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A B S T R A C T

Magnetic resonance imaging (MRI) is gaining increasing importance for
the diagnosis and treatment of prostate cancer (PCa). One integral part
in the analysis of MRI scans is the segmentation of prostate structures,
which are needed for multiple tasks in clinical assessment of PCa, and
for the planning and monitoring of therapeutic interventions.
Convolutional neural networks (CNNs) have proven to be the top

choice for many computer vision tasks, including medical image analysis.
Consequently, a large body of research has been carried out on CNN-
based segmentation of the prostate whole gland and its subdivision into
two anatomical zones: the peripheral zone (PZ) and the transition zone
(TZ). Far less research has been conducted on the segmentation of other
structures that are relevant in PCa assessment and treatment planning.
In this thesis, we set out to close this gap by investigating not only an
improved segmentation of the whole gland, but extending the automatic
segmentation to a more detailed division of the interior prostate gland,
and to adjacent structures that are relevant for reducing the risks of
adverse therapy side effects.

In this context, we contribute novel methods that leverage supplemen-
tary data from different levels of clinical datasets to improve the accuracy
and robustness of CNN algorithms for prostate structure segmentation.
With our work, we aim to mitigate challenges in their development with
respect to prostate structures segmentation in specific, and CNN-based
methods in general. These challenges include the quality of underlying
images, the necessity of a large amount of labeled training data, and
the performance drop due to domain shift.

To overcome the lower image quality in parts of the prostate on axial
MRI scan directions, we propose a 3D anisotropic multi-stream CNN.
Our method improves the segmentation performance for the prostate
by allowing for incorporation of multiple scan directions. Moreover,
we contribute a novel, semi-supervised learning algorithm to leverage
unlabeled data for improving the segmentation outcomes and reducing
the CNN’s demand for labeled data. Lastly, we exploit that, although
the CNN’s performance drops on data from different distributions, its
knowledge can be used to improve in the new domain. We introduce
a simple yet effective semi-supervised domain adaptation technique
that improves the segmentation quality in the new domain with only
small amounts of labelled data. With our proposed methods, this thesis
takes a further step towards reliable automatic segmentation of prostate
structures. Thereby, we do not only focus on the improvement of the
CNN algorithms, but we also introduce means to make the methods
more applicable in practice.
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Z U S A M M E N FA S S U N G

Die Magnetresonanztomographie (MRT) gewinnt zunehmend an Bedeu-
tung für die Diagnose und Behandlung von Prostatakarzinomen. Ein
wesentlicher Bestandteil der Analyse von MRT-Bildern ist die Segmen-
tierung von Prostatastrukturen. Diese werden für verschiedene Aufgaben
bei der klinischen Beurteilung von Prostatakarzinomen sowie für die
Planung und Überwachung fokaler und lokoregionaler therapeutischer
Eingriffe benötigt.
Convolutional Neural Networks (CNNs) haben sich als primäre Lö-

sung für viele Aufgaben im Bereich der Computer Vision erwiesen. Dies
schließt auch die medizinische Bildanalyse mit ein. Folglich wurden
zahlreiche Forschungsarbeiten zur CNN-basierten Segmentierung der
gesamten Prostata und ihre Unterteilung in zwei anatomische Zonen
(periphere Zone (PZ) und Übergangszone (TZ)) entwickelt. Weit weni-
ger erforscht wurde die Segmentierung anderer Strukturen, die für die
Beurteilung und die Behandlungsplanung von Prostatakrebs relevant
sind. In dieser Arbeit beabsichtigen wir diese Lücke zu schließen, indem
wir nicht nur eine verbesserte Segmentierung der gesamten Prostata
anvisieren, sondern die automatische Segmentierung auf eine detail-
liertere Unterteilung der inneren Prostata ausweiten. Darüber hinaus
weiten wir die Segmentierung auf benachbarte Strukturen aus, die für
die Reduktion von Therapienebenwirkungen relevant sind.

In diesem Zusammenhang stellen wir neue Methoden vor, die zusätz-
liche Daten von verschiedenen Ebenen klinischer Datensätze nutzen,
um die Genauigkeit und Robustheit von CNN-Algorithmen zur Segmen-
tierung der Prostatastruktur zu verbessern. Mit unserer Arbeit zielen
wir darauf ab, Herausforderungen bei der Entwicklung und Anwendung
von CNN-Algorithmen in Hinblick auf Prostatasegmentierung im Spe-
ziellen und CNN-Methoden im Allgemeinen, zu verringern. Zu diesen
Herausforderungen gehören die Qualität der zugrundeliegenden Bilder,
die Notwendigkeit großer Mengen an gelabelten Trainingsdaten sowie
Performanceeinbußen aufgrund des sogenannten Domain-Shifts.
Um die geringere Bildqualität in Teilen der Prostata bei axialen

MRT-Scanrichtungen zu kompensieren, stellen wir ein anisotropes 3D-
Multistream-CNN vor. Unsere Methode verbessert die Segmentierungs-
qualität für die Prostata, indem es die Einbeziehung mehrerer Scan-
richtungen ermöglicht. Darüber hinaus führen wir einen neuartigen
semi-supervised Algorithmus ein, der ungelabelte Daten zur Verbes-
serung der Segmentierungsergebnisse nutzt und somit den Bedarf des
CNN an annotierten Daten reduziert. Des Weiteren machen wir uns
zunutze, dass die Performance des CNN bei Daten aus verschiedenen
Verteilungen zwar abnimmt, dessen Wissen aber genutzt werden kann,
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um die Ergebnisse auf neuartigen Daten zu verbessern. Wir stellen ein
einfaches aber effektives semi-supervised Verfahren zur sogenannten
Domain Adaptation vor, das die Segmentierungsqualität in der neuen
Domain mit einer kleinen Menge an gelabelten Daten verbessert.
Mit den von uns entwickelten Methoden leistet diese Arbeit einen

Beitrag für eine zuverlässigere automatische Segmentierung von Pro-
statastrukturen. Dabei haben wir unseren Fokus nicht nur auf die Ver-
besserung von quantitativen Ergebnisse der CNN-Algorithmen gelegt,
sondern auch auf die Verbesserung ihrer Anwendung in der Praxis.
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1I N T R O D U C T I O N

1.1 motivation

In many Western countries, such as the United States of America and
Germany, prostate cancer (PCa) is the cancer most frequently diagnosed
in men (Siegel et al., 2020). The widespread application of screening
methods in industrialized nations has led to an increased detection
rate of early-stage cancer and thus decreased the mortality rate of
PCa. On the other hand, this screening also enhances the detection
of less aggressive and slow-growing tumors which may not cause any
harm. Consequently, the early detection rates have led to a discussion
about overdiagnosis and overtreatment, which can come with risks and
complications for the patient who can then die of causes other than the
cancer itself (Loeb et al., 2014).

Thanks to its high soft-tissue contrast, clinical workflows of prostate
cancer increasingly involve multi-parametric magnetic resonance imaging
(mpMRI) to enhance the diagnosis, localization, staging and therapy
of PCa. For example, tissue biopsies are still the standard of care for
diagnosis, and mpMRI as a planning and guiding tool can increase
the diagnostic accuracy and reduce unnecessary biopsies (Verma et al.,
2017; Leest et al., 2019). By supporting a more precise characterization
of the disease, the employment of mpMRI leads to an improved risk
stratification of patients. Therefore, instead of treating the whole gland
aggressively with adverse side effects negatively impacting the quality
of life, therapy alternatives like active surveillance or focal therapy can
be considered (Litwin and Tan, 2017).
With the widespread use of magnetic resonance imaging (MRI) in

the clinical routine, the robust and reliable automatic analysis of MRI
images gains increasing importance. Deep learning (DL) techniques,
and convolutional neural networks (CNNs) in particular, are nowadays
the top performers in the medical image analysis field (Litjens et al.,
2017b) and have the potential to improve, accelerate and automate
different tasks in the clinical routine, for example in diagnosis (Esteva
et al., 2017), treatment planning and monitoring (Wang et al., 2020a;
Laukamp et al., 2019), as well as patient and physician education (Seok
et al., 2021; Engelhardt et al., 2018). One integral step in several clinical
and research workflows for PCa is the segmentation of the prostate,
and its interior and adjacent structures on T2-weighted (T2w) MRI
scans. Segmenting the structures manually is very time-consuming
and requires medical expertise. Moreover, it is subject to variations
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introduction

among different annotators. Therefore, methods that obtain accurate
and reliable automatic segmentation results are highly desired.

limitations of current methods While the research on
automatic DL-based segmentation of prostate structures is an active
research field, and has yielded results in the range of human readers,
the proposed algorithms have limitations and challenges regarding
prostate structures segmentation in specific, and CNN-based methods
in general. The limitations that we set out to overcome in our work
include (1) previous segmentation methods’ neglect of a more fine-
grained interior and adjacent anatomy of the prostate, (2) their input
relying only on image data that suffers from lower quality for the extreme
parts of the prostate, (3) CNNs’ general demand for large quantities of
labeled training data and (4) their performance drop on unseen datasets.
There exist further challenges and limitations of CNNs, such as

(uncalibrated) overconfident predictions (Mehrtash et al., 2020) and the
incapability of life-long learning without forgetting when moving from
one task to another (Singh et al., 2020). However, in this thesis, we
target the four shortcomings listed above:

1. Previous works on prostate segmentation have mainly focused on
the segmentation of the whole gland and its two major zones: the
transition zone (TZ) (central gland) and the peripheral zone (PZ).
However, with an increasing use of MRI in various applications,
the consideration of other structures becomes relevant. A more
detailed analysis of the inner anatomy of the prostate could, for
example, provide better landmarks for correlating MRI data with
other imaging modalities as histopathology (Kwak et al., 2016),
and enable a more standardized reporting of prostate exams
(Turkbey et al., 2019). Also, automatic segmentations of critical
structures for PCa treatment can potentially automate a better
planning of surgery or radiation therapy (Wake et al., 2020) that
could reduce the side effects and risks of PCa therapy (Nguyen
et al., 2017; Mungovan et al., 2017).

2. Methods have thus far mainly relied on the axial T2w scan of
the prostate. The T2w acquisition allows for a good distinction of
anatomy, but suffers from partial volume effects due to its high
slice thickness. Consequently, relying only on one scan direction
prevents the exact distinction of the gland boundaries in parts of
the prostate.

3. As is the case for all DL-based methods, the CNNs need to be
trained with a large amount of labeled data. While researchers
working on the analysis of other image types (e.g., street scenes
or text recognition) can resort to crowd-sourcing tools (Kovashka
et al., 2016), it is at least unclear how this can be carried out in
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1.2 scope and contributions

the medical domain. Here, good-quality labeled data is costly to
obtain and needs to involve medical experts.

4. One other major drawback of modern neural networks is their
problem with the so-called domain shift, which causes models
trained on a dataset from one domain, to substantially degrade in
performance on data from another domain. In the medical context,
a domain can be another scanner, site or imaging protocol. To
circumvent the need to create a new training dataset for each
new domain, different domain adaptation methods or training
variants have been proposed to achieve higher robustness of the
models. However, they largely require either collecting data from
a variety of domains, or the data from the original domain needs
to be available, which is often impractical due to the costly data
annotation and privacy concerns of medical data.

1.2 scope and contributions

In this thesis, we address the limitations described above. Besides
considering the whole gland and its two major zones, we additionally
targeted other structures in the course of this thesis that have not yet
been investigated for automatic segmentation.

Specifically, we examined the feasibility of segmenting a more detailed
anatomy of the prostate, extending the two-zones segmentation by the
anterior fibromuscular stroma (AFS) and the distal prostatic urethra
(DPU), which is enclosed by the prostate. Moreover, we apply CNN-
based segmentation to critical structures for PCa treatment, namely the
external urethral sphincter (EUS) and the neurovascular bundles (NVB),
whose damage is correlated with urinary complications and sexual
dysfunction.

In this context, we introduce novel methods that exploit different types
of data, that are easily available in clinical workflows to improve the
methods’ performance. Basically, we investigated using data originating
from three different levels of clinical datasets:

• Patient-level: According to the standard protocol for mpMRI
acquisitions (Turkbey et al., 2019), it is essential to acquire not
only the axial T2w scan, but at least one additional scan direction.
We studied the incorporation of additional scan directions (i.e.,
multi-planar data) to reduce segmentation errors in regions with
high partial volume effect.

• Intra-domain-level: As labelling data is expensive and tedious,
unlabeled data is easier to obtain and more often available from
clinical partners. Therefore, we developed a semi-supervised seg-
mentation method, and investigated how leveraging extra unlabeled
data of the same domain can support an improved segmentation.
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• Inter-domain-level: Although performance of CNN methods de-
grades due to the domain shift, there is still valuable knowledge
from the external domain available in the models (that were
trained on the original domain data). We studied how this infor-
mation can be exploited to improve segmentation in a new domain
without the necessity to access the original domain data.

Although our focus for all methods was on the application of prostate
MRI, we investigated the generalization capabilities for the algorithms
developed to exploit unlabeled data and external domain knowledge on
other tasks and types of data. We could demonstrate that the methods
can be beneficial to other problems as other segmentation targets and
other modalities.

structure of the thesis In this work, we investigated the
usage of supplementary data and knowledge for an improved segmenta-
tion of different prostate structures. To describe the context and our
methods, this thesis is structured as follows:

• Chapter 2 introduces the medical background and technical fun-
damentals for this work.

• Chapter 3 outlines our proposed multi-stream CNN architecture
to incorporate multi-planar data in order to improve segmentation
performance for the prostate gland.

• Chapter 4 presents a semi-supervised segmentation method, that
adds unlabeled data for the task of a detailed zonal anatomy
segmentation for the prostate.

• Chapter 5 describes a domain-adaptation method for the seg-
mentation of critical structures for PCa therapy that relaxes the
requirement of original domain data being available.

• Chapter 6 concludes this thesis by giving a brief recap of the meth-
ods and contributions of our work and discussing their limitations
and potential future work.
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2P R E L I M I N A R I E S

In this chapter, we provide the fundamentals of the medical and technical
background for a better framing of the proposed methods and their
clinical context. We cover the medical background by including details
about the prostate anatomy, PCa, and prostate MRI in Section 2.1.
With respect to the technical fundamentals, in Section 2.2, we first

outline main CNN architectures that are encountered for medical im-
age segmentation, and cover methods that are used to measure the
uncertainty of network predictions. We continue with basics of semi-
supervised learning (SSL) techniques (Section 2.3), which we employ
in the methods of Chapters 4 and 5. Lastly, in Section 2.4 we provide
details about methodological concepts used throughout this work, which
include evaluation measures and implementation details about software
and packages used.

2.1 medical background

In the following, we cover the medical background for our work. This
section starts with an introduction into the anatomy of the prostate
and its surrounding structures in Section 2.1.1, and continues with
information on PCa and its diagnosis and therapies (Section 2.1.2). The
medical background is concluded with a summary of the characteristics
of MRI scans that are acquired for PCa detection and therapy planning
(Section 2.1.3).

2.1.1 Prostate Anatomy

The prostate is a walnut-sized fibromuscular gland in the male repro-
ductive system. The secretion produced in the prostatic gland makes up
together with the secretion from the seminal vesicles the main part of
seminal fluid (Standring et al., 2016). The gland surrounds the prostatic
urethra and is located below the bladder and anterior to the rectum
(see Figure 2.1), through which it can be palpated. The superior part of
the prostate (base) is contiguous with the bladder neck. The inferior
part (apex) encloses the connection of the prostatic and the membra-
nous urethra (Standring et al., 2016) and is contiguous with the pelvic
diaphragm (Hautmann and Gschwend, 2014). The prostate lacks a true
histological capsule, but it is enclosed by an outer band of fibromuscular
tissue that is incomplete anteriorly and at the apex (Turkbey et al.,
2019).
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preliminaries

Figure 2.1: Location of the prostate in the male reproductive system. Image
courtesy of ALTA Klinik GmbH, Bielefeld, Germany.

The prostatic urethra is dilated in the center of the prostate. This
part of the urethra is named verumontanum (or seminal colliculus).
Here, the ejaculatory ducts, which drain seminal fluid from the seminal
vesicles and spermatozoa from the testis (via vas deferens), join the
urethra. The prostatic urethra is enclosed by two different sphincter
mechanisms (see Figure 2.2). The internal urethral sphincter is located
at the bladder neck. Its main role is to prevent retrograde ejaculation
into the bladder (Jacob, 2008). The EUS is located below the apex of
the prostate within the pelvic diaphragm. It may also extend into the
apex, depending on the individual shape of the men’s prostate (Lee
et al., 2006). The EUS has a key role in maintaining urinary continence
(Jacob, 2008).

Nerves and vessels, which supply the prostate and neighboring struc-
tures, run posterolateral to the prostate. However, this NVB is not
an anatomically defined cord, but rather a complex network (’veil’)
that ’embraces’ the gland posteroranterior, thinning out in the anterior
direction (Hautmann and Gschwend, 2014). As the NVB continues to
be the cavernous nerves that facilitate penile erection, the damage of the
bundles during surgery can cause impotence (Standring et al., 2016).

Different concepts for the schematic division of the prostate exist. We
follow the histological division by McNeal (1981). In this, the prostate
is comprised of four histological zones: the TZ, the central zone (CZ),
the PZ and the AFS (see Figure 2.3). The CZ encloses the ejaculatory
ducts, and makes up approximately 20 % of prostate’s volume in normal
anatomy of adult men aged younger than 40 years. The TZ surrounds
the urethra proximal to the verumontanum and accounts for only 5%
of the volume. With 70% of prostate’s volume, the PZ is the largest
zone. It is a cup-shaped structure that defines the apex of the prostate
and encloses the transition zone (Standring et al., 2016). The anterior
part of the prostate is covered by the AFS, which is a non-glandular
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2.1 medical background

Figure 2.2: Prostate in coronal section with internal and external urethral
sphincter. Figure from Drake et al. (2010), reprinted with permis-
sion from Elsevier.

fibromuscular structure that extends from the apex to the bladder neck
(Standring et al., 2016).

With the age of 45 to 50 years, the size of the prostate extends
due to benign prostatic hyperplasia (BPH). While the gland weighs
approximately 8 g in youth, its weight may range between 40 g and
150 g when the prostate enlarges in the course of BPH (Standring et al.,
2016). Since this age-related condition is caused by expansion of the TZ,
BPH affects the overall ratio of the zone’s volume. When the benign
enlargement develops, the TZ will make up for an increasing amount
of the gland (Turkbey et al., 2019). Consequently, the other zones get
compressed and the CZ can often not be distinguished anymore from
the PZ in MRI scans.

2.1.2 Prostate Cancer

With 191,930 new cases and more than 33,000 estimated deaths in the
United States of America, PCa is the most common type of cancer and is
the second most deadly cancer among men (Siegel et al., 2020). However,
thanks to the recent advances in cancer treatment and diagnosis, the
death rate decreased by more than 50% since 1993, and the 5-year
survival rate for all stages combined is currently 98% for men in the
United States of America (Siegel et al., 2020).
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Figure 2.3: The four zones of the prostate: transition zone, central zone, periph-
eral zone and anterior fibromuscular stroma. Figure from Standring
et al. (2016) and Wein et al. (2012), reprinted with permission
from Elsevier.
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Among the different factors that are discussed in the literature to
elevate the risk of PCa, age is considered as the main risk factor for
developing PCa. For example, the average age of diagnosis for prostate
cancer worldwide is 66 years (Rawla, 2019).

Approximately 70 - 75% of PCa arises in the PZ, and 20 - 30% in the
TZ (Turkbey et al., 2019). It occurs in a majorly multifocal manner,
often with varying grades of malignancy in the different tumors (Haut-
mann and Gschwend, 2014). In the course of growing, the cancer often
penetrates through the prostate capsule in the area where small nerve
branches enter the prostate in the base and apex (Turkbey et al., 2019).
In higher stages, the tumor may infiltrate proximal structures such as
seminal vesicles, bladder neck, EUS, rectum, levator ani muscle and/or
pelvic wall (Hautmann and Gschwend, 2014). In metastatic stages of
the disease, the tumor can spread into the proximal lymph nodes, and
into the skeletal system (Hautmann and Gschwend, 2014).
The increasing detection rate of early stage tumors makes it crucial

to differentiate between significant and insignificant PCa. Epidemio-
logically, insignificant PCa is defined as harmless, when, based on the
lifetime risk estimates, no symptomatic or clinical PCa will develop
(Van der Kwast and Roobol, 2013). Although guidelines for the classifi-
cation of insignificant PCa exist, the specific parameters and thresholds
for its determination are widely discussed regarding overdiagnosis and
overtreatment reduction (Van der Kwast and Roobol, 2013).

diagnosis In advanced stages, patients with PCa may develop
symptoms as problems with urination (because the tumor may ob-
struct the urethra) or skeletal pains from metastases (Hautmann and
Gschwend, 2014). If interpreted correctly, they can indicate the pres-
ence of PCa. Also, some tumors can be palpable during digital rectal
examination (Hautmann and Gschwend, 2014).

The consideration of the prostate-specific antigen (PSA) value as an
indicator is becoming more and more common and is the most important
parameter for the detection of early stage PCa (Gasser, 2015). On the
other hand it is widely discussed with respect to overdiagnosis (Litwin
and Tan, 2017). The PSA value can also elevate due to inflammation
or BPH. As its level correlates with the size of the prostate, the volume
of the prostate or the transition zone should be taken into account for
an improved interpretation of the PSA value (Gasser, 2015).
In recent years, mpMRI has gained increasing importance in the

enhanced diagnosis of prostate cancer. The final diagnosis of PCa,
however, can only be made based on the histological evaluation of
prostate tissue gathered during needle biopsy (Litwin and Tan, 2017).
Conventionally, schematic biopsies with transrectal ultrasound (TRUS)
guidance is carried out as standard of care (Litwin and Tan, 2017). The
precision of biopsies can be improved by targeted biopsies that rely
on the guidance of MRI, such as MRI-TRUS fused biopsy, cognitive
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biopsy after a visual review of MRI or in-bore MRI percutaneous biopsy
(Litwin and Tan, 2017).

treatment Depending on the grade of PCa and other factors
such as life expectancy, different approaches are subsequent to staging.
Men with lower life expectancy or low-risk PCa, can be candidates for
watchful waiting (relieving symptoms with palliative intent) or active
surveillance (recurrent imaging and biopsy with curative intent for men
developing significant disease) (Litwin and Tan, 2017).

Radical prostatectomy is recommended for patients with localized and
non-metastasized PCa that is limited to the prostate gland (Hautmann
and Gschwend, 2014). Prostatectomy includes the surgical removal of the
prostate and the seminal vesicles. To reduce the risk of complications as
erectile dysfunction or incontinence, nerve-sparing or EUS-sparing surg-
eries can be considered for patients with non-extraprostatic extending
tumors (Hautmann and Gschwend, 2014).
An alternative to prostatectomy for patients at this stage is radia-

tion therapy that has the potential to reduce the side effect on sexual
function and urinary control. On the other hand, it is often accompa-
nied with nocturial and bowel dysfunctions (Litwin and Tan, 2017).
Focal procedures like brachytherapy, high-intensity-focused ultrasound
or cryotherapy have less side effects than prostatectomy or radiation
therapy (Gasser, 2015; Litwin and Tan, 2017). However, they are not
all part of a clinical routine yet (Litwin and Tan, 2017). For more
advanced (metastatic) stages of PCa, hormon deprivation therapy and
chemotherapy are the main treatment options (Litwin and Tan, 2017).

2.1.3 Prostate MRI

To enhance the diagnosis, localization, and therapy planning or guidance
of PCa, mpMRI that combines anatomic T2w scans with functional and
physiological assessment is gaining increasing importance. The current
guidelines for standardizing imaging protocols and the diagnosis of PCa
on the basis of mpMRI, are condensed in the Prostate Imaging - Report-
ing and Data System (PI-RADS) version 2.1 document (Turkbey et al.,
2019). According to PI-RADS v2.1, mpMRI for the prostate should
include T1-weighted (T1w) and T2w sequences as well as diffusion-
weighted imaging (DWI) and dynamic contrast-enhanced (DCE) im-
ages (see Figure 2.4). The images should be obtained by 1.5 or 3 tesla
scanners with endorectal or external (surface) phased array coils or the
concurrent use of both coil types.

The purpose of T1w sequences is the detection of hemorrhage in the
prostate or seminal vesicles, and skeletal or nodal metastases when
combined with a contrast agent (Turkbey et al., 2019). T2w scans pro-
vide anatomic details with high soft tissue contrast which enables the
distinction of prostate zones (see Figure 2.5 for examples of T2w scans).
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(a) T2w (b) DCE (ktrans)

(c) DWI (d) ADC map

Figure 2.4: mpMRI of the prostate with clinical significant lesion in the pe-
ripheral zone (orange arrow).

Moreover, extraprostatic extension of tumors and abnormalities in the
prostate tissue may be determined (Turkbey et al., 2019). DWI measures
the diffusion motion of water molecules in the tissue. Tumors restrict
the motion of the molecules and can thus be differentiated in DWI
scans. Apparent diffusion coefficient (ADC) maps that may enhance
diagnostic performance, are calculated from DWI scans by acquiring
the images with different gradient amplitudes (b-values). DCE MRI
requires the injection of a contrast agent. Its temporal acquisition allows
for the computation of different dynamic parameters of the agent within
the tissue (Somford et al., 2008), e.g. uptake and wash-out parameters
of the contrast agent. Because tumors cause increased vascularization
(angiogenesis) during their growth, they may be distinguished from
healthy tissue in DCE images (Somford et al., 2008). However, as the
vascularization of prostate tumors is heterogeneous, DCE is rather
considered as a ’back-up’ modality and may support the radiologist
in detecting smaller lesions (Turkbey et al., 2019). The different scan
modalities cover the whole prostate and consist of multiple axial 2D
slices, which are acquired gap-free with higher in-plane resolution when
compared to the slice-thickness. For T2w images, there should be ad-
ditional acquisitions in at least one other orthogonal plane (coronal
and/or sagittal) (Turkbey et al., 2019). MRI scans of the prostate do
not have standardized intensity units as, for example, the Hounsfield
unit in computer tomography (CT) scans.
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Philips 1.5T, combined
endorectal and surface
coil

Siemens TrioTim 3T, sur-
face coil

Siemens Skyra 3T, sur-
face coil

Figure 2.5: Example T2w scans. For all examples, an axial slice of the midgland
is depicted. One can see the high variation in the scans caused by
different scanners, acquistion protocols and medical conditions.

PI-RADS 2.1 assessment includes a five-point scale that expresses
the likelihood of clinically significant PCa being present. It takes into
account the anatomical zones of the prostate. Depending on the zone,
the MRI modalities are interpreted differently for assigning PI-RADS
scores. Different benign diseases, such as prostatitis, cysts, BPH, fibrosis,
etc., change the appearance of the prostate on MRI and make PCa
diagnosis and zonal distinction more challenging (Stabile et al., 2020).
Although diagnostic capabilities in detection and biopsy planning/

execution can be increased through mpMRI, this imaging technique is
more often encountered in academic centers and less often in medical
practices in the US and Germany (Stabile et al., 2020; Saar et al.,
2020). Moreover, its widespread application is impeded by its high cost
(Hutchinson and Lotan, 2017). One common problem with mpMRI is the
high inter-reader variability despite systems as PI-RADS v2.1 (Stabile
et al., 2020). Within the last years, the performance of computer-aided
diagnosis (CAD) has increased systematically and can be considered as
essential enhancement to human diagnosis (Stabile et al., 2020), having
the potential to decrease the inter-reader variability.

2.2 convolutional neural networks

Having covered the medical background for this thesis, the following
sections provide details on the technical fundamentals, beginning with
CNNs and the main CNN architectures applied to medical segmentation.
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Figure 2.6: Design of a CNN proposed by LeCun et al. (1998). The convo-
lutional kernels are slid along the image in the input layer. The
pooling operation (’subsampling’) decreases the resolution of the
image or feature maps and increases the spatial context for subse-
quent layers. The final layers in this architecture are fully connected
to allow for a classification output. Figure from LeCun et al. (1998),
© 1998 IEEE.

CNNs are a class of artificial neural networks that dominate the
current field of machine learning for images. They have been originally
proposed by LeCun et al. (1989) for handwritten zip code recognition,
but have not found their breakthrough until the successful introduction
of the AlexNet in 2012 by Krizhevsky et al. (2012) for the ImageNet
challenge (Deng et al., 2009). Since then, the top image analysis methods
where progressively based on CNNs.

CNNs are conceptually inspired by the visual cortex of humans and
are designed to be more efficient for data with grid-like topology, such
as images, than other fully-connected architectures, where each node
in one layer is connected to every node in the immediate previous and
next layer. Having individual connections for each pixel in the image
is computationally very expensive and makes the network prone to
overfitting. Moreover, considering the individual pixel per connection,
discards the spatial information of the pixel’s neighborhood.

CNNs have two key components: convolutional and pooling operations
(see Figure 2.6). Convolutional operations allow sharing of parameters
for different regions of the image, because the convolutional filters, or
kernels, are slid along the image and apply the same transformation
in different locations, which leads to a drastic reduction of parameters
compared to the fully-connected networks. Moreover, it makes CNNs
equivariant to translation, which describes that the output changes in
the same way as the input (Goodfellow et al., 2016).

The architecture of a CNN is organized in a layer-wise manner. Each
layer in the CNN consists of a set of convolutional kernels (filters)K with
weights W = {W 1, W 2, ..., WK} and biases B = {b1, b2, ..., bK}. Each
kernel generates a feature map of its input which is then transformed
nonlinearly in an element-wise manner. In a CNN, the kernels of layer l
take as input the feature maps X l−1 of its previous layer to generate
the features for layer l:

X l
k = σ(W l−1

k ∗X l−1
k + bl−1

k ) , (2.1)
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Figure 2.7: Original architecture of the FCN proposed. Image from Long et al.
(2015), © 2015 IEEE.

Figure 2.8: Upsampling mechanism for a more detailed output of the FCN.
Image from Long et al. (2015), © 2015 IEEE.

where ∗ denotes the convolution operation and σ the nonlinear function.
Pooling operations are applied in CNNs to increase the spatial context

throughout the layers. These operations summarize their input (cluster
of feature values) into one single value, commonly by extracting the
maximum (max pooling) or the average (average pooling).
The parameters W and B in a CNN are learned through optimiz-

ing the objective function, the loss, by means of the gradient descent
optimization. For this, the gradient for the loss with respect to every
parameter in the CNN needs to be calculated, which is performed by
the backpropagation algorithm (Rumelhart et al., 1986).

In the following sections, we outline the most prominent CNN archi-
tectures designed for segmentation tasks (Section 2.2.1). Moreover, in
Section 2.2.2, we describe means to estimate prediction uncertainty of
neural networks that are used in our methods described in Chapters 4
and 5.
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2.2.1 Segmentation Architectures

For segmentation, early approaches solved the problem of pixel-wise
labeling by pixel-wise classification using one patch per pixel. Those
methods employed classification networks with convolutional layers in
the beginning and fully connected layers in the last part of the network.
Due to the fully connected layers, the networks could not exploit the size
invariance of the convolutional layers and therefore the images had to
be resized to specific dimensions. Furthermore, the methods were rather
slow because multiple forward-passes were required per prediction of a
dense segmentation map.
To account for these shortcomings, Long et al. (2015) proposed the

fully convolutional neural network (FCN) in 2015 (see Figure 2.7). For
the FCN, Long et al. (2015) exchanged the fully connected layers
with convolutional layers, which were subsequently upsampled (32× by
fractionally strided convolutions (deconvolution) in one step) to obtain
a dense prediction map of the input image size. To forward lower-level
but higher-resolution information to the 32× upsampled map, links
were introduced that upsample the output of earlier convolution layers
(see Figure 2.8). These finer predictions are then added to the final
output.
Later in 2015, Ronneberger et al. (2015) proposed the U-Net archi-

tecture as an extension to the FCN. The U-Net and variants thereof
have so far been the most commonly used network architecture for
image segmentation, which is reflected in its high Google citation score
(> 29,5001). As this architecture forms the basis for our proposed
methods, we explain it in more detail in the following paragraphs.

u-net The name U-Net is inspired by its U-shaped architecture that
originates from the two symmetric paths (see Figure 2.9): the encoder
(contracting path) which extracts features from the input image and
compresses it to less spatial extent and the decoder (expansive path)
which incrementally upsamples the features back to the input image
size. In contrast to the FCN, the decoder has a larger number of filters
(feature channels) that should allow the network to "propagate context
information to higher resolution layers" (Ronneberger et al., 2015). The
encoder and decoder are connected through a bottom layer which holds
the latent features of the network.

Both paths consist of different stages that act on different resolution
levels. Each stage is a convolutional block which has two convolutional
layers with a 3 × 3 kernel and a stride of 1. The convolutional layers
are each followed by a rectified linear unit (ReLU) function introducing
nonlinearity into the network:

σ(x) = max(0,x) . (2.2)

1 as of August 11th, 2021
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Figure 2.9: Original architecture of the U-Net. The blue boxes represent feature
maps with the number of their channels noted on top and their
in-plane dimensions noted at their side. Figure from Ronneberger
et al. (2015), reprinted with permission from Springer, © 2015.

Each stage in the encoder is followed by a downsampling operation,
which increases the receptive field of the network. In the original U-Net
architecture, the dowsampling is carried out via 2 × 2 max pooling with
a stride of 2. In the literature U-Net implementations exist that perform
the downsampling by means of convolutions with strides larger than
one (strided convolutions) instead of max pooling. Furthermore, the
number of feature channels is doubled with each stage on the network’s
encoder and at the bottom most layer to increase the capacity.

Symmetrically, each stage of the decoder begins with an upsampling
operation and the number of feature channels is halved in each con-
volutional block. The upsampling is carried out with deconvolutions
in the original U-Net method (Ronneberger et al., 2015) which allows
learning a nonlinear upsampling, but it is also common to apply plain
bilinear interpolation. The upsampled feature channels are concatenated
with the features from the encoder’s same resolution level right before
feeding them into the convolutional block. Similar to the FCN, this
allows to propagate the finer details from earlier stages of the network
and enabling a finer segmentation map as output.
The network concludes with a final 1 × 1 convolution layer that

outputs the c channels, with c being the number of classes of the
segmentation task. It is followed by a task-specific activation function,
typically a sigmoid function for binary segmentation:

sigmoid(z) = 1
1 + e−z

. (2.3)
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Figure 2.10: Schematic illustration of a residual (He et al., 2016) and a dense
block (Huang et al., 2017b).

In multi-class settings, the softmax-function is used:

softmax(zi) =
ezi∑
i e
−zi

for i = 1..c . (2.4)

extensions of the u-net The basic architecture of the U-Net
has been modified to a diverse collection of variants over the years. We
now give a brief overview about most commonly observed variants or
extensions that have also been reused and applied in the context of
prostate segmentation.

• 3D variant: The U-Net is mostly applied in its (original) 2D
variant. However, for volumetric medical images, a 3D version was
proposed by Çiçek et al. (2016) and Milletari et al. (2016). The
main difference is that instead of 2D operations, 3D operations
(convolutions, max pooling and upsampling) are applied. This
allows an end-to-end processing and prediction of volumetric scans.
Because the 3D operations are computationally more expensive,
Milletari et al. (2016) used less feature channels than the 2D
U-Net (Ronneberger et al., 2015).

• residual blocks: Residual learning has been introduced by He et
al. (2016) in their ResNet to enable better learning for deeper
networks. Instead of learning the desired feature mapping H(x)
of the input x in the stacked layers directly, He et al. suggested
to learn the residual mapping F(x) = H(x)− x. This is realized
by implementing shortcut connections that add the input x to
the output of the stacked layers (see Figure 2.10). The authors
hypothesize that it is easier for the network to optimize such a
residual mapping than the direct mapping itself. Furthermore,
residual connections enable a better gradient flow and mitigate
the vanishing gradient problem (Nielsen, 2015) encountered in
deep models.

• dense blocks: Huang et al. (2017b) evolved the residual connection
concept within their proposed method to all subsequent layers.
Thus, within a block of layers (with same feature map sizes), every
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layer is connected by all its preceding layers and furthermore
passes its feature to subsequent layers (Figure 2.10). In contrast
to the residual connections, the previous layer’s information is not
added but concatenated. Networks that incorporate dense blocks
are supposed to require less parameters, as the network does not
need to relearn redundant features. Similar to the ResNet (He
et al., 2016), this concept enables a better gradient flow, allowing
much wider and deeper networks.

• dilated convolutions: Pooling operations are included in CNN ar-
chitectures to increase the network’s receptive field. However, they
also reduce the resolution of the feature maps. Dilated convolu-
tions have been proposed by Yu and Koltun (2016) to increase
the receptive field without compromising the resolution. This is
realized by widening the convolutional kernel by inserting "holes".

• multi-scale mechanisms: Different concepts have been proposed,
that exploit information on multiple scales for medical image
segmentation. One example are cascaded networks, for example,
used by Pan et al. (2019), who employed two U-Nets. Their
second network obtains as input a cropped image, whereas the
cropping information is derived from the first network output. On
a more detailed level, multi-scale information can be obtained by
combining convolutions with different kernel sizes in one block,
as for example proposed by Jia et al. (2020) with their pyramid
convolutional architecture.

• deep supervision: In the original U-Net setting, the loss of the
network is computed only based on last layer’s prediction. Deeply
supervised approaches introduce multiple auxiliary outputs at
different resolution levels of the decoder (Figure 2.11). The overall
loss of the network is then obtained by additionally incorporating
the auxiliary outputs. This allows to inject gradients directly into
deeper layers of the network (Isensee et al., 2021).

2.2.2 Uncertainty Measures

Modern neural networks have achieved state-of-the-art results for various
tasks. Yet, despite their high accuracy, their output was found to be
overconfident in their predictions and not well-calibrated regarding
their predictive uncertainty (Guo et al., 2017) (see Figure 2.12 for an
example). Thus, even when the softmax output of the model is high,
its prediction can be uncertain (Gal and Ghahramani, 2016). This is
particularly problematic in settings when downstream decisions, as in
autonomous driving or computer-aided diagnosis, rely on the network’s
confident faulty predictions instead of asking for (manual) interventions
in the case of uncertainty. Moreover, uncertainty measures play an
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Figure 2.11: Illustrative example for a deeply supervised U-Net. The red boxes
in the network represent the output layers.

important role in the field of SSL, where the uncertainty information is
leveraged to reduce the incorporation of false predictions (of unlabeled
data) into the model refinement (Sedai et al., 2019; Li et al., 2020b; Nie
et al., 2018).
There are basically two different kinds of sources for uncertainty in

machine learning: aleatoric and epistemic uncertainty (see Figure 2.13).
Aleatoric uncertainty is due to ambiguities or noise inherent in the
data, for example, caused by sensor noise (Kendall and Gal, 2017).
Epistemic uncertainty represents uncertainty in the model parameters
(Kendall and Gal, 2017). In contrast to aleatoric uncertainty, epistemic
uncertainty is reducible, for instance, by including more data into the
training of the network (Hüllermeier and Waegeman, 2021).

Several works have been proposed in the literature, that aim to capture
uncertainty for neural networks. The research line of Bayesian neural
networks proposes mathematically grounded solutions that output the
uncertainty of the methods (Gal and Ghahramani, 2016). Instead of
learning deterministic network parameters, Bayesian neural networks
learn the posterior distributions for their weights, given the training
data. This allows for the inference of a predictive distribution (of label
probabilities) instead of a single point estimate, as in traditional neural
networks. The methods are trained using Bayesian inference to find the
posterior distribution of the model parameters. As Bayesian inference
is computationally intractable (it requires integration over the whole
model parameter space), various approximating methods have been
proposed, such as Markov Chain Monte Carlo concepts (Neal, 2008)
or variational Bayesian methods (Blundell et al., 2015). The output
quality of Bayesian neural networks, however, depends on defining the
right prior distributions for the model parameters and the quality of
approximation (Lakshminarayanan et al., 2017). Moreover, they are
hard to implement and slow to train (Lakshminarayanan et al., 2017).

In the context of medical image segmentation, several concepts have
been included in order to model the uncertainty of the outcome, for
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Figure 2.12: Examples for uncalibrated and calibrated (via deep ensembles)
predictions. The model was trained on MRI acquired with a sur-
face coil. The first row illustrates outcomes for an image from the
training domain (top row) and the second row shows an outcome
for an out-of-distribution image (acquired with endorectal coil).
The histograms on the right show the calibrated class probabilities
for both example images. The wide distribution in the bottom
histogram indicate that it is an out-of-distribution example. Image
from Mehrtash et al. (2020), © 2020 IEEE.

example, based on conditional variational autoencoders (Sohn et al.,
2015; Baumgartner et al., 2019; Kohl et al., 2018; Bian et al., 2020)
discriminative networks (Nie et al., 2018) or on sampling different
augmentations of the test input (Venturini et al., 2020). Nonetheless,
the two majorly encountered concepts in medical image segmentation
are Monte Carlo (MC) dropout (Gal and Ghahramani, 2016) and deep
ensembles (Lakshminarayanan et al., 2017), which will be described
below. For a broader overview about uncertainty estimation techniques
for DL applications, we refer to the recent review in (Abdar et al., 2021).

monte carlo dropout Dropout is usually employed in neural
network architectures to reduce overfitting (Srivastava et al., 2014). By
"dropping out" a random fraction of units (neurons) of the network at
each training stage, the network is temporarily trained on a sub-network,
inducing a regularization effect on the overall network. For this purpose,
a hyperparameter p is introduced that determines the probability of
the individual neuron’s drop-out.

As Bayesian approximation to estimate uncertainty, Gal and Ghahra-
mani (2016) proposed to apply dropout during inference. This allows to
obtain predictions from F forward passes with different dropout masks,
which can be seen as MC samples from the space of all available (sub-)
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Figure 2.13: Examples for aleatoric and epistemic uncertainty. The aleatoric
uncertainty (left image) arises from an overlap between the data
distributions. The uncertainty in the right image is epistemic,
where the correct model hypothesis can not be made due to a lack
of data. Figure from Hüllermeier and Waegeman (2021), licensed
under CC BY 4.0.

networks. Different quantities can then be obtained from this predictive
distribution, e.g. the mean, variance or entropy.
Due to its simplicity, the MC dropout method is frequently applied

in DL applications. Kendall et al. (2017) were the first to integrate MC
dropout uncertainty estimates for a segmentation network and found
that dropping out the deepest half of encoder and decoder layers prior
to the down- and up-sampling operation lead to the best results.

deep ensembles Lakshminarayanan et al. (2017) proposed a non-
Bayesian method that does not require any specific training paradigms.
The authors investigated the uncertainty estimation of deep ensembles
by training M models and incorporating adversarial examples (Szegedy
et al., 2015) in the training procedure. They found that deep ensem-
bles achieved high quality predictive uncertainty estimates (performing
similarly or even better as Bayesian approximates). Moreover, the deep
ensembles resulted in higher uncertainties for out-of-distribution sam-
ples that are far from the training datasets. Similarly, Mehrtash et al.
(2020) confirmed the suitability of deep ensembles for better calibrated
predictive uncertainty and out-of-distribution detection for the task of
medical image segmentation. They also demonstrated that deep ensem-
bles outperformed MC dropout for estimating the uncertainty of the
output for three different MRI segmentation tasks, including prostate
segmentation (see Figure 2.12).

2.3 semi-supervised learning

For the training of CNNs, different strategies exist that can be cat-
egorized into supervised, semi-supervised and unsupervised methods.
Typically, CNNs are trained in a supervised manner. This means that
for every training sample xi in our dataset, we have access to a label
yi, such that D = {(x1, y1), .., (xn, yn)}, and the method tries to learn
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Figure 2.14: Illustration of the modification in the hypothesis or the decision
boundary under the influence of unlabeled data. The left image
portrays the decision boundary when using only labeled data,
where turquoise circles belong to class A and red circles to class B.
The right image portrays the change in decision boundary under
the influence of unlabeled data denoted by grey circles.

a mapping from xi to yi. In unsupervised methods, the data available
for learning consists only of unlabeled samples D = {x1, ..,xn}, and
the objective of these methods is to learn about the relevant struc-
ture in the data. This includes estimating the density p(x) underlying
the samples X, but also other forms, such as dimensionality reduction
and clustering, fall into the unsupervised learning category (Chapelle
et al., 2006). The definition of semi-supervised learning SSL lies be-
tween unsupervised and supervised learning. For SSL, we have a la-
beled dataset DL = {(x1, y1), .., (xn, yn)} and additionally an unlabeled
dataset DU = xl+1, ..,xl+u, whereas |DL| is typically much smaller than
|DU |. By using the additional unlabeled data, semi-supervised learning
can improve the CNN’s decision boundary and therefore improve over
its supervised counterpart (see Figure 2.14).
This, however, can only be achieved when the knowledge that is

obtained from DU , can provide information to define a better decision
boundary for the task at hand (Ouali et al., 2020). If this is not the
case, the inclusion of DU will not improve or can even lead to a decline
in model performance. Chapelle et al. (2006) define three assumptions
about the data structure, that have to hold for SSL being beneficial for
the learning.

• Smoothness assumption: If a sample xi is close to another sample
xj in a high-density region, then their respective labels yi, yj should
also be close. On the other hand, if two samples are lying in a
low-density region, their labels need not be close. The smoothness
assumption thus implies that the mapping functions should be
smooth in high-density regions.

• Cluster assumption: This assumption can be considered as a
special case of the smoothness assumption. It says that samples,
which lie in one cluster, share the same label. However, it does
not imply, that each class is only represented in a single cluster.
The cluster assumption can be equivalently formulated as low
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density separation, which states that decision boundaries should
run through low-density regions.

• Manifold assumption: It states that the (high-dimensional) data
lie on a low-dimensional manifold. This assumption relates to the
problem that with higher dimensional data, the pair-wise distances
between the data points become less expressive (for discriminative
tasks). If we can learn the lower-dimensional manifold, for instance,
by leveraging the unlabeled data, the task will be simpler to solve
(Ouali et al., 2020).

These assumptions were originally defined for traditional machine
learning methods that rely on linear models. But they are also considered
as assumptions for deep SSL techniques.
According to Ouali et al. (2020), deep SSL concepts can be cat-

egorized into consistency regularization, pseudo-labeling approaches,
graph-based methods and entropy-minimization. As pseudo-labeling
approaches (Section 2.3.1) and consistency regularization (Section 2.3.2)
are underlying concepts for our methods presented in the course of this
thesis, we describe them in more detail in the following sections. The
methods have been proposed originally for classification, but most of
them have also found their way into the segmentation application.

2.3.1 Pseudo-Labeling

Pseudo-label methods incorporate the unlabeled data by inferring pre-
dictions (pseudo labels) on it with a classifier, which was originally
trained on the labeled data. These pseudo-labels are then fed into the
model’s training. Different variants exist that vary in the way how these
pseudo-labels are produced.

self-learning Self-Learning, also known as self-training or self-
labeling, is the oldest and most straight-forward SSL paradigm, and
dates back to the 1960’s (Scudder, 1965; Agrawala, 1970). The core
mechanism is to use a trained model (initially trained on labeled data
DL = (XL,YL)) to predict pseudo labels Ŷu for unlabeled data DU =

XU . This way the labeled set for training is enlarged to (DL ∪DU ),
where DU = (XU , ŶU ). The enlarged training dataset is then extended
by the pseudo-labeled data and fed back into the network’s training to
improve the model. To iteratively improve the model, the process of
pseudo-labeling and model refinement with expanded dataset is repeated
until a stopping criterion is met (e.g. fixed number of iterations or the
model converged).
As simply reusing all pseudo-labels for training can degenerate the

performance when prediction errors get amplified during the self-learning
cycle, methods have been proposed, which filter the pseudo-labels to
contain only confident predictions. This sample confidence can be either
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absolute (above a threshold) or relative (include only the top n confident
samples). By incorporating only high confidence predictions, the self-
learning methods rely on the cluster assumption (Cheplygina et al.,
2019).

multi-view training Multi-View training can be considered as
a variant of pseudo-labeling. The algorithms rely on multiple views that
complement each other, such as views obtained by different sensors or
by generating limited views of the original data (Ouali et al., 2020). For
each view, a different model is trained, whose predictions on DU can
then be exploited to increase performance of the other view’s models.

One variant of multi-view-training is co-training, proposed by Blum
and Mitchell (1998). Two models are trained individually on one view,
whereas each view could be sufficient for learning. In this training setting,
one model provides the pseudo-label on unlabeled data for the other
model, if its prediction is above a certain confidence threshold.

As another variant of multi-view training, Zhou and Li (2005) intro-
duced tri-training. Contrary to co-training, tri-training does not require
different views of the data from the instance space. As the name already
implies, three models are used, which are initialized via training on
different datasets generated by bootstrap sampling from the original
DL. Samples from DU are then iteratively added to the training data
of one model, if the other two models agree on its label.

2.3.2 Consistency Regularization

Besides pseudo-labeling approaches, consistency regularization is one
of the most popular concepts applied to SSL algorithms in the field
of medical image segmentation. Rather than directly including the
pseudo-labeled samples to the labeled training set and treating them
as ground truth, consistency regularization penalizes the deviation of a
model’s prediction for one input sample, that was subject to different
perturbations. Both DL and DU data can be used for this regularization,
as no ground truth label is required. Because consistency regularization
forces slightly perturbed samples to have the same label, it bases on a
weak variant of the smoothness assumptions (Engelen and Hoos, 2020).
The learned function is smoothed in the vicinity of the data points,
which can also be seen as pushing the decision boundary further to
low-density regions, complying with the low-density separation of the
cluster assumption. (Ouali et al., 2020). In the following passages, the
basic and most popular methods are described.

pi-model The π-model is a deep learning SSL paradigm described
by Laine and Aila (2017) (see Figure 2.15). For the π-model, the in-
put sample is evaluated twice with different random perturbations
(augmentation and dropout), resulting in two outputs z and z̃.
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Figure 2.15: Training pass of the π-model. Figure from Laine and Aila (2017).

Figure 2.16: Training pass of the temporal ensembling concept. Figure from
Laine and Aila (2017).

In addition to the supervised (task) loss, another weighted component
is added, that enforces a consistency between p and p̃:

L = LTask +w(t)LCons . (2.5)

The weighting coefficient is defined by a ramp-up function w(t)

dependent on the current epoch t. This hyperparameter controls that
the loss is governed by the labeled data in the beginning of training,
when the model is not very stable.

temporal ensembling Temporal ensembling is an extension
of the π-model and was also proposed by Laine and Aila (2017). The
algorithm builds upon the π-model (see Figure 2.16), and is extended
by a temporal ensemble of predictions Z which is used instead of the
second network evaluation for consistency calculation. Z is updated
epoch-wise as a weighted moving average where more recent updates
have higher impact on the ensemble:

Zi ← αZi + (1− α)zi , (2.6)

with z being the current epoch’s output and α a momentum term, which
influences how far the ensemble reaches into historical predictions. As
the ensemble Zi is initialized as zero vector, the training target vectors
ẑi are determined by ẑi ← Zi/(1− α)t to correct for the start-up bias.

Next to the reduced training time (due to the omission of the second
evaluation pass), the ensemble has the advantage that it is less noisy
and is most probably closer to the real ground truth and therefore a
better estimate than a single epoch’s prediction.

mean teacher An alternative to aggregate the predictions over
time is to ensemble the model weights as proposed in the mean teacher
algorithm by Tarvainen and Valpola (2017). The method employs two
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models: a student and a teacher. The student model’s weights θs are
aggregated into the teacher model weights θt over the training steps t:

θt ← αθt + (1− α)θs . (2.7)

The consistency loss is then calculated as the dissimilarity of the
teacher’s and student’s prediction
The authors argue that the mean teacher has two advantages over

temporal ensembling: (1) it allows for an update of the ensemble at
each training step and not only at every epoch, which is an appreciated
property for large datasets and speeds up training pace. (2) The weight
averages affect all layers of the method and not just the output, such
that the teacher model is supposed to have better representations.

virtual adversarial training The inputs in the proposed
methods so far, are perturbed in a random fashion. In virtual adversarial
training, proposed by Miyato et al. (2018), the unlabeled input is
perturbed in a direction such that the model’s output distribution
diverges the most from current model’s output distribution.

2.4 methodological preliminaries

Having described the medical background and the technical funda-
mentals for our methods, we now conclude this chapter with general
information about methodological preliminaries, which we use through-
out this thesis. This includes details about evaluation measures (Section
2.4.1) and algorithm implementations (Section 2.4.3).

2.4.1 Evaluation Measures

In this work, we use different measures to evaluate the performance
of the proposed methods. We assess the performance of our proposed
methods with well-established measures, which have been extensively
applied in related work, including the PROMISE12 challenge on prostate
segmentation (Litjens et al., 2014b). Specifically, we use the Dice simi-
larity coefficient (DSC) (Dice, 1945) as well as the average boundary
distance (ABD) and the 95th percentile Hausdorff-Distance (95-HD)
between surface points of both volumes. All evaluation measures are
computed in 3D. The Dice similarity coefficient is defined as

DSC(X,Y ) =
2 |X ∩ Y |
|X|+ |Y |

, (2.8)

with X being the predicted and Y being the ground truth voxels. It
measures the ratio of overlap between two segmentations and ranges
between [0,1] or [0%, 100%], respectively.
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The ABD is defined as:

ABD(XS ,YS) =
1

|XS |+ |YS |

( ∑
x∈XS

min
y∈YS

ED(x, y)

+
∑
y∈YS

min
x∈XS

ED(y,x)
)

,
(2.9)

where XS and YS are the sets of surface points of the predicted and
ground truth segmentation. ED is the Euclidean distance operator.

Lastly, the Hausdorff distance (HD) is defined as

HD(XS ,YS) = max (HD′(XS ,YS),HD′(YS ,XS))

with HD′(XS ,YS) = max
x∈XS

(min
y∈YS

ED(x, y)) . (2.10)

We use the 95th percentile for implementation of HD (the so-called
95-HD), as this measure is more often applied in related work (Litjens
et al., 2014b), leveraging comparability with previous works.

2.4.2 Statistical Evaluation

There exist different strategies on how to design the experimental setup
for statistical evaluation of CNN methods. The most-established variant
is the k-fold cross-validation, which is carried out in two different
manners in the literature: without (e.g., Qin et al., 2020) or with a
hold-out test dataset (e.g., Ghavami et al., 2019; Isensee et al., 2021).
We apply the variant with the hold-out test set, because this guarantees
that the hyperparameters of the network are not overfitted to the data
from the actual test set.

Thus, the k folds are obtained from the training data only, and they
determine the training and validation split for the model development,
resulting in k models for evaluation. The evaluation is then carried out
on the hold-out test dataset for each of the k folds (see Figure 2.17).
By having k predictions for each test case available, there are again
two strategies for a final evaluation: either averaging the predictions

Figure 2.17: Exemplary k-fold cross validation (k = 5) where the turquoise
boxes represent the validation samples for the network training.
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into an ensemble (as in Ghavami et al. (2019)) and thus having one
performance estimate for each case, or using the k predictions for k
estimates. Although model ensembling is an important strategy to
improve the robustness of the methods, we decided to rely on the k
performance estimates for the final evaluation, unless stated otherwise,
because this allows for direct investigation of the method’s performance.
To evaluate our models quantitatively, we report the mean and the

standard deviations. Furthermore, we quantify whether there exist
statistically significant differences between the distributions of differ-
ent methods. We apply the non-parametric Wilcoxon signed-rank test
(Wilcoxon, 1992) for this task, because we could not assume Gaussianity
for all distributions (evaluated for randomly selected experiments with
the Kolmogorov-Smirnov test (Massey Jr, 1951)).

2.4.3 Implementation Details

The work in this thesis was implemented with Python and developed
on mainly two different machines. The methods introduced in Chapter 3
and 4 were trained on a Linux machine with an Intel® Core™ i7-6850K
CPU @ 3.60GHz and 11GB RAM NVIDIA GeForce GTX 1080 Ti
graphical processing units (GPUs) inside. The algorithm introduced
in Chapter 5 were mainly developed and trained on a Linux machine
equipped with an Intel® Core™ i7-6700 CPU @ 3.40GHz and a 12GB
NVIDIA Titan X Pascal GPU.
For the deep learning components of our work, we used the Keras

framework2, which is now integrated into the Tensorflow 3 library. Oper-
ations on the medical images, as loading, pre-processing, augmentation
etc., were conducted with the SimpleITK 4 and numpy Python packages.

2 https://keras.io/
3 https://www.tensorflow.org/
4 https://simpleitk.org/
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3E X P L O I T I N G M U LT I - P L A N A R D ATA

The general performance gain through the development of various CNN
methods for image analysis tasks can also be observed in the context of
prostate structures segmentation. However, the methods’ performance is
naturally bounded by the quality of the underlying image. The majority
of methods proposed for prostate segmentation take the axial T2w MRI
volume as input, which suffers from characteristically lower quality
for some parts of the prostate. Therefore, with our work covered in
this chapter, we investigate whether additional volumes acquired from
different scan directions can compensate for the lower quality, and con-
sequently improve the overall segmentation performance for the whole
gland. We design an anisotropic 3D multi-stream CNN architecture,
which can process this patient-level data simultaneously, allowing for
a direct assessment of the supplementary data’s impact on the overall
outcome. The results indicate that the input of additional, patient-level
data improves, in particular, in regions where the axial plane suffers
from partial volume effects.

The content of this chapter builds upon the following publications:

• A. Meyer, A. Mehrtash, M. Rak, D. Schindele, M. Schostak, C.-M.
Tempany, T. Kapur, P. Abolmaesumi, A. Fedorov, C. Hansen,
"Automatic high resolution segmentation of the prostate from
multi-planar MRI," in Proceedings of the IEEE 15th International
Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 177-181,
© 2018 IEEE.

• D. Schindele, A. Meyer, D. F. von Reibnitz, V. Kiesswetter, M.
Schostak, M. Rak, C. Hansen (2020). "High resolution prostate
segmentations for the ProstateX-Challenge" [Dataset]. The Cancer
Imaging Archive.

• A. Meyer1, G. Chlebus1, M. Rak, D. Schindele, M. Schostak, B.
van Ginneken, A. Schenk, H. Meine, H.K. Hahn, A. Schreiber and
C. Hansen, 2021. "Anisotropic 3D multi-stream CNN for accurate
prostate segmentation from multi-planar MRI," Computer Methods
and Programs in Biomedicine, 200, p.105821.

1 Joint primary authorship. The design of the network and organization of the datasets
was contributed by the thesis author. Grzegorz Chlebus conceptualized and set up
the hyperparameter search. Both authors had equal contributions in implementation,
experimental setup design and evaluation.

29



exploiting multi-planar data

structure of the chapter We begin this chapter by intro-
ducing the clinical motivation for automatic prostate segmentations and
provide more details on the technical motivation and contribution of
our work (Section 3.1). To put our method into the context of existing
literature, we provide a thorough overview about the state-of-the-art
of prostate segmentation algorithms together with their limitations in
Section 3.2. Then, we describe our proposed anisotropic 3D multi-stream
architecture in Section 3.3 and outline the experimental setup to eval-
uate our method and the impact of multi-planar data in Section 3.4.
Details on the experimental results are reported in Section 3.5. Lastly,
we discuss the results and our method’s and experiments’ limitations,
as well as future research directions in Section 3.6. This chapter is then
concluded with a brief recap of of our work in Section 3.7.

3.1 introduction

A precise and automatic segmentation of the whole gland on T2w MRI is
commonly desired for a variety of tasks in research and clinical practice.
Automating prostate segmentation has the potential to (1) reduce the
time for diagnosis and therapy planning, (2) to create more reliable and
reproducible segmentations, and (3) to improve the outcome of PCa
detection and interventions.
In PCa diagnosis, prostate segmentations may be a pre-processing

step in computer-aided detection and assessment of prostate tumors
(Sun et al., 2019). Segmentations can also be used to correlate MRI
with histological images to obtain insights about the origin of MRI
features (Shah et al., 2009; Kwak et al., 2016). Automatic segmentations
facilitate the measurement of gland volume and can potentially make
the measurement more accurate and reproducible. The gland volume is,
for example, needed to calculate the PSA density, which is considered
as a superior indicator for clinically significant PCa over PSA value
alone (Yusim et al., 2020; Turkbey et al., 2019).

Moreover, gland segmentations are required in the planning of MRI-
based dose calculation of radiation therapy (Siversson et al., 2015; Greer
et al., 2019). For radical prostatectomy procedures, a 3D printed or
virtual model of the prostate and its neighboring structures supports
the planning, clinical education and patient counseling (Porpiglia et
al., 2018; Wake et al., 2020). Furthermore, prostate segmentations are
used to propagate high detailed image information of the T2w MRI on
intraoperative TRUS images via segmentation-based registration, to
guide, for example, prostate biopsy (Fedorov et al., 2015; Bashkanov
et al., 2021), robot-assisted laparoscopic prostatectomy (Mohareri et al.,
2015) or needle insertion in brachytherapy (Chen et al., 2021).

motivation and contributions With the advance of CNNs, a
new performance standard has been achieved for medical image analysis.
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Figure 3.1: Visualization of the independent orthogonal scans of one patient
illustrating their anisotropic nature. The first row depicts the axial
scan that is normally used for segmentation. As can be seen in the
sagittal and coronal view of that axial scan, the apical (turquoise
arrow) and base (orange arrow) region lack clear boundaries of the
prostate due to partial volume effect. In the sagittal and coronal
scans, the prostate tissue in these regions can be distinguished
more clearly from non-prostate tissue.

This also applies to the task of prostate gland segmentation on T2w
MRI, where records for the public PROMISE12 challenge (Litjens et al.,
2014c) are set on a regular basis. As we will learn in the subsequent
Section 3.2, several methods with complex and elaborated architectures
or loss functions have been proposed to enhance the performance of
CNNs. However, with only few exceptions, these algorithms all consider
solely the axial scans of the prostate.

Prostate MRI is highly anisotropic for the typical acquisition protocols,
resulting in a factor of 6-10 difference between the out-of-plane and in-
plane resolution. As can be seen in the top row of Figure 3.1, this leads to
strong partial volume effects. Consequently, the prostate gland boundary
can be challenging to accurately localize in the axial image in the apex
and base regions, where the prostate cannot be clearly distinguished from
surrounding structures like seminal vesicles, neurovascular bundles or
muscular tissue. Although in PCa imaging protocols as in Turkbey et al.
(2019), it is mandatory to acquire at least one additional scan direction
(sagittal or coronal), the majority of proposed methods rely purely on
the axial T2w MRI scan of the prostate. In multiple clinical routines,
even all three scan directions are acquired for better interpretation.
These multi-planar scans complement each other and could guide the
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segmentation algorithm in the apex and base regions, where the single
axial scan does not provide sufficient information. Thus, these additional
scans could be used to improve the prostate segmentation quality.
In this chapter, we propose an anisotropic 3D multi-stream CNN

architecture, that allows for simultaneous multi-planar input from T2w
MRI, to aim for a high resolution and precise segmentation of the
prostate gland. The proposed network design fuses information from
anisotropic images, alleviating the need for image resampling to isotropic
voxel size, and thus reducing the network’s memory requirements.

We quantified the influence of information from additional image
orientations on segmentation quality by comparing performance of a
baseline single-plane model (processing only axial images) with dual-
plane (axial + sagittal) and triple-plane (axial + sagittal + coronal)
models. Quantitative results based on different compositions of the
image data from two datasets and multiple sites demonstrate that the
exploitation of this patient-level data is beneficial for the overall prostate
segmentation outcome.

3.2 related work

In the following, we give an overview about existing literature for
prostate whole gland segmentation. We begin by outlining the majorly
employed approaches that use only the axial T2w volume as input
(Section 3.2.1). Subsequently, existing methods that incorporate multi-
planar information are covered in Section 3.2.2. A summary of the
CNN-based approaches and their performance is given in Table 3.1. We
conclude with outlining their limitations (3.2.3), which motivated us to
propose our method described in the following Section 3.3.

3.2.1 Axial Plane Prostate Segmentation

Before the advance of deep learning, prostate segmentation was mainly
performed with atlas-based segmentation or deformable models based
on hand-crafted features. A comprehensive summary of those methods
is given in Ghose et al. (2012). Early approaches incorporating deep
learning used voxel-wise classification to yield a segmentation mask.
For instance, Liao et al. (2013) learned deep features with a stacked
independent subspace analysis network in an unsupervised fashion and
performed segmentation with label propagation from atlases. Guo et al.
(2016) also used deep features but generated by a supervised stacked
sparse autoencoder, yielding a prostate likelihood map, which is then
segmented by a deformable model. Jia et al. (2017) performed patch-
based voxel-wise prediction with an ensemble of four deep CNNs.

During the last five years, CNNs were increasingly introduced into the
context of medical image segmentation. The FCN and more notably, the
U-Net, have been adapted in various manners for prostate segmentation
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Author Method Dataset ntrain ntest DSC [%] ABD [mm] 95-HD [mm]

Milletari et al. (2016) 3D U-Net - residual connections PROMISE12 50 30 86.9 ± 3.3 2.23 ± ? 5.71 ± 1.20
Cheng et al. (2017) VGG Net (2D) with side-outputs - weighted fusion of side-outputs - tri-planar (indiv. networks) internal 4-fold 100 88.6 ± ? - 14.53 ± ?
Jia et al. (2017) 2D CNN-based voxel-wise classification - network ensemble PROMISE12* 5-fold 50 88.0 ± 4.0 1.74 ± 0.42 5.00 ± 1.25
Yu et al. (2017) 3D - long and short residual connections - deep supervision PROMISE12 50 30 89.4 ± ? 1.95 ± ? 5.54 ± ?
Zhu et al. (2017b) 2D U-Net - deep supervision internal (ERC) 77 4 88.5 ± ? - -
Brosch et al. (2018) regression network for prediction of distance from 3D mesh to boundary points PROMISE12 50 30 90.5 ± ? 1.71 ± ? 4.94 ± ?
Karimi et al. (2018) regression network for prediction of shape model parameters internal (surface) 49 26 88.0 ± ? 2.02 ± ? -
Lozoya et al. (2018) dual planar - individual axial + sagittal 2D U-Nets PROSTATEx 60 20 81.0 ± ? - -
To et al. (2018) 3D U-Net - residual and dense connections PROMISE12 50 30 89.4 ± ? - -
Zhu et al. (2018) 3D U-Net - dense blocks internal (ERC) 65 16 82.1 ± ? - -
Chen et al. (2019) two stacked 2D U-Nets (feature fusion at multiple levels) PROMISE12 50 30 90.0 ± ? 1.59 ± ? 5.58 ± ?
Hassanzadeh et al. (2019) 2D U-Net - dense blocks - residual blocks PROMISE12* 10-fold 50 87.3 ± ? - -
Jia et al. (2019) 3D ResNet + 3D & 2D (boundary) decoder - pyramid conv. block - deep supervision PROMISE12 50 30 91.4 ± ? 1.36 ± ? 3.93 ± ?
Pan et al. (2019) cascaded 3D U-Net - dilated convolutions PROMISE12 50 30 90.5 ± ? - 4.47 ± ?
Wang et al. (2019a) 3D U-Net - residual connections - group dilated convolution - deep supervision PROMISE12 5-fold 50 88.0 ± 5.0 1.02 ± 0.35 9.50 ± 5.11
Yuan et al. (2019) 2D encoder-decoder network - dense block PROSTATEx 218 24 87.1 ± 6.6 2.23 ± 1.06 6.12 ± 2.16
Grall et al. (2019) adversarial setting - 2D U-Net generator - conditional discriminator internal (mpMRI) 30 10 73.0 ± 16.0 - 9.59 ± 4.37
Jia et al. (2020). 3D ResNet - 3D anisotropic decoder - pyramid conv. blocks PROMISE12 50 30 90.6 ± ? 1.45 ± ? 4.13 ± ?
Riepe et al. (2020) anisotropic 3D multi-stream U-Net, anisotropic conolutions, tri-planar PROSTATEx (surface) 5-fold 40 90.0 ± 1.0 - -
Umapathy et al. (2020) cascaded 2D U-Net - residual blocks and residual skip connections internal (mpMRI) 67 8 91.0 ± 0.02 - -
Zhu et al. (2020) 3D U-Net - residual and dense blocks - boundary-weighted loss - transfer learning PROMISE12 +int. 141 30 91.4 ± ? 1.35 ± ? 4.27 ± ?
Isensee et al. (2021) 3D anisotropic U-Net - self-adapting training pipeline - deep supervision PROMISE12 50 30 91.9 ± 2.7 1.24 ± 0.29 3.95 ± 1.02

Meyer et al. (2021a) anisotropic 3D multi-stream U-Net, anisotropic max pooling, tri-planar PROSTATEx + int. (surf.) 47 19 93.1 ± 3.0 0.88 ± 0.48 3.07 ± 2.15
Meyer et al. (2021a) anisotropic 3D multi-stream U-Net, anisotropic max pooling, dual-planar (axial + sag.) PROSTATEx + int. (surf.) 47 19 93.3 ± 2.8 0.84 ± 0.51 3.00 ± 2.58

Table 3.1: State-of-the art supervised CNN-based methods for prostate segmentation and their reported performance. If not stated otherwise, methods were run on T2w data. "ERC"
or "surface" in the dataset column denote endorectal or surface coil. PROMISE12 contains both ERC and surface coil data. PROMISE12* states that the method was
not evaluated on the official test data. If methods were additionally evaluated on other but the PROMISE12 challenge set, we report the PROMISE12 results only for
reasons of clarity. "k-fold" in the "ntrain" column specifies a k-fold cross validation on the number of cases noted in column "ntest". Our proposed method’s results are
included in the last rows.33
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on T2w MRI. For instance, Milletari et al. (2016) proposed to apply a
3D U-Net with strided convolutions (for downsampling) that could be
applied in an end-to-end-manner to the whole volume without any patch-
based strategy. In their work, they were also the first to incorporate the
DSC as loss function in the training.
Learning and segmentation performance can benefit from different

aspects regarding network design to retain fine-detailed information and
alleviate the vanishing gradient problem. For example, deep supervision
was employed in several prostate segmentation works to feed gradient
information directly into deeper layers, e.g. as in Zhu et al. (2017b).
Isensee et al. (2021) also included deep supervision in their self-adapting
pipeline for different segmentation tasks and applied anisotropic convo-
lutions (3 × 3 × 1) in their 3D U-Net to reduce information loss due to
the high slice thickness along the craniocaudal axis.

While the U-Net architecture employs skip connections from the en-
coder to the decoder part of the network, Yu et al. (2017) analyzed the
effect of short and long residual connections and showed that a combina-
tion thereof is beneficial in a 3D CNN for prostate segmentation. Wang
et al. (2019b) observed improvements with residual connections between
neighboring blocks in combination with group dilated convolutions for
multi-scale features and deep supervision.
The use of dense connections that enhance feature reuse and propa-

gation has been shown to improve performance additionally. Therefore,
Hassanzadeh et al. (2019) evaluated the use of various residual and
dense connection setups. Yuan et al. (2019) made use of densely con-
nected blocks in both encoder and decoder and trained with a joint loss
function that incorporates the DSC and the reconstruction error from
the dense blocks’ output. Also, Zhu et al. (2018), To et al. (2018), Liu
et al. (2020a), and Zhu et al. (2020) harnessed dense blocks in their
architectures.

A very different approach from the end-to-end prediction of a dense
segmentation map was proposed in two works that formulated the
segmentation problem as a regression task. Karimi et al. (2018) let a
convolutional regression network predict rotation, position and shape
parameters to fit a shape model to the prostate contours of an input
image. Brosch et al. (2018) combined a 3D shape model with a convo-
lutional regression network which obtains the distance from a surface
mesh to the corresponding boundary point of the prostate.
Multi-scale approaches have been proposed by several researchers

to derive features from different scales of context. Pan et al. (2019)
and Umapathy et al. (2020) employed cascaded U-Nets. In their works,
the first network acts as a global estimator, and a subsequent network
refines the segmentation mask with more local information. Jia et al.
(2020) accounted for the anisotropic resolution of the prostate scans
in their segmentation network, in which they combined a ResNet (He
et al., 2016) encoder with an anisotropic convolutional decoder. They
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introduced skip connections, that are built up from multi-scale (spatial
pyramid) convolutional blocks with parallel convolutions of different
kernel size to jointly compute local and global image features. Their 3D
APA-Net was employed as a generator into an adversarial setting, in
which a discriminator was trained to refine the output segmentation.

In another work, Jia et al. (2019) proposed to combine a ResNet
encoder with a 3D segmentation decoder for intra-class consistency
and an auxiliary 2D boundary decoder for inter-class discrimination.
In the 3D segmentation decoder, they included a channel attention
mechanism, deep supervision and similar to Jia et al. (2020) anisotropic
convolution and pyramid convolutional blocks. In both decoders, dense
connections were inserted between different stages. Currently2, this work
is placed 3rd in the PROMISE12 challenge, where prostate segmentation
algorithms are evaluated on MRI acquired at different sites with varying
acquisition protocols and scanner vendors. The first place is an extension
of Jia et al. (2020), which has not been published properly, yet. Similarly,
the current second place of PROMISE12 reused concepts from Jia et al.
(2020) and Jia et al. (2019) as for example edge attention (in 3D),
pyramid convolutional block with attention mechanism, anisotropic
convolutional blocks and a 3D ResNet encoder, which they pre-trained
on another MRI dataset.

3.2.2 Multi-Planar Prostate Segmentation

While the algorithms described above all base on the axial scans only,
there have been some proposals for methods incorporating additional
scan directions, which are required to be obtained in the clinical rou-
tine. Cheng et al. (2017) leveraged multi-planar data by automatically
segmenting the prostate with multiple so-called holistically-nested edge
detector networks. For each orthogonal scan (axial, sagittal and coro-
nal), a 2D VGG network (Simonyan and Zisserman, 2015) with multiple
side-outputs is trained separately and subsequently the three segmen-
tation outcomes with low out-of-plane resolution are used for surface
extraction with ball pivoting, followed by Poisson surface reconstruction
to obtain a hole-free and smooth surface as algorithm output.

Furthermore, Lozoya et al. (2018) assessed the effect of single and dual
plane segmentation by training an ensemble of two deeply supervised
2D CNNs independently on axial and sagittal volumes. The models
process three consecutive image slices to segment the middle one. The
axial and sagittal segmentations are then fused by assigning each voxel
the foreground label, where either the sagittal or the axial network
predicted a foreground label. Compared to a single-plane baseline, the
results showed an improvement for the dual plane approach.

2 as of June, 17th 2021
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3.2.3 Limitation of Current Approaches

The works summarized in Section 3.2.1 demonstrate the suitability of
deep learning approaches for the task of automatic prostate segmenta-
tion. However, as stated before, these methods only rely on the axial
scans, such that the methods need to extrapolate for regions with
diminished details due to the partial volume effect.
The methods outlined in Section 3.2.2 addressed this issue by using

multiple scan directions as input. While these multi-planar approaches
show that the exploitation of additional scan directions is beneficial
for the segmentation quality, they have some limitations. Firstly, both
approaches train independent CNNs per MRI orientation, which pre-
vents the models from learning how to combine the information coming
from different orientations. Secondly, only 2D neural networks are em-
ployed which cannot capture the inherent volumetric information of
MRI scans. Being able to analyze the 3D image context is important for
prostate segmentations as demonstrated by the top performing methods
in the current leaderboard of the PROMISE12 challenge3. And thirdly,
all works that have leveraged multi-planar data before, used different
methods and datasets. Consequently a thorough investigation of the
difference between two and three planes has not been possible yet.

In this work, we target these limitations by proposing a novel4 multi-
stream CNN architecture that processes simultaneously anisotropic
multi-planar 3D MRI scans to produce a high-resolution prostate seg-
mentation (Section 3.3). We evaluated our method and the effect of
exploiting one, two and three input scan directions as network inputs on
the overall performance. For this purpose, we used different compositions
of two prostate MRI datasets from multiple sites (Section 3.3).

3.3 technical methods

We can basically define two variants of combining multiple planes as
input for CNNs. The first way is to train multiple networks separately
with each network taking one orthogonal scan as input. The output of the
three networks is then fused in a postprocessing step as in (Cheng et al.,
2017; Lozoya et al., 2018). The alternative is to input all planes into one
(multi-stream) network, which allows to process them simultaneously.

3 https://promise12.grand-challenge.org/evaluation/challenge/
leaderboard/, last accessed June 2021.

4 In 2020, an abstract was published by Riepe et al. (2020) that also proposed an
anisotropic multi-stream 3D U-Net for prostate segmentation. Their work and our
journal paper arose independently and at a similar time (our work (Meyer et al., 2021a)
has been submitted to Elsevier Computer Methods and Programs in Biomedicine
in January 2020). The main difference between both works is the scope, as the
method by Riepe et al. (2020) compared merely single axial plane vs. triple-plane
(axial+sagittal+coronal) input on a single dataset (n = 40). Moreover, we introduced
the idea of a multi-stream architecture for multi-planar segmentation already in our
ISBI paper (Meyer et al., 2018).
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3.3 technical methods

Due to its simplicity in deployment, we focused our work on the
multi-stream architecture. This has the additional benefit, that we can
investigate the influence of additional planes directly, as the ensembling
of network outputs has a benefit on performance in general (Goodfellow
et al., 2016). The following sections describe our proposed anisotropic
3D multi-stream CNN (Section 3.3.1), and provide details on its training
(Section 3.3.2).

3.3.1 Anisotropic 3D Multi-Stream CNN

We base our architecture on the 3D U-Net proposed by Çiçek et al. (2016)
with four resolution levels. We extended this architecture as a multi-
stream architecture, whose number of encoder branches corresponds
to the number of inputs. Therfore, we propose three instances of this
architecture: the single-, dual- and triple-plane network. Figure 3.2
illustrates the triple-plane model variant with three branches in the
encoder processing axial, coronal, and sagittal acquisitions.

All current top five approaches in the PROMISE12 challenge (Litjens
et al., 2014c) consider the anisotropy of the axial T2w MRI scan in their
architecture. This is in line with our work on prostate zone segmentation
where we found the anisotropic U-Net variant to perform better than
its isotropic counterpart (see Chapter 4). We adopt this design for
our multi-stream architecture, where our encoder branches reflect the
anisotropy of their input’s volume (e.g. 144×144×36 for the axial volume
and 144×36×144 for the coronal volume). For this purpose, our network
performs max pooling operations with an anisotropic pool size (e.g.,
2×2×1 for the axial stream) after the first two convolutional blocks,
resulting in equally sized outputs in the third resolution level. The
input to the third convolutional block is then the concatenation of the
individual stream’s outputs.
In the decoder, the feature map sizes are increased via tri-linear

upsampling or transposed convolution (the determination of the upsam-
pling mode is subject to the hyperparameter search). In the bottom-most
and each decoder’s convolutional block, we employed a dropout layer
(Srivastava et al., 2014) in between the two convolutional layers to
regularize the network training and prevent overfitting. The first con-
volutional layer of the network has 8 feature maps, which are doubled
in each resolution level. This results in a maximum of 128 channels at
the bottom of the network in the latent feature space. To pass detailed
features from the earlier network levels, we employed skip connections
from each resolution level in the different encoders to the corresponding
level in the decoder. For this, the anisotropic dimension of the feature
maps of the first two resolution levels is upsampled to fit the feature map
dimensions in the isotropic decoder. The final layer of the network is a
convolutional layer with 1×1×1 kernel and sigmoid activation function
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Figure 3.2: Triple-planar multi-stream 3D network processing axial, coronal, and sagittal MR volumes. The number in parentheses for the convolution
layers denote the feature map count. The numbers in the max pooling and upsampling arrows denote the down- and upsampling factor for
each dimension. The upsampling is performed either by tri-linear upsampling or 3D transposed convolution. Convolutions are all applied with a
3× 3× 3 kernel. For reasons of clarity, we omit the anisotropic upsampling for the skip-connections that start from the encoders’ two lowest
resolution levels.
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that outputs the predicted segmentation mask as one channel. The
resulting high-resolution mask has a size of 144×144×144 voxels.

We employed optional batch normalization (Ioffe and Szegedy, 2015)
between the convolutional layer and the ReLU activation function to
improve the network learning. Analogous to the upsampling mode, the
usage of batch normalization is subject to hyperparameter optimization
and thus not set for every network instance. We give more details on
the network’s training and hyperparameter search in the following.

3.3.2 Training Details

The three network instances (single, dual, and triple) are individually
trained with the negative soft DSC loss function (Milletari et al., 2016):

loss(ŷ, y) = − 2
∑N
i=1 ŷiyi + ε∑N

i=1 ŷi +
∑N
i=1 yi + ε

, (3.1)

with N being the total number of voxels, ŷ and y the predicted and
manual reference segmentations, respectively, and ε a small constant to
ensure numerical stability. We ran the training with the Adam optimizer
(Kingma and Ba, 2015) for a maximum of 270 epochs, with an early stop
criterion if the validation loss does not improve by at least δ = 0.001 for
100 iterations. The mini-batch size was set to one due to GPU memory
capacity (NVIDIA GeForce GTX 1080 Ti 11GB).

We applied random geometric transformations to augment the training
set and increase the method’s robustness. The augmentation includes
axial flips, elastic deformations, translations and rotations. Unnatural
transformations such as top-bottom and front-back flips were not used.

In order to determine the best configurations for the different network
instances, we carried out a hyperparameter optimization. We applied
the method from Falkner et al. (2018) that involves a combination
of Hyperband (Li et al., 2017) with Bayesian optimization (Shahriari
et al., 2015) to achieve fast convergence to optimal configurations. We
focused on those hyperparameters, which were empirically found to
have substantial influence on model performance: learning rate, dropout
rate, upsampling mode (tri-linear or transposed convolutions) and batch
normalization. The hyperparameter search was carried out on the con-
catenation of the first folds from both datasets. The best performing
hyperparameters for each approach, selected based on the validation
loss, are summarized in Table 3.2. The total numbers of trainable pa-
rameters for the single-, dual, and triple-plane of the proposed network
architectures are 1.4, 1.6, and 1.7 million, respectively. Consequently,
the proposed strategies are using a similar network capacity.
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Hyperarameter Single-Plane Dual-Plane Triple-Plane

learning rate 1.28× 10−4 1.31× 10−4 2.99× 10−4

dropout rate 0.6 0.2 0.2

batch normalization no no yes

upsampling mode tri-linear transposed
conv.

transposed
conv.

Table 3.2: Best performing hyperparameters for each of the investigated net-
work architecture instances.

3.4 experimental setup

Following the description of our proposed multi-stream CNN and its
training, we now provide details on the evaluation thereof. We begin
with details on the two datasets that we used for the performance
investigation (Section 3.4.1). Section 3.4.2 then outlines the experiments
that we have designed to assess the performance of our anisotropic 3D
multi-stream CNN, and to investigate the impact of the inclusion of
additional orthogonal planes into the prostate segmentation.

3.4.1 Datasets

Methods targeting the segmentation of the prostate glands are often
benchmarked in the PROMISE12 challenge (Litjens et al., 2014b). As
this challenge dataset only consists of axial T2w scans (see Table 3.3), we
were not able to make this comparison for our proposed method. Instead,
we used two other datasets for the evaluation of our approaches: the
PROSTATEx dataset and an in-house dataset. Both datasets contain
axial, sagittal and coronal T2w scans acquired without an endorectal coil.
The scans represent prostates with clinical variability such as tumors,
cysts, and benign prostatic hyperplasia. Details on the resolution of the
orthogonal scans can be found in Table 3.3. The following paragraphs
cover more details on the PROSTATEx and the in-house-dataset with
their corresponding reference segmentation creation, as well as their
pre-processing and training/testing split.

prostatex dataset The PROSTATEx dataset is publicly avail-
able through the SPIE-AAPM-NCI Prostate MRI Classification Chal-
lenge (Litjens et al., 2017a; Litjens et al., 2014a; Clark et al., 2013),
which was designed for predicting the clinical significance of prostate
lesions. The dataset comprises multiparametric MRI acquired by two
different types of Siemens 3T scanners: the MAGNETOM Trio and
Skyra. For this dataset, we selected only cases, where the entire prostate
was acquired by all orthogonal volumes. Cases in which, for example, the
axial scan missed parts of the prostate’s apex, were excluded to fairly
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Dataset Scan Resolution [mm]

PROSTATEx
axial [0.5-0.6] x [0.5-0.6] x [3-5]

sagittal 0.56 x 0.56 x [3-4]

coronal [0.56-0.6] x [0.56-0.6] x [3-4.5]

In-House
axial 0.5 x 0.5 x 2.75

sagittal 0.5 x 0.5 x 3.25

coronal 0.5 x 0.5 x 2.76

PROMISE12
axial [0.27-0.63] x [0.27-0.63] x [2.2-3.6]

sagittal not available

coronal not available

Table 3.3: Resolution details for Prostate MRI datasets. For our study, we
used the PROSTATEx and the in-house dataset. We could not use
the PROMISE12 dataset because it did not contain the sagittal and
coronal scans.

evaluate the impact of the different inputs. For the in-house dataset, no
such cases were found.

Since there are no reference segmentations of the glands available in
the challenge dataset, we created 66 segmentations for randomly chosen
T2w volumes. We took considerable care in this ground truth creation
process, since delineating the organ contours only on the axial scan
could bear the risk of missing important details in apex and base, where
prostate boundaries are not clearly distinguishable in the axial scans.
Therefore, the segmentations were obtained manually for each in-

dividual scan direction by a medical student with 3D Slicer (Fedorov
et al., 2012), followed by a review and, if necessary, corrections of an
expert urologist. The final isotropic high-resolution prostate mask was
extracted by taking the average of linearly resampled distance transfor-
mations of the individual segmentations and thresholding the result at
zero (similar to the shape-based interpolation by Herman et al. (1992)).
The final masks were again reviewed by an expert under consideration
of all three orthogonal scans and corrected if necessary.

in-house dataset The second dataset is an in-house dataset
containing 89 axial, sagittal and coronal T2w MR scans acquired on a
Philips Achieva 3T imager. In the clinical routine, gland segmentations
have been obtained with commercial software (DynaCAD, Philips Invivo)
in a semi-supervised manner. As the software only considers the axial
T2w volumes, we resampled the segmentations to an isotropic resolution
via shape-based interpolation (Herman et al., 1992). Subsequently,
the medical student and expert urologist reviewed and corrected the
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isotropic segmentations with 3D Slicer by simultaneously considering
all three orthogonal scans.

pre-processing Because of the subsequent acquisition of the
different orthogonal volumes, their alignment in the patient space may
have been corrupted through motion of the patient or the patient’s
bowel. Therefore, the alignment of the orthogonal scans was checked
visually using 3D Slicer. We observed, that in about 10% of the cases,
one or multiple scans were misaligned. For these cases, we performed a
manual rigid registration of affected images.

For network training and prediction, the three scans were pre-processed
by resampling (linear interpolation) them into a common coordinate
system. The resulting resolution was 0.5×0.5×2.0mm for axial scans,
0.5×2.0×0.5mm for coronal scans, and 2.0×0.5×0.5mm for the sagittal
scans corresponding to their anisotropic acquisition. Next, the images
were cropped, such that the resulting volume is the intersection of the
three scans which has an in-plane size of 184×184 and an out-of-plane
size of 46 (if necessary, the volume was cropped or padded to obtain the
desired in-plane and out-of-plane size). As intensity normalization, the
gray values were clipped to the 1st and 99th percentiles and afterwards
normalized to an intensity range of [0,1].

data split We followed the k-fold evaluation concept described
in Section 2.4.1. As hold-out test set, we set aside 19 randomly chosen
cases for each dataset that were not considered for training. The re-
maining images were split into four folds for cross-validation. Thus, the
folds of the in-house dataset consist of 52 training and 18 validation
images each, while the PROSTATEx folds contains 35 training and
12 validation images. Based on these data splits, we carried out our
evaluation experiments that are described in the next section.

3.4.2 Evaluation Design

To obtain quantitative evaluation measures, we first applied connected
components analysis to the automatic segmentation outcomes, removing
every component except for the largest. Then, the post-processed predic-
tions were evaluated individually with respect to the DSC, the 95-HD
and the ABD as described in Section 2.4.1. The evaluation is carried out
globally on the whole volume and regionally on the base, mid-gland and
apex. For the regional assessment, we divided the volume into thirds
based on the manual reference segmentation (along the craniocaudal
axis in a slice-wise manner).
With our experiments we aimed to investigate our major research

question: do additional scans directions as input help in obtaining an
improved segmentation outcome? Moreover, we evaluated whether there
are any performance differences between our multi-stream network
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and an ensemble of networks. Finally, we compared our method to
the average manual performances among expert readers (inter-reader-
variance). Details on the design of the evaluation experiments are
described in the following paragraphs.

multi-planar vs. axial network In order to investigate
whether multi-planar input is beneficial for the overall segmentation
outcome, we compared the results for the triple-plane (axial + sagittal
+ coronal ) and dual-plane (axial + sagittal) network to the single axial
network, which serves as a baseline. As for the dual-plane network, there
would also be other compositions possible, namely axial + sagittal and
sagittal + coronal. We focused our experiments solely on the axial +
sagittal variant of the dual-plane network, because the axial scan is
the main orthogonal direction in PCa MRI and we observed, that our
clinical partners worked preferably with the sagittal scan as additional
plane when manually segmenting prostate structures.

Having two different datasets (PROSTATEx and in-house) available,
there exist different strategies on how to train and evaluate the methods
to investigate the impact that the additional scan directions have on
the overall outcome. Therefore, we implemented two different scenarios:

• Scenario I - train and evaluate the model on a merged dataset.

• Scenario II - train and evaluate the models on individual datasets.

For Scenario I, we concatenated the respective training and validation
sets of the two datasets for each fold. By comparing models resulting
from both scenarios, we can verify whether segmentation quality for
any of the network instances can benefit from training on multi-site
data. Additionally, we compared our method’s performance with those
reported in the literature.

multi-stream vs. ensemble As already introduced before,
another variant to exploit multi-planar data for the segmentation is to
train an ensemble of networks. We directly compared our multi-stream
architecture with such an approach. For this purpose, we trained three
independent 3D single-plane models for each image orientation, whose
outputs were combined in a post-processing step via majority voting.
We also evaluated output combination using shape-based interpolation,
but the results degraded in comparison to the majority vote. This
experiment was carried out on the PROSTATEx dataset.

inter-reader variance To provide a comparison of our pro-
posed automatic multi-plane method to the general performance of man-
ual (expert) segmentations, we indirectly compared the results of our
method to the average manual performance reported in the PROMISE12
challenge and the one that we assessed for the PROSTATEx data within
another project. In the PROMISE12 challenge (Litjens et al., 2014c),
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the automatic results submissions were also compared to the inter-
reader variance between an experienced clinical reader and a relatively
inexperienced nonclinical reader (two years research of prostate MRI).
For our work on prostate zone segmentation that is covered in the

next chapter, we evaluated the inter-reader-performance between two
expert urologists (Section 4.4.1). The two urologists (each one supported
by a medical student) were asked to outline the glandular structures in
the axial scans of 20 cases from the PROSTATEx challenge. It has to
be noted that those cases do not cover the hold-out test cases of this
work. Nevertheless, we can still get a notion of how much two expert
segmentations can vary for this dataset that we incorporated in our
method.

3.5 results

In the following sections, we report the results for the experiments de-
scribed above. In Section 3.5.1, we assess the outcomes of our multi-plane
network instances to the axial single-plane state-of-the-art methods.
The ensemble of single-plane networks (one for each orientation) is
compared to the tri-planar multi-stream network in Section 3.5.2. And
a comparison to the inter-reader-variance is made in Section 3.5.3 based
on results of other works and on other datasets.

3.5.1 Multi-planar vs. Axial Network

We compared the outcomes of our multi-plane networks (triple and dual)
to the axial single-plane network within the two training scenarios (train
one model on the merged dataset and train one individual model per
dataset). Moreover, we indirectly rank our methods’ results according
to the performance measures reported in the state-of-the-art described
in Section 3.2.

training on merged datasets In the training Scenario I, we
trained and evaluated the network instances on the concatenation of
the PROSTATEx and the in-house dataset. Table 3.4 summarizes the
outcomes for this experiment. Furthermore, the results for this scenario
are visualized in the boxplots in Figure 3.3. Visual examples of the
segmentation results from the single-, dual- and triple plane network
variants are depicted in Figure 3.4. In general, we can see that the
additional scan directions used by the multi-plane models improved the
segmentation quality when compared to the single-plane model, whereas
the dual-plane network obtained the overall best results.

With respect to the DSC, the dual-plane approach that incorporates
axial and sagittal volumes, works significantly better (p < 0.01) than the
single-plane approach in every region. The dual-plane method achieved
an average DSC of 93.3% for the whole gland (vs. 92.7% for single-
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Single Dual Triple

DSC[%]

Whole 92.7 ± 3.0 93.3 ± 2.8∗∗∗ 93.1 ± 3.0∗∗∗

Apex 88.8 ± 8.7 90.1 ± 7.7∗∗∗ 89.6 ± 9.5∗∗

Mid 95.6 ± 2.0 95.8 ± 2.1∗∗∗ 95.4 ± 2.4

Base 89.8 ± 5.3 90.4 ± 7.5∗∗∗ 90.6 ± 5.6∗∗∗

ABD[mm]

Whole 0.90 ± 0.05 0.84 ± 0.51∗∗∗ 0.88 ± 0.48∗∗∗

Apex 0.99 ± 0.69 0.86 ± 0.54∗∗∗ 0.92 ± 0.70∗

Mid 0.76 ± 0.30 0.78 ± 0.66∗∗∗ 0.83 ± 0.58

Base 1.01 ± 0.63 0.95 ± 0.91∗∗∗ 0.95 ± 0.71∗∗

95-HD[mm]

Whole 3.10 ± 1.68 3.00 ± 2.58∗∗∗ 3.07 ± 2.15∗∗

Apex 2.99 ± 1.89 2.65 ± 1.40∗∗ 2.81 ± 1.75∗

Mid 2.48 ± 1.41 2.69 ± 3.45∗∗∗ 2.74 ± 2.51

Base 3.10 ± 1.96 2.93 ± 2.56∗∗ 2.90 ± 2.20∗∗

Best results are marked bold. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Table 3.4: Average evaluation measures for Scenario I (training and evalua-
tion on merged datasets). Asterisks mark significant differences to
the results of the single-plane model.

plane), 90.1% (vs. 88.8%) in the apex and 95.8% (vs. 95.6%) and 90.4%
(vs. 89.8%) for mid-gland and base, respectively. It has to be noted
that the average ABD and 95-HD for the mid-region in Table 3.4 are
worse for dual-plane than single-plane, but we found that the dual-plane
model performs better when the median as well as the distribution of
results is considered (see Figure 3.3).
The triple-plane model performed significantly better (p < 0.05)

than the single-plane model regarding the DSC, ABD, and 95-HD for
all regions except the mid-gland, too. Incorporating all three planes
achieved an average DSC of 93.1% for the whole gland and DSCs of
89.6%, 95.4% and 90.6% for apex, mid-gland and base, respectively.
For the mid-gland, the average evaluation metrics for the single-,

dual- and triple-plane approaches are very close to each other. However,
for the other regions, the difference in performance between dual and
triple-plane is less than between single-plane and triple- or dual-plane
for Scenario I.
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Figure 3.3: Boxplots showing the DSC, ABD, and 95-HD for the whole gland
and its subregions for single- dual, and triple-plane models. Models
were trained and evaluated on merged datasets (Scenario I). The
marker ’x’ indicates the mean of the distributions.
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(a) Simple case where all approaches perform about equally well.

(b) Challenging case where dual-/triple- plane approaches are beneficial. When considering only
the axial plane, we yield overestimation in the base region.

(c) Another challenging case where dual-/triple- plane approaches are beneficial. Segmentation in
apical region of the prostate is improved.

(d) Challenging case, where all approaches fail, presumably due to strong heterogeneity in the
prostate gland.

Figure 3.4: Four examples with different characteristics. On the left, segmen-
tations in the image plane are depicted. Left column is the axial
view, central column is sagittal view, and right column depicts the
coronal view. On the right the surface distance between ground
truth and prediction are shown for each approach.
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training on individual datasets In Scenario II, we trained
models separately on the individual datasets. The results for this scenario
are summarized in Table 3.5. A visual presentation of the evaluation
measures’ distributions for each dataset is furthermore provided in the
boxplots in Figure 3.5.

For the PROSTATEx dataset, the average DSC for the whole gland
could be improved with each additional input plane from 91.9% (only
axial) and 92.3% (axial + sagittal) to 92.6% (axial + sagittal + coronal).
The improvement over the pure axial input was statistically significant
for both dual-plane (p < 0.001) and triple-plane (p < 0.01). Statistical
significant differences could also be found for the base, but not for
mid-gland and apex. The average 95-HD for training on single-plane,
dual-plane and triple-plane was 3.73mm, 3.60mm and 3.67mm for the
whole gland, respectively.

Performance for the in-house dataset was generally higher than for the
PROSTATEx dataset. The average DSC for the whole gland was 92.7%
for single-plane and 93.9% for both dual- and triple plane. The mean
95-HD for the in-house dataset was 2.60mm, 2.41mm and 2.16mm for
single-, dual- and triple-plane, respectively. These distances are smaller
than the slice thickness which ranges from 2.75mm to 3.25mm for the
individual planes.

comparison of training scenarios Quantitative differences
between both scenarios can be examined when comparing the results in
Table 3.5 to those in Table 3.4. Opposed to Scenario I (Table 3.4), where
the dual-plane approach achieved the best performance for the evaluation
measures in general, the triple-plane approach generally performs better
than dual-plane for both datasets and the majority of regions and
evaluation measures in Scenario II (Table 3.5). Thus, dual-plane seems
to be more robust to variations in the training data if multiple data
sources are used. However, the quantitative differences between dual- and
triple-plane in both training scenarios are not statistically significant.
Moreover, we can find less significant differences between the single-

and multi-plane approaches than in Scenario I. This may be caused
by the fact that less training data was available for the experiments
in Scenario II. While we had approximately 117 cases available in the
network training for Scenario I, the training set size was effectively
reduced to 47 and 70 training samples in Scenario II, for the PROSTA-
TEx and in-house experiments, respectively. Additionally, only half of
the number of test samples was available for statistical testing when
the methods were evaluated on the individual datasets instead of the
concatenation (merge) of the two test sets, which may further reduce
statistical differences.

We also investigated whether any of the proposed network instances
benefits from a specific training scenario. For this, we have split the test
set for Scenario I into the two dataset-specific test sets from Scenario II
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Figure 3.5: Boxplots showing the DSC scores for the whole gland and its
subregions for single- dual- and triple-plane models. Models were
trained and evaluated on individual datasets (Scenario II).
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PROSTATEx In-House

Single Dual Triple Single Dual Triple

DSC[%]

Whole 91.9 ± 3.6 92.3 ± 3.1∗∗∗ 92.6 ± 2.9∗∗ 92.7 ± 6.3 93.9 ± 1.7 93.9 ± 2.4∗

Apex 86.5 ± 10.1 87.3 ± 10.6 87.5 ± 12.2 91.7 ± 3.5 91.9 ± 2.9 92.0 ± 2.9

Mid 95.6 ± 1.8 95.2 ± 2.4 95.3 ± 2.5 94.6 ± 6.1 96.0 ± 1.5∗ 95.9 ± 1.7

Base 88.6 ± 4.9 89.6 ± 6.1∗∗∗ 90.0 ± 4.4∗∗ 89.7 ± 10.2 91.4 ± 3.5 91.5 ± 5.1∗∗

ABD[mm]

Whole 1.06 ± 0.39 1.01 ± 0.47∗∗∗ 0.99 ± 0.46∗ 0.79 ± 0.49 0.70 ± 0.15 0.68 ± 0.15∗

Apex 1.23 ± 0.76 1.14 ± 0.72 1.12 ± 0.83 0.67 ± 0.24 0.68 ± 0.23 0.66 ± 0.24

Mid 0.81 ± 0.31 0.91 ± 0.61 0.91 ± 0.63 0.81 ± 0.63 0.65 ± 0.20 0.66 ± 0.20

Base 1.21 ± 0.66 1.09 ± 0.77∗∗∗ 1.07 ± 0.60∗∗ 0.90 ± 0.78 0.78 ± 0.36 0.73 ± 0.32∗∗

95-HD[mm]

Whole 3.73 ± 1.81 3.60 ± 2.13∗ 3.67 ± 2.23 2.60 ± 1.80 2.41 ± 1.10± 2.16 ± 0.57

Apex 3.57 ± 1.80 3.39 ± 1.76 3.41 ± 1.78 2.08 ± 0.72 2.05 ± 0.62 2.00 ± 0.60

Mid 2.73 ± 1.79 3.05 ± 2.71 3.37 ± 3.26 2.48 ± 1.70 2.00 ± 0.64 2.02 ± 0.62

Base 3.72 ± 2.39 3.35 ± 2.32∗ 3.46 ± 2.17∗∗ 2.92 ± 2.53 2.68 ± 2.05 2.10 ± 0.89∗∗∗

Best results are marked bold. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Table 3.5: Average evaluation measures for Scenario II (models are trained and evaluated on each dataset individually). Asterisks mark significant
differences to the results of the single-plane model.
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3.5 results

to allow direct comparison of the scenario-based results for each method
(see boxplots in Figure 3.6). We could not find any consistent differences
for any of the proposed methods. However, we could again observe that
the performance for the in-house dataset is generally better than for
the PROSTATEx dataset in both scenarios.

comparison to state-of-the-art Table 3.1 summarizes the
works that have been so far proposed in the literature for the whole gland
segmentation. Highest quantitative performance scores were achieved
by Isensee et al. (2021) on the official PROMISE12 test dataset with
an average DSC of 91.9% and minimum boundary distances (ABD:
1.24mm, 95-HD: 3.95mm).

A direct comparison to our method’s results can not be drawn because
the image quality, dataset aggregation and size of training dataset for
the PROMISE12 challenge are very different to the datasets that we
have used in our work (see Table 3.3). However, we can still see that the
obtained results quality of our method with a DSC of up to 93.3%, an
ABD of 0.84mm and a 95-HD of 3.00mm ranks in the top performances
obtained for prostate segmentation methods. This is also the case when
we trained the multi-plane models with less samples (n=47 and n=70)
on different datasets (training Scenario II). Here we achieved average
DSCs of 92.6% and 93.9%, respectively, for the triple plane network.
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Figure 3.6: Boxplots comparing DSC scores for the whole gland and its sub-
regions for models trained on the merged datasets (Scenario I)
and the individual dataset (Scenario II). The models obtained
from both training scenarios were benchmarked on the same test
samples for the PROSTATEx and in-house dataset. The marker
’x’ indicates the mean of the distributions.
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3.5 results

ensemble multi-stream

DSC [%]

Whole 92.6 ± 0.3 92.6 ± 0.3

Apex 87.1 ± 1.3 87.5 ± 1.2

Mid 95.5 ± 0.2 95.3 ± 0.3

Base 90.1 ± 0.5 90.0 ± 0.5

ABD[mm]

Whole 0.95 ± 0.40 1.00 ± 0.49

Apex 1.14 ± 0.87 1.12 ± 0.84

Mid 0.79 ± 0.34 0.91 ± 0.70

Base 1.03 ± 0.66 1.07 ± 0.65

95-HD[mm]

Whole 3.10 ± 1.61 3.67 ± 2.60

Apex 3.13 ± 1.77 3.41 ± 1.91

Mid 2.29 ± 1.22 3.38 ± 3.99

Base 3.01 ± 1.99 3.46 ± 2.44

Table 3.6: Comparison of two approaches for generating segmentations from tri-
planar input (ensemble of networks and the multi-stream network).
No significant differences were found.

3.5.2 Multi-Stream vs. Ensemble

We compared our triple-plane architecture processing all orthogonal
images simultaneously, which directly outputs a prostate segmentation,
with an ensemble approach from the literature (Cheng et al., 2017;
Lozoya et al., 2018). The results are listed in Table 3.6. The differences
between both approaches are only minor and could not be confirmed
statistically for any region and evaluation measure. No clear winning
method could be extracted from these results. However, we have to point
out that the ensembling method generally benefits from aggregating
multiple model predictions, while the multi-stream architecture results
rely only on a single output. Nevertheless, the results for the ensemble
technique are in line with the outcome of our study that the input of
multiple planes improves over a single-plane input.

3.5.3 Inter-Reader Variance

To put our automatic segmentation results into perspective, we were
interested to see in what range the inter-reader variability of prostate
segmentation is (see Table 3.7). In the literature, second reader seg-
mentation evaluation has been investigated within the scope of the
PROMISE12 challenge (Litjens et al., 2014b). The authors report a
mean DSC of 90.0% between two expert segmentations for the whole
gland and 80.0% and 86.0% for the apex and base, respectively. For
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PROMISE12
(n=30)

PROSTATEx
(n=20)

DSC

Whole 90.0 ± 3.0 93.2 ± 2.0

Apex 80.0 ± 11.0 90.4 ± 3.9

Mid n.a. 96.1 ± 1.7

Base 86.0 ± 6.0 89.3 ± 4.0

ABD

Whole 1.82 ± 0.36 0.66 ± 0.27

Apex 2.55 ± 1.08 0.63 ± 0.29

Mid n.a 0.49 ± 0.23

Base 2.21 ± 0.80 0.86 ± 0.52

95-HD

Whole 5.64 ± 1.73 3.16 ± 1.27

Apex 6.36 ± 2.40 2.84 ± 1.15

Mid n.a 2.02 ± 1.05

Base 6.28 ± 2.95 3.56 ± 1.64

Table 3.7: Evaluation measures for inter-reader variability for the PROMISE
and our PROSTATEx test dataset

the whole gland, they reported an inter-reader variability of 5.64mm
for 95-HD.
Moreover, we assessed the manual performance among two expert

readers for 20 cases of the PROSTATEx dataset. The average inter-
reader DSC for the whole gland, apex and base for these cases were
93.0%, 90.0% and 89.0%, respectively. The 95-HD was 3.15mm for
the whole gland, which corresponds approximately to the thickness of
one slice. Comparing these results to the overall DSC of 93.0% for the
dual- and triple-plane model (with respect to the whole gland), we are
clearly in the range of inter-reader variability.

3.6 discussion

Within this study, we assessed whether patient-level data could be
leveraged to obtain a more reliable automatic prostate segmentation.
Our results demonstrate that incorporating multi-planar data into
the automatic segmentation does improve the segmentation outcome
compared with including only the axial scan as network input. The
improvements are effective in the apex and base of the gland. These
regions are more challenging to segment because the partial volume
effect has the highest impact on image quality here. For the mid-gland,
the segmentation quality could not be improved. However, this finding
is not surprising, because the axial scans already provide good contrast
in the mid-gland region.
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3.6 discussion

The quantitative differences between the three proposed models may
not be large, but depending on the clinical application, the improved
accuracy can be critical. For example, to determine the extraprostatic
extension to proximal structures as seminal vesicles, a very precise
definition of the boundary would be important. Moreover, it has been
shown that the shape of the apex impacts the recovery of urinary
continence after radical prostatectomy (Lee et al., 2006). Therefore,
providing the surgeon with the most reliable delineation of the prostate
gland is crucial.

Having two different datasets, we evaluated our methods within two
training scenarios: (1) training on the merged dataset, and (2) training
separately on the individual datasets. We observed that the quantitative
evaluation measures in both scenarios are considerably better for the
in-house datasets than for the PROSTATEx data. We assume that
the reason for these results is two-fold: First, the number of cases in
the datasets are not balanced. The in-house dataset had almost 50%
more cases available for training (n=70) than the PROSTATEx dataset
(n=47). Second, the reference annotations were created with different
methods. While the annotations for the PROSTATEx dataset were
created entirely manually, the in-house dataset was segmented semi-
automatically in the first stage and later refined manually. Even when
experts review and correct the semi-automatically generated segmenta-
tions, there may still be a potential bias towards the semi-automatic
segmentations, which could result in more consistent segmentations
than with manual delineation. One might also argue that the image
quality is another factor for performance quality. However, we could
not confirm this visually.

Comparing the dual- with the triple-plane network, we did not notice
any large differences in either training scenarios. Consequently, ques-
tions about preference for the dual- or triple-plane variant could not
be answered unequivocally. However, the dual-plane (axial+sagittal)
approach seems to be a good trade-off between computational costs and
segmentation quality.

Although no differences were found when comparing the results of the
ensemble network and our multi-stream architecture, we think that the
multi-stream approach is superior to the ensemble because it requires less
parameters (factor of 2.7) and therefore is easier to deploy in production.
Moreover, using a common decoder for all image orientations (as in the
multi-stream architecture) can be seen as a regularizer, which can help
in minimizing the generalization error on other datasets/tasks.

limitations and future work We could show that the au-
tomatic segmentation performance of the methods is in the range of
expert performance. However, individual cases, as shown in Figure 3.4d,
still indicate that automatic segmentations need to be further improved
in the future. Approaches that can detect anatomically incorrect predic-
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tions of the network, for example with shape priors (Liu et al., 2020b),
could improve the method with respect to this aspect.

Future work should also focus on the architecture of the model. So far,
we have only investigated the concatenation of the individual encoder
branches of our network at one specific level. It would be interesting
to examine, how and whether the outcome changes if the branches
were fused at another location. Second, we have used only a slightly
modified version of the 3D U-Net. Although the effectiveness of various
architecture extensions for medical segmentation has been questioned
by Isensee et al. (2021), they found that deep supervision seems to
be beneficial in general. Thus, it should be incorporated in future
experiments. Third, our network architecture needs to be adapted and
retrained if the number of orthogonal scans changes. For the practical
application, it will be helpful if the network can accept a variable number
of inputs. A training paradigm, where different inputs are randomly set
to empty (zero-) arrays, should be examined to make the remaining
network robust to all different compositions of input scans.

In cases with multiple inputs, it is necessary to ensure that they are
well aligned. Some cases required manual registration of the orthogonal
scans. Therefore, automatic registration algorithms should be investi-
gated to compensate for potential transformations among the inputs
(Haskins et al., 2020). This could lead to an increased performance of
the multi-planar approaches, as the manual registration may have not
compensated for all motion artifacts and may be less precise than an
automatic method. Lastly, it would be interesting to apply our method
to other clinical use cases where multi-planar imaging is acquired (e.g.,
cardiac MRI).

3.7 summary

The objective of our work was to determine whether prostate segmenta-
tion performance could be increased by incorporation of patient-level
data, specifically, sagittal and coronal T2w volumes. These volumes are
required to be obtained in typical PCa MRI acquisition protocols and
are thus easily available in clinical practice. In our work, we developed
an anisotropic 3D multi-stream CNN for whole gland segmentation that
allows incorporating different numbers of orthogonal input volumes.
We assessed different input compositions for our network on the

basis of two datasets from multiple sites, for which we applied different
training and evaluation set aggregations. The most important finding
of our study is that the use of multi-planar strategies significantly
improves segmentation performance when compared to using only axial
volumes. The improvements could be found in particular for the apex
and base regions, where the axial scans suffer from lower image quality
due to partial volume effects. The improvement was consistent for all
datasets and dataset-aggregations. Moreover, our methods obtained
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3.7 summary

segmentation quality of clinical experts with respect to the inter-reader
variance, and could be ranked within the top performing methods of
the state-of-the-art.

For implementing the method in clinical practice, future work needs
to incorporate an automatic registration algorithm that aligns network
inputs to each other. Moreover, other architecture variants, including
different concatenation levels of the individual encoders, should be
assessed to further improve the segmentation outcome.
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4E X P L O I T I N G U N L A B E L E D D ATA

The remarkable performance of most CNN methods builds upon the
availability of a large amount of labeled training data. However, obtain-
ing the necessary amount of annotated data poses a challenge for medical
image segmentation tasks, as voxel-wise labeling is very time-consuming
and requires medical expertise. To this end, we propose a novel SSL
method that exploits the unlabeled data from the intra-domain level to
decrease the workload of manual annotations and improve the method’s
performance. With our method, we aim for a reliable automatic segmen-
tation of the gland into four different structures: the PZ, TZ, AFS, and
DPU. This extends the state-of-the art works that have so far only fo-
cused on the two-class segmentation of PZ and TZ. We base our method
on two established algorithms from the SSL literature: uncertainty-
aware self-learning and consistency-based regularization. Our results
demonstrate the effectiveness of our method, which achieved results on
the level of human performance and furthermore outperformed other
state-of-the-art methods.

This chapter is based on the following publications:

A. Meyer, M. Rak, D. Schindele, S. Blaschke, M. Schostak, A.
Fedorov, C. Hansen, "Towards patient-individual PI-Rads v2 sector
map: CNN for automatic segmentation of prostatic zones from
T2-weighted MRI," in Proceedings of the IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019), 2019, pp. 696-700,
© 2019 IEEE.

A. Meyer, D. Schindele, D. F. von Reibnitz, M. Rak, M. Schostak,
C. Hansen (2020). "PROSTATEx zone segmentations" [Dataset].
The Cancer Imaging Archive.

A. Meyer1, S. Ghosh1, D. Schindele, M. Schostak, S. Stober, C.
Hansen, and M. Rak, 2021. "Uncertainty-aware temporal self-
learning (UATS): Semi-supervised learning for segmentation of
prostate zones and beyond," Artificial Intelligence in Medicine,
116, p. 102073.

1 Joint primary authorship. The paper builds upon the method developed within the
master’s thesis by Suhita Ghosh (2019), which has been directed and supervised by
the thesis author.
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structure of the chapter The remainder of this chapter
is organized as follows. We will first introduce the clinical context for
the automatic prostate zone segmentation and motivate our technical
contribution in Section 4.1. In Section 4.2, we report the current state-of-
the-art on related methods to our work. After motivating our work with
the limitation of previously published approaches, the subsequent Sec-
tion 4.3 covers our proposed anisotropic 3D U-Net and our uncertainty
aware temporal self-learning (UATS) technique. Section 4.4 describes the
data and experimental design to evaluate our methods, and Section 4.5
reports the obtained results. The results, and our method’s limitations,
are discussed in Section 4.6. Section 4.7 concludes this chapter with a
summary of our study.

4.1 introduction

In the previous Chapter 3, we targeted the segmentation of the whole
prostate. However, a more detailed segmentation of the prostate that
accounts for the different anatomical zones and other interior structures
can be valuable for several applications. Therefore, in the work covered
in this chapter, we aim for a reliable and automatic segmentation
of the PZ, TZ, AFS and DPU in T2w MRI scans. Such a detailed
anatomical segmentation of the prostate can be leveraged, for example,
in the context of lesion assessment with the PI-RADS v2.1 guidelines
(Turkbey et al., 2019) (see Section 2.1.3).

PI-RADS v2.1 includes a so-called sector map for a more standardized
lesion location assignment (see Figure 4.1). The sector map consists of
41 sectors of which 38 are related to prostate zones. The remaining three
sectors are the seminal vesicles and the external urethral sphincter. The
sector map should support standardized reporting and “facilitate precise
localization for MR-targeted prostate biopsy and therapy, pathological
correlation, and research” (Turkbey et al., 2019). Furthermore, it could
also provide a “roadmap for surgical dissection at the time of radical
prostatectomy” (Turkbey et al., 2019). However, having only one fixed
atlas (the sector map) for the prostate that does not reflect the enlarge-
ments and different shapes of the prostate in real patients, limits its
applicability. Radiologists must transfer the lesion location of the current
case to the one in the sector map (Greer et al., 2018). Consequently,
the sector map has not been found to be effective for the standardized
communication of lesion locations, as variability among radiologists was
shown to be high (Greer et al., 2018). Therefore, an automatic segmen-
tation of the zones would be a step towards a patient-individual sector
map and could increase the repeatability and consistency of reporting,
having an impact on all the above-mentioned applications.

Moreover, the zonal information can be included into automatic PCa
detection algorithms, which has been demonstrated to increase the
accuracy of the methods (Mehrtash et al., 2017a; de Vente et al., 2020)
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4.1 introduction

(a) PI-RADS v2.1 sector map. Figure from Turkbey et al. (2019),
reprinted with permission from Elsevier.

(b) Manual segmentations on two T2w MRIs in
axial (left) and sagittal (right) view. The sagit-
tal T2w scan was included and segmentation
masks were upsampled for better visualization.

Figure 4.1: Schematic division of the prostate according to the PI-RADS v2.1
sector map (a) which is transferred on two MRI scans with manual
segmentations (b). The CZ is omitted in the manual segmentations
and our work in general, because it could not be distinguished for
the majority of cases.
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and the volume of PZ and TZ can contribute to an automatic detection
of BPH. Lastly, all the target structures could potentially be used to
obtain a better registration of MRI scans to histopathological scans, as
in Kwak et al. (2016).

motivation and contributions The success of supervised
deep learning approaches heavily depends on the amount of labeled
examples used in training. Unfortunately, it is very challenging and
expensive to get a considerable amount of high quality annotated data
in the medical domain, as the annotations cannot be obtained by crowd-
sourcing and need a medical expert’s involvement.
The dearth of good quality annotated data motivated exploring

techniques that require limited supervision (Tajbakhsh et al., 2020), such
as weakly supervised methods, transfer learning, and SSL. In this part of
the thesis, we propose a SSL method to improve the CNN’s performance
for segmentation of prostate zones. To this end, we combine two state-of-
the-art SSL techniques for segmentation: uncertainty-aware self-learning
and temporal-ensembling. Accordingly, we name our method uncertainty
aware temporal self-learning (UATS).

For the task of prostate zone segmentation, we designed an adapted
3D U-Net architecture (Çiçek et al., 2016) which served as backbone ar-
chitecture and considers the anisotropy of the axial T2w MRI scans. We
demonstrate that with the incorporation of data from the intra-domain
level, our SSL method improves over the fully supervised training. We
also show that our method improves the segmentation performance com-
pared to other SSL techniques and achieved higher robustness against
different levels of noise on the input data than the supervised training.
Furthermore, we confirmed UATS’ potential to improve upon supervised
baselines on two other important biomedical datasets.
With our work, we are the first to automatically segment a more

detailed anatomy of the prostate consisting of DPU and AFS, in addition
to the usually segmented PZ and TZ on T2w MRI scans. Furthermore,
to our best knowledge, no SSL method has been proposed so far for
prostate zone segmentation.

4.2 related work

In this section the state-of-the-art for automatic prostate zone segmen-
tation (Section 4.2.1) and semi-supervised techniques in deep biomedical
image segmentation (Section 4.2.2) is outlined. The section concludes
with a summary of these methods’ limitations that encouraged us to
develop our method.
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4.2.1 Zone Segmentation

The reported performance of state-of-the-art methods for prostate zone
segmentation presented in this section is summarized in Table 4.1. Be-
cause the methods were developed and evaluated on different datasets,
a direct performance comparison between them is impossible, but the
overview can still give an impression of how the segmentation perfor-
mance improved over the years.

The input to the proposed state-of-the-art methods for prostate zone
segmentation is generally either multiparametric MRI or only T2w MRI
scans. Similar to prostate whole gland segmentation, zonal segmentation
of the prostate has been performed with deformable models, atlas-based
segmentation and traditional machine learning. Early approaches by
Makni et al. (2011), Litjens et al. (2012) and Toth et al. (2013) required
a manual input of the whole gland contour as algorithm initialization.
Qiu et al. (2014) relaxed this requirement to a couple of boundary
points as manual input and proposed to use a spatial prior with an
appearance model in a graph-based optimization. Later methods that
have been published since 2016, were fully automatic methods that
did not require any manual input. For example, Chilali et al. (2016)
performed segmentation by using atlas images and evidential C-Means
clustering.
The majority of automatic methods, however, employs variants or

extensions of the U-Net which will be described in the following. Clark et
al. (2017) proposed an architecture with four consecutive 2D CNNs. The
networks are responsible for detection (classification) and subsequent
segmentation of the prostate in a first and second step which is followed
by detection and segmentation of the TZ in a third and fourth step. Also
Zabihollahy et al. (2019) used separate 2D U-Nets to first segment the
whole gland which is followed by segmentation of the TZ with a second
network. Mooij et al. (2018) segmented PZ and TZ by means of a 3D
U-Net based architecture that considers the anisotropic resolution of
MRI scans for the architecture design: instead of overall 3D convolutions
and 3D max poolings, the authors employ 2D convolutions and 2D max
pooling in the high resolution directions and use 3D operations only in
the last resolution layer.
Other works concentrated on an improved feature representation

and propagation in their architectures. Rundo et al. (2019) added
squeeze-and-excitation modules to every resolution stage of the encoder
and decoder to increase representational power of the feature maps.
They also showed that training on multiple datasets improved intra-
and cross-dataset generalization of the network. Aldoj et al. (2020)
implemented dense blocks to the U-Net architecture to improve the
CNN’s performance. Liu et al. (2019) developed an encoder-decoder
architecture with a ResNet encoder and a (multi-scale) feature pyramid
block. They extended this method with spatial attention for the input
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Method Input Method ntrain ntest PZ TZ

Semi-Automatic

Makni et al. (2011) mpMRI manual gland contours & modified evid. C-means clustering - 31 76.0 ± 6.0 87.0 ± 4.0

Litjens et al. (2012) mpMRI manual gland contours & linear discriminant classifier - 48 75.0 ± 7.0 89.0 ± 3.0

Toth et al. (2013) T2w manual gland contours & coupled levelsets - 40 68.0 ± ? 79.0 ± ?

Qiu et al. (2014) T2w manual boundary points & graph-based approach 43 69.1 ± 6.9 82.2 ± 3.0

Automatic

Chilali et al. (2016) T2w probabilistic atlases & evidential C-means-clustering - 22 62.0 ± 7.3 70.2 ± 12.1

Clark et al. (2017) mpMRI multiple 2D CNNs for detection and segmentation (U-Net) 78 26 - 84.7 ± ?

Mooij et al. (2018) T2w 3D U-Net - aniso conv. 5-fold 53 60.0 ± ? 85.0 ± ?

Liu et al. (2019) T2w (2D) ResNet encoder, multi-scale attention block 250 63 74.0 ± 8.0 86.0 ± 7.0

Rundo et al. (2019) T2w 2D U-Net with squeeze and excitation blocks 4-fold 40 76.6 ± 7.8 90.7 ± 3.1

Zabihollahy et al. (2019) ADC separate 2D U-Nets for whole gland and TZ segmentation 100 125 83.3 ± 9.6 86.3 ± 10.7

Zabihollahy et al. (2019) T2w separate 2D U-Nets for whole gland and TZ segmentation 100 125 86.2 ± 3.7 91.1 ± 8.9

Aldoj et al. (2020) T2w 2D U-Net with dense blocks 141 47 78.1 ± 2.5 89.5 ± 2.0

Liu et al. (2020d) T2w similar to Liu et al. (2019), but with additional spatial attention 259 45 80.0 ± 5.0 89.0 ± 4.0

Qin et al. (2020) T2w + ADC 3D ResNet - multi-scale block - channel attention - multi-directional edge loss 10-fold 202 78.5 ± 1.7 90.8 ± 1.1

Meyer et al. (2021b) T2w 3D U-Net - anisotropic max pooling - semi-supervised (UATS) - 4 zones 78 20 79.3 ± 4.9 87.1 ± 6.5

Table 4.1: Overview of the performance (DSC [%]) of different approaches for zonal prostate segmentation in the literature. The size of the training (ntrain)
and test dataset (ntest) is included when information was provided in the paper. "k-fold" in the "ntrain" column specifies a k-fold cross validation
on the number of cases noted in column "ntest". Meyer et al. (2021b) specifies our work presented in this chapter. Please note that we targeted a
four-zone segmentation, which impairs direct comparison of quantitative results.
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image in Liu et al. (2020d) and measured the uncertainties via MC
dropout (Gal and Ghahramani, 2016) for the automatic predictions
of TZ and PZ. They found that automatic segmentations were most
uncertain at the junction of PZ, TZ and AFS.
Lastly, Qin et al. (2020) integrated multi-scale pyramid convolution

blocks into their network. The output of the pyramid block’s channels
gets weighted by an attention module. Moreover, they proposed a multi-
directional edge loss, which is based on wavelet decompositions and was
shown to be effective with several network architectures for the prostate
zone segmentation on bi-parametric input.

4.2.2 Semi-Supervised Segmentation

To reduce the amount of expensive manual labels, multiple deep SSL
techniques have been proposed to medical image segmentation. In the
following, we focus our state-of-the-art summary to methods incorpo-
rating the concepts of pseudo-labeling (self-learning and multi-view
training) as well as consistency regularization. Pseudo-labeling and
consistency regularization are currently two of the most common tech-
niques encountered in the SSL literature and have also been used in
our proposed method. The mechanisms behind these techniques are
described in our preliminaries in Section 2.3.
Besides these two concepts, there are several other techniques that

have been employed for semi-supervised learning. For example, self-
supervision can be applied to pre-train the network with the help of
unlabeled data. This is realized by introducing proxy labels that do not
require real ground truth, such as the prediction of image orientation
(flipping or rotation angle) (Tajbakhsh et al., 2019). Moreover, other
works integrated techniques such as contrastive learning (e.g., Chaitanya
et al., 2020; Hu et al., 2021), shape priors (as in Chen et al., 2020b; Lu
et al., 2021), or graph-based methods (e.g., Huang et al., 2021; Sun et al.,
2021) to leverage unlabeled data. For a more detailed overview on other
SSL concepts and methods, we refer to the surveys from Tajbakhsh
et al. (2020) and Peng and Wang (2021).

self-learning Bai et al. (2017) were the first to introduce self-
learning for biomedical segmentation in the context of heart chambers
segmentation. Although they refine their pseudo labels through condi-
tional random fields, their method brought only limited performance
gain. Therefore, in the context of pelvic organ segmentation, Nie et al.
(2018) proposed a discriminative network for voxel-wise confidence guid-
ance, that allows to augment the training data by only the most reliable
regions of the pseudo labels. Similarly, Sedai et al. (2019) included
MC dropout (Gal and Ghahramani, 2016, see Section 2.2.2) to weigh
down presumably unreliable pseudo labels for retinal fundus image
segmentation.
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Li et al. (2020b) combined self-learning with a self-supervised strategy
to improve the pseudo label quality for skin and histopathological image
segmentation, that combines self-learning with self-supervision. The
encoder of their network has the auxiliary task of solving a jigsaw puzzle
(selecting the right permutations causing a disarranged jigsaw image).
Uncertainty and an ensemble of segmentations are inferred from the
recurrent optimization of the encoder, which leads to better pseudo
labels and an increased performance.

multi-view training In multi-view learning approaches, multi-
ple networks, that are supposed to generate different predictions, are
leveraged to create more reliable pseudo labels. The different views can
be generated, for example, by obtaining axial, sagittal and coronal 2D
planes of an input volume and train one network for each plane which
has been proposed by Zhou et al. (2019) for multi-organ segmentation
and by Zhao et al. (2019) for brain segmentation. The three network
predictions for unlabeled data are then fused per majority voting into a
consensus volume, that can be reused to create more reliable pseudo
labels for the extended training data.

Xia et al. (2020) proposed a co-training strategy with N views gener-
ated by rotations and permutations, where each model is trained by an
uncertainty-weighted ensemble of the predictions of the remaining N − 1
view’s models. Peng et al. (2020) combined co-training with virtual
adversarial training (Miyato et al., 2018), to obtain a more diverse set
of models.

consistency regularization A large body of research in the
field of deep semi-supervised segmentation incorporates some form of
consistency regularization. The unlabeled images are leveraged in this
SSL concept to induce a regularization by penalizing the deviation of a
model’s prediction for one input sample that was subject to different
perturbations (see Section 2.3.2).

Bortsova et al. (2019) measure the consistency with the two outputs
of a siamese network, where each branch receives a differently trans-
formed input per elastic deformation. Fang and Li (2020) obtained the
consistency loss from the predictions of two decoders that share one
encoder. Their algorithm also includes entropy minimization to push
the decision boundary into the low-density regions.

However, most approaches that enforce consistency, employ the mean
teacher concept (Tarvainen and Valpola, 2017). The teacher model is a
historical ensemble of past iterations’ model weights from the so-called
student model. The purpose of this teacher model is then to provide
more robust targets for the consistency loss. Cui et al. (2019) employed
the mean teacher model with perturbations induced by applying noise
to the images. For the task of ischemic stroke lesion segmentation, they
showed improved performance of their network by incorporation of
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the mean teacher strategy. Li et al. (2020a) applied a mean teacher
variant that enforces consistency regarding geometric transformations
for multiple segmentation tasks. Fotedar et al. (2020) could improve the
performance of the mean teacher model by applying a stronger and more
diverse set of transformations. They used strong intensity, geometric
and image-mixture transformations to the student model’s input while
applying only mild transformations to the teacher model to keep its
predictions reliable. They demonstrated their method’s effectiveness for
several medical image analysis tasks.

Other researchers proposed to constrain the consistency loss to only
the less uncertain regions. For example, Yu et al. (2019) restricted the
consistency loss to the most reliable regions of the teacher prediction via
an MC dropout uncertainty estimate. Yang et al. (2020) implemented
two U-Nets for catheter segmentation. For both networks, inter-network
consistency and the intra-network consistency (similar to the πmodel)
is measured. The consistency losses are limited to the less uncertain
regions per MC dropout and an adversarial loss enhances contextual
similarity between the outputs for labeled and unlabeled data.

Furthermore, strategies have been proposed, that evaluate the consis-
tency at multiple levels of the network. Li et al. (2021b) improved the
quality of standard mean teacher method for left atrium segmentation
by applying the consistency regularization at multiple scales of the
decoder either between two networks or within one network (Luo et al.,
2021). Wang et al. (2020c) weighted the consistency loss with double-
uncertainty: uncertainty on the prediction level and on the feature
channel level, both under dropout and random noise during inference.
Alternatively, the consistency can be calculated on a local (patch-based)
and a global structural level as Hang et al. (2020) demonstrated for left
atrium segmentation. Entropy minimization was further added to the
unlabeled data predictions to motivate more confident outputs.
Very recently, combinations of the here presented methods have

been proposed that further improve the segmentation performance
over the other SSL methods. Wang et al. (2021b) combine the mean
teacher algorithm with self-learning in a cascaded framework in the
context of whole heart segmentation. In an initial stage, a mean teacher
method is trained on both labeled and unlabeled data. The resulting
model is supposed to be superior to a supervised model and can thus
provide more reliable pseudo labels. Afterwards, a self-learning routine
is applied, where the pseudo label’s reliability is quantified by a shape
prior obtained from an autoencoder reconstruction network. In another
work by Wang et al. (2021a), the mean teacher model was combined
with multi-view-training. In their method, K views are trained per
mean teacher, thus K × 2 models need to be updated during training.
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4.2.3 Limitation of Current Approaches

The current state-of-the art demonstrates that CNNs can be successfully
employed for automatic segmentation of the prostate zones from MRI.
However, as mentioned above, these approaches targeted only the coarse
division into PZ and TZ and do not consider other interior structures as
AFS and DPU. Moreover, most methods that have a top performance,
need a large quantity (≥ 100) of training samples.
To reduce the number of labeled samples, SSL strategies have been

proposed for different biomedical segmentation tasks, that leverage
the frequently available unlabeled data. Pseudo-labeling methods have
shown their potential for various applications, but their benefit is limited
when the pseudo label quality is not sufficient. As described above, sev-
eral strategies have been proposed for selecting only the reliable pseudo
labels or samples of unlabeled data, such as introducing adversarial
training (Nie et al., 2018) or multi-view strategies (Xia et al., 2020).

Consistency regularization methods, and especially the mean teacher
approach, are currently one of the most popular SSL techniques proposed
for biomedical image segmentation. However, mean teacher methods
require at least two models that need to be available during training.

Although the methods summarized in this related work section have
proven to be very effective, one major downside of the successful mean
teacher and the more elaborated pseudo-labeling methods is that they
make the training very resource-intensive for 3D data. Therefore, patch-
based (Cui et al., 2019) or sliding window (Yu et al., 2019) strategies
are required that limit the receptive field of the neural network and
introduce another algorithm component that needs careful optimization
for training and inference (Madesta et al., 2020). This motivated us
to rely on less expensive methods with respect to the GPU memory
requirements, allowing to process the whole gland during training and
inference.

4.3 technical methods

Encouraged by the potential that SSL has demonstrated in the past
for various medical imaging problems, we developed a novel method
that combines pseudo-labeling and consistency regularization. To be
precise, we extend uncertainty-aware self-learning by the concept of
temporal ensembling (see Section 2.3.2). With the combination of these
techniques, we address the challenges of computational complexity and
insufficient pseudo label quality. Instead of relying on multiple models
during training (as the mean teacher method or multi-view training),
temporal ensembling uses a historical ensemble of model predictions
that can be stored offline and thus does not increase computational
ressources on the limited GPU. Furthermore, this historical ensemble has
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the potential to provide more reliable pseudo labels for the self-learning
routine than a single network inference.
Our SSL method uses two stages of training: (I) In a warm-up

phase, a supervised model f(·) is trained with only labeled data
DL = {(xi, yi)}li=1 until convergence. For each image xi from X ∈
RH×W×D, there exists a ground truth segmentation map yi from
YL ∈ {0, 1}H×W×D×C , where W , H, D are the dimensions of the
volume and C defines the number of class labels. (II) semi-supervision is
then added to improve the performance of f(·) by leveraging unlabeled
data DU = {xi}l+ui=l+1. At this stage, we extend self-learning by temporal
ensembling. The idea behind self-learning is to get an improved model it-
eratively through an expanded dataset DL ∪DU comprising the labeled
dataset DL along with the unlabeled images XU and their pseudo labels
ŷi ∈ ŶU with ŷi = f(xi, θ), such that DU = (XU , ŶU ). To constrain
the influence of wrong pseudo labels, we base on the most confident
predictions using uncertainty measures. We combine this idea with
concepts derived from temporal ensembling, where the pseudo-labels are
updated with the ensemble predictions rather than the current epoch’s
prediction. Also, a consistency loss is calculated between the current and
ensemble predictions, which enforces consistency between the current
and the previous epochs’ predictions, preventing huge gradient updates.

Prior to the development of our method, no algorithm has been pro-
posed to incorporate the concept of temporal ensembling for biomedical
segmentation. However, concurrently with our method, Cao et al. (2020)
developed an uncertainty aware temporal ensembling method for the
mass segmentation in breast ultrasound images2. The major difference
to our method is, that Cao et al. (2020) relied only on the temporal en-
sembling method and restricted the consistency loss to the most certain
ensemble regions. Contrary, we propose to use temporal ensembling and
self-learning, where we consider all voxels for the consistency loss but
restrict the input for the self-learning to the most confident regions.

In the following Section 4.3.1, we first describe our backbone network
architecture, for which we designed an anisotropic U-Net variant and
the post-processing. Hereby, we focus our methods on the multi-class
segmentation of prostate zones which was our main objective in this
study. We will then continue with the details on our SSL technique in
Section 4.3.2, which can be applied to all types of segmentation tasks
as we will see in our evaluation study in Section 4.5.3.

4.3.1 Anisotropic 3D U-Net

We implemented a variant of the 3D U-Net as backbone architecture
that considers the anisotropic nature of the T2w prostate MRI scans
for its design (see Figure 4.2).

2 Their method was published in the beginning of October, while our draft for the
manuscript was circulated to the co-authors end of September.
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Figure 4.2: Proposed anisotropic architecture of the network for zonal segmen-
tation. The architecture is based on the 3D U-Net (Çiçek et al.,
2016). The orange arrows highlight the location of 2D max pooling
and 2D upsampling operations.

In the encoder, the image is downsampled by means of three resolution
steps. Each layer in one resolution step consists of two 3 × 3 × 3
convolution filters with ReLU activation and a successive max pooling
operation. On the way down, the number of filters increases from
16 for the first layer to 256 in the bottom layer. In contrast to the
original architecture, we used anisotropic 2 × 2 × 1 max pooling to
take the highly anisotropic input data into account. Only the last
max pooling is isotropic with 2 × 2 × 2. Similarly, the decoder path
with transposed convolution (3 × 3 × 3 kernel) employs a stride of 2
in each dimension for its first layer. It is followed by two 3 × 3 × 3
convolution layers with decreasing number of filters. With respect to
the anisotropic downsampling, we used transposed convolution with a
stride of 2 × 2 × 1 for the last two decoder resolution steps to maintain
the symmetrical design of the U-Net.
As in the original architecture, we employed skip connections to

transfer high resolution information from the encoder path to the same
level of the decoder path. Batch normalization after every convolution
was added for faster learning. As regularization, dropout with a rate of
0.5 was included in the bottom most layer and in the decoding layers.
The last layer of the network is a 1 × 1 × 1 convolution with softmax
activation function and a resulting output of 5 channels: one each for TZ,
PZ, DPU, AFS and background. Due to its ’winner-takes-it-all’-nature,
the softmax function is optimal for creating a preferably non-overlapping
multi-class segmentation.
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post-processing To obtain a final topologically correct multi-
class segmentation for the zone segmentation, we post-processed the
prediction of the network ŷi as follows. First, the prediction gets thresh-
olded. Second, for every class in the thresholded prediction, a connected
components analysis is applied and only the largest component is kept.
Voxels resulting in a label-free state after connected components were
now assigned a new label with:

ŷc,i =

1, if ŷc,i = maxc∈C SDF(ŷc,i) ,

0, otherwise ,
(4.1)

with SDF(·) being a signed euclidean distance function that assigns
positive values inside and negative values outside the segmentation.
Consequently, every voxel that had a label-free state, gets assigned
to the zone of the nearest labeled voxel according to the shape-based
distance measure.

4.3.2 Semi-supervised Learning

Instead of starting our SSL-based training from scratch, it is intuitive
to first train a model in supervised fashion on (XL,YL) only, leveraging
better pseudo label predictions for XU for the initialization of our SSL
technique and thus avoiding degenerated models. As a second step, our
semi-supervised method is applied, for which an overview is depicted in
Figure 4.3. A pseudo-code for the method can be found in Algorithm 1
at the end of this section. We start the training with the expanded
dataset comprising the ground truth (manual) labels and the pseudo
labels, which are derived from the pre-trained model. Thus, the pseudo
labels act as targets for the unlabeled samples. The overall loss function
LTotal in the SSL stage contains two components: task and consistency
loss and is defined as weighted combination

LTotal = LTask + λLCons , (4.2)

where λ is the consistency loss weighting coefficient.

task loss We chose the continuous DSC (cDSC) (Shamir et al.,
2019) to implement the task loss LTask. It can handle probabilistic
segmentation better than the regular DSC that requires at least one
binary input. This exempts us from defining any thresholds on the
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Figure 4.3: Concept of our uncertainty aware temporal self-learning (UATS).

network predictions and from losing information the network provides
with its probabilistic output. Our task loss is defined as:

LTask = LcDSC(y, ŷ,m) =

−
∑
c∈C

2
∑N
i=1miŷc,iyc,i + ε

ac
∑N
i=1miyc,i +

∑N
i=1miŷc,i + ε

, (4.3)

where ŷ is the model’s prediction and y ∈ YL∪U is the corresponding
ground truth or pseudo label and ε a small constant to ensure numerical
stability. N is the total number of voxels with i being an index for
a specific voxel. C is the set of different classes and ac is a specific
coefficient for the cDSC (see Shamir et al. (2019) for details). Mask
m ∈ {0, 1}H×W×D is one for all voxels of YL and for the n most confident
voxels of YU , and zero otherwise. We will provide details on the definition
of the n most confident voxels after describing the temporal ensembling
component in the next paragraph.

temporal ensemble As a novelty, we propose to use the tem-
poral ensemble of predictions Ê used in the consistency loss (Laine
and Aila, 2017) as the pseudo labels. With an ensemble of predictions,
we consider multiple hypotheses rather than a probable noisy single
hypothesis. Therefore, this strategy reduces the effect of noisy labels
generated for the unlabeled images. Ê is an exponential moving average
over epochs and its update at each epoch t is defined as in the original
work from Laine and Aila (2017):

Ê ← α Ê + (1− α) ŷ, (4.4)

with α being defined as the momentum term controlling the contri-
bution of historical data to the ensemble (Laine and Aila, 2017). In
the original temporal ensembling approach, Lcons is included right in
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the beginning of the network training and the ensemble is initialized as
zero vector. Because we start our SSL method with a previously trained
supervised model, we can initialize Ê prior to the first epoch with the
supervised model’s prediction. This spares us from applying a ramp-up
weight for Lcons. Theoretically, this exempts us as well from applying
the start-up bias correction on the ensemble (see Section 2.3 or (Laine
and Aila, 2017)), but we found its inclusion to be beneficial for the
overall performance due to experiments (see Appendix A.3).
To increase the reliability of the ensemble, we propose to update Ê

only during those epochs where the validation loss decreases, i.e., when
the model performs well on the unseen data. To be precise, Ê is updated
class-wise, such that the labels for the classes are updated only when
the class-specific loss improved on the validation loss.

uncertainty measures We constrain the influence of wrong
pseudo labels on the task loss by including only the n most confident
voxels per batch as pseudo labels YU . We evaluated MC dropout (Gal
and Ghahramani, 2016) (see Section 2.2.2) and the historically averaged
softmax prediction of the temporal ensemble as confidence measures for
the pseudo-label selection process.
For the MC dropout uncertainty estimation, we used the entropy

of the resulting multiple predictions that are obtained by activating
dropout at inference. With f denoting a forward pass, MC entropy H
for every voxel is defined as:

H(F ) = −
∑

c∈C

( 1
F

∑F

f=1
ŷc,f

)
log

( 1
F

∑F

f=1
ŷc,f

)
. (4.5)

To extract the most confident voxels per class, we first got the indices
of those voxels belonging to class c and having the maximum softmax
prediction (or the minimum entropy H) across classes. Then, for each
class, the indices of the top nc confident voxels are returned. An example
for a resulting confidence mask can be found in AppendixA.4.

consistency loss Consistency loss LCons is obtained by calculat-
ing the dissimilarity between the (bias corrected) ensemble predictions
EL∪U and the current network predictions ŶL∪U . Hence, LCons acts
as a regularizer enforcing a smoother gradient update. In the original
temporal ensembling method designed for classification, the dissimilarity
is measured with mean squared error. For our segmentation task, we
base LCons on the cDSC (Shamir et al., 2019) of the two segmentations
(Equation 4.3) as it is less sensitive to class imbalance and has been
found to work best in preliminary experiments on the validation set.
We define the consistency loss as the dissimilarity (Cha, 2007) between
the current prediction ŷ and E as:

LCons = 1−LcDSC(ŷ,E,m = 1). (4.6)
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Algorithm 1: Uncertainty-aware Temporal Self-Learning
(UATS)

Input: supervised model fθ, input images X, set of indices for labeled
images L, set of indices for unlabeled images U , ground truth
labels YL, number of confident voxels per class n, num_epochs,
α, early_stop_condition

Output: semi-supervised model fθ
/* Initialize semi-supervised training. For reasons clarity, we

differentiate between confidence masks for the task (MTask)
and the consistency loss (MCons). */

1 MTask,i∈U ← 0 // initialize voxels of task mask with zeros
2 MTask,i∈L ← 1 // set task mask to 1 for all labeled images
3 MCons,i∈L∪U ← 1 // set cons. mask to 1 for all voxels
4 ÊL∪U ← fθ(XL∪U ) // initialize ensemble prediction
5 EL∪U ← ÊL∪U // initialize target vectors
6 vconf = ∅ // initialize confident voxels
7 cur_val_loss←∞, min_val_loss←∞

/* semi-supervised training */
8 for t in [1, num_epochs] do
9 while not early_stop_condition do

10 MTask,i∈U [vconf] = 1 // update mask for unlabeled images
11 YU ← EU // assign ensemble to pseudo labels
12 for each minibatch b ∈ {L∪U} do
13 Ŷi∈b ← fθ(Xi∈b)

14 loss← LTask(Ŷi∈b,Yi∈b,MTask,i∈b)
+λLCons(Ŷi∈b,Ei∈b,MCons,i∈b)

15 update θ with Adam optimizer
16 update cur_val_loss

/* update ensemble class-wise if class-specific validation
loss improves */

17 for each class c do
18 if cur_val_loss[c] < min_val_loss[c] then
19 Ê[c]← αÊ[c] + (1− α)Ŷ [c] // update ensemble
20 E ← bias_correction(Ê) // update target vectors
21 min_val_loss[c]← cur_val_loss[c]

22 vconf ← get_conf_voxels(fθ, Ê,n) // update conf. voxels

Mask m ∈ {0, 1}H×W×D is one everywhere, as all the voxels are consid-
ered irrespective of their confidence.

4.4 experimental setup

The following sections cover the experimental setup to assess our meth-
ods described in the previous Section 4.3. Our experiments are mainly
carried out on a prostate MRI dataset, because our main objective was
to achieve robust and reliable segmentation outcomes of the prostate’s
interior anatomy. However, as our SSL strategy is applicable much more
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Prostate Zones Hippocampus Skin Lesions

Image Type T2w MRI T1w MRI color photographs

Dimensions 3D 3D 2D

Classes 4 2 1

Size DL,train 78 210 2494

Size DU ,train 236 130 1000

Size DL,test 20 50 500

Table 4.2: Overview of the datasets used for the evaluation of our method.

widely, we decided to investigate its ability to generalize on other chal-
lenging tasks, too. To this end, we evaluated our method additionally on
a skin lesion and hippocampus segmentation dataset. We first describe
the three datasets used in our study in Section 4.4.1 and summarize the
training details, which are partly task-dependent, in Section 4.4.2. Then
the design of our experiments is outlined in Section 4.4.3.

4.4.1 Data

In the following, we provide more details on our benchmark datasets for
prostate zones, hippocampus and skin lesion segmentation, as well as
their respective pre-processing and augmentation strategies. We refer to
Table 4.2 for a quick overview about the datasets. The table summarizes
the main dataset characteristics and the ratio of labeled/unlabeled data
as well as the number of training and hold-out test images for each task.

prostate zone segmentation We used the publicly available
SPIE-AAPM-NCI PROSTATEx challenge dataset (Litjens et al., 2017a;
Litjens et al., 2014a; Clark et al., 2013) for the evaluation of our method
for the task of prostate zone segmentation. The images were acquired
by two different types of Siemens 3T MRI scanners (MAGNETOM Trio
and Skyra) with a pelvic phased array coil at the Radboud University
Medical Centre (Radboudumc). Overall, we extracted 334 T2w volumes
(axial, sagittal and coronal volumes) and created manual ground truth
(PZ, TZ, AFS and DPU zones segmentation) for randomly selected 98
cases. The manual segmentations of the prostate zones were created on
the axial volume with additional consideration of the sagittal volume
with 3D Slicer (Fedorov et al., 2012) by a medical student and subse-
quently corrected by an expert urologist (Reader 1). As hold-out test
data, we used 20 randomly selected labeled cases.
For evaluating the inter-reader variability, a second ground truth

was created by a second expert urologist (Reader 2) with the help of
another medical student for these 20 test cases. Additionally, for 10
out of the 20 test cases, a third expert segmentation was generated by
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an assistant radiologist (Reader 3). Segmentations from Reader 1 (the
same who segmented the training data) was set as our ground truth.
Segmentations from Reader 2 and Reader 3 were evaluated against this
ground truth for the inter-reader variance. The average performance of
Reader 2 & 3 forms the inter-reader level.

Pre-processing and Augmentation: The original volumes had varying
resolution of [0.3− 0.6]× [0.3− 0.6]× [3.0− 5.0] mm. Therefore, we
resampled the volumes’ resolution to a common spacing of 0.5 × 0.5 ×
3 mm. The volumes were cropped to a unified size of 168 × 168 × 32
voxels by considering the intersecting volume of the axial, sagittal and
coronal T2w sequence. To be clear, we only used the cropped and
resampled axial T2w volume as network input. The other volumes were
only considered for automatically determining the region of interest.
The intensities were cropped to the first and 99th percentile and

subsequently normalized to an interval of [0,1]. We applied online aug-
mentation of the training data by random application of the following
transformations: left-right flipping, 3D rotation, scaling and 3D transla-
tion. Instead of nearest neighbor interpolation, we applied a shape-based
interpolation as proposed in (Herman et al., 1992) for the augmentation
which produced smoothly transformed segments despite the anisotropic
resolution.

hippocampus segmentation For hippocampus segmentation,
we used Task04 of the Medical Decathlon Challenge (Simpson et al.,
2019). The dataset consists of two classes: the hippocampus proper
(CA1-4 and dentate gyrus) and parts of the subiculum, which together
are more frequently named as hippocampal formation. The T1w sagittal
volumes were acquired with a Philips Achieva scanner at the Vanderbild
University Medical Center (Nashville, TN, USA). The dataset contains
390 T1w images of healthy people and patients with non-affective psy-
chotic disorders. For 260 out of the 390 images, labels are provided as
training data. The remaining 130 samples are originally used as test
data in the challenge with labels withheld from the public. Thus, we
randomly set aside 50 labeled samples from the original training data
for our testing purposes and used the original test data (n=130) as
unlabeled (training) data for our UATS method.

Pre-processing and augmentation: The dataset’s volumes are provided
with uniform spacing of 1.0 × 1.0 × 1.0 mm for all volumes. We stan-
dardized the sizes of the volumes to 48 × 64 × 48 voxels and normalized
the intensities to an interval of [0,1]. As data augmentation, we applied
3D rotation, scaling and 3D translation.

skin lesion segmentation For skin lesion segmentation we
used the ISIC 2018 challenge data (Codella et al., 2018; Tschandl et al.,
2018). The dataset consists of high-resolution color photographs of the
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skin from all anatomic sites. It contains both benign and malignant
lesions with a higher percentage of the first. Images were acquired with
a variety of dermatoscope types and from different institutions. The size
of the images ranges from 566× 679 to 4499× 6748 pixels. The original
challenge dataset provides 2594 labeled training and 1000 unlabeled
testing samples. For our experiments, we used 500 randomly selected
labeled samples from the original training dataset as our test data. We
used the original unlabeled test data as unlabeled training data for
our UATS method. In summary, we included 2094 labeled and 1000
unlabeled images for training and 500 labelled images for testing.

Pre-processing and augmentation: We employed intensity normaliza-
tion and resized the images to 256 × 192 pixels during pre-processing.
Data augmentation included rotation, translation, scaling as well as
left-right and top-down flipping.

4.4.2 Training Details

We used the same training strategy for all the named tasks, but the
underlying model differs slightly due to the nature of the data. For our
main task prostate zone segmentation, we applied the anisotropic 3D
U-Net that we developed with respect to the nature of the 3D MRI
scans (see Section 4.3.1). For the other two tasks we employed dataset-
specific variants derived from this architecture as our aim was not to
achieve state-of-the-art results but to fairly compare the proposed UATS
approaches with the supervised baseline. Specifically, for hippocampus
segmentation, we employed a similar architecture as backbone, but with
isotropic max pooling in all resolution layers and starting with 32 filters
in the first convolutional layer. Similarly, we used a 2D U-Net variant
for skin segmentation with a starting filter size of 64 in the first layer.
The probability of the dropout in each resolution layer of the decoder
path is 0.5 for all models.

The models were trained using ADAM (Kingma and Ba, 2015) opti-
mizer based on 75% of the training data. The remaining 25% were used
as validation data during training. The supervised baseline models were
trained with the multi-class DSC loss (see AppendixA.1 for details).
All the models were trained for a maximum of 300 epochs. We used
early stopping in all the experiments, where training was terminated
when no improvement could be detected for the validation loss within 30
epochs. The model with the overall lowest validation loss was selected
and used for the evaluation on test data. For the prostate segmentation,
we post-processed the predictions for the supervised baseline and the
UATS method as described in Section 4.3.1.
The model hyperparameters were selected empirically. In all the

temporal ensembling and UATS experiments α was set to 0.6. The
consistency coefficient was set to λ = 1 unless the consistency loss
dominated the task loss. In this case, we set λ = 0 epoch-wise to ensure
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the task loss is the main driver. To evaluate the MC entropy as uncer-
tainty measure, we implemented 10 forward passes of the network. The
remaining hyperparameters as confident pseudo label voxels, learning
rate and batch size were set task-specific and can be found in Table A.1
in AppendixA.2.

4.4.3 Evaluation Design

We carried out several experiments to investigate the performance and
effectiveness of our methods. In this section, we describe the design of
the experiments, the results of which are then presented in Section 4.5.
For our evaluation, we report the DSC and the ABD as evaluation

measures, and refer to the appendix for additional insights of the 95-HD
for our prostate zone experiments.
As stated before, we focus our evaluation on the task of prostate

segmentation. To put the quantitative results of our methods for this
task into context, we compared them with the respective inter-reader
variability (Section 4.5.1) that was assessed as described in Section 4.4.1.

For evaluating the automatic deep learning methods, we conducted
a randomly sampled four-fold cross validation for different training
and validation splits if not stated otherwise. For each method, the
four trained models were then evaluated individually as described in
Section 2.4.1.

In Section 4.3, we proposed an anisotropic 3D U-Net for the prostate
segmentation, that should better account for the characteristics of
the prostate MRI data than its isotropic counterpart. We compared
the performance of both architecture variants for the fully supervised
segmentation on the labeled dataset DL to assess whether the model
benefits from the anisotropic architecture (Section 4.5.2).

Subsequently, we investigated the performance of our semi-supervised
UATS method (both the MC entropy and the softmax variant), which
we trained on DL∪U (Section 4.5.3). Furthermore, we conducted ex-
periments that evaluated (1) the performance of other state-of-the-art
SSL methods, (2) the impact of the different components of our UATS
method in an ablation study, (3) UATS’s robustness against noise in the
input images, and (4) the effectiveness of UATS for other biomedical
segmentation tasks (generalizability). We will give more details on these
experiments’ design in the following passages.

comparison to the ssl state-of-the-art To compare our
UATS method to other state-of-the-art SSL techniques, we evaluated
the performance of temporal ensembling as in Laine and Aila (2017)
with LCons as in Equation 4.6 and self-learning similar to Bai et al.
(2017). For this self-learning version, we used continuous predictions as
pseudo labels in combination with the cDSC, which worked better than
thresholding the predictions. Bai et al. (2017) updated the pseudo labels
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only after a specific interval of 50 epochs regardless of the quality of
the model concerning the validation data. Consequently, pseudo labels
quality may decrease and the method may suffer from these low-quality
labels. Thus, we apply a variant that updates the pseudo labels always
and only when the validation loss improves (Self-Learning Update).

ablation study We conducted an ablation study to investigate
the individual effect of different components on the overall performance.
For this, we employ the UATS softmax variant and make the following
changes to its implementation: First, we omitted the consistency loss
LCons and only optimized the network parameters during training with
LTask. Second, we set the parameter for the percentage of confident
voxels to n = 100%. This way, all pseudo label voxels are considered as
confident and not only the top n voxels (with highest probability) per
class. Thus, no confidence measure was included in the UATS method.
And third, instead of an ensemble of predictions Ê, we used the current
prediction of the network ŷ as pseudo labels YU .

robustness against noise In this experiment, we investigated
the robustness of the supervised baseline and both UATS methods
against varying levels of noise. For this, we applied different levels of
noise on the test data and evaluated the performance of the methods.
We applied Gaussian additive noise with µ = 0 and varying σ to our test
images. Because MRI images have different intensity ranges, we applied
the noise to the normalized test image. Then, we normalized the noisy
images again to obtain the same intensity range from [0,1] as for the
training images. We applied noise with σ = {0.01, 0.025, 0.05, 0.1, 0.2}
which corresponds to an average signal-to-noise-ratio (SNR =

µimg

σnoise
)

of SNR = {26.8, 10.7, 5.4, 2.7, 1.3}. An example case with increasing
noise is displayed in Figure 4.4.

generalizability To show that UATS is generally applicable,
we additionally benchmarked it on a hippocampus and skin lesion
segmentation dataset and for varying amounts of labeled data. We set
up the experimental scheme for all datasets as follows. We randomly
sampled 10%, 25%, 50% and 100% of the available labeled training
samples and applied the plain supervised baseline and UATS. Hereby,
we used always the same amount of unlabeled samples (Size DU ,train in
Table 4.2) and the full validation sets. For the hippocampus and skin
experiments, we included additionally 5% of labeled data. The random
sampling was repeated three times for different train/validation splits,
averaging result qualities to get reasonable grounds for comparison.
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Figure 4.4: Application of additive Gaussian noise with varying σ to one
example test case.

4.5 results

The following sections report the results for our experiments described in
the previous Section 4.4. Before assessing the impact of our proposed SSL
method, we begin with details on the inter-reader variance (Section 4.5.1)
and continue with the comparison of the supervised anisotropic and
isotropic 3D U-Nets (Section 4.5.2). The results for the assessment of
our UATS method are then reported in Section 4.5.3 regarding

• the effectiveness of MC entropy and softmax uncertainty measures,

• the performance of other state-of-the-art SSL techniques,

• an ablation study for different components of the UATS algorithm,

• UATS’s robustness against noise in the input images,

• the effectiveness of UATS for other biomedical segmentation tasks
(generalizability) and with varying size of DL.

Lastly, we rank our UATS results with respect to other segmentation
results reported in the literature for the prostate zone, hippocampus
and skin lesions.

4.5.1 Inter-reader Variance

We evaluated the performance of different clinical experts to obtain
an estimate for the inter-reader variance. Details on the results can
be found in the top rows of Table 4.3. On average, the inter-reader
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Algorithm PZ TZ DPU AFS

DSC (%) ABD (mm) DSC (%) ABD (mm) DSC (%) ABD (mm) DSC (%) ABD (mm)

Manual
Expert1 vs. Expert2 81.8 ± 3.4 0.70 ± 0.35 87.8 ± 5.8 0.86 ± 0.31 60.6 ± 8.9 1.33 ± 0.49 51.0 ± 11.1 1.91 ± 1.10
Expert1 vs. Expert3 78.0 ± 5.4 1.02 ± 0.60 82.8 ± 5.7 1.07 ± 0.34 64.1 ± 4.9 1.26 ± 0.39 46.8 ± 15.1 2.42 ± 1.24
∅ Inter-reader-level 79.9± 4.2 0.86± 0.45 85.3± 5.8 0.97± 0.32 62.4± 7.8 1.30± 0.46 48.9± 12.6 2.16± 1.15

Supervised
Supervised ANISO 77.4± 5.7 1.08± 0.67 86.7± 7.2 0.91± 0.36 70.6± 14.7 1.08± 1.32 46.1± 13.6 3.55± 3.18
Supervised ISO 75.4± 6.4∗∗∗ 1.23± 0.87∗∗∗ 85.9± 6.7∗∗∗ 1.01± 0.42∗∗∗ 68.4± 18.7 1.74± 5.35 42.0± 14.8∗∗ 4.00± 3.57∗∗

Proposed Methods
UATS Entropy 78.9± 5.0∗∗∗ 0.97± 0.59∗∗∗ 87.3± 6.5∗∗ 0.89± 0.36 73.6± 9.9∗∗∗ 0.87± 0.46∗∗ 50.1± 10.3∗∗∗ 2.95± 2.05∗

UATS Softmax 79.3± 4.9∗∗∗ 1.00± 0.65∗∗∗ 87.1± 6.5 0.92± 0.38 74.9± 9.7∗∗∗ 0.83± 0.43∗∗∗ 49.5± 11.9∗∗∗ 2.96± 2.29∗∗∗

Semi-Supervised
Temporal Ensembling 77.4± 6.1 1.18± 0.89 87.0± 6.5 0.93± 0.42 71.6± 12.0 0.95± 0.56 44.2± 11.9 3.28± 2.77
Self-Learning as in Bai et al. (2017) 77.1± 5.9 1.13± 0.82 84.4± 6.4∗∗∗ 1.14± 0.46∗∗∗ 68.8± 13.2∗∗ 1.07± 0.70∗∗∗ 43.4± 11.2∗∗ 3.41± 2.30
Self-Learning Update 77.0± 5.6 1.29± 0.98∗∗ 85.4± 6.0∗∗∗ 1.05± 0.37∗∗∗ 71.2± 11.0 0.97± 0.63 41.2± 12.9∗∗∗ 4.42± 3.38∗∗∗

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. p-values according to Wilcoxon signed-rank test.

Table 4.3: DSC and ABD of different prostate zone segmentation strategies. Best results are marked bold. Asterisks indicate significant differences in the
distributions of the marked and the supervised ANISO method.
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performance was 79.9%, 85.3%, 62.4% and 48.9% for PZ, TZ, DPU
and AFS, respectively. We can see that there exist clear differences in
the manual segmentations. For example, Reader 2 was much closer to
Reader 1 than Reader 3. This highlights that the delineation of the
zones is challenging. The clinicians confirmed that the AFS is the most
difficult structure to segment as boundaries are not clearly visible for a
large part and the structure has high variety of shape and appearance.
Thus, the inter-reader variability is very high. We also expect the intra-
reader variability to be high, but need to confirm this with further
experiments in future work.

4.5.2 Supervised Baseline

The quantitative results for the anisotropic and isotropic U-Net vari-
ant are summarized in Table 4.3. The anisotropic variant consistently
improved performance over the isotropic standard architecture and
achieved DSCs of 77.4% vs. 75.4% for PZ, 86.7% vs. 85.9%for TZ,
while DPU and AFS resulted in DSCs of 70.6% vs 68.4% and 46.1%
vs. 42.0% respectively.3 Wilcoxon signed rank test confirmed these im-
provement findings for PZ, TZ and AFS (p < 0.01). Our results of the
anisotropic supervised method are in the range of average inter-reader
variability for TZ and even above for DPU. For the other two zones,
however, the manual segmentations are of considerably better quality
than the automatic segmentations, indicating the need for further im-
provement. Smaller volumes generally have the tendency to obtain lower
accuracy for region-based measures, such as the DSC, because smaller
errors have a larger weight on the overall measure. Consequently, it is
not surprising that DPU and AFS obtained worse results than TZ and
PZ. Distance-based measures such as ABD show that the quality of
automatic DPU segmentation is still good. On the other hand, regarding
the AFS, the supervised automatic method clearly needs improvement.
The high standard variance demonstrates that some cases are nearly as
good as manual segmentations but many cases are not.

4.5.3 Semi-supervised Learning

Qualitative results for our UATS method are visualized in Figure 4.5.
Results of our experiments on UATS performance are summarized in
Table 4.3 and in the boxplots in Figure 4.6.

As summarized in Table 4.3, UATS Entropy and UATS Softmax
significantly outperformed the supervised baseline for all zones with
most performance gain for the minority classes DPU and AFS. TZ

3 We have to point out that the results for both variants of the 3D U-Net differ from
our previous work (Meyer et al., 2019) because in that work we did not use any
validation data for the final model. Thus, the effective training data size was larger in
(Meyer et al., 2019). However, the method is the same for both training procedures.
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(a) Softmax (b) Entropy (c) Reader 1 (d) Reader 2 (e) Reader 3

Figure 4.5: Example segmentation results of one test case for the UATS soft-
max and entropy approaches and the three readers. The four
structures PZ (pink), TZ (yellow), DPU (brown) and AFS (blue)
are depicted.
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(a) (b)

(c) (d)

Figure 4.6: Boxplots for the segmentation results of the four zones of the
prostate. The marker (’x’) represents the mean DSC value. Results
are given as the DSC of the ground truth and automatic segmen-
tation. The state-of-the-art methods are shown in comparison the
supervised baseline and to our proposed UATS method.
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gained only little from semi-supervision, irrespective of the method
considered.
With respect to the average inter-reader performance, our UATS’

performance is on the level of human expert performance for all struc-
tures. The UATS segmentations yield even higher DSC for all structures
except PZ. We carried out further analysis of the model results for PZ
and examined in which region most of the automatic and expert seg-
mentation disagreement occur. We found that most deviations from
the inter-reader level can be encountered in the upper (cranial) third
of the PZ, which is located in the prostate’s base in proximity to the
seminal vesicles. This region suffers from partial volume effect due to
the high slice thickness and the intensity similarity of PZ and sem-
inal vesicles. While the automatic segmentation only processes the
(anisotropic) axial scan, the human readers could additionally verify
their segmentations in the sagittal scans, in which the seminal vesicles
can be better distinguished from PZ tissue. We assume that this is one
reason why automatic performance is lower than the inter-reader-level
for PZ. Another reason could be that, for PZ, the amount of labeled
data needs to be increased to better cover the structure’s variety.

The above statements are valid for both UATS confidence measures:
softmax probability and MC dropout entropy. However, we would rec-
ommend the softmax probability for this task. This is because both
performances are about equal and the softmax probability is cheaper to
compute because it does not require several forward passes.

comparison to ssl state-of-the-art The performance of
other SSL state-of-the-art methods can be found in Table 4.3 and box-
plots with more details are illustrated in Figure 4.6. Although temporal
ensembling showed promising results for TZ and DPU, it could not
achieve consistent and significant improvement over the supervised
variant across all classes.

It is interesting to see that the two relatively simple pseudo labeling
approaches generally lead to a performance decline compared to the
supervised baseline for most structures. This demonstrates that for the
prostate dataset, naive self-learning setups potentially suffer from the
false predictions they produce during the self-learning cycle. However,
in combination with the uncertainty awareness and consistency loss, we
see that UATS improves significantly over the supervised baseline and
the other state-of-the-art methods.

ablation study In our ablation study, we analyzed the effect of
different components of the UATS method, which was trained with the
softmax uncertainty. Quantitative results are visualized in the boxplots
in Figure 4.7.

Considering the results of the experiment that omits LCons, we found
decreased performance for the smaller structures DPU and AFS when
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(a) (b)

(c) (d)

Figure 4.7: Boxplots for the segmentation results of the ablation study in
comparison to the UATS softmax variant. Results are given as the
DSC of the ground truth and automatic segmentation. The marker
(’x’) represents the mean DSC value.
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Figure 4.8: Performance of the supervised baseline with UATS softmax and
UATS entropy on the test dataset with added Gaussian noise with
varying σ. Performance measure is DSC.

the network was trained only with LTask. Laine and Aila (2017) demon-
strated that temporal ensembling could better cope with noisy labels
than a simply supervised baseline. We can assume that this has a more
massive effect on smaller labels because the ratio of falsely labeled voxels
is larger when the structure’s total size is relatively small.
By only considering the n most confident voxels of each class, we

mitigate the likelihood of falsely labeled voxels in our pseudo labels. If we
consider all pseudo voxels for the labels, we see an evident performance
decline for PZ, DPU and AFS in comparison to our proposed UATS
softmax. This demonstrates that for a beneficial effect of self-learning,
the choice of labels incorporated into the task loss is essential. This
finding is in line with many studies that implement self-learning and
some form of uncertainty awareness (e.g., Nie et al. (2018)).
In contrast to the consistency loss and confidence guidance, the

ensemble of predictions for pseudo labels does not contribute evidently
to the improvement as the confidence and the consistency loss. We
hypothesize that selecting the most confident voxels already reduces the
false voxel label’s contribution, and the consistency loss compensates
further for the false voxels.

robustness against noise We evaluated the performance of
the supervised baseline, the UATS softmax and the UATS entropy
approach under varying additive Gaussian noise. The results are plotted
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for DSC in Figure 4.8. The general performance drops for all approaches
with noise strength above σ = 0.05. For TZ, all three approaches
perform similar. For PZ, AFS, and DPU, however, the UATS softmax
suffers much less from noise, indicating its increased robustness against
noise compared to the other two approaches.
We did not apply any intensity augmentation in our training. Con-

sequently, we assume that all methods would generally improve their
performance with increasing noise, if they had seen it during training.
On the other hand, we can still infer from this experiment that seeing
more data during training, even when no labels are available, can lead
to potential robustness of the method.

generalizability across tasks To evaluate the generaliza-
tion capability of our method, we assessed its performance for other
datasets (hippocampus and skin) and for varying numbers of labeled
data. Quantitative results of our generalizability experiment are pre-
sented in the diagrams in Figure 4.9. We included visual comparisons of
the supervised and UATS predictions for the different datasets used for
this experiment in AppendixA.5. Reviewing the results, we can conclude
that UATS outperformed the supervised baseline irrespective of the
dataset and the number of labeled samples. Only for the hippocampus
segmentation, the UATS entropy variant lead to decreased results for
100% of labeled data. However, the supervised baseline and the UATS
entropy outcome are still very close with less than 1% difference in
their average DSC (87.2% vs. 86.7%).
The general tendency is that the smaller the amount of labeled

samples, the larger the gain from unlabeled samples. This is a common
observation in SSL methods, also mentioned in Bai et al. (2017). The
rationale is quite intuitive, at some point, the variability in appearance
and shape are well-covered by the labeled samples, yielding diminishing
returns from unlabeled samples. Additionally, for 100% of labeled data,
there were more labeled than unlabeled samples available for the skin
and hippocampus tasks, which reduces the effect of the unlabeled data
further. The only exception from this intuitive finding is the DPU
segmentation with 10% of labeled samples, where the gain from UATS
is small. Presumably, this is caused by the fact that 10 % equals 6
labeled samples, which might be generally insufficient for a reasonable
DPU segmentation.
The above findings are true for both UATS confidence measures.

Although there exist some difference in their respective performance,
we could also find that these were generally rather small.

comparison to state-of-the-art As summarized in Ta-
ble 4.1, various approaches have been proposed for the segmentation
of only PZ and TZ. When comparing our UATS method with other
approaches, UATS performs in the mid-range. But a direct comparison
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Supervised and UATS methods’ performance (DSC) depending on
the amount of labeled samples for the tasks of prostate zone, skin
lesion and hippocampus segmentation.
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to other methods can not be drawn for two reasons. First, we target
a more detailed anatomy inside the prostate such that our problem
definition is more difficult than the two class segmentation of PZ and
TZ. And second, the underlying datasets are different. They differ in
sample size, acquisition protocols, included sequences and image quality.
For the ISIC2018 skin lesion segmentation challenge, hundreds of

methods are listed in the live leader-board, and the currently best one4
achieves a DSC of 91.5% while our UATS method obtained a DSC
of 86.0%. We can only assume why there is such a performance gap
between our method and the top participants. One reason might be the
varying amounts of training data. As we set 500 labeled samples for test
purposes aside, we have 500 labeled samples less for training. Another
reason could be that we did not evaluate on the same and a smaller
test dataset. Furthermore, the models for the challenge are maximally
fine-tuned to this specific task. We, on the other hand, used a very
basic backbone architecture. Additionally, an ensemble of models, more
sophisticated pre-processing and augmentation strategies, and more
complex network architectures (e.g. multi-scale or attention-based) have
been used. Our method does support such techniques, but it is beyond
the scope of our work to implement them.

The Medical Decathlon challenge focuses on developing methods that
have high generalization capacity on different segmentation tasks. We
followed a similar strategy, and thus our results are more comparable
to this challenge than the ISIC2018. In the ongoing Medical Decathlon
challenge, the best method’s4 result achieved on hippocampus is a
DSC of 90.0% for class 1 and DSC of 89.0% for class 2. With UATS,
we achieved a DSC of 88.8% and 87.6%, respectively. This places our
method in the range of the twelfth-best result (88% and 88%), whereas
we had less labeled data for training (with the same reason we have
given for ISIC2018) 4.

4.6 discussion

In this work, we proposed a novel semi-supervised learning strategy
in the context of a detailed prostate zone segmentation that has not
been targeted before by other researchers. We found that adapting
the network architecture to the anisotropic nature of the MRI scans
lead to a performance increase for all structures. Moreover, in our
experiments, we could show that our proposed semi-supervised method
has the potential to leverage additional unlabeled data to increase the
outcome quality for prostate zone segmentation and other biomedical
segmentation tasks. This demonstrates the benefit of exploiting data
from the intra-domain level of the clinical data structure.
Our method incorporates a temporal ensemble (of predictions) that

is used for the consistency loss and to create higher quality pseudo

4 as of July, 9th 2021
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labels. Other SSL methods (e.g., Yu et al., 2019; Li et al., 2021b; Wang
et al., 2020c), on the other hand, employ the mean teacher method
(Tarvainen and Valpola, 2017) to create another type of ensemble based
on model weights. The authors of the mean teacher method argue that
ensembling of the model weights has two advantages over prediction
ensembling: (1) the ensemble update can be carried out at every iteration
(instead of every epoch) and scales better to large datasets, (2) better
representations can be obtained because the averaging affects all layers of
the model and not just the output. We decided on the temporal ensemble
of predictions because it is more GPU memory efficient. However, the
prediction ensemble could be easily exchanged with the model ensemble.
It would be of value for future work to evaluate whether there exist
difference in performance between these two variants.

The proposed method is based upon a rather simple U-Net architec-
ture. We chose this architecture because of its successful application to
a multitude of segmentation tasks. However, we want to point out that
UATS is network-independent and could also be applied to any other
network architecture.
The segmentation quality for the AFS zone is rather low for both

the manual and automatic approach. This highlights that more care
should be taken for the ground truth segmentations, for example with
a consensus segmentation among multiple readers. This could produce
more consistent labels and could potentially improve the automatic
segmentation result, too. However, even if the segmentation quality
is not yet perfect, we believe that it is of sufficient quality to be of
valuable information for the consistent lesion location assignment (via
the PI-RADS sector map) and for clinical studies.

We compared softmax probability and MC dropout entropy as mea-
sures to select the most confident voxels. In general, we could not find
consistent and significant differences among these two approaches. We
assume that this is because we applied the relative selection of confident
voxels instead of an absolute one (only considering those above a thresh-
old). Thus, for both methods, the uncertain boundary region is usually
avoided in the pseudo label selection, irrespective of the confidence
measure’s absolute value, which causes the method to generate similar
confidence masks.

In another experiment, we investigated the robustness of the methods
against noise. Although both UATS variants demonstrated more robust-
ness against noise than the supervised baseline, we could also observe
that this is the only experiment where UATS softmax performed clearly
better than UATS entropy (for DPU and AFS). As this contrasts with
our findings that both variants do not differ for other experiments, it will
be of high interest to investigate whether this observation is consistent
for other tasks and datasets.

Besides noise, there are various other factors that impact the quality
of images. For example, images can be blurry due to motion of the
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patient during acquisition, or they can be corrupted by bias field. Ad-
ditionally, the images may have been obtained by another acquisition
protocol or scanner, introducing a domain-shift (see Section 5.1). More
intensity-based data augmentation and more task-specific pre-processing
could, but does not guarantee, an increase to the robustness of all algo-
rithms. Most state-of-the art approaches use established pre-processing
consisting of intensity normalization and spatial normalization (image
resolution and size). We followed this style for our work, as our focus
was to investigate how additional unlabeled data can improve over a
supervised baseline.
Although the CZ is another anatomical zone of the prostate, we

did not account for it, because this zone is frequently compressed in
elderly men due to increased growth of the TZ (a benign medical
condition known as BPH) (Standring et al., 2016). Therefore our TZ
segmentation encompasses both the TZ and CZ, a compromise that
all other related works on automatic zone segmentation have made,
too. Nevertheless, even without the distinction of the CZ, the detailed
anatomical segmentation of the prostate can be leveraged for several
clinical tasks.

limitations and future work In our generalization exper-
iment, we examined whether improvement gains through SSL could
also be obtained with lower amounts of labeled data. However, we did
not vary the amount of unlabeled data. It should be of future work to
analyze the effect different ratios of labeled and unlabeled data have
on the outcome. This would be necessary to give guidelines on the
application of the method to other tasks.
Another limitation of our evaluation for different number of labeled

training samples is that we did not reduce the number of validation
data. Consequently, the ratio of labeled validation to labeled training
data is artificially high for the experiments with decreased sizes of
labeled training datasets (Oliver et al., 2018). On the other hand, the
supervised baseline receives the same data aggregation. Consequently,
our findings that UATS exploits the additional unlabeled data for
improved performance and that less labeled data is required with our
UATS method are still valid. However, what effect the validation dataset
size has on the outcome and whether the validation set can be omitted
should also be evaluated in future work.

Furthermore, we want to investigate whether a relation can be quanti-
fied automatically for a given task to answer the following two questions.
First, can we estimate beforehand how much semi-supervision will help?
Second, how do we select the optimal samples that should be labeled?
For example, approaches that measure the model uncertainty (Gal and
Ghahramani, 2016; Mehrtash et al., 2020) and estimate the segmenta-
tion quality (Robinson et al., 2018) could be investigated to address
these research questions. Moreover, we would be interested to examine
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whether the approach could gain improvement on other biomedical
imaging tasks, for example classification.

4.7 summary

We proposed a semi-supervised method for prostate zone segmentation
from T2w MRI with the aim to exploit unlabeled data from the intra-
domain level to make the model more accurate and robust. To the best of
our knowledge, we are the first to address simultaneous segmentation of
the TZ, PZ, DPU and AFS in an attempt to reproduce the anatomical
prostate division according to the PI-RADS v2.1 sector map in a patient-
specific manner. Our method combines uncertainty-aware self-learning
and temporal ensembling into a novel framework to improve supervised
deep learning models by commonly available unlabeled data.

Regarding prostate zone segmentation, our method yields results from
the quality on a clinical expert level. The improved segmentation quality
of the prostate zones may enable more precise and consistent lesion
location assignment, as well as improved cancer therapy planning and it
could increase the accuracy of automatic lesion detection and assessment
methods. We showed that our method increases robustness against noise
compared to the supervised baseline. Moreover, we demonstrated that
UATS generalizes to other tasks by evaluating our method on additional
biomedical challenge datasets. Our experiments demonstrated that our
method improves upon the supervised baselines for different ratios of
labeled samples and different tasks.

We found that, when gains from semi-supervision are larger, the higher
the variability in appearance and shape and the smaller the amount
of labeled samples. We also found that when enough labeled samples
with sufficient quality become available, gains from semi-supervision
will diminish at some point.

We used standard U-Nets as supervised grounds for comparison
because these have demonstrated their potential for a wide range of
tasks. However, our semi-supervised strategy also applies to network
architectures beyond U-Nets. Therefore, our approach can have an
impact on many different (biomedical) segmentation tasks by reducing
the amount of necessary labeled images.
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One major challenge in the application of CNN methods is their lack
of robustness on data that originates from another distribution than
the data seen during training. In the medical field, this may cause a
considerable performance drop when the CNN is applied to images that
are, for example, acquired from another scanner or protocol. Re-training
the network in the new domain is impractical, as it requires a large
amount of labeled data. To this end, in this chapter, we design a method
that exploits the knowledge from the external domain to improve seg-
mentation in the new domain with only small amounts of labeled data.
In the context of segmenting critical structures for PCa therapy, we
propose a semi-supervised domain adaptation method that relaxes the
common requirement of (labeled) data from the original domain being
available. We demonstrate that our method’s performance approaches
the level of inter-reader variability for the majority of structures in the
new domain.

This chapter is based on the following publication:

A. Meyer, A. Mehrtash, M. Rak, O. Bashkanov, B. Langbein, A.
Ziaei, A. S. Kibel, C. M. Tempany, C. Hansen, J. Tokuda, 2021.
"Domain adaptation for segmentation of critical structures for
prostate cancer therapy," Scientific Reports, 11, p. 11480.

Manual reference segmentations, that were created for a publicly avail-
able dataset within this work, were published as supplementary material
of the paper.

structure of the chapter We begin the remainder of this
chapter by introducing the clinical purpose for the targeted prostate
structures, as well as our technical motivation and contribution (Sec-
tion 5.1). Preliminaries that are relevant for this chapter follow in Sec-
tion 5.2. We review the related work that has been carried out regarding
the segmentation of the EUS and NVB, as well as the domain adaptation
for medical image segmentation (Section 5.3). The designed technical
methods and the experimental setup is described in Sections 5.4 and
5.5. The results follow in Section 5.6. This chapter is concluded with a
discussion of the results (Section 5.7) and a brief summary in Section 5.8.
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5.1 introduction

The primary choice for the treatment of localized PCa is radical prosta-
tectomy (Hautmann and Gschwend, 2014), which is carried out as either
open surgery, laparoscopic or robot-assisted laparoscopic intervention.
During this procedure, the prostate gland, seminal vesicles, and tumor
are removed altogether, irrespective of the tumor size and location.
Although radical prostatectomy is oncologically effective, it is frequently
followed by sexual or urinary dysfunction. Multiple studies have shown
that sparing the EUS and the NVBs could lead to an improved out-
come of the surgery, with faster recovery of the patient regarding these
functions (Nguyen et al., 2017; Mungovan et al., 2017).

MRI techniques allow for a more precise study of the tumor’s in-
volvement into these critical structures. Therefore, methods have been
proposed to include virtual or 3D printed patient-specific models based
on MRI data (see Figure 5.1) into the treatment planning, for instance,
in Wake et al. (2020) and Wang et al. (2020b). Those models commonly
comprise the prostate, tumor, NVB, EUS and other surrounding struc-
tures. The incorporation of 3D models makes the understanding of the
tumor’s location more intuitive for physicians and patients and can thus
improve the treatment decision.

Figure 5.1: An example application of 3D segmentation of the prostate and
adjacent structures for surgical planning. The prostate gland, NVB,
EUS, and tumor are manually segmented on the preoperative T2w
MRI (A, B) by a radiologist, and then converted to a 3D surface
model (C). The model can also be 3D-printed (D) for surgical
planning, and preoperative communication with the patient. Image
was created by Junichi Todukda.
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Figure 5.2: Visulaization of the domain shift for two prostate datasets: one
private dataset acquired by a Philips 3T scanner with endorectal
coil (source), and the multi-vendor multi-center target dataset
PROMISE12 (Litjens et al., 2014c). The images are mapped to a
feature space (via a pre-trained VGG-16 network (Szegedy et al.,
2015)) and t-SNE (Maaten and Hinton, 2008) is applied on these
features to visualize the distribution of the two datasets. Figure
from Zhu et al. (2020), © 2020 IEEE.

However, because segmenting individual structures manually is labor-
intensive, its use in clinical routine is rather restricted. Therefore, an
automatic and reliable segmentation of the critical structures may
facilitate the use of 3D-models for the treatment planning and reduce
the risks of overtreatment and complications. Furthermore, it may
standardize PCa reports (Turkbey et al., 2019) and be employed in
retrospective analysis (Inoue et al., 2009).

motivation and contribution In the previous chapters, we
have seen that a CNN model’s performance can be improved by ex-
ploiting additional data that is often available in the clinical routine.
For these methods, we assumed that training and test data share the
same underlying distribution. This assumption holds if data from only
one clinic is incorporated, but the distribution of medical datasets from
another clinic will likely differ due to different scanner manufacturers,
scanning parameters, subject cohorts, and other factors. This effect,
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called domain shift (Quiñonero-Candela et al., 2009) (see Figure 5.2),
leads to a performance drop of the models trained on data from the
original source domain when applied to data from a new target domain.
The effect of domain shift has been observed for DL models for sev-
eral medical image analysis problems, including prostate segmentation
(Gibson et al., 2018a).

Retraining the model from scratch in the new domain would require
large amounts of annotated data, which is costly and often impractical.
Therefore, various domain adaptation (DA) methods have been investi-
gated and proposed in the last years to improve the model’s performance
on out-of-distribution data. However, most of them require that both
source and target data are available. This requirement often becomes a
burden when the model is deployed among multiple institutions, while
the access to the source data is limited due to privacy concerns. There-
fore, methods need to be explored that relax the requirement of source
data. A trained model is less restrictive and easier to share compared
to data from the source domain. Several deployment services exist that
allow sharing off-the-shelf models (without the training data) for fur-
ther reuse (Mehrtash et al., 2017b; Hosny et al., 2019). The concept of
federated learning (Rieke et al., 2020) also exploits the fact that DL
models are easier to share than their training data.
In this chapter, we propose a semi-supervised DA pipeline based on

transfer learning (TL) (i.e., fine-tuning) that overcomes the necessity of
the source data to be available. While TL is easy to apply and proven
effective, a gap between the actual and desired performance remains,
especially when only a few labeled target samples are available. To this
end, we propose to combine TL with uncertainty-aware self-learning
to exploit the information the additional unlabeled images offer. The
combination of TL and self-learning has been investigated before in
Zhou et al. (2018), who found that self-learning is the preferred choice
of SSL techniques for TL for classification tasks. However, to our best
knowledge, no such strategy has been used to address a segmentation
or a DA task.
In summary, our main contributions are the following: Firstly, we

investigate the automatic segmentation of the prostate, the EUS and
NVB for the planning of prostate interventions on preoperative MRI. To
the best of our knowledge, the EUS and NVB have not been segmented
automatically yet. Secondly, we address the problem of domain shift
for this task by proposing a semi-supervised DA pipeline that leverages
knowledge from the inter-domain-level. This allows us to perform ro-
bust segmentation of the prostate and the critical structures on MRIs
acquired outside the institution in which source training data were
acquired. The proposed pipeline is simple yet effective and requires nei-
ther the source images and labels, nor any specific network architecture
or training procedure in the source domain. Lastly, we demonstrate
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that our method can be easily adapted to other problems and data in
additional experiments on pancreas segmentation in CT scans.

5.2 preliminaries

In the following we define terminologies and notations used within this
chapter (Section 5.2.1). Then, for the purpose of structuring related work
on DA, we provide an overview about different DA problem settings
that can be found in the field of medical image analysis (Section 5.2.2).

5.2.1 Notations and Terminology

This chapter covers a DA method that combines TL and semi-supervised
self-learning to improve the performance of our CNN on data from a
new clinic, scanner or acquisition protocol. In this section we define the
terminologies TL and DA, as well as the notations used throughout this
chapter. For this, we follow largely the definition given in the survey
from Pan and Yang (2009).

To differentiate between the concepts of TL and DA, the terms domain
and task are relevant. A domain D comprises a feature space X and a
marginal probability distribution P (X) with X = {(x1, ...,xn)} ∈ X .
A task T comprises a label space Y and an objective predictive function
fT (·), which is learned from the training data, e.g. by a CNN. In TL,
one aims to improve the learning of the predictive function fT (·) in the
target domain T by exploiting the knowledge from the source domain
S and source task TS , where DS 6= DT or TS 6= TT . The concept of DA
is defined as a specific case of TL, where TS = TT , but the domains T
and S are slightly different (Goodfellow et al., 2016).
The term TL is used interchangeably in the DL literature and can

refer to either the concept described above or to fine-tuning of the
model’s weights. Fine-tuning is a specific method of TL in which a
network is initialized with weights obtained from another domain or
task and subsequently fine-tuned for the new task or data at hand. Using
pre-trained models commonly reduces the amount of data necessary for
the new task or domain (Tajbakhsh et al., 2016). To be clear, throughout
the remainder of this thesis, we use the term TL to describe the method
of fine-tuning.

Moreover, we will denote images from the source domain S as XS and
images from the target domain T as XT . Similarly, we denote labels
from the source domain as YS and from the target domain as YT .

5.2.2 Problem Settings

Deep learning methods are sensitive to domain shifts and DA is required
to achieve improved performance for the target domain T . There exist
a large variety of methods in the literature proposed for the medical
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Figure 5.3: Categories of DA seen for medical image analysis (based on the
DA categorization introduced by Guan and Liu (2021)).

image analysis field, which can not only be classified by the methods
used, but also by their problem settings.
In the recent survey by Guan and Liu (2021), a classification of

DA problem settings in medical image analysis is introduced. It has
been adopted for this thesis for the most part and is illustrated in
Figure 5.3. Following Guan and Liu (2021), we categorize deep learning-
based DA problem settings with respect to differences in modalities,
number of sources and availability of labeled samples in the target
domain. Furthermore, we introduce the availability of data from either
the source or the target domain as an additional class of DA problems.
These categories are not exclusive - methods often root in multiple of
these problem settings.

• Modality difference: There exist single-modality and cross-
modality approaches in the literature. In single-modality DA,
images from both domains are acquired by the same modality
and the domain discrepancy is usually based on different scanners,
protocols and sites. In cross-modality DA, the domain discrepancy
originates from datasets being acquired by different modalities,
as for example, CT scans in the source domain and MRI scans in
the target domain.

• Number of sources: A further differentiation is made as to
whether the DA technique uses data from a single source domain
or from multiple source domains. The usage of multiple sources
has usually the advantage that models which have seen data from
different domains during training, tend to a more robust perfor-
mance in the target domain (Gibson et al., 2018a; Mårtensson
et al., 2020). On the other hand, multi-source incorporation can
also hold challenges in their training due to data heterogenity
(Guan and Liu, 2021; Liu et al., 2020c).
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• Label Availability: DA methods can be split into super-
vised, semi-supervised and unsupervised problems, depending on
availability of labels from the target domain YT . Supervised DA
techniques require various image/label pairs of (XT ,YT ). Semi-
supervised methods relax this requirement to a small number of
(XT ,YT ). Additionally, various samples without labels should be
available. Unsupervised methods do not need any labels from the
target domain, and rely only on XT .

• Data Availability: The last class of DA problem settings
discussed here considers the data availability in the domains.
Methods, that do not require any data at all from the target
domain can be seen as an extreme case of unsupervised DA (Guan
and Liu, 2021) and have been proposed within the research field
of domain generalization. Techniques that do not require any data
from the source domain are considered as source-relaxed, following
the naming in the work of Bateson et al. (2020).

5.3 related work

Following the definition of different problem settings for DA in med-
ical image analysis, we now give an overview about existing domain
adaptation techniques for medical image segmentation in general (Sec-
tion 5.3.1). Subsequently, we summarize the related work that targets
the segmentation of critical structures for radical prostatectomy proce-
dures, namely the EUS and NVB (Section 5.3.2). For an overview about
prostate gland segmentation methods, we refer to Section 3.2.

5.3.1 Domain Adaptation

The most straightforward way to achieve robustness in an unseen target
domain is to include more heterogeneous data from multiple sources
into the training as for example in Gibson et al. (2018b) and Mårtensson
et al. (2020). But especially in the medical context, this is an impracti-
cal procedure, because it is often not feasible to aggregate data from
different clinics due to privacy restrictions and limited availability. This
is particularly true for studies that require highly-specialized labeled
data that is only available in small portions. Therefore, the research on
DA, which offers various other ways to improve model performance in
the target domain, has received growing interest in the past years.

In the previous Section 5.2.2, we gave an overview about DA problem
setting categories. In the following, we provide an overview about
existing work on DA for medical image segmentation, which are grouped
into supervised, unsupervised and semi-supervised as well as source-
relaxed DA methods. As DA is a very large and rapidly evolving field
of research, it would be out of scope for this thesis to summarize all
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methods that have been published thus far. Instead, we aim to give an
overview about main research directions and works that are relevant for
our method. We refer the interested reader to the recent survey Guan
and Liu (2021) for a more detailed summaray of the developments in
this field.

supervised domain adaptation A well-established supervised
DA strategy is TL, which reuses the learned weights from training in
other domains. The most widespread form of fine-tuning reuses CNN
models pre-trained on natural images from the ImageNet challenge
(Deng et al., 2009) as in Shin et al. (2016) and Tajbakhsh et al. (2016).
However, it has also been successfully applied with models pre-trained
on other medical datasets as a supervised DA strategy. TL has been
shown to be very effective when only a small number of (XT ,YT )-pairs
are available for the DA of brain lesion segmentation (Ghafoorian et
al., 2017; Valverde et al., 2019; Karimi et al., 2021) and pathological
structure segmentation (Kaur et al., 2019). Valindria et al. (2018)
demonstrated that fine-tuning the model with n annotated samples,
that are most valuable samples for DA based on reverse classification
accuracy, was more effective than fine-tuning with random samples.
Karani et al. (2018) presented another variant of fine-tuning: their
network learned domain-specific batch-normalization on a multi-source
dataset. And for DA, only the batch-normalization parameters were
fine-tuned with very few samples.
Bermúdez-Chacón et al. (2018) could improve electron microscopy

segmentation in the target domain with only few labeled samples. They
applied a coupled two-stream U-Net, where one stream is trained on
source data and the other on target data. Feature sharing and regular-
ization between both streams were applied for domain alignment.
For the task of prostate segmentation, Zhu et al. (2020) proposed a

boundary-weighted DA strategy. They implemented two segmentation
networks: one for the source domain and the other for the target domain,
respectively. A discriminator tries to distinguish the decoders’ features of
both networks in an adversarial manner and drives the domain alignment
of both networks. This adversarial loss is moreover weighted to focus
on the boundary regions. With several labeled samples in the target
domain available, they could show that incorporating the knowledge of
the source domain improved performance in the target domain.

unsupervised domain adaptation Unsupervised DA has
gained growing attention in recent years with the advance of adversarial
learning (Goodfellow et al., 2014) and is one of the most popular lines
of research in DA. Frequently, unsupervised DA aligns the source and
target domain distributions by enforcing similarity of (1) the input
space at image level, (2) the output space (segmentation), or (3) the
feature space during the DA process.
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DA at the input space aims to transfer, for example, the source
domain images into appearance of the target domain (also known as
style transfer, e.g. via CycleGANs (Zhu et al., 2017a)) whereas the
anatomical structure information is retained. Then, the source labels
can be used to train a network that uses the style-transferred source
images with target appearance (Huo et al., 2018; Chen et al., 2018).

DA at the output level assumes that segmentations from different
domains have high similarity in the output space. In some methods,
an adversarial loss is included on the network’s output that drives the
domain alignment by enforcing the CNNs to produce outputs that have
consistent topology among different domains (Tsai et al., 2018; Yan
et al., 2019). Another variant is to constrain the DA in the output space
with specific shape or weak label priors as suggested by Bateson et al.
(2021) for intervertebral discs and whole heart segmentation.

Most approaches concentrate on enforcing a domain-invariant (latent)
feature space. This can, for example, be enforced by adversarial learning
with a discriminator that aims to distinguish whether the encoder’s
feature maps originate from the source or the target domain (Kamnitsas
et al., 2017; Dou et al., 2018). A combination of feature and input space
alignment has been proposed by Chen et al. (2020a) for unsupervised
cross-modality DA. Alternatively, Yang et al. (2019) proposed to use
disentangled representations that decompose the input to a content- and
a style-space. The segmentation is then learned on the domain-invariant
content space.
Another popular line of research for DA, is to employ techniques,

that have been originally introduced for SSL (see Section 2.3), into the
context of unsupervised DA. The settings for both learning concepts are
similar, except that for DA, the unlabeled data originates from another
distribution. However, the application of SSL for DA methods has lead
to promising results. For example, teacher-student models have been
used to apply a consistency loss on unlabeled data of the target domain
for spinal cord gray matter segmentation on MRI (Perone et al., 2019)
and vessel segmentation on retinal fundus images (Fotedar et al., 2020).
Another approach by Bian et al. (2020) combines uncertainty-aware self-
learning with an adversarial loss that minimizes discrepancies between
feature spaces of XS and XT for different medical segmentation tasks.
The segmentation loss and the self-learning curriculum are furthermore
guided using uncertainty information (via a conditional variational
auto-encoder (Kohl et al., 2018)).

Ideally, there is no need at all to apply any DA method, because the
source model is robust enough against the domain shift. To this end,
works have been proposed that are categorized as domain generalization.
One way to achieve such a generalization across domains is to apply
extensive data augmentation as in Sheikh and Schultz (2020), Hesse et al.
(2020), and Zhang et al. (2020). Zhang et al. (2020) for example applied
stacked data augmentation transforms of XS and YS . For prostate
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segmentation, a performance close to the state-of-the-art fully-supervised
methods on the target domain was achieved when data augmentation
was applied to a large source set with |(XS ,YS)| > 450. Another way
to achieve domain generalization is to train on multi-source data in a
shape-aware meta-learning setting as Liu et al. (2020b) proposed for
prostate segmentation. The authors trained a domain-robust model by
using virtual ’meta-train’ and ’meta-test’ sets that simulate domain
shift during training.

semi-supervised domain adaptation In semi-supervised
DA, there is limited labeled data and additional unlabeled data from
the target domain available. Roels et al. (2019) proposed a Y-net shaped
architecture with one encoder and two decoders (for segmentation and
reconstruction, respectively) for the task of electron microscopic imaging
segmentation. In a first stage, the segmentation decoder is trained on
the labeled source data while the decoder reconstructs images from
both source and target domain in an unsupervised manner to obtain
more domain-invariant features. In a second stage, the reconstruction
decoder is removed, and the labeled target data is used to fine-tune the
segmentation decoder.
A more complex method is proposed by Li et al. (2021a) for cross-

modality semi-supervised DA (MR to CT). They employed an intra-
domain mean teacher model for consistency in the target domain, and
an inter-domain mean teacher model with an appearance alignment via
CycleGANs (Zhu et al., 2017a) that can map MR to CT images and vice
versa. The knowledge transfer between the teacher and student models
is designed in an uncertainty-aware manner induced by MC dropout
(Kendall et al., 2017).

source-relaxed domain adaptation In contrast to other
problem settings, only few methods have been proposed in the source-
relaxed setting so far. For the application of lung segmentation, Venkatara-
mani et al. (2019) proposed to condition the inference for new inputs in
the target domain with features from a cluster of similar images of a
support set from the target domain. These so-called context features
are passed into the latent space of the encoder-decoder segmentation
network and should allow for a life-long DA that can handle incremental
changes in the dataset distributions. Bateson et al. (2020) proposed
another unsupervised source-relaxed DA for spine segmentation with
entropy-minimization in the target domain, which is regularized by
a shape prior learned from the source data. A recent study by Xia
et al. (2020) applied multi-view training (Section 2.3.1) to multi-organ
segmentations in CT datasets. Their method showed to be effective
even when no source data was included.

Karani et al. (2021) proposed a test-time adaptable unsupervised DA
technique. Their method incorporates a shallow image normalization
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network, a deep segmentation network and a denoising autoencoder
trained on the source data. By means of the autoencoder’s output (which
serves as segmentation correction), the shallow normalization network
can be fine-tuned with gradient information from the difference of
autoencoder and segmentation network outputs. Lastly, the supervised
TL (fine-tuning) approaches summarized above (for the supervised DA),
can also be considered as source-relaxed methods (Ghafoorian et al.,
2017; Valverde et al., 2019; Karimi et al., 2021; Kaur et al., 2019; Karani
et al., 2018).

5.3.2 Critical Structure Segmentation

The literature overviews in the previous chapters presented a variety of
approaches for the segmentation of the prostate gland and its substruc-
tures. Far less research has focused on the prostate’s adjacent structures
EUS and NVB so far which are critical for the outcome of prostatec-
tomy interventions. NVB has only been segmented manually on MRI
for registration of MRI and TRUS images (Yang et al., 2015). Our
work in Chapter 4 addressed the segmentation of the distal prostatic
urethra in a multi-class segmentation with the zonal anatomy of the
prostate (Meyer et al., 2019; Meyer et al., 2021b). Another study used
radiomics features to segment the peripheral zone and the prostatic
urethra (Hambarde et al., 2019). However, no research has been carried
out on the automatic segmentation of the EUS that we are aware of
currently.

5.3.3 Limitation of Current Approaches

Contrary to the variety of methods proposed for whole gland (Section 3.2)
and zones (TZ and PZ, Section 4.2.1) segmentation, there are no works
yet on the automatic segmentation of NVB and EUS. Therefore, we
aim to investigate whether a reliable segmentation can be obtained by
applying CNNs for this task.
A common challenge for medical image segmentation is that the

source data - XS and YS - are not always available due to regulations
and/or institutional policies on protected health information, despite
the majority of DA techniques described above require them. Only few
works exist, that target this limitation and do not require any images
or labels from the source domain. On the other hand, these methods
either require a multi-source setting for their training (Karani et al.,
2018; Xia et al., 2020) which is commonly limited because of the scarcity
of labeled medical data. Or they rely on a specific training paradigm
(Venkataramani et al., 2019; Xia et al., 2020) which makes it impossible
to reuse off-the-shelf models that did not consider specific requirements
in their training procedure.
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Lastly, other source-relaxed methods rely on knowledge about the
shape of the structure to segment (Bateson et al., 2020; Karani et al.,
2021), which is also gathered in the source domain in their implemen-
tations. Furthermore, the shape assumptions do not hold anymore in
problems, where the domain-shift is induced by pathological causes.
These limitations motivated us to develop an easy-to-apply but effective
DA pipeline that does not require access to the source data nor any
other knowledge about the structure-to-segment or any specific training
paradigm. Our method is described in the following section.

5.4 technical methods

Considering the limitations of the related work, the objective of our tech-
nical methods is two-fold: (1) to investigate the feasibility of automatic
segmentation of the critical structures for the radical prostatectomy,
including the prostate, NVB and EUS, and (2) to develop a source-
relaxed domain-adaptation technique for this method that requires only
few labeled training samples from the target domain T .
Analogously, we divide this section into two parts. Firstly, our su-

pervised training strategy for the critical structure segmentation in
the source domain is described (Section 5.4.1). This will be the basis
for investigating the feasibility of CNNs for NVB and EUS segmen-
tation. Then, the proposed semi-supervised DA method is outlined
(Section 5.4.2), which aims to improve the performance of the source
model in the target domain.

5.4.1 Supervised Learning (Source Domain)

The supervised leaning uses a labeled dataset DL = {xi, yi}ni=1. For each
image xi from X ∈ RH×W×D, there exists a ground truth segmentation
map yi from Y ∈ {0, 1}H×W×D×C , where W , H, D are the dimensions
of the volume and C defines the number of class labels. In our case,
C = 4 due to the classes prostate, EUS, NVB and background. The
network f(·) described in this section makes a prediction ŷi for an input
sample xi, given the learned parameters θ, such that ŷi = f(xi, θ) with
ŷ∈[0, 1]H×W×D×C . Similar to the zone segmentation in Chapter 4, we
used the adapted 3D U-Net that takes the anisotropic nature of the
axial MRI scans into account. We employed the same architecture as
described in Section 4.3.1, with the exception that we did not include
any dropout layers, as we could not find improvements through their
employment in preliminary experiments on the validation set.

deep ensembles To further improve the segmentation outcome,
we used an ensemble of networks (deep ensemble). Deep ensembles have
been shown to create more robust results than single networks (de Vente
et al., 2020; Mehrtash et al., 2020). Model averaging commonly improves
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performance, because an ensemble may compensate the different errors
that were made by the different models on the test set (Goodfellow
et al., 2016). Deep ensembles leverage different minima that CNNs can
obtain because networks are subject to randomness during training.
In our training setting, we employed random parameter initialization,
random mini-batches generation during training and different random
training/validation splits from a k-fold cross-validation to increase the
local minima variability. We used an ensemble of k models and obtain
a mean prediction µ of them:

µi =
1
k

k∑
i=1

f(xi, θk) . (5.1)

post-processing To obtain the final segmentation outcome, we
post-process the (ensemble) prediction. In the first post-processing
step, the prediction is thresholded to create a binary segmentation. To
ensure topological correctness, the output is further post-processed with
connected components analysis for the EUS and the prostate, for which
only the largest component is kept. The connected component analysis is
not applied to the NVB because NVB voxels are not always adjacent in
neighboring slices due to the high slice thickness. A connected component
analysis would, therefore, risk discarding actual NVB segments.

5.4.2 Domain Adaptation

We propose a source-relaxed DA technique. This means that we have
only the k source models f(θS) and our target dataset DT available.
Due to our semi-supervised DA strategy, our target dataset consists of
l labeled volumes DT ,L = {xi, yi}li=1 and u unlabeled volumes DT ,U =

{xi}l+ui=l+1. Our DA method comprises two learning concepts: (1) TL
as the first stage of DA, and (2) uncertainty-aware self-learning as a
second stage to obtain more information about the distribution of the
target domain T . Our proposed semi-supervised DA method is depicted
in Figure 5.4 and a summary is provided in Algorithm2 at the end of
this section.

stage i: transfer learning In our scenario, we find large
differences in the shape and appearance of the structures between the
source and target datasets due to using an endorectal coil in the source
dataset (see Figure 5.5). The shape, location, and appearance of the
structures-to-segment, particularly the NVB, are changed substantially
because of the pressure from the endorectal coil in the source dataset.
To compensate for this severe domain shift, we propose to have a small
amount of labeled pairs DT ,L with l ≤ 10 in the target domain available.

With DT ,L, we fine-tune our source model f(θS) to a model adapted
to the target domain f(θT ). As we only have a minimal amount of
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Figure 5.4: Proposed pipeline for the DA. The ensemble of k models is trained
in the source domain with the labeled source data. Subsequently,
these models are domain adapted by TL with the few labeled
data from the target domain and furthermore refined with the
self learning routine (dashed arrows) that includes ensemble-based
pseudo labels and uncertainty (entropy) estimation.

labeled images, we fix the weights of the decoder and only fine-tune
the encoder and the bottom layer weights of the source model. In
preliminary experiments on the validation set, this has been working
best for a small training dataset.

stage ii: uncertainty-aware self-learning The TL can
be considered as a warm-up phase for the self-learning routine. This is
followed by the second stage of our DA pipeline, which is the uncertainty-
aware self-learning. At this stage, we used the labeled and unlabeled
DT ,L and DT ,U for training. To reduce the negative predictions in
the self-learning stage, we propose to use deep ensembles for better
segmentation candidates and uncertainty estimation.
The self-learning routine (see Section 2.3.1) is a cycle consisting of

label propagation to obtain pseudo labels YU , and retraining the model
weights θT with DT ,L∪U until the performance on the validation data
does not improve any further. The fine-tuned model f(θT ) from Stage I
is used to obtain initial pseudo labels for the unlabeled data XU ∈ DT ,U .
Typically, three to five iterations have to be carried out until the model
does not improve any further. In contrast to TL, in the self-learning
training procedure, all weights are trained. The training objective at
this stage is a weighted and masked DSC loss to train our network:

loss(y, ŷ,w,m) = − 1
|C|

∑
c∈C

w · 2
∑N
i=1 ŷc,iyc,imi + ε∑N

i=1 ŷc,imi +
∑N
i=1 yc,imi + ε

, (5.2)
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Figure 5.5: Example images for the prostate datasets: a) endorectal coil acqui-
sition from the source dataset and b) pelvic coil acquisition from
the target dataset. Segmentations of the prostate (green), NVB
(brown) are overlayed.

where N is the number of the volume’s voxels, ŷ is the network’s predic-
tion, y ∈ {YU ∪ YL} are the pseudo and real ground truth labels, and ε
ensures numerical stability as a small constant. The purpose of mask m
and weight w is to reduce the impact of false predictions on the voxel-
and subject-level, respectively. We describe how they are obtained, in
the following.

For more reliable pseudo labels, we propose to use an ensemble of k
target models f(θT ) (see Equation 5.1), because deep ensembles have
been shown to have better calibrated predictions (Section 2.2.2). The
average predictions µU of this ensemble are post-processed as described
in Section 5.4.1 (thresholding and connected components analysis) to
obtain the binary pseudo labels YU and to remove uncertain and noisy
predictions. The post-processing results in some voxels of the pseudo
labels having no label given in any class channel c of YU (prostate, NVB,
EUS and background). This is because either none of the classes is
above the threshold, or the label has been removed through connected
components analysis. With our mask m, we account only for voxels in
our loss function that have any label given:

mi =

 0,
∑
C yc,i = 0 ,

1,
∑
C yc,i > 0 .

(5.3)

Furthermore, deep ensembling can not only be used to improve seg-
mentation accuracy, but has also been shown to be an appropriate means
to estimate the uncertainty of prostate segmentation maps (Mehrtash
et al., 2020). Hence, we utilized the entropy of ensemble predictions
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for the subject-level uncertainty weight w to reduce the impact of low
quality pseudo labels. The entropy is computed as:

Hi = −
1
N

N∑
1

C∑
c=1

µc logµc . (5.4)

The entropy is then normalized as:

Hi =
Hi

maxiHi
. (5.5)

We exploit this uncertainty estimation for the pseudo labels by weight-
ing their contribution to the overall loss with w = 1−Hi. The weights
for the labeled data remain unchanged (w = 1).

This uncertainty-based weight should balance the trade-off that one
usually have to make for selecting the right weights for pseudo labels. Too
high values of w for pseudo label samples can lead to a degeneration of
model performance, if too many pseudo label voxels are misclassified. On
the other hand, too small w for pseudo label samples may overemphasize
the influence of the real ground truth samples, resulting in too little
information from the unlabeled data for the gradient update. In this
case, the model potentially overfits on the small amount of ground truth
labels.

5.5 experimental setup

Having described our technical methods in the previous section, we
now turn to the details on the experimental setup for evaluating them.
These details include a description of the datasets (Section 5.5.1), the
training of the methods (Section 5.5.3), and the design of the experiments
(Section 5.5.2).

5.5.1 Data

For the evaluation of our method, we used multiple datasets. Because
our main objective for this chapter is the investigation of CNN-based
segmentation of critical structures for prostatectomy, we evaluated the
supervised CNN (Section 5.4.1) and our proposed DA method (Sec-
tion 5.4.2) on prostate MRI. Moreover, we investigated the performance
of our DA technique on pancreas CT data to demonstrate the general-
ization capability of our method.

For both types of segmentation tasks, prostate and pancreas segmen-
tation, we used a source and target datasets, which we describe in the
following paragraphs. Moreover, for each segmentation task, we cover
details on the pre-processing and augmentation technique. A summary
of the details for the prostate datasets can be found in Table 5.1 and
information on the pancreas dataset is provided in Table 5.2
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Algorithm 2: Semi-supervised Domain Adaptation
Input: set of k source models f(θS), input images X ∈ DT , set

of indices for labeled images L, set of indices for
unlabeled images U , ground truth labels YL ∈ DT

Output: set of k target models f(θT )
/* Initialize algorithm */

1 M ← 0 // initialize masks M with zeros

2 cur_val_loss←∞ // current validation loss

3 min_val_loss←∞ // minimum validation loss

4 wU ← 0, wL ← 1 // initialize weights

/* Stage I: TL with labeled data */

5 for i in [1, k] do
6 f(θT ,i ← fine_tune(f(θS,i),XL,YL)

/* Stage II: uncertainty-aware self-learning */

7 while cur_val_loss < min_val_loss do
8 min_val_loss← cur_val_loss

/* create pseudo labels */

9 µU ← ensemble_vote(f(θT ),XU ) // averaging over k models

10 YU ← post_process(µU ) // create binary pseudo labels

11 wU ← entropy(µU ) // update unlabeled weights (Eq. 5.5)

12 M ← update_mask(YL∪U ) // update mask (Eq. 5.3)

13 for i in [1, k] do
/* uncertainty-aware self-training */

14 f(θT ,i)← train_model(f(θT ,i),XL∪U ,YL∪U ,w,M)

15 update cur_val_loss // average val. loss over k models

prostate mri We used two different datasets for the prostate
structures segmentation evaluation: the source data was comprised of
an internal dataset and the target data was created by using the publicly
available Prostate-3T (Litjens et al., 2015) dataset.

Source Data DS : Sixty-two patients who were scheduled for robot-
assisted laparoscopic prostatectomy underwent preoperative multipara-
metric MRI in a 3T scanner (Signa HDxt 3.0T; GE Healthcare). As
part of the protocol, an axial multi-slice T2w image was acquired with
both endorectal and pelvic phased-array coils. The gland, NVB, and
EUS were manually segmented by Reader 1, an expert radiologist, using
the Editor tool on 3D Slicer (Fedorov et al., 2012). We follow the data
splitting described in Section 2.4.2 and split the dataset into 46 cases
for training and 16 hold-out test cases. For evaluating the inter-reader
variability and the performance of the automatic segmentation, a second
reader segmented the test cases for this dataset. This Reader 2 was a
research fellow with a medical background and two years of experience
in reading prostate MRI. To be clear, for training, only the manual
labels of Reader 1 were used as target labels YS .
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Source Target

Vendor GE Healthcare, 3T Siemens, 3T

Coil endorectal & surface surface

In-plane res. [mm] 0.27× 0.27 [0.5− 0.625]
×[0.5− 0.625]

Slice thickness [mm] 3.0 [3.0− 5.0]

ntrain 46 54

ntest 16 10

Table 5.1: Dataset details for the prostate structures segmentation task.

Target Data DT : For DA, we used the Prostate-3T data (Litjens
et al., 2015) as target dataset. The dataset consists of 64 axial T2w
scans that were acquired on a 3T Siemens TrioTim using only a pelvic
phased-array coil. We selected 25 scans from this dataset for which
either segmentations of the prostate zones (PZ and TZ) or the NVBs
are available through the NCI-ISBI 2013 challenge (Bloch et al., 2015)
and the Cancer Imaging Archive (Clark et al., 2013), respectively. The
prostate segmentation for the NCI-ISBI 2013 challenge data is defined
as the union of TZ and PZ segmentations. A medical student segmented
the structures that were not provided by any of these two ground truth
sources, such that for each of these 25 volumes, a three-class segmenta-
tion was available in the end. We split the labeled cases of this dataset
into 15 training cases and 10 hold-out test cases. The remaining 39
cases remained unlabeled for our semi-supervised DA technique. A com-
parison between examples from the prostate source and target datasets
is visualized in Figure 5.5.

Pre-processing and augmentation: All volumes were resampled to a
spacing of 0.5 × 0.5 × 3.0mm. A bounding box ROI of the prostate
was extracted from the center of the volume by cropping the volume to
a size of 184 × 184 × 32. Prior to normalization of image intensity to
an interval of [0,1], the intensities were cropped to the first and 99th
percentile. The training data was augmented by left-right flipping of
the volume.

pancreas ct For the pancreas CT segmentation, the source and
target data consisted of different datasets, too. The source data was
aggregated with abdominal datasets from two sites, comprised of scans
from patients with healthy pancreas. The target data scans were acquired
from patients with pancreas cancer from a third site. Consequently, for
the task of pancreas segmentation, the domain shift is not limited to
differences in image appearance, but additionally covers the different
distributions of healthy pancreas (source domain) and cancerous pan-
creas (target domain).
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Source Target

Modality portal venous phase CT portal venous phase CT

Population healthy pancreas pancreatic cancer

In-plane res. [mm] [0.59− 0.98]
×[0.59− 0.98]

[0.61− 0.98]
×[0.61− 0.98]

Slice thickness [mm] [0.5− 5.0] [0.7− 7.5]

ntrain 75 200

ntest 14 81

Table 5.2: Dataset details for the pancreas segmentation task.

Source Data DS : For the source domain, we used two abdominal
datasets: The Cancer Imaging Archive (TCIA) Pancreas-CT dataset
(Roth et al., 2015; Roth et al., 2016; Clark et al., 2013) and the Beyond
The Cranial Vault (BTCV) abdomen dataset (Xu et al., 2016; Landman
et al., 2015). In the TCIA dataset, portal venous phase contrast en-
hanced 3D CT scans from pre-nephrectomy healthy kidney donors were
acquired at the National Institutes of Health Clinical Center (Bethesda,
MD, USA). The BTCV dataset was acquired during portal venous con-
trast phase at the Vanderbilt University Medical Center (Nashville, TN,
USA) from metastatic liver patients or post-operative ventral hernia
patients. We used the publicly available segmentations (Gibson et al.,
2018b) for the TCIA dataset (n=47) and the BTCV abdomen dataset
(n=42) as our source data. Lastly, we split this source data into 75
training and 14 hold-out test cases.

Target Data DT : The dataset for the target domain was derived
from the Medical Segmentation Decathlon Challenge (Simpson et al.,
2019). This dataset consists of portal venous phase CT scans that
were acquired from patients undergoing resection of pancreatic masses
at Memorial Sloan Kettering Cancer Center (New York, USA). The
dataset provides 281 cases with a two-class segmentation with tumor
and pancreas outlined individually. For our experiments, we used the
union of pancreas and tumor segmentation as foreground structure. For
the evaluation on this target domain data, we set the same 81 cases as
hold-out test cases as in Xia et al. (2020), the remaining 200 cases were
used as training cases for the target domain.

Pre-processing and augmentation: The scans were resampled to a
common spacing of 1.0× 1.0× 3.0mm and are cropped to a ROI of
200×128×48 surrounding the ground truth pancreas segmentation. The
intensities (Hounsfield unit) were first clipped to a range of [−300, 300],
which represents the intensity of the pancreas and adjacent structures,
and subsequently normalized to zero mean and unit variance. We ap-
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plied random geometric (translate, scale) and intensity (Gaussian noise,
Gaussian blurring) transformations as online augmentations.

5.5.2 Evaluation Design

The objectives of our evaluation are three-fold. They include:

1. to assess the feasibility of a fully supervised CNN for automatically
segmenting critical structures for PCa therapy,

2. to evaluate the suitability of our proposed semi-supervised DA
method to reduce the performance gap of the CNN, which is due
to the domain shift, by using only few labeled training images
from the new domain,

3. to determine the generalization capability of the methods with
respect to another task and type of data (i.e., pancreas CT).

The experimental design for our methods is described in the following
paragraphs. For our experiments, we computed the evaluation mea-
sures described in Section 2.4.1 and carried out statistical evaluation as
outlined in Section 2.4.2.

supervised model To evaluate our supervised model, we con-
ducted a 5-fold cross validation resulting in a 36/10 train/validation
split for training on the source domain data. We compared the super-
vised method’s outcome as a single model (sCNN) (average across the
five folds) and as an ensemble of the k = 5 models (eCNN) to the
segmentations from Reader 1 on the source dataset for the 16 hold-out
test cases. To frame the quantitative values of the automatic method,
we assessed the inter-reader variance for the manual segmentation (com-
paring segmentations from Reader 1 and Reader 2). To quantify the
domain shift, we ran the sCNN on the target domain test data.

domain adaptation We evaluated the performance of our DA
technique on the prostate target domain dataset with l = 5 and l = 10
labeled training samples as DT ,L plus the u = 39 unlabeled images as
DT ,U . We empirically set the lowest number of labeled training samples
to l = 5, to allow the network to see some variance in the provided
labeled dataset (e.g., organ size, relationship of the organ-to-segment
and surrounding organs, diseases, imaging contrasts, noise, bias fields
etc.). However, it should be possible to run the method even with a
smaller number of labeled training samples, but presumably the results’
quality will decrease in this scenario. The k = 5 models from the k-fold
cross validation in the source domain were used to initialize our DA
method.
We ran the experiments three times with different train/val splits

of the labeled data (resulting from a 3-fold cross-validation data with
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10/5 images for train/validation per fold) to compensate for biases
introduced by selecting only a small amount of labeled data. We assessed
the segmentation quality for our semi-supervised DA technique and
compared it to training from scratch (i.e., random network weights
initialization) and TL, both with only the l labeled images from the
target domain as input.

Additionally, we performed two ablation experiments to determine the
impact of the ensembling (ENS) and the uncertainty estimate (H). In the
first experiment, we omitted the entropy-based uncertainty-weighting
in our DA method (experiment TL+ENS). Instead, we applied w = 0.5
for samples with pseudo labels YU and w = 1.0 for the samples with
actual ground truth YL. We empirically found these fixed weights to
work best on the validation data. In a second experiment, to evaluate
the impact of the ensembling of predictions for pseudo labels, we ran
the training without the ensemble and only one model for pseudo label
prediction (experiment TL+SL).
To compare our approach to another state-of-the art method be-

yond TL, we evaluated pure uncertainty-aware self-learning. Bian et
al. (2020) proposed self-learning with uncertainty-guidance for (unsu-
pervised) domain adaptation. Their method differs clearly from ours,
because they propose to use a conditional variational autoencoder for
uncertainty estimation and an uncertainty-guided cross-entropy loss on
top of uncertainty-aware self-learning. As their method requires data
from the source domain to be available, we can not simply apply their
method to our source-relaxed problem setting. However, by evaluating
the performance of applying only our uncertainty-aware self-learning
(experiment ENS+H) for DA, we set out to make a comparison to Bian
et al. (2020), and evaluate the impact of TL on our results. To allow for
fair comparison with our proposed method, we included the l labeled
samples of the target domain in this scenario, too.

5.5.3 Training

Following the description of the prostate and pancreas datasets and the
experimental setup, we now summarize our method’s training details for
the prostate structures and pancreas segmentation. For reasons of clarity,
we describe the main training procedures and refer to AppendixB for
details on the task-specific hyperparameters.

prostate mri We ran the training for our methods described in
Section 5.4 on the prostate datasets on a machine with a 12GB NVIDIA
TitanX Pascal GPU. We trained the networks with Adam optimizer
minimizing the loss described in Equation 5.2 until convergence on the
validation loss. For the supervised models in the source domain, we set
m = 1 and w = 1 for all cases.
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pancreas ct For our generalization experiment on the Pancreas
CT dataset, we used the anisotropic U-Net described in Chapter 4.3.1,
too. Because the pancreas segmentation is a binary segmentation task,
we employed a sigmoid function as last layer activation and therefore
obtained only a 1-channel output for this experiment. This made the
application of the mask in the loss function impractical (as it would
be the same as the 1-channel (pseudo) ground truth YU ), and we
simply applied a weighted DSC loss (Equation 5.2), omitting mask m.
In contrast to our prostate data experiments, we found the inclusion of
dropout regularization with a rate of 0.1 was improving performance on
the validation set. Training for this specific dataset was carried out on
a 24GB NVIDIA GeForce RTX 3090 GPU with RMSProp optimizer
(Hinton, 2012).

generalization capability By applying our DA method for
the task of pancreas segmentation on CT scans, we aim to investigate
its generalization capability regarding other tasks and types of data.
Again, we compared our method with l = 5 and l = 10 labeled training
data (and additionally 10 labeled validation cases) fom the source
domain against training from scratch and TL. Analogously to the
DA experiments on the prostate target dataset, we repeated these
experiments three times with different aggregations of labeled train and
validation data splits. We used k = 5 models that were obtained via
5-fold cross-validation in the source domain.
Additionally, having a large amount of labeled data available in the

target domain, we were able to evaluate the upper bound for the target
domain. To this end, we trained the supervised model with 200 labeled
cases (160/40 training/validation). The methods were evaluated on the
81 hold-out test sets in the target domain. Lastly, because we used
the same test dataset as Xia et al. (2020), we were able to make a
relative comparison to this state-of-the-art technique regarding the DA’s
performance gain.

5.6 results

In the following, we report the results that were obtained in the experi-
ments described in Section 5.5. Firstly, the results for the supervised
CNN for the prostate structures segmentation in the target domain are
summarized in Section 5.6.1. Then, the results for our semi-supervised
DA technique for both the prostate and pancreas datasets (Section 5.6.2)
are outlined.

5.6.1 Supervised Learning

We report the evaluation results for prostate, EUS and NVB for our
supervised baseline as well as the inter-reader variance in Table 5.3. The
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Method Prostate EUS NVB

DSC [%] ABD [mm] 95-HD [mm] DSC [%] ABD [mm] 95-HD [mm] DSC [%] ABD [mm] 95-HD [mm]

source data
sCNN 87.8 ± 2.7 1.17 ± 0.54 4.96 ± 3.30 64.8 ± 12.6 1.54 ± 0.76 5.30 ± 2.70 55.8 ± 7.5 1.44 ± 0.73 7.35 ± 4.91
eCNN 89.3 ± 2.2 0.98 ± 0.46 4.02 ± 2.50 68.3 ± 11.2 1.36 ± 0.64 4.89 ± 2.79 58.3 ± 7.5 1.27 ± 0.66 5.90 ± 3.90
inter-reader-level 86.3 ± 4.9 1.61 ± 1.04 6.94 ± 5.11 46.5 ± 13.9 2.10 ± 1.09 10.28 ± 4.70 54.6 ± 9.1 1.68 ± 1.01 8.12 ± 4.91

target data
sCNN 62.6 ± 26.1 5.6 ± 7.39 13.24 ± 11.48 34.8 ± 29.7 4.23 ± 5.94 9.06 ± 6.96 17.8 ± 16.4 9.39 ± 10.48 23.77 ± 15.79

Table 5.3: Comparison of segmentation results on source test data for single (sCNN) and ensemble CNN (eCNN) trained on the source data, the inter-reader
performance and the performance of sCNN on test data from the target domain.
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(a) worst result (b) best result

Figure 5.6: Segmentation visualization of the worst and best result for the
supervised eCNN on the test set of the source domain.

average performance of the single networks (sCNN) across the folds are
DSCs of 87.8%, 64.8% and 55.8% for prostate, EUS, and NVB.

The ensemble eCNN improved the results to DSCs of 89.3%, 68.3%,
and 58.3%. Both approaches obtained better results compared to the
inter-reader evaluation, which only achieved DSCs of 86.3%, 46.5%, and
54.6% for the prostate, EUS and NVB, respectively. Visual inspection
confirmed these observations except for one subject, where the automatic
segmentation did not cover the base of the prostate likely due to a very
heterogeneous prostate tissue (see Figure 5.6). Although the DSC values
for EUS and NVB may appear quite low, the results’ quality is better
than expected from these values when inspected visually. As overlap-
based metrics generally have lower scores for smaller structures, we refer
to the boundary-based evaluation measures for further interpretation.
The ABD of the eCNN for the NVB was 1.27mm and 1.36mm for the
EUS, compared to 0.98mm for the prostate. The 95-HD was 5.90mm,
4.89mm and 4.02mm for the NVB, EUS and prostate, respectively. This
confirms that, for all evaluation measures, the automatic segmentation
has a higher rate of agreement with Reader 1 (who also created the
training ground truth) than the second human reader (Reader 2) has
with Reader 1.

To quantify the effect of the domain shift on our source model’s per-
formance in the target domain, we applied the single network (sCNN) to
the target test data (see Table 5.4). We can observe a clear performance
drop, which highlights the necessity of a DA technique. The DSC for
the prostate decreases from 87.7% on source data to 63.8% on target
data. Similarly, the DSC for EUS decreases from 64.8% to 29.1% and
the DSC for NVB drops from 55.8% to 17.7%.
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5.6.2 Domain Adaptation

We evaluated our semi-supervised DA method on the prostate dataset in
conjunction with an ablation study. Here, we first describe the outcomes
for this study. Then, we summarize the results of our method for the
task of pancreas segmentation to assess its generalization capability. The
quantitative results for our study on the DA methods for the prostate
are summarized in Table 5.4 and accompanied with boxplots of their
DSC’s distribution in Figure 5.7 with corresponding p-values of the
Wilcoxon signed-rank test (Section 2.4.2). An example outcome is shown
in Figure 5.8.

Applying no DA and simply using the images from the target domain
to train a model from scratch, resulted in a rather low DSC of 69.4%
for l = 5 and a DSC of 76.0% for the prostate. Exploiting the external
domain knowledge improved the performances significantly. For l = 5, we
found that the DSC increased to 81.4%, 84.3%, 84.9%, and to 85.5%
with TL, the additional self-learning (TL+SL), the ensemble-based
self-learning without uncertainty (TL+ENS), and with uncertainty
(TL+ENS+H), respectively. When applying majority voting on the
ensemble that resulted from TL+ENS+H, the results could further be
improved to a DSC of 86.5% for the prostate.

Similar to the prostate, we could also observe improvements for NVB
and EUS with each step of our domain adaptation pipeline. Also for
l = 10, improvements through the self-learning (SL) and ensembling
(ENS) components are noted in the results. For this setting, though,
the incorporation of entropy (H) as uncertainty information on the
subject-level did not contribute to any improvement. We assume that
the model predictions together with their post-processing are already of
sufficient quality for the self-learning, and do not need to be weighted
on a subject-level.

We additionally evaluated the performance of a variant of a state-of-
the-art technique: uncertainty-aware self-learning for DA (denoted by
ENS+H) in Table 5.4. This technique works substantially better than
pure TL, but our method that combines both techniques, works consid-
erably better for l = 5 labeled training cases. For l = 10 the impact of
TL in the DA pipeline diminishes and the results for uncertainty-aware
self-learning are in the range of our method’s outcome.
Although our method could achieve significant improvement in the

target domain for the NVB, the results are rather low (DSCs of 38.7%
for l = 5). For the other two structures, however, our DA method
achieves outcomes in the range of inter-reader variability, if we compare
to the results from the two observers in the source domain.
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Method Prostate EUS NVB

DSC [%] ABD [mm] 95-HD [mm] DSC [%] ABD [mm] 95-HD [mm] DSC [%] ABD [mm] 95-HD [mm]

l = 5
from scratch 69.4 ± 25.3 4.44 ± 7.5 12.41 ± 11.78 17.7 ± 22.4 10.39 ± 11.69 17.16 ± 15.95 30.3 ± 16.7 7.98 ±9.60 24.19 ± 16.50
TL 81.4 ± 8.9 1.98 ± 1.18 8.14 ± 5.47 48.0 ± 26.5 2.88 ± 5.67 6.69 ± 6.42 33.7 ± 14.9 4.98 ± 5.80 18.33 ± 12.16
TL + SL 84.3 ± 4.9 1.57 ± 0.65 5.82 ± 2.98 54.6 ± 23.9 1.73 ± 2.41 5.07 ± 3.24 35.0 ± 15.7 4.21 ±3.16 16.24 ± 9.97
TL + ENS 84.9 ± 4.9 1.51 ± 0.68 5.70 ± 2.93 57.8 ± 25.2 1.43 ± 1.22 4.62 ± 2.17 36.3 ± 16.5 3.83 ± 3.00 12.8 ± 8.42
ENS + H 83.1 ± 4.1 1.86 ± 0.77 7.00 ± 3.83 53.5 ± 27.3 1.87 ± 3.27 4.82 ± 4.01 35.5 ± 17.9 4.46 ± 4.33 16.2 ± 13.39
ours (TL + ENS + H) 85.5 ± 4.7 1.45 ± 0.68 5.57 ± 2.93 58.0 ± 25.7 1.62 ± 2.45 4.68 ± 3.38 37.8 ± 15.9 3.37± 2.22 12.22 ± 7.97
ours (majority) 86.5± 3.7 1.33± 0.57 5.09± 2.27 59.2± 25.4 1.21± 0.92 3.95± 1.99 38.7± 16.1 3.48 ± 3.31 11.36± 7.36

l = 10
from scratch 76.0 ± 21.5 2.55 ± 2.77 8.40 ± 6.60 32.0 ± 25.0 3.51 ± 4.20 7.59 ± 5.19 28.0 ± 17.0 6.25 ± 7.07 19.10 ± 14.51
TL 83.4 ± 7.2 1.61 ± 0.73 6.09 ± 3.37 49.5 ± 26.0 2.00 ± 1.86 5.48 ± 3.15 33.5 ± 17.0 4.11 ± 2.99 15.54 ± 9.66
TL + SL 84.1 ± 8.8 1.53 ± 0.94 5.55 ± 3.16 55.2 ± 21.0 1.55 ± 1.28 4.62 ± 2.48 38.2 ± 17.1 4.63 ± 4.96 15.42 ± 11.96
TL + ENS 86.0 ± 4.9 1.36 ± 0.58 5.15 ± 2.37 59.6 ± 21.4 1.33 ± 1.15 4.29 ± 2.18 38.2 ± 16.4 3.39 ± 3.12 12.03 ± 9.57
ENS + H 85.0 ± 5.8 1.54 ± 0.73 5.15 ± 2.72 59.8± 23.6 1.51 ± 2.18 4.31 ± 2.05 37.9 ± 16.8 3.61 ± 2.42 13.12 ± 10.64
ours (TL + ENS + H) 85.5 ± 5.4 1.42 ± 0.64 5.15 ± 2.72 59.3 ± 22.7 1.40± 1.10 4.31 ± 2.05 37.4 ±16.8 3.63 ± 3.28 13.12 ± 10.64
ours (majority) 86.6± 3.90 1.29± 0.49 4.59± 1.77 59.1 ± 23.1 1.41 ± 1.51 4.25± 2.14 38.1± 17.2 3.24± 2.51 11.34± 8.28

Table 5.4: Evaluation results for training from scratch and the proposed DA method with its ablation experiments on the target (Prostate-3T) test data.
’Ours (Majority)’ denotes the approach, where the ensemble of models from our proposed DA method is used to generate a majority vote as
outcome. Best results per l = 5 and l = 10 setting are marked bold.
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(a) Prostate l = 5 (b) Prostate l = 10

(c) EUS l = 5 (d) EUS l = 10

(e) NVB l = 5 (f) NVB l = 10

Figure 5.7: Boxplots for evaluation of the methods with l = 5 and l = 10
labeled images in the target domain. The marker (’x’) represents the
mean DSC value. P-values for the statistical significant differences
between the methods are provided in the top of the plots.
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(a) from scratch (b) TL (c) TL+SL (d) Ours (e) GT

Figure 5.8: Example case with segmentation results for the discussed ap-
proaches and the ground truth (GT). The quality of segmentation
improves with each step/component of our DA pipeline. The DSC
improved from 72.6% for training from scratch to 81.7% for our
proposed DA approach. For the EUS, the DSCs are 0.0% and
70.6%, for training from scratch and our method, respectively. Sim-
ilarly, the DSCs for the NVB improved from 39.2% (from scratch)
to 48.8% (ours). The training of the CNNs was carried out with
l = 5 labeled images.
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Method DSC [%] ABD [mm] 95-HD [mm]

supervised
source model (source) 69.4 ± 14.6 3.07 ± 2.00 18.99 ± 16.35
source model (target) 63.8 ± 17.4 4.50 ± 6.03 20.29 ± 14.96
target model (target) 77.3 ± 9.3 2.81 ± 1.93 16.00 ± 13.14

DA, l = 5
from scratch 44.4 ± 16.5 9.95 ± 4.65 39.22 ± 12.24
TL 67.8 ± 15.2 4.33 ± 3.30 22.67 ± 14.20
ours 72.6 ± 11.8 3.40 ± 2.54 17.91 ± 13.97
ours (majority) 73.1± 11.6 3.25± 2.45 16.85± 13.58

DA, l = 10
from scratch 53.4 ± 17.5 8.33 ± 4.83 36.86 ± 15.13
TL 69.0 ± 15.1 4.23 ± 3.50 22.14 ± 14.79
ours 72.8 ± 12.1 3.40 ± 2.58 17.81 ± 14.07
ours (majority) 73.3± 12.0 3.25± 2.48 17.09± 13.85

Table 5.5: Results (DSC) for the pancreas CT datasets. The assignments
(source) and (target) denote whether the supervised model was
evaluated on the source or target test data. Best results for the DA
per l = 5 and l = 10 setting are marked bold.

generalization capability In this experimental setting, we
evaluated our domain adaptation technique to pancreas CT segmenta-
tion to demonstrate its generic application.
The results are summarized in Table 5.5 and example segmentation

outcomes for different cases are visualized in Figure 5.9. We see that
a considerable domain shift exists as the source model’s performance
drops from a DSC of 69.4% (source test data) to a DSC of 63.8% on
the target test data. The upper bound for this problem (using the full
set of labeled data for supervised training), was found to be a DSC
of 77.3%, an ABD of 2.81mm and a 95-HD of 16mm. With our DA,
the performance could be improved to a DSC of 72.6% with only five
labeled target cases as (labeled) training data. This corresponds to a
relative improvement of 13.8%. Applying the ensembling strategy to
our method, the average performance on the test data can be further
improved to 73.2% for the l = 5 setting. Considering the ABD and
95-HD of 3.25mm and 17.1mm, our method is close to the upper bound.

If we increase our labeled training set size to l = 10, we can observe
an improvement for the TL results. However, the complete DA pipeline
does not lead to much better results than for the l = 5 setting. This
indicates the high potential that the analysis of the unlabeled data in
the target domain can have.
Because we used the same test dataset as Xia et al. (2020), we can

make a relative comparison for the performance gain to this state-
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Figure 5.9: Visual segmentation outcomes of training from scratch, TL, our
proposed DA method and the manual ground truth (GT) on three
different test cases of the target domain. These examples represent
different qualities of segmentation outcomes: one of the worst (top),
a median (center) and one of the best (bottom) results.

of-the-art technique. The source model from Xia et al. (2020) had a
performance DSC of 81.7% in the source domain which decreased to
70.2 in the target domain. Through their multi-view co-training DA
method, they could achieve a DSC of 74.9% with access to the labeled
data in the source domain and a DSC of 74.4% in the source-relaxed
DA setting. Thus, for the source-relaxed setting, they achieved a relative
performance gain of 5.9%. Although there exist some differences in
the implementation of their method which make a direct comparison
impossible (other backbone architecture, additional segmentation of
other organs in the source domain), their lower relative performance
gain of 5.9% vs. our’s of 13.8% indicates the effectiveness of our method
and motivates using few labeled samples of the target domain.

5.7 discussion

In our study, we proposed a DA method that exploits the knowledge
from an external domain in order to increase the CNN’s performance
and to reduce the number of labeled samples necessary for training.
DA is crucial for the widespread employment of DL models for medical
image analysis, given that the characteristics of medical datasets heavily
depend on the types of the scanner and protocols used. Without DA,
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one would need to create a model for each clinical site involving manual
labeling of tens of volumes as the training dataset. In contrast, our
study has demonstrated that we only need labeled images as few as
l = 5 to transfer knowledge to the new domain.
The advantage of our DA method over many others is that it only

requires the model that was trained on source data. This is particularly
helpful when the entire source dataset cannot be shared with other
clinical sites due to the size, or institutional and/or regulatory rules over
the protection of data. Lastly, no prior (higher-level) knowledge about
the organ-to-segment as in Bateson et al. (2020) is needed, making it
easy to apply to other tasks.

Our DA has shown to achieve results in the range of inter-reader vari-
ability for EUS and the prostate. For the NVB, though, the quantitative
results were rather low. This is likely because the NVB is a thin, tubular
structure and is often obscured by the surrounding structures and image
artifacts, resulting in inconsistent labeling between the readers.
For both the critical structures and pancreas segmentation, we saw

that although increasing the number of labeled samples lead to an
improvement in TL, our DA did not lead to substantially different results
for different numbers of labeled data. Moreover, in the l = 10 setting, the
uncertainty-aware self-learning (ENS + H) demonstrated performance
en par with our proposed variant (that combines self-learning with TL)
for the EUS and NVB. Thus, we can conclude, that the effect of TL
diminishes when the number of labeled samples is increased, and it is
sufficient to only use the uncertainty-aware self-learning. Furthermore,
the ensembling plus its derived uncertainty seem to be very effective as
information for the self-learning, which may otherwise degenerate the
model’s performance due to false pseudo labels.
The major downside of ensembling the models is its higher compu-

tational costs. On the other hand, the ensembling can be carried out
successively, as the models do not need to be held in the GPU memory
during training. Moreover, the ensembling strategy is a very simple and
robust method without any requirements for the model architecture such
as the inclusion of dropout (Li et al., 2021a) or the use of a conditional
variational autoencoder (Wang et al., 2019c). Consequently, this allows
for the reuse of any ’off-the-shelf’ model to be employed for DA.

limitations and future work Although our evaluation showed
that our domain adapted models performed well in the target domain
for most structures, our study has limitations.
The trade-off of having such a flexibility concerning source data

availability, network architecture, and training, is that the method
requires some labeled training and validation data from the new domain.
Although few samples suffice to obtain substantial improvement in the
new domain, another research question arises from this aspect (similar
as in the previous Chapter 4): How do we select the optimal samples
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for this task? This question will need to be investigated in the future.
The uncertainty measure can again be of help for this question, as the
ground truth for samples with high prediction uncertainty is potentially
giving higher information in the training.
Moreover, we can assume that our domain-adapted model is likely

suffering from a performance drop when applied back to data from the
source domain. We have not evaluated this aspect specifically, but as
we do not incorporate neither any image data of the source domain
nor any regularization, the target model will presumably not capture
the distribution of the source domain anymore. Future work needs to
investigate solutions for this challenge, for example, training a second
encoder with our DA procedure and leaving the decoder and source
encoder unchanged.

The ensembling of source models, which aims to provide better pseudo
label candidates and uncertainty measures, may not be applicable when
only one source model is available. In this case, ensembling could be
achieved alternatively for example by Monte-Carlo dropout (Gal and
Ghahramani, 2016), different subsets of labeled/unlabeled data from the
target domain, or different minima during training from only one network
(Huang et al., 2017a). Furthermore, a combination of different training
schemes, such as different regularizations, different loss functions, or
different learning rates, could be employed to generate models with
differentiating minima. We used an ensemble size of k = 5, which
is relatively small but a compromise between computation time and
performance. If enough computation resources are available, the number
of models could be increased, and performance may improve further.
Geometric 3D models of the EUS and NVB based on the proposed

segmentation technique will allow detailed treatment planning of PCa,
for instance, for radical prostatectomy or focal therapy. For these appli-
cations, however, the segmentation technique would need to be extended
to include other surrounding structures, such as the rectal and bladder
walls, which must also be protected from accidental damage. The pro-
posed method can be easily extended to include the structures around
the prostate relevant to the therapy planning.
We observed a rather low performance of our method for the NVB

structure in the target domain. While the endorectal coil especially
affects the shape and appearance of this structure, the low performance
is presumably caused to a large extent by disagreement of the differ-
ent readers involved for the NVB segmentation (an expert radiologist
(Reader 1) segmented the source data and a medical student (Reader 3)
segmented the target data). Therefore, future work should include a
consensus segmentation of the NVB among multiple readers to have a
more consistent ground truth for our DA method evaluation.
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5.8 summary

In our work, we proposed a new DA strategy that combines TL and
uncertainty-aware self-learning. By exploiting knowledge from an inter-
domain level, the proposed strategy outperforms re-training a new
model from scratch in the target domain with few labeled data clearly.
Our method allows applying a trained network to another domain, for
example, another scanner or another acquisition protocol, with only
minimum quality loss. This makes automatic segmentation suitable for
clinical applications, where the sharing of patient data is often highly
restricted. Our supervised method achieves performance comparable
to an experienced human reader in the source domain, and the DA
gains performance similar to human readers for the prostate and the
EUS in the target domain. We demonstrated the generic application
of our DA framework by investigating its performance on another
challenging task and data, namely pancreas CT segmentation. Moreover,
we demonstrated that DL-based automatic segmentation of critical
structures for PCa treatment, including the prostate, EUS, and NVB
is feasible. The high performance of CNNs allows for a more precise
planning of PCa therapy and thus has the potential to reduce the
complications in PCa interventions.
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6C O N C L U S I O N

The incorporation of mpMRI is becoming increasingly important in
various stages of the clinical workflow for PCa care and research. With
its more widespread employment, the effort and number of tasks for pro-
cessing the mpMRI scans accumulates, and the demand for automating
tasks rises. One crucial part of many applications that involve mpMRI
is the segmentation of the prostate as well as its interior and adjacent
structures. The introduction of deep learning, and in particular CNN-
based methods, has led to high improvement gains throughout various
biomedical analysis tasks, including the classification and segmentation
of prostate MRI scans.

Our work covered in this thesis aims at improving the automatic seg-
mentation of prostate structures in MRI to increase the reproducibility
and quality of the analysis of MRI scans. In the following, we describe
the contributions in more detail and discuss limitation and future re-
search directions. To conclude, we provide a brief recap of this study’s
content.

6.1 research contributions

Although the CNN algorithms regularly set new records on benchmark
datasets, the proposed methods for prostate MRI image analysis and
other tasks have limitations and challenges, including: (1) neglecting
the prostate’s detailed anatomy and adjacent structures, (2) relying on
MRI data with partly insufficient quality for specific prostate regions
(3) demanding large quantities of annotated training data and (4) being
sensitive to shifts in the distributions of training and unseen test data.
With our work, we set out to tackle these challenges.

In this thesis, we targeted prostate structures which, to our best
knowledge, have not yet been considered for automatic segmentation.
Specifically, we are the first to investigate and demonstrate the feasibility
of automatically segmenting the interior structures DPU, AFS and the
adjacent NVB and EUS with outcome quality en par with human inter-
reader variability. Within this context, we addressed the other three
shortcomings by exploiting supplementary data and knowledge from
different levels of clinical data.

• patient-level data: Most segmentation errors for the whole gland
occur in the apex and base (lower and upper third of the prostate).
This is due to the partial volume effect of the axial T2w scans,
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which are commonly used for automatic medical image analy-
sis. Since other directions (sagittal and coronal) are acquired as
standard of care, we developed a multi-stream CNN-architecture,
that can process multi-planar data simultaneously and outputs
an isotropic high resolution segmentation. With our method, we
achieved improved segmentation accuracy for the extreme parts of
the gland when compared to using only the axial scan direction.

• intra-domain-level data: We aimed to reduce the CNN method’s
need for large amounts of labeled training data to obtain suffi-
cient outcome quality. As slice-wise labeling of 3D volumes is a
very tedious and time-consuming task requiring medical expert
knowledge, various methods have been proposed that leverage
unlabeled data to alleviate the need for a large amount of labeled
samples (Tajbakhsh et al., 2020). Motivated by the potential of
those techniques, we developed a novel SSL method, that combines
concepts from temporal ensembling (Laine and Aila, 2017) and
self-learning (Scudder, 1965; Agrawala, 1970). For the task of seg-
menting a detailed interior anatomy of the prostate, our method
achieved superior performance over the supervised baseline and
other state-of-the-art approaches.

• inter-domain-level data: Another prominent problem of CNN
methods is their sensitivity to domain shift, leading to a perfor-
mance drop on data from an unseen domain. There exist several
works on DA, that reduce the performance gap in the new (target)
domain. However, most of those methods use data from the origi-
nal (source) domain alongside the data from the target domain.
This is a requirement that may often not be met, as medical data
is subject to strict sharing policies across organizations or sites.
In the context of critical structures segmentation for PCa therapy
planning, we developed a simple and effective semi-supervised DA
method that relaxes this requirement. Our method has demon-
strated to attain performances close to inter-reader variability for
the majority of targeted structures. By relying on the concepts of
transfer learning and uncertainty-aware self-learning, our method
only requires a small amount of manually labeled samples from the
new domain. Therefore, it allows for the adaptation of arbitrary
off-the-shelf models to new data.

In contrast to several other methods suggested so far for prostate
structures segmentation, all of our proposed methods can be applied to
the whole 3D volume without requiring multiple or high-end GPUs 1.
Thus, our methods do not involve any slice- or patch-based strategy
that would reduce the network’s receptive field and therefore the spatial

1 We used either a 11GB RAM NVIDIA GeForce GTX 1080 Ti or a 12GB NVIDIA
Titan X Pascal GPU for all our prostate structures segmentation experiments.
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context. This also spares the user from optimizing aspects such as patch
dimensions, how to mine the patches (Bian et al., 2018), or how to
handle the patches during inference (Madesta et al., 2020).
Moreover, for our SSL and DA methods proposed in Chapter 4

and Chapter 5, we have shown their effectiveness on other important
biomedical segmentation tasks. Our UATS concept improved over its
supervised counterpart also for hippocampus segmentation in T1w
MRI and skin lesion segmentation in color photographs. Our semi-
supervised DA could demonstrate promising improvement for pancreas
segmentation in CT volumes, whereas the domain shift resulted not
only from other sites, but also from a shift in study population.
Lastly, in the spirit of open science, we released the ground truth

segmentations, which were created as part of this thesis for the public
PROSTATEx challenge dataset (Litjens et al., 2014a), comprising the
high resolution whole gland (Schindele et al., 2020; Clark et al., 2013)
and a more detailed zonal anatomy segmentation (Meyer et al., 2020;
Clark et al., 2013).

6.2 limitations and future work

We demonstrated that, by exploiting supplementary data and infor-
mation, (1) CNN-based methods for prostate structure segmentation
can be significantly improved and (2) barriers for their development
and employment in the clinical workflow can be reduced. However, our
methods inherit limitations that we discuss in the following paragraphs.
Furthermore, we give an outlook what future research should address.

evaluation aspects Considering the differences between manual
and automatic predictions, our achieved segmentation performance
was as good as human expert performance for all target structures.
Nevertheless, our study has some shortcomings on this point.

We based our training data on the manual segmentation of only one
medical expert. Since there are no official guidelines on how to segment
the prostate structures (Montagne et al., 2021), the task fulfillment
depends heavily on the annotator’s expertise. In the literature, human
expert segmentations showed significant variations due to reader ex-
perience differences (radiological vs. non-radiological experts) (Becker
et al., 2019), and too little contrast of the tissue boundaries between
PZ and TZ for prostates of smaller size (Montagne et al., 2021). This
raises the question of how the actual ground truth should be determined
and created. If only one reader is available, multi-planar data can be
leveraged, as we have done for our high-resolution manual reference
segmentation for the whole gland in Chapter 3. Furthermore, another
interesting evaluation measure to consider in follow-up studies is the
intra-reader performance, for which the same reader outlines the same
structure multiple times. Alternatively, provided that enough medical
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experts are available, one can create a consensus segmentation, for
example, with majority voting or the STAPLE algorithm (Warfield
et al., 2004; Montagne et al., 2021).
Another limitation of our work is that, for the interior anatomy of

the prostate (Chapter 5) and the critical structures segmentation in
Chapter 4 (EUS and NVB), our test dataset was rather small (20 and
16 cases, respectively). Future research needs to investigate whether the
improvement can be confirmed with larger test sets.
Besides consistent label quality and an increased number of test

cases, it is also important to evaluate how the methods can handle
abnormalities of the gland and its adjacency. This meta-information was
not available for the test data in our work, but it will be of high interest
to explore whether and how our methods are affected by the presence
of, for example, tumors, BPH, prostatitis, cysts, or calcifications.

exploiting other types of data The type of data we used
in our studies is from three different levels (patient, intra-domain and
inter-domain) within clinical dataset structures and is easily available
in the clinical practice. However, on these three and further levels (e.g.,
organ and other medical fields), there is more data available which can
be exploited in future work.

In our multi-stream network architecture in Chapter 3, we evaluated
the incorporation of additional T2w scan directions. However, on the
level of patient data, it may be further investigated whether other
(non-imaging) patient information could be leveraged by employing a
multi-task setting (e.g., by including an auxiliary classification task)
that may support attaining more robust features.
For our UATS, we made use of the unlabeled data of the intra-

domain level that is easier to obtain than fully labeled samples. On this
data level, several other techniques exist which have the potential to
reduce the workload that is induced by creating fully labeled samples.
For example, weakly or scarcely annotated data may be used where
objective functions are adapted to work on incomplete ground truth
labels (Çiçek et al., 2016). Another field of research is active learning,
where the annotator is put into the loop to label only those samples
that are supposed to be most rewarding for training (Budd et al., 2021).

In Chapter 5, we exploited knowledge gained in an external domain to
improve segmentation performance on a new dataset, thereby reducing
the labeling workload. To this end, we have used model weights that
represent the knowledge obtained from another domain. If there is
additionally the actual image data, ideally labeled, from several domains
available, domain generalization techniques can be exploited to apply the
trained model on any domain without specific DA (Zhang et al., 2020;
Liu et al., 2020b). However, aggregating data from multiple domains
limits these technique’s feasibility in the medical field. Thus, future
work needs to be carried out that relaxes this restriction to, for example,

132



6.2 limitations and future work

only one labeled dataset and multiple unlabeled datasets from other
domains.

When considering a higher level of clinical data, there is potential in
exploiting data from other medical branches, such as MRI acquisitions
of the brain or liver. Although these tasks are not directly relevant
to prostate segmentation, they can allow for computing more robust
features.

Alternatively, one can consider information from a lower level in the
data than those proposed thus far. On the level of the organs, prior
information about the size of the prostate structures may regularize the
training (e.g., similar to Bateson et al. (2020)). Moreover, segmentations
of other (proximal) organs can be leveraged. We observed that the
qualitative segmentation outcome of the prostate gland was better,
when the interior anatomy was targeted by the CNN, in contrast to
targeting just one class (the prostate). This indicates that additional
segmentation targets, such as lesions or adjacent structures (e.g., seminal
vesicles, or pelvic diaphragm) may provide more valuable information
than a simple foreground or background label.

methodological aspects We targeted the automatic segmen-
tation of different substructures and investigated the use of supple-
mentary data for improving their segmentation outcome. Although
we assessed these aspects individually with the methods proposed in
Chapters 3, 4 and 5, we want to point out that the methods are not
exclusive and can be used in conjunction with each other. For instance,
the domain adaptation technique (Chapter 5) can be used with the
multi-stream architecture Chapter 3, or the semi-supervised techniques
introduced in Chapters 4 and 5 can be exchanged. We have not carried
out such an experiment because our intention was to investigate the
effect of the additional data individually to derive more insights for the
design of future studies. We leave it to future work to investigate the
effect of combining these methods.

While the incorporation of additional data or information is a reward-
ing option to improve the segmentation quality, there are also other
potential routes to improve the segmentation performance, if no such
supplementary input is available. These are outlined in the following.
All our proposed solutions are based on the 3D U-Net architecture

that has proven (often in slightly adapted manner) successful for various
segmentation tasks in medical images (Isensee et al., 2021). This is
in line with our findings that our 3D U-Net variants were sufficient
for attaining performances en par with human annotators for prostate
structures segmentation if enough data was available. Nonetheless, as
our methods are not restricted to the employed U-Net variants, but
can be seen complementary for other network architectures, it would
be interesting to evaluate whether segmentation performance can be
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further improved by evolving the underlying backbone architecture, for
example, with deep supervision, residual, or dense connections.
Another aspect to focus future work on is the loss function that

drives the learning of the networks. Although the DSC loss, which we
incorporated, has demonstrated its effectiveness in several works, there
exists a large variety of other training objectives (Ma et al., 2021),
that we highly recommend evaluating in future work. For example,
training objectives that pay attention to the boundary and foreground
edge information have shown promising improvement in segmentation
performance for the prostate (Zhu et al., 2020; Qin et al., 2020; Jia
et al., 2019).
We have used different data augmentation techniques in our work,

but we have not set a particular focus on this aspect and have rather
relied on basic geometric transformations. Therefore, more effort needs
to be undertaken regarding this limitation, as several works have demon-
strated that a more elaborated augmentation strategy leads to increased
performance and robustness of the model (Zhang et al., 2020; Sheikh
and Schultz, 2020; Hesse et al., 2020).
One other promising route for future work is to concentrate further

on learning more meaningful representations of the data (e.g., in the
latent space), which can facilitate the learning of the downstream task
(i.e., segmentation or classification) (Bengio et al., 2013). Priors of this
representation can regularize the training. For instance, in contrastive
learning, the objective is to learn embeddings of the data, whose vectors
are close to each other, when the data inputs are similar. This similarity
can refer to, for example, augmented images (Chen et al., 2020c) or
patches from the relatively same position in scans from different patients
(Chaitanya et al., 2020). For the task of prostate segmentation, the
similarity could be encoded by information about the structure size
(e.g., the ratio of zone sizes) that we can obtain from the training
labels. Another strategy is to use variational autoencoders (Kingma
and Welling, 2013) that regularize the representations by introducing a
distribution prior on variables of the latent space. This has the additional
benefit, that multiple segmentation candidates can be inferred for an
input segmentation (Kohl et al., 2018; Baumgartner et al., 2019).
Lastly, we believe that it will be of high value to explicitly incorpo-

rate regularization through shape information into either the learned
representation or in the post-processing to improve performance and
generalization capacity. There have been efforts to this respect for
prostate segmentation (Liu et al., 2020b) and several other tasks (Xie
et al., 2021), but it needs to be investigated in future work whether
it is beneficial for a more detailed interior anatomy and the adjacent
structures segmentation, as these individual shapes are more diverse
than the whole gland.
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future research directions With the incorporation of addi-
tional data and the methodological aspects described above, we aim to
learn better features, that can improve the segmentation performance.
However, when introducing our segmentation methods into clinical
workflows, there remain some open challenges that need to be addressed,
even when the segmentation performance and robustness can be further
improved. These include the tumor segmentation, out-of-distribution
detection and life-long (continuous) learning.
We expanded the segmentation of the prostate into a more detailed

subdivision and its adjacent structures. However, employing the methods
in PCa therapy planning and monitoring, requires segmenting the tumor,
too. To this end, we refer to recent work, such as Dai et al. (2020) and
Saha et al. (2021).
Even for the best automatic method, there will be some cases that

the automatic methods fail to segment, either due to insufficient image
quality or model capacity. This is important to consider in systems
where automatic follow-up tasks rely on the segmentation outcome.
Therefore, one important future research direction will be to study how
the model can recognize its failure and output a heads-up to the human
or subsequent algorithm. The research fields of predictive uncertainty
and out-of-distribution detection should point to respective solutions
for this (e.g., Kohl et al., 2018; Mehrtash et al., 2020).
Finally, future work needs to be carried out on the ability of the

methods to adapt to new data or tasks without forgetting. For instance,
in a case, where we want to extend our prostate zone segmentation
algorithm by additionally targeting the tumor, it needs to be avoided to
re-train the method on all of the datasets again. We encourage follow-up
research that tries to solve this challenge of continuous learning (Karani
et al., 2018; Parisi et al., 2019).

6.3 summary

The research carried out in this thesis addressed the CNN-based seg-
mentation of prostate structures that is needed for various tasks in
PCa diagnosis, as well as for therapy planning and monitoring. In this
context, our objectives were (1) to provide reliable segmentation re-
sults for structures that are relevant for these tasks, and (2) to develop
methods that improve the segmentation outcome of CNNs by exploiting
supplementary data that is easily available in the clinical routine.

The segmentation methods in our work targeted structures that have
not been considered in prior works on automatic segmentation. We
extended the common two-zones (TZ and PZ) segmentation by the AFS
and the DPU to obtain a more detailed anatomy segmentation of the
interior gland and investigated the segmentation of the NVB and EUS,
which are critical structures impacting the outcome of PCa therapies.
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We achieved performance en par with manual inter-reader variability
for all considered structures.

In this context, we contributed novel methods that leverage additional
data for their training. Specifically, we (1) included additional scan
directions of the T2w acquisitions in a multi-stream 3D CNN. Moreover,
we (2) leveraged unlabeled data in a semi-supervised segmentation
method and (3) exploited knowledge from another domain within a semi-
supervised DA technique. With our studies, we demonstrated the benefit
of including supplementary data and knowledge from different levels of
the clinical data structure for improving the method’s performance and
mitigating common problems of CNNs.
One main limitation of our work was the small test dataset size for

prostate zones and critical structure segmentation. In the future, our
methods should be evaluated on a larger test set and with respect to
additional factors such as intra-rater variability and impact of patho-
logical cases. Moreover, elaborating the underlying architecture, loss
function and data augmentation techniques as well as regularization
of the methods with shape or representation priors are aspects to be
investigated in future work. Nonetheless, our results indicate that the
methods developed in this thesis have the potential to automate tasks
within the diagnosis, research and treatment for PCa and moreover
lower the obstacles of CNN implementation in the clinical practice.
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Additional material for Chapter 4.

a.1 appendix a.1

To train our supervised baselines in Chapter 4, we used a multi-class
DSC loss as follows:

LDSC(y, ŷ) = −
∑
c∈C

2
∑N
i=1 ŷc,iyc,i + ε∑N

i=1 yc,i +
∑N
i=1 ŷc,i + ε

, (A.1)

where y and ŷ are the ground truth and prediction for an input sample.
The parameter ε is a small constant for ensuring numerical stability.

a.2 appendix a.2

The task-specific hyperparameters for the UATS method are listed in
TableA.1.

Dataset Learning
rate

Batch
size Confident voxels per class

Prostate 5e-5 2 PZ: 50%, TZ: 50%, DPU: 10%,
AFS: 10%, Background: 50%

Skin 1e-5 8 Lesion: 50%, Background: 50%

Hippocampus 4e-5 4 C1: 50%, C2: 50%, Background: 50%

Table A.1: Task-specific hyperparameter settings for our experiments in Chap-
ter 4.

a.3 appendix a.3

The bias correction for the temporal ensemble was introduced in the
work from Laine and Aila Laine and Aila, 2017. In their algorithm, the
ensemble Êi is initialized as zero vector and accumulated over the epochs
as: Êi ← αÊi + (1− α)Ŷi, where Ŷi is the current epoch’s prediction.
To correct for the startup-bias, the training targets Ei are created by
dividing Êi by (1− α)t, with t being the current epoch.
We found that enabling the bias correction achieved better perfor-

mance. However, during the preparation of this manuscript, we also
found that t did not get updated in our sourcecode after every epoch,
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Method PZ TZ DPU AFS ∅

supervised ANISO 78.2 ± 6.0 87.1 ± 6.3 74.3 ± 7.0 39.0 ± 15.9 69.7
t = epoch,α = 0.6 79.0 ± 6.1 87.2 ± 5.2 74.6 ± 6.3 43.4 ± 10.9 71.0
t = 1,α = 0 77.7 ± 5.6 86.6 ± 4.7 73.5 ± 6.1 42.8 ± 9.7 70.2
t = 1,α = 0.2 78.5 ± 5.8 87.0 ± 5.5 75.9 ± 7.0 38.8 ± 9.7 70.0
t = 1,α = 0.4 79.9 ± 6.0 87.7 ± 5.8 76.1 ± 7.1 43.2 ± 11.4 71.7
t = 1,α = 0.6 79.5 ± 5.8 87.8 ± 5.6 76.0 ± 7.0 46.2 ± 10.8 72.4
t = 1,α = 0.8 78.4 ± 6.1 87.3 ± 5.5 75.7 ± 7.7 51.5 ± 11.5 73.2

Table A.2: DSC [%] for different prostate zones in evaluation of the bias cor-
rection effect. Fold1. α = 0 corresponds to no bias correction.

but always kept the value 1. As α = 0.6 in our setting, this resulted in
dividing Ei by 0.4 for the loss calculation. Figure A.1 plots the effect
that the division of the training target by a constant (1−α) has on the
negative cDSC output, that is incorporated in our losses. The higher α
is, the lower the output for the negative cDSC is. This effect is magnified
when the predictions Ŷi are getting closer to the ensemble target Ei. As
the ensemble prediction is not only resued for LCons, but also as pseudo
label for the unlabeled samples in LTask, these unlabeled samples are
weighted higher in LTask when the predictions are of good quality.

We ran experiments to investigate what effect altering Ei with differ-
ent values for α and with the actual bias correction have. We conducted
the training on the first fold for the prostate zone segmentation and
evaluated the method on the test dataset. The results are summarized
in Table A.2. As we can see, performing the actual bias correction and
simply dividing the ensemble by a constant has a positive effect on
the average performance across classes. The higher α is, the higher the
overall performance is. Not altering the ensemble performs similar to
the supervised baseline.

a.4 appendix a.4

An example for a confidence mask for our UATS method of a prostate
case with the settings from TableA.1 is depicted in Figure A.2.

a.5 appendix a.5

To give an example of improvement through our UATS method, we
included Figure A.3.
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Figure A.1: Effect of dividing the ensemble ground truth by (1− α) on the
cDSC score. For simplicity, we assumed the ensembe Ê to be a
binary segmentation.
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Figure A.2: Example confidence masks for our UATS method for one prostate
case on apex, mid-gland and base-level of the prostate. Masks are
calculated based on the softmax confidence.

Figure A.3: Example cases that visualize the prediction of the supervised and
UATS method, as well as the manual ground truth.
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We summarize the hyperparameter details for our experiments on do-
main adpatation in Chapter 5 in this appendix.

Parameters were found empirically on the validation set. For prostate
structure segmentation, the Adam optimizer was used. LR was reduced
by a factor of 0.8 when the validation loss did not decrease by value of
0.00001. To obtain the pseudo labels, we applied thresholds of 0.5, 0.5,
0.5 and 0.999 for the prostate, NVB, EUS and background, respectively.
More task-specific hyprparameters are provided in TableB.1.
For pancreas segmentation, the RMSprop optimizer was used. The

learning rate was reduced by a factor of 0.9 when the validation loss
did not decrease by value of 0.005. We applied a threshold of 0.25 to
the foreground (pancreas) class. TableB.2.

supervised + DA Stage II DA Stage I (TL)

max epochs 300 300

batch size 2 2

learning rate (LR) 1e03 1e04

early stop patience 40 30

LR decay patience 10 10

Table B.1: Overview of method-specific hyperparameters for the prostate
structures segmentation.

supervised DA Stage I (TL) DA Stage II

max epochs 1500 500 500

batch size 4 1 4

learning rate (LR) 6e05 1e05 1e05

early stop patience 150 50 75

LR decay patience 50 20 25

Table B.2: Overview of method-specific hyperparameters for the pancreas
structures segmentation.
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