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Abstract

When a robot is operating in a dynamic environment, it cannot be assumed that a
tool required to solve a given task will always be available. Consider, for instance,
a scenario where a robot is asked to serve drinks where the robot has to use a tray
to serve the drinks. If the robot finds the tray, the task will progress, but what if
the tray is unavailable. Such situations are common occurrences in our daily lives.
In situations like these a robot would be expected to improvise like humans from
the other available objects, for example, by using an eating plate for serving. This
skill is significant when operating in a dynamic, uncertain environment because
it allows a robot to adapt to unforeseen situations. The question is: how can a
robot determine which object in the environment is a suitable substitute for a
missing tool?

For substitute selection, we took inspiration from the way humans select a sub-
stitute from the existing objects for a missing tool wherein humans take into
consideration conceptual knowledge about object’s physical and functional prop-
erties. For instance, consider a scenario in which one has to choose between a
plate and a mouse pad as an alternative for a tray. For a tray whose designated
purpose is to carry, rigid and flat are more relevant to carry than a material or a
color of a tray. In order to find a suitable substitute, the relevant properties of the
missing tool need to correspond, as large a degree as possible, to the properties
of the available objects. In this work, we have proposed an approach to substitute
selection where a conceptual knowledge-driven computation is performed to
identify the relevant properties of the missing tool and determine a substitute
on the basis of shared relevant properties. The question is, how to acquire such
knowledge about the properties.

An argument has been put forth in cognitive science for bottom-up generation of
knowledge in which humans and animals alike develop conceptual understand-
ing of objects based on their own perceptual experiences with objects. We have
followed suit and propose that knowledge about properties should be generated
from the sensory measurements of the properties. We have termed such bottom-
up generation of knowledge from the sensory measurements as robot-centric
knowledge. We propose an extensible property estimation framework which
consists of estimations methods to obtain the sensory measurements of phys-
ical properties (rigidity, weight, etc.) and functional properties (containment,
support, etc.) from household objects. In our second contribution we employ 1)
unsupervised clustering methods to transform the sensory measurements of the
properties into symbols, and then 2) bivariate joint frequency distributions and
sample proportion to generate conceptual knowledge about objects.

In this work, we have presented a proof of concept of the proposed approaches.
We acquired a dataset comprising six physical and four functional properties of
110 household objects using the proposed property estimation methods. This
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dataset was used to evaluate the property estimation methods and the semantics
of the considered properties within the dataset. Furthermore, the dataset is used
to generate the proposed robot-centric conceptual knowledge which is then used
by our proposed substitute selection system to identify a substitute from the
available objects in different missing tool scenarios.
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Zusammenfassung

Wenn ein Roboter in einer dynamischen Umgebung agiert, kann nicht davon
aus-gegangen werden, dass ein Werkzeug, das zur Lösung einer bestimmten Auf-
gabebenötigt wird, immer verfügbar ist. Nehmen wir zum Beispiel ein Szenario,
indem ein Roboter aufgefordert wird, Getränke zu servieren, wobei der Roboter
ein Tablett benutzen muss, um die Getränke zu servieren. Wenn der Roboter
das Tablett findet, wird die Aufgabe erfüllt, aber was ist, wenn das Tablett nicht
verfügbar ist? Solche Situationen kommen in unserem täglichen Leben häufig
vor. Insolchen Situationen wird von einem Roboter erwartet, dass er wie ein Men-
sch ausanderen verfügbaren Gegenständen improvisiert, indem er zum Beispiel
einen Essteller zum Servieren verwendet. Diese Fähigkeit zur Improvisation ist
von großer Bedeutung, wenn er in einer dynamischen, unbekannten Umgebung
eingesetzt wird, denn sie ermöglicht es einem Roboter, sich an unvorhergese-
hene Situationen anzupassen. Die Frage ist: Wie kann ein Roboter feststellen,
welches Objekt in der Umgebung ein geeigneter Ersatz für ein fehlendes Werkzeug
darstellt

Für die Auswahl eines Ersatzes haben wir uns von der Art und Weise inspirieren
lassen, wie Menschen einen solche Aufgabe aus den bereits vorhandenen Ob-
jekten lösen. Dazu berücksichtigen Menschen insbesondere das konzeptionelle
Wissen über die physischen und funktionalen Eigenschaften des Objekts. Be-
trachten wir zum Beispiel ein Szenario, in dem man zwischen einem Teller und
einem Mauspad als Alternative für ein Tablett wählen muss. Bei einem Tablett,
dessen Hauptzweck das Tragen ist, sind die Eigenschaften wie starr und flach
wichtiger als das Material oder die Farbe eines Tabletts. Um einen geeigneten
Ersatz zu finden, müssen die relevanten Eigenschaften des fehlenden Werkzeugs
so weit wie möglich mit den Eigenschaften der verfügbaren Objekte überein-
stimmen.In dieser Forschungsarbeit haben wir einen Ansatz für die Auswahl
eines Ersatz es vorgeschlagen, bei dem eine konzeptionelle, wissensbasierte
Berechnung durchgeführt wird, um die relevanten Eigenschaften des fehlenden
Werkzeugs zu ermitteln und einen Ersatz auf der Grundlage der gemeinsamen rel-
evanten Eigenschaften zu bestimmen. Die Frage ist, wie man sich dieses Wissen
über die Eigenschaften aneignet.

In der Kognitionswissenschaft wurde ein Argument für die Bottom-up-Erzeugung
von Wissen vorgebracht, wonach Menschen und Tiere gleichermaßen ein begrif-
fliches Verständnis von Objekten auf der Grundlage ihrer eigenen Wahrnehmungser-
fahrungen mit Objekten entwickeln. Wir sind diesem Beispiel gefolgt und
schlagen vor, dass das Wissen über Eigenschaften aus den sensorischen Mes-
sungen der Eigenschaften gewonnen werden sollte. Wir haben eine solche
Bottom-up-Generierung von Wissen aus den sensorischen Messungen als
roboterzentriertes Wissen bezeichnet. Wir schlagen einen erweiterbaren Rah-
men für die Schätzung von Eigenschaften vor, der aus Schätzungs methoden
besteht, um die sensorischen Messungen der physikalischen Eigenschaften
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(Steifigkeit,Gewicht usw.) und der funktionalen Eigenschaften (Behältnis, Halt
usw.) von Haushaltsgegenständen zu erhalten. In unserem zweiten Beitrag
schlagen wir 1) unüberwachte Clustering-Methoden vor, um die sensorischen
Messungen der Eigenschaften in Symbole umzuwandeln, und dann 2) bivariate
gemeinsame Häufigkeitsverteilungen und Stichprobenanteile, um konzep-
tionelles Wissenüber Objekte zu generieren.

In dieser Forschungsarbeit haben wir ein Proof of Concept der vorgeschlage-
nen Ansätze vorgestellt. Wir haben einen Datensatz mit sechs physikalischen
und vier funktionalen Eigenschaften von 110 Haushaltsgegenständen erstellt
und dabei die vorgeschlagenen Methoden zur Eigenschaftsschätzung verwen-
det. Dieser Datensatz wurde verwendet, um die Methoden zur Schätzung der
Eigenschaftenund die Semantik der betrachteten Eigenschaften innerhalb des
Datensatzes zubewerten. Darüber hinaus wird der Datensatz verwendet, um das
vorgeschlagene roboterzentrierte konzeptionelle Wissen zu generieren, das dann
von unserem vorgeschlagenen Ersatzauswahlsystem verwendet wird, um einen
Ersatz aus den verfügbaren Objekten in verschiedenen Szenarien mit fehlendem
Werkzeug zu identifizieren.
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2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Does the scenarios in the figure 1.1 seem familiar? We, humans, have

been in these situations from time-to-time: a plastic box is being used as

a stool1; a heeled shoe is being used as a hammer2; a rock is being used

as a door stopper3, a tablet is being used as a tray4; coke bottles are being

used as a vase5 and a lighter being used as a bottle opener6. The common

thread in these examples is that an object is not being used for its intended

purpose, that is a heeled shoe is not intended to be used as a hammer. It

just seems a coincidence, that it can also be used as a hammer or does it?

The sophistication pertaining to tool-use in humans involves not just the

dexterity in manipulating a tool, but also the diversity in tool exploitation.

The ability to exploit the tools has enabled humans to adapt and thus ex-

ert control over an uncertain environment, especially when they are faced

with unfavorable situations.

Now, consider a scenario where a robot is asked to serve a coffee (see

Fig 1.27). Let us assume that a robot knows how to perform the task. It

goes to a kitchen, locates a coffee pot and a cup, pours coffee in the cup.

The robot then locates a tray and places the cup on the tray and delivers it.

However, what if the tray is unavailable! In this case, what should a robot

do when it is unable to locate the tray. We do not want the robot to quit or

wait until the tray becomes available.

What do we humans do, in situations like this? These are not uncommon

scenes for humans (See Fig. 1.1). In situations like this, humans typically

respond by improvising the usability of available objects in an environ-

ment.

1 Scribbalicious.com, (the website does not exist anymore)
2 https://www.omniagroup.com/dont-hire-a-shoe/
3 https://www.gardenista.com/posts/diy-idea-a-no-cost-painted-stone-door-stopper-koizumi-

studio-tetu-iron-door-stopper/
4 https://www.businessinsider.com/hot-ipads-can-heat-up-coffee-2012-3
5 http://www.lesliereese.com/leslie-reese/tag/flower+arranging
6 https://www.pinterest.com/pin/132645151500976736/
7 Wall-e thinking: https://www.pinterest.com/pin/182536591132680554/

Coffee cups: https://www.planspin.com/serving-trays.html
Wall-e quitting: https://stickers.cloud/fr/pack/wall-e

Scribbalicious.com
https://www.omniagroup.com/dont-hire-a-shoe/
https://www.businessinsider.com/hot-ipads-can-heat-up-coffee-2012-3
http://www.lesliereese.com/leslie-reese/tag/flower+arranging
https://www.pinterest.com/pin/132645151500976736/
https://www.pinterest.com/pin/182536591132680554/
https://www.planspin.com/serving-trays.html
https://stickers.cloud/fr/pack/wall-e
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tray
located?

serve tea

i quit...!!!

Figure 1.2: Consider a scenario... (image credits are cited in the text)

In other words, we find a replacement or a substitute that can be used as a

missing tool. In situations like these, humans seem to know - either from

the past experience or from observations or from the "necessity-is-the-

mother-of-improvisation(invention)" type approach - what kind of object

is needed as a substitute. This skill is significant when operating in a dy-

namic, uncertain environment because it will allow a robot to adapt to un-

foreseen situations to a degree. The question is how can a robot determine

which object in the environment is a suitable candidate for a substitute?

One possible approach to determine a suitability would be by maneuver-

ing an object in the same manner as a missing tool. However it would be

time consuming if the robot interacts with every single object in the en-

vironment to determine the suitability of a substitute which makes this

approach less practical. The question is how to identify a suitable candi-

date for a substitute for a missing tool without interacting with every sin-

gle object in the environment. My doctoral research investigates this very

problem.

1.2 Inspiration - how do humans select a substitute?

A typical tool substitution task involves selecting a suitable substitute for

a missing tool and using it in an ongoing task. Like tool use, tool substi-

tution is an elaborate endeavor which involves bio-mechanical and cog-

nitive aspects of problem solving [1]. Consider, for example a heel of a

shoe. Though its primary function is to extend the height of a person, it

can also be used for hammering a nail (see Fig 1.1). One can observe cog-
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nitive reasoning involving analogous thinking about a shoe as a hammer

while taking into account the bio-mechanics of manipulating the shoe as

a hammer. The inquiry worth investigating, however, is, why was shoe se-

lected.

In order to select a plausible substitute for a missing tool, the substitute

needs to be recognised to be similar to the missing tool in some way with-

out having to interact with it. The question is what is needed to determine

the similarity. Consider, for instance, a scenario in which a substitute for

a small stool to be used for sitting is a decision between two available ob-

jects: a plastic container and a cardboard box (figure 1.3). Baber in [1]

pointed out that humans use conceptual knowledge about tools to reason

about a substitute on the basis of suitability. For instance, we consider

the stool as a rigid, medium sized object with a flat surface (ref table 1.1).

Thus, to find the most appropriate substitute, the properties of the pos-

sible choices need to correspond to as large a degree as possible to the

properties of the original object. The problems with this direct matching

of properties is that some properties matter more than the others, i.e. that

some properties are more relevant than others which enables a designated

purpose of a tool [2]. Take, for instance the objects, a stool, a plastic con-

tainer, and a cardboard box. For a stool, whose designated purpose is to be

’sit-able’, we know that rigidity and flat surface are essential, size is less rel-

evant and color is completely irrelevant. Similarly, for a plastic container

and a cardboard box, whose designated purpose is to ’contain’ something,

hollowness is important, size is less relevant and color is irrelevant. In or-

der to find the most appropriate substitute, the relevant properties of a

missing tool need to correspond to as large a degree as possible to the

properties of the possible choices for a substitute [3]. As a result, a plas-

tic container seems to be an appropriate choice as a substitute for a stool

as it shares most of the relevant properties of a stool than a cardboard box.

Stool Plastic Container Cardboard Box

Figure 1.3: Possible replacements for a stool: a plastic container and a cardboard
box
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Property Stool Plastic container Cardboard box
Rigidity High High Low

Flatness of surface High High High

Size Medium Small Small

Color Orange Grey Brown

Table 1.1: Property table for stool: tool substitution.

1.2.1 Objectives of this dissertation

In this research work, we have adopted a similar approach. Accordingly, in

order to select a substitute, a substitute selection system needs: concep-

tual knowledge about objects, relevant properties of a missing tool and a

mechanism to determine whether the relevant properties are present in

the available objects in the environment. On this basis, we can now lay

down the primary objectives that need to be carried out when selecting a

substitute

Objective 1: Acquire conceptual knowledge about objects which contains

knowledge about properties of objects

Objective 2: Identify relevant properties with respect to the primary pur-

pose of a missing tool

Objective 3: Determine a substitute on the basis of relevant properties of

a missing tool

1.3 Research Questions

Now that we have laid down the objectives, we are in a position to formu-

late research questions that are addressed in this research work. We first

note down below the research questions related to the Objective 1 con-

cerning the conceptual knowledge, followed by the research questions re-

lated to the Objectives 2 and 3 which focus on substitute selection. The re-

search questions are divided into conceptual and technical research ques-

tions. We deemed it necessary to formulate the conceptual research ques-

tions as they allow us to define and understand the scope and the complex-

ity of a problem being addressed. Accordingly, the conceptual research
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questions, in our work, form the foundations for the subsequent techni-

cal research questions. As a result, we pose a conceptual question first by

asking What followed by a technical question formulated using How.

1) What is the nature of the conceptual knowledge about objects desired in

substitute selection?

Before we approach the Objective 1, it is necessary to orient the conceptual

knowledge and lay down its scope with respect to its contents such that it

can be used in substitute selection scenarios. Such discussion will form

the foundation for designing the approach to acquire the desired knowl-

edge. Therefore, we have posed this conceptual question which deals with

the characterization of knowledge with respect to its contents and repre-

sentation.

It is postulated in the literature on tool-use in animals [1] that “a non-

invasive tool selection in humans or animals alike is facilitated by concep-

tual knowledge about objects, especially, knowledge about their physical

and functional properties and relationship between them”. It is not going

to be any different for a robot in substitute selection situations where con-

ceptual knowledge about objects will allow it to make such selections in

a non-invasive manner. Therefore, if the conceptual knowledge about ob-

jects for a robot is to be consisted of physical and functional properties,

the questions that need to be answered are: what are the desired contents

of such conceptual knowledge about objects and how are they to be char-

acterized such that the knowledge can be used for a substitute selection

purpose? With respect to the physical and functional properties of objects,

it is essential to specify what constitute physical and functional properties

in this work. After all, we humans are capable of describing an object in

term of its, for instance geometrical properties such as shape, size; me-

chanical properties such as rigidity, weight; thermal properties such as

boiling point, melting point; chemical properties such as reactivity, cor-

rosion resistance.

Moreover, while designing the contents, another issue that must be dealt

with is the desired granularity of the knowledge to be acquired. In other

words, how much detailed knowledge about objects is necessary and suffi-

cient for selecting a substitute. It is worth noting that humans can describe
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an object at a macroscopic level as well as a microscopic level. The ques-

tion is, what is the desired granularity of knowledge in substitute selection.

2) How to acquire such conceptual knowledge?

This research question is concerning the Objective 1 and builds upon the

conceptual question about the nature of the conceptual knowledge. The

acquisition of knowledge, in our view, can not be addressed without ad-

dressing the nature of the desired knowledge as the acquisition approach

will be influenced by the contents and the granularity of the knowledge.

A straight forwards answer to this question would be to hand-code the de-

sired knowledge, but note that it is not possible to hand-code knowledge

about every possible object in the world. A second option would be to

use the existing knowledge bases such as WordNet, ConceptNet etc. This

could be a viable option, despite of them being hand-coded by humans.

Another possible way is let a robot acquire the desired knowledge by in-

teracting with the objects. The underlying question, in that case, is what

kind of interactions can be designed to acquire such knowledge. Given

that a robot has limited perception capabilities, it is also possible to fill the

missing knowledge gap by combining the hand-coded knowledge or ex-

isting knowledge bases with a robot-acquired knowledge. Another ques-

tion which needs to be addressed is, whether the knowledge should be

acquired in an online manner or offline or a combination of both. Note

that, in case of an online knowledge acquisition, the knowledge is usu-

ally acquired in an incremental manner. Some of the common online

knowledge acquisition methods are: through interaction with the environ-

ment, human-robot interaction etc. In contrast, an offline knowledge ac-

quisition allows the knowledge acquisition in bulk, for instance, acquiring

knowledge from the existing knowledge bases like WordNet, ConceptNet,

DBpedia or reasoning about the already acquired knowledge.

Acquisition of knowledge leads to two additional aspects about knowledge:

knowledge representation and symbol grounding. As the acquired knowl-

edge is to be used for substitute selection purposes, the question is how

to represent knowledge that is suitable to reason about a substitute? Ad-

ditionally, while considering the formalism, the desired characterization

of the knowledge needs to be taken into account as well. Moreover, as
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we gain more experiences, learn about properties, exposed to new objects,

new instances of the known objects, our knowledge about objects is re-

viewed and updated. As a consequence, our knowledge about objects is

constantly evolving. It also holds true for a robot and therefore, when de-

vising an acquisition process and representation formalism for the knowl-

edge, we have to take this into account.

In artificial intelligence, in general, the knowledge is represented in sym-

bolic or sub-symbolic formalisms. Symbolic knowledge usually represents

mental representation of the outside world and in such case, such knowl-

edge should have a correspondence to the respective aspects of the real

world. For instance, a symbol cup should correspond to a physical cup

in the real world. This correspondence is commonly referred as symbol

grounding. For a robot, when representing knowledge about objects, it is

essential that the knowledge is grounded in robot’s perception or sensory

data to be specific. It is not enough for a robot to simply have an access to

a symbol cup without knowing what it means. In other words, for a robot,

a symbol grounding can be seen as providing a meaning to the symbols

by means of the sensory perception of the world. In case of this doctoral

research, the central question is, what purpose does a symbol grounding

serve in substitute selection? Especially, as knowledge about objects con-

sists of physical and functional properties, the question is why and how

do we ground physical and functional properties of objects into robot’s

sensory data? While it is a straight forward process to ground symbols rep-

resenting objects such as cup into sensory data of a real-world cup, the

real challenge is, how can we ground an abstract physical property, which

can not be seen, into robot’s sensory data. The more intriguing question,

however, is what kind of sensory data do we need to acquire to represent a

physical property of an object and how to acquire such data?

3) What is a substitute?

In order to attain the Objectives 2 and 3, we first need to conceptualize

what a substitute is. Note that a substitute is a part of a tool substitution

and therefore, before we conceptualize a substitute, it is essential to ad-

dress the questions: what is a tool substitution and where does a substi-

tute fit in the tool substitution? Moreover, we have noted in the literature
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on tool substitution, discussed in Chapter 4, Sec. 4.4 that the terms tool

substitution and substitute selection are used interchangeably, however

the question is, is tool substitution same as substitute selection? If not,

then the question is where does a substitute selection fit in the tool substi-

tution?

In regard to conceptualizing a substitute, it is essential that we conceptu-

alize a tool first. There are many definitions of a tool in the literature. At

the core, a tool is a physical object in the environment as suggested in the

literature on tool-use [3; 4], on the other hand, Butler in [5] suggested that

“Nothing is tool unless during actual use”, thus providing a much broader

perspective to what can be constituted as a tool. In our case, it is not only a

tool that requires defining but also a substitute. It can be agreed that at the

core, a tool and a substitute are both objects. The question is when does

an object become a tool and when does an object become a substitute?

Note that, it is likely that a choice of a substitute for a missing tool may not

be universal and will be influenced by personal preferences. Such subjec-

tive selection of a substitute means there is no such thing as an accurate

substitute for a missing tool. For instance, between a book and a tablet

as substitute options for a tray, some users may select a book while some

users may select a tray. Secondly, a substitute does not necessarily has to

be a look-alike of a missing tool. For instance, a stone and a hammer do

not look alike, however, a stone can be used as a hammer. In other terms,

when we (humans) are looking for a substitute, we do not necessarily look

for most accurate or maximum similar substitute but sufficiently similar

object that can be used as a substitute. This begs the question: how is

a tool differentiated from a substitute or what are the characteristics of a

tool and of a substitute.

4) How to determine a substitute for a missing tool?

This is a technical question which is built upon the conceptual question

about a substitute and it is concerning the Objectives 2 and 3. As noted,

the definition of a substitute will form the basis for a computational model

of a substitute selection. As our substitute selection approach is inspired

by the way humans select a substitute, the research question can be di-

vided into two parts. Firstly, as humans select a substitute on the basis
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of relevant properties of a missing tool, the question that needs to be ad-

dressed is how to identify the relevant properties of the missing tool. We

should bear in mind that, the relevant properties of a tool are embedded

in the conceptual knowledge about the tool, however, they are not marked

as such during the knowledge acquisition process. After we identify the

relevant properties, the subsequent question can be posed as how to de-

termine the suitability of a substitute on the basis of the relevant proper-

ties of the missing tool. Note that, a tool substitution usually takes place

during an ongoing task. It should also be noted that for any user or a robot

operating in the environment, there are countless number of missing tool

situations with countless number of tools which can occur in countless

number of places at any given time. This means, it is nearly impossible to

know beforehand what objects will be available for every missing tool. As

a result, a robot has to select a substitute from the available objects and

determine how to use it as a missing tool during run-time in order to fin-

ish the task in a timely manner. Therefore, when devising an approach to

substitute selection, a run-time response needs to be taken into account.

Moreover, while humans select a substitute on the basis of its approximate

similarity with a missing tool, we establish its substitutability only after it

is used. In other terms, the validity of a substitute’s accuracy for a missing

tool can only be determined after using it. If the task was finished success-

fully using a substitute, we ascertain that it is an accurate substitute for a

missing tool. However, if the task could not be finished using the substi-

tute, then we proceed with failure analysis. The failure analysis may lead

to various conclusions such as: 1) a substitute was used incorrectly; 2) a

substitute can not be used due to the user’s limited capabilities; 3) unfore-

seen environmental changes which may have affected the task etc. The

challenge is can a substitute be validated by a robot in a similar manner

and if not, what are the other manners in which a substitute can be vali-

dated?
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1.4 Contribution

1.4.1 Overview of the system

Before we lay down our contribution we have made in this research work,

we would like provide a context which will allow us to place our contribu-

tion. In the following, we provide a workflow of a tool substitution system

which consists of typical steps that are to be followed in order to perform

tool substitution. We have also provided a brief description of each step.

Search 
required 

tool

Search 
available 
objects

Use 
substitute

Select 
substitute

Validate 
substitute

Tool 
available

?

No

Generate 
knowledge

Estimate 
properties

Knowledge 
acquisition

Tool Substitution Workflow

Objectives - 1
Conceptual Research Question - 1
Technical Research Question - 2
Conceptual Contributions - 1 
Technical Contributions - 1, 2

Objectives - 2, 3
Conceptual Research Question - 3
Technical Research Question - 4
Conceptual Contributions - 3 
Technical Contributions - 3

Objectives - 3
Conceptual Research Question - 3
Conceptual Contributions - 2 

Figure 1.4: An illustration of a tool substitution workflow we have proposed in
this research work. In the figure we have also included the modules that were the
result of our research work. Additionally we have indicated in the workflow the
respective objectives, conceptual and technical research questions, conceptual
and technical contributions.

Fig. 1.4 illustrates graphically an aerial view of a workflow we have pro-

posed in this work which is based on the literature on tool use in humans

and animals as reported in [3; 4]. It highlights the processes involved in a

typical tool substitution task. As the objective of the figure is to offer an

overview of the workflow, the processes in the figure are stated without

specifying the respective inputs and outputs for each process. We have

elaborated the workflow further in the subsequent chapters.
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The tool substitution is typically caused by the unavailability of a required

tool in an ongoing task. A typical workflow of the tool substitution for a

robot would be executed as follows: When a required tool is unavailable,

Search available objects searches for available objects in the environment

and sends the list of the available objects to Select substitute process. The

Knowledge acquisition process sends the knowledge about the available

objects to the Select substitute process. From the available objects, the Se-

lect substitutes determines a substitute on the basis of conceptual knowl-

edge about objects and forwards the selected substitute to the Use substi-

tute process. A robot uses the substitute as a missing tool in the ongoing

task. The Use substitute sends the substitute performance feedback to the

Validate substitute process. The use of the substitute is validated by the

Validate substitute after evaluating the task performance using the substi-

tute.

In this doctoral research work, we focus on the substitute selection pro-

cess in the tool chain. Besides the substitute selection process, the re-

search work also focuses on the acquisition of knowledge required for the

selection process. The knowledge acquisition process consists of two mod-

ules: property estimation and knowledge generation. In property esti-

mation, the physical and functional properties are estimated from house-

hold objects. The estimated properties are then used to generate the de-

sired knowledge about objects. These three processes are our primary ap-

proaches we have proposed in our work. In the following, we lay down the

contributions of this doctoral research.

1.4.2 Contributions

Our contributions lie on two different levels: some of our work focuses on

the theoretical aspects wherein we propose a conceptual framework for

tool substitution and for substitute selection. The conceptual framework

forms the foundation for contribution at the technical level. In this the-

sis, we have implemented a proof-of-concept based on the proposed ap-

proaches and the conceptual frameworks. Each approach and its proof-of-

concept are evaluated by performing various experiments which are dis-

cussed in the corresponding chapters. In the following, we briefly discuss

our contributions which address the research questions posed in the previ-
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Conceptual Contributions Objectives Conceptual Research Questions Chapter

1. Conceptual Knowledge
1. Acquire conceptual knowledge about 
objects which contains knowledge about 
properties of objects

1. What is the nature of the 
conceptual knowledge about objects 
desired in substitute selection?

2. Property Estimation
3. Knowledge Generation

2. Tool Substitution
3. Determine a substitute on the basis of 
relevant properties of a missing tool

3. What is a substitute?
4. Substitute Selection
5. Discussion

3. Tool vs Substitute

2. Identify relevant properties with respect to 
the primary purpose of a missing tool 
3. Determine a substitute on the basis of 
relevant properties of a missing tool

3. What is a substitute? 4. Substitute Selection

Technical Contributions Technical Research Questions

1. Generation of Conceptual 
Knowledge

1. Acquire conceptual knowledge about 
objects which contains knowledge about 
properties of objects

2. How to acquire such conceptual 
knowledge

3. Knowledge Generation

2. Property Estimation
1. Acquire conceptual knowledge about 
objects which contains knowledge about 
properties of objects

2. How to acquire such conceptual 
knowledge

2. Property Estimation

3. Substitute Selection

2. Identify relevant properties with respect to 
the primary purpose of a missing tool 
3. Determine a substitute on the basis of 
relevant properties of a missing tool

4. How to determine a substitute for 
a missing tool?

4. Substitute Selection
5. Discussion

Figure 1.5: A guide to how each contribution is related to the objectives and
research questions. We have also noted the chapter/s that discuss/es each contri-
bution.

ous section and which are elaborated in detail in the subsequent chapters

(see fig. 1.5).

(I) Conceptual Contributions

1. Conceptual Knowledge: We have proposed the desired nature of the

conceptual knowledge about objects that is suitable for substitute

selection wherein we suggest that the conceptual knowledge should

consist of the physical and functional properties of the objects. The

nature of such knowledge primarily focuses on the contents of the

knowledge, the characterization of the contents and its representa-

tion. Our proposal is inspired from the insights we gained from the

literature on tool use in animals and humans.

2. Tool Substitution Workflow: We have proposed a tool substitution

workflow which consist of typical processes that are required for tool

substitution. In the workflow, we have proposed what inputs are re-

quired to each process wherein we have also proposed the character-

ization of each input. The primary objective of the tool substitution
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workflow is to illustrate the overall complexity of the system which

include how many different functionalities of the robots are required

and how the integrated system would look like. Additionally, it also

places the proposed substitute selection system within the workflow.

3. Tool vs Substitute: We have suggested a definition for a substitute on

the basis of the definition of a tool suggested in the literature on tool

use in animals and humans. The definition of a substitute also spec-

ifies the scope of a substitute as we have noted that a substitute has

many forms. In addition to the definition, we have also proposed the

characterization of a substitute which differentiates it from a tool.

(II) Technical Contributions

1. Generation of Conceptual Knowledge: Our first contribution fo-

cuses on the generation of conceptual knowledge about objects. We

propose that the knowledge should be generated from quantitative

measurements of object properties in order to capture the proposed

characterization of the conceptual knowledge stated in the concep-

tual contribution. The knowledge generation module in conjunc-

tion with property estimation make up the knowledge acquisition

process which is decoupled from the substitute selection process

in order to manage evolving knowledge. Since the knowledge is

generated from quantitative measurements of the properties of ob-

jects, the knowledge about objects gets grounded into the property

measurements estimated using robot’s sensory capabilities. In this

manner, we bypass a separate symbol grounding process altogether.

2. Property Estimation: In this work, we propose light-weight estima-

tion methods for rigidity, hollowness, size, flatness and roughness,

requiring a minimal experimental set-up to generate quantitative

measurements of a respective property of an object. Our proposed

methods estimate the properties from a single instance at a time

and do not require any prior training data for estimation. Addition-

ally, we have proposed an extensible property estimation framework

called Robot-Centric Dataset Framework (RoCS) wherein multiple

property estimation methods reside. Moreover, given that multiple

property estimation methods can be developed for a same property,
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the framework is designed such that new estimation methods can

be plugged-in. Our proposed framework is flexible in that it sepa-

rates the sensory data acquisition from the actual property estima-

tion methods. Such separation allows for redefining the estimation

methods with a different set of sensory data than the existing one.

3. Substitute Selection: We present an approach to identify relevant

properties of a missing tool where we have exploited the relationship

between the functional properties and physical properties. In the

next step, we have proposed an approach to select a substitute on

the basis of relevant properties. Since it is a light-weight approach

and do not require any prior training, it is suitable for a run-time

response required in tool substitution.
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1.6 Reader’s Digest

The remainder of this thesis is organized as follows:

Chapter 2 begins with the motivation behind proposing the property es-

timation. In the methodology, we discuss the intent behind the property

estimation framework, its components and how do they function together.

In the next section, we describe our property estimation methods for six

physical and four functional properties along with the grounds for select-

ing these properties. The chapter proceeds with the description of the

dataset generated using the proposed property estimation methods which

is used to evaluate different aspects of the estimation methods. The publi-

cations related to this chapter are: [6], [7]

Chapter 3 contains the detailed discussion of our conceptual contribu-

tion concerning the nature of conceptual knowledge. We will describe the

knowledge generation approach from property measurements in the next

section. We will also provide the literature review on nine existing knowl-

edge bases to investigate whether they contain the desired nature of con-

ceptual knowledge about objects. The publications related to this chapter

are: [8], [6], [9], [10]

Chapter 4 details our approach to identify relevant properties of a miss-

ing tool and to select a substitute on the basis of the relevant properties.

We will also discuss our proposed definition of a substitute and describe

how it is differentiated from a tool. We will perform various experiments

to demonstrate the applicability of our proposed substitute selection ap-

proach. We will validate our approach by comparing its substitute selec-

tion with the experts’ selection of substitutes. The main publications re-

lated to this chapter are: [11], [9], [10],

Chapter 5 recaps our proposals and approaches followed by a discussion

on the open questions related to substitute selection. Additionally, we will

also discuss an experiment where we will integrate our substitute selection

system with an object perception system.
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2.1 Motivation

In case of a tool use, conceptual knowledge about objects is essential for

humans as well as for animals. Such conceptual knowledge about objects

is also desired in robotic systems (from household to industrial robots) in

order to efficiently perform tool-use related tasks such as tool selection

or substitute selection [12; 13] with latter task being our primary focus.

The conceptual knowledge about an object can take many forms such

as temporal relationship between the object and the environment it re-

sides it, spatial relationship with other objects, part-based relationship

19
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with its parts, the structure of an object, various functionalities or affor-

dances of objects or various properties of objects such as mechanical prop-

erties, chemical properties, geometrical properties etc. We are primarily

interested in the conceptual knowledge that considers the properties ob-

served in the objects.

For our research work which focuses on the problem of substitute selec-

tion, we took inspiration from the way humans select a substitute from

the existing objects for a missing tool wherein humans take into consider-

ation object’s physical and functional properties. For instance, consider a

scenario in which one has to choose between a plate and a mouse pad as

an alternative for a tray. In that regard, a tray will be considered as a rigid,

rectangular, flat, wooden, brown colored object while a plate as a rigid, cir-

cular, semi-flat, white colored object and a mouse pad as soft, rectangular,

flat, leather-based object. This knowledge will be used to determine the

similarity between a tray and the other two objects in order to determine a

possible substitute. The question is how to acquire such knowledge about

the properties. There are three possible ways to go about it: hand-code

the desired knowledge OR use existing knowledge bases such as WordNet,

ConceptNet OR generate knowledge. Hand-coded knowledge has some

well-known limitations, for instance, they are cumbersome to create, prob-

lem specific and biased. The existing knowledge bases such as WordNet,

ConceptNet do not contain knowledge about the properties of objects (see

Chapter 3, Sec. 3.2.2 for the discussion on the contents of WordNet and

ConceptNet). The last option is to generate knowledge which raises a ques-

tion: how should such knowledge be generated. An argument has been

put forth in cognitive science for bottom-up generation of knowledge in

which humans and animals alike develop conceptual understanding of

objects based on their own perceptual experiences with objects [3]. We

have followed suit and propose that knowledge about properties should

be generated from the sensory measurements of the properties. We have

termed such bottom-up generated knowledge from the property measure-

ments as robot-centric which is elaborated in detail in Chapter 3, Sec. 3.2.2.

The primary application of such robot-centric knowledge, in this work, is

to select a substitute for a missing tool. Fig. 2.1 outlines how the substi-

tute selection system is connected to the knowledge acquisition system.

The modules knowledge generation and property estimation are part of the
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Figure 2.1: The figure shows a typical black box based architecture for substitute
selection and the desired knowledge acquisition process wherein knowledge is
generated from the sensory measurements of the various properties. Conse-
quently, knowledge acquisition consists of two modules: property estimation
and knowledge generation.

knowledge acquisition process which provides the desired knowledge to

the substitute selection module.

The primary motivation for pursuing a robot-centric aspect stems from

the research on cognitive aspects of tool use in humans and animals. Es-

pecially the theory that tool selection is a first-person-perspective activity

which is driven by a relationship between the user’s own conceptual knowl-

edge about a tool and their ability to use that tool [3]. We noted earlier that

one of the aspects of conceptual knowledge that needs to be expressed is

subjective knowledge or as we call it robot-centric knowledge and in order

to capture the subjectivity, the knowledge should be grounded in robot’s

own sensory perception of objects’ properties. As it has been argued in

cognitive science studies on concept formation, conceptual knowledge of
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an object is grounded in an individual’s multi-modal perceptual and inter-

active experiences with various objects [14; 15; 16; 17]. This suggests that

a conceptual understanding of any object differ from person to person

[18]. This also holds true for robots as, in general, robots come in a mul-

titude of perception and manipulation configurations. As a consequence,

the individual perception and manipulation of the world similarly varies

from robot to robot. Therefore knowledge generated about an object by

a KUKA KR1000 Titan (maximum payload of 1300kg, 3.6m reach), for ex-

ample, will not be the same as knowledge acquired by a Universal Robot

UR3 (maximum payload of 3kg, 0.5m reach). Essentially we are suggesting

that each robot should gather their own conceptual understanding about

objects that they encounter, as the transfer between robots of such subjec-

tive understanding may not be desired, especially in the cases of substitute

selection. We have elaborated this point further in the discussion on robot-

centric aspect of the conceptual knowledge in the Chapter 3, Sec. 3.2.2.

2.2 Methodology

As our primary objective is to generate robot-centric conceptual knowl-

edge about objects from measurements of properties of objects estimated

from the sensory data, the question is what properties of objects should

be measured. It is postulated in the literature on tool-use in animals [1]

that “a non-invasive tool selection in humans or animals alike is facilitated

by conceptual knowledge about objects, especially, knowledge about their

physical and functional properties and relationship between them.” It is

not going to be any different for a robot in substitute selection scenarios

as conceptual knowledge about objects will allow it to make substitute se-

lection in a non-invasive manner.

As noted earlier, conceptual knowledge about objects, in this case, is

considered as a representation of objects in terms of their physical and

functional properties generalized over the observations and daily interac-

tions with them. In order to achieve this goal, we propose a multi-layered

knowledge acquisition system (see Fig. 2.2) that can be used to gener-

ate robot-centric conceptual knowledge about household objects, where

each layer is built upon a layer below by abstracting over the lower layer,

consequently denoting the different levels of abstraction at each layer.
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Sensory Data - Object Instances

Physical Property - Quantitative Measurements - Object Instances
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Clustering Method
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Layer 1
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Layer 3
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Figure 2.2: The figure illustrates the process layers for our bottom-up robot-
centric knowledge generation where each layer is abstracted over the layer below.
In this chapter, we focus on the bottom three layers, enclosed within a pink col-
ored boundary, which focus on sensory data extraction followed by the physical
and functional property estimation.

According to our proposal, acquisition of the robot-centric conceptual

knowledge in a bottom-up fashion should take place in two steps: First,

we capture the sensory data about various physical properties of objects.

The sensory data is then processed to estimate quantitative measure-

ments of physical and functional properties observed in the objects which

is then used to generate the desired knowledge about objects. In this

chapter, we discuss our approach to extract the sensory data and estimate

quantitative measurements of properties of objects. Figure 2.2 illustrates

such a multi-layered system wherein the bottom three layers form the

proposed sensor data extraction of the properties of objects followed by

property estimations. The top two layers form the proposed generation

of robot-centric conceptual knowledge about objects which is discussed

in the next chapter. In the following, we will discuss how the property

estimation is approached and implemented in this work.

2.2.1 Property Estimation Framework

We propose a property estimation framework called Robot-Centric Dataset

(RoCS) framework that contains multiple property estimation methods

which can be used to estimate the measurements of various physical and

functional properties of objects. The primary objective behind the pro-
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Figure 2.3: The figure depicts the RoCS property estimation framework for ex-
tracting sensory data related to various properties which is then used to generate
robot-centric conceptual knowledge about objects

posed framework is to build an extensible system such that it encases

various property estimation methods that can estimate the measurement

of a property from a single object instance in real-time. In order to attain

that we have proposed expert-defined estimation methods which esti-

mate a property measurement in a single object instance. In contrast,

data-driven models typically need many training examples for each prop-

erty in order to estimate its measurement in a single instance which may

not be a feasible solution.

Fig. 2.3 illustrates the modular structure of the RoCS framework and the

resulting measurement data to be supplied to the Knowledge Generation

system. It primarily consists of two modules: Online Data Acquisition and

Property Estimation. The Online Data Acquisition module is responsible

for capturing the raw sensory data using different sensors from a single ob-

ject instance in real-time. Fig. 2.4 illustrates the implementation of both

the modules. For instance, in the figure, we have captured the sensory
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data from an RGB-D sensor, a robotic arm and a household scale. The sen-

sory data is supplied to the Property Estimation module which consists of

three phases as depicted in Fig. 2.3. In the Feature Extraction phase, the

desired features are extracted from the sensory data. These features form

the basis for estimating a property measurement in an object instance. For

instance, in Fig. 2.4, the Feature Extraction phase contains six features ex-

tracted from the RGB-D sensor data, three features from a robotic arm and

a single feature from a scale. Note that the selection of sensors and the sub-

sequent features to be extracted from the sensory data depend on how a

property is computationally defined for estimating the measurements. We

have elaborated this aspect in the next Sec. 2.2.2 where we discuss estima-

tion method for each property. The extracted features are integrated in

the Feature Integration phase to form the primary parameters required for

estimating the measurements of the properties. For instance, in Fig. 2.4,

the Feature Integration phase illustrates which features are integrated for

each property estimation. The last phase consists of computing the quan-

titative measurements using the proposed expert-based estimation meth-

ods discussed in the next section (see Fig. 2.4 - Physical and Functional

Property Estimation). The quantitative measurements of the properties

are then forwarded to the Knowledge Generation system for generating

conceptual knowledge about objects.

It is worth noting that a property can be computationally defined in myr-

iad number of ways as it depends on what sensors are used, what kind

of sensory data is available, how is it processed, what kind of features

are extracted and how are they integrated. One can design an estimation

method to calculate absolute measurements of a property in an object in-

stance using physics based methods, on the other hand, one can calculate

approximate measurements of the property using available sensor driven

expert-defined estimation methods. We have opted for a latter approach

due to the fact that each robot model is equipped with a different set of

sensory capabilities. As a result, note that, it is possible that a property

estimation method designed for an iCub robot [19] may not be applicable

for a PR2 robot [20]. Our ultimate vision, therefore, is to develop an online

system where developers can plug-in their estimation methods (simple or

more complex) for the same property or a new property to the framework

requiring minimal or more sophisticated experimental set-ups. The idea
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Figure 2.4: The figure depicts the progress of data at each step in order to estimate
a property. The steps include sensory data acquisition, feature extraction, feature
integration and physical property estimation followed by functional property
estimation.

is to allow users to select the estimation methods or to design new esti-

mation methods based on the available hardware at their end in order to

estimate the measurements of the object properties. In order to achieve

this goal, our proposed framework is designed such that it separates the

sensory data acquisition from the actual property estimation methods in

order to offer the flexibility. The decoupling of data acquisition, feature ex-

traction and feature integration allows the flexibility for redefining the ex-

isting property estimation methods or proposing estimation methods for

new properties with a different set of sensory data than the existing one.

Additionally, such flexibility also allows developers to extract different set

of features from the sensory data as opposed to the existing features OR

re-purpose the features for redefining the properties or design estimation

methods for new properties. For instance, in the current system, hollow-

ness is defined on the basis of depth. However, it can be redefined on the

basis of size and depth as well. Such flexibility, in our opinion, is necessary

for robot-centric measurement acquisition since, as noted earlier, sensory

and manipulation capabilities vary from robot to robot. The desire for flex-

ibility is also driven by one of the pressing issues which is interpreting the
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meaning of the properties. The meaning can be complex where various

facets of a property and their relationship to the various parts of an ob-

ject are perceived and interpreted accordingly, or it can be primitive or

simplistic. In either case, the interpretation of a property forms a basis for

computational definition of the property and the resulting designing of a

hardware set-up and a subsequent estimation method. Additionally, the

proposed framework is also used to create a multi-layered dataset about

household objects where the layers denote the different levels of abstrac-

tion (See Fig. 2.2).

2.2.2 Property Estimation Methods

How is a property measured in an object instance? The question seems

trivial as, in many cases, we do have access to mathematical formula to

calculate the measurements of a property in the object instance. Let us

take size, for instance, of the object. How do we measure size of the object?

The answer depends on how do we specify an object in a space which leads

to the question how many dimensions are needed to specify the space. If

we consider one-dimensional space, then the object could be viewed as

a line and as a result, the size of an object would be a length of the line.

In case of a two-dimensional space, the object could be viewed as a two

dimensional shape and the size would be the area of the two dimensional

(2D) shape. The formula, however, to calculate the area of a 2D shape de-

pends on what kind of shape it is, such as, circle, rectangle, triangle. The

above discussion demonstrates how seemingly a simple property like size

depends on so many parameters. The task gets even more complicated

when we want to automate the estimation of the size of the object with

the help of the sensors deployed on a robot. There are various factors that

need to be considered: how do we define size? what parameters do we

have to consider to estimate the size? what sensors are available? how can

they be used to obtain the sensory values of the parameters? etc. In this

section, we will focus on the definition of the properties, the parameters

or features we have considered, and the proposed estimation methods for

obtaining their quantitative measurements in the object instances. Cur-

rently the framework supports the estimation of six physical properties

namely rigidity, roughness, flatness, size, hollowness and weight, and four
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functional properties namely containment, blockage, movability and sup-

port.

In this work, when interpreting the meaning of the properties, simplistic

interpretations were formed which allowed for a minimal set-up and light-

weight estimation methods. The primary inspiration for simplistic inter-

pretation of the properties - which forms the basis for estimation meth-

ods - is a level of understanding of properties demonstrated by animals as

reported in various literature on tool use in animals [4; 21; 22; 23; 24; 25].

The intent behind a simplistic approach is that, for instance, it allows the

use of a simple mobile manipulator whose limited capabilities can be ex-

ploited. Additionally, such a minimal experimental set-up can easily be

reproduced as they do not require high-end robotic platforms. Our pro-

posed methods estimate the properties from a single instance at a time

and do not require any prior training data for estimation, in contrast to the

methods proposed in [26; 27; 28; 29]. Moreover, the proposed methods do

not require any complex manipulation or grasping capabilities as opposed

to some approaches [30; 31]. The notion of the physical properties is based

on the physical properties in solid-state physics, where they are consid-

ered as properties which can be observed, measured and quantified. We

have extended the notion of functional properties in the similar fashion

where they are measured and quantified. Depending on how a property is

computationally defined, a measurement is either a scalar value or a vec-

tor. The selection of these properties are inspired by literature on the tool

use in humans and animals [3; 4; 21; 22; 23; 24; 25; 32; 33; 34; 35; 36].

In the following, each property is described in a two-fold manner. First,

for each property a general definition is provided where we aim for a sim-

plistic and intuitive characterization for each property. The property defi-

nitions considered in this work are not unique. The proposed framework

can be extended by plugging in separate estimation methods for the same

property based on more complex and/or different characterizations. Sec-

ond, for each property an estimation method is proposed. Note that, as a

result of the rudimentary nature of the property estimation methods, the

assigned labels are chosen such that they relate to the property definitions

as closely as possible. This, in some cases, results in abuse of terminology,

for instance, the estimation of size can also be renamed to shape or the es-

timation for flatness can be renamed to surface area. Note that, although
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the property definitions are formulated from a human perspective, our ul-

timate aim is towards enabling a robot to assemble its own understand-

ing about objects, given its own perceptual capabilities in form of vision

and manipulation feedback. Hence, we have derived estimation methods

allowing a robot to interpret its sensory data about objects for generating

numeric representations of physical and functional properties (see Fig. 2.4

for reference). While the presented methods consider features acquired

from our robotic platform (Kuka youBot [37], see Fig. 2.6) and an RGB-

D sensor (Asus Xtion Pro [38]), we aim to propose a light-weight set-up

(Fig. 2.5) and methods that are transferable and adoptable to other robotic

platforms by considering common hardware interfaces and data represen-

tations such as images, point clouds or joint states of robotic manipula-

tors. We may summarize, that the following proposed estimation methods

represent a possible mechanism to express these properties to achieve a

continuous-valued property feedback. Depending on the robot capabil-

ities, various estimation methods can be introduced based on different

modalities such as vision, tactile or auditory feedback. Therefore, first and

foremost, the following methods serve as a possible basis to receive feed-

back of the targeted properties from a robotic perspective (robot-centric).

Physical Properties

Humans tend to conceptualize tools in terms of their function, i.e., the out-

come that a given kind of artifact, due to its designed physical structure,

helps to bring about when used in goal-directed actions. [36]. In other

words, in order to enable any functionality in an object, a certain assem-

blage of physical properties are essential prerequisites [3]. For humans,

the first step towards understanding this causal relationship is by assess-

ing various physical properties of an object and examining the functional-

ities enabled by them [36].

In this work, we have selected flatness, hollowness, size, roughness, rigid-

ity and heaviness as physical properties given their significance reported

in the literature on tool use in humans and animals[3; 33; 34; 39]. The

main inspiration behind selecting these properties was the prominent

roles these properties played in various tool use scenarios in humans

and animals alike, as widely reported in the literature. For instance, hu-

man infants begin exploring their abilities to use any object by studying
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and interacting with it to understand its weight, texture, and shape [34].

While designing and manufacturing a tool, humans and animals alike pay

closer attention to the properties such as shape, size, rigidity, roughness,

and heaviness [3]. It has been observed that wild animals select the tools

based on the size, shape or mechanical properties such as strength, hard-

ness [33]. For example, otters have been observed carrying flat rock on

their chest which they use to break the shellfish [39]. On the other hand,

researchers found that the monkeys are able to select the hardness of the

stone with respect to the hardness of the nut they want to cut open [40].

In the following, we provide a definition for each physical property and

subsequently an estimation method is proposed for each property. Note

that, across all estimation methods, we assume that an object is placed in

its most natural position, for instance, a cup is most commonly placed in

such a way that its opening points upwards. Additionally, the estimation

methods are designed such that the resulting measurements can be used

to generate knowledge and subsequently to select a substitute. Therefore,

we aim at a bounded property value, i.e. an estimated property value that

is mapped into a [0,1] interval, by means of a normalization process, in

order to enable a subsequent unbiased property analysis which is not af-

fected by object-specific characteristics or scales. Such bounded values

provide the abstractions over the feature values desired to generate the

conceptual knowledge about objects. Note that, as a prerequisite, each ob-

ject is segmented a priori through a table-top object segmentation proce-

dure, particularly for the size, flatness and hollowness property. Moreover,

estimated property values of each object are captured through the given

capabilities of the robot in form of vision-based (e.g. featuring particu-

lar image, point cloud resolution or viewpoint) as well as manipulation-

based (e.g., featuring particular joint-states, limits or force-feedback) in-

put. As a result, these property values are originated from a robot-centric

perspective on the perceived objects. Note that, as the property measure-

ments of objects are to be obtained from the sensory data, the estimation

method and the resulting measurements of an object instance are relative

to: the sensors being used; viewpoint of the sensors such as camera from

which an object instance is being observed, and the position of an object

instance. Alteration in any of the above factors will affect the subsequent

property measurements. From an object instance perspective, it means
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Figure 2.5: Light-weight experimental setup consisting of two cameras and fidu-
cial markers [41], for acquiring physical properties.

that the measurements of any property represent only a partial perspec-

tive of the instance. This is especially true in the cases of size, flatness,

hollowness and roughness.

Size

Definition: Size of an object is defined intuitively by the object’s spatial

dimensionality in form of length, width and height.

Estimation Method: The size of an object is defined by the length, width

and height. As it can be estimated by determining an object’s bounding

box, we use an RGB-D sensor to obtain point clouds of the object from

a lateral perspective. Using marker detection to define a region of inter-

est (ROI), we segment the object and transform its point cloud to an axis-

normal representation, i.e. the z-axis is aligned with the object’s height.

Subsequently, an axis-aligned bounding box is approximated given the ex-

tracted object point cloud. The size=[length,width,height] of an object is

directly derived from the object point cloud as distances between the min-

imal and maximal value in each spatial dimension of the bounding box. In

order to retrieve a bounded property value range [0,1] for the property size

(si ), each spatial dimension of size [length,width,height] is normalized by

the largest dimension of the object (max(size)) (see Eq. 2.1). As a result, si

is defined as a three dimensional property.

si =
[

l = length

max(size)
, w = width

max(size)
,h = height

max(size)

]
(2.1)

Note that, max(size) merely abbreviates max(length, width, height). In this

implementation, the size is represented by a vector that can be interpreted

as an aspect ratio of bounding box of a 3D object.
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Flatness

Definition: As flatness describes a particular aspect of an object’s shape,

we define it as the ratio between the area of an object’s greatest horizontal

plane and its overall surface area. For instance, a sheet of paper features an

upper bound of flatness whereas a ball features a lower bound of flatness.

Estimation Method: The flatness value of an object is estimated similarly

to its size: We firstly observe the object from above (Fig. 2.5) and extract

its greatest plane using RANSAC (RAndom SAmple Consensus [42]). In or-

der to increase the confidence, a candidate plane is only selected if at least

95% of the surface normal vectors of the plane points are directed in the

same direction, up to a threshold. In this manner, round surfaces (as they

may be observed in balls) are rejected and subsequently a flatness value

of zero is assigned to the considered object. Furthermore, if the candidate

plane p is accepted, the plane size |p|, i.e the number of object points cor-

responding to p, is divided by the total number of points |o| representing

the observed object o in order to obtain a bounded numeric measure of

its flatness f l (Eq. 2.2). Consequently, the retrieved flatness property is

bounded within a value range of [0,1].

f l = |p|
|o| (2.2)

Hollowness

Definition: Hollowness is the amount of visible cavity or empty space

within an object’s enclosed volume. It contrasts flatness as it focuses on a

another particular aspect of an object’s shape.

Estimation Method: Hollowness contributes to the characterization of ob-

ject shape. According to its definition, an object may enclose a volume

which is not filled. For the sake of simplicity, we measure the internal

depth d , which resembles the enclosed volume, and height h of an ob-

ject o: the ratio defines the hollowness value. In order to retrieve a rea-

sonable measure of object’s depth and height, a two camera and fiducial

marker [41] setup is introduced as illustrated in Fig. 2.5. Given the side

camera view, the height h of an object can be obtained by estimating the

respective bounding box (see Section 2.2.2). In order to retrieve depth,
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two fiducial markers {mr ,mh} are introduced (see samples in Fig. 2.5): mr

serves as global reference and is placed next to the object; mh is placed

inside the hollow volume of the object. Exploiting the top camera height

ct perpendicularly pointed to the object, the distances dr = ‖mr − ct‖ and

dh = ‖mh−ct‖ can be obtained. Given object height h and the distances dr

and dh , hollowness ho can be approximated as shown in Eq. 2.3b, where

b (Eq. 2.3a) is introduced to consider the base height of the object, i.e. dis-

tance between the table (global reference plane) and the bottom inside the

object’s hollow volume.

b = dr −dh (2.3a)

ho = h −b

h
(2.3b)

Note that, ho is inherently bounded within the interval [0,1]. Furthermore

the proposed method may be susceptible to noise originated in the point

clouds from which the bounding box was approximated to infer the ob-

ject’s height h. Hence, if the difference between an object’s height h and

distance dh (fiducial marker inside the object) is smaller than 1cm it is

cumbersome to differentiate between sensor noise and the actual hollow-

ness due to the low signal-to-noise ratio. To sanitize the property in such

situations (particularly in case of flat objects), default value of zero is as-

signed.

Heaviness

Definition: Following our basic premise of using straight forward defi-

nitions, we borrow the definition of heaviness from physics: the object’s

heaviness is the force acting on its mass within a gravitational field.

Estimation Method: Heaviness he of an object o can be directly derived by

weighing an object with a scale (Eq. 2.4); a scale with a resolution of 1g pro-

vides an adequate precision for our scenario. Note that, he is normalized

by the carrying capabilities of the robotic arm.

he = scale(o) (2.4)
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Figure 2.6: Light-weight experimental setup consisting of a camera-manipulator
combination, for acquiring physical property rigidity (top row) and roughness
(bottom row).

While it may require additional hardware, a robot may lift an object and

calculate the heaviness by converting the efforts observed during the pro-

cess in each of its joints.

Rigidity

Definition: Rigidity of an object is defined as the degree of deformation

caused by an external force vertically operating on it.

Estimation Method: Rigidity of an object is estimated using a robotic arm.

The arm is equipped with a planar end-effector that is used to vertically

exert a force onto an object until predefined efforts in the arm’s joints are

exceeded, see Fig. 2.6; by setting the predefined efforts to the limits of the

robotic arm, the final rigidity value is specific to the robot executing the

estimation method. During this process we record the trajectory tr(t) of

the arm as well as the efforts in all of its joints. By analyzing them us-

ing an adaptive threshold-checking, we detect the first contact of the end-

effector with the object o at time t0. Using the final position of the arm

when the efforts are exceeded at t1, we can calculate the deformation def

of an object as the vertical movement of the end-effector, that is, its move-

ment along the z-axis between t0 and t1:
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de f (o) = trz (t0)− trz (t1) (2.5a)

r i = de f (o)

h
(2.5b)

In that way, the deformation def (o) is nothing but the distance the arm

pushed into the considered object. For rigid objects, this deformation is

zero while it is increased continuously for non-rigid objects. Finally, we

normalize the deformation by the height h of the object to obtain its rigid-

ity value ri. As we use a distance as a measure of an object’s deformation,

def (o) will always be positive. Furthermore, as an object may not be de-

formed more than its own height, the value of ri is naturally bound to the

interval of [0,1].

Roughness

Definition: Roughness provides information about an object’s surface.

Therefore, we simplify the physical idea of friction and define roughness

as an object’s resistance to sliding.

Estimation Method: Roughness r o requires interaction as well to measure

an object’s resistance to sliding. The robotic arm is exploited to act as a

ramp on which the considered object is placed, see Fig. 2.6. Starting hori-

zontally, with an initial angle of ai = 0°, the ramp’s angle is increased and

thereby causes an increasing gravitational force pulling the object down

the ramp. When the object begins sliding, a fiducial marker that is a pri-

ori placed underneath the object, is unveiled and subsequently detected.

As this means that the object’s sliding resistance is exceeded, the ramps’

angle ar is observed and exploited as a measure of roughness as shown in

Eq. 2.6. In this setup, a 90° (π2 ) ramp angle represents the upper bound that

induces an object to slide. Hence, it is used to normalize roughness value

r o within [0,1].

r o = |ai −ar |
π
2

(2.6)
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Functional Properties

In contrast to physical properties, functional properties describe the func-

tional capabilities or affordances [43] of objects. It is proposed that func-

tional properties do not exist in isolation, rather certain physical proper-

ties are required to enable them [44]. In tool use, functional properties

play an important role especially when perceiving an object as a possible

tool, since humans in general characterize an object in terms of its func-

tional properties rather than its physicality [43; 45]. The question is how

does a functional property emerge? In other terms, what are the required

qualifications for an ability to be recognized as a functional property? Var-

ious theories have been proposed to address this question [43; 45; 46] and

among them is a theory proposed by Kuhn in [47]. According to Kuhn

in [47], image schema capture the necessary abstractions to model func-

tional properties. Image schema is a theory proposed in psychology and

cognitive linguistics and it concerns with a recurring pattern abstracted

from the perceptual and motor processes [47]. Some of the examples of

image schema are containment, support, path, and blockage which form

the basis for functional abilities to contain, support, move, and block re-

spectively.

As we noted earlier, the physical properties which are selected in this work

are fundamental in nature. For functional properties, we wanted to fol-

low suit. However, the question is, how to identify fundamental functional

properties of objects. This is where the theories of image schema come in

the picture. Image schemas are expressed as generic conceptual building

blocks for concepts [48; 49]. For example, in [50], it is demonstrated how

abstract concepts in mathematics could be broken down into the bodily

experiences and image schemas. Commonly mentioned image schemas

are: containment, the notion that objects can be within other objects; sup-

port, the notion that objects can rest on top of other objects; and source-

path-goal, the notion of object movement along a trajectory between two

different points. Kuhn in [47] suggested that image schemas in (some)

cases can model the essential properties of objects. Based on our research,

we have selected the following functional properties as fundamental prop-

erties. To contain is the ability of objects to hold within themselves other

objects which is based on the image schema containment. It is one of the

most investigated image schema and it appears in different levels of spec-
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ification [51]. The system presented in this thesis takes a straight forward

interpretation of containment as either full or partly enclosed. Support is

another essential object relation for many objects. Similar to containment,

support has different levels of specifications [47], however, we focus on the

surface based support. For example, support appears as a necessary func-

tional property for objects such as tables and trays that have the main func-

tion of carrying/supporting other objects on their surfaces. Move is one

of the most fundamental [52] functional properties of any object derived

from the image schema path. The last functional property is block, which

captures the notion of hindered movement of one object. While block is

derived from the image schema blockage, the schema itself is a type of an

abstract image schema called force. Like path, it is also considered as one

of the most fundamental schema [53].

Note that functional properties of objects are also known as affordances

of objects, which form a widely researched area in robotics. Affordances

in robotics is primarily focused on learning a computational model of an

affordance in terms of actions a robot can perform on an object and its

effects observed on the object using the available sensors [54; 55]. Our

proposed approach bypasses learning affordances of objects, as we are pri-

marily interested in the quantitative measurements of affordances.

It is suggested in [3] that a certain assemblage of physical properties is es-

sential prerequisite to enable a functional property and such knowledge is

used by humans and animals alike in tool selection. We have exploited this

notion and have designed our substitute selection approach around it (See

Chapter 4 for detailed discussion). It is stated in [2] that designing a tool is

not an arbitrary act, but rather requires thoughtful consideration of many

factors such as the purpose of the tool, the intended user of the tool, the

assumption about the physical capabilities of the use. Therefore, a tool is

designed or rather should be designed in such a manner that it is comfort-

able to handle, manipulate and use in order to achieve the intended out-

come [2]. It is no surprise that the discussion on the relationship between

functional properties and its enabling physical properties are notable in

the discussion on tool design. Especially how the presence of physical

properties in a tool can affect the functionality of the tool. Some of the

notable examples noted in [2] are: 1) the weight of a tool will affect the

lifting of the tool, for example, power drills or hammer; the author even
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suggested that "for most users, a weight of around 4.5kg represents the

maximum load for manipulation and handling."; 2) the roughness of a sur-

face of a tool will affect the movability or the sliding ability of the tool; 3)

length of a tool matters when the tool requires swinging action such as in

a hammering action; 4) shape allows different types of gripping; 5) size,

texture and the weight of a tool can block the movement of another object

such as a stone blocking the movement of a door; One can also find sim-

ilar discussion in [39] where the following observations have been made:

1) size of a hollow object can affect what it can or can not contain; 2) flat

surface is needed in a tool to allow other objects rest on it.

As a result, while the measurements of physical properties are computed

using mathematical formulations (except for heaviness), for functional

properties the same treatment is not used. In this work, a functional prop-

erty is measured in terms of the measurements of the physical properties

that enables it. For example, for containment, size is relevant as in con-

crete situations it is not possible for an object to contain a larger object

than itself. Likewise, rigidity and weight are essential properties for the

support, as the rigidity of a supporting object needs to (on a physical level)

correspond to the weight of the object being supported. The mapping

between a functional property and its enabling physical properties is de-

rived from the findings reported in the literature on tool use in animals

and humans [3; 4; 32; 33; 34; 35; 36]. This approach is therefore based on

prevalent theories in cognitive science rather than being data driven as in,

for instance, machine learning based methods.

Support

Definition: Support describes an object’s capability to support, i.e. to

carry another object. Therefore, an object is attributed with support, if

other objects can be stably placed on top of the supporting object.

Estimation Method: Support requires to consider three aspects of an ob-

ject. Firstly, the considered object needs to be rigid. Secondly, for carrying

another object, the sizes of both may feature similar spatial proportions.

Thirdly, the object’s shape needs to be sufficiently flat in order to enable
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the placing of another object on top of it. Consequently, size, flatness and

rigidity are considered as core elements of the support property, Eq. 2.7.

su = [si , f l ,r i ] (2.7)

Containment

Definition: An object is attributed with containment if it is capable to en-

close another object to a certain degree.

Estimation Method: Containment property requires to consider two as-

pects. In order to contain something, an object needs to be hollow. On the

other hand, it’s size itself needs to be respected when considering whether

it can contain another object. Thus, the value of the object’s containment

co property is formed by combining its size and hollowness property val-

ues, Eq. 2.8.

co = [si ,ho] (2.8)

Movability

Definition: Movability describes the required effort to move an object.

Estimation Method: Movability is based on a robot’s primary ways of mov-

ing objects: either by lifting or pushing. In both cases, heaviness of an

object affects the movability of an object. Additionally, when pushing an

object, its sliding resistance expressed in form of roughness (see Fig. 2.6),

needs to be considered as well. Therefore movability property mo consti-

tutes of heaviness and roughness, Eq. 2.9.

mo = [he,r o] (2.9)

Blockage

Definition: Blockage describes the capability of an object of being impen-

etrable, i.e. the object cannot be moved by other objects, therefore it stops

the movement of other encountered objects.
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Estimation Method: Blockage of an object can be derived from its mov-

ability. Note that, given the set of physical properties, we can interpret that

the blockage property is related to roughness and heaviness of an object as

these properties affect the intensity of being capable to block another ob-

ject. Accordingly, blockage property bl states to which degree an object is

able to stop another object’s movement. Thus, the object itself needs to

be not movable by the other object, which is the inverse of its movability,

Eq. 2.10.

bl =−mo = [−he,−r o] (2.10)

2.3 ROCS Dataset

For the sake of a thorough evaluation of our conceptual framework, the

Robot-Centric dataSet (RoCS) is introduced. Note that we propose a Robot

Operating System (ROS) [56] based implementation to acquire object data

used in the following evaluation. It consists of 11 different object classes

where each class consists of 10 unique object instances that leads to a total

number of 110 object instances. In the following, we briefly introduce the

hardware setup and procedures for acquiring raw object data, describe its

parameters (e.g. thresholds) and the contents of the final dataset.

2.3.1 Hardware Setup

Figure 2.4 illustrates the sensors we used as data sources. For visual and

non-invasive estimation methods, RGB-D sensors are required. More

specifically, the size property requires a lateral view on objects while the

hollowness property relies on a birds-eye view. Hence, we employ two

Asus Xtion Pro depth sensors [38] (see Fig. 2.5). To estimate the physical

properties rigidity and roughness, a robotic arm is required to interact with

objects. In this interaction the proposed property estimation methods re-

quire arm joint state values which are generally provided by manipulators,

such as the one we have used: a Kuka youBot [37] manipulator. Finally,

a common kitchen scale with a resolution of 1g is used to estimate the

weight for heaviness of objects.



2.3. ROCS DATASET 41

Knowledge 
Generation

Property Estimation Framework

ROS Abstracted 
Sensors & Actuators Experimental Control Property Estimation

Figure 2.7: Data flow within the dataset creation framework.

2.3.2 Object Property Acquisition Procedure

Using the described hardware, we implemented a ROS-based framework

to estimate the physical and functional properties of objects. A schematic

overview of the framework is given by Fig. 2.7.

The interface for operating sensors and actuators is provided to our frame-

work by ROS. This interface is used by different experiments for observing

and interacting with objects to acquire the necessary sensory data. To-

gether, both blocks (ROS Abstracted Sensors & Actuators and Experiment

Control) form a control loop enabling to generate feature data (see Fig. 2.4).

According to the selected properties, four control loops are implemented

as separate experiments. The first experiment is non-invasive and gathers

the visual feature data required for hollowness, flatness and size; Fig. 2.5

illustrates the camera setup. Initially a table-top object detection is in-

troduced that uses a RAndom SAmple Consensus (RANSAC) based plane

fitting approach in order to detect object candidates on the table. The

RANSAC algorithm is parameterized with a leaf size of 0.0025m, a maxi-

mum of 104 iterations and a 0.02m distance threshold between points and

the estimate plane model. Note that, RANSAC is also used in this experi-

ment for segmenting planes for the property flatness. Furthermore, fidu-

cial markers (ArUco Library [41]) with sizes of 14 cm and 3 cm are used

for the hollowness property. The second experiment uses the robotic arm

to deform objects to facilitate the estimation of rigidity (see Section 2.2.2).

We set the efforts to exceed in each joint to ±8 Nm. Within the third ex-

periment, the robotic arm is used as a ramp to estimate an object’s rough-

ness (see Section 2.2.2). To achieve an appropriate resolution, the angular

speed of the joint lifting the ramp is set to 0.05 rad/s. Finally, the last exper-

iment employs a kitchen scale with a resolution of 1g to estimate the ob-
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Figure 2.8: RoCS dataset samples: Point cloud and RGB images of a ball, bowl,
paper box, and cup (for visualization purposes, images are scaled and 3D points
are magnified).

jects’ weight. Following the Experiment Control, the individual estimation

methods process the generated feature data as described in Section 2.2.2

to estimate physical and functional property values of the considered ob-

ject. Finally, this data can be accumulated for a set of objects and further

processed to generate conceptual knowledge.

2.3.3 Dataset Structure

For the RoCS dataset we consider 11 different object classes (ball, book,

bowl, cup, metal_box, paper_box, plastic_box, plate, sponge, to_go_cup

and tray) featuring various object characteristics – from appearance to

functional purpose. Each class consists of 10 unique object instances that

leads to a total number of 110 object instances; Fig. 2.8 illustrates sample

object instance of RoCS dataset.

In order to evaluate the performance of the proposed property estimation

methods, such as stability, for each object instance we capture 10 repeti-

tions without modifying the setup. As a result we captured 1100 object

observations for which physical and functional property values are gener-

ated. The dataset is publicly available as a git repository. Please check the

appendix D for the git links.

2.4 Evaluation

The ultimate application of the estimated measurements of the proper-

ties of objects is to generate conceptual knowledge about objects which,

in the end, will be used for substitute selection purposes. It is, therefore,

vital that the estimation methods are performing efficiently and are pro-
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ducing the quality results. The lack of either will affect the quality of the

conceptual knowledge and the subsequent substitute selection for a miss-

ing tool. In the following, we have discussed various experiments which

are performed to evaluate the proposed estimation methods and their es-

timated measurements. We investigate various aspects of our proposed

approach such as the stability of the estimation methods, the quality of

the estimated measurements and the semantics of the estimated measure-

ments.

2.4.1 Property Estimation

The objective of the evaluation is to analyse the estimations computed by

the property estimation methods as described in the Section 2.2.2. At this

level, we only focus on physical properties as functional properties are

built on the basis of an object’s physical properties. First, we analyze the

stability of the estimation methods to determine how deterministic and

reproducible the estimation is for each property and object. Furthermore,

we explore the coverage of our data set to determine the variance and

range of objects reflected in the different classes and properties. Lastly,

we inspect the correlation among different properties in our data.

Estimation Stability

The abstraction process from raw sensor data to symbolic object property

knowledge requires a stable processing. However, sensors are influenced

by external and internal factors which can affect the quality of the sensory

data [57]. The resulting variations in the quality of data is often called as

noise which can affect ultimately the overall quality of the measurement

data. To compensate for such uncertainty caused by the noisy data, the

property estimation of each object instance consists of 10 repetitions. We

use these repetitions in the following to analyze the stability of the pro-

posed property estimation methods. For that, the variance of each phys-

ical property of each object instance is analyzed. More specifically, given

the 10 repetitions of a particular object instance for each of its physical

properties, we calculate the variance of the property values of its 10 repe-

titions. As the measurements of 6 physical properties are based on 8 fea-

tures, we obtain 8 values per object instance and therefore 880 values in
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Figure 2.9: Variances for physical properties [fl,ri,ro,si,he,ho] illustrated in form
of a box plot (in log-scale to provide insights of respective intra property variances
compared to linear-scale shown in Table 2.1). Note that, in order to be able to
display all variances (including zero) in log-scale, we add an epsilon on each
value before computing log. Heaviness is excluded as all variance values are zero
for this property due to the resolution of the scale.

total. We further reduce the data, by calculating the mean of the object

variances for a particular object class and property as shown in Table 2.1,

whereas Fig. 2.9 illustrates the variances of all object instances within one

object class as box plots; the colored middle box represents 50% of the

data points and the median of the class is indicated by the line that di-

vides the box. It is worth noting that the box plots illustrates the effect of

a noise in the sensory data during the estimation of a property measure-

ment for each instance. In an ideal case, if the noise is absent, the variance

of measurements would be zero for each object instance as evident by the

measurements of heaviness. If, however, the noise is present, the variance

will be greater than zero. As a result, higher the variance is, more is the

noise in the sensory data which in turn will affect the quality of resulting

measurements.
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The results of the Table 2.1, elaborated in the Fig. 2.9 reveal that the class

variances are overall low, which implies stable property estimation meth-

ods in general. The highest variances can be found for the flatness prop-

erty. The estimation of the flatness property for small and flat object in-

stances such as sponge, plastic box, is particularly affected by noise due

to the low signal-to-noise ratio. Furthermore, it can be observed that for

ball, bowl and to_go_cup the variance of the flatness property is zero due

to the fact that no top-level plane can be extracted for instances of these

classes as they feature either round or negligible small top-level surfaces

(see Section 2.2.2). Similarly, a higher variance can be observed for the

rigidity property which is caused by the thinner object instances (object

instances with shorter height), such as book, plate, sponge and tray. Here

the detection of the first contact with the object causes false positives and

therefore introduces varying deformation values.

In contrast, for the hollowness property the variance for metal_box and

sponge are zero. Such object instances predominantly feature flat surfaces

and negligible degree of hollowness. Considering sensor quantization ef-

fects, such negligible degree for hollowness cannot be confidently distin-

guished from sensor noise under such conditions (see Section 2.2.2). As

a consequence a default hollowness value of zero is set for instances that

fall in a negligible range of hollowness, i.e. below 1cm distance between

marker. Concerning the heaviness property, a zero variance is observed

due to the accurate measurement by a scale – considering a resolution of

1g which is a sufficient resolution for our scenario.

Property Coverage of RoCS

The objective of this experiment is to evaluate the intra-class variance for

each property in order to determine the range of data covered in each ob-

ject class for one particular property. For this experiment, the mean esti-

mated property value over the 10 repetitions is used. The result for each of

the physical properties is shown in Fig. 2.10 in form of a box plot in which

all object instances of a particular class are considered.

Several observations can be made. For instance, hollowness and flatness

are complementary in our dataset. Objects with flatness values close to

zero are commonly exhibiting increased hollowness values (above 0.5) and
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Figure 2.10: Category-wise coverage for each physical property.

vice versa. Only balls form an exception as they are neither flat nor hollow.

While this means that we cover a wide range of values for the flatness prop-

erty, we miss such coverage for hollowness values in the interval [0,0.5].

Moreover, for roughness most object classes are in a similar range – except

sponge and ball instances. As we place the objects in their most natural

position we can conclude that the sponges’ ground surfaces have a higher

roughness due to their open-pored surfaces. Due to their roundish sur-

faces, ball instances feature obviously a low roughness value. Furthermore,

it is unlikely to observe objects featuring roughness values close to one as

none of the considered object classes has the ability to stick to the ramp.

For the rigidity values an interval of [0,0.9] is covered, ranging from rigid

objects such as metal_box to non-rigid objects such as sponge. Suspi-

ciously, only a limited number of objects has a value of zero which indi-

cates that sensor noise has its greatest effect on these objects. Analyzing

the size values, it becomes apparent that width commonly is the greatest
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Table 2.2: Pearson Correlation on the mean values of physical properties

flatness rigidity roughness s_length s_width s_height heaviness
flatness -
rigidity 0.45 -

roughness 0.45 0.35 -
size_length 0.03 0.12 0.15 -
size_width 0.16 0.34 0.02 0.21 -

size_height -0.65 -0.59 -0.38 -0.26 -0.45 -
heaviness 0.09 -0.04 -0.13 0.19 0.02 -0.37 -

hollowness -0.71 -0.36 -0.08 0.24 -0.1 0.24 0.13

dimension among the considered objects while the objects’ height varies

along the range of possible values.

Property Correlation

In this experiment, we investigate the linear correlation in the physical

properties of our data. In the natural world some of the properties are not

correlated such as size and roughness or rigidity and heaviness or rough-

ness and rigidity. On the other hand, properties such as hollowness and

flatness may show negative correlation due to the lack of flat solid surface

in case an object is hollow, for instance, a cup or a bowl. The objective of

this experiment to investigate whether two properties are correlated with

each other in the dataset as a result of our proposed estimation methods

and due to the estimated measurements of the properties.

In order to investigate the linear correlation, we performed Pearson cor-

relation [58] on the data. Given estimated values of a particular property,

we compute the mean property value ox (Eq. 2.11a) over the 10 repetitions

for each object instance o. Based on these mean variances, the pearson

correlation ρX Y is obtained between two sets of mean variances X and

Y corresponding to respective properties, see Eq. 2.11b, where cov is the

covariance and σx the standard deviation of X , respectively.

X = {ox1 ,ox2 ,ox3 , ...} (2.11a)

ρX Y = cov(X ,Y )

σxσy
(2.11b)

Table 2.2 shows the pearson correlation among all physical properties with

a color scale.
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It can be observed that the correlation of our data is low in general. How-

ever, a strong negative correlation between flatness and hollowness is

found which may indicate that in our data objects with high flatness

are likely to have low hollowness. This matches our observation in Sec-

tion 2.4.1, where we noted the complementary nature of these properties

in our dataset. The object instances of our dataset may also show some

negative correlation between size-height and flatness as well as size-height

and rigidity which, as we have noted earlier, is the result of the false posi-

tives where shorter object instances are regarded as being rigid.

2.4.2 Property Semantics

Given a stable property estimation (Section 2.4.1) from noisy real world

data, the following experiment focuses on the semantic interpretation of

the estimated measurements of the properties of objects. More specifi-

cally, the question is, when categorized on the basis a property with vary-

ing number of categories, how robustly object instances from various ob-

ject classes share similarity. In other words, we are interested to examine

object instances of which object classes would be contained in each cat-

egory when categorized on the basis of various properties. In that sense,

we can view these categories as artificial object categories (AOCs) which

would be created from a robot’s perspective. Additionally, we also want to

examine, with different properties, how the categorization of the instances

vary. We propose an experiment that categorizes object instances of our

RoCS dataset in an unsupervised manner by considering a particular set

of properties. Given the small dataset to be categorized, it is essential that

every single data is categorized and not left out. For this reason and to

conduct a preferably unbiased (machine-driven) categorization, we used

a clustering technique K-means as a baseline technique where it is applied

by gradually increasing the value of k={2, ...,11}. Here, 11 is selected as an

upper bound as it represents the number of object classes considered in

the RoCS dataset.

Fig. 2.11 focuses on the categorization of the object instances on the basis

of the functional properties. On the other hand, the Fig. 2.12 focuses on

the categorization of the object instances on the basis of non-visual prop-

erties which include roughness, rigidity, heaviness; visual properties con-

taining flatness, hollowness, size; and finally on the basis of all the physical
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properties. Both figures consist of pyramid charts that shows the gradual

categorization process for the respective property. A category or a clus-

ter is depicted as a pie-chart illustrating the distribution of assigned ob-

ject instances with their labeled class. Therefore, each row of the pyramid-

like structure shows the results of one application of the k-means cluster-

ing. The number of pie-charts in each row equals to number of clusters

(k value). As stated earlier, each categorization on the basis of the prop-

erties can be viewed as an artificial object category (AOC) who share cer-

tain the respective property-based similarity. In other terms, since each

category partitions the property space, assigned instances within the cat-

egory share similar degree of the property. For instance, in case of a par-

titioning on the basis of containment in the Fig. 2.11, the object instances

grouped together share a similar degree of containment, similarly the ob-

ject instances grouped together in the Fig. 2.12 on the basis of visual prop-

erties, share a similar degree of visual properties.

Generally on higher levels in the pyramids (lower k), the distribution of the

instances and the classes in each AOC is higher compared to lower levels

(higher k). It can be interpreted as, AOCs on higher levels appear to feature

more generic attributes since the distribution of object classes is higher

compared to lower levels (higher k) while lower levels encompass AOCs

featuring more specific attributes. As a consequence, AOCs in the higher

levels appear more generic as opposed to the lower levels where AOCs ap-

pear more specific. Moreover, as the levels in a pyramid progresses in both

figures, patterns in the distribution of classes can be observed which are

carried forward in the subsequent levels. Such patterns in each pyramid

hints towards semantic relations between class labels and AOCs. For ex-

ample, instances of bowl, cup, to_go_cup share similar AOCs regarding the

containment property (see AOC annotated with in Fig. 2.11) which is

also reflected over multiple levels. Such emerging patterns can also be ob-

served and tracked over multiple levels in other pyramids in Fig. 2.12, for

instance, for all the physical properties, pattern containing the instances

of plastic_box, metal_box, paper_box, and sponge (see AOC annotated with

). Notably, a pattern observed in one pyramid will not be necessarily ob-

served in every other pyramid which indicate that with properties, the cat-

egorization of object instances vary accordingly. For instance, the afore-

mentioned pattern containing the instances of bowl, cup, to_go_cup is not
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reflected in the movability or blockage pyramid. This suggest that the pat-

terns are closely associated with a property along which categorization of

object instances is performed. It is also worth noting that the number of

object classes in AOCs in each level in all the pyramid structures varies. In

some cases, an AOC contains only one object class, for instance, in con-

tainment, movability, blockage, visual and non-visual properties. In some

cases, an AOC contains more than six object classes, for instance, in mov-

ability, blockage and non-visual properties. We also noticed a tendency

in all the pyramid structures where all the instances of an object class are

grouped together across all the levels, for instance, tray in containment,

bowl in support (almost all the instances), sponge in movability, blockage

and non-visual properties, ball in visual and all the physical properties.

As a result, the proposed property estimations may allow to describe object

instances encompassing a variety of characteristics – from appearance to

functional purposes – and also allows to discriminate the object instances

on the basis of the properties. In the figure, property generality can be

observed across certain object classes, i.e. AOCs on different granularity

levels may feature dedications to instances of different object classes as

they feature similar characteristics or trends regarding the property. This

interrelation of object classes is reflected by the heterogeneity of the dis-

tribution of instances within an AOC – even in case of k=11 when consid-

ering 11 object classes. On a critical note, some AOCs may seem question-

able, for example, in movability and blockage, two AOCs across all levels

contain eight object classes. On the other hand, in movability, blockage

and non-visual properties, there is an AOC that contains only a one or two

instances of the class book. We can also note that, in the upper three lev-

els, the categorization of object instances is more discriminating than the

lower most levels. As we increase the number of clusters for categoriza-

tion, it does get difficult to group together the instances of the same class.

However, we can also observe that in almost all the pyramid-structures,

across all the levels, there is at least one AOC where at least one object

class dominates in terms of the number of its instances assigned to that

AOC. Moreover, it can also be observed that the property measurements

has allowed the meaningful groupings of certain object classes from a hu-

man perspective. For instance, in containment and support, across all the

levels, the instances of cup and to go cup are grouped together, or tray and
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book are grouped together; the similar observations can be made in visual

and all physical properties; in movability and blockage, across all the lev-

els, sponge, to go cup and paper box are grouped together.

Note that, this experiment is not aimed at finding the optimal number of

clusters for each property based categorization or perform an accurate ob-

ject categorization on the basis of each property. Instead, our focus is to in-

vestigate the semantics of the property measurements or how meaningful

the property-based categorization of object instances is from a human’s

perspective. Consequently, these insights gained from this experiment

provided us with a basis for the generation of conceptual knowledge about

objects and the subsequent substitute selection which are discussed in the

next chapters.

2.5 Conclusion

Property Estimation Framework

In this chapter, we propose an extensible property estimation framework

called Robot-Centric Dataset Framework (RoCS) wherein multiple prop-

erty estimation methods can be used to measure various physical prop-

erties and functional properties. Currently, the framework consists of six

physical properties and four functional properties. Our proposed frame-

work is flexible in that it separates the sensory data acquisition from the

actual property estimation methods. Note that our framework is mere a

skeleton that deploys a decoupling approach to process the sensory data

and estimate the measurements of the properties observed in the objects.

Such separation allows for redefining the estimation methods with a dif-

ferent set of sensory data than the existing one. Our ultimate vision is to

develop an online system where developers can plug-in their estimation

methods (simple or more complex) for the same property or new property

to the framework requiring minimal or more sophisticated experimental

set-ups. This way, we wish to create a community of users who can select

the estimation methods based on the sensor and robot availability at their

end. Additionally, the proposed framework is also used to create a multi-

layered dataset about household objects where the layers denote the dif-

ferent levels of abstraction (Fig. 2.2 for reference). The property measure-
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ment data generated by the proposed framework can then be used to gen-

erate robot-centric symbolic knowledge.

Properties Estimation Methods for Physical Properties

In this work, we propose light-weight estimation methods for physical

properties rigidity, hollowness, size, flatness and roughness, whereas func-

tional properties are estimated in terms of the measurements of the physi-

cal properties that enable them. Our proposed methods estimate the prop-

erties from a single instance at a time and do not require any prior training

data for estimation, in contrast to the methods proposed in [26; 27; 28; 29].

Moreover, the proposed methods do not require any complex manipu-

lation or grasping capabilities as opposed to some approaches [30; 31].

Our proposed methods are light-weight, requiring minimal experimental

set-up where even simplistic robotic platforms with just an arm and min-

imum sensors, such as YouBot, can be used for estimation. However, it

should be noted here, we do not claim that our proposed methods are the

only way or a better way to estimate the properties of objects, which is

why, a proposed framework also allows for additional estimation methods

for the same properties besides the one that already exist. The primary

inspiration for interpretation of the meaning of properties - which forms

the basis for estimation methods - is a level of understanding of properties

demonstrated by animals as reported in various literature on tool use in

animals.

The estimation of physical properties for substitute selection is not unique

to our work. For instance, in the research work on tool selection in

robotics, various properties are used for selecting a tool such as length

[59; 60; 61], width [60], shape [60], a function label [59; 60], or hand-coded

symbolic knowledge about geometric properties of tools [13]. Similarly,

in substitute selection approaches, various properties are estimated and

used such as metric data about position, orientation, size, and symbolic

knowledge about hand-picked relations such as similar-to and capable-

of extracted from ConceptNet [62]; visual and physical understanding

of multi-object interactions demonstrated by humans [63]; metric data

about size, shape and grasp, as well as a human estimate of an affordance

score for task + mass [64]; attributes and affordances of objects are hand-
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coded using a logic-based notation, and a multidimensional conceptual

space of features such as shape and color intensity [65]. Moreover, the ap-

plication of physical property estimation is not limited to generate concep-

tual knowledge, substitute selection or tool selection. Various approaches

for estimating physical properties of objects such as rigidity, shape, tex-

ture, size, etc. have been proposed for applications such as object recogni-

tion/categorization, grasping and manipulation [26; 27; 28; 29; 30; 31; 66].

In summary

In this chapter, we discussed our approach to estimate the physical and

functional properties observed in the objects. The approach consists of

two constituents: 1) property estimation framework; 2) property estima-

tion methods. The estimation methods and the resulting measurements

were investigated by performing various experiments to analyse various

aspects such as variance of the property measurements, intra-class vari-

ance, correlation between the properties and the semantic relations be-

tween object instances. The primary application target of our proposed

approach is to generate robot-centric conceptual knowledge about ob-

jects (Chapter 3) which will be used in substitute selection for a missing

tool (Chapter 4).
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3.1 Introduction

Given how vital the tool-use ability is, robotics researchers have been de-

veloping approaches to enable a robot to use tools in various tasks [12;

61; 67; 68; 69; 70; 71; 72]. While these approaches focus on learning tool-

use behavior, one of the underlying issues in tool-use is how can an ap-

propriate tool be selected that is required in a task? In the literature on

tool selection in robotics, the proposed selection mechanism is often in-

tegrated with a proposed tool-use system in which a robot selects an ap-

propriate tool and uses it in a pre-designed task [13; 59; 60; 61]. All the ap-

57
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Tool Use
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Figure 3.1: The figure shows our primary area of interest within the domain of
tool-use. Conceptual knowledge is desirable in tool use, however our focus is on
generating conceptual knowledge required for substitute selection. The figure
also illustrates the positioning of substitute selection within tool-use. While tool-
use also consists of areas such as grasping, planning, manipulation, validation etc.
we have left them out for the sake of clarity. Besides our primary area of interest,
our intent is to distinguish it from tool-use or tool selection. Note that in tool
selection a robot does not have any prior knowledge of what tool is appropriate
in a given task whereas in substitute selection, the robot does have such prior
knowledge.

proaches use machine learning techniques where training examples typ-

ically include parameters used for selecting a tool such as length [59; 60;

61], width [60], shape [60], a function (affordance) label [59; 60], or hand-

coded symbolic knowledge about geometric properties of tools [13]. A typ-

ical problem scenario in tool selection in the literature is - from the given

tool options, what is the most appropriate tool for a task at hand. But what

if the required tool is missing? This is the question we are primarily inter-

ested in (see Fig. 3.1).

In order to be recognized as a plausible substitute for a missing tool, the

substitute needs to be similar to the missing tool in some way without hav-

ing to interact with it. The question is what is needed to determine the sim-

ilarity. In the literature on substitute selection, typically a substitute for a

missing tool is determined by means of knowledge about objects, and the

knowledge-driven similarity between a missing tool prototype and a po-

tential substitute. Such knowledge about objects varies in its contents and

form across the literature: metric data about position, orientation, size,
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and symbolic knowledge about hand-picked relations such as similar-to

and capable-of extracted from ConceptNet [62]; visual and physical un-

derstanding of multi-object interactions demonstrated by humans [63];

metric data about size, shape and grasp, as well as a human estimate of an

affordance score for task + mass [64]; attributes and affordances of objects

being hand-coded using a logic-based notation, and a multidimensional

conceptual space of features such as shape and color intensity [65]; hand-

coded models of known tools in terms of superquadrics and relationships

among them [73]; potential candidates extracted from WordNet and Con-

ceptNet if they share the same parent with a missing tool for predeter-

mined relations: has-property, capable-of and used-for [74]; hand-coded

object-action relations [75]; as well as hand-coded knowledge about inher-

itance and equivalence relations among objects and affordances [76].

While for tool selection, metric data of certain properties are primarily

considered, where such data is extracted in real-time from an instance

of an object, for substitute selection, symbolic knowledge about the ob-

ject category or class is considered. In such cases, either the proposed ap-

proaches use existing common sense knowledge bases such as WordNet,

ConceptNet or knowledge is hand-coded. Regardless of the use of existing

knowledge bases or hand-coded relational knowledge, it is apparent that

knowledge about objects in some form is sought by the aforementioned

approaches. What also seems to be a common theme in the literature

is that some form (metric or symbolic) of physical and functional under-

standing of objects is used as essential drivers for substitute selection as

well as for tool selection. This is in line with the findings noted in the liter-

ature on tool use in animals and humans [3; 21; 22; 34; 77; 78] which state

that conceptual or semantic knowledge about object forms the foundation

for not only tool use but also for tool selection and substitute selection.

3.2 Building Blocks

As we noted, conceptual knowledge about objects is desired in robots

(from household to industrial robotics) in order for substitute selection,

where selection is facilitated by the knowledge about various (physical

and functional) properties observed in the objects [12; 13]. We stated in

the Sec. 1.2 and will elaborate further in Sec. 4.1.2, that our primary inspi-
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ration behind our proposed approach to substitute selection is based on

the notion of relevant properties of a missing tool. In our approach, the

determination of the relevant properties and the subsequent selection of

a substitute on the basis of the relevant properties is aided by conceptual

knowledge about objects. Therefore, in order to utilize such conceptual

knowledge about objects (e.g. in a household environment) for substitute

selection, the following questions need to be answered:

• What should conceptual knowledge about objects be constituted of

for substitute selection?

• How can such conceptual knowledge about objects be acquired?

• How should the acquired knowledge be represented?

These questions form the primary building blocks of our work, namely:

Conceptual Knowledge, Robot-centric Knowledge, and Knowledge Repre-

sentation. In this section, we address how the building blocks are realized

in this work.

3.2.1 Conceptual Knowledge

It is postulated in the literature on tool-use in animals [1] that non-

invasive tool selection in humans or animals alike is facilitated by con-

ceptual knowledge about objects, especially, knowledge about their phys-

ical and functional properties and relationship between them. For in-

stance, knowledge about what physical properties of a hammer enable

the hammering action can facilitate the decision between a stone and a

plastic bottle as a substitute. It is not just humans, but animals such as

crows, chimps have demonstrated that in order to perform tool use, a tool

is conceptualized in terms of its physical as well as functional abilities

[3; 4; 21; 22; 23; 24; 25; 34].

One of the key components in substitute selection by human experts is the

knowledge about physical properties of an object [79]. It is postulated that

conceptual knowledge about objects is generalized over our observations

and daily interactions with them [3]. As a consequence, while on one hand

humans tend to express an object in linguistic form by giving it a label such

as a mug [80], on the other hand an object label is not merely a reference to
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the corresponding physical entity in an environment but also incorporates

knowledge about its physical and functional abilities [3; 43; 81]. There-

fore, based on our observations and interactions with various instances of

a cup, conceptual knowledge of the cup may, for example, consist of an

object that is rigid, hollow, cylindrical, made up of ceramic material and

also has a primary function, for instance, hold liquid [82]. For a robot to

select a substitute in a non-invasive manner, we propose that conceptual

knowledge about objects should consists knowledge about physical and

functional properties observed in objects.

But is knowing merely "whether a cup is rigid or not" enough? Consider,

for instance, a choice between a cup and a stone as a substitute for a ham-

mer. While both the objects are rigid, we have general knowledge that a

stone is usually more rigid than a cup and quite possibly as rigid as a ham-

mer. As a result, we will choose the stone over the cup for hammering.

Take another instance where we have to choose between two stones of dif-

ferent sizes and weight for hammering. It is possible that some people

may prefer one stone over the other for various reasons. For some people,

one stone has a better shape which allows them to grip better for ham-

mering while some people prefer a stone that is less heavy than the other

and for some, they may prefer the smaller sized stone for better grasping.

Another example is the choice between a mobile phone and a plate as a

substitute for a tray to carry a drink. Since both the objects are flat, they

should be viable substitutes. However, since we know that a plate is usu-

ally larger in size than a mobile phone, and a plate is closer to a tray in size

than a mobile phone is, we will vote for the plate. There are two pieces of

information worth noticing: firstly, our knowledge about properties of ob-

jects is generalized, relative, subjective and qualitative, and secondly, the

selected substitutes are not necessarily visually similar to the missing tools

but are rather qualitatively similar. We are proposing a similar approach

to conceptual knowledge about objects for substitute selection.

The conceptual knowledge about objects, in this work is characterized as

qualitative, generalized, relative, and subjective. In the following, we pro-

vide the proposed interpretation of the aforementioned characterizations

of the conceptual knowledge.
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Generalized: The conceptual knowledge about objects primarily consists

of knowledge about an object class as opposed to a specific instance

of the object class. However, it is derived from the instances of the

object class.

Relative: The general knowledge about any object class is based on its in-

stances that have been encountered. It means, the knowledge about

any object class is not absolute and is subject to change as more in-

stances of the object class are encountered.

Subjective: The knowledge about an object class is acquired from the sen-

sory experiences and interaction with the object’s instances as op-

posed to extracted from other sources. In our work, the subjective

knowledge is knowledge acquired from a first-person perspective.

Qualitative: The knowledge about object classes is expressed in terms of

the properties where the properties observed in the objects are in-

terpreted qualitatively as opposed to quantitatively. However, the

qualitative knowledge about properties of objects is obtained from

the quantitative data about properties of objects.

In summary, the conceptual knowledge about objects, in this work is char-

acterized as generalized over a robot’s observation and interaction with the

objects; relative to the encountered objects by the robot; subjective with re-

spect to the robot’s sensory experiences and interaction with objects; and

qualitative in the representation of knowledge. The primary contents of

the proposed conceptual knowledge about objects consist of the proper-

ties observed in the objects. The properties are divided into physical and

functional properties where the physical properties describe the physical-

ity of objects and the functional properties ascribe the (functional) abili-

ties or affordances to the objects. In this work, we have focused on the six

physical properties: rigidity, weight, hollowness, roughness, flatness, size

and four functional properties: containment, blockage, support, movabil-

ity.

3.2.2 Robot-centric Knowledge

Given that we need conceptual knowledge about objects that is general,

relative, subjective, and qualitative, the fundamental question is how
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should a robot acquire such knowledge. One way to go about it, is by

using existing knowledge bases such as WordNet [83] and ConceptNet [84]

which consist of commonsense knowledge. The commonsense knowl-

edge is considered as knowledge that is commonly shared by most people

and it usually is considered as implicit in nature, meaning that not every

known fact about an object will be included in such knowledge bases [85].

As a result, there is no clear consensus about what falls precisely under

commonsense knowledge. Figures 3.2, 3.3, 3.4 and 3.5 show the knowl-

edge about a cup and a plate as described in WordNet and ConceptNet. It

can be noted that the pieces of knowledge about both the objects in Word-

Net and ConceptNet, while sharing some similarity, differ in the contents.

Moreover, not everything we know about a cup and a plate is included.

ConceptNet provides much broader and categorized overview about a

cup and a plate, while WordNet contains more condensed knowledge. It

is also worth noting that the knowledge about the two objects does not

contain explicit information about the physical and functional properties

of objects. In order to verify whether such commonsense knowledge base

is enough to select a substitute, we performed an experiment discussed in

Sec.4.3.3 where we have demonstrated the use of WordNet in substitute

selection and have argued that why the WordNet alone is not an adequate

source of knowledge about objects for substitute selection.

While commonsense knowledge is concerned with commonly known

knowledge by most people, subjective knowledge is concerned with knowl-

edge held by an individual. The robot-centric notion proposed in this

work is concerned with the subjectiveness of the knowledge. The primary

motivation for pursuing a robot-centric notion stems from the research

on cognitive aspects of tool use in humans and animals. We are especially

interested in the theory that tool selection is a first-person-perspective ac-

tivity which is driven by a relationship between the user’s own conceptual

knowledge about a tool and their ability to use that tool [3]. Here the term

user’s own conceptual knowledge is vital since it deals with the knowledge

acquired by individual using their own senses and personal interactive

experiences with the objects. As suggested before, such personalized

or subjective knowledge plays a crucial role during tool or substitute se-

lection process. It has been argued in the cognitive science studies on

concept formation that conceptual knowledge of an object is grounded in
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Figure 3.2: The knowledge about a cup as described in WordNet.

an individual’s multi-modal perceptual experiences with various objects

[14; 15; 16]. This suggests that conceptual understanding of any object

may differ from person to person, thus making conceptual knowledge of

an object a subjective understanding of an object [18; 86]. In other words,

the understanding of a property observed in an object depends on one’s

perception and subsequent interpretation of that property [86]. For in-

stance, a heavy object for one person may be heavier for the other or a big

size object for one person may be medium size object for another. As a

result, such distinct understanding of heaviness or size of an object may

influence one’s selection of a substitute where heaviness or certain size

is desired. It means the selected substitutes may differ from person to

person (see Sec. 4.3.2 for a more detailed discussion). Consequently, such

subjective understanding of an object may not be transferable between

individuals as they differ in their interpretation of perceived properties in

objects. This also holds true for robots in general, as robots come in a mul-

titude of perception and manipulation configurations. As a consequence,

the individual perception and manipulation of the world similarly varies

from robot to robot. Therefore conceptual knowledge acquired about an
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Figure 3.3: The knowledge about a plate as described in WordNet.

object by a KUKA KR1000 Titan (maximum payload of 1300kg, 3.6m reach),

for example, will not be the same as conceptual knowledge acquired by a

Universal Robot UR3 (maximum payload of 3kg, 0.5m reach). It is worth

noting that, despite of the fact that all humans are equipped with the

same set of sensory organs, the humans perceive properties of objects dif-

ferently. In case of the robots, even the vision sensors differ from robot to

robot. This is where acquisition of robot-centric knowledge about objects

is desired where the underlying idea is, in order to capture the subjectivity,

the knowledge should be grounded in robot’s own sensory perception of

objects’ properties [87]. Given that substitute selection is influenced by

one’s understanding of an object, we propose that every robot should be

equipped with its own robot-centric knowledge acquisition system which

takes into account the sensory system fitted into its system.
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3.2.3 Knowledge Representation

According to [88], a representation formalism is a medium where knowl-

edge can be organized such that it allows for efficient reasoning. The

choice of a specific formalism is driven by a desired outcome and a world

in which a robot is operating [89]. As we stated earlier, the conceptual

knowledge about objects should consists of knowledge about physical and

functional properties observed in the objects. In other words, an object

should be represented in terms of the physical and functional properties

observed in it. For representing conceptual knowledge about objects for

substitute selection, we need a formalism that represents the four aspects

of such knowledge: generalized, relative, subjective, and qualitative. In

the following, we lay out the foundation for representation formalism we

have sought in this work that allows us to represent all the aforementioned

aspects.

For generalized knowledge, a representation formalism should express

knowledge about an object category in terms its properties which is gen-

eralized over the properties observed in individual instances. As we noted

in 3.2.1 that when representing any object as a concept, humans usually

omit quantitative measurements of the properties observed in the ob-

ject, but assign what we have termed as qualitative measurements to the

properties of an object to reflect to what degree that property is reflected

[80]. For instance, a cup is generally light weight, medium rigid, and can

fully contain solid or liquid. This observation is generalized over the ob-

servations made in individual instances of the cup. Therefore we need a

formalism that takes into account instance-specific knowledge to gener-

ate class-specific knowledge about any object. Moreover, as knowledge is

to be represented as a set of generalized observations regarding the prop-

erties reflected in the instances of an object, a formalism should be able to

incorporate the degree with which the property is observed in the object.

The generalized knowledge about any object category should be relative

to a robot’s experience with different instances of the respective category

and other categories too. Consider, for instance, size of an object. Our un-

derstanding of size and variations in size is relative to the different sizes we

observe in different objects we encounter over period. As a result, our un-

derstanding of any property is subject to change as we encounter more ob-
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jects and their size. This also entails that our understanding of size gener-

ally observed in an object (category) may change as we encounter more in-

stances of the object category. Accordingly, we need a formalism that can

incorporate such relativeness of understanding of size globally (regardless

of an object category) and locally (object category specific). Moreover, the

formalism should be adaptable and tractable, since the conceptual knowl-

edge about objects needs to be updated as the robot acquires experiences

with new instances of the known object category or a new object category.

In order to acquire subjective or robot-centric knowledge, it is necessary

that the knowledge is grounded in the robot’s own sensory perception

of the properties of objects. This grounding process is typically called

a symbol grounding process which bridges the gap between symbolic

knowledge and sensory perception by creating a correspondence between

them. This correspondence either refers to a physical entity in the real-

world a.k.a. perceptual anchoring [90] or assigns a meaning to a symbol

by means of a respective sensory-motor process [91] (what I sense is what

I know). We propose that in order to capture robot-centricness in con-

ceptual knowledge, it should be generated in a bottom-up fashion, that

is, knowledge is generated from the sensory data about objects. In order

to achieve that, first, we capture the sensory data about each property

from various objects using robot’s sensory systems. The sensory data

is then processed to estimate quantitative measurements of properties

observed in objects using the property estimation method discussed in

chapter 2. The quantitative measurements are instrumental in bring-

ing about the desired qualitativeness in the knowledge wherein they are

used to generate property specific qualitative measurements. Conceptual

knowledge about objects is then generated for given objects on the basis of

the qualitative measurements of various properties. This very bottom-up

generation of qualitative knowledge from the quantitative measurements

of properties of objects is behind the notion of robot-centric knowledge.

Such bottom-up knowledge generation not only grounds the knowledge

into robot’s sensory perception but it is generated from the data acquired

using the robot’s sensory system.

For our proposed knowledge base, we deemed the symbolic formalism

based on the notion of fuzzy sets [92] and attribute-value pairs as suitable

formalism. The knowledge base is provided with a set of symbols which
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form the vocabulary using which the proposed knowledge base is built.

The question we are trying to address here is: How can we generate robot-

centric knowledge on the basis of robots’ sensory perception and a given

vocabulary or a set of symbols for properties and object categories?

3.3 Methodology

As suggested in Sec. 3.2.2, the robot-centric aspect of the knowledge in

this work lies on the notion that for symbolic knowledge to be grounded

in robot’s perception of the world, it is to be generated by abstracting over

the robot’s perception data. In order to attain that, we have proposed a

bottom-up method which consists of five levels of abstractions as illus-

trated in Fig. 3.6. The bottom three levels, covered in the chapter 2, fo-

cus on gathering the sensory data and estimating the properties measure-

ments on the basis of the sensory data. For each property, we have up-

loaded the estimated measurements in the git repository. Please refer ap-

pendix D for the git links. The top two levels, on the other hand, con-

centrate on generating the conceptual knowledge about objects from the

property measurements. For generating robot-centric conceptual knowl-

edge, the data about the objects’ physical and functional properties is pro-

cessed in two stages: sub-categorization (Layer 4) and conceptualization

(Layer 4 and 5) which was implemented in Python programming language.

In the following, we discuss each stage in detail.

Consider O as a given set of object classes where (by abuse of notation)

each object class is identified with its label. For example,

O = { cup, bowl, book, plate, ball }

where the labels cup, bowl, book, plate, ball represent the said object

classes.

Let each object class O ∈ O be a given set of its instances where each in-

stance is identified with a label. For instance, an object class Cup is a set

of the labels of its instances given as,

cup = { cup_1, cup_2, cup_3,... }

Let
⋃

O be the union of the sets of all object classes such that |⋃O| = n.
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Figure 3.6: The figure illustrates the process layers, enclosed within a pink colored
boundary, for our bottom-up robot-centric knowledge generation where each
layer is abstracted over the layer below.

Let P and F be the given sets of physical properties’ labels and a set of func-

tional properties’ labels respectively. By abuse of notation, each physical

and functional property is identified with its label. For example,

P = { flatness, hollowness, size, rigidity, roughness, weight }

where flatness, hollowness, etc. are the labels representing the respective

physical properties. Similarly,

F = { containment, support, movability, blockage }

where containment, support, etc. are the labels representing the respective

functional properties.

For each physical property P ∈ P as well as for a functional property F ∈
F, property measurement is estimated from each object instance o ∈ ⋃

O.

The measurements are estimated using the property estimation method

discussed in chapter 2.

Let Pn and Fn represent sets of property measurements of a physical prop-

erty P and a functional property F respectively, estimated from all the in-

stances given in
⋃

O. Note that n represents the total number of instances

in
⋃

O.
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3.3.1 Sub-categorization – from Continuous to Discrete

As we have stated in Sec.3.2.1, the desired conceptual knowledge about

objects is required to be qualitative. In other words, an object (instance or

class) should be represented in terms of the qualitative measurements of

the properties observed in the object as opposed to quantitative measure-

ments of the properties (see the top two layers of conceptual knowledge

generation in the Fig. 3.6). The sub-categorization process is the first step

in creating conceptual knowledge about object classes. The process gen-

erates (more intuitive) qualitative measures, to represent the degree with

which a property (physical or functional) is reflected in an object instance,

unsupervisedly using a clustering mechanism (see Fig. 3.8) on the quan-

titative measurements of a property estimated in the object instances. In

that, a cluster of the property measurements can be seen as a qualitative

measure of the corresponding property.

In this process, Pn and Fn representing measurements of a physical prop-

erty P ∈ P and a functional property F ∈ F respectively estimated from n

number of object instances are categorized into a given number of discrete

clusters η using a clustering algorithm. For the sake of clarity, henceforth a

qualitative measure of a physical property is referred to as a physical qual-

ity and that of a functional property as a functional quality.

Let Pη and Fη be the sets of labels, expressing physical qualities and func-

tional qualities, generated for a physical property P ∈ P and a functional

property F ∈ F respectively. For example, in

sizeη = { small, medium, big, huge }

size is a physical property and small, medium, big, bigger are its physical

qualities. Similarly, in

supportη = { no_support, weak_support, good_support, strong_support }

support is a functional property and its functional qualities are no_support,

weak_support, good_support, strong_support.

As illustrated in figure 3.7, in case we decide on three qualitative measures,

the property measurements of a property, for instance, rigidity, estimated

from all the objects instances will be clustered into three clusters and they

can be represented as,
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rigidityn = [ 0.0938,
0.2614,
0.0194,
0.4258,
0.1650,
0.1978,
0.2104,
0.2170,
0.2596,
…...] 

sub-categorization
rigidityη = [ soft, 

medium_rigid, 
hard_rigid ] 

Figure 3.7: The figure illustrates the sub-categorization process wherein quantita-
tive measurements of rigidity property are transformed into qualitative measure-
ments using a clustering algorithm.

rigidityη={ soft, medium_rigid, hard_rigid }

Note that, in this work, the number of qualitative measures remain the

same for all the properties as opposed to different number of qualitative

measures for different properties. The optimum number of qualitative

measures for substitute selection are decided empirically as discussed in

the experiment 4.3.1. Additionally, it is to be noted that the number of

clusters essentially describes the granularity with which each property can

qualitatively be represented. A higher number of clusters suggest that ob-

jects can be qualitatively described in a finer detail, which may obstruct

the selection of a substitute since it may not be possible to find a substi-

tute which is similar to a missing tool down to the finer details (see experi-

ment 4.3.1 in the next chapter on substitute selection).

Note that, the aforementioned physical quality labels are only provided for

illustration purpose as they are commonly used qualitative labels for the

stated property; however, the quality labels for any property are internally

represented by combining a property label P and a cluster label (created

by the clustering algorithm). For example, the physical quality labels for

size are expressed as,

{ size_1, size_2, size_3, size_4, ...}

At the conclusion of the sub-categorization process, the clusters are

mapped to the generated symbolic labels for qualitative measures. It is

worth noting here that the qualitative measures generated by the process

are relative to the given number of instances and their corresponding
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quantitative data. As the number of instances increases, with the addi-

tion of quantitative data, the sub-categorization process will have to be

repeated. As a result, the quality labels assigned to a property measure-

ment of an object instance will not remain permanent and will shift with

respect to the repeated sub-categorization process.

Figure 3.8: The robot-centric conceptual knowledge generation process is il-
lustrated where acquired continuous property data of objects {o1,o2...} is sub-
categorized into multiple clusters. Using Bi-variate joint frequency distribution
and sample proportions, conceptual knowledge about object classes (e.g. plas-
tic_box) is generated.

3.3.2 Conceptualization – Knowledge about Objects

The conceptualization process is twofold: in the first step, it generates the

knowledge about all the instances and in the second step, it generates

knowledge about object classes on the basis of the knowledge about the

instances. As illustrated in the top two levels of Fig. 3.6, the resulting con-

ceptual knowledge about objects consist of two layers: knowledge about

object instances and knowledge about object classes.

Knowledge about object instances:

Let Pη and Fη be the families (sets) of sets containing the physical quality

labels Pη and the functional quality labels Fη for each physical property

P ∈ P and functional property F ∈ F respectively. Note that, η is the num-

ber of clusters a.k.a. qualitative measures.

In order to generate knowledge about each object instance, we aggre-

gate all the physical and functional quality labels assigned to physical
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and functional property estimation values of each object instance in the

sub-categorization step. The knowledge about object instances is a com-

pilation of knowledge of each object instance.

Thus, each object instance o ∈ ⋃
O is represented as a set of all the physi-

cal as well as functional qualities attributed to it, which are expressed by a

symbol ":" in our work. For the sake of clarity, we will substitute the sym-

bol ":" with holds and it is represented as:

holds ⊂⋃
O×⋃

(Pη∪Fη).

For example, knowledge about the instance plate1 of a plate class can be

given as,

holds(plate1,medium),

holds(plate1,harder),

holds(plate1,good_support)

where medium is a physical quality of size property, harder is a physical

quality of rigidity property and good_support is a functional quality of sup-

port property.

Figure 3.9 illustrates how the knowledge about object instances is ex-

pressed after aggregating the physical and functional quality labels as-

signed to it. The figure depicts the knowledge about instances of ball, cup,

metal box and book. It consists of qualitative measures of the following

physical properties: weight, size, roughness, hollowness, flatness, rigidity

and functional properties: support, movability, containment, blockage.

As shown in the figure, we have used the Python data type Dictionary to

express the knowledge about the instances. At this stage, as illustrated in

the figure 3.6, we have captured robot-centric, relative and qualitative as-

pects of our proposed conceptual knowledge. It should be noted that the

relativeness of knowledge at this stage is constrained to the total number

of instances.

Knowledge about object classes:

The second stage of the conceptualization process generates the knowl-

edge about an object class by aggregating knowledge about its instances.
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"ball_9": [
    "support_1",
    "movability_0",
    "weight_0",
    "size_1",
    "roughness_3",
    "hollowness_0",
    "containment_2",
    "flatness_1",
    "rigidity_1",
    "blockage_1"

]

"cup_1": [
    "support_1",
    "movability_2",
    "weight_2",
    "size_3",
    "roughness_2",
    "hollowness_1",
    "containment_0",
    "flatness_1",
    "rigidity_2",
    "blockage_3"

]

"book_8": [
    "support_3",
    "movability_2",
    "weight_2",
    "size_2",
    "roughness_2",
    "hollowness_0",
    "containment_1",
    "flatness_2",
    "rigidity_0",
    "blockage_3"

]

"metal_box_10": [
    "support_0",
    "movability_0",
    "weight_0",
    "size_0",
    "roughness_2",
    "hollowness_0",
    "containment_1",
    "flatness_0",
    "rigidity_1",
    "blockage_1"

]

Figure 3.9: An illustration of instance knowledge generated by the Conceptualiza-
tion process. The illustration depicts the knowledge about four object instances:
ball_9, cup_1, metal_box_10, book_8 which contains physical and functional
qualities observed in the instances. In the illustration the physical and functional
property measurements are clustered into four qualitative measures.

The underlying principle is to represent an object class in terms of the

overall observations made about its instances which encompasses the fre-

quently observed properties as well as less frequently observed properties

associated with it. In order to represent the frequency of qualitative mea-

sures of the physical or functional properties observed in an object class,

we employed a statistical technique called bivariate joint frequency distri-
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bution. A frequency distribution is typically concerned with how often dif-

ferent values of a single variable appear within a sample. The bivariate

joint frequency distribution focuses on two variables and it describes how

often a pair of values of two variables appear within a sample.

In order to apply bivariate joint frequency distribution, we first obtain

knowledge about instances of an object class. Given that the knowledge

about object instances consist of physical and functional qualities, for

each physical and functional quality, we count how often it is assigned to

the instances of the object class. Figure 3.10 illustrates the application of

bivariate joint frequency distribution to the instances of an object class

plate. We considered three physical qualities of the properties roughness

and , and three functional qualities of the properties support and mov-

ability. Based on the distribution, we can see that the functional quality

support_1 and the physical qualities _1 and _2 have not been observed

in any of the instances of plate. Note that, this circumstance may change

in case of an instance assigned any or all of the aforementioned qualities.

This demonstrates that the knowledge generated about any object class is

relative to the observed instances and is subject to change when the status

quo is confronted with new observations.

While the frequency offers the number of times a certain quality is ob-

served in the encountered instances of an object class, it does not state

the share of the quality within the encountered instances of the object

class. In order to determine the share of the quality, sample proportion

is calculated by using the following formula:

sample proportion of a physical or functional quality =
number of instances containing the physical or functional quality

total number of instances

In figure 3.11, on the left, we have knowledge about an object class plate

which contains physical and functional qualities along with the corre-

sponding frequency. Note that, the sum of the frequencies of physical or

functional qualities of a corresponding property is same as the total num-

ber of instances. On the right side of the figure, the knowledge about the

plate class is given in terms of the sample proportion of each physical or

functional quality observed in the instances of the plate class. A row in the

sample proportion table can be read as, a physical quality roughness_0 is

observed in the 50% of the instances of the object class plate. Note that,
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"plate_1": [
    "support_0",
    "movability_1",
    "roughness_2",
    "size_0" ]

"plate_2": [
    "support_2",
    "movability_0",
    "roughness_1",
    "size_0" ]

"plate_3": [
    "support_2",
    "movability_2",
    "roughness_2",
    "size_0" ]

"plate_4": [
    "support_2",
    "movability_2",
    "roughness_0",
    "size_0" ]

"plate_5": [
    "support_2",
    "movability_1",
    "roughness_2",
    "size_0" ]

"plate_6": [
    "support_2",
    "movability_0",
    "roughness_1",
    "size_0" ]

"plate_7": [
    "support_2",
    "movability_1",
    "roughness_0",
    "size_0" ]

"plate_8": [
    "support_2",
    "movability_2",
    "roughness_0",
    "size_0" ]

"plate_9": [
    "support_2",
    "movability_1",
    "roughness_0",
    "size_1" ]

"plate_10": [
    "support_2",
    "movability_2",
    "roughness_0",
    "size_0" ]

Quality Label Object Class
Plate

support_0 1

support_2 9

movability_0 2

movability_1 4

movability_2 4

roughness_0 5

roughness_1 2

roughness_2 3

size_0 10

Bivariate joint 
frequency distribution

Figure 3.10: An illustration of class knowledge generated by the Conceptualization
process by applying bivariate joint frequency distribution. The illustration depicts
the knowledge about 10 instances of an object class plate. On the left is knowledge
about individual instances of plate containing physical and functional qualities
observed in each instance. On the right is knowledge about class plate which
contain physical and functional qualities and their respective frequency. In the
illustration the physical and functional property measurements are clustered
into three qualitative measures.

similar to the frequency distribution, the knowledge represented in terms

of the sample proportion is relative to the encountered instances and thus,

it is subject to change. As a consequence, the sample proportion of any

physical or functional quality will have to be updated as new instances of

an object class are encountered. As stated in Fig. 3.6, the resulting knowl-

edge about object class represents the generalised aspect of the proposed

conceptual knowledge about objects. Fig. 3.8 illustrates graphically the

resulting conceptual knowledge about an object class at the conclusion

of the Conceptualization process where we have used the Python data

type Dictionary to express the desired fuzzy set and attribute-value based

formalism for our proposed knowledge base. The sample proportion is
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later exploited in the next chapter to identify a substitute for a missing

tool from the available objects.

Quality Label Object Class
Plate

support_0 1/10 = 0.1

support_2 0.9

movability_0 0.2

movability_1 0.4

movability_2 0.4

roughness_0 0.5

roughness_1 0.2

roughness_2 0.3

size_0 1.0

Sample proportion

Quality Label Object Class
Plate

support_0 1

support_2 9

movability_0 2

movability_1 4

movability_2 4

roughness_0 5

roughness_1 2

roughness_2 3

size_0 10

Figure 3.11: An illustration of class knowledge generated by the Conceptual-
ization process by applying sample proportion to the bivariate joint frequency
distribution. The illustration depicts, on the left, the knowledge about object
class plate represented in terms of the frequency distribution of physical and
functional qualities observed in 10 instances of plate. On the right is knowledge
about the object class plate represented in terms of the sample proportion of
each physical and functional qualities observed in the instances.

Function models:

In addition to conceptual knowledge about objects, the conceptualization

process also creates knowledge about functional qualities, termed as func-

tion models, by associating the occurrence of physical qualities in an ob-

ject instance given the occurrence of a functional quality in the instance

and aggregating the result of such conditional occurrences. The role of a

functional model is discussed later in the chapter 4, section 4.2. The idea

behind the function model is to identify the physical qualities which are

correlated with functional qualities. The functional model generation fol-
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lows the similar two-step process as the conceptual knowledge generation:

first, the bivariate joint frequency distribution is applied which is then fol-

lowed by sample proportion calculation. Note that, in order to generate

a function model for each functional quality, the knowledge about all in-

stances are considered.

Figure 3.12 demonstrates how a preliminary functional model for a func-

tional quality is generated using bivariate joint frequency distribution

wherein the frequency of a physical quality observed in the object in-

stances given that a functional quality is observed in those instances is

counted. In the illustration, we concentrate on a functional quality sup-

port_1 of a functional property support. On the left side of the figure,

we have knowledge about ten object instances, each of which contain

support_1 and the physical qualities of three physical properties: weight,

and roughness. The bottom two rows contain instances with the physi-

cal qualities of the aforementioned physical properties , however, differ-

ent functional qualities than support_1 of a functional property support.

The right side of the figure indicates the preliminary functional model

of support_1 after applying bivariate joint frequency distribution to the

knowledge about twelve object instances. The preliminary function model

indicates the number of times each physical quality was observed in an in-

stance given that support_1 was also observed in the instance. Therefore,

although weight_0 is observed in ten instances, in only eight instances, it

is observed along side support_1. A similar observation can be made for

the physical qualities _1 and roughness_2.

In the second step, similar to knowledge about an object class, a function

model is generated by applying sample proportion. The sample proportion

offers the proportion of each physical quality in the instances in which a

functional quality is observed. As a result, it can be determined which

physical quality was observed often in the instances where the functional

quality is observed. Figure 3.13 illustrates a function model generated for

a functional quality support_1. On the left side of the figure, we have a

preliminary function model of support_1 (see Fig. 3.12) which contains

the frequency of the physical qualities of three physical properties rigidity,

weight and roughness in the instances where support_1 is also observed.

On the right side of the figure, sample proportion is employed which cal-

culates the proportion of each physical quality by dividing the frequency
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"ball_9": [
"support_1",
"weight_0",
"size_1",
"roughness_2" ]

"cup_1": [
"support_1",
"weight_2",
"size_2",
"roughness_2" ]

"paper_box_2": [
"support_1",
"weight_0",
"size_2",
"roughness_0" ]

"metal_box_7": [
"support_1",
"weight_0",
"size_0",
"roughness_2" ]

"paper_box_9": [
"support_1",
"weight_1",
"size_2",
"roughness_0" ]

"bowl_7": [
"support_1",
"weight_0",
"size_1",
"roughness_2" ]

"to_go_cup_10": [
"support_1",
"weight_0",
"size_1",
"roughness_0" ]

"plastic_box_3": [
"support_1",
"weight_0",
"size_2",
"roughness_0" ]

"cup_3": [
"support_1",
"weight_0",
"size_1",
"roughness_2" ]

"ball_1": [
"support_1",
"weight_0",
"size_1",
"roughness_2" ]

"metal_box_9": [
"support_0",
"weight_0",
"size_1",
"roughness_2" ]

"plastic_box_5": [
"support_1",
"weight_0",
"size_1",
"roughness_2" ]

Quality Label Functional Quality
support_1

weight_0 8

weight_1 1

weight_2 1

size_0 1

size_1 5

size_2 4

roughness_0 4

roughness_1 0

roughness_2 6

Bivariate joint 
frequency distribution

Figure 3.12: An illustration of a preliminary function model of a functional quality
support_1 generated by the Conceptualization process by applying bivariate joint
frequency distribution. The illustration depicts the knowledge about 10 instances
of different object classes. On the left is knowledge about individual instances
containing physical qualities and the functional quality support_1 observed in
each instance. On the right is the function model of support_1 which contain
physical qualities observed when support_1 is also observed and their respective
frequency. In the illustration the physical property measurements are clustered
into three qualitative measures.

of the physical quality by the total number of occurrences of support_1 in

the knowledge about instances. For instance, in the example, support_1 is

observed in total ten times out of which eight times it was observed along

side the physical quality weight_0. One can infer that the presence of sup-

port_1 in the instances is highly correlated with the presence of weight_0

in the knowledge about object instances. A contrast observation can be

made about weight_1 and weight_2 as their presence is less correlated

with the presence of support_1. Such correlation among the physical and

functional qualities is later exploited in the Chapter 4, Sec. 4.2.3 to iden-

tify relevant properties (see Sec. 4.1.2) of a missing tool. Note that, similar

to conceptual knowledge about any object class, the correlation between

physical and functional qualities is relative to the number of instances ob-
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served and is subject to change as the robot encounters more instances.

Consequently, a function model of any functional quality will also be sub-

jected to change as it is relative to the number of instances observed so

far.

Sample proportion

Quality Label Functional Quality
support_1

weight_0 8

weight_1 1

weight_2 1

size_0 1

size_1 5

size_2 4

roughness_0 4

roughness_1 0

roughness_2 6

Quality Label Functional Quality
support_1

weight_0 8/10 = 0.8

weight_1 0.1

weight_2 0.1

size_0 0.1

size_1 0.5

size_2 0.4

roughness_0 0.4

roughness_1 0

roughness_2 0.6

Figure 3.13: An illustration of a function model of a functional quality support_1
generated by the Conceptualization process after applying sample proportion to
the bivariate joint frequency distribution. The illustration depicts, on the left, the
preliminary functional model of support_1 represented in terms of the frequency
distribution of physical qualities observed in 12 instances given that support_1
is also observed in those instances. On the right is the final functional model
of support_1 represented in terms of the sample proportion of each physical
observed in the instances where support_1 is observed.

3.4 Literature Review

As stated in chapter 1, our proposed approach for substitute selection per-

forms knowledge-driven computation to identify the relevant properties

of a missing tool and determines the most suitable substitute on the ba-

sis of those properties. Since the computation requires an access to the

conceptual knowledge about properties of a missing tool and of existing

objects in the environment, we set out to explore the existing knowledge
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bases. The primary objective of this exploration was aimed at determining

whether the knowledge about objects from the existing knowledge bases

can be exploited in our substitute selection approach.

The demand for such conceptual knowledge about objects has been in-

creasing over the years (see Fig. 3.14). Especially, for the developers of

reasoning systems such as tool selection, task planning or an action se-

lection aimed at service robots where they are expected to perform house-

hold tasks, an unhindered access to a stack of knowledge about objects

or the environment is a primary concern. Since there are myriad knowl-

edge bases developed for service robots, it can be cumbersome to scruti-

nize each one of them to examine its usefulness to the intended system.

The objective of this literature review is to provide an overview of the ex-

isting knowledge bases and examine their characterization with respect

to the proposed robot-centric, general, relative and qualitative conceptual

knowledge.

3.4.1 Knowledge Base Selection

There has been an increasing interest in the knowledge-based systems

aimed at various applications in robotics such as human-robot interac-

tion [93], action recognition [94], task planning [95], robot navigation [96].

While there are myriad amount of knowledge bases designed for either

specific application or for wider range of applications, it is a challenging

task to identify the most suitable one for our specific demand [87]. After

determining that there is no comparison of knowledge bases containing

the relevant information for the robotic applications exist, we executed a

systematic investigation of the state of the art into three phases to identify

the relevant knowledge bases:

b) Literature Search: In order to find the relevant papers for this re-

view article, we automatically aggregated publications from publica-

tion databases by referencing the following combinations of keywords

: knowledge engine robot, knowledge database robot, knowledge
household objects, knowledge data household and knowledge base
robot. The crawler provided 313 papers after removing the duplicates.



84 CHAPTER 3. KNOWLEDGE GENERATION

2004 2006 2008 2010 2012 2014 2016 2018 2020
Year

0

50

100

150

200

250
Nu

m
be

r o
f C

ita
tio

ns
KnowRob
MLN-KB
NMKB
OMICS
OMRKF
ORO
OUR-K
PEIS
RoboBrain
All KBs

Figure 3.14: The plot illustrating the number of citations to knowledge base
papers increasing

c) Literature Filtering: In this phase, the paper selection was manually

evaluated and assessed. We removed the papers which:

• focused on the development of knowledge bases for non-robotic ap-

plications.

• were written from the application perspective, without a discussion

of the underlying knowledge base.

• do not cover knowledge about household objects.

• focused primarily on knowledge acquisition without a framework in

place to store the acquired knowledge or update the existing knowl-

edge.

As a result, we selected 39 papers covering 9 knowledge bases for evalua-

tion1. The involved knowledge bases are summarized in Table 3.1 along

with their acronyms by which they are identified. The plot in Figure 3.15 il-

lustrates the life span of each knowledge base where the knowledge bases

that are still actively being researched, since their inception, are high-

lighted in green color. The knowledge bases which are not active anymore

are highlighted by blue color. Their lifespan indicates the duration - from

1 https://tinyurl.com/KBPaperList

https://tinyurl.com/KBPaperList
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Table 3.1: List of selected knowledge bases and their names

Knowledge Base Name

Knowledge processing system for Robots KnowRob [97]
Knowledge Base using Markov Logic Network MLN-KB [98]
Non-Monotonic Knowledge-Base NMKB [99]
Open Mind Indoor Common Sense OMICS [100]
Ontology-based Multi-layered Robot Knowledge Frame-
work

OMRKF [87]

OpenRobots Ontology ORO [101]
Ontology-based Unified Robot Knowledge OUR-K [102]
Physically Embedded Intelligent Systems PEIS [103]
Knowledge Engine for Robots RoboBrain
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Figure 3.15: The plot illustrating the knowledge bases that are still actively re-
searched according to the published work indicating the life span of each knowl-
edge base.

the year of their inception until the year they were active. For instance,

OMICS has a lifespan of two years, starting from year 2004 and was active

until year 2006.

d) Final Literature Selection: In the last step we revised the final list and

extracted the most important papers according to:

1. Content - we looked for papers providing detailed descriptions of

configurations, content, performance, interfaces, etc. of the knowl-
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Table 3.2: The selected knowledge bases, along with the pointers to the papers
about and an overview about their impact (number of citations provided by
google scholar as of 8th April 2021)

Knowledge Base Pointers Citations
KnowRob [97], [105], [106], [107] 957

MLN-KB [98] 216

NMKB [99] 13

OMICS [100], [108], [109] 160

OMRKF [110], [111], [87] 149

ORO [101], [112], [113] 296

OUR-K [102] 172

PEIS [103], [114] 59

RoboBrain [104] 139

edge base. This information is necessary to assess the knowledge

bases with respect to different criteria.

2. Impact - we examined the impact of each paper on the basis of

the number of citations the selected papers have received and how

those numbers have evolved over the years as illustrated in ’Impact

of the paper’ column of table 3.2. In terms of the number of citations,

KnowRob is by far the most influential knowledge base since its in-

ception while individual papers referencing OMICS and OMRKF are

continuously cited. Figure 3.14 illustrates the citation history of

selected papers of each knowledge base over the years. The citation

history demonstrates how over the years the interest in knowledge

bases has increased as its applicability in robots is increased.

For KnowRob, however, we have isolated 4 papers from over 40 papers.

For the comprehensive list of the papers, please visit the web page of

KnowRob2. As a result, the original list was filtered and eventually 20 re-

search papers were selected covering the 9 knowledge bases (see Table

3.2).

2 http://knowrob.org/publications



3.4. LITERATURE REVIEW 87

3.4.2 Knowledge Base Review

Typically for any knowledge base, three components play foundational

roles: knowledge acquisition: how is the knowledge acquired, knowledge

representation: how is the acquired knowledge represented and knowledge

processing: how is the knowledge processed. Each component comes with

their own set of challenges which need to be taken into account while de-

signing and building a knowledge base. For knowledge base reviewing, we

focus on similar components as they distinguish knowledge bases from

each other. For each component, we have selected the criteria that are rel-

evant to the objective of this doctoral work, given in the Table 3.3, along

which the knowledge bases are examined. Note that, our review provides

an aerial view of how each component is realized with respect to the crite-

ria. The review is structured in a tabular form wherein the particulars of

each criteria considered in each knowledge base are specified.

Table 3.3: The list of criteria corresponding to the components Knowledge Acqui-
sition, Knowledge Representation and Knowledge Processing used to review the
knowledge bases

Component Criteria

Knowledge Acquisition
Knowledge Source
Knowledge Content

Knowledge Representation
Representation Formalism
Modeling of Uncertainty
Symbol Grounding

Knowledge Processing Inference or Query Mechanism

Knowledge Acquisition

Knowledge Source

Knowledge acquisition is primarily concerned with acquiring the desired

knowledge that populates any knowledge base. Evidently, a single source

or multiple sources are needed from which the knowledge can be acquired.

As a result, one of the primary tasks in knowledge acquisition is to identify

such sources. In case of knowledge bases to be used by robots, the sources

could be, for instance, the sensors deployed on a robot. However, despite

of the sensors being deployed, the real-world is perceived differently by a

robot than its human counterpart due to the limited perception capabili-
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ties of the robot [87]. Therefore, it is not unusual to provide hand-coded

knowledge or use some existing human-made common sense knowledge

bases such as WordNet, ConceptNet etc. As the knowledge can be acquired

from multiple sources, therefore, when reviewing the ’knowledge acquisi-

tion’ of the knowledge bases, we specify what sources were used to acquire

knowledge by each knowledge base. In the Table 3.4, we have listed down

the sources used by each knowledge base to acquire the desired knowl-

edge.

Knowledge Contents

The other aspect of knowledge acquisition is concerned with the contents

of knowledge in the knowledge base. In order to select a knowledge base

for a certain application, it is important to know what kind of knowledge

is contained in it. In the case of the proposed substitute selection appli-

cation, for instance, we are interested in the conceptual knowledge about

objects which consist of generalized, robot-centric, relative and qualita-

tive knowledge about physical and functional properties of objects. As a

result, in reviewing the knowledge bases, as we are primarily interested

in the knowledge about objects, we focused on what kind of knowledge

about objects is acquired by each knowledge base. During our review, we

noted that various aspects related to objects were targeted by the knowl-

edge bases. We have listed them down in Table 3.4 under Contents. Ad-

ditionally, we have also distinguished between what knowledge was ac-

quired from the sensors or from the robotic perspective (robot-centric)

and what knowledge was acquired from non-sensory sources such as web

pages, manually encoded. Table 3.4 catalogues each knowledge base, the

kind of knowledge about objects it contains and the source/s from which,

what kind of knowledge is acquired.

Knowledge Representation

Representation formalisms:

Knowledge representation is concerned with encoding of the acquired

knowledge using a certain representation formalism. It is another vital

component that separates knowledge bases from each other as there are

variety of representation formalisms available. The knowledge encoded
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Table 3.4: Comparison of the selected knowledge bases with respect to knowledge
acquisition: what is the source of knowledge and what kind of knowledge was
acquired using the source.
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Source of knowledge

KNOWROB

○ ○ ○ ○ ○ ○ ○ Multi-Modal Sensor

Systems

○ ○ ○ ○ ○ ○ A OpenCyc, WordNet,

OMICS

○ ○ Online Shops

○ Observation of Human

Activities or Shared by

Other Robots

○ Web Instructions

MLN-KB

○ ○ ImageNet

○ ○ ○ Freebase, Amazon,

Ebay

○ ○ WordNet

○ ○ Manually Encoded

B Standford 40 Action

Dataset

NMKB ○ ○ ○ ○ ○ ○ ○ ○ An Interaction-

Oriented Cognitive

Architecture [115]

OMICS ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ A non-expert users,

WordNet

OMRKF ○ ○ ○ ○ ○ ○ Multi-modal Sensors

○ ○ ○ ○ ○ ○ Manually Hand-coded

ORO ○ ○ ○ ○ ○ OpenCyc

○ ○ ○ ○ ○ Multi-modal sensor

system

○ ○ ○ ○ ○ Human Interaction

OUR-K ○ ○ ○ ○ ○ ○ Multi-modal sensor

system

○ ○ ○ ○ ○ ○ ○ Manually Hand-coded

PEIS ○ ○ ○ ○ ○ Cyc

○ ○ ○ ○ ○ Vision and Localiza-

tion System

RoboBrain ○ ○ ○ ○ ○ Robot Interaction

○ ○ A WordNet, OpenCyc,

Freebase

○ ○ ImageNet

A = Common Sense Knowledge about the objects and the environment

B = Human-poses and human-object relative position during object manipulation
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Table 3.5: Comparison of the selected knowledge bases with respect to Represen-
tation Formalism

Knowledge
Base

Formalism

KNOWROB OWL-RDF

MLN-KB Markov logic network

NMKB Prolog - Horn Clause

OMICS Relational Database

OMRKF OWL-RDF

ORO OWL-RDF

OUR-K OWL-RDF

PEIS Second Order Predicate Logic

RoboBrain Graph Database

in such formalisms allows for a meaningful internal representation of

the external world [88]. Given the complexity of the world around us, it

is a daunting task even for humans to select what aspects of the world

should be represented and what aspects of the world should be ignored.

The representation formalisms facilitate in such a selection as each for-

malism is specialized in formalizing a very specific aspects of the world

while ignoring others [88; 89]. Additionally, representation formalisms

offer an efficient system to extract and reason about the knowledge [88].

The Table 3.5 lists down the formalisms used by each knowledge base to

represent the knowledge stated in the Table 3.4.

Symbol Grounding:

The knowledge representation formalisms given in Table 3.5 are primar-

ily symbolic where the symbols are typically based on a natural language

[116] whereas a robot typically perceives the environment with the help

of its sensors which is usually represented in a non-symbolic or numeri-

cal form. The knowledge represented in a symbolic formalism is abstract

in nature in a sense that knowledge provided to a robot in this form may

not have any bearing on the robot’s perception of the environment. For a

robot to use the knowledge effectively, it needs to know the meaning be-

hind the symbols used to represent the knowledge and how do they corre-

spond with the robot’s perception of the environment. For instance, when

a robot is given a knowledge that cup is in the kitchen, it needs to know
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what is a cup and what is a kitchen. This is where the notion of symbol

grounding comes into play where the symbolic representation of a cup

is grounded into the robot’s sensory representation of the cup. In other

words: a symbol cup is mapped to the sensory model of it generated by,

for instance, an object recognition system. The symbol grounding, thus, is

an important aspect of knowledge representation and it is also closely con-

nected with a robot-centric aspect proposed in this work. It is, therefore,

no surprise that the knowledge bases reviewed in this work also address

the issue of symbol grounding and offer approaches for this. It is, however,

worth noting that due to the robot’s limited perception capabilities, it is

not possible to ground all the symbolic knowledge. The Table 3.6 summa-

rizes what knowledge is grounded in the robot’s sensory representations

in each knowledge base.

Table 3.6: Comparison of the selected knowledge bases with respect to Symbol
Grounding.
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KNOWROB ○ ○ ○ ○ ○ ○ ○ ○

MLN-KB ○ ○ ○ ○ ○ ○ A

NMKB ○ ○ ○

OMICS B

OMRKF ○ ○ ○ ○ B

ORO ○ ○ ○ ○

OUR-K ○ ○ ○ ○

PEIS ○ ○ ○ ○ ○

RoboBrain ○ ○

A = Weights of the objects
B = Knowledge is not grounded
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Uncertainty

Understanding the environment or objects in it from a robot perspective

has its own share of difficulties: one such difficulty being uncertainty

present in the robot’s perception of the world [116]. Uncertainty can be

due to the noisy data or partial observability, limited sensor capabilities

causing incomplete understanding of the world, to list a few. For instance,

a 2-D sensor model of a cup is a partial representation of a cup in the real

world. The uncertainty can also be present in the symbolic knowledge,

for instance, a cup is usually on the shelf. Here the term usually repre-

sents the uncertainty that refers to the likelihood. Whether the knowledge

is grounded into uncertain sensory representation of the world or the

knowledge itself contains the uncertainty, a representation formalism

must be able to capture this uncertainty in the representation. Table 3.7

summarizes how each knowledge base has handled uncertainty. As we

noted earlier that uncertainty can take various forms, in the tabular sum-

mary we also noted what kind of uncertainty is captured along with the

mechanism used to represent the uncertainty. Note that, in our work, un-

certainty is referred by qualitativeness and relativeness to represent the

general, robot centric knowledge about object classes.

Knowledge Processing

Knowledge processing is another vital component which distinguishes

knowledge bases from each other. The knowledge processing is concerned

with the question of usability of a knowledge base. For any knowledge base

to be useful, it should be equipped with a knowledge processing system

that contains mechanisms to access the knowledge, retrieve the knowl-

edge and reason about knowledge [106]. Similar to databases, a knowl-

edge base should be equipped with a query mechanism that retrieves the

desired knowledge from the knowledge base. On the other hand, in order

to perform reasoning, the knowledge base should also be equipped with

an inference system which combines different pieces of knowledge and

infers new knowledge. In Table 3.8, we have provided a tabular summary

of what kind of query mechanisms and inference mechanisms are used in

each knowledge base.
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Table 3.7: Comparison of the selected knowledge bases and the modeling of the
uncertainty with a focus on what knowledge is modeled and what mechanism is
used to represent the uncertainty

Knowledge
Base

Mechanism Knowledge Content

KNOWROB
Probabilistic Model Noisy sensor information
Statistical Relational
Models

Relations between objects,
types of objects

MLN-KB Median-based Noise in the web data

NMKB Principle of Specificity Incomplete Knowledge

OMICS - Uncertainty not considered

OMRKF - Uncertainty not separately mod-
eled

ORO Validation by Users Unknown objects and its prop-
erties

OUR-K Bayesian Inference Unknown objects, action selec-
tion, context recognition

PEIS Validation by Users Disambiguate multiple ground-
ings of a symbol

RoboBrain Validation by Users Inconsistencies due to knowl-
edge coming from different re-
sources, Disambiguate due to
the same word having different
meaning

Knowledge Base Size

So far, we have discussed the characteristics of the knowledge bases with

respect to knowledge acquisition, knowledge representation and knowl-

edge processing. For a knowledge base to be useful, size of the knowledge

base is a critical piece of information. The size of the knowledge base can

be measured in terms of quantities in which different kind of knowledge

is available, for instance, number of objects, properties, relations etc. In

Table 3.9, we have provided the information on the size of each knowledge

base as reported in the respective literature.
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Table 3.8: Comparison of the selected knowledge bases with respect to Inference/-
Query Mechanism: what kind of knowledge is inferred and what mechanism is
used.
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Mechanism

KNOWROB
○ ○ ○ ○ ○ ○ ○ ○ ○ A Prolog Query

○ ○ ○ ○ ○ ○ ○ A Probabilistic Inference

MLN-KB ○ ○ ImageNet

NMKB B Prolog Query and Logic

Inference

OMICS ○ ○ ○ ○ ○ ○ ○ A SQL query

OMRKF ○ ○ ○ ○ ○ ○ Logical Inference

ORO ○ ○ ○ ○ Pellet

OUR-K ○ ○ ○ ○ ○ ○ Bayesian Inference

PEIS ○ ○ ○ ○ ○ ○ ○ OWL Query

RoboBrain A RoboBrain Query

Library

A = Retrieve knowledge from the knowledge base

B = Conceptual Inferences
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Table 3.9: This table comprises the information about the size of knowledge bases
reviewed in this paper. The size of knowledge bases is mainly quantified based
on the number of objects, number of classes, instances etc.

Knowledge
Base

Quantification of size of KB

KnowRob Around 8000 classes that describe events, actions, objects,
mathematical concepts and so on

MLN-KB 40 objects comprise 100 images and on average 4.25 affor-
dance for each objects

NMKB Not available

OMICS As of 2004, 400 users with 26,000 accepted submissions, 400
images of indoor objects (current number of images un-
known) comprising a total of 100,000 entries in the form
of objects, actions, senses.

OMRKF Knowledge about approximately 300 objects as per 2005

ORO 56 object classes and 60 predicates that states relation with
objects

OUR-K Knowledge about approximately 300 objects as per 2005

PEIS 15 objects that comprise 2 to 5 images for each object

RoboBrain 44,347 concepts and 98,465 relations
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Knowledge Base Accessibility

The accessibility is concerned with the manner in which a knowledge

base can be accessed. The knowledge bases should be developed such

that they can be used by the developers around the world in various ap-

plications.The knowledge base accessibility criteria examines the ways

in which each knowledge base is made accessible to the developers.In

the accessibility, we have examined, if the knowledge bases are available

to download or install, if there are tutorials or any other documentation

available to get the user started and if there is information on API avail-

able. Additionally, we also check what kind of licensing is made available.

Table 3.10 summarizes the accessibility of each knowledge base. Since for

OMICS, OMRKF, OUR-K and PEIS, we were not able to find the required

information, we have indicated NA (Not Applicable) in the table. Addition-

ally, we have provided the available web pages for the knowledge bases in

appendix C.

3.5 Conclusion

Since the demand for conceptual knowledge has been increasing in

robotic applications, the development of knowledge bases has been un-

dertaken by many researchers around the world [8; 117]. While there exist

a multitude of knowledge bases, the question is how many existing knowl-

edge bases about objects conform to the requirements which can be used

for a substitute selection purpose: conceptual knowledge base containing

knowledge about the objects’ properties that is general, relative, subjec-

tive (robot-centric), and qualitative. In this chapter, we reviewed existing

knowledge bases primarily containing knowledge about household ob-

jects and their underlying acquisition system. For the literature review, we

selected 20 papers covering 9 knowledge bases about household objects

on the basis of the contents of the paper with respect to the above men-

tioned requirements and overall impact of the paper on the basis of the

number of citations (refer Table 3.1). Our review resulted in the following

conclusions with respect to each building block discussed in the Sec. 3.2:

Conceptual Knowledge:

As our desired conceptual knowledge about an object class consists of



3.5. CONCLUSION 97

Table 3.10: Compendium of Knowledge bases accessibility features.

Knowledge

Base

Download? Install? License Documentation API

KnowRob yes yes Apache

License

yes yes

MLN-KB yes no Open

source

no yes

NMKB yes yes Golem

Group

License

yes yes

OMICS NA NA NA NA NA

OMRKF NA NA NA NA NA

ORO yes yes GNU

General

Public

License

yes yes

OUR-K NA NA NA NA NA

PEIS NA NA NA NA NA

RoboBrain yes yes Creative

Com-

mons

license

Yes yes
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qualitative knowledge about its physical and functional properties, we re-

viewed the existing knowledge bases to examine whether such conceptual

knowledge was considered. In the Sec. 3.4.2, we reviewed the contents

of the knowledge in each knowledge base. With regard to the knowledge

source, we noted that the majority of the knowledge bases relied on the

external human-centric commonsense (universal) knowledge bases such

as ConceptNet [118], WordNet [119] (KnowRob, MLN-KB, OMICS, Robo-

Brain), Cyc [120] (PEIS-KB), OpenCyc [120] (KnowRob, ORO, RoboBrain)

and the rest either relied on the hand-coded knowledge (OMRKF, OUR-K)

or on knowledge acquired by human-robot interaction (NMKB), for the

symbolic conceptual knowledge about objects. Our review concluded

that while the existing knowledge bases do contain general common

sense knowledge about objects, they do not contain qualitative knowl-

edge about their properties as discussed in the Sec. 3.2.1. For instance,

a cup is described in WordNet as a small open container usually used for

drinking; usually has a handle. The description does not contain qual-

itative knowledge about various properties such as size, shape, weight,

roughness or rigidity observed in a cup. Moreover, it is worth noting that

the knowledge about objects in the existing knowledge bases is universal

in nature and thus lacks subjectivity (robot-centricness), though some

portion of the knowledge is grounded, and relativity aspects of knowledge.

While common sense knowledge has its merits, in Sec. 4.3.3, we will dis-

cuss an experiment which illustrates the inadequacy of using WordNet in

substitute selection.

Knowledge Representation:

Logic based representation formalisms were overwhelmingly used by

a majority of the knowledge bases to represent knowledge: OWL-RDF

(KnowRob, OMRKF, ORO, OUR-K), Markov Logic Network (MLN-KB), Pro-

log - Horn Clause (NMKB), Second Order Predicate Logic (PEIS), while

database inspired formalisms were used by RoboBrain (Graph Database)

and OMICS (Relational Database). Besides representing knowledge about

objects, the knowledge bases also focus on representing various uncer-

tainty factors such as noisy sensor information, incomplete knowledge,

unknown objects or environment, and inconsistent knowledge. While all

the above uncertainty factors are significant, the desired factors such as
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relativity, and qualitative measures were not formalized while represent-

ing knowledge about object properties. For instance, when we think of

a cup, although at the abstract level, it is a type of container, the degree

of containment is different in a cup for espresso coffee and a cup for tea.

Such variation in the containment is not reflected in the representations

in the knowledge bases.

Robot-Centric:

Almost all of the knowledge bases (except for OMICS) addressed the prob-

lem of symbol grounding. While the object labels, appearance related

properties (shape, size, etc.), and functional properties (KnowRob, MLN-

KB, NMKB, PEIS) were grounded in the robot’s perception, the reliance

on human-centric symbolic knowledge did pose a disadvantage. Since

the commonsense knowledge bases such as WordNet, ConceptNet are

fully human-made, the depth and breadth of the knowledge is not perceiv-

able by a robot due to its limited perception and manipulation capabili-

ties. While a small portion of human-centric knowledge is grounded into

robot’s limited perception, the majority of the knowledge base remains

non-grounded.

It should be noted that the knowledge bases existed independent of the

sensory perception. The symbol grounding processes were introduced in

the knowledge bases to correspond the sensory perception with the rele-

vant symbolic knowledge. In contrast, our proposed approach generates

knowledge from the quantitative measurements computed from the sen-

sory data. As a consequence, the knowledge generated from the sensory

data for a robot A may differ from the knowledge generated from the sen-

sory data for robot B as the sensors. This is due to the different sensory ca-

pabilities of both the robots, thus reflecting the notion of robot-centricity:

object understanding from a first-person perspective.
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4.1 Introduction

Humans are sophisticated in their use of tools compared to their animal

counterparts [32]. The sophistication pertaining to tool-use in humans in-

volves not just the cognitive capabilities and dexterity in manipulating a

tool, but also the diversity in tool exploitation [32; 121]. This ability to ex-

ploit the tools has enabled humans to adapt and thus exert control over an

101



102 CHAPTER 4. SUBSTITUTE SELECTION

uncertain environment, especially when they are faced with unfavorable

situations.

Given its role in our daily life, scientists across various disciplines are mak-

ing consorted efforts to develop theories on tool use by conjecturing about

various aspects of tool use. Baber in [1], for instance, proposed six forms

of engagements with a tool to describe tool use and developed a theory of

tool use on the basis of those engagements. He identified the six engage-

ments as: environmental, morphological, motor, perceptual, cognitive and

cultural. On the other hand, Vaesen has proposed in [32], nine cognitive

capabilities which are essential for tool use: enhanced hand–eye coordina-

tion, body schema plasticity, causal reasoning, function representation, ex-

ecutive control, social learning, teaching, social intelligence, and language.

So far, there has not been a consensus on a theory of tool use, however

there is a wider agreement on tool use being a multidisciplinary, complex

endeavor requiring integration of multitude of cognitive faculties and be-

havioural capabilities.

Tool substitution is a form of tool use where a substitute is selected in place

of an intended tool such that the substitute can be used as the tool [1]. Like

tool use, tool substitution is an elaborate endeavor which involves behav-

ioral and cognitive aspects of problem solving [1]. For example, the pri-

mary function of a heeled shoe is to cover a foot while extending the height

of a person wearing it, yet the heel can also be used to hammer a nail into a

wall. One can observe the cognitive reasoning involving analogous think-

ing between the shoe and the hammer while taking into account the bio-

mechanics of manipulating a shoe like a hammer. Suffice it to say that

tool substitution occurs primarily in two stages: substitute selection and

manipulation of a substitute as a tool. Our focus in this research is on the

former. More specifically, the primary question that we address is, how to

select object/s from the available objects that are suitable as a substitute

for a tool.

4.1.1 Tool vs. Substitute

Before we delve into tool substitution further, it is necessary to clarify the

meaning of a tool considered in this work and how it is distinguished from

a substitute.
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One may wonder what is perceived as a tool. So far the researchers have

not agreed over a single definition of a tool and as a consequence one will

find multiple definitions of a tool in the literature. For example, Butler in

[5] suggested that “Nothing is tool unless during actual use”. On the other

hand, in [78] a tool is described as “any manipulable, physical implement

that amplifies the user’s sensorimotor capabilities.” According to Baber in

[1], a tool is “a physical object that is manipulated by users in such a man-

ner as to both affect change in some aspect of the environment and also to

represent an extension of the users themselves.” Note that tools can occur

naturally such as stones, tree branches etc. or they can be manufactured

by altering a physical structure of an object or by combining multiple ob-

jects in a certain manner. It has been suggested that man-made tools are

manufactured with a specific purpose in mind, and as a result such tools

are primarily known for their conventional uses [1; 78]. For instance, a

hammer is conventionally known for hammering or a tray is known for

carrying food or drinks etc.

Given that there are multiple definitions of a tool reported in the literature

on tool use in animals and humans, it is pertinent to define what is consti-

tuted as a tool as opposed to a substitute in the proposed approach. The

definition of a tool considered in this work is inspired by aforementioned

definitions: a tool is foremost a physical object and is manufactured artifi-

cially for a designated purpose. For instance, the designated purpose of a

hammer is to hammer or of a tray is to carry food or drinks on it etc. In

contrast, a substitute is either a tool which is used for an unconventional

purpose for which a conventional tool exists or it is a naturally occurring

object. The examples of substitutes, where a substitute is originally a tool,

are: a shoe is used as a hammer, a plate is used for carrying drinks, a water

bottle used as a vase for flowers etc. The examples of substitutes where a

substitute is a naturally occurring object are: a stone is used as a paper-

weight or a banana leaf is used as an eating plate.

Note that a substitute for a tool can take many forms. Humans have

proven time and again their creative ability to exploit a tool’s form, shape

or any other part of it to transform it into a desired substitute: sometimes

using a tool as it is or in some cases by altering its physical structure or

combining it with other tools. In this work, we do not consider substitutes

that require any alterations in its physical form or combining it with other
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tools. Fig. 4.1 outlines the illustrations of substitutes that are considered

in this work as opposed to the ones that are not considered in this work.

Fig. 4.1(a) depicts substitutes-in-use scenario that we have envisioned for

our work where the primary assumption is a conventional tool required

in a task exists, however it is unavailable. In each scenario listed in the

figure, a conventional tool for each task exists. In Fig. 4.1(a), starting from

the left image in top row, the conventional tools are dip bowls, a match

box stick, a hammer, hair sticks, chopsticks, a stool, a door stopper, a tray,

a bottle opener, a vase, a camera pouch, and a plant pot. A substitute

depicted in each task is not altered or combined in any way when being

used in the task. On the other hand, figure 4.1(b) illustrates substitution

scenarios which we have not considered in this work. The figure shows, in

some cases, that a tool is being used creatively for which a conventional

tool does not necessarily exist. For instance, an empty toilet roll is used to

organize cables to hold gift wrapping papers to keep them from unravel-

ing; a hanger is used to hold a recipe book, binder clips for holding cables

and prevent them from falling off the table, a straw to remove stems from

the strawberries, etc. In some examples, a tool is altered or combined with

other tools before being used as a substitute: a tennis ball as key holder, a

plastic bottle to pack nuts, hangers as dish dryer, ladder as book shelf etc.

The previous discussion and examples narrate the distinction between a

tool and a substitute that we have made in our work. This distinction is

essential when we determine suitability between them. Let us consider,

for instance, two objects A and B. As we noted earlier, if an object A can

be replaced by an object B then B is seen as a substitute for a tool A. How-

ever, the vice-versa need not be true, that is, a tool B can not necessarily be

replaced by an object A. Within the context of a designated purpose, the

substitutability relationship between a tool and a substitute is symmetric,

for instance, for hammering, a hammer can be replaced by a heeled shoe

and vice versa. However, it is not the case once you step outside the con-

text, for instance, a hammer can not be used as a heeled shoe to cover foot.

This indicates that the substitutability between two objects depends on

which object is a tool and which is a substitute. As a result, the object B

being a substitute of the object A does not make the object A a substitute

of the object B by default. This aspect is examined further in the experi-

ment discussed in the Sec. 4.3.3 to signify the distinction. In our work, this
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distinction is reflected in the notion of relevant properties of a tool and

their relation to the properties of a substitute (see Sec. 4.1.2 and Sec. 4.2

for further details). We are proposing in this doctoral work, that relevant

properties play vital role in determining an object’s suitability as a substi-

tute for a missing tool.

(a) Positive Examples of Substitutes

(b) Negative Examples of Substitutes

Figure 4.1: The examples of substitutes that are considered in this work are listed
in the Fig. 4.1(a). The Fig. 4.1(b) illustrates the examples of substitutes that are
not considered in this work 1
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4.1.2 Relevant Properties

Consider a scenario in which we have to select between a plate and a

mouse pad as a substitute for a tray. Note that the tray is to be used for

its designated purpose, that is, to carry drinks. In the given scenario, we

will most likely select the plate as the substitute for the tray instead of

the mouse pad. The question is what compelled us to reject the mouse

pad and what made the plate the suitable substitute for the tray. We have

stated earlier that deliberation for a tool selection in humans or animals

alike is facilitated by conceptual knowledge about objects [1]. The con-

ceptual knowledge, according to [3], about a tray can be defined as rigid,

rectangular, flat top surface, wooden, brown colored, light weight, ability

to support, movable while a plate can be defined as a rigid, circular, semi-

flat top surface, white colored, light weight, ability to support, movable

and a mouse pad as soft, rectangular, flat top surface, leather-based, light

weight, ability to support and movable.

Baber has stated in [44] that a set of certain physical properties enable a

specific purpose in a tool. A similar observation has been made in [36]

which further states that the conceptual knowledge about objects is com-

plemented by causal relationship that exist between physical properties

of a tool and its functional properties. The question is how to determine

which of the properties, physical and functional, of a tray enable its desig-

nated purpose.

The relevant properties of a tool in this work are considered as those prop-

erties which enable a tool’s designated purpose. For instance, in order to

enable a tray’s designated purpose, the tray should be capable of support-

ing the predestined-for-the-tray objects that are placed on it. If the tray

is not capable to support the objects that are placed on it, it can not be

used for its designated purpose. As a result, support is considered as a rel-

evant functional property of a tray. In order to enable support functional

property in a tray, the physical properties rigidity and flat top surface are

required [39; 78] which makes them the relevant physical properties of a

tray. Note that if rigidity or flat top surface are absent in a tray, it will not

be possible to support objects placed on the tray and consequently the

1 credit: boredpanda.com/creative-life-hacks-diy, homesthetics.net, herzindagi.com, Pinterest -
The Telegraph, cuinsight.com, flickr.com(Brett Patterson)
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tray will not be able to carry objects on it. However, if a color of the tray is

changed or material is changed, it will still be able to carry the objects on it

as long as the relevant physical properties rigidity and flat top surface are

present. The relevant properties of a tool, therefore, when absent in the

tool, can not enable the tool’s designated purpose. But then, is it enough

for relevant properties of a tool to be present in a substitute?

Consider another functional property of the tray: movability. We know

that the heavier any tool is, harder is its movability. Hence, if the tray is too

heavy, a user may not be able to carry it. This makes movability and heav-

iness relevant functional and physical properties of the tray respectively.

Consider instead of the plate and the mouse pad, we have a marble slab,

a stool and the plate as possible substitute choices for a tray. Interestingly,

all three choices are rigid and have flat top surface, thus allowing them

to support objects that are placed on them and they are all movable too.

It means, that all three are the substitutes for the tray, however, that may

not be the case. From the given three options, the most likely substitute

would be the plate. Baber in [2] said that, A characteristic of a well-designed

tool is that it feels comfortable and balanced when held. As a result, when

a tray is designed for its designated purpose, each relevant physical prop-

erty needs to be present to a certain degree such that a user can use the tray

comfortably. In other words, it is not arbitrary that heaviness is present in

a tray to a certain degree. This notion also applies when deliberating on a

substitute for the tray. In the above example, the plate is as heavy as the

tray which makes it as movable as the tray and as a result, makes it to be

used as comfortably as the tray. Consequently, the notion of relevant prop-

erties of a tool consist of two aspects: a physical or functional property and

a degree with which it is present in a tool. This degree is manifested in our

work as qualitative measures of physical properties as they are discussed

in the Sec. 3.3.

4.1.3 Tool Substitution - Workflow

In this section, we discuss a workflow for a tool substitution system we

have conceived in this work. The workflow is drawn from the insights we

gained from the literature on tool use in animals and humans [3; 4; 22; 23;

24; 25; 32; 33; 35; 36; 77; 78; 121]. The objective of this section is twofold: 1)

to portray the complexity of a computational model for the tool substitu-
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tion system; 2) to place the focus of our research in the workflow. Fig. 4.2

outlines the primary processes, the required inputs and the desired out-

puts for each process. It is important to note that the presented workflow

is one possible architecture of a tool substitution system.

Figure 4.2: Tool substitution workflow envisioned in this work which consists of
typical processes involved to perform tool substitution, typical primary inputs,
primary outputs and supplementary inputs required for each process
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Search available objects

Our proposed workflow is initiated when a robot requests for a substitute

when it does not find a conventional tool required in an ongoing task.

The workflow begins with a search process wherein available objects in

the environment are discovered. The tool unavailability information can

provide information about the missing tool such as tool label, perception

model of the tool, the expected location of the tool etc. The search area

criteria defines the search parameters for discovering the objects that are

present in the environment. In any household environment, there are

myriad number of objects which are spread across various locations. The

search area criteria defines the region of interest for performing the search

in the environment. The criteria can also include search duration, mini-

mum and maximum number of objects to be discovered, their proximity

to each other etc. The criteria in the end facilitate a more goal-directed

and restricted search for the available objects. The search area map pro-

vides a map to reach a location of interest and to perform the desired

search. The map can be refined further by adding information received

from the search area criteria and tool unavailability information. The ob-

ject perception model database consists of the learned perception models

of household objects which can be used by the search process to detect

and recognize objects. The object availability criteria contain the defini-

tion of availability of an object which facilitates the selection of available

objects. An unavailability can occur as a result of an object being in use or

being damaged, for example. In such cases, though the object is present

in the environment, it can not be considered for the substitute selection

purpose. Therefore it is necessary to define what it means for an object

to be available. The search process takes all the above inputs into con-

sideration and forms a search strategy to detect and select the available

objects. Along with the tool unavailability information, the search pro-

cess sends the available object information for determining possible sub-

stitutes among them. The available object information can contain infor-

mation such as the labels of available objects, their location, their percep-

tion models etc.



110 CHAPTER 4. SUBSTITUTE SELECTION

Select substitutes

Based on the available object information and tool unavailability infor-

mation, the select substitutes process identifies the substitutes among the

available objects for a missing tool. For determining a suitable substitute,

three kinds of knowledge are provided. Object knowledge consists of con-

ceptual knowledge about objects. It can contain knowledge about physi-

cal properties of objects, functional properties of objects, different types

of relations such as spatial relations between object and environment or

between objects, temporal relations related to objects etc. Self-concept

knowledge is based on the psychological term called self-concept pro-

posed by a psychologist Carl Rogers [122]. According to him, self-concept

encompasses one’s knowledge about self, beliefs, dispositions, one’s capa-

bilities (mental as well as physical), preferences etc. The knowledge about

self-concept consists of similar notions about a robot’s self. It should be

noted that besides object knowledge, self-concept knowledge such as one’s

physical capabilities or preferences can influence the selection of a sub-

stitute [2]. For instance, between a book and a tablet, it is possible that

one may select the book over the tablet as a substitute for a tray and the

other one may select the tablet. Such selection can be driven by one’s

physical capabilities: the book might be heavier for one person than a

tablet, so the person selects the tablet. On the other hand, one may prefer

to use the book in order not to use an electric device for carrying drinks.

The common sense knowledge consists of general knowledge about the

world a robot is operating which may contain naive physics knowledge,

declarative (factual) knowledge about the world, causal relations between

physical and functional properties etc. Such common sense knowledge

can exert an influence on the selection of a substitute. The select sub-

stitute process takes into account these three kinds of knowledge when

determining the suitability of a substitute for a missing tool. The selected

candidates’ information is then passed over in the form of potential sub-

stitute information to the next process: use substitute. The potential sub-

stitute information can consists of labels of the potential substitutes, their

location, a map to reach the locations etc.

The primary focus of this doctoral research is on the substitute selection

process for the given available object information and missing tool infor-

mation. In our research work, we have considered object knowledge and
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have excluded self-concept knowledge and common sense knowledge for

selecting substitutes.

Use substitute

After receiving the candidates for substitutes, the use substitute process

takes a substitute provided in the potential substitute information and

uses it in place of a missing tool. In order to use the substitute as the

missing tool, multiple inputs are needed for the use substitute process to

devise a plan to maneuver it so as to get the intended result had the miss-

ing tool been used. The inputs tool manipulation model and tool grasping

model contain the manipulation and the grasping model of the tool. They

essentially contain information about how a tool is to be grasped and ma-

nipulated which in turn can be used by the process to build a grasping and

manipulation model for the substitute to be used as the tool. The input

object perception model contains the perception model including vision

and other modalities of the substitute which is essential to understand

the physical structure of the substitute. Such understanding can be used

by the process in building the required grasping as well as manipulation

models for a substitute. Besides the perception model, the self-concept

model provides vital information concerning the physical capabilities and

preferences of the robot which forms the basis upon which the desired

grasping and manipulation models can be built. Once the grasping and

manipulation models are built, the use substitute process formulates a

plan to use the substitute and executes the plan. After executing the plan,

the action outcome model is sent to the validate substitute process to eval-

uate the action execution performance and whether the desired result was

achieved.

Validate substitute

The validate substitute process determines the substitutability of a substi-

tute by assessing whether the desired result was achieved after using the

substitute. The selection of a substitute alone does not guarantee that the

substitute is an accurate alternative for a missing tool. Humans determine

the accuracy of a substitute for a missing tool or substitutability after us-

ing it and assessing the result. A similar approach is needed in case of a
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robot when assessing the substitutability. In order to determine the sub-

stitutability, two kinds of inputs are primarily needed. The action outcome

model of the substitute-use provides information such as action execution

plan, effects of the action, action parameters etc. The action parameters

can contain information such as a substitute grasping model, a substitute

manipulation model, substitute location, perception model of the percep-

tion model, the desired outcome of the action etc. The substitute valida-

tion model contains information about the desired effects of an action af-

ter using an actual tool. The validation process compares the validation

model with the outcome model to determine whether the desired result

was achieved. It is possible that a substitute may be accurate but the de-

sired results was not achieved due to failure in action plan or execution or

even in grasping or manipulation model [123]. The validation process can

be equipped with a fault detection and diagnosis system where the system

may offer a feedback on the cause of a failure and may suggest a recovery

course.

Figure 4.3: Outline of the tool substitution workflow and substitute selection
workflow

Summary

It is evident from the workflow that building an autonomous tool substitu-

tion system for a robot requires integration of various capabilities such as

object manipulation, object grasping, localization, navigation, fault diag-
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nosis and recovery, object perception, knowledge acquisition, knowledge

representation. It is a highly complex endeavour to accomplish and as

a result, in this doctoral work we have focused on a single process: sub-

stitute selection (see Fig.4.3). The scope of the required inputs is as fol-

lows. The selection process receives a query which contains a label of a

missing tool, and labels of available objects from which potential substi-

tutes are to be determined. As for the required knowledge, we have taken

into account object knowledge only. The self-concept knowledge or com-

mon sense knowledge is considered as out of scope in this work. It is also

assumed that knowledge about objects received in a query exists in the

knowledge base. In order to acquire the object knowledge, we have devel-

oped a knowledge acquisition system (see Fig. 4.3) which is independent

of the substitute selection process. The knowledge acquisition system is

composed of two modules: property estimation and knowledge genera-

tion. In the previous chapters, we have discussed both the modules in de-

tail. The substitute selection process concludes when it outputs the labels

of potential substitutes for a missing tool determined from the available

objects.

4.2 Substitute Selection - Methodology

In this section, we discuss the methodology of our proposed approach to

the substitute selection. We call our approach ERSATZ which is a German

term for a substitute. Fig. 4.4 portrays a typical workflow of the proposed

substitute selection approach and it was implemented in Python program-

ming language. The workflow consists of four primary processes: extract

knowledge, generate representative models, determine relevant properties,

and determine suitability. In the following, we discuss each process in de-

tail.

4.2.1 Extract knowledge

The ERSATZ workflow begins with the extract knowledge process when it

receives a query which constitutes of the labels of the available objects

and of a missing tool as input. The extraction process extracts the knowl-

edge corresponding to the labels and it consists of qualitative symbolic

knowledge about an object class instead of a specific instance of the ob-
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Figure 4.4: The workflow of the proposed substitute selection approach

ject class. The primary objective behind this process is to extract only the

required knowledge instead of loading the entire knowledge base. It is to

be noted that the knowledge base is independent of the substitute selec-

tion system. It is updated as and when a robot encounters new object

classes or object instances. The substitute selection system can be seen
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as a user of the knowledge base. The knowledge base is generated using

the proposed approach detailed in the Chapter 3. An illustration of ex-

tracted knowledge about an object class is graphically represented in Fig.

4.5. The example is taken from the knowledge base generated from the

RoCS dataset detailed in 2.3. In the figure, knowledge about the class plas-

tic box is shown which typically contains qualitative measurements of the

physical and functional properties observed in its various instances. The

property data is clustered into four clusters leading to four qualitative mea-

surements for each property. As discussed in chapter 3, section 3.3, the nu-

merical values represent the proportion of a qualitative measurement of a

property observed in all of the instances of an object class. For instance,

flatness_0 which is a qualitative measurement of a physical property flat-

ness is observed in 60% of the instances of a plastic box. When a qualitative

measurement is observed in all the instances of an object class, it is repre-

sented by a value 1.0. For example, in the figure, qualitative measurements

hollowness_0, weight_0, movability_0, blockage_0 have been observed in

all of the instances of a plastic box. In such cases, the remaining qualita-

tive measurements of those properties such as hollowness_1 or weight_2

are assumed to be absent until new instances are encountered where they

may be observed.

Figure 4.5: The image illustrates how knowledge about an object class typically
looks. The example demonstrates the knowledge about the class plastic box
containing its physical and functional properties.
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4.2.2 Generate representative models

We noted in Sec. 4.1.2 that the relevant properties are the essential driv-

ing force to enable the designated purpose of a tool. As a result, the rele-

vant properties of an object class corresponding to a tool will be observed

across (almost) all the encountered instances of the object class. Consider,

however a situation where a white color is observed in all of the instances

of a cup. One may conclude that the white color is a relevant property, how-

ever, it is not. On the other hand, consider a qualitative measure size_2 in

Fig. 4.5. It is observed in only 10% of all the instances which makes it less

likely to be a relevant property. Both the examples prompt a means to filter

out such properties when determining relevant properties. The generate

representative models process provides the means to filter out qualitative

measures like size_2.

The notion of a representative property and a representative model lies

in the idea of stereotypical properties of an object class [124]. The prop-

erties which we usually associate with an object class, for instance, a ham-

mer usually has a wooden stick and a black colored head or a stereotypical

shape and size of espresso cups. A representative property, in this work, is

a qualitative measure of a physical or a functional property which is gener-

ally observed in the majority of the instances of an object class and provides

a stereotypical identity to the respective object class. On the other hand, a

representative model of an object class consist of the representative physical

properties of the object class. The generation of representative models is

an essential intermediate step towards identifying relevant properties of a

tool which is clarified further in the determine relevant properties process

discussion. We hypothesize that a set of relevant properties is a subset of

a set of representative properties and as a result, this process facilitates in

ensuring that each relevant property is a representative property, however

a representative property may not be necessarily a relevant property.

The process generate representative models is a two step process. In the

first step, it generates representative models of the available objects and a

missing tool wherein it takes the extracted knowledge about the available

objects and the missing tool as input and returns representative (physi-

cal and functional) properties. In order to determine representativeness,

we have introduced a representative model threshold value that filters the
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qualitative measures whose proportion value falls below the threshold.

For instance, let us assume that the threshold is set at 0.30, then qualita-

tive measures whose proportion value is higher than the threshold will be

considered as representative properties. The underlying idea is that if a

qualitative measure is observed more often in the instances of an object

class, it is likely that it is a stereotypical qualitative measure of the object

class and if a qualitative measure is seldomly observed, then it is not a

stereotypical measure of the object class. The often-ness or seldom-ness

of a measure observed in the object class is represented in our work by a

proportion value. Therefore, we have used a numerical threshold value

to determine the stereotypical-ness or representativeness of a qualitative

measure. Fig. 4.6 highlights the qualitative measures whose proportion

value is higher than the threshold value of 0.30. As a result they will be

considered as representative properties of a plastic box. Note that, the

process returns only the representative physical properties as representa-

tive model as illustrated in Fig. 4.6. They are not accompanied by their

respective proportional values in the output. The experiment discussed

in Sec. 4.3.1 fine tunes the universal value of the representative model

threshold. The finely tuned threshold is then used in the subsequent ex-

periments related to various substitution selection scenarios.

In the Chapter 3, Sec. 3.3.2, we discussed the notion of function models

of qualitative measures of functional properties. A function model of a

functional qualitative measure (a.k.a. a qualitative measure of a functional

property) consists of proportion of physical qualitative measures (a.k.a. a

qualitative measure of a physical property) observed along side the func-

tional qualitative measure across all the functional qualitative measure ob-

servations in all the instances of all the object classes. Our primary objec-

tive behind a function model will be clarified in the discussion on the pro-

cess determine relevant properties. For the second step, it is sufficient to

know that the function models play a vital role in identifying the relevant

properties. In the second step, the process extracts the function models of

the representative functional properties of a missing tool from the knowl-

edge base (see Fig. 4.6). A typical function model of a functional qualita-

tive measure is illustrated in Fig. 4.7. The example is taken from the knowl-

edge base generated from the RoCS dataset detailed in the Sec. 2.3. The fig-

ure illustrates the function model of a representative functional property
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Figure 4.6: The left side of the image highlights the representative physical and
functional properties of a plastic box after applying the representative model
threshold of 0.30 to filter the proportion values of the qualitative measures (see
Fig. 4.5). The right side of the image illustrates the representative model of a
plastic box which contains only the representative physical properties.

movability_0 of a plastic box (see Fig. 4.6). For each extracted function

model, a representative model is generated that follows the same princi-

ple as that for the representative models of available objects. The notion

behind a representative model of a representative functional property is

that the representative physical properties in the model are generally ob-

served in the objects whenever the representative functional property is

also observed in them. In other words, it is likely that the representative

physical properties of the model or a subset of them enable the represen-

tative functional property in general. In Fig. 4.7, a representative model of

movability_0 is illustrated wherein all the representative physical proper-

ties of movability_0 are listed. At the end of the second step, the process

generate representative models returns representative models of the avail-

able objects, a missing tool and representative functional properties to the

next process determine relevant properties.
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Figure 4.7: On the left side of the image illustrates a function model of mov-
ability_0 which consists of the qualitative measures of physical properties and
their corresponding proportion value indicating the proportion of qualitative
measures of a physical property observed whenever movability_0 is observed
across all the observation of movability_0 observed in the instances of all object
classes. On the right side is the representative model of movability_0.

4.2.3 Determine relevant properties

In Sec. 4.1.2, we explained the notion of relevant properties of a tool. In

this section, we discuss how to determine them. The relevant properties

of a tool are qualitative physical and functional properties observed in the

tool which enable its designated purpose. As per suggested in [3] that a cer-

tain assemblage of physical properties is essential prerequisite to enable

a functionality in a tool, we propose the following. In order to determine

the relevant properties of a tool, we hypothesize that there exists a subset

of representative physical properties and a subset of representative func-

tional properties of a tool such that the subset of representative physical

properties enable the subset of representative functional properties which

in turn enable the designated purpose of the tool. Therefore, we can infer

that the subset of representative physical properties enable the designated

purpose of the tool. In other terms, if the subset of representative physi-

cal properties are observed in the tool, then it can be inferred that those

properties will enable the designated purpose of the tool. Such subset of

representative physical and functional properties are considered as rele-
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vant properties of a tool. This hypothesis forms a basis for our approach

to determine the relevant properties.

The relevant properties of a tool are determined in two stages. In the

first stage, the relevant functional properties of the tool are identified and

in the second stage, the relevant physical properties of the tool are de-

termined. As stated in the previous discussion on generate representa-

tive models, a relevant property, physical or functional, is a representative

property. Based on this, in the first stage, we compare the representative

model of a representative functional property of a missing tool with a rep-

resentative model of the missing tool to determine whether the representa-

tive functional property is a relevant functional property. The underlying

principle is, if both the representative models are similar, then the repre-

sentative functional property is considered as a relevant functional prop-

erty and the shared representative physical properties are considered as

relevant physical properties. Since the representative models are sets of

representative physical properties, we propose the use of set-based sim-

ilarity measure to determine the similarity between the aforementioned

two representative models.

A set based similarity measure is typically used to determine the similarity

between two sample sets. While computing a similarity between the two

sets in set-based similarity measure, various factors are taken into consid-

erations such as the number of members shared by both the sets and/or

the number of members in either set and/or number of members in the

union of both the sets. Various set-based similarity measures utilize these

factors differently, for instance, in Jaccard Similarity, the number of mem-

bers in the intersection of both the sets is divided by the number of mem-

bers in the union of both the sets [125] (see Fig. 4.8). In Overlap coefficient,

also known as Szymkiewicz–Simpson coefficient, the number of members

in the intersection of the two sets is divided by the number of members in

a smaller set of the two sets [126]. On the other hand, in the Sørensen–Dice

coefficient, twice the number of members in the intersection of the two

sets is divided by the sum of the number of members in each set [127].

We are primarily interested in the proportion of the representative physi-

cal properties that are shared by both the aforementioned representative

models. This makes the Jaccard Similarity a suitable metric to determine

the similarity between the two representative models and subsequently,
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A = {m, a, d, h, u, r}

B = {m, e, r, a}

Jaccard Similarity
Size of the intersection of two sets

Size of the union of two sets

J(A, B)
| A      B | 

| A      B | 

J(A, B)
3 

7

  A      B = {m, a, r}   

 A      B = {m, a, d, h, u, r, e} 

J(A, B) 0.43

(i) (ii) 

Figure 4.8: The image illustrates the Jaccard Similarity formulation. It is calculated
by dividing the number of members in the intersection of two sets with the
number of members in the union of the two sets. The similarity outcome lies
between 0 and 1. If the value is 0, it means both the sets are dissimilar as they
do not share any common members. If the value is 1, it means both the sets are
similar as they have the same members.

whether the representative functional property is relevant to the missing

tool. Fig. 4.8 illustrates the the computation for determining the similarity

using Jaccard’s Similarity metric. In the figure, we have two sets A and B

containing alphabet characters. As Jaccard’s Similarity determines the pro-

portion of the common members in both the sets, we first need to identify

the members shared by both the sets, represented as A∩B . The next step

is to identify the total members in both the sets, represented as A∪B . The

Jaccard’s Similarity is calculated by dividing the size of the intersection of

two sets (A ∩B) by the size of the union of two sets (A ∪B). In the figure,

the similarity between the sets A and B is 0.43. It should be noted that the

Jaccard’s Similarity lies between 0 and 1.

When the metric is applied to the representative models, the value 0 would

indicate that the representative models of a missing tool and of a represen-

tative functional property do not share any representative physical prop-

erties, thus, making the representative functional property not a relevant

functional property of the missing tool. If, however, the value is 1, then

both the representative models contains the same representative physi-

cal properties, thus making the representative functional property a rele-
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vant functional property of a missing tool and all the representative physi-

cal properties of the representative model of the representative functional

property are considered as relevant physical properties of the missing tool.

In case the value lies between 0 and 1, we propose a Minimum Similar-

ity Tolerance threshold to determine if the representative functional prop-

erty is a relevant functional property of the missing tool. The Minimum

Similarity Tolerance embodies the notion that when determining similar-

ity for substitute selection purposes, a minimum similarity is desired as

opposed to maximum similarity. There are two primary reasons to aim for

minimum similarity. Firstly, it is highly unlikely to always find a substitute

that is an exact match to a missing tool. For instance, it is not possible

to find a substitute for a hammer which is identical to the hammer struc-

turally. Consider a stone, for instance, which is a substitute for a hammer,

however, it is not structurally identical to the hammer. It may not have

all the relevant properties of a hammer, but enough to be used as a ham-

mer. We have attempted to capture this notion of enough-ness of similar-

ity in the Minimum Similarity Tolerance. Secondly, by targeting minimum

similarity, the scope of the possible choices for a substitute from the avail-

able objects becomes wider. This way, the chances of finding a substitute

from these choices are also increased. The value for the Minimum Simi-

larity Tolerance is determined in the experiment discussed in section 4.3.1

which is set at 0.45. If the Jaccard Similarity between the representative

models of a representative functional property and a missing tool is higher

than the Minimum Similarity Tolerance threshold then the representative

functional property is considered as a relevant functional property of the

missing tool. Subsequently, the shared representative physical properties

between the two representative models are considered as relevant physi-

cal properties of the missing tool.

Fig. 4.9 demonstrates the Jaccard Similarity calculations between the rep-

resentative models of a plastic box and a representative functional prop-

erty movability_0. The first step for calculating the similarity is to deter-

mine the number of representative physical properties shared by both the

models which is 7 and the total number of representative physical proper-

ties in the union of both the models which is 11. The similarity between

the models accordingly is 0.64 which is higher than the set threshold of

Minimum Similarity Tolerance. As a result, movability_0 is considered as
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Figure 4.9: The image illustrates the Jaccard Similarity between the representative
models of a Plastic Box and a representative functional property movability_0.
The representative physical properties shared by both the models are written in
green colored box while the properties that are not shared by them are highlighted
in yellow color for clarity. The Jaccard Similarity is calculated to be 0.64. The
relevant properties are a plastic box are depicted subsequently.

a relevant functional property the plastic box and the shared representa-

tive physical properties are considered as the relevant physical property

of the plastic box. In a similar fashion, the Jaccard Similarity is calculated

between the representative models of a missing tool and of the remaining

representative functional properties and subsequently the relevant physi-

cal properties from each similarity calculations are identified. In Fig.4.10,

for instance, the similarity between the representative models of a repre-

sentative functional property support_1 of a plastic box and that of a plas-

tic box is calculated to be 0.39. Since the similarity is less than the toler-

ance threshold, support_1 is not considered as a relevant functional prop-

erty. However, in Fig. 4.11, the similarity between the representative mod-

els of support_0 and a plastic box is calculated to be 0.78 which is greater

than the tolerance threshold. As a result, support_0 is considered as a rele-

vant functional property. Note that support_0 and support_1 are represen-

tative functional properties of a plastic box. The final set of relevant physi-

cal properties of the missing tool is the union of the relevant physical prop-

erties determined from each similarity calculation. In Fig. 4.11, the revised
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relevant functional properties of a plastic box are shown while the rele-

vant physical properties have remained the same as shown in Fig. 4.9. The

process concludes by returning the representative models of the available

objects generated in the previous process Generate representative models

and the relevant physical properties of the missing tool determined in this

process. Both the outcomes are inputted to the next process Determine

suitability wherein the potential substitutes are determined among the

available objects.

Figure 4.10: The image illustrates the Jaccard Similarity between the representa-
tive models of a Plastic Box and a representative functional property support_1.
The representative physical properties shared by both the models are written
in green colored box while the properties that are not shared by them are high-
lighted in yellow color. The Jaccard Similarity is calculated to be 0.39. Since the
similarity value is lesser than the threshold, support_1 is not a relevant functional
property of a plastic box.

4.2.4 Determine suitability

We saw in the earlier discussion on relevant properties (see Sec. 4.1.2) that

in order to determine the suitability of an object as a possible substitute

for a missing tool, it is imperative that the object has the required rel-

evant physical properties of the missing tool. The presence of the rel-

evant physical properties in the object facilitates the selection or rejec-
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Figure 4.11: The image illustrates the Jaccard Similarity between the representa-
tive models of a Plastic Box and a representative functional property support_0.
The representative physical properties shared by both the models are written
in green colored box while the properties that are not shared by them are high-
lighted in yellow color. The Jaccard Similarity is calculated to be 0.78. The relevant
properties are a plastic box are depicted subsequently.

tion of the object as a possible substitute for the missing tool. For deter-

mining the suitability of an available object, the representative model of

the available objects is supplied. The question is why the representative

models are required for such determination. Consider a mouse pad as a

possible option for a substitute for a tray. Mouse pads typically are not

rigid, however, there are certain instances where they are rigid enough

to be considered as a possible substitute for a tray. Whether the avail-

able mouse pad is a suitable substitute for the tray can be determined

by estimating the required relevant physical property (qualitative) mea-

surements of the mouse mad using the proposed property estimation and

knowledge generation approaches, and compare them with the qualita-

tive measurements of the relevant physical property of the tray. For a sin-

gle object instance, this may be doable. However, when there are multiple

available objects, such instance-level inspection of the relevant property

measurements would be time consuming. Note that the available objects

are typically instances of various object classes. In such case, it is practical

to perform the inspection at a class level. In order to perform such inspec-
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tion, it is prudent to assume that the physical properties of an available

object that are being compared with the relevant physical properties of a

missing tool are commonly observed or stereotypical in the other instances

of the class of the available object. We noted in the previous process dis-

cussion that representative models manifest the notion of stereotypical

understanding of an object class. Therefore, when the relevant physical

properties of a tool overlap with the representative model of an available

object, it is safe to assume that the overlapped relevant physical proper-

ties are also present in the available object. The assumption is necessary

as it circumvents the instance-based inspection. In the following, we ex-

plain how the representative models of the available objects are compared

with the relevant physical properties of a missing tool in order to identify

possible substitutes among the available objects.

Figure 4.12: image illustrates the suitability calculations between a plastic box, a
metal box and a ball.

In this work, the suitability of an available object as a possible substitute

for a missing tool depends on how similar it is to the missing tool with
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respect to its (missing tool) relevant properties. The process Determine

suitability computes the similarity between the missing tool and the avail-

able object using Jaccard’s similarity. The Minimum Similarity Tolerance

determines whether the similarity leads to the suitability of the available

object as a possible substitute for the missing tool. The suitability compu-

tation takes place in two steps: In the first step, upon receiving the relevant

properties of a missing tool and representative models of the available ob-

jects, the process computes similarity between relevant properties of the

missing tool and each of the representative models. Each similarity is com-

pared with the tolerance threshold. If it is higher than the threshold, then

the corresponding available object is regarded as a potential substitute for

the missing tool and if it is lesser than the threshold then it is regarded as a

negative substitute for the missing tool. At the end, a set of such potential

substitutes is then forwarded to the Use substitute process as depicted in

figure 4.2.

Fig. 4.12 illustrates the suitability computation. Consider that a plastic box

is a missing tool and a metal box and a ball are the available objects. Let,

for the sake of the illustration, the relevant properties calculated in the

Fig. 4.11 be the relevant properties of the plastic box. Let us consider the

representative models of the metal box and the ball as shown in figure 4.12.

Fig. 4.12 a) illustrates the similarity calculation between the relevant prop-

erties of the plastic box and the representative model of the metal box. The

lines highlighted in green color connect the similar properties written in-

side green box on both the sides while the properties that are dissimilar are

written inside orange box. Once the number of similar properties and the

size of the union of both the sets is counted, Jaccard’s similarity is calcu-

lated to be 0.60. Since the similarity is greater than the Minimum Similar-

ity Tolerance threshold which is set to 0.45, the metal box is considered as

a possible substitute for a plastic box. The steps are repeated for the exam-

ple in the figure 4.12 b) where the similarity between the plastic box and

the ball is calculated to be 0.27. Since it is les than the threshold, the ball

is regarded as a negative substitute for the plastic box. The process con-

cludes by sending the labels of the positive substitutes as potential substi-

tutes to the Use substitute process of the tool substitution workflow shown

in the Fig. 4.2.
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4.3 Evaluation

In this section, we discuss the experimental evaluation of our proposed

substitute selection approach. We have conducted four experiments

where each experiment aims for a specific aspect of the substitute se-

lection approach.

The evaluation begins with a parameter tuning experiment to determine

the optimal values of the three parameters: number of clusters to deter-

mine the number of qualitative measures for properties, representative

model threshold to determine the representative properties of the objects,

minimum similarity tolerance to determine the suitability of an object as

a substitute for a missing tool.

The second experiment deals with a suitability of a substitute of a missing

tool. As we discussed earlier in Sec. 4.1.3, a substitutability of a substitute

can be assessed after using it in a task in place of a missing tool and exam-

ine if the desired result was achieved. Since such assessment is out of the

scope of this doctoral work due to the sheer complexity of designing such

a validation system, we assessed the suitability by comparing the selection

of substitutes for various missing tools by our system with the selection of

the same by human experts.

The third experiment primarily focuses on the significance of the role rel-

evant properties play in the similarity computation. As we noted earlier,

we distinguish between a tool and a substitute on the basis of the rele-

vant properties. The experiment demonstrates why such relevant property

based distinction is necessary.

4.3.1 Parameter Tuning

The objective of this experiment is to optimize the following three main

parameters which play a vital role in our proposed approaches and can

affect substitute selection performance:

Number of clusters The number of clusters refers to the number of quali-

tative measures of a property. The parameter is required during the

sub-categorization process discussed in chapter 3 Sec. 3.3.1. The

sub-categorization process generates the qualitative measures for
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each property from the quantitative measurements of the property

using a clustering technique. Our goal is to identify the optimal

number of clusters which is applicable for all the properties.

Representative model threshold As we have seen in Sec. 4.2.2, the repre-

sentative model threshold facilitates the determination of represen-

tativeness of a qualitative measure of a physical or a functional prop-

erty. Similar to the number of clusters, the objective is to identify the

optimal value for the threshold which is universal for the properties.

Minimum similarity tolerance The minimum similarity threshold is used

to identify the relevant functional and physical properties as de-

tailed in Sec.4.2.3. The threshold is also used to determine whether

an available object is a suitable substitute for a missing tool as de-

scribed in Sec. 4.2.4. The objective of this experiment to identify the

optimal value for the tolerance threshold which is universal for the

properties.

Experimental Setup

For the experiment, we need the following: 1) knowledge about objects,

2) various missing tool scenarios, 3) substitute selection by the proposed

system, and 4) by human experts for each missing tool scenario. The sub-

stitute selection by human experts will act as a ground truth against which

the substitute selection by the proposed system will be compared. Such

validated substitutes will facilitate the determination of the optimal val-

ues for the aforementioned parameters.

In order to generate conceptual knowledge about objects using our pro-

posed knowledge generation approach, we need metric data about ob-

jects’ properties. For this experiment, we generated a dataset of the quan-

titative measurements of the physical and functional properties whose ac-

quisition is focused on the composite of a machine-centric and a human-

centric method. In order to generate conceptual knowledge about objects

using our proposed knowledge generation approach, we need metric data

about objects’ properties. In the classical machine learning setting, such

metric data would be called as training data. Since we want to use RoCS

dataset for testing our substitute selection approach along with the tuned
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parameters, it is vital that another dataset is generated on which the pa-

rameters can be tuned and the knowledge generation as well as the substi-

tute selection approach can be examined. As a result, for this experiment,

we generated a dataset of the quantitative measurements of the physical

and functional properties whose acquisition is focused on the composite

of a machine-centric and a human-centric method. The reasons to gener-

ate the dataset using a different methodology are twofold: 1) to examine

how the parameters tuned on this dataset performs on a dataset generated

using a different methodology, 2) to examine the robustness of our knowl-

edge generation approach, its application and the substitute selection ap-

proach by evaluating how do they perform on two different datasets based

on different estimation methodologies.

Dataset Generation: To generate the (training) dataset, we have used

household object images from the RGB-D Washington Dataset [128]. The

Washington dataset contains total 300 everyday object instances covering

51 object categories where each object instance is captured from multiple

view angles that leads to total 250,000 RGB-D images2. There are primar-

ily four super object categories: fruits, vegetables, devices, and containers.

For this experiment, we targeted devices and containers super categories

from which 22 object classes were selected and for each class, we selected

random images from all the given object instances of the class leading

up to total of 692 images3. Table 4.1 illustrates the number of scans per

instance and the number of instances selected from each class. In the

machine-centric approach, geometrical properties were acquired using a

state-of-art non-invasive object shape learning technique [129] which in a

data-driven and unsupervised manner learns shape concepts from RGB-D

object point clouds as shown in Fig. 4.13. In total, 58 geometrical proper-

ties or shape concepts were generated using the unsupervised approach

from which four shape concepts were selected using a baseline feature

selection technique Variance Threshold. We limited the number of shape

concepts to four in order not to skew the relevant properties of a missing

tool and by extension substitute selection in favor of the shape concepts.

The learned shape concepts for the objects are used in the knowledge

as machine-generated geometric object properties and are denoted as

2 Check the link to the dataset: https://rgbd-dataset.cs.washington.edu/dataset/
3 The dataset is available on this link: https://rgbd-dataset.cs.washington.edu/dataset/

rgbd-dataset/

https://rgbd-dataset.cs.washington.edu/dataset/
https://rgbd-dataset.cs.washington.edu/dataset/rgbd-dataset/
https://rgbd-dataset.cs.washington.edu/dataset/rgbd-dataset/
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concept1, concept2, etc. However such properties provide a particular

facet (object geometry) of the object’s physicality which is not sufficient

for determining substitutes. In order to enrich the object perception,

we also considered non-geometrical physical properties such as weight,

rigidity, hollowness and the functional properties like support, blockage

and containment. Note that, in general, these properties are challenging

and cumbersome to estimate solely from non-invasive visuoperceptual

approaches. Consequently, estimating such properties via multi-modal or

manipulation capabilities, was beyond the reach at the time of the dataset

generation. Therefore, these properties were synthetically acquired by

sampling from human expert knowledge. For each object class, based

on the selected object instances, the measurement distribution of each

property was approximated by drawing random samples from a normal

(Gaussian) distribution. The distribution for each property was generated

by providing the mean and standard deviation for each class, for the given

number of images of each class where the mean and the standard devia-

tion was provided by a human expert. We generated the dataset in Python

using NumPy random normal function generator4 given by,

numpy.random.normal(loc=0.0, scale=1.0, size=None)

where loc is Mean of the distribution, scale is Standard Deviation of the

distribution and size is the shape of the output array, in our case, it will

be the number of instances selected for each class. We have provided the

numerical dataset in our git repository (see appendix D).

The conceptual knowledge about 22 object categories was generated us-

ing proposed knowledge generation approach (see Chapter 3). A baseline

clustering technique k-means was used to generate qualitative measures

of each property. The knowledge base is provided in our git repository

(see appendix D). For the experiment, we generated 22 queries based on

22 object categories. The queries are provided in the Table 4.2. Each query

consists of a missing tool and 5 randomly selected objects from which a

substitute was to be selected. The queries were run on ERSATZ which se-

lected a substitute/s for each query using the generated knowledge about

4 https://numpy.org/devdocs/reference/random/generated/numpy.random.normal.
html

5 The instance labels are same as used in the dataset: https://rgbd-dataset.cs.washington.
edu/dataset/rgbd-dataset/

https://numpy.org/devdocs/reference/random/generated/numpy.random.normal.html
https://numpy.org/devdocs/reference/random/generated/numpy.random.normal.html
https://rgbd-dataset.cs.washington.edu/dataset/rgbd-dataset/
https://rgbd-dataset.cs.washington.edu/dataset/rgbd-dataset/
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Table 4.1: Number of images (#) about the instances (Instance Labels) of each
object class (Σ# = 692) selected from the Washington RGBD dataset [128].
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Figure 4.13: Illustration of the object shape conceptualization approach [129].
Concepts (connected components graphs) are randomly colored.

22 object categories. As we needed the validation of the selected substi-

tutes for a missing tool in order to assess a parameter’s performance, we

gave 22 queries to 13 human experts and asked them to select a substi-

tute/s in each query. We noted earlier that humans generally validate a

substitute by using it in place of a missing tool, however employing such

feedback mechanism in a robot is an extremely complex endeavour and is

out of the scope of this work. Therefore, the experts’ selection of the sub-

stitutes is treated as a ground truth in order to validate the suitability of

the selected substitutes by ERSATZ.

The human experts were selected such that they represent diverse back-

ground, research experience and age range. The age range of human

experts was between 22 and 42 years old. The backgrounds of the experts
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consisted of doctoral researchers, post-doctoral researchers, students.

Only one expert had a background in robotics, the rest of them were from

different areas of computer science such as data science, database man-

agement systems, swarm intelligence, machine learning, natural language

processing and theoretical computer science. We made sure that none of

the human experts had any prior research experience in tool use, tool

affordances, or tool substitution as we did not want their research experi-

ence influence their selection process. We also ensured that the proposed

approach to substitute selection was not discussed with them or neither

had they read any research papers in similar areas. Each query given to

the human experts consisted of a missing tool, its designated purpose, and

the available objects. The designated purpose was provided to the experts

in order to avoid the multiple interpretations of a missing tool which may

affect the substitute selection.

Missing Tool Available Objects

ball? coffee_mug food_cup cereal_box keyboard flashlight

binder? flashlight coffee_mug notebook water_bottle bowl

bowl? hand_towel ball shampoo pitcher soda_can

cap? bowl food_jar food_box coffee_mug notebook

cereal_box? coffee_mug food_cup ball flashlight food_jar

coffee_mug? flashlight food_can keyboard notebook bowl

flashlight? food_box food_cup ball water_bottle plate

food_bag? food_box hand_towel flashlight coffee_mug notebook

food_box? food_jar food_cup soda_can kleenex cereal_box

food_can? flashlight cereal_box food_cup food_box cap

food_cup? keyboard pitcher plate soda_can sponge

food_jar? food_cup flashlight notebook coffee_mug soda_can

hand_towel? food_cup plate shampoo food_can flashlight

keyboard? bowl cereal_box food_can notebook food_box

kleenex? cap water_bottle ball shampoo flashlight

notebook? ball water_bottle plate bowl hand_towel

pitcher? plate hand_towel cereal_box ball flashlight

plate? coffee_mug food_box kleenex pitcher water_bottle

shampoo? food_can food_cup pitcher flashlight food_bag

soda_can? ball shampoo food_box flashlight food_bag

sponge? keyboard coffee_mug bowl flashlight hand_towel

water_bottle? bowl cereal_box notebook sponge soda_can

Table 4.2: The 22 queries generated based on 22 object categories. Each query
consists of a missing tool and five available objects
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Result

In the experiment, the values of the parameters number of clusters were

varied between 2 and 8. While, for representative model threshold and

minimum similarity tolerance, the values were varied between 0.25 and

0.50. In order to optimize the given parameters, we targeted three mea-

sures: overall substitute selection accuracy, scenario-wise accuracy and

overall false positives. The ground truth was provided by the human ex-

perts where out of 110 available objects spread across 22 scenarios, they

identified 55 objects as substitutes and rest of 55 as not substitutes. We

used the binary classification metric Accuracy to measure the accuracy of

the substitute selection across all the scenarios.The typical binary classifi-

cation measures are:

• True Positive (TP): A positive substitute is considered as a true posi-

tive if it is selected by ERSATZ and at least by a single expert.

• True Negative (TN): A negative substitute is considered as a true neg-

ative if it is not selected by either ERSATZ nor by any expert.

• False Positive (FP): A positive substitute is considered as a false posi-

tive if it is selected by ERSATZ but not selected by any expert.

• False Negative (FN): A negative substitute is considered as a false neg-

ative if it is not selected by ERSATZ but selected by at least one ex-

pert.

The overall accuracy aims for the accuracy across all the scenarios wherein

it considers the sum of all true positives, true negatives, false positives,

false negatives and is measured using the formula below:

Overall Accuracy =
∑

T P+∑
T N∑

T P+∑
T N+∑

F P+∑
F N

For scenario-wise accuracy measure, we measured accuracy in each sce-

nario wherein we selected those scenarios which contain at least one true

positive. The notion behind this measure is to determine the number of

scenarios where ERSATZ and the experts have selected the similar sub-

stitutes. The false positives, on the other hand, provide the crucial infor-

mation concerning the selection of the substitutes by ERSATZ but not se-

lected by the experts. In order to determine the optimal values of the three
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parameters, we calculated overall accuracy, scenario-wise accuracy and

false positives for each combination of the values of the parameters. For a

combination of the values of the parameters to be chosen as optimal val-

ues, the overall accuracy and the scenario-wise accuracy should be maxi-

mized and the overall false positives should be minimized. To achieve this

target, we first normalized the scenario-wise accuracy and the false posi-

tives by dividing them with total number of scenario and the sum of avail-

able objects from all scenarios respectively. In the next step, the mean of

the distances from the maximum attainable value of the overall accuracy,

scenario accuracy and from the minimal attainable value of the false pos-

itives was taken. The optimal values of the parameters were considered

those which had the lowest mean value. The plot in Fig. 4.14(a) illustrates

the mean values calculated for all the 252 combinations of parameters val-

ues, whereas the plot in Fig. 4.14(b) illustrates a snap-shot of the mean

values on Y-axis at different combination of parameter values on X-axis

where mean values are the lowest. Since the combination (4, 30, 45) has

the lowest mean value which is calculated to be 0.239, in the subsequent

experiments, we used 4 for the number of clusters, 30 for the representa-

tive threshold and 45 for the minimum similarity tolerance as the optimal

values.

4.3.2 Substitute Validation

We have noted earlier that a substitute is an approximation of a missing

tool that has the capacity to achieve a similar result as the missing tool

when used in place of the missing tool. When a substitute is selected, one

can only infer that it may achieve the similar result based on certain close-

ness to the missing tool or based on the past experience. As we noted in

the Sec. 4.1.3, besides a past experience, the validation of whether it can

achieve the similar result as the missing tool can only be substantiated

after the usage. As discussed in the Sec. 4.1.3, substitute validation by a

robot is a highly complex endeavour and therefore, it is out of the scope

of this work. Consequently, we would have to rely on other means for the

purpose of evaluating whether ERSATZ can select possible substitutes for

a given missing tool successfully. With that aim in mind, we have resorted

to determine the validity of a substitute by comparing the substitute se-

lections by our proposed system, ERSATZ, with the selections by human
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(a) The mean values calculated for all the 252 combinations of the three parameters.
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(b) The snap shot of the plot where mean values are the lowest.

Figure 4.14: As illustrated in the plot, the combination (4, 30, 45) representing the
number of clusters, representative and similarity threshold respectively has the
lowest mean value which is calculated to be 0.239

experts for various missing tool scenarios. The objective of this experi-

ment is two fold: 1) to examine the transferability of the optimized pa-

rameters on a different dataset. Therein, the transferability is examined

by comparing the performance of ERSATZ on two knowledge bases gen-
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erated from the two distinct properties measurements datasets; 2) to val-

idate the substitute selections for various missing tool scenarios on two

different datasets. It should be noted that, the knowledge used by ERSATZ

and by human experts may differ. Additionally, the selection by human

experts will be influenced by their own preferences, experiences and/or

self-concept knowledge. Therefore, for validation purpose, instead of fo-

cusing on overall accuracy, our aim is to find out, in how many scenarios

ERSATZ and human experts selected same substitute/s. Additionally, we

will also assess the performance of ERSATZ with regard to the frequency

distribution of experts’ selection of substitutes in each scenario.

For this experiment, we are going to need two distinct knowledge bases

about objects. These two knowledge bases will be generated from two dis-

tinct datasets about property measurements of objects. One dataset is cre-

ated from the Washington Dataset discussed in the previous experiment,

while the second dataset, known as RoCS Dataset, is acquired using solely

machine-centric methods using our property estimation approach where

the data is acquired from the real objects. The dataset is discussed in de-

tail in the Chapter 2. Similar to the previous experiment, we will also need

for this experiment various missing tool scenarios, substitute selection by

ERSATZ and by human experts for each missing tool scenario. The substi-

tute selection by human experts will act as a ground truth against which

the substitute selection by ERSATZ will be compared. As we noted in the

Sec. 4.1.3, a substitute selection is subjective where the selection can be af-

fected by self-concept knowledge. Therefore, to get a variety of possible se-

lection of substitutes in various missing tool scenarios in our experiment,

we invited multiple human experts instead of a single expert to select their

choices. Similar to the parameter tuning experiment, the human experts

were selected such that they represented diverse background, research ex-

perience and age range.

Experimental Setup:

In the RoCS dataset, the metric data related to the physical and func-

tional properties was acquired from 110 objects, comprised of 11 object

classes containing 10 instances per class, using our property estimation

method. The metric data was used to generate the knowledge about 11
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object classes using the baseline clustering technique k-means. We have

made the knowledge base and the RoCS dataset available in our git repos-

itory (see appendix D). Similar to the parameter tuning experiment, we

formed 11 queries consisting of one missing tool and five available objects

as illustrated in the Table 4.3. The queries were run on ERSATZ and were

also given to 21 human experts. Each query given to the human experts

consisted of a missing tool, its designated purpose, and the available ob-

jects. The designated purpose was provided in order to avoid the multiple

interpretations of a missing tool which may affect the substitute selection.

Similarly, we used the experimental setup for the parameter tuning experi-

ment with regard to the knowledge about 22 object classes, 22 missing tool

scenarios and 13 human experts to select the substitutes in the 22 missing

scenarios. The knowledge generation and the substitution selection in

both the experiments were carried out using the optimized parameters

calculated in the Sec. 4.3.1: 4 for the number of clusters, 30 for the rep-

resentative threshold and 45 for the minimum similarity tolerance as the

optimal values.

Missing Tool Available Objects

plastic_box? metal_box bowl tray plate sponge

bowl? plastic_box sponge cup to_go_cup plate

to_go_cup? tray cup book paper_box plastic_box

paper_box? plastic_box to_go_cup plate ball book

metal_box? bowl sponge cup book plastic_box

tray? cup plastic_box book sponge plate

plate? book metal_box ball tray to_go_cup

cup? ball plastic_box tray paper_box plate

sponge? tray book bowl cup sponge

ball? paper_box sponge cup to_go_cup tray

book? metal_box bowl to_go_cup plate paper_box

Table 4.3: 11 queries generated based on 11 object categories. Each query consists
of a missing tool and five available objects

Result - Experts Selection

Table 4.4 and Table 4.5 list down the frequency distribution of experts’ se-

lections of substitutes for each scenario based on the object categories

from Washington Dataset and RoCS Dataset respectively. When observed

closely, the distribution listed in the tables can be roughly divided into two
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kinds of selections: consensus towards no-selection (highlighted by orchid

colored cells) and consensus towards selection (highlighted by green and

pink colored cells). In order to understand the distribution, the experts

were asked to provide insights into the reasoning that went behind the se-

lections. In the following, we provide the reasoning offered by the experts

for their selections.

About consensus towards no-selection

One of the interesting insights we received from the experts are related to

consensus towards no-selection. In the following, we summarize their rea-

soning behind their decisions. As specified in Table 4.4, for a ball, whose

designated purpose was given as to-play-with, the majority of the experts

who did not select any substitute had concerns about damaging a substi-

tute if they use it as a ball. In case of the experts who selected a substitute,

they assumed that a substitute would be made of a material such as a pa-

per or plastic that would not be damaged when used as a ball. For a flash-

light, whose designated purpose was given as to-illuminate, we got sur-

prising results. We assumed that none of the experts would select any sub-

stitute, however, five experts selected a water bottle as a substitute while

the rest (8 experts) did not select any. When the experts who selected a

water bottle were asked about the reasoning, they stated that they would

put a tiny lamp inside an empty water bottle. They justified this use by

stating that since a lamp resides inside the body of a flashlight and as a

result, the body of the flashlight protects the user from the hot lamp, it

is reasonable to use the water bottle as a body inside which a small lamp

can be placed. In other terms, the five experts imagined manufacturing

of a substitute and a water bottle as a constituent. For a hand towel and

Kleenex, the designated purpose was given as to-clean. In both the scenar-

ios, the overwhelming majority of the experts did not select any substitute

as they did not think that any choice would fulfill the designated purpose.

Besides, even though the designated purpose was stated as to-clean, these

experts extended it further as to dry hands in case of a hand towel and to

wipe dirty hands in case of the Kleenex which according to them affected

their selection process.
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Missing Tool Available Objects None

ball? coffee_mug food_cup cereal_box keyboard flashlight None
Experts 2 1 1 0 2 7

binder? flashlight coffee_mug notebook water_bottle bowl None
Experts 1 0 9 0 0 3

bowl? hand_towel ball shampoo pitcher soda_can None
Experts 0 0 0 10 2 1

cap? bowl food_jar food_box coffee_mug notebook None
Experts 5 2 0 0 2 4

cereal_box? coffee_mug food_cup ball flashlight food_jar None
Experts 0 2 0 0 8 3

coffee_mug? flashlight food_can keyboard notebook bowl None
Experts 0 1 0 0 11 1

flashlight? food_box food_cup ball water_bottle plate None
Experts 0 0 0 5 0 8

food_bag? food_box hand_towel flashlight coffee_mug notebook None
Experts 11 1 0 0 0 1

food_box? food_jar food_cup soda_can kleenex cereal_box None
Experts 4 2 0 0 6 1

food_can? flashlight cereal_box food_cup food_box cap None
Experts 1 2 4 4 0 2

food_cup? keyboard pitcher plate soda_can sponge None
Experts 0 5 3 3 0 2

food_jar? food_cup flashlight notebook coffee_mug soda_can None
Experts 8 0 0 3 1 1

hand_towel? food_cup plate shampoo food_can flashlight None
Experts 0 2 0 0 0 11

keyboard? bowl cereal_box food_can notebook food_box None
Experts 0 1 0 7 0 5

kleenex? cap water_bottle ball shampoo flashlight None
Experts 1 1 0 1 0 10

notebook? ball water_bottle plate bowl hand_towel None
Experts 0 0 6 0 1 6

pitcher? plate hand_towel cereal_box ball flashlight None
Experts 2 0 4 0 1 6

plate? coffee_mug food_box kleenex pitcher water_bottle None
Experts 1 7 0 1 0 4

shampoo? food_can food_cup pitcher flashlight food_bag None
Experts 3 0 1 1 0 8

soda_can? ball shampoo food_box flashlight food_bag None
Experts 0 2 4 1 2 4

sponge? keyboard coffee_mug bowl flashlight hand_towel None
Experts 0 0 0 0 12 1

water_bottle? bowl cereal_box notebook sponge soda_can None
Experts 1 0 0 0 11 1

Table 4.4: The 22 queries generated based on 22 object categories from Wash-
ington Data set. Each query consists of a missing tool and five available objects.
Below each query, the frequency distribution of 13 experts answers are provided.
The last column represents a None option when an expert does not select any
substitute from the available objects
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Missing Tool Available Objects None

plastic_box? metal_box bowl tray plate sponge None
Experts 17 2 1 0 0 1

bowl? plastic_box sponge cup to_go_cup plate None
Experts 15 0 1 0 5 0

to_go_cup? tray cup book paper_box plastic_box None
Experts 0 20 0 0 1 0

paper_box? plastic_box to_go_cup plate ball book None
Experts 19 1 1 0 0 0

metal_box? bowl sponge cup book plastic_box None
Experts 0 0 0 0 21 0

tray? cup plastic_box book sponge plate None
Experts 0 1 0 0 20 0

plate? book metal_box ball tray to_go_cup None
Experts 8 0 0 12 0 1

cup? ball plastic_box tray paper_box plate None
Experts 0 14 0 0 1 6

sponge? tray book bowl cup sponge None
Experts 0 2 0 0 19 0

ball? paper_box sponge cup to_go_cup tray None
Experts 2 11 0 2 0 6

book? metal_box bowl to_go_cup plate paper_box None
Experts 3 0 1 2 1 14

Table 4.5: 11 queries generated based on 11 object categories from RoCS Data
set. Each query consists of a missing tool and five available objects. Below each
query, the frequency distribution of 13 experts answers are provided. The last
column represents a None option when an expert does not select any substitute
from the available objects

In case of the hand towel, the two experts who selected a plate assumed

it to be a paper plate which can be used to dry hands. Interestingly, one

expert assumed the hand towel is made up of a paper which allowed him

to select the plate which is also made up (according to him) of a paper. As

for the Kleenex, one expert who selected a cap as a substitute stated that

she can use a cap to clean since it is made of a garment. The expert who se-

lected a water bottle assumed that it contains water and thus can be used

to clean, while the expert who selected a shampoo stated that a shampoo

can be used to clean. In case of a shampoo, whose designated purpose was

stated as to-wash-hair, the majority of the experts who did not select any

substitute stated that none of the available objects can be used to wash

hair. Interestingly the five experts who did select a substitute, focused on

the container into which a shampoo is usually stored. As a result, the sub-

stitute selection by them was focused on an object that can be used as a
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container. The expert who selected a flashlight stated that by removing all

the components inside the flashlight, the empty body of the flashlight can

be used as a container. When the five experts were questioned about a

food cup and a food bag as they both are able to contain, they mentioned

that the material of both the objects played a role in their decision. In case

of the distribution given in the Table 4.5, a scenario involving a book has

a majority of the experts rejecting all the options. The designated purpose

of a book was stated as to-read-from and to our surprise the seven experts

who selected substitutes stated that their substitute will contain some text

on their outer surface which can be read as well.

About consensus towards selection

In case of the consensus towards selection of substitute, roughly two kinds

of selections can be observed: 1) the majority of the experts converge on

a specific substitute and 2) lack of consensus in substitute selection. Ta-

ble 4.4 reflects both kinds of selection, while Table 4.5 reflects only the

convergence on a specific substitute. There were some interesting insights

we received from the experts about their selection reasoning. In case of a

binder, for instance, whose designated purpose was given as to-file-papers,

the majority of the experts selected a notebook. When we enquired about

it, they stated that since the notebook is also capable of storing data, one

can use the electronic formats of the papers to store them in the notebook.

In other words, they stated that they did not see a notebook as a substitute

but an improved version of storing equipment. While the three experts

who did not select any substitute, did not think that an adequate choice

was available to store the papers. When we asked to provide a possible

example of an adequate choice, they stated: a bag or a box. For a bowl,

a coffee mug, a food bag, a food jar, a sponge, and a water bottle, the ex-

perts who selected a substitute in overwhelming numbers stated that it

was an easy choice from the given available objects. The similar reason

was provided by the experts in case of Table 4.5. For the same set of tools,

the experts who did not select any substitute stated that the size of the

possible substitute primarily affected their decision: a substitute is either

small compared to the missing tool or big. In many instances, especially in

the case of lack of consensus, the experts mentioned that while there were
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more than one choice for a substitute available, their preference drove the

selection decision. For instance, in case of a cap in Table 4.4 whose des-

ignated purpose was given as to-cover-head, the experts who selected a

notebook agreed that a bowl or a food jar could also have been a possible

choice, however, they preferred notebook since it covers the head better

than a bowl or a food jar.

We also noted some additional insights concerning the objects which ap-

pear in both the tables. In case of a ball, the majority of the experts in case

of the Washington Dataset table did not select a substitute while in case

of the RoCS Dataset table the majority of the experts selected a sponge.

The experts who selected a paper box and a to-go-cup in the second table

stated that the material was a primary reason to select them. The number

of experts who did not select any substitute in both the tables is almost

the same. However, in case of the second table, the experts stated that

none of the available objects could be use for playing purpose as opposed

to the experts in the first table who stated that they did not select any ob-

jects due to the fear of damaging the objects. In case of a bowl, in both

the tables, the experts did select a substitute in overwhelming numbers,

while the number of experts who did not select any substitute in both the

tables are almost none. A cereal box in the first table, which is typically

made up of a paper, is equivalent to a paper box in the second table. In

both the tables, majority of the experts converge on a specific substitute.

A coffee mug in the first table is equivalent to a to-go-cup and a cup in the

second table. In all the three scenarios, the majority of the experts con-

verge on a single substitute. In case of a coffee mug and a to-go-cup, only

one expert did not select any substitute, however, in case of a cup, six ex-

perts did not select any substitute. Their primary reason was the size of

a plastic box even though they agreed that it could have been a plausible

substitute. We also asked the experts who selected a plastic box about not

selecting a paper box. They stated that since it is made up of a paper, it

would not have been an ideal material to hold liquid. The similar reason

was given by those who did not select any substitute. On the other hand,

when we asked the experts except the one who selected a plate, about se-

lecting a plate, they stated that although it would have been a plausible

substitute, the plate would not be easy to lift with drinks in it. In other

words, the plate would not be easy to use for drinking liquid from it. In
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case of a plate in both the tables, the majority of the experts agree on a

single substitute. Interestingly though, the majority of the experts in the

first table selected a paper box, none of the experts in the second table se-

lected a metal box. Instead a book was selected which is made up of the

same material as a paper box. When we asked the experts who selected a

paper box or a book about this, we were surprised that they all stated that

they felt safer to use a paper than a metal for food. In case of a sponge in

both the tables, whose designated purpose was given as to-clean, almost

all of the experts selected a specific substitute. One of the available objects

in the second table for a sponge included a sponge and surprisingly, even

there two experts diverged from the majority by selecting a book. When

we asked the two experts about their choice, they stated they would use a

page from the book to clean. When we asked them why did not they select

a sponge, they clarified that since the task was to select a substitute, they

went for a book instead of a sponge.

Summary

We can observe here that there is no specific pattern in the experts selec-

tion that can determine what drives an expert to select or not select an

object as a possible substitute for a given missing tool. In some cases, the

majority of the experts do not select any substitute, however there are still

a minority who do select one. In some cases the majority of the experts

select a specific substitute, however there are still a minority of the experts

who do select a different substitute or do not select any substitute. And

in other cases, there is no consensus among the experts in their selection

choices: experts will select different objects from each other or will not

even select any. In the cases where a minority of the experts makes a dif-

ferent decision than the majority, one can not simply invalidate their se-

lection choice. This became apparent when we asked them about their

choice and showed them that the majority had selected different object,

they defended their selection and in some cases, such as a flash light or

Kleenex, vehemently disagreed with the majority. It is also worth noting

that when the majority converges on a specific selection or no-selection,

the reasoning provided by the experts is related to the striking similarity or

dissimilarity between a missing tool and a selected substitute with respect
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to their physical properties. However, in cases where there is no majority

or where minority diverges from the majority, the reasoning is more re-

lated to the personal preferences. In either case, we noted that the knowl-

edge used by the experts when they reason about their selection primarily

consists of personal preferences (self-concept knowledge), common sense

knowledge such as naive physics, causal relationships. In both the exper-

iments: Washington Dataset based and RoCS Dataset based queries, we

did not observe any specific factor that drives a decision to select or not

select a substitute among the experts.

Result - ERSATZ Selection

As we have noted earlier, the objective of this experiment is two fold: 1)

to examine the transferability of the optimized parameters on a different

dataset. Therein, the transferability is examined by comparing the perfor-

mance of ERSATZ on two knowledge bases generated from the two distinct

properties measurements datasets; 2) to validate the substitute selections

for various missing tool scenarios on two different datasets. For the vali-

dation assessment, we use the typical binary classification measures True

Positives, True Negatives, False Positives, and False Negatives. We have seen

earlier that the frequency distribution of substitute selection among the

experts varies from scenario to scenario: in some cases a majority of the

experts select one substitute, in some cases the majority do not select any

substitute and in some cases no substitute is selected by majority. This

makes it difficult to assess the validity of a substitute in every scenarios. As

a result, our intent is to treat ERSATZ as an artificial expert and compare

its selection with other experts’ selection. We are primarily interested in

comparing the selections where at least one expert selects the same sub-

stitute as ERSATZ. In this context, True Positive can be interpreted as at

least one expert and ERSATZ selected a same substitute; True Negative: the

experts and ERSATZ did not select an available object as a possible substi-

tute; False Positive: the experts did not select a substitute but is selected by

ERSATZ; False Negative: at least one expert selected a substitute but is not

selected by ERSATZ. Note that True Positives and True Negatives demon-

strate the consensus between ERSATZ and the experts. On the other hand,

False Positive demonstrates the disagreement between ERSATZ and the ex-
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perts. The interesting case is the False Negative, as it is the disagreement

between not only ERSATZ and the expert/s but also between the expert/s

and expert/s. In a sense, ERSATZ and the expert/s who did not select a

substitute in the case of False Negatives agree with each other. As a result,

False Negatives can not be considered in validating a substitute. For the

validation purpose, we are primarily interested in the True Positives as it

focuses on whether ERSATZ and at least one expert agree on a substitute.

In order to validate the substitutes, we have plotted heat plots to highlight

the True Positives, True Negatives, False Positives, and False Negatives. As

we are primarily interested in the True Positives, our discussion will follow

accordingly. The heat plot in Fig. 4.15(a) illustrates the substitute selection

by the 13 experts and ERSATZ respectively in 22 scenarios based on Wash-

ington Dataset. Similarly, the substitute selection by the 21 experts and

ERSATZ in 11 scenarios based on RoCS Dataset are plotted as a heat map

in Fig. 4.15(b). The grayed cells in the plots mean the corresponding object

categories were not included in the available objects in the corresponding

query. In Fig. 4.15(a), we can notice that out of 22 scenarios, ERSATZ se-

lected True Positives in 19 scenarios. On the other hand, the second exper-

iment in Fig. 4.15(b) had 11 scenarios where ERSATZ selected True Posi-

tives in all 11 scenarios. Additionally, we can also observe that in the first

heat plot, out of 22 scenarios, ERSATZ and the experts did not select any

substitute (True Negatives) in 18 scenarios. In the second heat plot, out of

11 scenarios, ERSATZ and the experts did not select any substitute (True

Negatives) in 10 scenarios. In other terms, with the help of the parame-

ters tuned on Washington Dataset, in 86% scenarios ERSATZ and at least

one expert agreed on a substitute. These tuned parameters were used by

ERSATZ on RoCS Dataset wherein in 100% scenarios ERSATZ and at least

one expert agreed on a substitute. We see clearly that the performance of

ERSATZ selection improved on RoCS Dataset based scenarios where RoCS

Dataset was generated solely using machine-centric property estimation

methods proposed in this work. These substitution selection results allow

us to infer that the parameters tuned on the Washington-Dataset (contain-

ing 692 data points) were successfully transferred on a real-world dataset

(containing 110 data points).
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Figure 4.15: ERSATZ Performance: the distribution of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) in each substitution
scenario using (a) Washington dataset and (b) RoCS dataset.
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4.3.3 Similarity Comparison - ERSATZ vs WordNet

We have hypothesized that the distinction between a tool and a substitute

is important when we determine similarity between them. For instance,

if an object A can be replaced by an object B due to the desired similar-

ity then B can be seen as a substitute for a tool A. However, the vice-versa

need not be true, that is, an object B can not necessarily be replaced by an

object A. Within the context of a designated purpose, the substitutability

relationship between a tool and a substitute is symmetric, for instance, for

hammering, a hammer can be replaced by a heeled shoe and vice versa.

However, it is not the case once you step outside the context, for instance,

a hammer can not be used as a heeled shoe for walking. In this experiment

we examine this very aspect and in order to accomplish that we have pit-

ted our proposed knowledge about objects and our proposed similarity

computation against WordNet [119], a large lexical database and its asso-

ciated similarity measures. WordNet consists of nouns, verbs, adverbs and

adjectives which are grouped together in sets called synsets, where a typ-

ical synset would consist of synonymous words that represents a specific

concept. The primary objective of this experiment is to substantiate the

distinction between a tool and a substitute. In that regard, in this exper-

iment, we compare the similarity among different objects determined by

the similarity measures used in WordNet, and relevant-properties driven

Jaccard Index-based similarity proposed in this work.

Experimental setup

The similarity measures used in WordNet are typically meant to determine

semantic similarity between two words or two sentences. In WordNet

there are two types of similarity measures: path-length based measure and

information content based measure. In the path-based similarity measure,

WordNet is viewed as an undirected graph and the similarity between two

concepts is computed by measuring the distance between them [130]. As

stated by P. Resnik in [131]: "the shorter the path from one node to an-

other, the more similar they are". On the other hand, the information

content based similarity measure between the two concepts focuses on

the contents of the information shared by both the concepts. According to
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P. Resnik in [131]: "the more information two concepts share in common,

the more similar they are".

For this experiment, for the path-length based similarity measure, we con-

sidered Path Similarity [132] and Wu-Palmer Similarity [133] and for infor-

mation content based measures, we considered Lin Similarity [134] and

Jiang-Conrath Similarity [135]. We used the WordNet interface provided

by the Natural Language Toolkit (NLTK) platform [136] wherein an inter-

face to compute the aforementioned similarities is provided. We used the

object labels from the RoCS Dataset, however some labels were adapted

while using WordNet to compute the similarity. For instance, in the RoCS

Dataset we have a to-go-cup and a cup, however in WordNet there is no

to-go-cup, therefore we use only a cup. Similarly, as WordNet does not

differentiate between a plastic, a metal and a cardboard box, we consid-

ered only box for WordNet comparison. After adapting the labels, we had

altogether 8 object labels for computing similarities in WordNet. We used

RoCS Dataset to generate the knowledge base and used the 11 object labels

from the dataset to computer the similarities between them. The similari-

ties were computed for each pair of object labels for each similarity label.

Result

The similarity between each pair of object labels using aforementioned

similarity measures was expressed as heat plots shown in the Fig. 4.16

where each color coded cell represents the similarity value between 0 and

1. The closer the value is to 1, the more similar are the objects. In the

figure, the first row consists of the heat plots of path-based similarity com-

putations, the second row consists of information-content based similar-

ity computations and the last row illustrates the relevant-properties based

Jaccard’s Similarity computation proposed in this work. What interesting

is, each WordNet-based similarity measures produces different similarity

values for the same pair except any object that is paired with a sponge. In

Path Similarity, the objects tray, cup, bowl and box when paired among

each other are more similar to each other than when paired with rest of

the objects or when rest of the objects paired among each other. A similar

pattern can be observed in Wu-Palmer Similarity and Lin Similarity.
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(a) Path Similarity (b) Wu-Palmer Similarity

(c) Lin Similarity (d) Jiang-Conrath Similarity

(e) Jaccard Similarity

Figure 4.16: The similarity comparison between the Path Similarity, Wu-Palmer
Similarity, Lin Similarity and Jiang-Conrath Similarity measure used in WordNet
and relevant property driven Jaccard based similarity measure.
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While in Jiang-Conrath Similarity all of the objects are less similar to each

other, in Wu-Palmer Similarity all of the objects are more similar to each

other than in the rest of the WordNet-based similarity measures.

As can be observed in the figure, the resulting heat plots of the similarity

between different objects computed using WordNet-based similarity mea-

sures is symmetric in nature while the relevant property driven Jaccard’s

Similarity based heat plot is non-symmetric. By symmetric in nature we

mean that the similarity between objects, say A and B is same as the sim-

ilarity between B and A. This is visible in all the WordNet-based similar-

ity computations in the figure. In contrast, the similarity between objects

being non-symmetric means the similarity between, say, objects A and B ,

and, B and A may not be same which is visible in relevant properties based

Jaccard’s similarity computation. This discrepancy is caused by the way

objects are treated by WordNet and ERSATZ. WordNet does not make any

distinction between a tool and a substitute. For WordNet, two object labels

are two concepts in its database. Therefore when the similarities between,

say objects A and B , and between B and A are computed the contents

(path-length or information content) considered during the computation

remain unchanged. Note that, in path-based similarity measure, the sim-

ilarity is the distance between concepts A and B in an undirected graph.

On the other hand, in information-content based similarity measure, the

similarity is the information contents shared by the concepts A and B . In

both the cases, the direction does not play any role, as in, there is no dis-

tinction between path from A to B and from B to A. On the contrary, our

proposed approach distinguishes between a tool and a substitute. As a

consequence the contents considered to determine a similarity between a

tool A and a substitute B differs from the contents considered when com-

puting a similarity between a tool B and a substitute A. In other terms, in

order to compute the similarity between objects A and B , in our approach,

the direction matters and therefore the similarity computed between two

objects is not symmetric. As discussed in Sec.4.1.2, when an object is a

tool, its relevant properties are first identified and the similarity with a

possible substitute is determined on the basis of the relevant properties

of a tool and the representative properties of a substitute. Consequently,

the properties used to determine similarity when an object A is a tool can

be different from the properties when the object A is a possible substitute.
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Such non-symmetric relation is a necessity in the tool substitutions since

it can not be assumed that if A is a substitute of a tool B, then B is a substi-

tute of a tool A. Such assumption due to the symmetric relation may lead

to an inadequate selection of a substitute. For instance, if we use WordNet

as a knowledge source about objects and use Wu-Palmer Similarity mea-

sure to determine similarity for substitute selection, then according to the

similarity computation a hammer and a shoe will be substitute of each

other.

4.4 Related Work

We noted in the literature on substitute selection that, similar to our ap-

proach, a substitute for a missing tool is determined by means of knowl-

edge about object, and the knowledge-driven similarity between a miss-

ing tool prototype and a potential substitute. In the following, we have

summarized the approach proposed in each related work. We conclude

the section by providing the insights we have drawn from the related work

and the differences we have noted with our proposed approach.

The research work discussed in [62] proposes a neural model which is

trained by user demonstrations where the primary focus is on a robot

learning common sense knowledge about using a tool in a task instructed

by human teachers. The proposed approach is provided with metric data

about position, orientation, size; semantic relations such as On top, In-

side, Connected to, Near; and symbolic knowledge about hand-picked

relations such as similar-to and capable-of extracted from ConceptNet.

The approach is trained for eight household tasks involving household ob-

jects and eight factory tasks involving factory objects. One of the problems

the approach deals with is to find an alternative tool when the available

tool is missing. The notable difference to our approach is that they do not

use a substitute as defined by our approach. An alternative tool in their

work still has a similar purpose as the missing tool and such similarity is

determined by similar-to and capable-of relations. Some of the notable

examples of alternate tools stated in the paper are: a ladder instead of a

stool for elevating oneself, a box instead of a tray for transporting objects.

In [137], supervised learning with dual neural network based approach is

proposed which uses shape and material similarity to determine a substi-
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tute. As specified in [137], "dual neural networks consist of two identical

networks, each accepting a different input, combined at the end with a

distance metric." The proposed approach trains shape based model and

material based model separately. The models are trained for six actions

where each action is trained on a separate network. For training the shape

based models, the network is provided with positive and negative pairing

of tools based on their shapes which are created randomly. The positive

pairing refers to the applicability of both the tools for a given action and

the negative pairing refers to the opposite. For training the material based

models, five materials are considered and for each action, the network is

provided with a set of materials from which an ideal tool is created. The

similarity is determined on the basis of shape or material or both. In this

work, a substitute is required to have a similar shape and material to the

missing tool as opposed to our approach.

The approach proposed in [63] learns a visual predictive model which

is trained using visual data collected from the demonstrations via kines-

thetic teaching by humans and multi-object interactions with diverse

objects. The main goal is to use such predictive models to perform the

tasks involving previously unseen tools. The approach focuses on the

tasks related to sweeping, wiping, and hooking. The notable difference

to our approach is that this work does not perform substitute selection.

Instead the object that is to be used in a unconventional manner (speci-

fied as unseen object) is already given, the proposed approach using the

learned visual predictive models determines how to use it. In other words,

our focus is on how to select a substitute as opposed to how to use it.

The approach proposed in [64] learns a model that has twofold objectives:

1) to assess if an object is a possible substitute for a missing tool on the

basis of a score for effectiveness of it in the task; 2) to provide cues for ma-

nipulation which includes the geometric models related to the positioning

and orientation of grasping and end effector. In this approach a tool is rep-

resented in terms of 21 parameters which consist of geometric models of a

tool related to grasping and action; the relationship between the features

which enable the applicability of the tool in a task; moment of inertia and

mass; and orientation and positioning of a tool in a task. Additionally, the

training data also includes a human-labeled affordance score where the

score label indicates how good the tool is in a task. A machine learning
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technique Gaussian Process Regression is used to train a task function us-

ing the aforementioned parameters for learning a score for the effective-

ness of a tool in the given task. There are four tasks considered in this

work: hammering nail; lifting pancake; rolling dough; cutting lasagne; and

scooping grains and for each task, the relationship between the features

is learned during a tool use in the task in a simulation. When selecting

a substitute, the approach looks for a candidate that has similar features.

The proposed system does not perform any selection, instead the model

is tested on three vision based datasets about objects where each object is

assessed for its substitutability for a missing tool in a given task.

The approach discussed in [74] is based on random forest, a supervised

learning based classifier, to classify whether an object is a valid substi-

tute in the given task. The approach uses WordNet and ConceptNet to ex-

tract the potential candidates if they share the same parent with a missing

tool for the predetermined relations: has-property, capable-of and used-

for. The similarity between each candidate and a missing tool for a given

task is calculated using three similarity metrics: WordNet path similarity,

Divisi pairwise similarity, and Semantic Similarity Engine’s analogical sim-

ilarity. To train the classifier, each candidate is labeled by two experts as

suitable or unsuitable substitutes for the missing tool in the given task.

While in total, nine tasks were considered, it should be noted that the ap-

proach uses all the objects given in the ConceptNet for candidate extrac-

tion. However, the objects space can be reduced based on the objects in

the environment a robot has access to.

The work discussed in [65] proposes a vision based estimation of affor-

dances in the objects which is used to determine a substitute for a miss-

ing tool. The substitute is determined on basis of desired affordances

shared by a missing tool where desired affordances in a substitute are es-

timated along with a confidence value. The approach uses object-wise

global features and a multi-label learning method called JointSVM. For

training, three different benchmark datasets containing point clouds of

1) 85 objects 2) 125 objects 3) 100 objects were used where each object is

labeled with 12 affordances. The training is performed on each dataset

separately as well as by combining all three datasets. The motivation is to

examine which dataset is suitable for tool substitution, and whether train-
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ing with more data leads to the improved performance and reliability of

the prediction confidence.

The approach in [75] follows a similar modular based system as our pro-

posed approach where knowledge acquisition is decoupled from substi-

tute selection. For substitute selection, the approach makes use of an ex-

ternal relational database called ROAR (Repository of objects & attributes

with roles). ROAR contains object labels and its associated affordances

which are hand coded or can also be created from experience. In order to

determine the similarity between a missing tool and an available object,

the approach extracts all the affordances associated with the available ob-

ject and check if these affordances are similar to those of the missing tool.

In [76], a substitute for a missing tool is selected in a similar manner as

above. The knowledge about objects is modeled manually after the dic-

tionary definitions of the objects. The knowledge consists of object labels,

their affordances, and inheritance and equivalence relations among the

objects. A substitute for a missing tool is inferred on the basis of inheri-

tance and equivalence relations between the substitute and the missing

tool.

Most of the approaches discussed above are data-intensive and machine

learning based. Consequently the approaches require training of a model

which in turn need training examples. These training examples are needed

to be substantial in numbers and also require features which are carefully

selected. Note that any additional feature would require re-training of the

models which would add additional computational efforts. In case of sub-

stitute selection, it is likely that new features will have to be added if the

existing features would not suffice. All the approaches require labeling the

training examples which would allow them to learn about what to expect

about a potential substitute for a missing tool. The labeling of training ex-

amples takes different form in each approach: in some cases, objects are

labeled with the associated affordances and in some cases they are labeled

as valid or invalid substitute. Moreover, the models are trained for certain

number of tasks. We have noted that none of the approaches is able to gen-

eralize outside of the tasks for which they are trained. The approaches that

do not use machine learning, use carefully selected hand-coded knowl-

edge about objects and matches a substitute on the basis of shared affor-

dances or shared relations. In either case, human experts play a vital role
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in learning about a substitute or determining a substitute. Our approach,

on the other hand, does not require any training since it is not based on

any machine learning technique. It determines the relevant properties of

a missing tool and selects a substitute on the basis of the relevant proper-

ties based similarity measure. This allows us to generalize the approach to

other tasks as well.
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5.1 Recap

When a robot is operating in a dynamic environment, it can not be as-

sumed that a particular tool required to solve a task will always be avail-

able. In such scenarios, capabilities are required to mitigate the conse-

quences of the absence of a tool by finding an alternative as humans do.

This skill is significant when operating in a dynamic, uncertain environ-

ment because it allows a robot to adapt to unforeseen situations. The ques-

tion is: how can a robot determine which object in the environment is a

viable candidate for a substitute? This is the challenge we have addressed

in this thesis. Our thesis work on substitute selection is inspired by the way

humans select a substitute and it led to the investigation of the following

research questions:

1. What is the nature of the conceptual knowledge about objects de-

sired in substitute selection?

2. How to acquire such conceptual knowledge?

3. What is a substitute?

4. How to determine a substitute for a missing tool?

We regarded the research questions (1) and (3) as conceptual questions

while the questions (2) and (4) as procedural questions.

157
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Tool use or tool substitution in robots is relatively a new research area in

robotics compared to other research areas such robot vision, navigation

or manipulation. As a result, we turned our attention to research on tool

use in humans and animals for insights and cues as it is extensively inves-

tigated in cognitive science, psychology, neuroscience. Consequently, our

research work has leaned on substantially on the theories and viewpoints

provided by the literature on tool use in animals and humans and have

been an inspiration behind the conceptual understanding of tool substi-

tution for robots, substitute selection, various workflows presented in this

work and proposed approaches. Our research has led to the following pro-

posals with respect to the aforementioned research questions:

• A tool substitution is a highly complex, multi-layered integrated sys-

tem which requires various functionalities in robotic system such

as object perception, object grasping, object manipulation, localiza-

tion, navigation, fault diagnosis and recovery, knowledge acquisition

etc. to work together seamlessly (Sec. 4.1.3). It primarily consists of

four processes: Search available objects, Select a substitute, Use a

substitute, Validate a substitute where each process requires multi-

ple inputs from various functionalities of a robot (Fig. 4.2).

• A tool is distinct from a substitute (Sec. 4.1.1). A tool has been de-

fined in this work as a tool is foremost a physical object and is manu-

factured artificially for a designated purpose. In contrast, a substitute

is either a tool which is used for an unconventional purpose for which

a conventional tool exists or it is a naturally occurring object. This dis-

tinction is essential when we determine a suitability between them

as it indicates that the suitability between two objects depends on

which object is a tool and which is a substitute.

• The notion of the relevant properties of a tool plays a central role

when selecting a substitute (Sec. 4.1.2). The relevant properties of

a tool in this work are considered as those properties which enable a

tool’s designated purpose. As stated in [2], a characteristic of a well-

designed tool is that it feels comfortable and balanced when held, it is

paramount that, when a tool is designed for its designated purpose,

each relevant physical property needs to be present to a certain de-

gree such that a user can use the tool comfortably. The similar notion
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needs to be followed when selecting a substitute. It means, a substi-

tute should be selected not only on the basis of the relevant physical

properties of a tool but also the degree with which they are expected

to be present in a substitute.

• For substitute selection, three kinds of knowledge are desired: con-

ceptual knowledge about objects which include knowledge concern-

ing objects such as physical and functional properties of objects,

temporal and spatial properties of object; self-concept knowledge

which focuses on a user’s knowledge about its own physical and per-

ception capabilities; and common-sense knowledge which usually

consists of naive physics based rules that are intuitive and com-

monly held (Sec. 4.1.3). These three kinds of knowledge influence

the selection of a substitute from the available objects for a missing

tool.

• The main constituents of conceptual knowledge about objects re-

quired for a substitute selection are physical and functional prop-

erties observed in objects (Sec. 3.2.1). The ideal characterization of

such conceptual knowledge is knowledge that is generalized where

knowledge is about an object class as opposed to an object instance;

relative where knowledge about an object class is derived from its

instances that have been encountered by a robot and is subject to

change as more instances are encountered; subjective where knowl-

edge is derived from a robot’s sensory experiences and interaction

with the object’s instances as opposed to hand-coded by experts

based on their experiences with the objects; qualitative where knowl-

edge about objects is not merely represented in terms of their prop-

erties but also to what degree they are present in the objects.

• While commonsense knowledge is concerned with commonly known

knowledge by most people, subjective knowledge is concerned with

knowledge held by an individual (Sec. 3.2.2). We term such sub-

jective knowledge as robot-centric which states that robot-centric

knowledge should be acquired from a first-person-perspective. In

order to capture the robot-centricness, the knowledge should be

grounded in robot’s own sensory perception of objects’ properties

[87] and therefore we propose that knowledge about properties
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should be generated from the sensory measurements of the prop-

erties.

We have proposed the following approaches which are built upon the

aforementioned proposals:

• An approach to identify relevant properties of a tool (Chapter 4,

Sec. 4.2)

• An approach to select a substitute for the missing tool using concep-

tual knowledge about objects on the basis of the relevant properties

of the tool (Chapter 4, Sec. 4.2)

• An approach to generate and represent generalized, relative, robot-

centric and qualitative conceptual knowledge about objects from the

quantitative measurements of the physical and functional proper-

ties of objects (Chapter 3, Sec. 3.2.3, Sec. 3.3)

• An approach to estimate the measurements of physical and func-

tional properties observed in the various instances of objects (Chap-

ter 2, Sec.2.2)

In this work, we have presented a proof of concept of the proposed ap-

proaches. Our proof of concept includes an extensible property estima-

tion framework called Robot-Centric dataSet (RoCS) framework which

consists of light-weight estimation methods requiring minimal experi-

mental set-up to obtain the quantitative measurements of physical prop-

erties (rigidity, weight, etc.) and functional properties (containment, sup-

port, etc.) from household objects. We acquired a dataset of 110 house-

hold objects comprising six physical properties: hollowness, size, flatness,

roughness, rigidity, heaviness and four functional properties: support,

containment, movability, blockage. The experimental evaluation on the

dataset have revealed the stability as well as the inter-class generality of

the proposed object property estimation methods. To generate the con-

ceptual knowledge about objects from the property measurements, we

employed unsupervised clustering methods to transform quantitative

measurements into qualitative measurements followed by a step where

Bi-variate Joint Frequency Distributions and Sample Proportion was used
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to generate the desired conceptual knowledge about objects. For our sub-

stitute selection approach, termed as ERSATZ, we used Jaccard’s Similarity

to identify the relevant properties of a missing tool and to determine simi-

larity between a potential substitute and a tool on the basis of the relevant

properties.

5.2 ERSATZ Integration With Object Perception

We noted in Sec. 4.1.3, a tool substitution system requires integration of

various functionalities working together seamlessly in real-time. In that

regard, we proposed a workflow for a tool substitution system (see Fig.4.2)

where we focused on the substitute selection process for our research

work. In this experiment, we have taken a baby-step towards an inte-

grated system where we integrated our substitute selection system with

an object perception system as illustrated in Fig. 5.1. The substitute selec-

tion system, in this work, receives three kinds of input: label of a missing

tool, labels of available objects, and knowledge about the available objects

and the missing tool. The objective of this experiment is to receive labels

of available objects from an object perception system and select a possible

substitute among them for a given missing tool in real-time. We intend

to examine whether such real-time execution of object perception system

and the proposed substitute selection system is realizable.

Experimental Setup

The underlying object perception system mainly consists of an RGB-D

based object localization [138], categorization system [129] and ERSATZ.

Detected and categorized objects in form of object position and category

label are populated and subsequently received by ERSATZ. We selected

five object categories from RoCS dataset: paper box, cup, plate, to go cup

and book. We used real objects belonging to these five categories and cre-

ated in total 10 scenarios for object perception system. In each scenario,

three objects were placed in the scene which were localized and subse-

quently categorized by the perception system. Upon categorization the

system sends the labels of the categorized objects to ERSATZ. ERSATZ is

given 10 tool missing scenarios as illustrated in Table 5.1 where each sce-
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nario consists of a missing tool label and three available objects’ labels. ER-

SATZ sends the selected substitutes’ labels and rejected substitutes’ labels

back to perception system which then displays the result on the monitor

by highlighting the selected substitutes’ labels in blue color and rejected

substitutes’ labels in red color along with their corresponding similarity

values.

Figure 5.1: We have integrated an object perception system which accepts RGB-D
point cloud of objects in the environment as inputs and outputs the labels of the
categorized objects. These labels are forwarded to the substitute selection system
ERSATZ which identifies a substitute among them for a given missing tool.
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Table 5.1: 10 real-world scenarios.

# Missing tool Available objects (with similarity, r : indicates rejection)

1 paper box paper box (1.0) to go cup (0.75) book (r)
2 paper box plate (r) cup(0.625) to go cup (0.75)
3 cup to go cup (0.625) plate (r) paper box (0.625)
4 cup paper box (0.625) book(r) cup(1.0)
5 plate paper box (r) to go cup (r) book(0.75)
6 plate cup (r) book (0.75) plate(1.0)
7 to go cup plate(r) paper box(0.857) cup(0.714)
8 to go cup to go cup(1.0) paper box(0.857) book(0.429)
9 book plate(0.75) to go cup (r) paper box(r)

10 book book(1.0) plate(0.75) cup(r)

Result

The outcome of the experiment is given in Table 5.1 where the selected

substitutes along with their substitutes are highlighted by bold text. Ad-

ditionally, the outcome is also highlighted by the perception system as il-

lustrated in Fig. 5.2. For instance, a scenario shown in Fig. 5.2(e) in which

ERSATZ has to select a substitute for a missing plate from the available

objects in the environment. As a result three objects are detected in the

environment and classified in the scene as to go cup, book and paper box.

ERSATZ’s responses show, in blue, the selected substitute, whereas in red,

the rejections. ERSATZ correctly identifies the book as an optimal substi-

tution, while paper box and to go up are rejected as substitutes. We can

notice that in all of the scenarios where a missing tool is in the available

objects, it was correctly selected. In general, it is observable that ERSATZ

generally identifies reasonable substitutes along with their similarity value

for a missing tool, in our experiment of 10 scenarios.

5.3 Open Questions

Our research in substitute selection as well as in tool substitution has

made us realized that the seemingly simple sounding problem of find-

ing a substitute for a missing tool and using it in the task is markedly

a complex problem. Our research work has exposed myriad number of

challenges, view points and open questions along the way, and not all can
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be listed here. In the following, we have listed open questions, that we

deemed as significant, related to the factors we encountered during our

research. It should be noted that this is a non-exhaustive list and the open

questions are raised with a focus on robotic applications.

(a) scene #1 (b) scene #2 (c) scene #3

(d) scene #4 (e) scene #5 (f) scene #6

(g) scene #7 (h) scene #8 (i) scene #9

(j) scene #10

Figure 5.2: Corresponding scenes of scenarios shown in Table 5.1.
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About substitute selection

We have stated in Chapter 4 that a substitute selection is a subjective

choice. While we have identified three kinds of knowledge bases that in-

fluence the selection of a substitute, it is necessary to investigate further

what are the other factors that may influence the selection. While in this

work, we have selected a substitute in a non-invasive manner, an invasive

method in a limited capacity would also be a possible approach. In that

case, the challenge would be to devise an invasive method such that it

can be used in multiple scenarios involving distinct tools. Additionally,

defining the scope of the limited capacity in itself is a complicated task.

Moreover, in this work, we have assumed a specific view on a substitute

where an object is used as a substitute without altering its form. It would

be worth investigating what are the other forms of substitutes such as

binding multiple objects together in a certain manner or altering the ob-

ject’s physical form etc.

Conceptual knowledge about objects

Our thesis focuses on the conceptual knowledge that involves a general-

ized, relative, robot-centric and qualitative knowledge about physical and

functional properties of objects. One of the challenge we faced in the early

research was to determine the granularity of such knowledge. More specif-

ically, the challenge was to determine how much detailed the knowledge

should be and how does the detailedness affect a substitute selection. In

the proposed approach the granularity of the knowledge is determined

empirically and is uniform for all substitute selection scenarios. However,

it is possible that different missing-tool scenarios may require varying de-

gree of detailedness of knowledge. In that case the question is, how to de-

termine the degree of detailedness in each missing-tool scenario. Besides

physical and functional properties, another issue to consider is what other

properties should be included in the conceptual knowledge, for instance,

the knowledge about parts of the objects, relationship between the parts

of the objects, spatial and temporal properties of the objects etc.
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Role of self-concept and common sense knowledge

We noted in the Chapter 4, Sec. 4.1.3 the role of self-concept and the com-

mon sense knowledge, and the influence they exert over the selection. But

the question is what constitutes self-concept knowledge. Ideally, the self-

concept knowledge is about one’s physical strengths as well as the limi-

tations, perception capabilities, personal preferences etc. However, the

challenge here is, how do we determine and formalize the contents that

can represent these factors? Another issue is acquiring such knowledge, in

other words, how does a robot acquire knowledge about itself? The same

inquiry holds true for common sense knowledge or naive physics knowl-

edge as it also plays role in rejecting the substitutes. We also believe that

the selection takes place in multiple phases where the initial selection may

be performed on the basis of conceptual knowledge about objects, while

the rejection of the substitutes selected in the initial phase is performed

on the basis of self-concept knowledge.

Robot-centric

We stand by our robot-centric aspect towards knowledge as given the vary-

ing capabilities of sensors and manipulation, we believe that relying on

common sense knowledge bases such as WordNet and ConceptNet do not

provide a multi-dimensional view of an object which is vital in the case of

tool substitution. Therefore, more efforts are needed to devise approaches

to acquire knowledge from a robot’s perspective. Any additional knowl-

edge that is needed, whether it is self-concept knowledge or naive physics

knowledge or even more expressive conceptual knowledge involving spa-

tial and temporal properties of objects or part-relationship in the objects,

the challenge is how to capture the robot-centric aspect when acquiring

such knowledge in a bottom-up fashion as proposed in this work.

Property estimation

One of the pressing questions we faced during the property estimation de-

velopment was, assuming that an estimation framework supports n num-
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ber of property estimation methods, is it necessary to estimate each prop-

erty from each instance. For our work, we created a dataset of property

measurements in a bulk, but when a robot is exploring the environment,

it will not process all the objects in the environment at once. It will be a

gradual exploration, and in that case, is it necessary to estimate every sin-

gle property in an object and in what order the properties should be esti-

mated in an object? The second issue is, what kind of properties should be

considered? Our property estimation methods are superficial, in a sense

that they do not separate different parts of the object. For instance, a plas-

tic box is made up of a lid and a container OR that a plastic box can be

viewed from different angles which may change the property estimation

for certain properties as illustrated in the Fig. 5.3 while in our work, we

considered only a single pose: a natural pose for an object.

Figure 5.3: A plastic box is viewed from different angles which may change the
property estimations for properties such as size, shape, hollowness, support etc.

Summary

Tool substitution is a cognitively demanding activity which is distinct from

a tool use and we propose that such differentiation needs to be highlighted

as they both require different form of knowledge, representation and rea-

soning. We noted that, generalization is a central aspect of tool substitu-

tion. What is interesting to note is that while a tool can have multiple sub-

stitutes, an object can be a substitute for multiple tools. This is where gen-
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eralization plays a key role as the system has to generalize over not only the

physical structure of a tool but also how is it to be grasped, manipulated,

and transfer that generalization to a substitute. A transfer of a grasping

model or a manipulation model from a tool to a substitute without mak-

ing any alterations will lead to a failure. The question is how to attain such

generalization as any form of generalization in robotics is one of the open

research questions and a solution still eludes the researchers. We also re-

alized that there are valuable cues and theoretical knowledge offered in

cognitive science, neuroscience, psychology on tool use in animals and

humans, and robotic researchers should lean on these disciplines. Given

the complexity of a tool substitution, we believe that tool substitution re-

quires collective multidisciplinary efforts in order to perform a more the-

oretical research work to get a better conceptual understanding of the var-

ious processes and parameters that are involved. The insights we gained

have made us realize that tool substitution in general and substitute selec-

tion in particular is not a trivial problem and developing such system for a

robot would be a giant leap towards building an intelligent robot.
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C
Knowledge Bases Links

In the following, we have provided the webpage links to the knowledge

bases which we have reviewed in the Chapter 3, Sec. 3.4.2. We were unable

to find any online presence for the following knowledge bases: OMICS,

OMRKF and OUR-K.

1. KnowRob:

http://knowrob.org/

2. MLNKB:

https://web.stanford.edu/~yukez/eccv2014.html

3. NMKB:

https://tinyurl.com/y9uboh62

4. ORO:

https://www.openrobots.org/wiki/oro-server

5. PEIS:

http://www.aass.oru.se/Research/Robots/projects.html

6. Robobrain:

http://robobrain.me/about.html

7. Robobrain Source code:

https://github.com/RoboBrainCode
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D
Software Repository

All the three approaches: property estimation, knowledge generation and

substitute selection were implemented in Python programming language.

In the following we provide the git repository links to the source code,

datasets, and knowledge bases for our approaches.

Source Code

1. Property Estimation - https://gitlab.com/rock_paper_scissors/
property_estimation

2. Knowledge Generation - https://gitlab.com/rock_paper_scissors/
knowledge-generation

3. Substitute Selection - https://gitlab.com/rock_paper_scissors/
substitute-selection

Dataset

1. RoCS Dataset - https://gitlab.com/rock_paper_scissors/dataset/
-/tree/main/RoCS

2. Objects used in RoCS dataset - https://gitlab.com/rock_paper_
scissors/dataset/-/tree/main/RoCS_Objects

3. Dataset using Washington Dataset - https://gitlab.com/rock_
paper_scissors/dataset/-/tree/main/Washington_Dataset-based

Knowledge base
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1. Based on Washington dataset - https://gitlab.com/rock_paper_
scissors/knowledge-base/-/tree/main/Washingtondatasetbased

2. Based on RoCS dataset - https://gitlab.com/rock_paper_scissors/
knowledge-base/-/tree/main/RoCSbased

https://gitlab.com/rock_paper_scissors/knowledge-base/-/tree/main/Washington dataset based
https://gitlab.com/rock_paper_scissors/knowledge-base/-/tree/main/Washington dataset based
https://gitlab.com/rock_paper_scissors/knowledge-base/-/tree/main/RoCS based
https://gitlab.com/rock_paper_scissors/knowledge-base/-/tree/main/RoCS based
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