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Abstract
Pre-processing is an important step in the analysis of data. For example, it can used
to segment time series into stretches with approximately constant means but also
for the analysis of image data by e. g. identifying regions containing anomalies. Scan
statistics provide a powerful and oftentimes computationally effective tool for both
the estimation of structural breaks, so called change points, in time series and the
estimation of locations that contain anomalies in image data.

In the first part of this thesis, we present statistical methodology based on scan
statistics with the intent of estimating mean changes on a general class of multi-
variate stochastic processes. More precisely, these processes fulfill strong invariance
principles and include e. g. partial sum, renewal and diffusion processes. We intro-
duce a scan statistic based on moving sum (MOSUM) statistics in order to estimate
the locations of abrupt mean changes of the processes introduced above. We analyze
the behavior of this statistic both in the existence and the absence of change points
and provide limit distributions in the case of no change points. We introduce esti-
mators for these change points and show consistency for both the case of linear and
sublinear bandwidths. Furthermore, under mild assumptions we are able to show
convergence rates and provide the asymptotic distribution for the distance between
the change points and their estimators.

In the second part of this thesis, we develop a procedure that aims to identify areas
containing potentially dangerous anomalies such as fissures in large scans of concrete
blocks as a starting point for further methods, e. g. machine learning algorithms
while trying to discard areas with natural anomalies (gravel, air etc.). One can ob-
serve that locally, fissures are rectangle-shaped objects with small widths while the
natural anomalies resemble bubbles. Therefore, inspired by the use of windows in
MOSUM statistics and based on the above described geometric properties of fissures
and natural anomalies, we present a MOSUM-type scan statistic using rectangle- and
circle-shaped windows in order to detect areas with potentially dangerous anomalies
(fissures) and discard areas with natural anomalies. We analyze the performance
of our procedure by means of a simulation study and show convergence of our scan
statistic to a Gaussian process in the absence of anomalies which is important in
order to calculate thresholds for our procedure. Furthermore, we provide limit theo-
rems for scan statistics using shapes for windows that include, but are not not limited
to, convex sets.



Zusammenfassung
Die Vorverarbeitung der Daten ist ein wichtiger Schritt im Bereich der Datenanal-
yse. Sie kann sowohl dazu genutzt werden, Zeitreihen in Abschnitte mit annähernd
konstanten Erwartungswerten zu unterteilen, als auch für die Analyse von Bilddaten,
um dort z. B. Regionen zu identifizieren, die Anomalien aufweisen. Scan-Statistiken
sind wirkungsvolle und oftmals recheneffiziente Methoden sowohl für die Schätzung
von Strukturbrüchen, so genannter Change-Points in Zeitreihen, als auch für die
Schätzung von Anomalien enthaltenden Regionen in Bilddaten.

Im ersten Teil dieser Arbeit stellen wir statistische Methoden basierend auf Scan-
Statistiken vor, mit dem Ziel, Erwartungswertänderungen in einer allgemeinen Klasse
multivariater stochastischer Prozesse zu schätzen. Für diese Prozesse fordern wir
lediglich, dass sie starke Invarianzprinzipien erfüllen. Dies beinhaltet beispielsweise
Partialsummen-, Erneuerungs- und Diffusionsprozesse. Wir stellen eine Scan-Statistik
auf Basis so genannter ’moving sum’ (MOSUM)-Statistiken vor mit dem Ziel, die
genaue Lage von abrupten Mittelwertänderungen in den oben vorgestellten Prozessen
zu schätzen. Wir analysieren das Verhalten dieser Statistik sowohl im Falle der Ex-
istenz als auch der Abwesenheit von Strukturbrüchen und leiten Grenzverteilungen
der Statistik im Falle der Abwesenheit von Strukturbrüchen her. Ferner stellen wir
auf der Scan-Statistik basierende Schätzer für die Strukturbrüche vor und zeigen
Konsistenzresultate sowohl für lineare als auch für sublineare Bandbreiten. Darüber
hinaus zeigen wir unter schwachen Voraussetzungen Konvergenzraten und geben die
Grenzverteilung für den Abstand zwischen den Strukturbrüchen und ihren Schätzern
an.

Im zweiten Teil dieser Arbeit stellen wir ein Verfahren zur Detektion von Rissen in
großen Bildern von Betonblöcken vor, welches als Vorverarbeitung für weitere Metho-
den wie z. B. solche des Maschinellen Lernens dienen kann. Ein weiteres Ziel unseres
Verfahren ist, Regionen mit natürlichen Anomalien im Beton wie Lufteinschlüssen,
Schotter usw. zu eliminieren. Basierend auf lokalen geometrischen Eigenschaften
von Rissen und natürlichen Anomalien, die optisch Blasen ähneln, stellen wir eine
MOSUM- Scan-Statistik vor, die kreisförmige und rechteckige Fenster verwendet um
Regionen mit potenziell gefährlichen Anomalien wie Rissen zu identifizieren und Re-
gionen mit natürlichen Anomalien wie Lufteinschlüssen, Schotter usw. zu eliminieren.
Wir analysieren die Performance unseres Verfahrens in einer Simulationsstudie und
zeigen die Konvergenz unserer Statistik gegen das Funktional eines Gauß-Prozesses
im Falle der Abwesenheit von Anomalien. Des weiteren zeigen wir Grenzwertsätze
für Scan-Statistiken, die als Scan-Fenster eine geometrische Klasse von Mengen ver-
wendet, die konvexe Mengen beinhaltet, aber nicht auf diese beschränkt ist.
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Notation

Vectors, Vector norms

Let T ∈ R, q ≥ 1, p ∈ N, s = (s1, . . . , sp)′ ∈ Rp.

s′ Transpose of vector s
∥s∥q q-norm of s

∥s∥∞ Maximum norm of s
∥s∥ = ∥s∥2 (Euclidean norm of s)
s
T

(
s1
T

, . . . , sp

T

)′

⌊s⌋T

(
⌊s1T ⌋

T
, . . . , ⌊spT ⌋

T

)′

Matrices, Matrix norms

Let m, p ∈ N, q ∈ [1, ∞) ∪ {∞}, A ∈ Rm×p.

A′ Transpose of matrix A
A−1 Inverse matrix of A for invertible A ∈ Rp×p

A1/2 Hermitian positive definite square root for positive definite A

A−1/2 Hermitian positive definite square root for positive definite A−1

diag(a1, . . . , ap) Rp×p-valued diagonal matrix with a1, . . . , ap on diagonal
Im m × m identity matrix
∥A∥q Operator norm of A induced by q−vector norm
∥A∥ = ∥A∥2

Sets

Let p ∈ N, A, B ⊂ Rp, s ∈ Rp.

A′, Ac Complement of A
λ(A) Lebesgue measure of A
ℓ(∂A) Perimeter of A ⊂ R2

A∆B Symmetric difference (A \ B) ∪ (B \ A)
m∑

i=1
Ai

m⋃
i=1

Ai for disjoint A1, . . . , Am

As, A(s), A + s {x ∈ Rp : x − s ∈ A}
Aδ

{
x ∈ Rp : inf

s∈A
∥x − s∥ ≤ δ

}
conv(A) Convex hull of A
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Arithmetic operations
Let p ∈ N, c ∈ R, s = (s1, . . . , sp)′, t = (t1, . . . , tp)′ ∈ Rp.

cs, sc (cs1, . . . , csp)′

cNn {(ci1, . . . , cip)′|(i1, . . . , ip) ∈ Np}
s ⊙ t (s1t1, . . . , sptp)′

cs (cs1 , . . . , csp)′

Probability theory
Let p ∈ N. Let X, Y , X1, X2, . . . be random variables. Let X be a random vector in
Rp. Let µ ∈ Rp, Σ ∈ Rp×p.

E [X] Expected value of random variable/vector X
Var [X] Variance of X
Cov [X] Covariance matrix X
Cov [X, Y ] Covariance of random variables X and Y
L(X) Distribution of X
FX , FL(X) Cumulative distribution function (CDF) of distribution L(X)
F −1

X , F −1
L(X) Quantile function of distribution L(X)

∼ ’distributed as’
N (µ, Σ) Normal distribution with mean µ, covariance matrix Σ
Φ CDF of N (0, 1)
Γ(s, λ) Gamma distribution with shape s > 0, rate λ > 0
(Xt)t∈I Stochastic process over an index set I

X
D= Y L(X) = L(Y )

Xn → X a.s. Almost sure convergence of Xn to X as n → ∞
Xn

P→ X Stochastic convergence of Xn to X as n → ∞
Xn

D→ X Convergence in distribution of random variables
(Xt,n)t∈I

w−→ (Xt)t∈I Weak convergence of stochastic processes in some functional
space with a specified norm

C([0, 1]p) Space of bounded continuous functions on [0, 1]p
D([0, 1]p) p-dimensional ’equivalent’ to the space of cádlág (right-

continuous with left limits) functions D([0, 1]).
For further details, see Section A.2.
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(Stochastic) Landau Notation
Let (an)n∈N, (bn)n∈N be deterministic sequences, bn > 0. Let (Xn)n∈N, (Yn)n∈N be
(stochastic) sequences with Yn > 0 a.s.

an = O(bn) ∃C > 0,: |an| ≤ Cbn ∀ n ∈ N
an = o(bn) an/bn → 0 as n → ∞
Xn = OP (Yn) lim

C→∞
lim sup

n→∞
P (|Xn| /Yn ≥ C) = 0

Xn = oP (Yn) Xn/Yn
P−→ 0 as n → ∞

Miscellaneous
Let p ∈ N, c ≥ 0, s = (s1, . . . , sp)′, t = (t1, . . . , tp)′ ∈ Rp, f : R → R, B ⊂ R.

1A(·) Indicator function of set A
[s, t] [s1, t1] × . . . × [sp, tp]

with [si, ti] := [ti, si] for ti < si

[s, s + γ] [s1, s1 + γ] × . . . × [sp, sp + γ]
argmax

x∈B
f(x) min

{
y ∈ B|f(y) = max

x∈B
f(x)

}
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Preface
The detection and the estimation of the location of anomalies is an important prob-
lem in many practical applications. It is of special interest but not limited to medical
application when trying to find anomalies in DNA sequences in order to make asser-
tions about cancer progression (Olshen et al. (2004), Niu and Zhang (2012)) or the
detection and treatment of cancer (McInerney and Terzopoulos (1996)). Another
field of interest is in neurophysiology where it is important to divide neuronal firing
patterns, so called spike trains, into stretches with approximately constant firing rates
in order to make assertions about the firing patterns on a local level (Grün, Dies-
mann, and Aertsen (2002), Schneider (2008), Messer et al. (2014)). Other fields of
interest are for example in astrophysics when trying to find anomalies in light curves
of stars in order to detect exoplanets (see Fisch, Eckley, and Fearnhead (2018)) and
more recently the detection of potentially dangerous anomalies such as fissures in
building material (see Weise et al. (2015) Baranowski et al. (2019)).
Anomaly detection is of great importance both in time series and image data. De-
spite being different on first sight, we can model image data as multi-parameter time
series and adjust methods intended for time series analysis for the analysis of image
data.

The segmentation of time series is an important pre-processing tool: Many station-
ary models for the analysis assume stationarity of the underlying data. However, in
practice it is natural that the model parameters change throughout a time series.
To account for this problem, there exist basically two approaches: On the one hand,
one can expand the model accounting for different ’states’ such as Hidden Markov
models do, but estimating the parameters in these types of models can be rather
expensive. Therefore, having a computationally efficient pre-processing procedure
that splits the time series into parts with approximately constant model parameters
allows for a meaningful analysis and interpretation of the time series.
Pre-processing can also be important in the analysis of image data, which can be seen
by the example given in this thesis when trying to identify sparse objects in large
data: Our goal is to identify potentially dangerous anomalies such as fissures in large
3D CT scans of concrete blocks. Since fissures are 2D objects, they are sparse in the
data. Oftentimes, algorithms such as machine learning methods are applied on the
whole data in order to trace the fissures. As these algorithms are computationally
expensive and the objects they search for are sparse, this can be highly ineffective.
Therefore, discarding areas without fissures with a computationally effective proce-
dure allows for a much more efficient search for fissures by computationally more
expensive procedures in smaller areas.

Scan statistics have proven to be powerful tools in change point analysis for which
they were first introduced by Page (1954) and are frequently used both for testing
and estimation of change points. Recently, they have also been used for testing of the
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existence of anomalies in image data (see e. g. Haiman and Preda (2006), Kabluchko
(2011), Sharpnack and Arias-Castro (2016)). Moving sum (MOSUM) statistics were
first introduced by Bauer and Hackl (1980) and have proven to be computationally
efficient tools for the estimation of change points and anomalies both in time series
and image data.

Contributions
In this thesis, based on the goals to estimate change points in renewal processes and
to estimate the locations of potentially dangerous anomalies like fissures in concrete,
we present MOSUM-type scan statistics for both the time series and image data in
order to estimate and detect anomalies in these data. We analyze and show theoretic
results for more general classes and demonstrate the performance of our procedures
in small simulation studies for three-dimensional renewal processes and image data
with a fissure, respectively.

Part I
To this date, many procedures aiming at detecting or estimating finitely many change
points in univariate stochastic processes exist, but there is very little literature on
the localization of change points in multivariate processes such as renewal processes.
In the first part, we present a procedure based on MOSUM statistics in order to
estimate change points in a general class of multivariate stochastic processes fulfilling
strong invariance principles – a class that includes, but is not limited to multivariate
renewal processes. In particular, we study a procedure that compares the increments
of processes in symmetric intervals around time points, allowing the interval length
to grow linearly or sublinearly in the length of the process. We present estimators
for the change points introduced by Meier, Cho, and Kirch (2021); Cho and Kirch
(2021+) based on sufficiently large and isolated maxima that allow for the detection
of changes even under mild violations of model assumptions. We then study the
theoretic properties of the statistic and estimator and derive localization rates for
the distance between change points and the respective estimators.
With the exception of Section 5, Part I has been published as a joint paper (Kirch
and Klein (2021)).

Part II
There exist a variety of methods for the detection of anomalies in image data, such
as EM algorithms, deformable models and Machine Learning methods like neural
networks. However, these methods are computationally expensive and some anoma-
lies like fissures in construction material are sparse and pre-processing steps may be
needed in order to apply the above mentioned methods.
In the second part, we present such a pre-processing step for the detection of fissures
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in concrete data using MOSUM statistics. In particular, one can observe that on a
local scale, a part of a fissure resembles a rectangle with a small width. Therefore, we
use circle-shaped windows with a small rectangle inscribed and compare the average
gray value in the inner rectangle with the average value in the remaining part of a
circle. Furthermore, in our procedure, we account for the fact that concrete is a het-
erogeneous material and therefore contains natural, ’bubble’-shaped anomalies such
as air, gravel etc. We extend our procedure to MOSUM statistics that use windows
possessing shapes from a class of sets that includes, but is not limited to convex
sets. We show limit results for functionals of statistics that use different windows,
where we assume that those functionals are Lipschitz-continuous. This allows for the
application of the limit theorem in a general setting that includes statistics based on
general local differences. Thus, it can be applied to detect general anomalies.
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Part I
Moving sum data segmentation for

stochastic processes based on
invariance





1 Introduction
Change point analysis aims at detecting and localizing structural breaks in time
series data and has a long tradition in statistics, dating back to Page (1954). It has
broad applications in a variety of fields such as neurophysiology (see Messer et al.
(2014)), genomics (compare Olshen et al. (2004), Niu and Zhang (2012), Li, Munk,
and Sieling (2016), Chan and Chen (2017)), finance (see Aggarwal, Inclan, and Leal
(1999), Cho and Fryzlewicz (2012)), astrophysics (see Fisch, Eckley, and Fearnhead
(2018)) or oceanographics (see Killick et al. (2010)).

Early literature focuses on the detection of a single change point in a univariate
time series, primarily in the mean (see Csörgö and Horvàth (1997) for an overview).
Recently, a main interest in research is the detection and estimation of multiple
change points in high-dimensional data (see Horváth and Rice (2014), Cho and
Kirch (2020) for overviews).

Generally, data segmentation methods can roughly be split up in two approaches:
The first approach was introduced by Yao (1988) in the context of i.i.d. normally
distributed data. It uses the Schwarz’ criterion and aims at optimizing suitable
objective functions. Kühn (2001) extended this approach to processes in a setting
closely related to the one in this thesis while focusing on univariate processes with a
finite number of change points. Further approaches include e. g. least-squares (Yao
and Au (1989)) or the quasi-likelihood-function (Braun, Braun, and Müller (2000)).
Generally, such approaches are computationally expensive, such that there is another
body of work proposing fast algorithms e. g. using dynamic programming (Killick,
Fearnhead, and Eckley (2012), Maidstone et al. (2017)).

A second approach is based on hypothesis testing, where e. g. binary segmentation
introduced by Vostrikova (1981) recursively uses tests constructed for the at-most-
one-change situation. Several problems arise including the fact that detection power
can be poor if the set of change points is unfavorable, such that several extensions
have been proposed in the literature such as circular binary segmentation (Olshen
et al. (2004)) or wild binary segmentation (Fryzlewicz (2014)).

Connection to existing work
Another class of methods use moving sum (MOSUM) statistics which were first
introduced by Bauer and Hackl (1980). MOSUM-based methods were initially used
for testing of multiple change points, see e. g. Hušková and Slabỳ (2001) for an
approach using permutation tests. During the last two decades, research interest has
shifted to the multiple change problem aiming at segmenting the data into stationary
stretches often focusing on changes in the mean e. g. of i.i.d. Gaussian data (Cho
and Kirch (2020)), in a Hidden Markov framework (Eichinger and Kirch (2018)) or
for changes in autoregressive time series (Yau and Zhao (2016)). Recently, Messer
et al. (2014) with a bottom-up-approach, and Meier, Cho, and Kirch (2021) and Cho
and Kirch (2021+) with a localized pruning approach have proposed two-step data
segmentation procedures based on multiscale MOSUM statistics.
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We adopt a MOSUM approach to localize multiple changes in multivariate re-
newal processes where the analysis of neuronal firing patterns, so called spike trains,
is a very prominent example where data segmentation methods for renewal processes
are useful. Indeed, many methods, e. g. Grün, Diesmann, and Aertsen (2002) or
Schneider (2008) use local approaches applied on segments with approximately con-
stant intensity to model the data. Furthermore, it is of great interest to study the
joint behavior of spike trains, compare e. g. Perkel, Gernstein, and Moore (1967),
Brown and Mitra (2004) and Grün and Rotter (2010). Chen, Chen, and Ding (2019)
use non-parametric methods to detect change points in neuropixel data, which con-
sists of a large amount of neuronal firing patterns, in order to make meaningful
assertions about the whole or parts of the data. In particular, they study firing pat-
terns in several different brain areas and make assertions on possible coordination
between regions based on their change point patterns. Messer et al. (2014) propose a
MOSUM multiscale procedure to detect changes in the firing intensity assuming that
the firing patterns follow renewal processes with piecewise constant intensity. Our
work extends their results in several ways: We show consistency of the change point
estimators and derive the corresponding localization rates both in the case of linear
and sublinear bandwidths. Furthermore, although our main focus lies in the estima-
tion of multiple changes in multivariate renewal processes, we extend the results to
a general class of multivariate processes fulfilling strong invariance principles. This
class includes multivariate partial sum, renewal and diffusion processes. A univariate
version of that model with at-most-one change point has been considered by Horváth
and Steinebach (2000) and Kühn and Steinebach (2002). A univariate version for
finitely many change points has been considered by Kühn (2001) where consistency
for the number of change points has been shown. Those results are now extended
to include MOSUM methodology for the estimation of a possibly unbounded num-
ber of change points in a multivariate setting, where we achieve a minimax optimal
separation rate in addition to a minimax optimal localization rate (for the change
point estimators) in case of a bounded number of change points as well as for Wiener
processes with drift (see Remark 4.2 below). Our results also lay the foundations
for the analysis of a two-step procedure as in Cho and Kirch (2021+). With the
exception of Section 5, this part has been published as a joint paper Kirch and Klein
(2021).

1.1 Outline
In Subsection 2.1, we introduce the multiple change point model we consider followed
by some examples of processes fulfilling the model in Subsection 2.2. In Section 3,
we describe how to estimate change points based on MOSUM statistics: First, we
introduce the MOSUM statistics in Subsection 3.1, before presenting the estimators
for the structural breaks in 3.2. In Subsection 3.3 we derive some asymptotic results
for the MOSUM statistics that are required for threshold selection and can also
be used in a testing context. In Section 4 we show that the corresponding data
segmentation procedure is consistent. Finally, we derive the localization rates in
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addition to the corresponding asymptotic distribution of the change point estimators
for local changes. In Section 5, we extend our MOSUM statistics to the setting of
asymmetric bandwidths and show consistency of the corresponding estimators. In
Section 6, we present some results from a small simulation study.

2 Multiple change point problem
While our initial motivation for this work was the estimation of changes in renewal
processes, we introduce a more general model that also includes partial sum and
certain diffusion processes. We derive the theoretic results for this general model.

2.1 Model
Consider P < ∞ stochastic processes

(
R(j)

t,T

)
0≤t≤T

of dimension p with (unknown)

drift (µ(j)
T · t) and (unknown) covariance (Σj,T · t) fulfilling regularity assumptions

specified in Assumption 2.1 below. These P processes can be thought of as back-
ground processes with only one of them being active at each time in the sense of
driving the increments of our observation process. Consequently, at each time point
we only observe the active process and do not know the exact structure of any of
these processes. To elaborate, for cℓ < t ≤ cℓ+1 we observe

Zt,T =
(
R(cℓ+1)

t,T − R(cℓ+1)
cℓ,T

)
+

ℓ∑
j=1

(
R(cj)

cj ,T − R(cj)
cj−1,T

)
, (2.1)

Z0,T = 0,

where 0 = c0 < c1 < . . . < cqT
< cqT +1 = T are the unknown change points and

the number of change points qT can be bounded or unbounded. The upper index
(cj) at the process R·,T indicates (with a slight abuse of notation) the active process
between the (j − 1)-th and the j-th change point. We define the change in drift
between two neighboring regimes by

di,T := µ
(ci+1)
T − µ

(ci)
T ̸= 0 for all i = 1, . . . , qT , (2.2)

where di,T is bounded but we allow for di,T → 0 as long as the convergence is slow
enough (see Assumption 3.1). For ease of notation we frequently drop the dependency
on T for the above quantities in the following. The aim of data segmentation involves
the consistent estimation of the number and location of the change points as well as
the derivation of the corresponding localization rates.

We assume that the underlying processes
(
R(j)

t,T

)
0≤t≤T

, j = 1, . . . , P, fulfill the
following joint invariance principle towards Wiener processes. If the underlying pro-
cesses are independent, then this simplifies to the validity of an invariance principle
for each of these P processes.
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Assumption 2.1.
Denote the joint process by Rt,T =

(
R(1)

t,T

′
, . . . , R(P )

t,T

′
)′

as well the joint drift by

µT =
(

µ
(1)
T

′
, . . . , µ

(P )
T

′
)′

, where ′ indicates the matrix transpose. For every T > 0
there exist (p · P )-dimensional Wiener processes Wt,T with covariance matrix ΣT

and

Σ(i)
T = (ΣT (l, k))l,k=p (i−1)+1,...,p i

with ∥∥∥Σ(i)
T

∥∥∥ = O(1),
∥∥∥∥Σ(i)

T

−1
∥∥∥∥ = O(1),

such that, possibly after a change of probability space, it holds that for some sequence
νT → 0

sup
0≤t≤T

∥R̃t,T − Wt,T ∥ = sup
0≤t≤T

∥ (Rt,T − µT t) − Wt,T ∥ = OP

(
T

1
2 νT

)
,

where R̃t,T = Rt,T − µT t denotes the centered process.

The covariance matrix Σ(i)
T relates to the i-th underlying process {R(i)

t,T } and
plays an important role in the below limit results. On the other hand, the cross-
dependence between different driving processes does not influence these limit results
because at each time only one process actively influences the observed process and
the increments of the joint process are asymptotically independent due to the joint
invariance principle.

The assumption on the norm of the covariance matrices is equivalent to the small-
est eigenvalue of Σ(i)

T being bounded in addition to being bounded away from zero –
both uniformly in T , compare also Corollary B.3. In many situations, the covariance
matrices will not depend on T , in which case this assumption is automatically ful-
filled under positive definiteness. The convergence rate νT in the invariance principle
typically depends on the number of moments that exist. Roughly speaking, the more
moments the original process has, the faster νT converges (see Section 2.2 for some
examples).

The corresponding univariate model with at most one change was first consid-
ered by Horváth and Steinebach (2000) and further used in a single-change setting
by Steinebach (2000), Kirch and Steinebach (2006) and Gut and Steinebach (2002;
2009). Kühn and Steinebach (2002) make use of the Schwarz information criterion
for the estimation of the number of change points in a related univariate framework
with a bounded number of change points. Using information criteria is computa-
tionally much more expensive with quadratic computational complexity if compared
to MOSUM procedures with linear computational complexity as proposed in this
thesis.
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2.2 Examples

In this section, we give three important examples fulfilling the above model assump-
tions, namely partial sum-processes, renewal processes and integrals of diffusion pro-
cesses including Ornstein-Uhlenbeck and Wiener processes with drift. A detailed
analysis of the stochastic behavior of estimators obtained by MOSUM procedures
for detecting mean changes in (univariate) renewal processes extending the work by
Messer et al. (2014) was the original motivation for this work and is covered by this
much broader framework.

2.2.1 Partial-Sum-Processes

This first example extends the classical multiple changes in the mean model:
Let

(
X(i)

k

)
k∈N

be a time series with E
[
X(i)

k

]
= 0 and Cov

[
X(i)

k

]
= Ip for all

i = 1, . . . , P , k ∈ N. Let

R(i)
t =

⌊t⌋∑
j=1

(
µ(i) + Σ(i)

T

1/2
X(i)

j

)
.

The corresponding process fulfills Assumption 2.1 in a wide range of situations.
For example, Einmahl (1987) shows the validity in the case that X1, X2, . . . with
Xj =

(
X(1)

j , . . . , X(P )
j

)′
are i.i.d. with E

[
∥X1∥2+δ

]
< ∞ for some δ > 0 resulting in

a rate of OP (T 1/(2+δ)) in Assumption 2.1 (and thus, νT = T −δ/(4+2δ)). Additionally,
Kuelbs and Philipp (1980) state an invariance principle for mixing random vectors
in Theorem 4, and there are many corresponding univariate results under many
different weak-dependency formulations.

For X(i) = X(1) (and Σ(i) = Σ(1)) for all i, then we are back to the classical
multiple mean change problem that has been considered in many papers in particular
for the univariate situation, see e. g. the recent survey papers by Fearnhead and
Rigaill (2020) or Cho and Kirch (2020).

2.2.2 Renewal and some related point processes

The second example aims at finding structural breaks in the rates of renewal and
some related point processes:

We consider P independent sequences of p-dimensional point processes that are
related to renewal processes in the following way: For each i = 1, . . . , P we start
with p̃ ≥ p independent renewal processes R̃

(i)
t,j , j = 1, . . . , p̃, from which we derive

a p-dimensional point process R(i)
t = B(i)

(
R̃

(i)
t,1, . . . , R̃

(i)
t,p̃

)′
, where B(i) is a (p × p̃) -

matrix with non-negative integer-valued entries. By Lemma 4.2 in Steinebach and
Eastwood (1996) Assumption 2.1 is fulfilled for a block-diagonal ΣT with
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Σ(i)
T = B(i)D

(
σ2(i)
µ3(i)

)
B(i)′

,

with D
(

σ2(i)
µ3(i)

)
= diag

(
σ2

1(i)
µ3

1(i)
, . . . ,

σ2
p̃(i)

µ3
p̃(i)

)
,

where µj(i) and σ2
j (i) are the mean and variance of the corresponding inter-event

times. If for the corresponding inter-event times possess 2 + δ-th moments, then
the rate in Assumption 2.1 is given by OP (T 1/(2+δ)) (and thus νT = T −δ/(4+2δ)).
Steinebach and Eastwood (1996) and Csenki (1979) consider p̃ = p but use inter-
event times that are dependent for j = 1, . . . , p. In such a situation, the invariance
principle in Assumption 2.1 still holds if the intensities are the same across compo-
nents with Σ(i)

T = Σ(i)
IET/µ3

1(i), where Σ(i)
IET is the covariance of the vector of inter-event

times – a setting that we adopt in the simulation study. If the intensities differ, then
by Steinebach and Eastwood (1996) an invariance principle towards a Gaussian pro-
cess can still be obtained, but this is no longer a multivariate Wiener process. While
each component is a Wiener process, the increments from one component may de-
pend on the past of another. Many of the below results can still be derived in such a
situation, however, such a model does not seem to be very realistic for most applica-
tions as the stochastic behavior of the increments of one component depends on the
lagged behavior of the other components, where the lag increases with time. While
a lagged dependence is realistic in many situations, in most situations one would
expect this lagged-dependence to be constant across time.

Messer et al. (2014) consider this model for univariate renewal processes with
varying variance. They propose a multiscale procedure based on MOSUM statistics
related to those we will discuss in the next section using linear bandwidths. In
Messer et al. (2017), they extend the procedure to processes with weak dependencies.
They show convergence in distribution of the MOSUM statistics to functionals of
Wiener processes similar to the results that we obtain and analyze the behavior of
the signal term in Messer and Schneider (2017). However, they have not derived
any consistency results for the change point estimators. In this work, we extend
their results to sublinear bandwidths and prove the consistency of the corresponding
estimators as well as their localization rates.

2.2.3 Diffusion processes

Clearly, switching between independent (or components of a multivariate) Brownian
motion with drift is included in this framework. Additionally, Heunis (2003) and
Mihalache (2011) derive invariance principles in the context of diffusion processes
including Ornstein-Uhlenbeck processes among others. Let (Xt)t≥0 be a stochastic
process in RN satisfying a stochastic differential equation (SDE)

dXt = µ (Xt) dt + Σ (Xt) dBt
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with respect to an n-dimensional standard Wiener process (Bt)t≥0 and let µ, Σ be
globally Lipschitz-continuous. Under some conditions on f : RN → Rp, as given
by Heunis (2003), relating to µ, Σ, which in particular guarantee that the function
f applied to the (invariant) diffusion results in a centered process, there exists a
p-dimensional Wiener process (Wt)t≥0 and some η > 0 such that∥∥∥∥∥

∫ T

0
f(Xs) ds − WT

∥∥∥∥∥ = O
(
T 1/2−η

)
,

where (Xt)t≥0 either is a solution to the SDE with fixed starting value X0 = y0 or a
strictly stationary solution with respect to an invariant distribution.
Furthermore, in the case of a one-dimensional stochastic diffusion process, Mihalache
(2011) showed for some L2-functions fulfilling constraints depending on µ, Σ that
there exists a strong invariance principle for the integrals of diffusion processes with
a rate of O((T log2 T )1/4 √

log T ) a. s. (and thus νT = T −1/4(log2 T )1/4√log T ).

3 Data segmentation procedure
Now, we are ready to introduce a MOSUM-based data segmentation procedure for
stochastic processes following the above model:

3.1 Moving sum statistics
By assumption the drifts of the two active processes to the left and right of a change
point differ, see (2.2); on the other hand, in a stationary stretch away from any change
point the drift is the same. Because the difference in drift can be estimated by a
difference of increments, we propose the following moving sum (MOSUM) statistic
that is based on the moving difference of increments with bandwidth h = hT

Mt = Mt,T,hT
(Z) = 1√

2h
[(Zt+h − Zt) − (Zt − Zt−h)]

= 1√
2h

(Zt+h − 2Zt + Zt−h) . (3.1)

If there is no change, then this difference will fluctuate around zero. On the other
hand close to a change point, this difference will be different from zero. Ideally,
the bandwidth should be chosen to be as large as possible (to get a better estimate
obtained from a larger ’effective sample size’ of the order h). On the other hand,
the increments should not be contaminated by a second change as this can lead to
situations where the change point can no longer be reliably localized by the signal.
This observation is reflected in the following assumptions on the bandwidths:

Assumption 3.1. For νT as in Assumption (2.1) the bandwidth h < T/2 fulfills

ν2
T T log T

h
→ 0.
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Furthermore, the first and last change point are detectable and the i-th change point
is isolated in the sense that

h ≤ min {c1, T − cqT
} ,

h ≤ 1
2 ∆i, where ∆i = min(ci+1 − ci, ci − ci−1) (3.2)

for i = 2, . . . , qT − 1.
Additionally, the signal needs to be large enough to be detectable by this bandwidth,
i. e.

∥di∥2 h

log
(

T
h

) → ∞. (3.3)

for all i = 1, . . . , qT . Combining (3.2) and (3.3) shows that – with an appropriate
bandwidth h – changes are detectable as soon as

∥di∥2 ∆i

log
(

T
∆i

) → ∞. (3.4)

In case of the classical mean change model as in Subsection 2.2.1 this is known to
be the minimax-optimal separation rate that cannot be improved (see Proposition 1
of Arias-Castro, Candes, and Durand (2011)).

3.2 Change point estimators
Lemma 3.1. The MOSUM statistic Mt = mt + Λt as in (3.1) decomposes into a
piecewise linear signal term mt = mt,h,T and a centered noise term Λt = Λt,h,T with

√
2h mt =


(h − t + ci) di, for ci < t ≤ ci + h,

0, for ci + h < t ≤ ci+1 − h,

(h + t − ci+1) di+1, for ci+1 − h < t ≤ ci+1,

(3.5)

√
2h Λt =

√
2h Λt(R̃) (3.6)

=


R̃(ci+1)

t+h − 2R̃(ci+1)
t + R̃(ci+1)

ci
− R̃(ci)

ci
+ R̃(ci)

t−h, for ci < t ≤ ci + h,

R̃(ci+1)
t+h − 2R̃(ci+1)

t + R̃(ci+1)
t−h , for ci + h < t ≤ ci+1 − h,

R̃(ci+2)
t+h − R̃(ci+2)

ci+1
+ R̃(ci+1)

ci+1
− 2R̃(ci+1)

t + R̃(ci+1)
t−h , for ci+1 − h < t ≤ ci+1,

where R̃t := Rt − tµ for i = 0, . . . , qT and the upper index cj denotes the active
regime between the (j − 1)-th and j-th change point (with a slight abuse of notation).
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Proof. For ci < t ≤ ci + h it holds that
√

2hMt = Zt+h − 2Zt + Zt−h

= R(ci+1)
t+h − 2R(ci+1)

t + R(ci+1)
ci

− R(ci)
ci

+ R(ci)
t−h

=
(
R̃(ci+1)

t+h + µ(ci+1)(t + h)
)

− 2
(
R̃(ci+1)

t + µ(ci+1)t
)

+
(
R̃(ci+1)

ci
+ µ(ci+1)ci

)
−
(
R̃(ci)

ci
+ µ(ci)ci

)
+
(
R̃(ci)

t−h + µ(ci)(t − h)
)

=
√

2h (mt + Λt) .

The decompositions for ci + h < t ≤ ci+1 − h and ci+1 − h < t ≤ ci+1 follow
analogously.

The signal term is a piecewise linear function that takes its extrema at the change
points and is 0 outside h-intervals around the change points. Additionally, the noise
term is asymptotically negligible compared to the signal term (see Theorem 3.2 for
the corresponding theoretic statement and Figure 3.1 for an illustrative example).

This motivates the following data segmentation procedure that considers local
extrema which are big enough (in absolute value) as change point estimators:

For a suitable threshold β = βh,T (see Section 3.3 for a detailed discussion) we
define significant time points, where a point t∗ is significant if

M′
t∗ Â−1

t∗ Mt∗ ≥ β. (3.7)

Ât∗ is a symmetric positive definite matrix that may depend on the data and fulfills

Assumption 3.2.

sup
h≤t≤T −h

∥∥∥Â−1
t,T

∥∥∥ = OP (1) , sup
i=1,...,qT

sup
|t−ci|≤h

∥∥∥Ât,T

∥∥∥ = OP (1).

0

0 h c1 c2 T−h T

Τ=100

0

0 h c1 c2 T−h T

Τ=1000

0

0 h c1 c2 T−h T

Τ=10000

Figure 3.1: Univariate MOSUM statistic with T = 100, 1 000, 10 000 (from left to
right), where the noise term (fluctuating around the signal) becomes smaller and
smaller relative to the signal term.

19



0

Figure 3.2: In the upper panel, the observed event times of a univariate renewal
process with three change points (i. e. four stationary segments) are displayed (where
the plot needs to be read like a text: It starts in the upper row on the left, then
continues in the first row and jumps to the second row and so on). The gray and
white regions mark the estimated segmentation of the data while the red intervals
mark the true segmentation.
In the lower panel, the corresponding MOSUM statistic with (relative) bandwidth
h/T = 0.07 is displayed. The gray areas are the regions where the threshold (α =
0.05 as in Remark 3.1) is exceeded (in absolute value). The blue solid lines indicate
the change point estimates obtained as local extrema that fall within the gray area
(making them significant). The true change points are indicated by the red dashed
lines. The green horizontal lines denote ηh-environments around the estimators.

A good (non data-driven) choice fulfilling this assumption is given by

Σt = Σt,T = Σ(ci)
T (3.8)

for ci−1 < t ≤ ci, which guarantees scale-invariance of the procedure and allows
for nicely interpretable thresholds (see Section 3.3). The latter remains true for
estimators as long as they fulfill

sup
i=1,...,qT

sup
|t−ci|>h

∥∥∥∥Σ̂−1/2
t,T − Σ−1/2

t

∥∥∥∥ = oP

((
log T

h

)−1)
(3.9)

in addition to the above boundedness assumptions. In particular, this permits local
estimators that are consistent only away from change points but contaminated by the
change in a local environment thereof. The latter is typically the case for covariance
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estimators, think e. g. of the sample variance contaminated by a change point. In
order to not reduce detection power in small samples, it is beneficial if the estimator
is additionally consistent directly at the change point, which is also achievable (see
e. g. Eichinger and Kirch (2018)).

Typically, there are intervals of significant points (due to the continuity of the
signal) such that only local extrema of such intervals actually indicate a change point.
To define what a local extremum is, we require a tuning parameter 0 < η < 1. This
parameter defines the locality requirement on the extremum, where a point t∗ is a
local extremum if it is the leftmost point (for the sake of tie-breaking) to maximize
the absolute MOSUM statistic within its ηh-environment, i. e. if

t∗ = argmax
t∗−ηh≤t≤t∗+ηh

∥Mt∥. (3.10)

The threshold β distinguishes between significant and spurious local extrema that
are purely associated with the noise term. The set of all significant local extrema is
the set of change point estimators with its cardinality an estimator for the number
of the change points.

Figure 3.2 shows an example illustrating these ideas: Away from the change points
the MOSUM statistic fluctuates around zero (within the white area that is beneath
the threshold in absolute value) while it falls within the gray area close to the change
points – making corresponding local extrema significant. Furthermore, the statistic
does not need to return to the white area in order to have all changes estimated,
as can be seen between the first and second change point. This is one of the major
advantages of the η-criterion based on significant local maxima as described here (in
comparison to the ϵ-criterion originally investigated by Eichinger and Kirch (2018)
in the context of mean changes, see also the discussion in Meier, Cho, and Kirch
(2021)). Nevertheless, results for the ϵ-criterion can be obtained along the lines of
our proofs below.

3.3 Threshold selection
As pointed out above we need to choose a threshold β = βh,T that can distinguish
between significant and spurious local extrema. The following theorem gives the
magnitudes of signal as well as noise terms:

Theorem 3.2. Let Assumptions 2.1, 3.1 and 3.2 hold.

(a) For the signal mt with ci − h < t < ci + h, it holds that

m′
tÂ−1

t mt ≥ 1
2∥Ât∥

(h − |t − ci|)2

h
∥di∥2.

At other time points the signal term is equal to zero.

(b) For the noise term it holds for qT = 0, i. e. in the no-change situation
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(i) for a linear bandwidth h = γT with 0 < γ < 1/2

sup
γT ≤t≤T −γT

Λ′
tΣ−1

T Λt

D−→ sup
γ≤s≤1−γ

1
2γ

(Bs+γ − 2Bs + Bs−γ)′ (Bs+γ − 2Bs + Bs−γ) ,

where B denotes a multivariate standard Wiener process.
In particular, the squared noise term is of order OP (1) in this case.

(ii) for a sublinear bandwidth h/T → 0 but Assumption 3.1 fulfilled, it holds
that

a
(

T

h

)
sup

h≤t≤T −h

√
Λ′

tΣ−1
T Λt − b

(
T

h

)
D−→ E,

where E follows a Gumbel distribution with P (E ≤ x) = e−2e−x and

a(x) =
√

2 log x

b(x) = 2 log x + p

2 log log x + log 3
2 − log Γ

(
p

2

)
.

In particular, the above squared noise term is of order OP (log(T/h)) in
this case.

The assertions remain true if an estimator for the covariance is used fulfilling
(3.9) uniformly over all h ≤ t ≤ T − h.

(c) In the situation of multiple change points, it holds that

sup
h≤t≤T −h

∥Λt∥ = OP (
√

log(T/h)).

Proof. (a) Because Ât is symmetric and positive definite, the maximum eigenvalue
is given by ∥Ât∥ by Corollary B.3. By Lemma B.1, it follows that the minimal
eigenvalue of Â−1

t is given by 1/∥Ât∥. By Lemma B.4 and (3.5) it follows that

m′
tÂ−1

t mt ≥ 1
∥Ât∥

∥mt∥2 = 1
∥Ât∥

(h − |ci − t|)2

2h
∥di∥2.

(b) Denote by Λt(Wt) the MOSUM statistics defined in (3.1) with {Zt} there
replaced by {Wt}. Since qT = 0, it holds that Zt = Rt = R(1)

t = R̃t + tµ and
µ = µ(1). By the invariance principle from Assumption 2.1 it holds by Assumption
3.1 and the triangle inequality that
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sup
h≤t≤T −h

∥Λt − Λt(Wt)∥

= 1√
2h

sup
h≤t≤T −h

∥(Zt+h − 2Zt + Zt−h) − (Wt+h − 2Wt + Wt−h)∥

= 1√
2h

sup
h≤t≤T −h

∥∥∥(R̃t+h + (t + h)µ − 2R̃t − 2tµ + R̃t−h + (t − h)µ)

−(Wt+h − 2Wt + Wt−h)∥

= 1√
2h

sup
h≤t≤T −h

∥∥∥(R̃t+h − 2R̃t + R̃t−h) − (Wt+h − 2Wt + Wt−h)
∥∥∥

≤ 4√
2h

sup
0≤t≤T

∥∥∥R̃t − Wt

∥∥∥
= OP

(
T 1/2νT√

h

)
= oP

(√
log(T/h)

−1)
. (3.11)

(i) Let (Bt)t≥0 =
(
Σ−1/2

T Wt

)
t≥0

be a multivariate standard Wiener process. By the

self-similarity that (
√

cBt)t≥0
D= (Bct)t≥0 for c > 0 it follows with the transformation

s = t/T that

sup
γT ≤t≤T −γT

Λt (Wt)′ Σ−1
T Λt (Wt)

= sup
γT ≤t≤T −γT

1
2γT

(Bt+γT − 2Bt + Bt−γT )′ (Bt+γT − 2Bt + Bt−γT )

= sup
γ≤s≤1−γ

1
2γT

(
B(s+γ)T − 2BsT + B(s−γ)T

)′ (
B(s+γ)T − 2BsT + B(s−γ)T

)
D= sup

γ≤s≤1−γ

1
2γ

(Bs+γ − 2Bs + Bs−γ)′ (Bs+γ − 2Bs + Bs−γ) .

The assertion then follows from (3.11) and Slutzky’s theorem.

(ii) Let (Bt)t≥0 =
(
(Bt,1, . . . , Bt,p)′

)
t≥0

be as above. Similar to (i) it follows by the
self-similarity of the multivariate Wiener process with the transformation s = t/h−1
that

sup
h≤t≤T −h

√
Λt (Wt)′ Σ−1

T Λt (Wt) = sup
h≤t≤T −h

∥∥∥Σ−1/2
T Λt (Wt)

∥∥∥
= sup

h≤t≤T −h

∥∥∥∥∥ 1√
2h

(Bt+h − 2Bt + Bt−h)
∥∥∥∥∥

= sup
0≤s≤ T

h
−2

∥∥∥∥∥ 1√
2h

(
B(s+2)h − 2B(s+1)h + Bsh

)∥∥∥∥∥
= sup

0≤s≤ T
h

−2

∥∥∥∥∥ 1√
2

(Bs+2 − 2Bs+1 + Bs)
∥∥∥∥∥ .
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W.l.o.g. let a ≥ 0. The process

(Λs (Bs))s≥0 =
(

1√
2

(Bs+2 − 2Bs+1 + Bs)
)

s≥0

is a stationary p-dimensional Gaussian process. The componentwise covariance func-
tions are given by

2 Cov [Λa,i (Ba) , Λ0,i (B0)]
= Cov [Ba+2,i − Ba+1,i, B2,i − B1,i] − Cov [Ba+2,i − Ba+1,i, B1,i − B0,i]

− Cov [Ba+1,i − Ba,i, B2,i − B1,i] + Cov [Ba+1,i − Ba,i, B1,i − B0,i]

=


2 − (a + 1) − (a + 1 − 1) + (1 − a), for 0 ≤ a < 1
−2 + a, for 1 ≤ a < 2
0, for a ≥ 2

=


2 − 3a, for 0 ≤ a < 1
−2 + a, for 1 ≤ a < 2
0, for a ≥ 2

with analogous results for a < 0. Therefore,

Cov [Λs+a,i (Bs+a) , Λs,i (Bs)] =


1 − 3

2 |a| , for 0 ≤ |a| < 1
−1 + 1

2 |a| , for 1 ≤ |a| < 2
0, for |a| ≥ 2.

Therefore it follows by Lemma 3.1 and Remark 3.1 of Steinebach and Eastwood
(1996) (see also Lemma A.1) with α = 1, C = 3/2 that

a
(

T

h

)
sup

0≤s≤ T
h

∥Λs (Bs)∥ − b
(

T

h

)
D−→ E.

Since by the triangle inequality

sup
T
h

−2≤s≤ T
h

∥Λs (Bs)∥ D= sup
0≤s≤2

∥Λs (Bs)∥ ≤ 4√
2

sup
0≤s≤4

∥Bs∥ = OP (1) = oP

(
b (T/h)
a (T/h)

)
,

it follows by Lemma A.2 that

a
(

T

h

)
sup

h≤t≤T −h

√
Λt (Wt)′ Σ−1

T Λt (Wt) − b
(

T

h

)
D= a

(
T

h

)
sup

0≤s≤ T
h

−2
∥Λs (Bs)∥ − b

(
T

h

)
D−→ E,

as well. Since by (3.11),∣∣∣∣∣a
(

T

h

)
sup

h≤t≤T −h

√
Λ′

tΣ−1
T Λt − a

(
T

h

)
sup

h≤t≤T −h

√
Λt (Wt)′ Σ−1

T Λt (Wt)
∣∣∣∣∣ = oP (1),
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the assertion follows by Slutzky’s theorem.

If we replace ΣT by an estimator Σ̂t fulfilling (3.9), the above assertions remain
true: It holds by (b), (3.9) and Lemma B.2 that

sup
h≤t≤T −h

(∥∥∥Σ−1/2
T Λt

∥∥∥−
∥∥∥∥Σ̂−1/2

t Λt

∥∥∥∥)
= sup

h≤t≤T −h

(∥∥∥∥Σ̂−1/2
t Λt +

(
Σ−1/2

T − Σ̂−1/2
t

)
Λt

∥∥∥∥−
∥∥∥∥Σ̂−1/2

t Λt

∥∥∥∥)
≤ sup

h≤t≤T −h

∥∥∥∥(Σ−1/2
T − Σ̂−1/2

t

)
Λt

∥∥∥∥ ≤ sup
h≤t≤T −h

∥∥∥∥Σ−1/2
T − Σ̂−1/2

t

∥∥∥∥ sup
h≤t≤T −h

∥Λt∥

= oP

((
log T

h

)−1)
OP

((
log T

h

)1/2)
= oP

((
log T

h

)−1/2)
.

Analogously we obtain that

sup
h≤t≤T −h

(∥∥∥∥Σ̂−1/2
t Λt

∥∥∥∥−
∥∥∥Σ−1/2

T Λt

∥∥∥) = oP

((
log T

h

)−1/2)

and therefore ∣∣∣∣∣ sup
h≤t≤T −h

√
Λ′

tΣ−1
T Λt − sup

h≤t≤T −h

√
Λ′

tΣ̂
−1
t Λt

∣∣∣∣∣
=
∣∣∣∣∣ sup
h≤t≤T −h

(∥∥∥∥Σ̂−1/2
t Λt

∥∥∥∥− sup
h≤t≤T −h

∥∥∥Σ−1/2
T Λt

∥∥∥)∣∣∣∣∣
≤ sup

h≤t≤T −h

∣∣∣∣∥∥∥∥Σ̂−1/2
t Λt

∥∥∥∥−
∥∥∥Σ−1/2

T Λt

∥∥∥∣∣∣∣ = oP

((
log T

h

)−1/2)
,

which shows the assertion.

(c) As the behavior of Λt in intervals of length h around change points differs from
the behavior of Λt away from change points as can be seen in (3.6), we need to
analyze Λt separately for those two cases. It holds that

sup
h≤t≤T −h

∥Λt∥ = max
{

max
i=1,...,qT

sup
ci−h≤t≤ci+h

∥Λt∥ , max
i=0,...,qT

sup
ci+h≤t≤ci+1−h

∥Λt∥
}

.

By (b) it holds that

max
i=0,...,qT

sup
ci+h<t<ci+1−h

∥Λt∥ = max
i=0,...,qT

sup
ci+h<t<ci+1−h

∥∥∥R̃(ci+1)
t+h − 2R̃(ci+1)

t + R̃(ci+1)
t−h

∥∥∥
≤ max

i=1,...,P
sup

h≤t≤T −h

∥∥∥R̃(i)
t+h − 2R̃(i)

t + R̃(i)
t−h

∥∥∥ = OP

(√
log(T/h)

)
. (3.12)

Furthermore, we obtain by Proposition A.4 (b) and the triangle inequality that
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max
i=1,...,qT

sup
ci≤t≤ci+h

∥Λt∥

= max
i=1,...,qT

1√
2h

sup
ci≤t≤ci+h

∥∥∥R̃(ci+1)
t+h − 2R̃(ci+1)

t + R̃(ci+1)
ci

− R̃(ci)
ci

+ R̃(ci)
t−h

∥∥∥
≤ 3 max

i=1,...,qT

sup
0≤t≤2h

1√
2h

∥∥∥R̃(ci+1)
ci

− R̃(ci+1)
ci+t

∥∥∥+ max
i=1,...,qT

sup
0≤t≤2h

1√
2h

∥∥∥R̃(ci)
ci

− R̃(ci)
ci−t

∥∥∥
= OP

(√
log (2qT )

)
= OP

(√
log(T/h)

)
(3.13)

since by Assumption 3.1 qT ≤ T/(2h) and T 1/2νT /
√

2h = o(1).
Similarly we obtain that

max
i=1,...,qT

sup
ci−h≤t≤ci

∥Λt∥ = OP

(√
log(T/h)

)
,

which in combination with (3.12) and (3.13) shows the assertion.

To obtain consistency of the estimators, the threshold needs to be small enough
to be asymptotically negligible compared to the squared signal term as in Theo-
rem 3.2 (a) to guarantee that every change is detected with asymptotic probability
1. At the same time, the threshold needs to grow faster than the squared noise
term in Theorem 3.2 (c) so that false positives occur with asymptotic probability 0.
Hence, both conditions are fulfilled under the following assumption:

Assumption 3.3. The threshold fulfills:

βh,T

hT min
i=1,...,qT

∥di∥2 → 0,
log T

hT

βh,T

→ 0 (T → ∞).

In particular, larger bandwidths hT lead to a better detectability of the change
point, where due to (3.2) an upper bound related to the distance to the neighboring
change points applies. This is also confirmed by the simulation results in Table 6.4.

The following remark introduces a threshold that has a nice interpretation in
connection with change point testing:

Remark 3.1. The threshold is often obtained as the asymptotic 1 − αT -quantile
based on the limit result in Theorem 3.2 (b) for some sequence αT → 0. In this case
a choice of (

− log log 1√
1−αT

)2

log T
hT

= O(1)

similar to Eichinger and Kirch (2018) can replace the slightly stronger lower bound
of Assumption 3.3 on the threshold without compromising our theoretical results.
In the simulation study in Section 6 we use this threshold with αT = 0.05. This
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controls the family-wise error rate at level αT asymptotically related to testing each
time point for a possible change. In fact, Theorem 3.2 shows that such a threshold
with a constant sequence α yields an asymptotic test at level α which has asymptotic
power one by Theorem 4.1. Tests designed for the at-most-one-change as in Hušková
and Steinebach (2000), Hušková and Steinebach (2002) often have a better power,
but are not as good at localizing change points (see Figure 1 in Cho and Kirch (2020)
for an illustration).

4 Consistency of the segmentation procedure
In this section, we will show consistency of the above segmentation procedure for
both the estimators of the number and locations of the change points. Furthermore,
we derive localization rates for the estimators of the locations of the change points
for some special cases showing that they cannot be improved in general. This is
complemented by the observations that these localization rates are indeed minimax-
optimal if the number of change points is bounded in addition to observing Wiener
processes with drift. Otherwise the generic rates that are obtained based solely on
the invariance principle will not be tight in the sense that the proposed procedure
can provide better rates than suggested by the invariance principle.

The following theorem shows that the change point estimators defined in (3.10)
are consistent for the number and locations of the change points.

Theorem 4.1. Let Assumptions 2.1, 3.1 - 3.3 hold. Let 0 < ĉ1 < . . . < ĉq̂T
be the

change point estimators of type (3.10). Then for any τ > 0 it holds that

lim
T →∞

P
(

max
i=1,...,min(q̂T ,qT )

|ĉi − ci| ≤ τh, q̂T = qT

)
= 1.

Proof of Theorem 4.1. Define for 0 < τ < 1 the following set

ST = S
(1)
T ∩ S

(2)
T ∩

qT⋂
i=1

(
S

(3)
T (i, τ) ∩ S

(4)
T (i, τ)

)
, (4.1)

where

S
(1)
T =

{
max

i=0,...,qT

sup
ci+h<t<ci+1−h

M′
tÂ−1

t Mt < β

}
,

S
(2)
T =

{
min

i=1,...,qT

M′
ci

Â−1
ci

Mci
≥ β

}
,

S
(3)
T (i, τ) =

⌈ 1
τ

⌉−1⋂
k=1

{
sup

ci−h≤t≤ci−kτh
∥Mt∥ < ∥Mci−(k−1)τh∥

}
,

S
(4)
T (i, τ) =

⌈ 1
τ

⌉−1⋂
k=1

{
sup

ci+kτh≤t≤ci+h
∥Mt∥ < ∥Mci+(k−1)τh∥

}
.
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On S
(1)
T there are asymptotically no significant points outside of h-environments of

the change points. On S
(2)
T there is at least one significant time point for each change

point. On S
(3)
T (i, τ) ∩ S

(4)
T (i, τ) with τ < η/2, there are no local extrema (within the

h-environment of ci) that are outside the interval (ci − τh, ci + τh). Additionally, on
S

(2)
T ∩ S

(3)
T (i, τ) ∩ S

(4)
T (i, τ) the global extremum within that interval will be the only

significant local extremum within the h-environment of ci such that{
max

i=0,...,min(q̂T ,qT )
|ĉi − ci| ≤ τh, q̂T = qT

}
⊃ ST .

We will show that ST is an asymptotic one set.

For S
(1)
T it holds by Lemma 3.1, Lemma B.2 (ii) and Corollary B.3 (iii) that

max
i=0,...,qT

sup
ci+h<t<ci+1−h

M′
tÂ−1

t Mt = max
i=0,...,qT

sup
ci+h<t<ci+1−h

Λ′
tÂ−1

t Λt

= max
i=0,...,qT

sup
ci+h<t<ci+1−h

∥∥∥Â−1/2
t Λt

∥∥∥2

≤ max
i=0,...,qT

sup
ci+h<t<ci+1−h

∥∥∥Â−1/2
t

∥∥∥2
max

i=0,...,qT

sup
ci+h<t<ci+1−h

∥Λt∥2

≤ sup
h≤t≤T −h

∥∥∥Â−1
t

∥∥∥ max
i=0,...,qT

sup
ci+h<t<ci+1−h

∥Λt∥2 = OP (1) · OP (log T/h) = OP (log T/h) ,

where the second-to-last equality follows from Assumption 3.2 and Theorem 3.2 (c),
which by Assumption 3.3 shows that S

(1)
T is an asymptotic one set.

For S
(2)
T it holds by Corollary B.3 (i) and Lemma B.4 that

min
i=1,...,qT

M′
ci

Â−1
ci

Mci
≥ min

i=1,...,qT

1∥∥∥Âci

∥∥∥ ∥Mci
∥2 ≥ min

i=1,...,qT

1∥∥∥Âci

∥∥∥ min
i=1,...,qT

∥Mci
∥2

= 1
max

i=1,...,qT

∥∥∥Âci

∥∥∥ min
i=1,...,qT

∥Mci
∥2 .

By Assumption 3.2, for each ε > 0, there exists Cε > 0 such that

lim sup
T →∞

P
(

max
i=1,...,qT

∥∥∥Âci

∥∥∥ > Cε

)
< ε.

Furthermore, we obtain by the reverse triangle inequality, Assumption 3.1 and The-
orem 3.2 (c) that
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min
i=1,...,qT

∥Mci
∥ = min

i=1,...,qT

∥mci
+ Λci

∥

≥ min
i=1,...,qT

∥mci
∥ − max

i=1,...,qT

∥Λci
∥ =

√
h

2 min
i=1,...,qT

∥di∥ + OP

√log T

h


=
√

h

2 min
i=1,...,qT

∥di∥ + oP

√h

2 min
i=1,...,qT

∥di∥

 =
(

min
i=1,...,qT

∥di∥
)

(1 + oP (1))

and therefore

min
i=1,...,qT

∥Mci
∥2 ≥ h

2

(
min

i=1,...,qT

∥di∥2
)

(1 + oP (1))2

= h

2

(
min

i=1,...,qT

∥di∥2
)

(1 + oP (1)) = h

2 min
i=1,...,qT

∥di∥2 + oP

(
h

2 min
i=1,...,qT

∥di∥2
)

,

which in combination with Assumption 3.3 shows that S
(2)
T is an asymptotic one set.

For arbitrary τ > 0 and S
(3)
T (i, τ) it holds by the reverse triangle inequality, Lemma

3.1 and Theorem 3.2 uniformly that

min
i=1,...,qT

(∥∥∥Mci−(k−1)τh

∥∥∥− sup
ci−h≤t≤ci−kτh

∥Mt∥
)

≥ min
i=1,...,qT

(∥∥∥mci−(k−1)τh

∥∥∥−
∥∥∥Λci−(k−1)τh

∥∥∥− sup
ci−h≤t≤ci−kτh

∥mt∥ − sup
ci−h≤t≤ci−kτh

∥Λt∥
)

= min
i=1,...,qT

(∥∥∥mci−(k−1)τh

∥∥∥− ∥mci−kτh∥
)

+ OP

√log T

h


= τ√

2
√

h min
i=1,...,qT

∥di∥ + OP

√log T

h

 ,

thus showing that ∩qT
i=1S

(3)
T (i, τ) is an asymptotic one set. It follows analogously that

∩qT
i=1S

(4)
T (i, τ) is an asymptotic one set.

The theorem shows in particular that the number of change points is estimated
consistently. For the linear bandwidth we additionally get consistency of the change
point locations in rescaled time, while for the sublinear bandwidths we already get
a convergence rate of h/T towards the rescaled change points.

Under the following stronger assumptions, the localization rates can be improved
further:
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Assumption 4.1. (a) It holds for any of the centered processes R̃(j) as in (3.6) and
any value θi = θi,T (which will be ci or ci ± h when the assumption is applied)
for any sequence DT ≥ 1 (bounded or unbounded)

sup
DT

∥di∥2 ≤s≤h

√
DT

∥∥∥R̃(j)
θi

− R̃(j)
θi±s

∥∥∥
s ∥di∥

= OP (ωT ).

(b) Let now the upper index θi denote the active stretch in the stationary segment
(θi, θi + s) respectively (θi − s, θi). Then, it holds for any sequence DT > 0

max
i=1,...,qT

sup
DT

∥di∥2 ≤s≤h

√
DT

∥∥∥R̃(θi)
θi

− R̃(θi)
θi±s

∥∥∥
s ∥di∥

= OP (ω̃T ).

The localization rates of the MOSUM procedure are determined by the rates
ωn, ω̃n which need to be derived for each example separately (at least for the tight
ones). In the context of partial sum processes these results are well known. For ex-
ample, the suprema in (a) are stochastically bounded by the Hájék–Rényi inequality
which has been shown for partial sum processes even with weakly dependent errors.
In that context, the assertion in (b) is fulfilled with a polynomial rate in qT (see Cho
and Kirch (2021+), Proposition 2.1 (c)(ii)).

Remark 4.1. (a) For Wiener processes with drift, it holds that ωT = 1 and ω̃T =√
log(qT ) (see Proposition A.4 below).

(b) By the invariance principle in Assumption 2.1, all rates are clearly dominated
by T 1/2νT . However, this is often far too liberal a bound (see Proposition 2.1 in
Cho and Kirch (2021+) for some tight bounds in case of partial sum processes).

(c) Often, there exist forward and backwards invariance principles from some arbi-
trary starting value θi for each regime. This is the case for partial sum processes
and for (backward and forward) Markov processes due to the Markov property.
For renewal processes, this can be shown along the lines of the original proof for
the invariance principle (Csörgö, Horváth, and Steinebach (1987)) because the
time to the next (previous) event is asymptotically negligible; see also Exam-
ple 1.2 in Kühn and Steinebach (2002)). In this case, the Hájék–Rényi results
for Wiener processes carry over (see Proposition A.4) to the different processes
underlying each regime, resulting in ωT = 1. For the situation with a bounded
number of change points this carries over to ω̃T .

Theorem 4.2.
Let Assumptions 2.1, 3.1 - 3.3 and 4.1 hold. For q̂T < qT define ĉi = T for i =
q̂T + 1, . . . , qT .

(a) For a single change point estimator the following localization rate holds

∥di∥2 |ĉi − ci| = OP

(
ω2

T

)
.
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(b) The following uniform rate holds true:

max
i=1,...,qT

∥di∥2 |ĉi − ci| = OP

(
ω̃2

T

)
.

Proof. We will only show (b) as (a) follows analogously by replacing ω̃T by ωT and
without the maxima and minima. Let ST be as in (4.1). For C > 0 it holds that{

max
i=1,...,qT

∥di∥2 |ĉi − ci| ≥ Cω̃2
T

}
=
{

min
i=1,...,qT

(
(ĉi − ci) + Cω̃2

T

∥di∥2

)
≤ 0, ST

}
∪
{

max
i=1,...,qT

(
(ĉi − ci) − Cω̃2

T

∥di∥2

)
≥ 0, ST

}

∪
{

max
i=1,...,qT

∥di∥2 |ĉi − ci| ≥ Cω̃2
T , Sc

T

}
.

By Theorem 4.1, the latter set has asymptotic probability 0. With the substitution
s = t − ci it holds that{

max
i=1,...,qT

(
(ĉi − ci) − Cω̃2

T

∥di∥2

)
≥ 0, ST

}
=

qT⋃
i=1

{
(ĉi − ci) ≥ Cω̃2

T

∥di∥2 , ST

}

⊂
qT⋃
i=1


a

sup
ci+

Cω̃2
T

∥di∥2 ≤t≤ci+h

∥Mt∥2 > sup
ci−h≤t<ci+

Cω̃2
T

∥di∥2

∥Mt∥2


⊂
qT⋃
i=1


a

sup
Cω̃2

T

∥di∥2 ≤s≤h

2h
(
∥Mci+s∥2 − ∥Mci

∥2
)

≥ 0
 .

By straightforward algebraic calculus and Lemma 3.1 we obtain for Cω̃2
T / ∥di∥2 ≤

s ≤ h that

Vs = ∥Mci+s∥2 − ∥Mci
∥2

= − (mci
− mci+s + Λci

− Λci+s)′ (mci
+ mci+s + Λci

+ Λci+s)

= − 1
2h

(D1,s di + N1,s)′ (D2,s di + N2,s) , (4.2)

where D1,s = s, D2,s = 2h − s,

N1,s = 2
(
R̃(ci+1)

ci+s − R̃(ci+1)
ci

)
−
(
R̃(ci)

ci−h+s − R̃(ci)
ci−h

)
−
(
R̃(ci+1)

ci+h+s − R̃(ci+1)
ci+h

)
N2,s =

(
R̃(ci+1)

ci+h+s − R̃(ci+1)
ci+h

)
+ 2

(
R̃(ci+1)

ci+h − R̃(ci+1)
ci+s

)
− 2

(
R̃(ci)

ci
− R̃(ci)

ci−h+s

)
−
(
R̃(ci)

ci−h+s − R̃(ci)
ci−h

)
.

Therefore, it holds due to D1,sD2,s = s(2h − s) > 0 that

31



P
(

max
i=1,...,qT

(ĉi − ci) ≥ Cω̃2
T

∥di∥2 , ST

)

≤ P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

2h
(
∥Mci+s∥2 − ∥Mci

∥2
)

≥ 0


= P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

−
(
D1,sD2,s ∥di∥2 + D1,sd′

iN2,s + D2,sN′
1,sdi + N′

1,sN2,s

)
≥ 0



= P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

− D1,sD2,s ∥di∥2
(

1 + d′
iN2,s

D2,s∥di∥2 + N′
1,sdi

D1,s∥di∥2 + N′
1,sN2,s

D1,sD2,s∥di∥2

)
≥ 0



= P


a

min
i=1,...,qT

inf
Cω̃2

T

∥di∥2 ≤s≤h

(
d′

iN2,s

D2,s∥di∥2 + N′
1,sdi

D1,s∥di∥2 + N′
1,sN2,s

D1,sD2,s∥di∥2

)
≤ −1



≤ P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∣∣∣∣ d′
iN2,s

D2,s∥di∥2 + N′
1,sdi

D1,s∥di∥2 + N′
1,sN2,s

D1,sD2,s∥di∥2

∣∣∣∣ ≥ 1


≤ P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∣∣∣∣ d′
iN2,s

D2,s∥di∥2

∣∣∣∣ ≥ 1
3

 (4.3)

+ P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∣∣∣∣ N′
1,sdi

D1,s∥di∥2

∣∣∣∣ ≥ 1
3

 (4.4)

+ P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∣∣∣∣ N′
1,sN2,s

D1,sD2,s∥di∥2

∣∣∣∣ ≥ 1
3

 . (4.5)

For (4.3) it holds by Proposition A.4 (b) and Assumption 3.1 combined with qT ≤
T/(2h) that

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∥∥∥R̃(ci)
ci

− R̃(ci)
ci−h+s

∥∥∥
D2,s ∥di∥

≤ max
i=1,...,qT

sup
0≤s≤h

∥∥∥R̃(ci)
ci

− R̃(ci)
ci−s

∥∥∥
(2h − s) ∥di∥

≤ max
i=1,...,qT

sup
0≤s≤h

∥∥∥R̃(ci)
ci

− R̃(ci)
ci−s

∥∥∥
h ∥di∥

= OP


√

log (2qT )
√

h ∥di∥

 = OP


√

log(T/h)
√

h ∥di∥

 = oP (1).

We obtain analogously that

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∥∥∥R̃(ci)
ci−h+s − R̃(ci)

ci−h

∥∥∥
D2,s ∥di∥

= oP (1),
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max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∥∥∥R̃(ci+1)
ci+h+s − R̃(ci)

ci+h

∥∥∥
D2,s ∥di∥

= oP (1),

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∥∥∥R̃(ci+1)
ci+h − R̃(ci+1)

ci+s

∥∥∥
D2,s ∥di∥

= oP (1).

Therefore, by the Cauchy-Schwarz inequality, it follows that

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∣∣∣∣∣ N′
1,sdi

D2,s ∥di∥2

∣∣∣∣∣ ≤ max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∥N1,s∥
D2,s ∥di∥

= oP (1)

and therefore

P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∣∣∣∣ d′
iN2,s

D2,s∥di∥2

∣∣∣∣ ≥ 1
3

 = o(1). (4.6)

For (4.4) it holds by Assumption 4.1 for arbitrary y > 0 that

lim
C→∞

lim sup
T →∞

P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∥∥∥R̃
(ci+1)
ci+s −R̃

(ci+1)
ci

∥∥∥
s∥di∥ ≥ y



= lim
C→∞

lim sup
T →∞

P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

√
Cω̃2

T

∥∥∥R̃
(ci+1)
ci+s −R̃

(ci+1)
ci

∥∥∥
s∥di∥ ≥

√
Cω̃T y

 = 0.

Analogous results hold for

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∥∥∥R̃(ci)
ci−h+s − R̃(ci)

ci−h

∥∥∥
s ∥di∥

, max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∥∥∥R̃(ci+1)
ci+h+s − R̃(ci+1)

ci+h

∥∥∥
s ∥di∥

, .

Therefore it holds by the Cauchy-Schwarz inequality for (4.4) that

lim
C→∞

lim sup
T →∞

P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∣∣∣∣ N′
1,sdi

D1,s∥di∥2

∣∣∣∣ ≥ 1
3



≤ lim
C→∞

lim sup
T →∞

P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∥N1,s∥
D1,s∥di∥ ≥ 1

3

 = 0 (4.7)
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For (4.5) we obtain by (4.6) and (4.7) together with the Cauchy-Schwarz inequality
that

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∣∣∣∣∣ N′
1,sN2,s

D1,sD2,s ∥di∥2

∣∣∣∣∣
≤ max

i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∥N1,s∥
D1,s ∥di∥

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∥N2,s∥
D2,s ∥di∥

= OP (1)oP (1) = oP (1)

and therefore

P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

∣∣∣∣ N′
1,sN2,s

D1,sD2,s∥di∥2

∣∣∣∣ ≥ 1
3

 = o(1). (4.8)

By combining (4.6)-(4.8), we obtain that

lim
C→∞

lim sup
T →∞

P
(

max
i=1,...,qT

(ĉi − ci) ≥ Cω̃2
T

∥di∥2 , ST

)

≤ lim
C→∞

lim sup
T →∞

P


a

max
i=1,...,qT

sup
Cω̃2

T

∥di∥2 ≤s≤h

2h
(
∥Mci+s∥2 − ∥Mci

∥2
)

≥ 0
 = 0.

We obtain analogously that

lim
C→∞

lim sup
T →∞

P
(

min
i=1,...,qT

(ĉi − ci) ≤ − Cω̃2
T

∥di∥2 , ST

)
= 0.

Since

P
(

max
i=1,...,qT

(
|ĉi − ci| − Cω̃2

T

∥di∥2

)
≥ 0

)

≤ P
(

max
i=1,...,qT

(
(ĉi − ci) − Cω̃2

T

∥di∥2

)
≥ 0, ST

)

+ P
(

min
i=1,...,qT

(
(ĉi − ci) + Cω̃2

T

∥di∥2

)
≤ 0, ST

)

+ P
(

max
i=1,...,qT

(
|ĉi − ci| − Cω̃2

T

∥di∥2

)
≥ 0Sc

T

)

this shows the assertions as Sc
T has asymptotic probability 0 by Theorem 4.1.

Remark 4.2 (Minimax optimality). We have already mentioned beneath (3.4) that
the separation rate given there is minimax optimal (see Proposition 1 of Arias-Castro,
Candes, and Durand (2011)).

34



Minimax optimal localization rates (derived in the context of changes in the
mean of univariate time series, which is covered by the partial sum processes in our
framework) are known for a few special cases: First, the minimax optimal localization
rate for a single change point and in extension also for a bounded number of change
points is given by ωT = 1 in the above notation (see e. g. Lemma 2 in Wang, Yu, and
Rinaldo (2020)). In particular this shows that our procedures achieves the minimax
optimality in case of a bounded number of change points under weak assumptions
(as pointed out in Remark 4.1 (c)). Secondly, the optimal localization rate for
unbounded change points under sub-Gaussianity (attained for partial sum process
of i.i.d. errors) is given by ω̃T =

√
log T (see Proposition 6 in Verzelen et al. (2020)

and Proposition 2.3 in Cho and Kirch (2021+)). Indeed, we match this rate for
Wiener processes with drift.

The following theorem derives the limit distribution of the change point estima-
tors for local changes which shows in particular that the rates are tight. In principle,
this result can be used to obtain asymptotically valid confidence intervals for the
change point locations. In case of fixed changes, the limit distribution depends on
the underlying distribution of the original process (see Antoch and Hušková (1999)
for the case of partial sum processes), where the proof can be done along the same
lines. We need the following assumption:

Assumption 4.2. Let di = di,T = ∥di∥ui + o(∥di∥) with ∥ui∥ = 1 and ∥di,T ∥ → 0.
Assume that Y(j)

s = Y(j)
s (ci, D) with

Y(1)
s = R̃(ci)

ci−h+ s−D

∥di∥2
− R̃(ci)

ci−h− D
∥di∥2

,

Y(21)
s = R̃(ci)

ci+ s−D

∥di∥2
− R̃(ci)

ci− D
∥di∥2

, Y(22)
s = R̃(ci+1)

ci+ s−D

∥di∥2
− R̃(ci+1)

ci− D
∥di∥2

,

Y(3)
s = R̃(ci+1)

ci+h+ s−D

∥di∥2
− R̃(ci+1)

ci+h− D
∥di∥2

fulfill the following multivariate functional central limit theorem for any constant
D > 0 in an appropriate space equipped with the supremum norm(

∥di∥ (Y(1)
s , Y(21)

s , Y(22)
s , Y(3)

s )′
)

0≤s≤2D

w−→
(
W̃s

)
0≤s≤2D

,

where W̃ is a Wiener process with covariance matrix Ξ (not depending on D). For
−D ≤ t ≤ D denote Wt = (W(1)

t , W(21)
t , W(22)

t , W(3)
t )′ = W̃D+t − W̃D.

By Assumption 3.1 it holds h∥di∥2 → ∞, such that the distance h− 2D
∥di∥2 between

Y(1) and Y(2j) (resp. between Y(2j) and Y(3)) diverges to infinity. As such for
processes with independent increments the processes Y(1), (Y(21), Y(22))′, Y(3) are
independent for T large enough. Additionally, under weak assumptions such as
mixing conditions this independence still holds asymptotically in the sense that W(1),
(W(21), W(22))′, W(3) are independent.

Functional central limit theorems for these processes follow from invariance prin-
ciples as in Assumption 2.1 with ΣT → Σ as long as such invariance principles
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still hold with an arbitrary (moving) starting value, which is typically the case (see
also Remark 4.1 (c)). As such, it typically holds that Ξ(1) = Ξ(21) = Σ(ci) and
Ξ(3) = Ξ(22) = Σ(ci+1) where Ξj = Cov(W(j)

1 ) and Σ(ci) is the covariance matrix
associated with the regime between the (i − 1)-th and i-th change point.

The following theorem gives the asymptotic distribution for the change point
estimators in case of local change points.

Theorem 4.3.
Let Assumptions 2.1, 3.1 - 3.3, 4.1 (a) with ωT = 1 and 4.2 hold. For q̂T < qT define
ĉi = T for i = q̂T + 1, . . . , qT . Let

Ψ(i)
s := − |s| +

u′
iW(1)

s − 2 u′
iW(21)

s + u′
iW(3)

s , s < 0
u′

iW(1)
s − 2 u′

iW(22)
s + u′

iW(3)
s , s ≥ 0.

Then, for all i = 1, . . . , qT , it holds that for T → ∞

∥di∥2 (ĉi − ci) D−→ argmax
{

Ψ(i)
t

∣∣∣∣s ∈ R
}

If there is a fixed number of changes qT = q with q fixed and a functional central
limit theorem as in Assumption 4.2 holds jointly for all q change points, then the
result also holds jointly.

Proof. Analogously to the proof of Theorem 4.2 it holds for C > 0, −C ≤ x ≤ C
and i = 1, . . . , qT that

P (∥di∥ (ĉi − ci) ≤ x, ∥di∥ |ĉi − ci| ≤ C)

= P
 a

sup
− C

∥di∥2 ≤s≤x

(
∥Mci+s∥2 − ∥Mci

∥2
)

≥ sup
x<s≤ C

∥di∥2

(
∥Mci+s∥2 − ∥Mci

∥2
) .

By defining D1,s, D2,S, D1,s and D2,s from (4.2) also for s < 0, it holds that

Vs = ∥Mci+s∥2 − ∥Mci
∥2

= − (mci
− mci+s + Λci

− Λci+s)′ (mci
+ mci+s + Λci

+ Λci+s)

= − 1
2h

(D1,s di + N1,s)′ (D2,s di + N2,s) ,

where

D1,s = |s|, D2,s = 2h − |s|,

N1,s =



2
(
R̃(ci)

ci+s − R̃(ci)
ci

)
−
(
R̃(ci)

ci−h+s − R̃(ci)
ci−h

)
−
(
R̃(ci+1)

ci+h+s − R̃(ci+1)
ci+h

)
,

for s < 0

2
(
R̃(ci+1)

ci+s − R̃(ci+1)
ci

)
−
(
R̃(ci)

ci−h+s − R̃(ci)
ci−h

)
−
(
R̃(ci+1)

ci+h+s − R̃(ci+1)
ci+h

)
,

for s ≥ 0
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N2,s =



(
R̃(ci+1)

ci+h − R̃(ci+1)
ci+h+s

)
+ 2

(
R̃(ci+1)

ci+h+s − R̃(ci+1)
ci

)
− 2

(
R̃(ci)

ci+s − R̃(ci)
ci−h

)
−
(
R̃(ci)

ci−h − R̃(ci)
ci−h+s

)
,

for s < 0

(
R̃(ci+1)

ci+h+s − R̃(ci+1)
ci+h

)
+ 2

(
R̃(ci+1)

ci+h − R̃(ci+1)
ci+s

)
− 2

(
R̃(ci)

ci
− R̃(ci)

ci−h+s

)
−
(
R̃(ci)

ci−h+s − R̃(ci)
ci−h

)
,

for s ≥ 0

By Proposition A.4 (b), we obtain that

sup
0≤s≤ C

∥di∥2

∥∥∥R̃(ci+1)
ci+h − R̃(ci+1)

ci+s

∥∥∥ ≤ sup
0≤s≤h

∥∥∥R̃(ci+1)
ci+h − R̃(ci+1)

ci+h−s

∥∥∥ = OP

(√
h
)

and similarly

sup
0≤s≤ C

∥di∥2

∥∥∥R̃(θi)
θi

− R̃(θi)
θi±h±s

∥∥∥ = OP

(√
h
)

,

where θi takes values ci − h, ci, ci + h and (with a slight abuse of notation) the upper
index (θi) denotes the index of the active regime of the process.
Since furthermore

sup
0≤s≤ C

∥di∥2

∥∥∥R̃(ci+1)
ci+s − R̃(ci+1)

ci

∥∥∥
= sup

0≤s≤ C

∥di∥2

∥∥∥∥∥R̃(ci+1)
ci+s − R̃(ci+1)

ci− C

∥di∥2
+ R̃(ci+1)

ci− C

∥di∥2
− R̃(ci+1)

ci

∥∥∥∥∥
≤
∥∥∥∥∥R̃(ci+1)

ci
− R̃(ci+1)

ci− C

∥di∥2

∥∥∥∥∥+ sup
0≤s≤ C

∥di∥2

∥∥∥∥∥R̃(ci+1)
ci− C

∥di∥2
− R̃(ci+1)

ci+s

∥∥∥∥∥
and since by Assumption 4.2

∥di∥
∥∥∥∥∥R̃(ci+1)

ci
− R̃(ci+1)

ci− C

∥di∥2

∥∥∥∥∥ D−→
∥∥∥W̃(22)

C

∥∥∥ ,

∥di∥ sup
0≤s≤ C

∥di∥2

∥∥∥∥∥R̃(ci+1)
ci− C

∥di∥2
− R̃(ci+1)

ci+s

∥∥∥∥∥ D−→ sup
C≤t≤2C

∥∥∥W̃(22)
t

∥∥∥ ,

it follows that
sup

0≤s≤ C

∥di∥2

∥∥∥R̃(ci+1)
ci+s − R̃(ci+1)

ci

∥∥∥ = OP

(
1

∥di∥

)
.

Analogously, it follows that

sup
0≤s≤ C

∥di∥2

∥∥∥R̃(θi)
θi±s − R̃(θi)

θi

∥∥∥ = OP

(
1

∥di∥

)
,
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where θi takes values ci − h, ci, ci + h and (with a slight abuse of notation) the upper
index (θi) denotes the index of the active regime of the process. Therefore,

∥N1,s∥ = OP

(
1

∥di∥

)
, ∥N2,s∥ = OP

(√
h
)

.

Thus, it holds by Assumption 3.1 that

1
2h

D1,sD2,s ∥di∥2 = |s| ∥di∥2 − s2

2h
∥di∥2 = |s| ∥di∥2 + O

(
1

h ∥di∥2

)
= |s| ∥di∥2 + o(1),

1
2h

D1,sd′
iN2,s = |s|OP

(
∥di∥√

h

)
= OP

(
1√

h ∥di∥

)
= oP (1),

1
2h

D2,sN′
1,sdi =

(
1 − |s|

2h

)
N′

1,sdi = N′
1,sdi + oP (1),

1
2h

N′
1,sN2,s = OP

(
1

h ∥di∥

)
= oP (1)

and therefore,

Vs = −|s| ∥di∥ − N′
1,sdi + oP (1) = −|s| ∥di∥ − ∥di∥ N′

1,sui + oP (1),

where ui is as in Assumption 4.2 and the oP (1)-term holds uniformly in s.
With the substitution r = s ∥di∥2 we obtain that

Vr = op(1) − |r|

− ∥di∥



2
(

R̃(ci)
ci+ r

∥di∥2
− R̃(ci)

ci

)′

ui −
(

R̃(ci)
ci−h+ r

∥di∥2
− R̃(ci)

ci−h

)′

ui

−
(

R̃(ci+1)
ci+h+ r

∥di∥2
− R̃(ci+1)

ci+h

)′

ui,

for r < 0

2
(

R̃(ci+1)
ci+ r

∥di∥2
− R̃(ci+1)

ci

)′

ui −
(

R̃(ci)
ci−h+ r

∥di∥2
− R̃(ci)

ci−h

)′

ui

−
(

R̃(ci+1)
ci+h+ r

∥di∥2
− R̃(ci+1)

ci+h

)′

ui,

for r ≥ 0

By Assumption 4.2, it holds that (Vr)−C≤r≤C
w−→

(
Ψ(i)

s

)
−C≤r≤C

on the ’appropriate
space equipped with the supremum norm’ from Assumption 4.2. Since the supremum
is a continuous function on this space it holds that
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P (∥di∥ (ĉi − ci) ≤ x, ∥di∥ |ĉi − ci| ≤ C) = P
( a

sup
−C≤r≤x

Vr ≥ sup
x≤r≤C

Vr

)

−→ P
(

a

sup
−C≤r≤x

Ψ(i)
r ≥ sup

x≤r≤C
Ψ(i)

s

)
= P

(
argmax Ψ(i)

r ≤ x| − C ≤ x ≤ C
)

.

By Theorem 4.2, letting C → ∞ proves the assertion.

Due to the Markov property of Wiener processes, {Ψ(i)
t : t > 0} is independent

of {Ψ(i)
t : t < 0}.

Remark 4.3. (a) If W(1), (W(21), W(22))′, W(3) are independent which is typically
the case (see discussion beneath Assumption 4.2), then Ψ(i)

t simplifies to

Ψ(i)
t := − |t| +


√

σ2
(1) + 4 σ2

(21) + σ2
(3) Bt, t < 0√

σ2
(1) + 4 σ2

(22) + σ2
(3) Bt, t ≥ 0,

where B is a (univariate) standard Wiener process and σ2
(j) = u′

iΞ(j)ui. Usually
(see discussion beneath Assumption 4.2) σ(21) = σ(1) and σ(22) = σ(3) further
simplifying the expression. For some examples such as partial sum processes
it holds Σt = Σ for all t, such that all σ(j) coincide. In this case this further
simplifies to

Ψ(i)
t := − |t| +

√
6 σ(1) Bt.

For univariate partial sum processes this result has already been obtained in
Theorem 3.3 of Eichinger and Kirch (2018). However, the assumption of Σt = Σ
is typically not fulfilled for renewal processes because the covariance depends on
the changing intensity of the process.

(b) If W(1), (W(21), W(22))′, W(3) are independent and Mt in (3.10) is replaced by
Σ−1/2

t Mt, then the Wiener processes W(j) are standard Wiener processes, such
that Ψ(i)

t simplifies to

Ψ(i)
t := − |t| +

√
6 Bt.

This shows that in this case the limit distribution of ĉi − ci only depends on the
magnitude of the change di but not on its direction ui.

Statistically, however, this is difficult to achieve as it requires a uniformly (in t)
consistent estimator for the usually unknown covariance matrices Σt.
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5 Asymmetric bandwidths
In analogy to Meier, Cho, and Kirch (2021), we define the MOSUM-statistic as

Mt = Mt,T,hl,T ,hr,T
(Z) =

√
hlhr

hl + hr

[ 1
hr

(Zt+hr − Zt) − 1
hl

(Zt − Zt−hl
)
]

. (5.1)

Similar to Section 3, the statistic will fluctuate around 0 in the case of no mean
change. On the other hand, the statistic will differ from 0 close to a change point.
Ideally, we want to chose the two bandwidths as large as possible (similar to Section
3). On the other hand, the increments shall not be contaminated by a second change
since this can lead to situations where the change point can no longer be reliably
localized by the signal. Furthermore, we need to impose restrictions on the unbal-
ancedness in order to avoid problems in the asymptotic theory and in practice, as
noted by Cho and Kirch (2021+) in Section 4.2. Indeed, we need the following as-
sumptions – that are analogous to Assumption 3.1 – on the bandwidths for a change
to be detectable:

Assumption 5.1. We assume the bandwidths hl, hr with hl + hr < T to be suffi-
ciently balanced in the sense that there exists C ≥ 1 such that

max {hl, hr}
min {hl, hr}

≤ C (5.2)

for all T > 0. We assume that for νT as in Assumption (2.1) it holds that

ν2
T T log T

hl

→ 0. (5.3)

Furthermore, the first and last change point are detectable and the i-th change point
is isolated in the sense that

hl ≤ c1, cqT
≤ T − hr,

hl + hr ≤ ∆i, where ∆i = min(ci+1 − ci, ci − ci−1)

for i = 2, . . . , qT − 1.
Additionally, the signal needs to be large enough to be detectable by these bandwidths,
i. e.

∥di∥2 hl

log
(

T
hl

) → ∞ (5.4)

for i = 1, . . . , qT .

Note that (5.3) and (5.4) automatically also hold for hr due to (5.2).
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5.1 Change point estimators
Analogously to (3.5) and (3.6), the MOSUM statistic Mt = mt +Λt decomposes into
a piecewise linear signal term mt = mt,hl,hr,T and a centered noise term Λt = Λt,hl,hr,T

with

√
hl + hr

hlhr

mt =
√

hl + hr

hlhr

mt,hl,hr,T (5.5)

=


1
hl

(hl − t + ci) di, for ci < t ≤ ci + hl,

0, for ci + hl < t ≤ ci+1 − hr,
1

hr
(hr + t − ci+1) di+1, for ci+1 − hr < t ≤ ci+1,√

hl + hr

hlhr

Λt =
√

hl + hr

hlhr

Λt(R̃) (5.6)

=



1
hr

(
R̃(ci+1)

t+hr
− R̃(ci+1)

t

)
− 1

hl

(
R̃(ci+1)

t − R̃(ci+1)
ci

+ R̃(ci)
ci

− R̃(ci)
t−hl

)
,

for ci < t ≤ ci + hl

1
hr

(
R̃(ci+1)

t+hr
− R̃(ci+1)

t

)
− 1

hl

(
R̃(ci+1)

t − R̃(ci+1)
t−hl

)
, for ci + hl < t ≤ ci+1 − hr,

1
hr

(
R̃(ci+2)

t+hr
− R̃(ci+2)

ci+1
+ R̃(ci+1)

ci+1
− R̃(ci+1)

t

)
− 1

hl

(
R̃(ci+1)

t − R̃(ci+1)
t−hl

)
,

for ci+1 − hr < t ≤ ci+1,

Similar to (3.5), the signal term is a piecewise linear function with extrema at the
change points and is 0 outside of intervals [ci − hr, ci + hl]. Since this is similar to
our findings in Section 3, we will use an analogous procedure to the one proposed in
Section 3: A point t∗ is significant if

M′
t∗Â−1

t∗ Mt∗ ≥ β, (5.7)

where β = βhl,hr,T is a suitable threshold and Ât∗ is a symmetric positive definite
matrix possibly depending on the data that fulfills

Assumption 5.2.

sup
hl≤t≤T −hr

∥∥∥Â−1
t,T

∥∥∥ = OP (1) , sup
i=1,...,qT

sup
ci−hl≤t≤ci+hr

∥∥∥Ât,T

∥∥∥ = OP (1).

We define local extrema analogously to (3.10) by having a tuning parameter
0 < η < 1, where a point t∗ is a local extremum if

t∗ = argmax
t∗−ηhl≤t≤t∗+ηhr

∥Mt∥ . (5.8)
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As in Section 3, the threshold β distinguishes between significant and spurious lo-
cal extrema, and the set of all significant local extrema is the set of change point
estimators. Its cardinality is an estimator for the number of change points.

Theorem 5.1. Let the Assumptions 2.1, 5.1 and 5.2 hold. Denote by hmin =
min {hl, hr}, hmax = max {hl, hr}.

(a) For ci − hr < t ≤ ci let h = hr, for ci < t < ci + hl let h = hl. For the signal
term mt it holds that

m′
tÂ−1

t mt ≥ 1
(C + 1)∥Ât∥

(h − |t − ci|)2

h
∥di∥2 .

At other time points the signal term is equal to zero.

(b) For the noise term it holds for qT = 0, i. e. in the no-change situation

(i) for linear bandwidths hl = γlT , hr = γrT with 0 < γl + γr < 1

sup
γlT ≤t≤T −γrT

Λ′
tΣ−1

T Λt

D−→ γlγr

γl + γr

sup
γl≤s≤1−γr

((
1
γr

(Bs+γr − Bs) − 1
γl

(Bs − Bs−γl
)
)′

(
1
γr

(Bs+γt − Bs) − 1
γl

(Bs − Bs−γl
)
))

where B denotes a multivariate standard Wiener process.
In particular, the squared noise term is of order OP (1) in this case.

(ii) for sublinear bandwidths hl/T → 0, hr/T → 0 but Assumption 5.1 fulfilled
and hmin/hmax = D > 0, it holds that

a
(

T

hmin

)
sup

hl≤t≤T −hr

√
Λ′

tΣ−1
T Λt − b

(
T

hmin

)
D−→ E,

where E follows a Gumbel distribution with P (E ≤ x) = e−2e−x and

a(x) =
√

2 log x

b(x) = 2 log x + p

2 log log x + log D2 + D + 1
D + 1 − log Γ

(
p

2

)
.

In particular, the above squared noise term is of order OP (log(T/hl)) in
this case.

The assertions remain true if an estimator for the covariance is used fulfilling
(3.9) uniformly over all h ≤ t ≤ T − h.
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(c) In the situation of multiple change points, it holds that

sup
hl≤t≤T −hr

∥Λt∥ = OP (
√

log(T/hl)).

Proof. (a) Because Ât is symmetric and positive definite, the maximum eigenvalue
is given by ∥Ât∥ by Corollary B.3. By Lemma B.1, it follows that the minimal
eigenvalue of Â−1

t is given by 1/∥Ât∥. By straightforward calculations and (5.2) it
holds that

hlhr ≥ h min {hl, hr}

and

hl + hr = min {hl, hr} + max {hl, hr} ≤ (1 + C) min {hl, hr} .

With Lemma B.4 and (5.5) it follows that

mtÂ−1
t mt ≥ 1

∥Ât∥
∥mt∥2 = 1∥∥∥Ât

∥∥∥ hlhr

hl + hr

1
h2 (h − |t − ci|)2 ∥di∥2

= 1∥∥∥Ât

∥∥∥ 1
(hl + hr)

hlhr

h2 (h − |t − ci|)2 ∥di∥2 ≥ 1∥∥∥Ât

∥∥∥min {hl, hr}
(hl + hr)h

(h − |t − ci|)2 ∥di∥2

≥ 1
∥Ât∥

min {hl, hr}
(1 + C) min {hl, hr}

1
h

(h − |t − ci|)2 ∥di∥2 .

(b) Denote by Λt(Wt) the MOSUM statistics defined in (5.1) with {Zt} there re-
placed by {Wt}. By Assumption 5.1 it holds that hl ≤ Chr and hr ≤ Chl. With
the invariance principle from Assumption 2.1 it holds therefore that

sup
hl≤t≤T −hr

∥Λt − Λt(Wt)∥

=
√

hlhr

hl + hr

sup
hl≤t≤T −hr

∥∥∥∥( 1
hr

(Zt+hr − Zt) − 1
hl

(Zt − Zt−hl
)
)

−
( 1

hr

(Wt+hr − Wt) − 1
hl

(Wt − Wt−hl
)
)∥∥∥∥

=
√

hlhr

hl + hr

sup
hl≤t≤T −hr

∥∥∥∥( 1
hr

(
R̃t+hr − R̃t

)
− 1

hl

(
R̃t − R̃t−hl

))
−
( 1

hr

(Wt+hr − Wt) − 1
hl

(Wt − Wt−hl
)
)∥∥∥∥

≤
√

hlhr

hl + hr

(
2 sup

0≤t≤T

1
hr

∥∥∥R̃t − Wt

∥∥∥+ 2 sup
0≤t≤T

1
hl

∥∥∥R̃t − Wt

∥∥∥)

= 2
√

hl + hr

hlhr

sup
0≤t≤T

∥∥∥R̃t − Wt

∥∥∥
≤ 2

√
1 + C

hl

sup
0≤t≤T

∥∥∥R̃t − Wt

∥∥∥ = OP

(
T 1/2νT√

hl

)
= oP

(√
log(T/hl)

−1)
. (5.9)
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(i) Let (Bt)t≥0 =
(
Σ−1/2

T Wt

)
t≥0

be a multivariate standard Wiener process. By the
self-similarity of the Wiener process it follows with the transformation s = t/T that

sup
γlT ≤t≤T −γrT

Λt (Wt)′ Σ−1
T Λt (Wt)

= γlγrT

γl + γr

sup
γlT ≤t≤T −γrT

((
1

γrT
(Bt+γrT − Bt) − 1

γlT
(Bt − Bt−γlT )

)′

(
1

γrT
(Bt+γrT − Bt) − 1

γlT
(Bt − Bt−γlT )

))
D= γlγr

γl + γr

sup
γl≤s≤1−γr

((
1
γr

(Bs+γr − Bs) − 1
γl

(Bs − Bs−γl
)
)′

(
1
γr

(Bs+γr − Bs) − 1
γl

(Bs − Bs−γl
)
))

.

The assertion then follows from (5.9) and Slutzky’s theorem.

(ii) Let (Bt)t≥0 =
(
(Bt,1, . . . , Bt,p)′

)
t≥0

be as above. If hl = hmin, it follows similar to
(i) by the self-similarity of the multivariate Wiener process with the transformation
s = t/hl − 1 that

sup
hl≤t≤T −hr

√
Λt(Wt)′Σ−1

T Λt(Wt) = sup
hl≤t≤T −hr

∥∥∥Σ−1/2
T Λt(Wt)

∥∥∥
= sup

hl≤t≤T −hr

∥∥∥∥∥∥
√

hlhr

hl + hr

( 1
hr

(Bt+hr − Bt) − 1
hl

(Bt − Bt−hl
)
)∥∥∥∥∥∥

= sup
hl≤t≤T − hl

D

∥∥∥∥∥∥
√

hl

D + 1

(
D

hl

(
B

t+ hl
D

− Bt

)
− 1

hl

(Bt − Bt−hl
)
)∥∥∥∥∥∥

= sup
0≤s≤ T

hl
− 1

D
−1

∥∥∥∥∥ 1√
D + 1

(
D√
hl

(
Bhl(s+1+ 1

D ) − Bhl(s+1)

)
− 1√

hl

(
Bhl(s+1) − Bhls

))∥∥∥∥∥
D= sup

0≤s≤ T
hl

− 1
D

−1

∥∥∥∥∥ 1√
D + 1

(
D
(
Bs+1+ 1

D
− Bs+1

)
− (Bs+1 − Bs)

)∥∥∥∥∥
= sup

0≤s≤ T
hmin

− 1
D

−1

∥∥∥∥∥ 1√
D + 1

(
D
(
Bs+1+ 1

D
− Bs+1

)
− (Bs+1 − Bs)

)∥∥∥∥∥ .

If hr = hmin, it holds analogously with the time-reversal property of the multivariate
Wiener process that

sup
hl≤t≤T −hr

√
Λt(Wt)′Σ−1

T Λt(Wt)

D= sup
0≤s≤ T

hmin
− 1

D
−1

∥∥∥∥∥ 1√
D + 1

((
Bs+1+ 1

D
− Bs+ 1

D

)
− D

(
Bs+ 1

D
− Bs

))∥∥∥∥∥
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D= sup
0≤s≤ T

hmin
− 1

D
−1

∥∥∥∥∥ 1√
D + 1

(
D
(
Bs+1+ 1

D
− Bs+1

)
− (Bs+1 − Bs)

)∥∥∥∥∥ .

W.l.o.g. let a ≥ 0. The process

(Λs(Bs))s≥0 =
(

1√
D + 1

(
D
(
Bs+1+ 1

D
− Bs+1

)
− (Bs+1 − Bs)

))
s≥0

is a stationary p-dimensional Gaussian process. The componentwise covariance func-
tions are given by

(D + 1) Cov [Λa,i (Ba) , Λ0,i (B0)]
= D2 Cov

[
Ba+1+ 1

D
,i − Ba+1,i, B1+ 1

D
,i − B1,i

]
− D Cov

[
Ba+1+ 1

D
,i − Ba+1,i, B1,i − B0,i

]
− D Cov

[
Ba+1,i − Ba,i, B1+ 1

D
,i − B1,i

]
+ Cov [Ba+1,i − Ba,i, B1,i − B0,i]

=



D − D2a − Da + 1 − a, for 0 ≤ a < 1
−Da, for 1 ≤ a < 1

D

−D
(
1 + 1

D
− a

)
, for 1

D
≤ a < 1 + 1

D

0, for a ≥ 1 + 1
D

with analogous results for a < 0. Therefore,

Cov [Λs+a,i (Bs+a) , Λs,i (Bs)]

=



1 − D2+D+1
D+1 |a|, for 0 ≤ |a| < 1

−D|a|
D+1 , for 1 ≤ |a| < 1

D

− D
D+1

(
1 + 1

D
− |a|

)
, for 1

D
≤ |a| < 1 + 1

D

0, for |a| ≥ 1 + 1
D

.

Therefore it follows by Lemma 3.1 and Remark 3.1 of Steinebach and Eastwood
(1996) (see also Lemma A.1) with α = 1, C = D2+D+1

D+1 that

a
(

T

hmin

)
sup

0≤s≤ T
hmin

∥Λs (Bs)∥ − b
(

T

hmin

)
D−→ E.

Since by the triangle inequality

sup
T

hmin
−1− 1

D
≤s≤ T

hmin

∥Λs (Bs)∥ D= sup
0≤s≤1+ 1

D

∥Λs (Bs)∥

≤ 2D + 2√
D + 1

sup
0≤s≤2+ 2

D

∥Bs∥ = OP (1) = oP

(
b (T/hmin)
a (T/hmin)

)
,
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it follows by Lemma A.2 that

a
(

T

hmin

)
sup

hl≤t≤T −hr

√
Λt (Wt)′ Σ−1

T Λt (Wt) − b
(

T

hmin

)
D= a

(
T

hmin

)
sup

0≤s≤ T
hmin

−1− 1
D

∥Λs (Bs)∥ − b
(

T

hmin

)
D−→ E,

as well. Since by (5.9),∣∣∣∣∣a
(

T

hmin

)
sup

hl≤t≤T −hr

√
Λ′

tΣ−1
T Λt − a

(
T

hmin

)
sup

hl≤t≤T −hr

√
Λt (Wt)′ Σ−1

T Λt (Wt)
∣∣∣∣∣ = oP (1),

the assertion follows by Slutzky’s theorem.
The proof that the assertion remains true if we replace ΣT by an estimator Σ̂T

fulfilling Assumption 5.2 is completely analogous to the corresponding statement in
Theorem 3.2 (b).

(c) It holds that

sup
hl≤t≤T −hl

∥Λt∥ = max
{

max
i=1,...,qT

sup
ci−hr≤t≤ci+hl

∥Λt∥ , max
i=0,...,qT

sup
ci+hl<t<ci+1−hr

∥Λt∥
}

.

By (b) it holds that

max
i=0,...,qT

sup
ci+hl<t<ci+1−hr

∥Λt∥

= max
i=0,...,qT

sup
ci+hl<t<ci+1−hr

√
hlhr

hl + hr

∥∥∥∥ 1
hr

(
R̃(ci+1)

t+hr
− R̃(ci+1)

t

)
− 1

hl

(
R̃(ci+1)

t − R̃(ci+1)
t−hl

)∥∥∥∥
≤ max

i=1,...,P
sup

hl≤t≤T −hr

√
hlhr

hl + hr

∥∥∥∥ 1
hr

(
R̃(i)

t+hr
− R̃(i)

t

)
− 1

hl

(
R̃(i)

t − R̃(i)
t−hl

)∥∥∥∥
= OP

(√
log(T/hl)

)
. (5.10)

Furthermore, on noting that by Assumption 5.1, hl, hr and hl + hr are of the same
order, we obtain by Proposition A.4 (b) and the triangle inequality analogously to
the corresponding proof in Theorem 3.2 that

max
i=1,...,qT

sup
ci≤t≤ci+hl

∥Λt∥

= max
i=1,...,qT

√
hlhr

hl + hr

sup
ci≤t≤ci+hl

∥∥∥∥ 1
hr

(
R̃(ci+1)

t+hr
− R̃(ci+1)

t

)
− 1

hl

(
R̃(ci+1)

t − R̃(ci+1)
ci

+ R̃(ci)
ci

− R̃(ci)
t−hl

)∥∥∥∥
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≤ 2 max
i=1,...,qT

sup
0≤s≤hl+hr

√
hlhr

hl + hr

1
hr

∥∥∥R̃(ci+1)
ci+s − R̃(ci+1)

ci

∥∥∥
+ max

i=1,...,qT

sup
0≤s≤hl

√
hlhr

hl + hr

1
hl

∥∥∥R̃(ci+1)
ci+s − R̃(ci+1)

ci

∥∥∥
+ max

i=1,...,qT

sup
0≤s≤hl

√
hlhr

hl + hr

1
hl

∥∥∥R̃(ci)
ci−s − R̃(ci)

ci

∥∥∥
= OP

(√
log (2qT )

)
= OP

(√
log(T/hl)

)
(5.11)

since by Assumption 3.1 qT ≤ T/(hl + hr) and T 1/2νT /
√

hl = o(1).
Similarly we obtain that

max
i=1,...,qT

sup
ci−hr≤t≤ci

∥Λt∥ = OP

(√
log(T/hl)

)
,

which in combination with (5.10) and (5.11) shows the assertion.

Assumption 5.3. The threshold fulfills:

βhl,hr,T

hl,T min
i=1,...,qT

∥di∥2 → 0,
log T

hl,T

βhl,hr,T

→ 0 (T → ∞).

Theorem 5.2. Let Assumptions 2.1, 5.1 – 5.3 hold and let hl/hr = D for some
0 < D < ∞. Let 0 < ĉ1 < . . . < ĉq̂T

be the change point estimators of type (5.8).
Then for any τ > 0 it holds

lim
T →∞

P
(

max
i=1,...,min(q̂T ,qT )

|ĉi − ci| ≤ τ min {hl, hr} , q̂T = qT

)
= 1.

Proof. Assume that hl ≤ hr as the proof in the other case is analogous. The proof is
analogous to the proof of Theorem 4.1. First, define for 0 < τ < 1 the following set

ST = S
(1)
T ∩ S

(2)
T ∩

qT⋂
i=1

(
S

(3)
T (i, τ) ∩ S

(4)
T (i, τ)

)
,

where

S
(1)
T =

{
max

i=0,...,qT

sup
ci+hl<t<ci+1−hr

M′
tÂ−1

t Mt < β

}
,

S
(2)
T =

{
min

i=1,...,qT

M′
ci

Â−1
ci

Mci
≥ β

}
,

S
(3)
T (i, τ) =

⌈ 1
Dτ

⌉−1⋂
k=1

{
sup

ci−hr≤t≤ci−kτhl

∥Mt∥ < ∥Mci−(k−1)τhl
∥
}

,

S
(4)
T (i, τ) =

⌈ 1
τ

⌉−1⋂
k=1

{
sup

ci+kτhl≤t≤ci+hl

∥Mt∥ < ∥Mci+(k−1)τhl∥
}

.
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On S
(1)
T there are asymptotically no significant points outside of [ci − hr, ci + hl]. On

S
(2)
T there is at least one significant time point for each change point. On S

(3)
T (i, τ) ∩

S
(4)
T (i, τ) with τ < η/2, there are no local extrema within [ci − hr, ci + hl] that are

outside the interval (ci − τhl, ci + τhl). Additionally, on S
(2)
T ∩ S

(3)
T (i, τ) ∩ S

(4)
T (i, τ)

the global extremum within that interval will be the only significant local extremum
within [ci − hr, ci + hl] such that{

max
i=1,...,min(q̂T ,qT )

|ĉi − ci| ≤ τ min {hl, hr} , q̂T = qT

}
⊃ ST .

We will show that ST is an asymptotic one set.

Analogously to the proof of Theorem 4.1 it holds by Assumption 5.2 and Theorem
5.1 (c) that

max
i=0,...,qT

sup
ci+hl<t<ci+1−hr

M′
tÂ−1

t Mt ≤ sup
hl≤t≤T −hr

∥∥∥Â−1
t

∥∥∥ max
i=0,...,qT

sup
ci+hl<t<ci+1−hr

∥Λt∥2

= OP (log T/hl) ,

Therefore, by Assumption 5.3, S
(1)
T is an asymptotic one set.

For S
(2)
T we obtain analogously to Theorem 5.1 that

min
i=1,...,qT

M′
ci

Â−1
ci

Mci
≥ min

i=1,...,qT

1∥∥∥Âci

∥∥∥ min
i=1,...,qT

∥Mci
∥2 .

By Assumption 3.2, for each ε > 0, there exists Cε > such that

lim sup
T →∞

P
(

min
i=1,...,qT

∥∥∥Âci

∥∥∥−1
< Cε

)
< ε.

Furthermore, we obtain analogously to Theorem 5.1 by Assumption 5.1 and hr =
hl/D that

min
i=1,...,qT

∥Mci
∥2 = min

i=1,...,qT

∥mci
+ Λci

∥2

≥ min
i=1,...,qT

∥mci
∥
(

min
i=1,...,qT

∥mci
∥ − 2 max

i=1,...,qT

∥Λci
∥
)

=
√

hlhr

hl + hr

min
i=1,...,qT

∥di∥

√ hlhr

hl + hr

min
i=1,...,qT

∥di∥ − OP

(√
log T

hl

)
= hl

(D + 1) min
i=1,...,qT

∥di∥2 + oP

(
hl min

i=1,...,qT

∥di∥2
)

,

which in combination with Assumption 5.3 shows that S
(2)
T is an asymptotic one set.

For arbitrary τ > 0 and S
(3)
T (i, τ) it holds by Theorem 5.3 uniformly that
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min
i=1,...,qT

(∥∥∥Mci−(k−1)τhl

∥∥∥− sup
ci−hr≤t≤ci−kτhl

∥Mt∥
)

= min
i=1,...,qT

(∥∥∥mci−(k−1)τhl

∥∥∥− ∥mci−kτhl
∥
)

+ OP

(√
log T

hl

)

= τ

√
hlhr

hl + hr

min
i=1,...,qT

∥di∥ + OP

(√
log T

hl

)

= τ

√
hl

D + 1 min
i=1,...,qT

∥di∥ + OP

(√
log T

hl

)
,

thus showing that ∩qT
i=1S

(3)
T (i, τ) is an asymptotic one set. It follows analogously that

∩qT
i=1S

(4)
T (i, τ) is an asymptotic one set.

6 Simulation study
We want to analyze the performance of our procedure by means of a simulation
study with a focus on detection rates for change points. In particular, we want to
compare the detection rates for different choices for the matrix Ât as in (3.7) and also
analyze the performance of our procedure under violations of the model assumptions
in Assumption 3.1.

We have mentioned in the Preface that our initial goal was the estimation of
change points in (multivariate) renewal processes. As noted in Section 2.2.2, multi-
variate renewal processes with the same intensities across all components fulfill the
invariance principle from Assumption 2.1. Therefore, we analyze the performance
of our procedure on this particular type of process. More precisely, we analyze
three-dimensional renewal processes with T = 1600, where the increments of the
inter-event times for each component are Γ−distributed with intensity changes at
250, 500, 900 and 1150, where the expected time µ between events is given by 1.3,
0.9, 0.6, 0.8 and 1.3. We use a bandwidth of h = 120 and the parameter η = 0.75.
Smaller values of η as suggested by Meier, Cho, and Kirch (2021) for partial sum
processes tend to produce duplicate change point estimators by having two or more
significant local maxima for each change point if the variance is too large (as can
be seen in Table 6.1 below), while larger values of η lead to slightly worse detection
rates. For a single-bandwidth MOSUM procedure as suggested here, this should be
avoided but can be relaxed if a post-processing procedure is applied as e. g. by Cho
and Kirch (2021+) for partial sum processes.

In contrast to partial sum processes, it is natural for renewal processes that
the variances change with the intensity. Therefore we consider the following three
scenarios: (i) standard deviations of constant value 0.7 (referred to as constvar),
(ii) standard deviations being 5/6µ (referred to as smallvar) and (iii) multivariate
Poisson processes (referred to as Poisson).

We consider both the case of independence and dependence between the three
components. In the latter case, we generate for each regime i an independent (in
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time) sequence of Γ-distributed inter-event times Yj = Y
(i)

j , j = 1, 2, 3, with a
correlation of 0.2 (for all pairs) as Yj = Xj + X4, where (with a slight abuse of
notation) Xj ∼ Γ(s, λ) for j = 1, 2, 3 and X4 ∼ Γ(s∗, λ) for appropriate values of s,
s∗ and λ resulting in the above intensities and standard deviations for each regime
(see Remark A.3 (a) for details on the parameters).

In the simulations, we use a threshold as in Remark 3.1 with αT = 0.05. By
Section 2.2.2 and (3.8) it holds that Σt = Cov [(Y1, Y2, Y3)′] /E [Y1]3 while we use
the following choices for the matrix Ât as in (3.7): (A) Diagonal matrix with locally
estimated variances Σ̂t(j, j) on the diagonal, j = 1, 2, 3, (B) with the true variances
Σt(j, j) on the diagonal and (C) in case of dependent components (non-diagonal)
true covariance matrix Σt. While only (A) is of relevance in applications, this allows
us to understand the influence of estimating the variance on the procedure. For
dependent data, the distinction between (B) and (C) is important for applications,
because a good enough estimator (resulting in a reasonable estimator for the inverse)
is often not available for the full covariance matrix as in (C) for moderately high
or high dimensions, while it is much less problematic to estimate (B). In (A) the
variances at location t are estimated as

Σ̂t(j, j) = min
{

σ̂2
j,−(t)

µ̂3
j,−(t) ,

σ̂2
j,+(t)

µ̂3
j,+(t)

}
, (6.1)

where σ̂2
j,±(t) and µ̂j,±(t) are the sample variance and sample mean, respectively,

based on the inter-event times of the j-th component within the windows (t − h, t]
for ′−′ respectively (t, t + h] for ′+′. The first and last inter-event times that have
been censored by the window are not included. Using the minimum of the left and
right local estimators takes into account that the variance can (and typically will)
change with the intensity which has already been discussed by Meier, Cho, and Kirch
(2021) in the context of partial sum processes. The results of the simulation study
can be found in Table 6.2, where we consider a change point to be detected if there
is an estimator in the interval [ci − h, ci + h]. Additional significant local maxima
in such an interval are called duplicate change point estimators, while additional
significant local maxima outside any of these intervals are called spurious.

dupl., dupl., dupl., dupl., dupl., dupl.,
c.var c.var s.var s.var pois pois
η = 0.4 η = 0.75 η = 0.4 η = 0.75 η = 0.4 η = 0.75

indep., type (A) 0.0798 0.0024 0.1046 0.0033 0.1559 0.0077
indep., type (B) 0.0484 0.0007 0.0496 0.0004 0.0526 0.0014
dep., type (A) 0.1057 0.0027 0.1505 0.0055 0.1880 0.0091
dep., type (B) 0.0779 0.0008 0.0814 0.0018 0.0755 0.0020
dep., type (C) 0.0512 0.0019 0.0494 0.0017 0.0349 0.0013

Table 6.1: Comparison of the average number of duplicate estimators for η = 0.4
and η = 0.75.
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(a) constvar: Constant standard deviation of 0.7, η = 0.75.

Change point at 250 500 900 1150 spurious duplicate
independent, type (A) 1 0.9998 0.9434 1 0.0251 0.0024
independent, type (B) 0.9974 0.9789 0.6271 1 0.0035 0.0007
dependent, type (A) 0.9998 0.9991 0.9219 1 0.0344 0.0027
dependent, type (B) 0.9916 0.9610 0.6351 0.9997 0.0074 0.0008
dependent, type (C) 0.9522 0.8485 0.3670 0.9984 0.0055 0.0019

(b) smallvar: Standard deviation of 5/6 the expected time between events, η = 0.75.

Change point at 250 500 900 1150 spurious duplicate
independent, type (A) 0.9831 1 0.9735 1 0.0313 0.0033
independent, type (B) 0.9368 1 0.9309 0.9999 0.0038 0.0004
dependent, type (A) 0.9711 0.9999 0.9556 0.9998 0.0386 0.0055
dependent, type (B) 0.9207 0.9986 0.9094 0.9987 0.0073 0.0018
dependent, type (C) 0.7494 0.9890 0.7210 0.9908 0.0052 0.0017

(c) Poisson: Standard deviation equal to the expected time between events, η = 0.75.

Change point at 250 500 900 1150 spurious duplicate
independent, type (A) 0.9054 0.9971 0.8710 0.9983 0.0445 0.0077
independent, type (B) 0.7366 0.9852 0.7188 0.9885 0.0028 0.0014
dependent, type (A) 0.8818 0.9924 0.8418 0.9939 0.0528 0.0091
dependent, type (B) 0.7166 0.9764 0.6978 0.9761 0.0054 0.0020
dependent, type (C) 0.4602 0.8934 0.4289 0.9007 0.0048 0.0013

Table 6.2: Detection rates for each change point as well as the average number of
spurious and duplicate estimators for different distributions of the inter-event times.

The procedure performs well throughout all simulations with high detection rate,
few spurious and very few duplicate estimators. The results improve further for
smaller variance, in which case the signal-to-noise ratio is better.

When the diagonal matrix with the estimated variance is being used, the detection
power is larger in all cases than when the true variance is being used. In case of the
changes at location 900 this is a substantial improvement, such that the use of this
local variance estimator can help boost the signal significantly. This comes at the
cost of having an increased but still reasonable amount of spurious and duplicate
change point estimators.

This effect stems from using the minimum in (6.1), which was introduced to gain
detection power if the variance changes with the intensity. Additionally, the use of
the true (asymptotic) covariance matrix leads to worse results than only using the
corresponding diagonal matrix, which is due to the fact that the theoretical signal
term is smaller when using the true (asymptotic) covariance matrix in this example
(compare Remark A.2). From a statistical perspective this is advantageous because

51



(a) constvar: Constant standard deviation of 0.7, η = 0.75, h = 120.

Change point at 250 500 900 1150 spurious duplicate
dependent, type (A) 1 1 0.9764 1 0.0666 0.0068
dependent, type (B) 0.9997 0.9936 0.6515 1 0.0037 0.0007
dependent, type (C) 1 0.9999 0.9539 1 0.0049 0.0004

(b) smallvar: Standard deviation of 5/6 the expected time between events, η = 0.75.

Change point at 250 500 900 1150 spurious duplicate
dependent, type (A) 0.9955 1 0.9905 1 0.0772 0.0077
dependent, type (B) 0.9741 1 0.9628 1 0.0042 0.0006
dependent, type (C) 0.9995 1 0.9989 1 0.0045 0.0003

(c) Poisson: Standard deviation equal to the expected time between events, η = 0.75.

Change point at 250 500 900 1150 spurious duplicate
dependent, type (A) 0.9535 0.9994 0.9192 0.9998 0.1187 0.0203
dependent, type (B) 0.7781 0.9964 0.7433 0.9973 0.0054 0.0012
dependent, type (C) 0.9824 1 0.9776 1 0.0059 0.0008

Table 6.3: Detection rates for each change point as well as the average number of
spurious and duplicate estimators for different distributions of the inter-event times.

the local estimation of the inverse of a covariance matrix in moderately large or large
dimensions is a very hard problem leading to a loss in precision, while the diagonal
elements are far less difficult to estimate consistently.

However, in other examples, using the full covariance matrix can also lead to
better behavior, namely if the theoretical signal term is bigger in that case (compare
Remark A.2). The results for one such example can be found in Table 6.3. Here,
the inter-event times are (with a slight abuse of notation) Yj = Xj +∑

1≤k<j Xk,j −∑
j<k≤3 Xj,k j = 1, 2, 3 where the Xj = X

(i)
j are sequences of independent in time

Γ(s, λ)-distributed random variables. The Xj,k = X
(i)
j,k are sequences of independent

in time N (0, s2
1)-distributed random variables with s, λ, s1 appropriately chosen such

that the distributions of the inter-event times have the above average intensities,
standard deviations and that the correlation between each dimension is −0.2 (see
Remark A.3 (b) for details on the parameters).

Furthermore, we illustrate the performance of our procedure in the case that
Assumption 3.1 is violated, and in particular (3.2) that the bandwidth is less than
half the distance to the next change point: We analyze three-dimensional renewal
processes with T = 1600, where the increments of the inter-event times for each
component are Γ-distributed with intensity changes at 250, 500 and 600, where the
expected time µ between events is given by 1.3, 0.9, 0.6 and 0.8. We use bandwidths
of h = 60, 90, 120 and the parameter η = 0.75. While for the change point at 250
all bandwidths fulfill the assumption, this is true for neither of the other two change
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(a) constvar: Constant standard deviation of 0.7, η = 0.75.

CP at 250 500 600 spurious duplicate Dist. 500 Dist. 600
h=60 0.9847 0.9690 0.6528 0.2436 0.0073 5.52 8.47
h=90 0.9996 0.9970 0.7957 0.1044 0.0025 4.92 8.16
h=120 1 0.9984 0.6368 0.0561 0.0002 9.94 21.43

(b) smallvar: Standard deviation of 5/6 the expected time between events, η = 0.75.

CP at 250 500 600 spurious duplicate Dist. 500 Dist. 600
h=60 0.7534 0.9592 0.6476 0.2689 0.0100 5.28 7.55
h=90 0.9273 0.9978 0.8461 0.1025 0.0054 4.89 7.28
h=120 0.9846 0.9987 0.7237 0.0546 0.0020 10.01 19.66

(c) Poisson-distributed inter-event times, η = 0.75.

CP at 250 500 600 spurious duplicate Dist. 500 Dist. 600
h=60 0.5904 0.8494 0.4698 0.3807 0.0129 7.05 9.36
h=90 0.7838 0.9702 0.6696 0.1457 0.0077 6.65 9.29
h=120 0.9070 0.9807 0.5798 0.0724 0.0046 11.43 20.76

Table 6.4: Detection rates for each change point, average number of spurious and
duplicate estimators for different distributions of the inter-event times as well as the
average distances of the change point estimators closest to the true change points in
the intervals [ci − min {h, (ci − ci−1)/2} , ci + min {h, (ci+1 − ci)/2}] for ci = 500, 600,
respectively.

points with the bandwidth h = 120 being larger than the distance between these
two points. We use the same three scenarios for the standard deviations of the inter-
event times as above. We assume independence between the components and for the
matrix Ât, we consider only choice (A) – a matrix with locally estimated variances
Σ̂t(j, j) on the diagonal, j = 1, 2, 3. The results of the simulation study can be
found in Table 6.4, where we consider a change point to be detected if there was an
estimator in the interval [ci − min {h, (ci − ci−1)/2} , ci + min {h, (ci+1 − ci)/2}].

Clearly, the procedure is performing well even when the model assumptions are
mildly violated, as for h = 60 and h = 90 and the last two change points. For
h = 120, the detection rates for the change point at 500 slightly increases but the
average distance of the estimator to the true change point becomes much larger. For
the change at 600, additionally the detection rate clearly decreases. On the other
hand, as long as Assumption 3.1 holds (as for the first change point) or is only mildly
violated (as for the last two change points and the two smaller bandwidths), the
detection rate increases with larger bandwidth while at the time the average distances
between the estimator and the corresponding true change point decreases. This is
due to an increased signal-to-noise ratio due to the larger bandwidths (corresponding
to a larger sample size in classical two-sample testing).

53



Time

0

0 200 400 600 800

Time

0

0 200 400 600 800

Time

0

0 200 400 600 800

Time

0

0 200 400 600 800

Figure 6.1: MOSUM statistics with bandwidths of h = 30, 60, 90, 120 (top to bot-
tom) for a three-dimensional renewal process with multiscale changes with increas-
ing distance between change points in combination with decreasing magnitude of
the changes in intensity. The dashed vertical lines indicate the location of the true
changes, while the solid lines indicate the change point estimators.
In this multiscale situation no single bandwidth can detect all changes: The changes
to the left are well estimated by smaller bandwidth, the ones in the middle by
medium-sized bandwidths and the one to the right by the largest bandwidth.

In the above situation the changes are homogeneous in the sense that the smallest
change in intensity is still large enough compared to the smallest distance to neigh-
boring change points (for a detailed definition we refer to Cho and Kirch (2021+),
Definition 2.1, or Cho and Kirch (2020), Definition 2.1). In particular, this guar-
antees that all changes can be detected with a single bandwidth only. In some
applications with multiscale signals, where frequent large changes as well as small
isolated changes are present, this is no longer the case as Figure 6.1 shows. In such
cases, several bandwidths need to be used and the obtained candidates are pruned
down in a second step (see Cho and Kirch (2021+) for an information criterion
based approach for partial sum processes and Messer et al. (2014) for a bottom-up-
approach for renewal processes). Similarly, if the distance to the neighboring change
points is unbalanced MOSUM procedures with asymmetric bandwidths as suggested
by Meier, Cho, and Kirch (2021) may be necessary.
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7 Conclusions
In this part, we have considered a class of multivariate processes that fulfill a uniform
strong invariance principle, possibly after a change of probability space. We have
assumed that the processes switch possibly infinitely many times between finitely
many regimes, with each switch inducing a change in the drift. This setup includes
several important examples, including multivariate partial sum processes, diffusion
processes and renewal processes. In order to localize these changes, we have extended
the work of Eichinger and Kirch (2018) and Messer et al. (2014) and proposed a
single-bandwidth procedure using MOSUM statistics in order to estimate changes,
allowing for local changes. We have been able to show consistency for the estima-
tors. Further, we have been able to derive (uniform) localization rates in the form
of exact convergence rates, which are indeed minimax-optimal. In the simulation
study, our procedure has performed well even under mild violations of our model as-
sumptions. Furthermore, it has shown that minimum-type variance estimators tend
to have higher detection rates than when using the true variances and covariance
matrices, which in practice is very useful as the covariance matrix oftentimes is hard
to estimate. One drawback of the procedure is the use of a single bandwidth. In
practice, the identification of the optimal bandwidth turns out to be rather difficult
as pointed out e. g. by Cho and Kirch (2021+) and Messer et al. (2014): On the one
hand, one wants to choose a large bandwidth in order to have maximal power, while
on the other hand choosing too large a bandwidth may lead to misspecification or
nonidentification of changes. Furthermore, as can be seen in the simulation study, in
a multiscale change point situation (see Definition 2.1 of Cho and Kirch (2021+)) no
single bandwidth can detect all change points. Therefore, one future topic of interest
is the extension of the proposed procedure to a true multiscale setup as in Cho and
Kirch (2021+).
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Part II
Anomaly detection based on scan

statistics in large image data





8 Introduction
The detection of anomalies in the construction material of buildings like houses,
bridges etc. is of great importance to guarantee the stability and the safety of people
using them. In particular, for buildings made of concrete, it is important to detect
fissures in the substance. Over the past couple of years, CT scans have been used
in order to analyze the structure of materials, compare e. g. Weise et al. (2015) or
Baranowski et al. (2019), thus allowing for the scanning and analysis of large data.
Early methods for the detection of anomalies, especially in concrete, focus on the
analysis of the gray value distribution (see e. g. Acosta, Figueroa, and Mullen (1992)).
Another approach for anomaly detection in 2D data is image processing with algo-
rithms (see Ito, Aoki, and Hashimoto (2002), Tang and Gu (2013)). Those methods
include a variety of methods such as Template Matching (Roseman (2003)), algo-
rithms to detect minimal paths (Amhaz et al. (2015)) and percolation based on the
Hessian matrix (Yamaguchi and Hashimoto (2010)). For three-dimensional data,
filtering methods like Frangi filters (see Frangi et al. (2000), Wirjadi et al. (2014)),
sheet filters (Sato et al. (2000)) and algorithms to find minimal paths (Müsebeck
et al. (2020)) are used. See Ehrig et al. (2011), Paetsch et al. (2012), Barisin et al.
(2021) for a comparison of methods. Furthermore, see Barisin et al. (2021) for a
comprehensive overview over methods for both 2D and 3D data.
Furthermore, Machine and Deep Learning methods like convolutional neural net-
works (see Ronneberger, Fischer, and Brox (2015), Çiçek et al. (2016) and Badri-
narayanan, Kendall, and Cipolla (2016)) and random forests (Furat et al. (2019),
Shi et al. (2016)) are frequently used for the segmentation of both 2D and 3D im-
age data. However, since concrete is a heterogeneous material with various types of
anomalies, and since fissures are sparse in the data while varying in size and changing
direction (see Figure 8.1), a large number of training data is required to correctly fit

Figure 8.1: 2D-slices of 3D CT scans of cracked concrete blocks. The concrete
samples are provided by Martin Kiesche and Christian Caspari, Department of Civil
Engineering, University of Kaiserslautern. The CT imaging was performed by Franz
Schreiber, Fraunhofer ITWM, Kaiserslautern.
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these methods to the data. Furthermore, for large image data, these methods are
computationally too expensive to be applied on the whole data set, but they can be
applied to smaller regions of the data.
Another computationally cheaper approach for the testing of the existence of anoma-
lies is the use of scan statistics. They were first introduced by Kulldorff (1997) using
a Likelihood-ratio test in order to detect clusters in spatial data. Under the assump-
tion of independence of the noise, there exist methods using 2D windows (see Haiman
and Preda (2006)), hypercubes with arbitrary dimension (see Kabluchko (2011) for
a single-window approach and Jiang (2002); Sharpnack and Arias-Castro (2016) for
multiple window approaches) and spatial scan statistics for point processes (Glaz,
Naus, and Wallenstein (2001)). Under the assumption of a weak invariance princi-
ple, Bucchia (2014) introduced a test for an epidemic change. Proksch, Werner, and
Munk (2018) and Munk et al. (2020) introduced tests on inverse regression models
with independent, but not necessarily identically distributed noise. Other approaches
include the use of EM algorithms (see Moon et al. (2006)), spatial scan statistics (see
Kulldorff (2016)) and deformable models (see McInerney and Terzopoulos (1996)).
See also Glaz, Naus, and Wallenstein (2001) for an overview over scan statistics in
general.

8.1 Outline
In Section 9, we motivate the scanning procedure introduced in Section 11 by the
example of a concrete scan containing an artificial fissure. In Section 10, we derive
limit theorems for scan statistics based on convex sets with linear size. In Section
11, we propose a scanning procedure for the detection of fissures in concrete image
data on 2D slices of 3D images. Based on the geometric properties of fissures and
aggregate, we use a combination of scan statistics on rectangles and circular segments
in order to find areas that potentially contain fissures. Furthermore, we illustrate
the procedure based on 2D images with artificial cracks. In Section 12 we analyze
the performance of our procedure in a simulation study.

9 Motivation
The detection of anomalies in concrete is of great importance to ensure the stability of
buildings. However, as can be seen in Figure 8.1, concrete is a heterogeneous material
that consists of cement and various aggregates such as gravel, sand etc. and often
contains small pores of air. These natural anomalies are by no means dangerous,
but rather help increase the stability of the material. In Sections 10 and 11, we will
develop a procedure based on MOSUM scan statistics with the goal of identifying
regions that contain potentially dangerous anomalies such as fissures (see e. g. the
middle panel of Figure 9.1) while simultaneously discarding regions with no or only
natural anomalies (see e. g. the right panel of Figure 9.1). In this section, we will
motivate the specific windows used in the scan statistic that will be introduced in

60



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data

Figure 9.1: The left panel shows a 2D slice of a concrete block containing an artificial
fissure. The middle and right panels highlight the fissure and the natural anomalies,
respectively. For the sake of better visibility, we have converted the images from a
black-to-white (as in Figure 8.1) to a yellow-to-red color scale. All raw images with
artificial fissures were provided by Franziska Müsebeck (TU Kaiserslautern).

(11.1) - (11.3) using the example of a 2D slice of a 3D CT scan of a block of concrete
with an artificial fissure. The mathematical details are postponed to Section 11.

In the middle panel of Figure 9.1, we can observe that globally in 2D, fissures are
lines with small width and changing direction. Locally, as displayed in the upper left
panel of Figure 9.2, they resemble rectangles with small width. They have a high
contrast to the neighboring environment (mathematically: large difference in gray
values). Therefore, as can be seen in the upper left panel of Figure 9.2, we use circle-
shaped windows that have an inscribed rectangle with small width in order to detect
fissures. More specifically, we compare the average gray value in the rectangle with
the average gray values in the circle segments and maximize over multiple angles of
the rectangle in order to account for the changes in direction (for a mathematical
description see (11.1)). It can be seen in the lower left panel of Figure 9.2 that
indeed, fissures are enhanced by this type of statistic. Unfortunately, the edges of
the natural anomalies are enhanced, as well. On the other hand, we can observe in
the right panel of Figure 9.1 that in 2D, natural anomalies geometrically resemble
bubbles (from here on, we will refer to the natural anomalies as bubbles). On the
edges, they have a high contrast to their neighboring environment while there is
little contrast inside the bubbles. As can be seen in the upper middle panel of
Figure 9.2, we use circle-shaped windows that are split in half and compare the
average gray values in the two semicircles in order to enhance the edges of bubbles.
We maximize over multiple angles to account for the change in direction of the edges
(for a mathematical description see (11.2)). As can be seen in the lower middle
panel of Figure 9.2, this type of statistic indeed enhances the edges of bubbles. By
subtracting the latter values intended to enhance the edges of the bubbles from the
values from the statistic aiming to enhance fissures (for a mathematical description
see (11.3)), our method achieves both an enhancement of the regions close to the
fissure and the diminishing of the bubbles. This can be seen for this example in the
lower right panel of Figure 9.2.
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Figure 9.2: The upper left panel illustrates the local geometric properties of fissures.
In the lower left panel, a heatmap of the scan statistic in (11.1) is displayed, showing
that in this example, (11.1) enhances the fissure and to a lesser extent the edges
of bubbles and fissures. The upper middle panel illustrates the local geometric
properties of bubbles. In the lower middle panel, a heatmap of the scan statistic
in (11.2) is displayed, showing that in this example, (11.2) enhances the edges of
bubbles and fissures. The upper right panel illustrates the local geometric properties
of fissures and bubbles. In the lower right panel, a heatmap of the combined scan
statistic (11.3) is displayed, showing that in this example, the statistic enhances the
fissure and eliminates most of the noise.

10 Limit theorems of some MOSUM scan statis-
tics

As motivated in Section 9, we use a combination of scan statistics on rectangles and
circles in order to detect fissures in the image data. In particular, we use properly
rescaled averages of the gray values of an image over specific areas (e. g. small
rectangles and circle segments) as an input for our scan statistic. In the following,
we will show limit theorems for these types of rescaled sums over a class of sets in
Rp that in 2D includes, but is not limited to convex sets and in particular circles and
rectangles.
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Definition 10.1. Let p ∈ N, T ∈ N. Let (Yk,T )k∈Zp be a sequence of random
variables with E [Yk,T ] = µk,T ∈ R and let A ⊂ Rp. For s = (s1, . . . , sp)′ ∈ Rp,
k = (k1, . . . , kp)′ ∈ Zp, let

A(s) = A + s = {x ∈ Rp |x − s ∈ A}

⌊s⌋T =
(

⌊s1T ⌋
T

, . . . ,
⌊spT ⌋

T

)′

k

T
=
(

k1

T
, . . . ,

kp

T

)′

SA (⌊s⌋T ) = SA (Y ; ⌊s⌋T ) =
∑

k
T

∈A(⌊s⌋T )
Yk.

Furthermore, let γ > 0. For s = (s1, . . . , sp)′, t = (t1, . . . , tp)′ ∈ Rp denote by

[s, s + t) = [s1, s1 + t1) × . . . × [sp, sp + tp)
[s, s + γ) = [s1, s1 + γ) × . . . × [sp, sp + γ) ,

p−dimensional hyperrectangles and -cubes, where [si, si + ti) := [si + ti, si) if ti < 0.
Also denote by

s ⊙ t = (s1t1, . . . , sptp)′

the pointwise product of s and t.

In the context of image data with anomalies as described above, it is reasonable
to assume that, potentially after some centering, for some anomaly A ⊂ [0, 1]p, the
signal is constant across the anomaly, i. e. µk,T = µA,T ̸= 0 for k/T ∈ A, while it is
zero outside of anomalies. Also, with regard to the multiple mean change problem
for partial sum processes, it is reasonable to assume that Yk,T = µk,T + ϵk for some
noise sequence (ϵk)k∈Zp .
Analogously to Part I, we drop the dependency on T for ease of notation except in
situations where it helps to clarify the argument.

For scan statistics based on p-dimensional hyperrectangles, there exists some the-
ory on the distribution of scan statistics: Kabluchko (2011), Arias-Castro, Donoho,
and Huo (2005) and Sharpnack and Arias-Castro (2016) analyze various multiscale
procedures with sublinear bandwidths for i.i.d. Gaussian noise. Haiman and Preda
(2006) analyze the behavior for positive integer-valued noise while Jaruskova and
Piterbarg (2011), Zemlys (2008) assume independent noise with mean 0 and existing
variance. Bucchia (2014) studies a CUSUM-type scan statistic under the assumption
of an existing functional central limit theorem on the noise.
Under the assumption of an existing functional central limit theorem on the (ϵk), we
are able to derive the limit process of (T −p/2SA (⌊s⌋T ))s∈[0,1]p under the null situation
of no anomalies:
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Theorem 10.1. Let a = (a1, . . . , ap)′ ∈ (0, 1/2)p exist such that A = (−a, a] =
(−a1, a1] × . . . × (−ap, ap]. Let Yk,T = µk,T + ϵk with µk,T ∈ R, E [ϵk] = 0 and
0 < Var [ϵk] < ∞. Furthermore let SA (⌊s⌋T ) = SA (ϵ; ⌊s⌋T ) be as in Definition 10.1.
Let there exist a p-parameter Wiener process (Ws)s∈[0,1]p (compare Definition A.3)
and some σ > 0 such that 1

T p/2

⌊s1T ⌋∑
k1=1

. . .
⌊spT ⌋∑
kp=1

ϵk1,...,kp


s∈[0,1]p

w−→ σ (Ws)s∈[0,1]p (10.1)

on D ([0, 1]p) and that for any c = (c1, . . . , cp)′ ∈ Zp, and any bounded hyperrectangle
I ⊂ Rp, it holds that

1
T p/2 sup

s∈I

∣∣∣∣∣∣
⌊s1T ⌋∑
k1=1

. . .
⌊spT ⌋∑
kp=1

ϵk1,...,kp −
⌊s1T ⌋+c1∑

k1=1
. . .

⌊spT ⌋+cp∑
kp=1

ϵk1,...,kp

∣∣∣∣∣∣ = oP (1). (10.2)

Then it holds with

Λs = σ

 ∑
d=(d1,...,dp)′∈{0,1}p

(−1)
∑

i
diWs+(−1)d⊙a


that ( 1

T p/2 SA (ϵ; ⌊s⌋T )
)

s∈[0,1]p
w−→ (Λs)s∈[0,1]p

on D ([0, 1]p) as T → ∞.

Proof. Let s = (s1, . . . , sp)′ ∈ [0, 1]p. Since by definition

A(⌊s⌋T ) = (⌊s⌋T − a, ⌊s⌋T + a] ,

it holds by the definition of SA (ϵ; ⌊s⌋T ) in Definition 10.1 that

SA (ϵ; ⌊s⌋T ) =
⌊(⌊s1⌋T +a1)T⌋∑

k1=⌊(⌊s1⌋T −a1)T⌋+1

· · ·
⌊(⌊sp⌋T +ap)T⌋∑

kp=⌊(⌊sp⌋T −ap)T⌋+1

ϵk1,...,kp

=
∑

(d1,...,dp)∈{0,1}p

(−1)
∑

i
di

⌊(⌊s1⌋T +(−1)d1 a1)T⌋∑
k1=1

· · ·
⌊(⌊sp⌋T +(−1)dp ap)T⌋∑

kp=1
ϵk1,...,kp ,

(10.3)

where we can see the last equality as follows: We need to distinguish between two
cases: If (l1, . . . , lp)′ ∈ Np with ⌊(⌊si⌋T − ai) T ⌋ < li ≤ ⌊(⌊si⌋T + ai) T ⌋ for all i, then
ϵl1,...,lp is only counted for (d1, . . . , dp)′ = (0, . . . , 0)′ in (10.3).
If there exists some j = 1, . . . , p such that lj ≤

⌊(
⌊sj⌋T − aj

)
T
⌋
, then ϵl1,...,lp is

counted in both (d1, . . . , dj−1, 0, dj+1, . . . , dp)′ and (d1, . . . , dj−1, 1, dj+1, . . . , dp)′ with
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di ∈ {0, 1} appropriate for i ̸= j. Since (−1)
∑

i ̸=j
di = −(−1)1+

∑
i̸=j

di , ϵl1,...,lp gets
canceled out in all of these summands. This telescoping sum is also in the spirits of
Nelsen (2006), Def. 2.10.1. for the volume of p-dimensional hyperrectangles.
Furthermore, since si − ⌊si⌋T = si − ⌊siT ⌋ /T ≤ 1/T , it holds for d ∈ {0, 1} that∣∣∣⌊(si + (−1)dai)T

⌋
−
⌊
(⌊si⌋T + (−1)dai)T

⌋∣∣∣ ≤ 2. Thus, it holds by (10.2) for all
(d1, . . . , dp)′ ∈ {0, 1}p uniformly in s that∣∣∣∣∣∣∣

1
T p/2

⌊(⌊s1⌋T +(−1)d1 a1)T⌋∑
k1=1

· · ·
⌊(⌊sp⌋T +(−1)dp ap)T⌋∑

kp=1
ϵk1,...,kp

− 1
T p/2

⌊(s1+(−1)d1 a1)T⌋∑
k1=1

· · ·
⌊(sp+(−1)dp ap)T⌋∑

kp=1
ϵk1,...,kp

∣∣∣∣∣∣∣ = oP (1).

The assertion follows by (10.1) and the continuous mapping theorem.

As noted earlier, the scan statistic that we use for the detection of fissures and
bubbles is a combination of scan statistics on rectangles, circles and circle segments
by some Lipschitz-continuous function (see Section 11 for more details and Figure
11.1 for an illustration of the sets used). Therefore, in the following, we will establish
a limit theorem for

(
F
(
1/T p/2SA1(⌊s⌋T ), . . . , 1/T p/2SAP

(⌊s⌋T )
))

s∈[0,1]p
on D([0, 1]p),

where A1, . . . , AP come from the following class of sets in Rp that in 2D includes all
convex sets (compare Lemma 10.4):

Assumption 10.1. Let A ⊂ Rp. For γ > 0, s ∈ Rp let

A(γ)(s) =
⋃

y∈[0,γ]p
A(s + y).

(a) For any s ∈ Rp it holds that∣∣∣∣∣
{

k

T
∈ A(s)

}∣∣∣∣∣ = T pλ(A) + O(T p−1).

(b) There exists γ0 > 0 and C > 0 such that for all 0 < γ ≤ γ0,

λ
(
A(γ)(s)

)
− λ(A) ≤ Cγ.

Remark 10.1. If A fulfills Assumption 10.1 and ∥s − t∥∞ < γ ≤ γ0, then
λ (A(s)∆A(t)) ≤ 2Cγ: Since ∥s − t∥∞ < γ, there exists x ∈ Rp such that s, t ∈
[x, x + γ]. Therefore, A (s) , A (t) ⊂ A(γ)(x) and it follows by Assumption 10.1 (b)
that

λ (A(s)∆A(t)) = λ (A(s) \ A(t)) + λ (A(t) \ A(s))
≤ λ

(
A(γ)(x) \ A(t)

)
+ λ

(
A(γ)(x) \ A(s)

)
≤ 2Cγ.
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By Theorem A.6 (also compare Wichura (1969), Theorem 2), it is sufficient to
show the convergence of the finite-dimensional distributions (fidis) of(

F
(
1/T p/2SA1(⌊s⌋T ), . . . , 1/T p/2SAP

(⌊s⌋T )
))

s∈[0,1]p

and the fulfilling of some modulus of continuity. In order to prove these properties,
we will first show the convergence of the fidis and the modulus of continuity for((

1/T p/2SA1(⌊s⌋T ), . . . , 1/T p/2SAP
(⌊s⌋T )

)′
)

s∈[0,1]p
.

Theorem 10.2.
Let A1, . . . , AP ⊂ Rp fulfill Assumption 10.1. Let (ϵk)k∈Zp be a sequence of i.i.d. ran-
dom variables with E [ϵk] = 0, E [ϵ2

k] = σ2 ∈ (0, ∞) and let E [|ϵk|r] < ∞ for some
r > 2p. Let Yk,T = µk,T + ϵk with µk,T ∈ R, let SA(⌊s⌋T ) = SA(ϵ; ⌊s⌋T ) be as in
Definition 10.1 and let

ST (s) =
( 1

T p/2 SA1(⌊s⌋T ), . . . ,
1

T p/2 SAP
(⌊s⌋T )

)′
.

Then the following properties hold:

(i) There exists a P -dimensional centered Gaussian process
(W(s))s∈[0,1]p = ((W1(s), . . . , WP (s))′)s∈[0,1]p with

Cov [Wi(s), Wj(t)] = σ2λ (Ai(s) ∩ Aj(t))

such that for all n ∈ N, t1, . . . , tn ∈ [0, 1]p it holds that

(ST (t1), . . .ST (tn)) D−→ (W(t1), . . . ,W(tn)) .

(ii) For any x > 0 it holds that

lim
δ→0

lim sup
T →∞

P
(

sup
∥s−t∥∞<δ

∥ST (s) − ST (t)∥∞ ≥ x

)
= 0.

Proof. (i) By the theorem of Cramér-Wold (compare Billingsley (1995), p. 383), it
is sufficient to show that for arbitrary a1,1, . . . , an,1, . . . , a1,P , . . . , an,P ∈ R,

n∑
i=1

P∑
j=1

ai,j
1

T p/2 SAj
(⌊ti⌋T )

converges in distribution to a normal limit with the variance of

Var
 n∑

i=1

P∑
j=1

ai,jWj(ti)
 .
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For the ease of notation, denote by A1 = A, A0 = A′. For ease of notation we are also
renumbering the Aj(ti) successively with a slight abuse of notation in the following
way: For i = 1, . . . , n, j = 1, . . . , P let A(j−1)n+i−1 = Aj(ti) and let m = nP .
For l = 0, . . . , 2m − 1 let l = ∑m−1

i=0 li2i be the unique binary representation of l with
li ∈ {0, 1} and let

Ml = Mm−1∑
i=0

li2i
=

m−1⋂
i=0

Ali
i .

Since we are using the unique binary representation for l, the sets Ml are pairwise
disjoint: For k ̸= l, there exists i = 0, . . . , m − 1 such that ki ̸= li. It follows that
Aki

i ∩ Ali
i = ∅ and therefore Mk ∩ Ml = ∅. Furthermore, it holds that

(a)
2m−1∑
l=0

Ml = R2

(b) Ai =
∑

l:li=1
Ml (10.4)

for i = 0, . . . , m − 1.

Proof of (a): Let x ∈ Rp. For i = 0, . . . , m − 1, let li = 1{x∈Ai}. Then x ∈ Ali
i

for all i, hence

x ∈
m−1⋂
i=0

Ali
i = Mm−1∑

i=0
li2i

.

Proof of (b): We first show that Ai ⊂ ∑
l:li=1 Ml. Let x ∈ Ai. For k = 0, . . . , m − 1,

k ̸= i let lk = 1{x∈Ak}. Then,

x ∈

⋂
k ̸=i

Alk
k

 ∩ Ai = Mm−1∑
k=0

lk2k

with li = 1.
We then show that Ai ⊃ ∑

l:li=1 Ml. By definition, it holds for l with li = 1 that

Ml = Ai ∩

⋂
k ̸=i

Alk
k

 ⊂ Ai

and the assertion follows immediately.

Since the Ml are pairwise disjoint, it holds by the central limit theorem and
Assumption 10.1 (a) that 1

T p/2

∑
k
T

∈M0

ϵk, . . . ,
1

T p/2

∑
k
T

∈M2m−1

ϵk


′

D−→
(
W̃0, . . . , W̃2m−1

)′
,
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where the W̃l, are pairwise independent N (0, σ2λ(Ml))-distributed random variables
for l = 0, . . . , 2m − 1. For i = 0, . . . , m − 1 denote by

Wi =
∑

l:li=1
W̃l.

By (10.4), it holds that Wi is N (0, σ2λ(Ai))-distributed.
Let a1,1, . . . , an,1, . . . , a1,P , . . . , an,P ∈ R. Analogously to above, we are renumbering
the ai,j for the ease of notation with a slight abuse of notation in the following way:
For i = 1, . . . , n, j = 1, . . . , P with a(j−1)n+i−1 = ai,j that

n∑
i=1

P∑
j=1

ai,j
1

T p/2 SAj
(ti) =

n∑
i=1

P∑
j=1

ai,j
1

T p/2

∑
k
T

∈Aj(ti)

ϵk =
m−1∑
i=0

ai
1

T p/2

∑
k
T

∈Ai

ϵk

=
m−1∑
i=0

ai

∑
l:li=1

1
T p/2

∑
k
T

∈Ml

ϵk
D−→

m−1∑
i=0

ai

∑
l:li=1

W̃l =
m−1∑
i=0

aiWi.

We have shown the convergence with SAj
(ti) instead of SAj

(⌊ti⌋T ). However, this
does not present a problem: For j = 1, . . . , P and s ∈ [0, 1]p, we obtain that

∣∣∣∣ 1
T p/2 SAj

(s) − 1
T p/2 SAj

(⌊s⌋T )
∣∣∣∣ = 1

T p/2

∣∣∣∣∣∣∣
∑

k
T

∈Aj(s)

ϵk −
∑

k
T

∈Aj(⌊s⌋T )

ϵk

∣∣∣∣∣∣∣
≤ 1

T p/2

∑
k
T

∈Aj(s)∆Aj(⌊s⌋T )

|ϵk| . (10.5)

Since ∥s − ⌊s⌋T ∥∞ < 1/T , it holds by Remark 10.1 that λ(Aj(s)∆Aj(⌊s⌋T )) =
O(1/T ) and therefore, the number of independent summands with identical vari-
ance in (10.5) by Assumption 10.1 (a) is of order O(T p−1). Thus, it holds by
Tschebyscheff’s inequality that

1
T p/2 SAj

(s) − 1
T p/2 SAj

(⌊s⌋T ) = oP (1).

and the assertion follows.

Proof of (ii):
First note that for arbitrary s, t ∈ [0, 1]p, it holds that

∥ST (s) − ST (t)∥∞ = max
i=1,...,P

∣∣∣∣ 1
T p/2 SAi

(⌊s⌋T ) − 1
T p/2 SAi

(⌊t⌋T )
∣∣∣∣ .

Therefore, showing

lim
δ→0

lim sup
T →∞

P
(

sup
∥s−t∥∞<δ

∥ST (s) − ST (t)∥∞ ≥ x

)
= 0
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for all x > 0 is equivalent to showing

lim
δ→0

lim sup
T →∞

P
(

sup
∥s−t∥∞<δ

∣∣∣∣ 1
T p/2 SAi

(⌊s⌋T ) − 1
T p/2 SAi

(⌊t⌋T )
∣∣∣∣ ≥ x

)
= 0.

for all x > 0, i = 1, . . . , P .
For any δ > 0, define k0 = k0(δ) such that 2−(k0+1) < δ ≤ 2−k0 . Then letting

δ → 0 is equivalent to letting k0 → ∞. Let m = m(T ) = ⌈(2p/r + ε) log2 T ⌉ for
some sufficiently small ε > 0 such that 2m = o(T ) as 2p < r. Since in the following,
we are only going to use sets of the form A(2−k), we will write Ak = A(2−k) for the
ease of notation. For s, t ∈ [0, 1]p with ∥s − t∥∞ < δ, we can write

SAi
(⌊s⌋T ) − SAi

(⌊t⌋T )
= SAi

(⌊s⌋T ) − SAi
(⌊s⌋2m) (10.6)

+ SAi
(⌊s⌋2m) − SAm−2

i
(⌊s⌋2m) (10.7)

+
m−1∑
k=k0

(
SAk−1

i
(⌊s⌋2k+1) − SAk−2

i
(⌊s⌋2k)

)
(10.8)

+ S
A

k0−2
i

(⌊s⌋2k0 ) − S
A

k0−2
i

(⌊t⌋2k0 ) (10.9)

+
m−1∑
k=k0

(
SAk−2

i
(⌊t⌋2k) − SAk−1

i
(⌊t⌋2k+1)

)
+ SAm−2

i
(⌊t⌋2m) − SAi

(⌊t⌋2m)
+ SAi

(⌊t⌋2m) − SAi
(⌊t⌋T ) .

Note that this telescoping series consists of four separate elements: In the first step
(10.6), the step function SAi

(⌊s⌋T ) on a grid of spacing 1/T is replaced by the cor-
responding step function SAi

(⌊s⌋2m) on a grid of spacing 2−m > 1/T . In the second
step (10.7), Ai is replaced by a larger set of Lebesgue measure λ(Ai) + O(2−m). In
the third step (10.8) we continue to coarsen the grid and expand the sets around s
until the distance between adjacent grid points is more than ∥s − t∥∞.
In the fourth step (10.9), we move from s to t on sets of the form Ak0−2

i . Then steps
3 to 1 are reversed for t. In order to show the assertion, we will analyze (10.6)-(10.9)
separately.

For (10.6): For T large enough (by assumption, 2m = o(T )), it holds that

∥⌊s⌋T − ⌊s⌋2m∥∞ ≤ ∥⌊s⌋T − s∥∞ + ∥s − ⌊s⌋2m∥∞ ≤ 1/T + 2−m ≤ 2 · 2−m. (10.10)

Therefore, it holds by Remark 10.1 with a suitable constant C > 0 that

λ [Ai (⌊s⌋T ) \ Ai (⌊s⌋2m)] + λ [Ai (⌊s⌋2m) \ Ai (⌊s⌋T )]
= λ [Ai (⌊s⌋T ) ∆Ai (⌊s⌋2m)] ≤ C2−m.
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Therefore, we obtain by Markov’s inequality, Assumption 10.1 (a) and Lemma A.3
with suitable constants Cr, C2 > 0 that

P
(∣∣∣∣ 1

T p/2 SAi
(⌊s⌋T ) − 1

T p/2 SAi
(⌊s⌋2m)

∣∣∣∣ ≥ x
)

= P

 1
T p/2

∣∣∣∣∣∣∣
∑

k
T

∈Ai(⌊s⌋T )
ϵk −

∑
k
T

∈Ai(⌊s⌋2m)
ϵk

∣∣∣∣∣∣∣ ≥ x



= P

 1
T p/2

∣∣∣∣∣∣∣
∑

k
T

∈Ai(⌊s⌋T )\Ai(⌊s⌋2m)
ϵk −

∑
k
T

∈Ai(⌊s⌋2m)\Ai(⌊s⌋T )
ϵk

∣∣∣∣∣∣∣ ≥ x



≤ P

 1
T p/2

∣∣∣∣∣∣∣
∑

k
T

∈Ai(⌊s⌋T )\Ai(⌊s⌋2m)
ϵk

∣∣∣∣∣∣∣ ≥ x

2

+ P

 1
T p/2

∣∣∣∣∣∣∣
∑

k
T

∈Ai(⌊s⌋2m)\Ai(⌊s⌋T )
ϵk

∣∣∣∣∣∣∣ ≥ x

2



≤

E

∣∣∣∣∣∣ ∑
k
T

∈Ai(⌊s⌋T )\Ai(⌊s⌋2m)
ϵk

∣∣∣∣∣∣
r 

T rp/2
(

x
2

)r +

E

∣∣∣∣∣∣ ∑
k
T

∈Ai(⌊s⌋2m)\Ai(⌊s⌋T )
ϵk

∣∣∣∣∣∣
r 

T rp/2
(

x
2

)r

≤ 2rCr
(T pλ [Ai (⌊s⌋T ) \ Ai (⌊s⌋2m)] + O(T p−1))r/2

T rp/2xr

+ 2rCr
(T pλ [Ai (⌊s⌋2m) \ Ai (⌊s⌋T )] + O(T p−1))r/2

T rp/2xr

≤ C2
T rp/22−mr/2

T rp/2 = C22−mr/2 ≤ C2T
− r

2( 2p
r

+ε) = C2T
−(p+rε/2),

since by definition, m = ⌈(2p/r + ε) log2 T ⌉ and thus, 2−m ≤ T −(2p/r+ε). We will now
consider the supremum over s ∈ [0, 1]p of the above expression that only depends on
s via ⌊s⌋T and ⌊s⌋2m . Thus, it is by (10.10) sufficient to take the supremum over
⌊s⌋T with s ∈ [0, 1]p and over all ⌊s⌋2m with ∥⌊s⌋2m − ⌊s⌋T ∥ ≤ 2 ·2−m for fixed ⌊s⌋T .
The first supremum is taken over the set {⌊s⌋T |s ∈ [0, 1]p}, which has cardinality
(T +1)p ≤ 2pT p. The second supremum is taken over a set that by Lemma C.1 (a) has
finite cardinality as the number of points of the form k2−m, k ∈ Zp in the hypercube
[⌊s⌋T − 2 · 2−m, ⌊s⌋T + 2 · 2−m] is finite. Therefore, we obtain for any x > 0 with a
suitable constant C3 > 0 potentially depending on x by subadditivity that

P
(

sup
s∈[0,1]p

∣∣∣∣ 1
T p/2 SAi

(⌊s⌋T ) − 1
T p/2 SAi

(⌊s⌋2m)
∣∣∣∣ ≥ x

)

≤
∑

⌊s⌋T : s∈[0,1]p

∑
⌊s⌋2m : s∈[0,1]p,

∥⌊s⌋T −⌊s⌋2m∥∞
≤2·2−m

P
(∣∣∣∣ 1

T p/2 SAi
(⌊s⌋T ) − 1

T p/2 SAi
(⌊s⌋2m)

∣∣∣∣ ≥ x
)

≤ C3T
pT −(p+rε/2) = C3T

−rε/2 → 0. (10.11)

as T → ∞.
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For (10.7), it holds by Assumption 10.1 (b) that

λ
(
Am−2 (⌊s⌋2m) \ A (⌊s⌋2m)

)
≤ 4C2−m.

Therefore, we obtain analogously to (10.11) with suitable constants Cr, C2 > 0 that

P
(

sup
s∈[0,1]p

∣∣∣∣ 1
T p/2 SAi

(⌊s⌋2m) − 1
T p/2 SAm−2

i
(⌊s⌋2m)

∣∣∣∣ ≥ x

)

≤
∑

⌊s⌋2m : s∈[0,1]p
P
(∣∣∣∣ 1

T p/2 SAi
(⌊s⌋2m) − 1

T p/2 SAm−2
i

(⌊s⌋2m)
∣∣∣∣ ≥ x

)

≤ 2p · 2pmCr
(T pλ (Am−2 (⌊s⌋2m) \ A (⌊s⌋2m)) + O(T p−1))r/2

T pr/2xr

≤ C22pm2−mr/2 = C22m(p−r/2) → 0 (10.12)

as T → ∞ since r > 2p and m → ∞ as T → ∞.

For (10.8), for any k = k0, . . . , m − 1 and any ⌊s⌋2k+1 , ⌊s⌋2k is uniquely deter-
mined: If ⌊s⌋2k+1 = l2−(k+1) = (l/2)2−k for l ∈ Zp, then ⌊s⌋2k = ⌊l/2⌋ 2−k, where
⌊l/2⌋ denotes the componentwise integer part of l/2. By construction it holds that

∥⌊s⌋2k − ⌊s⌋2k+1∥∞ ≤ 2−(k+1) < 2−(k−1) = 2−(k−2) − 2−(k−1).

hence by construction,

⌊s⌋2k ≤ ⌊s⌋2k+1 ≤ ⌊s⌋2k + 2−(k+1) ≤ ⌊s⌋2k+1 + 2−(k+1) ≤ ⌊s⌋2k + 2−(k−2).

Therefore [
⌊s⌋2k+1 , ⌊s⌋2k+1 + 2−(k−1)

]
⊂
[
⌊s⌋2k , ⌊s⌋2k + 2−(k−2)

]
and by definition of the sets A(γ) in Assumption 10.1,

Ak−1 (⌊s⌋2k+1) ⊂ Ak−2 (⌊s⌋2k) .

It follows by Assumption 10.1 (b) that

λ
(
Ak−2 (⌊s⌋2k) \ Ak−1 (⌊s⌋2k+1)

)
≤ λ

(
Ak−2 (⌊s⌋2k) \ A (⌊s⌋2k+1)

)
≤ 4C2−k.

Furthermore, for x > 0, if δ is small enough (and therefore, k0 large enough), x ≥∑
k≥k0 2k(p/(2r)−1/4) since p/(2r) − 1/4 < 0 by r > 2p. Analogously to (10.11), we

obtain by σ-subadditivity, Markov’s inequality, Assumption 10.1 (a) and Lemma A.3
with suitable constants Cr, C2 > 0 that
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P
 sup

s∈[0,1]p

∣∣∣∣∣∣
m−1∑
k=k0

( 1
T p/2 SAk−1

i
(⌊s⌋2k+1) − 1

T p/2 SAk−2
i

(⌊s⌋2k)
)∣∣∣∣∣∣ ≥ x


≤ P

m−1∑
k=k0

sup
s∈[0,1]p

∣∣∣∣( 1
T p/2 SAk−1

i
(⌊s⌋2k+1) − 1

T p/2 SAk−2
i

(⌊s⌋2k)
)∣∣∣∣ ≥

m−1∑
k=k0

2k( p
2r

− 1
4)


≤ P
m−1⋃

k=k0

{
sup

s∈[0,1]p

∣∣∣∣ 1
T p/2 SAk−1

i
(⌊s⌋2k+1) − 1

T p/2 SAk−2
i

(⌊s⌋2k)
∣∣∣∣ ≥ 2k( p

2r
− 1

4)
}

≤
m−1∑
k=k0

P
(

sup
s∈[0,1]p

∣∣∣∣ 1
T p/2 SAk−1

i
(⌊s⌋2k+1) − 1

T p/2 SAk−2
i

(⌊s⌋2k)
∣∣∣∣ ≥ 2k( p

2r
− 1

4)
)

≤
m−1∑
k=k0

∑
⌊s⌋2k+1 : s∈[0,1]p

P
(∣∣∣∣ 1

T p/2 SAk−1
i

(⌊s⌋2k+1) − 1
T p/2 SAk−2

i
(⌊s⌋2k)

∣∣∣∣ ≥ 2k( p
2r

− 1
4)
)

≤
m−1∑
k=k0

(
2k+1 + 1

)p
Cr

(
T pλ

(
Ak−2 (⌊s⌋2k) \ Ak−1 (⌊s⌋2k+1)

)
+ O(T p−1)

)r/2

T pr/22kr( p
2r

− 1
4)

≤ C2

m−1∑
k=k0

2kp · 2−kr/2 · 2−kr( p
2r

− 1
4) = C2

m−1∑
k=k0

2
2p−r

4 k ≤ C2

∞∑
k=k0

2
2p−r

4 k → 0 (10.13)

as δ → 0 (and therefore k0 → ∞) since r > 2p.

For (10.9), it holds for ∥s − t∥∞ < δ and due to δ ≤ 2−k0 by definition of k0 that

∥⌊s⌋2k0 − ⌊t⌋2k0 ∥∞ ≤ ∥⌊s⌋2k0 − s∥∞ + ∥s − t∥∞ + ∥t − ⌊t⌋2k0 ∥∞

≤ 3 · 2−k0 ≤ 2−(k0−2). (10.14)

since by definition of k0, 2−(k0+1) < δ ≤ 2−k0 . Therefore, by Lemma C.1 (c), there
exists

x ∈
[
⌊s⌋2k0 , ⌊s⌋2k0 + 2−(k0−2)

]
∩
[
⌊t⌋2k0 , ⌊t⌋2k0 + 2−(k0−2)

]
and by definition of Ak, it holds that A(x) ⊂ Ak0−2 (⌊s⌋2k0 ) ∩ Ak0−2 (⌊t⌋2k0 ) . There-
fore, it follows by Assumption 10.1 (b) that

λ
(
Ak0−2 (⌊s⌋2k0 ) ∆Ak0−2 (⌊t⌋2k0 )

)
= λ

(
Ak0−2 (⌊s⌋2k0 )

)
+ λ

(
Ak0−2 (⌊t⌋2k0 )

)
− 2λ

(
Ak0−2 (⌊s⌋2k0 ) ∩ Ak0−2 (⌊t⌋2k0 )

)
≤ λ

(
Ak0−2 (⌊s⌋2k0 )

)
+ λ

(
Ak0−2 (⌊t⌋2k0 )

)
− 2λ (A(x)) ≤ C∗2−k0

with a suitable constant C∗ > 0. Analogously to (10.11), we now consider the
supremum over s, t ∈ [0, 1]p with ∥s − t∥∞ < δ of the below expression that only
depends on s, t via ⌊s⌋2k0 and ⌊t⌋2k0 . Thus, it is by (10.14) sufficient to take the
supremum over ⌊s⌋2k0 with s ∈ [0, 1]p and over all ⌊t⌋2k0 with ∥⌊s⌋2k0 − ⌊t⌋2k0 ∥ ≤
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3 · 2−k0 for fixed ⌊s⌋2k0 .
The first supremum is taken over the set {⌊s⌋2k0 |s ∈ [0, 1]p}, which has cardinality
(2k0 + 1)p ≤ 2p2pk0 . The second supremum is taken over a set that by Lemma C.1
(a) has finite cardinality as the number of points of the form k2−k0 , k ∈ Zp in the
hypercube

[
⌊s⌋2k0 − 3 · 2−k0 , ⌊s⌋2k0 + 3 · 2−k0

]
is finite. Thus we obtain for x > 0

with σ-subadditivity and suitable constants Cr, C2 > 0 that

P
(

sup
∥s−t∥∞<δ

∣∣∣∣ 1
T p/2 S

A
k0−2
i

(⌊s⌋2k0 ) − 1
T p/2 S

A
k0−2
i

(⌊t⌋2k0 )
∣∣∣∣ ≥ x

)

≤
∑

⌊s⌋2k0 : s∈[0,1]p

∑
⌊t⌋

2k0 : t∈[0,1]p,

∥⌊s⌋2k0 −⌊t⌋2k0 ∥∞
≤3·2−k0

P
( 1

T p/2

∣∣∣∣SA
k0−2
i

(⌊s⌋2k0 ) − S
A

k0−2
i

(⌊t⌋2k0 )
∣∣∣∣ ≥ x

)

≤ 2pk0Cr

(
T pλ

(
Ak0−2 (⌊s⌋2k0 ) ∆Ak0−2 (⌊t⌋2k0 )

)
+ O(T p−1)

)r/2

T pr/2xr

≤ C22pk02−k0r/2 = C22k0(p−r/2) → 0 (10.15)

as δ → 0 (and therefore k0 → ∞) since r > 2p.

By subadditivity and (10.11)-(10.13) and (10.15), we obtain for any x > 0 that

lim
δ→0

lim sup
T →∞

P
(

sup
∥s−t∥∞<δ

∣∣∣∣ 1
T p/2 SAi

(⌊s⌋T ) − 1
T p/2 SAi

(⌊t⌋T )
∣∣∣∣ ≥ 7x

)

≤ lim
δ→0

lim sup
T →∞

2 P
(

sup
s∈[0,1]p

∣∣∣∣ 1
T p/2 SAi

(⌊s⌋T ) − 1
T p/2 SAi

(⌊s⌋2m)
∣∣∣∣ ≥ x

)

+ lim
δ→0

lim sup
T →∞

2 P
(

sup
s∈[0,1]p

∣∣∣∣ 1
T p/2 SAi

(⌊s⌋2m) − 1
T p/2 SAm−2

i
(⌊s⌋2m)

∣∣∣∣ ≥ x

)

+ lim
δ→0

lim sup
T →∞

2 P
 sup

s∈[0,1]p

∣∣∣∣∣∣
m−1∑
k=k0

1
T p/2 SAk−1

i
(⌊s⌋2k+1) − 1

T p/2 SAk−2
i

(⌊s⌋2k)

∣∣∣∣∣∣ ≥ x


+ lim

δ→0
lim sup

T →∞
P
(

sup
∥s−t∥∞<δ

∣∣∣∣ 1
T p/2 S

A
k0−2
i

(⌊s⌋2k0 ) − 1
T p/2 S

A
k0−2
i

(⌊t⌋2k0 )
∣∣∣∣ ≥ x

)
= 0

thus showing the assertion.

With this Theorem, we can prove a functional central limit theorem for (F (ST (s)))s∈[0,1]p
on D([0, 1]p), where F is a Lipschitz-continuous function.

Theorem 10.3. Let (ϵk)k∈Zp be a sequence of i.i.d. random variables with E [ϵk] = 0,
E [ϵ2

k] = σ2 ∈ (0, ∞) and E [|ϵk|r] < ∞ for some r > 2p. Let Yk,T = µk,T + ϵk with
µk,T ∈ R, define SA(⌊s⌋T ) = SA(ϵ; ⌊s⌋T ) as in Definition 10.1 and let

ST (s) =
( 1

T p/2 SA1(⌊s⌋T ), . . . ,
1

T p/2 SAP
(⌊s⌋T )

)′
.
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Furthermore, let F : RP → R be a Lipschitz-continuous function with Lipschitz-
constant CF > 0, i. e.

|F (x) − F (y)| ≤ CF ∥x − y∥∞

for all x, y ∈ Rp. Then, there exists a P -dimensional centered Gaussian process
(Z(s))s∈[0,1]p = ((Z1(s), . . . , ZP (s))′)s∈[0,1]p with

Cov [Zi(s), Zj(t)] = σ2λ (Ai(s) ∩ Aj(t))

such that
(F (ST (s)))s∈[0,1]p

w−→ (F (Z(s)))s∈[0,1]p

on D([0, 1]p) equipped with the topology induced by the maximum norm on D([0, 1]p)
(called U-topology by Wichura (1969), compare Definition A.2).

Proof. By Theorem A.6, we need to show (i) that for all n ∈ N, t1, . . . , tn ∈ [0, 1]p

(F (ST (t1)) , . . . , F (ST (tn)))′ D−→ (F (Z(t1)), . . . , F (Z(tn)))′

and (ii) for all x > 0, it holds that

lim
δ→0

lim sup
T →∞

P
(

sup
∥s−t∥∞<δ

|F (ST (s)) − F (ST (t))| ≥ x

)
= 0.

Proof of (i): By Theorem 10.2 it holds that

(ST (t1), . . .ST (tn)) D−→ (Z(t1), . . . , Z(tn)) .

Denote for n ∈ N, t1, . . . , tn ∈ [0, 1]p by πt1,...,tn : (D ([0, 1]p))P →
(
RP
)n

, πt1,...,tn(f) =
(f(t1), . . . , f(tn))′ the projection mapping from (D ([0, 1]p))P to

(
RP
)n

. Since the
U-topology by Wichura (1969) is induced by the maximum norm on D([0, 1]p), it
follows by Lemma A.7 that πt1,...,tn(·) is continuous if (D ([0, 1]p))P is equipped
with a proper metric. Furthermore, as F is continuous, F (n) :

(
RP
)n

→ Rn,
F (n)(t1, . . . , tn) = (F (x1), . . . , F (xn)) is continuous as well. Since F (n) ◦ πt1,...,tn

as a composition of continuous functions is continuous, it follows by the continuous
mapping theorem that

(F (ST (t1)) , . . . , F (ST (tn)))′ =
(
F (n) ◦ πt1,...,tn

)
(ST (t))

D−→
(
F (n) ◦ πt1,...,tn

)
(Z(t)) = (Z(t1), . . . , Z(tn))′

as T → ∞.

Proof of (ii) : By the Lipschitz-continuity of F , we have for x > 0 that

P
(

sup
∥s−t∥∞<δ

|F (ST (s)) − F (ST (t))| ≥ x

)
≤ P

(
sup

∥s−t∥∞<δ

∥ST (s) − ST (t)∥∞ ≥ x

CF

)

and the assertion follows immediately from Theorem 10.2 (ii).
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Lemma 10.4. Bounded convex sets A ⊂ R2 with 0 < λ(A) < ∞ fulfill Assumption
10.1.

Proof. (a) is fulfilled by Lemma C.3.
For (b) let ∥s − t∥∞ < γ and denote for δ > 0

Aδ =
{

y ∈ R2
∣∣∣∣ inf
x∈A

∥x − y∥ < δ
}

.

Since ∥s − t∥ <
√

2γ and As, At can be obtained from each other by shift, it follows
that As ⊂ A

√
2γ

t and At ⊂ A
√

2γ
s . Therefore, we obtain by Lemma C.2 that

λ

 ⋃
y∈[0,γ)2

Ay

− λ(A) ≤ λ
(
A

√
2γ
)

− λ (A) = ℓ(∂A) ·
√

2γ + π · 2γ2 ≤ Cγ

with suitable C > 0, since obviously, ℓ(∂A) < ∞ as A is bounded (compare also
Billingsley (1999), Appendix M17 equation (29)).

11 Moving window procedure for the detection of
fissures in concrete

Our goal is to identify areas that potentially contain fissures and eliminate bubbles
in concrete data (as displayed in Figure 8.1). As already motivated in Section 9, a
key feature of a fissure is that locally, the contrast between a rectangle covering a
part of the fissure and its’ neighboring environment is large in the sense that there
is a large difference in the gray values. On the other hand, a key feature of the edge
of a bubble is that the contrast between two equally large neighboring environments
(e. g. hemispheres) is large. This idea is illustrated in the upper right panel of Figure
9.1 and in the upper left panel of Figure 11.1.
Based on these observations, we choose suitable convex sets in R2. We define statis-
tics similar to Definition 10.1 on these sets and combine them to a single statistic in
order to estimate the location of the fissures (for an illustration of these sets, see Fig-
ure 11.1 below): Let A be a circle of diameter d ∈ (0, 1) centered around 0. For some
angle α ∈ [0, π), we split this circle by having a ’strip’ of width h ∈ (0, d) turned by
α (see Figure 11.1 (a)). We denote this inner ’strip’ by A(1,α) and the two remaining
segments by A(2,α) and A(3,α), respectively (see Figure 11.1 (b)). In a second step, we
split A into semicircles A(4,α) and A(5,α) turned by α (see Figure 11.1 (c)). Denote
by (Yk,T )k∈{1,...,T }2 the process of gray values and let SA (⌊s⌋T ) = SA (Y ; ⌊s⌋T ) be as
in Definition 10.1. For i = 1, . . . , 5, s ∈ [d/2, 1 − d/2]2 define

SA(i,α) (⌊s⌋T ) = SA(i,α) (Y ; ⌊s⌋T ) = T∣∣∣{ k
T

∈ A(i,α) (⌊s⌋T )
}∣∣∣SA(i,α) (⌊s⌋T )

= T∣∣∣{ k
T

∈ A(i,α) (⌊s⌋T )
}∣∣∣

∑
k
T

∈A(i,α)(⌊s⌋T )
Yk,T .
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Figure 11.1: In the upper left panel, a 2D slice of a 3D CT scan of a concrete block
with an artificially added fissure is displayed. The blue split circles display charac-
teristics of fissures and the edges of bubbles, respectively. Panels (a)-(c) illustrate
the sets that we use in our scan statistic introduced in (11.1) - (11.3).

Corollary 11.1. Let Yk,T = µk,T + ϵk, where µk,T ∈ R and (ϵk)k∈N2 is a sequence of
i.i.d. random variables with E [ϵk] = 0, E [ϵk] = σ2 ∈ (0, ∞) and E [|ϵk|r] < ∞ for
some r > 4. Then it holds uniformly in s ∈ [d/2, 1 − d/2]2 that for all i = 1, . . . , 5,

SA(i,α) (ϵ; ⌊s⌋T ) = 1
Tλ (A(i,α))SA(i,α) (ϵ; ⌊s⌋T ) + oP (1).
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Proof. By Theorem 10.2, it holds that

sup
s∈[d/2,1−d/2]2

∣∣∣∣ 1T SA (ϵ; ⌊s⌋T )
∣∣∣∣ = OP (1).

By Lemma C.3, it holds that∣∣∣∣∣T 2λ(A(i,α)) −
∣∣∣∣∣
{

k

T
∈ A(i,α) (⌊s⌋T )

}∣∣∣∣∣
∣∣∣∣∣ = OP (T ).

Therefore, it holds that

sup
s∈[d/2,1−d/2]2

∣∣∣∣∣SA (ϵ; ⌊s⌋T ) − 1
Tλ (A(i,α))SA (ϵ; ⌊s⌋T )

∣∣∣∣∣
≤ sup

s∈[d/2,1−d/2]2

∣∣∣∣∣∣ T 2∣∣∣{ k
T

∈ A(i,α) (⌊s⌋T )
}∣∣∣ − 1

λ (A(i,α))

∣∣∣∣∣∣ sup
s∈[d/2,1−d/2]2

∣∣∣∣ 1T SA (ϵ; ⌊s⌋T )
∣∣∣∣

= sup
s∈[d/2,1−d/2]2

∣∣∣T 2λ
(
A(i,α)

)
−
∣∣∣{ k

T
∈ A(i,α) (⌊s⌋T )

}∣∣∣∣∣∣
λ (A(i,α))

∣∣∣{ k
T

∈ A(i,α) (⌊s⌋T )
}∣∣∣ sup

s∈[d/2,1−d/2]2

∣∣∣∣ 1T SA (ϵ; ⌊s⌋T )
∣∣∣∣

= OP

(
T

T 2

)
· OP (1) = OP

( 1
T

)
.

Since a fissure can change directions, we need to consider multiple angles when
trying to detect the fissure. Since A(1,α) = A(1,α+kπ), A(2,α) = A(3,α+(2k+1)π) and
A(4,α) = A(5,α+(2k+1)π) for all k ∈ Z, we only need to consider angles in [0, π) in the
following statistic. Therefore, for T > 0, 0 ≤ α1 < . . . < αP < π, s ∈ [d/2, 1 − d/2]2,
define

S
(12,α)(s) = SA(1,α) (⌊s⌋T ) − SA(2,α) (⌊s⌋T )

S
(13,α)(s) = SA(1,α) (⌊s⌋T ) − SA(3,α) (⌊s⌋T )

S
(45,α)(s) = SA(4,α) (⌊s⌋T ) − SA(5,α) (⌊s⌋T )

M1(s) = M1(s, T ) = max
i=1...,P

1
σ̂1,i,T (s) min

{∣∣∣∣S(12,αi)(s)
∣∣∣∣ , ∣∣∣∣S(13,αi)(s)

∣∣∣∣} (11.1)

M2(s) = M2(s, T ) = max
i=1...,P

1
σ̂2,i,T (s)

∣∣∣∣S(45,αi)(s)
∣∣∣∣ (11.2)

M(s) = M(s, T ) = max {M1(s) − M2(s), 0} (11.3)

where σ̂1,i,T , σ̂2,i,T are suitable estimators for σ. In the simulation study in Section
12, we consider three types of variance estimators: One ’minimum’-type estimator
similar to (6.1), but properly adapted to our situation, one local robust estimator
and one global robust estimator. We refer to Section 12 for more details.
M consists of two separate terms: For a given angle α in (11.1), we compare the
(rescaled) average in the inner ’strip’ A(1,α) with the (rescaled) averages in the two
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sections A(2,α) and A(3,α) and then take the minimum of the two differences. Sub-
sequently, we maximize over all considered angles α1, . . . , αP . As illustrated in the
second to left column of Figure 11.2, this type of statistic enhances fissures and to
a lesser extent the edges of bubbles and fissures. On the other hand, in (11.2), we
compare the (rescaled) averages of the two semicircles A(4,α) and A(5,α) and maximize
over α1, . . . , αP . As illustrated in the second to right column of Figure 11.2, this type
of statistic enhances the edges of the bubbles and fissures.
Therefore, as illustrated in the right column of Figure 11.2, a combination of M1(s)
from (11.1) and M1(s) from (11.2) to M(s) from (11.3) leads to an enhancement of
fissures and elimination of most of the other parts of the image. Since by Lemma
D.1 all functions used are Lipschitz-continuous, we can apply Theorems and 10.2 and
10.3 to obtain a limit process for (M(s, T ))s∈[d/2,1−d/2]2 in the case of no anomalies:

Theorem 11.2. Let (ϵk)k∈Z2 be a sequence of i.i.d. random variables with E [ϵk] = 0,
E [ϵ2

k] = σ2 ∈ (0, ∞) and let E [|ϵk|r] < ∞ for some r > 4. Let Yk,T = µk,T + ϵk

with µk,T ∈ R. Let σ̂1,i,T (s), σ̂2,i,T (s) be uniformly consistent estimators for σ in the
sense that

sup
s∈[d/2,1−d/2]2

|σ̂1,i,T (s) − σ| = oP (1), sup
s∈[d/2,1−d/2]2

|σ̂2,i,T (s) − σ| = oP (1)

for all i = 1, . . . , P . There exists a 5P -dimensional centered Gaussian process(
(W1,1(s), . . . , W1,P (s), . . . , W5,1(s), . . . , W5,P (s))′

)
s∈[d/2,1−d/2]2

with

Cov [Wi,j(s), Wk,l(t)] =
λ
(
A(i,αj)(s) ∩ A(k,αl)(t)

)
λ
(
A(i,αj)

)
λ (A(k,αl))

such that in the case of µk,T = 0 for all k, T and

Γ(s) = max
{

0, max
i=1,...,P

min {|W1,i(s) − W2,i(s)| , |W1,i(s) − W3,i(s)|}

− max
i=1,...,P

|W4,i(s) − W5,i(s)|
}

,

it holds that

(M(s, T ))s∈[d/2,1−d/2]2
w−→ (Γ(s))s∈[d/2,1−d/2]2

in D([d/2, 1 − d/2]2) as T → ∞.

Proof. Since the A(i,α) ⊂ R2 are convex, they fulfill Assumption 10.1 by Lemma 10.4.
Therefore, it holds with S

A(i,αj ) (⌊s⌋T ) = S
A(i,αj ) (ϵ; ⌊s⌋T ) by Theorem 10.2 that(

SA(1,α1) (⌊s⌋T ) , . . . , SA(1,αP ) (⌊s⌋T ) , . . . , SA(5,α1) (⌊s⌋T ) , . . . , SA(5,αP ) (⌊s⌋T )
)

s
w−→ (σ (W1,1(s), . . . , W1,P (s), . . . , W5,1(s), . . . , W5,P (s)))s
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Figure 11.2: In the left column, various 2D slices of 3D CT scans from concrete
blocks with fissures are shown. In the second to left column, the corresponding
heat maps of (11.1) are displayed, showing that in these examples, (11.1) enhances
fissures and to a lesser extent the edges of bubbles and fissures. In the second to right
column, the corresponding heat maps of (11.2) are displayed, showing that in these
examples, (11.2) enhances the edges of bubbles and fissures. In the right column, the
corresponding heat maps of the combined statistic in (11.3) are displayed, showing
that in these examples, the statistic enhances fissures and eliminates most of the
noise.

in (D([d/2, 1 − d/2]2))5P . Since by Lemma D.1, maximum, minimum, addition,
subtraction and the absolute value are Lipschitz-continuous and σ̂1,i,T (s), σ̂2,i,T (s)
are uniformly consistent estimators for σ, the assertion follows by Theorem 10.3 and
Slutzky’s theorem.

We need a threshold β = βd,h,T in order to determine areas that can potentially
contain fissures. We distinguish between significant points s ∈ [d/2, 1 − d/2]2, for
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which
M(s, T ) ≥ βd,h,T

and non-significant points. The significant points can then be used by post-processing
procedures like machine learning algorithms in order to estimate the exact paths of
the fissures. Note that usually, if one point is significant, then a whole environment
around this point is significant in analogy to Part I as a single pixel of a fissure
influences multiple points of the statistic.
A common choice for the threshold is obtained as the asymptotic (1 − αT )-quantile
of the maximum of the statistic defined in (11.3) for some sequence αT → 0, which
can be obtained by Theorem 11.2. In the simulation studies, we use αT = 0.05. This
guarantees that all points above the threshold are significant at a global level αT (in
the usual testing sense), while also ensuring that the global false positive rate is at
most αT .
Note that to the best of our knowledge, the limit distribution in Theorem 11.2 cannot
be obtained explicitly. Therefore, we estimated βd,h,T in the simulation study below
by scanning fields with no anomalies with the above statistics.

12 Simulation study and Data analysis
If no prior knowledge on the direction of a fissure exists, it is natural to choose the
angles α1, . . . , αP equidistantly on [0◦, 180◦) as illustrated in Figure 12.1 in order
to have a ’best worst-case scenario’ for the misspecification of the true direction
of a fissure. We want to know how many angles P are needed to detect a fissure
at a ’reasonably high’ rate. On the one hand, it is important to control P for
computational efficiency, especially in large image data. On the other hand, parts
of a fissure are enhanced better if the misspecification of the angle for that part is
lower. In practice, with fissures changing direction, this typically means that the
fissure is enhanced better with higher P as can be seen in Figure 12.2.
If α1, . . . , αP are chosen equidistantly on [0◦, 180◦), the direction of a fissure can
be misspecified by an angle of (90/P )◦ in the worst case (see Figure 12.1). Now
denote by ∆ the difference between the angle of the inner strip and a (part of a)
fissure. The fact that for P angles, the worst-case misspecification is (90/P )◦ in turn
implies that if the detection rates are ’reasonably high’ for ∆, then at most ⌈90/∆⌉
angles are needed to a (part of a) fissure at a ’reasonably high’ rate. Therefore, it is
plausible to make assertions on the choice of P based on the detection rates w.r.t. the
misspecification ∆.
Furthermore, it is important to have computationally efficient, consistent estimators

σ̂1,i,T (s) and σ̂2,i,T (s) for σ in (11.1) and (11.2), respectively, as an overestimation
of σ leads to worse detection rates, while an underestimation leads to too many
spurious significant pixels. Furthermore, we want to have estimators that are robust
against outliers as the real data contains bubbles. Thus, it is interesting to study
the detection rates w.r.t. various choices of σ̂1,i,T (s) and σ̂2,i,T (s).
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Figure 12.1: This graphic schematically illustrates a worst-case scenario for the di-
rection of a fissure for various values of P if α1, . . . , αP are chosen equidistantly on
[0◦, 180◦). The fissure is schematically illustrated as a thin black rectangle, while the
colored lines represent the angles of the scan sets from figure 11.1.

12.1 Data and method
We analyze images with 100 × 100 pixels containing a single fissure Fw of relative
length 0.3 turned by 50◦ against the x-axis having relative widths of w = 0.01, 0.02,
respectively (see the left two panels of Figure 12.3 and the whole Figure 12.4 for
examples). We assume that the values of the pixels are given by Yi,j = µi,j + ϵi,j,
where (ϵi,j)i,j=1,...,100 is a sequence of i.i.d. standard-normally distributed random
variables while µi,j is constant across the fissure and 0 outside of the fissure. We use
the statistic M(s) from (11.3) with a circle of diameter of 0.1 and a ’strip’ of width
h for a single angle α. Therefore, in the notation of (11.1) - (11.3), we have for given
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Figure 12.2: In the left column, a 2D slice of a 3D CT scan of a concrete block
with fissures are displayed. In the middle column, the corresponding heat maps for
3, 5 and 9 angles from top to bottom of (11.3) are displayed. In the right column,
the corresponding significant pixels for 3, 5 and 9 angles from top to bottom are
displayed. As expected, the enhancement of the fissure and the number of significant
pixels close to the fissure increase in the number of angles.

h and α that

M(s) = M(s, h, α)

= max
{

0,
1

σ̂1,α(s) min
{∣∣∣∣S(12,α)(s)

∣∣∣∣ , ∣∣∣∣S(13,α)(s)
∣∣∣∣}− 1

σ̂2,α,T (s)

{∣∣∣∣S(45,α)(s)
∣∣∣∣}
}

.

We consider the following parameters, where the angles are given in degrees instead
of radians:
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Name variable values
width of the fissure w 0.01, 0.02
signal of the fissure µ 1, 1.5, 2, 2.5, 3
width of inner strip h 0.01, 0.02, 0.03, 0.04

misspecification of angle ∆ 0, 5, . . . , 25

One of our main objectives is to determine, how well various estimators for the
standard deviation perform at separating signal from noise. In order analyze this,
we fix the rate of spurious significant pixels at 5% for each estimator σ̂ by determin-
ing thresholds w.r.t. σ̂: For given h, we determine the threshold βh(σ̂) via simulation:
We generate 10 000 images with 100×100 i.i.d. standard-normally distributed pixels.
Then we scan each of the fields with the above statistic M(s, h, 0) using σ̂ as esti-
mator for σ and choose βh(σ̂) as the empirical 95%-quantile of the maximal values
of each image.
In order to analyze the performance of our procedure, we generate for each signal-
width-combination (µ, w) 1 000 images containing a single fissure of width w and
signal µ. Subsequently, we scan these images with M(s, h, α) using σ̂ as estimator
for σ.

Definition 12.1. We call a pixel k/T adjacent to the fissure if the intersection
between the circle A(k/T ) centered around k/T and the fissure is non-empty. See
the right side of Figure 12.3 for an illustration.
We determine the fissure to be detected if for at least one pixel k/T adjacent to the
fissure, it holds that M(k/T, h, α) ≥ βh(σ̂) when using σ̂ as estimator for σ.

Note that this definition of ’detection’ fits our objective of identifying regions that
potentially contain fissures. Identifying a single pixel that is potentially influenced
by a fissure is sufficient and can be used e. g. as the starting point for machine
learning methods in order to trace the fissure.

12.2 Variance estimators
In this section, we study, how good various estimators for the standard deviations are
at separating signal from noise. Denote for some set A by σ̂2(A) the classic sample
variance of the values (Yk)k/T ∈A in A. Furthermore, denote by q̂A(·) the function
of empirical quantiles of (Yk)k/T ∈A and let Φ(·) be the CDF of the standard normal
distribution. Denote by A(i,α) the circle segments introduced at the start of Section
11 (for a visual display see Figure 11.1).
Local minimum-type estimators have proven to yield good results in change point
estimation (see e. g. Meier, Cho, and Kirch (2021)) and have also yielded good results
in the simulation study in the first part of this thesis in Section 6. Therefore, we use
a version of minimum-type estimators adapted to the two-parameter scenario:

83



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 12.3: The two graphics on the left side show images of 100 × 100 pixel
containing fissures of relative width 0.01 (left image) and 0.02 (right image) with
large signal-to-noise-ratios. The two graphics on the right side schematically display
the fissures and their ’adjacent’ pixel – i. e. those for which intersection between
the circle A(k/T ) centered around k/T and the fissure is non-empty. The fissures
are the dark red areas while the adjacent pixel are the ones colored in orange. We
consider the fissure to be detected if the statistic is above the threshold for any of
the red and orange pixel.

Figure 12.4: The graphic shows images with all signal-width-combinations (µ, w)
that we consider in this simulation study.

(A) Minimum-type estimator:

σ̂2
1,α(s) = min

{
σ̂2(A(2,α)(⌊s⌋T )), σ̂2(A(3,α)(⌊s⌋T ))

}
,

σ̂2
2,α(s) = min

{
σ̂2(A(4,α)(⌊s⌋T )), σ̂2(A(5,α)(⌊s⌋T ))

}
.

As already noticed in Section 6, one drawback of minimum-type estimators, is that
they tend to find more spurious maxima than other types of estimators.
Since one of our main goals is the elimination of areas without fissures, while having

to account for bubbles, we also analyze the performance of our procedure using a
robust variance estimator, both on a local and on a global level. We use an estimator
based on the empirical interquartile range that was initially introduced by Silverman
(1986) as an estimator for the optimal bandwidth in kernel density estimation:
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(B) Local robust estimator:

σ̂1,α(s) =
q̂A(2,α)(⌊s⌋T )∪A(3,α)(⌊s⌋T )

(
3
4

)
− q̂A(2,α)(⌊s⌋T )∪A(3,α)(⌊s⌋T )

(
1
4

)
Φ−1

(
3
4

)
− Φ−1

(
1
4

) ,

σ̂2,α(s) =
q̂A(⌊s⌋T )

(
3
4

)
− q̂A(⌊s⌋T )

(
1
4

)
Φ−1

(
3
4

)
− Φ−1

(
1
4

) .

(C) Global robust estimator:

σ̂1,α(s) = σ̂2,α(s) =
q̂[0,1]2

(
3
4

)
− q̂[0,1]2

(
1
4

)
Φ−1

(
3
4

)
− Φ−1

(
1
4

) .

In the context of independent, identically N (µ, σ2) random variables, Silverman’s
estimator σ̂IQR,n = (F̂ −1

n (3/4) − F̂ −1
n (1/4))/(Φ−1 (3/4) − Φ−1 (1/4)) is consistent:

Due to the continuity of the normal distribution, and Glivenko-Cantelli’s theorem,
F̂ −1

n (p) → F −1
N (µ,σ2)(p) = µ + σΦ−1(p) for all p ∈ (0, 1).

We compare the results for (A)-(C) with the results for (D), where we use the true
variance σ2 = 1.

As it can be seen in Figures 12.5 and 12.6, it shows that across all parameter combi-
nations, the global robust estimator (C) performs best among the three estimators
(A)-(C) and that the detection rates are virtually identical with the detection rates
of the true variance (D). We can also see that in the non-trivial cases (i. e. detection
rates away from 0 or 1), (C) usually performs a lot better than (A) and (B). It is
straightforward to see, why the detection rates for (C) and (D) are virtually iden-
tical: Under the assumption of normality, (C) is consistent. In each image, 10 000
pixels are involved in the calculation of (C) and as (C) is robust against outliers, (C)
is usually very close to the true variance. A possible explanation for the dominance
of (C) over (A) and (B) is the massive discretization of the sets A(i,α), as shown for
A(1,α) − A(3,α) in Figure E.1. We conjecture that due to the much higher volatility
of (A) and (B), some pixels that are significant by estimator (C) are not significant
anymore by (A) and (B).
For our purpose, it is advantageous that the detection rates are highest for (C) as
(C) is a consistent, robust estimators of σ and due to being a global estimator, is
computationally much more efficient than (A) and (B).

12.3 Analysis of the number of angles
We have elaborated in the introduction of this section, that it is plausible to choose
the angles α1, . . . , αP equidistantly on the interval [0◦, 180◦) and that in then, if for
a misspecification of ∆, we obtain ’reasonably high’ (up to the reader’s preferences)
detection rates, we need at most P = ⌈90/∆⌉ in order to detect the fissure at
a ’reasonably high’ rate. As can be seen in Figures 12.5 and 12.6 as well as in
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Figure 12.5: Comparison of the detection rates for all combinations of signal, band-
width, width of the fissure and variance estimators. The yellow diamond-shaped
points indicate the detection rates for the minimum-type estimator (A). The green
triangle-shaped points indicate the detection rates for the local robust estimator (B).
The red bullet-shaped points indicate the detection rates for the global robust esti-
mator (C). The blue square-shaped points indicate the detection rates for the use of
the true variance (D). On the x-axis, the misspecification of the angle of the fissure
is displayed, on the y-axis the detection rates are displayed.

Table 12.1, when using the global robust estimator (C), our procedure performs
reasonably well. Even for moderate signal-to-noise ratios (the fissure can barely
be observed by visual inspection, see Figure 12.4), we are able to detect fissures
at rates of at least 70% with at most 9 angles. In most cases, even 6 angles are
sufficient for detection rates of at least 70%. Our procedure also proves to be robust
against slight misspecifications of the width of the fissure. In particular, 9 angles are
sufficient for detection rates of ≥ 70% when w = h = 0.01 and µ ≥ 2 as well as for
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Figure 12.6: Comparison of the detection rates for all combinations of signal, band-
width, width of the fissure and variance estimators. The yellow diamond-shaped
points indicate the detection rates for the minimum-type estimator (A). The green
triangle-shaped points indicate the detection rates for the local robust estimator (B).
The red bullet-shaped points indicate the detection rates for the global robust esti-
mator (C). The blue square-shaped points indicate the detection rates for the use of
the true variance (D). On the x-axis, the misspecification of the angle of the fissure
is displayed, on the y-axis the detection rates are displayed.

w = h = 0.02 and µ ≥ 1.5. If w = 0.02 and µ ≥ 2, then 9 angles are sufficient for
any h, showing the robustness against misspecification. This is consistent with our
observations in real data, where even for thin fissures that can barely be observed by
visual inspection, 9 angles are sufficient to have some pixels adjacent to the fissure
significant. In most cases, even 5 angles are sufficient to have some pixels adjacent
to the fissure significant, see Figure 12.7 for examples.
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(a) w = 0.01

µ 1.5 2 ≥ 2.5 ≥ 2.5
h 0.01 0.01 0.01 0.02
∆ ≤ 5 ≤ 10 ≤ 15 ≤ 10
P 18 9 6 9

(b) w = 0.02

µ 1.5 1.5 2 2 2 2.5 2.5 3
h 0.01, 0.04 0.02, 0.03 0.01 0.02 0.03, 0.04 0.01 0.02, 0.03, 0.04 all
∆ ≤ 5 ≤ 10 ≤ 15 ≤ 20 ≤ 25 ≤ 20 ≤ 25 ≤ 25
P 18 9 6 5 4 5 4 4

Table 12.1: The table shows all combinations (w, µ, ∆, h) for which the detection
rates are higher than 70%, excluding the combinations for which the detection rate
did not decline in ∆. The cases of misspecification of h are colored in blue.

12.4 Miscellaneous results
An argument can be made that one should consider the fissure to be ’detected’ only if
for at least one pixel k/T belonging to the fissure, it holds that M(k/T, h, α) ≥ βh as
in this case a pixel belonging, and not just close to the fissure would potentially serve
as the starting point for further procedures like machine-learning algorithms. The
detection rates in that case however only marginally differ from the detection rates
when considering pixels that are adjacent to the fissure in the sense of Definition
12.1. The results can be found in Figures E.2 and E.3.
Another observation is that somewhat counterintuitively, in some cases the detection
rates do not decline in ∆, most notably in the case of w = 0.01 and h = 0.03, where
there is a sharp increase from ∆ = 5 to ∆ = 10 and also for h = 0.04 and µ ≥ 2.5,
where the detection rates increase from ∆ = 0 to ∆ = 20. We conjecture that
this effect comes from the discretization and due to the fact that the width of the
’inner strip’ is large compared to the diameter of the circle, see Figure E.1 for a
visualization.
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Figure 12.7: In the left column, 2D slices of a 3D CT scan of a concrete block with
fissures are displayed. In the middle column, the corresponding heat maps for 5
angles of (11.3) are displayed. In the right column, the corresponding significant
pixels for 5 are displayed. It shows that even for moderate signal-to-noise ratios,
fissures are detected with 5 angles.

13 Conclusions

In this part of the thesis, our goal has been the development of a pre-processing
procedure for the detection of areas that potentially contain fissures in concrete.
Based on the observation of geometric properties of fissures and bubbles, and by the
idea of one-parameter MOSUM statistics, we have introduced a scan statistic using
a combination of rectangle- and circle segment-shaped windows in order to do so
and identify areas that can then be used e. g. as starting points for machine learning
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algorithms in order to trace the fissure. The simulation study demonstrates that
our procedure performs well at detecting pixels close to a fissure even in the case
of a small signal-to-noise ratio and also in the case of slight misspecification of the
width of the fissure. It also shows that a global robust variance estimator based on
Silverman’s rule of thumb performs best among a number of variance estimators.
Furthermore, we have been able to show a weak convergence result for scan statis-
tics using a general class of windows including two-dimensional convex sets towards
a functional of a Gaussian process.
One drawback of the procedure introduced in Section 11 is the use of a single set
of bandwidths for the width of the underlying rectangle and circle as typically in
practice, the width of a fissure is unknown and even different parts of the fissure
may vary in their widths – even though the theory in Section 10 already allows the
maximization over finitely many bandwidths. Furthermore, we have only consid-
ered windows with linear bandwidths. Therefore, one future point of research is
the extension to a multiple window approach using infinitely many windows with
potentially sublinear bandwidths as e. g. by Sharpnack and Arias-Castro (2016) for
hyperrectangles. Also note that the concrete image data is three-dimensional. While
our mathematical theory includes the 3D case, a numerical analysis of the data set
is yet to be conducted, which comes with additional computational challenges.
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Appendix





A Stochastic properties
Lemma A.1. (Compare Lemma 3.1 of Steinebach and Eastwood (1996))
Let (Xt)t≥0 be a separable Rp-valued stationary Gaussian process with independent
components and covariance functions r1, . . . , rp fulfilling

ri(a) = 1 − Ci|a|α + o (|a|α) as a → 0
ri(a) = o (1/log a) as a → ∞ for all i = 1, . . . , p.

for some 0 < α ≤ 2, C1, . . . , Cp > 0. Then there exists a constant
H = Hp,α(C1, . . . , CP ) such that with

a(x) =
√

2 log x

b(x) = 2 log x + (p/2 − 1 + 1/α) log log x − log
(
21−1/αH−1Γ(p/2)

)
it holds that

a(x) sup
0≤t≤x

∥Xt∥ − b(x) D−→ E, x → ∞

where P (E ≤ y) = e−2e−y .

Furthermore, if C1 = . . . = Cp = C, then H = Hp,α(C1, . . . , CP ) = C1/αHα, where it
is known that H1 = 1, H2 = π−1/2.

Lemma A.2. Let (an)n≥1, (bn)n≥1 be sequences of positive real numbers and bn → ∞
as n → ∞. Let (Xn)n, (Yn)n be sequences of random variables such that Yn =
oP (bn/an). Then it holds for any x ∈ R that

lim
n→∞

|P (anXn − bn ≤ x) − P (an max {Xn, Yn} − bn ≤ x)| = 0

as n → ∞.

Proof. It is trivial that P (anXn − bn ≤ x) ≥ P (an max {Xn, Yn} − bn ≤ x).
It holds that

P (an max {Xn, Yn} − bn ≤ x) = P (anXn − bn ≤ x) + P (anYn − bn ≤ x)
− P ({anXn − bn ≤ x} ∩ {anYn − bn ≤ x})

≥ P (anXn − bn ≤ x) + P (anYn − bn ≤ x) − 1

Since bn → ∞, there exists n0 ∈ N such that x/bn ≥ −1/2 for all n ≥ n0. Therefore

P (anYn − bn ≤ x) = P
(

an

bn

Yn ≤ x

bn

+ 1
)

≥ P
(

an

bn

Yn ≤ 1
2

)
→ 1

as n → ∞ and the assertion follows.
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Theorem A.3. (Compare e. g. Lin and Bai (2010), 9.4, equation (45))
Let ϵ1, ϵ2 . . . be i.i.d. such that E [ϵ1] = 0 and let there exist r > 2 such that E [|ϵ1|r] <
∞. Then there exists Cr > 0 such that

E
[∣∣∣∣∣

n∑
i=1

ϵi

∣∣∣∣∣
r]

≤ Crn
r/2.

Proposition A.4. Let Assumption 2.1 hold with a rate of convergence as in As-
sumption 3.1 with the notation of Assumption 4.1. Let 0 < ξT ≤ hT and DT ≥ 1 be
arbitrary sequences (bounded or unbounded).

(a) The following bounds hold for the Wiener processes as in Assumption 2.1:

(i) max
i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥W(θi)
θi

− W(θi)
θi±t∥ = OP

(√
log (2qT )

)
,

(ii) sup
DT

∥di∥2 ≤s≤hT

√
DT

∥∥∥W(θi)
θi

− W(θi)
θi±s

∥∥∥
s ∥di∥

= OP (1) ,

(iii) max
i=1,...,qT

sup
DT

∥di∥2 ≤s≤hT

√
DT

∥∥∥W(θi)
θi

− W(θi)
θi±s

∥∥∥
s ∥di∥

= OP

(√
log (2qT )

)
,

where the upper index (θi) denotes the active stretch in the stationary segment
(θi, θi + s), respectively (θi − s, θi).

(b) The bound in (i) carries over to the centered increments of the original process:

max
i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥R̃(θi)
θi

− R̃(θi)
θi±t∥ = OP

(
max

{
T 1/2νT√

ξT

,
√

log (2qT )
})

.

The bound in (ii) carries over if a forward and backward invariance principle
as above exists starting in an arbitrary point θi, in this case (iii) carries over if
qT = O(1) if ξT is large enough.

For a single change point (instead of taking the maximum over all) the bound in (a)
(i) and (b) is given by OP (1).

Proof. Note that we will only show the assertions for ’+’ in the terms involving ’±’
as the proofs are analogous for ’−’.

(a) Let B(j)
t = (B(j)

t,1 , . . . , B
(j)
j,p )′ = (Σ(j)

T )−1/2 W(j)
t be multivariate standard Wiener

processes.

(i) By Lemma B.2 (ii) it holds that
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max
i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥∥∥W(θi)
θi

− W(θi)
θi+t

∥∥∥
= max

i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥∥∥∥(Σ(θi)
T

)1/2 (
B(θi)

θi
− B(θi)

θi+t

)∥∥∥∥
≤ max

i=1,...,qT

∥∥∥∥(Σ(θi)
T

)1/2
∥∥∥∥ sup

0≤t≤ξT

1√
ξT

∥∥∥B(θi)
θi

− B(θi)
θi+t

∥∥∥
≤ max

i=1,...,P

∥∥∥∥(Σ(i)
T

)1/2
∥∥∥∥ max

i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥∥∥B(θi)
θi

− B(θi)
θi+t

∥∥∥ .

By Corollary B.3 (iii) it holds that

max
i=1,...,P

∥∥∥∥(Σ(i)
T

)1/2
∥∥∥∥ = max

i=1,...,P

√∥∥∥Σ(i)
T

∥∥∥ = O(1). (A.1)

For i = 1, . . . , qT it holds due to the self-similarity and the invariance of the Wiener
process under time shift for all C > 2 that

P
(

sup
0≤t≤ξT

1√
ξT

∥∥∥B(θi)
θi

− B(θi)
θi+t

∥∥∥ ≥
√

Cp log (2qT )
)

= P
(

sup
0≤s≤1

∥∥∥B(θi)
s

∥∥∥ ≥
√

Cp log (2qT )
)

≤ P
 p⋃

j=1

{
sup

0≤s≤1

∣∣∣B(θi)
s,j

∣∣∣ ≥
√

C log (2qT )
}

≤ p P
(

sup
0≤s≤1

∣∣∣B(θi)
s,1

∣∣∣ ≥
√

C log (2qT )
)

.

By the reflection principle of the standard Wiener process, Markov’s inequality and
the moment-generating function of the standard normal distribution it holds with
r =

√
C log (2qT ) that

p P
(

sup
0≤s≤1

∣∣∣B(θi)
s,1

∣∣∣ ≥
√

C log (2qT )
)

≤ 4p P
(

B
(θi)
1,1 ≥

√
C log (2qT )

)

≤ 4p
E
[
erB

(θi)
1,1

]
er

√
C log(2qT )

= 4p exp
(

r2

2 − r
√

C log (2qT )
)

= 4p exp
(

−C log (2qT )
2

)
≤ 4pq

− C
2

T .

Therefore by subadditivity, we obtain that

P
(

max
i=1,...,P

∥∥∥∥(Σ(i)
T

) 1
2
∥∥∥∥ max

i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥∥∥B(θi)
θi

− B(θi)
θi+t

∥∥∥ ≥
√

Cp log (2qT )
)

≤ 4pq
1− C

2
T .

which in combination with (A.1) proves the assertion.
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Since obviously (ii) follows from (iii), we will only prove the latter.
(iii) Similar to above it holds that

max
i=1,...,qT

sup
DT

∥di∥2 ≤s≤hT

√
DT

∥∥∥W(θi)
θi

− W(θi)
θi+s

∥∥∥
s ∥di∥

≤ max
i=1,...,P

√∥∥∥Σ(i)
T

∥∥∥ max
i=1,...,qT

sup
DT

∥di∥2 ≤s≤hT

√
DT

∥∥∥B(θi)
θi

− B(θi)
θi+s

∥∥∥
s ∥di∥

.

By the self-similarity and the of the Wiener process we obtain with t = s ∥di∥2 /DT

that

sup
DT

∥di∥2 ≤s≤hT

√
DT

∥∥∥B(θi)
θi

− B(θi)
θi+s

∥∥∥
s ∥di∥

D= sup
DT

∥di∥2 ≤s≤hT

√
DT

∥∥∥B(θi)
s

∥∥∥
s ∥di∥

D= sup
1≤t≤ hT ∥di∥2

DT

∥∥∥B(θi)
t

∥∥∥
t

.

It holds that

P

 sup
1≤t≤ hT ∥di∥2

DT

∥∥∥B(θi)
t

∥∥∥
t

≥
√

Cp log (2qT )

 ≤ P
sup

t≥1

∥∥∥B(θi)
t

∥∥∥
t

≥
√

Cp log (2qT )


≤
∑
l≥0

P
 sup

2l≤t≤2l+1

∥∥∥B(θi)
t

∥∥∥
t

≥
√

Cp log (2qT )
 .

With the substitution r = t/2l+1, the reflection principle, the self-similarity of the
Wiener process and Markov’s inequality with s =

√
2lC log qT it holds that

P
 sup

2l≤t≤2l+1

∥∥∥B(θi)
t

∥∥∥
t

≥
√

Cp log (2qT )
 = P

 sup
1
2 ≤r≤1

∥∥∥B(θi)
2l+1r

∥∥∥
2l+1r

≥
√

Cp log (2qT )


= P
 sup

1
2 ≤r≤1

∥∥∥B(θi)
r

∥∥∥
√

2l+1r
≥
√

Cp log (2qT )
 ≤ P

 sup
1
2 ≤r≤1

∥∥∥B(θi)
r

∥∥∥ ≥
√

2lCp log (2qT )


≤ P
(

sup
0≤r≤1

∥∥∥B(θi)
r

∥∥∥ ≥
√

2lCp log (2qT )
)

≤ p P
(

sup
0≤r≤1

∣∣∣B(θi)
r,1

∣∣∣ ≥
√

2lC log (2qT )
)

≤ 4p P
(

B
(θi)
1,1 ≥

√
2lC log (2qT )

)
≤ 4p

E
[
esB

(θi)
1,1

]
es

√
2lC log(2qT )

= 4p exp
(

s2

2 − s
√

2lC log (2qT )
)

= 4p exp
(

−2lC log (2qT )
2

)
= 4p(2qT )−2l−1C .
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Therefore, it holds that

∑
l≥0

P
 sup

2l≤t≤2l+1

∥∥∥B(θi)
t

∥∥∥
t

≥
√

Cp log (2qT )
 ≤ 4p

∑
l≥−1

q−2lC
T

≤ 16p

∞∫
1/4

(2qT )−x dx = 16p(2qT )−C/4

C log (2qT ) .

By subadditivity we obtain that

P

 max
i=1,...,qT

sup
DT

∥di∥2 ≤s≤hT

√
DT

∥∥∥B(θi)
θi

− B(θi)
θi+s

∥∥∥
s ∥di∥

≥
√

Cp log (2qT )

 ≤ 16p(2qT )1−C/4

C log (2qT ) ,

which in combination with (A.1) proves the assertion. (b) By the invariance principle
from Assumption 2.1 and (a) (i) it holds that

max
i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥∥∥R̃(θi)
θi

− R̃(θi)
θi+t

∥∥∥
≤ max

i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥∥∥(R̃(θi)
θi

− R̃(θi)
θi+t

)
−
(
W(θi)

θi
− W(θi)

θi+t

)∥∥∥
+ max

i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥∥∥W(θi)
θi

− W(θi)
θi+t

∥∥∥
≤ 2 max

i=1,...,P
sup

0≤t≤T

1√
ξT

∥∥∥R̃(i)
t − W(i)

t

∥∥∥+ OP

(√
log (2qT )

)

= OP

(
max

{
T 1/2νT√

ξT

,
√

log (2qT )
})

.

Note that if qT = OP (1) and that forward or backward invariance principles starting
in θi exist, it holds that

max
i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥∥∥(R̃(θi)
θi

− R̃(θi)
θi+t

)
−
(
W(θi)

θi
− W(θi)

θi+t

)∥∥∥ = OP (νT ) = oP (1),

thus proving the assertion.

Remark A.1. Note that in our situation, it is typically the case that ξT = h, and
therefore the order in Proposition A.4 (b) is typically given by OP

(√
log (2qT )

)
due

to Assumption 3.1.

Remark A.2. In the simulation study in Section 6, we study three-dimensional
renewal processes with intensity changes at 0 < c1 < . . . < cq < T . For mean
inter-event times µ1, . . . , µq+1 > 0 with µi+1 ̸= µi, the intensity changes are given by
di = (1/µi+1 −1/µi, 1/µi+1 −1/µi, 1/µi+1 −1/µi). In order to explain the differences
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in the detection rates between the dependent choice (B) and the dependent choice (C)
for the matrix Â

−1
t in (3.7), we study the behavior of the signal term of M′

tÂ
−1
t Mt.

By (3.5), we can write
m′

tÂ
−1
t mt = Ctd′

iA
−1di

with some constant Ct > 0 depending on t, h, µ, σ, where σ is the standard deviation
of the inter-event times. In (B), A is the 3 × 3-identity matrix. In (C) A a 3 × 3
matrix with 1 on the diagonal and the respective correlations between the dimensions
on the off-diagonal entries. We obtain by straightforward algebraic calculus that

for type (B),

m′
tÂ

−1
t mt = 3Ct

(
1

µi+1
− 1

µi

)
.

For type (C) with pairwise correlations of 0.2 between dimensions,

m′
tÂ

−1
t mt = 15

7 Ct

(
1

µi+1
− 1

µi

)
.

For type (C) with pairwise correlations of −0.2 between dimensions,

m′
tÂ

−1
t mt = 5Ct

(
1

µi+1
− 1

µi

)
.

A.1 Γ(s, λ)-distribution
Definition A.1. Let s, λ > 0. The probability density function of the Γ(s, λ)
distribution is given by

fΓ(s,λ)(x) = xs−1e−λxλs

Γ(s) ,

where Γ(s) denotes the gamma function.

If X ∼ Γ(s, λ), then it holds by straightforward calculations that

E [X] = s

λ

Var [X] = s

λ2 .

The moment-generating function (MGF) is given by

MΓ(s,λ)(t) = 1(
1 − t

λ

)s .

for t < 1/λ.
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Lemma A.5. Let s1, s2, λ > 0. Let X ∼ Γ(s1, λ), Y ∼ Γ(s2, λ) be independent.
Then X + Y ∼ Γ(s1 + s2, λ).

Proof. This follows immediately from the MGF of the Gamma-distribution. As X
and Y are independent, it holds for t < 1/λ that

MX+Y (t) = MX(t)MY (t) = 1(
1 − t

λ

)s1+s2
= MΓ(s1+s2,λ)(t).

Remark A.3. (a) In the simulation study in Section 6, for the results in Table
6.2, we have coupled the inter-event times by having (with a slight abuse of
notation) Xj ∼ Γ(s, λ) and X4 ∼ Γ(s∗, λ) and Yj = Xj + X4 for j = 1, 2, 3. By
the above properties of the Γ-distribution, the correlation between Yj and Yk for
1 ≤ j < k ≤ 3 is

ρ = Cov [Yj, Yk]√
Var [Yj]

√
Var [Yk]

= Var [X4]√
Var [Yj]

√
Var [Yk]

= s∗

s + s∗ .

Thus, for given mean µ > 0, variance 0 < σ2 < ∞ of the inter-event times and
given correlation 0 ≤ ρ ≤ 1 between the dimensions, it holds by Lemma A.5
that

µ = s + s∗

λ
, σ2 = s + s∗

λ2 , ρ = s∗

s + s∗ .

By solving for s, s∗ and λ, we obtain that

s = (1 − ρ)µ2

σ2 , λ = µ

σ2 , s∗ = ρµ2

σ2 .

(b) For the results in Table 6.3, we have coupled the inter-event times by having
(with a slight abuse of notation) Yj = Xj +∑

1≤k<j Xk,j −∑
j<k≤3 Xj,k j = 1, 2, 3

where the Xj = X
(i)
j are sequences of independent in time Γ(s, λ)-distributed ran-

dom variables. The Xj,k = X
(i)
j,k are sequences of independent in time N (0, s2

1)-
distributed random variables. For given mean µ > 0, variance 0 < σ2 < ∞ of
the inter-event times and given correlation −1/2 < ρ ≤ 0 between the dimen-
sions, we have by the above properties of the Γ-distribution for i = 1, 2, 3 and
1 ≤ j < k ≤ 3 that

µ = E [Yi] = s

λ

σ2 = Var [Yi] = Var [Y1] = Var [X1 + X1,2 + X1,3] = s

λ2 + 2s2
1

ρ = Cov [Yj, Yk] = Cov [Y1, Y2] = Cov [X1 + X1,2 + X1,3, X1 − X1,2 + X2,3]√
Var [Y1]

√
Var [Y2]
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= Var [X1] − Var [X1,2]
σ2 =

s
λ2 − s2

1

σ2 .

By solving for s, s2
1 and λ, we obtain that

s = 3µ2

σ2(2ρ + 1) , λ = 3µ

σ2(2ρ + 1) , s2
1 = σ2(1 − ρ)

3 .

A.2 The space D([0, 1]p)
Definition A.2. (Compare Wichura (1969), Definition 1)
Let Cp be the set of all continuous functions from [0, 1]p to R. Let D([0, 1]p) be the
uniform closure of the set of all step functions that are constant on sets of the form
[a1, b1) × . . . × [ap, bp). Let A be the σ-algebra on Dp generated by the projection
mappings πt : f → f(t), t ∈ [0, 1]p.

A sequence (Pn)n≥1 of probability measures on (D([0, 1]p), A) converges weakly in
the U-topology to a probability measure P on (D([0, 1]p), A) if for every measurable
function f : D([0, 1]p) → R that is continuous in the topology of uniform convergence
on D([0, 1]p), it holds that ∫

f dPn →
∫

f dP.

Theorem A.6. (Wichura (1969), Theorem 2)
A sequence {XT } of stochastic processes in D([0, 1]p) is weakly convergent to a process
X which a.s. belongs to the class of uniformly continuous functions on [0, 1]p if and
only if

(i)
(Xt1,T , . . . , Xtn,T )′ D−→ (Xt1 , . . . , Xtn)′

for all n ∈ N, t1, . . . , tn ∈ S0, where S0 is a dense subset of [0, 1]p.

(ii)
lim
δ→0

lim sup
T →∞

P (wδ,T (XT ) ≥ x) = 0

for all x > 0, where

wδ,T (XT ) = sup
∥s−t∥∞<δ

|Xs,T − Xt,T | .

Lemma A.7. Let D ([0, 1]p) be equipped with the topology induced by the maximum
norm. For f = (f1, . . . , fP )′, g = (g1, . . . , gP )′ ∈ (D ([0, 1]p))P and x = (x1, . . . , xn)′,
y = (y1, . . . , yn)′ ∈

(
RP
)n

let

d1(f, g) = max
i=1,...,P

sup
t∈[0,1]p

|fi(t) − gi(t)|

d2(x, y) = max
i=1,...,n

∥xi − yi∥∞ .
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Denote for n ∈ N, t1, . . . , tn ∈ [0, 1]p by πt1,...,tn : (D ([0, 1]p))P →
(
RP
)n

, πt1,...,tn(f) =
(f(t1), . . . , f(tn))′ the projection mapping from (D ([0, 1]p))P to

(
RP
)n

. If (D ([0, 1]p))P

is equipped with the metric d1 and
(
RP
)n

is equipped with the metric d2 then πt1,...,tn

is continuous.

Proof. Let f = (f1, . . . , fP )′, g = (g1, . . . , gP )′ ∈ (D ([0, 1]p))P . Then it holds that

d2 (πt1,...,tn(f), πt1,...,tn(g)) = max
i=1,...,P

∥πt1,...,tn(fi) − πt1,...,tn(gi)∥∞

= max
i=1,...,P

∥(fi(t1), . . . , fi(tn))′ − (gi(t1), . . . , gi(tn))′∥∞ = max
i=1,...,P

max
j=1...,n

|fi(tj) − gi(tj)|

≤ max
i=1,...,P

sup
t∈[0,1]p

|fi(t) − gi(t)| = d1(f, g),

thus showing that πt1,...,tn is Lipschitz-continuous with Lipschitz-constant 1.

Definition A.3. (Extension of Csörgö and Révész (1981), 1.11) Let (Wt)t∈[0,1]p be a
p-parameter, real-valued stochastic process. Let s = (s1, . . . , sp)′, t = (t1, . . . , tp)′ ∈
Rp with si ≤ ti for all i. For the hyperrectangle R = [s, t) define

WR =
∑

d=(d1,...,dp)′∈{0,1}
(−1)p−

∑
i

diWs+d⊙(t−s).

(i) For any hyperrectangle R ⊂ [0, ∞)p, it holds that

WR ∼ N (0, λ(R)).

(ii) Wt = 0 for all t = (t1, . . . , tp)′ with ti = 0 for at least one i.

(iii) For pairwise disjoint rectangles R1, . . . , Rn ⊂ [0, 1]p, WR1 , . . . , WRp are inde-
pendent.

(iv) (Wt)t∈[0,1]p almost surely belongs to the class of uniformly continuous functions
on [0, 1]p.

Note that (i)-(iii) implies that for s = (s1, . . . , sp)′, t = (t1, . . . , tp)′ ∈ Rp,

E [WsWt] =
p∏

i=1
min {si, ti} .

B Norms, Eigenvalues
Definition B.1. Let a = (a1, . . . , an)′ ∈ Rn, 1 ≤ p < ∞. Define

∥a∥p =
(

n∑
i=1

|ai|p
) 1

p

∥a∥∞ = max
1=1,...,n

|ai|.

and write ∥·∥ = ∥·∥2 for the Euclidean norm.
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Lemma B.1. Let A ∈ Rn×n be a symmetric, positive definite matrix. Let λ1, . . . , λn >
0 be the (not necessarily unique) eigenvalues of A. Then it holds that

(i) If λ > 0 is an eigenvalue of A, then λ2 is an eigenvalue of A2.

(ii) If λ > 0 is an eigenvalue of A, then λ−1 is an eigenvalue of A−1.

Proof. (i)+(ii) Let x be an eigenvector corresponding to λ. Then it holds by defini-
tion of an eigenvalue that

A2x = A(Ax) = A(λx) = λAx = λ2x

λ(A−1x) = A−1(λx) = A−1Ax = x

⇒ A−1x = λ−1x,

thus proving the assertion.

Definition B.2. Let A ∈ Rn×m, 1 ≤ p ≤ ∞. Define the operator norm by

∥A∥p = sup
x ̸=0

∥Ax∥p

∥x∥p

and denote by ∥·∥ = ∥·∥2 the operator norm induced by the vector Euclidean norm.

Lemma B.2. Let A, B ∈ Rn×m.

(i) Let λ1, . . . , λk be the eigenvalues of A′A. Then

∥A∥ =
√

max {|λ1|, . . . , |λk|}.

(ii) Then it holds that
∥AB∥ ≤ ∥A∥ ∥B∥ .

Proof. (i) See e.g. Shores (2018), Theorem 6.14 (3).
(ii) Follows immediately from Definition B.2, see e.g. Shores (2018) Theorem 6.13.

Corollary B.3. Let A ∈ Rn×n a symmetric positive definite matrix with eigenvalues
λmin = λ1 < . . . < λk = λmax. Furthermore, let A1/2 be a positive definite matrix
such that A = (A1/2)′(A1/2). Then it holds that

(i)

∥A∥ = λmax

(ii) ∥∥∥A−1
∥∥∥ = λ−1

min

(iii) ∥∥∥A1/2
∥∥∥ =

√
∥A∥.
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Proof. (i) Since A is symmetric and positive definite, the maximum eigenvalue of
A′A = A2 is λ2

max by Lemma B.1 (i). Therefore the assertion follows immediately
from Lemma B.2.
(ii) By Lemma B.1 (ii), it holds that if λ is an eigenvalue of A, then λ−1 is an
eigenvalue of A−1. By (i), it holds that

λ−1
min = max

{
λ−1

1 , . . . , λ−1
k

}
=
∥∥∥A−1

∥∥∥ .

(iii) By Lemma B.2 it holds that if λ is an eigenvalue of A, then
√

λ is an eigenvalue
of A1/2. By (i), it holds that

∥∥∥A1/2
∥∥∥ =

√
max {λ1, . . . , λk} =

√
λmax =

√
∥A∥.

Lemma B.4. Let A ∈ Rn×n be a symmetric positive definite matrix with eigenvalues
λ1, . . . , λn and let λmin = min {λ1, . . . , λn}. Then for any x ∈ Rn it holds that

x′Ax ≥ λmin ∥x∥2 .

Proof. There exists a decomposition A = Q′DQ with D = diag(λ1, . . . , λn) and Q
orthogonal, see e. g. Shores (2018) Theorem 5.13. Let y = Qx. Then it holds that

x′Ax = x′Q′DQx = y′Dy =
n∑

i=1
λiy

2
i ≥ λmin ∥y∥2 = λmin ∥x∥2 .

C Convex sets, Algebraic properties
Lemma C.1. (a) It holds for any C, γ > 0, s ∈ Rp that∣∣∣∣{kγ

∣∣∣∣k ∈ Zp
}

∩ [s − Cγ, s + Cγ]
∣∣∣∣ ≤ (2 ⌊C⌋ + 1)p .

(b) Let s, t ∈ Rp be such that si ≤ ti for all i = 1, . . . , p and let ∥s − t∥∞ ≤ γ. If
γ2 > 0 and γ1 − γ2 ≥ γ, then

[t, t + γ2] ⊂ [s, s + γ1] .

(c) Let s, t ∈ Rp with ∥s − t∥∞ ≤ γ and let γ1 ≥ γ. Then it holds that

[s, s + γ1] ∩ [t, t + γ1] ̸= ∅.
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Proof. (a) Let i = 1, . . . , p. Since for any k1 ̸= k2 ∈ Z, |k1γ − k2γ| ≥ γ, it holds that∣∣∣∣{kγ
∣∣∣∣k ∈ Z

}
∩ [si − Cγ, si + Cγ]

∣∣∣∣ ≤ 2 ⌊C⌋ + 1.

Therefore, the assertion follows by straightforward combinatorics.

(b) Let i = 1, . . . , p. Since ti−si ≤ γ ≤ γ1−γ2, it holds that si ≤ ti ≤ ti+γ2 ≤ si+γ1,
it follows that

[ti, ti + γ2] ⊂ [si, si + γ1]
and the assertion follows immediately.

(c) Let i = 1, . . . , p. W.l.o.g. let ti = max {si, ti}. Since ti − si ≤ γ ≤ γ1, it
holds that si ≤ ti ≤ si + γ1. Therefore, max {si, ti} = ti ∈ [si, si + γ1] ∩ [ti, ti + γ1].
It follows that

(max {s1, t1} , . . . , max {sp, tp})′ ∈ [s, s + γ1] ∩ [t, t + γ1] ,

thus showing the assertion.

Lemma C.2. (Federer (1969), Theorem 3.2.35 and Billingsley (1999), Appendix
M17)
Let A ⊂ R2 be convex. Let δ > 0. It holds that

λ(Aδ) − λ(A) = ℓ(∂A)δ + πδ2.

Lemma C.3.
For any convex set A ⊂ R2 it holds that∣∣∣∣∣

{
(i, j)′ ∈ Z2 :

(
i

T
,

j

T

)′
∈ A

}∣∣∣∣∣ = T 2λ(A) + O(T )

Proof. The idea of the proof is illustrated in Figure C.1. Furthermore, this statement
can be found in e. g. Gruber and Lekkerkerker (1987), p.141 and Herz (1962), p.2
who refer to the statement as the ’trivial bound’. Let

MT =
⋃

(i,j)′∈Z2:

( i
T

, j
T )′

∈A

([
i

T
,
i + 1

T

)
×
[

j

T
,
j + 1

T

))
. (C.1)

By construction, ∣∣∣∣∣
{

(i, j)′ ∈ Z2 :
(

i

T
,

j

T

)′
∈ A

}∣∣∣∣∣ = T 2λ(MT ).

Therefore, by establishing bounds for λ(MT ), we are able to give bounds on the
number of lattice points of the form (i/T, j/T )′ ∈ A. Note that by Lemma C.2, we
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Figure C.1: Illustration of the idea of the proof of Lemma C.3: For a convex set A,
the number of grid points inside A is equal to T 2λ(MT ), with MT defined in (C.1).
With the help of the convex hull of an ’inner’ set of points both in A and MT , we
are able to give an upper bound for the difference of the Lebesgue measures of A
and MT .

know the difference in Lebesgue measures between a convex set and an expanded
version. Therefore, the idea of the proof is to find a suitable convex set B and a
suitable δ = δ(T ) such that B ⊂ MT ⊂ Bδ such that the assertion can be shown.
In order to do that, we define a set of ’inner’ points

IT =
{(

i

T
,

j

T

)′ ∣∣∣∣(i, j) ∈ Z2,

(
i + k

T
,
j + m

T

)′

∈ A for all k, m ∈ {−1, 0, 1}
}

of the form (i/T, j/T )′ such that for any point in IT , all neighbors are inside A.
Denote by conv(IT ) the convex hull of IT .
Our goal is to show that conv(IT ) ⊂ A∩MT . Note that in R2, the border of a convex
hull of a point set IT is a polygonal chain of a subset of points in IT . Therefore, it
is sufficient to show that for any s, t ∈ IT , λ ∈ [0, 1], λs + (1 − λ)t ∈ A ∩ MT as it
implies that any polygonal chain of a subset of points in IT is a subset of A ∩ MT .
Since by definition of IT , s, t ∈ A, and since A is convex, λs + (1 − λ)t ∈ A as well.
For λs+(1−λ)t ∈ MT , we need to show the existence of some (i0, j0)′ ∈ Z2 such that
(i0/T, j0/T )′ ∈ A and λs + (1 − λ)t ∈ [i0/T, (i0 + 1)/T ) × [j0/T, (j0 + 1)/T ) ⊂ MT .
By construction of IT , it holds that
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[
s1 − 1

T
, s1 + 1

T

)
×
[
s2 − 1

T
, s2 + 1

T

)
⊂ A,[

t1 − 1
T

, t1 + 1
T

)
×
[
t2 − 1

T
, t2 + 1

T

)
⊂ A

and therefore, due to the convexity of A,[
λs1 + (1 − λ)t1 − 1

T
, λs1 + (1 − λ)t1 + 1

T

)
×
[
λs2 + (1 − λ)t2 − 1

T
, λs2 + (1 − λ)t2 + 1

T

)
⊂ A.

Therefore, there exists (i0, j0)′ ∈ Z2 with

λs + (1 − λ)t ∈
[
i0

T
,
i0 + 1

T

)
×
[
j0

T
,
j0 + 1

T

)
⊂
[
λs1 + (1 − λ)t1 − 1

T
, λs1 + (1 − λ)t1 + 1

T

)
×
[
λs2 + (1 − λ)t2 − 1

T
, λs2 + (1 − λ)t2 + 1

T

)
,

It follows that [i0/T, (i0 + 1)/T ) × [j0/T, (j0 + 1)/T ) ⊂ MT and therefore, λs + (1 −
λ)t ∈ MT .
Furthermore, if T is large enough, it holds due to the convexity of A and λ(A) > 0
that for each point of the form (i/T, j/T )′ ∈ A, there exist k, m ∈ {−1, 0, 1} such
that ((i + k)/T, (j + m)/T )′ ∈ IT . Furthermore, for each x ∈ MT ∪ A, there exist
(i0/T, j0/T )′ ∈ A and k0, m0 ∈ {−1, 0, 1} such that

x ∈
[

i0 + k0

T
,
i0 + k0 + 1

T

)
×
[
j0 + m0

T
,
j0 + m0 + 1

T

)
.

Therefore, we obtain that
min

y∈conv(IT )
∥x − y∥ ≤ min

y∈IT

∥x − y∥ ≤ min
z∈MT ,y∈IT

(∥x − z∥ + ∥z − y∥)

≤ 2
√

2
T

+
√

2
T

= 3
√

2
T

and therefore
conv(IT ) ⊂ MT ∩ A ⊂ MT ∪ A ⊂ (conv(IT ))3

√
2/T .

By Lemma C.2 (i), we obtain that

|λ(MT ) − λ(A)| ≤ λ
(

(conv(IT ))3
√

2/T
)

− λ (conv(IT ))

≤ 3
√

2
T

ℓ (∂ conv(IT )) + 18
T 2 π2,

which shows the assertion as the boundary of conv(IT ) has finite length due to the
convexity and boundedness of the set.
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D Miscellaneous
Lemma D.1. (a) For i = 1, . . . , n let fi : (Xi, di) → (Xi+1, di+1) be Lipschitz-

continuous functions with Lipschitz-constants Ci > 0. Then, the composition
fn ◦ . . . ◦ f1 : (X1, d1) → (Xn+1, dn+1) is Lipschitz-continuous, as well.

(b) Addition and Subtraction in R are Lipschitz-continuous.

(c) The absolute value |x| is a Lipschitz-continuous function from R to R.

(d) max {x1, . . . , xn} and min {x1, . . . , xn} are Lipschitz-continuous mappings from
Rn to R.

Proof. (a) Let x, y ∈ X1. We obtain iteratively that

dn+1 ((fn ◦ . . . ◦ f1)(x), (fn ◦ . . . ◦ f1)(y))
= dn+1 (fn ◦ (fn−1 ◦ . . . ◦ f1)(x), fn ◦ (fn−1 ◦ . . . ◦ f1)(y))

≤ Cndn ((fn−1 ◦ . . . ◦ f1)(x), (fn−1 ◦ . . . ◦ f1)(y)) ≤ . . . ≤
n∏

i=1
Cid1(x, y).

Therefore, fn ◦ . . . ◦ f1 is Lipschitz-continuous with Lipschitz-constant ∏n
i=1 Ci.

(b) The addition-operator is defined as

P : R×R −→ R
(x1, x2) 7→ x1 + x2.

For x = (x1, x2)′, y = (y1, y2)′ let w.l.o.g. |x1 − y1| ≥ |x2 − y2|. It holds that

|P (x1, x2) − P (y1, y2)|2 = |x1 − y1 + x2 − y2|2

= (x1 − y1)2 + (x2 − y2)2 + 2(x1 − y1)(x2 − y2) ≤ 4(x1 − y1)2

≤ 4
(
(x1 − y1)2 + (x2 − y2)2

)
= 4 ∥x − y∥2 .

Therefore, Addition is Lipschitz-continuous with Lipschitz-constant 2.
The proof for Subtraction is analogous.

(c) By the reverse triangle inequality,

||x| − |y|| ≤ |x − y|

for all x, y ∈ R . Therefore, the absolute value is Lipschitz-continuous with Lipschitz-
constant 1.

(d) For n = 2 it holds for x1, x2 ∈ R that

max {x1, x2} = x1 + x2 + |x1 − x2|
2
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min {x1, x2} = x1 + x2 − |x1 − x2|
2 .

By (a)-(c), max {x1, x2} and min {x1, x2} are Lipschitz-continuous as composition of
Lipschitz-continuous functions.
For general n ∈ N, we obtain inductively that

max {x1, . . . , xn} = max {max {x1, . . . , xn−1} , xn}
min {x1, . . . , xn} = min {min {x1, . . . , xn−1} , xn}

are compositions of Lipschitz-continuous functions. Therefore, the assertion follows
by (a).

E Additional graphics for the Simulation study in
Section 12

110



Figure E.1: The graphic shows the discretized versions of the sets A(1,α)-A(3,α) (see
Figure 11.1) in the situation of how we use them in the simulation study in Section
12. There, we have T = 100 and d = 0.1, leading to a ’circle’ with a diameter of
ten pixel. ∆ is the difference between the angle of the ’inner strip’ A(1,α) and the
true angle of the fissure in our simulation study, which is turned by 50◦ against the
x-axis. A(1,α) is displayed in black while A(2,α) and A(3,α) are displayed in gray.
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Figure E.2: Comparison of the detection rates for all combinations of signal, band-
width, width of the fissure and variance estimators when considering the fissure to be
detected if at least one of the pixel belonging to the fissure is significant. The yellow
diamond-shaped points indicate the detection rates for the minimum-type estimator
(A). The green triangle-shaped points indicate the detection rates for the local ro-
bust estimator (B). The red bullet-shaped points indicate the detection rates for the
global robust estimator (C). The blue square-shaped points indicate the detection
rates for the use of the true variance (D). On the x-axis, the misspecification of the
angle of the fissure is displayed, on the y-axis the detection rates are displayed.
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Figure E.3: Comparison of the detection rates for all combinations of signal, band-
width, width of the fissure and variance estimators when considering the fissure to be
detected if at least one of the pixel belonging to the fissure is significant. The yellow
diamond-shaped points indicate the detection rates for the minimum-type estimator
(A). The green triangle-shaped points indicate the detection rates for the local ro-
bust estimator (B). The red bullet-shaped points indicate the detection rates for the
global robust estimator (C). The blue square-shaped points indicate the detection
rates for the use of the true variance (D). On the x-axis, the misspecification of the
angle of the fissure is displayed, on the y-axis the detection rates are displayed.
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