Scan statistics for data
segmentation of stochastic

processes and anomaly detection
in large image data

Dissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

von Philipp Klein, M. Sc.
geb. am 08.12.1988 in Lahnstein

genehmigt durch die Fakultat fiir Mathematik
der Otto-von-Guericke-Universitat Magdeburg

Gutachter: Prof. Dr. Claudia Kirch
Dr. Haeran Cho

Eingereicht am:  21.02.2022
Verteidigung am: 16.06.2022









Abstract

Pre-processing is an important step in the analysis of data. For example, it can used
to segment time series into stretches with approximately constant means but also
for the analysis of image data by e. g. identifying regions containing anomalies. Scan
statistics provide a powerful and oftentimes computationally effective tool for both
the estimation of structural breaks, so called change points, in time series and the
estimation of locations that contain anomalies in image data.

In the first part of this thesis, we present statistical methodology based on scan
statistics with the intent of estimating mean changes on a general class of multi-
variate stochastic processes. More precisely, these processes fulfill strong invariance
principles and include e. g. partial sum, renewal and diffusion processes. We intro-
duce a scan statistic based on moving sum (MOSUM) statistics in order to estimate
the locations of abrupt mean changes of the processes introduced above. We analyze
the behavior of this statistic both in the existence and the absence of change points
and provide limit distributions in the case of no change points. We introduce esti-
mators for these change points and show consistency for both the case of linear and
sublinear bandwidths. Furthermore, under mild assumptions we are able to show
convergence rates and provide the asymptotic distribution for the distance between
the change points and their estimators.

In the second part of this thesis, we develop a procedure that aims to identify areas
containing potentially dangerous anomalies such as fissures in large scans of concrete
blocks as a starting point for further methods, e. g. machine learning algorithms
while trying to discard areas with natural anomalies (gravel, air etc.). One can ob-
serve that locally, fissures are rectangle-shaped objects with small widths while the
natural anomalies resemble bubbles. Therefore, inspired by the use of windows in
MOSUM statistics and based on the above described geometric properties of fissures
and natural anomalies, we present a MOSUM-type scan statistic using rectangle- and
circle-shaped windows in order to detect areas with potentially dangerous anomalies
(fissures) and discard areas with natural anomalies. We analyze the performance
of our procedure by means of a simulation study and show convergence of our scan
statistic to a Gaussian process in the absence of anomalies which is important in
order to calculate thresholds for our procedure. Furthermore, we provide limit theo-
rems for scan statistics using shapes for windows that include, but are not not limited
to, convex sets.



Zusammenfassung

Die Vorverarbeitung der Daten ist ein wichtiger Schritt im Bereich der Datenanal-
yse. Sie kann sowohl dazu genutzt werden, Zeitreihen in Abschnitte mit annahernd
konstanten Erwartungswerten zu unterteilen, als auch fiir die Analyse von Bilddaten,
um dort z. B. Regionen zu identifizieren, die Anomalien aufweisen. Scan-Statistiken
sind wirkungsvolle und oftmals recheneffiziente Methoden sowohl fiir die Schitzung
von Strukturbriichen, so genannter Change-Points in Zeitreihen, als auch fiir die
Schatzung von Anomalien enthaltenden Regionen in Bilddaten.

Im ersten Teil dieser Arbeit stellen wir statistische Methoden basierend auf Scan-
Statistiken vor, mit dem Ziel, Erwartungswertanderungen in einer allgemeinen Klasse
multivariater stochastischer Prozesse zu schétzen. Fiir diese Prozesse fordern wir
lediglich, dass sie starke Invarianzprinzipien erfiillen. Dies beinhaltet beispielsweise
Partialsummen-, Erneuerungs- und Diffusionsprozesse. Wir stellen eine Scan-Statistik
auf Basis so genannter 'moving sum’ (MOSUM)-Statistiken vor mit dem Ziel, die
genaue Lage von abrupten Mittelwertanderungen in den oben vorgestellten Prozessen
zu schiatzen. Wir analysieren das Verhalten dieser Statistik sowohl im Falle der Ex-
istenz als auch der Abwesenheit von Strukturbriichen und leiten Grenzverteilungen
der Statistik im Falle der Abwesenheit von Strukturbriichen her. Ferner stellen wir
auf der Scan-Statistik basierende Schétzer fiir die Strukturbriiche vor und zeigen
Konsistenzresultate sowohl fiir lineare als auch fiir sublineare Bandbreiten. Dariiber
hinaus zeigen wir unter schwachen Voraussetzungen Konvergenzraten und geben die
Grenzverteilung fiir den Abstand zwischen den Strukturbriichen und ihren Schétzern
an.

Im zweiten Teil dieser Arbeit stellen wir ein Verfahren zur Detektion von Rissen in
groflen Bildern von Betonblécken vor, welches als Vorverarbeitung fiir weitere Metho-
den wie z. B. solche des Maschinellen Lernens dienen kann. Ein weiteres Ziel unseres
Verfahren ist, Regionen mit natiirlichen Anomalien im Beton wie Lufteinschliissen,
Schotter usw. zu eliminieren. Basierend auf lokalen geometrischen Eigenschaften
von Rissen und natiirlichen Anomalien, die optisch Blasen dhneln, stellen wir eine
MOSUM- Scan-Statistik vor, die kreisférmige und rechteckige Fenster verwendet um
Regionen mit potenziell gefdhrlichen Anomalien wie Rissen zu identifizieren und Re-
gionen mit natiirlichen Anomalien wie Lufteinschliissen, Schotter usw. zu eliminieren.
Wir analysieren die Performance unseres Verfahrens in einer Simulationsstudie und
zeigen die Konvergenz unserer Statistik gegen das Funktional eines GauB-Prozesses
im Falle der Abwesenheit von Anomalien. Des weiteren zeigen wir Grenzwertsitze
fiir Scan-Statistiken, die als Scan-Fenster eine geometrische Klasse von Mengen ver-
wendet, die konvexe Mengen beinhaltet, aber nicht auf diese beschréankt ist.
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Notation

Vectors, Vector norms

Let TeR, ¢g>1,peN, s=(s1,...,5,) € R".

s' Transpose of vector s

Isll, gmorm of s

|sll,, Maximum norm of s

sl =sll, (Euclidean norm of s)

LSJT (I_S;WTJ’“.7 Ls;TJ)

Matrices, Matrix norms

Let m,p € N, ¢ € [1,00) U {0}, A € R™P.

A’ Transpose of matrix A
At Inverse matrix of A for invertible A € RP*P
AY? Hermitian positive definite square root for positive definite A
A2 Hermitian positive definite square root for positive definite A"
diag(as,...,a,) RP*P-valued diagonal matrix with ay,...,a, on diagonal
I, m X m identity matrix
1A, Operator norm of A induced by g—vector norm
4] —|lAl,
Sets

Let pe N, A, B C R, s € R”.

A, A Complement of A

A(A) Lebesgue measure of A

((0A) Perimeter of A C R?

AAB Symmetric difference (A\ B) U (B \ A)
f A, G A; for disjoint Ay, ..., A,

i=1 i=1

A, A(s), A+s {xeR:x—sec A}

A9 {:BGR”:12£||33—3|| ga}

conv(A) Convex hull of A



Arithmetic operations

Let peN, ceR, s=(s1,...,5y), t = (t1,...,t,) € R".

cs, sc (csq, ..

cN"  {(ciy, ..
sOt (Sltl,..
c? (1.,

., ¢8p)
i) | (i, ..o 0p) € NP}

-y Sptp)
Csp)/

Probability theory

Let pe N. Let X, Y, X1, X5,... be random variables. Let X be a random vector in
RP. Let u € RP, 3 € RP*P.

E [X]

Var [X]
Cov [X]
Cov [X,Y]
L(X)

—
Ng\e
>

PR
1o e |
VIV

3

Expected value of random variable/vector X

Variance of X

Covariance matrix X

Covariance of random variables X and Y

Distribution of X

Cumulative distribution function (CDF) of distribution £(X)
Quantile function of distribution £(X)

"distributed as’

Normal distribution with mean p, covariance matrix X
CDF of N(0,1)

Gamma distribution with shape s > 0, rate A > 0
Stochastic process over an index set [

L(X)=L(Y)

Almost sure convergence of X,, to X as n — oo
Stochastic convergence of X,, to X as n — oo

Convergence in distribution of random variables

Weak convergence of stochastic processes in some functional
space with a specified norm

Space of bounded continuous functions on [0, 1]?
p-dimensional 'equivalent’ to the space of cadlag (right-
continuous with left limits) functions D(]0, 1]).

For further details, see Section .



(Stochastic) Landau Notation

Let (an)nen, (bn)nen be deterministic sequences, b, > 0. Let (X,)nen, (Yn)nen be
(stochastic) sequences with Y,, > 0 a.s.

a, = O(by) AC >0, |a,| < Cb, VneN

a, = o(by) an /b, — 0 as n — oo

X, = Op(Yy) Clim limsupP (|X,| /Y, > C) =0
—00 n—oo

X, =o0p(Y,) X,./V,250asn— oo

Miscellaneous

Let peN,¢>0,s=(s1,...,5), t=(t1,...,t,) e R, f:R—>R, BCR.

Ta(+) Indicator function of set A
(s, t] [s1,t1] X ... X [Sp, L]
with [s;, t;] := [t;, s;] for t; < s;
55491 51,8 +7] X .. X L5 5p 7]
argmax f(x) min {y € B|f(y) = maxf(:l:)}
TzEB zeB






Preface

The detection and the estimation of the location of anomalies is an important prob-
lem in many practical applications. It is of special interest but not limited to medical
application when trying to find anomalies in DNA sequences in order to make asser-
tions about cancer progression (Olshen et al. (2004), Niu and Zhang (2012)) or the
detection and treatment of cancer (Mclnerney and Terzopoulos (1996)). Another
field of interest is in neurophysiology where it is important to divide neuronal firing
patterns, so called spike trains, into stretches with approximately constant firing rates
in order to make assertions about the firing patterns on a local level (Griin, Dies-
mann, and Aertsen (2002)|, Schneider (2008), [Messer et al. (2014))). Other fields of
interest are for example in astrophysics when trying to find anomalies in light curves
of stars in order to detect exoplanets (see |[Fisch, Eckley, and Fearnhead (2018)) and
more recently the detection of potentially dangerous anomalies such as fissures in
building material (see Weise et al. (2015)| Baranowski et al. (2019)).

Anomaly detection is of great importance both in time series and image data. De-
spite being different on first sight, we can model image data as multi-parameter time
series and adjust methods intended for time series analysis for the analysis of image
data.

The segmentation of time series is an important pre-processing tool: Many station-
ary models for the analysis assume stationarity of the underlying data. However, in
practice it is natural that the model parameters change throughout a time series.
To account for this problem, there exist basically two approaches: On the one hand,
one can expand the model accounting for different ’'states’ such as Hidden Markov
models do, but estimating the parameters in these types of models can be rather
expensive. Therefore, having a computationally efficient pre-processing procedure
that splits the time series into parts with approximately constant model parameters
allows for a meaningful analysis and interpretation of the time series.
Pre-processing can also be important in the analysis of image data, which can be seen
by the example given in this thesis when trying to identify sparse objects in large
data: Our goal is to identify potentially dangerous anomalies such as fissures in large
3D CT scans of concrete blocks. Since fissures are 2D objects, they are sparse in the
data. Oftentimes, algorithms such as machine learning methods are applied on the
whole data in order to trace the fissures. As these algorithms are computationally
expensive and the objects they search for are sparse, this can be highly ineffective.
Therefore, discarding areas without fissures with a computationally effective proce-
dure allows for a much more efficient search for fissures by computationally more
expensive procedures in smaller areas.

Scan statistics have proven to be powerful tools in change point analysis for which
they were first introduced by [Page (1954) and are frequently used both for testing
and estimation of change points. Recently, they have also been used for testing of the
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existence of anomalies in image data (see e. g. Haiman and Preda (2006), Kabluchko
(2011), [Sharpnack and Arias-Castro (2016)). Moving sum (MOSUM) statistics were
first introduced by Bauer and Hackl (1980)| and have proven to be computationally
efficient tools for the estimation of change points and anomalies both in time series
and image data.

Contributions

In this thesis, based on the goals to estimate change points in renewal processes and
to estimate the locations of potentially dangerous anomalies like fissures in concrete,
we present MOSUM-type scan statistics for both the time series and image data in
order to estimate and detect anomalies in these data. We analyze and show theoretic
results for more general classes and demonstrate the performance of our procedures
in small simulation studies for three-dimensional renewal processes and image data
with a fissure, respectively.

Part [I

To this date, many procedures aiming at detecting or estimating finitely many change
points in univariate stochastic processes exist, but there is very little literature on
the localization of change points in multivariate processes such as renewal processes.
In the first part, we present a procedure based on MOSUM statistics in order to
estimate change points in a general class of multivariate stochastic processes fulfilling
strong invariance principles — a class that includes, but is not limited to multivariate
renewal processes. In particular, we study a procedure that compares the increments
of processes in symmetric intervals around time points, allowing the interval length
to grow linearly or sublinearly in the length of the process. We present estimators
for the change points introduced by |[Meier, Cho, and Kirch (2021); (Cho and Kirch:
(20214 )| based on sufficiently large and isolated maxima that allow for the detection
of changes even under mild violations of model assumptions. We then study the
theoretic properties of the statistic and estimator and derive localization rates for
the distance between change points and the respective estimators.

With the exception of Section 5] Part [ has been published as a joint paper (Kirch
and Klein (2021))).

Part [T

There exist a variety of methods for the detection of anomalies in image data, such
as EM algorithms, deformable models and Machine Learning methods like neural
networks. However, these methods are computationally expensive and some anoma-
lies like fissures in construction material are sparse and pre-processing steps may be
needed in order to apply the above mentioned methods.

In the second part, we present such a pre-processing step for the detection of fissures
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in concrete data using MOSUM statistics. In particular, one can observe that on a
local scale, a part of a fissure resembles a rectangle with a small width. Therefore, we
use circle-shaped windows with a small rectangle inscribed and compare the average
gray value in the inner rectangle with the average value in the remaining part of a
circle. Furthermore, in our procedure, we account for the fact that concrete is a het-
erogeneous material and therefore contains natural, ’bubble’-shaped anomalies such
as air, gravel etc. We extend our procedure to MOSUM statistics that use windows
possessing shapes from a class of sets that includes, but is not limited to convex
sets. We show limit results for functionals of statistics that use different windows,
where we assume that those functionals are Lipschitz-continuous. This allows for the
application of the limit theorem in a general setting that includes statistics based on
general local differences. Thus, it can be applied to detect general anomalies.






Part I
Moving sum data segmentation for
stochastic processes based on
invariance






1 Introduction

Change point analysis aims at detecting and localizing structural breaks in time
series data and has a long tradition in statistics, dating back to [Page (1954). It has
broad applications in a variety of fields such as neurophysiology (see |[Messer et al.
(2014))), genomics (compare [Olshen et al. (2004), Niu and Zhang (2012), |Li, Munk,
and Sieling (2016), Chan and Chen (2017)), finance (see Aggarwal, Inclan, and Leal
(1999), |Cho and Fryzlewicz (2012))), astrophysics (see [Fisch, Eckley, and Fearnhead
(2018))) or oceanographics (see [Killick et al. (2010)).

Early literature focuses on the detection of a single change point in a univariate
time series, primarily in the mean (see |(Csorgo and Horvath (1997) for an overview).
Recently, a main interest in research is the detection and estimation of multiple
change points in high-dimensional data (see Horvath and Rice (2014), |Cho and

Kirch (2020) for overviews).

Generally, data segmentation methods can roughly be split up in two approaches:
The first approach was introduced by in the context of i.i.d. normally
distributed data. It uses the Schwarz’ criterion and aims at optimizing suitable
objective functions. extended this approach to processes in a setting
closely related to the one in this thesis while focusing on univariate processes with a
finite number of change points. Further approaches include e. g. least-squares
and Au (1989)) or the quasi-likelihood-function (Braun, Braun, and Miiller (2000)).
Generally, such approaches are computationally expensive, such that there is another
body of work proposing fast algorithms e. g. using dynamic programming
Fearnhead, and Eckley (2012), [Maidstone et al. (2017))).

A second approach is based on hypothesis testing, where e. g. binary segmentation
introduced by [Vostrikova (1981) recursively uses tests constructed for the at-most-
one-change situation. Several problems arise including the fact that detection power
can be poor if the set of change points is unfavorable, such that several extensions
have been proposed in the literature such as circular binary segmentation

et al. (2004)) or wild binary segmentation (Fryzlewicz (2014)).

Connection to existing work

Another class of methods use moving sum (MOSUM) statistics which were first
introduced by Bauer and Hackl (1980). MOSUM-based methods were initially used
for testing of multiple change points, see e. g. Huskova and Slaby (2001)| for an
approach using permutation tests. During the last two decades, research interest has
shifted to the multiple change problem aiming at segmenting the data into stationary
stretches often focusing on changes in the mean e. g. of i.i.d. Gaussian data (Cho
and Kirch (2020))), in a Hidden Markov framework (Eichinger and Kirch (2018))) or
for changes in autoregressive time series (Yau and Zhao (2016)). Recently, Messer,
et al. (2014) with a bottom-up-approach, and [Meier, Cho, and Kirch (2021) and |Cho
and Kirch (2021+)| with a localized pruning approach have proposed two-step data
segmentation procedures based on multiscale MOSUM statistics.
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We adopt a MOSUM approach to localize multiple changes in multivariate re-
newal processes where the analysis of neuronal firing patterns, so called spike trains,
is a very prominent example where data segmentation methods for renewal processes
are useful. Indeed, many methods, e. g. |Griin, Diesmann, and Aertsen (2002)| or
Schneider (2008)| use local approaches applied on segments with approximately con-
stant intensity to model the data. Furthermore, it is of great interest to study the
joint behavior of spike trains, compare e. g. Perkel, Gernstein, and Moore (1967),
Brown and Mitra (2004) and |Grin and Rotter (2010). |Chen, Chen, and Ding (2019)
use non-parametric methods to detect change points in neuropixel data, which con-
sists of a large amount of neuronal firing patterns, in order to make meaningful
assertions about the whole or parts of the data. In particular, they study firing pat-
terns in several different brain areas and make assertions on possible coordination
between regions based on their change point patterns. Messer et al. (2014) propose a
MOSUM multiscale procedure to detect changes in the firing intensity assuming that
the firing patterns follow renewal processes with piecewise constant intensity. Our
work extends their results in several ways: We show consistency of the change point
estimators and derive the corresponding localization rates both in the case of linear
and sublinear bandwidths. Furthermore, although our main focus lies in the estima-
tion of multiple changes in multivariate renewal processes, we extend the results to
a general class of multivariate processes fulfilling strong invariance principles. This
class includes multivariate partial sum, renewal and diffusion processes. A univariate
version of that model with at-most-one change point has been considered by Horvath
and Steinebach (2000) and Kihn and Steinebach (2002). A univariate version for
finitely many change points has been considered by |[Kithn (2001)| where consistency
for the number of change points has been shown. Those results are now extended
to include MOSUM methodology for the estimation of a possibly unbounded num-
ber of change points in a multivariate setting, where we achieve a minimax optimal
separation rate in addition to a minimax optimal localization rate (for the change
point estimators) in case of a bounded number of change points as well as for Wiener
processes with drift (see Remark below). Our results also lay the foundations
for the analysis of a two-step procedure as in (Cho and Kirch (2021+4). With the
exception of Section [0 this part has been published as a joint paper Kirch and Klein
(2021).

1.1 Outline

In Subsection we introduce the multiple change point model we consider followed
by some examples of processes fulfilling the model in Subsection 2.2 In Section [3]
we describe how to estimate change points based on MOSUM statistics: First, we
introduce the MOSUM statistics in Subsection before presenting the estimators
for the structural breaks in [3.2] In Subsection [3.3] we derive some asymptotic results
for the MOSUM statistics that are required for threshold selection and can also
be used in a testing context. In Section 4| we show that the corresponding data
segmentation procedure is consistent. Finally, we derive the localization rates in
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addition to the corresponding asymptotic distribution of the change point estimators
for local changes. In Section [f, we extend our MOSUM statistics to the setting of
asymmetric bandwidths and show consistency of the corresponding estimators. In
Section [0, we present some results from a small simulation study.

2 Multiple change point problem

While our initial motivation for this work was the estimation of changes in renewal
processes, we introduce a more general model that also includes partial sum and
certain diffusion processes. We derive the theoretic results for this general model.

2.1 Model

Consider P < oo stochastic processes (Rt(]%) verer of dimension p with (unknown)
drift (ug) -t) and (unknown) covariance (X;7 - t) fulfilling regularity assumptions
specified in Assumption below. These P processes can be thought of as back-
ground processes with only one of them being active at each time in the sense of
driving the increments of our observation process. Consequently, at each time point
we only observe the active process and do not know the exact structure of any of
these processes. To elaborate, for ¢, <t < ¢yy1 we observe

¢
. (e c (e cj)
Zt,T - (R ) c;g’}l ) 2:1 (RCJ? - cj7 17T) ) (21)
‘]:
ZO,T = 07
where 0 = ¢y < ¢ < ... < ¢4y < Cgpp1 = T are the unknown change points and

the number of change points gr can be bounded or unbounded. The upper index
() at the process R. 7 indicates (with a slight abuse of notation) the active process
between the (j — 1)-th and the j-th change point. We define the change in drift
between two neighboring regimes by

d,r = gfi“) — p,(Tci) #0 foralli=1,...,qp, (2.2)

where d; 1 is bounded but we allow for d; 7 — 0 as long as the convergence is slow
enough (see Assumption. For ease of notation we frequently drop the dependency
on T for the above quantities in the following. The aim of data segmentation involves
the consistent estimation of the number and location of the change points as well as
the derivation of the corresponding localization rates.

We assume that the underlying processes (Rt(]T)) N j =1,..., P fulfill the

following joint invariance principle towards Wiener processes. If the underlying pro-
cesses are independent, then this simplifies to the validity of an invariance principle
for each of these P processes.

13



Assumption 2.1.
!/
Denote the joint process by Rir = R(l)/, e ,R(P), as well the joint drift by
: t, T t,T
/
Uy = ,u(Tl)/, e ,u(TP)/) , where " indicates the matriz transpose. For every T > 0

there exist (p - P)-dimensional Wiener processes Wy with covariance matriz Xr
and

27 = (Sr(l k)ip -1,
with

=

—om. =0 =o,

such that, possibly after a change of probability space, it holds that for some sequence
vr — 0

sup ||ﬁt,T - Wt,T|| =

sup ||
0<t<T 0<t<T

(Rt7T - IJ’T t) - Wt,T” = OP (T% VT) ,

where ﬁt,T = R, — prt denotes the centered process.

The covariance matrix ng) relates to the i-th underlying process {Rﬁ’%} and
plays an important role in the below limit results. On the other hand, the cross-
dependence between different driving processes does not influence these limit results
because at each time only one process actively influences the observed process and
the increments of the joint process are asymptotically independent due to the joint
invariance principle.

The assumption on the norm of the covariance matrices is equivalent to the small-
est eigenvalue of ng) being bounded in addition to being bounded away from zero —
both uniformly in 7', compare also Corollary B.3] In many situations, the covariance
matrices will not depend on T, in which case this assumption is automatically ful-
filled under positive definiteness. The convergence rate vz in the invariance principle
typically depends on the number of moments that exist. Roughly speaking, the more
moments the original process has, the faster v converges (see Section for some
examples).

The corresponding univariate model with at most one change was first consid-
ered by |[Horvath and Steinebach (2000) and further used in a single-change setting
by Steinebach (2000)}, Kirch and Steinebach (2006)| and (Gut and Steinebach| (2002;
2009). Kithn and Steinebach (2002)| make use of the Schwarz information criterion
for the estimation of the number of change points in a related univariate framework
with a bounded number of change points. Using information criteria is computa-
tionally much more expensive with quadratic computational complexity if compared
to MOSUM procedures with linear computational complexity as proposed in this
thesis.
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2.2 Examples

In this section, we give three important examples fulfilling the above model assump-
tions, namely partial sum-processes, renewal processes and integrals of diffusion pro-
cesses including Ornstein-Uhlenbeck and Wiener processes with drift. A detailed
analysis of the stochastic behavior of estimators obtained by MOSUM procedures
for detecting mean changes in (univariate) renewal processes extending the work by
Messer et al. (2014) was the original motivation for this work and is covered by this
much broader framework.

2.2.1 Partial-Sum-Processes

This first example extends the classical multiple changes in the mean model:
Let (X,(;))keN be a time series with E [Xg)} = 0 and Cov [Xg)} = I, for all
1=1,...,P, k€ N. Let

N e
RIEZ):Z(M(WE” Xg))

=1

The corresponding process fulfills Assumption in a wide range of situations.
For example, Einmahl (1987) shows the validity in the case that Xj, X, ... with

X, = (Xg ) X( )) are i.i.d. with E HX1H2+5] < oo for some 0 > 0 resulting in
a rate of Op(Tl/ (2+5)) in Assumption [2.1| (and thus, vy = T-%/(4+29)) " Additionally,
Kuelbs and Philipp (1980)| state an invariance principle for mixing random vectors
in Theorem 4, and there are many corresponding univariate results under many
different weak-dependency formulations.

For X = XM (and @ = XW) for all i, then we are back to the classical
multiple mean change problem that has been considered in many papers in particular
for the univariate situation, see e. g. the recent survey papers by Fearnhead and
Rigaill (2020) or (Cho and Kirch (2020).

2.2.2 Renewal and some related point processes

The second example aims at finding structural breaks in the rates of renewal and
some related point processes:

We consider P independent sequences of p-dimensional point processes that are
related to renewal processes in the followmg Way For each ¢ = 1,..., P we start
with p > p independent renewal processes Rt 5 J=1...,p, from Wthh we derive
a p-dimensional point process Rt = B® (Rgfl, ce Rt’ﬁ)/, where B® is a (p x p) -
matrix with non-negative integer-valued entries. By Lemma 4.2 in |Steinebach and
Eastwood (1996) Assumption [2.1] is fulfilled for a block-diagonal 3 with
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2/ 9/ 9/
with D (U <Z>> = diag (Ul(l,),..., Uﬁ@) ,
(i) O N ()

where f1;(7) and 07 (i) are the mean and variance of the corresponding inter-event
times. If for the corresponding inter-event times possess 2 + d-th moments, then
the rate in Assumption is given by Op(TY2*) (and thus vy = T9/(4+29),
Steinebach and Eastwood (1996) and |Csenki (1979) consider p = p but use inter-
event times that are dependent for j = 1,...,p. In such a situation, the invariance
principle in Assumptlon 1 still holds if the intensities are the same across compo-
nents with Z(T) = EIET / M1( ), where Z%ET is the covariance of the vector of inter-event
times — a setting that we adopt in the simulation study. If the intensities differ, then
by |Steinebach and Eastwood (1996) an invariance principle towards a Gaussian pro-
cess can still be obtained, but this is no longer a multivariate Wiener process. While
each component is a Wiener process, the increments from one component may de-
pend on the past of another. Many of the below results can still be derived in such a
situation, however, such a model does not seem to be very realistic for most applica-
tions as the stochastic behavior of the increments of one component depends on the
lagged behavior of the other components, where the lag increases with time. While
a lagged dependence is realistic in many situations, in most situations one would
expect this lagged-dependence to be constant across time.

Messer et al. (2014) consider this model for univariate renewal processes with
varying variance. They propose a multiscale procedure based on MOSUM statistics
related to those we will discuss in the next section using linear bandwidths. In
Messer et al. (2017)|, they extend the procedure to processes with weak dependencies.
They show convergence in distribution of the MOSUM statistics to functionals of
Wiener processes similar to the results that we obtain and analyze the behavior of
the signal term in Messer and Schneider (2017). However, they have not derived
any consistency results for the change point estimators. In this work, we extend
their results to sublinear bandwidths and prove the consistency of the corresponding
estimators as well as their localization rates.

2.2.3 Diffusion processes

Clearly, switching between independent (or components of a multivariate) Brownian
motion with drift is included in this framework. Additionally, Heunis (2003) and
Mihalache (2011) derive invariance principles in the context of diffusion processes
including Ornstein-Uhlenbeck processes among others. Let (X;),., be a stochastic

process in R satisfying a stochastic differential equation (SDE)

16



with respect to an n-dimensional standard Wiener process (By),., and let u, ¥ be
globally Lipschitz-continuous. Under some conditions on f : RY — RP, as given
by Heunis (2003)|, relating to w, 3, which in particular guarantee that the function
f applied to the (invariant) diffusion results in a centered process, there exists a
p-dimensional Wiener process (Wy),, and some 7 > 0 such that

/OT F(X,) ds — Wy

-0 <T1/2—n) :

where (X;),s, either is a solution to the SDE with fixed starting value Xy =y, or a
strictly stationary solution with respect to an invariant distribution.

Furthermore, in the case of a one-dimensional stochastic diffusion process, Mihalache
(2011)| showed for some L?-functions fulfilling constraints depending on u, X that
there exists a strong invariance principle for the integrals of diffusion processes with
a rate of O((T'log, T)"* \/log T) a. s. (and thus vy = T~Y4(log, T)**/log T).

3 Data segmentation procedure

Now, we are ready to introduce a MOSUM-based data segmentation procedure for
stochastic processes following the above model:

3.1 Moving sum statistics

By assumption the drifts of the two active processes to the left and right of a change
point differ, see ; on the other hand, in a stationary stretch away from any change
point the drift is the same. Because the difference in drift can be estimated by a
difference of increments, we propose the following moving sum (MOSUM) statistic
that is based on the moving difference of increments with bandwidth h = hyp

1

V2h
1

= Jah (Zin — 22y + Zys) - (3.1)
If there is no change, then this difference will fluctuate around zero. On the other
hand close to a change point, this difference will be different from zero. Ideally,
the bandwidth should be chosen to be as large as possible (to get a better estimate
obtained from a larger ’effective sample size’ of the order h). On the other hand,
the increments should not be contaminated by a second change as this can lead to
situations where the change point can no longer be reliably localized by the signal.
This observation is reflected in the following assumptions on the bandwidths:

Assumption 3.1. For vr as in Assumption (2.1) the bandwidth h < T'/2 fulfills

M; = My rp,(Z) = (Zisn — Zt) — (Zy — Zy—p)]

VAT log T
h
17
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Furthermore, the first and last change point are detectable and the i-th change point
is isolated in the sense that

h <min{c;, T — ¢},
1
h < 5 A, where A; = min(c; 41 — ¢, ¢ — ¢i—1) (3.2)

fori=2,...,qr — 1.
Additionally, the signal needs to be large enough to be detectable by this bandwidth,
1. e.
2
log (%)

foralli =1,... qpr. Combining (3.2) and (3.3 shows that — with an appropriate
bandwidth h — changes are detectable as soon as

Idi]|* A
T
log ()
In case of the classical mean change model as in Subsection this is known to

be the minimaz-optimal separation rate that cannot be improved (see Proposition 1
of |Arias-Castro, Candes, and Durand (2011)).

(3.3)

— 0. (3.4)

3.2 Change point estimators

Lemma 3.1. The MOSUM statistic My = m; + Ay as in (3.1) decomposes into a
piecewise linear signal term m; = my , r and a centered noise term Ay = Ay p 7 with

(h—t+¢)d;, forc; <t<c;+h,
V2hm; = {0, Jorci+h <t <cy—h, (3.5)
(h+t—ciy1)dipr, forcipr —h <t < e,

V2h Ay = V2h A(R) (3.6)

ﬁﬁ;“ — 2R\ 4 ﬁgfi“) - ﬁg‘” + ﬁgii,)l, forc; <t < ¢+ h,
= ﬁg_c’f;;l) — Zﬁt(CiJrl) + ﬁii;{l), fOT ¢ + h<t < Civ1 — h,

R — R + Rl

Ci+1 C.

crt) —oR( L RV for ey —h <t < ¢,

where Ry == Ry — tp for v = 0,...,qr and the upper index c; denotes the active
regime between the (j —1)-th and j-th change point (with a slight abuse of notation).
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Proof. For ¢; <t < ¢; + h it holds that

V2hM, = Zyop — 27 + Zy,
=R — 2R + R - R + R)
_ (Eiizl) + M(C¢+1)<t + h)) _9 (ﬁgciﬂ) + “(Ci+1)t) + (ﬁgfi+1) + H(C'L+1)Ci)
— (ﬁ‘(:fz) + “(Ci)ci> + (Egg% + “(Ci)(t _ h))
= V2h (m; + A,).

The decompositions for ¢; + h < t < ¢41 — h and ¢y — h < t < ¢4y follow
analogously. ]

The signal term is a piecewise linear function that takes its extrema at the change
points and is 0 outside h-intervals around the change points. Additionally, the noise
term is asymptotically negligible compared to the signal term (see Theorem for
the corresponding theoretic statement and Figure for an illustrative example).

This motivates the following data segmentation procedure that considers local
extrema which are big enough (in absolute value) as change point estimators:

For a suitable threshold 5 = 51 (see Section for a detailed discussion) we
define significant time points, where a point t* is significant if

M. A M, > 3. (3.7)
A, isa symmetric positive definite matrix that may depend on the data and fulfills
Assumption 3.2.

sup HK{}H =Op(1), sup sup H/A\tTH = Op(1).
h<t<T—h i=1,qr [t—ci|<h

— T=100 — T=1000 — T=10000

0 h C1 C T-hT 0 h C1 G T-hT 0 h C1 C T-hT

Figure 3.1: Univariate MOSUM statistic with 7" = 100, 1000, 10000 (from left to
right), where the noise term (fluctuating around the signal) becomes smaller and
smaller relative to the signal term.
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Figure 3.2: In the upper panel, the observed event times of a univariate renewal
process with three change points (i. e. four stationary segments) are displayed (where
the plot needs to be read like a text: It starts in the upper row on the left, then
continues in the first row and jumps to the second row and so on). The gray and
white regions mark the estimated segmentation of the data while the red intervals
mark the true segmentation.

In the lower panel, the corresponding MOSUM statistic with (relative) bandwidth
h/T = 0.07 is displayed. The gray areas are the regions where the threshold (o =
0.05 as in Remark is exceeded (in absolute value). The blue solid lines indicate
the change point estimates obtained as local extrema that fall within the gray area
(making them significant). The true change points are indicated by the red dashed
lines. The green horizontal lines denote nh-environments around the estimators.

A good (non data-driven) choice fulfilling this assumption is given by
3 =B = B (3.8)

for ¢;1 < t < ¢;, which guarantees scale-invariance of the procedure and allows
for nicely interpretable thresholds (see Section [3.3). The latter remains true for

estimators as long as they fulfill
T —1
=op ((log h) > (3.9)

in addition to the above boundedness assumptions. In particular, this permits local
estimators that are consistent only away from change points but contaminated by the
change in a local environment thereof. The latter is typically the case for covariance

sup  sup 2;;/2 — 2;1/2

i:1,~~-,(1T ‘t_cz|>h/
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estimators, think e. g. of the sample variance contaminated by a change point. In
order to not reduce detection power in small samples, it is beneficial if the estimator
is additionally consistent directly at the change point, which is also achievable (see
e. g. [Eichinger and Kirch (2018))).

Typically, there are intervals of significant points (due to the continuity of the
signal) such that only local extrema of such intervals actually indicate a change point.
To define what a local extremum is, we require a tuning parameter 0 < n < 1. This
parameter defines the locality requirement on the extremum, where a point t* is a
local extremum if it is the leftmost point (for the sake of tie-breaking) to maximize
the absolute MOSUM statistic within its nh-environment, i. e. if

t* = argmax || M. (3.10)

t* —nh<t<t*+nh

The threshold £ distinguishes between significant and spurious local extrema that
are purely associated with the noise term. The set of all significant local extrema is
the set of change point estimators with its cardinality an estimator for the number
of the change points.

Figure|3.2|shows an example illustrating these ideas: Away from the change points
the MOSUM statistic fluctuates around zero (within the white area that is beneath
the threshold in absolute value) while it falls within the gray area close to the change
points — making corresponding local extrema significant. Furthermore, the statistic
does not need to return to the white area in order to have all changes estimated,
as can be seen between the first and second change point. This is one of the major
advantages of the n-criterion based on significant local maxima as described here (in
comparison to the e-criterion originally investigated by |Eichinger and Kirch (2018)
in the context of mean changes, see also the discussion in Meier, Cho, and Kirch
(2021)). Nevertheless, results for the e-criterion can be obtained along the lines of
our proofs below.

3.3 Threshold selection

As pointed out above we need to choose a threshold 8 = ), that can distinguish
between significant and spurious local extrema. The following theorem gives the
magnitudes of signal as well as noise terms:

Theorem 3.2. Let Assumptions and 3.9 hold.
(a) For the signal m; with ¢; —h <t < ¢; + h, it holds that

— 1 h—|t—cl)?
m A, > P e
AR

At other time points the signal term is equal to zero.

(b) For the noise term it holds for qr = 0, i. e. in the no-change situation

21



(i) for a linear bandwidth h = ~T with 0 <y < 1/2

sup  AJELTA,

YI'<t<T—~T

1
25 sup — (B, — 2B, + B, ) (B, — 2B, + B, ),

y<s<l—y 27

where B denotes a multivariate standard Wiener process.
In particular, the squared noise term is of order Op(1) in this case.

(ii) for a sublinear bandwidth h/T — 0 but Assumption fulfilled, it holds
that
a<T> sup /AZZIA —b<T> 2. E
h hgtgg—h e h ’

where E follows a Gumbel distribution with P (E < x) =e 2" and

a(x) = y/2logx

3
b(x) = 210g1’—i—gloglogx_Hog5 —logT (]29) _

In particular, the above squared noise term is of order Op (log(T'/h)) in
this case.

The assertions remain true if an estimator for the covariance is used fulfilling
(13.9) uniformly over all h <t <T — h.

(c) In the situation of multiple change points, it holds that

sup [|Al| = Op(y/log(T/h)).

h<t<T—h

Proof. (a) Because :A:t is symmetric and positive definite, the maximum eigenvalue
is given by [|A,|| by Corollary By Lemma [B.1} it follows that the minimal
eigenvalue of A; ' is given by 1/||A;||. By Lemma [B.4{and (3.5) it follows that

1
[ A

1 (h—]e—1t])?

— d; 2
A& 2

A —1
mA; ‘m; >

oo || =

(b) Denote by A(W;) the MOSUM statistics defined in (3.1)) with {Z;} there
replaced by {W,;}. Since gr = 0, it holds that Z;, = R; = Rgl) =R, + tp and
p = . By the invariance principle from Assumption it holds by Assumption
and the triangle inequality that
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sup [|[Ay — A(Wy) ||

h<t<T—h

1
7\/2h h<§1<17137h 1(Zsn = 22¢ + Zi—p) = (Wi, —2W, + W)

sup H(ﬁwh +(t+h)p—2Ry —2tp+ Ry + (t — h)p)
2h h<t<T—h

—~(Wipn —2W, + W)

1 N I
= 5, 50 [Reon = 2R+ Ret) = (Wen = 2W0+ Wy )

5l-

_ 0, <T1/2”T> — op ( log(T/h)_1> | (3.11)

(i) Let (By),5o = (2;1/2Wt) . be a multivariate standard Wiener process. By the

t>
self-similarity that (v/cBy),sq 2 (Bet),sq for ¢ > 0 it follows with the transformation
s =t/T that - -

sup At (Wt)/ E;lAt (Wt)

YT <t<T—~T

1
= sup  —— (Bipyr — 2B + BtfyT), (Biyyr — 2B, + Bi_y1)
VT <t<T—T 27T

1 ,
= 5 o (Biesr = 2Bar + Bioyyr) (Biesyr = 2Ber + By )
1
2 sup —(By,—2B,+B, ) (B, —2B,+B,_,).
y<s<1—y 27

The assertion then follows from (3.11)) and Slutzky’s theorem.

(i) Let (Bi),> = ((Bt,l, ey Bt’p)/)t>0 be as above. Similar to (i) it follows by the

self-similarity of the multivariate Wiener process with the transformation s = t/h—1
that

sup /A (W) S7A (W) = sup [|[S772A, (W)

h<t<T—h h<t<T—h
1
= su — (B — 2B, +B,_
hgtg?—h v2h (Bron ! 1)
= sup L (B(s+2)h — 2B(s+1)h + Bsh)
0<s<T 2|V 2h
1
= sup S (Bs+2 — 2By + Bs) :
0<s<T -2 \/§
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W.l.o.g. let a > 0. The process

(80 (B) = (5 Bz 2B+ B.)

s>0

is a stationary p-dimensional Gaussian process. The componentwise covariance func-
tions are given by

2Cov [Ag; (Ba), Ao (Bo)]

= Cov [Ba+2,i — Bat1s B2,z‘ - Bl,i] — Cov [Ba+2,i - Ba—l—l,ia By — BO,i]
— Cov [Bay1,i — Bai, Bay — Bui] + Cov [Bat1i — Bayi, Bri — Boy]

2—(a+1)—(a+1-1)4+(1—a), for0<a<l1

= (¢ —2+a, forl1 <a<?2

0, for a > 2

2—3a, for0<a<l1

=q-2+4a, forl<a<?

0, for a > 2

with analogous results for a < 0. Therefore,

—31al, for 0 <la| <1
Cov [Astai (Bsya)  Asi (By)] =3 =1+ 31a|, forl<|a] <2
0, for |a| > 2.

Therefore it follows by Lemma 3.1 and Remark 3.1 of Steinebach and Eastwood
(1996 )| (see also Lemma [A.1)) with « = 1, C' = 3/2 that

o(T) s 1A, B - (F) 2 E

0<s<+

Since by the triangle inequality

4 b(T/h)
As Bs 2 AS Bs < — BS :O 1 = ’
5, I8 (Bl = sup 14 (B < 5 sup [1B,]| = Or(1) 0P<Q<T/h>>

—"=h

it follows by Lemma that

a <T> sup \/At (Wt)/ E:FlAt (W) =0 (T)

h/) h<i<r—h h
T T
Za(5) sw A BI-b(5) 2 E

0<s<Z 2

as well. Since by (3.11]),
T T
a <h> sup VAEA —a (h) sup \/At (W) S21A, (W)

h<t<T—h h<t<T—h
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the assertion follows by Slutzky’s theorem.

If we replace X by an estimator s, fulfilling (3.9 , the above assertions remain
true: It holds by (b), and Lemma [B.2) that

)

sup <H2T1/2AtH — HitlﬂAt

h<t<T—h

= sup (&7 (207 - 2;1/2> A - |E7A))
h<t<T—h
-1/2 —-1/2 1/2 1/2
< sup I Ay sup (|2, -3, sup || Al
h<t<T—h h<t§T—h h<t<T—h

=or (106 T) Yor ((10g7) ) =or (e T) ).

Analogously we obtain that

_ Hng/zAtH> = op ((10g Z>_1/2>

sup (Hitl/zAt

h<t<T—h

and therefore

sup JASIA, — sup ALS A,

h<t<T—h h<t<T-h
= | sup <2t1/2At — sup H2_1/2AtH>‘
h<t<T—h h<t<T—h
~_ _ T —-1/2
< o [l e =or (D) ).
h<t<T—h

which shows the assertion.
(c) As the behavior of A; in intervals of length h around change points differs from

the behavior of A; away from change points as can be seen in (3.6), we need to
analyze A; separately for those two cases. It holds that

h<t<rT—-hH T ar ¢, —h<t<c;+h Uy ar T ci+h<t<cit+1—h

sup ||A¢| = max{ max sup  ||A]] ,hax sup ”At”}

By (b) it holds that

max sup | A = . max sup HRtjf;;l — 2RV 4 ﬁg?gl)
1=0,....q7 ci+h<t<ciyi1—h =047 ¢; i+h<t<ciy1—h

< max_ sup ‘ﬁgh — 2R + Rtl_hH =Op < log(T/h)> : (3.12)
=L P h<t<T-h

Furthermore, we obtain by Proposition (b) and the triangle inequality that
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max  sup [|A]
=107 ¢ <t<c;i+h

1

= max —— sup HRE?ZI - 2E§Ci+1) + R+ — ﬁ((fi) + ﬁgil;)l
i=Lqr /2 cl<t<cl+h ' ’
<3 max su R( Cl“ — chl) + max su R — R
o 1=1,....q1 OStSI)Qh \/ H + i=1,...,qT OStSI:)Qh ,/ H it ‘
— Op (o8 (2a1) ) = Op (Vlo(T/m) (3.13)

since by Assumption [3.1| gr < T/(2h) and T?vs/v/2h = o(1).
Similarly we obtain that

max  sup ||A¢]| = Op ( log(T/h)> )

’i:17...,qT Ci_hStSCi
which in combination with (3.12)) and (3.13|) shows the assertion. O

To obtain consistency of the estimators, the threshold needs to be small enough
to be asymptotically negligible compared to the squared signal term as in Theo-
rem (a) to guarantee that every change is detected with asymptotic probability
1. At the same time, the threshold needs to grow faster than the squared noise
term in Theorem (c) so that false positives occur with asymptotic probability 0.
Hence, both conditions are fulfilled under the following assumption:

Assumption 3.3. The threshold fulfills:

b o losn
hT ; Ilmn Hd ”2 ’ ﬁh,T

-----

— 0 (T — o0).

In particular, larger bandwidths hy lead to a better detectability of the change
point, where due to an upper bound related to the distance to the neighboring
change points applies. This is also confirmed by the simulation results in Table [6.4]

The following remark introduces a threshold that has a nice interpretation in
connection with change point testing:

Remark 3.1. The threshold is often obtained as the asymptotic 1 — ap-quantile
based on the limit result in Theorem (b) for some sequence ar — 0. In this case
a choice of
L\2
(— log log 7%1—0@)
og hr

similar to [Eichinger and Kirch (2018) can replace the slightly stronger lower bound
of Assumption on the threshold without compromising our theoretical results.
In the simulation study in Section [6] we use this threshold with ay = 0.05. This
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controls the family-wise error rate at level ap asymptotically related to testing each
time point for a possible change. In fact, Theorem shows that such a threshold
with a constant sequence « yields an asymptotic test at level a which has asymptotic
power one by Theorem Tests designed for the at-most-one-change as in |Huskova
and Steinebach (2000), Huskova and Steinebach (2002) often have a better power,
but are not as good at localizing change points (see Figure 1 in |Cho and Kirch (2020)
for an illustration).

4 Consistency of the segmentation procedure

In this section, we will show consistency of the above segmentation procedure for
both the estimators of the number and locations of the change points. Furthermore,
we derive localization rates for the estimators of the locations of the change points
for some special cases showing that they cannot be improved in general. This is
complemented by the observations that these localization rates are indeed minimax-
optimal if the number of change points is bounded in addition to observing Wiener
processes with drift. Otherwise the generic rates that are obtained based solely on
the invariance principle will not be tight in the sense that the proposed procedure
can provide better rates than suggested by the invariance principle.

The following theorem shows that the change point estimators defined in ((3.10))
are consistent for the number and locations of the change points.

Theorem 4.1. Let Assumptions - hold. Let 0 < & < ... < &, be the
change point estimators of type (3.10). Then for any T > 0 it holds that

hmP( _, max ‘@-—Ci|§7h,qAT_QT>_ L.

T—o0 ,...,min(sz,qT)

Proof of Theorem[4.1. Define for 0 < 7 < 1 the following set

Sp =28 ﬂ( (i,7) N 85, 7)), (4.1)
where

S;l) = { max sup M;Kt_lMt < 5} ;
=0,.. 4T ¢;+-h<t<ci+1—h
S:(Fz) = { min M, /A\glMci > 5},
1= 1» 4T v
D () ML < My
) = S < Ci— — T

ST (Z’T) - m {ci—hgt?;—krh ! i=(k=1)rh }7
k=1
[L1-1

WG = N { sup  [|M]| < \\Mcﬁ(k_l)m\!}

T A citkTh<t<ci+h
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On S;l) there are asymptotically no significant points outside of h-environments of
the change points. On Srf,?) there is at least one significant time point for each change

point. On S;(p3) (i, 7)N S(T4) (7,7) with 7 < /2, there are no local extrema (within the
h-environment of ¢;) that are outside the interval (¢; — 7h, ¢; +7h). Additionally, on

Sg) N S:(p3 )(z', )N Séfl )(i, 7) the global extremum within that interval will be the only
significant local extremum within the h-environment of ¢; such that

{' | mmax |é; — ¢ §Th,QT:qT} D St.
A

= 7"'7min(qAT7qT)

We will show that St is an asymptotic one set.

For S\ ) it holds by Lemma ﬂ, Lemma (ii) and Corollary (iii) that

max sup M,A;'M, = max sup  AJATTA,
i=0,....9T ci+h<t<citi1—h 1=0,...,qT ci+h<t<ciyi1—h
— 2
~1/2
= max sup HA75 / AtH
=0,.. 4T ¢; +h<t<cl+1 h
—1/2 2
< max sup HA / _max sup | A
1=0,....97 ci+h<t<citi1—h =0,....q7 ci+h<t<ciyi1—h
2
< sup A7 max sup || A = Op(1) - Op (log T/h) = Op (log T/h)
h<t<T—h 1=0,...,qT c;+h<t<ciy1—h

where the second-to-last equality follows from Assumption and Theorem (c)
which by Assumption shows that S:(pl) is an asymptotic one set.

For S(T2 ) it holds by Corollary (i) and Lemma that
1 ) 1

~min M/ X M., > min IM,, || > min ——r min | M., ||”
= 17 -4T 7 -4qT HA’cz 1:17 4T HAC’L 1= 7 -4qT
1 .
—— _min ||Mcl|| )
“max H o 1=1,....qr
1=1,....qT

By Assumption [3.2] for each ¢ > 0, there exists C. > 0 such that

)<

Furthermore, we obtain by the reverse triangle inequality, Assumption and The-
orem (c) that

lim sup P ( max ’

T—o00 1,. -dT
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min M| = min [me, + A,

izlw“aqT
h ) T
5 o+ 00 (e )
h . h . :
= /= min ||d;||+op|y/= min [|d ] = ( min Hle) (14 o0p(1))
2 i=1,...q7 2 i=1,...q7 1=1,....q7

and therefore

> min |m,,
4T

. — max ||Ag,
i=1,..., i=1,...,qT

i=1,....q7 2 \i=1,...qr

min M, 2 > 2 (min [ldi]) (1-+0p(1))

h h h
=2QmmnM@a+wﬂ»=2nm|@W+w(%gm|@W)

i=1,...,qT i=1,...,qT =1,...,

which in combination with Assumption [3.3shows that S}Q ) is an asymptotic one set.

For arbitrary 7 > 0 and Srf,,g) (i, 7) it holds by the reverse triangle inequality, Lemma
and Theorem uniformly that

,_min < ’Mcif(kfl)Th - Sup ||Mt||>
i=1,....qT c;—h<t<c;—kth
> min QmeUM—WMMkmh— sup [myf - sup H&D
i=1,...q7 c;i—h<t<c;i—kth ci—h<t<c;i—kth
: T
= min (‘ M, (k—1)rh| — ||mci—k7—h||) + Op | y/log —
1=1,....q7 h

T . T
:ﬁWQ%JM+%(b%)

thus showing that ﬂ?ing’ )(i, 7) is an asymptotic one set. It follows analogously that
ﬂ?ﬁlS}@ (7,7) is an asymptotic one set. O

The theorem shows in particular that the number of change points is estimated
consistently. For the linear bandwidth we additionally get consistency of the change
point locations in rescaled time, while for the sublinear bandwidths we already get
a convergence rate of h/T towards the rescaled change points.

Under the following stronger assumptions, the localization rates can be improved
further:
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Assumption 4.1. (a) It holds for any of the centered processes R as in (3.6) and
any value 0; = 0; 7 (which will be ¢; or ¢; £ h when the assumption is applied)
for any sequence Dy > 1 (bounded or unbounded)

VDr Ry — Ry,
sl

Sup = Op(wr)-

D
—I_<s<h
a2 ="=

(b) Let now the upper index 0; denote the active stretch in the stationary segment
(0;,0; + s) respectively (0; — s,0;). Then, it holds for any sequence Dy > 0

VDr|Ry"” ~ Ry,
sl

- OP((:}T)

“max sup

i=1,...
e qT DT2 <s<h
;1= — =

The localization rates of the MOSUM procedure are determined by the rates
Wn, Wn, which need to be derived for each example separately (at least for the tight
ones). In the context of partial sum processes these results are well known. For ex-
ample, the suprema in (a) are stochastically bounded by the Hajék—Rényi inequality
which has been shown for partial sum processes even with weakly dependent errors.
In that context, the assertion in (b) is fulfilled with a polynomial rate in ¢r (see Cho
and Kirch (20214 ), Proposition 2.1 (c)(ii)).

Remark 4.1. (a) For Wiener processes with drift, it holds that wy = 1 and @y =

log(gr) (see Proposition |A.4| below).

(b) By the invariance principle in Assumption all rates are clearly dominated
by T%/?vp. However, this is often far too liberal a bound (see Proposition 2.1 in
Cho and Kirch (20214 )| for some tight bounds in case of partial sum processes).

(c) Often, there exist forward and backwards invariance principles from some arbi-
trary starting value 6; for each regime. This is the case for partial sum processes
and for (backward and forward) Markov processes due to the Markov property.
For renewal processes, this can be shown along the lines of the original proof for
the invariance principle (Csorgo, Horvath, and Steinebach (1987))) because the
time to the next (previous) event is asymptotically negligible; see also Exam-
ple 1.2 in Kihn and Steinebach (2002))). In this case, the Hajék—Rényi results
for Wiener processes carry over (see Proposition to the different processes
underlying each regime, resulting in wr = 1. For the situation with a bounded
number of change points this carries over to @r.

Theorem 4.2.

Let Assumptions - and hold. For Gr < qr define & = T fori =
qAT—{—]_,...,qT.

(a) For a single change point estimator the following localization rate holds
2 A
Idil|? & — ei] = Op (w}) .
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(b) The following uniform rate holds true:

77777

Proof. We will only show (b) as (a) follows analogously by replacing wr by wy and
without the maxima and minima. Let Sy be as in (4.1). For C' > 0 it holds that

Coz ) C2
= ¢ min (& —¢)+ 0, ST} { max ((éi—ci)— T) ZO,ST}
{2:1 ,,,,, qr < ||d || i=1,...,qT ||dz||2

.....

By Theorem [4.1], the latter set has asymptotic probability 0. With the substitution
s =t — ¢; it holds that

. C’wT> } 7 { . Co2
‘max | (& —¢) — 0, St (¢ —¢i) > , St
{121 """ ar ( Id;|” U1 [l

c 6 SUP M * > sup ||Mt||2
i=1 =1 <t<Cl+h c;i—h<t<c;+

q
C Lj s Sup 2h (HMCZ—FSH — [IML, )ZO

28h

llal

By straightforward algebraic calculus and Lemma we obtain for C@2/ ||d;||?
s < h that

Vs = Hl\/[cz'—f—sn2 - HNICZH2
= —(mg —mg+Ag, — AcﬁS)/ (me, +me, s+ Ac, + Acys)

1
= 2h (Dl s d + Nl S) (DZ,S dz + NQ,S) 5 (42)

where Dy 3 =5, Dy, =2h—s,
N = 2 (R~ RU) — (R, RO — (R, ~ R
Noo= (R, —Rew) + 2 (RO - Réf;z”)
-2 (ﬁéc) - ﬁgi—)ms) (R(Cl)h—l—s - R )

Therefore, it holds due to Dy 4Dy s = s(2h — s) > 0 that
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~2
P ( max (& —¢) > cor ST>
i=1,...,qT

- 27
;|
2 2
< p[max s 20 (| Me® - ML) 2 0
— =5edT g
T <g<
a2 ="
2 ’ / ’
_p if{lfﬂf} sup  — (D1,5D2,s \ld;||” + D1,4d;No s + Dy ([N (d; + N SN2,5> >0
- =1,....dT 05)2 ’ ’
I <s<h
a7 ==
2 d’'Nos ¢ N’1 d; N’1 Ns
— max Su — D D d 1 + i IS + »8 _|_ ,S > 0
=P iz o2 P 1sD2s [|di Doslldl® ' Disldll® ' DisDasldsl® ) =
I <s<h
a7 ==
. . d/No lw',1 d; 1Q,1 No ¢
— min inf oty Lo, | = -1
=P it cat <Dz,s|diu2 Di.di® T DiiDaslidi? ) =
a7 ==
(:1/-N25 N/1 di Nll NQS
max su et m + S >1
< P20 5P Dol T Dl T DuaDa il | =
T <s<h
4,17~
d’No 1
max su —a =t > 2
< P20 5P | DedladP| < s (4.3)
T_<s<h
4,7 ==
N’/ d;
1,8 1
max su —f > =
+P A0, 2P | DalP| = 8 (4.4)
T2§s§h
e
N’ Na
1,s )5 1
max su —s 2T > 2
+P i:l,...,qT Cco2 p Dl,sDQ,sldi”2’ — 3 . (45)
L. <s<h
e

For (4.3)) it holds by Proposition (b) and Assumption combined with ¢r <
T/(2h) that

B R,

L)

~Inax sup < max sup

1=1,....qT lﬁfﬁgé “h D2,s HdzH T i=1q70<s<h (Qh — S) ||dz||
_ |RE) —REY, log (2¢r) log(T/h) 0
< max sup = Yy ) = AN )
i—learozscn D di] "\ Vi "\ Ve g

We obtain analogously that

Hﬁz(:fi—)h-i-s B ﬁgc_)hH =op(1),

i=har o Dy, [|di]
el <" |
7
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Ci+1 (Cz
HRcl-l—h—l—s — Mg —i—hH

Jpax  sup Do fay ot
o Sesh
1
max  sup [t —Ras] g
p— P .
S W N
Ila 1”2__

Therefore, by the Cauchy-Schwarz inequality, it follows that

/
lsd

L...ar ca?, Dz,s ”dzH

2 <s<h

max - sup = op(1)

i:l,...,qT Cw

Q_Sh

flal lll

and therefore

max  sup
P 1= 17 -qT co 2
<s<h
[Ehls

For (4.4)) it holds by Assumption for arbitrary y > 0 that

lim hm sup P max Sup sl[dql] Z )
C—0 T_yoo 1=1,....q7 ca?,
<s<h

[lai?

Oo || R Ci+1) _glei+1)
c;+s € ~
= lim limsupP [ max  sup e > VCory | =0.
C'—o0 T—00 i:17"'7qT Cco2 S”dZH
L. <s<h
lll

Analogous results hold for

g o [ Ren] [Re, R
i=1,...,qT Cw p SHdzH i 0T on2 p SHdZH 5 -

<s<h — T, <s<h
[E! 7.”2 [l ]?

Therefore it holds by the Cauchy-Schwarz inequality for (4.4)) that

lim limsup P | ,21% s Sup

C—oo T—00 W<<
4 8>

> 1
‘Dlsncu ‘ 3

=

IN1,s]] >
< lim limsupP | i= A o SUP Disldi =3 | =0 (4.7)

Co0 T 00 e H2 <s<h
Z
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For (4.5) we obtain by (4.6) and (4.7]) together with the Cauchy-Schwarz inequality
that

N/LSNZ,S
,_max sup P ——
i=1,...,qT |Emﬁ2 <s<h D17SD275 ||dz||
i
N1l N2l

< max sup max sup

= Op(l)Op(l) = Op(l)

T i=Llear o2, Dy [|d; | i=1.ar oo, Do |[dil
5 <s<h —l<s<h
llsll llsll
and therefore
Nll eNz s 1
max su —s | > =
Pz o2 P ‘Dl,sD2,slldill2 =3 | =o(1). (4.8)
T2 <s<h
lls |

By combining ({4.6))-(4.8)), we obtain that

~2
lim limsup P ( max (& —¢;) > Cor ST>

C—o T 0o i=1,...,qT - ||dz||27

2
< lim lim SU_pP z:ql,a),fn C@gup 2h (||Mcl+s|| o HMCz

C—=0 T 400 ﬁgsgh
i

)=20)

We obtain analogously that

~2
lim limsupP< min (& —¢;) < cor S ) =0

C00 Tosne =1yoar Pt

~92
P | max |éi—0i|_CLT2 =0
i=1,....qT HdZH
Cw?
< P| max Ci — i) — - 20,5
= ( <( ) Hdi|!2> - T>

~9
+P ( min ((él —¢)+ CwT) <0, ST>

P

Ci?
+P | max [|&— |- —5L | >05¢
( (' | ||di||2> )

this shows the assertions as S¢ has asymptotic probability 0 by Theorem [4.1] O

Since

Remark 4.2 (Minimax optimality). We have already mentioned beneath (3.4]) that
the separation rate given there is minimax optimal (see Proposition 1 of |Arias-Castro,
Candes, and Durand (2011))).
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Minimax optimal localization rates (derived in the context of changes in the
mean of univariate time series, which is covered by the partial sum processes in our
framework) are known for a few special cases: First, the minimax optimal localization
rate for a single change point and in extension also for a bounded number of change
points is given by wr = 1 in the above notation (see e. g. Lemma 2 in Wang, Yu, and
Rinaldo (2020))). In particular this shows that our procedures achieves the minimax
optimality in case of a bounded number of change points under weak assumptions
(as pointed out in Remark (c)). Secondly, the optimal localization rate for
unbounded change points under sub-Gaussianity (attained for partial sum process
of i.i.d. errors) is given by wr = y/logT (see Proposition 6 in [Verzelen et al. (2020)
and Proposition 2.3 in |Cho and Kirch (2021+))). Indeed, we match this rate for
Wiener processes with drift.

The following theorem derives the limit distribution of the change point estima-
tors for local changes which shows in particular that the rates are tight. In principle,
this result can be used to obtain asymptotically valid confidence intervals for the
change point locations. In case of fixed changes, the limit distribution depends on
the underlying distribution of the original process (see Antoch and Huskova (1999)
for the case of partial sum processes), where the proof can be done along the same
lines. We need the following assumption:

Assumption 4.2. Let d; = d;r = ||d;||u; + o(||ds||) with ||w|| =1 and ||d; 7| — 0.
Assume that YY) = YU (¢;, D) with

Ygl) _ R(Cz) . ﬁ(cz) 7
i—ht i ei—h— e
Y @) _ g = R b Y22 — ﬁ(cz'ﬂs)_D _ﬁ(ci+1)D :
g2 i a2 * gz G 4,2
(3) _ R (eit1) B (cit1)
s RC#MW Reene AL

fulfill the following multivariate functional central limit theorem for any constant
D > 0 in an appropriate space equipped with the supremum norm

(]l (Y, Y0, v (2 y @)y — (W,) :

0<s<2D 0<s<2D
where W is a Wiener process wzth covariance matmm = (not dependzng on D). For
—D <t <D denote W, = (WY, W Wi W@y =W, — Wp.

By Assumptionit holds h||d;||* — oo, such that the distance h— ”d ”2

Y® and Y#) (resp. between Y#) and Y®) diverges to infinity. As such for
processes with independent increments the processes YV, (YU Y22)) Y©) are
independent for 7' large enough. Additionally, under weak assumptions such as
mixing conditions this independence still holds asymptotically in the sense that W)
(WED W) W) are independent.

Functional central limit theorems for these processes follow from invariance prin-
ciples as in Assumption with 37 — 3 as long as such invariance principles

between
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still hold with an arbitrary (moving) starting value, which is typically the case (see
also Remark (¢)). As such, it typically holds that 21 = 22D = %) and
2¢) = 222 = »nE+) where & = COV(ng)) and X(%) is the covariance matrix
associated with the regime between the (i — 1)-th and i-th change point.

The following theorem gives the asymptotic distribution for the change point
estimators in case of local change points.

Theorem 4.3.

Let Assumptions|2.1] -[5.3 (a) with wy = 1 and[{.4 hold. For §r < qr define
G =T fori=qr+1,...,qr. Let

(O

WW = 20 WD+ W W, s <0
T Wl 2w W W, sz

Then, for allt=1,...,qr, it holds that for T — oo

;]| (& — ¢) 2, argmax {\IJEZ)

SER}

If there is a fized number of changes qr = q with q fixed and a functional central
limit theorem as in Assumption [{.3 holds jointly for all q change points, then the
result also holds jointly.

Proof. Analogously to the proof of Theorem it holds for C > 0, -C <z < C
and i =1,...,qr that

P(||dill (& — i) <z, [|di]l |&i — i < C)
) = sup (HMCHFSH ”Mcz

_ M. .. 2 M. ) > L= |12
_p< sup (M~ M, N ).
4l

—<s<z r<s<
lldill

By defining D; 5, Dy g, D15 and Dy from (4.2) also for s < 0, it holds that

V, = M 1* = M, ||?
= —(mg —mg o+ A, — A'Ci+s)/ (me, + me, s+ Ae, + Aciis)

1
= 9 (Dysd; +N13) (Dysd; +Nay),

where

Dl,s: |S|, D275:2h—| |

2 (RY), —R&)) — (RS, — R

_< (ﬁgﬂjﬁis _Z )Cc:};() ! h> for s < 0
Nl,s =

2 (REy) - Rle)) — (R™),,, — R™

! (R, - ﬁﬁf%;)) e TR s
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(ﬁgﬁ PSR 2 (RU, - Rle)
N 2 (RUL - RED) — (RO, R, ). )

2,5 —
(R, - RE) +2(REY —REY)
~2(RE R - (R - R

By Proposition (b), we obtain that

(cit1) 7y (eit1)
HRCH-h - RCi+3

< sup RIS - RIS
0<s<h

Ogsg
||d I

and similarly

sup ‘
0<s<—C
a1

D (0; D (0;
Ry — Ry,

where 6; takes values ¢; — h, ¢;, ¢; + h and (with a slight abuse of notation) the upper
index (%) denotes the index of the active regime of the process.
Since furthermore

civ1) _ Tleirn)
"Rcz+5 - RC'Z

T

0<s<
—S—nd P
= SUPC ﬁc(:fisl) - ﬁ(jijl)c . +ﬁgij1)c , ﬁ:(:fiﬂ)
0<s< d; d;
o< ;] ]
< JRew-RE [ s RO SR
TlalPll ogs<—C o | T el

= aal?
and since by Assumption

2 [We

2)‘7

W22
c<t<2C

— Op (Hdl||> |
~0r (147

ol [ R — R

T
sl

Y

ol s, R SR

L
0§ssﬁ lla;|I*
K3

it follows that

C,

sup [RE — R

0<s<—C '
[ld4 |

Analogously, it follows that

p Ry - Ry

0<s S g
||d I
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where 0; takes values ¢; — h, ¢;, ¢; + h and (with a slight abuse of notation) the upper
index ) denotes the index of the active regime of the process. Therefore,

1
|IN1s|| = Op <||d|]> ,  ||Naos|| = Op (\/ﬁ) )

Thus, it holds by Assumption [3.1] that

1 2 s S 2 2 1

— D1 Do ||di||” = [s] |dil||” — = ||di||” = |s| [|di||” + O | ———=

57, D1sDas [ dill™ = [s| |dil|” = o Idil|” = |s] |l i
= |s|[ldil|* + o(1),

—D Sd’iN s = |s|O =0p|——]= 1),
2h L > |S| F ( \/E F \/EHdZH OP( )

1 5]
%DZSN/l,sdi = <1 — 2h> Nll,sdi = Nll,sdi + OP(l),

1 1
SN Ny = Op [ —— ) = o0p(1
2h 1,5+ V2, P (thl”> OP( )

and therefore,
V= —[s[||di[| = N ,d; + op(1) = —|s| [[ds]| — [|d;[| N} ju; + op(1),

where u; is as in Assumption and the op(1)-term holds uniformly in s.
With the substitution r = s||d;||” we obtain that

V= 0,(1) =7

/ /
g(ﬁgffg r _ﬁge>) " — <ﬁ§?2h+ r —ﬁ§?2h> u
‘ ||di||2 ’ ‘ ||di||2 ’
, forr <0

B (cit1)
Rcz‘—i-h u;,

ﬁ(ci+1)
ci+h+—FL
! fla;]?

— i

B (ci)
i i—h+—- -R

!
Tk Ci_h) i
/ ¢ forr >0
- (Rﬁfz‘:,;i - Riffﬁ)) .

2
fla:l

/
2 (R R ) - (R,

By Assumption it holds that (V) _copcc — <\I!gi)>7c< o

space equipped with the supremum norm’ from Assumption[4.2] Since the supremum
is a continuous function on this space it holds that

on the 'appropriate
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P (il (6 — ;) < 2, |di]| |és — i) < C) = P ( sup V, > sup Vr>

—C<r<z z<r<C

— P < sup U > sup Wg”) =P (argmax VO <g|l-C<az< C’) )

—C<r<z x<r<C

By Theorem letting C' — oo proves the assertion. O

Due to the Markov property of Wiener processes, {\Ifgz) :t > 0} is independent

of {U ¢ <0}

Remark 4.3. (a) If WO (WD W) W) are independent which is typically

the case (see discussion beneath Assumption , then \Ilgi) simplifies to

2 2 2
R {\/"m + oGy T B <0

where B is a (univariate) standard Wiener process and o7, = w,EY ;. Usually

(see discussion beneath Assumption o@1y = oy and o) = o(3) further
simplifying the expression. For some examples such as partial sum processes
it holds ¥, = X for all ¢, such that all o(;) coincide. In this case this further
simplifies to

\I/ti) = — |t| + \/60’(1) Bt.

For univariate partial sum processes this result has already been obtained in
Theorem 3.3 of |[Eichinger and Kirch (2018). However, the assumption of 3, = 3
is typically not fulfilled for renewal processes because the covariance depends on
the changing intensity of the process.

If W (WD W) WO are independent and M; in (3.10)) is replaced by
3, Y 2Mt, then the Wiener processes W) are standard Wiener processes, such
that U\ simplifies to

\I/E“ = —|t| + \/éBt.
This shows that in this case the limit distribution of ¢ — ¢; only depends on the

magnitude of the change d; but not on its direction u;.

Statistically, however, this is difficult to achieve as it requires a uniformly (in t)
consistent estimator for the usually unknown covariance matrices 3.
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5 Asymmetric bandwidths

In analogy to [Meier, Cho, and Kirch (2021), we define the MOSUM-statistic as

W, T 1 1
Mt = Mt,T,hl,T,hr,T(Z> = : |:

hl+hr ( t+h, t) hl

h, (Zy —Zy—p,)| . (5.1)

Similar to Section [3 the statistic will fluctuate around 0 in the case of no mean
change. On the other hand, the statistic will differ from 0 close to a change point.
Ideally, we want to chose the two bandwidths as large as possible (similar to Section
. On the other hand, the increments shall not be contaminated by a second change
since this can lead to situations where the change point can no longer be reliably
localized by the signal. Furthermore, we need to impose restrictions on the unbal-
ancedness in order to avoid problems in the asymptotic theory and in practice, as
noted by |Cho and Kirch (2021+)|in Section 4.2. Indeed, we need the following as-
sumptions — that are analogous to Assumption [3.1]— on the bandwidths for a change
to be detectable:

Assumption 5.1. We assume the bandwidths h;, h, with h; + h, < T to be suffi-
ciently balanced in the sense that there exists C' > 1 such that

max {h;, h, }
min {hy, h,} — ¢ (52)

for all T > 0. We assume that for vy as in Assumption (2.1)) it holds that

VAT logT .

B 0. (5.3)

Furthermore, the first and last change point are detectable and the i-th change point
is isolated in the sense that

hlgcla CqTST_hm
hy+ h, < A, where A; = min(c; 41 — ¢;, ¢ — ¢i—1)
forio=2,... qr — 1.
Additionally, the signal needs to be large enough to be detectable by these bandwidths,
1. e.
i | T
T
log (77)

(5.4)
fori=1,...,qr.

Note that (5.3 and (.4 automatically also hold for A, due to (5.2)).
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5.1 Change point estimators
Analogously to (3.5)) and (3.6, the MOSUM statistic M; = m; + A; decomposes into

a piecewise linear signal term m; = m, j, 5, 7 and a centered noise term Ay = Ay p, .7
with

h —I—h h; + h,
\/ lh, =1/ lh, my p, b, T (5.5)

hilhl—t—kcl for ¢; <t < ¢+ hy,
for Ci+hl<t§0i+1—hr,

,%(h +t—cip1)dip1,  for ¢ — by <t < iy,

T I+ b
N ’+ A= lh+ AR (5.6)
l

L me- Rwﬂ)

I
53

3

hrl - . . for ¢; <t <c;+ Ny
R (ci+1) R(Ci+1) R(Cz) R(Cz)
hl ( t - C; + ¢ t—hl) )
1 cit1) _ R lciv1) L o) myleirn)
=40 (R — R — - (R —Ry™),  for ¢+ b <t < cigr — b,
T l
l =~ (] c c n (G
- (R - R + RO - R
Tl N for Cit1 — h, <t< Cit1,
_ (R(Ci+1) _ R(Cz‘+1))
hl t t—h; )

Similar to , the signal term is a piecewise linear function with extrema at the
change points and is 0 outside of intervals [¢; — h,., ¢; + hy]. Since this is similar to
our findings in Section [3] we will use an analogous procedure to the one proposed in
Section [3} A point t* is significant if

M. A'"M;- > 3, (5.7)
where 8 = B, n. 7 is a suitable threshold and A, is a symmetric positive definite
matrix possibly depending on the data that fulfills
Assumption 5.2.

sup HAtTH =0p(l), sup sup HAt7TH = Op(1).
h <t<T—h, i=1,...,q7 ¢i—h;<t<c;+h,

We define local extrema analogously to (3.10) by having a tuning parameter
0 <n < 1, where a point t* is a local extremum if

t* = argmax ||[M. (5.8)

t*—nhy <t<t*+nhy
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As in Section [3 the threshold /3 distinguishes between significant and spurious lo-
cal extrema, and the set of all significant local extrema is the set of change point
estimators. Its cardinality is an estimator for the number of change points.

Theorem 5.1. Let the Assumptions and hold. Denote by hyin =
min {hy, h}, hpax = max {hy, h,.}.

(a) For ¢; — h, <t < ¢ let h=h,, forc; <t < c;+ h let h = hy. For the signal
term my; it holds that

1 (h—t—c)’
(C+1)[|A h

A1
m,A; m; >

Idill*

At other time points the signal term is equal to zero.
(b) For the noise term it holds for qr = 0, i. e. in the no-change situation
(i) for linear bandwidths hy = /T, h, = T with 0 < v + v, < 1

sup  AJZAMA,

WT<t<T—~,T

, 1 1 '
D, Wh gy, (( <Bs+w—Bs>—<Bs—Bs_w>)

Vi Vr p<s<l-mr Vr "
1 1
— (Bs4y, —Bs) — — (Bs; — B,

<% (Bs4y ) > ( w)))

where B denotes a multivariate standard Wiener process.
In particular, the squared noise term is of order Op(1) in this case.

(ii) for sublinear bandwidths hy/T — 0, h, /T — 0 but Assumption [5.1] fulfilled
and huin/hmax = D > 0, it holds that

T - T
a (hmm) sup  JAZFA, b (h

h <t<T—h, min

)AE,

where E follows a Gumbel distribution with P (E < x) =e 2" and

a(x) = y/2logx
D?>+D+1
b(x)leongrgloglog:erlog++—lo F<p>.

D+1 2

In particular, the above squared noise term is of order Op (log(T/h;)) in
this case.

The assertions remain true if an estimator for the covariance is used fulfilling
(13.9) uniformly over allh <t <T — h.
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(¢) In the situation of multiple change points, it holds that

sup || A¢l| = Op(y/log(T/hi)).
hi<t<T—h,
Proof. (a) Because A, is symmetrlc and positive deﬁnite, the maximum eigenvalue

is given by ||At|| by Corollary |B By Lemma , it follows that the minimal
eigenvalue of A;! is given by 1 / HAtH By stralghtforward calculations and (5.2) it
holds that

hih,. > hmin {h;, h,}
and

hi + h, = min {h;, h, } + max {h;, h,} < (1 + C)min{h;, h.}.
With Lemma and ([5.9) it follows that

1 Mh, 1
w2 | t”z A
. 1 1 hlhr . 1 mln{hl,h} . s 112
- HKtH (hi+ hy) 2 (h— 1t — D |ds H = HA H (hy + h)h (h—t CzDQHdz”
1 min {hy, h, } 1

> — —(h— [t —c)? il

(b) Denote by A;(W;) the MOSUM statistics defined in (5.1 with {Z;} there re-
placed by {W,}. By Assumption it holds that h; < Ch, and h, < Ch;. With
the invariance principle from Assumption it holds therefore that

sup  [[Ay — A(Wo)

hy<t<T—hr

hih,
su
h; + h, hlgtgil“)—hr

(i @ =20 = 5 (20~ Zeew)
1

(1 (Wi, — Wy) — (W Wi p, )H

(2 (o) L ()

hih,
=/ su
h; + h, hl<t<il? hy

_ (1 (Wisn, — W) —
e (o F’\ﬁt_wt\\+2 s 1 [Re - wi

(W, Win))

D
hi+ h. \ o<t<r 0<t<T I

h; + h,
e el

1+C T2y, 1
2 R; — W,|| = = log(T'/h . .
I OiltlET H t — tH Op ( T op < og(T/hy) ) (5.9)

=2

IN

43



(i) Let (Bt)ysg = (2;1/2Wt)t>0 be a multivariate standard Wiener process. By the
self-similarity of the Wiener process it follows with the transformation s = ¢/7" that

sup At (Wt), E%IAt (Wt)

WT<t<T—,T

gl 1 1 ;
B su B B,) — — (B, — B.-
Y+ Y wTﬁtSIl?—'er ((%T (Beo,r — Be) T (B: ¢ wT))

T L )

Vr i
D WY 1 1 '
= - su — (Bs4y, —Bs) — — (Bs; — B,
Y+ Y WSSSIl)*’Vr ((’Yr ( o ) Vi ( 71))
1 1
~ (B,;,, —B,)— — (B, - B,_ .
(%< =B >)>

The assertion then follows from ([5.9) and Slutzky’s theorem.

(ii) Let (Bt)ys = ((Bt,l, ce Bw)')t>O be as above. If h; = Auyin, it follows similar to

(i) by the self-similarity of the multivariate Wiener process with the transformation
s=1t/h — 1 that

sup \/At W,)'EA(W,) = sup HE;l/QAt(Wt)H

Py St<T—=hr hy<t<T—h,
- (B ~B) — - B, B)
" ity Dﬁl <Z (Bt“ﬁ - Bt) (B~ Be- hl>>
- ogsgsh%llj%,l D1+ 1 <\/€L_l (Bhl(5+1+113) By, 5+1)) \/1h_z (th(s+1 Bm))H
D OSSSS%?%_I D1+ 1 (D (B8+1+% — Bs+1) — (Bsy1 — )H
- ogsghsif_%_l D1—|— 1 (D (Bs+1+% - Bs+1> — (Bsy1 — Bs))H )

If h, = A, it holds analogously with the time-reversal property of the multivariate
Wiener process that

sup /AW, )S A(W)

hy<t<T—h,
1
- Ogsgjjf),%fl D+1 ((Bs+1+% - Bs+%) - D (BSJF% — BS>)H
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D
= sup

T 1
Oss< hmin _5_1

W.lo.g. let a > 0. The process

(AS(BS))sZO = <\/D1——|—1 (D (Bs+1+% — Bs+1) — (Byg1 — Bs)))

is a stationary p-dimensional Gaussian process. The componentwise covariance func-
tions are given by

s>0

(D + 1) COV [Aa,i (Ba) 7A0,i (Bo)]
= D2 COV [Ba—l—l—i—%,i — Ba—f—l,iy Bl—&—%,i — Bl,z} — D COV {Ba—&-l—l—%,i — Ba+1,i7 Bl,i — BOJ}
— D Cov [Ba-‘rl,i - Ba,z', B1+%,i - Bl,z}
+ Cov [Bat1,; — Bayi, Bri — Boyil
D—-D?a—~Da+1—a, for0<a<1

) —Da, for1§a<%
B —D(l—i—%—a), for 5 <a<l+3
0, foraZl#—%

with analogous results for a < 0. Therefore,

COV [A5+a’i (Bs—‘,-a) 7A5,’i (BS)]
1_D257f1+1\a]7 for 0 < |a| <1
—Dla
B D+|1\7 for 1 <la| < 5
2 (1+ 5 —lal), for 5<lal<1+3
0, for |a] > 1+ %.

Therefore it follows by Lemma 3.1 and Remark 3.1 of Steinebach and Eastwood
(1996)| (see also Lemma [A.1)) with o = 1, €' = 224D+ that

D+1
T T
a( ) sup || A, (B —b( ) LNy}
hmin ogsg% hmin
Since by the triangle inequality
D
sup [As (By)l[ = sup  [|A, (By)]]
hrz:in _1_%S8§h1’11:in OSSSI_‘_%

2D + 2 b (T/hmin)>
< sup B.||=0p(1) = o ( ,
T o 20, Bl = 0pl) = or (G
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it follows by Lemma that

T T
a (h ) sup \/At (Wt)/ > 1At (Wt —-b )

h<t<T—h, hmln

T T
Ea( ) sup ||A, (B)]| —b( )AE,
hmin Qgsghi_l_% hmm

min

as well. Since by (5.9)),

T T
a(h ) sup \/AQETlAt—a<h ) sup \/At W,)'S7A, (W)

hy<t<T—h, hy<t<T—h,

= OP(l)a

the assertion follows by Slutzky’s theorem.
The proof that the assertion remains true if we replace 37 by an estimator X
fulfilling Assumption is completely analogous to the corresponding statement in

Theorem [3.2f (b)

(c) It holds that

sup  ||A4]| = max{ max sup [ Al . max sup | A ¢ -
hy<t<T—hy =17 ¢ hp<t<ci+hy =0 9T ci+hy<t<ciy1—hr
+
By (b) it holds that
_max sup | Al
i=0,..., ar Ci+hl<t<ci+1—hr
hih, 1 . 1 /=~ (e

_ +1) _ (eit1) (ci+1) (ci+1)
= max sup N (Rtﬁh - R ) . (Rt =R,

1=0,..., ar C¢+hl<t<ci+17hr hl + T r l

hhe |1 /= ; L =6 =06 ‘
< ~—(RY _R R, —-—R
- 7»3112-}7(]3 hl<§37£) hr hl + hr T ( thr ! ) hl ( ' t_hl)

— Oy ( 1og(T/h,)) . (5.10)

Furthermore, on noting that by Assumption [5.1} Ay, h, and h; + h, are of the same
order, we obtain by Proposition (b) and the triangle inequality analogously to
the corresponding proof in Theorem that

max  sup  [|A]]
1=1,..0T ¢; <t<c;+h;
Il

=1, qr hl + hr

1 =5 (s
o (R R -

sup
c;i<t<ci+h

1 /=~ — — ~(¢,
E (Rgcﬁ-l) _ Rgfz-{»l) + R((:;:z) _ ng_z})”)
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<2 il
max su
- i=1,..., qr OSSShIl)-i-hr hl + h h

+ a S fuly
max u
1=1,....q1 ogsgphl hl + h, hl

(Cl (CZ)
A D, hl+h h H e
= Or (Viog 2ar) ) = O (ios(T/1)) (5.11)

since by Assumption [3.1 g7 < T/(h; + h,) and T ?vp/\/h; = o(1).
Similarly we obtain that

LR R

LG - Re

max  sup ||A¢| =Op ( 10g(T/hl)> ;

=1edT ¢, —h, <t<c;
which in combination with (5.10) and (5.11)) shows the assertion. O
Assumption 5.3. The threshold fulfills:

T

B log 7~

hir  min ||d]? Bhy T
i=1,...,qT

=1l,...

— 0 (T — o0).

Theorem 5.2. Let Assumptions - hold and let hi/h, = D for some
0<D <oo. Let 0 <& < ...< &, be the change point estimators of type (5.8)).
Then for any T > 0 it holds

lim P (1 max |¢; — ¢;| < Ttmin{hy, b}, Gr = QT> = 1.

T_>w 7777 min(qT7qT)

Proof. Assume that h; < h, as the proof in the other case is analogous. The proof is
analogous to the proof of Theorem [4.1] First, define for 0 < 7 < 1 the following set

Sp = mﬂ( (i,7) N S, )),

where

1 o
SW = ¢ max sup M,A'M, <
. tt 9
1=0,....q7 ci+h <t<ci+1—hr

55?):{, min M, A-'M,, >5}
=1,.., qr

[5:1-1
B ;- — su M, || < [[Mq, —(k—1)r
ST (2’7—) - {ci—hrStSIC)i—kThl” tH H i=(k=1) th}a
k=1
-1
(4)(; _ su M,| < [|[Mg¢, +(k—1)r
ST (Z’T) - P {c¢+krhz<lt)<ci+th t” ” D hl}'
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On S;l) there are asymptotically no significant points outside of [¢; — h,., ¢; + hy]. On
S}Z) there is at least one significant time point for each change point. On Sg) '(i,7)N
Sgl) (¢,7) with 7 < /2, there are no local extrema within [¢; — h,, ¢; + hy] that are
outside the interval (¢; — Thy, ¢; + 7hy). Additionally, on S N S (i, 1) NS4 (i, 7)
the global extremum within that interval will be the only significant local extremum
within [¢; — h,, ¢; + hy] such that

{. | max |&; — il §Tmin{hl,hr},@T:qT} O Sr.

= 7“'7min((iT )qT)

We will show that St is an asymptotic one set.

Analogously to the proof of Theorem [4.1] it holds by Assumption and Theorem
(c) that

_ 2
,nax sup M/A;'M, < sup HA _max sup | Al
=0,-4T ¢4y <t<cii1—hr hy<t<T—h, =057 ¢;+hy<t<cis1—hy

_ O os /i),

Therefore, by Assumption S(Tl ) is an asymptotic one set.
For Sg ) we obtain analogously to Theorem that

- ' )
min M, A_'M. > min —— min [M,
i=1,qr i=1,. ,qT‘ i=1,00qr

By Assumption [3.2] for each ¢ > 0, there exists C. > such that

lim sup P ( min ‘ < C}) <e€

T—o00 1,....q7

Furthermore, we obtain analogously to Theorem [5.1] by Assumption [5.1] and h, =
hi/D that

min |[M,,||* = min |m. + A’

1=1,..., qT 1=1,....q7

> pin | (pin me 2 A
i=1,...,q 1., i=1,...,q7

hlhr . hlhr . T
= d, d;| - O log —
P+ hy i | ”( P+ hy iy 1 P(\/ gh))

hy
= By im0 o (b i ).

which in combination with Assumption shows that S;(FZ) is an asymptotic one set.

For arbitrary 7 > 0 and S\ (i, 7) it holds by Theorem [5.3| uniformly that
48



Hlln (HMC —(k—=1)Th;

=1,....q7

up ||Mt||)
kTh;

ci—hy<t<ci—

T
= i, (meacsn | = Dancion ) + O ( loe )
hih, T
i i 14l 0 (o )
hy T
™ a7 .nin, I+ P(\/ Ogm)’

thus showmg that N, .Sy (3) (7,7) is an asymptotic one set. It follows analogously that

HQTlS (z, 7) is an asymptotic one set. O

6 Simulation study

We want to analyze the performance of our procedure by means of a simulation
study with a focus on detection rates for change points. In particular, we want to
compare the detection rates for different choices for the matrix A, asin and also
analyze the performance of our procedure under violations of the model assumptions
in Assumption [3.1]

We have mentioned in the that our initial goal was the estimation of
change points in (multivariate) renewal processes. As noted in Section , multi-
variate renewal processes with the same intensities across all components fulfill the
invariance principle from Assumption 2.1} Therefore, we analyze the performance
of our procedure on this particular type of process. More precisely, we analyze
three-dimensional renewal processes with 7" = 1600, where the increments of the
inter-event times for each component are I'—distributed with intensity changes at
250, 500, 900 and 1150, where the expected time p between events is given by 1.3,
0.9, 0.6, 0.8 and 1.3. We use a bandwidth of h = 120 and the parameter n = 0.75.
Smaller values of 7 as suggested by [Meier, Cho, and Kirch (2021) for partial sum
processes tend to produce duplicate change point estimators by having two or more
significant local maxima for each change point if the variance is too large (as can
be seen in Table below), while larger values of 7 lead to slightly worse detection
rates. For a single-bandwidth MOSUM procedure as suggested here, this should be
avoided but can be relaxed if a post-processing procedure is applied as e. g. by |Cho
and Kirch (2021+)| for partial sum processes.

In contrast to partial sum processes, it is natural for renewal processes that
the variances change with the intensity. Therefore we consider the following three
scenarios: (i) standard deviations of constant value 0.7 (referred to as constvar),
(ii) standard deviations being 5/6u (referred to as smallvar) and (iii) multivariate
Poisson processes (referred to as Poisson).

We consider both the case of independence and dependence between the three
components. In the latter case, we generate for each regime i an independent (in
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time) sequence of I'-distributed inter-event times Y; = Yj(i), 7 = 1,2,3, with a
correlation of 0.2 (for all pairs) as Y; = X, + X4, where (with a slight abuse of
notation) X; ~ I'(s, A) for j = 1,2,3 and X, ~ I'(s*, \) for appropriate values of s,
s* and A resulting in the above intensities and standard deviations for each regime
(see Remark (a) for details on the parameters).

In the simulations, we use a threshold as in Remark with o = 0.05. By
Section and it holds that X, = Cov [(Y,Ys,Y3)]/E[Yi]® while we use
the following choices for the matrix A, as in (13.7): (A) Diagonal matrix with locally
estimated variances 3,(7, j) on the diagonal, j = 1,2,3, (B) with the true variances
34(4,7) on the diagonal and (C) in case of dependent components (non-diagonal)
true covariance matrix ;. While only (A) is of relevance in applications, this allows
us to understand the influence of estimating the variance on the procedure. For
dependent data, the distinction between (B) and (C) is important for applications,
because a good enough estimator (resulting in a reasonable estimator for the inverse)
is often not available for the full covariance matrix as in (C) for moderately high
or high dimensions, while it is much less problematic to estimate (B). In (A) the
variances at location ¢ are estimated as

_ {8%_(1&) o7 +(t)}

3(j,7) = min < = , =
ERONTRO

where 57 (t) and fi;+(t) are the sample variance and sample mean, respectively,
based on the inter-event times of the j-th component within the windows (¢ — h, ]
for '—' respectively (¢,t + h] for '4+'. The first and last inter-event times that have
been censored by the window are not included. Using the minimum of the left and
right local estimators takes into account that the variance can (and typically will)
change with the intensity which has already been discussed by |Meier, Cho, and Kirch
(2021)|in the context of partial sum processes. The results of the simulation study
can be found in Table [6.2] where we consider a change point to be detected if there
is an estimator in the interval [¢; — h,¢; + h]. Additional significant local maxima
in such an interval are called duplicate change point estimators, while additional
significant local maxima outside any of these intervals are called spurious.

(6.1)

dupl., dupl., dupl., dupl., dupl., dupl.,

c.var c.var s.var s.var pois pois

n=04|n=07||n=04|n=075|n=04|n=0.75
indep., type (A) 0.0798 0.0024 0.1046 0.0033 0.1559 0.0077
indep., type (B) 0.0484 0.0007 0.0496 0.0004 0.0526 0.0014
dep., type (A) 0.1057 0.0027 0.1505 0.0055 0.1880 0.0091
dep., type (B) 0.0779 0.0008 0.0814 0.0018 0.0755 0.0020
dep., type (C) 0.0512 0.0019 0.0494 0.0017 0.0349 0.0013

Table 6.1: Comparison of the average number of duplicate estimators for n = 0.4

and n = 0.75.
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(a) constvar: Constant standard deviation of 0.7, n = 0.75.

Change point at H 250 ‘ 500 ‘ 900 ‘ 1150 ‘ spurious ‘ duplicate
independent, type (A) 1 0.9998 | 0.9434 1 0.0251 0.0024
independent, type (B) || 0.9974 | 0.9789 | 0.6271 1 0.0035 0.0007

dependent, type (A) | 0.9998 | 0.9991 | 0.9219 1 0.0344 0.0027
dependent, type (B) | 0.9916 | 0.9610 | 0.6351 | 0.9997 | 0.0074 0.0008
dependent, type (C) | 0.9522 | 0.8485 | 0.3670 | 0.9984 | 0.0055 0.0019

(b) smallvar: Standard deviation of 5/6 the expected time between events, n = 0.75.

Change point at H 250 ‘ 500 ‘ 900 ‘ 1150 ‘ spurious ‘ duplicate
independent, type (A) || 0.9831 1 0.9735 1 0.0313 0.0033
independent, type (B) || 0.9368 1 0.9309 | 0.9999 | 0.0038 0.0004

dependent, type (A) || 0.9711 | 0.9999 | 0.9556 | 0.9998 | 0.0386 0.0055
dependent, type (B) 0.9207 | 0.9986 | 0.9094 | 0.9987 | 0.0073 0.0018
dependent, type (C) 0.7494 | 0.9890 | 0.7210 | 0.9908 | 0.0052 0.0017

(c) Poisson: Standard deviation equal to the expected time between events, n = 0.75.

Change point at H 250 ‘ 500 ‘ 900 ‘ 1150 ‘ spurious ‘ duplicate
independent, type (A) || 0.9054 | 0.9971 | 0.8710 | 0.9983 | 0.0445 0.0077
independent, type (B) || 0.7366 | 0.9852 | 0.7188 | 0.9885 | 0.0028 0.0014

dependent, type (A) || 0.8818 | 0.9924 | 0.8418 | 0.9939 | 0.0528 0.0091
dependent, type (B) | 0.7166 | 0.9764 | 0.6978 | 0.9761 | 0.0054 0.0020
dependent, type (C) | 0.4602 | 0.8934 | 0.4289 | 0.9007 | 0.0048 0.0013

Table 6.2: Detection rates for each change point as well as the average number of
spurious and duplicate estimators for different distributions of the inter-event times.

The procedure performs well throughout all simulations with high detection rate,
few spurious and very few duplicate estimators. The results improve further for
smaller variance, in which case the signal-to-noise ratio is better.

When the diagonal matrix with the estimated variance is being used, the detection
power is larger in all cases than when the true variance is being used. In case of the
changes at location 900 this is a substantial improvement, such that the use of this
local variance estimator can help boost the signal significantly. This comes at the
cost of having an increased but still reasonable amount of spurious and duplicate
change point estimators.

This effect stems from using the minimum in (6.1)), which was introduced to gain
detection power if the variance changes with the intensity. Additionally, the use of
the true (asymptotic) covariance matrix leads to worse results than only using the
corresponding diagonal matrix, which is due to the fact that the theoretical signal
term is smaller when using the true (asymptotic) covariance matrix in this example
(compare Remark . From a statistical perspective this is advantageous because
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(a) constvar: Constant standard deviation of 0.7, n = 0.75, h = 120.

Change point at H 250 ‘ 500 ‘ 900 ‘ 1150 ‘ spurious ‘ duplicate
dependent, type (A) 1 1 09764 | 1 0.0666 0.0068

dependent, type (B) || 0.9997 | 0.9936 | 0.6515 | 1 | 0.0037 | 0.0007
dependent, type (C) 110999909539 | 1 | 0.0049 | 0.0004

(b) smallvar: Standard deviation of 5/6 the expected time between events, n = 0.75.

Change point at H 250 ‘ 500 ‘ 900 ‘ 1150 ‘ spurious ‘ duplicate
dependent, type (A) || 0.9955 | 1 | 0.9905 1 0.0772 0.0077
dependent, type (B) || 0.9741 | 1 | 0.9628 1 0.0042 0.0006
dependent, type (C) | 0.9995 | 1 ]0.9989 | 1 0.0045 0.0003

(¢c) Poisson: Standard deviation equal to the expected time between events, n = 0.75.

Change point at H 250 ‘ 500 ‘ 900 ‘ 1150 ‘ spurious ‘ duplicate
dependent, type (A) || 0.9535 | 0.9994 | 0.9192 | 0.9998 | 0.1187 0.0203
dependent, type (B) || 0.7781 | 0.9964 | 0.7433 | 0.9973 | 0.0054 0.0012
dependent, type (C) || 0.9824 1 0.9776 1 0.0059 0.0008

Table 6.3: Detection rates for each change point as well as the average number of
spurious and duplicate estimators for different distributions of the inter-event times.

the local estimation of the inverse of a covariance matrix in moderately large or large
dimensions is a very hard problem leading to a loss in precision, while the diagonal
elements are far less difficult to estimate consistently.

However, in other examples, using the full covariance matrix can also lead to
better behavior, namely if the theoretical signal term is bigger in that case (compare
Remark . The results for one such example can be found in Table . Here,
the inter-event times are (with a slight abuse of notation) Y; = X; 4+ >0 <4 ; Xpj —
> j<k<s Xjk J = 1,2,3 where the X; = XJ@ are sequences of independent in time
I'(s, A)-distributed random variables. The X, = X j(z]z are sequences of independent
in time N(0, s?)-distributed random variables with s, A, s; appropriately chosen such
that the distributions of the inter-event times have the above average intensities,
standard deviations and that the correlation between each dimension is —0.2 (see
Remark (b) for details on the parameters).

Furthermore, we illustrate the performance of our procedure in the case that
Assumption is violated, and in particular that the bandwidth is less than
half the distance to the next change point: We analyze three-dimensional renewal
processes with 7" = 1600, where the increments of the inter-event times for each
component are I'-distributed with intensity changes at 250, 500 and 600, where the
expected time p between events is given by 1.3, 0.9, 0.6 and 0.8. We use bandwidths
of h = 60,90, 120 and the parameter n = 0.75. While for the change point at 250
all bandwidths fulfill the assumption, this is true for neither of the other two change
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(a) constvar: Constant standard deviation of 0.7, n = 0.75.

CPat | 250 | 500 | 600 | spurious | duplicate | Dist. 500 | Dist. 600

h=60 | 0.9847 | 0.9690 | 0.6528 | 0.2436 0.0073 5.52 8.47
h=90 || 0.9996 | 0.9970 | 0.7957 | 0.1044 0.0025 4.92 8.16
h=120 1 0.9984 | 0.6368 | 0.0561 0.0002 9.94 21.43

(b) smallvar: Standard deviation of 5/6 the expected time between events, n = 0.75.
CPat | 250 | 500 | 600 | spurious | duplicate | Dist. 500 | Dist. 600

h=60 | 0.7534 | 0.9592 | 0.6476 | 0.2689 0.0100 5.28 7.55
h=90 | 0.9273 | 0.9978 | 0.8461 | 0.1025 0.0054 4.89 7.28
h=120 || 0.9846 | 0.9987 | 0.7237 | 0.0546 0.0020 10.01 19.66

(c) Poisson-distributed inter-event times, n = 0.75.

CP at H 250 ‘ 500 ‘ 600 ‘ spurious ‘ duplicate ‘ Dist. 500 ‘ Dist. 600

h=60 || 0.5904 | 0.8494 | 0.4698 | 0.3807 0.0129 7.05 9.36
h=90 | 0.7838 | 0.9702 | 0.6696 | 0.1457 0.0077 6.65 9.29
h=120 || 0.9070 | 0.9807 | 0.5798 | 0.0724 0.0046 11.43 20.76

Table 6.4: Detection rates for each change point, average number of spurious and
duplicate estimators for different distributions of the inter-event times as well as the
average distances of the change point estimators closest to the true change points in
the intervals [¢; —min{h, (¢; — ¢;_1)/2} , ¢; +min{h, (¢;41 — ¢;)/2}] for ¢; = 500, 600,
respectively.

points with the bandwidth h = 120 being larger than the distance between these
two points. We use the same three scenarios for the standard deviations of the inter-
event times as above. We assume independence between the components and for the
matrix Kt, we consider only choice (A) — a matrix with locally estimated variances
3.(j,j) on the diagonal, j = 1,2,3. The results of the simulation study can be
found in Table [6.4], where we consider a change point to be detected if there was an

estimator in the interval [¢; — min{h, (¢; — ¢;—1)/2}, ¢; + min{h, (ci1 — ¢;)/2}].

Clearly, the procedure is performing well even when the model assumptions are
mildly violated, as for h = 60 and h = 90 and the last two change points. For
h = 120, the detection rates for the change point at 500 slightly increases but the
average distance of the estimator to the true change point becomes much larger. For
the change at 600, additionally the detection rate clearly decreases. On the other
hand, as long as Assumption [3.1]holds (as for the first change point) or is only mildly
violated (as for the last two change points and the two smaller bandwidths), the
detection rate increases with larger bandwidth while at the time the average distances
between the estimator and the corresponding true change point decreases. This is
due to an increased signal-to-noise ratio due to the larger bandwidths (corresponding
to a larger sample size in classical two-sample testing).
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Figure 6.1: MOSUM statistics with bandwidths of h = 30, 60,90, 120 (top to bot-
tom) for a three-dimensional renewal process with multiscale changes with increas-
ing distance between change points in combination with decreasing magnitude of
the changes in intensity. The dashed vertical lines indicate the location of the true
changes, while the solid lines indicate the change point estimators.

In this multiscale situation no single bandwidth can detect all changes: The changes
to the left are well estimated by smaller bandwidth, the ones in the middle by
medium-sized bandwidths and the one to the right by the largest bandwidth.

In the above situation the changes are homogeneous in the sense that the smallest
change in intensity is still large enough compared to the smallest distance to neigh-
boring change points (for a detailed definition we refer to |Cho and Kirch (2021+),
Definition 2.1, or (Cho and Kirch (2020), Definition 2.1). In particular, this guar-
antees that all changes can be detected with a single bandwidth only. In some
applications with multiscale signals, where frequent large changes as well as small
isolated changes are present, this is no longer the case as Figure [6.1| shows. In such
cases, several bandwidths need to be used and the obtained candidates are pruned
down in a second step (see Cho and Kirch (2021+)| for an information criterion
based approach for partial sum processes and Messer et al. (2014)| for a bottom-up-
approach for renewal processes). Similarly, if the distance to the neighboring change
points is unbalanced MOSUM procedures with asymmetric bandwidths as suggested
by Meier, Cho, and Kirch (2021)| may be necessary.
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7 Conclusions

In this part, we have considered a class of multivariate processes that fulfill a uniform
strong invariance principle, possibly after a change of probability space. We have
assumed that the processes switch possibly infinitely many times between finitely
many regimes, with each switch inducing a change in the drift. This setup includes
several important examples, including multivariate partial sum processes, diffusion
processes and renewal processes. In order to localize these changes, we have extended
the work of [Eichinger and Kirch (2018)| and Messer et al. (2014) and proposed a
single-bandwidth procedure using MOSUM statistics in order to estimate changes,
allowing for local changes. We have been able to show consistency for the estima-
tors. Further, we have been able to derive (uniform) localization rates in the form
of exact convergence rates, which are indeed minimax-optimal. In the simulation
study, our procedure has performed well even under mild violations of our model as-
sumptions. Furthermore, it has shown that minimum-type variance estimators tend
to have higher detection rates than when using the true variances and covariance
matrices, which in practice is very useful as the covariance matrix oftentimes is hard
to estimate. One drawback of the procedure is the use of a single bandwidth. In
practice, the identification of the optimal bandwidth turns out to be rather difficult
as pointed out e. g. by |(Cho and Kirch (2021+)|and Messer et al. (2014): On the one
hand, one wants to choose a large bandwidth in order to have maximal power, while
on the other hand choosing too large a bandwidth may lead to misspecification or
nonidentification of changes. Furthermore, as can be seen in the simulation study, in
a multiscale change point situation (see Definition 2.1 of |Cho and Kirch (2021+)) no
single bandwidth can detect all change points. Therefore, one future topic of interest

is the extension of the proposed procedure to a true multiscale setup as in |Cho and
Kirch (2021+)!
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Part 11
Anomaly detection based on scan

statistics in large image data






8 Introduction

The detection of anomalies in the construction material of buildings like houses,
bridges etc. is of great importance to guarantee the stability and the safety of people
using them. In particular, for buildings made of concrete, it is important to detect
fissures in the substance. Over the past couple of years, CT scans have been used
in order to analyze the structure of materials, compare e. g. [Weise et al. (2015)| or
Baranowski et al. (2019), thus allowing for the scanning and analysis of large data.
Early methods for the detection of anomalies, especially in concrete, focus on the
analysis of the gray value distribution (see e. g. Acosta, Figueroa, and Mullen (1992)).
Another approach for anomaly detection in 2D data is image processing with algo-
rithms (see Ito, Aoki, and Hashimoto (2002), Tang and Gu (2013)). Those methods
include a variety of methods such as Template Matching (Roseman (2003))), algo-
rithms to detect minimal paths (Amhaz et al. (2015))) and percolation based on the
Hessian matrix (Yamaguchi and Hashimoto (2010)). For three-dimensional data,
filtering methods like Frangi filters (see [Frangi et al. (2000), [Wirjadi et al. (2014)),
sheet filters (Sato et al. (2000)) and algorithms to find minimal paths (Miisebeck
et al. (2020)) are used. See [Ehrig et al. (2011), [Paetsch et al. (2012)|, Barisin et al.
(2021)| for a comparison of methods. Furthermore, see Barisin et al. (2021)| for a
comprehensive overview over methods for both 2D and 3D data.

Furthermore, Machine and Deep Learning methods like convolutional neural net-
works (see Ronneberger, Fischer, and Brox (2015), (Cicek et al. (2016) and Badri-|
narayanan, Kendall, and Cipolla (2016)) and random forests (Furat et al. (2019),
Shi et al. (2016))) are frequently used for the segmentation of both 2D and 3D im-
age data. However, since concrete is a heterogeneous material with various types of
anomalies, and since fissures are sparse in the data while varying in size and changing
direction (see Figure , a large number of training data is required to correctly fit

Figure 8.1: 2D-slices of 3D CT scans of cracked concrete blocks. The concrete
samples are provided by Martin Kiesche and Christian Caspari, Department of Civil
Engineering, University of Kaiserslautern. The CT imaging was performed by Franz
Schreiber, Fraunhofer ITWM, Kaiserslautern.
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these methods to the data. Furthermore, for large image data, these methods are
computationally too expensive to be applied on the whole data set, but they can be
applied to smaller regions of the data.

Another computationally cheaper approach for the testing of the existence of anoma-
lies is the use of scan statistics. They were first introduced by Kulldorff (1997)| using
a Likelihood-ratio test in order to detect clusters in spatial data. Under the assump-
tion of independence of the noise, there exist methods using 2D windows (see [Haiman:
and Preda (2006)), hypercubes with arbitrary dimension (see Kabluchko (2011)| for
a single-window approach and Jiang (2002); Sharpnack and Arias-Castro (2016) for
multiple window approaches) and spatial scan statistics for point processes (Glaz,
Naus, and Wallenstein (2001)). Under the assumption of a weak invariance princi-
ple, Bucchia (2014)| introduced a test for an epidemic change. Proksch, Werner, and
Munk (2018) and Munk et al. (2020) introduced tests on inverse regression models
with independent, but not necessarily identically distributed noise. Other approaches
include the use of EM algorithms (see|Moon et al. (2006 ))), spatial scan statistics (see
Kulldorft (2016)) and deformable models (see Mclnerney and Terzopoulos (1996)).
See also (Glaz, Naus, and Wallenstein (2001) for an overview over scan statistics in
general.

8.1 Outline

In Section [9 we motivate the scanning procedure introduced in Section [11] by the
example of a concrete scan containing an artificial fissure. In Section we derive
limit theorems for scan statistics based on convex sets with linear size. In Section
[11], we propose a scanning procedure for the detection of fissures in concrete image
data on 2D slices of 3D images. Based on the geometric properties of fissures and
aggregate, we use a combination of scan statistics on rectangles and circular segments
in order to find areas that potentially contain fissures. Furthermore, we illustrate
the procedure based on 2D images with artificial cracks. In Section [12] we analyze
the performance of our procedure in a simulation study.

9 DMotivation

The detection of anomalies in concrete is of great importance to ensure the stability of
buildings. However, as can be seen in Figure[8.1] concrete is a heterogeneous material
that consists of cement and various aggregates such as gravel, sand etc. and often
contains small pores of air. These natural anomalies are by no means dangerous,
but rather help increase the stability of the material. In Sections [I0] and [I1] we will
develop a procedure based on MOSUM scan statistics with the goal of identifying
regions that contain potentially dangerous anomalies such as fissures (see e. g. the
middle panel of Figure while simultaneously discarding regions with no or only
natural anomalies (see e. g. the right panel of Figure [9.1)). In this section, we will
motivate the specific windows used in the scan statistic that will be introduced in
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Figure 9.1: The left panel shows a 2D slice of a concrete block containing an artificial
fissure. The middle and right panels highlight the fissure and the natural anomalies,
respectively. For the sake of better visibility, we have converted the images from a
black-to-white (as in Figure to a yellow-to-red color scale. All raw images with
artificial fissures were provided by Franziska Miisebeck (TU Kaiserslautern).

- using the example of a 2D slice of a 3D CT scan of a block of concrete
with an artificial fissure. The mathematical details are postponed to Section |11}

In the middle panel of Figure 9.1] we can observe that globally in 2D, fissures are
lines with small width and changing direction. Locally, as displayed in the upper left
panel of Figure they resemble rectangles with small width. They have a high
contrast to the neighboring environment (mathematically: large difference in gray
values). Therefore, as can be seen in the upper left panel of Figure we use circle-
shaped windows that have an inscribed rectangle with small width in order to detect
fissures. More specifically, we compare the average gray value in the rectangle with
the average gray values in the circle segments and maximize over multiple angles of
the rectangle in order to account for the changes in direction (for a mathematical
description see (11.1))). It can be seen in the lower left panel of Figure that
indeed, fissures are enhanced by this type of statistic. Unfortunately, the edges of
the natural anomalies are enhanced, as well. On the other hand, we can observe in
the right panel of Figure that in 2D, natural anomalies geometrically resemble
bubbles (from here on, we will refer to the natural anomalies as bubbles). On the
edges, they have a high contrast to their neighboring environment while there is
little contrast inside the bubbles. As can be seen in the upper middle panel of
Figure [9.2] we use circle-shaped windows that are split in half and compare the
average gray values in the two semicircles in order to enhance the edges of bubbles.
We maximize over multiple angles to account for the change in direction of the edges
(for a mathematical description see (11.2))). As can be seen in the lower middle
panel of Figure this type of statistic indeed enhances the edges of bubbles. By
subtracting the latter values intended to enhance the edges of the bubbles from the
values from the statistic aiming to enhance fissures (for a mathematical description
see (11.3)), our method achieves both an enhancement of the regions close to the
fissure and the diminishing of the bubbles. This can be seen for this example in the
lower right panel of Figure (9.2
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Figure 9.2: The upper left panel illustrates the local geometric properties of fissures.
In the lower left panel, a heatmap of the scan statistic in is displayed, showing
that in this example, enhances the fissure and to a lesser extent the edges
of bubbles and fissures. The upper middle panel illustrates the local geometric
properties of bubbles. In the lower middle panel, a heatmap of the scan statistic
in is displayed, showing that in this example, enhances the edges of
bubbles and fissures. The upper right panel illustrates the local geometric properties
of fissures and bubbles. In the lower right panel, a heatmap of the combined scan
statistic is displayed, showing that in this example, the statistic enhances the
fissure and eliminates most of the noise.

10 Limit theorems of some MOSUM scan statis-
tics

As motivated in Section [, we use a combination of scan statistics on rectangles and
circles in order to detect fissures in the image data. In particular, we use properly
rescaled averages of the gray values of an image over specific areas (e. g. small
rectangles and circle segments) as an input for our scan statistic. In the following,
we will show limit theorems for these types of rescaled sums over a class of sets in
R? that in 2D includes, but is not limited to convex sets and in particular circles and
rectangles.
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Definition 10.1. Let p € N, T" € N. Let (Yir1),» be a sequence of random
variables with E[YVy7] = pkr € R and let A C R?. For s = (s1,...,5,) € R?,
k= (k... k) €Zr let

A(s)=A+s={xzcR |z —sec A}
(517 s,
LSJT:< T T )

k_ (b kY
== (7
€A

Sallsly) =8a(Yilslpy)= > Y
(LSJT)

Furthermore, let v > 0. For s = (s1,...,s,), t = (t1,...,t,) € R? denote by

Sl

(s, +t) = [s1,81+11) X ... X [Sp, S+ 1))
(8,8 4+7) = [s1,51+7) X ... X [Sp,Sp+7),

p—dimensional hyperrectangles and -cubes, where [s;, s; + t;) := [s; + 5, 8;) if t; < 0.
Also denote by
sOt= (Sltl, R ,Sptp)/

the pointwise product of s and t.

In the context of image data with anomalies as described above, it is reasonable
to assume that, potentially after some centering, for some anomaly A C [0, 1]7, the
signal is constant across the anomaly, i. e. pg 7 = par # 0 for k/T € A, while it is
zero outside of anomalies. Also, with regard to the multiple mean change problem
for partial sum processes, it is reasonable to assume that Y 7 = p 1 + € for some
noise sequence (€g)gezr-

Analogously to Part [[, we drop the dependency on T for ease of notation except in
situations where it helps to clarify the argument.

For scan statistics based on p-dimensional hyperrectangles, there exists some the-
ory on the distribution of scan statistics: Kabluchko (2011), |Arias-Castro, Donoho,
and Huo (2005)| and Sharpnack and Arias-Castro (2016) analyze various multiscale
procedures with sublinear bandwidths for i.i.d. Gaussian noise. Haiman and Preda
(2006) analyze the behavior for positive integer-valued noise while Jaruskova and
Piterbarg (2011), Zemlys (2008) assume independent noise with mean 0 and existing
variance. Bucchia (2014) studies a CUSUM-type scan statistic under the assumption
of an existing functional central limit theorem on the noise.

Under the assumption of an existing functional central limit theorem on the (¢), we
are able to derive the limit process of (T7?/2S4 (|8]))sepo,1» under the null situation
of no anomalies:
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Theorem 10.1. Let a = (ay,...,a,) € (0,1/2)P exist such that A = (—a,a] =
(—ay,a1] X ... X (—ap,a,]. Let Yer = puer + €, with ppr € R, Elex] = 0 and
0 < Var [e] < oo. Furthermore let Sa (|s]y) = Sa (€ |s]) be as in Definition|10.1]
Let there exist a p-parameter Wiener process (Ws)se[m]p (compare Definition
and some o > 0 such that

1 T s .
Tor2 ST 5 0 (We) seopp (10.1)
M=l k=l s€[0,1]p

on D ([0,1]P) and that for any ¢ = (c1,...,c,) € ZP, and any bounded hyperrectangle
I C R?, it holds that

1 |17 LspT | [s17]+c1 [spT]+cp
T2 sup Z Z €y, Z Z €ky,ky| = 0P(1) (10.2)
sel | =1 kp=1 k1=1 kp=1

Then it holds with

Ag=0 ( Z (_1)Zi diWS-ﬁ-(—l)d@a)
d

=(dy,....dp) €{0,1}7

that

(Satelsln) = (M)

s€(0,1]p
on D ([0,1]P) as T — oc.

Proof. Let s = (s1,...,s,) € [0,1]P. Since by definition

A(lsly) = (Lsly — a, [s]y + a],
it holds by the definition of S, (€; | s];) in Definition that

[(Ls1)z+ar)T] L(Lsp)r+as)T |
Sa (€§ LSJT) = Z Z €k, kp
ki=|(ls1)p—a1)T[+1 kp=|(lsplp—ap)T|+1
| (Ls)pt(=Da)T| [ (Lsp)p+(=1)%ap)T |

_ ) (—1)2idi 3 > R p

(d1,...,dp)€{0,1}? k1=1 kp=1

(10.3)

where we can see the last equality as follows: We need to distinguish between two
cases: If (Iy,...,1,) € NP with |(|si]p —ai)T| <l; < |([si]p+a;) T for all ¢, then
€1,,..,1, is only counted for (di,. .. ,dp)’ = (0,...,0)" in (10.3]).

If there exists some j = 1,...,p such that lj < KLSJ-JT — aj> TJ then ¢, is

.....

counted in both (dl, < ,dj_l,O,dj+1, BN ,dp), and (dl, e 7dj—17 1,d +1y- - ,dp), with
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d; € {0, 1} appropriate for i # j. Since (—1)21# 4= —(—1)1+Zi# di €,...1, gets
canceled out in all of these summands. This telescoping sum is also in the spirits of
Nelsen (2006), Def. 2.10.1. for the volume of p-dimensional hyperrectangles.

Furthermore, since s; — [s;]p = s; — [T /T < 1/T, it holds for d € {0,1} that

|[(si+ (=1)%a)T| = [([s:)y + (~=1)%a)T|| < 2. Thus, it holds by (10.2) for all
(di,...,d,)" € {0,1}" uniformly in s that

] | (Lsilrt(=D%a)T| | (Lsp)p+(~1)%Pap)T |

W Z Z €ky,....kp

ki=1 kp=1

[(r+0a)T] (s, ) )

1
- RND DINILEND DR by O]
k=1 kp=1
The assertion follows by ((10.1)) and the continuous mapping theorem. ]

As noted earlier, the scan statistic that we use for the detection of fissures and
bubbles is a combination of scan statistics on rectangles, circles and circle segments
by some Lipschitz-continuous function (see Section |11 for more details and Figure
for an illustration of the sets used). Therefore, in the following, we will establish

a limit theorem for (F (1/T7/2Sa,([s)y), ..., 1/T?2S4, (|5 JT)))SE[O o0 D(0,1]7),

where Ay, ..., Ap come from the following class of sets in R” that in 2D includes all
convex sets (compare Lemma (10.4)):

Assumption 10.1. Let A C RP. For v >0, s € R? et

AN(s)= | A(s+uy).
y€(07]P
(a) For any s € R it holds that

|{§i € A(s)}’ = TPA\(A) + O(T"™).

(b) There exists vo > 0 and C > 0 such that for all 0 < vy < 7o,

A (A% (s)) = M(A) < C.

Remark 10.1. If A fulfills Assumption and ||s — t||, <7 < 7, then
A (A(s)AA(t)) < 2C~: Since [[s —t||,, < 7, there exists x € R? such that s,t €
[,z +7]. Therefore, A(s),A(t) C AW (x) and it follows by Assumption m (b)
that

A(A(s)AA(L) = A (A(s) \ AF)) + A (A(E) \ A(s))
<A (AD(@)\ A(t)) + A (AP () \ A(s)) < 2C.
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By Theorem |A.6| (also compare |Wichura (1969), Theorem 2), it is sufficient to
show the convergence of the finite-dimensional distributions (fidis) of

(F (U250, (8, - /T80, (15)5)

selo,1]p

and the fulfilling of some modulus of continuity. In order to prove these properties,
we will first show the convergence of the fidis and the modulus of continuity for

((1/TP/QSA1(L3JT), Ceey 1/Tp/2SAP(LSJT>)/>

s€(0,1]p

Theorem 10.2.

Let Ay, ..., Ap C R? fulfill Assumption|10.1. Let (€x)scz» be a sequence of i.i.d. ran-
dom wvariables with E[ex] = 0, E[ez] = 0° € (0,00) and let E||ex|"] < oo for some
r > 2p. Let Yo = ppr + e with per € R, let Sa(|s]y) = Sale | s]y) be as in
Definition and let

52(5) = (7S (L)), S, (lsly))

Then the following properties hold:

(i) There exists a P-dimensional centered Gaussian process
(W()acto.p = (Wi(8), ... Wp(8)) )acio.p with

Cov [Wi(s), W;(t)] = o”A (Ai(s) N A;(t))
such that for alln € N, t1,....t, € [0,1]P it holds that

(Sr(t), .. Sr(ty)) == (W(ty), ..., W(t,)).

(i) For any x > 0 it holds that

lim lim sup P ( sup  |ISr(s) — Sr(t)], > a:) =0.

=0 T lls—t|| <3

Proof. (i) By the theorem of Cramér-Wold (compare Billingsley (1995), p. 383), it

is sufficient to show that for arbitrary ay1,...,an1,...,a01.p,...,anp € R,
n P 1
> aijSa, ([t r)
i=1j5=1 Tp/2 !

converges in distribution to a normal limit with the variance of

n

ZZ%‘WJ(W] |

i=1j=1
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For the ease of notation, denote by A! = A, A° = A’. For ease of notation we are also
renumbering the A;(t;) successively with a slight abuse of notation in the following
way: Fori=1,...,n,j=1,...,Plet Aj_1)pti1 = Aj(t;) and let m = nP.

For 1 =0,...,2™ —1let I = 7" ;2" be the unique binary representation of [ with
l; € {0,1} and let

m—1
l;
My=M,, = ()AL
1;2¢ i=0
=0

Since we are using the unique binary representation for [, the sets M; are pairwise
disjoint: For k # [, there exists ¢ = 0,...,m — 1 such that k; # [;. It follows that
Ak Al = ¢ and therefore M, N M; = (). Furthermore, it holds that

@ X M-R
B A= M (10.4)

fori=0,...,m—1.

Proof of (a): Let £ € RP. Fori = 0,...,m — 1, let l; = L{zca,;. Then x € Al
for all 7, hence
m—1
ze () Al =M,

1 .
i=0 1;2¢
0

Proof of (b): We first show that A; C >°;.—y M;. Let € € A;. For k=0,...,m —1,
k 75 1 let lk = ]l{mEAk}w Then,

T € (ﬂ Aﬁf) NA; = M,

ki > 12k
k=0

We then show that A; D 37, 1 M;. By definition, it holds for [ with [; = 1 that

M; = A; N (ﬂ Aﬁ:) C A,

ki

and the assertion follows immediately.

Since the M; are pairwise disjoint, it holds by the central limit theorem and

Assumption [10.1] (a) that

!/
1 1 ~ ~ /
m Z 6k""7m Z €k i) (W(),...,ng_1> ,

keMy keMom_y
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where the T, are pairwise independent A(0, 02 A(M;))-distributed random variables
forl=0,...,2" —1. For i =0,...,m — 1 denote by

W= Wi

llzil

By ([10.4)), it holds that W; is A(0, 0?A(A4;))-distributed.

Let ai1,...,an1,...,01,p,...,a,p € R. Analogously to above, we are renumbering
the a;; for the ease of notation with a slight abuse of notation in the following way:
Fori=1,...,n,j=1,..., P with ag_1)p4i-1 = a;; that

n P 1 n P 1 m—1
22 igmSa ) =22 tugn 2 k=2 a o Z
i=1j=1 i=1j=1 %EAj(ti)
m—1 1 . m—1 N m—1
= Z @; Z Tr/2 Z €k — Q; W, = a;W;
=0 l:l;=1 ke, =0 l:l;=1 =0

We have shown the convergence with Su,(t;) instead of Sy, ([t;|). However, this
does not present a problem: For j =1,..., P and s € [0, 1]?, we obtain that

1

Tz 04 (8) = Tp/2 4, (slr)| = 7 ooa— Y. e
ReA;(s) 2eA;(lslr)
1
S 2 el (10.5)

TFEA;(5)AA;(Is)7)

Since [|s — |s] ;]| < 1/T, it holds by Remarkthat AA;(s)AA;([s]r) =
O(1/T) and therefore, the number of independent summands with identical vari-
ance in by Assumption [10.1] (a) is of order O(TP~!). Thus, it holds by
Tschebyscheft’s inequality that

1 1
WSAj (8) - WSA]-<LSJT) = OP(l)'

and the assertion follows.

Proof of (ii):
First note that for arbitrary s,t € [0, 1]7, it holds that

ISr(s) — Sr(8)llc = s, [0S (Ls)e) — S, (81r)].

-----

Therefore, showing

hmhmsupP( sup ||Sz(s) —Sz(t)| > x) =0
|

=0 700 |s—t|| <6
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for all > 0 is equivalent to showing

1 1
WSAi (ls]y) — WSAi ([t]7)| =

lim lim sup P ( sup

=0 700 lls—t|| <3

x) =0.
forallz >0,1=1,...,P.
For any 6 > 0, define ko = ko(d) such that 2=+ < § < 2% Then letting
d — 0 is equivalent to letting ko — oco. Let m = m(T) = [(2p/r + ¢)log, T'] for
some sufficiently small € > 0 such that 2™ = o(T) as 2p < r. Since in the following,
we are only going to use sets of the form A®™), we will write A¥ = AC™ for the
ease of notation. For s,t € [0, 1]7 with ||s — t||_, < J, we can write

SAi (LS T) - SAi (LtJT)

= S, ([s)r) — 54, ([5]n) (10.6
+ 8, ([8)gn) — Saps (15)pn) (10.7
5 (S (sharer) = S02 (1120) (10.8)
48 0 (1)) = S 02 (1) (10.9)
*?ﬁ (Sax-2 (1)) = Sarr ([E)ge))

+ S ym2 ([tym) = Sa; ([E]5m)
+ 54 ([E)ym) = Sa, ([E]1) -

Note that this telescoping series consists of four separate elements: In the first step
(10.6), the step function Sa, (|s];) on a grid of spacing 1/T is replaced by the cor-
responding step function S4, (|s],n) on a grid of spacing 2™ > 1/T. In the second
step (10.7), A; is replaced by a larger set of Lebesgue measure A(4;) + O(27™). In
the third step we continue to coarsen the grid and expand the sets around s
until the distance between adjacent grid points is more than ||s — ¢||

In the fourth step ((10.9), we move from s to ¢ on sets of the form AfO_Q. Then steps
3 to 1 are reversed for t. In order to show the assertion, we will analyze —
separately.

For (10.6): For T large enough (by assumption, 2" = o(T)), it holds that
L8]y — Lslomllo < sy — sl + s = [slomll, < /T +27" <2-27™. (10.10)
Therefore, it holds by Remark with a suitable constant C' > 0 that

AMAi ([s] ) \ Ai ([s)gm)] + AAi (L8]m) \ Ai ([8]7)]
= MAi(Lslp) AAi ([s]ym)] < C27™.
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Therefore, we obtain by Markov’s inequality, Assumption (a) and Lemma
with suitable constants C., Cz > 0 that
> x)

P('T;/2 Lslr) - Tp/2 4, ([8)m)

1
= P m Z € — Z €L Z T
LeAi(lsly) B ([s)ym)
1
=P Tp/2 Z €k — Z €l > x
Ben(l i) Al (i)
1 T 1 N
FEAi(Lsr)\Ai(Ls)om ) EcAi([s)ym )\A:( L8] 1)
& Z €k E Z €L j|
< *GAi(LﬂT)\Ai(LSJm") %GAi(szzm)\Ai(LsJT)
>~ Trp/2 <%) Trp/2 (g)
— r/2
< o0 (TPA[A; (18)7) \ As (18] )] + O(TP))"
B " Trp/?xr
— r/2
e (TPALA ([8]50) \ Ai (L)) + O(T" 1)
r Trp/2r
rp/29—mr/2 .
< OQW — 0,2 < CzT_E(ZT+5) — O, Pre/D).

since by definition, m = [(2p/r + €) log, T'] and thus, 27 < T~2P/7+9) We will now
consider the supremum over s € [0, 1]? of the above expression that only depends on
s via |s|; and |s],.. Thus, it is by sufficient to take the supremum over
|s|; with s € [0,1]? and over all |s],, with ||| §],m — |8];|| < 2-27™ for fixed |s].
The first supremum is taken over the set {|s|,|s € [0,1]?}, which has cardinality
(T'+1)P < 2PTP. The second supremumn is taken over a set that by Lemmal[C.1] (a) has
finite cardinality as the number of points of the form k27", k € Z” in the hypercube
(8] —2-27, s8], +2-27] is finite. Therefore, we obtain for any x > 0 with a
suitable constant C'3 > 0 potentially depending on x by subadditivity that

1 1
’ (Ses[tgg]p TP/2 A (Lsle) = Tp/QS ([s]om)] 2 $>
1
< X > P (|8 (181 — 7S (Lshn)| 2 2)
LSJT: SE[O,I]JD szzm: s€(0,1]P, Tp/2 T /2
|Ls)r—Lslom]| <2:27™
< CyTPT~ P2 = G572 — 0. (10.11)
as I' — oo.
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For (10.7]), it holds by Assumption (b) that
(A2 ([8)30) \ A(8)y)) < 4C27™

Therefore, we obtain analogously to ([10.11]) with suitable constants C,., Cy > 0 that

P < sup > x)
s€[0,1]p

1 1
< % P(lpEsa el - s (lole)| 2 9)
(TPA (A™2 (|8 ]50) \ A([8],0)) + O 1)
Tpr/2$r
< C\2rmomr/2 — CyomPTT/2) ) (10.12)

1 1
WSAi (Ls)gm) — WSA;"’Q (Ls]om)

< or.orm,

as T' — oo since r > 2p and m — oo as T" — o0.

For (10.8), for any k = ko,...,m — 1 and any [S]qs1, | S|, is uniquely deter-

mined: If 8],y = 127+ = (1/2)27% for I € ZP, then |s], = [1/2] 27, where

|1/2] denotes the componentwise integer part of I/2. By construction it holds that
IL8)or = L8)grrall,, <270+ < 27070 = 972 _9=(=0),

hence by construction,

I.SJ2k < I_SJQIH-l < |_SJ ok + 2_(k+1) < I_.SJQI,H_1 -+ 2_(k+1) < |_SJ ok + 2—(k’—2).

Therefore
[LSJ opi1 5 | 8] grer + 2’(’“*1)} C [stk 18]y + 2—(1@72)}

and by def