGC	
	K E V F	А К Ү	I H S	C S E R	K D K	P F I	
1801	TGTAAACTGC	TGTGCATTTT	CGGAAAGCCT	TCTGGAATCA	GAGCTCTTTG	GACATGAGAA	
	A V N C	C A F	S E S	L L E S	E L F	G H E	
1861	AGGTGCCTTT	ACCGGGGGCCT	CGGACTCCAG	AAAGGGAAGA	TTCGAGGCGG	CAGACAAGGG	
	K G A F	T G A	S D S	R K G R	F E A	A D K	
1921	CACGCTTTTT	CTGGATGAAA	TAGGTGATGT	GTCGCTCGAC	ATACAGGTAA	AGCTTCTTAG	
	G T L F	L D E	I G D	V S L D	I Q V	K L L	
1981	AGTTCTCGAG	ACCAGAAGGA	TAGAAAAGAT	TGGCAGCAAC	GTTCCTGCGC	CTGTGGATTT	
	R V L E	T R R	I E K	I G S N	V P A	PVD	
2041	CAGGCTCATA	TGCGCAACTA	ACAAGGACCT	GCAGCAGGAG	ATGGTCGAAG	GAAGAATTAG	
	F R L I	C A T	N K D	L Q Q E	M V E	G R I	
2101	AGAAGATTTC	TTCTACAGAA	TCAGTTCAAT	AGTAATTACT	ATTCCACCGC	TTCGGGAGAG	
	R E D F	F Y R	I S S	I V I T	I P P	L R E	
2161	GCGGGAGGAC	CTGCCGGATT	TAATAGAATT	TTTTCTTGGC	AAGGCGCAGC	TTGAAATGGG	
	R R E D	L P D	L I E	F F L G	K A Q	L E M	
2221	AAAAGAGATA	ACGTCGGTAC	AAAAAGAAGT	AATGAGCTTC	CTGCTTTCAT	ACGATTATCC	
	G K E I	T S V	Q K E	V M S F	L L S	Y D Y	
2281	GGGAAATATA	CGCGAGCTGA	GAAACATATT	AAACAGGCTT	GTAGTGCTTT	CTGAAAATGG	
	P G N I	R E L	R N I	L N R L	VVL	S E N	

2341	GG	TTC	TCA	GG	GCGA	GCG	ACC	TTC	CAA	ATGT	ΤG	AAA	ATC	AG	GCGG	ATG	TGC	TCT	GCG	AATA
	G	V	L	R	A	S	D	L	Ρ	Ν	V	Ε	Ν	Q	A	D	V	L	С	Е
2401	CG	ACG	TCAG	GG	CCGC	TTA	GGG	ATA	TAC	GGCG	CG	ATT	TCG	AA	TCGG	AAT	ATA	TCG	AAA	GAGT
	Y	D	V	R	Ρ	L	R	D	Ι	R	R	D	F	Ε	S	Ε	Y	I	Ε	R
2461	GC'	TCG	AGG	ГС	TGCG	GCA	ACA	ATG	TGT	CAAA	GG	CGG	CAA	AG	CTGC	TCG	ACA	TAA	GCA	GGAG
	V	L	Е	V	С	G	Ν	Ν	V	S	K	A	A	K	L	L	D	I	S	R
2521	GC.	AAC	TGA	CC	AAAA	AAA'	TAG	CTG	AAT	TCGG	СТ	TGA	GGG	AA	GCTT	CAC	AGC	CTT	CCG	AAAT
	R	Q	L	Т	K	K	Ι	A	Е	F	G	L	R	Ε	A	S	Q	Ρ	S	Е
2581	GG	TTG	ACTZ	AG																
	М	V	D	-																

Abb. 48: Nukleotidsequenz eines Ausschnittes des Sarcosin-spezifischen Gencluster VI aus *E. acidaminophilum*; Erweiterung zu WAGNER *et al.* (1999). Der nicht-codierende Strang ist in 5[']-3[']-Richtung, die resultierenden Aminosäuren sind im Ein-Buchstaben-code jeweils unter der dritten Base des entsprechenden Codons dargestellt. Die einzelnen Startcodons sind fett gedruckt und unterstrichen, putative Ribosomen-Bindestellen doppelt unterstreichen. Die intergenen Bereiche sind doppelsträngig dargestellt. Die dargestellten Gene codieren für folgende Proteine: *orfS*_Zwei-Komponenten-Sensor-Histidin-Kinase, *orfR*_NtrC-ähnlicher Responsregulator. Die vollständige Sequenz dieses Genclusters ist unter der *accession number* Y17872 in der EMBL-Datenbank eingetragen.

A.VI. Sequenz eines erweiterten und verbundenen Ausschnittes des Betain-spezifischen Gencluster II/V

g	rdT_1																			
1	GTTA	CGC	TAT	TGC	TTC	TATG	CA	CCT	TCT	ΓT	ATAA	CAT	CTG	CAA	ACTO	CGGC	TAC	CAT	ΓTG	ТΑ
	V	Т	L	L	L	L	С	Т	F	F	I	Т	S	A	Ν	S	A	Т	F	V
61	CTCG	GAA	TGT	TTA	CAT	CTGA	AG	GAG	ATC	ГС	AATC	CCT	CGA	ATC	AAA	AGAA	AA	'AA	TAT	GG
	L	G	М	F	Т	S	Ε	G	D	L	Ν	Ρ	S	Ν	Q	K	K	Ι	Ι	W
121	GGAC	TCT	TCC	AAT	CGC	TTCT	ΤG	CAA	CGG	CA	CTTC	TTC	TTC	TAG	CTG	GAGG	AC:	TTC.	AGT	CG
	G	L	F	Q	S	L	L	A	Т	A	L	L	L	L	A	G	G	L	Q	S
181	CTTC	AGA	CAA	TAT	CTG	TAGC	AG	CGG	CTT	ΓT	CCAT	TCA'	TAG	GAG'	TCA:	ГGCT	TC	ГТG	CGT	GC
	L	Q	Т	I	S	V	A	A	A	F	Ρ	F	I	G	V	М	L	L	A	С
241	GTAT	CAC	TTA	TAA	AGG	TGTT	AT	TGG	AGG	AT	TCCA	AGT	CGA	CGA	AATA	AAAT	TA	AGG	GCA	GC
	V	S	L	Ι	K	V	L	L	Ε	D	S	K	S	Т	K	-TA	AT:	rcc	CGT	CG
301	TATA	TAA	CAA	GCC	AGG	AGCT	GA	TGG	TGC	AG	TATA	TGT'	TGT	CTG	TCA	CTGT	TT	CTG	GCT	ΤG
	ATAT	ATT	GTT	CGG	ACC	TCGA	CT.	ACC	ACG.	ГС	ATAT.	ACA	ACA	GAC	AGT	GACA	AA	GAC	CGA	AC
361	TATA	TTG.	ACA	ACA	ATT	GTTA	AA	ATA	TAA	AT	AATG	TTT	CAA	ACT'	IGT	GTGT	TCO	GAG	TAT	AA
	ATAT	AAC'	TGT	TGT	TAA	CAAT	ΤT	TAT	ATT	ΓA	TTAC.	AAA	GTT	TGA	ACA	CACA	AG	CTC	ATA	ΓT
421	ATAT	AGA	GTG	GAT	TAT	ATGA	ΤA	AAT	TTA	ΓG	CGAA	GAA	GCG	TGT	TCA:	FTAA	AA	AAG	ATA	AT
	TATA	TCT	CAC	СТА	ATA	TACT	AT	TTA	AAT	AC	GCTT	CTT	CGC	ACA	AGT	AATT	TT.	ΓTC'	ΓΑΤ'	ГА
481	TGTG	ACG	TTT	TTT	TCA	ATTG	AA	AAG	TAT	ГС	AACT.	ATA	AGC	AAT	ATT:	FTTG	ATA	ATA'	TTT	ΤА
	ACAC	TGC.	AAA	AAA	AGT	TAAC	ΤT	TTC	ATA	AG	TTGA	TAT'	TCG	TTA'	TAAZ	AAAC	TAT	CAT.	AAA	AT
541	ATAT	GAT	GAT	ATT	TAT	TTGA	CA	TTG	TGT	ΓА	TAAA	ATC	ACA	CCA'	TGC/	ATGA	ATA	AAA	AAT	GC
	TATA	CTA	CTA	TAA	ATA	AACT	GT.	AAC	ACA	ΑT	ATTT	TAG	TGT	GGT.	ACG:	FACT	TA:	[TT]	TTA	CG

	$trxB_2$									
601	ATAAATGAAC	<u>AGGAGG</u> GGTT	TAA ATG GAAA	ATGTATACGA	TTTGGCCATA	ATAGGTTCAG				
	TATTTACTTG	TCCTCCCCAA	ATT M E	N V Y	D L A I	I G S				
661	GTCCTGCAGG	GCTGGCAGCA	GCTCTATACG	GAGCCAGAGC	CAAGATGAAG	ACAATCATGA				
	G P A	G L A A	A L Y	G A R	A K M K	T I M				
721	TTGAAGGTCA	GAAAGTCGGA	GGACAAATAG	TAATAACTCA	CGAGGTTGCA	AACTACCCAG				
	I E G	Q K V G	G Q I	VIT	H E V A	N Y P				
781	GCTCAGTAAG	AGAAGCTACG	GGTCCATCAC	TTATAGAGAG	AATGGAAGAG	CAGGCTAACG				
	G S V	R E A T	G P S	L I E	R M E E	Q A N				
841	AGTTCGGTGC	CGAGAAGGTA	ATGGACAAGA	TAGTAGACGT	TGACCTTGAC	GGCAAGATAA				
	E F G	A E K V	M D K	I V D	V D L D	G K I				
901	AAGTAATAAA	AGGCGAAAAA	GCCGAGTACA	AGGCAAAATC	AGTAATACTT	GCAACAGGAG				
	K V I	K G E K	A E Y	K A K	S V I L	A T G				
961	CGGCTCCAAG	ACTTGCAGGC	TGCCCTGGAG	AGCAGGAGCT	TACAGGCAAG	GGAGTATCAT				
	A A P	R L A G	C P G	E Q E	L T G K	G V S				
1021	ACTGCGCAAC	TTGCGACGCT	GACTTCTTCG	AGGACATGGA	AGTTTTCGTA	GTAGGCGGAG				
	Y C A	T C D A	D F F	E D M	E V F V	V G G				
1081	GAGACACTGC	TGTTGAAGAG	GCTATGTACC	TTGCGAAGTT	TGCAAGAAAG	GTTACAATAG				
	G D T	A V E E	A M Y	L A K	F A R K	V T I				
1141	TTCACAGAAG	AGACGAGCTA	AGAGCTGCCA	AGTCTATACA	GGAGAAGGCA	TTCAAGAATC				
	V H R	R D E L	R A A	K S I	Q E K A	F K N				
1201	CTAAGCTAGA	CTTCATGTGG	AACTCTGCAA	TAGAAGAAAT	AAAGGGAGAC	GGCATAGTTG				
	P K L	D F M W	N S A	I E E	I K G D	G I V				
1261	AATCTGCAGT	ATTCAAGAAC	CTTGTTACTG	GAGAGACTAC	AGAGTACTTT	GCAAACGAAG				
	E S A	V F K N	L V T	G E T	T E Y F	A N E				
1321	AAGACGGCAC	ATTCGGAATA	TTCGTATTCA	TAGGCTACAT	ACCTAAGAGC	GACGTATTCA				
	E D G	T F G I	F V F	I G Y	I P K S	D V F				
1381	AGGGCAAGAT	AACGCTTGAC	GATGCAGGAT	ATATAATAAC	AGACGACAAC	ATGAAGACAA				
	K G K	I T L D	D A G	Y I I	T D D N	M K T				
1441	ATGTTGAAGG	CGTATTTGCA	GCAGGAGACA	TAAGAGTCAA	GTCCCTAAGA	CAAGTAGTTA				
	N V E	G V F A	A G D	I R V	K S L R	Q V V				
1501	CTGCATGCGC	AGACGGAGCT	ATAGCTGCAA	CTCAGGCTGA	AAAATATGTT	GAGGCTAACT				
	T A C	A D G A	I A A	T Q A	E K Y V	E A N				
1561	TCGAAGAGTA	GAAAGCACAA	AAAATATTGT	TTGACGATCC	AAAATAAGGC	TATAAATTCA				
	F E E	-TTTCGTGTT	TTTTATAACA	AACTGCTAGG	TTTTATTCCG	ATATTTAAGT				
1621	AACGATGACT	GTAAAATCAA	TGTACTGAAA	ТАТАТТGАТА	АТААТАGААТ	TTAAA <u>AGGAG</u>				
	TTGCTACTGA	CATTTTAGTT	ACATGACTTT	АТАТААСТАТ	ТАТТАТСТТА	AATTTTCCTC				
1681	<u>a</u> tgaCtttta taCtgaaaat	ATGAGCGCAT	TACTAGTTGA L L V	AATAGACAAG E I D K	GATCAATTCC D Q F	AAGCAGAGGT Q A E				
1741	GCTAGAGGCA	GAAGGCTATG E G V	TGCTAGTTGA V L V	CTACTTCAGT	GACGGCTGCG	TGCCATGCAA				

1801	GGCTCTTATG	CCTGACGTGG	AAGAGCTGGC	TGCTAAATAC	GAAGGCAAGG	TTGCATTCCG
	K A L M	P D V	EEL	ААК Ү	E G K	VAF
1861	TAAATTCAAC	ACAAGCTCAG	CGAGAAGACT	TGCAATAAGC	CAAAAAATAC	TTGGACTTCC
	RKFN	T S S	ARR	LAIS	QKI	LGL
1921	AACAATAACA	CTTTACAAGG	GTGGACAAAA	GGTAGAGGAA	GTTACTAAGG	ACGACGCTAC
	PTIT	L Y K	GGQ	K V E E	V T K	DDA
1981	AAGAGAAAAC	ATAGATGCAA	TGATAGCCAA	GCACGTTGGC	TAAATTGTCA	TTCAATGATA
	TREN	I D A	MIA	K H V G	-TAACAGT	AAGTTACTAT
2041	ACCTAATGGG	CGGTGACTTC	ACTGCCCATT	AGGTTTATTC	AAAAGGTTTA	TTCAAAAAAG
			g	rdC_2		
2101	TACTTCAAAA	ATTTC <u>GGAGG</u>	<u>T</u> GTCAATAT A	TG AATTTTCC	AGTTCTTAAA	GGTGCGGGAT
	ATGAAGTTTT	TAAAGCCTCC	ACAGTTATA	M N F	P V L K	G A G
2161	ACGTTCTCGT	GCACACACCA	GACATGATAA	TGCACAACGG	AACAACTCAG	ACAACAGAAA
	Y V L	VHTP	DMI	M H N	GTTQ	ТТЕ
2221	AGATTGTAAA	CCCAGAATCA	GAATACCTAA	AAAAGCTGCC	TGAGCATTTA	AGATCATTTG
	K I V	NPES	ЕУЬ	ККЦ	РЕНГ	RSF
0001						
228T	AAGACGTAGT	AGCATACGCT	CCAAACCAGA	CATACATTGG	AAGCATGACT	CCAGAGGCAC
	EDV	VAYA	PNQ	T Y T	G S M T	PEA
0241			maamaaaaaaa		лапададал	
2341	IIGGAGAAAI	AGCAATGCCA	IGGIGGACAG	AAGACAAGAA	AGIGGCGGGA	GCCGACAGAT
	ГСЕЕ	I A M P	M M .T.	EDK	K V A G	A D R
2401						
2401	ACGGAAAGCT	IGGAGAGAIA	AIGCCICAGG	ACGAGIICCI	IGCGCIIAIG	TETGEATEAG
	YGK	ГСЕГ	мрQ	DEF	L А L М	SAS
2461	አረረጥአጥጥረረአ	രരന്നരനരരനന	ͲͲϤϤͻͽͽͽͽ	አረሞሞረአሞአረአ	CCCACCAAAC	
2401	D V F		TICGAAAAAG	AGIICAIAGA	GGGAGCAAAG	J K I
	DVF		F E K	с г т	EGAK	АКЦ
2521	Сасстсассс	татаатаааа	AACCTTCCAC	асассстааа	СССАССАСТА	CACCTACCTC
2021		P V V G	N L A	E S V	N A G V	E I A
	11 11 11	1 1 1 0				
2581	AGATAGAAAA	GCAGCTAAGC	GAGTTCCACG	CAGAAGGACT	атасаатаас	GGCAAGCTTG
2001	E T E	K O L S	E F H	A E G	L Y N N	G K L
2641	тассстссст	AAAAAGAGCC	САССАССТАС	ACGTGAACCT	ааастстсат	асаатссттс
2011	VGC	V K R A	H D V	D V N	L N S H	T M L
	• • • •	V 10 10 11				
2701	AGAACCTTGC	GGTTAAGGCA	TCAGGAGTGC	TTGCTCTTGC	AAACCTTATA	GCTAAAAACA
2702	E N L	A V K A	S G V		A N T, T	AKN
			5 0 1			
2761	ACGTAAACCC	AGCTGAAGTG	GACTACATCA	TAGAGTGCTC	TGAAGAGGCT	TGCGGAGACA
	N V N	PAEV	DYI	IEC	SEEA	CGD
2821	TGAACCAAAG	AGGAGGCGGA	AACTTCGCCA	AGGCTCTTGC	AGAAATGACT	GGCTGCGTTA
-	MNO	RGGG	NFA	KAL	АЕМТ	GCV
	x					•
2881	ACGCGACAGG	CTCAGACATG	AGAGGCTTCT	GCGCAGGACC	AACGCACGCA	CTTATAGCGG
-	ΝΑΤ	G S D M	RGF	CAG	РТНА	LIA
				-		
2941	CAGCGGCGCT	AGTTAAATCA	GGCGTATACA	AGAACGTAAT	AATAGCAGCG	GGTGGAGCGA
	AAA	LVKS	G V Y	K N V	IIAA	GGA
		-				
3001	CAGCAAAGCT	TGGAATGAAC	GGAAAAGACC	ACGTTAAGAA	AGAAATGCCA	ATACTTGAGG
	т а к	L G M N	G K D	н V К	K E M P	ILE

3061	ACTGCCTTGG	CGGCTTCGCG	GTTCTAGTTA	GCGAAAACGA	CGGAGTAAAC	CCAATTCTAA
	D C L	G G F A	V L V	S E N	D G V N	P I L
3121	GAACAGACCT	AGTGGGAAGA	CACACAGTTG	CAACTGGATC	AGCTCCACAG	GCTGTAATAG
	R T D	L V G R	H T V	A T G	S A P Q	A V I
3181	GCTCTCTAGT	TCTAAGCCCA	CTAAAAGCAG	GCGGACTTAA	AATAACAGAC	GTAGACAAGT
	G S L	V L S P	L K A	G G L	K I T D	V D K
3241	ACTCGGTAGA	AATGCAAAAC	CCAGACATAA	CTAAGCCGGC	AGGAGCAGGA	GACGTTCCAG
	Y S V	E M Q N	P D I	T K P	A G A G	D V P
3301	AGGCCAACTA	CAAGATGATA	GCCGCACTTG	CTGTCATGGG	AAAAGAAATA	GAAAGAGCAG
	E A N	Y K M I	A A L	A V M	G K E I	E R A
3361	ACATAGCAGC	TTTCGTTGAA	AAGCACGGAA	TGGTTGGTTG	GGCTCCAACA	CAAGGCCACA
	DIA	A F V E	K H G	M V G	W A P T	Q G H
3421	TACCATCAGG	AGTACCATAC	ATCGGCTTTG	CAATAAGCGA	CCTTACAGAA	GGCTCAGTAA
	I P S	G V P Y	I G F	A I S	D L T E	G S V
3481	ACAGAACTAT	GATAGTAGGA	AAGGGAAGCC	TCTTCCTTGG	AAGAATGACA	AACCTTTTCG
	N R T	M I V G	K G S	L F L	G R M T	N L F
3541	ATGGTGTTTC	AATAGTAGCA	GAGAGAAACA	CAGGCAAAGT	GGAGTCAGGA	AGCTCAGTAT
	D G V	S I V A	E R N	T G K	V E S G	S S V
3601	CAACAGAAGA	GATAAGAAAA	ATGATAGCAG	AATCTATGAA	GGATTTCGCA	GCACATCTAT
	S T E	E I R K	M I A	E S M	K D F A	A H L
3661	TAGCTGAAT <u>A</u> L A E	<u>GGGGT</u> GAAAA -CCCACTTTT	<i>grdD</i> ₂ A ATG TCAGAT T M S D	атаааасааа I K Q	TGATAGGCAA M I G	GACTTTCATG K T F M
3721	GAGATAGCAG	ACGCTATCGA	AACAGGAAGC	TTCGCTGGAA	AAGTAAAAGT	AGGAATAACA
	E I A	D A I	E T G S	F A G	K V K	V G I T
3781	ACCCTGGGCA	GCGAGCACGG	AGTAGAGAAC	CTGGTAAAGG	GAGCAGAGCT	TGCAGCTAAA
	T L G	S E H	G V E N	L V K	G A E	L A A K
3841	GACGCAGCCG	GCTTTGACAT	AGTGCTTATA	GGACCAAAGG	TTGAAACAAG	CCTTGAAGTA
	D A A	G F D	I V L I	G P K	V E T	S L E V
3901	GTAGAGGTAG	CAACAGAAGA	AGAAGCGCAC	AAGAAAATGG	AAGAGCTTCT	AGACAGCGGC
	V E V	A T E	E E A H	K K M	E E L	L D S G
3961	TATATCCACT	CTTGCGTAAC	AGTGCACTAT	AACTTCCCAA	TAGGCGTATC	GACAGTAGGA
	Y I H	S C V	T V H Y	N F P	I G V	S T V G
4021	AGGGTAGTAA	CACCTGGAAT	GGGCAAGGAG	ATGTTCATAG	CAACAACAAC	AGGAACATCT
	R V V	T P G	M G K E	M F I	A T T	T G T S
4081	GCGGCTCAAA	GAGTCGAGGC	CATGGTAAGA	AACGCGCTTT	ACGGAATAAT	AACAGCAAAG
	A A Q	R V E	A M V R	N A L	Y G I	I T A K
4141	TCAATGGGAA	TAGAAAACCC	GACAGTTGGA	ATACTAAACC	TTGACGGAGC	AAGAGCAGTA
	S M G	I E N	P T V G	I L N	L D G	A R A V
4201	GAAAGAGCGC	TTAAGGAGCT	TGCAGGAAAC	GGCTACCCTA	TAACATTCGC	AGAGTCGCTA
	E R A	L K E	L A G N	G Y P	I T F	A E S L

4261	AGAGCTGACG	GCGGAAGCGT	AATGAGAGGA	AACGACCTTC TTGGCGGAGC	TGCAGACGTA
	R A D	G G S	V M R G	N D L L G G	A A D V
4321	ATGGTAACAG	ACTCGCTAAC	AGGCAACATA	ATGATGAAGG TGTTCTCGTC	ATACACAACA
	м v т	D S L	T G N I	MMKVFS	S Y T T
4381	GGCGGAAGCT	ACGAGGGACT	AGGCTACGGC	TACGGCCCTG GAATAGGCGA	CGGCTACAAC
	G G S	Y E G	LGYG	Y G P G I G	DGYN
4441	AGGACAATAC	TGATACTCTC	AAGAGCGTCA	GGAGTTCCAG TAGCTGCAAA	CGCAATAAAA
	R T I	LIL	S R A S	G V P V A A	N A I K
4501	TACGCAGCCA	AGCTTGCGCA	AAACAACGTG	AAGGCGATAG CAGCGGCAGA	GTTCAAGGCG
	Y A A	K L A	Q N N V	KAIAAA	EFKA
4561	GCCAAGGCGG	CAGGCCTCGA	GAGCATACTT	GCGGGACTAA GCAAGGACAC	TAAGAAAGCC
	A K A	A G L	ESIL	AGL SKD	ТККА
4621	TCTACAGAGG	AAGAAGTGAA	GATGCCTCCT	AAGGAAGTAG TAACAGGAAC	AATCTCAGGC
	S T E	E E V	К М Р Р	K E V V T G	T I S G
4681	GTAGACGTAA	TGGACCTTGA	AGACGCACAG	AAAGTGCTTT GGAAAGCCGG	AATATACGCA
	V D V	M D L	E D A Q	K V L W K A	G I Y A
4741	GAGAGCGGAA	TGGGCTGCAC	AGGACCTATA	GTAATGGTAA ACGAAGCCAA	GGTTGAAGAA
	E S G	M G C	TGPI	VMVNEA	K V E E
4801	GCGGCAAAGA	TACTTAAGGA	TGCAGGCATA	GTAGCTTAA	
	AAK	ILK	DAGI	V A -	

Abb. 49: Nukleotidsequenz eines Ausschnittes des Betain-Reduktase-spezifischen Gencluster V/II aus *E. acidaminophilum*; Erweiterung zu LÜBBERS und ANDREESEN (1993), STEINER (2004) und WAGNER *et al.* (1999). Der nicht-codierende Strang ist in 5-3-Richtung, die resultierenden Aminosäuren sind im Ein-Buchstaben-code jeweils unter der dritten Base des entsprechenden Codons dargestellt. Die einzelnen Startcodons sind fett gedruckt und unterstrichen, putative Ribosomen-Bindestellen doppelt unterstreichen. Potentielle Terminationsstrukturen sind durch Pfeilspitzen gekennzeichnet. Die intergenen Bereiche sind doppelsträngig dargestellt. Die dargestellten Gene codieren für folgende Proteine: $grdT_1$ _Glycin-Betain-Transporter, $trxB_2$ _Thioredoxin-Reduktase, $trxA_2$ _Thioredoxin $grdC_2_57$ kDa-Untereinheit des Protein C der Glycin, Sarcosin und Betain-Reduktase, $grdD_2_48$ kDa-Untereinheit des Protein C der Glycin, Sarcosin und Betain-Reduktase. Durch die Arbeiten von Steiner (2004) wurde das von LÜBBERS und ANDREESEN (1993) beschriebene Gencluster II und das von WAGNER *et al.* (1999) beschriebene Gencluster V verknüpft. Die vollständige Sequenz dieses Genclusters ist unter der *accession number* Y17145 in der EMBL-Datenbank eingetragen.

A.VII. Sequenz eines neuen Ausschnittes des Creatin-Reduktase-spezifischen Gencluster VI-5[']-Bereich

1	CATTTCCGAT	GTGGAAAAGG	AAAAAGAGGA	TAGGGCGGGC	TCGAAATCCT	GCAAAATCAA
	GTAAAGGCTA	CACCTTTTCC	TTTTTCTCCT	ATCCCGCCCG	AGCTTTAGGA	CGTTTTAGTT
61	САААТАТААТ	TTTTTTGAAT	GAAAACGATT	TCTTGGCATA	AGAATTGCTT	ATATACATGT
	GTTTATATTA	AAAAAACTTA	CTTTTGCTAA	AGAACCGTAT	TCTTAACGAA	TATATGTACA
121	TAAACAGATA	ACAAAATGTT	GGCAAGGGCG	AGGAGGTGAA	TCTATAGCAG	AAATGCAATT
	ATTTGTCTAT	TGTTTTACAA	CCGTTCCCGC	TCCTCCACTT	AGATATCGTC	TTTACGTTAA
181	AAATCAATTT	CAGGGGAAAA	TATTTGGAAC	ATACAAGAAA	GGCTTTAAAA	TAC <u>GAGGAGG</u>
	TTTAGTTAAA	GTCCCCTTTT	ATAAACCTTG	TATGTTCTTT	CCGAAATTTT	ATGCTCCTCC
241	TGTGCGTT <u>AT</u>	G CGTCTTGAA	CTTGGAAAAA	TAAAAATAAC	TGATGTTCAG	TTTGGCGAAA
	ACACGCAA	M R L E	L G K	I K I	T D V Q	F G E
301	AAACAAAGGT	TGAGAATGGA	ACGCTTTATG	TAAATAAGAA	AGAGCTAGTC	GACATTGCAA
	K T K	V E N G	T L Y	VNK	K E L V	DIA
361	TGAAAGATGA	CCGCATACTG	AGTGTGAATA	TAGAACTCGC	AAGGCCGGGA	GAATCTGTAA
	M K D	D R I L	S V N	I E L	A R P G	E S V
421	GGATAGCTCC	TGTAAAGGAT	GTAATCGAGC	CCAGAGTCAA	GGTGGATGGG	TCGGGAGGCA
	R I A	P V K D	V I E	P R V	K V D G	S G G
481	TGTTCCCGGG	GATGATAAGC	AAGGTGAAAA	CAGTTGGTTC	GGGAAGGACT	CATGCTCTTG
	M F P	G M I S	K V K	T V G	S G R T	H A L
541	TTGGGGCAGC	GGTGCTGACT	TGTGGAAGCA	TAGTGGGATT	CCAGGAAGGA	ATAATAGATA
	V G A	A V L T	C G S	I V G	F Q E G	I I D
601	TGTCAGGCCC	GGCAGCCAAG	TACACGCCTT	TTTCCGAAAC	ATTCAACGTG	TGCGTAGTAA
	M S G	P A A K	Y T P	F S E	T F N V	C V V
661	TCGAGCCTAA	GGAAGGTCTT	GAGACACATG	CGTATGAAGA	GGCGGCTAGA	ATGGCAGGAC
	I E P	K E G L	E T H	A Y E	E A A R	M A G
721	TCAAAATAGG	AACATTTGTA	GGAGAAGCGG	GAAGACATGT	TGAGCCTGAT	GAGGTTGTCG
	L K I	G T F V	G E A	G R H	V E P D	E V V
781	TATATGAAAC	TAAGCCGCTT	CTGGAGCAAG	TGGCACAATA	TCCAGATCTT	CCAAAGGTGG
	VYE	T K P L	L E Q	V A Q	Y P D L	P K V
841	GTTACATCCA	TATGCTCCAG	TCGCAGGGAT	TGCTTCATGA	TACTTACTAT	TACGGAGTGG
	G Y I	H M L Q	S Q G	L L H	D T Y Y	Y G V
901	ACGCAAAGCA	AATGGTTCCT	ACATTCATGT	ACCCAACCGA	AATAATGGAC	GGGGCAATTA
	D A K	Q M V P	T F M	Y P T	E I M D	G A I
961	CAAGCGGAAA	CTGCGTTGCT	CCATGCGACA	AGGTTACGAC	ATTCCACCAT	TTGAACAATC
	T S G	N C V A	P C D	K V T	T F H H	L N N
1021	CGGTCATAGA	GGACCTCTAT	AAGAGACATG	GAAAGGACAT	CAACTTCATA	GGCGTTATCT
	PVI	E D L Y	K R H	G K D	I N F I	G V I
1081	TGACTAATGA	GAATGTATTC	TTGGCAGACA	AGGAAAGATC	TTCGGACATG	GTTGGGAAAT
	L T N	E N V F	L A D	K E R	S S D M	V G K
1141	TCGTAGAATT	CCTGGGCCTT	GATGGTGTCC	TGATCACTGA	AGAAGGCTAT	GGAAACCCTG

FVE FLGL DGV LIT

E E G Y G N P

1201	ATACTGACCT	TATGATGAAC	TGCAAAAAAG	CTACGGATGC	AGGAGCTAGT	GTTGTACTTA
	D T D	L M M N	C K K	A T D	A G A S	VVL
1261	TAACTGACGA	ATTCCCGGGC	AGAGATGGAA	AGTCCCAGTC	GCTTGCAGAT	GCTGTTACTG
	I T D	E F P G	R D G	K S Q	S L A D	A V T
1321	AGGCGGATGC	GCTTGTATCA	TGCGGTCAGG	GTAATTTGAT	AATAGAATTT	CCTCCTATGG
	E A D	A L V S	C G Q	G N L	I I E F	P P M
1381	ACAAGATAAT	AGGAACTTTA	GACTACATTG	AAACTATGAT	AGGCGGATAC	GAGGGAAGCT
	D K I	I G T L	DYI	E T M	I G G Y	E G S
1441	TGAGGCCTGA	CGGAAGCATT	GAGGCGGAGC	TTCAAATAGT	GATAGCCTCG	ACAATTGCAA
	L R P	D G S I	E A E	L Q I	V I A S	T I A
1501	ATGGATACAA N G Y	CAAACTGGCA N K L A	GCCAGAACTT A R T	ATTAA <u>GAGGG</u> Y -	<u>GT</u> GAGAAATC	$\frac{\textit{grdF}_2}{\underline{\textit{ATG}} A G A A A A C}{M R K}$
1561	TAAAGGTAGT	TCATTATATA	AACAACTTTT	TCGCTGGAGT	AGGGGGAGAA	GAAAAGGCGG
	L K V	V H Y I	N N F	F A G	V G G E	E K A
1621	ACATACCTCC	AGATGTGAGA	GAAGAGGCTG	TGGGACCAGG	AATGGCCCTT	AATGCTGCAT
	D I P	P D V R	E E A	V G P	G M A L	N A A
1681	TCAATGGAGA	GGCTGAGGTT	GTGGCCACAG	TGGTCTGCGG	CGACACATAC	TACGGTGAGA
	F N G	E A E V	V A T	V V C	G D T Y	Y G E
1741	ACATGGAAGA	TGCAAAGGCA	AAAATACTTG	AAATGATAAA	AAAATATAAT	CCCGATCTAT
	N M E	D A K A	K I L	E M I	K K Y N	P D L
1801	TTGTTGCAGG	GCCGGCATTC	AATGCCGGAA	GATACGGAGT	TGCTTGTGGA	TCTATTGCAA
	F V A	G P A F	N A G	R Y G	V A C G	S I A
1861	AGGCCGTGGA	GGATGAGCTG	GGAATTCCTG	TAGTAAGCGC	CATGTACAAG	GAGAACCCGG
	K A V	E D E L	G I P	V V S	A M Y K	E N P
1921	GCACAGACAT	GTATAAAAAG	GACATACACA	TAATTGAAAC	TGAAATTTCA	GCGGCTGACA
	G T D	M Y K K	D I H	I I E	T E I S	A A D
1981	TGAGAAATGC	TGTTCCAAAG	CTTGCACGGC	TCGGGCTTAA	GCTTGCAAAG	GGTGAGGAAA
	M R N	A V P K	L A R	L G L	K L A K	G E E
2041	TAGGGTCTCC	GCAAGAAGAA	GGTTATCATG	TCAGGGGAAT	AAGAGTCAAC	TATTTCAATG
	I G S	P Q E E	G Y H	V R G	I R V N	Y F N
2101	AAAAGAGAGC	TTCAGAAAGA	GGCATTGATA	TGCTTGTAAA	AAAGATGAAG	GGCGAGGAGT
	E K R	A S E R	G I D	M L V	K K M K	G E E
2161	TCATCACAGA	ATACCCAATG	CCGGTGTTTG	ACCGCGTACC	TCCGAATCCG	GCAGTAAAGG
	F I T	E Y P M	PVF	D R V	P P N P	A V K
2221	ATATATCAAA	GGTCAAGATA K V K T	GCCATTGACA	CTTCAGGCGG	AATTGTTCCG	CAAGGAAATC
2281	CTGACAGGAT	TGAATCGTCA	AGTGCCACAA	AGTACGGCAT	ATATTATATT	TCAGCCATGG
2341	ATTCGCTGGG	AGCGGGCAGA	TTCATGACTA	TACACGGCGG	GTATCAACGA	CGTTTGTCAC
	D S L	G A G R	F M T	I H G	G Y D R	R L S

2401	AGAGAACCCC	CAATCTTGTA	GTGCCTCTTG	ATGTAATGAG	GGAAATGGAA	AAAGAGGGAA
	QRT	P N L V	V P L	D V M	R E M E	K E G
2461	CAATAGGAGA	GCTCGCAGAT	TATTTCATAA	GCACCACGGG	AACAGGCACT	TCCGTAGGAA
	T I G	ELAD	Y F I	STT	G T G T	S V G
2521	ATGCCAAAGC	TTTCGGAAAA	GATTTTTCAA	AGAAATTGCT	GGAGGATGGA	GTAGGAGCAG
	N A K	A F G K	D F S	K K L	L E D G	V G A
2581	TTATCCTGAC	ATCCACC TGA	GGCACATGCA	CACGTTGCGG	CGCAACGATG	GTAAAAGAAA
	VIL	т s т <u>U</u>	G T C	T R C	G A T M	V K E
2641	TTGAAAGAGT	TGGAATTCCG	GTGGTTCATG	TTGCTACCGT	GGTACCAATA	TCCCTTACAA
	IER	V G I P	V V H	V A T	V V P I	S L T
2701	TAGGAGCCAA	CAGGATTGTC	CCTGCTGTCG	GAATCCCATA	TCCGCTTGGC	AATCCAAATC
	I G A	N R I V	PAV	G I P	Y P L G	N P N
2761	TAGGGCCTGA	TGGAGATAAA	AAGATACGAA	GAGCGCTTGT	TGAAAAAGCC	TTAAGAGCGC
	L G P	D G D K	K I R	R A L	V E K A	LRA
2821	TTCAAACAGA	AGTGGAAGAG	CAAACTGTAT	TTGAGGATTA	AAATCACAAT	ATAAGCGTAT
	L Q T	E V E E	Q T V	FED	-TTAGTGTTA	TATTCGCATA
2001						grdT ₂
2881	ATAGCAATAG		GITICCIGCA		ACACTCCTCC	ATTGCT ATG G
	IAICGIIAGC	AAATACIIGA	CAAAGGACGI	ICIIIAIIA	AGAGICCICC	IAACGA M
2941	GCAACTTTTT	TGGCAAGATA	GATAAACCGG	TATTCTGGGT	CTCCACAATA	CTATCATTGG
	G N F	FGKI	D K P	VFW	V S T I	L S L

Abb. 50: Nukleotidsequenz eines erweiterten Ausschnittes des Creatin-Reduktase-spezifischen Gencluster VI (5⁻-Bereich) aus *E. acidaminophilum*; Erweiterung zu STEINER (2004) und RUDOLF (2003). Der nicht-codierende Strang ist in 5⁻-3⁻-Richtung, die resultierenden Aminosäuren sind im Ein-Buchstaben-code jeweils unter der dritten Base des entsprechenden Codons dargestellt. Die einzelnen Startcodons sind fett gedruckt und unterstrichen, putative Ribosomen-Bindestellen doppelt unterstreichen. Die intergenen Bereiche sind doppelsträngig dargestellt. Das Selenocystein-Codon ist genau wie die Aminosäure fett gedruckt und doppelt unterstrichen. Die dargestellten Gene codieren für folgende Proteine: $grdG_2$ -Proprotein der 22- und 25 kDa-Untereinheit des Protein B der Sarcosin-Reduktase, $grdF_2$ -47 kDa-Untereinheit der Sarcosin-Reduktase, $grdT_2$ -Glycin-Betain-Transporter.

A.VIII. Sequenz des neuen Ausschnittes des Creatin-Reduktase-spezifischen Gencluster VI-3[']-Bereich

	grđi	\mathbf{A}_4																			
1	ATGA	AGT.	ΓTGT	TTG	ACG	GCAA	AA	AAG	TCA	TC	ATCA	TCC	GTG	ACA	GAG	ACC	GG	TA'	TAC	CAG	GΤ
	М	S	L	F	D	G	K	K	V	I	I	I	G	D	R	D		G	Ι	Ρ	G
61	CCG	GCCI	ATGG	CAG	AAT	GTCT	GA	AAG	GCA	CA	GGAG	CAC	GAAG	TAG	TAT	'ACI	ΓC	TG	СТА	CAG	AA
	P	A	М	A	Ε	С	L	K	G	Т	G	A	E	V	V	Y		S	A	Т	Ε
121	TGC	TTT	GTCT	GAA	CGG	CTGC	ΤG	GTG	CAA	TG	GACC	TAC	GAGA	ATC	AGA	ACA	AG	GG'	TTA	AGA	.GC
	С	F	V	U	Т	A	A	G	A	Μ	D	L	Ε	Ν	Q	Ν		R	V	K	S
181	TTTZ	ACTO	GAGC	AGT	'ACG	GTGC	AG	AGA	ACA	TG	ATAG	TTC	CTTG	TTG	GTG	CAC	GC	AG	AAG	CTG	AA
	F	Т	Ε	Q	Y	G	A	Е	Ν	Μ	I	V	L	V	G	A		A	Е	A	Е
241	TCA	GCAG	GGAC	TAG	CTG	CAGA	GA	CTG	TTA	CA	GCAG	GAG	GACC	CTA	CAI	TCC	GC	AG	GAC	CAC	TA
	I	S	R	Т	S	C R		D	С	Y	S	R	R	Ρ	Y	I	R]	R	Т	Т

301	GCAGGAGTCC	AGTTGGGACT	AAGAGTATTT	CACGCGGT TG	AGCCAGAATT	CAAGGATTCT
	SRS	P V G T	K S I	SRG	<u>U</u> a r i	Q G F
361	GTAGATGCAG	CAGTATACGA	TGAGCAAATC	GGAATGATGG	AGATGGTTCT	TGATGTTGAC
	CRC	SSIR	- A N	RND	G D G S	- C -
421	TCGATAATAG	CTGAAATGAA	GTCGATAAGA	GAGCAGTTCT	GCCAGTTCAA	CGACTAGTAA
	SII	A E M	KSIR	E Q F	C Q F	N D -ATT
481	ATTTCAAAAA	CATGCAAAGG	CATGTGCAAA	CAAATAGGTG	GTTCTTGGAC	CACCTATTTG
	TAAAGTTTTT	GTACGTTTCC	GTACACGTTT	GTTTATCCAC	CAAGAACCTG	GTGGATAAAC
541	TTTTAAGCGC	AGCAAAGGGA	GACCAAACTG	CATTAGCGCC	ACAGAAATAC	GTGCAATGTG
	AAAATTCGCG	TCGTTTCCCT	CTGGTTTGAC	GTAATCGCGG	TGTCTTTATG	CACGTTACAC
601	TGCTGGGAAG	GGGGATAACT	ATGAAGTTTT	GCACTTGAAC	TAGAGCATGA	AAACCTTAAT
	ACGACCCTTC	CCCCTATTGA	tacttcaaaa dadm	CGTGAACTTG	ATCTCGTACT	TTTGGAATTA
661	TTAGAAGATT	AAAATTAGCA	CTATGAGAGA	АААСААААТА	AATTTTTCAC	CAATATTCAA
	AATCTTCTAA	TTTTAATCGT	GA M R	ENKI	N F S	PIF
721	ATGGATAAGA	TATGAAAAGC	ATATAATTGA	AGAAATAAAA	AAGCATGTTC	CCAAAAGCTT
	K W I R	Y E K	ΗΙΙ	ЕЕІК	КНV	PKS
781	TTCAAGCTAT	TGGGAACCAT	ATACGGGAGG	AGGAGCGCTT	CTTTTCGATA	TACAGCATAA
	FSSY	WEP	Y T G	G G A L	L F D	I Q H
841	GAGATCGGTG	ATAAATGTTT	GCGATGAAGA	GCTCTACAAC	ATATACAGGG	TAATAAGAGA
	K R S V	I N V	CDE	ELYN	I Y R	VIR
901	TGATGTCAAT	GCTCTTATAG	AAGAGCTCAA	ААААСАТААА	AATGAAAAAG	AATACTACTA
	D D V N	A L I	EEL	к к н к	N E K	Е Ү Ү
961	TGAGCTCAGA	GATATGGATA	CTGCCGGAAT	GAGCTCTGTT	GAAAATGCGG	CAAGGAACAT
	Y E L R	D M D	T A G	M S S V	E N A	A R N
1021	ATACCTTAAC	AAGACCTGCT	TTAACGGTTT	TTTCAGAAAA	AGTGAAAGCG	GACAATTTGA
	IYLN	КТС	F N G	FFRK	S E S	G Q F
1081	TGTTCCTTTT	GGATC				
	D V P F	G				

Abb. 51: Nukleotidsequenz eines erweiterten Ausschnittes des Creatin-Reduktase-spezifischen Gencluster VI (3-Bereich) aus *E. acidaminophilum*; Erweiterung zu STEINER (2004) und RUDOLF (2003). Der nicht-codierende Strang ist in 5-3-Richtung, die resultierenden Aminosäuren sind im Ein-Buchstaben-code jeweils unter der dritten Base des entsprechenden Codons dargestellt. Die einzelnen Startcodons sind fett gedruckt und unterstrichen, putative Ribosomen-Bindestellen doppelt unterstreichen. Die intergenen Bereiche sind doppelsträngig dargestellt. Das Selenocystein-Codon ist genau wie die Aminosäure fett gedruckt und doppelt unterstrichen. Die dargestellten Gene codieren für folgende Proteine: *grdA*_ Selenoprotein A der Glycin, Sarcosin und Betain-Reduktase, *dadM*_Adenin spezifische DNA-Methylase.

A.IX. β-Galactosidase-Aktivitäten der untersuchten E. coli-SU202 und E. coli-SU101 Stämme

A.IX.1. β-Galactosidase-Aktivitäten des pMSP1α-Derivates in Kombination mit allen pDP804-Derivaten

ermittelte β -Galactosidase-Aktivität (rel.) ¹											
pMSP1 α + ²	Klon 1		Klon	2	Klon	3					
pDPP1a	75	(±11)	144	(± 30)	113	(± 21)					
pDPP1β	251	(± 41)	248	(±17)	332	(± 26)					
pDPP2	147	(± 28)	122	(±18)	155	(± 9)					
pDPP4	262	(± 30)	329	(± 38)	296	(± 35)					
pDPPrpU	268	(± 16)	246	(± 19)	241	(± 18)					
pDPGrdA	197	(± 36)	192	(± 53)	170	(± 22)					
pDPTR	316	(± 66)	301	(± 22)	329	(± 20)					
pDPTrx	153	(± 24)	185	(± 55)	207	(± 41)					
pDPP1αβ	215	(± 47)	274	(± 41)	264	(± 29)					

Tab. 15: β-Galactosidase-Aktivitäten der untersuchten E. coli -SU202-Stämme

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

² die untersuchten Stämme enthielten jeweils das Plasmid pMSP1 α und eins der neun aufgeführten pDP804-Derivate

Abb. 52: Relative β -Galactosidase-Aktivitäten der *E. coli*-SU202-Reporterstämme. Dargestellt sind die rel. β -Galactosidase-Aktivitäten von jeweils drei *E. coli*-SU202-Reporterstämme (Klon 1, 2 und 3), die das Plasmid pMSP1 α kombiniert mit allen pDP804-Derivaten tragen. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standartabweichungen sind als schmale Balken dargestellt.

A.IX.2. β-Galactosidase-Aktivitäten des pMSP1β-Derivates in Kombination mit allen pDP804-Derivaten

$pMSP1\beta+^2$		ermittelte	β-Galactosida	ase-Aktivität (re	$el.)^1$	
	Klon	1	Klon	2	Klon (3
pDPP1a	19	(±11)	15	(±7)	9	(± 5)
pDPP1β	116	(± 38)	149	(±1)	133	(± 30)
pDPP2	166	(±7)	264	(± 34)	231	(± 20)
pDPP4	250	(± 38)	294	(± 52)	373	(± 52)
pDPPrpU	413	(± 34)	373	(± 45)	325	(± 55)
pDPGrdA	252	(± 39)	151	(± 16)	284	(± 52)
pDPTR	149	(± 1)	308	(± 55)	290	(± 31)
pDPTrx	252	(± 45)	254	(± 48)	326	(±11)
pDPP1αβ	55	(± 33)	65	(± 26)	51	(± 12)

Tab. 16: β-Galactosidase-Aktivitäten der untersuchten *E. coli* -SU202-Stämme

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

² die untersuchten Stämme enthielten jeweils das Plasmid pMSP1 β und eins der neun aufgeführten pDP804-Derivate

Abb. 53: Relative β -Galactosidase-Aktivitäten der *E. coli*-SU202-Reporterstämme. Dargestellt sind die rel. β -Galactosidase-Aktivitäten von jeweils drei *E. coli*-SU202-Reporterstämme (Klon 1, 2 und 3), die das Plasmid pMSP1 β kombiniert mit allen pDP804-Derivaten tragen. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standartabweichungen sind als schmale Balken dargestellt.

A.IX.3. β-Galactosidase-Aktivitäten des pMSP2-Derivates in Kombination mit allen pDP804-Derivaten

pMSP2+ ²	ermittelte β -Galactosidase-Aktivität (rel.) ¹							
	Klon	Klon 1		Klon 2		3		
pDPP1a	136	(± 46)	148	(± 29)	120	(± 32)		
pDPP1β	149	(±11)	138	(±7)	182	(± 30)		
pDPP2	83	(± 9)	56	(± 20)	57	(± 15)		
pDPP4	217	(± 23)	243	(± 26)	142	(± 10)		
pDPPrpU	81	(± 39)	43	(± 10)	85	(± 12)		
pDPGrdA	100	(± 59)	64	(±15)	96	(± 29)		
pDPTR	242	(± 21)	275	(±15)	200	(± 5)		
pDPTrx	101	(± 39)	120	(± 40)	91	(± 19)		
pDPP1αβ	305	(± 17)	223	(± 43)	139	(± 21)		

Tab. 17: β-Galactosidase-Aktivitäten der untersuchten *E. coli* -SU202-Stämme

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

² die untersuchten Stämme enthielten jeweils das Plasmid pMSP2 und eins der neun aufgeführten pDP804-Derivate

Abb. 54: Relative β -Galactosidase-Aktivitäten der *E. coli*-SU202-Reporterstämme. Dargestellt sind die rel. β -Galactosidase-Aktivitäten von jeweils drei *E. coli*-SU202-Reporterstämme (Klon 1, 2 und 3), die das Plasmid pMSP2 kombiniert mit allen pDP804-Derivaten tragen. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standartabweichungen sind als schmale Balken dargestellt.

A.IX.4. β-Galactosidase-Aktivitäten des pMSP4-Derivates in Kombination mit allen pDP804-Derivaten

pMSP4+ ²	ermittelte β -Galactosidase-Aktivität (rel.) ¹							
	Klon	Klon 1		Klon 2		3		
pDPP1a	136	(± 46)	148	(± 29)	120	(± 32)		
pDPP1β	149	(±11)	138	(±7)	182	(± 30)		
pDPP2	83	(± 9)	56	(± 20)	57	(± 15)		
pDPP4	217	(± 23)	243	(± 26)	142	(± 10)		
pDPPrpU	81	(± 39)	43	(± 10)	85	(± 12)		
pDPGrdA	100	(± 59)	64	(±15)	96	(± 29)		
pDPTR	242	(± 21)	275	(±15)	200	(± 5)		
pDPTrx	101	(± 39)	120	(± 40)	91	(± 19)		
pDPP1αβ	305	(± 17)	223	(± 43)	139	(± 21)		

Tab. 18: β-Galactosidase-Aktivitäten der untersuchten *E. coli* -SU202-Stämme

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

 2 die untersuchten Stämme enthielten jeweils das Plasmid pMSP4 und eins der neun aufgeführten pDP804-Derivate

Abb. 55: Relative β -Galactosidase-Aktivitäten der *E. coli*-SU202-Reporterstämme. Dargestellt sind die rel. β -Galactosidase-Aktivitäten von jeweils drei *E. coli*-SU202-Reporterstämme (Klon 1, 2 und 3), die das Plasmid pMSP4 kombiniert mit allen pDP804-Derivaten tragen. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standartabweichungen sind als schmale Balken dargestellt.

A.IX.5. β-Galactosidase-Aktivitäten des pMSGrdA-Derivates in Kombination mit allen pDP804-Derivaten

pMSGrdA+ ²	ermittelte β -Galactosidase-Aktivität (rel.) ¹					
	Klon	Klon 1		2	Klon 3	
pDPP1a	244	(± 55)	179	(± 14)	178	(± 24)
pDPP1β	335	(±15)	324	(± 9)	396	(± 17)
pDPP2	300	(± 32)	174	(±13)	139	(± 9)
pDPP4	197	(± 22)	312	(± 29)	197	(± 5)
pDPPrpU	147	(± 31)	245	(±18)	257	(± 21)
pDPGrdA	119	(± 34)	155	(± 4)	199	(± 489
pDPTR	298	(± 6)	274	(± 34)	303	(± 46)
pDPTrx	152	(± 29)	139	(± 36)	93	(± 15)
pDPP1αβ	310	(± 22)	368	(± 10)	305	(± 37)

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

2 die untersuchten Stämme enthielten jeweils das Plasmid pMSGrdA und eins der neun aufgeführten pDP804-Derivate

Abb. 56: Relative ß-Galactosidase-Aktivitäten der E. coli-SU202-Reporterstämme. Dargestellt sind die rel. β-Galactosidase-Aktivitäten von jeweils drei E. coli-SU202-Reporterstämme (Klon 1, 2 und 3), die das Plasmid pMSGrdA kombiniert mit allen pDP804-Derivaten tragen. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standartabweichungen sind als schmale Balken dargestellt.

A.IX.6. β-Galactosidase-Aktivitäten des pMSTR-Derivates in Kombination mit allen pDP804-Derivaten

pMSTR+ ²	ermittelte β -Galactosidase-Aktivität (rel.) ¹								
	Kloi	Klon 1		Klon 2		on 3			
pDPP1a	272	(±7)	293	(± 19)	274	(± 369			
pDPP1β	351	(± 65)	363	(± 26)	441	(± 35)			
pDPP2	231	(± 20)	163	(± 15)	268	(± 33)			
pDPP4	188	(± 19)	326	(± 59)	370	(± 60)			
pDPPrpU	294	(± 20)	335	(±18)	286	(± 539)			
pDPGrdA	235	(± 21)	262	(± 12)	105	(± 22)			
pDPTR	400	(± 43)	327	(± 43)	299	(± 38)			
pDPTrx	180	(± 29)	150	(± 42)	145	(± 38)			
pDPP1αβ	367	(± 12)	329	(± 27)	326	(± 37)			

Tab. 20: β-Galactosidase-Aktivitäten der untersuchten E. coli -SU202-Stämme

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

² die untersuchten Stämme enthielten jeweils das Plasmid pMSTR und eins der neun aufgeführten pDP804-Derivate

Abb. 57: Relative β -Galactosidase-Aktivitäten der *E. coli*-SU202-Reporterstämme. Dargestellt sind die rel. β -Galactosidase-Aktivitäten von jeweils drei *E. coli*-SU202-Reporterstämme (Klon 1, 2 und 3), die das Plasmid pMSTR kombiniert mit allen pDP804-Derivaten tragen. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standartabweichungen sind als schmale Balken dargestellt.

A.IX.7. β-Galactosidase-Aktivitäten des pMSTrx-Derivates in Kombination mit allen pDP804-Derivaten

pMSTrx+ ²	ermittelte β -Galactosidase-Aktivität (rel.) ¹							
	Klon	Klon 1		2	Klon 3			
pDPP1a	191	(±12)	86	(± 32)	187	(± 29)		
pDPP1β	313	(± 21)	340	(± 43)	369	(± 34)		
pDPP2	86	(± 4)	67	(±1)	129	(± 24)		
pDPP4	326	(± 24)	228	(± 27)	345	(± 25)		
pDPPrpU	173	(± 33)	80	(±17)	124	(± 4)		
pDPGrdA	84	(± 22)	82	(± 26)	146	(±11)		
pDPTR	288	(± 5)	321	(± 25)	334	(± 18)		
pDPTrx	109	(± 14)	131	(± 14)	114	(± 8)		
pDPP1αβ	319	(± 37)	263	(± 24)	344	(± 36)		

Tab. 21: f	β-Galactosidase-Aktivitäten	der untersuchten E. (coli -SU202-Stämme
------------	-----------------------------	-----------------------	--------------------

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

2 die untersuchten Stämme enthielten jeweils das Plasmid pMSTrx und eins der neun aufgeführten pDP804-Derivate

Abb. 58: Relative ß-Galactosidase-Aktivitäten der E. coli-SU202-Reporterstämme. Dargestellt sind die rel. β-Galactosidase-Aktivitäten von jeweils drei E. coli-SU202-Reporterstämme (Klon 1, 2 und 3), die das Plasmid pMSTrx kombiniert mit allen pDP804-Derivaten tragen. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standartabweichungen sind als schmale Balken dargestellt.

A.IX.8. β-Galactosidase-Aktivitäten des pMSP1αβ-Derivates in Kombination mit allen pDP804-Derivaten

$pMSP1\alpha\beta+^2$	ermittelte β -Galactosidase-Aktivität (rel.) ¹						
	Klon	1	Klon 2	2	Klon (3	
pDPP1a	353	(± 30)	172	(± 6)	395	(± 27)	
pDPP1β	375	(± 45)	381	(± 56)	436	(±11)	
pDPP2	233	(±13)	274	(± 43)	241	(± 23)	
pDPP4	378	(± 45)	330	(± 9)	353	(± 18)	
pDPPrpU	296	(± 30)	357	(± 2)	343	(± 18)	
pDPGrdA	297	(± 27)	283	(±15)	304	(± 16)	
pDPTR	426	(± 31)	341	(± 26)	358	(± 23)	
pDPTrx	368	(±12)	335	(± 4)	327	(± 45)	
pDPP1αβ	372	(± 23)	321	(± 5)	329	(± 49)	

Tab. 22: β-Galactosidase-Aktivitäten der untersuchten E. coli -S	SU202-Stämme
--	--------------

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

2 die untersuchten Stämme enthielten jeweils das Plasmid pMSP1 aß und eins der neun aufgeführten pDP804-Derivate

Abb. 59: Relative ß-Galactosidase-Aktivitäten der E. coli-SU202-Reporterstämme. Dargestellt sind die rel. β-Galactosidase-Aktivitäten von jeweils drei E. coli-SU202-Reporterstämme (Klon 1, 2 und 3), die das Plasmid pMSP1αβ kombiniert mit allen pDP804-Derivaten tragen. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standartabweichungen sind als schmale Balken dargestellt.

A.IX.9. β-Galactosidase-Aktivitäten der pMSP604-Derivate im Stamm E. coli-SU202

Stamm E. coli-SU202 ²	mm <i>E. coli</i> -SU202 ² ermittelte β -Galactosidase-Aktivität (rel.) ¹						
	Klon	1	Klon 2	2	Klon 3	3	
MSPP1a	382	(± 91)	410	(± 26)	395	(± 39)	
MSPP1β	483	(±16)	461	(± 77)	410	(± 48)	
MSPP2	219	(± 47)	406	(± 33)	392	(± 72)	
MSPP4	254	(± 39)	363	(± 23)	290	(± 3)	
MSPPrpU	401	(± 55)	395	(± 16)	493	(± 29)	
MSPGrdA	384	(±7)	209	(± 8)	398	(± 51)	
MSPTR	196	(±13)	278	(± 16)	389	(± 52)	
MSPTrx	334	(± 42)	237	(± 43)	219	(± 24)	
MSPP1αβ	388	(± 15)	367	(± 22)	373	(± 40)	

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

2 die untersuchten Stämme enthielten jeweils ein Plasmid der neun aufgeführten pMS604-Derivate

Abb. 60: Relative ß-Galactosidase-Aktivitäten der E. coli-SU101-Reporterstämme. Dargestellt sind die rel. β-Galactosidase-Aktivitäten von jeweils drei E. coli-SU101-Reporterstämme (Klon 1, 2 und 3), die jeweils eins der neun pMS604-Derivaten tragen. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standartabweichungen sind als schmale Balken dargestellt.

A.IX.10. β-Galactosidase-Aktivitäten der pDP804-Derivate im Stamm E. coli-SU101

Stamm <i>E. coli</i> -SU101 ² ermittelte β -Galactosidase-Aktivität (rel.) ¹						
	Klon	1	Klon 2	2	Klon (3
pDPP1a	551	(± 72)	442	(± 50)	386	(± 70)
pDPP1β	323	(± 28)	446	(± 27)	385	(± 66)
pDPP2	312	(± 32)	436	(± 45)	435	(±7)
pDPP4	436	(± 47)	418	(± 32)	325	(± 33)
pDPPrpU	447	(± 33)	434	(± 17)	427	(± 43)
pDPGrdA	450	(±12)	384	(± 45)	450	(± 12)
pDPTR	333	(± 27)	383	(± 22)	398	(± 31)
pDPTrx	338	(± 14)	390	(± 52)	480	(± 51)
pDPP1αβ	500	(± 28)	447	(± 59)	465	(± 10)

Tab. 24: β-Galactosidase-Aktivitäten der untersuchten <i>E. coli</i> –SU101-Stän	me
--	----

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

2 die untersuchten Stämme enthielten jeweils ein Plasmid der neun aufgeführten pDP804-Derivate

Abb. 61: Relative β-Galactosidase-Aktivitäten der E. coli-SU101-Reporterstämme. Dargestellt sind die rel. β-Galactosidase-Aktivitäten von jeweils drei E. coli-SU101-Reporterstämme (Klon 1, 2 und 3), die jeweils eins der neun pDP804-Derivaten tragen. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standartabweichungen sind als schmale Balken dargestellt.

A.IX.11. β-Galactosidase-Aktivitäten der pDP804-Derivate im Stamm E. coli-SU202

Stamm E. coli-SU202 ²	ermittelte β -Galactosidase-Aktivität (rel.) ¹									
	Klon 1 Klon 2			2	Klon (3				
pDPP1a	415	(± 24)	372	(± 21)	373	(± 29)				
pDPP1β	513	(± 1)	441	(± 32)	486	(± 39)				
pDPP2	439	(± 58)	272	(± 36)	459	(± 23)				
pDPP4	234	(± 16)	280	(± 10)	444	(± 28)				
pDPPrpU	419	(± 24)	462	(± 37)	480	(± 56)				
pDPGrdA	437	(± 40)	471	(± 48)	449	(± 12)				
pDPTR	481	(± 56)	238	(± 44)	409	(± 62)				
pDPTrx	400	(± 29)	445	(± 78)	367	(± 63)				
pDPP1αβ	397	(± 44)	373	(± 104)	357	(± 59)				

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

2 die untersuchten Stämme enthielten jeweils ein Plasmid der neun aufgeführten pDP804-Derivate

rel. β-Galactosidase-Aktivitäten von jeweils drei E. coli-SU202-Reporterstämme (Klon 1, 2 und 3), die jeweils eins der neun pDP804-Derivaten tragen. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standartabweichungen sind als schmale Balken dargestellt.

A.IX.12. β-Galactosidase-Aktivitäten der Kontrollen

Tab. 26: β-Galactosidase-Aktivitäten der untersuchten E. coli –SU101 und E. coli-SU202-Stämme

Kontrollen	ermittelte β -Galactosidase-Aktivität (rel.) ¹						
	Klon 1		Klon 2		Klon 3		
E. coli SU101	459	(± 13)	461	(± 21)	447	(± 35)	
E. coli SU202	522	(± 34)	495	(± 24)	519	(± 5)	
pMS604 + pDP804 in <i>E. coli</i> SU101	3	(±1)	2	(±1)	2	(± 1)	
pMS604 + pDP804 in <i>E. coli</i> SU202	1	(± 0)	1	(± 0)	3	(±2)	
pMS604 in <i>E. coli</i> SU101	27	(± 3)	35	(± 8)	21	(± 14)	
pMS604 in <i>E. coli</i> SU202	495	$3(\pm 4)$	402	(± 85)	522	(± 35)	
pDP804 in <i>E. coli</i> SU101	342	$1(\pm 0)$	374	(± 44)	333	(± 67)	
pDP804 in <i>E. coli</i> SU202	337	3(±4)	263	(± 17)	168	(± 23)	

¹ dargestellt sind die Durchschnittswerte von drei unabhängigen Ansätzen, wobei jeweils eine Dreifachbestimmung durchgeführt wurde, die errechneten Standardabweichungen sind in Klammern dargestellt

Abb. 63: Relative β-Galactosidase-Aktivitäten der *E. coli*-**SU101 und** *E. coli*-**SU202-Reporterstämme.** Dargestellt sind die rel. β-Galactosidase-Aktivitäten von jeweils drei *E. coli*-SU101-Reporterstämme bzw. *E. coli*-SU202-Reporterstämme (Klon 1, 2 und 3), ohne Plasmid, mit jeweils einem der beiden Kontroll-Plasmide (pMS604 bzw. pDP804) oder mit beiden Kontroll-Plasmiden. Die ermittelten Werte ergeben sich jeweils aus einer Dreifachbestimmung von drei unabhängigen Messungen. Die Standartabweichungen sind als schmale Balken dargestellt.

Abb. 64: Absorptionsspektren der Thioredoxin-Reduktase und von GrdA. Dargestellt sind die Absorptionsspektren von heterolog synthetisierter und mit *Strep*-tag[®] II-fusionierter Thioredoxin-Reduktase (gelbes Spektrum) und von der Cystein-Variante des heterolog synthetisierten und mit *Strep*-tag[®] II-fusionierten Selenoprotein A (rotes Spektrum). TR_Thioredoxin-Reduktase, GrdA_Selenoprotein A.

Abb. 65: Sekundärstrukturen des Glycin-abhängigen Riboswitches aus *C. difficile* (A) *und C. sticklandii* (B): Die mRNA-Sekundärstruktur potentieller Glycin-Riboswitches aus *C. difficile* (A) *und C. sticklandii* (B) wurden dargestellt. Die orange unterlegten Nukleotide repräsentieren die intrinsische Terminatorstruktur, die sich bei Formation des Aptamer II durch Bindung von Glycin nicht ausbilden kann.

Danksagung

Als erstes geht mein Dank an Prof. Dr. J. R. Andreesen für die Überlassung des interessanten Themas, seine Betreuung, sein stetiges Interesse, seine stete Diskussionsbereitschaft und sein mir entgegengebrachtes Vertrauen auch in sehr schwierigen Situationen.

Ein weiteres großes Dankeschön geht an Prof. Dr. G. R. Sawers für seine Unterstützung, seine Hilfe und vor allem für die Finanzierung der letzten Versuche, die ich sonst nur sehr schwer hätte verwirklichen können.

Ein besonders großer Dank geht an Anke, die für mich die ganze Zeit eine sehr sehr große Stütze war und sehr oft mehr als ein offenes Ohr für mich hatte

Bei Kathrin möchte ich mich ebenfalls sehr bedanken, sie hatte immer eine Antwort auf meine vielen Fragen und sie stand mir immer mit sehr hilfreichen Tipps und Vorschlägen zur Seite.

Seit ich 1999 das erste Praktikum im Labor 211 absolvierte, erwartete mich dort immer eine sehr angenehme und nette, wenn auch z. T. feucht-fröhliche Arbeitsatmosphäre die die vielen kleinen und großen Rückschläge erträglicher machten. Dafür danke ich allen Mitgliedern dieses Labors: Martin Kohlstock, Jana Jäger, Tina und Daniel Gröbe, Juliane Viezens, Olli Döring, Diana Steiner, Kristin Wahl, Claudi Doberenz (chronologische Reihenfolge). Ein besonderer Dank geht hierbei an Torsten für manch hilfreichen Tipp und vor allem für das Korrekturlesen meiner Arbeit.

Ein großer Dank geht auch an Frau Claudia Hammerschmidt für die Übernahme von kleinen und großen Aufgaben und ihr ständig offenes Ohr für laborinterne und -externe Probleme.

Barbara möchte ich für die Zusammenarbeit danken.

Frau Ute Lindenstrauß danke ich für die zahlreichen Sequenzierungen. Dank auch an Herrn Dr. Thomas Brüser für seine ständige Diskussionsbereitschaft. Dank an alle bisher nicht erwähnten Mitglieder des Institutes.

Vielen Dank auch an Jana und Wenke.

Des Weiteren möchte ich Jana Rudolf für ihre Freundschaft danken.

Danke auch an alle bisher nicht erwähnten Freunde, wie z. B. Sandra, Eva und Katja.

Der größte Dank aber geht an meine Familie, hier vor allem an meine Eltern, die mich die ganzen 11 Jahre hier in Halle immer unterstützt haben und mir das Studium und die Promotion erst ermöglicht haben.
Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe verfasst, keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt und alle Stellen, die wörtlich oder inhaltlich anderen Werken entnommen sind, als solche kenntlich gemacht habe.

Halle, den 17. 06. 2008

Anja Poehlein

Lebenslauf

Persönliche Daten

Name	Anja Poehlein
Geburtsdatum	26.09.1978
Geburtsort	Halle / Saale
Familienstand	ledig
Staatsangehörigkeit	deutsch

Bildungsweg

Dezember 2007	Anfertigung der vorliegenden Promotionsschrift
März 2003 Dazambar 2007	Tätiskait als wissenschaftlichen Mitarheiten om Institut für Mikrohielegie
Dezember 2007	(Arbeitsgruppe Prof. Dr. Jan R. Andreesen) der Martin-Luther-Universität Halle-Wittenberg; praktische Arbeiten zur vorliegenden Dissertation
Jan. 2003	Abschluss der Diplomarbeit am Institut für Mikrobiologie zum Thema "Klonierung und Analyse der Gene der Glycin-Decarboxylase aus <i>Eubacterium acidaminophilum</i> " (Prädikat Sehr Gut) unter Betreuung von Prof. Dr. Jan R. Andreesen
Dez. 2001-Feb. 2002	Diplomprüfungen in den Fächern Mikrobiologie, Genetik, Biochemie und Immunologie (Gesamtprädikat: Gut)
Juli- Aug. 2000	Praktikum bei der Invitek GmbH Berlin mit dem Thema Expression und Reinigung rekombinater Proteine
1997-2003	Studium der Biologie an der Martin-Luther-Universität Halle-Wittenberg
1991-1997	Gymnasium Egeln (Abschluss: Abitur)
1985-1991	Grund- und Sekundarschule Westeregeln

Halle, den 17.06.2008