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ABSTRACT

We evaluate a number of different finite-element approaches for fluid–structure (contact) interaction problems against data from physical
experiments. This consists of trajectories of single particles falling through a highly viscous fluid and rebounding off the bottom fluid tank
wall. The resulting flow is in the transitional regime between creeping and turbulent flows. This type of configuration is particularly challeng-
ing for numerical methods due to the large change in the fluid domain and the contact between the wall and the particle. In the finite-
element simulations, we consider both rigid body and linear elasticity models for the falling particles. In the first case, we compare the results
obtained with the well-established Arbitrary Lagrangian–Eulerian (ALE) approach and an unfitted moving domain method together with a
simple and common approach for contact avoidance. For the full fluid–structure interaction (FSI) problem with contact, we use a fully
Eulerian approach in combination with a unified FSI-contact treatment using Nitsche’s method. For higher computational efficiency, we use
the geometrical symmetry of the experimental setup to reformulate the FSI system into two spatial dimensions. Finally, we show full three-
dimensional ALE computations to study the effects of small perturbations in the initial state of the particle to investigate deviations from a
perfectly vertical fall observed in the experiment. The methods are implemented in open-source finite element libraries, and the results are
made freely available to aid reproducibility.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037971

I. INTRODUCTION

Flows containing particles, i.e., particulate flows or particles set-
tling in a fluid, have many industrial and biological applications.
Examples range from the transport of blood cells in blood flows1 to
the simulation of fluidized bed reactors.2

We shall consider single elastic spherical particles falling freely in
a viscous fluid and rebounding off the bottom wall of the fluid domain
at Reynolds numbers in the transitional regime between creeping and
turbulent flows. The multiphase and fluid–structure interaction (FSI)
problem with solid contact posed by the settling in the fluid and
rebounding off a wall is challenging from both an analytical and a
numerical perspective.

From the theoretical point of view, the correct model for the tran-
sition to contact with the bottom wall is not yet fully understood. In
the case where a rigid solid is assumed, most flow models lead to
results contradicting real world observations. For example, if a creep-
ing flow is assumed such that the linear Stokes equations are applica-
ble, then contact can only occur under singular forces, cf. Ref. 3. When
the non-linear incompressible Navier–Stokes together with no-slip
boundary conditions are taken for the fluid model, then contact can-
not occur and it is impossible to release contact.4 This can however be
overcome; if the boundary condition is modified to a free-slip condi-
tion,5 the rough nature of the surface is taken into account6 or the fluid
is taken to be compressible.7 If the solid model is changed to take the
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elasticity of the body into account, then it is currently assumed that
even with perfectly smooth boundaries and incompressibility,
rebounding without contact can occur due to the storage of energy in
the elastic solid.8–10 This has been refined recently (in the Stokes set-
ting),11 where it has been shown that the internal storage of energy is
not sufficient but that additionally a change in the “flatness” is neces-
sary to achieve physically meaningful rebound without topological
contact.

For numerical methods, the challenge lies in the discretization of
the resultant FSI system.12 It consists of a free boundary value problem
with a moving interface. The most well-established method for this is
the Arbitrary Lagrangian–Eulerian (ALE) approach.13 This approach
leads to very efficient and accurate computations in situations where
the method is usable. However, its usage is limited as it breaks down
when deformations with respect to the reference configuration become
too large and when contact occurs.14 The lattice-Boltzmann method is
an alternative approach that is also able to describe the behavior of set-
tling particles.15 To deal with large deformations, overlapping mesh
techniques have been developed.16 Here, the background fluid domain
and the region around the structure are meshed separately so that the
fluid–solid interface is resolved. The two meshes are then coupled
using unfitted approaches. This then allows a hybrid approach, where
the solid and the near fluid are treated using the ALE framework, while
the remaining fluid is treated in Eulerian coordinates.17 To overcome
both large deformations and contact, fully Eulerian approaches have
lately become the focus of research. In the case of rigid bodies, a num-
ber of different approaches have been considered, for example, based
on fictitious domain methods using Lagrange multipliers,18 XFEM
type approaches,19,20 and most recently, CutFEM approaches21 using
Nitsche’s method.22,23 Here, a major issue remains of achieving a real-
istic rebound effect since an artificial contact/lubrication force is added
to the equation governing the motion of the solid to prevent the over-
lap of the solid regions.18 Nevertheless, topological changes appear to
be unproblematic for the CutFEM type approaches.24

Considering full fluid–structure interactions, immersed
approaches have become popular in recent years.25–28 Here, the fluid
and the solid are treated in their natural Eulerian and Lagrangian coor-
dinate systems, respectively, and the sub-domains are meshed sepa-
rately. The two meshes are then coupled by means of Nitsche’s
method25,27 or using Lagrange multipliers.26,28,29 Another possibility
to handle large deformations and contact is by using fully Eulerian
approaches, where both the solid and fluid equations are formulated
in the Eulerian coordinate framework, which simplifies the coupling
within monolithic algorithms.30–34 All these approaches are however
relatively new and require further development with respect to accu-
racy and robustness.

The aforementioned methods have been applied to different test
cases for numerical validation, and a priori error estimates are also
available in most cases. The established benchmarks for fluid-structure
interaction problems such as those in Ref. 35 completely avoid contact
since the methods that handle contact remain relatively new. For
rigid-body motion, most numerical studies are interpreted qualita-
tively or compared to artificial, analytically derived solutions.
Especially in the cases where artificial forces are introduced in order to
avoid contact of rigid solids, real validation is near impossible as this
introduces model parameters for which there is no a priori knowledge
on a good choice. However, a number of FSI methods have recently

become available that are able to resolve contact.36–40 This then raises
the question of how well the different modeling and discretization
approaches depict the behavior of contact and rebound observed in
physical experiments.

In this work, we take recently published data from experiments
where different solid spherical particles were allowed to settle in a vis-
cous fluid.41,42 We then use a rigid-body ALE, a rigid-body Eulerian
CutFEM, and a fully Eulerian FSI approach to simulate the scenarios
presented by the physical experiments. This aims to show the validity
and the applicability of these different approaches to the different
aspects/problems posed by this process. Furthermore, we will illustrate
how spatially reduced models are able to capture the behavior in com-
parison to full three-dimensional computations. To the best of our
knowledge, there is currently no comparable benchmark that consid-
ers such a multiphase flow/fluid-structure interaction problem with
contact, which is validated against experimental data.

The remainder of this paper is structured as follows: In Sec. II, we
describe the considered problem, that is, a description of the physical
experiment, the mathematical models used to describe the experiment,
the specific setups we will simulate, and the quantities used to compare
the numerical simulations with the experimental data. Section III then
briefly covers the reduced formulation we apply to increase the com-
putational efficiency in our numerical methods. The numerical com-
putations are then presented in Sec. IV; we present the details of the
different numerical approaches in Subsection IVA, and the results are
then presented in Subsection IVB. We discuss the conclusions from
these results in Sec. V and consider the aspects that remain open.
Furthermore, we define and compute two simplified setups in
Appendix B, designed to help others reproduce the presented compu-
tational results.

II. DESCRIPTION

We describe the experimental setup used to gather the data and
the mathematical model that we will use to reproduce the behavior
observed in the experiments, and we define relevant quantities used to
compare the results quantitatively.

A. Physical experiment

The experiments in Ref. 42 capture the settling and impact pro-
cess of spherical particles with different sizes and densities in a cylin-
drical tank. The latter contains a liquid mixture consisting of glycerine
and water at equal volume fractions. At the bottom of the cylindrical
tank, which is made of acrylic glass for optical access, a massive steel
anvil serves as the impact object. Moreover, the cylinder is surrounded
by a rectangular container, filled with refractive index matching liquid,
to compensate for optical distortion coming from the curved cylinder
walls. The filling level allows the observation of the particle settling
along a vertical distance of 140 mm–160mm, depending on the parti-
cle size. Initially, each particle is held in place and submerged in the
liquid by using a vacuum tweezer. The particle is then released by
switching off the vacuum pump. The particle is tracked during the set-
tling process and the impact on the steel anvil, including the rebound,
using a high-speed CMOS-camera. This acquires shadow images at a
frame rate of 1000 fps and a scale factor of 8.89 pixel/mm. An image
processing algorithm coded in MATLAB yields the in-plane particle
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coordinates as a function of time and allows us to extract the instanta-
neous particle settling velocity.

The resulting data are available via Mendeley Data.41 These data
are the basis for our comparison and validation of the numerical code.

B. Mathematical model

We consider a bounded domain X 2 Rd , with d 2 {2, 3}, over a
finite, non-empty, time interval [0, Tend]. This is divided into a
d-dimensional fluid region F , a d-dimensional solid S, and a d � 1-
dimensional interface I dividing the solid and fluid regions. For these,
we have X ¼ F _[ I _[ S.

1. Fluid model

In the time dependent fluid region FðtÞ, we consider the incom-
pressible Navier–Stokes equations. Find a velocity u and a pressure p
such that

qf @tuþ ðu � rÞuð Þ � div r ðu; pÞ ¼ 0; (1a)

divðuÞ ¼ 0 (1b)

with the non-symmetric stress tensor

rðu; pÞ ¼ lfru� pId;

where lf¼ qf �f is the fluid’s dynamic viscosity, �f is the kinematic vis-
cosity, qf is the fluid’s density, and Id is the d-dimensional identity
operator. Appropriate boundary conditions to complete this system
will be discussed later. Note that we use bold face letters to denote vec-
tor/matrix valued quantities, while regular faced letters denote scalar
objects.

2. Elastic solid and fluid–structure interaction

We consider a linear elastic solid model in S for the solid dis-
placement d and the solid velocity _d , given by

qs@t
_d � div rs dð Þ ¼ ðqs � qf Þg; _d ¼ @td; (2)

with the acceleration due to gravity g ¼ �9.807m s�2 and the Cauchy
stress tensor rs defined by

rsðdÞ ¼ 2lsEðdÞ þ kstrðEðdÞÞI; EðdÞ ¼ 1
2
rd þrdTð Þ;

where ls and ks denote the Lam�e parameters. Note that we have sub-
tracted the fluid gravitational force qf g on the right-hand side of the
solid equation to be consistent with the equations for a rigid solid pre-
sented in the following paragraph. Alternatively, this could be added
to the right-hand side of the fluid equations.

Solid and fluid are coupled by means of no-slip coupling condi-
tions on I ,

u ¼ _d ; rðu; pÞn ¼ rsðdÞn: (3)

The current position of the interface IðtÞ is determined by the dis-
placement variable d.

3. Rigid solid

As the solid materials that we consider are relatively hard, the
consideration of a rigid solid yields a good approximation of the FSI
dynamics, at least up to the moment when the solid comes close to the
lower wall. The movement of the solid is governed by Newton’s
second law of motion. Let cSðtÞ be the center of mass of the solid S.
Since we will consider spherical particles, this is then governed by

d2

dt2
cSðtÞ �mS ¼ f s; (4)

where mS is the mass of the solid and fs are the forces acting on the
solid in the horizontal and vertical directions. For simplicity, we
assume that the horizontal forces are negligible. The vertical forces are
then the gravitational pull, buoyancy, and viscous drag,

f s ¼
0

0

mSg � volðSÞqf g þ F3

0BB@
1CCA; (5)

where volðSÞ is the volume of the solid and F3 is the viscous drag force
in the vertical direction. This is the third component of

F ¼
ð
I
rðu; pÞnds: (6)

Note that we added the effects of buoyancy in (5). This would be natu-
rally included in F if we added body force qf grxd to the right-hand
side of the fluid equation (1a). However, since this would only affect
the pressure, it is sufficient to consider the homogeneous equation (1a)
and add the effect of buoyancy to (5). Furthermore, this approach is
more accurate in our case since only pressure-robust methods are able
to reflect this effect of gradient contributions in the forcing term on
the pressure exactly on the numerical level.43

As a result of us neglecting the horizontal movement of the solid,
(4) becomes a scalar ordinary differential equation (ODE). We can
also simplify the terms in (5) so that, in total, we come to the equation

d
dt
vS;3ðtÞ ¼

qs � qf

qs
g þ F3

volðSÞqs
; (7)

where vSðtÞ ¼ d
dt cSðtÞ is the solid’s velocity.

The solid’s motion couples back to the fluid equations through
the boundary condition at the interface I by requiring the continuity
of the velocity, i.e.,

ujI ¼ vS ¼
d
dt

cSðtÞ: (8)

We note that this model neglects rotational effects. As will be shown
below, this does not have a major impact on the quality of the resulting
approximations.

C. Domain description

Since we consider balls of different sizes, we shall keep the
domain description general. The background domain is a cylinder

X ¼ fx ¼ ðx; y; zÞT 2 R3 j x2 þ y2 < R2; 0 < z < Hg for a given
radius R and a given height H. At t ¼ 0, the solid domain is described
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by Sð0Þ ¼ fx ¼ ðx; y; zÞT 2 R3 j x2 þ y2 þ ðz � ðh0 þ rSÞÞ2 < r2Sg
for a given ball radius rS and an initial height of the bottom of the ball
h0. Accordingly, the volume of the solid is given by volðSÞ ¼ 4pr3=3.
An illustration of this can be seen on the left of Fig. 1.

1. Boundary conditions

We denote the top boundary (z ¼ H) of the cylinder as Ctop, the
bottom boundary (z ¼ 0) as Cbottom, and the side of the cylinder (x2

þ y2¼ R2) as Cwall.
On the interface I between the solid and the fluid, the Dirichlet

boundary condition is given by the continuity of the velocity; see (3)
and (8). On the wall and bottom boundaries Cbottom [ Cwall, we shall
impose homogeneous Dirichlet boundary conditions u ¼ 0. In order
to approximate the free surface at the top of the water tank X, we
impose a free-slip boundary condition u3¼ 0 at Ctop.

D. Setup

1. Spatial parameters

We consider two different particles: one with diameter dS
¼ 6mm consisting of polytetrafluoroethylene/teflon (PFTE) and one
with diameter dS ¼ 22mm consisting of rubber. We shall refer to
these two cases as PTFE6 and Rubber22, respectively.

Both particles are considered inside the same cylindrical fluid
tank with radius R ¼ 0.055 m and a height of H ¼ 0.2 m. The spatial
setup for both cases is summarized in Table I.

2. Material parameters

The numerical computation of the above-mentioned scenarios
requires the following material parameters. For the fluid, these are the
density and viscosity. For the solid balls, we require the density and

FIG. 1. The initial spatial configuration:
(a) three-dimensional domain and
(b) rotat ionally reduced domain.

TABLE I. Geometrical parameters of the test cases.

Geometry Boundary conditions

Experiment R (m) H (m) rS (m) h0 (m) Cwall [ Cbottom Ctop I

PTFE6
0.055 0.2

0.003 0.161 661 6
u ¼ 0 ud ¼ 0 u ¼ vSRubber22 0.011 0.146 120 3

TABLE II. Summary of the benchmark setup in standard units.

Material parameters

Experiment g (m s�2) lf (kg m
�1 s�1) qf (kg m

�3) qs (kg m
�3) ks (kg m

�1 s�2) ls (kg m
�1 s�2)

PTFE6 �9.807 0.008 1141
2122 2.638 70 � 109 2.294 52 � 108

Rubber22 1361 3.332 89 � 109 6.667 11 � 105
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the Lam�e parameters. Both fluid and solid parameters are summarized
in Table II.

Remark (source of material parameters). The fluid parame-
ters and the solid densities are given in the original experimental
paper.42 We derived the Lam�e parameters from the Young’s modulus
and Poisson ratio of the used materials. In the case of the PTFE6 ball,
these are about 670 MPa ¼ 670 000 000 kgm�1 s�2 (https://www.ku-
gelpompel.at/upload/2312783_Datenblatt%20Kunststoffkugel%20PTFE
%20V1.01.pdf) and �s ¼ 0.46 (http://www.matweb.com/search/
datasheet_print.aspx?matguid¼4e0b2e88eeba4aaeb18e8820f1444cdb),
respectively.

The chemical analysis of the Rubber22 material suggests this to
be hydrogenated nitrile rubber (HNBR). The Young’s modulus of this
is �1.7 MPa to 20.7 MPa ¼ 1 700 000 kgm�1 s2–20 700 000 kgm�1 s2

(https://eriks.de/content/dam/de/pdf/downloads/dichtungen/o-ringe/
ERIKS_Technisches-Handbuch-O-Ringe_de.pdf, p. 20), and the
Poisson ratio is �s¼ 0.4999.44

E. Quantities of interest

We will use the following quantities to compare our numerical
results with each other and with the experimental data:

t� let t0 ¼ tjcS¼h0 be the time at which the center of mass is at h0,
i.e., when the ball has traveled rS vertically. We define t� as the
time after release when distðI ;CbottomÞ ¼ dS relative to t0, i.e.,
for PTFE6 t� ¼ tjcS¼ð0;0;0:009Þ � t0 and for Rubber22
t� ¼ tjcS¼ð0;0;0:033Þ � t0.

v� the velocity of the ball in the z-direction at t ¼ t� þ t0.
f� the vertical component of the force F acting on the ball at

time t� þ t0.
tcont the time of the first solid contact relative to t0.
tjump the time between contact and the second change in direction

is realized, i.e., the amount of time the balls travels upward
after the first contact.

djump the maximum of distðI ;CbottomÞ after contact, i.e., the size of
the bounce.

An illustration of how these quantities are defined can be seen in
Fig. 2.

Remark (choice of reference values). In the experiments, we
observed that the balls do not immediately start to fall after they are
released. The settling process starts with some distance to the liquid
surface but in the closest vicinity of the vacuum cup. In general, par-
ticles experience an increased drag force when they are moving toward
or away from a solid wall and free fluid-surfaces. Accordingly, the
early stage of the settling process here is dominated by an increased
drag force coming from the vacuum cup and the liquid surface.

Due to the rather slow motion of the sphere at the beginning, the
moment of release cannot be defined well. To be able to compare the
numerical results with the experimental data, we therefore defined the
above-mentioned quantities relative to the point in time at which the
ball has traveled the distance of the ball’s radius. Furthermore, since
we have no measurement of the drag force in in the experiment, f� will
only be used to compare the computations directly.

To establish v�, tcont, dcont, and djump from the experimental data,
we interpolate the height data using a spline of order 3. This spline is
then evaluated to establish the time at which cS ¼ ð0; 0; 3rS=2Þ, the
time of contact, as well as the time and height of the jump. The veloc-
ity is then taken as the first derivative of the spline representing the
height. The resulting reference values for the quantities of interest are
shown together with our numerical results in Tables III and IV,
respectively.

The experimental study42 was conducted so that the horizontal
displacement of the particles was minimal. The dataset that we will
compare against shows a maximal horizontal displacement of less
than 2mm and 0.75mm in the PTFE6 and Rubber22 cases, respec-
tively. This compares with the mean over time of the maximal devia-
tion in the center location between experiment repetitions of
0.192mm and 0.135mm for the PTFE6 and Rubber22 cases, respec-
tively. However, the experiment is only able to give the projection of
the horizontal displacement onto the x–z plane. Thus, it is not possible
to detect the true horizontal motion. Note that we have ignored the
horizontal motion in the computation of the reference values.
However, since overall the horizontal deflection is small, we consider
this to be reasonable for the present purpose.

III. REDUCED MODEL

The setup described in Subsection IIC is symmetric with respect
to rotation if viewed in cylindrical coordinates. The experimental data
presented in Refs. 41 and 42 show a rotational component in the
motion of the solid, and they also show a small deflection of the center
of mass cS from the z axis. However, these effects are small, and since
the material parameters are such that the resulting flow is in the low to
intermediate Reynolds-number regime,42 we assume that the solution
is described sufficiently well by a rotationally symmetric flow in cylin-
drical coordinates. We use this in order to obtain a two-dimensional
reduced formulation that is computationally cheaper compared to full
three-dimensional computations. In Subsection IVB3, we will also
present a fully resolved three-dimensional simulation to have a closer
look at these rotational effects. To distinguish between the full three-
dimensional domains and the reduced two-dimensional domain, we
shall denote objects stemming from the three-dimensional setup with
a superscript “3d” if there is a potential for ambiguity. For the sake of
readability, objects based on the reduced two-dimensional setup will
not have a special notation.FIG. 2. Illustration for the definitions of the quantities of interest.
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With the spaces V3d¼fv2H1ðF 3dÞ jvjI 3d ¼uS3d ;vjC3d
wall[C

3d
bottom

¼0 and vzjC3d
top
¼0g� ½H1ðF 3dÞ�3 and Q3d¼L20ðF 3dÞ, the weak for-

mulation of the Navier–Stokes equation (1) is as follows:

Find ðu; pÞ 2V3d � Q3d such that for all ðv; qÞ 2 V3d � Q3d; it holds

A3d
f ðu; p;v; qÞ :¼ m3dð@tu;vÞ þ a3dðu;vÞ þ c3dðu; u; vÞ

þ b3dðv; pÞ þ b3dðu; qÞ ¼ 0 (9)

with the multilinear forms

m3dðu;vÞ ¼ qf

ð
F 3d

u � vdx;

a3dðu;vÞ ¼ lf

ð
F 3d
ru : rvdx;

c3dðu; v;wÞ ¼ qf

ð
F 3d
ðu � rÞv � wdx;

b3dðq;vÞ ¼ �
ð
F 3d

qr � vdx:

(10)

In order to reduce this three-dimensional flow problem into a
two-dimensional flow problem, we rewrite the problem into cylindri-
cal coordinates r, /, z. The rotational symmetry of a solution umeans
that @/u ¼ 0. We use this to rotate the domain into the rþ � z-plane
and transform the weak formulation (9) accordingly. Now, let

r ¼ @r
@z

� �
and X ¼ X3d \ Rþ �RÞ

�
be the reduced two-

dimensional computational domain. A sketch of the three-
dimensional domain transformed into two dimensions can be seen on
the right of Fig. 1.

At the symmetry boundary (r¼ 0), the boundary conditions

ur ¼ 0; @ruz ¼ 0 (11)

are valid. The reduced spaces are then V ¼fv2H1ðFÞ jvjI ¼
0
vS3

� �
;

vjCwall[Cbottom
¼0;vzjCtop

¼0; and vr jr¼0¼0g�½H1ðFÞ�2 and

Q¼L20ðFÞ. The reduced Navier–Stokes problem then reads as follows:

Find ðu; pÞ 2 V �Q such that for all ðv; qÞ 2 V �Q; it holds

Af ðu; p;v; qÞ :¼ mð@tu;vÞ þ aðu;vÞ þ cðu;u;vÞ þ bðv; pÞ

þ bðu; qÞ ¼ 0 (12)

with the transformed multilinear forms

mðu;vÞ ¼ 2pqf

ð
F
ru � vdx;

aðu;vÞ ¼ 2plf

ð
F
ru : rvþ 1

r
urvrdx;

cðu;v;wÞ ¼ 2pqf

ð
F
rðu � rÞv � wdx;

bðq;vÞ ¼ �
ð
F
qðvr þ rr � vÞdx;
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TABLE IV. Results for the Rubber22 setup. The experimental values have been reproduced with permission from T. Hagemeier, Particle settling-transitional regime, version 1, Mendeley Data, September 2020.
Copyright 2020 Author(s), licensed under a Creative Commons Attribution 4.0 License.

Discretization Results

Method [hmin, hmax] Dt dof nze t� v� f� tcont tjump djump

ALE [0.000 4, 0.004] 1=200 6.9 0.31 0.455 904 5 �0.303 002 1.132 62 � 10�2 … … …
[0.000 2, 0.002] 1=800 21.5 0.99 0.455 355 1 �0.303 552 1.131 07 � 10�2 … … …
[0.000 1, 0.001] 1=3200 73.8 3.45 0.455 333 4 �0.303 616 1.131 17 � 10�2 … … …

Extrapolate 0.455 332 5 �0.303 625 … … … …
order (in h) 4.6 3.1 … … … …

ALE 3D [0.000 8, 0.032] 1=200 18.43 4.05 0.453 695 �0.304 252 1.142 52 � 10�2 … … …
[0.000 4, 0.016] 1=800 68.52 15.37 0.456 145 �0.302 170 1.144 93 � 10�2 … … …
[0.000 2, 0.008] 1=3200 304.4 69.33 0.455 929 �0.302 667 1.135 57 � 10�2 … … …

CutFEM [0.002 00, 0.008] 1=2000 11.46 0.34 0.453 455 �0.309 542 3 1.090 94 � 10�2 0.524 979 0.098 086 7.308 15 � 10�3
[0.001 00, 0.004] 1=2000 38.98 1.16 0.454 081 �0.308 841 2 1.110 82 � 10�2 0.525 502 0.110 672 1.147 72 � 10�2
[0.000 50, 0.002] 1=2000 140.96 4.20 0.453 789 �0.306 220 2 1.129 22 � 10�2 0.526 010 0.121 606 1.368 74 � 10�2

FSI (Es ¼ 5 � 106) [0.001 0, 0.004] ½1=2000; 1=500� 51.4 1.15 0.446 020 �0.320 688 9 … 0.515 197 0.079 14 2.682 98 � 10�3
[0.000 5, 0.002] ½1=2000; 1=500� 204.6 4.72 0.449 821 �0.311 385 1 … 0.521 487 0.083 323 3.719 86 � 10�3

FSI (Es ¼ 2 � 106) [0.001 0, 0.004] ½1=2000; 1=500� 51.4 1.15 0.446 012 �0.320 715 1 … 0.516 197 0.092 5 5.292 47 � 10�3
[0.000 5, 0.002] ½1=2000; 1=500� 204.6 4.72 0.449 827 �0.311 375 9 … 0.522 087 0.090 5 5.501 46 � 10�3

Experiment 0.469 137 �0.309 301 … 0.544 021 0.089 492 4.414 85 � 10�3
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cf. Ref. 45. Since the motion of the solid is partially driven by the fluid
forces acting on it, we also need to transform these. Let (u3d, p3d)
2 V3d � Q3d be a rotationally symmetric solution of (9) and (u, p)
2 V � Q be the solution of (12). We can then transform the weak
boundary integral formulations asð
I3d

r3dðu3d; p3dÞn3d � v3ddS3d ¼ 2p
ð
I
rðlfru� IdpÞn � vdS: (13)

The forces F can then be computed by inserting the appropriate non-
conforming test-functions v into this functional. Using this, we can
compute the motion of the solid as before using (7).

IV. NUMERICAL COMPUTATIONS

We give the details of the different numerical approaches applied
to attempt to reproduce the observed data and present the results
attained with these methods.

The full result datasets of all methods and the source code to
reproduce the rigid-body computations according to the descriptions
in Subsections IVA1 and IVA2 can be found in the zenodo reposi-
tory.63 This also includes the preparatory examples presented in
Appendix B.

A. Discretizations

We provide the details on the formulations of the different dis-
cretization approaches used.

1. Fluid–rigid body interaction in Arbitrary
Lagrangian–Eulerian coordinates

To compute the spatially reduced coupled problem, we formulate
the Navier–Stokes equations in Arbitrary Lagrangian–Eulerian (ALE)
coordinates46 by introducing a reference map,

TALEðcSÞ : F ! FðcSÞ;

and by transforming the Navier–Stokes equation onto the reference
domain F , which is fixed for all times. This setting allows for a direct
finite-element triangulation Xh of F that resolves the interface
between fluid and solid well. ALE approaches are highly efficient and
accurate and well established for fluid–solid interaction problems.
ALE approaches will however fail if the deformation becomes too
large47 or if even contact of the solid with an outer boundary hap-
pens,14 such as it is the case in our context. We refer to the literature
on ALE12,46 and to Appendix A1 for details on our implementation.

2. Fluid–rigid body interaction in Eulerian coordinates

As in Subsection IVA1, we consider the problem as a moving
domain problem for the fluid, assume the solid to be a rigid body, and
decouple the fluid and solid equations. For the resulting moving
domain problem, we use an unfitted Eulerian finite-element method
from Ref. 23 using BDF2 time stepping, together with Taylor–Hood
elements in space, which are inf–sup stable in the CutFEM setting48

with ghost-penalty stabilization.49 In order to obtain the full conver-
gence order of the Taylor–Hood finite-element pair, we use an

isoparametric mapping introduced in Ref. 50 for stationary domains
to realize the higher-order geometry approximation.

a. Transformed nitsche terms. In the CutFEM method used here,
Dirichlet boundary conditions on unfitted boundaries are enforced
using Nitsche’s method.51 For a consistent and stable method, we also
transform these terms into the rotationally symmetric formulation.
Using the standard derivation for Nitsche’s method, we find that the
consistency and penalty terms for the reduced formulation are

ncðu;vÞ ¼ �2plf

ð
C
rðruÞn � vdS

and

nsðu;vÞ ¼ 2plf r
k2

h

ð
C
ru � vdS;

respectively, with a penalty parameter r > 0, the velocity space’s poly-
nomial order k, and the local mesh diameter h. Similarly, we find for
the pressure-coupling operator that the Nitsche term is

npðv; qÞ ¼
ð

C
rqv � ndS:

The necessary Nitsche term for a symmetric and consistent formula-
tion to enforce the Dirichlet conditions u¼ g is therefore

nðu; p; v; qÞ :¼ ncðu;vÞ þ ncðv� g; uÞ þ nsðu� g; vÞ

þ npðv; pÞ þ npðu� g; qÞ:

b. Transformed ghost-penalty operators. The role of the ghost-
penalty operator in the unfitted Eulerian time-stepping scheme used
here is twofold. As in other CutFEM discretizations, it stabilizes arbi-
trary element cuts such that the method is stable and the resulting
matrices are well conditioned.49 Second, appropriately scaled ghosty-
penalties provide the necessary implicit extension for the method-of-
lines approach to the discretization of the time-derivative.22–24

We use the direct-version of the ghost-penalty operator.52 To
define this operator, letfh be a set of facets between neighboring ele-
ments on which the ghost-penalty operator is to act on, cf. Refs. 23
and 24 for further details. For a facet F 2fh such that F ¼ T 1 \ T 2,
we define the facet patch xF ¼ T1 [ T2. The velocity ghost-penalty
operator for the rotationally symmetric formulation is then

ihðu;vÞ ¼ cu
X
F2fh

ð
xF

r
h2
ðu1 � u2Þ � ðv1 � v2Þ

þ 1
r
ður;1 � ur;2Þðvr;1 � vr;2Þdx;

where vi ¼ EPvjTi
with the canonical extension of polynomials

EP : PT ! PRd . The pressure ghost-penalty operator is

jhðp; qÞ ¼ cp
X
F2fh

ð
xF

rðp1 � p2Þðq1 � q2Þdx:

With these transformed ghost-penalty operators, it is easy to show the
standard ghost-penalty results in the appropriately transformed
norms.
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The variational formulation of the CutFEM discretization then
reads as follows:

Find ðu; pÞ 2 Vh � Qh such that for all ðv; qÞ 2 Vh � Qh; it holds

Af ðu; p; v; qÞ þ nðu; p;v; qÞ þ lf þ
1
lf

 !
ihðu;vÞ þ

1
lf

jhðp; qÞ ¼ 0:

c. Contact algorithm. We consider a very basic contact avoidance
scheme, used widely in the literature.18,32,53,54 The idea is to introduce
an artificial (lubrication) force acting on the rigid body in the vicinity
of the contact wall, which increases when the ball comes closer to the
wall and acts in the direction away from the wall. This force is then
added to the forces governing the motion of the rigid solid such that
contact does not occur. We define this force as

fcðSÞ ¼
0 if distðI ;CbottomÞ 	 dist0

cc
dist0 � distðI ;CbottomÞ

distðI ;CbottomÞ
if distðI ;CbottomÞ < dist0;

8><>:
where dist0 and cc are parameters to be chosen and distðI ;CbottomÞ is
the minimal distance between I and Cbottom. We then add this to the
right-hand side of the ODE (4) and carry this thought so that the
right-hand side of (7) becomes qS�qF

qS
g þ Fyþfc

volðSÞqS
. The solution to this

ODE then governs the position on the level set describing the solid
and the Dirichlet condition enforced on the interface.

d. Implementation. This discretization is implemented using the
finite-element library Netgen/NGSolve (see Refs. 55 and 56 and
ngsolve.org) together with the add-on package ngsxfem57 for unfit-
ted finite-element functionality.

The background mesh is constructed by defining a local mesh
parameter hinner on the left of the reduced domain where r < 2dS=3
and then creating a shape regular mesh with h ¼ hmax in the remain-
der of the domain. This is to obtain more accurate boundary integrals,
i.e., when computing the forces acting on the ball. In the Rubber22 set-
ting, we choose hinner ¼ hmax/4 and in the PTFE6 case as hinner
¼ hmax/7. This is to obtain background meshes with a similar number
of elements in each settings. On the active part of the mesh, we con-
sider standard P2=P1 Taylor–Hood elements.

The Nitsche parameter is taken as r ¼ 100, the extension ghost-
penalty parameter is cu,e¼ 0.1, the cut-stability ghost-penalty parame-
ter cu,s ¼ cp,s ¼ 0.01, and the extension strip width parameter is cd
¼ 4. See Ref. 23 for details on these parameters.

The contact parameters are tuned with respect to the PTFE6
jump height since the model cannot be expected to resolve the elastic
nature of rubber. For PTFE6, we take the contact model parameters
dist0 ¼ 2 � 10�5 and cc ¼ 0.38. Since the mass of the Rubber22 ball is
�31.6 times larger than the PTFE6 ball, we take contact model param-
eters that are appropriately larger such that the resulting acceleration
acting on the balls is comparable. For the Rubber22 computations, we
take dist0¼ 2 � 10�5 and cc¼ 12.

Each time step is iterated between the fluid system and the solid
ODE until the system is solved. We consider the system as solved
when the update of the ball velocity in an iteration is less than 10�8.

3. Fluid–structure interaction in fully Eulerian
coordinates

We consider the full fluid–structure interaction problem includ-
ing contact with Cbottom. We adopt here a fully Eulerian approach for

the FSI system in order to enable the transition to contact.31,32,34 To
allow for an implicit inclusion of the contact conditions into the sys-
tem (see below), we use a Nitsche-based method for the FSI coupling
as presented in Ref. 39.

a. Solid bilinear form and FSI coupling. The fluid bilinear form
has already been detailed in (12). To introduce the solid form, we
denote the reduced solid domain by SðtÞ and define the bilinear form
corresponding to the linear elasticity equations in Eulerian coordinates
(2) by

Asðd; _d ;w; zÞ :¼ msð@t _d � _d � r _d ;wÞ þ asðd;wÞ
þm _d ð@td � _d � rd þ _d ; zÞ;

where

msðd;wÞ :¼ 2pqs

ð
S
rd � w dx;

asðd;wÞ :¼ 2p
ð
S
rrrsðdÞ : rw þ rs;rwr dx;

m _d ðd;wÞ :¼ 2p
ð
S
d � w dx;

and

rs ¼ 2lsEðdÞ þ ks trðEðdÞÞ þ 1
r
dr

� �
I;

rs;r ¼
2ls þ ks

r
dr þ kstrðEðdÞÞ:

Moreover, we make use of the Nitsche terms defined in
Subsection IVA2 to impose the FSI coupling conditions (3),

nðu; p; _d ;v; q;wÞ :¼ nsðu� _d ;v� wÞ þ ncðu;v� wÞ
þ ncðv; u� _dÞ þ npðv� w; pÞ � npðu� _d ; qÞ:

Note the negative sign in front of the last term, which is required to
ensure the stability of the FSI formulation; see Ref. 25.

b. Discretization and stabilization. In order to resolve the inter-
face I within the discretization, we use the locally modified finite-
element method introduced in Ref. 58. This fitted finite-element
method is based on a coarse unfitted patch mesh, which is indepen-
dent of the interface location. The coarse cells are then divided in such
a way into sub-triangles and sub-quadrilaterals that the interface is
resolved in a linear approximation. In this work, we use equal-order
locally modified finite elements of first order, in combination with an
anisotropic edge-oriented pressure stabilization term sp(p, q); see Ref.
59 for details. We denote the locally modified finite-element space of
first order by X1

h . The discrete spaces for fluid velocity and pressure Vh

and Qh and for solid displacement and velocity Wh and Zh are given
by applying the respective Dirichlet conditions to the locally modified
finite-element space X1

h and by restricting the degrees of freedom to
the fluid or solid sub-domain, respectively.

In addition, we add a stabilization term sdð _d ; zÞ of artificial diffu-
sion type to the solid equations (see Ref. 32) and a consistent stabiliza-
tion at the boundary Csym corresponding to the rotational axis to
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ensure that the second boundary condition (11) is accurately imposed
in the discrete formulation,

sdð _d ; zÞ ¼ adh2ðrr _d ;rzÞS ;

srðu; vÞ :¼ asymqf lf

ð
Csym

h2nhs@ruz@rdS:

Here, hn and hs refer to the cell-sizes in the normal and tangential
directions, respectively. We summarize the stabilization terms in the
bilinear form,

sðu; p; _d ; v; q; zÞ ¼ spðp; qÞ þ sdð _d ; zÞ þ srðu; vÞ:

For time discretization, we use the modified dG(0) time discreti-
zation presented in Ref. 60, which can be seen as a variant of the
dG(0)/backward Euler methods that considers the movement of the
interface in each space–time slab. The interface positions and the
domain affiliations are updated explicitly based on the displacement
d(tn�1) of the previous time step and using the initial point set/back-
ward characteristics method.31,32 This means that we set

In :¼ Iðdðtn�1ÞÞ; Sn :¼ Sðdðtn�1ÞÞ; F n :¼ Fðdðtn�1ÞÞ:

c. Contact treatment. When a part I c :¼ I \ Cbottom of I enters
into contact with Cbottom, the FSI conditions need to be substituted
with appropriate contact conditions. It has been noted in Refs. 39 and
40 that although the fluid layer between the ball and the lower wall
vanishes (from a macroscopical perspective), an extension of the fluid
forces to the contact surface I c has to be considered to obtain a physi-
cally relevant contact formulation. Here, we use the simplest possible
numerical approach, which is to relax the no-penetration condition by
a small � ¼ �(h) > 0 such that a very thin mesh-dependent fluid layer
remains at all times.

The distance to Cbottom depends on the (Eulerian) displacement
d(tn) in the following way:

dist IðtnÞ;Cbottomð Þ ¼ dist Iðtn�1Þ;Cbottomð Þ
þ dnðtnÞ � dnðtn�1Þ:

The contact conditions, relaxed by a small �¼ �(h)> 0, read as

dist IðtnÞ;Cbottomð Þ 
 �; rn½ �½ � 
 0;

rn½ �½ � dist IðtnÞ;Cbottomð Þ � �ð Þ ¼ 0 on In ¼ Iðtn�1Þ;
(14)

where

rn½ �½ � :¼ nTrsn� nTrf n:

In other words, the relaxation means that the contact conditions are
already applied at an �-distance from Cbottom. The three conditions
(14) can be equivalently formulated in equality form with an arbitrary
cC> 0,61

rn½ �½ � ¼ �cC½dist IðtnÞ;Cbottomð Þ � �� c�1C rn½ �½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:Pcðd; rn½ �½ � Þ

�þ on In; (15)

where [�]þ stands for the positive part of (�). The contact parameter cC
will be chosen as cC ¼ c0Cksh�1 and the relaxation parameter will be

chosen as � ¼ �0hy, where hy denotes the cell size in the vertical direc-
tion at the bottom of the cylinder.

Note that (15) includes both the FSI coupling and the con-
tact condition as in the absence of contact, it is exactly the FSI
interface condition in the normal direction. For this reason, the
transition between FSI coupling and contact conditions can be
included easily in a fully implicit fashion in the variational
formulation.

The final variational formulation reads as follows:

Find ðu; p; d; _dÞ 2 Vh � Qh �Wh � Zh such that for all

ðv; q;w; zÞ 2 Vh � Qh �Wh � Zh; it holds

Af ðu; p;v; qÞ þ Asðd; _d ;w; zÞ þ nðu; p; _d ;v; q;wÞ

þ sðu; p; _d ; v; q; zÞ þ r½Pcðd; rn½ �½ �Þ�þ;wn
� �

I ¼ ðrf s;wÞX:

d. Implementation. The described algorithms and equations have
been implemented in the finite-element library Gascoigne3D.62 We
use a Cartesian finite-element mesh, which is highly refined in the
region where contact occurs.

Concerning time discretization, we start with a relatively
coarse time step Dt ¼ 2 � 10�3, which captures the essential dynam-
ics of the case process. When the ball gets close to the lower wall,
the time step is reduced in order to capture the contact dynamics
and, in particular, to resolve the impact time accurately. We do this
by reducing the time step by a factor of two each time the distance
to the wall drops below certain thresholds di, i ¼ 0, …, m. In the
Rubber22 case, we choose, for example, d0¼ 10�2 m and d1¼ 10�3 m.
For the PTFE6 case, the contact interval is much shorter
(around 10�4 s compared to 4 � 10�3 s for rubber). For this reason,
we specify seven thresholds to reduce the time step in seven steps
until Dt< 10�5 s.

In addition, we use the following numerical parameters:

c0C ¼ 1; r ¼ 105; ad ¼ 1; asym ¼ 103:

The contact relaxation parameter is chosen as �0 ¼ 1
8 for the Rubber22

test case and �0 ¼ 1
4 for PTFE6. For a detailed sensitivity study of the

influence of the contact parameters, we refer to Ref. 39.

B. Results

In the following, we shall abbreviate the methods described in
Subsection IVA1 as ALE, in Subsection IVA2 as CutFEM, and in
Subsection IVA3 as FSI.

Remark. In order to indicate the computational effort needed
to solve the (linearized) systems resulting from our computations,
we give the size and sparsity of these with our quantitative
results. The number fo free degrees of freedom is abbreviated as
dof, and the number of non-zero entries in the system is denoted
by nze.

In the CutFEM method, dof and nze can vary between time steps
since different elements are active in different time steps. We therefore
state the number of unconstrained degrees of freedom and non-zero
entries of the linearized system in the first time step.
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1. PTFE6

Our quantitative results for the PTFE6 setup are presented in
Table III. Figure 3 shows the distance between the bottom of the ball
to the bottom of the fluid domain over time from the experimental
data and all three numerical methods.

If we look at the pre-contact quantities of interest in Table III,
we see that all methods give very similar results for the given quan-
tities. Looking at the velocity of the PTFE6 ball, we see that the
numerical values are within a relative error of 5.1% of the experi-
ment on the finest discretizations. Taking into account that these
results ignore the 2mm deflection from the z axis observed in the
experimental data, we consider this to be acceptable. Since the elas-
tic effects of the particle appear to be negligible in this phase of the
problem and due to the known good approximation properties of
the ALE method, we consider these to be the most accurate values
for future comparison.

Looking at the quantities of interest in the later phase, we see that
in both the CutFEM and FSI methods, contact occurs later than in the
experiment. This is consistent with the smaller speed of the particle
compared to the experiments as observed above. With respect to the
jump, we see that both methods capture the rebound dynamics since
both the point in time at which the peak of the rebound is realized and
the size of the jump are consistent with the experiment. As the
CutFEM contact parameters were tuned with respect to the size of this
jump, this is unsurprising. However, since the contact force only acts
for a very small number of time steps, the fact that the time at which
the rebound is maximal is also captured well shows that even after
contact, the system is still approximated well by the fluid–rigid body
system. Nevertheless, it is clear that the FSI system captures the
dynamics much more accurately and without the need of essentially
unknowable and artificial parameters dist0 and cc in the contact
model.

2. Rubber22

Our results for the Rubber22 problem are presented in
Table IV. The height of the ball over time can be seen in Fig. 4. To
illustrate the applicability of our spatially reduced formulation, we
solve the fluid–rigid body system in full three spatial dimensions
using the ALE approach. The ALE approach has been chosen for
this due to its significantly higher computational performance com-
pared to the CutFEM and FSI methods. These results are also given
in Table IV. To illustrate the flow solution, we show the result of
the CutFEM simulation on the coarsest mesh, rotated into the x–z
plane at t ¼ 0.575 in Fig. 5.

We again start by inspecting the pre-contact results in Table IV.
We observe that t�, v�, and f� are again very similar for all methods.
However, here, the discrepancy between the numeric and experimen-
tal velocity values is significantly smaller, with the relative difference
being between 2.1% and 0.6% on the finest discretizations. We note at
this point that the deviation from the z axis in this experiment was less
than 0.75mm. This shows that even for a more elastic material, a flu-
id–rigid body system can capture the pre-contact dynamics as well as
a full FSI model. Furthermore, we see that with perfect initial data and
spatial symmetry, our spatially reduced model, derived under the
assumption of a rotationally symmetric solution, captures the dynam-
ics as well as the significantly more computationally expensive full
three-dimensional computation.

Looking at the numbers for the contact and rebound dynamics,
we again see that the time of contact is similar for both the CutFEM
and FSI methods, and this matches the experimental time with an
error of less than 5%. For the CutFEM method, we clearly see that the
PTFE tuned parameters are not able to capture the rebound dynamics
well. In fact, the size of the rebound is approximately three times larger
than the physical rebound. This shows that the use of an artificial
lubrication force, as considered in a variety of other literature, can lead

FIG. 3. The distance between the bottom of the ball and the bottom of the tank: Experimental and numerical results for the PFTE6 setup. The experimental data are repro-
duced with permission from T. Hagemeier, Particle settling-transitional regime, version 1, Mendeley Data, September 2020. Copyright 2020 Author(s), licensed under a
Creative Commons Attribution 4.0 License.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 033304 (2021); doi: 10.1063/5.0037971 33, 033304-11

Published under license by AIP Publishing

https://scitation.org/journal/phf


FIG. 4. The distance between the bottom of the ball and the bottom of the tank: experimental and numerical results for the Rubber22 setup. The experimental data are repro-
duced with permission from T. Hagemeier, Particle settling-transitional regime, version 1, Mendeley Data, September 2020. Copyright 2020 Author(s), licensed under a
Creative Commons Attribution 4.0 License.

FIG. 5. Velocity solution (left) and pressure solution (center) at t ¼ 0.575 s rotated into the x–z plane and computational mesh (right) for the Rubber22 case, resulting from the
CutFEM computation with hmax ¼ 0.008 and Dt ¼ 0.005 s.
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to physically meaningful results but is heavily dependent on the
“correct” choice of parameters for which there is no a priori knowl-
edge. For the FSI model, we see that the overall dynamics are cap-
tured well. We also observe that—while the pre-contact dynamics
are essentially independent of the elasticity parameters—a variation
of the elasticity modulus Es changes the rebound height djump sig-
nificantly. Here, a softer material (Es ¼ 2 � 106 Pa) leads to a larger
rebound as more elastic energy is taken up through the deformation
during the impact.

3. Three-dimensional computation including rotational
effects

One of the challenges in performing the experimental study42

was to limit the horizontal deflection of the falling objects, i.e., to keep
them close to the centerline. Identifying the source of these three-
dimensional effects is one of the intriguing questions for future
research. The cause may be found in a complex solution pattern of the
Navier–Stokes equations, in material inaccuracies such as non-
uniform distribution of the mass or the surface roughness but also in
experimental inaccuracies, e.g., during the release process.

Since the reduced formulation presented in Sec. III cannot
depict 3D effects, we add further studies based on the full 3D for-
mulation. Here, we choose the ALE representation again due to its
much better computational performance, even if no contact can be
modeled. However, this is not a significant limitation since effects
of rotation and horizontal deflection happen during the phase of
free fall. The three-dimensional simulations based on the ALE for-
mulation presented above in Subsection IV B 2 did not show any
three-dimensional effect if the configuration is fully symmetric and
the ball is released at the centerline, i.e., cS ¼ 0; 0; dð0Þð Þ. To inves-
tigate the stability of the Navier–Stokes rigid-body system, we con-
sider further numerical simulations based on the Rubber22 case
with distorted initial values. We start the simulation with the initial
data

cS ¼ 10�3vx; 10
�3vy; 0:1461203

� �
m;

vSð0Þ ¼ 4 � 10�3vx; 4 � 10�3vy; 0
� �

ms�1;

xSð0Þ ¼ v1; v2; v2ð Þ 2p � 10�2 s�1;

where vx; vy; v1; v2; v3�
iidNð0; 1Þ are normally distributed random

numbers with mean zero and standard deviation 1.
Figure 6 shows the results for multiple experiments based on ran-

domly chosen initial data. The left plot shows the projection of the
center of mass onto the x–y plane. These results show that numerical
simulations cannot predict a substantial deflection from the centerline
if an initial deflection is prescribed. While the rigid solids are indeed
further removed from the center, the effect is small and the objects
remain within 3mm off the center. On the right, we show the velocity
of the particles. The upper figure shows the horizontal velocity compo-
nent, while the lower plot gives the dominant vertical velocity. Here,
we indeed see a substantial impact of the initial disturbances. When
the solid comes close to the lower boundary, a deflection to the sides
becomes visible. We note that these ALE simulations crash before con-
tact is established. At final time t � 0.64 s, this distance between the
lower boundaries is still slightly larger than radius rS ¼ 0:011m. Since
the horizontal velocity is beginning to increase significantly here, fur-
ther simulations, in which the particle is able to get closer to the bot-
tom boundary, are of interest. We deduce from these results that small
fluctuations during the release process can indeed explain the small
horizontal displacement observed during the experiments for the
PTFE and rubber particles and the discrepancy between the experi-
mental and numerical realizations of our quantities of interest.
However, these computations also show that very large horizontal dis-
placements, as observed in Refs. 41 and 42, for example, for the POM
particle, cannot be solely explained through this.

V. SUMMARY AND CONCLUSION

We have presented two setups for a fluid–structure interaction
problem with solid contact based on the physical experiments

FIG. 6. Left: view from below. Deflection of the center of mass from the centerline (0, 0) for 15 experiments starting with random initial deviations each. Right: velocity of the particles

for six experiments. The upper figure shows the horizontal velocity component
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2S;1 þ v2S;2

q
, and the lower plot gives the vertical velocity close to the bottom for t 	 0.5 s.
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described in Ref. 42 and the data available in Ref. 41. We computed
these setups using a spatially reduced model under the assumption of
rotational symmetry in cylindrical coordinates. For the discretization,
we used a fitted ALE and unfitted CutFEM approach within a fluid–-
rigid body model and a fully Eulerian FSI approach in a fluid–elastic
structure model capable of resolving the solid contact.

We showed how each of these discretizations is able to capture
the pre-contact dynamics observed in the physical experiment within
a margin of 5.1%–0.6%, even though this ignored any horizontal
motion observed in the experimental data. Using a full three-
dimensional ALE discretization, we saw that the spatially reduced
approach did indeed result in meaningful results under the assump-
tion of perfect initial conditions at a fraction of the computational
cost. Furthermore, we presented computation with disturbed initial
data. From these results, we deduced that the observed horizontal
motion in the PTFE and rubber experiments is within the scope
explainable by imperfect starting conditions. This shows that a fluid–-
rigid body model is suitable for this type of problem before solid con-
tact occurs.

With respect to the contact dynamics, we were able to show that
the Eulerian FSI discretization with contact treatment is able to repro-
duce the spatial and temporal dynamics observed in the experiments
very well. This is even though the theoretical modeling of such contact
dynamics is not yet fully understood. The moving domain CutFEM
approach together with the artificial contact treatment showed that
this type of contact treatment can result in physically meaningful
results when the artificial parameters are chosen “correctly” and the
extent to which the artificial parameters are material dependent.

The resulting datasets, the source code for the fluid–rigid body
discretizations, as well as some simplified examples are available in the
zenodo repository.63

We conclude that the two discussed setups are well suited for
the validation of fluid–structure interaction models in the moderate
Reynolds-number fluid regime both before and after contact. To
the best of our knowledge, this is the first example of a computa-
tional FSI setup with rebound contact dynamics, which is validated
by experimental data. We note that the PTFE6 setup is better suited
for validation of contact and rebound models since the model
parameters are known precisely. On the other hand, the Rubber22
scenario is well suited to validate models before or without contact
since there is less deviation from the centerline in the data from the
experiment.

For future research, it remains to be investigated that to what
extent the free surface at the top of the fluid domain plays a role in sys-
tem dynamics. Furthermore, an open question is that of the role of
imperfections in the mass distribution within the solid, of the surface
roughness of the solid, and whether these can explain larger horizontal
displacements and rotation observed, for example, with the POM par-
ticle in Ref. 42.
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APPENDIX A: DETAILS ON THE NUMERICAL
REALIZATION

1. Fluid–rigid body interaction in arbitrary
Lagrangian–Eulerian coordinates

The ALE formulation is based on the reference map

TALEðcSÞ : F ! FðcSÞ;

where cS is the solid’s center of mass relative to the bottom bound-
ary and where

FðcSÞ ¼ ½0; 0:055m� � ½0; 0:2m�

 �

nBrS cSð Þ;
BrS ðcSÞ being the open ball of radius r with midpoint cS. As the ref-
erence domain, we set F :¼ Fð0:05mÞ where the ball is centered at
cS ¼ ð0; 0; 0:5Þ such that the mesh distortion is not too extreme
when the solid comes close to the lower boundary. The mapping
TALEðcSÞ is given analytically by

TALEðcS ; r; zÞ ¼ r; z þ ðcS � 0:05mÞfALEðzÞð Þ;

fALEðzÞ ¼

z
0:05m� 2rS

; z < 0:05m� 2rS

1; 0:05m� 2rS 
 z 
 0:05mþ 2rS
0:2m� z

0:15mþ 2rS
; z > 0:05mþ 2rS

8>>>>><>>>>>:
(A1)

such that TALEðcS ; r; zÞ is a pure translation for all
z 2 ½0:05m� 2rS ; 0:05mþ 2rS�, where the reference ball is
located. We make sure that the lines at z ¼ 0:05m6 2rS are
resolved by the computational mesh such that TALE is differentiable
within all elements. This construction of the domain map does not
allow us to reduce the distance of the ball from the lower boundary
to less than rS .

The reference domain F is the basis for the finite-element dis-
cretization. In cylindrical coordinates, the ALE version of the varia-
tional formulation takes the form

mALEðcS ; u; vÞ ¼ 2pqf

ð
F
rJðcSÞu � vdx;

aALEðcS ; u;vÞ ¼ 2plf

ð
F
JðcSÞru

1 0

0 JðcSÞ�1

 !
: rv

�
1 0

0 JðcSÞ�1

 !
þ JðcSÞ

r
urvrdx;

cALEðcS ; u; v;wÞ ¼ 2pqf

ð
F
rJðcSÞr

1 0

0 JðcSÞ�1

 !
� u� @tTALEðcSÞð Þ � wdx;

bALEðcS ; q;vÞ ¼ �2p
ð
F
JðcSÞq vr þ r@rv1 þ @zv2=JðcSÞð Þdx;

where JðcSÞ ¼ detðrTALEÞ is the determinant of the deformation
gradient.

The discretization is realized by means of quadratic equal-
order finite elements for velocity and pressure on a quadrilateral
mesh of the reference domain F ; we refer to Ref. 12, Sec. 4.4 for
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details on the realization. To stabilize the inf–sup condition, we use
the local projection scheme as introduced by Becker and Braack,64

given, in the ALE formulation, as

sALEðcS ; p; qÞ ¼
ð
F
r

dr 0

0 dz

 !
rjhðpÞ �

JðcSÞ 0

0 JðcSÞ�1

 !

�rjhðqÞ þ
JðcSÞ
r

drjhðpÞjhðqÞdx:

Here, jh:¼ id � i2h is the coarse mesh fluctuation operator that
subtracts the interpolation to the mesh with double spacing and
where dr and dz are local stabilization parameters that depend on
the element diameter h and the time step size k,

dr ¼ 0:1 �
lf

qf h2
þ 1
k

 !�1
; dz ¼ 0:1 �

lf

qf h2JðcSÞ2
þ 1
k

 !�1
:

The different scaling in r- and z-directions reflects the anisotropy
induced by the ALE transformation, cf. Ref. 65 or (Ref. 12, Sec.
5.3.3).

In time, we discretize the Navier–Stokes equations and the
rigid-body problem with BDF2 time stepping in a decoupled itera-
tion taking 10�8 as tolerance for the solid velocity and deformation
update. The forces acting on the solid are evaluated by means of the
Babu�ska–Miller trick66,67 such that quadratic finite elements let us
expect fourth order convergence. Hence, each step of spatial refine-
ment will be accompanied by two refinements of the time step.

a. Fluid–rigid body interaction in arbitrary
Lagrangian–Eulerian coordinates in three dimensions

To clarify the role of fixed body rotations of the solid and
deflections of the center of mass from the z axis, both of which were
observed in the experimental analysis,41,42 we perform full three-
dimensional simulations. The Navier–Stokes equations are formu-
lated in Cartesian coordinates (1), and the motion of the rigid body
is described by

d
dt

cSðtÞ ¼ vSðtÞ;

d
dt
vSðtÞ �mS ¼

0

0

mSg � volðSÞqf g

0BB@
1CCAþ ð

I
rðu; pÞn ds;

d
dt

xSðtÞ � IS þ xSðtÞ � ISxSðtÞ ¼
ð
I
x � cSðtÞð Þ � rðu; pÞn ds;

(A2)

where vSðtÞ 2 R3 is the full velocity vector, cSðtÞ 2 R3 is the sol-
id’s center of mass, and xSðtÞ 2 R3 is the rotational velocity vector;
cf. Eqs. (4)–(6). Assuming a homogeneous distribution of the den-
sity, the moment of inertia is given by

IS ¼
8
15

pqSr
5
S Id:

It follows that the nonlinear term in the rotational ODE (A2) van-
ishes since xSðtÞ � ISxSðtÞ ¼ 8

15 pqSr
5
S xSðtÞ � xSðtÞ ¼ 0. On the

surface of the sphere, the Navier–Stokes Dirichlet conditions are
used to describe the velocity

vðx; tÞ ¼ vSðtÞ þ xSðtÞ � x � cSð Þ on I :

To evaluate the torque correctly through the variational formula-
tion, i.e., by using the Babu�ska–Miller trick,66,67 the symmetric gra-
dient is used instead in (10); hence,

a3dðu; vÞ ¼ lf

ð
X3d
ðruþruTÞ : rv dx:

We cast the problem in standard ALE formulation and refer to Ref.
12, Chap. 5 for further details. The ALE map TALE(t) is chosen simi-
lar to the reduced case (A1), but we must incorporate motion in the
x–y plane and define

TALEðcS ; x; y; zÞ ¼
x þ cS;1 � gALE rðx; yÞð Þ
y þ cS;2 � gALE rðx; yÞð Þ

z þ ðcS;3 � rS � 0:05mÞfALEðzÞ

0B@
1CA;

where fALE(�) is defined in (A1), while r(�, �) and gALE(�) are given by

rðx; yÞ ¼ max 0;min 1;
x � rS
R� rS

� � 
;

gALEðrÞ ¼ 1� 1

1þ exp 1�2r
r�r2
� � :

The function r(�, �) maps the x–y plane to [0, 1] with r(x, y) ¼ 0 forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

 rS and r(x, y) ¼ 1 for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
	 R. Furthermore,

gALE is a smooth transition function mapping (0, 1) to (0, 1), with
all derivatives being zero at 0 and 1. On the other hand, the deriva-
tive of fALE(z) is not defined at z ¼ 0:05m62rS . These two surfaces
are however resolved by the finite-element mesh to give good
approximation characteristics of the ALE formulation.

b. Implementation

Both formulations, the reduced two-dimensional ALE formu-
lation in cylindrical coordinates and the full three-dimensional ALE

TABLE V. Resulting reference quantities for the stationary test scenario.

Discretization Results

Method [hmin, hmax] dof nze Fz

ALE [0.000 30, 0.004 9] 6.9 0.310 �4.432 34 � 10�5
[0.000 15, 0.002 4] 26.7 1.238 �4.429 92 � 10�5
[0.000 08, 0.001 2] 104.9 4.946 �4.429 75 � 10�5

Extrapolate �4.429 74 � 10�5
order (in h) 3.8

CutFEM [0.002 0, 0.008] 11.9 0.361 �4.402 54 � 10�5
[0.001 0, 0.004] 41.3 1.241 �4.423 55 � 10�5
[0.000 5, 0.002] 151.4 4.525 �4.429 19 � 10�5
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formulation, are implemented in the finite-element library
Gascoigne3D.62 The coupling between the Navier–Stokes equation
and the rigid-body motion is resolved in a simple iteration until the
discrepancy in velocity reached a threshold

kvjI � vSk1 < 10�8:

The nonlinearity of the Navier–Stokes equation is solved by a Newton
iteration, and the resulting linear systems of equations are approxi-
mated with a parallel generalized minimal residual method (GMRES)
iteration, preconditioned by a geometric multigrid solver; see Ref. 68.
The meshes are graded with a higher resolution close to the solid.

APPENDIX B: COMPUTATIONAL TEST CASES

We define two simplified test cases. This is intended to make it
easier for others to reproduce the presented results using different
methods and/or implementations.

1. Stationary flow test

For this stationary test, we modify the Rubber22 setup. The
sphere is fixed at cS ¼ ð0; 0; 0:1Þ, i.e., the center of the cylinder. We
impose an inflow boundary condition u ¼ �0:01ð1� ðx21 þ x22Þ=R2Þ

on Ctop, no-slip u ¼ 0 on Cwall [ I , and a homogeneous Neumann
boundary condition r(u, p)n¼ 0 on Cbottom.

We consider the stationary Navier–Stokes problem on this
domain. As reference quantities, we take the vertical stress acting
on the sphere, i.e., testing the reduced formulation in (13) with the
non-conforming, continuous test-functions bw ¼ ð0; 1ÞT on I and 0
on C, respectively.

We compute the problem based on the discretizations dis-
cussed in Subsections IVA 1 and IVA2. The results can be seen in
Table V.

2. Non-stationary flow test with prescribed motion

As a second test case, we keep the Rubber22 setup as the basis.
The material parameters and the cylinder boundary conditions are
as before, i.e., we consider no-slip on Cwall [ Cbottom and a free-slip
condition on Ctop. We prescribe the motion of the sphere as follows:
Over the time interval I ¼ [0, 20], the sphere is located at

cS ¼ 0; 0; dðtÞð Þ with dðtÞ ¼ 0:1þ 0:05 cosð0:1ptÞ:

The boundary condition on the interface is accordingly set to
u ¼ 0; 0; @tdðtÞð Þ. Quantities of interest are the maximal value over

TABLE VI. Resulting reference quantities for the non-stationary moving domain test scenario.

Discretization Results

Method [hmin, hmax] Dt dof nze Fz,max tz,max

ALE [0.000 30, 0.009 9] 1=5 11.1 0.49 1.018 38 � 10�4 4.107 346 91
[0.000 15, 0.005 0] 1=20 25.0 1.10 1.017 48 � 10�4 4.113 563 25
[0.000 08, 0.002 5] 1=80 58.7 2.61 1.017 20 � 10�4 4.106 704 36

CutFEM [0.002 0, 0.008] 1=25 11.9 0.361 1.017 00 � 10�4 4.153
[0.001 0, 0.004] 1=50 41.2 1.240 1.013 95 � 10�4 4.138
[0.000 5, 0.002] 1=100 151.3 4.526 1.016 71 � 10�4 4.111

FIG. 7. Force functionals acting on the sphere with
prescribed motion over time.
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time of the z-component of the force functional in the reduced
formulation.

We compute this again using the reduced formulation with the
rigid-body discretizations. The quantitative results can be seen in
Table VI, while the force functional is shown over time in Fig. 7.

DATA AVAILABILITY

The numerical data supporting the finding of this study are
openly available in Zenodo, Ref. 63. The experimental data, on which
this study is based, is openly available in Mendeley Data, Ref. 41.
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