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Abstract 

This thesis aims to contribute to a comprehensive characterisation of the 

pharmacokinetics (PK) of the novel humanised monoclonal antibody (mAb) 

matuzumab, targeting the epidermal growth factor receptor, and to a general 

understanding of mAbs. Concentration-time profiles from 3 clinical studies including 

90 study patients (IDs) were analysed simultaneously using the population modelling 

software NONMEM
TM

. The data was best described by a final 2-compartment PK 

model, including the parameters central and peripheral volume of distribution, inter-

compartmental clearance, linear clearance (CLL), an additional non-linear elimination 

pathway and the covariate relation fat-free mass (FFM) on CLL. Three types of 

variability were identified in the model: interindividual on 4 parameters, interoccasion 

(IOV) on CLL and residual variability. The model was evaluated by various evaluation 

techniques for its precision, robustness and predictivity. External evaluation with a 

second dataset including 81 IDs from 3 additional studies refined the model, as an 

earlier incorporated covariate relation was not supported and was for this purpose 

omitted. For internal evaluation the bootstrap (BS) method, case deletion diagnostics 

(CDD, deletion of either 10% or of 1 ID and reestimation of the parameters with the 

reduced datasets) and visual predictive checks (VPC) were performed. Calculated BS 

medians of the parameter estimates from 200 BS runs were similar to the original 

values; relative bias ranged from -1.2% to +4.3%. CDD showed an influence of one ID 

on the IOV. Closer examination revealed that the influence was due to one observation 

from this ID (omitting this observation led to a reduction of 19% in IOV). The 90% 

prediction interval of 1000 simulated concentration-time profiles by VPCs included 

most of the observed concentrations. The calculated medians and variances were in 

accordance with the original data. Simulations were perfomed to analyse the impact of 

different dosing regimens and of the covariate relation on the concentration-time 

profiles. The variability in simulated steady-state concentrations could be reduced by a 

developed and proposed adapted dosing regimen. The analysis of different body size 

descriptors (body weight, body surface area and FFM) suggested that FFM should be 

used in covariate relations in population PK models for mAbs. These results were 

confirmed in a covariate analysis of another mAb (sibrotuzumab). In future, the 

developed population PK model for matuzumab combined with pharmacodynamic data 

could serve as a tool to guide selection of optimal dose regimens for matuzumab, a 

highly promising ‘targeted’ cancer therapy. 
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Zusammenfassung 

Ziel dieser Arbeit war, die Pharmakokinetik (PK) des humanisierten, monoklonalen, 

gegen den epidermalen Wachstumsfaktor gerichteten Antikörpers (AK) Matuzumab, 

umfassend zu charakterisieren. Die Konzentrations-Zeitverläufe von 90 Patienten (IDs) 

aus 3 klinischen Studien wurden mit der Populations-Pharmakokinetik-Software 

NONMEM
TM

 simultan ausgewertet und am besten durch das finale 2-Kompartiment 

Modell mit den Parametern zentrales und peripheres Verteilungsvolumen, inter-

kompartimenteller und linearer (CLL) Clearance, eines zusätzlichen nicht-linearen 

Eliminationsweges und einer Covariatenbeziehung zwischen Fett-freiem Gewicht 

(FFM) und CLL beschrieben. Das Modell beinhaltete drei Arten von Variabilität: die 

interindividuelle (auf 4 Parametern), die interoccasion (IOV) und die Residual-

Variabilität. Das Modell wurde durch verschiedene Evaluationstechniken auf Präzision, 

Robustheit und Vorhersagekraft untersucht. Die externe Evaluation mit einem zweiten 

Datensatz (81 IDs von 3 weiteren Studien) verbesserte das Modell, nachdem eine zuvor 

eingeschlossene Covariate nicht unterstützt und damit ausgeschlossen wurde. Interne 

Evaluation waren die Bootstrap (BS)-Methode, Case-Deletion-Diagnostics (CDD, 

Entfernung von entweder 10% oder eines einzelnen IDs und erneute 

Parameterabschätzung mit den reduzierten Datensätzen) und Visual-Predictive-Checks 

(VPC). Berechnete BS-Mediane von 200 BS-Untersuchungen waren den 

Originalwerten ähnlich: relative Fehler lagen zwischen -1.2% und +4.3%. Das 90%-

Vorhersageintervall von 1000 durch VPC simulierten Konzentrations-Zeitverläufen 

beinhaltete größtenteils die gemessenen Konzentrationen und die zentrale Tendenz 

spiegelte die Originaldaten wider. CDD ermittelte 1 ID, bzw. präziser 1 Konzentration, 

mit einem Einfluss auf die IOV (ohne diese war die IOV um 19% vermindert). Für die 

Analyse des Einflusses von verschiedenen Dosierungen und der Covariaten wurden 

Simulationen durchgeführt. Durch eine angepasste Dosierung wurde die Variabilität in 

Steady-State-Konzentrationen vermindert. Die Analyse von Körpermaßen (Gewicht, 

Oberfläche, FFM) ermittelte FFM als bestes Maß in Covariatenbeziehungen für 

monoklonale AKs. Um die Ergebnisse zu bestätigen, wurde eine weitere 

Covariatenanalyse für ein entwickeltes Modell für den monoklonalen AK 

Sibrotuzumab durchgeführt. Das entwickelte PK Modell, kombiniert mit Pharmako-

dynamik-Daten, könnte zukünftig bei der Ermittlung der optimalen Dosierung für diese 

vielversprechende zielgerichtete Tumortherapie mit Matuzumab helfen. 
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Abbreviations 

 

AGE age of study patient at the day of inclusion into the study 

(years) 

AIC Akaike information criterion 

ALT alanine aminotransferase (U/L) 

AMT amount of drug administered (mg) 

AP alkaline phosphatase (U/L) 

APC antigen-presenting cell 

AST aspartete aminotransferase (U/L) 

BIL bilirubin (µmol/L) 

BMI body mass index (kg/m²) 

BS bootstrap 

BSA body surface area (m²) 

BOV between occasion variability, same as IOV 

CDD case deletion diagnostics 

CDR complementarity determing regions (antibody structure) 

CH constant part of H-chain (antibody structure) 

CL constant part of L-chain (antibody structure) 

CLL linear clearance (mL/h) 

CLCR creatinine clearance (mL/min) 

CLNL non-linear clerance 

CLTD decimal 24 h clock time during study 

CLTI 24 h clock time during study 

CMT number of compartment in model 

COME concomitant chemotherapy 

COV covariate 

CREA creatinine (µmol/L) 

Css, min minimum steady-state concentration 

Css, max maximum steady-state concentration 

CV coefficient of variation in percent 

DATE date 

df degree of freedom 
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DD development dataset 

DGR dose group 

DOSE dose (mg) 

DV dependent variable 

ED evaluation dataset 

EGFR, HER1, c-Erb-1 epidermal growth factor receptor 

ELISA enzyme-linked immunosorbent essay 

EMEA European Medicines Agency 

EVID event identification 

Fab antigen binding fragment (antibody structure) 

Fc crystallisable fragment (antibody structure) 

Fc-Rn Fc receptor of neonates 

FDA Food and Drug Administration 

FFM fat-free mass (kg) 

FLAG identifier for different records 

FLAM flag for analytical record 

FM fat mass (kg) 

FO first-order 

FOCE first-order conditional estimation 

Fv variable part of Fab (antibody structure) 

GAM generalised additive modelling 

GGT gamma-glutamyl transpeptidase (U/L) 

HACA human anti-chimeric antibody 

HAHA human anti-human antibody 

HAMA human anti-murine antibody 

HAxA anti-idiotype antibodies against therapeutic monoclonal 

antibodies 

H-chain heavy chain (antibody structure) 

HT body height (cm) 

i.v. intravenous 

ID individual subject, study patient 

IgG, IgA, IgD, 

IgM, IgE 

immunoglobulin G, immunoglobulin A, immunoglobulin D, 

immunoglobulin M, immunoglobulin E 

IIV interindividual variability 
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IND indicator variable 

IOV interoccasion variability, same as BOV 

KARN Karnofsky performance index (%) 

Km Michaelis Menten constant (mg/L) 

LBW lean body weight (kg) 

L-chain light chain (antibody structure) 

LDH lactate dehydrogenase (U/L) 

mAb monoclonal antibody 

NLME non-linear mixed effect(s) 

NONMEM
TM

 non-linear mixed effects modelling software program 

OCC number of occasion 

Oels extended least squares objective function 

OFV objective function value 

OID original study subject number 

PBPK physiologically based pharmacokinetic(s) 

P percentile 

PD pharmacodynamic(s) 

PK pharmacokinetic(s) 

PPC posterior predictive check 

PROD production procedure 

Q inter-compartmental clearance (L/h) 

R0 infusion rate 

RACE ethnic origin of study subject 

RATE dosing input. i.e. amount/infusion duration normalised to 1 h 

REC record 

RSE relative standard error in percent 

s
2
 variance 

SD standard deviation 

SEX sex of study subject 

SID study site 

SIM-ID simulated study patient 

-SS- disulfide bridge 

STDY study number 

T infusion duration 
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t1/2 half-life (days) 

TALD time elapsed from start of most recent administration 

TIME time elapsed from start of first administration 

TIM1 time elapsed from start of first study event 

TIPL time planned from start of first administration 

TGF-α transforming growth factor-alpha 

V total volume of distribution (L) 

VH variable part of H-chain (antibody structure) 

VISI number of study visit 

VL variable part of L-chain (antibody structure) 

Vmax maximum elimination rate (mg/h) 

VPC visual predictive check 

WBC white blood cell count 

WT body weight (kg) 

x~  median 

x  arithmetic mean 

ε random deviation between the individual prediction and the 

observed measurement (‘random effects’) 

η difference between the individual parameter and the population 

parameter estimate (‘random effects’) 

θ typical value of a population parameter (‘fixed effects’) 

κ difference between individual parameters of different study 

occasions (‘random effects’) 

ξ any additional model parameter 

π
2
 variance of κ 

σ
2
 variance of ε 

υ variance function 

φ  vector of model parameters 

ω standard deviation of η 

ω
2
 variance of η 

 
 



 Introduction 

 1 

1 Introduction 

 

1.1 Current perspectives on cancer disease and tumour therapy  

Currently, cancer diseases caused about 13% of all deaths worldwide in 2007 and, 

according to the American Cancer Society, 6.7 million people died from cancer in the 

world in 2002 and this number is expected to rise up to 10.2 million in 2020 [1, 2]. In 

Germany, cancer incidence data is collected by population-based cancer registries. The 

Federal Cancer Surveillance Unit at the Robert Koch Institute (RKI) estimates the total 

number of new cancer cases per year on the basis of the data from the cancer registries. 

The Robert Koch Institute's current estimate indicated a total of 436,500 new cases of 

cancer in Germany in 2004 [3]. Cancer mortality data is based on death certificates 

submitted by law to the Federal Statistical Office of Germany. In 2003, one in four 

deaths in Germany (21.5 % of deaths among women and 27.9 % of deaths among men) 

was due to cancer [4]. Better prevention, early detection and advances in treatment 

have especially supported developed nations to decrease incidences and mortality rates. 

But in most parts of the world and for an older growing population cancer is an 

increasing problem [2]. Due to continuous cancer research, patients can nowadays be 

offered highly effective antineoplastic therapies. With new therapy options more cancer 

entities become curable. However, this is also accompanied by a change in patient 

needs such as an increasing information need about diagnosis, future conditions or 

needs for psychological support and economic aid [5].  

In the haematological and oncological clinical practice tumour therapy is still often 

based on surgery, therapeutic radiology and chemotherapy. Large attempts to discover 

new and more effective therapy options have been made. A significant impact in the 

treatment of some types of cancer is the so-called ‘targeted’ therapy, which became 

available in the late 1980s. The general principle is to use agents, which are specific for 

deregulated cell properties, e.g. proteins, of cancer cells. Tyrosine kinase inhibitors 

such as imatinib or gefitinib are examples for small molecule targeted therapy drugs, 

which are, in general, inhibitors of enzymatic domains on mutated, overexpressed or 
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otherwise critical proteins within cancer cells [6-8]. Another strategy is the therapy 

with monoclonal antibodies (mAbs). The first report of the treatment of a tumour 

patient with a monoclonal antibody was published in 1980 [9]. An antibody 

(therapeutic agent or therapeutic carrier) specifically binds to a target, e.g. a protein on 

the surface of cancer cells. Trastuzumab, an anti-HER2/neu antibody against breast 

cancer, and the anti-CD20 antibody rituximab against B-cell malignancies are approved 

therapeutic examples [10, 11]. Monoclonal antibodies, as members of the biotech 

drugs, are currently a very active research area and also approvals have increased over 

the last few years (e.g. last approval of panitumumab by the EMEA, the European 

Medicines Agency, in December 2007). The next sections will focuss on physiological 

antibodies (section 1.2), the structure of antibodies (section 1.3) and the promising new 

class of therapeutic monoclonal antibodies (section 1.4) because matuzumab (section 

1.5), the compound for the population pharmacokinetic (PK) analysis of this thesis, is a 

new monoclonal antibody currently in clinical cancer development. 

1.2 Physiological antibodies 

Under physiological conditions, the immune system is capable of generating its own 

antibodies against invading material with antigenic determinants. These antibodies are 

called immunoglobulins (Ig), and are glycoproteins produced by B lymphocytes. As 

part of the specific humoral immune system they are secreted into the blood or lymph 

system to identify and neutralise foreign invading objects such as microorganisms 

(bacteria, parasites, or viruses) or their products, or other non-endogenous substances 

and objects. In Table 1 an overview of the human immune system including the 

production of antibodies is presented. 

Table 1 Humane immune system [12]. 

Different immune response types  

 specific nonspecific 

humoral antibodies complement system 

cellular 
T lymphocytes, APC

§
,  

(B lymphocytes) 

macrophages, natural killer cells, 

granulocytes, monocytes 

§
 APC: antigen-presenting cell 
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Antibodies can be classified according to the GADME system based on their 

configuration and function. The five different classes (also referred to as isotypes) are 

presented, along with their function, in Table 2. Also integrated in this overview are the 

molecular mass, half-life and the proportion of each class. In general, immunoglobulins 

- as proteins with hydrophilic and glycosylated moieties - have a high molecular weight 

of approximately 150-200 kD. The only exception is the tentameric IgM, which has a 

larger molecular mass of 970 kD. Immunoglobulin G (IgG) represents the most 

important class of immunoglobulins, with a serum concentration of approximately 12 

mg/mL. IgG molecules have the lowest molecular mass and are the predominant 

antibody for immunochemistry. 

Table 2 Immunoglobulins [12]. 

Class 
Sub- 

classes 
Function 

Molecular mass  

[kD] 

Proportion of 

total Ig [%] 

t1/2 

[days] 
      

IgG 

IgG1 

IgG2 

IgG3 

IgG4 

- main Ig in blood and 

  extravascular region 

- binds to antigen and 

  toxins 

150 75 

21 

21 

7 

21 
      

IgA 
IgA1 

IgA2 

- main Ig in seromucous 

  excretion 

- surface protection 

monomer: 160 

dimer: 390 

secretoric dimer: 385 
§
 

15 
6 

6 

      

IgD IgD 
- mainly in humans 

- on B lymphocytes 
180 0.5 3 

      

IgM IgM 

- first Ig on B  

  lymphocytes  

- favors agglutination 

970 7 10 

      

IgE IgE 
- main role in allergies 

- surface protection 
190 0.002 2 

      

§ heterogeneous distribution; also larger polymers 

 

1.3 Structure of antibodies 

In Figure 1, the typical structure of antibodies is shown. Antibodies have as a monomer 

a typical common chemical structure of several structural elements, two identical heavy 

and long chains (H-chains), and two identical light chains (L-chains). These chains are 

held together by a number of disulfide bridges and may be glycosylated. The L-chain 

consists of 220 amino acids and appears in two different configurations, the λ- and κ-

chains. Any individual of a species produces both types of L-chains. The ratio of κ- to 
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λ-chains varies with the species, e.g. humans have 60% and mice 95% κ-chains. In any 

Ig molecule, however, the L-chains are always either both κ-chains or both λ-chains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Structure of antibodies [12]. 

H-chain: heavy chain, consisting of VH, CH1, CH2 and CH3; L-chain: light 

chain, consisting of VL and CL; VH: variable part of H-chain; VL: variable 

part of L-chain; CL: constant part of L-chain; CH1-3: constant part 1, 2 or 3 of 

H-chain; -SS-: disulfide bridges; Fc: crystallisable fragment; Fab: antigen 

binding fragment; Fv: variable part of Fab; CDR: complementarity 

determining regions, special hypervariable sequences of amino acids  

 

The type of H-chain of about 450-550 amino acids determines the GADME 

classification (see section 1.2 and Table 2). There are five different types of H-chains: 

type γ in the IgG molecule, type α in the IgA molecule, type δ in the IgD molecule, 

type µ in the IgM molecule and type ε in the IgE molecule. Thus, the different classes 

and subclasses of human immunoglobulins differ in the structure of the heavy chain, 

the number and localisation of the disulfide bridges, and the glycosylation pattern. 

The shape of antibodies resembles the letter ‘Y’, which is due to the disulfide bridges 

between the two H-chains and between each H-chain with one L-chain. These endings 
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tend to crystallise, and for this reason the region is referred to as ‘fragment 

crystallisable’ (Fc). The antigen-binding fragment (Fab) is located where H- and L-

chains are linked by both covalent bindings (disulfide bridge) and non-covalent 

bindings. At the end of this part there is a region in both L-chains, which is variable, 

the so-called Fv region. Within the Fv region special hypervariable sequences of amino 

acids, the complementarity-determining regions (CDR), are responsible for the huge 

differentiation of antibodies as they vary in each immunoglobulin in both length and 

sequence. The steric structure of the summary of only six CDRs builds a contact 

surface, the counterpart to the epitope, also referred to as the antigenic determinant, 

which binds to the antibody. The area between these CDRs, called the framework 

region, provides the basis for the stability of the frame. Based on these structural 

features, antibodies show very specific recognition of highly diverse antigenic 

determinants, despite their generally uniform structure [12]. 

1.4 Therapeutic monoclonal antibodies 

During the late 1970s the first mAbs were developed and reached clinical trials for 

therapeutic use. Generally, these protein drugs are macromolecules (molecular weight 

for macromolecules: > 1000 Dalton, molecular weight for immunoglobulin G, i.e. 

antibodies: ~150 kD, see Table 2), which are diverse as well as complex. The interest in 

antibody products (antibodies, antibody-fusion proteins, antibody fragments, 

conjugated antibodies, bispecific antibodies, monoclonal intrabodies) has been rapidly 

increased over the last decades, especially after the Nobel price - winning research of 

Milstein and Köhler (Medicine 1984) about the principle of mAb production by the 

hybridoma technique [13]. Using this method, the first extracted mAbs were produced 

and emanated from murine B cells. The biotechnological steps involved in the 

hybridoma technique are initiated by the immunisation of a mouse with a specific 

antigen. The subsequent immune reaction results in an increase of B lymphocytes that 

produce and secrete antibodies. These antibodies react with the antigen and accumulate 

in the spleen. After removal of the spleen, the B lymphocytes are isolated and an 

antibody-producing B lymphocyte is fused with a malignant myeloma cell (an 

‘immortal’ cancer cell capable of replicating indefinitely). The result is a so-called 

‘hybridoma cell’ or cell line, which produces only a single type antibody targeted 

against a particular antigen. The major advantage of the fusion of the two cell types 
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(myeloma cell and B lymphocyte) is the unification of their original characteristics, the 

capability of the myeloma cell for unlimited growth, and the ability of the B 

lymphocyte to produce a specific antibody. For the production of mAbs, the cell line 

with the best binding to the targeted epitope of the antigen is chosen from several 

engineered hybridoma cell lines. The obtained species of antibodies is referred to as 

‘monoclonal antibodies’ because they derive from one original B lymphocyte and thus, 

they are all identical (clones) [12]. 

Each year multiple approvals of therapeutic mAbs are documented from the 

administration agencies [12]. At the moment, approximately thirty approved mAbs are 

available for human disease therapy, hundreds of mAbs are in clinical development in 

all clinical phase studies and new approvals are assumed to increase in the future [14].  

There are four different types, i.e. classes, of mAbs: murine, chimeric, humanised and 

human. Examples of these types, together with the year of their first approval and 

manufacturer, are listed in Table 3. Figure 2 illustrates the different classes of mAbs 

with their declining immunogenicity by decreasing murine fractions. 

Table 3 Overview of monoclonal antibody classes [12]. 

Class of 

antibody 

Suffix 

(or prefix) 

Example 

compound 

Approval 

year 
Manufacturer 

murine ‘muro-…ab’ muromonab-CD3 
1986 (first 

approval) 
Ortho Biotech 

chimeric ‘-ximab’ rituximab 1997 Biogen Idec / Genentech 

humanised ‘-xumab, -zumab’ alemtuzumab 2001 Millennium / ILEX  

human ‘-mumab’ adalimumab 2002 Abbott 

 

 

Because of their ability to bind to specific structures with high specificity mAbs show a 

high potential as therapeutic agents. This also called principle of ‘targeted therapy’ is 

often connected with high efficacy and, compared with small molecule therapeutics, 

mAbs have a lower incidence of adverse events [15]. Main mAb research and 

therapeutic areas are focussed on immunological and oncological targets and diseases 

such as transplant rejection, auto-immun reactions, e.g. multiple sclerosis, or cancer 
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Murine origin, Immunogenicity

murine chimeric humanised human

Murine origin, ImmunogenicityMurine origin, Immunogenicity

murine chimeric humanised human

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Classes of monoclonal antibodies. Upper panel: different classes of 

monoclonal antibodies (murine, chimeric, humanised and human; colours: 

red = fraction of murine origin, blue = fraction of human origin). Lower 

panel: murine fractions of different classes are illustrated, with declining 

immunogenicity of the decreasing murine fractions [12]. 

 

therapy. Many of the improvements in the treatment of certain cancer entities are due to 

the incorporation of mAbs in existing therapy schedules, e.g. for metastatic colorectal 

cancer: the combination of the traditional dosing schemes FOLFOX (folinic acid, 5-

fluorouracil, oxaliplatin) and FOLFIRI (folinic acid, 5-fluorouracil, irinotecan) with the 

mAb bevacizumab showed a high clinical benefit for patients, followed by the 

inclusion of bevacizumab in the first line chemotherapy guidelines [16]. The addition 

of bevacizumab was generally associated with a survival advantage: in phase III 

clinical studies (first- and second-line treatment of metastatic colorectal cancer) the 
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increases in median overall survival attributable to bevacizumab were 4.7 months with 

first-line therapy and 2.1 months with second-line therapy [17].  

In general, mAbs display several different modes of action as part of their function. The 

four most important and best-understood effector functions/modes of action of 

therapeutic mAbs or antibody-derived products (e.g. antibody fragments) for cancer 

therapy are: 

- antibody-dependent cellular cytotoxicity 

- complement-dependent cytotoxicity 

- blockage of interaction between (patho-) physiological substance and antigen 

- conjugated unlabeled mAbs or radioactively labeled mAbs. 

Compared with traditional small molecule therapeutics mAbs show several different 

and partly unique characteristics (e.g. negligible renal clearance and often non-linear 

pharmacokinetics at therapeutic concentrations) [18]. For a summarised comparison 

between small molecules and therapeutic mAbs see Table 4. For mAb development and 

clinical research a thorough understanding of the complex processes after mAb 

administration including the PK, the pharmacodynamics (PD) and relations between 

these divisions is nonetheless essential and currently under profound investigation. 

Table 4 Comparison of characteristics between traditional small molecule drugs and 

therapeutic monoclonal antibodies [12]. 

Characteristic Small molecule drugs Monoclonal antibodies 

   

Tissue penetration often good usually poor 

   

Binding usually implies distribution usually implies clearance 

   

Degradation metabolic degradation proteolytic degradation 

   

Renal clearance often important uncommon 

   

Unbound concentration considered to exert effect considered to exert effect + may 

cause immunogenicity 
   

Pharmacokinetics usually linear 

usually independent from 

pharmacodynamics 

often non-linear 

often dependent on pharmaco-
dynamics and HAxA 

§ 
   

§
 HAxA: anti-idiotype antibodies against therapeutic monoclonal antibodies, such as HAMA (human 

anti-murine antibody); HACA (human anti-chimeric antibody); HAHA (human anti-human antibody) 
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1.5 Matuzumab 

Matuzumab is a humanised recombinant monoclonal antibody of the immunoglobulin 

subclass IgG1 (κ-chain), which targets the epidermal growth factor receptor (EGFR, 

HER1, c-ErbB-1) [19, 20]. This physiological transmembrane receptor with protein 

tyrosine kinase activity is targeted by its natural ligands such as epidermal growth 

factor and transforming growth factor-alpha (TGF-α) [21-23]. Matuzumab also binds 

with a high affinity to the ligand-binding domain of the EGFR. The EGFR is 

constitutively expressed in many healthy epithelial tissues, including skin and hair 

follicle, and it is overexpressed or up-regulated in a variety of tumour entities (e.g. 

colon, mamma and bronchial carcinoma) [24-29]. The receptor can be used as a target 

molecule for therapies based on blockade of receptor-ligand interactions and inhibition 

of downstream signaling pathways (cell proliferation, angiogenesis, invasion) as well 

as an increase of apoptosis [2, 30-33]. In general, EGFR expression in tumours is often 

correlated with a high metastatic rate and advanced disease progression and is 

accompanied by poor prognosis [34-36]. 

To overcome the disadvantages of an existing murine (mAb 425) [37, 38] and an 

approved chimeric antibody (cetuximab) against EGFR [39-41] (i.e. skin toxicity, 

immune response by the production of autoantibodies), matuzumab was developed by 

the humanisation of the murine mAb 425. The humanisation was performed according 

to the method of Winter and described by Kettleborough et al [42]. 

Matuzumab is currently in clinical development and has already shown promising 

results [43]. The antibody has indicated potential benefit in several clinical trials within 

the treatment of different tumour entities such as lung [44], colorectal [45] and gastric 

[46] cancer. However, a thorough understanding of its PK characteristics, i.e. by 

population pharmacokinetic modelling, is lacking. 

1.6 Population pharmacokinetic modelling 

1.6.1 Overview 

Pharmacokinetics is the study of a drug in the body, including the processes of ADME 

(adsorption, distribution, metabolism and excretion). In clinical research, it is used to 
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analyse and to predict the concentration-time curve of a drug and to support decision 

making for dosing recommendations [47]. Population pharmacokinetic modelling is a 

technique that can be used to analyse the variability in drug concentration-time data 

between individuals when standard dosage regimens are administered (for more details 

see sections 1.6.2 and 1.6.3) [48].  

Regulatory official agencies, such as the U.S. Food and Drug Administration (FDA) or 

the EMEA, increasingly demand for population pharmacokinetic, pharmacodynamic 

and combined (PK/PD) approaches for new therapeutics and their evaluation [49, 50]. 

1.6.2 History 

Population PK, PD and combined PK/PD analyses have shown their usefulness and 

beneficial input for decision making in the therapeutic use and in drug development 

from their beginning in the early 1980s up to date in a large number of approaches [51-

58]. They are performed to identify differences in population subgroups concerning 

pharmacokinetics, efficacy or toxicity characteristics, to analyse dose-concentration-

effect relations or to simulate clinical trials [59-62]. 

To obtain population PK and PD parameters, three different approaches can be used 

(because of simplification only the PK will be considered in the following): 

- the naïve pooling procedure (a method of estimating mean – population – 

pharmacokinetic parameters by first averaging the concentration at each time 

point and fitting a model to the averaged data or by pooling all data under the 

assumption that they belong to one individual and fitting a model to this data) 

[51] 

- the standard two-stage method (a method, in which the pharmacokinetic 

parameters of each individual are estimated in a first step and in a second step 

the empirical means and variances of the individual parameter estimates are 

computed) [52] 

- the non-linear mixed effects (NLME) approach which has been used in this 

thesis and will be explained in more detail in the following section [52]. 
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1.6.3 Non-linear mixed effects modelling 

The NLME approach, a method, in which a non-linear regression method accounts for 

both fixed and random effects, has several advantages over the other methods (in 

section 1.6.2). The approach was first introduced by Beal and Sheiner and provides 

typical population parameters as well as variability parameters [63, 64]. The method 

estimates all parameters simultaneously and considers the population as a whole, but 

without ignoring individual subject information [65]. The characteristical mixture of 

fixed effects (i.e. population parameter estimates and measurable factors, e.g. dose or 

age) and random effects (i.e. parameter variability) is the source of the term ‘mixed 

effects modelling’.  

In NONMEM
TM

 V, a parametric maximum likelihood regression procedure is used as 

estimation method (in NONMEM
TM

 VI a nonparametric population parameter 

estimation method is also implemented). The used method seeks for the combination of 

model parameter values that maximises the probability of observing the data given the 

specific model by iteratively adjusting the model parameters [66]. The aim is the 

minimisation of the extended least squares objective function value (OFV; proportional 

to -2 times the log of the likelihood of the data) [51]. Within NONMEM
TM

 the 

minimisation routine is a derivative-free quasi-Newton-type of algorithm [67]. The 

optimisation procedure invariably proceeds by iteration, starting from an approximated 

solution. A useful estimation method (e.g. the first-order estimation method, see section 

2.3.1) will gradually refine the parameter estimates until a predetermined level of 

precision (convergence criteria: 0.001) has been reached. In NONMEM
TM

, nested 

models (e.g. two models with and without covariate relation) are compared by 

calculating the difference between their OFV referred to as likelihood ratio, which is 

assumed to be χ2 
distributed [68]. A difference in the OFV of +/-3.84 is considered to 

be significant at p<0.05 with one degree of freedom (df). 

The extended least square objective function (OELS) is given by the following equation 

(equation 1.1): 

∑
=









+

−
=

n

i

i

i

ii x
x

xfy

1

2

ELS )),,(ln(
),,(

)),((
O ξθυ

ξθυ
θ

[51]          (equation 1.1) 
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where f(θ,xi) represents the structural model part and a respective expected value of yi 

(vector of observations belonging to the individual i). ξ and υ(θ, ξ, xi) correspond to 

any additional parameter and to the variance model, respectively. The logarithm term is 

included as a penalty in order to counteract the decrease in the sum of squares term as 

otherwise the OFV would be driven to zero under any circumstances as ξ  takes values 

that increase υ. 

One of the main benefits of the NLME method is the simultaneous estimation of mean 

and variance parameters using merged data from all study individuals as metaanalysis 

while the individuality of each subject is maintained and accounted for. This method 

can handle data situations, which are usually complicated for the two other methods 

(e.g. sparse, rich and unbalanced data and timepoints) [52]. It is possible to use only 

sparse data from each individual, but then a large enough number of individuals is 

required [65]. Different studies, including different dosage regimens and administration 

routes, can be pooled, which enables the incorporation of a large number of study 

subjects. This method can minimise the need to exclude patient groups and also allows 

analysis of a variety of unbalanced designs that frequently arise in the evaluation of the 

relations between dose or concentration on the one hand and efficacy or safety on the 

other [69]. Another important advantage is the ability to identify and to quantify 

different types of variability [65]. Additionally, by the analysis of covariate relations, 

part of the variability, e.g the variability among individuals, the interindividual 

variability, can be explainable.  

Nowadays, several software packages provide non-linear mixed effects capabilities but 

the most widely used software program for these modelling research activities is 

NONMEM
TM 

[70].  

1.7 Objectives 

Since the beginning of clinical monoclonal antibody research, the importance to 

determine the special pharmacokinetics of this new group of therapeutic drugs has 

increased continuously. In contrast to small molecules, monoclonal antibodies have 

different characteristics, which have to be taken into account for pharmacokinetic 

considerations. The objectives of this thesis can be separated into the following parts: 
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Part I: 

With the available data from six clinical studies of the new monoclonal antibody 

matuzumab, 

• one aim of this thesis was to comprehensively characterise the PK of this 

biological and to develop an accurate, precise, robust and predictive population 

pharmacokinetic model. This model was to include patient-specific 

characteristics, which should attempt to explain part of the variability of the PK 

parameters.  

• Moreover, the developed model was to be evaluated and, if necessary, to be 

refined.  

• For model evaluation, different techniques, i.e. internal and external evaluation 

methods, were to be used.  

• Hence, it was aimed to assess, whether in general these internal evaluation 

techniques are suitable to confirm the precision, robustness and predictivity of 

population pharmacokinetic models for monoclonal antibodies. 

Part II: 

•  A further objective was to use the developed model for simulations in order to 

analyse the impact of possible covariate relations and of different dosing 

regimens on the concentration-time profiles.  

•  Finally, to evaluate, which body size descriptor is in general best capable to 

characterise covariate relations including body size for monoclonal antibodies, 

different body size descriptors were to be analysed for the developed model for 

matuzumab. To confirm results of this body size descriptor analysis, an 

additional covariate investigation for an already developed population PK 

model for sibrotuzumab was to be performed [71]. For this purpose, data from 

three clinical studies of sibrotuzumab were analysed. 
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2 Patients and Methods 

Part I 

2.1 Patient population, treatment and data description 

This thesis includes data from i) matuzumab of six clinical studies from patients with 

different types of advanced carcinomas (e.g. pancreatic, colon, gastric) and ii) 

sibrotuzumab of three clinical studies from patients with advanced or metastatic cancer 

(this data will not further be described here, but in section 2.6). Patient and study 

characteristics of the matuzumab data with descriptive statistics are presented in Table 

5. Patients received matuzumab as multiple 1 h i.v. infusions in constant dosing 

regimens ranging from 100 mg weekly up to 2000 mg in the first week followed by 

1600 mg weekly. Serum samples were taken pre- and post-infusions and matuzumab 

concentrations were determined using a validated sandwich enzyme-linked 

immunosorbent assay (ELISA) at the Institute of Drug Metabolism and 

Pharmacokinetics, Merck KGaA, Grafing, Germany [43]. Precision and accuracy of the 

ELISA method met the international recommendations for bioanalytical immunoassays 

[72]. 

2.2 Dataset for modelling and simulation 

2.2.1 Building of the matuzumab dataset and derived covariates 

To perform a population pharmacokinetic analysis different data sources, including 

information concerning i) demographics, ii) vital functions, iii) concentration-time data, 

iv) laboratory values, v) administration data and vi) study specific parameters were 

merged into a single datafile according to the requirements provided by NONMEM
TM

 

and a dataset specification table (Table 6). The development dataset (DD) was built 

from three studies (studies 1-3) and included 1256 serum mAb concentrations. The 

evaluation dataset (ED) comprised studies 4 to 6 with 1124 serum concentrations. 

Derived covariates (body mass index, body surface area, fat-free mass, creatinine 

clearance) were obtained according to published equations [73-75]. 
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Table 6 Dataset specifications for the matuzumab NONMEM
TM

 file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

… continued next page 

 

 

Data label Unit Data name

ID --- subject identification

TIME h time

TIPL h time planned

TIM1 h time 1

TALD h time after last dose

AMT mg amount

RATE mg/h infusion rate

DV
if PK e.g. µg/mL

if PD variable
dependent variable

CMT --- compartment

EVID --- event identification

FLAG --- flag 

VISI --- visit

OCC --- occasion

DGR --- dose group

DOSE mg administered dose

AGE year age

HT m body height

WT kg body weight

BMI kg/m² body mass index

FFM kg fat-free mass

FM kg fat mass

BSA m² body surface area
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Table 6 Dataset specifications for the matuzumab NONMEM
TM

 file (continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data label Unit Data name

SEX --- sex

RACE --- race

WBC --- white blood cell count

ALT U/L alanine aminotransferase 

AST U/L  aspartate aminotransferase 

GGT U/L gamma-glutamyl transpeptidase

AP U/L alkaline phosphatase

LDH U/L lactate dehydrogenase

BIL µmol/L bilirubin

CREA µmol/L creatinine

CLCR mL/min creatinine clearance

COME --- co-medication 

DATE dd.mm.yyyy date

CLTI hh:mm 24 h clock time

CLTD --- decimal 24 h clock time

OID --- original subjct identification

SID --- site identification

STDY --- study

KARN % Karnofsky Performance Index

FLAM --- flag for analytical method

REC --- record
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2.2.2 Missing data 

For the model-building process missing individual data of study population 

characteristics were replaced by the median value of the study population. In the 

development dataset for the continuous covariates height (HT) and weight (WT) were 

replaced by the median values for three individuals (3.3% of the study population) and 

body mass index (BMI), body surface area (BSA), fat-free mass (FFM) and fat mass 

(FM) for four individuals (4.4% of the study population). The ‘last observation carried 

forward’ procedure was used for time changing covariates within study individuals 

[76]. 

2.3 Pharmacokinetic model development 

2.3.1 Non-linear mixed effects modelling 

In this thesis the NLME method implemented in NONMEM
TM

 was used for all 

population pharmacokinetic analyses of clinical data of matuzumab and sibrotuzmab.  

For PK, PD and PK/PD analyses there are different estimation methods implemented in 

NONMEM
TM

 that are described in the literature [77]. In this thesis, the following 

methods have been used: 

- the first-order method (FO) 

- the first-order conditional estimation method (FOCE) 

- the first-order conditional estimation with interaction method (FOCE with 

INTERACTION). 
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The FO method estimates population parameters by a first-order Taylor series 

expansion with respect to random variables, where it is assumed that these random-

effects parameters are independently multivariately normally distributed with means of 

zero. Using the POSTHOC option in NONMEM
TM

, individual parameters can be 

obtained a posteriori based on the fixed and the random effects and the individual 

observations [77].  

The improved FOCE method uses a first-order Taylor series expansion around the 

conditional estimates of the differences between the population and the individual 

parameters. With this method, population parameters and random-effects parameters 

are estimated at each iteration step. 

The advanced FOCE with INTERACTION method additionally allows the 

dependence of random deviations between the individual predictions and the observed 

measurements. 

The analyses for this thesis were performed using the mentioned different estimation 

methods (FO, FOCE with or without INTERACTION). For the final model and all 

evaluation and simulation analyses for matuzumab FOCE with INTERACTION was 

used. All models were parameterised in terms of clearance(s) and volume(s) using the 

subroutine ADVAN6 TRANS1 TOL5 in NONMEM
TM

. For the sibrotuzumab analyses 

and simulations the FO method and the POSTHOC option and the subroutine 

ADVAN6 TRANS1 TOL5 were used. 

2.3.2 Structure of a NLME model 

The population model in the NLME approach is typically divided into three submodels 

(see Figure 3, left panel), which will be discussed in the respective sections: 

- the structural submodel (section 2.3.2.1) 

- the pharmacostatistical submodel (section 2.3.2.2) 

- the covariate submodel (section 2.3.2.3). 

 

 

 



 Patients and Methods 

 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Schematic structure of a population pharmacokinetic model. 

 

2.3.3 Structural submodel 

The first step in the population pharmacokinetic analysis was to develop the structural 

submodel. This model structure should describe the central tendency of the measured 

data best, generally in the absence of covariates. It should characterise the typical time 

profile of the data by the following function (equation 2.2): 

    f (φi, Xij)          (equation 2.2) 

where f() is the function describing the structural model that relates the independent 

variables Xij (e.g. time and dose) to the response given the i-th individual’s vector of 

model parameters φ (e.g. typical clearance, typical volume of distribution). 
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2.3.4 Pharmacostatistical submodel 

The pharmacostatistical submodel characterised the variability between and within 

individuals and quantifies the influence of the random effects. The population model 

was influenced by three types of variability (see Figure 3, right panel): 

- the interindividual variability (variability among individuals) 

- the interoccasion variability (variability within individuals between 

occasions) 

- the residual variability (non-measurable and non-controllable factors, e.g. 

uncertainty in measurements or dicrepancies in sampling time points) 

During model development and all other analyses the interindividual variability (IIV), 

which quantifies the non-explainable difference of a model parameter among the 

different individuals, was modelled with an exponential random-effects term (equation 

2.2): 

    Pki = kiη

k eθ ⋅           (equation 2.2) 

where Pki represents the parameter value k from the individual i and θk describes the 

population value of the parameter k. ηki denotes the ln-difference between Pki and θk. 

There are two additional models, which are sometimes used to describe individual 

parameter distribution, the additive and the proportional model [78]. However, the 

exponential model is the most physiological one, because it ensures that all individual 

parameters are strictly positive. For this purpose, this model was used in this thesis. 

The interoccasion variability (IOV) or between occasion variability (BOV), i.e. the 

variability within one individual between study occasions, was (in addition to the IIV) 

also examined with an exponential random-effects term (equation 2.3): 

    Pkiq = kiqki κη

k eθ
+⋅          (equation 2.3) 

where Pkiq is the individual parameter value k from the individual i at the occasion q. 

Pkiq differs from the typical individual value by an additional random effect κkiq. ηki and 

κkiq were assumed to be symmetrically distributed with a zero mean and a variance of 

ω2
 and π2

, respectively.  

2.3.2.2 
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The definition of one occasion has to be defined by the modeller. In this thesis, the 

inclusion of IOV was limited to eight infusions due to insufficient data later-on and 

implemented by different ways of assigning the eight infusions to a varying number of 

occasions: 

• definition 1: IOV on CLL; infusion 1 and infusions 2-7 (2 occasions)  

• definition 2: IOV on CLL; every 8 infusions corresponded to one occasion (8 

occasions) 

• definition 3: IOV on CLL; infusions 1-3 and infusions 4-8 (2 occasions) 

• definition 4: IOV on V1 (different occasion duration for each dosing regimen 

depending on data rich time points). 

Residual variability represents the discrepancy between the observed and the model-

predicted concentrations after incorporation of IIV and IOV. During model 

development, this type of variability was modelled using additive, proportional or 

combined error models [79]. After the base model (structural submodel + 

pharmacostatistical submodel) had been developed, the combined error model was used 

for all further analyses. The combined error model uses an additive and a proportional 

component (equation 2.4): 

   Yij = f (Φi, Xij) ⋅ (1 + ε1,ij) + ε2,ij         (equation 2.4) 

where Yij corresponds to the measured observation from the individual i at a certain 

time point j. The function f (Φi, Xij) denotes the structural part of the model, this time 

including IIV and IOV and therefore, estimating the individual prediction of the model. 

ε1,ij and ε2,ij denote the random deviation between the individual prediction and the 

observed measurement for each individual i at a certain time point j. The term (1 + ε1,ij) 

corresponds to deviations, which increase proportionally with higher observations and 

ε2,ij denotes the additional constant additive deviation over the whole measurement 

range. 

For the determination of the residual variability model it is assumed that εij is a zero 

mean random variable with a multivariately symmetrically distributed variance σ2
. The 
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variance σ2
 represents the diagonal element of the Σ matrix and is estimated as a 

population PK parameter, which reflects the extent of the residual variability. 

2.3.5 Covariate submodel 

The covariate submodel as part of the population model was included to explain part of 

the IIV, IOV and the residual error on the PK parameters originally included in the base 

model. The model denotes the relations between covariates and model parameters by 

using fixed-effects parameters [80]. Covariates describe individual- or study-specific 

characteristics: patient demographics (e.g. age, weight), disease status (e.g. laboratory 

values, disease indices such as the Karnofsky index for cancer patients) or 

environmental factors (e.g. smoking status or alcohol consumption). Covariates can 

also be classified into categorical (e.g. dose group [DGR]), dichotomous (specific 

categorical classification, e.g. sex) or continuous (e.g. age). 

Two sequential methods are widely used to investigate covariates: the GAM analysis 

(‘generalized additive modelling’, implemented in the software Xpose
®
), using the 

Akaike´s Information Criterion, AIC [81, 82], and a covariate analysis investigating 

the covariate relations within the NLME model in NONMEM
TM

. 

The GAM analysis was first proposed by Mandema et al. and allows a fast initial 

screening of potentially important covariates [80]. The method includes three different 

possibilities to implement a covariate: (1) inclusion in a linear relation, (2) inclusion in 

a spline (non-linear) relation or (3) no inclusion [83]. Each covariate was analysed by a 

stepwise addition and deletion procedure and the covariate that reduced the AIC to the 

largest extent was retained in the model. When no further reduction in AIC was 

achievable the procedure was finished. 

The covariate analysis within the NLME model was performed in NONMEM
TM

 on 

the basis of the developed base model with respect to the statistical significance of the 

influence of a covariate on a model parameter. Different implementation strategies 

have been described to investigate covariate relations in NONMEM
TM

 [80, 84-86], but 

none of them has shown its superiority towards the other. For this purpose, in this thesis 

all covariates were analysed by the often used stepwise procedure of forward inclusion 

and backward deletion [84]. In each step, all possible/remaining parameter-covariate 

relations were assessed. The included covariate relation, which led to the largest 

2.3.2.3 
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decrease in the OFV, was kept in the model. In the next steps, the remaining covariate 

relations were investigated. All covariate relations, which caused a ∆OFV>-3.84 

(p<0.05, df=1), formed the full covariate model. From the full model the covariate 

relations were then deleted one at a time using a stricter significance criterion 

(∆OFV<10.83, p<0.001, df=1). The final covariate model was the one in which 

deletion of any of the covariate relations led to an increase in OFV (∆OFV>10.83). 

Covariates investigated for their influence on PK parameters included continuous 

characteristics such as demographics (weight, height, age [AGE], body surface area, 

body mass index, fat-free mass, fat mass; for ranges and quantities see Table 5), 

laboratory values (creatinine clearance [CLCR], lactate dehydrogenase [LDH], alkaline 

phosphatase [AP], white blood cell count [WBC]) and additional: Karnofsky index 

([KARN], range: 40-100%), dose group ([DGR], in DD: 11 DGRs, in ED: 5 DGRs). 

Categorical/dichotomous characteristics were sex ([SEX], 64% male and 36% female), 

study number ([STDY], original study number), study site ([SID], in DD: 4, in ED: 6) 

and concomitant chemotherapy ([COME]; in studies 1 and 4 matuzumab was combined 

with a fixed dosing of gemcitabine, in study 5 with a fixed ECX - epirubicin, cisplatin 

and capecitabine – dosing). 

Continuous covariates were investigated with a linear covariate model (equation 2.5): 

  ))COV(COVθ(1θTVP medianCOVkk −⋅+⋅=          (equation 2.5) 

where TVPk is the population value of the parameter Pk for a specific covariate value 

(COV) and kθ  is the population value of the parameter Pk with the covariate value 

being the median value (COVmedian). COVθ  is the fractional change in the population 

parameter value with each covariate unit deviation from the median covariate value. If 

graphical inspection suggested non-linear relations, they were investigated by a power 

model, an Emax model or an exponential model [87]. 

The categorical covariates SEX and COME were given as dichotomous variables (sex: 

male/female, concomitant chemotherapy: yes/no). The coding for this covariate type is 

illustrated using an indicator variable (IND), being 0 or 1 (e.g. male or female) 

(equation 2.6): 

  (IND))θ(1θTVP COVkk ⋅+⋅=           (equation 2.6) 
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where kθ  is the typical value of the parameter Pk when IND=0. COVθ  represents the 

fractional increase or decrease of the parameter Pk caused by IND=1. 

If the categorical covariate had multiple categories each category had an own indicator 

variable (e.g. study site: site 1 = (IND) 1, etc.) (equation 2.7):  

  k1k1 θTVP =   if (IND) = 1, etc.          (equation 2.7) 

where kxθ  is the typical value of the parameter Pk for each categoryx. 

Visual exploratory analysis of the covariate relations revealed that for the laboratory 

parameters aspartate aminotransferase, alanine aminotransferase, gamma 

glutamyltransferase and bilirubin a ‘suspected relation’ by the GAM analysis was 

driven by very few individuals. Neglecting these individuals did not support the 

relation anymore. Consequently, these relations were not considered for further 

covariate analysis. 

In general, the modelling strategy for the population PK analysis for matuzumab in this 

thesis was a bottom up approach based on the data situation including the following 

steps: 

- development of the structural and the pharmacostatistical submodels (i.e. base 

model) 

- development of the covariate submodel 

- refinement of the model (see sections 2.4.1, 3.2 and 3.3). 

2.4 Model evaluation 

The aim of model evaluation methods is to qualify the developed model for its 

appropriateness. In general, the evaluation procedures can be divided into external and 

internal evaluation techniques, wich can be used to show the reliability and the 

prediction performance of the developed model and will be presented in detail in the 

following sections 2.4.1 and 2.4.2 [88]. 

It has to be pointed out, that the first evaluation of the developed population PK model 

for matuzumab was performed by the visual inspection of goodness of fit plots. The 



 Patients and Methods 

 26 

inspection of respective goodness of fit plots was also used as continuous diagnostic 

method during model development. However, this technique is part of the basic internal 

evaluation and will be described in section 2.4.2. 

2.4.1 External evaluation 

The external evaluation was based on a second dataset, which had not been used to 

develop the model. The procedure was used in this thesis to analyse whether the 

investigated population pharmacokinetic model for matuzumab was able to describe the 

concentration-time profiles of a new study population (i.e. the observations of the 

population of the evaluation dataset introduced in sections 2.1 and 2.2). The obtained 

population parameters from the evaluation dataset were compared with the original 

parameter values from the development dataset. Additionally, the parameters were 

reestimated on the basis of a combined dataset (DD + ED). The external evaluation is 

presented as the first evaluation method, because the internal evaluation was performed 

based on the obtained results from the external evaluation. 

2.4.2 Internal evaluation 

In general, the internal evaluation can be devided into basic and advanced evaluation 

techniques. Basic internal evaluation, usually performed during model development 

and for the evaluation of the final model, included the graphical inspection 

(presentation of goodness of fit plots) of the obtained results and the analysis of the 

uncertainty of model parameter estimates (relative standard errors, RSE). Additionally, 

the following advanced internal evaluation techniques were performed in this thesis: 

the bootstrap method [87, 89, 90], case deletion diagnostics (CDD) and visual 

predictive checks (VPC) [91, 92], described in detail in the following sections 2.4.2.1, 

2.4.2.2 and 2.4.2.3. 

2.4.2.1 Bootstrap method 

The developed model (Final Model, see Table 9) was evaluated by the bootstrap 

technique, a resampling method, which was first presented by Efron in the late 1970s as 

a tool for modern statistical data analysis, i.e. the assessment of bias and precision [90, 

93]. The nonparametric bootstrap is the most common approach. By ‘sampling with 
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replacement’ from the original dataset, a series of new datasets with equal size to the 

original dataset is obtained [89]. 

The bootstrap analysis was performed with the software program ‘Wings for 

NONMEM’ [94]. The new datasets were estimated based on the final population 

pharmacokinetic model for matuzumab. The bootstrap median, the bias, the relative 

bias and the 95% confidence interval (calculated by the determination of the 2.5
th

 and 

the 97.5
th

 percentiles) of each PK parameter from 200 successful (i.e. converged runs 

with an objective function value estimation) bootstrap runs were assessed. 

2.4.2.2 Case deletion diagnostics 

To assess the robustness of the developed model CDD were performed. This standard 

method detects individuals, groups of individuals or observations that have a 

substantial influence on the estimation of the model parameters [95, 96]. 

For the matuzumab model, all 90 study subjects from the development dataset were 

randomly allocated to 10 new groups of 81 subjects each (i.e. 10% of the original study 

population was excluded in each group), so that each subject was excluded only once 

(scenario 1). Additionally, each study subject was removed individually from the 

original dataset, resulting in 90 new datasets with 89 subjects each (scenario 2). For all 

new datasets the model was fitted to the data (based on the final population PK model 

for matuzumab). The estimated new parameters were compared with the original model 

parameters and with the original 95% confidence intervals obtained from the 

NONMEM
TM

 run report (estimated parameter value +/- 1.96 * standard error). 

Secondary, for nine model parameters (56% of 16 parameters) with original relative 

standard errors (RSE) > 15%, and consequently large confidence intervals, new 

confidence intervals were calculated according to assumed RSEs of 15% (based on 

bioanalytical requirements from the FDA [97]) for these nine parameters (scenarios 3 

and 4, respectively). The parameter estimates of scenario 1 and 2 were scrutinised for 

their value still being inside these ‘stricter’ confidence intervals. 
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2.4.2.3 Visual predictive check 

The visual predictive check method is a technique, which originates from the ‘posterior 

predictive check’ (PPC) and which has a strong potential to demonstrate the 

predictivity of a developed model [88, 98]. A VPC graphically compares the 

observations with model based simulated data. The aim of the VPC is to demonstrate, 

whether a developed model is able i) to reproduce the variability in the observed data, 

from which it arises, and ii) to simulate the central tendency of the observed data [91]. 

For this internal evaluation procedure 1000 new individual concentration-time profiles 

were simulated based on the final parameter estimates of the population PK model for 

matuzumab. From these simulated profiles the median, the 5
th

 and the 95
th

 percentiles 

were calculated for each time point. VPCs for single and multiple dosing were 

graphically presented and the observed matuzumab serum concentrations from the 

original dataset were included into the plots. Single dosing VPCs included for each 

single dosing (400, 800, 1200 and 1600 mg) the original concentrations of the first 

occasion (e.g. for 400 mg single dose: first occasion concentrations from the following 

dosing regimens: 400 mg weekly, 400 mg every two weeks and 400 mg every three 

weeks). For multiple dosing VPCs were performed for each dosing regimen separately 

(11 multiple dosing VPCs). 

Part II 

2.5 Simulations 

Compared to the modelling approach, which is directed retrospectively, simulation 

scenarios are directed prospectively [87]. Clinical trial simulations are often used to 

gain additional knowledge for decision making and to save costs, which otherwise have 

to be spent for traditional experiments [86, 99]. In simulation scenarios, the model is 

fixed, but inputs (e.g. dosing regimen, administration pathway) can vary. 

In this thesis different simulation scenarios were performed based on the final PK 

model for matuzumab in order to demonstrate the influence of dosing on the PK 

profiles and to visualise the impact of covariates on the concentration-time profiles. To 

analyse the effect of dosing, different dosing regimens with the same dose amount per 
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week (400 mg weekly, 800 mg biweekly and 1200 mg every three weeks) were 

simulated in the central (scenario 1a) and in the peripheral (scenario 1b) compartment. 

Covariate influences were determined by the simulation of study subjects representing 

the 5
th

, 50
th

 and 95
th

 covariate percentiles of the original study population (scenario 2). 

Finally, it was analysed, whether a reduction of observed variability in the PK profiles 

might be achieved (scenario 3) and whether these investigations might result in a 

recommendation of a ‘new dosing regimen’. 

2.6 Body size descriptors in population analyses 

In general and in population pharmacokinetic analyses, a number of investigations have 

been performed to determine, which body size descriptor should be used to best 

describe body size covariate relations [100-102]. In this thesis, the analysis of body size 

descriptors in covariate relations had to consider the new and specific conditions of 

hydrophilic macromolecules (i.e. monoclonal antibodies). For this purpose, body 

weight, body surface area and fat-free mass were selected and analysed as body size 

descriptors for covariate relations in population PK analyses for monoclonal antibodies.  

1) Firstly, their influence on changes in the OFV was compared for the model of 

matuzumab. The precision of the obtained model parameters and in particular 

the precision of the covariate relation parameters were analysed.  

2) Secondly, simulations were performed for each body size descriptor separately 

to visualise and to compare the impact of the different covariates. The dosing 

regimen of 1200 mg weekly was chosen for three simulated subjects 

representing the 5
th

, 50
th

 and 95
th

 body size percentiles of the original 

matuzumab study population (development dataset + evaluation dataset, n = 

171). 

3) Thirdly, for deriving generic conclusions and to infer whether FFM is the most 

recommendable body size descriptor for population pharmacokinetic analyses 

for monoclonal antibodies, further investigations were performed. For this 

purpose, the results from a developed population PK model from the literature 

for the monoclonal antibody sibrotuzumab was used [71]. For the development 

of this population PK model data from 1844 serum concentrations from 60 

patients in three Phase I and Phase II clinical studies (administration of 



 Patients and Methods 

 30 

sibrotuzumab as once weekly 1 h i.v. infusion) had been available. The 

developed model included the covariate relations WT on CLL, V1, V2 and 

Vmax. Apart from that, the model was similar to the model developed for 

matuzumab (two-compartment model, one linear and one non-linear elimination 

pathway from the central compartment, IIV on CLL, V1/V2 [combined] and 

Vmax, IOV on the bioavailability F1 in the central compartment). To analyse 

FFM covariate relations in this model, FFM values for all sibrotuzumab study 

subjects and a FFM median for this study population were calculated. To 

evaluate the original model parameters, they were compared with new results, 

obtained from parameter estimation based on the original model modified by 

the substitution of FFM for WT (for all covariate relations). 

General methods 

2.7 Statistical methods 

According to standard statistical methods, described in the following part, statistical 

analyses and evaluations were performed. 

For the descriptive statistics different localisation and dispersion parameters were used 

to characterise the analysed data and obtained results from the population analyses, the 

evaluation methods and the simulation scenarios. A distribution or a central tendency 

were described by localisation parameters (Table 7) and the variability of a distribution 

was denoted by dispersion parameters (Table 8). 

 

Table 7 Localisation parameters. 

median ( x~ ) value that separates the upper half of a sample or a 

population from the lower half; corresponds to the 50
th

 

percentile  

arithmetic mean ( x ) sum of all the items of the set divided by the number of 

items in the set  

5
th

 and 95
th

 percentile (5
th

 and 

95
th

 P) 

values cutting off the lowest and the highest 5% of the 

data 
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Table 8 Dispersion parameters. 

range (R) length of the smallest interval, which contains the 

highest and the lowest value 

standard deviation (SD) measure of statistical dispersion, defined as the square 

root of the variance 

variance (s²) measure of the statistical dispersion of a variable, 

indicating how far from the expected value its values 

typically are 

coefficient of variation (CV%) measure of dispersion of a distribution defined as the 

ratio of the standard deviation to the mean*100 

 

2.8 Software 

Raw datafiles were merged using SAS


 (SAS Institute Inc., Version 9.1, 2003). 

Calculation of statistics and derived covariates and figure presentations were performed 

using Microsoft
 

Excel (Microsoft Corporation, Version 2003 SP2, 2003) or SPSS


 

(SPSS Inc., Version 15.0.1, 2006). 

All population pharmacokinetic model analyses were carried out using the software 

NONMEM
TM

 (Version V, level 1.1; Icon Development Solutions, Ellicott City, 

Maryland). The free software management program PROPHET
TM

 was used (Version: v 

1.0.1 - 05.05.2004). 

For data check-out and graphical analysis Xpose


 (Niclas Jonsson and Mats Karlsson, 

Version 3.104) in connection with S-Plus


 (Insightful Corporation, Version 6, 2001) 

was used.  

Datasets generated from NONMEM
TM

 were modified using Microsoft


 Excel 

(Microsoft Corporation, Version 2003 SP2, 2003).  

Bootstrap runs were investigated with the free software program ‘Wings for 

NONMEM’ [94].  

Simulations were carried out using NONMEM
TM

 and WinNonlin


 (Pharsight 

Corporation, Version 5.2, 2007). 
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3 Results 

Part I 

3.1 Base/primary model 

For the development of the base/primary population model the development dataset 

(for data details see Table 5 and sections 2.1 and 2.2), which included 1256 serum 

concentration values of matuzumab, was analysed. The observed PK profiles were best 

described by a two-compartment model. In addition to a linear clearance (CLL), a 

second elimination pathway as a non-linear process (implemented as Michaelis-Menten 

kinetics, CLNL) with the additional parameters Vmax (maximum elimination rate) and 

Km (the concentration with half-maximal elimination rate) from the central 

compartment was included. The structural model for matuzumab is presented in Figure 

4 including i.v. administration, two volumes of distribution (V1: central compartment, 

V2: peripheral compartment), linked via the inter-compartmental clearance Q, and the 

two elimination pathways (CLL and CLNL). As random effects, interindividual 

variability on four parameters (V1, V2, Vmax and CLL) and interoccasion variability 

on CLL were implemented. For the incorporation of IOV in the population 

pharmacokinetic model of matuzumab, one occasion was characterised as the time 

period from the start of an infusion until the start of the next infusion (see section 

2.3.2.2, IOV definition 2).  

A need to incorporate non-linearity might already be concluded from the 

semilogarithmic plots in Figure 5, showing the geometric mean and the standard 

deviation of the observed concentration–time profiles of four weekly dose regimens of 

400–1600 mg, after the first and the fourth infusion. In the terminal phase, the slope of 

the curve was steeper at lower concentrations. 
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In the covariate analysis, fourteen relations were identified by the GAM procedure: 

- Vmax ~ BSA, SEX, CLCR 

- V1 ~ BSA, COME, SEX 

- V2 ~ COME, SEX, LDH, SID 

- CLL ~ BSA, COME, AP, SEX. 

Four relations (DGR and WT on V1, COME and WT on CLL) were identified by the 

forward inclusion and backward elimination method. After additional graphical 

inspections and simulations to assess the plausibility and relevance of the found 

relations, the influence of WT on V1 and WT on CLL remained in the model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Schematic structural pharmacokinetic model for matuzumab. 

R0: infusion rate; D: dose; T: infusion duration; V1: volume of the central 

compartment, Q: inter-compartmental clearance; V2: volume of the 

peripheral compartment; CLL: linear clearance part; Vmax: maximum 

elimination rate; Km: concentration, at which the elimination rate is 50% of 

the maximum value 
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Figure 5 Semilogarithmic plot of the geometric mean and the standard deviation of the 

observed concentration–time profiles of the four weekly dose regimens (400, 

800, 1200 and 1600 mg matuzumab per week) after the first (upper panel) 

and fourth (lower panel) infusion. n = number of patients in the dose group. 

Last time point for the 1600 mg dose group was after 1008 h and is not 

shown. 
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On the basis of the analysis, which body size descriptor should be used to best describe 

the covariate relations in population PK analysis for monoclonal antibodies (see 

sections 2.6 and 3.6) and literature recommendations, WT was exchanged for FFM in 

both covariate relations [73]. All model parameter estimates including the respective 

relative standard errors (RSE = standard error divided by population estimate*100) for 

this primary model are presented in Table 9, column: Primary Model. CLL was 

estimated to be 15.3 mL/h and CLNL, calculated from the parameter values of Km (3.9 

mg/L) and Vmax (0.451 mg/h) at mAb concentrations << Km, was 115.6 mL/h. RSEs 

for the fixed-effects parameters were <14.2%, except for Km (31.0%) and the covariate 

relations with RSEs < 28.6%. IIV was between 20% CV (IIV on V1) and 62% CV (IIV 

on V2) and IOV was estimated to be 22.6% CV.  

Residual variability was implemented with a proportional error of 13% CV and the 

additive error was fixed to 0.312 mg/L for reasons of model stability. Random effects 

were estimated with RSEs < 39.9% (RSEs for random effects were related to the 

corresponding variance scale). 

3.2 External evaluation of the primary model 

The primary model was evaluated by external evaluation with the evaluation dataset 

presented in sections 2.1 and 2.2. On the basis of the primary PK model all population 

PK parameters of the evaluation dataset were estimated and compared with the primary 

estimates (Table 9, column: Evaluation 1). In general, the population estimates were 

very close to the primary estimates, but no support for the covariate FFM on the central 

volume of distribution was observed (estimated value: 0.0019 with a RSE of 238%). 

Additionally, the IIV on the peripheral volume of distribution showed a high 

imprecision (RSE: 112%) as well as the correlation coefficient between V2 and Vmax 

(RSE: 105%). Further, the IOV had a much higher population estimate (55% CV) than 

expected from the development dataset (IOV: 23% CV). 

The model was changed by the deletion of the unsupported covariate FFM on V1, to 

investigate whether a refined model could describe the observations from the 

development dataset and especially those from the evaluation dataset better, including 

more precise estimates. Model parameters were reestimated for DD and ED. The 
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reduced primary model for matuzumab obtained equally precise results for DD and 

better results for ED (RSE < 79%) despite one less covariate, being thus considered as 

the ‘final model’ (results are presented in Table 9, columns: Final Model and 

Evaluation 2). 

3.3 Final model 

For DD the new estimated population parameters for the fixed effects were almost the 

same as the primary values (e.g. CLL changed from 15.3 mL/h to 15.2 mL/h). 

Matuzumab was initially distributed to a restricted central volume of distribution of 3.7 

L and a peripheral volume of distribution of 1.8 L. The inter-compartmental clearance 

Q (37.7 mL/h) indicated a limited distribution. RSEs for the fixed-effects parameters 

were in the same range compared to the RSEs of the primary model (between 3.2% for 

V1 and 30.2% for Km). The same behaviour was observed for the random-effects 

parameters with maximum differences between +3.8% to -4.5% points in CV and, in 

general, lower RSEs (highest RSE for the IIV on Vmax: 41.7%). Total clearance as the 

sum of CLL (15.2 mL/h) and CLNL (110.5 mL/h; calculated from Vmax, 0.453 mg/h, 

and Km, 4.1 mg/L) was 125.7 mL/h (at mAb concentrations <<Km). In Figure 6 upper 

panel, the dependence of total clearance on the concentration of the mAb is presented. 

At low mAb concentrations, until approximately 1 µg/mL, total clearance (blue line) 

was mainly influenced by the non-linear clearance part (lavendel line). At higher mAb 

concentrations, the impact of the non-linear part on the total clearance decreased and 

the linear part (red line) was dominating. In accordance with the non-linear behaviour, 

the half-life ranged between 4.7 and 10.3 days at concentrations of 20 and 1000 µg/mL, 

respectively (Figure 6, lower panel). 

After reestimation of all parameter estimates for the evaluation dataset based on the 

final model, the population parameters for the fixed effects and respective RSEs were 

similar to those from the first estimation, except the RSE for Km (change from 40.0% 

to 52.2%; Table 9, columns: Evaluation 1 and 2). The remaining covariate influence 

was supported with a comparable value and the improvement of the new model was 

demonstrated by the random-effects parameters: the IIV on V2 and the correlation 

coefficient between V2 and Vmax were estimated with a higher precision (RSEs 

decreased from 112% to 78% and from 105% to 75%). 
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Figure 6 Upper panel: dependence of clearance on the concentration (C) of 

matuzumab; lower panel: dependence of half-life (in days) on C. 

 

Overall, goodness of fit plots confirmed that the model performed well. Goodness of fit 
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population predictions vs observed concentrations and individual predictions vs 

observed concentrations. Population values for higher concentrations in the ED were 

underpredicted. However, individual values were adequately estimated. Additionally, 

to compare individual predicted and observed maximum concentrations (Cmax), 

concentrations at times equally or - due to the sparse data situation- less than one hour 

after the end of each administration (corresponding to Cmax after each administration) 

were analysed (see Figure 8). 
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In addition, the parameter values for the combined dataset were estimated (Table 9, 

column: Evaluation 3). In general, the estimates were obtained with higher precision 

than the estimates from the separate datasets (RSEs < 28.9%). 
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Figure 7 Goodness of fit plots for the final model for the development (A) and the 

evaluation (B) dataset on linear scale (left panel) and on logarithmic scale 

(right panel). Red: population predictions vs observed concentrations, blue: 

individual predictions vs observed concentrations. 
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Figure 8 Individual predicted vs observed maximum concentrations from the 

development dataset on linear (upper panel) and log scale (lower panel). 

 

3.4 Internal evaluation of the final model 

The final model was profoundly analysed and evaluated by basic and advanced internal 

evaluation techniques. Basic internal evaluation included the presentation of goodness 

of fit plots and RSEs for all model parameters (see Figure 7 and Table 9). The bootstrap 

method, case deletion diagnostics and visual predictive checks were utilised as 

advanced internal evaluation techniques. The results are presented in the next sections 

3.4.1, 3.4.2 and 3.4.3. 

3.4.1 Model evaluation by the bootstrap method 

From 200 successful bootstrap runs the values for the calculated bootstrap median, the 

bias and the relative bias compared to the original estimate values are presented in 

Table 10. For the fixed-effects parameters, the bootstrap medians were very similar to 

the original model values, and the relative bias for these parameters ranged from -1.2% 
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(for Vmax) to +4.2% (for the covariate relation FFM on CLL). Hence, the description 

of the structural model was accurate and precise. The bootstrap medians for the 

random-effects parameters were also in the same range of the original values with only 

small bias (relative bias from -1.2% for the correlations between V1/V2 and V2/Vmax 

up to +4.3% for IIV on CLL). 

All original model estimates from the final model were in the 95% confidence 

intervals, which were calculated by the 2.5
th

 and 97.5
th

 percentiles of the 200 values for 

each parameter. Histograms (including respective curves for Gaussian distribution) 

were visually inspected. In general, it can be anticipated, that the distributions of the 

obtained values seemed to follow the Gaussian distribution. Additionally, the box-and-

whisker plots visualised the normal distribution, including the lower and upper quartile 

(box), the median (horizontal line in the box, generally situated in the middle of the 

box, except for IOV on CLL), the almost similar spread of the whiskers (the ends of the 

whiskers representing the largest and the smallest values that are not outliers) and the 

low number of outliers (dots, values that are smaller or larger than 1.5 box-lengths from 

the lower or upper quartile). For the important clearance parameters CLL, IIV on CLL, 

IOV on CLL and the covariate relation FFM on CLL the histograms (left panel) and 

box-and-whisker plots (right panel) are exemplarily presented in Figure 9. 

Table 10 Results from 200 bootstrap runs in comparison to the final model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model parameter Unit
Final Model 

estimate
Bootstrap 
median

a Bias
a Relative 

bias, %
a

95% Confidence interval
(2.5

th
and 97.5

th
percentile)

Fixed effects
CLL

b
[mL/h] 15.2 15.0 +0.2 +1.3 13.6 – 16.7

V1 [L] 3.73 3.74 -0.01 -0.3 3.55 – 3.88
Q [mL/h] 37.7 37.6 +0.01 +0.4 30.0 – 47.6
V2 [L] 1.84 1.84 0 0 1.59 – 2.15
Vmax [mg/h] 0.453 0.459 -0.006 -1.2 0.371 – 0.565
Km [mg/L] 4.1 4.1 -0.03 -0.6 3.5 – 6.2

Covariate influence
CLL_FFM

b
0.0119 0.0114 +0.0005 +4.2 0.0070 – 0.0166

Random effects

Interindividual variability
ω CLL

b [%CV] 22.7 21.7 +1.0 +4.3 14.2 – 28.8

ω V1 [%CV] 24.1 23.8 +0.3 +1.3 20.3 – 27.5

ω V2 [%CV] 60.7 59.0 +1.7 +2.8 45.1 – 74.0

ω Vmax [%CV] 47.6 47.2 +0.4 +0.8 34.8 – 61.4

Correlation V1_V2 0.780 0.790 -0.01 -1.2 0.654 – 0.923
Correlation V2_Vmax 0.862 0.872 -0.01 -1.2 0.722 – 0.970
Correlation V1_Vmax 0.940 0.950 -0.01 -1.1 0.785 – 1.002

Interoccasion variability
π CLL

b [%CV] 22.5 22.6 -0.1 -0.7 13.8 – 30.9

Residual error
σ proportional [%CV] 13.4 13.5 -0.1 -0.6 11.9 – 14.8

σ additive [mg/L] 0.312 FIX 0.312 FIX - - -
a
obtained from 200 bootstrap runs; bias = (final model estimate – bootstrap median); 
relative bias = 100 * ((final model estimate - bootstrap median) / final model estimate)

b 
CLL: linear clearance part; FFM: fat-free mass
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Figure 9 Histograms (left panel) and box-and-whisker plots (right panel) of the 

distribution of the clearance parameters (from the 200 bootstrap runs). 

Respective curves incorporated into the histograms indicate Gaussian 

distribution. 
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3.4.2 Model evaluation by case deletion diagnostics 

The results from the four performed case deletion scenarios (see section 2.4.2.2) were 

analysed graphically. In general, all new estimates from all scenarios were estimated 

close to and uniformly distributed around the respective original estimate value. 

In the scenarios 1 (deletion of 10% of the study population, see Figure 10) and 2 

(deletion of one study subject, see Figure 11) three new parameter estimates were 

outside the 95% confidence interval (based on calculated standard errors) after 

reestimation of all model parameters on the basis of the new reduced datasets. In the 

scenarios 3 (Figure 12) and 4 (Figure 13) the new parameter estimates (parameter 

values from scenarios 1 and 2) for nine model parameters (Km, IIV on CLL, Vmax, V1 

and V2, covariate relation FFM on CLL, correlation parameter between V1 and V2, V1 

and Vmax, V2 and Vmax) were analysed with new confidence intervals (according to 

assumed RSEs of 15%). In scenario 1, two of the estimates for IOV on CLL (dataset 2 

and dataset 10) reached a value less than the lower boundary of the 95% confidence 

interval. In scenario 2, one study subject (ID 4) showed an influence on the IOV on 

CLL. In the scenarios 3 and 4 no additional estimate obtained a value outside the new 

confidence intervals (two estimates in scenario 3 [one for IIV on CLL and one for the 

covariate relation FFM on CLL] and one estimate in scenario 4 [for IIV on CLL] 

reached a value close to the confidence interval boundaries).  

After the results from scenario 2 and closer examination of ID 4 one specific 

observation from this ID (338 hours after the second administration) was responsible 

for the IOV value being outside the 95% confidence interval. The concentration of this 

observation was far too high for the time that has passed after the last administration. 

To correctly incorporate this concentration into the model, the IOV for this ID and 

observation had to be very high. Prior to further investigations, the outlier 

concentration was rechecked in the corresponding study report, but the value was 

confirmed. Additionally, the sample had been analysed twice at the bioanalysis 

institute. Hence, the influence on parameter estimation by the deletion of both, the 

whole subject and only the responsible high concentration, was analysed (see Table 

11).  

The dataset excluding ID 4 led to a reduction of the IOV from an original value of 

22.5% CV to a value of 18.7% CV (decrease of ~ 17%). All other model parameter
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Figure 10 Case deletion diagnostics (scenario 1): deletion of 10% of the study 

population; confidence intervals (dashed lines), original estimates from 

final model (solid lines), new parameter estimates (diamonds). 
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Figure 11 Case deletion diagnostics (scenario 2): deletion of one study subject; 

confidence intervals (dashed lines), original estimates from final model 

(solid lines), new parameter estimates (diamonds). 
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Figure 12 Case deletion diagnostics (scenario 3), new confidence intervals: deletion of 

10% of the study population; confidence intervals (dashed lines), original 

estimates from final model (solid lines), new parameter estimates 

(diamonds). 
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Figure 13 Case deletion diagnostics (scenario 4), new confidence intervals: deletion of 

one study subject; confidence intervals (dashed lines), original estimates 

from final model (solid lines), new parameter estimates (diamonds). 
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estimates were similar to the original parameters, only for the covariate relation a slight 

difference was observed (+/-1.2%/kg to +/-1.3%/kg). After deletion of the influential 

concentration value (DV) from the dataset and reestimation of all parameters with the 

reduced dataset, the obtained new model parameters, including the covariate relation, 

displayed only marginal differences to the original values and equal precision. Only the 

IOV value decreased from 22.5% CV to 18.3% CV (19% redcution). Model parameters 

obtained from the complete dataset, from the dataset reduced by the whole individual 

and from the dataset reduced by only the influential concentration value (Table 11, 

columns: Final Model, Final Model – ID 4, Final Model – ID 4, 1 DV) are presented. 

 

Table 11 Parameter estimates after case deletion (ID 4 or ID 4, 1 DV) in comparison to 

the final model parameter values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.3 Model evaluation by visual predictive checks  

Single dosing 

The results from the visual predictive checks (see section 2.4.2.3) for single dosing of 

matuzumab (400, 800, 1200 and 1600 mg administration) were analysed on a linear 

Model Parameter Unit 
Final Model 
Population 

estimate 

RSE, 
%

a
 

Final Model – ID 4 
Population 
estimate 

RSE, 
%

a
 

Final Model – ID 4, 1 DV 
Population estimate 

RSE, 
%

a
 

Fixed effects        

CLL
 b
 [mL/h] 15.2 4.4 15.3 4.6 15.4 4.7 

V1 [L] 3.73 3.2 3.73 3.4 3.73 3.4 

Q [mL/h] 37.7 7.7 37.1 7.1 37.6 7.1 

V2 [L] 1.84 9.0 1.84 9.0 1.84 8.8 

Vmax [mg/h] 0.453 13.4 0.456 12.8 0.459 12.9 

Km [mg/L] 4.1 30.2 4.2 29.2 4.3 28.7 

Covariate influence        

CLL_FFM 
b, c

  0.0119 21.6 0.0127 21.3 0.0120 22.8 

Random effects        

Interindividual variability        

ω CLL 
b
 [%CV] 22.7 19.5 24.4 19.2 24.8 19.2 

ω V1 [%CV] 24.1 17.1 24.3 24.8 24.1 26.5 

ω V2 [%CV] 60.7 27.0 61.0 29.8 60.5 29.8 

ω Vmax [%CV] 47.6 41.7 43.4 38.6 43.2 39.8 

Correlation V1_V2  0.780 26.6 0.757 20.1 0.761 30.3 

Correlation V2_Vmax  0.862 34.7 0.843 34.4 0.841 35.0 

Correlation V1_Vmax  0.940 26.9 0.988 28.6 0.988 29.1 

Interoccasion variability        

π CLL 
b
 [%CV] 22.5 12.1 18.7 17.2 18.3 17.2 

Residual error        

σ proportional [%CV] 13.4 1.6 13.2 1.4 13.3 1.4 

σ additive [mg/L] 0.312 FIX - 0.312 FIX - 0.312 FIX - 
a
 relative standard error (standard error divided by population estimate*100; for random effects parameters RSE is related to 

the corresponding variance scale) 
b
 CLL: linear clearance part; CLNL: non-linear clearance part (at concentrations<<Km); FFM: fat-free mass 

c
 CLL_FFMindividual = CLL * [1 + CLL_FFM * (FFMindividual  - FFMmedian)] * EXP(ηCLLindividual + κCLLindividual) 
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scale and on a semi-log scale (to better visualise higher and lower concentrations). In 

Figure 14 the results from the 400 mg and the 1200 mg matuzumab single dosing are 

presented on linear scale. The area between the two blue solid lines represents the 90% 

prediction interval and the red solid line signifies the central tendency obtained from 

1000 simulated new concentration-time profiles. The black diamonds symbolise the 

observed serum concentrations. 

 

 400 mg single dosing (matuzumab) 

 

 

 

 

 

 

 

 

 

 

 1200 mg single dosing (matuzumab) 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Visual predictive checks for 400 mg (upper panel) and 1200 mg (lower 

panel) single dosing of matuzumab. 
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For the 400 mg single dosing VPC plot the predicted median concentration-time course 

was slightly higher compared to the original measured concentrations. Also, the 

variability seemed to be marginally higher, but for the other single dosing 

administrations the predictive performance was in high agreement with the observed 

data, because most of the original datapoints were inside the 90% prediction interval 

and only some outside. For the single dosing plots all available original datapoints were 

included into the plots, i.e. from all dosing regimens with a first dosing of 400, 800, 

1200 or 1600 mg matuzumab, concentrations before the second administration were 

incorporated. Regarding the 1200 mg single dosing group, this plot included the largest 

amount of datapoints. Here, the central tendency of the median concentration-time 

course was marginally underpredicted compared to the observed data. For the other 

single dosing administrations the 90% prediction intervals and medians were in good 

agreement with the observed data, because most of the original datapoints were inside 

the prediction interval. In total, the predictive performance of the model, even including 

residual variability, was in good agreement with observed data for single dosing 

administration.  

Multiple dosing 

VPCs for multiple dosing were performed for each dose group separately and for the 

duration of 8 weeks, because for later timepoints only few original datapoints were 

available. From dose groups with only few original concentrations it could be 

anticipated that the variability and by this the 90% prediction interval was slightly 

larger than obtained from observed data (see Figure 15: dose group 1200 mg every two 

weeks), but from the plots of the dose groups where a larger number of datapoints were 

available, this variability was in good agreement with the observed data (see Figure 15: 

dose group 1200 mg every three weeks). For the visual inspection of the graphs it had 

to be taken into account that for the simulation of the 1000 new concentration-time 

profiles the planned timepoints were considered, but for the original serum 

concentrations the actual timepoints. Thus, a discrepancy appeared for some original 

datapoints lying outside the 90% prediction interval (see Figure 15: dose group 1600 

mg weekly, marked datapoints). Originally these were pre-dose samples, but samples 

were taken later than the original ‘time planned’; however, the actual timepoints were 

still before the next administration. 
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1200 mg every two weeks (matuzumab)          

 

 

 

 

 

 

 

  

 

1200 mg every three weeks (matuzumab) 

 

 

 

 

 

 

 

 

 

2000 mg for the first week, followed by 1600 mg weekly (matuzumab) 

 

 

 

 

 

 

 

 

 

 

Figure 15 Visual predictive checks for three different dosing regimens over 8 weeks; 

note: marked data points are examples for pre-dose samples. 
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Part II 

3.5 Simulations 

Three different simulation scenarios were performed based on the final population PK 

model for matuzumab: 

Scenario 1a/1b: To determine the impact of dosing on the PK profiles in the central 

and in the peripheral compartment three subjects with the same cumulative dose of 

matuzumab of different dosing regimens (SIM-ID A: 400 mg weekly, SIM-ID B: 800 

mg every two weeks and SIM-ID C: 1200 mg every three weeks) were simulated with 

the median FFM of 53 kg (i.e. differences in simulated profiles were not obtained from 

the covariate relation because the subjects had the same FFM value).  

Simulated profiles for the central compartment (scenario 1a) are presented in Figure 16. 

The simulated minimum steady-state concentrations after 12 weeks (2014 hours, 

shortly before next infusion) were: 90 (SIM-ID A), 65 (SIM-ID B) and 44 (SIM-ID C) 

µg/mL. For the maximum steady-state concentrations after 2017 hours (i.e. Cmax after 

end of infusion) values of 196 (SIM-ID A), 277 (SIM-ID B) and 363 (SIM-ID C) 

µg/mL were reached. These values corresponded to a difference of ∆-51% for 

minimum steady-state concentrations and ∆-46% for maximum steady-state 

concentrations (highest values were set to 100%, respectively). 

Simulated profiles for the peripheral compartment (scenario 1b) are presented in Figure 

17. The simulated minimum steady-state concentrations after 12 weeks (2014 hours, 

shortly before next infusion) were: 107 (SIM-ID A), 78 (SIM-ID B) and 54 (SIM-ID C) 

µg/mL. For the maximum steady-state concentrations values of 140 (SIM-ID A, after 

2070 hours), 168 (SIM-ID B, after 2090 hours) and 203 (SIM-ID C, after 2090 hours) 

µg/mL were reached (respective hours corresponded to Cmax after end of infusion). 

These values represented a difference of ∆-50% for minimum steady-state 

concentrations and ∆-31% for maximum steady-state concentrations (highest values 

were set to 100%, respectively). 
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Figure 16 Simulation of concentration-time profiles of three different dosing regimens 

with the same mean dose amount per week in the central compartment 

(scenario 1a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Simulation of concentration-time profiles of three different dosing regimens 

with the same mean dose amount per week in the peripherial compartment 

(scenario 1b). 
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Scenario 2: The final population PK model for matuzumab (described in sections 3.2 

and 3.3; Table 9, column: Final Model) included the covariate FFM on CLL. To 

visualise the impact of this covariate relation on the PK profiles three subjects 

(representing the 5
th

, 50
th

 and 95
th

 FFM percentiles of the development study 

population: 34, 53 and 67 kg, respectively) were simulated with a dosing regimen of 

1200 mg weekly. Simulated profiles showed a large variability in minimum (∆-40%) 

and maximum (∆-23%) steady-state concentrations, but less variability for the first 

infusions (Figure 18, upper panel). These observations were confirmed by the 

simulation of all study subjects with their original FFM values (Figure 19): the large 

variability in minimum and maximum steady-state concentrations was not driven by 

only a few subjects but by the whole study population. Additionally, to confirm these 

results by original data, the minimum steady-state concentrations after each occasion 

from each study subject from study 4 were compared and a remarkable increase of the 

minimum concentration range over time was assessed (Figure 20).  

Scenario 3: Based on the results from scenario 2, a new dosing strategy was developed 

for matuzumab. Exemplarily Figure 18, lower panel, presents the resulting PK profiles 

simulated with a proposed adapted dosing regimen of original dosing (e.g. 1200 mg 

weekly) for the first four weeks (loading doses) followed by an adapted weekly dosing 

(based on the fractional covariate influence on total clearance, i.e.: only the linear 

clearance part was influenced by FFM) according to 50% of the original dosing (e.g. 

600 mg) plus a proportionally adapted amount (e.g. 11.4 mg/kg FFM, because 11.4 mg 

* 53 kg FFM [median FFM] = 600 mg). Compared to the 1200 mg weekly simulations, 

the dose adaption resulted in a remarkable decrease of differences in minimum steady-

state concentrations (Css,min) from ∆-40% (SIM-ID a to SIM-ID c) to ∆-16% (SIM-ID 

a* to SIM-ID c*) and for maximum steady-state concentrations (Css,max) from ∆-23% 

(SIM-ID a to SIM-ID c) to ∆-6% (SIM-ID a* to SIM-ID c*). 

 

 

 

 

 

 

 



 Results 

 55 

1200 mg weekly (matuzumab) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1200 mg weekly for the first four infusions – dose adaption from infusion 5: 600 mg + 

11.4 mg/kg FFM (matuzumab) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 Simulations of the covariate impact (upper panel, scenario 2) and of the 

reduction of steady-state variability by a proposed dose adaption (lower 

panel, scenario 3). 
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Figure 19 Simulation of the impact of the covariate relation on the pharmacokinetic 

profiles: simulation of all 171 study subjects receiving 1200 mg matuzumab 

weekly dosing. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 Box-whisker plots of minimum concentrations in study 4 at different 

occasions (every new occasion corresponded to another infusion). 
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3.6 Body size descriptors in population analyses 

To derive a general conclusion for the usage of body size descriptors in population 

analyses for monoclonal antibodies different investigations have been performed.  

Investigation 1) 

In the population PK analysis for matuzumab body weight, body surface area and fat-

free mass were considered and compared as body size descriptors for the covariate 

relation on CLL. The final model including the covariate fat-free mass on CLL served 

as reference. For both, the development and the evaluation dataset, the results from the 

different covariate models, including all model parameters, are presented in Table 12a 

and Table 12b, respectively. Comparing obtained objective function values, the 

covariate models including the fat-free mass relation reached the lowest values (for 

DD: 9713.56 and for ED: 7898.35). The OFV differences for DD between the FFM-

based model and  

i) the WT-based model and  

ii) the BSA-based model  

were ∆OFV-8.7 and ∆OFV-5.3, respectively. These results represented a statistically 

significant improvement for DD when including FFM compared to the other body size 

descriptors.  

For ED an improvement was observed (∆OFV-3.3 and ∆OFV-0.8) but not a significant 

decrease in the OFV (significant decrease: ∆OFV-3.84, p<0.05, df=1).  

For the combined datasets the WT-based and the BSA-based model failed to converge 

and accordingly relative standard errors were not available. However, the estimated 

parameters at the last iteration were comparable to those obtained for the FFM-based 

model (see Table 9: Evaluation 3) and hence, it was considered to be feasible to analyse 

the OFV differences. The OFV differences between the FFM-based model (OFV: 

17844.4) and  

i) the WT-based model (OFV: 17851.3) and  

ii) the BSA-based model (OFV: 17846.4)  

showed a significant decrease compared to the WT-based model (∆OFV-6.9) and a not 

significant decrease compared to the BSA-based model (∆OFV-2.0). 
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Overall, the values for all fixed-effects model parameters from the WT-, BSA- and 

FFM-based models were in the same range (except for the covariate relation) and had 

similar precision (except a higher RSE of 52.5% for the Km parameter in the FFM-

based model). For the random-effects parameters, comparably precise values were 

obtained. The lowest RSE values for the covariate relation were reached with the FFM-

based models (for DD: 21.6% and for ED: 32.3%) compared to the WT-based (for DD: 

33.6% and for ED: 45.6%) and the BSA-based (for DD: 27.6% and for ED: 36.0%) 

models. These results indicated that the covariate relations including FFM were 

estimated with the highest precision.  

Investigation 2) 

Simulations were performed to visualise the impact of the covariate effects of the 

different body size descriptors. The simulations based on the final model for 

matuzumab and performed with models including in each case one of the body size 

covariate relations (WT, BSA or FFM) showed similar simulated concentration-time 

profiles, respectively (Figure 21). For the simulation scenarios, IIV and residual error 

parameters were fixed to zero and therefore, the simulated concentration-time profiles 

represented the typical population behaviour for subjects with the chosen body size 

values. These values corresponded to the 5
th

, 50
th

, 95
th

 body size percentiles of the 

study population for the matuzumab analysis with 171 patients (for FFM: 34, 54, 69 kg; 

for WT: 48, 71, 96 kg; for BSA: 1.47, 1.82, 2.18 m²). The spread at steady-state levels 

for the simulated concentration-time profiles, reflecting the covariate effect, was 

calculated for each covariate model between the simulated patients representing the 5
th

 

and the 95
th

 body size percentiles. The difference among these patients for minimum 

steady-state concentrations after 2014 hours (i.e. shortly before next infusion) for the 

FFM- (WT-, BSA-) based model was ∆-42% between SIM-IDs 1 and 3 (∆-35% 

between SIM-IDs 4 and 6, ∆-39% between SIM-IDs 7 and 9). Comparing the patients 

representing the respective 5
th

 percentile (50
th

 percentile; 95
th

 percentile) for the body 

size descriptors FFM and WT between SIM–IDs 1 and 4 (SIM-IDs 2 and 5; SIM-IDs 3 

and 6), the difference for minimum steady-state concentrations was approximately ∆-

5% (∆-5%; ∆-6%). For maximum steady-state concentrations after 2018 hours (i.e. 

Cmax after end of infusion) the difference in concentration values between SIM-IDs 1 

and 3 (SIM-IDs 4 and 6; SIM-IDs 7 and 9) was ∆-25% (∆-20%; ∆-23%). Comparing 
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the maximum steady-state concentrations of the SIM-IDs 1 and 4 (SIM-IDs 2 and 5; 

SIM-IDs 3 and 6), the simulated concentration difference was ∆-3% (∆-3%; ∆-3%). 

The concentration-time profiles for the BSA-based model (SIM-IDs 7-9) were located 

between the FFM-based and the WT-based profiles. 

 

 

 

 

 

 

 

 

 

Figure 21 Simulations of concentration-time profiles based on models including as 

body size descriptor fat-free mass (FFM), body weight (WT) or body 

surface area (BSA) in the covariate relation. 

 

Investigation 3) 

To evaluate whether FFM might potentially be the most recommendable body size 

descriptor for monoclonal antibodies the following analysis was performed: in Figure 

22, the WT, BSA and FFM distributions of the two study populations from the 

sibrotuzumab (A, 60 patients) and the matuzumab (B, 171 patients) dataset are 

presented in histograms. Whereas, after visual inspection, the WT and the BSA 

distributions of both populations seemed to follow a Gaussian distribution with similar 

median values for WT of 75 kg and for BSA of 1.87 m² (for the sibrotuzumab 

population) and for WT of 71 kg and for BSA of 1.83 m² (for the matuzumab 

population), the FFM distributions rather seemed to follow a bimodal distribution with 
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a ‘median’ FFM of 55 kg (sibrotuzumab) and of 53 kg (matuzumab). The ‘median’ 

FFM values could approximately present a mixture of two different unimodal 

distributions (x-y: ~30-50 kg FFM; z-a: ~50-90 kg FFM). The two local maxima for 

both FFM distributions were approximately around 40 and 58 kg FFM.  

In the next step, to further inspect the distribution, the FFM populations of both 

datasets were divided into two separate groups for male and female study patients, 

respectively. The histograms for these groups (Figure 23) present the difference 

between the FFM ‘median values’ for men (sibrotuzumab: 60 kg, 39 patients; 

matuzumab: 56 kg, 109 patients) and women (sibrotuzumab: 39 kg, 21 patients, 

matuzumab: 42 kg, 62 patients). In the four additional histograms of the FFM 

distributions, the bimodal behaviour was less visible. However, the distributions did not 

follow a precise Gaussian distribution. Therefore, other effects apart from the sex effect 

seemed to influence the FFM distribution.  
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Figure 22 Histograms of the body weight (upper panel), body surface area (middle 

panel) and fat-free mass (lower panel) distributions of the sibrotuzumab (A) 

and matuzumab (B) study population. Respective curves indicate Gaussian 

distribution. 
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Figure 23 Histograms of the fat-free mass distribution for men (left panel) and women 

(right panel) of the sibrotuzumab (A) and the matuzumab (B) dataset. 

Respective curves indicate Gaussian distribution. 

 

The developed population PK model for the monoclonal antibody sibrotuzumab [71] 

was compared with new results obtained after the substitution of the covariates 

including WT by covariates including FFM. Aside from the covariate exchanges, no 

further changes were made to the original population PK model. To compare the two 
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achieved by a decrease of ∆-12.16 in the OFV. In general, all population estimates were 

in the same range. IIV on V1/V2 and Vmax and the corresponding RSE values were 

slightly decreased. A significant decrease of the RSE for CLL (from 9.6% RSE for the 

WT-based model to 0.9% for the FFM-based model) and a respective higher precision 

for the CLL estimate also showed the improvement of the FFM-based model compared 

to the WT-based model. Furthermore, the covariate relations were estimated with equal 

or higher precision in the FFM-based model. Only the RSE for the parameter Km was 

higher than in the WT-based model (change from 57% to 79% RSE). Interestingly, the 

values for the covariate relations were approximately two times higher for the FFM-

based covariates compared to the WT-based covariates (see Table 13). Compared to the 

FFM-based covariate relations for sibrotuzumab, the FFM-based covariate relation 

value for matuzumab was less than two times higher than the WT-based covariate 

relation (DD: WT-based covariate relation value: 0.0072, FFM-based covariate relation 

value: 0.0119; ED: WT-based covariate relation value: 0.0103, FFM-based covariate 

relation value: 0.015; combined datasets: WT-based covariate relation value: 0.0102, 

FFM-based covariate relation value: 0.0138). To assess the effect of the different FFM-

based and WT-based relation values, median FFM and WT values had to be 

considered. For the sibrotuzumab median FFM value of 55 kg a +1 kg change in FFM 

corresponded to a +1.8% change in FFM. For the median WT value of 75 kg a +1 kg 

change in WT corresponded to a +1.3% change in WT. To compare changes in WT and 

FFM, the influence of a +1% change of the body size was considered. Accordingly, a 

change of +0.75 kg in WT and of +0.55 kg in FFM corresponded to a +1% change in 

WT and FFM, respectively. The influence of +1% change in WT or FFM on CLL for 

sibrotuzumab can be calculated with the covariate relation values from Table 13: 

-  CLL_WT: +1.82% change in CLL per 1 kg deviating from the median WT  

� +1.37% change in CLL per +1 % change in WT 

-  CLL_FFM: +3.38% change in CLL per kg deviating from the median FFM   

� +1.86% change in CLL per +1% kg change in FFM 

Hence, a change of +1% in FFM influences the change of the typical value of CLL to a 

higher extent than a +1% change in WT. 
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Table 13 Parameter estimates of the WT-based and the FFM-based model for 

sibrotuzumab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For matuzumab the difference in percentage influence of the two body size descriptors 

was much smaller: the analogous examination revealed a +0.72% change of the typical 

CLL value per +1% change in WT and only a slightly higher change of +0.75% change 

of the typical value per +1% change in FFM. Hence, the influence of FFM in 

sibrotuzumab pharmacokinetics was more pronounced than in matuzumab.  

 

Model Parameter Unit
WT-based Model

Population estimate
RSE

a
, %

FFM-based Model

Population estimate
RSE

a
, %

Fixed effects

CLL [mL/h] 22.1 9.6 21.1 0.9

V1 [L] 4.13 3.7 4.00 3.0

Q [mL/h] 37.6 9.6 37.5 9.7

V2 [L] 3.19 8.8 3.11 7.8

Vmax [mg/h] 0.0338 25 0.0331 33

km [mg/L] 0.219 57 0.212 79

Covariate influence

CLL_WT/CLL_FFM 0.0182 19 0.0338 18

V1_WT/V1_FFM 0.0125 21 0.0247 21

V2_WT/V2_FFM 0.0105 40 0.0208 37

Vmax_WT/Vmax_FFM 0.00934 49 0.0190 43

Random effects

Interindividual variability
ω CLL [%CV] 57 52 58 53
ω V1, ω V2 [%CV] 20 52 17 41
ω Vmax [%CV] 29 50 27 48

Interoccasion variability
π CLL [%CV] 13 25 13 25

Residual error

σ proportional [%CV] 9.3 6.8 9.3 6.9

σ additive [mg/L] 0.0491 19 0.0488 20

Objective function value 1288.265 - 1276.103 -

a
relative standard error (standard error divided by population estimate*100; for the random effects parameters RSE is related to

the corresponding variance scale)
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4 Discussion 

 

In this thesis, in Part I the pharmacokinetics of matuzumab, a humanised monoclonal 

antibody directed against EGFR, was thoroughly analysed. For this, a population 

pharmacokinetic analysis (sections 3.1, 3.2 and 3.3) and multiple evaluation techniques 

for the developed model for its precision, robustness and predictivity (section 3.4) were 

applied. In Part II of this thesis, simulations (section 3.5) on the basis of the estimated 

PK model parameters for matuzumab and a thorough analysis to determine, which body 

size descriptor is capable to best characterise covariate relations in population PK 

analyses for monoclonal antibodies (section 3.6) were performed. For this purpose, 

simulations based on the developed model for matuzumab and a covariate analysis of 

an already developed model for sibrotuzumab, another monoclonal antibody, were 

performed. Because the results from Part II were a prerequisite for the development of 

the final population PK model for matuzumab in Part I, the results from both parts of 

this thesis will be discussed together in the following. 

The final PK model (Table 9, column: Final Model) was developed using over 1200 

serum concentration data points from 90 cancer patients with widely differing 

characteristics and multiple dosing regimens. The structural model comprised two 

compartments with two elimination pathways from the central compartment, one linear 

and one non-linear (Michaelis-Menten kinetics) (Figure 4). Non-linear PK behaviour 

has also been reported for other mAbs, e.g. sibrotuzumab and clenoliximab [71, 103]. It 

has also been investigated, in addition to the linear elimination, for rituximab but the 

model did not perform significantly better than the simple linear model. However, 

goodness of fit plots suggested a misspecification for high concentrations [104]. 

Regarding the structural model (see section 3.1), matuzumab was initially distributed to 

a restricted central volume of distribution of 3.7 L and an even smaller peripheral 

volume of distribution of 1.8 L, which indicated that matuzumab was not (largely) 

distributed apart from serum volume. Beside the low peripheral volume, the inter-

compartmental clearance Q also indicated a limited distribution, which was consistent 

with the behaviour of endogenous IgG immunoglobulins [12, 105, 106]. In total, 



 Discussion 
 

 68 

matuzumab showed similar PK characteristics (clearance, volumes of distribution) to 

other therapeutic mAbs following intravenous administration [30, 103, 107]. The long 

half-life for matuzumab (~10 days at concentrations of 1000 µg/mL, see Figure 6, 

lower panel) was shorter than half-lives of physiological immunoglobulins (IgG1, t1/2: 

~21 days) but comparable to other mAbs (t1/2 alemtuzumab: 8 days; t1/2 bevacizumab: 

13-21 days, t1/2 trastuzumab: 3-10 days) [12]. A reason for different half-lives among 

mAbs lies in the origin of the therapeutic antibodies. Degradation will be more rapid 

for more non-human antibodies: the lower the non-human fraction, the longer the half-

life. A protective mechanism of the Fc-Rn, the Fc receptor of neonates (postulated by 

Brambell et al. [108]; the name originated from experiments, that have shown the 

influence of the receptor on the absorption of antibodies in the gastrointestinal tract of 

neonates), against catabolism is mainly responsible for the long terminal half-lives of 

therapeutic antibodies [12].  

Three components of random variability (interindividual, interoccasion and residual 

variability) were possible to be implemented into the model for matuzumab. With the 

relatively small residual variability (13.4% CV for the proportional part and a fixed 

additive error of 0.312 mg/L) it can be suggested that the developed model describes 

the PK characteristics well. IOV has been rarely investigated in mAb research, but in 

more recent population PK analysis it has been included to improve the model [71]. 

The inclusion of IOV in the population PK model for matuzumab was limited to eight 

infusions due to insufficient data hereafter and implemented by different ways of 

assigning the eight infusions to a varying number of occasions. The best result (lowest 

OFV, smallest RSEs) was achieved with IOV on CLL, where every infusion 

corresponded to one occasion. The estimated IOV of matuzumab for the final model of 

23% CV and a RSE of 12% (Table 9, column: Final Model) was in the range or slightly 

higher than that for other immunologicals: e.g. sibrotuzumab and etanercept showed 

13% and 28% CV as well as RSE imprecisions of 25% for sibrotuzumab (not reported 

for etanercept) [71, 109]. However, after the case deletion diagnostics, which detected a 

lower IOV (18% CV, RSE: 17%, Table 11, column: Final Model-ID 4, 1 DV) after 

neglecting one specific concentration, the IOV was also in the above mentioned IOV 

ranges. It has to be pointed out, that, because of the results from CDD, the closest and 

most realistic value to represent the true value of the parameter IOV of matuzumab has 

to be reported as 18% CV (and not as the value from the final model in Table 9). The 

importance of implementing IOV in population PK analysis has been demonstrated and 
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the investigation of IOV avoids biased population parameter estimates [110]. In this 

analysis of cancer patient study data the IOV investigation was feasible, because the 

conditions of cancer patients could vary significantly over the study period or even 

from week to week. 

The aim of building the covariate model (see section 3.1) was to identify patient- or 

study-specific characteristics, which could explain and thus reduce the variability of the 

base model. In the development of the primary model the inclusion of the covariates 

WT on V1 and WT on CLL significantly improved the model, i.e. IIV on CLL was 

reduced by approximately 25%. These results are in good agreement with 

investigations of other mAbs. Similar results have been reported for the chimeric 

antibody basiliximab [107]. The incorporation of WT on V1 for golimumab, a fully 

human mAb, also significantly improved the model [111]. The population PK analysis 

for trastuzumab showed a significant influence of WT on V1 and/or on clearance. 

However, these influences were not considered to be clinically relevant, particularly in 

comparison with the large interindividual variability on clearance (IIV on clearance: 

43% CV) [30]. For another population pharmacokinetic study of the monoclonal 

antibody sibrotuzumab, clearance has been reported with a similar covariate relation of 

body weight on the linear clearance (typical population estimate for CLL: 22.1 mL/h; 

covariate relation: +/-1.8% change in the population CLL per kg body weight deviating 

from the median body weight value in this study, 75 kg). Moreover, the presented 

simulations in that work might also suggest that the design of dosage regimens should 

consider the influence of body weight [71].  

The decision to change the body size descriptor in the covariate relations from WT to 

FFM was motivated by the question, which body size descriptor is best to use in 

population pharmacokinetic analyses for monoclonal antibodies (section 3.6). 

Generally, WT-based dosing suggests a continuous increase in dose with increase in 

body weight, i.e. degree in obesity. Especially for anticancer drugs, extensive research 

has been carried out to recommend individualised drug dosing instead of empirical 

dosing regimens. It has been demonstrated that weight or obesity may have an 

influence on the disposition of some anticancer drugs [112-114]. However, it has also 

been recommended that for each agent it has to be individually investigated, which 

dosing strategy is the most appropiate [101]. Lean body weight (LBW) has been 

proposed to be a superior predictor of drug dosage compared to other size descriptors 
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(e.g. body surface area and weight) [115]: in most studies in adults in which dosage 

based on LBW has been evaluated prospectively, LBW has been shown to be superior 

to other measures of body size as a predictor of drug dosage. Additionally, the volume 

of distribution of relatively hydrophilic drugs correlated very well with LBW, with 

correlation coefficients of up to 0.9. For many drugs eliminated predominantly by the 

liver, there was a good correlation between systemic clearance and LBW. Such a 

correlation could be due to a correlation between systemic clearance and liver size or 

liver blood flow, which has been demonstrated for a few drugs, and a correlation 

between LBW and liver size and blood flow [115]. LBW and FFM can be used 

interchangeably, but by definition LBW is the mass of the body excluding fat content 

other than the lipids in cellular membranes, the central nervous system and bone 

marrow while FFM also excludes these lipids [73, 116]. For piperacillin, it has been 

investigated that allometric scaling by LBW and accordingly FFM reduced the IIV in 

clearance [117]. However, especially for drugs with a highly complex disposition 

profile, such as irinotecan, it has been reported, that the importance of body size 

consideration in drug dosage may be completely unnecessary because of variations in 

other factors affecting PK [118]. In the population pharmacokinetic analysis for 

matuzumab, a statistically significant influence of a body size covariate was found. The 

decision to incorporate FFM, instead of WT, into the model for matuzumab was 

motivated by the study results from Janmahasatian et al., where it has been reported 

that body weight seemed to be inappropiate for dose scaling [73]. This is reasonable as 

body composition usually varies as a function of total body weight where the ratio of 

adipose tissue to lean body weight increases with body weight [100]. The proposed 

equations for FFM in Janmahasatian et al. included easily accessible patient 

characteristics (weight and height), which are often routinely gained in clinical practise. 

However, because of, e.g. limited time and/or human resources, these basic patient 

informations are sometimes missing. Nevertheless, a semi-mechanistic model for 

LBW, which quantifies the influence of body composition on drug clearance, seemed 

to be an ideal metric for adjusting chronic dosing in obese [119]. Although the semi-

mechanistic model included empirical features, it was based on strong underlying 

biological mechanisms [120]: adult data from the literature suggested that if a person is 

smaller than ideal body weight then scaling dose to body weight is appropriate. When a 

person is larger than ideal body weight, dose should be scaled to ideal body weight or 

to ideal body weight plus some fraction of the difference between total weight and ideal 
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body weight [121, 122]. However, this model has recently been discussed in 

association with the assessment of the quantitative relations between LBW and the 

clearance of eight commonly used anticancer drugs: the results indicated that for six of 

the eight investigated drugs incorporation of the LBW size formula did not lead to a 

substantially improved relation with clearance (compared to conventional approaches), 

regardless of the model [123]. Nevertheless, in a recently published review on 

mechanism-based concepts of size and maturity in pharmacokinetics, Anderson and 

Holford expressed their opinion that FFM is perhaps the size descriptor that is closest 

to capturing the concept of body mass that is used in allometric theory [120]. This 

theory for endotherm species was based on the link between structure and function 

[124]. Additionally, the authors concluded that FFM might be expected to be better 

than total body weight when there are wide variations in fat affecting body 

composition. Furthermore, they supposed that FFM alone is a good predictor of 

clearance because fat is not a clearance organ and is unlikely to be a determinant of 

elimination function [120]. 

In this population analysis, including covariate investigations, it was demonstrated that 

the covariate relation FFM on CLL, compared with the covariate relations WT on CLL 

and BSA on CLL, provided very comparable results for matuzumab, e.g. simulations 

were performed, which showed similar simulated concentration-time profiles and a 

similar spread in concentrations for the analysed body size descriptors (see section 3.6 

and Figure 21). Furthermore, the physiological background supported the exchange. 

Additionally, and especially to demonstrate that only the fat-free mass fraction of the 

whole body weight was responsible for the influence on CLL, the model was analysed 

by deleting the FFM-based relation and including a covariate relation incorporating 

only the fat mass (FM, obtained by the difference between WT and FFM). The model 

parameters were similarly estimated to the developed model but the covariate relation 

was not (at all) supported (value of 0.000004 and RSE ∼ 10000%). 

Regarding to a general recommendation for the best body size descriptor, which should 

be used for monoclonal antibody analyses, the special physico-chemical properties 

(high molecular mass of ~150 kD; high hydrophilicity) and disposition characteristics 

(limited distribution; residence confined to plasma and interstitial space fluid) have to 

be considered. With respect to these properties it can be suggested, that distribution is 
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better related to FFM than related to WT, which in many cases neglects body 

composition. 

After it has been shown that the developed model with the FFM-based covariate 

relation was superior to the WT-based covariate relation for characterising the PK of 

matuzumab (see Table 12), a second mAb dataset was analysed: a covariate analysis of 

the already published population PK model for sibrotuzumab was performed to 

evaluate the previous results and to elucidate whether FFM might be the 

recommendable body size descriptor for the population PK analyses for monoclonal 

antibodies. In this analysis, the exchange of the covariate relations including WT by 

covariate relations including FFM showed a significant improvement of the previous 

population PK model for sibrotuzumab (see Table 13). On the basis of these two 

analyses it might be suggested, that, in general, FFM might be a superior body size 

descriptor compared to e.g. WT or BSA for covariate relations included in population 

PK models for monoclonal antibodies. Several developed models for this class of 

biologicals already included WT-based covariates [30, 57, 111, 125] or allometric WT-

based models [126]. If FFM has not been considered during model development, these 

models should be reanalysed including FFM relations to support the proposed 

hypothesis in future. A developed population pharmacokinetic model for rituximab 

included BSA- and sex-related covariate relations [104]. BSA was calculated based on 

the Du Bois and Du Bois equation, which takes weight and height into account [75]. 

The FFM-based model, which has been used in this thesis, considered on the one hand 

weight and height but also - by the different calculation of FFM for men and women - 

sex. The influence of sex on FFM was shown by the histograms of the sex separated 

FFM distributions (Figure 23): women generally had lower FFM values (median FFM 

~ 40 kg) than men (median FFM ~ 58 kg). If FFM is included in a covariate relation in 

a population PK model, sex will also be considered indirectly. For the rituximab model 

it should be reanalysed, if FFM-based covariates can reduce the quantity of covariate 

relations without loosing any influence of WT, HT and sex. In general, dosing of 

therapeutic components against cancer based on BSA is a current practice in clinical 

oncology [127]. However, there are investigations, which concluded no rationale for 

BSA-based dosing: this dosing strategy did not increase the accuracy of predicted 

exposure of cisplatin [128]. Also, results demonstrated that flat-fixed dosing did not 

typically lead to higher pharmacokinetic variability [129]. Another investigation has 

determined correlation coefficients for 306 courses of antineoplastic treatment in 287 
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patients between morphometric measures (HT, WT and BSA) and PK parameters 

(clearance, central volume of distribution and steady-state volume of distribution): only 

five of 96 correlation coefficients were 0.707 or larger, the point where the variability 

in body size explains 50% of the variability in drug disposition [130]. It was concluded 

that normalisation of doses to BSA, WT or HT would be of minimal clinical value for 

the studied components (no mAb was included in the analysis).  

Hempel et al. reported, that it has to be considered that most classical cytotoxic drugs 

have a narrow therapeutic range and are often administered at a dose close to the 

maximum-tolerated dose, because for many tumours increasing systemic drug exposure 

often results in higher response rates. The authors finally concluded, that using well-

designed population pharmacokinetic studies with sufficient patient numbers 

representing the entire population should enable to find parameters to precisely predict 

the clearance of cytostatic drugs and to adjust the dose better than using flat-fixed 

dosing or BSA-based dosing regimens [131]. In conclusion to these aspects and in 

particular because mAbs have specific characteristics (e.g. in their PK behaviour) with 

significant advantages but also risks in their therapeutic use, the analysis of body size-

related covariates (accompanied by a resulting potential impact on proposed dosing 

regimens) has to be performed very thoroughly. Based on the results revealed in this 

thesis, where FFM was the superior body size descritor for the covariate relation in the 

population PK model for matuzumab, a supplementary analysis including FFM-based 

covariates should be performed for all previously developed population PK models for 

monoclonal antibodies including body size covariate relations, and in prospective 

population PK analyses FFM should be included in the covariate analysis from the 

beginning of the investigation.  

During the last years, population pharmacokinetic and/or pharmacodynamic models 

were developed and presented in the literature to a higher extent than in the past. The 

implementation of the non-linear mixed effects modelling approach has substantially 

improved the quality and impact of these analyses [56], but evaluation analyses 

comparable to the one performed in this thesis (see sections 3.2 and 3.4) were 

frequently missing. For this purpose, also the regulatory official agencies (FDA and 

EMEA) increasingly demand in their guidelines not only for appropriate model 

development methods but also for qualified model evaluation approaches. However, 

especially for monoclonal antibodies, recommendations are still missing, but there are 
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attempts to provide structural components for determining model appropriateness of 

population pharmacokinetic models in general [132]. A systematic review of published 

population analyses from 2002 to 2004 surveying different evaluation methods, which 

are currently used, and assessing, whether those reviewed models were adequately 

evaluated, revealed an unsatisfying result: only 28% of the (for the review analysed) 

developed PK models and 26% of the developed PD models were judged to be 

sufficiently evaluated [88]. 

For this purpose, besides model development, one main objective of this thesis was the 

profound and reliable evaluation of the developed model for the monoclonal antibody 

matuzumab by external and internal (basic and advanced) evaluation techniques. 

Thereby, it was to be adressed whether internal evaluation techniques and especially 

their combination and the combination with an external evaluation are applicable for 

the evaluation of population pharmacokinetic models for monoclonal antibodies in 

general. 

Since internal techniques use data solely from the development dataset [87, 98], 

external evaluation is considered to be the most plausible and strongest evaluation 

method, because the developed model has to demonstrate its predictivity for completely 

new data. This evaluation technique provides the most stringent method, however, it 

has rarely been reported for developed models in the literature and often the lack of a 

second (evaluation) dataset or insufficient data for data splitting prohibits its 

application [133]. The obtained results from the performed external evaluation 

investigation for the population PK model for matuzumab showed the appropriateness 

of this technique for model refinement analysis (see section 3.2). Based on the results 

from the ED, the exclusion of the unsupported covariate relation FFM on V1 improved 

the model and, despite one less covariate, equally precise parameter estimates were 

obtained.  

In addition to the basic internal evaluation with mainly visual graphical diagnostics 

(e.g. goodness of fit plots, Figure 7) and analysing parameter uncertainty by 

consideration of relative standard errors, a further aim was to present an advanced 

internal evaluation, which involved more complex techniques.  

It has been demonstrated that the bootstrap method is a reliable evaluation tool: In Ng 

et al. a developed model for the recombinant human monoclonal antibody pertuzumab 
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was shown to be stable by the performance of 1000 successful bootstrap runs [134]. 

The obtained bootstrap results in this thesis, including relatively very low bias values 

(<+/-4.3% relative bias, see Table 10; section 3.4.1), confirmed the excellent precision 

and accuracy of the proposed model. 

The results from the second performed internal evaluation technique, the case deletion 

diagnostic (see section 3.4.2), showed the influence of one observed and confirmed 

concentration data point on the IOV on CLL (Table 11). However, this observation had 

no impact on the entire model: all other model parameters were similar to those, which 

were previously obtained (for the final model). Even though the spurious concentration 

data point was re-checked in the original study data and although the concentration in 

the sample had been analysed twice, an error in sample or analysis handling or data 

management cannot be completely excluded. Parameter estimation without this 

observation resulted in a lower interocassion variability (18.3% CV). The lower IOV 

value better reflected the population estimate for this parameter because the 

concentration at this observation was implausible and hence, the exclusion of this data 

point was eligible. Finally, this CDD investigation provided a more realistic insight into 

the interoccasion variability and visualised the robustness of all other PK parameters 

despite the inclusion of the spurious concentration. CDD with similar scenarios were 

used for the evaluation of the population PK model for the monoclonal antibody 

sibrotuzumab: the reduced datasets did not reveal any marked differences in parameter 

estimates and standard errors when compared with the final model parameters of the 

full dataset [71]. For the population PK model for the anticancer agent topotecan, CDD 

were performed to show that deletion of individual patients, which may have had a 

significant influence on the covariate model, did not alter the final covariate structure 

[135]. 

As a further technique of advanced internal evaluation methods, visual predictive 

checks were performed (see section 3.4.3). This method has been used as a diagnostic 

tool in a population pharmacokinetic approach for two monoclonal antibodies (one 

humanised and one murine) to support the developed model [126]. It was shown that 

the median and the variability of the concentrations of both antibodies were well 

predicted and that this evaluation method obtained characteristic information for a 

predicted surgery time after antibody administration. Additionally, it was demonstrated 

that by this technique useful information were obtained to clearly indicate the best 
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model. The superiority of a visual predictive check evaluation compared to standard 

diagnostic plots, e.g. goodness of fit plots, has been presented. It was demonstrated that 

VPC is a diagnostic tool for the fixed- AND the random-effects parts of a model and 

does not neglect one dimension (time or prediction) such as standard plots [92].  

Overall, the results from the external and the internal model evaluation confirmed that 

the developed population PK model for matuzumab provided an authentic and 

predictable tool for further investigations. Additionally, the combination of external 

evaluation and the three internal evaluation methods can highly be recommended for 

the evaluation of developed population PK models for mAbs. 

After the successful model development and evaluation, simulations on the basis of the 

model parameters were performed to visualise the impact of the covariate relation on 

the PK profiles (see section 3.5). In general, simulations are used to investigate 

concentration-time profiles in a large patient population, using the estimated parameter 

values from the developed model. This technique provides information for decision 

making and is beneficial for different situations: sparse data situations, predictions from 

single dosing to multiple dosing, formulation changes or simulation of further clinical 

trials [30, 60, 136, 137]. Simulation tools have been used more frequently in the last 

years [138-140]. Especially for specific populations (e.g. in paediatric studies, studies 

with obese patients) it is recommended to use simulations to replace empirically based 

dose selection [141]. In addition, experts agree that modelling and simulation methods 

are very useful in the development and use of anti-cancer drugs [137]. For example, 

dose individualisation by dose adjustment based on concentration-time data related to 

pharmacodynamic factors was demonstrated for the monoclonal antibody trastuzumab 

[30, 142]. The aim of the performed simulations in this thesis was to analyse the 

possible impact of the defined covariate relation and the influence of different dosing 

regimens on the concentration-time profile of matuzumab. The presented results 

showed the differences in minimum and maximum steady-state concentrations (see 

Figure 18), which were obtained as a result of the covariate relation. These differences 

were also confirmed by original data: in study 4 the minimum steady-state 

concentrations after each occasion from each study subject were compared and a 

remarkable increase of the minimum concentration range over time was assessed (see 

Figure 20). In another published PBPK/PD model simulations were performed to 

obtain population predicted time courses of neutrophil concentrations based on the 
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developed model. The simulated individual profiles did not show an uniform 

distribution of the concentrations over the entire range and accordingly subgroups were 

able to be identified [143]. This behaviour was not observed for the simulation 

scenarios in this thesis: simulated concentration-time profiles from subjects with 

matuzumab administration revealed that the variability in matuzumab concentration-

time curves was present throughout the whole study population (uniform distribution of 

profiles, see Figure 19).  

The presented simulations might give advice in decision making for dosing regimens, 

e.g. whether a certain dosing regimen would result in maximum concentrations 

possibly associated with toxic events. The comparison of simulated concentration-time 

data between different dosing regimens of weekly matuzumab dosing of 400 mg, a 

dosing of 800 mg every two weeks and a dosing of 1200 mg every three weeks might 

guide the decision for the preferred effective dosing regimen for further clinical trials 

(see Figures 16 and 17). 

The proposed adapted dosing regimen included the FFM-adaption only for 50% of the 

total dose amount because FFM influenced only the linear clearance fraction. At the 

reached steady-state concentrations the linear clearance was approximately 50% of the 

total clearance. In consequence, the adaption of these 50% was considered to be a 

plausible dosing strategy. The low variability in the first weeks of administration 

observed in real (Figure 20) and simulated (Figure 19) data was considered by adapting 

the dose only from the 5th administration onwards (i.e from the 2nd month). Less 

variability in the first weeks could be explained by not completely utilised distribution 

and/or clearance processes at these time points. The presented simulations 

demonstrated a possible reduction of the variability in the pharmacokinetic behaviour 

of matuzumab. The simulations are a guide to clinical trial design, and there may be 

other information available, which has to be considered. Additionally, it should be 

noticed that in all simulations the ‘typical’ patients (IIV and IOV parameters were set 

to a value of zero) were simulated, leading to a considerable reduction in variability 

among the real patient population. Taking the final estimates of these random-effects 

parameters also into consideration would even further increase the variability between 

patients.  

Monoclonal antibodies, such as matuzumab, comprise specific and sometimes unique 

characteristics, especially in their PK behaviour. Compared to the PK of small 
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molecule drugs, which usually have linear kinetics in therapeutic doses, mAbs often 

show non-linear or combined (linear and non-linear) PK, which can also be influenced 

by the development of anti-idiotype antibodies against the therapeutic antibody [12, 

144]. For the modelling and simulation of the PK data these specific characteristics 

have to be considered. Beside model development, it has been demonstrated in this 

thesis, that advanced internal evaluation techniques, which are normally used to 

evaluate small molecule PK models, and also the combination with an external 

evaluation technique, were also applicable for the monoclonal antibody matuzumab and 

that they additionally produced reliable results. 

In the developed population PK model for matuzumab a non-linear elimination process 

has been incorporated (see Figure 4 and Table 9: parameters Vmax and Km). Different 

hypotheses can be discussed to ascertain the source for the non-linear PK behaviour for 

matuzumab (and, in general, for monoclonal antibodies because non-linear PK has also 

been observed for several other mAbs [71, 103]). Sources for the non-linear PK of 

matuzumab might be: 

- steric hindrance (at high mAb concentrations) 

- downregulation of the EGF-receptor production (at high mAb concentrations) 

- delay of EGF-receptor recycling (at high mAb concentrations) 

- receptor-mediated endocytosis (pinocytosis) and binding to the Fc-Rn (at low 

mAb concentrations). 

The hypothesis of the steric hindrance is a potential source for the non-linearity because 

if high mAb concentrations are present, not all EGF-receptors could be reached and for 

this purpose, unbound mAbs could be saved from degradation inside the cell. The 

downregulation of the EGF-receptor also presents a possible mechanism to explain 

non-linearity if a high concentration of mAb causes high receptor internalisation and 

for this purpose receptor production could be downregulated. The delay of EGF-

receptor recycling might occur in the cell recycling processes at high mAb 

concentrations (for specific processes see next paragraph) and hence, internalised 

receptors could be available on the cell surface after a specific time delay. The idea that 

receptor-mediated endocytosis and binding to the Fc-Rn might be responsible for the 

non-linear PK originated from investigations, which had identified that the Fc-Rn is 
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responsible for the extraordinarily long half-lives of three immunoglobulin subclasses 

by protecting them from proteolysis [145]. Further experiments revealed that the higher 

the serum IgG concentration, the shorter the half-life: at low concentrations IgG is 

bound to the receptor and protected from proteolysis. At high concentrations, however, 

the receptor binding sites are saturated much more rapidly and more unbound IgG 

molecules are digested.  

To analyse these potential explanations for the non-linearity in the PK of matuzumab 

the complex processes of mAb binding to the receptor, internalisation of the receptor-

mAb complex, receptor and mAb degradation, receptor recycling and receptor 

synthesis should be included into the developed and evaluated population PK model for 

matuzumab, which has to be considered an empirical model. In general, the 

development of empirical models is data-driven: the primary aim (of the ‘black box’ 

models) is e.g. to describe the data and to explain observed variability by the 

investigation of covariate relations [146]. However, population pharmacokinetic 

models can also be (semi)-mechanistic. Nevertheless, another model approach, the 

physiologically based pharmacokinetic (PBPK) modelling is able to gain a more 

thorough mechanistic understanding of the underlying processes by incorporating 

additional knowledge (e.g. blood flow, saturable receptor binding, transport to tissues) 

into a model. For this purpose, two types of input data are required: physiological 

parameters (e.g. blood flows, organ volumes) and compound-related parameters (e.g. 

hydrophilicity) [147]. Besides population PK modelling, PBPK modelling is an 

additional supporting method in drug discovery, drug development and therapeutic use 

[148-152]. Whole body PBPK models simulate PK or PD at an organism level where 

the idea is to characterise drug disposition on the basis of relevant anatomical and 

physiological parameters. This approach generally requires more parameters, which 

might result in a poorer performance of these models in the process of model selection, 

since models containing more parameters are usually penalised in modelling 

procedures. However, physiologically based models have the advantage of a 

mechanistic interpretation of the parameters and, for this purpose, might generate a 

better understanding of the underlying processes taking place. Investigations initialised 

in collaboration with the Hamilton Institute, Maynooth, Ireland and the DFG Research 

Center MATHEON, Berlin, Germany, aim to analyse the potential explanations for the 

observed non-linearity in the population PK model for matuzumab and to support the 

developed empirical model for matuzumab by PBPK modelling. The objective of this 
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research is to ascertain the source for the non-linear PK behaviour of protein drugs in 

general (and of monoclonal antibodies as an example for protein drugs). First attempts 

have been investigated to incorporate mechanistic modelling into the NLME model for 

matuzumab. However, these preliminary attempts have not been successful so far and 

in the future, further investigations have to be performed to support and to expand the 

developed empirical population PK model for matuzumab by the successful 

implementation of mechanistic modelling into the NLME model. The ultimate goal 

should be to incorporate the results from the PBPK modelling into the empirical 

modelling, to compare then obtained results with those presented in this thesis, to gain 

a more mechanistical understanding of the clinical data of matuzumab and furthermore, 

to explain the source of non-linearity PK behaviour of matuzumab.  

Additionally, appropriate pharmacodynamic data from matuzumab should be combined 

with the results from this thesis in future investigations. For example, the identification 

of molecular tumour markers, which should have a strong exposure-response relation, 

is considered to be an essential prerequisite in order to link the PK results in a PK/PD 

model. This could lead to a better prediction of the response for this new class agent 

and maximise the patients’ benefit. Information about an achievable target serum level 

at steady-state for efficacy, a defined time over a target serum concentration or a 

desired area under the curve might ultimately provide a comprehensive understanding 

of especially the simulation results. Additionally, simulations have documented the 

ability of the model to predict matuzumab concentrations for different dosing regimens. 

This is another prerequisite to investigate exposure-response or exposure-toxicity 

relations in future clinical trials and modelling approaches. Implementation of and 

relation to appropriate pharmacodynamic or efficacy data could expand the final 

population PK model as a tool that could guide selection of optimal dose regimens for 

matuzumab, a highly promising ‘targeted’ cancer therapy. 
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5 Conclusions 

 

In this thesis, a population pharmacokinetic model including linear and non-linear 

elimination processes for the humanised monoclonal antibody matuzumab was 

developed and evaluated by external and internal evaluation techniques. In the model, 

interindividual, interoccasion and residual variability were incorporated and the 

covariate relation fat-free mass on the linear clearance significantly improved the 

model. The combination of internal evaluation techniques and their combination with 

an external evaluation can be recommended for the evaluation of developed population 

PK models for monoclonal antibodies. By a performed covariate analysis, a dose 

adjustment based on sex, age or organ functions such as liver or kidney did not seem to 

be necessary. A simulated dose adaption incorporating the impact of fat-free mass on 

the PK profiles significantly reduced observed variability at steady-state concentrations 

among subjects. The model showed the ability to accurately, precisely, robustly and 

reproducably estimate all model parameters by different evaluation techniques 

(bootstrap method, case deletion diagnostics, visual predictive checks). The observed 

influence of one concentration on the IOV had no impact on the final model and, based 

on model evaluations, did not bias the obtained results. In addition, the model was able 

to describe a second (external) dataset with completely new data. The inclusion of the 

body size descriptor fat-free mass in the covariate relation showed its superiority 

compared to other body size descriptors (BSA, WT). By the covariate analysis 

including exchanged FFM covariate relations a population PK model for sibrotuzumab 

was significantly improved. Hence, FFM as body size descriptor for covariate relations 

in population PK analyses for mAbs was supported. From these results and the 

biological background of FFM it can be proposed that FFM could be a better body size 

descriptor in population pharmacokinetic modelling for mAbs than BSA or WT. 

The results from this thesis present the basis for following pharmacokinetic and 

pharmacodynamic investigations and for further clinical trials. Implementation of and 

relation to pharmacodynamic or efficacy data might expand the final model. This way, 

it might be used as a tool to guide selection of optimal dose regimens for matuzumab. 
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In paper III, I contributed my knowledge about the EGFR system and monoclonal 

antibodies in general and to the manuskript. 

In paper V, I performed the body size descriptor investigations and simulations for 

matuzumab and sibrotuzumab and I wrote the manuscript. 



 Acknowledgements 

 83 

7 Acknowledgements 

 

Ich möchte allen, die zu der Erstellung dieser Doktorarbeit beigetragen haben, danken 

und im Besonderen: 

 

Mein besonderer Dank gilt Frau Professor Charlotte Kloft für die Betreuung meiner 

Arbeit, bei der sie mir immer mit Engagement, Enthusiasmus und inspirierender Hilfe 

zur Seite gestanden hat. Ich möchte mich auch für die Überlassung meines 

Dissertationsthemas bedanken, die mir die Gelegenheit gegeben hat, auf diesem 

interessanten Forschungsgebiet zu arbeiten. Außerdem habe ich die fördernden 

Diskussionen über meine Arbeit und die umfassende Unterstützung sehr geschätzt und 

ebenso die Möglichkeit, mit Experten auf dem Gebiet in Kontakt und Austausch treten 

zu können. Zusätzlich war es eine interessante Aufgabe, an dem Graduate Research 

Training Programm an der Universität in Halle teilnehmen zu können und es teilweise 

mitzugestalten. 

 

Herrn Professor Hans-Hubert Borchert danke ich für seinen besonderen Einsatz für die 

Klinische Pharmazie in Berlin und die Vertretung der Doktorandenanliegen gegenüber 

höheren Stellen. 

 

Herrn Professor Karsten Mäder danke ich für die Begutachtung meiner Arbeit.  

 

Meinem Kooperationspartner Merck Serono danke ich für die Überlassung der 

klinischen Studiendaten. Stellvertretend gilt mein besonderer Dank Herrn Dr. Andreas 

Kovar, Herrn Dr. Christian Lüpfert und Frau Brigitte Brockhaus.  

 

Allen meinen früheren und jetzigen Kollegen aus den Arbeitskreisen der Klinischen 

Pharmazie in Berlin und Halle danke ich für die schöne gemeinsame Zeit. Im speziellen 

danke ich Frau Dr. Nele Plock für die Hilfe, Kollegialität und Freundschaft – ich habe 

Dich im Labor sehr vermisst und der Platz mir gegenüber war nach Deinem Verlassen 

so leer! Außerdem möchte ich Frau Monika Frank danken für die vielen Skype-

Unterhaltungen – Du bist auf jeden Fall einer der witzigsten Menschen, die ich kenne! 



 Acknowledgements 

 84 

Herrn Oliver Schwalbe und Herrn Christian Scheerans danke ich für den guten 

Zusammenhalt im Restbestand der Berliner Klinischen Pharmazie und ihre 

Hilfsbereitschaft. Besonders möchte ich mich auch bei Frau Dr. Anna-Katharina 

Manzer bedanken für die Begleitung über die gesamte Zeit des Doktoranden-Daseins, 

die gemeinsamen Erfahrungen und Erlebnisse, die wir seit der Zeit in Florida immer 

wieder zusammen erleben durften. 

 

Zusammenfassend möchte ich auch der Mittagscrew und meinen „nicht-

pharmazeutischen“ Freunden danken, die mich in so vieler Hinsicht in meiner 

Doktorandenzeit begleitet und unterstützt haben. 

 

Für den technischen Support und der Hilfe bei jedem noch so kleinen 

Computerproblem danke ich im Besonderen Herrn Mike Nürnberg. 

 

Meiner Familie und vor allem meinen Eltern, die ich letztendlich von dem Sinn einer 

Doktorarbeit überzeugen konnte, danke ich für ihre immerwährende Unterstützung mit 

Liebe, Rat und Beistand. 

 

Nicht zuletzt gilt mein ganz besonderer Dank Herrn Fabian Flügge für seine liebevolle 

Aufmunterung, Unterstützung und Geduld, die mir eine unermässliche Hilfe besonders 

in der letzten Phase waren. 

 

 



 References 

 85 

8 References 

 

1. WHO Cancer. World Health Organisation. Available from 

http://www.who.int/mediacentre/factsheets/fs297/en/ [Accessed 2008 May 20] 

(2006) 

2. Li Z, Zhao R, Wu X, Sun Y, Yao M, Li J, Xu Y, Gu J Identification and 

characterization of a novel peptide ligand of epidermal growth factor receptor 

for targeted delivery of therapeutics. Faseb J 19:1978-1985 (2005) 

3. Cancer in Germany, 2003 – 2004. Incidence and Trends. Sixth edition. Berlin: 

Robert Koch Institute and the Association of Population-Based Cancer 

Registries in Germany (2008)  

4. Breitscheidel L, Sahakyan A Modeling The Probability Of Developing Cancer 

in Germany. The Internet Journal of Epidemiology. Volume 3 Number 2 (2006) 

5. Tamburini M, Gangeri L, Brunelli C, Boeri P, Borreani C, Bosisio M, Karmann 

CF, Greco M, Miccinesi G, Murru L, Trimigno P Cancer patients' needs during 

hospitalisation: a quantitative and qualitative study. BMC Cancer 3:12 (2003) 

6. Goel S, Mani S, Perez-Soler R Tyrosine kinase inhibitors: a clinical perspective. 

Curr Oncol Rep 4:9-19 (2002) 

7. Traxler P Tyrosine kinases as targets in cancer therapy - successes and failures. 

Expert Opin Ther Targets 7:215-234 (2003) 

8. Croom KF, Perry CM Imatinib mesylate: in the treatment of gastrointestinal 

stromal tumours. Drugs 63:513-522; discussion 523-514 (2003) 

9. Nadler LM, Stashenko P, Hardy R, Kaplan WD, Button LN, Kufe DW, Antman 

KH, Schlossman SF Serotherapy of a patient with a monoclonal antibody 

directed against a human lymphoma-associated antigen. Cancer Res 40:3147-

3154 (1980) 

10. Emens LA, Davidson NE Trastuzumab in breast cancer. Oncology (Williston 

Park) 18:1117-1128; discussion 1131-1112, 1137-1118 (2004) 

11. Leget GA, Czuczman MS Use of rituximab, the new FDA-approved antibody. 

Curr Opin Oncol 10:548-551 (1998) 



 References 

 86 

12. Kuester K, Kloft C Pharmacokinetics of monoclonal antibodies. In: Meibohm B 

(ed) Pharmacokinetics and Pharmacodynamics of Biotech Drugs. 1 ed. Wiley-

VCH Verlag, Weinheim, 45-91 (2006) 

13. Kohler G, Milstein C Continuous cultures of fused cells secreting antibody of 

predefined specificity. Nature 256:495-497 (1975) 

14. Handbook of Therapeutic Antibodies, Volume III: Approved Therapeutics. 

Wiley-VCH Verlag, Weinheim (2007) 

15. Stern M, Herrmann R Overview of monoclonal antibodies in cancer therapy: 

present and promise. Crit Rev Oncol Hematol 54:11-29 (2005) 

16. McCormack PL, Keam SJ Bevacizumab: a review of its use in metastatic 

colorectal cancer. Drugs 68:487-506 (2008) 

17. McCormack PL, Keam SJ Spotlight on bevacizumab in metastatic colorectal 

cancer. BioDrugs 22:339-341 (2008) 

18. Ternant D, Paintaud G Pharmacokinetics and concentration-effect relationships 

of therapeutic monoclonal antibodies and fusion proteins. Expert Opin Biol 

Ther 5:37-47 (2005) 

19. Kollmannsberger C, Schittenhelm M, Honecker F, Tillner J, Weber D, Oechsle 

K, Kanz L, Bokemeyer C A phase I study of the humanized monoclonal anti-

epidermal growth factor receptor (EGFR) antibody EMD 72000 (matuzumab) 

in combination with paclitaxel in patients with EGFR-positive advanced non-

small-cell lung cancer (NSCLC). Ann Oncol 17:1007-1013 (2006) 

20. Rivera F, Vega-Villegas ME, Lopez-Brea MF, Marquez R Current situation of 

Panitumumab, Matuzumab, Nimotuzumab and Zalutumumab. Acta Oncol 47:9-

19 (2008) 

21. Wells A EGF receptor. Int J Biochem Cell Biol 31:637-643 (1999) 

22. Harari PM Epidermal growth factor receptor inhibition strategies in oncology. 

Endocr Relat Cancer 11:689-708 (2004) 

23. Watanabe T, Shintani A, Nakata M, Shing Y, Folkman J, Igarashi K, Sasada R 

Recombinant human betacellulin. Molecular structure, biological activities, and 

receptor interaction. J Biol Chem 269:9966-9973 (1994) 

24. Lee JJ, Chu E First-line use of anti-epidermal growth factor receptor 

monoclonal antibodies in metastatic colorectal cancer. Clin Colorectal Cancer 

6:42-46 (2007) 



 References 

 87 

25. Sibilia M, Kroismayr R, Lichtenberger BM, Natarajan A, Hecking M, 

Holcmann M The epidermal growth factor receptor: from development to 

tumorigenesis. Differentiation 75:770-787 (2007) 

26. Carteni G, Fiorentino R, Vecchione L, Chiurazzi B, Battista C Panitumumab a 

novel drug in cancer treatment. Ann Oncol 18 Suppl 6:vi16-21 (2007) 

27. Walker RA, Dearing SJ Expression of epidermal growth factor receptor mRNA 

and protein in primary breast carcinomas. Breast Cancer Res Treat 53:167-176 

(1999) 

28. Brabender J, Danenberg KD, Metzger R, Schneider PM, Park J, Salonga D, 

Holscher AH, Danenberg PV Epidermal growth factor receptor and HER2-neu 

mRNA expression in non-small cell lung cancer Is correlated with survival. 

Clin Cancer Res 7:1850-1855 (2001) 

29. Ohsaki Y, Tanno S, Fujita Y, Toyoshima E, Fujiuchi S, Nishigaki Y, Ishida S, 

Nagase A, Miyokawa N, Hirata S, Kikuchi K Epidermal growth factor receptor 

expression correlates with poor prognosis in non-small cell lung cancer patients 

with p53 overexpression. Oncol Rep 7:603-607 (2000) 

30. Bruno R, Washington CB, Lu JF, Lieberman G, Banken L, Klein P Population 

pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast 

cancer. Cancer Chemother Pharmacol 56:361-369 (2005) 

31. Ritter CA, Arteaga CL The epidermal growth factor receptor-tyrosine kinase: a 

promising therapeutic target in solid tumors. Semin Oncol 30:3-11 (2003) 

32. De Luca A, Carotenuto A, Rachiglio A, Gallo M, Maiello MR, Aldinucci D, 

Pinto A, Normanno N The role of the EGFR signaling in tumor 

microenvironment. J Cell Physiol 214:559-567 (2008) 

33. Herbst RS, Shin DM Monoclonal antibodies to target epidermal growth factor 

receptor-positive tumors: a new paradigm for cancer therapy. Cancer 94:1593-

1611 (2002) 

34. Dassonville O, Formento JL, Francoual M, Ramaioli A, Santini J, Schneider M, 

Demard F, Milano G Expression of epidermal growth factor receptor and 

survival in upper aerodigestive tract cancer. J Clin Oncol 11:1873-1878 (1993) 

35. Rusch V, Baselga J, Cordon-Cardo C, Orazem J, Zaman M, Hoda S, McIntosh 

J, Kurie J, Dmitrovsky E Differential expression of the epidermal growth factor 

receptor and its ligands in primary non-small cell lung cancers and adjacent 

benign lung. Cancer Res 53:2379-2385 (1993) 



 References 

 88 

36. Salomon DS, Brandt R, Ciardiello F, Normanno N Epidermal growth factor-

related peptides and their receptors in human malignancies. Crit Rev Oncol 

Hematol 19:183-232 (1995) 

37. Murthy U, Basu A, Rodeck U, Herlyn M, Ross AH, Das M Binding of an 

antagonistic monoclonal antibody to an intact and fragmented EGF-receptor 

polypeptide. Arch Biochem Biophys 252:549-560 (1987) 

38. Rodeck U, Williams N, Murthy U, Herlyn M Monoclonal antibody 425 inhibits 

growth stimulation of carcinoma cells by exogenous EGF and tumor-derived 

EGF/TGF-alpha. J Cell Biochem 44:69-79 (1990) 

39. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, 

Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E Cetuximab 

monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic 

colorectal cancer. N Engl J Med 351:337-345 (2004) 

40. Harding J, Burtness B Cetuximab: an epidermal growth factor receptor 

chemeric human-murine monoclonal antibody. Drugs Today (Barc) 41:107-127 

(2005) 

41. Baselga J The EGFR as a target for anticancer therapy--focus on cetuximab. Eur 

J Cancer 37:16-22 (2001) 

42. Kettleborough CA, Saldanha J, Heath VJ, Morrison CJ, Bendig MM 

Humanization of a mouse monoclonal antibody by CDR-grafting: the 

importance of framework residues on loop conformation. Protein Eng 4:773-

783 (1991) 

43. Vanhoefer U, Tewes M, Rojo F, Dirsch O, Schleucher N, Rosen O, Tillner J, 

Kovar A, Braun AH, Trarbach T, Seeber S, Harstrick A, Baselga J Phase I study 

of the humanized antiepidermal growth factor receptor monoclonal antibody 

EMD72000 in patients with advanced solid tumors that express the epidermal 

growth factor receptor. J Clin Oncol 22:175-184 (2004) 

44. Socinski MA Antibodies to the epidermal growth factor receptor in non small 

cell lung cancer: current status of matuzumab and panitumumab. Clin Cancer 

Res 13:4597-4601 (2007) 

45. Vallbohmer D, Lenz HJ Epidermal growth factor receptor as a target for 

chemotherapy. Clin Colorectal Cancer 5:19-27 (2005) 

46. Graeven U, Kremer B, Sudhoff T, Killing B, Rojo F, Weber D, Tillner J, Unal 

C, Schmiegel W Phase I study of the humanised anti-EGFR monoclonal 



 References 

 89 

antibody matuzumab (EMD 72000) combined with gemcitabine in advanced 

pancreatic cancer. Br J Cancer 94:1293-1299 (2006) 

47. Derendorf H, Gramatté T, Schäfer HG Pharmakokinetik. 2 ed. 

Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart (2002) 

48. Aarons L Population pharmacokinetics: theory and practice. Br J Clin 

Pharmacol 32:669-670 (1991) 

49. FDA Guidance for Industry: Population Pharmacokinetics (1999) 

50. EMEA Guideline on reporting the results of population pharmacokinetic 

analyses (2007) 

51. Sheiner LB, Beal SL Evaluation of methods for estimating population 

pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical 

pharmacokinetic data. J Pharmacokinet Biopharm 8:553-571 (1980) 

52. Sheiner BL, Beal SL Evaluation of methods for estimating population 

pharmacokinetic parameters. II. Biexponential model and experimental 

pharmacokinetic data. J Pharmacokinet Biopharm 9:635-651 (1981) 

53. Sheiner LB, Beal SL Evaluation of methods for estimating population 

pharmacokinetic parameters. III. Monoexponential model: routine clinical 

pharmacokinetic data. J Pharmacokinet Biopharm 11:303-319 (1983) 

54. Plock N, Buerger C, Joukhadar C, Kljucar S, Kloft C Does linezolid inhibit its 

own metabolism? Population pharmacokinetics as a tool to explain the observed 

nonlinearity in both healthy volunteers and septic patients. Drug Metab Dispos 

35:1816-1823 (2007) 

55. Fliss G, Staab A, Tillmann C, Trommeshauser D, Schaefer HG, Kloft C 

Population Pharmacokinetic Data Analysis of Cilobradine, an I(f) Channel 

Blocker. Pharm Res 25:359-368 (2008) 

56. Dartois C, Brendel K, Comets E, Laffont CM, Laveille C, Tranchand B, Mentre 

F, Lemenuel-Diot A, Girard P Overview of model-building strategies in 

population PK/PD analyses: 2002-2004 literature survey. Br J Clin Pharmacol 

64:603-612 (2007) 

57. Dirks NL, Nolting A, Kovar A, Meibohm B Population pharmacokinetics of 

cetuximab in patients with squamous cell carcinoma of the head and neck. J 

Clin Pharmacol 48:267-278 (2008) 

58. Lehr T, Staab A, Tillmann C, Trommeshauser D, Raschig A, Schaefer HG, 

Kloft C Population pharmacokinetic modelling of NS2330 (tesofensine) and its 



 References 

 90 

major metabolite in patients with Alzheimer's disease. Br J Clin Pharmacol 

64:36-48 (2007) 

59. Vozeh S, Steimer JL, Rowland M, Morselli P, Mentre F, Balant LP, Aarons L 

The use of population pharmacokinetics in drug development. Clin 

Pharmacokinet 30:81-93 (1996) 

60. Aarons L, Karlsson MO, Mentre F, Rombout F, Steimer JL, van Peer A Role of 

modelling and simulation in Phase I drug development. Eur J Pharm Sci 

13:115-122 (2001) 

61. Holford NH, Kimko HC, Monteleone JP, Peck CC Simulation of clinical trials. 

Annu Rev Pharmacol Toxicol 40:209-234 (2000) 

62. Sheiner LB, Steimer JL Pharmacokinetic/pharmacodynamic modeling in drug 

development. Annu Rev Pharmacol Toxicol 40:67-95 (2000) 

63. Sheiner LB, Beal SL Bayesian individualization of pharmacokinetics: simple 

implementation and comparison with non-Bayesian methods. J Pharm Sci 

71:1344-1348 (1982) 

64. Sun H, Fadiran EO, Jones CD, Lesko L, Huang SM, Higgins K, Hu C, Machado 

S, Maldonado S, Williams R, Hossain M, Ette EI Population pharmacokinetics. 

A regulatory perspective. Clin Pharmacokinet 37:41-58 (1999) 

65. Sheiner LB, Beal S, Rosenberg B, Marathe VV Forecasting individual 

pharmacokinetics. Clin Pharmacol Ther 26:294-305 (1979) 

66. Grasela TH, Sheiner BL Pharmacostatistical modeling for observational data. J 

Pharmacokinet Biopharm: 19:25-36 (1991) 

67. Racine-Poon A, Wakefield J Statistical methods for population pharmacokinetic 

modelling. Stat Methods Med Res 7:63-84 (1998) 

68. Wahlby U, Matolcsi K, Karlsson MO, Jonsson EN Evaluation of type I error 

rates when modeling ordered categorical data in NONMEM. J Pharmacokinet 

Pharmacodyn 31:61-74 (2004) 

69. Aarons L, Balant LP, Mentre F, Morselli PL, Rowland M, Steimer JL, Vozeh S 

Population approaches in drug development. Report on an expert meeting to 

discuss population pharmacokinetic/pharmacodynamic software. Eur J Clin 

Pharmacol 46:389-391 (1994) 

70. Aarons L Software for population pharmacokinetics and pharmacodynamics. 

Clin Pharmacokinet 36:255-264 (1999) 



 References 

 91 

71. Kloft C, Graefe EU, Tanswell P, Scott AM, Hofheinz R, Amelsberg A, 

Karlsson MO Population pharmacokinetics of sibrotuzumab, a novel therapeutic 

monoclonal antibody, in cancer patients. Invest New Drugs 22:39-52 (2004) 

72. DeSilva B, Smith W, Weiner R, Kelley M, Smolec J, Lee B, Khan M, Tacey R, 

Hill H, Celniker A Recommendations for the bioanalytical method validation of 

ligand-binding assays to support pharmacokinetic assessments of 

macromolecules. Pharm Res 20:1885-1900 (2003) 

73. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B 

Quantification of lean bodyweight. Clin Pharmacokinet 44:1051-1065 (2005) 

74. Cockcroft DW, Gault MH Prediction of creatinine clearance from serum 

creatinine. Nephron 16:31-41 (1976) 

75. Du Bois D, Du Bois EF A formula to estimate the approximate surface area if 

height and weight be known. Arch Intern Med 17:863-871 (1916) 

76. Wood AM, White IR, Thompson SG Are missing outcome data adequately 

handled? A review of published randomized controlled trials in major medical 

journals. Clin Trials 1:368-376 (2004) 

77. Beal SL, Sheiner BL NONMEM Users Guide. San Fransicso, CA: NONMEM 

project group, University of California (1998) 

78. Sheiner LB Analysis of pharmacokinetic data using parametric models--1: 

Regression models. J Pharmacokinet Biopharm 12:93-117 (1984) 

79. Plock N Target Site Pharmacokinetics of Antiinfectives in the Treatment of 

Serious Grampositive Infections - Linezolid and Vancomyzin. 1 ed. WiKu-

Verlag Verlag für Wissenschaft und Kultur, Köln (2007) 

80. Mandema JW, Verotta D, Sheiner LB Building population pharmacokinetic--

pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet 

Biopharm 20:511-528 (1992) 

81. Jonsson EN, Karlsson MO Xpose--an S-PLUS based population 

pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput 

Methods Programs Biomed 58:51-64 (1999) 

82. Pan W Akaike's information criterion in generalized estimating equations. 

Biometrics 57:120-125 (2001) 

83. Jonsson EN, Karlsson MO Xpose 2.0 User's Manual. Department of Pharmacy, 

Uppsala University, Sweden (1998) 



 References 

 92 

84. Jonsson EN, Karlsson MO Automated covariate model building within 

NONMEM. Pharm Res 15:1463-1468 (1998) 

85. Maitre PO, Buhrer M, Thomson D, Stanski DR A three-step approach 

combining Bayesian regression and NONMEM population analysis: application 

to midazolam. J Pharmacokinet Biopharm 19:377-384 (1991) 

86. Kowalski KG, Hutmacher MM Design evaluation for a population 

pharmacokinetic study using clinical trial simulations: a case study. Stat Med 

20:75-91 (2001) 

87. Bonate PL Pharmacokinetic-Pharmacodynamic Modeling and Simulation. 1 ed. 

Springer Science and Business Media, New York (2006) 

88. Brendel K, Dartois C, Comets E, Lemenuel-Diot A, Laveille C, Tranchand B, 

Girard P, Laffont CM, Mentre F Are population pharmacokinetic and/or 

pharmacodynamic models adequately evaluated? A survey of the literature from 

2002 to 2004. Clin Pharmacokinet 46:221-234 (2007) 

89. Akins RB, Tolson H, Cole BR Stability of response characteristics of a Delphi 

panel: application of bootstrap data expansion. BMC Med Res Methodol 5:37 

(2005) 

90. Efron B Bootstrap methods: Another look at the jackknife. Ann Stat 7:1-26 

(1979) 

91. Post TM, Freijer JI, Ploeger BA, Danhof M Extensions to the Visual Predictive 

Check to facilitate model performance evaluation. J Pharmacokinet 

Pharmacodyn 35:185-202 (2008) 

92. Holford N The Visual Predictive Check - Superiority to Standard Diagnostics 

(Rorschach) Plots. PAGE 14, Abstr 738. Available from www.page-

meeting.org/?abstract=972 [Accessed 2008 May 20]. (2005) 

93. Ette EI Stability and performance of a population pharmacokinetic model. J 

Clin Pharmacol 37:486-495 (1997) 

94. Holford NH Wings for NOMEM. Available from URL: 

http://wfn.sourceforge.net/ [Accessed 2008 May 13] (2003) 

95. Lindbom L, Pihlgren P, Jonsson EN PsN-Toolkit--a collection of computer 

intensive statistical methods for non-linear mixed effect modeling using 

NONMEM. Comput Methods Programs Biomed 79:241-257 (2005) 

96. Wang HM, Jones MP, Storer BE Comparison of case-deletion diagnostic 

methods for Cox regression. Stat Med 25:669-683 (2006) 



 References 

 93 

97. FDA Bioanalytical Method Validation. Guidance for Industry. (2001) 

98. Yano Y, Beal SL, Sheiner LB Evaluating pharmacokinetic/pharmacodynamic 

models using the posterior predictive check. J Pharmacokinet Pharmacodyn 

28:171-192 (2001) 

99. Van Buskirk P Saving corporations milliones:The benefits of modeling. PC AI 

14:38 (2000) 

100. Green B, Duffull SB What is the best size descriptor to use for pharmacokinetic 

studies in the obese? Br J Clin Pharmacol 58:119-133 (2004) 

101. Sparreboom A, Wolff AC, Mathijssen RH, Chatelut E, Rowinsky EK, Verweij 

J, Baker SD Evaluation of alternate size descriptors for dose calculation of 

anticancer drugs in the obese. J Clin Oncol 25:4707-4713 (2007) 

102. Holford NH A size standard for pharmacokinetics. Clin Pharmacokinet 30:329-

332 (1996) 

103. Mould DR, Davis CB, Minthorn EA, Kwok DC, Elliott MJ, Luggen ME, 

Totoritis MC A population pharmacokinetic-pharmacodynamic analysis of 

single doses of clenoliximab in patients with rheumatoid arthritis. Clin 

Pharmacol Ther 66:246-257 (1999) 

104. Ng CM, Bruno R, Combs D, Davies B Population pharmacokinetics of 

rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients 

during a phase II clinical trial. J Clin Pharmacol 45:792-801 (2005) 

105. Morell A, Terry WD, Waldmann TA Metabolic properties of IgG subclasses in 

man. J Clin Invest 49:673-680 (1970) 

106. Koleba T, Ensom MH Pharmacokinetics of intravenous immunoglobulin: a 

systematic review. Pharmacotherapy 26:813-827 (2006) 

107. Kovarik JM, Nashan B, Neuhaus P, Clavien PA, Gerbeau C, Hall ML, Korn A 

A population pharmacokinetic screen to identify demographic-clinical 

covariates of basiliximab in liver transplantation. Clin Pharmacol Ther 69:201-

209 (2001) 

108. Brambell FW, Hemmings WA, Morris IG A Theoretical Model of Gamma-

Globulin Catabolism. Nature 203:1352-1354 (1964) 

109. Lee H, Kimko HC, Rogge M, Wang D, Nestorov I, Peck CC Population 

pharmacokinetic and pharmacodynamic modeling of etanercept using logistic 

regression analysis. Clin Pharmacol Ther 73:348-365 (2003) 



 References 

 94 

110. Karlsson MO, Sheiner LB The importance of modeling interoccasion variability 

in population pharmacokinetic analyses. J Pharmacokinet Biopharm 21:735-750 

(1993) 

111. Zhou H, Jang H, Fleischmann RM, Bouman-Thio E, Xu Z, Marini JC, Pendley 

C, Jiao Q, Shankar G, Marciniak SJ, Cohen SB, Rahman MU, Baker D, 

Mascelli MA, Davis HM, Everitt DE Pharmacokinetics and safety of 

golimumab, a fully human anti-TNF-alpha monoclonal antibody, in subjects 

with rheumatoid arthritis. J Clin Pharmacol 47:383-396 (2007) 

112. Powis G, Reece P, Ahmann DL, Ingle JN Effect of body weight on the 

pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer 

Chemother Pharmacol 20:219-222 (1987) 

113. Lind MJ, Margison JM, Cerny T, Thatcher N, Wilkinson PM Prolongation of 

ifosfamide elimination half-life in obese patients due to altered drug 

distribution. Cancer Chemother Pharmacol 25:139-142 (1989) 

114. Rodvold KA, Rushing DA, Tewksbury DA Doxorubicin clearance in the obese. 

J Clin Oncol 6:1321-1327 (1988) 

115. Morgan DJ, Bray KM Lean body mass as a predictor of drug dosage. 

Implications for drug therapy. Clin Pharmacokinet 26:292-307 (1994) 

116. Roubenoff R, Kehayias JJ The meaning and measurement of lean body mass. 

Nutr Rev 49:163-175 (1991) 

117. Bulitta JB, Duffull SB, Kinzig-Schippers M, Holzgrabe U, Stephan U, Drusano 

GL, Sorgel F Systematic comparison of the population pharmacokinetics and 

pharmacodynamics of piperacillin in cystic fibrosis patients and healthy 

volunteers. Antimicrob Agents Chemother 51:2497-2507 (2007) 

118. Mathijssen RH, Verweij J, de Jonge MJ, Nooter K, Stoter G, Sparreboom A 

Impact of body-size measures on irinotecan clearance: alternative dosing 

recommendations. J Clin Oncol 20:81-87 (2002) 

119. Han PY, Duffull SB, Kirkpatrick CM, Green B Dosing in obesity: a simple 

solution to a big problem. Clin Pharmacol Ther 82:505-508 (2007) 

120. Anderson BJ, Holford NH Mechanism-based concepts of size and maturity in 

pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303-332 (2008) 

121. Bouillon T, Shafer SL Does size matter? Anesthesiology 89:557-560 (1998) 

122. Anastasio P, Spitali L, Frangiosa A, Molino D, Stellato D, Cirillo E, Pollastro 

RM, Capodicasa L, Sepe J, Federico P, Gaspare De Santo N Glomerular 



 References 

 95 

filtration rate in severely overweight normotensive humans. Am J Kidney Dis 

35:1144-1148 (2000) 

123. Mathijssen R, Sparreboom A Influence of Lean Body Weight on Anticancer 

Drug Clearance. Clin Pharmacol Ther (2008) 

124. West GB, Brown JH, Enquist BJ A general model for the origin of allometric 

scaling laws in biology. Science 276:122-126 (1997) 

125. Sun YN, Lu JF, Joshi A, Compton P, Kwon P, Bruno RA Population 

pharmacokinetics of efalizumab (humanized monoclonal anti-CD11a antibody) 

following long-term subcutaneous weekly dosing in psoriasis subjects. J Clin 

Pharmacol 45:468-476 (2005) 

126. Fang L, Holford NH, Hinkle G, Cao X, Xiao JJ, Bloomston M, Gibbs S, Saif 

OH, Dalton JT, Chan KK, Schlom J, Martin EW, Jr., Sun D Population 

pharmacokinetics of humanized monoclonal antibody HuCC49deltaCH2 and 

murine antibody CC49 in colorectal cancer patients. J Clin Pharmacol 47:227-

237 (2007) 

127. Sawyer M, Ratain MJ Body surface area as a determinant of pharmacokinetics 

and drug dosing. Invest New Drugs 19:171-177 (2001) 

128. de Jongh FE, Verweij J, Loos WJ, de Wit R, de Jonge MJ, Planting AS, Nooter 

K, Stoter G, Sparreboom A Body-surface area-based dosing does not increase 

accuracy of predicting cisplatin exposure. J Clin Oncol 19:3733-3739 (2001) 

129. Mathijssen RH, de Jong FA, Loos WJ, van der Bol JM, Verweij J, Sparreboom 

A Flat-fixed dosing versus body surface area based dosing of anticancer drugs 

in adults: does it make a difference? Oncologist 12:913-923 (2007) 

130. Grochow LB, Baraldi C, Noe D Is dose normalization to weight or body surface 

area useful in adults? J Natl Cancer Inst 82:323-325 (1990) 

131. Hempel G, Boos J Flat-fixed dosing versus body surface area based dosing of 

anticancer drugs: there is a difference. Oncologist 12:924-926 (2007) 

132. Ette EI, Williams PJ, Kim YH, Lane JR, Liu MJ, Capparelli EV Model 

appropriateness and population pharmacokinetic modeling. J Clin Pharmacol 

43:610-623 (2003) 

133. Mentre F, Escolano S Prediction discrepancies for the evaluation of nonlinear 

mixed-effects models. J Pharmacokinet Pharmacodyn 33:345-367 (2006) 



 References 

 96 

134. Ng CM, Lum BL, Gimenez V, Kelsey S, Allison D Rationale for fixed dosing 

of pertuzumab in cancer patients based on population pharmacokinetic analysis. 

Pharm Res 23:1275-1284 (2006) 

135. Gallo JM, Laub PB, Rowinsky EK, Grochow LB, Baker SD Population 

pharmacokinetic model for topotecan derived from phase I clinical trials. J Clin 

Oncol 18:2459-2467 (2000) 

136. Hing JP, Piotrovsky V, Kimko H, Brashear HR, Zhao Q Pharmacokinetic 

simulation for switching from galantamine immediate-release to extended-

release formulation. Curr Med Res Opin 21:483-488 (2005) 

137. Rombout F, Aarons L, Karlsson M, Man A, Mentre F, Nygren P, Racine A, 

Schaefer H, Steimer JL, Troconiz I, van Peer A Modelling and simulation in the 

development and use of anti-cancer agents: an underused tool? J Pharmacokinet 

Pharmacodyn 31:419-440 (2004) 

138. Bauer RJ, Guzy S, Ng C A survey of population analysis methods and software 

for complex pharmacokinetic and pharmacodynamic models with examples. 

AAPS J 9:E60-83 (2007) 

139. Dingemanse J, Appel-Dingemanse S Integrated pharmacokinetics and 

pharmacodynamics in drug development. Clin Pharmacokinet 46:713-737 

(2007) 

140. Gieschke R, Steimer JL Pharmacometrics: modelling and simulation tools to 

improve decision making in clinical drug development. Eur J Drug Metab 

Pharmacokinet 25:49-58 (2000) 

141. Anderson BJ, Allegaert K, Holford NH Population clinical pharmacology of 

children: general principles. Eur J Pediatr 165:741-746 (2006) 

142. Hortobagyi GN Overview of treatment results with trastuzumab (Herceptin) in 

metastatic breast cancer. Semin Oncol 28:43-47 (2001) 

143. Kloft C, Wallin J, Henningsson A, Chatelut E, Karlsson MO Population 

pharmacokinetic-pharmacodynamic model for neutropenia with patient 

subgroup identification: comparison across anticancer drugs. Clin Cancer Res 

12:5481-5490 (2006) 

144. Lobo ED, Hansen RJ, Balthasar JP Antibody pharmacokinetics and 

pharmacodynamics. J Pharm Sci 93:2645-2668 (2004) 



 References 

 97 

145. Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, Ward 

ES Increasing the serum persistence of an IgG fragment by random 

mutagenesis. Nat Biotechnol 15:637-640 (1997) 

146. Ette EI, Williams PJ Pharmacometrics: The Science of Quantitative 

Pharmacology. 1 ed. John Wiley & Sons, Inc., Hoboken, New Jersey (2007) 

147. von Kleist M, Huisinga W Physiologically based pharmacokinetic modelling: a 

sub-compartmentalized model of tissue distribution. J Pharmacokinet 

Pharmacodyn 34:789-806 (2007) 

148. Theil FP, Guentert TW, Haddad S, Poulin P Utility of physiologically based 

pharmacokinetic models to drug development and rational drug discovery 

candidate selection. Toxicol Lett 138:29-49 (2003) 

149. Jones HM, Parrott N, Jorga K, Lave T A novel strategy for physiologically 

based predictions of human pharmacokinetics. Clin Pharmacokinet 45:511-542 

(2006) 

150. Parrott N, Paquereau N, Coassolo P, Lave T An evaluation of the utility of 

physiologically based models of pharmacokinetics in early drug discovery. J 

Pharm Sci 94:2327-2343 (2005) 

151. Grass GM, Sinko PJ Physiologically-based pharmacokinetic simulation 

modelling. Adv Drug Deliv Rev 54:433-451 (2002) 

152. Blesch KS, Gieschke R, Tsukamoto Y, Reigner BG, Burger HU, Steimer JL 

Clinical pharmacokinetic/pharmacodynamic and physiologically based 

pharmacokinetic modeling in new drug development: the capecitabine 

experience. Invest New Drugs 21:195-223 (2003) 

 



 Curriculum Vitae 

 98 

9 Curriculum Vitae 
 

Name    Katharina Küster 

Date of birth   16 January 1979 

Place of birth   Bremen  

Nationality   German 

Education and Qualifications 

10/2004 – 11/2008   Doctoral thesis under the supervision of Prof. Charlotte Kloft 
   Department Clinical Pharmacy, Freie Universität Berlin and Martin- 
   Luther-Universität Halle-Wittenberg 

‘Population Pharmacokinetic Analysis for the Therapeutic anti- 

EGFR Humanised Monoclonal Antibody Matuzumab’ 

08/2004    Registration as a pharmacist in Germany 

04/1999 – 05/2003  Degree in Pharmacy (2. Staatsexamen: 1.5) 
   Christian-Albrechts-Universität Kiel, Germany 

08/1991 – 06/1998  High school degree (Allgemeine Hochschulreife) 
   Gymnasium an der Max-Planck-Strasse, Delmenhorst, Germany 

Professional Experience 

04/2007 – 11/2008  Employment as pharmacist 
   • Nord-Apotheke, Berlin, Germany 
10/2006 – 04/2007  Employment as pharmacist 
   • Cornelia-Apotheke, Berlin, Germany 
04/2005 – 10/2006  Employment as pharmacist 
   • Apotheke im Ring-Center, Berlin, Germany 
10/2004 – 03/2005  Employment as pharmacist 
   • Kurfürsten-Apotheke, Berlin, Germany 
01/2004 – 06/2004  Pre-registration pharmacist 
   • Heidemarkt-Apotheke, München, Germany 
07/2003 – 12/2003  Pre-registration pharmacist 

• Research project (Phase II metabolism) under the supervision of Prof. 
Margaret O. James, College of Pharmacy, University of Florida, USA 

Awards/Grants 

06/2008    Travel award Population Approach Group Europe 
06/2007    Travel award Population Approach Group Europe 

Member of Scientific Societies 

German Pharmaceutical Society (DPhG) 
German Cancer Society (DKG)



 Publications 

 99 

10 Publications 

Original papers 

K. Kuester, A. Kovar, C. Lüpfert, B. Brockhaus, C. Kloft 
Population pharmacokinetic data analysis of three phase I studies of matuzumab, a 
humanised anti-EGFR monoclonal antibody in clinical cancer development. 
Br J Cancer., 2008; 98(5): 900-906. 

K. Kuester, A. Kovar, C. Lüpfert, B. Brockhaus, C. Kloft  
Refinement of the population pharmacokinetic model for the monoclonal antibody 
matuzumab: external model evaluation and simulations. 
Clin Pharmacokinet., accepted (2008). 

B. Krippendorff, K. Kuester, C. Kloft, W. Huisinga 
Nonlinear pharmacokinetics of therapeutic proteins resulting from receptor mediated 
endocytosis. 
J Pharmacokinet Pharmacodyn., submitted 2008. 

K. Kuester, A. Kovar, C. Lüpfert, B. Brockhaus, C. Kloft  
Population pharmacokinetic evaluation techniques for a monoclonal antibody in 
clinical development for cancer therapy. 
In manuscript. 

K. Kuester and C. Kloft 
Body size descriptors in population pharmacokinetic analyses for monoclonal 
antibodies. 
In preparation. 

Book chapter 

K. Kuester, C. Kloft. 
Pharmacokinetics of monoclonal antibodies. 
In: B. Meibohm (Hrsg.): Pharmacokinetics and pharmacodynamics of biotech drugs, 
Wiley-VCH Verlag, Weinheim: 45-91(2006). 

Oral and poster presentations 

K. Kuester, J. Tillner, B. Brockhaus, A. Kovar, C. Kloft. (Poster) 
Population pharmacokinetic approach for matuzumab – a humanised monoclonal 
antibody. 
Annual Meeting of the German Pharmaceutical Society (DPhG) 2005, Mainz, 05.-
08.10.2005. Abstract book 94 (2005).  

K. Kuester, A. Kovar, B. Brockhaus, C. Kloft. (Poster) 
Population pharmacokinetic analysis for matuzumab (EMD 72000) – a humanised 
EGFR-targeted monoclonal antibody. 
15th Annual Meeting Population Approach Group Europe (PAGE), Brugge, Belgium, 
14.-16.06.2006. Abstract book 971 (2006) [www.page-meeting.org/?abstract=971]. 



 Publications 

 100 

N. Plock, C. Buerger, K. Kuester, C. Joukhadar, S. Kljucar, C. Kloft. (Poster) 
A population pharmacokinetic model for the simultaneous description of linezolid 
tissue and plasma disposition in healthy volunteers and septic patients. 
15th Annual Meeting Population Approach Group Europe (PAGE), Brügge, Belgien, 
14.-16.06.2006. Abstract book 886 (2006) [www.page-meeting.org/?abstract=886]. 

K. Kuester, A. Kovar, B. Brockhaus, C. Kloft. (Poster) 
Matuzumab – a population pharmacokinetic analysis. 
Annual Meeting of the German Pharmaceutical Society (DPhG) 2006, Marburg, 04.-
07.10.2006. Abstract book 95 (2006).  

K. Kuester, A. Kovar, B. Brockhaus, C. Kloft. (Presentation) 
A population pharmacokinetic model for the monoclonal antibody matuzumab. 
Pre-Satellite Meeting of the 3rd Pharmaceutical Sciences World Congress (PSWC), 
Amsterdam, The Netherlands, 20.-21.04.2007. Abstract book 26 (2007) 
[http://www.parthen-impact.com/eventure/publicAbstractView.do?id=32252]. 

K. Kuester, A. Kovar, B. Brockhaus, C. Kloft. (Poster) 
A population pharmacokinetic model for the monoclonal antibody matuzumab. 
3rd Pharmaceutical Sciences World Congress (PSWC), Amsterdam, The Netherlands, 
22.-25.04.2007. Abstract book 48 (2007) [www.parthen-
impact.com/eventure/publicAbstractView.do?id=32255]. 

K. Kuester, A. Kovar, B. Brockhaus, C. Kloft. (Poster) 
Matuzumab – a population pharmacokinetic model and its evaluation. 
16th Annual Meeting Population Approach Group Europe (PAGE), Copenhagen, 
Denmark, 13.-15.06.2007. Abstract book (2007) [www.page-
meeting.org/?abstract=1090]. 

K. Kuester, A. Kovar, C. Lüpfert, B. Brockhaus, C. Kloft. (Poster) 
Population pharmacokinetics of matuzumab – a monoclonal antibody with complex 
elimination. 
Annual Meeting of the German Pharmaceutical Society (DPhG) 2007, Erlangen, 10.-
13.10.2007. Abstract book 50 (2007). 

K. Kuester, A. Kovar, C. Lüpfert, B. Brockhaus, C. Kloft. (Poster) 
The pharmacokinetics of matuzumab – a novel monoclonal antibody. 
28th Annual German Cancer Congress, Berlin, 20.-23.02.2008. Proceedings Journal 136 
(2008). 

K. Kuester, A. Kovar, C. Lüpfert, B. Brockhaus, C. Kloft. (Poster) 
Matuzumab – evaluation of the population pharmacokinetic model and analyses of the 
covariate impact on the pharmacokinetic profile. 
17th Annual Meeting Population Approach Group Europe (PAGE), Marseille, France, 
18.-20.06.2008. [www.page-meeting.org/?abstract=1244] (2008). 

K. Kuester, A. Kovar, C. Lüpfert, B. Brockhaus, C. Kloft. (Poster) 
Population pharmacokinetic model for matuzumab – evaluation and simulation. 
Annual Meeting of the German Pharmaceutical Society (DPhG) 2008, Bonn, 08.-
11.10.2008. Abstract book 277 (2008).



 

 101 

Eidesstaatliche Erklärung 

Hiermit erkläre ich, dass ich mich mit der vorliegenden Dissertation erstmals um die 

Erlangung eines Doktorgrades bewerbe. 

Ferner erkläre ich, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe 

angefertigt, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt 

und die den verwendeten Werken wörtlich oder inhaltlich entnommenen Stellen als 

solche kenntlich gemacht habe. 

 

 

Halle, 30.01.2009         
 
 
 
Katharina Küster 


	Abstract
	Zusammenfassung
	Original papers discussed in this thesis
	Table of Contents
	Abbreviations
	1 Introduction
	1.1 Current perspectives on cancer disease and tumour therapy
	1.2 Physiological antibodies
	1.3 Structure of antibodies
	1.4 Therapeutic monoclonal antibodies
	1.5 Matuzumab
	1.6 Population pharmacokinetic modelling
	1.6.1 Overview
	1.6.2 History
	1.6.3 Non-linear mixed effects modelling

	1.7 Objectives

	2 Patients and Methods
	Part I
	2.1 Patient population, treatment and data description
	2.2 Dataset for modelling and simulation
	2.2.1 Building of the matuzumab dataset and derived covariates
	2.2.2 Missing data

	2.3 Pharmacokinetic model development
	2.3.1 Non-linear mixed effects modelling
	2.3.2 Structure of a NLME model
	2.3.2.1 Structural submodel
	2.3.2.2 Pharmacostatistical submodel
	2.3.2.3 Covariate submodel


	2.4 Model evaluation
	2.4.1 External evaluation
	2.4.2 Internal evaluation
	2.4.2.1 Bootstrap method
	2.4.2.2 Case deletion diagnostics
	2.4.2.3 Visual predictive check


	Part II
	2.5 Simulations
	2.6 Body size descriptors in population analyses
	2.7 Statistical methods
	2.8 Software

	3 Results
	Part I
	3.1 Base/primary model
	3.2 External evaluation of the primary model
	3.3 Final model
	3.4 Internal evaluation of the final model
	3.4.1 Model evaluation by the bootstrap method
	3.4.2 Model evaluation by case deletion diagnostics
	3.4.3 Model evaluation by visual predictive checks

	Part II
	3.5 Simulations
	3.6 Body size descriptors in population analyses

	4 Discussion
	5 Conclusions
	6 Comments on my contribution
	References
	Publications



