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Abstract
Magnetic tunnel junctions (MTJs) based on Fe, Co, CoFeB and half-metallic Heusler com-
pounds were extensively studied for magnetic logic and memory applications. Despite their
very high tunnel magnetoresistance (TMR) ratios, such devices do not exhibit current rec-
tification, i.e., a diode effect. Recently, current rectification was achieved in a new MTJ
concept based on a spin-gapless semiconductor (SGS) and a half-metallic magnet (HMM).
In this cumulative thesis, we report on novel spintronic device concepts based on the unique
spin-dependent transport properties of HMMs and SGSs. First, by employing density func-
tional theory (DFT) we screen the family of quaternary Heusler alloys for SGSs and HMMs
with similar lattice constants, large spin-gaps below and above their Fermi energy, and Curie
temperatures above room temperature for spintronic applications. Next, by using DFT com-
bined with non-equilibrium Green’s functions, we computationally design two different MTJs
based on HMMs and SGSs within the family of quaternary Heusler compounds as electrode
materials separated by different numbers of MgO layers and investigate their transport prop-
erties and TMR ratio. We demonstrate that the MTJs under consideration present current
rectification with relatively high on/off ratios, an inverse TMR effect and we show that the
breakdown voltage is limited by the energy gap of the SGS and HMM materials. Then, we
propose a new SGS−HMM junction which is to some extent similar to conventional metal-
semiconductor junctions (Schottky-barrier diodes), the so-called Ohmic spin diode (OSD).
This device acts as a diode with linear current-voltage characteristics, zero threshold voltage,
and infinite on/off ratio at zero temperature. Finally, we design four different OSDs based
on HMM and SGS quaternary Heusler compounds with high Curie temperatures for room
temperature application.

Kurzzusammenfassung
Magnetische Tunnelkontakte (MTJs) aus Fe, Co, CoFeB und halb-metallischen Heusler-
Legierungen zur Anwendung in magnetischer Logik und Speichermedien wurden bereits inten-
siv untersucht. Ungeachtet der hohen magnetischen Tunnelwiderstände (TMRs) weisen diese
Bauelemente keine Diodenkennlinie auf. Diese Eigenschaft wurde kürzlich in einem neuen
Konzept einer Tunneldiode, in welcher ein Halbleiter ohne Spin-Anregungslücke (SGS) und
ein halbmetallischer Magnet (HMM) verwendet werden, gezeigt. In dieser kumulativen Ar-
beit werden die Konzepte neuartiger, spintronischer Bauelemente untersucht, welche auf den
einzigartigen, spin-abhängigen Eigenschaften von HMMs und SGSs basieren. Zuerst durchsu-
chen wir, mit Hilfe von Dichtefunktionaltheorie (DFT), die Familie der quaternären Heusler-
Legierungen nach HMMs und SGSs, welche ähnliche Gitterkonstanten, große Energielücken
über und unterhalb der Fermienergie und Curietemperaturen über Raumtemperatur aufwei-
sen. Hieraus konstruieren wir, unter Verwendung von DFT und nicht-Gleichgewichts-Green-
Funktionen, zwei unterschiedliche MTJs bestehend aus einem HMM und einem SGS, welche
durch verschiedene Schichtdicken von MgO getrennt werden und untersuchen deren Trans-
porteigenschaften sowie den TMR Effekt. Wir zeigen, dass diese MTJs eine Diodenkennlinie
mit relativ hohem Ein-/Ausschaltstromverhältnis besitzen, einen inversen-TMR Effekt auf-
weisen und die Durchbruchspannung von dem Betrag der Energielücke der SGSs und HMMs
abhängt. Danach stellen wir ein neues HMM−SGS Bauelement vor, welches ähnlich zu Metall-
Halbleiter-Dioden (Schottky-Dioden) ist: die sogenannte Ohmsche Spindiode (OSD). Zum
Schluss konstruieren wir vier OSDs aus HMMs und SGSs aus der Familie der quaternären
Heusler-Legierungen mit hohen Curietemperaturen für Raumtemperatur-Anwendungen.
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1 Introduction

In 1965, Moore found out that the number of transistors in dense integrated circuits is
doubled every 24 months [1] and similarly there is an exponential increase in the ability to
store digital data (see Fig. 1.1). In 2011, Hilbert and Lopez studied the evolution in the
world’s storage capacity where they took all different types of devices known in the whole
world into account [2]. In Fig. 1.1, we see that there is not only an exponential increase in the
storage capacity but also there is, especially in the last decade under study, a transformation
from an analog form like books, newsprints, films, and videotapes to digital devices like CDs,
DVDs, and hard disk drives. And this digital form of storage devices has evolved extremely
quickly which is attributed to the invention of spintronics.

In conventional electronics, electrons are used in two particular ways to store information.
Either the charge of electrons is used in the form of the number of electrons that are stored in
a capacitor, or one monitors currents, so one counts how many electrons are passing through
a specific wire per unit of time. A different approach is to use the spin of the electrons and the
directly associated magnetic moment of a material. The ability to store information by using
magnetism, especially through the magnetization direction of materials, is already known
since the middle of the 1950s when a very simple concept of a magnetic storage device, the
so-called magnetic core memory (see Fig. 1.2), was introduced. Since the 2000s this concept
arouses great interest.

Figure 1.1: Evolution in the world’s technological installed capacity to store information from
1986 to 2007. From M. Hilbert and S. Lopez Science 332, 60 (2011); The World’s Technological
Capacity to Store, Communicate, and Compute Information, Ref. [2]. Reprinted with permission from
AAAS.
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1 Introduction

Figure 1.2: Representation of an early magnetic core memory. The grey rings consist of
a soft magnetic material and the information is stored in the magnetization of
these rings. They can be magnetized either clockwise or counterclockwise around
the circumference by driving a current through the green or pink copper wires,
respectively. Reprinted from H.J. Sommer III, Professor of Mechanical Engineering, Penn State
University, Magnetic-core memory, accessed 15.02.2022; Ref. [3].

One major problem of the magnetic core memory was that it could not be scaled be-
cause shrinking copper wires would require large currents to change the magnetization (cf.
Fig. 1.2). The main concepts inside the magnetic core memory are still used for fabricating
storage devices using magnetism. At the end of the 1980s, Grünberg [4] and Fert [5] laid the
foundation of spintronics with the discovery of the giant magnetoresistance (GMR) effect.
This effect made it possible to fabricate very sensitive detectors for magnetic fields and thus
increase the storage capacity of hard disk drives by a factor of more than 1000. Nowadays,
the GMR structures in reading heads in hard disk drives are replaced by magnetic tunnel
junctions (MTJs) (for the schematic structure of a MTJ and the associated equivalent resistor
circuit diagram see Fig. 1.3 (a)). The tunnel magnetoresistance (TMR) effect states that the
resistance of magnetic layers separated by an insulator depends on the relative orientation
of the magnetization of the magnetic layers to each other. It is already known since 1975 [6]
but exceeded the GMR effect just in the 1990s (cf. Fig. 1.3 (b)).

2
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1 Introduction

(a) (b)

Figure 1.3: (a) Schematic structure of a MTJ in parallel (upper part) and anti-parallel (lower
part) orientation of the magnetization of the electrodes together with the corre-
sponding equivalent resistor circuit diagram. (b) Comparison of the evolution of
the GMR and TMR effect over 35 years. In the 1990s the TMR effect exceeded
the GMR effect.

The breakthrough of the TMR effect was in 2004 where Parkin et al. [7] realized a TMR
effect of 200 % at room temperature by using MgO as a tunnel barrier. In spintronics develop-
ment, MTJs played a crucial role since they are promising for many applications ranging from
non-volatile memory devices, such as STT-MRAM and SOT-MRAM, to read-head sensors as
mentioned above and from non-volatile logic concepts [8–10] to new computing architectures
like logic-in-memory computing. Using half-metallic magnets (HMMs) as electrode materials
led to the discovery of extremely large TMR effects due to the 100 % spin-polarization of
the current. Replacing one of the electrodes in a MTJ with a spin-gapless semiconductor
(SGS) gives rise to additional functionalities, i.e., an inverse TMR and diode effect as well
as reconfigurability of the tunnel junction [11] making such devices extremely important for
spintronic applications.

Based on this motivation, the major goals of the present thesis are:

1. Search for electrode materials that possess either spin-gapless or half-metallic properties
with high Curie temperatures making them suitable for room temperature applications.

2. The computational design of MTJs based on HMM and SGS Heusler compounds and
investigating their current-voltage characteristics and TMR ratio for magnetic memory
and logic applications.

3. Proposing a new diode concept based on SGSs and HMMs analogous to the Schottky-

3



1 Introduction

barrier diode (metal-semiconductor diode), the so-called Ohmic spin diode (OSD).

4. Designing OSDs based on quaternary Heusler alloys employing first-principle calcula-
tions.

Therefore, the following four chapters will lay the theoretical foundation for the results,
which are presented in the cumulative part of the thesis. First, we provide the theoretical
basis for the calculations. We introduce the many-body problem and the fundamentals of
density functional theory, which allows us to investigate the electronic structure of mate-
rials very efficiently and reliable compared to experiments. Furthermore, we describe the
method of choice to calculate electronic properties, which is based on linear combinations
of atomic orbitals as basis-set combined with pseudopotentials. In the third part, we dis-
cuss electronic transport. There, we describe the Landauer-Büttiker formalism and derive
the non-equilibrium Green’s function method which is a common approach to calculate the
charge densities and current in nanoscale devices. Afterwards, we expound the half-metallic
and spin-gapless semiconducting properties of two material classes which arouse substantial
interest for spintronic device application, i.e. Heusler alloys and two-dimensional materials.
Then, in Chapter 5, we present an overview of spintronic devices. We outline the basic phe-
nomenon of spintronics, the GMR and TMR effect, and elucidate the operation principle of
a few selected spintronic diodes and transistors. In the final part, we chose four publications,
each addressing one of the goals as stated above, to present our obtained results. Finally, we
conclude the thesis with a summary and a brief outlook.

4



2 Electronic structure

To characterize the devices under study, which are introduced in the results part (Chapter 6),
we need to solve the many-body problem. Therefore, in this chapter, we will briefly present
the many-body problem and the Born-Oppenheimer approximation. Afterwards, we will ex-
plain the fundamentals of density functional theory (DFT), the most common approach to
solve the many-body problem. We elucidate its theoretical background, the Hohenberg-Kohn
theorem, and the Kohn-Sham scheme. Then, we introduce the so-called Jacob’s ladder and
present the most used approximations of the exchange and correlation functional in material
science. Subsequently, we demonstrate how the method can be used for spin-polarized sys-
tems, and finally, we present a basis-set approach solving the Kohn-Sham equations as well
as the pseudopotential method.

2.1 Many-body problem

The fundamental problem in solid-state physics starts with the interaction of N electrons at
position r with M nuclei at site R. In quantum mechanics, this interaction can be described
by the Hamiltonian

Ĥ =−
∑
i

~2

2me
∇2
i −

∑
I

~2

2MI
∇2
I + 1

8πε0

∑
i 6=j

e2

|ri − rj |

+ e2

4πε0

∑
I,i

ZI
|ri −RI |

+ e2

8πε0

∑
I 6=J

ZIZJ
|RI −RJ |

.

(2.1)

Here the lowercase subscripts mark the electrons with mass me and charge e while the up-
percase subscripts denote the nuclei with mass M and charge Ze.
To simplify equations, we will adopt atomic units throughout this thesis (e = me = ~ =
4πε0 = 1). The first term in Eq. (2.1) represents the kinetic energy operator of the electrons

T̂e = −1
2

N∑
i

∇2
i , (2.2)

while the second term defines the kinetic energy operator of the nuclei

T̂n = −1
2

M∑
I

1
MI
∇2
I . (2.3)

The third is the electron-electron interaction operator

Ûee = 1
2

N∑
i 6=j

u(ri, rj) = 1
2

N∑
i 6=j

1
|ri − rj |

. (2.4)
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2 Electronic structure

The fourth term, which is known as the potential operator, represents the interaction between
the electrons and the nuclei

V̂en =
N,M∑
i,I

v(ri,RI) =
N,M∑
i,I

ZI
|ri −RI |

, (2.5)

and the last term is the so-called nuclei-nuclei interaction operator

Ûnn = 1
2

M∑
I 6=J

ZIZJ
|RI −RJ |

. (2.6)

Since the Hamiltonian (Eq. (2.1)) is time-independent, the time-dependent wavefunction
can be rewritten by the product of a time-dependent phase modulation factor (e−iEt) and
the time-independent part of the wavefunction. Hereby, we end up with the stationary
Schrödinger equation

ĤΨ = EΨ, (2.7)

where E denotes the energy. Unfortunately, determining the ground state of the system
by solving the corresponding Schrödinger equation is numerically impossible. However, as
the electron mass is rather small compared to the mass of the nuclei (M ∼ 103 · me), the
characteristic nuclei kinetic energy (Eq. (2.3)) is orders of magnitude smaller than the one
of the electrons. Thus, a common assumption is that the electrons move adiabatically with
the nuclei leading to the Born-Oppenheimer approximation [12]. There we assume that the
electrons just respond to a stationary potential and hence a product ansatz for the total
wavefunction allows us to split the Hamiltonian (Eq. (2.1)) into an electronic Hamiltonian

Ĥel = T̂e + Ûee + V̂ext, (2.8)

and a Hamiltonian for the nuclei

Ĥn = T̂n + Ûnn. (2.9)

Despite the simplification from the Born-Oppenheimer approximation, these two equations
are still too difficult to solve for an appropriate number of electrons and nuclei. Usually, for
the electronic structure, the electronic Hamiltonian is further simplified while the equation
for the nuclei is neglected. Before jumping now to the methods of how one can solve the
Schrödinger equation for the electronic system, it is necessary to understand how to calculate
the fundamental properties in electronic structure theory, i.e., the ground-state energy and
the electron density. The first quantity, the total energy, is defined as the expectation value

6



2 Electronic structure

of the Hamiltonian

E = 〈Ψ|Ĥel|Ψ〉
〈Ψ|Ψ〉 . (2.10)

Thus, by definition, the ground-state wavefunction Ψ0 of a system is related to the lowest
energy. Consequently, for the ground state, the variation of the energy functional has to be
stationary and as a result, we end up with the ground-state Schrödinger equation

δE[Ψ0]
δΨ∗0

= HelΨ0
〈Ψ0|Ψ0〉

− 〈Ψ0|Ĥel|Ψ0〉Ψ0

〈Ψ0|Ψ0〉2
= 0⇔ HelΨ0 = E0Ψ0. (2.11)

In the same way, one can define the electron density n(r) as the expectation value of the
electron density operator

n̂ =
N∑
i

δ(r − ri), (2.12)

and thus the electron density reads

n(r) = 〈Ψ|n̂|Ψ〉
〈Ψ|Ψ〉 = N

∫
d3r2 . . . d

3rN |Ψ(r, r2, . . . , rN )|2∫
d3r1 d3r2 . . . d3rN |Ψ(r1, r2, . . . , rN |2

. (2.13)

2.2 Density functional theory

The goal of DFT is determining the ground state energy E0 and the electron densities n(r)
for a large number of interacting electrons, which is the fundamental problem of modern
solid-state physics. For that, let us first explain briefly why determining the ground state by
solving the equation ĤelΨ = EΨ is unfeasible. One reason is that the computational cost to
solve this equation scales exponentially with the number of electrons. Another reason is that
the many-body wavefunction contains more information than necessary. To clarify this, we
would like to present the example of Ref. [13]. The oxygen atom has 8 electrons and thus, even
when we neglect the spin, the wavefunction of the oxygen atom depends on 24 coordinates;
3 spatial coordinates per electron. To solve this problem we need either a basis set or the
discretization of space. If we now consider a rather small grid with 10 points per coordinate,
we need 1024 numbers to represent the wavefunction. As usual, these numbers are stored as
floating points, with 64 bits (= 8 byte) each. Thus, to store this wavefunction would require
8 ·1012 TB of storage capacity. Fortunately, Thomas and Fermi suggested in the late 1920s to
consider the electron density as the central variable instead of the many-particle wavefunction
and thus regard the energy as a functional of the free-electron charge-density [14–16]. The
authors describe the electrons as a classical liquid and their kinetic energy is approximated

7



2 Electronic structure

using a functional of the density. Due to particular shortcomings, it is impossible to describe
the properties of molecules and solids qualitatively within this method. Thus, Dirac improved
the theory in 1930 by adding a term for the exchange energy [17], which was neglected in the
Thomas-Fermi model. However, nearly forty years later, Hohenberg and Kohn introduced a
powerful theorem based on the idea to describe the many-particle problem in terms of the
one-electron charge-density [18].

Please note that there are many other theories for solving the many-particle problem like
the Hartree-Fock [19, 20] approximation, coupled clusters [20], many-body perturbation the-
ory [21–24], in particular the Bethe-Salpeter equation [25], and the GW approximation [26],
and full configuration interaction [20], but DFT is the most efficient for solids.

2.2.1 Hohenberg-Kohn theorem

Modern DFT is based on two Hohenberg-Kohn theorems [19, 27–29]. The first one states
that for a given ground-state electron density n0, the external potential V̂ext is a unique
functional of this electron density apart from an additive constant and hence two mappings
A and B between the external potential, ground-state wavefunction Ψ0 and ground-state
electron density are bijective

{V̂ext}
A←→ {Ψ0}

B←→ {n0} . (2.14)

This means that there is a one-to-one correspondence between the external potential and
the ground-state electron density. Since the Hamiltonian and the wavefunctions provide
full knowledge of the ground-state density, we can now write the expectation value of any
observable Ô as a functional of the ground-state density

O0 = O[n0] = 〈Ψ0[n0]|Ô|Ψ0[n0]〉 . (2.15)

This relation holds especially for the energy functional.
The second Hohenberg-Kohn theorem states that for any external potential or number

of particles one can define a universal functional of the electron density F [n]. This means,
in particular, that for a certain external potential V̂ an energy functional of the electron
density E[n] can be defined and the ground-state electron density is the electron density that
minimizes this functional. A proof of both theorems can be found in Refs. [30], [31], and [27].
In general, the energy functional can be defined as follows:

E[n(r)] =
∫
d3r Vext(r)n(r) + F [n(r)] =

∫
d3r Vext(r)n(r) + 〈Ψ|T̂e + Ûee|Ψ〉 (2.16)

It is worth noting that for the ground-state density this functional equals the ground-state

8
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energy of the system, which leads us to

E[n0(r)] = min
n(r)

E[n(r)] ≤ E[n(r)]. (2.17)

Unfortunately, the proof of this theorem by Hohenberg and Kohn is restricted to electron den-
sities n(r) that are the ground-state electron densities n0(r) of Hel with a certain potential.
However, as many reasonable densities do not fulfill this requirement, different formulations
for the Hohenberg-Kohn functional were developed by Levy [32–34] and Lieb [34–36]. In
general, they split the minimization procedure into two parts. As a first step we minimize
the energy over the set of wavefunctions with a fixed density n(r)

ELL[n(r)] =
∫
d3r Vext(r)n(r) + min

Ψ→n(r)
〈Ψ|T̂e + Ûee|Ψ〉 . (2.18)

By this procedure, we arrive at the lowest energy for a given density and thus the ground-state
density can be observed by minimizing this energy functional

E0 = min
{n}

ELL[n(r)]. (2.19)

In a second step, we use the Lagrange multiplier µ to ensure particle number conservation

δE = δ

{
F [n(r)]

∫
d3r Vext(r)n(r)− µ

(∫
d3r n(r)−N

)}
= 0. (2.20)

Taking the functional derivative of Eq. (2.20) with respect to the density leads to the Euler-
Lagrange equation

δF [n(r)]
δn

+ Vext(r)− µ = 0. (2.21)

Thus, using the formalism of Levy and Lieb we can calculate the ground-state energy for any
density received from a wavefunction Ψ for N-electrons. Since all reasonable densities are N-
representable [19, 37], the Levy-Lieb formulation provides a general rule for the calculation of
the ground-state energy using the electron density. Consequently, with the Hohenberg-Kohn
theorems, we ensured that the electron density is sufficient to calculate all characteristics of a
system and we arrived at an equation for the ground-state energy of a many-electron system
involving only functionals or derivatives of functionals of the electron density. However, up
to now only the functional dependency of the external potential, usually the potential of the
nuclei, is given. Accordingly, a subsequent approach was proposed by Kohn and Sham [38]
which is presented in the next section.

9
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2.2.2 Kohn-Sham scheme

Kohn and Sham paved the way for the success of DFT by presenting an approach that is
partially based on a single Slater determinant. The fundamental idea is to map the original
many-electron problem onto an auxiliary system of non-interacting particles moving in an
effective potential Veff [38]. Therefore, we have to consider the following hypothesis: it
exists a fictitious system of non-interacting particles whose ground-state density is equal
to the ground-state electron density of the original system. For such an auxiliary system
with N electrons, the ground-state wavefunction can be expressed as a Slater determinant of
non-interacting single-particle orbitals

Ψ(x1,x2, . . . ,xN ) = 1√
N


ϕ1(x1) ϕ2(x1) . . . ϕN (x1)
ϕ1(x2) ϕ2(x2) . . . ϕN (x2)

...
... . . . ...

ϕ1(xN ) ϕ2(xN ) . . . ϕN (xN )

 , (2.22)

where the orbital wavefunctions ϕi satisfy the Schrödinger equation[
−1

2∇
2 + Veff [n](r)

]
ϕi(r) = εiϕi(r). (2.23)

Thus, the energy functional reads

ES [n] = TS [n] +
∫
d3r Veff (r)n(r). (2.24)

According to Eq. (2.21), the variation of Eq. (2.24) results in

δTS [n]
δn(r) + Veff [n](r)− µS = 0. (2.25)

Here TS denotes the non-interacting kinetic energy term and µS the Lagrange multiplier.
Now the essential element is rearranging the terms in the energy functional of Hohenberg
and Kohn (Eq. (2.16)) in the way that we obtain the equation above.

E[n] = T [n] + Uee[n] +
∫
d3r Vext(r)n(r)

= TS [n] + (T [n]− TS [n]) + EH [n] + (Uee[n]− EH [n]) +
∫
d3r Vext(r)n(r)

= TS [n] + EH [n] + Exc[n] +
∫
d3r Vext(r)n(r).

(2.26)

10
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In this equation, EH [n] constitutes the classical Coulomb interaction, as well as their self-
interaction. It is also known as the Hartree energy

EH [n] = 1
2

∫ ∫
d3r d3r′

n(r)n(r′)
|r − r′|

. (2.27)

Exc[n] represents the exchange-correlation energy functional

Exc[n] = T [n]− TS [n] + Uee[n]− EH [n]. (2.28)

It is worth noting that the rearrangement in Eq. (2.26) is only valid when the ground-state
density of the interacting many-particle system can be mapped onto the ground-state density
of the auxiliary system of non-interacting particles. Under the rearrangement, the Euler-
Lagrange equation (2.21) becomes

δTS [n]
δn(r) + Vext(r) + VH [n](r) + Vxc[n](r)− µ = 0 (2.29)

and thus it turns out that the equations (2.25) and (2.29) are equivalent when

Veff [n](r) = Vext(r) + VH [n](r) + Vxc[n](r)− (µ− µS)

= Vext(r) + VH [n](r) + Vxc[n](r).
(2.30)

Here the difference between the Lagrange multipliers µ and µS was embedded in the exchange-
correlation term Vxc(r). In this way, the variation of the energy functional (Eq. (2.26)) with
respect to the density of the fictitious system leads directly to the well-known Kohn-Sham
equations [

−1
2∇

2 + Vext(r) + VH [n](r) + Vxc[n](r)
]
ϕi(r) = εiϕi(r). (2.31)

The potential VH indicates a Hartree-like repulsion

VH [n](r) =
∫
d3r′

n(r′)
|r − r′|

, (2.32)

while the exchange-correlation potential Vxc[n](r) is defined as the functional derivative of
the related energy counterpart

Vxc[n](r) = δExc[n]
δn(r) . (2.33)

11
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Finally, in the representation of the non-interacting single-electron wavefunctions ϕi, the
electronic density becomes

n(r) =
occ.∑
α

|ϕα(r)|2. (2.34)

Basically, within the Born-Oppenheimer approximation, Kohn and Sham found an exact
solution for the many-particles problem that no longer contains wavefunctions of the inter-
acting many-electron system. The ground-state electron density can now be calculated using
single-electron wavefunctions that fulfill a Schrödinger-like equation, but with an unknown
exchange-correlation potential which prevents us from solving Eq. (2.31). Thus, in modern
DFT the main challenge is finding suitable approximations for the potential Vxc[n](r) [39,
40].

2.2.3 Exchange-correlation energy functional

As a first step, the exchange-correlation energy functional in Kohn-Sham DFT is split into
an exchange (Ex) term and a correlation part (Ec) as

Exc[n] = Ex[n] + Ec[n] =
∫
d3r n(r) [εx(n(r)) + εc(n(r))] . (2.35)

Throughout this section, εα denotes the energy density of the system. Furthermore, the two
functionals, Ex and Ec, can be defined as follows [41]

Ex[n] = 〈ΦS [n]|Ûee|ΦS [n]〉 − 1
2

∫ ∫
d3r d3r′

n(r)n(r′)
|r − r′|

(2.36)

and

Ec[n] = 〈Ψ[n]|T̂ + V̂ext + Ûee|Ψ[n]〉 − 〈ΦS [n]|T̂ + V̂ext + Ûee|ΦS [n]〉 . (2.37)

|ΦS [n]〉 represents the Kohn-Sham wavefunction while |Ψ[n]〉 stands for the ground-state
wavefunction of the real interacting system with density n(r). Nevertheless, an exact mathe-
matical expression of these energy functionals, which describe the many-particle interactions,
is unknown. In principle, an explicit form could be constructed by solving all possible sys-
tems, but this attempt is obviously unfeasible. Thus, to calculate the ground-state energy
of the interacting system, approximations are necessary. Due to this, over the last decades,
several exchange and correlation functionals were developed [42–45]. However, the major
difficulty in designing new functionals is that the addition of more parameters which make
the functional more flexible or satisfy more constraints does not guarantee an improvement
in describing the interactions across chemical environments. Thus, a systematical improve-
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ment of the exchange-correlation energy functional is impossible. To characterize functionals,
Perdew presented a hierarchy called ”Jacob’s ladder” [46] which starts at the bottom with
the Hartree approximation, where only the classical electron interaction is taken into account
and other remaining exchange and correlation energies are neglected. Every rung thereafter
represents an additional ingredient to the functional and in the end the ladder results in
the divine functional. The first two rungs of this ladder represent the two most common
parametrizations in modern DFT, which are the local density approximation (LDA) and the
generalized gradient approximation (GGA). Historically, the most important approximation
is LDA which was first suggested by Kohn and Sham [38], where the exchange-correlation
functional reads

ELDAxc =
∫
d3r n(r)εuniformxc (|n(r)|). (2.38)

Here εuniformxc stands for the exchange-correlation energy of a uniform electron liquid per
volume [28].
Additionally, GGAs include the gradient of the density and are of the general form

EGGAxc =
∫
d3r f(nσ(r),∇nσ(r)). (2.39)

It turns out that, in comparison with LDAs, GGAs tend to improve the results for ioniza-
tion energies, total energies, and geometrical energy differences. Obviously, GGA considers
inhomogeneities in the density more than LDA can. A drawback of both, LDA and GGA,
is the systematic underestimation of band gaps in insulators and semiconductors [47]. Ad-
vanced approaches, such as LDA+U [48], self-interaction correction (SIC) [37, 49], and the
application of semi-local exchange-correlation potentials [50] as well as self-energy correc-
tions (GW) [51] lead to accurate band gap widths compared to the experiments. In defiance
of the success of LDA and GGA, the challenge in finding new improvements in exchange-
correlation functionals goes on. So, with the inclusion of the Laplacian and similar quantities,
the so-called meta-GGA, the step on the third rung was already made. The fourth rung was
reached with a different approach, i.e., applying terms with a dependency on the occupied
Kohn-Sham orbitals. This can be done in different manners, e.g. by mixing a fraction of the
exact exchange to other functionals, leading to the so-called hybrid functionals [52]. Among
all functionals, the one introduced by Perdew, Burke, and Ernzerhof (PBE) [53] stands out
since it is the most popular functional in material science and used for all calculations within
this thesis. This is caused by many reasons, e.g. hybrid functionals, which offer the most
accurate description for the exchange and correlation energy, are computationally rather de-
manding calculations since they require the calculation of the exact exchange. PBE, in fact,
is computationally very efficient and provides, besides other properties, reasonable results for
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the lattice constants and energies. In this approximation, the exchange part reads [53]

EPBEx [n(r)] = −
∫
d3r n(r)3kF

4π Fx(s) (2.40)

with

Fx(s) = 1 + k − k

(1− µs2/k) (2.41)

where k and µ are constants, i.e. k = 0.804 and µ = 0.21951. s names a dimensionless
gradient and is defined as

s = |∇n(r)|
2kFn(r) . (2.42)

The correlation part is given by [53]

EPBEc [n(r)] =
∫
d3r n(r)

[
εuniformc +H(rS , ζ, t)

]
. (2.43)

rs denotes the local Seiz radius (n(r) = 3/(4πrs) = k3
F /3π2), ζ = (n↑(r) − n↓(r))/n(r)

the spin polarization, and t = |∇n(r)|/(2φ(ζ)ksn(r)) another dimensionless density gradient.
Furthermore, ks =

√
4kF /(πa0) marks the Thomas-Fermi screening wave number and φ(ζ) =[

(1 + ζ)
2
3 + (1− ζ)

2
3
]
/2 is a spin-scaling factor. With this, H(rS , ζ, t) reads

H(rS , ζ, t) = γφ3(ζ)
a0

ln
[
1 + βt2

γ
· 1 +At2

1 +At2 +A2t4

]
(2.44)

with

A = β

γ

[
exp

{
−ε

uniform
c a0
γφ3(ζ)

}
− 1

]−1

(2.45)

and the constants β ≈ 0.066725 and γ = (1− ln 2)/π2 ≈ 0.031091.
Nevertheless, since all known exchange-correlation functionals are just approximations, one

has to compare, in the end, the calculated results with experimental data.

2.3 Extension to spin-polarized systems

So far, we discussed the formulation of DFT for non-magnetic (non-spin-polarized) systems.
Due to the fact that the spin polarization leads to a magnetization density m(r) and the
magnetization m[n(r)] is a functional of the ground-state electron density n(r), in principle,
application of DFT to magnetic systems is possible.
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This extension of DFT to the spin polarized case was done by von Barth and Hedin in
1972 [54]. The authors defined the energy functional in terms of the spin density matrix
ραβ(r) which is given by

ραβ(r) = n(r)δαβ + (m(r) · σ)αβ, (2.46)

where δαβ denotes the Kronecker delta and σ = (σx, σy, σz) are the Pauli matrices.
To describe the vector field m(r) in the notation of DFT, we have to generalize the concept

of the Kohn-Sham orbitals. In the non-polarized case, the orbitals are scalar functions while
for the description of a general magnetization density with single-particle wavefunctions, we
have to use a representation with two-component spinors

Ψi(r) =
[
ϕiα(r)
ϕiβ(r)

]
, (2.47)

where ϕiα and ϕiβ indicate the two spin projections. Using these two-component spinors, the
spin density matrix can be written as

ρ(r) =
occ.∑
i

[
ϕiα(r)
ϕiβ(r)

] [
ϕiα(r) ϕiβ(r)

]∗
=

occ.∑
i

[
ϕiα(r)ϕ∗iα(r) ϕiα(r)ϕ∗iβ(r)
ϕiβ(r)ϕ∗iα(r) ϕiβ(r)ϕ∗iβ(r)

]
. (2.48)

For collinear ferromagnets, the non-diagonal elements of this spin density matrix become
zero.

In addition, using spinors, the magnetization density m(r) and electron density n(r) can
be expressed as

m(r) = µB

occ.∑
i

Ψ†i (r)σΨi(r) (2.49)

and

n(r) =
occ.∑
i

Ψ†i (r)IΨi(r), (2.50)

where µB stands for the Bohr magneton and I represents the unit matrix. As described
in Ref. [54], with the spin density matrix, all ground-state properties of a magnetic system
can be determined. Especially, the total energy is a unique functional of that spin density
matrix and reaches its minimum for the ground-state value. Thus, as a first step, we have to
calculate the total energy as a functional of the spin density matrix and afterwards apply the
variation principle to find the minimum. For the spin-polarized case, the energy functional
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is defined as

E[ρ] = T [ρ] + 1
2

∫
d3r d3r′

n(r)n′(r)
|r − r′|

+
∑
α,β

∫
d3r V ext

αβ (r)ραβ(r) + Exc[ρ]. (2.51)

Accordingly, the single-particle Kohn-Sham equations can be written in the same way as in
the non-polarized case

∑
β

[
δαβ

1
2∇

2 + V eff
αβ (r)

]
ϕiβ(r) = δαβεiϕiβ(r). (2.52)

Here the effective potential matrix elements V eff
αβ are defined as

V eff
αβ = V ext

αβ (r) + δαβ

∫
d3r′

n(r′)
|r − r′|

+ V xc
αβ(r), (2.53)

where the exchange-correlation potential matrix elements read

V xc
αβ(r) = δExc[ρ]

δραβ(r) . (2.54)

2.4 Basis sets

2.4.1 Linear combination of atomic orbitals

One way to solve the Kohn-Sham equations (Eq. (2.31) or (2.52)) is based on finding a proper
basis set for the expansion of the wavefunction. Finkelstein and Horowitz proposed in 1928
a linear combination of atomic orbitals (LCAO) to describe the molecular orbital of the H+

2
ion [55]. This method was further developed by Lennard-Jones who analyzed the bonding
in diatomic molecules of the first main row of the periodic table with this technique [56].
More than 20 years later Roothaan introduced a generalized form of the LCAO approach for
spin-polarized many-particle systems where the many-electron wavefunction was expressed
as a linear combination of a set of unknown basis-functions [57]. Hence, in general, the
wavefunction for every system can be written as

Ψ(r) =
∑
i

ciχi(r). (2.55)

Here the ci’s are expansion coefficients that need to be determined by the self-consistent
field (SCF) method and {χi} forms a complete set of functions. Basically, this expansion is
infinite, but in practice, it is truncated after some steps.
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2.4.2 Slater type orbitals

Slater-type orbitals (STOs) have been one of the first forms of basis functions and read [20,
58]

χ(r) = (2ζ/a0)n+1/2

(2n)! rn−1e−ζr/a0Ylm(θ, ϕ). (2.56)

Here Ylm are the real spherical harmonics, ζ is the so-called orbital exponent which is related
to the effective charge of the nucleus, r is the distance of the electron from the nucleus, and
n, m, and l denote the quantum numbers.

Anyway, the exponential function in STOs is of hydrogen-like character and thus this
description is the most natural for atomic structure calculations. However, the usage of
STOs drastically increases the computation time since K4/8 two-electron integrals have to
be calculated within the SCF procedure. Thus, different descriptions for the atomic orbitals
were developed which are presented in the next sections.

2.4.3 Gaussian type orbitals

In 1950, the usage of Gaussian-type orbitals (GTOs) was introduced by Boys, where one
cartesian Gaussian orbital centered on atom µ reads [20, 59]

χ(r) = Nxiµy
k
µz

l
µ with N =

(2α
π

) 3
4
[

(8α)i+k+l i! k! l!
(2i)! (2k)! (2l)!

]
, (2.57)

where α is a positive orbital exponent, and i, k, and l are non-negative integers. It is worth
noting that such Cartesian GTOs have no quantum number n. Thus, every real orbital
(1s, 2s, . . .) needs to be described by a linear combination of several GTOs with different
orbital exponents.

As an alternative to the Cartesian representation, a spherical representation of the Gaus-
sians is also possible

χ(r) = Nrn−1
µ e−αr

2
µ

1√
2

(Y m∗
l (θ, ϕ)± Y m

l (θ, ϕ)) . (2.58)

Here Y m
l stands for the complex spherical harmonics.

Please note, in comparison to STOs, for small values of r, GTOs give poor representations
of these atomic orbitals. Thus, a linear combination of multiple functions is very important.
As a consequence, many more integrals are concerned in the calculations with GTOs than
in the related STO calculations, but nevertheless, the calculation of these integrals takes
less computation time. This is a consequence of the fact that the result of the product
of two three-dimensional Gaussian functions is another Gaussian function around a shifted
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center. As a result, the three- and four-center two-electron integrals are reduced to two-center
integrals.

2.5 Pseudopotentials

Usually, multi-particle systems possess a large number of atoms or electrons and thus cal-
culations of their electronic properties take up a lot of time. In consequence, sometimes a
separation of the electrons into core- and valence-electrons on every atom is reasonable [60].
The total energy is then calculated as the sum of the core- and valence-electron energies.

A more sophisticated method is the so-called pseudopotential (PP) approach. Initially,
the concept of PPs was developed to simplify electronic structure calculations by eliminating
the inert core electrons within a frozen-core approximation [61, 62] and account only for the
valence electrons. Usually, the structure and properties of the considered system are then
sufficiently described by the valence electrons. The gist of the PP approach is to substitute
the strong core potential, including all valence-core interactions, with a PP whose ground
state wavefunction ΨPS reproduces the all-electron (AE) wavefunction ΨAE at and beyond
a particular core radius rC [19]. Following the derivation for the orthogonalized plane wave
method (OPW) [63], the valence AE wavefunction ΨAE

v is augmented with core wavefunctions
ΨAE
c to obtain finally the pseudo-wavefunction, which reads in Dirac notation

|ΨPS
v,i 〉 = |ΨAE

v,i 〉+
∑
c

Bcv,i |ΨAE
c,i 〉 . (2.59)

The composite index i = {E, l,m} represents the dependence on the energy E and the angular
momentum (l,m). Assuming orthonormality, Eq. (2.59) can be written as [64]

|ΨPS
v,i 〉 = |ΨAE

v,i 〉+
∑
c

|ΨAE
c,i 〉 〈ΨAE

c,i |ΨPS
v,i |〉 . (2.60)

Inserting this equation into the Schrödinger equation Ĥ |ΨAE〉 = E |ΨAE〉 leads to the result
that the pseudo-wavefunction is an eigenstate of the Hamiltonian[

T̂ + V PS
c

]
|ΨPS

i 〉 = EPS |ΨPS
i 〉 . (2.61)

Thus, the pseudopotential V PS
v can be calculated by inverting Eq. (2.61)

V PS
v = V (r)

∑
c

(Ev − Ec) |ΨAE
c 〉 〈ΨAE

c | , (2.62)

where V (r) denotes the Coulomb potential.
Phillips and Kleinman introduced the PP method for the calculation of wavefunctions [65]
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which brings along some consequences. In particular, Vps is a non-local, energy-dependent
potential. As evident from the index i, depending on the angular momentum, the projector
term acts differently on each state. Nevertheless, according to Kleinman and Bylander [66],
one can convert the non-local pseudopotential into a semi-local form

V PS = V (r) +
∑
l

V PS
l P̂l, (2.63)

where P̂l is an angular momentum projection operator. Since the sum over all l converges
fast with increasing l, the sum can be aborted at a specific l = lmax. Most often, lmax ≤ 3
is sufficient to ensure convergence. Typically, lmax is increased by 1 and the potential V (r)
covers the l = 0 part. In addition, the projector term in Eq. (2.63) is repulsive and short-
ranged and thus damps the dominating Coulomb repulsion near the core and annihilates the
nodes of ΨAE resulting in smoother wavefunctions ΨPS close to the nucleus.

During the last decades, several approaches have been presented to optimize the pseu-
dopotential V PS with respect to physical plausibility and application (see Refs. [64, 67, 68],
and references therein). For that reason, the pseudo-wavefunction has to fulfill additional
requirements. First of all, although ΨAE 6= ΨPS , the electron density inside the core radius
rC needs to be conserved [61, 69] and thus the following requirements have to be fulfilled∫ rC

0
dr r2|ΨAE |2 =

∫ rC

0
dr r2|ΨPS |2. (2.64)

Additionally, ΨPS should reproduce the scattering properties of ΨAE over a wide energy
range. For that, the logarithmic derivatives have to coincide at rC to ensure that

1
ΨPS
v (rC)

dΨPS
v (r)
dr

∣∣∣∣
r=rC

= 1
ΨAE
v (rC)

dΨAE
v (r)
dr

∣∣∣∣
r=rC

. (2.65)

Subsequently, by fulfilling Eq. (2.65), a good transferability of the PP is accomplished at a few
energy points per angular momentum channel, comprising the range of occupied states [67,
70].

Further progress in this field was done by Vanderbilt by introducing the so-called ultrasoft
pseudopotential (USPP) [70]. In this scheme the normalization condition (Eq. (2.64)) is
relaxed, leading to smoother pseudo-wavefunctions ΨPS inside the core radius rC . Hence,
this approach leads to a reduction of atomic orbitals χi(r) which form the total wavefunction
in the expansion (2.55). This is realized by augmenting the square modulus of the pseudo-
wavefunctions using additional contributions Qij to recapture the original electric charge
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densities. Therefore, the generalized norm-conserving condition within this scheme reads

〈ΨAE
i |ΨAE

j 〉 = 〈ΨPS
i |ΨPS

j 〉+Qij . (2.66)

Now, the only remaining constraint for the USPPs is given by the matching condition at
rC (Eq. (2.65)). In general, USPPs tend to be less transferable than normal PPs and one
needs to consider more reference energies in Eq. (2.65) [70]. However, in return, the narrowed
basis-set allows for expensive calculations.

As a consequence, combining norm-conserving USPPs with numerical basis sets allows one
to deal with large systems and predict their ground-state properties efficiently. In contrary
to Slater- and Gaussian-type orbitals, numerical basis sets are treated only up to certain
cutoff radii [71]. Thus, the matrices are sparse and small in size leading to a speedup of
the calculations. The resulting numerical orbital, also known as pseudo-atomic orbital, is an
eigenfunction of the atomic pseudo-Hamiltonian in a spherical box [71, 72]. Within the ”split-
valence” method [73], the basis set is constructed in a way that one (single-ζ), two (double-ζ),
and more orbitals per quantum channel l are taken into account. Please note that the choice
of the cut-off radii for the basis set as well as the core radii for the pseudopotential depend
on the considered system.
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The calculation of a current through a nanoscale device is a very challenging problem. The
size of such systems is comparable to the Fermi wavelength of the conduction electrons and
thus the effective-mass approximation [74] is not valid anymore [75]. Due to the scattering of
the electrons by only a few atoms, one has to consider on the one hand the electronic structure
of the system and on the other hand the electrons’ arrangement. DFT-based methods yield
reasonable results for periodic systems and molecules but fail somehow when an external bias
is applied or when one looks at open systems and hence a more sophisticated description is
necessary.

Up to now, to describe electronic transport in terms of ab initio methods, three conceptually
different schemes are available, i.e., the Kubo-Greenwood equation [76, 77], the Boltzmann
transport theory [78, 79], and the Landauer-type approach [80–82].

In Kubo theory, the conductivity is calculated quantum mechanically using the current-
current correlation function of the ground-state. Within this method, the transport coefficient
is given in the linear response regime and the strength of scattering inside the system is not
restricted. However, beyond linear response, this formalism is no longer valid [76]. The
Boltzmann approach is based on the incoherent scattering of the conduction electrons at
defects. The mean free path of the electrons is short compared to the characteristic size of the
system. Within this approach, all phase information is lost. In the Landauer-type approaches,
the nanoscopic conductor is treated as a quantum-mechanical scatterer for electrons that are
incoming from one lead and moving out at another. This approach can be extended for open
systems by combining the Keldiysh method [83] with the Landauer-Büttiker formalism [80].
For that, one has to impose certain boundary conditions. Nowadays, this combination is
usually called the non-equilibrium Green’s functions (NEGF) method.

In this chapter, we will cover only the last transport formalism. For this purpose, we will
first establish the Landauer formula and afterwards introduce the NEGF method.

Figure 3.1: Schematic drawing of an incoming wave ΨL
n,k and two outgoing, one reflected

wave ΨL
n′′,−k′′ and one transmitted wave ΨR

n′,k′ through a mesoscopic system. The
sample consists of two leads with different chemical potentials (µL and µR) and
a central region.
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3.1 Landauer-Büttiker formalism

With the Landauer formalism, we can describe systems where a sample of length L is sand-
wiched between two electron reservoirs (see Fig. 3.1) and, to be valid, this length L has to be
much smaller than the electron relaxation length lr (L � lr) [84]. Hence, here we consider
elastic scattering within the central region. In addition, we assume that inside the reservoirs,
the electrons can move reflectionless, and the number of modes contributing to the current
is given by

M =
∑
n

θ(E − εn), (3.1)

where

εn = E(n, k = 0), (3.2)

and θ is the Heaviside step function.
The system can be thermalized at a specific temperature and chemical potential of each

contact. Accordingly, electrons entering the system from a reservoir are described by the
Fermi-Dirac distribution f(E) of the specific contact.

Due to the elastic scattering, an incoming wave from the left reservoir at a certain energy
E gives rise to a superposition with reflected and transmitted states at the same energy

ΨL
n,kn =

∑
n′

tn,n′(E)ΨR
n′,kn′

−
∑
n′′

rn,n′′(E)ΨL
n′′,−kn′′ , (3.3)

where tn,n′ denotes the transmission coefficient between the state n with wave-vector kn of
the incoming electron and the transmitted state n′ with wave-vector kn′ of a transmitted
electron at energy E while rn,n′′ is the reflection coefficient between the original state n, kn
and the reflected state n′′, kn′′ at the same energy.

Hence, we can calculate the transmitted current density at a given energy E and state n, k
as

jtn,kn(E) =
∑
n′

‖tn,n′(E)‖2jn′,kn′ (E). (3.4)

Here jn′,k′ is the current density of the state n′ in the right reservoir.
A moving uniform electron gas with N electrons per unit length carries a current I = Nv,

where v denotes its velocity. Thus, the current in a certain mode m per unit length is
determined by the group velocity which is defined as the derivative of the dispersion relation
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of band m

jm,km = vkm(Em)f(Em) = 1
2π

∂Em
∂k

f(Em). (3.5)

Here f(Em) is for the Fermi-Dirac distribution

f(Em) = 1

1 + e
Em−EF
kBT

, (3.6)

where T denotes the temperature, EF the Fermi level, and kB the Boltzmann constant.
With this, the total current flowing from the left to the right contact is given by

ItL→R =
∫
dk
∑
n

jn,kn(E) =
∫
dk
∑
n,n′

‖tn,n′(E)‖2jn′,kn′ (E)

= 1
2π

∫
dk
∑
n,n′

‖tn,n′(E)‖2∂En
′

∂k
f(En′ − µL).

(3.7)

µL marks the chemical potential of the left reservoir.
To convert the integration over k into an integration over the energy we make use of the

density of states (DOS) D(E) which reads for one-dimensional systems D(E) =
(
∂E
∂k

)−1
.

Hereby, the current becomes

ItL→R = 1
2π

∫ ∞
−∞

dE D(E)∂E
∂k

f(E − µL)
∑
n,n′

‖tn,n′(E)‖2

= 1
2π

∫ ∞
−∞

dE

(
∂E

∂k

)−1 ∂E

∂k
f(E − µL)

∑
n,n′

‖tn,n′(E)‖2

= 1
2π

∫ ∞
−∞

dE f(E − µL)
∑
n,n′

‖tn,n′(E)‖2

= 1
2π

∫ ∞
−∞

dE f(E − µL)
∑
n

Tn(E),

(3.8)

where Tn(E) denotes the transmission per conduction channel n, and the Fermi-Dirac dis-
tribution f(E − µL) implies that electrons are injected from the left lead up to the chemical
potential µL into the right-moving modes.

Analogous, the current from the right to the left lead reads

ItR→L = 1
2π

∫ ∞
−∞

dE f(E − µR)
∑
n′,n

‖tn′,n(E)‖2 = 1
2π

∫ ∞
−∞

dEf(E − µR)
∑
n′

Tn′(E). (3.9)

Accordingly, here Tn′(E) represents the transmission probability of mode n′ of the right
reservoir. Due to time inversion symmetry, the transmission coefficient from the left to the
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right lead tn,n′ must be equal to the one from the right to the left contact tn′,n. For that
reason, the following relation for the total transmission probabilities from the left to the right
reservoir holds:

∑
n

Tn(E) =
∑
n,n′

‖tn,n′(E)‖2 =
∑
n′,n

‖tn′,n(E)‖2 =
∑
n′

Tn′(E). (3.10)

Finally, the total current is calculated as the difference between the current from the left to
the right contact and the current from the right to the left contact. Thus, using Eqs. (3.8)
and (3.9) the current is given by

I = ItL→R − ItR→L = 1
2π

∫ ∞
−∞

dE

[∑
n

Tn(E)
]

[f(E − µL)− f(E − µR)] . (3.11)

Neglecting temperature, the Fermi-Dirac distribution becomes a step function. Furthermore,
we can identify the difference of the chemical potentials as the applied voltage V = µL − µL
and thus we obtain the following formula for the conductance

G = 1
2π
∑
n

Tn(V ). (3.12)

This last equation is known as the two-terminal Landauer formula [85]. The prefactor,
however, is only half of the conductance quantum G0 = 1/π. This is due to the fact that for
spin-degenerate systems, the transmission for the spin-up and spin-down channel is equal so
that a factor of two appears.

The formalism above was extended by Büttiker to calculate the current in multi-terminal
devices [80, 82]. To account for multiple terminals, one has to sum up the current of all
terminals and thus the current in lead p reads

Ip = 1
2π
∑
q,n

Tq←p,n(E)µp − Tp←q,n(E)µq. (3.13)

With Vi = µi we obtain

Ip =
∑
q

GqpVp −GpqVq, (3.14)

where

Gqp = 1
2π
∑
n

Tq←p,n. (3.15)
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Since the current has to be zero when all potentials are equal, the conductance from lead p
to q has to be equal to that from q to p (Gqp = Gpq) and thus the current can be calculated
as

Ip =
∑
q

Gqp(Vp − Vq). (3.16)

The formalism discussed above left out the calculation of the transmission matrix Tn for
each particular channel n and the dependence of the transmission matrix on the applied bias
voltage. One solution for that is the combination of the Kohn-Sham single-particle description
with the NEGF approach.

3.2 Non-equilibrium Green’s function method

The NEGF approach became the state-of-the-art method for the calculation of current and
charge densities in nanoscale conductors, both, molecular and semiconducting, under an
applied bias [86, 87]. The aim of the following sections is to introduce the one particle
Green’s functions in a compact form together with the derivation of the expressions for the
charge density and the current.

3.2.1 Hamiltonian, overlap matrix, and Green’s function of the system

We now consider a system that consists of three parts, particularly of two semi-infinite leads
(left and right) and the central region (see Fig. 3.2). Since we do not take interactions
between the left and right electrodes into account, the central region must be sufficiently
large and includes parts of the electrodes with bulk properties and the entire scattering
region [88]. Providing that the system is translational invariant in the plane perpendicular to
the transport direction, the Hamiltonian for the perpendicular elements of any k point reads

Ĥk =


ĤL,k V̂LC,k 0
V̂ †LC,k ĤC,k V̂ †RC,k

0 V̂RC,k ĤR,k

 . (3.17)

For simplicity, in the following, we derive the transport equations for one-dimensional systems
where k = kx. For higher dimensions, one has to consider that only the perpendicular part
of k contributes to transport. ĤL,k and ĤR,k denote the Hamiltonian of the semi-infinite
left and right lead, respectively, while ĤC,k is the Hamiltonian of the central region. V̂LC,k
(V̂RC,k) describes the interaction between the left (right) electrode and the central region.
Now, we split the electrodes into planes of unit cells and suppose that each plane interacts only
with the neighboring plane as depicted in Fig. 3.2. This results in the following Hamiltonians
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hL,k hL,k hL,khL,k hL,k hL,khL,k

HLL,kHLL,kHLL,k HLL,k HLL,k HLL,k

HL,k C,k R,kH

HRR,k HRR,k HRR,kHRR,kHRR,kHRR,k

hR,k hR,k hR,k hR,k hR,k hR,k hR,k

VL,k VR,k right electrodecentral regionleft electrode

H

Figure 3.2: Schematic drawing of a two-terminal device composed of two semi-infinite elec-
trodes and a central region. The central region must be sufficiently large and
includes parts of electrodes by which the left and right leads could be treated as
bulk material.

for the left and right lead

ĤL,k =



. . . . . . 0

. . . ĥL,k ĤLL,k

Ĥ†LL,k ĥL,k ĤLL,k

0 Ĥ†LL,k ĥL,k

 and ĤR,k =


ĥR,k Ĥ†RR,k 0
ĤRR,k ĥR,k Ĥ†RR,k

ĤRR,k ĥR,k
. . .

0 . . . . . .

 . (3.18)


ĤL,k V̂LC,k 0
V̂ †LC,k ĤC,k V̂ †RC,k

0 V̂RC,k ĤR,k



|ΨL,k〉
|ΨC,k〉
|ΨR,k〉

 = Ek


|ΨL,k〉
|ΨC,k〉
|ΨR,k〉

 . (3.19)

From the first and third row of Eq. (3.19), we obtain the following relations between the
wavefunctions of the electrodes and the central region

ĤL,k |ΨL,k〉+ V̂LC,k |ΨC,k〉 = Ek |ΨL,k〉 =⇒

|ΨL,k〉 = (z − ĤL,k)−1V̂LC,k |ΨC,k〉 ,
(3.20)

V̂RC,k |ΨC,k〉+ ĤR,k |ΨR,k〉 = Ek |ΨR,k〉 =⇒

|ΨR,k〉 = (z − ĤR,k)−1V̂RC,k |ΨC,k〉 ,
(3.21)

where

z = Ek ± iη. (3.22)

At this point, we would like to introduce the Green’s function (GF) method which can be
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used to solve partial differential equations like the Schrödinger equation [89]

Ĥ |Ψ〉 = E |Ψ〉 , (3.23)

where Ĥ denotes the Hamilton operator.
The corresponding GF is defined as the solution of the equation

(z − Ĥ)Ĝ(E) = I, z = E ± iη. (3.24)

Here I stands for the identity matrix.
Depending on the positive or negative sign, we receive different side limits, which are usually

referred to as advanced (−) and retarded (+) GF. Accordingly, by using the unperturbed GF
of the left and right contact, Eqs. (3.20) and (3.21) can be rewritten as

|ΨL,k〉 = ĝL,kV̂LC,k |ΨC,k〉 , (3.25)

and

|ΨR,k〉 = ĝR,kV̂RC,k |ΨC,k〉 , (3.26)

where

ĝL/R,k = (z − ĤL/R,k)−1 (3.27)

are the GFs of the unperturbed semi-infinite contacts.
In the so-called spectral representation, the advanced (Ĝ−) and retarded (Ĝ+) GF can be

expressed in terms of the wavefunctions as follows

Ĝ±k (E) =
∑
n

|Ψn,k〉 〈Ψn,k|
E − En ± iη

f(En,k − EF ), (3.28)

where f(En,k − EF ) denotes the Fermi-Dirac distribution.
From this equation, one can easily identify the following relation between the advanced and
retarded GF (

Ĝ+
k

)†
= Ĝ−k . (3.29)

So far, we have considered the basis set |Ψ〉 to be orthogonal. If this is not the case, the
overlap Ŝ = 〈Ψ|Ψ〉 has to be taken into account. The overlap matrix of the considered system
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then reads

Ŝk =


ŜL,k ŜLC,k 0
Ŝ†LC,k ŜC,k Ŝ†RC,k

0 ŜRC,k ŜR,k

 (3.30)

with

Ŝi,k = 〈Ψi,k|Ψi,k〉 , i = {L,C,R}

ŜLC,k = 〈ΨL,k|ΨC,k〉

ŜRC,k = 〈ΨR,k|ΨC,k〉 .

(3.31)

Consequently, the GF can be calculated from the equation

(zS − Ĥ)Ĝ(E) = I. (3.32)

Assuming that the GF of the considered device is given by

Ĝk =


ĜL,k ĜLC,k ĜLR,k

ĜCL,k ĜC,k ĜCR,k

ĜRL,k ĜRC,k ĜR,k

 , (3.33)

where we utilized the relation (Ĝij,k)† = Ĝji,k, we get from Eq. (3.32)

zŜL,k − ĤL,k zŜLC,k − V̂LC,k 0
zŜ†LC,k − V̂

†
LC,k zŜC,k − ĤC,k zŜ†RC,k − V̂

†
RC,k

0 zŜRC,k − V̂RC,k zŜR,k − ĤR,k

 ·

ĜL,k ĜLC,k ĜLR,k

ĜCL,k ĜC,k ĜCR,k

ĜRL,k ĜRC,k ĜR,k,

 =


I 0 0
0 I 0
0 0 I

 .
(3.34)

Considering now the three equations obtained from the second column of Ĝk

(zŜL,k − ĤL,k)ĜLC,k + (zŜLC,k − V̂LC,k)ĜC,k = 0 (3.35)

(zŜ†LC,k − V̂
†
LC,k)ĜLC,k + (zŜC,k − ĤC,k)ĜC,k + (zŜ†RC,k − V̂

†
RC,k)ĜRC,k = I (3.36)

(zŜRC,k − V̂RC,k)ĜC,k + (zŜR,k − ĤR,k)ĜRC,k = 0, (3.37)

we obtain from Eqs. (3.35) and (3.37)

ĜLC,k = −ĝL,k
(
zŜLC,k − V̂LC,k

)
ĜC,k (3.38)

ĜRC,k = −ĝR,k
(
zŜRC,k − V̂RC,k

)
ĜC,k. (3.39)

28



3 Electronic transport

Inserting these equations into Eq. (3.36) leads to

−
(
zŜ†LC,k − V̂

†
LC,k

)
ĝL,k

(
zŜLC,k − V̂LC,k

)
ĜC,k +

(
zŜC,k − ĤC,k

)
ĜC,k

−
(
zŜ†RC,k − V̂

†
RC

)
ĝR,k

(
zŜRC,k − V̂RC,k

)
ĜC,k = I.

(3.40)

Thus, the GF of the central region ĜC,k reads

ĜC,k(E) =
[
zŜC,k − ĤC,k − Σ̂L,k(E)− Σ̂R,k(E)

]−1
, (3.41)

with

Σ̂L,k(E) =
(
zŜ†LC,k − V̂

†
LC,k

)
ĝL,k(E)

(
zŜLC,k − V̂LC,k

)
(3.42)

Σ̂R,k(E) =
(
zŜ†RC,k − V̂

†
RC,k

)
ĝR,k(E)

(
zŜRC,k − V̂RC,k

)
(3.43)

which are the so-called self-energies of the left and right lead, respectively.
So far, we discussed the ground-state properties of the system and thus, in the following,

we will discuss what happens when we apply a bias voltage to the considered system.

3.2.2 Response to an incoming wave

In the non-equilibrium case, the reservoirs possess different chemical potentials and there-
fore will inject electrons. Subsequently, these electrons will occupy states n corresponding
to incoming waves |Ψnk〉. The response of our system |Φnk〉 can be calculated with the
equation [89]

Ĥk (|Ψnk〉+ |Φnk〉) = Ek (|Ψnk〉+ |Φnk〉) . (3.44)

If the electrons are injected from the left contact, the incoming wave and response are given
by

|Ψnk〉 =


|ΨL,nk〉

0
0

 , and |Φnk〉 =


|ΦL,nk〉
|ΦC,nk〉
|ΦR,nk〉

 (3.45)
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Therefore, applying Eqs. (3.17) and (3.44), the response from the central region reads

−
(
Ĥk − Ek

)
|Ψnk〉 =

(
Ĥk − Ek

)
|Φnk〉

|Φnk〉 = −Gk


Ek − ĤL,k

−V̂ †L,k
0

 |ΨL,nk〉 = Ĝk


0

V̂ †L,k
0

 |ΨL,nk〉

⇒ |ΦCL,nk〉 := ĜC,kV̂
†
L,k |ΨL,nk〉

(3.46)

Here we assumed that |ΨL,nk〉 is a solution of the Schrödinger equation for the left reservoir
(ĤL,k |ΨL,nk〉 = Ek |ΨL,nk〉).

In the same way, for an incoming wave from the right lead, the response on state m can
be defined as

|ΦCR,mk〉 := ĜC,kV̂
†
R,k |ΨR,mk〉 . (3.47)

It is worth noting that the scattering states (Eqs. (3.46) and (3.47)), using all feasible incoming
waves from every electrode, provide a complete set of solutions of the Schrödinger equation,
except for the localized states in the central region [90]. Furthermore, here the only part
of the wave that travels across the central part is the incoming wave (|ΨC,k〉 = |ΦCL, nk〉).
As a consequence, by applying Eq. (3.26), we can express the wavefunction in the right lead
|ΨR,k〉 in terms of the incoming wave from the left contact |ΨL,nk〉

|ΨR,k〉 = ĝR,kV̂R,k |ΨC,k〉 = ĝR,kV̂R,kĜC,kV̂
†
L,k |ΨL,nk〉 . (3.48)

To calculate the wavefunction in the left reservoir containing the incoming wave |ΨL,nk〉, we
obtain a slightly more complicated formula

|ΨL,k〉 =
(
1 + ĝL,kV̂L,kĜC,kV̂

†
L,k

)
|ΨL,nk〉 . (3.49)

Knowing the wavefunctions for the incoming waves in the different reservoirs allows us to
satisfy the different solutions depending on the electron reservoirs which fill the contacts.

For the non-equilibrium case, two quantities are of peculiar interest: the charge density
and the current. Therefore, we start with the charge density operator in the next section.

3.2.3 Charge density operator

In a self-consistent DFT cycle for the non-equilibrium system, the fundamental goal is the
determination of the charge density for the device region. This can be done by using the
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wave functions in the central region given by incoming waves of the left and right electrodes

n̂ = n̂R + n̂L, (3.50)

where

n̂L =
∑
n,k

|ΦCL,nk〉 〈ΦCL,nk| f(Enk − µL), (3.51)

and

n̂R =
∑
m,k

|ΦCR,mk〉 〈ΦCR,mk| f(Emk − µR). (3.52)

By applying Eq. (3.46), we can rewrite the above equation as follows

n̂L =
∑
n,k

ĜC,kV̂
†
L,k [|ΨL,nk〉 〈ΨL,nk|] V̂L,kĜ†C,kf(Enk − µL)

=
∑
n,k

∫ ∞
−∞

dE f(E − µL)ĜC,kV̂ †L,k [|ΨL,nk〉 〈ΨL,nk| δ(E − Enk)] V̂L,kĜ†C,k

= i

2π
∑
k

∫ ∞
−∞

dE f(E − µL)ĜC,kV̂ †L,k
[
ĝL,k − ĝ†L,k

]
V̂L,kĜ

†
C,k.

(3.53)

Here the last step is based on the Dirac identity [91]

lim
η→0+

1
x± iη

= ∓iπδ(x) + P
(1
x

)
, (3.54)

and ĝL,k represents the spectral representation of the retarded GF of the left contact, which
reads

ĝL,k = ĝ+
L,k =

∑
n

|ΨL,nk〉 〈ΨL,nk|
E − En + iη

(3.55)

and it holds

ĝ+
L,k −

(
ĝ+
L,k

)†
= ĝ+

L,k − ĝ
−
L,k. (3.56)

At this point, we would like to introduce a new quantity to characterize the interaction
between the left lead and the device region, the so-called broadening matrix

Γ̂L,k = i V̂ †L,k

[
ĝL,k − ĝ†L,k

]
V̂L,k = i

[
Σ̂L,k − Σ̂†L,k

]
, (3.57)

where Σ̂L,k represents the self-energy of the left contact (cf. Eq. (3.42)).
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Repeating the steps above for the right lead results in the non-equilibrium charge density
operator

n̂ = 1
2π
∑
k

∫ ∞
−∞

dE
[
ĜC,kΓ̂L,kĜ†C,k f(E − µL) + ĜC,kΓ̂R,kĜ†C,k f(E − µR)

]
(3.58)

Formally, we can divide the charge density operator into an equilibrium and a non-equilibrium
part

n̂ = D̂L + ∆̂RL

= 1
2π
∑
k

∫ ∞
−∞

dE ĜC,k
[
Γ̂L,k + Γ̂R,k

]
Ĝ†C,k f(E − µL)

+ 1
2π
∑
k

∫ ∞
−∞

dE ĜC,k Γ̂R,k Ĝ†C,k (f(E − µR)− f(E − µL))

(3.59)

which is equivalent to

n̂ = D̂R + ∆̂LR

= 1
2π
∑
k

∫ ∞
−∞

dE ĜC,k
[
Γ̂L,k + Γ̂R,k

]
Ĝ†C,k f(E − µR)

+ 1
2π
∑
k

∫ ∞
−∞

dE ĜC,k Γ̂L,k Ĝ†C,k (f(E − µR)− f(E − µL)) .

(3.60)

The equilibrium part of the charge density operator

In the equilibrium case, combining the density of the left and right reservoir is feasible [88].
Demanding that the states of the leads are not coupled via the device region, we can rewrite
the product ĜC,k

[
Γ̂L,k + Γ̂R,k

]
Ĝ†C,k as

ĜC,k
[
Γ̂L,k + Γ̂R,k

]
Ĝ†C,k = i ĜC,k

[(
Σ̂L,k + Σ̂R,k

)
−
(
Σ̂L,k + Σ̂R,k

)†]
Ĝ†C,k

= −i ĜC,k
[(
Ĝ†C,k

)−1
−
(
ĜC,k

)−1
]
Ĝ†C,k

= −i
(
ĜC,k − Ĝ†C,k

)
= −2 Im

[
ĜC,k

]
. (3.61)

With this, the equilibrium part of the charge density operator reads [88]

D̂L = 1
π

∑
k

∫ ∞
−∞

dE Im
[
ĜC,k

]
f(E − µL)

= 1
π

∑
k

Im
[∫ ∞
−∞

dE ĜC,kf(E − µL)
]
. (3.62)
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Figure 3.3: Schematic drawing of the integration contours L+ (]∞+ i∆;EF − γ + i∆[), C+,
and [EB + iη;∞+ iη] (L−(]∞− i∆;EF − γ− i∆[), C−, and [EB − iη;∞− iη]) of
the retarded (black) (advanced (red)) Green’s function enclosing the Fermi poles
(black and red dots, respectively) together with typical points for the Gaussian
quadrature on the contour (black and red squares). EF and EB denote the Fermi
level and the bottom of the valance band, respectively.

Please note that for a non-collinear magnetic system the definition of the density as the
imaginary part of the retarded Green’s function is not valid. This is based on the fact that
the imaginary part of each complex number is a real quantity but for a non-collinear system
the elements in the spin density matrix can be complex.

For the retarded GF Ĝ+(E), the poles are all lying on the real axis, and apart from that,
the function is analytic. Thus, it is practical to do the integral over the complex contour for
the Green’s functions. According to the residue theorem for the complex contour beginning
with segment L+, followed by C+, and proceeding along the real axis from EB + iη to∞+ iη

(see Fig. 3.3), it holds ∮
dz Ĝ(z)f(z − µL) = 2πikBT

∑
zn

Ĝ(zn). (3.63)

Here T denotes the temperature, and the Matsubara poles of the Fermi-Dirac distribution
are located at zn = i(2n+ 1)πkBT , n = 1, 2, 3, . . . [92].

With the residues of the Fermi-Dirac distribution, −kBT , we obtain for the retarded and
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advanced GF∫
dE Ĝ+

C,k(E)f(E − µ) = −
∫
C++L+

dz+ Ĝ+(z+)f(z+ − µ)− 2πikBT
∑
z+
n

Ĝ+(z+
n ) (3.64)

and∫
dE Ĝ−C,k(E)f(E − µ) = −

∫
C−+L−

dz− Ĝ−(z−)f(z− − µ) + 2πikBT
∑
z−n

Ĝ+(z−n ). (3.65)

Now, for a given temperature, the contour integral can be calculated numerically in the
complex plane. Thus, the integration can be performed by Gaussian quadrature with a
minimal number of points (see Fig. 3.3). Since the main variation on L stems from the
Fermi-Dirac distribution, f(z − µ) should be used as a weight function (see Ref. [93] for a
detailed description of this method).

The non-equilibrium part of the charge density operator

Since the scattering states break time-reversal symmetry due to their boundary conditions,
∆̂RL and ∆̂LR, are non-analytical quantities. In fact, the imaginary part of these quantities
is directly related to the local current [94]. To obtain the values of ∆̂RL and ∆̂LR, these
quantities must be evaluated on a fine energy point grid and for a finite level broadening iη.
Due to numerical errors mainly arising from the real-axis integrals, the results for Eqs. (3.59)
and (3.60) are not equivalent. Hence, it is reasonable to use a weighted sum of both integrals
for the calculation of the charge density operator [88]

n̂ = w
(
D̂L + ∆̂RL

)
+ (1− w)

(
D̂R + ∆̂LR

)
, (3.66)

with

w =

(
∆̂LR

)2

(
∆̂LR

)2
+
(
∆̂RL

)2 . (3.67)

The choice of the weighting factor w can be justified by the following argument: Let us
assume that a stochastic variable ∆̃LR with its mean value ∆LR is the result of the numerical
integration, and the variance is proportional to the square of the overall size of the numerical
integral, i.e., Var(∆̃LR) ∝ (∆LR)2. Now, the numerical calculation with weighted integrals as
Eq. (3.66) becomes a stochastic variable ñ with variance Var(ñ) ∝ w2(∆RL)2−(1−w)2(∆LR)2.
The weighting w which minimizes this variance is the one given in Eq. (3.67).

Please note that for spin-polarized calculations, the weight has to be calculated for every
spin channel separately.
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3.2.4 Current and transmission

Different chemical potentials in the leads give rise to a flow of electrons. Thus, we can define
the probability current as the time derivative of the charge density in the central region [89]

j = ∂n(r)
∂t

=
∑
ik

∂(〈Ψk|i〉 〈i|Ψk〉
∂t

. (3.68)

Considering the time-dependent Schrödinger equation i∂|Ψk〉
∂t = Ĥk |Ψk〉 and splitting the

probability current j into one part containing the incoming electrons from the left lead into
the central region and a second part for the incoming electrons of the right contact leads to

j = jL + jR, (3.69)

where

jL/R = i
∑
k

(
〈ΨL/R,k|V̂L/R,k|ΨC,k〉 − 〈ΨC,k|V̂ †L/R,k|ΨL/R,k〉

)
. (3.70)

A more detailed derivation of the probability current can be found in Ref. [89].
Now, the charge current i at a certain energy point E can be treated as the current which

transfers one electron with charge −e with the same probability as the probability current.
Hence, the electric current from the left to the right contact iR(E) can be expressed by
applying Eqs. (3.26) and (3.48)

iR(E) = −i
∑
k

(
〈ΨR,k|V̂R,k|ΨC,k〉 − 〈ΨC,k|V̂ †R,k|ΨR,k〉

)
= −i

∑
k

(
〈ΨC,k|V̂ †R,k(ĝR,k − ĝ†R,k)V̂R,k|ΨC,k〉

)
= −

∑
k

〈ΨC,k|Γ̂R,k|ΨC,k〉

= −
∑
nk

〈ΨL,nk|V̂L,k Ĝ†C,k Γ̂R,k ĜC,k V̂ †L,k|ΨL,nk〉 .

(3.71)

As a result, the total current flowing from the left lead to the right reads

IR =
∑
k

∫ ∞
−∞

dE fL(E)
∑
n

δ(E − En) 〈ΨL,nk|V̂L,k Ĝ†C,k Γ̂R,k ĜC,k V̂ †L,k|ΨL,nk〉

=
∑
k

∫ ∞
−∞

dE fL(E)
∑
n,m

δ(E − En) 〈ΨR,nk|V̂L,k|Ψm,k〉 〈Ψm,k|Ĝ†C,k Γ̂R,k ĜC,k V̂ †L,k|ΨR,nk〉

=
∑
m,k

∫ ∞
−∞

dE fL(E) 〈Ψm,k| Ĝ†C,kΓ̂R,kĜC,kV̂ †L,k

(∑
n

δ(E − En) |ΨL,nk〉 〈ΨL,nk|
)
V̂L,k |Ψm,k〉

= 1
2π
∑
k

∫ ∞
−∞

fL(E)
∑
m

〈Ψm,k|Ĝ†C,k Γ̂R,k ĜC,k Γ̂L,k|Ψm,k〉
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= 1
2π
∑
k

∫ ∞
−∞

dE Tr
[
Ĝ†C,k Γ̂R,k ĜC,k Γ̂L,k

]
fL(E), (3.72)

where fL(E) = f(E − µL) represents the Fermi-Dirac distribution of the left lead.
Thus, the total current of the device is given by [80, 95]

I = IL − IR

= 1
2π
∑
k

∫ ∞
−∞

dE Tr
[
Ĝ†C,k Γ̂R,k ĜC,k Γ̂L,k

]
(f(E − µL)− f(E − µR)) .

(3.73)

This is exactly the Landauer equation for the current (Eq. (3.11)) with the k-resolved trans-
mission

Tk(E) = Tr
[
Ĝ†C,k(E) Γ̂R,k(E) ĜC,k(E) Γ̂L,k(E)

]
. (3.74)

Spin transport
The transmission in Eq. (3.74) in matrix representation for any energy point E reads

T (E) = Tr
[(

Γ̂L(E) ĜC(E)
)†

Γ̂R(E) ĜC(E)
]
. (3.75)

Here we neglected the index k for simplicity.
We cover now a system where the spins in both leads are aligned in z-direction while the

central region possesses an arbitrary spin polarization. In that case, the GF of the central
region ĜC can be represented as a full matrix while the matrices Γ̂L and Γ̂R are diagonal
matrices of the form

Γ̂L/R =

Γ̂↑L/R 0
0 Γ̂↓L/R

 , and ĜC =
[
Ĝ↑↑C Ĝ↑↓C
Ĝ↓↑C Ĝ↓↓C

]
. (3.76)

Accordingly, we obtain four independent transmission probabilities to characterize the trans-
port of one electron flowing from one electrode with spin ±z to another with spin polarization
±z. Thus, the total transmission is given by a sum of these transmission probabilities

T (E) = T ↑↑(E) + T ↑↓(E) + T ↓↑(E) + T ↓↓(E). (3.77)

Consequently, the spin-resolved transmission reads

T σσ
′(E) = Tr

[(
Γ̂σL(E) Ĝσσ′

C (E)
)†

Γ̂σ′R (E) Ĝσσ′
C (E)

]
. (3.78)

The terms with mixed spins, T ↑↓ and T ↓↑, represent the so-called adiabatic spin-flip trans-
missions. Hence, they attain the value 0 when the spins in the central region are also aligned
along the z-axis.
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4 Half-metallic magnets and spin-gapless
semiconductors

Since we have elucidated our theoretical methods in the previous chapters, we will now focus
on two material classes with unique electronic transport properties, particularly the half-
metallic magnets (HMMs) which were predicted by de Groot et al. in 1983 [96], and the
spin-gapless semiconductors (SGSs) which were proposed in 2008 by Wang [97]. Both classes
attracted great research interest for spintronic application in the last decade [11, 98–101].
The HMMs possess an energy gap between the valance- and conduction-band in one spin
channel and continuous bands for electrons with the other spin polarization. Thus, for one
spin polarization, the electrons are semiconducting, while for the other, the electrons keep
their metallic character. As a consequence, the conduction electrons at the Fermi energy
(EF ) are 100% spin-polarized [96].

On the other hand, the SGSs lie on the border between magnetic semiconductors and
HMMs. For type-I SGSs, the minority-spin bands behave like in HMMs while the majority-
spin bands behave differently. The conduction- and valance-band edges touch at the Fermi
level, and thus there appears a zero-width gap as presented in Fig. 4.1 (b).

In contrast, type-II SGSs have a unique electronic band structure. In this materials appears
a finite gap below and above EF for different spin-channels while the valance- and conduction-
band edges of different spin-channels touch at the Fermi level. A schematic representation of
the DOS of HMMs and SGSs (type I and type II) is given in Fig. 4.1.
Both properties, half-metallicity as well as spin-gapless behavior, have been identified in the
family of two-dimensional materials as well as in Heusler compounds. In this chapter, we
will focus on both material classes while we start with Heusler compounds and subsequently
discuss the two-dimensional systems.

E
f

E
f

E
f

DOS DOS DOS

E EE(a) (b) (c)

Figure 4.1: Schematic drawing of the DOS of (a) a half-metallic magnet, (b) a type-I spin-
gapless semiconductor, and (c) a type-II spin-gapless semiconductor.
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4 Half-metallic magnets and spin-gapless semiconductors

4.1 Heusler alloys

The discovery of Heusler compounds dates back to the beginning of the 20th century when
Heusler revealed that the addition of sp elements to Cu-Mn alloys makes such materials fer-
romagnetic even though these alloys do not contain any ferromagnetic element [102]. Orig-
inally, Heusler compounds have been defined as ternary intermetallic compounds. At the
stoichiometric composition, the family is subdivided into full Heuslers (X2YZ) and semi-
Heusler compounds (XYZ) which crystallize in L21 and C1b structures, respectively. Thus,
one unit cell is composed of four interpenetrating fcc sublattices where atoms are located at
the positions (0, 0, 0) and (1/2, 1/2, 1/2) for the X element, (1/4, 1/4, 1/4) for the Y atom
and (3/4, 3/4, 3/4) for the Z element (see Fig. 4.2). In semi-Heusler compounds, the site
(1/2, 1/2, 1/2) is vacant. The L21 structure forms when the nuclear charge of the X element
is less than the one of Y in the same period while C1b forms under the opposite condi-
tions [103]. It is worth noting that the C1b structure can be created out of the L21 by
interchanging 50% of the X atoms with Y elements. Accordingly, this structure is no longer
centrosymmetric. In most of the today known Heusler compounds, Mn enters as Y element
while it is also possible that Mn occupies the X positions although only a few of these systems
were studied experimentally [104–107]. Fundamentally, the Heusler structure is formed from
the ordered coupling of two binary B2 compounds, i.e. XY and XZ, where both compounds
may crystallize in CsCl type structure, e.g., CoMn and CoAl result in Co2MnAl. Thus, the
ability of materials to crystallize in the B2 structure indicates the possibility to form new

X

X Y

XX'YZ

XYZ

X2YZ

Quaternary Heusler

Semi Heusler

Full Heusler

Vacant Z

a

Y

X

X Y

X' Z

Z

Figure 4.2: Structure adapted by half, full, and quaternary Heusler alloys. The lattice consists
of four interpenetrating fcc lattices where in the case of semi-Heusler alloys (XYZ),
one sublattice is vacant.
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4 Half-metallic magnets and spin-gapless semiconductors

Heusler compounds. Furthermore, it is also possible to leave one of the four sublattices un-
occupied, so that such materials crystallize in the C1b structure. In the literature, the latter
compounds are often denoted as semi- or half-Heusler compounds, while the compounds in
the L21 structure are labeled full-Heusler alloys. Extensive experimental studies revealed that
in stoichiometric composition the majority of Heusler compounds orders ferromagnetically.
Through the observation of the shape memory effect in the compound Ni2MnGa [108] and
the discovery of half-metallic magnetism in NiMnSb [96], Heusler alloys aroused tremendous
theoretical and experimental interest within the last decades. Heusler compounds possess
interesting magnetic properties. Within the same family, one can study a series of interesting
magnetic phenomena like antiferromagnetism, helimagnetism, Pauli paramagnetism, itiner-
ant and localized magnetism, or heavy-fermionic behavior [109–114], but within this thesis,
we stick to half-metallic magnetism and spin-gapless semiconductors. These two properties
were also identified within the family of quaternary Heusler compounds.

4.1.1 Quaternary Heuslers

In addition to usual full- and inverse-Heusler compounds, a special class with 1:1:1:1 stoi-
chiometry crystallizing in the so-called Y-type structure arouse significant interest in the last
decade [115]. These quaternary Heusler alloys possess the chemical formula (XX’)YZ while
the X, X’, and Y elements are transition-metals and Z is an sp element. Here the X element
is only located at the position (0, 0, 0) while the X’ atom occupies the position (1/2, 1/2, 1/2)
(see Fig. 4.2). Moreover, the valence of the X’ element is lower than the valence of the X
atoms while the valence of the Y atom is lower than the valence of both, X and X’. In liter-
ature, the parentheses are usually omitted for reasons of simplicity and thus these materials
are denoted as XX’YZ. The family of ordered quaternary Heusler compounds is also often
named LiMgPdSn-type Heuslers, which are also known as LiMgPdSb-type Heusler alloys.

4.1.2 Half-metallic magnetism in Heusler compounds

The characteristics of half-metallic magnetism were first introduced by de Groot et al. based
on band structure calculations of the semi-Heusler compounds NiMnSb and PtMnSb [96].
In such materials, one of the spin channels is metallic, whereas the other spin subbands
show a gap at the Fermi level (see Fig. 4.1 (a)). Moreover, Ishida et al. found that also
the full-Heusler compounds Co2MnZ (Z=Si, Ge) exhibit half-metallic behavior [116, 117].
Since then, several other systems have been predicted to possess half-metallicity. Among
these materials are the binary magnetic oxides, e.g. CrO2 and Fe3O4, diluted magnetic
semiconductors (Ga1−xMnxAs), zinc-blende compounds (MnAs and CrAs) [118–120], and
colossal magnetoresistance materials (Sr2FeMoO6 and La0.7Sr0.3MnO3) [121]. In half-Heusler
compounds, the half-metallic magnetism is accompanied to their special C1b structure and
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4 Half-metallic magnets and spin-gapless semiconductors

as a consequence, to the symmetry of such systems. Since the position (1/2, 1/2, 1/2) is
unoccupied in the C1b structure, the symmetry of those systems is reduced to tetrahedral.
Thus, the half-metallic gap originates from the strong hybridization of the d-states between
the higher and lower valent transition metal elements [122]. Please note here that the half-
metallic behavior of semi-Heusler compounds is very sensitive to the crystal structure and
symmetry. The cubic point symmetry at the Mn sites in X2MnZ Heusler compounds causes
a symmetry of Mn-3d-t2g states which differs from the symmetry of the Sb-p-states. For
this reason, these states do not hybridize, and thus no gap is opened in the minority spin
channel. In full-Heusler compounds, the appearance of half-metallic magnetism is a subtle
issue and the explanation for this is quite complicated. More details about this can be found
in Ref. [123]. It was demonstrated that all half-metallic full Heuslers follow the Slater-Pauling
rule Mt = Zt − 24 and thus the total magnetic moment Mt scales linear with the number of
valance electrons Zt [123]. For inverse Heusler compounds it was discovered that they follow
the rule Mt = Zt − 18 when X = Sc, Ti or in some cases V [124]. In 2013, an ab-inito study
focusing on the magnetic and electronic properties of Heusler compounds in LiMgPdSn-type
structure revealed that many of these materials exhibit half-metallic character [125]. For
these compounds, a Slater-Pauling behavior was also demonstrated. In all cases where X ′ =
V, Y = Ti, and Z = Al or Si, the t1u states are unoccupied and are located high in energy
resulting in the Slater-Pauling rule Mt = Zt − 18. When Z = As, the s and p orbitals are
located deeper in energy and therefore the minority spin d orbitals are also deeper in energy
resulting in an occupation of the t1u states. Thus, for all XVTiAs the rule Mt = Zt− 24 rule
is applicable. For all the other X, X ′, and Y combinations, the Slater-Pauling behavior is
the same as for the full Heuslers [125].

4.1.3 Spin-gapless semiconducting behavior in Heusler compounds

The first proposed spin-gapless semiconductor has been Co-doped PbPdO2 in 2008 [97].
Since then, many different classes of materials ranging from two to three dimensions have
been identified to exhibit SGS characteristics while a few of them could be confirmed by ex-
periments. Moreover, nowadays, graphene nanoribbons altered by CH2 radical groups [126],
HgCr2Se4 under a pressure of 9 GPa [127] and boron nitride nanoribbons with vacancies [128]
are known to possess spin-gapless characteristics. Ab-inito calculations revealed that several
Heusler compounds exhibit either type-I or type-II SGS behavior. The first Heusler al-
loy whose type-I SGS properties were experimentally demonstrated was Mn2CoAl [106]. In
addition, this Heusler compound possesses high electron and hole mobility and a Curie tem-
perature of 720 K [106] making it suitable for spintronic applications at room temperature.
In 2013, two extended ab-initio studies focused on the electronic and magnetic properties of
quaternary Heuslers and many have been identified to be SGSs [125, 129]. In 2019 Gao et

40



4 Half-metallic magnets and spin-gapless semiconductors

al. accomplished a high-throughput screening of SGSs in ordered quaternary Heuslers where
they focused on the mechanical and dynamical stability and identified 70 stable SGSs. Fur-
thermore, based on the spin characteristics of the bands near the Fermi energy, they showed
that four types of SGSs can be realized [130].

4.2 Two-dimensional materials

Two-dimensional materials which possess ferromagnetic properties are of great potential
for device applications. In the past few years, especially two-dimensional transition-metal
dichalcogenides arouse great interest since they possess unique optical, mechanical, electronic,
and magnetic properties and are thus very interesting for a wide range of device applications.
Transition-metal dichalcogenides consist of hexagonal ordered metal atoms sandwiched be-
tween two layers of chalcogen atoms. The structure of this material class is presented in
Fig. 4.3 and within this family, devices ranging from vertical field-effect transistors to verti-
cal tunnel diodes have already been experimentally realized [131–136].
Especially, two-dimensional lateral heterojunctions opened up a new research field in material
science and device applications [137]. The two-dimensional morphology makes the devices
very sensitive to external control and the atomic thickness enables them to become extremely
compact in size.

Figure 4.3: (a) Top and side view of the trigonal prismatic structure (2H phase) of two-
dimensional transition-metal dichalcogenides. (b) The same as (a) for the octa-
hedral structure (1T phase).
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4.2.1 Half-metallic ferromagnetism in two-dimensional materials

In 2017, Huang et al. [138] discovered that one monolayer CrI3 is an Ising ferromagnet,
in particular a magnetic semiconductor which was the first experimental characterization
of two-dimensional magnetism. Later, Bonilla et al. [139] observed ferromagnetism with
large magnetic moments in two-dimensional VSe2 on van der Waals substrates, particularly
highly oriented pyrolytic graphite and MoS2. One monolayer Iron or Cobalt on top of two-
dimensional MoS2 (X/MoS2, X = Fe, Co) is predicted to possess robust half-metallic and
thus also ferromagnetic properties with 100 % spin polarization [140, 141]. On this basis of
the Heisenberg spin Hamiltonian model, the calculated Curie temperature of this system is
465 K [141] making this system favorable for room temperature applications. In addition,
a protective layer of h-BN does not have a negative influence on the electronic structure of
Fe/MoS2. Thus, due to the room-temperature ferromagnetism and half-metallicity together
with the excellent stability, two-dimensional Fe/MoS2 seems to be a promising material for
spintronic device applications. Among these materials, several monolayers of easily exfoliable
di-halides CoI2, CrI2, FeBr2 and FeCl2 [142, 143], as well as tri-halides MX3 (M = Mn, Ni, V
and X = Br, I, F, Cl) [144], and layered ternary CrSiTe3 [145] of the telluride material class
have been suggested to exhibit half-metallic magnetism.

4.2.2 Spin-gapless semiconducting behavior in two-dimensional materials

Among the family of two-dimensional transition-metal dichalcogenides, V-based compounds
such as VS2, VSe2, and VTe2 have gained particular interest in material science due to their
intrinsic magnetism. Such compounds crystallize in two different phases: the 2H and 1T
structure while the 2H phase is energetically more favorable [146]. In the 2H phase, the
geometry of the metal atoms is trigonal prismatic (see Fig. 4.3 (a)), whereas in the 1T phase,
one of the chalcogen layers is shifted with respect to the metal layer, which results in an octa-
hedral geometry around the metal atoms (see Fig. 4.3 (b)). In fact, theoretically, in V-based
compounds, both, the 2H and 1T phase, have been predicted to exhibit ferromagnetism [147],
but experimentally it has only been verified in the 1T phase of VSe2 [139] and VS2 [148]. For
VS2, it has been theoretically predicted that the 2H phase is energetically more stable and
possesses a spin-gapless ground state [146, 149] while the 1T phase of VSe2 does not present
a spin-gapless behavior and is thus a normal ferromagnetic material. Nevertheless, depend-
ing on the growth conditions multiple two-dimensional transition-metal dichalcogenides are
known to adopt either 2H or 1T structure in the one-monolayer limit [150]. Consequently,
VS2 crystallized in the 2H phase seems to be the most promising material for spintronic
application within the family of transition-metal dichalcogenides. In addition to the afore-
mentioned materials, also transition-metal di-halides MX2 (M = Ni, Sc, Y and X = Br, Cl,
I) are predicted to possess spin-gapless semiconducting behavior [142, 143].
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Over more than four decades, chipmakers were able to scale down complementary metal-
oxide-semiconductor (CMOS) field-effect transistors which allowed Moore’s law [1] to stay on
track. According to this law, the number of transistors in dense integrated circuits doubles
every two years, which improves the performance in most of the circuits. Unfortunately, in
pursuance of the International Roadmap for Devices and Systems (IRDS), scaling will reach
the intrinsic physical limit in the near future [151].

Nowadays, integrated circuits are inextricable parts of microcontrollers and computer pro-
cessors. The current computing technology is based on the von Neumann architecture [152],
which consists of four separate elements, i.e. the central processing unit (CPU), the memory
unit, the bus system, and the input/output devices. The bus system is shared between all
elements leading to the so-called memory bottleneck [153]. Since the clock speed of the CPU
exceeds the data transfer rate, the CPU is continually forced to wait for data from the mem-
ory. On top of that, it was demonstrated that for many computing tasks, most of the energy
and time is needed for the data transfer between the memory and the CPU, rather than
the information processing itself [154]. Moreover, the CPU and memory speed has increased
much faster than the data transfer rate leading to an increase in the severity of the bottleneck
with every new CPU generation.

To mitigate the memory bottleneck, in modern computer processors, high-speed memory,
the so-called cache, is located close to the CPU, storing only the most frequently accessed
data and instructions. This cache is made up of static random access memory (SRAM),
which consists of six CMOS transistors and is therefore volatile. In addition to the volatility,
SRAM elements are quite large, and thus, occupy a lot of space. As a result, the storage
capacity of the cache is very small. Hence, replacing the SRAM elements with a non-volatile
memory technology is an active research field in industry and academia. Currently, magnetic
random access memory (MRAM) [155] is the most promising contender to replace SRAM.
The MRAM technology combines relatively high access speeds with non-volatility, low power
consumption, and unlimited endurance.

Additionally, the memory bottleneck motivated researchers to develop new or alternative
computing architectures. For that reason, the research field of spintronics has attracted a lot
of attention as it aims to improve the device performance in terms of memory and process-
ing capability, and very low power consumption. As a result, many new spintronic devices
have been proposed [156], ranging from beyond-CMOS devices [157] like BiSFETs [158] or
spin-transfer-torque domain wall (STT/DW) devices [159] to racetrack memory [160] with
skyrmions as information carriers [161] to replace conventional memory elements. Therefore,
we focus here on the fundamentals of a few selected diode and transistor concepts. In the
following, we will introduce the basic phenomena, which are favored for spintronics to replace
conventional electronics in integrated circuits, i.e. the GMR and TMR effect, and then, we
concentrate on five selected spin diodes. Afterwards, we introduce five spin transistors.
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5.1 Giant magnetoresistance and tunnel magnetoresistance effect

Grünberg and Fert studied the electrical resistance in Fe/Cr multi-layer films and superlat-
tices, respectively [4, 5]. The giant magnetoresistance (GMR) effect was carried out by the
two groups independently on slightly different samples. They found that increasing the thick-
ness of the non-magnetic Cr layers weakened the anti-parallel alignment of the magnetization
of the Fe layers and led to a significant change of the electrical resistance when applying an
external magnetic field. This effect can be attributed to the spin-dependent scattering of
electrons in the Fe layers since aligning the magnetic orientation of the Fe layers to paral-
lel allows electrons with a specific spin to flow through the sample, and thus, reduces the
electrical resistance. Hence, the GMR effect can be evaluated by the following equation

GMR := ∆R
R

= R↑↓ −R↑↑
R↑↑

. (5.1)

After the discovery of the GMR effect, the interaction between magnetism and transport
phenomena attracted great attraction and inspired the development of technical applications,
i.e., magnetic recording heads in hard disk drives were successfully fabricated utilizing the
GMR principle. Although, for some systems, large GMR values have been obtained at low
temperatures, the ratios at room temperature were fairly small [162].

A different effect where also the resistance of the junction depends on the orientation of
the magnetization of the electrodes emerges in tunnel junction formed by an insulating layer
sandwiched between two magnetic layers and connected to two current-voltage probes. The
two magnetic layers are therefore magnetically decoupled, and thus, their mutual orientation
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Figure 5.1: Two-current model for (a) parallel and (b) anti-parallel orientation of the mag-
netization of the electrodes of a magnetic tunnel junction. The thickness of the
arrows is proportional to the amount of electrons which are able to tunnel through
the barrier.
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can be manipulated by applying an external magnetic field. If the tunnel barrier is thin
enough, electrons are able to tunnel from one electrode to the other. Usually, the parallel
alignment of the magnetization directions is the high-current state and the anti-parallel be-
longs to the low-current state (see Fig. 5.1). The efficiency of the electronic device is defined
by the TMR ratio which is, according to Jullière’s model [6], for zero bias given by

TMR := G↑↑ −G↑↓
G↑↓

, (5.2)

where G↑↑ and G↑↓ denote the conductance in the anti-parallel and parallel orientation of
the magnetization directions of the electrodes, respectively. With a bias voltage V , Eq. (5.2)
becomes

TMR = I↑↑ − I↑↓
I↑↓

, (5.3)

where I↑↑ (I↑↓) is the electrical flux through the magnetic tunnel junction (MTJ) for parallel
(anti-parallel) orientation of the magnetization of the leads.

Although the TMR effect was already known since 1975 [6], remarkable results at room
temperature have been measured first by Miyazaki et al. in 1994 [163] and Moodera et al. in
1995 [164]. In 2001, Mathon and Umerski [165] and Butler et al. [166] predicted large TMR
effects of several thousand percent for iron electrodes separated by MgO. Within the same
year, Bowen et al. demonstrated significant TMR values in epitaxial Fe/MgO/FeCo(001)
tunnel junctions on GaAs(001) [167]. The breakthrough of the TMR effect was in 2004 when
Parkin et al. [7] and Yuasa et al. [168] were able to fabricate Fe/MgO/Fe junctions which
reached a TMR value of more than 200% at room temperature. Since then, MTJs have
replaced GMR devices. Besides this, the TMR effect aroused great interest for spintronic
device applications and is the basis of new non-volatile storage concepts like magnetic random
access memory (MRAM) [169], mLogic [170], and all-spin logic devices [171].

Moreover, it was proposed that in asymmetric junctions, the amount of I↑↓ exceeds I↑↑
independent of the applied bias voltage, and thus, leads to a negative TMR value [172, 173].

5.2 Spin diodes

Currently, there is an enormous interest in the development of spintronic devices in which
utilizing the spin of electrons, other than just the charges, is preferred to obtain new function-
alities which go beyond the possible ones of conventional electronic devices. Spintronic diodes
are revolutionary candidates, which have repercussions on several technological applications
ranging from neural networks to the Internet of Things [174] due to the ability to combine
rectification and memory in a single device. For instance, spin-torque diodes are promising
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devices to emulate neurons in neuromorphic computing systems [175, 176]. In the following,
we briefly overview the concept of five selected spintronic diodes. First, the spin-orbit torque
diode and thereafter the magnetic tunnel diode, the resonant magnetic tunnel diode, the
reconfigurable magnetic tunnel diode and finally, the Ohmic spin diode.

5.2.1 Spin-torque diode

In 2005, Tulapurkar et al. [177] discovered the spin-torque diode effect in MTJs. The authors
designed a tunnel device that was able to convert a spin-polarized microwave current into a
rectified voltage due to the simultaneous actions of a spin-transfer torque and the tunneling
magnetoresistance (see Fig. 5.2 for a schematic illustration of the spin-torque diode effect).
From then on, the interest in spin-torque diodes increased for two main reasons: (i) due to the
complementary metal-oxide-semiconductor (CMOS) compatibility, i.e. these diodes can be
fabricated with the same materials which are used for spin-transfer-torque MRAMs, and (ii)
due to their size, i.e. actually they are the smallest known rectifiers. The performance of such
spintronic diodes can be characterized by many different quantities such as output resistance,
noise equivalent power (NEP), conversion efficiency, or sensitivity. The conversion efficiency
is defined as the ratio between the dc delivered power and the input microwave power, and
the sensitivity describes the amount of the rectified output from the input microwave power.

Recently, the spin-torque diode was also tipped to operate as a neuron in neuronal net-
works [175, 176].

Figure 5.2: Schematic drawing of the spin-torque diode effect.
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5.2.2 Magnetic tunnel diode

Due to their capability to achieve high-frequency operations, magnetic tunnel diodes (MTDs)
(ferro-magnet−insulator−ferromagnet diodes), also known as spin tunnel diodes, are poten-
tial candidates for high-speed diode applications. Similar to conventional metal-insulator-
metal (MIM) diodes, good performance requires high asymmetry, large response, and strong
non-linearity together with low resistance [178]. These figures of merit are mainly affected by
the difference in the work functions of the electrodes (φ1 − φ2) and the height of the tunnel
barrier. On the one hand, a high asymmetry requires a high tunnel barrier together with a
large work function difference of the electrodes, but on the other hand, a high tunnel barrier
reduces the on-current. Consequently, a trade-off between these parameters is necessary. If
a forward bias voltage is applied to a MTD, the effective thickness of the insulating layer
is reduced, leading to an exponential increase of the tunneling current. Depending on the
relative orientation of the magnetization of the electrodes, the MTD is situated either in a
high-current or low-current state (see Fig. 5.3 for a schematic drawing of the operation prin-
ciple of a MTD and the corresponding current-voltage characteristics). Therefore, MTDs are
possible devices to combine rectification with memory.

However, symmetric MTDs (φ1 = φ2) are not applicable for logic application since their
current-voltage characteristics are symmetric with I(V ) = −I(−V ), leading to a loss of the
rectification properties. Another approach to solving the issue of symmetric I−V curves is to
fabricate MTDs with two different insulating materials, which was introduced by de Buttet et
al. [179] in 2006. Due to the different work functions of the insulators, in one bias direction,
the effective barrier thickness and height decreases, while in the opposite bias direction,
these quantities stay unchanged, leading to asymmetric current-voltage characteristics. One
shortcoming of this approach is that the TMR value of these tunnel diodes with composite
insulating layers lies between the achieved values for the single insulators, and thus, is not
optimal [179]. Moreover, the asymmetry of the I−V curve depends strongly on the thickness

eU
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Figure 5.3: Schematic band diagram of a magnetic tunnel diode with parallel aligned mag-
netization of the electrodes (a) in equilibrium, (b) for and applied forward and
(c) reverse bias voltage. (d) illustrates the I − V curve for parallel (P) and anti-
parallel (AP) orientation of the magnetization of the electrodes.
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of both insulating materials [179].
Nevertheless, to ensure that the dominant transport mechanism is tunneling, the thickness

of the insulating layer is designed below 4 nm [180], and hence there occur challenges related
to the fabrication process of the very thin insulating layer.

5.2.3 Resonant magnetic tunnel diode

Resonant MTDs are of particular interest for magnetic memory technologies since the current
MRAM cross-point memory architecture requires either a diode or a CMOS transistor (selec-
tion device) connected in series with the memory cell to block disturbing signal paths within
the array of lines (sneak paths) [182, 183]. Nevertheless, the fabrication of MTJs together
with CMOS transistors is challenging and hampers such a concept. To avoid the implemen-
tation of additional semiconductor components, Chshiev et al. [184] introduced a resonant
MTD concept, which is based on an asymmetric double-barrier structure, and its asymmetric
properties can be varied via an external magnetic field. Double tunnel junctions consist of
two tunnel barriers of different transparency for the electrons, two ferromagnetic electrodes,
and a non-magnetic contact (see Fig. 5.5 (a)). The two tunnel barriers are anticipated to
possess highly asymmetric conduction for different biases, and thus, act as a diode or current
rectifier [184]. In the case of spin-independent conductivity, i.e., vanishing magnetoresistance,
such a current rectification in double tunnel junctions was already identified [185], while ef-
fects of resonant transmission have been identified in the symmetric double tunnel junction
Fe/MgO/Fe/MgO/Fe [186] although with a rather weak current rectification. Strong diode
effects with a high current rectification ratio were demonstrated by Iovan et al. in 2006 in
asymmetric metal/oxide double tunnel junctions [187].

(a) (b)

Figure 5.4: (a) Schematic drawing of the resonant spin tunnel diode and (b) the differential
conductance (dI/dV ) as a function of the applied bias voltage (V ) in the quantum
transport regime. The numbers in the lower part of the figure quote the thickness
of the individual layers in nanometers. From A. Iovan et al. Spin Diode Based on Fe/MgO
Double Tunnel Junction Nano Lett. 8, 805 (2008); Ref. [181]. Reproduced with permission from the
American Chemical Society (ACS).
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Large resonant magnetic tunnel magnetoresistance values combined with a high current
rectification ratio were observed in magnetic double tunnel junctions [181], making these
kinds of devices an efficient hybrid of a diode and a spin switch. The different thickness of
the insulating layers causes an asymmetry in the transparency of the two tunneling barriers,
which sandwich the ferromagnetic layer in the middle. This middle layer separated from
the outer electrodes is designed to be as thick as the electron Fermi wavelength in the ma-
terial, resulting in a level spacing. However, the experimental results of Iovan et al. [181]
point out that, depending on the applied bias voltage, the conductance through the tunnel
junction presents multiple peaks (see Fig. 5.5 (b)). This behavior can be attributed to the
transmission of electrons through discrete quantum well states but limits the voltage range
to ±0.06 V, in which the reported asymmetric Fe/MgO/Fe/MgO/Au junction possesses a
diode-like behavior [181].

5.2.4 Reconfigurable magnetic tunnel diode

In 2019, Şaşıoğlu et al. [11] introduced a new concept of a reconfigurable magnetic tunnel
diode (MTD) and magnetic tunnel transistor (MTT), and a patent application for both kinds
of devices has been filed [188]. Recently, the proposed concept of the reconfigurable MTD
was experimentally demonstrated using Heusler compounds as spin-gapless and half-metallic
electrode materials [189]. Both devices, the reconfigurable MTD as well as the MTT which
is discussed in the next section, can overcome the limits of conventional hot-electron de-
vices and provide some additional functionalities like nonvolatility and reconfigurability. The
tunnel diode is a two-terminal device that consists of a thin insulating layer (I) sandwiched
between a spin-gapless semiconductor (SGS) electrode and a half-metallic magnet (HMM)
electrode (see Fig. 5.5). Electrical current can flow through the reconfigurable MTD either
in one or the other direction, depending on the relative magnetization orientation of the elec-
trodes. Also, the rectification properties of this diode depend on the relative orientation of

(b)(a)

Figure 5.5: (a) Schematic drawing of a reconfigurable magnetic tunnel diode for parallel ori-
entation of the magnetization directions of the electrodes together with the cor-
responding current-voltage (I−V ) characteristics. The white arrows indicate the
magnetization direction of the electrodes. (b) The same as (a) for anti-parallel
orientation of the magnetization directions of the electrodes.
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the magnetization of the SGS and HMM. If the electrode magnetization is parallel aligned,
the tunneling current is allowed to pass only in one direction. In the opposite direction, the
current is blocked completely (see Fig. 5.6 (a)). Thus, the reconfigurable MTD acts like a
normal diode. When the magnetization direction of one electrode is reversed, so that we end
up with an anti-parallel setup, the rectification properties of the HMM-I-SGS junction are
also reversed (cf. Fig. 5.6 (b)). Due to this fact, such diodes can be configured dynamically
by a current-induced spin-transfer torque or by applying an external magnetic field.

5.2.5 Ohmic spin diode

In the previous section, we introduced the reconfigurable MTD. The Ohmic spin diode (OSD)
is an extension of this concept, i.e., in analogy to metal-semiconductor devices (Schottky-
barrier diodes), this HMM-SGS junctions act as a diode. Under any finite forward bias, the
two electrode materials form an Ohmic contact leading to linear current-voltage character-
istics, while under reverse bias, the current is blocked due to the spin-dependent filtering of
the electrons. Since conventional diodes possess a junction barrier, a threshold (or turn-on)
voltage VT must be supplied to turn the diode on. Such threshold voltages give rise to power
dissipation (P = VT · I) in the form of heat, and thus, it is an undesirable feature. Due
to the linear scaling of P with VT , the power dissipation increases with increasing values
of the threshold voltage. Contrary to conventional p − n diodes, OSDs do not require any
form of doping and exhibit no turn-on voltage. Other advantages of the OSD compared
to conventional semiconductor diodes are the low resistance and the much higher current
drive capability. Further details about the operation principle and features of the OSD are
presented in Section 6.3.

Figure 5.6: (a) Schematic drawing of an Ohmic spin diode in parallel orientation of the mag-
netization directions of the electrodes together with the corresponding current-
voltage characteristics. (b) The same as (a) for anti-parallel orientation of the
magnetization directions of the electrodes. The white arrows display the magne-
tization direction of each electrode.
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5.3 Spin transistors

As mentioned in the introductory part of this chapter, conventional CMOS transistors had
unprecedented success with scaling their dimension, but downscaling will reach the funda-
mental physical limits in the near future [151, 190]. Thus, in the following, we present five
selected beyond-CMOS device concepts. First, we focus on the Datta-Das transistor and af-
terwards the spinFET, the spin-valve transistor, the magnetic tunnel transistor, and finally,
we elucidate the basic idea behind the reconfigurable magnetic tunnel transistor.

5.3.1 Datta-Das transistor

In 1990, Datta and Das [191] proposed a new principle for an electronic device similar to
optical devices by making use of the similarities between the polarization of a photon and the
spin of an electron. The inspiration for this came from an optical device that consisted of an
analyzer and a polarizer positioned at 90◦ to each other. Thus, in the initial configuration,
the transmission of light is minimal. However, the polarizer and analyzer in the optical de-
vice were sandwiched between an electro-optical material that, by applying an external bias
voltage, allowed to rotate the polarization of the photons when they propagate. When the

Figure 5.7: Schematic representation of the (a) off-state and (b) on-state of a Datta-Das
transistor. The arrows display the magnetization direction of the source and
drain material as well as the spin direction of the conduction electrons.
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polarization was rotated by 90◦, the transmission reached the maximum. Datta and Das pro-
posed to use a device similar to a commercial field-effect transistor (FET) but with magnetic
contacts. The electrons injected from the source possess spins aligned to the magnetization
direction, similar to a polarizer that allows only photons with a specific polarization to pass
(see Fig. 5.7). Similarly, the drain acts as an analyzer and transmits only electrons with an
appropriately aligned spin. Thus, if the source injects majority-spin electrons and the drain
detects minority-spin electrons, the transmission should be minimal (see Fig. 5.7 (a)). If the
spin of the injected electrons is rotated when they traverse the channel connecting source
and drain, the transmission reaches its maximum as in the optical case (see Fig. 5.7 (b)).
Nevertheless, please note here a remarkable difference. To block photons, we need an an-
alyzer and polarizer at 90◦, while in the case of electrons, they need to be at 180◦ [192].
This is based on a fundamental difference: due to the spin of a photon (s = 1), the state
of this particle is invariant under a rotation of 360◦ whereas an electron (s = 1/2) returns
to its initial state under a rotation of 720◦. The challenge in the principle of the Datta-Das
transistor is to control the rotation of the spin of the traversing electrons. One possibility is
an external magnetic field in the x-direction, which would result in a rotation of the spins in
the yz-plane. Another way is the application of an electric field, providing that the channel
presents spin-orbit interaction. Koo et al. suggested one version of the device in 2009 [193]
and a different variant in 2015 [194]. This device is a so-called spin transistor since the gate
voltage changes the resistance from a high value (off-state) to a low one (on-state), just as
in a conventional CMOS transistor. Despite enormous attempts, up to now, the Datta-Das
transistor has not been experimentally realized.

5.3.2 Spin field-effect transistor

Spin field-effect transistors (spinFETs) [195] combine conventional metal-oxide-semiconductor
field-effect transistors (MOSFET) with switchable magnetic elements. The source and drain
electrodes consist of ferromagnetic materials, and additionally, a MTJ is positioned over the

Figure 5.8: Schematic drawing of a spinFET. The white arrows indicate the magnetization
direction of each ferromagnetic material.
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drain to detect the relative magnetization direction of the drain contact via the TMR effect
(see Fig. 5.8 for a schematic representation of the structure of a spinFET). In contrast to
a conventional field-effect transistor, the resistance of the spinFET depends on the relative
orientation of the magnetization directions of the source and drain electrodes. When they
are oriented anti-parallel, the resistance of the channel is high, while in the case of a parallel
orientation, the resistance is low. Additionally to the current that flows through the channel,
the magnetization direction of the drain electrode can be switched by a current, which can
be controlled by the applied voltage to the MTJ on top of the drain electrode.

Based on the half-metallic ferromagnetic Heusler compound Co2FeAl0.5Si0.5, a spin-transfer-
torque-switching MOSFET (STS-MOSFET) [196] was experimentally realized, offering tran-
sistor functions with CMOS compatibility and non-volatile memory together with high en-
durance and fast write times [197, 198].

5.3.3 Spin-valve and magnetic tunnel transistor

Another spintronic transistor is composed of two electrodes spaced by a very thin layer
consisting of either alternating ferromagnetic and non-magnetic metallic materials, and thus,
creating a spin-valve transistor [199], or an insulator, creating a magnetic tunnel transistor
(MTT) [200] (see Fig. 5.9).

Spin-valve transistors were the first device in which semiconductors and ferromagnets have
been closely integrated, and the properties of both materials are essential for controlling the
current through the device [201]. The two magnetic layers in the spin-valve base act as an
analyzer and polarizer of electron spins in the way that the relative orientation of the mag-

(b)(a)

Figure 5.9: (a) Schematic drawing of the operation principle of a spin-valve transistor. (b)
The same as (a) for the magnetic tunnel transistor. The white arrows represent
the magnetization direction of the ferromagnetic materials while the black arrows
display the spin of the conduction electrons.
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netization direction of the two magnetic layers strongly affects the transmission through the
base. Thus, the collector current depends on the magnetic order of the base. At the inter-
face between the base and the semiconductors, energy barriers (Schottky barriers) arise [202].
These barriers inhibit electrons at the Fermi energy from flowing through the transistor. As a
consequence, the operation principle of the spin-valve transistor relies on the spin-dependent
transport of hot (non-equilibrium) electrons. When these hot electrons enter the base, they
are involved in elastic as well as inelastic scattering processes which change their momentum
distribution and energy. The scattering rate in the spin-valve structure can be controlled via
an external magnetic field which changes the relative alignment of the magnetization direc-
tions of the ferromagnetic layers in the base electrode. Moreover, electrons can only enter
the collector if they have retained enough energy to overcome the energy barrier and if their
momentum matches with one of the available states in the semiconductor (see Fig. 5.9 (a)).

The principle of a MTT is somewhat similar. This device consists of a ferromagnetic emitter
electrode, an insulator/metal base, and a semiconductor collector layer [200, 203, 204]. When
a bias voltage is applied to the ferromagnetic emitter, spin-polarized electrons are injected
into the base electrode through the tunnel barrier. The energy of the injected electrons can
be varied by changing the bias voltage across the insulator. As in the spin-valve transistor,
elastic and inelastic scattering processes in the base layer lead to a change of the momentum
and/or a loss of energy, and only the electrons which maintain enough energy to surmount the
energy barrier at the interface to the collector can be transmitted into available states in the
semiconductor electrode (see 5.9 (b) for a schematic representation of the operation principle
of a MTT). Since most of the scattering depends on the spin of the electrons, the collector
current depends on the orientation of the magnetization of the base layer with respect to the
one of the emitter material, and thus, can be controlled via an external magnetic field, as in
the case of the spin-valve transistor.

5.3.4 Reconfigurable magnetic tunnel transistor

The reconfigurable magnetic tunnel diode, which was presented in the spin diode section
(Section 5.2), lays the foundation for the three-terminal reconfigurable magnetic tunnel tran-
sistor (MTT). This type of transistor can be thought of as two back-to-back MTDs and is
composed of a HMM-I-SGS-I-HMM structure which forms the emitter, base, and collector
(see 5.10 (a)). The transistor allows electrons to flow in both directions, similar to a normal
field-effect transistor, and can be switched from off to on by applying a bias voltage to the
base electrode. Regardless of any reasonable applied positive bias voltage to the collector
electrode, the transistor is in the off-state when no bias voltage is applied across the emitter-
base insulator (see 5.10 (c)). In the off-state, the base-collector leakage current is suppressed
up to a certain positive collector voltage (VCB > 0) since electrons are not able to tunnel
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Figure 5.10: (a) Schematic picture of a reconfigurable magnetic tunnel transistor. (b) Its
band diagram under flatband condition, (c) in the off- and (d) the on-state. The
arrows represent the orientation of the magnetization direction of each electrode.

from the SGS base to the HMM collector due to the lack of states around the Fermi level
in the half-metallic material. This can be easily understood on the basis of the schematic
DOS picture of the SGS and the HMM, which we provided in Chapter 4 (Fig. 4.1). The
maximum collector voltage at which the leakage current is completely blocked is determined
by the energy difference between the Fermi energy and the majority-spin valence band, which
usually amounts to less than 1 eV [205]. When one applies a finite positive bias voltage to
the base electrode, as well as a finite bias to the collector electrode (VBE > 0), hot electrons
with high kinetic energy are transmitted from the emitter to the base through the tunneling
barrier between both electrodes. These injected hot electrons will travel through the base
region while some of them keep their high energy and, accordingly, are able to reach the half-
metallic collector (see 5.10 (d)). Some other electrons might thermalize in the base electrode
resulting in a base current IB. Thus, the emitter current IE is defined as the sum of the
base and collector currents IE = IB + IC . As a result, by applying a bias voltage to the base
electrode, we are able to control the state of the reconfigurable MTT. An important feature
of this transistor is that electrons can be transmitted in both directions like in conventional
CMOS transistors which does not hold for hot-electron tunnel transistors in consequence of
the thick base-collector tunnel barrier [206–208].

Due to the fact that the tunnel current exponentially increases with decreasing height
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and thickness of the tunnel barrier, the insulating layer of the reconfigurable MTD and
MTT should be as small as possible, resulting in an increase in the device performance.
The current-voltage characteristics of the transistor are comparable to those of conventional
unipolar hot-electron transistors, except for two strong distinctions: (i) the reconfigurable
MTT does not exhibit a base-collector leakage current up to a specific base-collector bias
voltage, and (ii) it allows for dual-mode operation. The latter implies that by applying
a negative bias voltage between base and collector (VCB < 0), the transistor operates in
reverse-current mode since the electronic properties of the base and collector material allow
also for reverse tunneling. Apart from these two properties, the reconfigurable MTT allows
for reconfiguration by reversing the magnetization direction of electrodes for the desired
application.
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Within the previous chapters, we elucidated the theoretical background for our computational
design of spintronic devices based on spin-gapless semiconductors (SGSs) and half-metallic
magnets (HMMs). We introduced our methods and described the unique electronic and
magnetic properties of SGSs and HMMs for the discussion of the transport properties. In
the following sections, we will present four publications and bring them into the context of
the present thesis.

Screening for spin-gapless semiconductor and half-metallic magnet within the family of
quaternary Heusler compounds. Within the family of quaternary Heusler compounds, it
is possible to identify HMMs as well as SGSs with similar lattice constants and atomic
composition. This is an important requirement to enable the coherent growth of one material
on top of others. Thus, in the first publication [TA1], we search for SGSs and HMM within
the family of quaternary Heusler compounds with sizable energy gaps below and above the
Fermi level and high Curie temperatures for new spintronic devices.

Magnetic tunnel junctions based on spin-gapless semiconductors and half-metallic mag-
nets for magnetic memory and logic applications. The second goal of this thesis was to
investigate the current-voltage (I − V ) characteristics and tunnel magnetoresistance (TMR)
effect of magnetic tunnel junction (MTJ) for magnetic memory and logic applications. Thus,
in the second paper [TA2], by employing first-principles DFT and NEGF calculations, we
investigate the I − V characteristics of MTJs based on SGSs and HMMs as electrode ma-
terial and demonstrate that such devices allow the electrical current to pass either in one
or the opposite direction, depending on the relative orientation of the magnetization of the
electrodes, which leads to an inverse TMR effect.

Half-metal−spin-gapless semiconductor junctions (Ohmic spin diodes). In the third pub-
lication [TA3], we present a new spintronic device concept called Ohmic spin diode (OSD),
which is somewhat similar to conventional metal-semiconductor diodes (Schottky-barrier
diodes). The devices consist of one half-metallic and one type-II SGS electrode and do
not possess a junction barrier. Due to the unique electronic structure of these materials,
such diodes show linear current-voltage (I − V ) characteristics under forward bias while the
current is blocked under reverse bias. By employing the NEGF method combined with DFT,
we provide a proof-of-principle using two-dimensional, spin-gapless semiconducting VS2 and
half-metallic Fe/MoS2.

Design of Ohmic spin diodes based on quaternary Heusler compounds. In the fourth
paper [TA4], we design, by employing first-principles calculations, different OSDs based on
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ordered quaternary Heusler compounds with high curie temperatures and demonstrate that
all of these devices possess linear I − V curves together with zero threshold voltages.

6.1 Screening for spin-gapless semiconductors and half-metallic
magnets within the family of quaternary Heusler compounds

SGSs are the key components of the magnetic tunnel junctions showing current rectification,
as we discussed in the previous chapter. In the following paper, ”Ab initio design of quater-
nary Heusler compounds for reconfigurable magnetic tunnel diodes and transistors” [TA1],
we screen the family of ordered quaternary Heusler alloys XX’YZ showing SGS and HMM
characteristics. These materials possess similar lattice constants together with sizable energy
gaps below and above the Fermi level and high Curie temperatures for spintronic device ap-
plication. In total, we identify 9 HMMs, 5 type-I SGSs, and 11 type-II SGSs (see Fig. 6.1 (a)).
In particular, we discuss the tunability of the position of the conduction-band minimum and
the valance band maximum for the type-II materials arising from a substitution of different Z
atoms. We also calculate the exchange parameters and use them in a multi-sublattice mean-
field approximation to estimate the Curie temperature for all 25 compounds. We show that
the TC values follow a semi-empirical relation TC ∝

∑
i |mi|, and thus the Curie temperature

increases with increasing sublattice magnetic moments (see Fig. 6.1 (b)).

Figure 6.1: (a) Comparison between the lattice parameters of type-II SGSs and type-I SGSs
as well as HMMs. The red and blue bars indicate the size of the gap in the
majority and minority spin channel around the Fermi energy EF , respectively.
The orange or white bars represent the value of the overlap or the spin gap,
respectively. The Fermi level is set to 0 meV. (b) The dependence of the calculated
Curie temperatures on the sum of the absolute values of the sublattice magnetic
moments. The dashed black line indicates the room temperature while the solid
black line displays a linear fit. Adapted (figure) with permission from (T. Aull et al. Phys. Rev.
Mater. 3, 124415 (2019); Ab initio design of quaternary Heusler compounds for reconfigurable magnetic
tunnel diodes and transistors, Ref. [TA1]). Copyright (2019) by the American Physical Society (APS).
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Reconfigurable magnetic tunnel diodes and transistors are a new concept in spintronics. The realization of such
a device requires the use of materials with unique spin-dependent electronic properties such as half-metallic
magnets (HMMs) and spin-gapless semiconductors (SGSs). Quaternary Heusler compounds offer a unique
platform to design within the same family of compounds HMMs and SGSs with similar lattice constants to make
coherent growth of the consecutive spacers of the device possible. Employing state-of-the-art first-principles
calculations, we scan the quaternary Heusler compounds and identify suitable candidates for these spintronic
devices combining the desirable properties: (i) HMMs with sizable energy gap or SGSs with spin gaps both
below and above the Fermi level, (ii) high Curie temperature, (iii) convex hull energy distance less than 0.20 eV,
and (iv) negative formation energies. Our results pave the way for the experimental realization of the proposed
magnetic tunnel diodes and transistors.

DOI: 10.1103/PhysRevMaterials.3.124415

I. INTRODUCTION

The growing interest in nanotechnology in the last decades
laid the foundation of research in new materials with novel
properties. In particular, the prediction of new magnetic nano-
materials for the realization of spintronic devices has become
extremely important [1]. There are two ways to incorporate
spin in electronic devices: either doping semiconductors with
magnetic ions like Mn, Cr, or Fe in diluted magnetic semicon-
ductors [2] or the growth of nanoscale magnetic materials like
Heusler compounds [3]. The development of computational
materials science triggered all these developments in spintron-
ics. In particular, computational materials science paved the
way for high-throughput screenings, which permitted efficient
simulations of materials in order to predict magnetic, optical,
and electronic characteristics, etc., of new materials. Further-
more, the simulations allowed researchers to investigate new
metastable structures of known alloys where the electronic
features change completely concerning the properties of the
known stable structures.

Among the various materials under study for spintronics
and magnetoelectronics, magnetic Heusler compounds have
a significant importance due to their wide variety and their
high Curie temperatures, and thus several studies covering
their fundamental properties and their applications have been
carried out [4]. Among the magnetic Heusler compounds,
several have been identified as half-metallic magnets [5–9].
Also, even more peculiar properties have been suggested in
literature like spin-gapless semiconducting or spin-filtering

*thorsten.aull@physik.uni-halle.de

properties, which lead to new functionalities [10]. Modern
deposition techniques made fabrication of these exotic ma-
terials possible. A recent example is (CrV)TiAl, a quaternary
Heusler compound which was predicted in Ref. [11] to be a
fully compensated ferrimagnetic semiconductor, and then it
was grown successfully and its unique magnetic properties
have been confirmed [12]. Thus, there is merit in the study
of this family of alloys and compounds.

A special class of materials, mentioned above, receiving
substantial interest is the so-called gapless semiconductors, in
which conduction- and valence-band edges touch at the Fermi
level [13]. In such materials, the mobility of charge carriers
is essentially much higher than in normal semiconductors,
making them promising materials for nanoelectronic applica-
tions. The first gapless semiconductors that have been stud-
ied were Hg-based IV-VI compounds, especially HgCdTe,
HgCdSe, and HgZnSe. But it turned out that all these alloys
are toxic and oxidize easily [13]. Later, Kurzman et al. pro-
posed PbPdO2 as a gapless semiconductor [14] and its zero
gap width was demonstrated experimentally [15]. Nowadays,
one of the most studied gapless semiconductor is graphene
[16]. In 2008 Wang proposed that doping PbPdO2 with Co
atoms would result in a new class of materials: the so-called
spin-gapless semiconductors (SGSs) (see Refs. [17,18]). The
spin-gapless semiconductors lie on the border between half-
metallic magnets (HMMs) [19] and magnetic semiconductors.
A schematic density of states (DOS) of a HMM and a SGS
(type I and type II) is shown in Fig. 1. The spin-up (majority-
spin) band in HMMs crosses the Fermi level like in a normal
magnetic metal, but, in contrast to metals, in the spin-down
(minority-spin) band a gap appears and the Fermi level lies
in between the gap like in normal semiconductors. For type-I
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FIG. 1. Schematic representation of the density of states (a) for
a half-metallic magnet (b) for a type-I spin-gapless semiconductor,
and (c) for a type-II spin-gapless semiconductor.

SGSs, the minority-spin band looks like in HMMs but the
difference is in the majority-spin band. The valence- and
conduction-band edges are touching at the Fermi energy so
that there appears a zero-width gap. On the other hand, type-II
SGSs possess a unique electronic band structure that there
is a finite gap just above and below the Fermi energy EF

for different spin channels, i.e., conduction- and valence-band
edges of the different spin channels touch. Ferromagnetism
is also possible in SGSs since the two spin band structures
are different. One important advantage of type-I SGSs is that
no energy is required for the excitation of the electrons from
the valence to the conduction band and excited electrons or
holes can be 100% spin polarized. It is worth noting that for
type-II SGSs the spin-gapless semiconducting properties are
not protected by any symmetry and can only appear if a free
parameter, e.g., pressure, is tuned to a specific value.

Since the first proposal of spin-gapless semiconducting
properties in Co-doped PbPdO2, different classes of materials
ranging from three to two dimensions have been predicted
to possess SGS characteristics and a few of them have been
confirmed experimentally. Among them, graphene nanorib-
bons altered by CH2 radical groups [20], in which magnetism
originates from the unsaturated carbon states, show spin-
gapless characteristics. HgCr2Se4 has a phase transition under
a pressure of 9 GPa from the ferromagnetic semiconductor
to the SGS state [21]. The boron nitride nanoribbons with
vacancies present SGS properties [22]. Ab initio calcula-
tions from different groups have shown that several Heusler
compounds present either type-I or type-II SGS properties.
Mn2CoAl was the first Heusler compound, the type-I SGS
characteristics of which were experimentally demonstrated by
Ouardi et al. [23]. Furthermore, Mn2CoAl possesses a high
Curie temperature of 720 K [23] and high electron and hole
mobility. The search for SGSs has been extended recently to
the family of ordered quaternary Heusler compounds which
are usually named as LiMgPdSn-type Heuslers (also known
as LiMgPdSb-type Heusler compounds) [24,25]. They have
the chemical formula (XX ′)Y Z with transition-metal atoms X ,
X ′, and Y , where the valence of X ′ is lower than the valence
of X atoms and the valence of the Y element is lower than the
valence of both X and X ′. For reasons of simplicity usually in
literature the parentheses are omitted and they are denoted as
XX ′Y Z . In 2013, two extended ab initio studies have appeared
focusing on their electronic and magnetic properties and sev-
eral have been found to be SGSs [24,25]. Very recently, Gao
et al. performed a systematic screening of the SGSs in ordered
quaternary Heusler alloys focusing on the mechanical and

dynamical stability and identified 70 stable SGSs demonstrat-
ing that four types of SGSs can be realized based on the spin
characteristics of the bands around the Fermi level [26].

II. MOTIVATION AND AIM

Spintronics and magnetoelectronics are two rapidly emerg-
ing fields in current nanoelectronics. HMMs have been con-
sidered as ideal electrode materials in magnetic tunnel junc-
tions for spin-transfer torque magnetic memory applications
due to their 100% spin polarization of the conduction elec-
trons at the Fermi level, which leads to a very high tunnel
magnetoresistance (TMR) effect. Half-metallic Heusler com-
pounds have been used by several experimental groups to
fabricate magnetic tunnel junctions due to their very high
Curie temperatures and lattice parameter matching with the
conventional tunnel barrier MgO. High TMR effects have
been experimentally demonstrated in tunnel junctions made
of Co-based Heusler compounds [27–29].

Although magnetic tunnel junctions made of half met-
als show large TMR effects making them very suitable for
memory applications, they do not present any rectification
(or diode effect) for logic operations. Logic-in-memory com-
puting is an emerging field that promises to solve the band-
width bottleneck issues in today’s microprocessors. In semi-
conductor nanoelectronic devices, despite intensive efforts,
the combination of nonvolatility and reconfigurability on the
diode (transistor) level has not yet been achieved. Recently
this became possible by utilizing the unique spin-dependent
transport properties of SGSs and thus a new spintronic device
concept has been proposed in Ref. [30], which combines
reconfigurability and nonvolatility on the diode and transistor
level. Furthermore, the proposed transistor overcomes the lim-
itations of conventional hot electron quantum tunnel devices
such as base-collector leakage currents in tunnel transistors
[31], which might lead to high power dissipation.

The principles of the proposed reconfigurable magnetic
tunnel diode (MTD) and transistor (MTT) have been ex-
tensively discussed in a very recent article (see Ref. [32])
and thus here we will present only a short overview of the
proposed devices. The structure of the proposed reconfig-
urable MTD and its current-voltage (I-V ) characteristics are
schematically shown in Fig. 2. The MTD consists of a type-II
SGS electrode and a HMM electrode separated by a thin
insulating tunnel barrier and the rectification properties of
the MTD are determined by the relative orientation of the
magnetization directions of the electrodes. Using a type-I SGS
instead of the HMM is also possible. When the magnetization
directions of the electrodes are parallel to each other [see
Fig. 2(a)] then the tunneling current is only allowed in one
direction; in the reverse direction the tunneling current is
blocked. Thus, the tunnel junction behaves like a rectifier,
i.e., a diode. When the magnetization direction of one of
the electrodes is reversed, then the rectification properties of
the diode are also reversed as shown in Fig. 2(b). Hence,
the MTD can be configured dynamically by current-induced
spin-transfer torque or by an external magnetic field.

The first theoretical study on SGSs with type-II band
structure within the Heusler family has been reported by two
of the present authors in Ref. [24]. MTTs are an extension
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FIG. 2. Schematic representation of the reconfigurable magnetic
tunnel diode for (a) parallel and (b) antiparallel orientations of
the magnetization directions of the electrodes and corresponding
current-voltage (I-V) characteristics. (c) Bias voltage dependence of
the TMR effect in a magnetic tunnel diode. With arrows we show the
magnetization direction of the electrodes.

of the concept of MTDs where two back-to-back MTDs are
used to build a three-terminal device as described in Ref. [32].
The value of the gap in one spin channel for the HMMs and
type-I SGSs as well as the gaps in different spin channels
of type-II SGSs play a decisive role in determining the I-V
characteristics of the MTD as discussed in Ref. [32]. Suitable
SGSs and HMMs should have similar lattice constants so that
the coherent growth of the device is possible. They should
have high Curie temperatures, TC , in order to be operational at
room temperature. HMMs should possess large minority-spin
gaps and SGSs should possess sizable gaps both below and
above the Fermi level (for this reason, type-III and type-IV
SGSs described in Ref. [26] are not suitable for such devices).
And finally, in addition to negative formation energies, they
should have a reasonably small convex hull energy distance
so that their growth as metastable phases in the form of thin
films could be feasible.

The aim of the present paper is to screen Heusler-based
electrode materials with TC values above room temperature for
realization of the new device concept. Especially for type-II
SGSs, to the best of our knowledge, up to now neither theoret-
ical nor experimental work has been reported addressing the
finite-temperature properties contrary to type-I SGSs [23,33].
To this end, we focus on the HMMs and SGSs (type I and
type II) in ordered quaternary Heusler structure XX ′Y Z . In
total, we identify 25 materials with sizable band gaps around
the Fermi level which are either HMM or SGS and which
fulfill the conditions mentioned above. In particular, for the
SGS type-II materials, the tunability of the relative position
of the valence-band maximum (VBM) and the conduction-
band minimum (CBM) with substitution of different Z atoms
is discussed. To study finite-temperature properties, we map
the multisublattice complex itinerant electron problem onto
the classical Heisenberg model with exchange parameters
calculated using the Liechtenstein formalism [34]. We find
that in agreement with previous studies due to the presence
of a spin gap in both HMMs and SGSs the exchange inter-
actions decay quickly with distance, and hence magnetism
of these materials can be described considering only nearest-
and next-nearest-neighbor intersublattice and intrasublattice
exchange interactions. For all SGSs and most of the HMMs,

FIG. 3. Crystal structure of the quaternary Heusler alloys
XX ′Y Z . X is located at Wyckoff position 4a(0, 0, 0), Y is lo-
cated at 4c( 1

4 , 1
4 , 1

4 ), X ′ is located at 4b( 1
2 , 1

2 , 1
2 ), and Z is located

at 4d ( 3
4 , 3

4 , 3
4 ).

the estimated Curie temperatures are above room temperature,
making them suitable candidates as electrode materials for
reconfigurable device applications. Furthermore, we show that
the TC values obey a semiempirical relation TC ∼ ∑

i |mi|, i.e.,
TC increases with increasing sublattice magnetic moments.
The rest of the paper is organized as follows. In Sec. III
we describe the computational method while in Sec. IV our
results are presented and discussed. Finally, we summarize
and present our conclusions in Sec. V.

III. COMPUTATIONAL METHOD

For all calculations, we consider Heusler compounds
with the chemical formula XX ′Y Z . As mentioned above
X , X ′, and Y are transition-metal atoms with descending
valence and Z is a metalloid. Ordered quaternary Heusler
compounds adopt the so-called LiMgPdSn-type cubic
structure with space group F43m (space group 216) (see
Fig. 3), where the X atoms occupy Wyckoff position
4a(0, 0, 0), X ′4b( 1

2 , 1
2 , 1

2 ),Y 4c( 1
4 , 1

4 , 1
4 ), and Z4d ( 3

4 , 3
4 , 3

4 )
[35,36]. We should note that the X and X ′ atoms at 4a and 4b
sites form a cubic lattice. The same is true for the Y and Z
atoms sitting at the 4c and 4d sites. Overall the structure can
be considered as fcc with four atoms as the basis along the
long diagonal of the cube shown in Fig. 3 with the sequence
X -Y -X ′-Z . Note that this occupation scheme of the elements
is energetically the most favorable with respect to any
exchange of the atoms at the various sites [26]. The density
functional theory (DFT) calculations were performed using
the QuantumATK package [37], version O-2018.06, together
with the norm-conserving PSEUDODOJO pseudopotentials
[38]. We should note here that a recent study on SGSs
using the GW approximation for the electronic self-energy
to account for many-body exchange-correlation effects has
shown that the effect of employing GW is small in the case
of SGSs and the usual density functional theory gives a fair
description of the electronic properties of these materials
[39]. In the case of HMMs, the changes in the electronic
structure by using GW should be even smaller due to their
metallic character. For electronic structure calculations, we
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used a linear combination of atomic orbitals (LCAO) method
within the Perdew-Burke-Ernzerhof parametrization of the
generalized gradient approximation functional [40] utilizing
a 15 × 15 × 15 Monkhorst-Pack grid [41] and a density
mesh cutoff of 120 hartree. The total energy and forces
have been converged at least to 10−4 eV and 0.01 eV/Å,
respectively. Since we are only discussing magnetic materials,
all calculations were performed taking spin polarization into
account with collinear aligned spins. We used the calculated
equilibrium lattice constant for each material. Note that all
considered materials are mechanically as well as dynamically
stable [26].

To study finite-temperature properties we map the complex
multisublattice itinerant electron problem onto a classical
effective Heisenberg Hamiltonian

Heff = −
∑

i,j

∑
μ,ν

Jμν
ij Sμ

i · Sν
j , (1)

where μ and ν denote different sublattices, i and j indicate
atomic positions, and Sμ

i is the unit vector of the i site in
the μ sublattice. The Heisenberg exchange parameters Jμν

ij
are calculated by employing the Liechtenstein formalism [34]
within a self-consistent Green’s-function method based on
the multiple scattering theory within the density functional
theory [42]. The crystalline structure information for the
studied compounds obtained with the LCAO was used as input
for electronic structure calculations by the Green’s-function
approach. According to our tests, both methods provide a
very similar electronic structure for the systems under study.
To estimate the Curie temperature TC we use the mean-field
approximation for a multisublattice system [43–45], which is
given by

TC = 2

3kB
Jμν

L , (2)

where Jμν
L is the largest eigenvalue of Jμν

0 = ∑
j Jμν

0j .

IV. RESULTS AND DISCUSSION

We subdivide this section into three parts. First, we
overview the ground-state electronic and magnetic properties
of the SGSs (type I and type II) and HMMs based on Heusler
compounds. In the second part, we analyze the tuning of
type-II SGSs. In the third and final part, we discuss the
exchange interactions, magnon dispersion, and Curie temper-
atures.

A. Ground-state electronic and magnetic properties

The first step in our paper was to identify the Heusler
compounds of potential interest. Then in the second step, we
examined their electronic properties and we identified them
as HMM or SGS. To carry out the first step we searched
for type-I and type-II SGSs in the dataset of Gao et al. [26]
and calculated their electronic structure to identify candidates
with large spin gaps. After selecting suitable materials we
checked all of them in the Open Quantum Materials Database
[46]. Here we were interested in two energy quantities. The
first one is the formation energy, Eform. This energy is the
difference between the total energy of the XX ′Y Z compound

in the Heusler structure presented in Fig. 3 and the sum of the
energies of the isolated atoms of the chemical elements. This
energy value should be negative in order to be able to grow
the material in the Heusler structure. But this condition is not
enough. The compound may prefer at this stoichiometry to
grow in another structure or to separate in other phases (e.g.,
XY and X ′Z binary compounds). For each stoichiometry,
the phases with the minimum energy define the so-called
convex hull. We decided to choose as our search filter a
distance from the convex hull, �Econ, less than 0.2 eV per
atom because we think growing the compound in the Heusler
structure as a metastable phase in the form of a thin film
is possible since half-metallic CrAs in zinc-blende structure
(space group F43m) with a hull distance of nearly 0.3 eV/at.
(see Supplemental Material of Ref. [50]) was stabilized on
GaAs(001) by using molecular-beam epitaxy [51–54]. Then
for all the compounds which we identified to be of potential
interest, we calculated the equilibrium lattice constant by
minimizing the total energy and calculated the electronic
structure. We have used the graphs presenting the total DOS
versus the energy to identify HMM and SGS compounds (the
DOS figures for all studied compounds are presented in the
Supplemental Material [55]). In Table I, we present the final
25 quaternary Heusler compounds (only CoCoMnSi is really
a usual full-Heusler compound Co2MnSi), which we found
to have negative Eform, �Econ less than 0.2 eV per atom, and
band structure compatible with a HMM or a SGS (type I or
type II). Among the 25 studied compounds, only CoFeVSb
and CoMnCrAs have small absolute values of Eform, close to
zero, which may affect their stability. All other compounds
present a Eform absolute value quite high with CoFeTiSi being
the most stable with a Eform value of −0.675 eV per atom
as it can be seen in Table I. With respect to the convex hull
energy distances, the values in Table I are very encouraging.
Especially almost all type-II SGS studied compounds present
�Econ less than 0.1 eV per atom, making them very promising
to be grown in the form of thin films. Finally, we briefly
comment on the equilibrium lattice constants a0 presented
also in Table I. The calculated values are between 5.6 and
6.4 Å and there are a lot of HMM (type-I SGS) and type-II
SGS combinations where the lattice parameters a0 match. For
example, the HMM MnVTiSi and type-II SGS FeVTiSi have
lattice constants which differ less than 0.01 Å.

The HMM or SGS character of the materials under study
(see Fig. 1 for a schematic representation of the density of
states) is compatible with the behavior of the total spin-
magnetic moment. First, we focus on the HMM materials. For
the ordered quaternary Heusler compounds, it is well known
from Ref. [24] that the total spin magnetic moment in the unit
cell mtotal (in units of μB) versus the total number of valence
electrons in the unit cell ZT follows a Slater-Pauling rule:

mtotal = ZT − 18 or ZT − 24. (3)

This rule means that there are exactly 9 or 12 occupied
minority-spin bands, respectively. As demonstrated in Table I,
where we present also the total number of valence electrons
ZT , all XX ′Y Z compounds where X ′ is V or Cr fulfill the first
variant of the rule while the rest of the compounds fulfill the
second variant. In the first case there are 19, 20, or 21 valence
electrons per unit cell while in the second case the number
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TABLE I. Optimized lattice constants a0, sublattice and total magnetic moments, sum of the absolute values of the atomic spin magnetic
moments

∑
i |mi|, valence electron number ZT , formation energy (Eform), convex hull distance energy (�Econ), and calculated and experimental

Curie temperatures for 25 HMMs and SGSs. The �Econ and Eform values are taken from the Open Quantum Materials Database [46].

a0 mX mX ′ mY mtotal
∑

i |mi| Eform �Econ T (MFA)
C T (exp)

C

Compound (Å) (μB) (μB) (μB) (μB) (μB) ZT (eV/at.) (eV/at.) (K) (K)

Half-metallic magnets

MnVTiAl 6.11 −2.54 2.60 0.91 1.00 6.08 19 −0.172 0.188 963
MnVTiSi 5.92 −0.35 2.10 0.26 2.00 2.71 20 −0.391 0.177 573
FeVTiAl 6.06 −0.78 2.42 0.45 2.00 3.75 20 −0.247 0.117 685
FeVHfAl 6.12 −0.53 2.32 0.23 2.00 3.10 20 −0.169 0.177 742
CoMnCrAs 5.75 1.11 −0.53 2.48 3.00 4.17 27 −0.071 0.092 654
CoFeTiSi 5.73 0.61 0.67 −0.20 1.00 1.54 25 −0.675 0.025 157
CoFeVSb 5.99 1.08 1.20 0.78 3.00 3.12 27 −0.016 0.198 308
CoFeCrSi 5.61 1.04 0.22 1.86 3.00 3.24 27 −0.293 0.075 517 790 [47]
CoCoMnSi 5.65 1.06 1.06 3.03 5.00 5.28 29 −0.449 0.000 920 985 [48]

Spin-gapless semiconductors (type I)

MnCoMnAl 5.73 −2.01 0.99 3.03 2.00 6.04 26 −0.271 0.035 1123 720 [23]
CoMnCrSi 5.63 0.92 −0.96 2.07 2.00 3.98 26 −0.334 0.065 589
CoFeTiSb 6.08 1.06 1.33 −0.33 2.00 2.78 26 −0.325 0.190 476
CoFeTaGe 5.94 1.07 1.14 −0.26 2.00 2.52 26 −0.248 0.127 453
CoFeCrAl 5.69 0.97 −0.71 1.84 2.00 3.62 26 −0.199 0.108 421 456 [49]

Spin-gapless semiconductors (type II)

MnCrNbAl 6.07 1.36 2.49 −0.74 3.00 4.71 21 −0.181 0.033 624
MnCrTaAl 6.06 1.30 2.44 −0.63 3.00 4.49 21 −0.208 0.030 637
FeVTiSi 5.91 0.57 2.33 0.10 3.00 3.01 21 −0.452 0.173 464
FeVHfSn 6.40 0.30 2.63 0.12 3.00 3.10 21 −0.148 0.139 705
FeVNbAl 6.11 0.81 2.32 −0.11 3.00 3.25 21 −0.189 0.126 693
FeVTaAl 6.10 0.79 2.32 −0.11 3.00 3.23 21 −0.213 0.096 681
FeCrTiAl 5.96 0.48 3.08 −0.44 3.00 4.14 21 −0.310 0.036 560
FeCrHfAl 6.15 0.27 3.18 −0.31 3.00 3.90 21 −0.236 0.060 568
RuCrHfAl 6.30 0.07 3.44 −0.32 3.00 4.02 21 −0.458 0.064 669
OsCrHfAl 6.31 0.12 3.37 −0.33 3.00 3.99 21 −0.392 0.064 428
CoOsCrAl 5.86 0.86 −0.39 1.66 2.00 3.04 26 −0.248 0.062 369

of valence electrons in the unit cell is 25, 26, or 27. This
behavior is clearly explained in Ref. [24]. When X ′ is V or Cr
in the minority-spin band structure the triple degenerate at the
�-point t1u states are high in energy and are unoccupied and
thus there are in total nine occupied minority-spin states and
the gap in the minority-spin band structure is formed between
the occupied t2g and the unoccupied t1u states. When X ′ is a
heavier atom then the t1u states are located lower in energy,
being fully occupied, and the gap in the minority-spin band
structure is formed between these states and the empty double
degenerate at the �-point eu states. Note that both the eu and
t1u states obey the octahedral symmetry and not the tetrahedral
symmetry of the lattice and thus are localized at the 4a and 4b
sites occupied by the X and X ′ atoms.

In order to have a SGS material, the latter should have
exactly 21 or 26 valence electrons per unit cell and thus a
total spin magnetic moment of 3 μB or 2 μB, respectively
(note that in the case of 21 valence electrons the majority-spin
(minority-spin) bands are now the spin-down (spin-up) bands
and the Slater-Pauling rule is mtotal = 24 − ZT , resulting in
a positive value of the total spin magnetic moment). The
origin of these two numbers, 21 and 26, has been extensively
discussed in Ref. [24] and a schematic representation is given

in Fig. 2 of this reference. To have a SGS the Fermi level
should fall within gaps in both spin directions. In the case of
26 valence electron compounds, the situation is as in the usual
HMM. In the minority-spin band structure, there are exactly
12 occupied bands. In the majority-spin band structure also
the two eu states are occupied which are separated by a
gap from the unoccupied antibonding eg and t2g states. In
the case of the compounds with 21 valence electrons, the
majority-spin band structure is similar to the minority-spin
band structure of the HMM with exactly 12 occupied bands.
In the minority-spin band structure, the t1u states are now
empty, there are exactly nine occupied minority-spin bands,
and there is a gap between the t1u states and the bonding t2g

states which are just below them in energy. We remark in
Table I that all five type-I SGS materials have 26 valence
electrons, while all type-II SGSs with the exception of
CoOsCrAl have 21 valence electrons.

We should also briefly discuss the spin magnetic moments
in these compounds presented in Table I. The total spin mag-
netic moments are quite high for all studied compounds, being
2 or 3 μB. Only CoCoMnSi has a total spin magnetic moment
of 5 μB and the HMM MnVTiAl and CoFeTiSi of 1 μB. These
large values of the total spin magnetic moment stem from the
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large atomic spin magnetic moments of the transition-metal
atoms. Depending on the X , X ′, and Y chemical elements,
the atomic spin magnetic moments at the various sites are
ferromagnetically or antiferromagnetically coupled, resulting
in ferrimagnetic compounds in most cases. As we stated
above the X and X ′ atoms sit at the 4a and 4b sites, which are
the corners of a cube, being next-nearest (second) neighbors.
The Y and Z atoms sit at the 4c and 4d sites at the center
of these cubes, being nearest (first) neighbors with the X
and X ′ atoms. The Z atoms are metalloids (also known as sp
elements) carrying negligible atomic spin magnetic moments;
for this reason, we do not show them in Table I. Thus, the
Y atom plays a crucial role, being the intermediary atom
between X and X ′. The late transition-metal atoms (Fe, Co,...)
tend to have parallel spin magnetic moments when they are
nearest neighbors, while the early transition-metal atoms (Mn,
Cr,...) have the tendency to have antiparallel spin magnetic
moments. We discuss the behavior of orientation of the atomic
spin magnetic moments more in detail in the next section.

The most important quantity for the compounds under
study is the width of the several gaps. First, we will start our
discussion from the HMM and type-I SGS materials. In both
cases as shown in Fig. 1 there is a gap in the minority-spin
band structure and the Fermi level EF falls within this gap,
splitting it into two parts, one below and one above EF .
In the majority-spin band structure, EF either intersects the
bands (HMM case) or falls exactly within the zero-energy gap
(type-I SGS). In the lower panel of Fig. 5, we present for all
HMMs and type-I SGSs the calculated spin-minority energy
gaps, coloring with blue the part below EF and with red the
part of the gap which is above EF . The materials are ordered
with ascending equilibrium lattice constant. For applications,
we need materials with large energy gaps and with EF close to
the center of the gap (comparable gaps below and above EF )
in order to minimize the effect of defects which usually induce
states at the edges of the bands. We remark that all compounds
possess gaps which are quite large (exceeding 0.4 eV) and in
some cases like FeVHfAl they are close to 1 eV. Also for all
compounds under study both parts of the minority-spin gap
below (blue color) and above (red color) EF are sizable and
thus are promising for the applications like magnetic tunnel
diodes and transistors.

A more subtle case is the type-II SGS. Now we have a
gap in both majority- and minority-spin band structures. In
the ideal case, the maximum of the majority-spin valence
band touches the minimum of the minority-spin conduction
band as shown in Fig. 1. In reality for all compounds under
study, this ideal case does not occur. First, as shown in the
left panel of Fig. 4 there can be a finite gap between the
maximum of the majority-spin valence band and the minimum
of the minority-spin conduction band. This is the case for
the type-II SGS materials with the larger lattice constants:
FeCrHfAl, RuCrHfAl, OsCrHfAl, and FeHfSn. In the upper
panel of Fig. 5 we display the results for these compounds.
The white space separating the blue and red regions is the
gap between the majority-spin VBM and the minority-spin
CBM. This is sizable in the case of FeCrHfAl and FeVHfSn,
and almost vanishing for RuCrHfAl and OsCrHfAl. The blue
bars mark the part of the gap which is located exclusively in
the minority-spin band structure as shown in the left panel of

fEEf

EE

DOS DOS

(b)(a)

(e)
(h)

(e)
(h)

FIG. 4. (a) Schematic representation of the density of states for
a type-II SGS with a small gap between the majority- and minority-
spin bands at the Fermi energy EF . (b) The same as (a) with a small
overlap of bands of different spin channels. EF denotes the Fermi
level, and the letters (e) and (h) represent electronlike and holelike
behavior, respectively.

Fig. 4 and with red bars we indicate the part of the gap which
is located in the majority-spin band structure. The Fermi level
is within the white region since we should have an integer
number of occupied bands in both spin directions. In the
case of RuCrHfAl and OsCrHfAl, the Fermi level intersects
slightly the blue color and thus the valence majority-spin band
structure but this is an artifact of the calculations due to nu-
merical accuracy during the calculation of the density of states
and this is easily confirmed if one extracts the band structure
itself. If one tunes, as described in the next section, the
position of the Fermi level, one can shift the Fermi level either
within the majority-spin valence band, creating a hole surplus
in the materials (the new position of the Fermi level is denoted
with a dashed line and an “h” in the left panel of Fig. 4), or
within the minority-spin conduction band, creating a surplus
of electrons (dashed line with “e” in the left panel of Fig. 4).

In the rest of the type-II SGS compounds, there is an
overlap between the majority-spin VBM and the minority-
spin CBM as shown in the right panel of Fig. 4. Now the
Fermi level intersects both the majority-spin valence band and
the minority-spin conduction band. This is clearly shown in
the upper panel of Fig. 5 where the region of overlap for
these compounds is denoted by an orange region and the
EF for nearly all these compounds falls within the orange
region. Below and above the orange region are the blue and
red regions which denote the part of the energy gaps below
and above the Fermi level which are located exclusively at the
minority-spin and majority-spin band structures, respectively.
A small shift of the Fermi level as discussed above can lead to
a material with a hole or electron surplus which can be used
as carriers in the material. There are materials like FeVTiSi,
FeVTaAl, and FeVNbAl which present very large values of
gaps both below and above the Fermi level and would be ideal
for reconfigurable spintronic devices. Comparing the lattice
constants, one observes in Fig. 5 that for realistic devices one
has to use type-II SGSs with an overlap of the bands, because
the type-II SGSs discussed in the above paragraph, which
present a gap between the VBM and CBM, have very large
lattice constants with respect to the HMMs.
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gray) bars illustrate the size of the gap below and above Fermi level EF , respectively. The orange (light gray) or white bars represent the value
of the overlap or the spin gap, respectively (see discussion in text). The Fermi level is located at 0 meV.

B. Tuning the type-II SGS

To achieve the fabrication of the devices discussed in
Sec. II, one needs to use perfect type-II SGS. The maximum
of the majority-spin valence band and the minimum of the
minority-spin conduction band should be located exactly at
the same energy position, which should be also the Fermi
level. None of the compounds discussed above and presented
in Table I and in Fig. 5 is a perfect type-II SGS. Thus,
we should search for a way to tune the properties of these
compounds. An obvious way to achieve that should be to
start with two parent compounds presenting a spin gap (white
region) and an overlap (orange region) in Fig. 5 and mix them.
Adding the correct fraction of each compound would lead to
the disappearance of the overlap and to a perfect type-II SGS
(see Fig. 6).

But one has to be careful in choosing the two candidates for
the mixture. These compounds should not differ in more than
two elements and both elements have to be located in the same
sublayer. So, for example, mixing FeVHfSi with FeVHfGe
works (Fig. 6) while mixing FeCrHfAl with FeVTaAl does
not. In the last example, the compounds differ only in the
X ′ and Y element, but these two are located in different
sublayers (see Fig. 3). In the material FeVHfSi0.243Ge0.757 the
conduction band and the valence band would touch at EF

(see Fig. 6). But please note that alloying can cause other
undesirable side effects. In the case that particular states of
different alloy components are close in energy, alloying can
lead to a substantial band broadening. The band broadening
depends also on the concentration. To avoid this side effect
one can use alloy components, the states of which are sep-
arated in energy or are located far from the Fermi energy.
In the latter case the band broadening affects the state far
below the band gap area. Another possible effect of alloying
is the change of the compound stoichiometry, which can

also lead to the desired effect without band broadening the
band edges. Furthermore, Heusler alloys can be doped with
other elements. Hence, shifting the Fermi level to touch the
minimum of the conduction band or the maximum of the
valence band is possible.

We also checked if it is possible to achieve a band touching
by adding strain or hydrostatic pressure. Compressing the
samples by 5 GPa changes the lattice constant around 1%
but does not affect the electronic properties. Şaşıoğlu et al.
and Gavriliuk et al. investigated the dependency of the Curie
temperature on the applied pressure. In both cases TC is
increasing with increasing pressure [56,57]. Shigeta et al.
analyzed the effect of pressure on the magnetic moment in
Co2TiSn and could not identify a change while applying
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x content
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FIG. 6. Indirect spin gap in FeVHfSi1−xGex as a function of Ge
concentration. The black line displays the linear fit. For x = 0.757 we
get a perfect type-II SGS.
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pressure up to 1.27 GPa [58]. To investigate the effect of strain
we built an eight-atom tetragonal unit cell (a = b �= c; α =
β = γ = π/2) and calculated the electronic structure when
the c axis was contracted or expanded while the volume of the
cell stayed constant. So for the a and b axis, we followed the
formula

a = b =
√

V

c(1 − x)
, (4)

where x denotes the applied strain and V stands for the volume
of the cell. This eventuates in a change of the electronic
properties. Some bands are shifted to higher and some to
lower energy. Thus, a general rule when the gap is closing
could not be identified.

C. Exchange interactions and Curie temperature

For realistic applications of spintronic devices, the Curie
temperature TC of the electrode materials in tunnel junctions
is extremely important. Materials with TC values much above
room temperature are required. Most of the experimentally
existing half-metallic Heusler compounds fulfill this require-
ment with TC values ranging from 300 to 1100 K. Compounds
with the highest reported TC values such as Co2MnSi (985 K
[48]) and Co2FeSi (1100 K [48]) possess also large sublattice
and thus total magnetic moments of 5 μB and 6 μB, re-
spectively. Extensive ab initio calculations on multisublattice
Heusler alloys have shown that there are several exchange
interactions which coexist and are superimposed. Hence, a
straightforward separation of the contributions of different
mechanisms is not easy since DFT is not based on a model
Hamiltonian approach and does not use a perturbative treat-
ment. Exchange coupling in Heusler compounds, in which the
total magnetic moment is localized on one sublattice (usually
Mn-based compounds), is well understood on the basis of the
Anderson s − d mixing model [59–62]. It was shown that due
to the large spatial separation of the Mn atoms in Heusler
alloys (dMn-Mn > 4 Å) the Mn 3d states belonging to different
atoms do not overlap considerably. Thus, an indirect exchange
interaction between Mn atoms should play a crucial role
in determining the magnetic state of the systems. However,
the situation is different for the compounds studied here
since the large part of the total magnetic moment is carried
by two or three magnetic atoms with spatial separations of
2.5–3 Å. Therefore, the direct exchange coupling between
the nearest magnetic atoms can dominate over the indirect
one.

In order to simplify the discussion we can write the total
magnetic exchange field acting on the sublattice μ as Jμ

total ∼
Jμν

direct + Jμν
indirect + Jμμ

indirect, where the first two terms represent
the direct and indirect exchange couplings between different
sublattices. The last term is intrasublattice indirect coupling.
In compounds like Co2MnSi and Mn2CoAl in which the Y
sublattice carries a large magnetic moment the direct cou-
pling provides the leading contribution to the total exchange
coupling and determines the character of the magnetic state
[63]. In most of the compounds considered, especially in
type-II SGSs (see Table I) the X and X ′ sublattices carry
the magnetic moment. These sublattices have an interatomic
distance dX -X ′ ∼ 3 Å and thus direct and indirect exchange
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FIG. 7. (a) Intersublattice (μ �= ν) and intrasublattice (μ = ν)
Heisenberg exchange parameters as a function of distance for type-
I spin-gapless semiconductor CoFeTaGe. (b) Calculated magnon
dispersion along the high-symmetry lines in the Brillouin zone for
CoFeTaGe. The black curve represents the acoustic mode while red
(dark gray) illustrates the optical branch.

coupling becomes important. It should be noted here that,
in reality, the situation is not so simple and the exchange
field acting on the sublattices should be determined from the
solution of a matrix equation.

Due to the presence of a spin gap in both HMMs and SGSs
the exchange interactions decay quickly with distance [64,65].
As representative of the type-I and type-II SGSs in Figs. 7 and
8 we present the calculated intrasublattice and intersublattice
Heisenberg exchange parameters and corresponding magnon
dispersion for CoFeTaGe (type-I SGS) and FeVTiSi (type-II
SGS) compounds, respectively. As seen in both materials
the intersublattice as well as the intrasublattice exchange pa-
rameters quickly decay with distance and for the interatomic
separations larger than 8 Å all parameters vanish. In both com-
pounds, the Co and Fe (Fe and V) sublattices form a cubic cell.
In the case of CoFeTaGe, the Co and Fe sublattices possess
similar magnetic moments of about 1.1 μB, while the Ta atom
has a small induced magnetic moment of −0.26 μB, which
couples antiferromagnetically to the Co and Fe sublattices.
As seen in Fig. 7(a) the intersublattice Fe-Ta as well as Co-Ta
interactions are almost negligible despite very short
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Heisenberg exchange parameters as a function of distance for type-II
spin-gapless semiconductor FeVTiSi. (b) Calculated magnon dis-
persion along the high-symmetry lines in the Brillouin zone for
FeVTiSi. The black curve represents the acoustic mode while red
(dark gray) illustrates the optical branch.

interatomic distance of dFe-Ta = 2.57 Å. This means that
the Ta sublattice is more or less decoupled from the rest of
the system.

In CoFeTaGe the strongest interaction takes place between
the Fe and Co sublattices and it quickly decays with distance,
i.e., from JFe-Co

1 ∼ 8 meV to JFe-Co
2 ∼ 2 meV and JFe-Co

3 be-
comes zero. On the other hand, the intrasublattice Fe-Fe and
Co-Co exchange interactions behave very differently, i.e., they
show Ruderman-Kittel-Kasuya-Yosida-type oscillations with
strong damping, however with different sign and more or less
with the same amplitude. Thus, their contributions into the
total exchange coupling almost cancel each other and only Fe-
Co intersublattice exchange interactions play a decisive role in
determining ground-state and finite-temperature properties of
the type-I SGS compound CoFeTaGe.

The situation is a bit different for the type-II SGS FeVTiSi
compound, in which V sublattice carries a large magnetic
moment of 2.33 μB, while Fe and Ti sublattices have rel-
atively small magnetic moments of 0.57 μB and 0.1 μB,
respectively. Due to different sublattice magnetic moments
the patterns of calculated exchange parameters presented in

Fig. 8(a) are also different than in the CoFeTaGe compound.
In FeVTiSi the Ti sublattice couples ferromagnetically to
the Fe and V sublattices due to strong ferromagnetic V-Ti
intersublattice exchange interaction, while the Fe-Ti inter-
action is antiferromagnetic but its strength is one-third of
the V-Ti interaction and thus the overall contribution turns
out to be ferromagnetic. The Fe and V sublattices interact
ferromagnetically with JFe−V

1 > JFe−V
2 and JFe−V

2 splits into
two due to different exchange paths along the [111] direction
[see Fig. 8(a)]. The strongest interaction in FeVTiSi takes
place between nearest- and next-nearest-neighbor V atoms,
which have opposite sign and similar strength. Note that each
V atom has 12 nearest-neighbor and 6 next-nearest neighbor
V atoms. Furthermore, the intrasublattice Fe-Fe interactions
are antiferromagnetic but negligibly small. Moreover, all ex-
change parameters quickly decay with distance and become
zero after 8 Å. Note also that in all other type-II SGSs, except
CoOsCrAl, the X ′ sublattice (V or Cr atoms) carries a large
magnetic moment (see Table I) and, as a result, the calculated
patterns of intrasublattice exchange parameters (results not
shown) are similar to the FeVTiSi case. In most of the type-II
SGSs the Y sublattice couples antiferromagnetically to the X
and X ′ sublattices. However, this coupling is weak due to the
small magnetic moment of atoms in the Y sublattice.

As mentioned in the preceding section the ferrimagnetic
ground state in most of the considered compounds (20 out
of 25) can be qualitatively accounted for on the basis that
half-filled shells tend to yield a strong trend toward anti-
ferromagnetism. As seen in Table I, when the Y sublat-
tice is occupied by the Cr (Mn) atom and the X ′ sublat-
tice is occupied by Mn or Fe (Os) the coupling between
these sublattices is antiferromagnetic since both Cr and Mn
atoms possess half-filled 3d shells and Fe (Os) is close to
half filling. Most of the materials satisfy either one or both
conditions.

In Figs. 7(b) and 8(b) we present the magnon disper-
sion along the high-symmetry lines in the Brillouin zone
for CoFeTaGe and FeVTiSi, respectively. Note that for both
compounds the induced small magnetic moments on Ta and
Ti atoms are not treated as independent degrees of freedom
in magnon dispersion calculations and thus we have only two
branches. The acoustic branches in both materials are typical
for magnets with short-range interactions, where nearest-
neighbor and next-nearest-neighbor intersublattice and intra-
sublattice exchange interactions dominate, and do not yield
any magnetic instabilities. Magnetic instabilities can occur if
the acoustic magnon modes have very low (close to zero) or
negative energies in some parts of the Brillouin zone but this is
not the case for any of the studied compounds. Around the �

point the energy-dispersion curves show a quadratic behavior
with spin-wave stiffness constants of D = 224 meV Å2 for
CoFeTaGe and D = 314 meV Å2 for FeVTiSi. These values
are comparable to the typical values of transition-metal ferro-
magnets which usually range between 300 and 600 meV Å2.

The optical magnon branch, which corresponds to the
out-of-phase precession of magnetic moments in X and X ′
sublattices, has a strong dispersion in both compounds. As the
magnetic moments in X and X ′ sublattices in CoFeTaGe have
similar values the optical branch looks like a mirror image of
the acoustic branch [see Fig. 7(b)].
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Calculated exchange parameters are used to estimate the
Curie temperature TC within the multisublattice mean-field
approximation [see Eq. (2)]. The obtained TC values are
presented in Table I. For comparison, available experimental
data are also included. As seen for all compounds except
CoFeTiSi the estimated TC values are above room tempera-
ture, ranging from 308 to 1123 K. Our mean-field estimation
of TC for Co2MnSi and CoFeCrAl is in reasonable agreement
with available experimental data. However, TC for Mn2CoAl
is overestimated, which can be attributed to the mean-field
approach. As in the mean-field approach spin fluctuations
are assumed to be small and the spin-flip Stoner excita-
tions are neglected, it gives the upper bound for TC values,
however in materials with large coordination number (fcc
lattice) and with long-range exchange interactions the mean-
field TC values are close to the ones obtained with random-
phase approximation and classical Monte Carlo methods. Of
course, this is not the case for the Mn2CoAl compound,
which possesses very large nearest-neighbor intersublattice
Mn-Mn and Mn-Co exchange interactions and, as a result,
mean-field considerably overestimates the TC by 50%, while
the Monte Carlo method results in a TC value of 770 K [33].
Note that in HMMs and type-I SGSs the presence of spin
gap around the Fermi energy prevents spin-flip transitions.
Thus, Stoner excitations do not play an important role in the
thermodynamics of these materials.

On the other hand, underestimation of TC by about 35%
in the CoFeCrSi compound can be attributed to the long-
wavelength approximation in linear response theory, which
underestimates exchange parameters in materials with small
magnetic moments like fcc Ni, which has been discussed
extensively in the literature by several authors [66–71]. In the
case of the CoFeCrSi compound, the Fe atom has a small
magnetic moment of 0.22 μB and thus the long-wavelength
approximation in linear response theory is expected to un-
derestimate the intersublattice Fe-Co as well as the Fe-Cr
exchange parameters, and as a consequence we obtain a small
TC value of 517 K compared to the experimental value of
790 K. Due to the long-wavelength approximation our esti-
mated TC values might be smaller than the experimental values
when these materials are grown since most of the considered
compounds have one or two transition-metal sublattices with
small magnetic moments.

Finally, we would like to comment on the semiempirical
relation between calculated TC values and the sum of the
absolute values of the sublattice magnetic moments mabs

T =∑
i |mi| which are presented in Table I. The relation between

TC and mabs
T is presented in Fig. 9. As seen the TC increases

almost linearly, TC ∼ 161mabs
T , with increasing mabs

T , and ma-
terials with largest mabs

T values like Mn2CoAl and Co2MnSi
possess also the highest TC values. Most of the compounds
have mabs

T values in between 2.5 μB and 5 μB and thus mod-
erate Curie temperatures. Deviations from the linear behavior
can be traced back to the sublattice magnetic moments and
thus the pattern of exchange interactions. In materials like
FeVHfAl, 80% of the mabs

T is carried by the V sublattice and
thus intrasublattice V-V exchange interactions play a decisive
role in the formation of TC rather than intrasublattice exchange
interactions. Of course, no such general rule exists since also
compounds like CoFeVSb with similar sublattice magnetic
moments show strong deviation.
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FIG. 9. The dependence of the calculated Curie temperatures on
the sum of the absolute values of the sublattice magnetic moments
mabs

T (mabs
T = ∑

i |mi|) presented in Table I. The solid line displays
the linear fit y = 161x.

V. CONCLUSION

Spintronics is a rapidly developing area of nanoelectronics.
The emergence of new concepts like reconfigurable magnetic
tunnel diodes and transistors requires the design of materials
with novel functionalities. For that purpose, Heusler com-
pounds are a preferential choice to identify such materials. In
the present paper, we searched suitable half-metallic magnets
and spin-gapless semiconductors among the family of ordered
quaternary Heusler compounds with the chemical formula
XX ′Y Z to realize reconfigurable magnetic tunnel diodes and
transistors. We managed to identify 25 compounds which
combine HMM or SGS properties with negative formation
energies and small convex hull energy distances so that they
can be grown experimentally.

Following the identification of the compounds of inter-
est, we employed state-of-the-art ab initio electronic band-
structure calculations to determine their lattice constant, the
spin magnetic moments, and their electronic structure. The
total spin magnetic moment of all compounds exhibits a
Slater-Pauling behavior and the ones being SGS have either
21 or 26 valence electrons per unit cell as expected for
SGSs. Among the ones that are SGSs, there are five of
the so-called type I which possess a gap in the minority-
spin band structure and a zero gap in the majority-spin
band structure. The other 11 SGS compounds are of type
II, presenting gaps in both spin directions. None of these
11 compounds is a perfect SGS but as we show suitable
mixing of two parent compounds leads to the tuning of
their electronic properties and the appearance of perfect SGS
type-II characteristics (the maximum of the majority-spin
valence band and the minimum of the minority-spin conduc-
tion band touch exactly at the Fermi level). All compounds
present large values of atomic spin magnetic moments and
the calculated exchange constants are short-range stabilizing
the magnetic state. We calculated the Curie temperatures for
all 25 compounds and found them to be well above room
temperature.
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We expect that our results will pave the way for experi-
mentalists to fabricate magnetic tunnel diodes and transistors
by combining suitable HMM and SGS quaternary Heusler
compounds.
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[1] I. Žutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323
(2004).

[2] K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O.
Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-
Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller,
Rev. Mod. Phys. 82, 1633 (2010).

[3] M. I. Katsnelson, V. Y. Irkhin, L. Chioncel, A. I. Lichtenstein,
and R. A. de Groot, Rev. Mod. Phys. 80, 315 (2008).

[4] A. Hirohata and K. Takanashi, J. Phys. D 47, 193001 (2014).
[5] J. Ma, V. I. Hegde, K. Munira, Y. Xie, S. Keshavarz, D. T.

Mildebrath, C. Wolverton, A. W. Ghosh, and W. H. Butler,
Phys. Rev. B 95, 024411 (2017).

[6] J. Ma, J. He, D. Mazumdar, K. Munira, S. Keshavarz, T. Lovorn,
C. Wolverton, A. W. Ghosh, and W. H. Butler, Phys. Rev. B 98,
094410 (2018).

[7] S. Sanvito, C. Oses, J. Xue, A. Tiwari, M. Zic, T. Archer, P.
Tozman, M. Venkatesan, M. Coey, and S. Curtarolo, Sci. Adv.
3, e1602241 (2017).

[8] S. V. Faleev, Y. Ferrante, J. Jeong, M. G. Samant, B. Jones, and
S. S. P. Parkin, Phys. Rev. B 95, 045140 (2017).

[9] S. V. Faleev, Y. Ferrante, J. Jeong, M. G. Samant, B. Jones, and
S. S. P. Parkin, Phys. Rev. Appl. 7, 034022 (2017).
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Matter 26, 086003 (2014).

[12] Y. Venkateswara, S. Gupta, S. S. Samatham, M. R. Varma,
Enamullah, K. G. Suresh, and A. Alam, Phys. Rev. B 97,
054407 (2018).

[13] J. Tsidilkovski, Electron Spectrum of Gapless Semiconduc-
tors, edited by K. von Klitzing, Springer Series in Solid-State
Sciences Vol. 116 (Springer-Verlag, Berlin, 1997).

[14] J. A. Kurzman, M.-S. Miao, and R. Seshadri, J. Phys.: Condens.
Matter 23, 465501 (2011).

[15] S. Chen, S. Huang, G. Guo, J. Lee, S. Chiang, W. Chen,
Y. Liang, K. Lu, and J. Chen, Appl. Phys. Lett. 99, 012103
(2011).

[16] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Science 306, 666 (2004).

[17] X. Wang, Phys. Rev. Lett. 100, 156404 (2008).
[18] X. Wang, G. Peleckis, C. Zhang, H. Kimura, and S. Dou, Adv.

Mater. 21, 2196 (2009).
[19] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J.

Buschow, Phys. Rev. Lett. 50, 2024 (1983).
[20] Y. Pan and Z. Yang, Chem. Phys. Lett. 518, 104 (2011).
[21] S.-D. Guo and B.-G. Liu, J. Phys.: Condens. Matter 24, 045502

(2012).
[22] Y. Pan and Z. Yang, Phys. Rev. B 82, 195308 (2010).

[23] S. Ouardi, G. H. Fecher, C. Felser, and J. Kübler, Phys. Rev.
Lett. 110, 100401 (2013).
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Ležaić, B. Sanyal, and I. Galanakis, Phys. Rev. B 91, 174439
(2015).

[34] A. Liechtenstein, M. Katsnelson, V. Antropov, and V. Gubanov,
J. Magn. Magn. Mater. 67, 65 (1987).

[35] P. Klaer, B. Balke, V. Alijani, J. Winterlik, G. H. Fecher,
C. Felser, and H. J. Elmers, Phys. Rev. B 84, 144413
(2011).

[36] X.-P. Wei, Y.-L. Zhang, Y.-D. Chu, X.-W. Sun, T. Sun, P. Guo,
and J.-B. Deng, J. Phys. Chem. Solids 82, 28 (2015).

[37] S. Smidstrup, D. Stradi, J. Wellendorff, P. A. Khomyakov, U. G.
Vej-Hansen, M.-E. Lee, T. Ghosh, E. Jónsson, H. Jónsson, and
K. Stokbro, Phys. Rev. B 96, 195309 (2017).

[38] M. Van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete,
D. R. Hamann, X. Gonze, and G.-M. Rignanese, Comput. Phys.
Commun. 226, 39 (2018).
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S. Blügel, and C. Etz, arXiv:1702.00599.

124415-12

71



6 Results and Discussion

6.2 Magnetic tunnel junctions based on spin-gapless
semiconductors and half-metallic magnets for magnetic
memory and logic applications.

Magnetic tunnel junctions (MTJs) based on half-metallic Heusler compounds arouse great
interest within the last decades [209–211], especially for non-volatile memory and magnetic
logic applications. HMMs have been proposed as ideal electrode materials for MTJs to
realize extremely large TMR values. In the previous section, we identified promising SGSs
and HMMs within the family of ordered quaternary Heusler compounds for spintronic device
application. In the following publication, ”Ab initio study of magnetic tunnel junctions based
on half-metallic and spin-gapless semiconducting Heusler compounds: Reconfigurable diode
and inverse TMR effect for magnetic memory and logic applications” [TA2], we discuss from
first principles the current-voltage characteristics, reconfigurable rectification properties as
well as the TMR ratio of two different MTJs based on SGSs and HMMs within the family
of quaternary Heusler compounds. We stick to the SGSs FeVTaAl and FeVTiSi due to
their large energy gaps in opposite spin channels below and above the Fermi level, MgO as
tunnel barrier, and for the HMMs, we choose MnVTaAl and CoFeVSb since both Heusler
compounds exhibit nearly symmetric spin gaps around the Fermi level and possess similar
lattice constants to MgO. These MTJs conduct current either under reverse or forward bias

Figure 6.2: Schematic representation of the MTJ based on a HMM and a SGS for the par-
allel (a) and anti-parallel (b) orientation of the magnetization directions of the
electrodes together with the corresponding current-voltage (I-V ) characteristics.
(c) Dependency of the TMR effect on the bias voltage in MTJs. The inverse
(i-)TMR effect is represented by a blue line while the normal (n-)TMR effect is
illustrated by a red dashed line. Adapted (figure) from T. Aull et al. manuscript submitted
for publication, also available at arXiv:2202.06752 (2022); Ab initio study of magnetic tunnel junctions
based on half-metallic and spin-gapless semiconducting Heusler compounds: Reconfigurable diode and
inverse TMR effect for magnetic memory and logic applications, Ref. [TA2].
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6 Results and Discussion

depending on the relative orientation of the magnetization direction of the electrodes and
blocks the current in the opposite direction (see Figs. 6.2 (a) and 6.2 (b)). This reconfigurable
diode effect leads to an inverse TMR effect rather than a normal TMR effect as in most of
the conventional MTJs (see Fig. 6.2 (c)).

The following publication: Reprinted (submitted manuscript) from (T. Aull et al. manuscript submitted for publica-

tion, also availible at arXiv:2202.06752 (2022); Ab initio study of magnetic tunnel junctions based on half-metallic and

spin-gapless semiconducting Heusler compounds: Reconfigurable diode and inverse TMR effect for magnetic memory

and logic applications, Ref. [TA2]).
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Ab initio study of magnetic tunnel junctions based on half-metallic and spin-gapless
semiconducting Heusler compounds: Reconfigurable diode and inverse TMR effect

for magnetic memory and logic applications

T. Aull,⇤ E. Şaşıoğlu, and I. Mertig
Institute of Physics, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany

(Dated: February 15, 2022)

Magnetic tunnel junctions (MTJs) have attracted strong research interest within the last decades
due to their potential use as non-volatile memory such as MRAM as well as for magnetic logic
applications. Half-metallic magnets (HMMs) have been suggested as ideal electrode materials for
MTJs to achieve an extremely large tunnel magnetoresistance (TMR) effect. Despite their high
TMR ratios, MTJs based on HMMs do not exhibit current rectification, i.e., a diode effect, which
was achieved in a novel MTJ concept [ACS Appl. Electron. Mater. 1, 1552–1559 (2019)] based on
HMMs and type-II spin-gapless semiconductors (SGSs). The proposed concept has been recently
experimentally demonstrated using Heusler compounds. In the present work, we investigate from
first-principles MTJs based on type-II SGS and HMM quaternary Heusler compounds FeVTaAl,
FeVTiSi, MnVTiAl, and CoVTiSb. Our ab initio quantum transport calculations based on a non-
equilibrium Green’s function method have demonstrated that the MTJs under consideration exhibit
current rectification with relatively high on/off ratios. We show that, in contrast to conventional
semiconductor diodes, the rectification bias voltage window (or breakdown voltage) of the MTJs
is limited by the spin gap of the HMM and SGS Heusler compounds, which can be tuned by
doping the electrode materials. A unique feature of the present MTJs is that the diode effect can
be configured dynamically, i.e., depending on the relative orientation of the magnetization of the
electrodes, the MTJ allows the electrical current to pass either in one or the other direction, which
leads to an inverse TMR effect. The combination of nonvolatility, reconfigurable diode functionality,
tunable rectification voltage window, and high Curie temperature of the electrode materials make
the proposed MTJs very promising for room temperature spintronic applications and opens new
ways to magnetic memory and logic concepts as well as logic-in-memory computing.

I. INTRODUCTION

The current computing technology is based on the von-
Neumann architecture [1], in which the central process-
ing unit and the memory are connected via a shared
bus system causing the memory bandwidth bottleneck
and high power consumption. It was demonstrated that
for many computing tasks, the major amount of en-
ergy and time is needed to transfer data between the
memory and the CPU, rather than the information pro-
cessing itself [2, 3]. To tackle the bandwidth bottle-
neck in today’s microprocessors, new information pro-
cessing concepts such as logic-in-memory computing are
receiving substantial interest [4–9]. The logic-in-memory
computing architecture requires non-volatile memory el-
ements. Among the emerging non-volatile memory tech-
nologies, the magnetoresistive random access memory
(MRAM) is the most promising candidate due to its
almost infinite endurance. The MRAM combines rela-
tively high access speeds with non-volatility. In partic-
ular, spin-transfer torque (STT)-MRAM and spin-orbit
torque (SOT)-MRAM emerged as promising candidates
to replace the L3- and L2-cache [10, 11] of modern mi-
croprocessors.

In conventional magnetic tunnel junctions (MTJs), a
non-magnetic insulator of a few nanometer thickness is

⇤ thorsten.aull@physik.uni-halle.de

sandwiched between two ferromagnetic electrodes [12,
13]. Thus, the electronic transport is spin-dependent and
mainly determined by quantum tunneling. For this rea-
son, the tunnel magnetoresistance (TMR) ratio and the
conductance are very important quantities of MTJs [14–
17]. The resistance of such devices differs in two config-
urations, when the magnetization of the left and right
electrode is parallel oriented and when the orientation
is switched to anti-parallel, resulting in the TMR ef-
fect. When no bias voltage is applied, the TMR ratio
is defined as TMR = (G"" � G"#) /(G"# + G""), where
G"" (G"#) denotes the conductance in the parallel (anti-
parallel) configuration of the electrodes. For finite biases,
the TMR expression becomes TMR = (I"" � I"#) /(I"#+
I""), where I"" (I"#) is the tunnel current through the
device in the parallel (anti-parallel) orientation of the
magnetization of the electrodes. It is worth noting that
the tunnel barrier material, as well as the thickness of
the tunnel barrier, and the applied bias voltage can in-
fluence the TMR effect [13, 18, 19]. Another factor that
can affect the sign and the value of the TMR ratio is
a structural asymmetry in the junctions. Heiliger et al.
proposed that independent of the applied bias voltage, in
asymmetric junctions the value of I"# exceeds the amount
of I"" and, as a consequence, leads to a negative TMR
ratio [20, 21]. The dependency of the TMR ratio on the
applied bias voltage for both, the normal and the inverse
TMR effect, is schematically illustrated in Fig. 1 (a).

MTJs played a significant role in spintronics develop-
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FIG. 1. (a) Top: Schematic representation of the magnetic
tunnel junction based on a half-metallic magnet and a spin
gapless semiconductor. Bottom: Dependency of the TMR ef-
fect on the bias voltage in MTJs. The inverse (i-)TMR effect
is illustrated by a blue line while the normal (n-)TMR effect is
represented by a red dashed line. (b) and (c) The same as (a)
for the parallel and anti-parallel orientation of the magnetiza-
tion directions of the electrodes as well as the corresponding
current-voltage (I-V ) characteristics. The white arrows indi-
cate the magnetization direction of the electrodes.

ment as they are suitable for several applications rang-
ing from read-head sensors to non-volatile memory de-
vices such as STT-MRAM and SOT-MRAM and from
non-volatile logic concepts to logic-in-memory comput-
ing [22–24]. Magnetic logic promises non-volatile, low-
power computing and up to now, several different ap-
proaches have been proposed such as the quantum cel-
lular automata [25, 26], domain-wall logic [27, 28], MTJ
logic [29–31], etc. The latter is of particular interest be-
cause it opens the way to logic-in-memory computing,
i.e., storing and processing the data within the same chip
and thus providing an opportunity to explore novel com-
puting architectures beyond the classical von-Neumann
architecture [32, 33]. MTJ-based magnetic logic propos-
als can be divided into three categories: i) external field-
driven MTJ logic, ii) spin Hall effect driven MTJ logic,
and iii) logic based on magnetic tunnel diodes and mag-
netic tunnel transistors.

In the first category, the logic gates are built from
MTJs, which are arranged in a bridge-type configura-
tion and the logic inputs are provided by external wires,
which creates a magnetic field that switches the magne-
tization direction of one electrode in MTJ. In this way,
all logic gates can be realized with few MTJs [29, 30, 34].
The utilization of an inverse TMR effect can even fur-
ther reduce the number of MTJs in logic gates [31, 35].
However, the drawback of this approach is that it is not
scalable due to input wires and their routing near the
MTJs. In the second category, the logic gates are based
on a novel four-terminal spin Hall effect driven MTJ
with fully electrically-separated write/read paths [36–38].
These four-terminal MTJ devices can overcome the chal-
lenges of operation gain and direct cascading in current
spintronic logic circuits. Moreover, simulations have indi-
cated that correct logic fan-out operation can be achieved
with voltage below 150 mV, which is promising for low

power computing [38]. Note that in both approaches
the logic operation gain (i.e., output voltage margin) de-
pends mainly on the TMR ratio of the MTJs. While
in the third category, a MTJ possesses, in addition to
the TMR effect (memory), a current rectification (diode
effect) functionality. Such MTJs also constitute the ba-
sic building blocks of the three-terminal magnetic tun-
nel transistors for logic applications. The TMR effect
and current rectification have been observed for single
barrier asymmetric MTJs as well as for double barrier
MTJs with tunnel barriers of different transparency [39–
42]. Although in initial studies of magnetic tunnel tran-
sistors low magnetocurrent ratios and transfer rates ↵ are
reported [43–47], in recent experiments of fully epitaxial
magnetic tunnel transistors a large magnetocurrent ra-
tio and transfer rate ↵ is detected [48]. Besides being
the basic building blocks of the three-terminal magnetic
tunnel transistors, the MTJs possessing the diode effect
is of particular interest for high-density 3D cross-point
STT-MRAM applications as it eliminates the need for
an additional selection device [42], i.e., a MOSFET tran-
sistor or a p-n diode [49–51].

In contrast to MTJ-based logic proposals, in the first
and second category as well as other concepts like spin-
orbit torque logic [52] not mentioned above (for a detailed
discussion the reader is referred to Refs. 53 and 54, which
report a benchmarking of beyond-CMOS devices includ-
ing various spintronic logic concepts), magnetic tunnel
diodes and transistors can operate extremely high fre-
quencies, i.e., in THz regime, making them ideal candi-
dates for high speed electronic and spintronic applica-
tions. However, despite THz operation frequencies, con-
ventional magnetic tunnel diodes and transistors come
with fundamental issues such as low on/off current ratios
and less asymmetric current-voltage characteristics in
diodes and base-collector leakage currents in transistors,
which might lead to high power dissipation. In Ref. 55,
we have proposed a magnetic tunnel diode and transis-
tor concept, which overcomes the limitations of conven-
tional magnetic tunnel devices and provides additional
unique functionalities like reconfigurability, which was
recently experimentally demonstrated [56]. The concept
is based on spin-gapless semiconductors (SGSs) [57] and
half-metallic magnets (HMMs) [58]. The two-terminal
magnetic tunnel diode (or MTJ) is comprised of a SGS
electrode and a HMM electrode separated by a thin insu-
lating tunnel barrier. A schematic representation of the
structure of the reconfigurable magnetic tunnel diode is
shown in Fig. 1 (b) and 1 (c). Depending on the rela-
tive orientation of the magnetization of the electrodes
the MTJ allows the electrical current to pass either in
one or the other direction.

The aim of the present paper is a computational design
of MTJs based on HMM and SGS quaternary Heusler
compounds for room temperature device applications.
Heusler compounds offer a unique platform to realize
MTJs as these materials possess very high Curie temper-
atures (above room temperature) as well as HMM and
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SGS behavior within the same family [59–61]. To this
end, the selection of the HMM and SGS electrode mate-
rials from the quaternary Heusler family for the design of
MTJs is based on our recent study in Ref. 61. We stick to
SGS FeVTaAl and FeVTiSi compounds due to their large
energy gaps in opposite spin channels around the Fermi
level [61], MgO as tunnel barrier due to the lattice match-
ing, and for the HMMs, although we have a large variety
of choice, we choose MnVTaAl and CoFeVSb since both
materials exhibit nearly symmetric spin gaps above and
below EF and possess similar lattice constants to MgO.
Ab initio quantum transport calculations based on the
non-equilibrium Green’s function (NEGF) method have
demonstrated that the MTJs based on HMM and SGS
Heusler compounds exhibit, in addition to inverse TMR
effect, current rectification, i.e, diode effect, which can
be dynamically configured. We show that in contrast to
semiconductor diodes (p-n diode or Schottky diode), the
rectification voltage window (or breakdown voltage) of
these MTJs is limited by the spin gap of HMM and SGS
Heusler compounds, which can be tuned by doping elec-
trode materials. The calculated zero temperature on/off
current ratios vary between 102-107, being lowest for the
FeVTiSi/MgO/CoFeVSb MTJ, which can be attributed
to the overlap of the conduction and valence bands of
opposite spin channels around the Fermi level. The com-
bination of non-volatility and dynamically reconfigurable
diode effect as well as the very high Curie temperature of
quaternary Heusler compounds make the proposed MTJs
very promising for room temperature spintronic memory
and logic applications. The rest of the paper is organized
as follows: In Section II, we discuss the I-V character-
istics of the MTJ concept by using the spin-dependent
energy-band diagrams. In Section III, we present the
computational details of our study. Our computational
results are presented and discussed in Section IV, and
finally, in Section V, we give our summary and outlook.

II. HMM/I/SGS MAGNETIC TUNNEL
JUNCTIONS

In Fig. 1 (b) and 1 (c), we schematically show a MTJ
based on a HMM and a SGS in the parallel and anti-
parallel configuration of the electrodes, respectively, to-
gether with the corresponding I-V curves. HMMs have
been used as electrode materials for MTJs to achieve ex-
tremely large TMR effects. Despite their large TMR ra-
tios, the MTJs based on HMMs do not present current
rectification, i.e., a diode effect. In Ref. 55, it was pro-
posed that replacing one of the HMM electrodes with a
SGS material in a MTJ gives rise to additional function-
alities, i.e., current rectification, inverse TMR effect, and
reconfigurability of the MTJ. Such a MTJ is then called
a reconfigurable magnetic tunnel diode (MTD). Besides
the HMM, the SGS material is the key component of the
MTD. SGSs have been proposed by Wang in 2008 as a
theoretical concept [57]. By employing first-principles

(a) (b) (c)E

E E EF F F

E E

DOS DOSDOS

FIG. 2. Schematic representation of the density of states for
(a) a type-II spin-gapless semiconductor, (b) a half-metallic
magnet, and (c) a type-I spin-gapless semiconductor.

calculations Wang demonstrated that doping PbPdO2

with Co atoms results in a new class of materials: the
SGSs [57, 62]. Since then, different classes of materials
have been predicted to present SGS behavior of various
types, i.e., from type-I to type-IV SGSs [57, 59–61, 63–
65] and some of the predicted SGSs have been experimen-
tally realized [66]. Since type-II SGSs are the key compo-
nent of the reconfigurable MTD, in Fig. 2 we present the
schematic density of states (DOS) of a type-II SGS to-
gether with a conventional HMM as well as a type-I SGS,
which can be also used as a replacement of the HMM in
a MTJ. As seen in Fig. 2 (a) the type-II SGS possesses
a unique electronic band structure, i.e., it presents a fi-
nite gap below and above the Fermi level EF in different
spin channels while the valence- and conduction-bands
of different spin channels touch at EF . On the other
hand, in HMMs, the majority-spin channel behaves like
in normal metals, but the minority-spin channel exhibits
a gap around the Fermi level like in a semiconductor or
insulator. The DOS of type-I SGSs is similar to HMMs
[see Fig. 2 (b) and 2 (c)]. The minority-spin channel looks
the same while in the majority-spin channel a zero-width
gap appears at the Fermi level since the conduction- and
valence-band edges touch at EF .

The operation principle of the reconfigurable MTD is
extensively discussed in Ref. 55 and hence here we present
a short overview of the concept by using the spin-resolved
energy-band diagram shown in Fig. 3. The spin-resolved
energy-band diagram is based on the schematic DOSs
provided in Fig. 2 (a) and 2 (b), i.e., the type-II SGS
material possesses a gap in the minority-spin (majority-
spin) channel below (above) the Fermi level while the
HMM exhibits a gap in the minority-spin channel around
the Fermi energy. We further assume that the type-II
SGS electrode, the tunnel barrier, and the half-metallic
material have the same work function and equal Fermi
levels and therefore we do not consider charge transfer
at the interfaces. However, real materials, as it will be
discussed in Section IV, possess different work functions
and so there occurs charge transfer between one material
and the other at the interface, which might cause a band
bending in the SGS electrode. Moreover, due to interac-
tions at the interface, the junction materials might not
conserve the SGS or HMM characteristics close to the
interface and thus the band diagram will not be as sharp
as presented in Fig. 3.
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FIG. 3. Schematic representation of the spin-resolved energy-band diagram for the SGS/I/HMM MTJ for parallel (P) orienta-
tion of the magnetization directions of the electrodes (a) for zero bias, (b) under forward bias, and (c) under reverse bias. The
electrons (holes) and the Fermi energy are denoted by red (white) spheres and a dashed line, respectively, and the tunneling
process is illustrated by partly shaded red arrows. (d), (e), and (f) represent the same as (a), (b), and (c) for the anti-parallel
(AP) orientation of the magnetization directions of the electrodes [see Figure 1 (b) and 1 (c)].

The I-V characteristics of the SGS/MgO/HMM junc-
tion illustrated in Fig. 1 (b) and 1 (c) can be quali-
tatively explained by Bardeen’s approach for tunnel-
ing [67, 68]. For a simple tunnel barrier, the tun-
nel current I(V ) is given by the expression I(V ) ⇠P

�

R +1
�1 ⇢�HMM(E+eV ) ⇢�SGS(E) |T (V )|2 f(E) [1�f(E+

eV )] dE, where ⇢�SGS(E) and ⇢�HMM(E + eV ) denote the
DOS of the SGS and HMM electrodes with spin � and
f(E) being the Fermi distribution function. T (V ) is
the transmission probability, which is proportional to
e�d

p
��V , where d is the thickness of the tunnel bar-

rier and � is the barrier height. As shown in Fig. 3 (b),
when the magnetization directions of the electrodes are
aligned parallel and a positive bias voltage (forward bias)
is applied to the SGS electrode, electrons in the occupied
majority-spin valence band of the HMM electrode can-
not tunnel through the insulating barrier into the SGS
electrode because there are no available states above the
Fermi energy in the majority-spin channel of the SGS
electrode unless a certain bias voltage is reached. For
minority-spin electrons, the HMM electrode behaves like
an insulator and thus no electron transport takes place.
For a negative bias voltage (reverse bias), electrons in
the majority-spin channel in the SGS material can tun-
nel into the unoccupied states of the HMM as shown
in Fig. 3 (c). In the minority-spin channel, neither in
the SGS electrode nor in the HMM electrode states are
available that can contribute to a current. Thus, the tun-
neling current through the MTJ is 100 % spin-polarized.
A similar discussion holds for the anti-parallel orientation

of the magnetization direction of the SGS and HMM elec-
trodes, for which the corresponding energy-band diagram
is presented in Figs. 3 (d)-(f). Note that in the schematic
representation of the I-V characteristics of the MTJ [see
Fig. 1 (b) and 1 (c)], we use the standard definition of
current for semiconductor devices, i.e., the current direc-
tion is opposite to the electron motion direction, while in
Ref. 55, the same direction is taken for the current and
electron motion. This is why the I-V characteristics are
different in Ref. 55.

The presence of the reconfigurable diode effect in MTJs
based on SGSs and HMMs leads to an inverse TMR ef-
fect rather than a normal TMR effect as in most of the
conventional MTJs. The voltage dependence of the TMR
presented in Fig. 1 (a) can be explained on the basis of
the I-V characteristics discussed above. For a positive
(forward) bias voltage, I"# will take a finite value while
I"" is equal to zero. While for a negative (reverse) bias
voltage, the situation is exactly the opposite. Thus, for
forward bias, the TMR ratio will take the value �100 %
in a bias voltage window, which is set by the bandgap of
the SGS and HMM electrodes. Similarly, under a reverse
bias, the TMR ratio will be normalized to +100 %. Note
that we use here a different definition of the TMR ratio
compared to the Jullière model [69].

Up to now, the discussion of the I-V curves and volt-
age dependence of the TMR effect in SGS/I/HHM MTJs
was based on the schematic energy-band diagram at zero
temperature and perfect SGS behavior of the electrode
material. However, at finite temperatures, thermally ex-
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TABLE I. Material composition of the considered MTJs, lattice constants a0, c/a ratio, sublattice and total magnetic moments,
work function (�), Curie temperatures TC of the cubic phase, and the electronic ground state. All TC values are taken from
Ref. 61.

SGS/MgO/HMM junction MgO-interface Compound a0 c/a mX mX0 mY mtotal � TC Ground state
(Å) (µB) (µB) (µB) (µB) (eV) (K)

FeVTaAl/MgO/MnVTiAl FeV-MnV FeVTaAl 6.10 1.00 0.85 2.38 -0.19 3.00 3.75 681 SGS
MgO 6.10 0.98 - - - - 4.53 - I

MnVTiAl 6.10 1.01 -2.42 2.61 0.86 1.00 3.59 963 HMM
FeVTiSi/MgO/CoFeVSb FeV-CoFe FeVTiSi 5.91 1.00 0.57 2.33 0.10 3.00 3.52 464 SGS

MgO 5.91 1.04 - - - - 4.55 - I
CoFeVSb 5.91 1.12 1.08 1.20 0.78 3.00 4.10 308 HMM

cited electrons (non-spin-flip processes) can be transmit-
ted from one electrode to the other in the off-state and
thus cause a leakage current [see Figs. 3 (b) and 3 (f)].
This reduces the on/off and TMR ratios. Nevertheless,
such processes can be significantly reduced by increas-
ing the bandgap of the SGS and HMM materials as
the Fermi-Dirac distribution function decays exponen-
tially with increasing energy. Besides thermally excited
non-spin-flip electrons, spin-flip processes stemming from
spin-orbit coupling and electron-magnon interaction can
also reduce the on/off ratio as well as the TMR effect [70–
72].

III. COMPUTATIONAL DETAILS

Our ab initio study of the SGS/MgO/HMM MTJs
is based on spin-polarized density functional theory
(DFT) using the QuantumATK software package (ver-
sion S-2021.06) [73, 74]. We used linear combinations
of atomic orbitals (LCAO) as basis-set together with
norm-conserving PseudoDojo pseudopotentials [75] with
the Perdew-Burke-Ernzerhof (PBE) parametrization of
the exchange-correlation functional [76]. For the de-
termination of the ground-state properties, we use a
15 ⇥ 15 ⇥ 15 Monkhorst-Pack k-point grid and as den-
sity mesh cutoff for the separation of core and va-
lence electrons 145 Hartree. Since the PBE-GGA is
well-known to underestimate band gaps [77–79], we use
the DFT-1/2 method [80, 81] as implemented in the
QuantumATK package to correct the bandgap in the
calculations of the transmission spectra. The changes in
the SGS and HMM band structure by applying the DFT-
1/2 method are negligible. For the structural optimiza-
tion, all forces converge to at least 0.01 eV/Å and self-
consistency was achieved when the energies between two
steps of the SCF cycle differ less than 10�4 eV. For the
transport calculations, we employ the non-equilibrium
Green’s function (NEGF) approach combined with the
DFT method using an 11 ⇥ 11 ⇥ 115 k-point mesh.
To calculate the I-V characteristics, QuantumATK
applies the Landauer-Büttiker approach [82], where
I(V ) = e/h

P
�

R
T �(E, V ) [fL(E, V ) � fR(E, V )] dE,

where fL(E, V ) and fR(E, V ) represent the Fermi-Dirac
distribution of the left and right electrode, respectively.
Furthermore, the transmission coefficient T �(E, V ) de-
pends on the spin � of the electrons, the applied bias
voltage V , and the energy E. For the calculation of
T �(E, V ), we chose a dense 100 ⇥ 100 k-mesh. More-
over, the self-consistent I-V calculations are compared
with a zero-bias linear response approach.

IV. RESULTS AND DISCUSSION

In Section II, we qualitatively discussed the I-V char-
acteristics of the MTJs based on SGSs and HMMs using
the spin-dependent energy-band diagram and a simple
tunnel barrier model. However, quantum tunneling is
a very sophisticated process in real materials as it de-
pends on the symmetry of the wave functions in the elec-
trodes, their decay rate, and their matching at the in-
terface. The decay rate is determined by the thickness
and barrier height as well as the complex energy bands of
the insulating material [83, 84]. Therefore, fully ab ini-
tio quantum transport calculations are needed to deter-
mine the I-V characteristics of the MTJs based on SGSs
and HMMs. We choose FeVTaAl and FeVTiSi quater-
nary Heusler compounds as SGS electrode together with
MnVTiAl and CoFeVSb as HMM electrode and construct
two different types of MTJs. All four electrode mate-
rials possess Curie temperatures above room tempera-
ture as presented in Table I. To construct the MTJs,
we take the type-II SGS electrode material in the cu-
bic structure and relax the tunnel barrier MgO as well
as the HMM electrode material with respect to the in-
plane lattice parameter of the first electrode. For this
reason, we include the c/a ratios for the HMM elec-
trodes and MgO, respectively, which take the tetragonal
structure in Table I. The atomic structure of one MTJ
is illustrated in Fig. 4 (a). The left electrode FeVTaAl
is a SGS, the right electrode MnVTiAl is a HMM, and
MgO acts as a tunnel barrier. The FeVTaAl (MnVTiAl)
has two types of interface terminations with MgO: FeV
and TaAl (MnV and TiAl). Our total energy calcula-
tions have shown that the FeV-MgO (MnV-MgO) ter-
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FIG. 4. (a) The atomic structure of the FeVTaAl/MgO/MnVTiAl tunnel junction. The system is periodic in xy-plane orthogonal
to the z-axis, which is the transport direction. The red arrows mark the direction and the size of the magnetic moments within
the scattering region. The small induced magnetic moments are overlayed by the atomic radii. The black dashed boxes illustrate
the interface. (b) The calculated spin-resolved bulk band structure along the device stack direction, [001], for FeVTaAl (left
panel) and MnVTiAl (right panel). The dashed black line denotes the Fermi level which is set to zero.

mination possesses lower energy. Similarly, as for the
second MTJ FeVTiSi/MgO/CoFeVSb (see Table I), the
FeV-MgO (CoFe-MgO) termination has lower energy.

For both MTJs, the thickness of the MgO tunnel bar-
rier varies between three and six monolayers (0.6-1.4 nm)
and the SGS and HMM electrodes are constructed by re-
peating the minimal tetragonal unit cell five times along
the [001] direction. Depending on the number of MgO
layers, the length of the device (screening region) lies
between 60 Å and 66 Å. The device is periodic in the xy-
plane and the z-direction is the transport direction. We
adjusted the alignment of the magnetic moments to the
z-axis. The direction and magnitude of the atomic mag-
netic moments of the electrode materials in the MTJ are
represented by the red arrows and their size in Fig. 4 (a).
At both interfaces, the magnetic moments deviate from
their bulk values (see Table I). At the FeVTaAl-MgO
interface, the largest difference is obtained for the Fe
atom whose magnetic moment increases from 0.85 µB

to 1.82 µB while the moment of the Ta atom decreases
from ⇠0.2µB to -0.4µB . The changes at the remain-
ing atoms are negligible. Similar behavior is observed for
the MnVTiAl-MgO interface, where the largest deviation
occurs in the magnetic moment of the Mn atom, whose
value decreases from -2.42µB to -3.30µB while the mag-
netic moments of the other atoms remain more or less
unchanged.

Next, we will discuss the electronic properties of the
FeVTaAl/MgO/MnVTiAl junction at zero bias, i.e., in

equilibrium. Thus, we present the bulk band structure
along the transport direction of both junction materials
in Fig. 4 (b). The MnVTiAl compound exhibits a nearly
symmetric bandgap of 330 meV above and 310 meV be-
low the Fermi level in the minority-spin channel, while
FeVTaAl exhibits a type-II SGS behavior. Note that in
the chosen direction, the SGS properties are not well dis-
played, and thus for a full band structure the reader is
referred to Refs. 60 and 61. As we discussed above, the
strong variation of the magnetic moments at the interface
implies that the HMM and SGS properties are also lost.
The loss of the HMM and SGS properties stems from
two factors: i) electronic structure, i.e., the Fe and V
(Mn and V) atoms at the interface possess different local
atomic environments, and thus non-bonding states can
emerge close to the Fermi level. Such states significantly
reduce the spin-polarization at the interface [85, 86]. ii)
Charge transfer across the tunnel junction due to the
work function difference of the electrodes (see Table I).
Since MnVTiAl exhibits the lower work function, elec-
trons flow from the majority-spin (minority-spin) channel
of MnVTiAl to the majority-spin (minority-spin) chan-
nel of FeVTaAl for parallel (anti-parallel) alignment of
the magnetization directions of the electrodes. When
this charge redistribution reaches equilibrium, MnVTiAl
is positively charged near the interface region, whereas
FeVTaAl is negatively charged and, as a result, an elec-
tric dipole is induced, which affects the electronic as well
as the magnetic properties of both electrode materials
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FIG. 5. (a) Projected device density of states (DDOS) for the majority (left panels) and minority (right panels) spin channel
of the FeVTaAl/MgO/MnVTiAl junction for parallel orientation of the magnetization directions of the electrodes under an
applied bias of +0.3V and -0.3V (the corresponding atomic structure is presented in 4 (a)). In the middle panels we show
the calculated transmission spectrum for both spin channels. The dashed lines display the Fermi level of the left and right
electrodes while the vertical yellow dashed lines denote the interfaces between the electrodes and MgO. The MgO tunnel barrier
thickness is taken to be 1.1 nm, i.e., five monolayers. (b) The same as (a) for anti-parallel orientation of the magnetization
directions of the electrodes. The majority and minority spin-channel are illustrated with respect to the magnetic orientation
of the left electrode.

around the interface region. The loss of HMM and SGS
properties at the interface region can be seen in the de-
vice density of states (DDOS) presented in Fig. 5 (see
also Fig. 2 in the supplemental material [87]).

The I-V characteristics of the MTJs under considera-
tion are calculated by using two different approaches: i)
finite-bias NEGF method and ii) a linear response ap-
proach. The latter is computationally much cheaper,

while, however, significant differences may appear in
the calculated I-V curves when compared to the self-
consistent NEGF calculations as will be discussed be-
low. In the middle panels of Fig. 5 (a) and 5 (b), we
present the calculated transmission spectrum for the
FeVTaAl/MgO/MnVTiAl MTJ for the applied bias volt-
age of +0.3 V and �0.3 V for the parallel and anti-parallel
configuration of the magnetization direction of the elec-
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FIG. 6. (a) The current-voltage characteristics for the FeVTaAl/MgO/MnVTiAl (left panel) and FeVTiSi/MgO/CoFeVSb
junction (right panel) for five monolayers of MgO barrier thickness in the parallel configuration. The I-V curves are calculated
using both SCF and LR methods. (b) The same as (a) for the anti-parallel alignment of the magnetization directions of the
electrodes. (c) and (d) illustrate the origin of the leakage current under forward and reverse bias for parallel and anti-parallel
orientation of the magnetization direction of the electrodes, respectively.

trodes, respectively. The transmission spectrum and con-
sequently the I-V curves of the FeVTaAl/MgO/MnVTiAl
MTJ displayed in Fig. 6 can be explained on the basis
of the DDOS [Fig. 5 (a) and 5 (b)]. For parallel orien-
tation of the magnetization directions of the electrodes,
under forward bias (V = +0.3 V), the transmission coeffi-
cient for majority-spin electrons is zero due to the gap in
the type-II SGS material above the Fermi level. Since
MnVTiAl exhibits a gap in the minority-spin channel
around the Fermi energy, the transmission coefficient is
also zero for minority-spin electrons and thus the MTJ
is in off-state, i.e., no current flows through it under for-
ward bias. Under reverse bias (V = �0.3 V), majority-
spin electrons of occupied states in the SGS electrode
FeVTaAl can tunnel into unoccupied states of the HMM
electrode MnVTiAl through the MgO tunneling barrier
and, as a consequence, the transmission coefficient takes
a finite value. In the minority-spin channel, FeVTaAl
possesses a gap below EF and MnVTiAl below and above
the Fermi level, and hence, in both materials, no states
are available which could contribute to a current within
the applied voltage window. Thus, the on-current of the
MTJ in parallel configuration is 100 % spin-polarized.

Switching the magnetization direction of the electrodes
from the parallel to the anti-parallel configuration re-
sults in switching the I-V characteristics of the MTJ (see

Fig. 1 (b) and 1 (c)), i.e, the MTJ is in on-state under for-
ward bias, while it is in off-state under reverse bias. In
this case, the HMM electrode MnVTiAl possesses a gap
in the majority-spin channel and thus this channel does
not contribute to the current. However, in the minority-
spin channel, electrons from the occupied states above
the Fermi energy in MnVTiAl can tunnel through the
MgO tunnel barrier into unoccupied states in FeVTaAl,
and thus the transmission coefficient takes a finite value
under forward bias, which leads again to a 100% spin-
polarization of the current. While for a reverse bias, no
current flows through the MTJ since in the majority-
spin channel the HMM electrode MnVTiAl possesses a
gap around the Fermi energy, while in the minority-spin
channel the SGS electrode FeVTaAl presents a gap below
EF , and hence for both spin channels the transmission
coefficient is zero.

In Fig. 6 (a) and 6 (b), we present the I-V characteris-
tics of both MTJs within the finite-bias NEGF method,
which will be called self-consistent field (SCF) and the
linear response approach (LR) for a MgO thickness of
five monolayers (1.1 nm). As seen for the parallel orien-
tation of the magnetization direction of the electrodes,
both MTJs are in off-state under forward bias and in on-
state under reverse bias. However, this might be seen
as contradicting to the conventional p-n diodes, in which
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the diode is in on-state under forward bias. In our case
this is a matter of the construction of the MTJ, i.e., by
exchanging the electrode materials, one obtains the I-V
characteristics of conventional diodes. In the SCF cal-
culations, we obtain a monotonic increase of the current
I with bias voltage V for both MTJs with zero turn-
on voltages VT for both FeVTaAl/MgO/MnVTiAl and
FeVTiSi/MgO/CoFeVSb junctions in the parallel config-
uration, respectively. Switching the magnetization direc-
tion of the HMM electrode from parallel to anti-parallel
results in switching the I-V characteristics of the MTJs
as shown in Fig. 6 (b). Both MTJs are now in on-
state under forward bias, while they are in off-state un-
der reverse bias. In contrast to the parallel alignment
of the magnetization directions, in this case, the turn-
on voltage VT for the FeVTiSi/MgO/CoFeVSb is large,
i.e., 0.25 V, which can be understood on the basis of
the DDOS presented in supplemental material [87]. The
large work function difference of the electrode materi-
als (FeVTiSi and CoFeVSb) gives rise to a band bending
in the energy-band diagram of this MTJ and as a con-
sequence one obtains an effectively thick tunnel barrier
for small bias voltages, which leads to a large turn on
voltage under forward bias. Furthermore, the on-state
currents for parallel and ati-parallel configurations of the
same MTJ is also quite different. For instance, in the
FeVTaAl/MgO/MnVTiAl junction for the parallel con-
figuration the on-state current is one order of magnitude
larger than the corresponding current in the anti-parallel
configuration, while in the FeVTiSi/MgO/CoFeVSb junc-
tion the situation is different, here the on-state cur-
rent is by a factor of two smaller in the parallel con-
figuration. For comparison, the I-V curves obtained
from the linear-response approach have been included
in Fig. 6 (a) and 6 (b). As seen, qualitatively the lin-
ear response current follows the SCF results with some
differences such as the turn-on voltage in the case of
the FeVTaAl/Mgo/MnVTiAl junction in the parallel con-
figuration and the overestimated leakage current in the
case of the FeVTiSi/MgO/CoFeVSb junction also for the
parallel configuration. We do not expect a quantita-
tive agreement between these approaches because for the
linear response method one assumes a bias-independent
transmission spectrum and thus this method is not capa-
ble of an accurate description of the I-V characteristics.
The zero-bias transmission spectrum for the linear re-
sponse calculations of both MTJs can be found in the
supplemental material [87].

We now would like to comment on the off-state leak-
age currents of both MTJs. In principle, at zero tem-
perature, one would obtain a zero off-state current for
a perfect SGS electrode. However, in our MTJs both
SGS electrodes, FeVTaAl and FeVTiSi, possess a size-
able band overlap between the valence and conduction
bands of opposite spin channels around EF as schemati-
cally illustrated in Figs. 6 (c) and 6 (d) (see also the sup-
plemental material of Ref. 61 for the DOS). For paral-
lel (anti-parallel) aligned magnetization directions of the

electrodes, band overlaps allow majority-spin (minority-
spin) electrons to tunnel from the occupied states of
the HMM (type-II SGS) electrode through the insulat-
ing region into unoccupied states of the type-II SGS
(HMM) material. Since FeVTiSi possesses an overlap
of 150 meV whereas the overlap in FeVTaAl amounts
to just 60meV, a larger leakage current arises in the
FeVTiSi/MgO/CoFeVSb junction. At zero temperature,
the obtained on/off current ratios of both MTJs at
±0.3 V vary between 102 and 107.

In contrast to conventional semiconductor diodes (p-n
diode, Schottky diode, Zener diode), in which the rec-
tification bias voltage window (or reverse bias break-
down voltage of the diode) varies between 3-200 V,
in the present MTJs, this voltage window is lim-
ited by the spin gap of the HMM and SGS Heusler
compounds. In analogy to conventional semicon-
ductor diodes, we can express the breakdown volt-
age for the parallel and anti-parallel configurations as
V P

B = min
�
(SGSGS, EA

F ), (SGHMM, EB
F )
 

and V AP
B =

min
⇥
(SGSGS, EB

F ), (SGHMM, EA
F )
⇤
, where (SGSGS, EA

F )

and (SGHMM, EB
F ) stand for the spin gap of the SGS

and HMM electrodes above and below the Fermi en-
ergy, respectively. Using the spin gap values of the SGSs
and HMMs from Ref. 61, one gets breakdown voltages
V P

B (V AP
B ) of 0.31 V and �0.34 V (0.33 V and �0.30 V)

for the parallel (anti-parallel) configurations of the
FeVTaAl/MgO/MnVTiAl and FeVTiSi/MgO/CoFeVSb
MTJ, respectively. Since the estimation of the break-
down voltage is based on the DOS picture of the mate-
rials, the calculated V P

B (V AP
B ) values can differ substan-

tially since, as mentioned before, in tunneling processes
the bands along the transport direction, their symmetry
character, and their matching across the interface play a
decisive role. Indeed, the actual calculated V P

B values in
Fig. 6 are larger than the simple estimated ones for the
parallel configuration, while for the anti-parallel config-
uration the calculated V AP

B values are more close to the
estimated ones. However, the simple estimated values set
the lower limit of the breakdown voltages V P

B and V AP
B .

Recently Maji and Nath reported the fabrication of
a MTJ composed of HMM Co2MnSi, SGS Ti2CoSi, and
3 nm MgO tunnel barrier [56]. The authors demonstrated
a reconfigurable diode effect with a relatively high on/off
ratio of 103 and a very high TMR ratio of 892 % at 5K
which decreases with increasing the temperature. More-
over, the breakdown voltage of the MTJ under reverse
bias was reported to be around -0.5V, which is basically
the spin gap of the Co2MnSi compound. Indeed, this
is the first experimental demonstration of the concept
that we proposed in 2019 [55]. Note that the authors
in Ref. 56 used Ti2CoSi as a SGS electrode, however,
this material exhibits a type-III SGS behavior in simple
DOS picture [64], whereas in tunneling experiments it
behaves like a type-II SGS due to reasons that we dis-
cussed above. A detailed discussion of the experiments of
Maji and Nath is beyond the scope of the present paper
since we were aware of this work after the completion of
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FIG. 7. (a) Voltage dependence of the TMR ratio of the FeVTaAl/MgO/MnVTiAl MTJ for different MgO thicknesses calculated
within the linear response approach. For the case of five monolayers of MgO thickness, the results are compared with SCF
calculations. (b) The same as (a) of the FeVTiSi/MgO/CoFeVSb MTJ.

the present paper. However, we are planning to consider
the MTJ of Ref. 56 in a separate future study.

The I-V characteristics discussed above as well as the
TMR ratio, which will be discussed below, in our MTJs
are calculated for zero temperature. The temperature
effects (non-spin-flip thermal excitations, see Fig. 3) are
usually included in NEGF transport calculations of semi-
conductor devices via the Fermi-Dirac distribution func-
tion. However, due to the technical limitation of the
QuantumATK package as discussed in detail in Ref. 88
for spintronic materials, we neglected these thermal exci-
tations in transport calculations. Moreover, besides high
energy non-spin-flip thermal excitations, temperature af-
fects the magnetic and electronic structure of the SGSs
and HMMs via Stoner excitations and magnons or col-
lective spin waves. In type-II SGSs, electrons around the
Fermi energy can be excited via spin-flip with a nearly
vanishing amount of energy [see Fig. 2 (a)]. Such excita-
tions are known as single-particle Stoner excitations and
occupy, in our case, the unoccupied minority-spin states
above EF . As a consequence, these electrons contribute
to a leakage current in the anti-parallel orientation of the
magnetization direction of the type-II SGS and HMM
electrode. On the other hand, due to the existence of a
gap in HMMs, Stoner excitations are not allowed in these
materials. Nevertheless, at finite temperatures, electron-
magnon interactions might give rise to the appearance of
non-quasiparticle sates in the spin gap above the Fermi
level of HMMs [89]. As a consequence, these states re-
duce the spin-polarization of the HMM material and thus
influence its transport properties. Furthermore, defects
at the interface might also affect the characteristics of
the SGSs and HMMs and contribute to a leakage current
and reduce the on/off ratio and TMR effect.

Finally, we would like to discuss the TMR effect in the
MTJs under study. As mentioned above, the reconfig-

urable diode effect gives rise to an inverse TMR effect in
this type of MTJs. The voltage dependence of the TMR
ratio for both MTJs is presented in Fig. 7 (a) and 7 (b)
for four different MgO tunnel barrier thicknesses. Due
to the computational efficiency, we stick here to the lin-
ear response approach, however, for five monolayers of
MgO tunnel barrier thickness, we compare the obtained
results with the SCF method. For negative bias voltages
(reverse bias), both MTJs present a positive TMR effect
while at a certain applied bias voltage, due to unique
band structure of the SGS electrode, the TMR changes
its sign to a negative value, and thus the MTJs exhibits
an inverse TMR effect. In principle, for a perfect SGS
electrode material, one expects a sharp transition from
positive to negative TMR values at zero bias voltage as
displayed in Fig. 1 (a), however, in the present MTJs,
this transition takes place in a finite voltage window and
the transition point is shifted to finite voltages especially
in the FeVTiSi/MgO/CoFeVSb tunnel junction. Two pa-
rameters are mainly responsible for the behavior of the
TMR curves. These are the on/off current ratio, which
reduces the TMR ratio, and the threshold voltage VT ,
which causes a voltage shift of the transition point. Like
in I-V curves, the spin gap of the electrode materials
plays an essential role for the TMR ratio and its sign.
For instance, in FeVTiSi/MgO/CoFeVSb tunnel junction
the high TMR is obtained in a very small voltage win-
dow, especially for negative voltages and the TMR ratio
is significantly reduced for voltages beyond the �0.3 V,
which is more or less the spin gap of the HMM CoFeVSb
material.
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V. SUMMARY AND OUTLOOK

MTJs based on Fe, Co, and CoFeB, as well as HMM
Heusler compounds, have been extensively studied in
spintronics for magnetic memory and magnetic logic
applications. Despite their high TMR ratios, espe-
cially the MTJs based on HMMs, conventional MTJs
do not exhibit current rectification, i.e., a diode ef-
fect. A novel MTJ concept has been proposed in
Ref. 55, which exhibits reconfigurable current rectifi-
cation together with an inverse TMR effect. This
MTJ concept was based on HMMs and SGSs and it
has been recently demonstrated experimentally using
Heusler compounds [56]. In the present work, by em-
ploying the state-of-the-art DFT and NEGF methods,
we designed two different MTJs based on the type-II
SGS and HMM quaternary Heusler compounds FeVTaAl,
FeVTiSi, MnVTiAl, and CoVTiSb. We have shown
that both MTJs [FeVTaAl(001)/MgO/MnVTiAl(001)
and FeVTiSi(001)/MgO/CoFeVSb(001)] exhibit a cur-
rent rectification with a relatively high on/off ratio of up
to 107. We showed that in contrast to conventional semi-
conductor diodes such as p-n junction diode or Schottky
diode, the rectification bias voltage window (or break-
down voltage) of these MTJs is limited by the spin gap
of the HMM and SGS Heusler electrode material in agree-
ment with recent experiments. A unique feature of the
present MTJs is that they can be configured dynamically,
i.e., depending on the relative orientation of the magne-
tization direction of the electrodes, the MTJ allows elec-
trical current to pass either in one or the other direction.
This feature gives rise to an inverse TMR effect in such
devices. The inverse TMR effect has been investigated
as a function of the MgO tunnel barrier thickness. We
find that the sign change of the TMR from a positive
to a negative value takes place not at zero bias voltage,
but small finite voltages, which can be explained by the
on/off ratio (leakage current) and threshold voltage VT

of the MTJs. Moreover, like in I-V curves, the spin gap
of the electrode materials plays an essential role in TMR
ratio and its sign.

The current non-volatile magnetic memory technology
(STT-MRAM and beyond) and several magnetic logic
proposals utilize conventional MTJs that have limited
functionality. The MTJs based on HMMs and SGSs stud-
ied in the present paper provide major advantages over
conventional MTJs and open new ways to magnetic mem-
ory and logic concepts. For instance, these MTJs might
be of particular interest for high-density 3D cross-point
STT-MRAM applications as they eliminate the need for
an additional selection device such as a MOSFET transis-
tor or a p-n diode. Apart from memory applications, the
MTJs constitute the basic building blocks of the three-
terminal magnetic tunnel transistors with unique proper-
ties as discussed in Ref. 55. Moreover, the present MTJs
also open the way to logic-in-memory computing, i.e.,
storing and processing the data within the same chip
and thus providing an opportunity to explore novel com-
puting architectures beyond the classical von-Neumann
architecture.

We expect that the present results will pave the way
for experimentalists to fabricate MTJs based on the sug-
gested Heusler compounds. Although in the present work
we consider only a few materials, Heusler compounds rep-
resent a remarkable class of materials with more than
1000 members and offer a unique platform to grow within
the same family of compounds HMMs and SGSs with
similar lattice constants. Moreover, their HMM and SGS
properties can be tuned by chemical doping and thus
making them very promising for future spintronic devices
with unique functionalities.
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6 Results and Discussion

6.3 Half-metal−spin-gapless semiconductor junctions (Ohmic spin
diodes)

Conventional diodes possess a junction barrier that electrons need to overcome to turn the
diode on, and thus these devices exhibit a threshold voltage. Such threshold voltages give
rise to the power dissipation in form of heat and thus are undesirable features. Similar
to conventional metal-semiconductor Schottky-barrier diodes, the OSD is constituted of a
HMM and a SGS electrode. Since both electrodes are magnetic, depending on the relative
magnetization orientation of the electrodes, the HMM-SGS junction conducts current either
under forward or reverse bias (see Fig. 6.3). In contrast to conventional Schottky diodes,
due to the electronic bandstructure of the SGS electrode, no energy barrier is formed at
the interface between the HMM and SGS. Hence, the resistance of the OSD is much lower
compared to p− n diodes and therefore leads to a higher current drive capability.

In the following publication, ”Half-Metal−Spin-Gapless-Semiconductor Junctions as a Route
to the Ideal Diode” [TA3], we introduce the new concept of Ohmic spin diodes whose operation
principle relies on the unique spin-dependent transport properties of HMMs and SGSs. Sim-
ilar to conventional metal-semiconductor junction diodes (Schottky-barrier diodes), HMM-
SGS junctions also act as diodes.

Figure 6.3: (a) Schematic representation of the Ohmic spin diode for parallel oriented elec-
trode magnetization and schematic DOS of the HMM as well as the SGS material.
The white arrows indicate the magnetization direction of each electrode. (b) The
corresponding I − V characteristics.
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6 Results and Discussion

We demonstrate the linear current-voltage characteristics of the proposed diode based on
HMM Fe/MoS2 and SGS VS2 planar heterojunctions.

The following publication: Reprinted (whole article) with permission from (E. Şaşıoğlu∗, T. Aull∗ et al. Physical

Review Applied 14, 014082 (2020); Half-Metal−Spin-Gapless-Semiconductor Junctions as a Route to the Ideal Diode.,

Ref. [TA3]). Copyright (2020) by the American Physical Society (APS).
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The ideal diode is a theoretical concept that completely conducts the electric current under forward bias
without any loss and that behaves like a perfect insulator under reverse bias. However, real diodes have
a junction barrier that electrons have to overcome and thus they have a threshold voltage VT, which must
be supplied to the diode to turn it on. This threshold voltage gives rise to power dissipation in the form
of heat and hence is an undesirable feature. In this work, based on half-metallic magnets (HMMs) and
spin-gapless semiconductors (SGSs) we propose a diode concept that does not have a junction barrier and
the operation principle of which relies on the spin-dependent transport properties of the HMM and SGS
materials. We show that the HMM and SGS materials form an Ohmic contact under any finite forward
bias, while for a reverse bias the current is blocked due to spin-dependent filtering of the electrons. Thus,
the HMM-SGS junctions act as a diode with zero threshold voltage VT and linear current-voltage (I -V)
characteristics as well as an infinite on:off ratio at zero temperature. However, at finite temperatures, non-
spin-flip thermally excited high-energy electrons as well as low-energy spin-flip excitations can give rise to
a leakage current and thus reduce the on:off ratio under a reverse bias. Furthermore, a zero threshold volt-
age allows one to detect extremely weak signals and due to the Ohmic HMM-SGS contact, the proposed
diode has a much higher current drive capability and low resistance, which is advantageous compared to
conventional semiconductor diodes. We employ the nonequilibrium Green’s function method combined
with density-functional theory to demonstrate the linear I -V characteristics of the proposed diode based
on two-dimensional half-metallic Fe/MoS2 and spin-gapless semiconducting VS2 planar heterojunctions.

DOI: 10.1103/PhysRevApplied.14.014082

I. INTRODUCTION

A diode is a two-terminal device that conducts elec-
tric current in only one direction but restricts current from
flowing in the opposite direction, i.e., it acts as a one-
way switch for current. Diodes are also known as rectifiers
because they change alternating current into direct cur-
rent. Diodes are of several types, with different properties
depending on the materials that they consist of [1–3].
For instance, p-n-junction diodes are formed by join-
ing a p-type semiconductor to an n-type semiconductor
and they are the elementary building blocks of three-
terminal transistors. The Esaki diode (or tunnel diode)
[4] is a heavily doped p-n-junction diode, in which the
electron transport in the contact region is via quantum-
mechanical tunneling under forward bias and it shows the
negative-differential-resistance (NDR) effect (see Fig. 1),
which allows it to function as an oscillator and amplifier.

*ersoy.sasioglu@physik.uni-halle.de
†thorsten.aull@physik.uni-halle.de

In connection with the Esaki diode, when the doping
concentration on the p side or the n side is nearly or not
quite degenerate, the current in the reverse direction is
much larger than in the forward direction and hence such a
device is called a backward diode [1,5,6]. In contrast to
semiconductor-semiconductor diodes, a Schottky-barrier
diode [1] is formed by joining a metal to an n-type semi-
conductor. Compared to typical p-n junctions, Schottky
diodes have very fast switching times and a higher current
drive capability.

Diodes are used for various applications, ranging from
power conversion to overvoltage protection and from sig-
nal detection and mixing to switches. Due to the junction
barrier, diodes have a threshold (or turn-on) voltage VT,
which must be supplied to the diode for it to conduct
any considerable forward current. In Fig. 1, we show
schematically the current-voltage (I -V) characteristics of
the different types of diodes and compare them with the
concepts of the ideal diode and the Ohmic junction. For
p-n-junction (silicon) diodes, the threshold voltage VT is
around 0.7 V, while for Schottky diodes VT is between 0.2

2331-7019/20/14(1)/014082(13) 014082-1 © 2020 American Physical Society
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ERSOY ŞAŞIOĞLU et al PHYS. REV. APPLIED 14, 014082 (2020)

(a) (b)

V

I

S
ch

ot
tk

y

p-
n

M
-I

-M
VT

V

I

Id
ea

l

E
sa

ki

O
hm

ic

B
ac

kw
ar

d

FIG. 1. (a) A schematic representation of the current-voltage
(I -V) characteristics of the conventional three types of diodes
[Schottky, p-n, and metal-insulator-metal (M -I -M ) diodes]. (b)
The I -V curves of an ideal diode, an Ohmic junction, an Esaki
(tunnel diode), and a backward diode.

V and 0.3 V. Backward diodes have zero threshold voltage
but their on:off current ratios as well as their voltage-
operation windows are rather small. The threshold voltage
VT gives rise to power dissipation (P = VT × I ) in the
diode in the form of heat and hence is an undesirable fea-
ture. The larger the value of VT, the higher is the power
dissipation.

Although the ideal diode is a theoretical concept, it has
been suggested that superconductor-semiconductor junc-
tions possess I -V characteristics that are similar to the
ideal one under a forward bias [7]. Initial experiments by
McColl et al. on a superconductor-semiconductor junc-
tion diode based on lead and p-type GaAs have shown
ideal-diode behavior for forward applied voltages less than
the superconducting-energy-gap parameter �. In this volt-
age window (a few millielectronvolts), the diode exhibits
a high degree of nonlinearity in its I -V characteristics
[7]. Superconductor-semiconductor junctions have subse-
quently been studied as the most sensitive detectors and
mixers of microwaves [8–12]. However, in contrast to the
Schottky-diode behavior, superconductor-semiconductor
junctions possess symmetric I -V curves with I(−V) =
−I(V), close to zero bias, giving rise to a relatively
small on:off current ratio [12]. Furthermore, the opera-
tion temperature of such diodes is limited by the phase-
transition temperature of superconductors, which is far
below room temperature. Another type of diode that has a
zero threshold voltage VT is the so-called geometric diode,
the operation principle of which relies on the geometric
asymmetry of a conducting thin film [13–16]. Geometric
diodes are ultrafast ballistic transport devices, where the
critical dimension of the device is comparable to the mean-
free path length of the electrons. It has, however, been
shown that the geometric asymmetry of the diode alone
cannot induce a current rectification and thus in addition
to geometry, nonlinearity (high-order many-body interac-
tions) is required to realize the geometric diode [17]. This
also explains why the experimentally measured current
rectification in graphene-related geometric diodes is very

Ef Ef Ef

SODSODSOD

EEE(a) (b) (c)

FIG. 2. A schematic representation of the density of states for
(a) a half-metallic magnet, (b) a type-I spin-gapless semiconduc-
tor, and (c) a type-II spin-gapless semiconductor.

low [13,14], as the nonlinearity, i.e., the electron-phonon
interactions, is rather weak in these systems.

For device applications, a special class of materials,
the so-called spin-gapless semiconductors (SGSs), are
receiving substantial attention. The concept of SGSs was
proposed by Wang in 2008 [18,19]. By employing first-
principles calculations, the author predicted SGS behavior
in the Co-doped dilute magnetic semiconductor PbPdO2.
Subsequently, different classes of materials ranging from
two dimensional (2D) to three dimensional (3D) have been
predicted to possess SGS behavior and some of them have
been confirmed experimentally. The SGSs lie on the border
between magnetic semiconductors and half-metallic mag-
nets (HMMs) [20]. A schematic density of states (DOS)
of HMMs and SGSs is shown in Fig. 2. In SGSs, the
mobility of charge carriers is essentially higher than in
normal semiconductors, making them promising materi-
als for nanoelectronic applications. Moreover, the spin-
dependent transport properties of SGSs and HMMs lead to
the emergence of device concepts in spintronics. Recently,
a reconfigurable magnetic tunnel diode and transistor con-
cept based on SGSs and HMMs has been proposed [21,22].
The magnetic tunnel diode allows electric current to pass
either in one or the other direction, depending on the rel-
ative orientation of the magnetization of the HMM and
SGS electrodes. Moreover, the proposed devices present
the tunnel magnetoresistance effect, allowing the combi-
nation of nonvolatility and reconfigurability on the diode
(transistor) level, which is not achievable in semiconductor
nanoelectronics.

In this paper, we propose a diode concept, based on
a HMM and a SGS electrode, that we call the Ohmic
spin diode (OSD) and demonstrate proof of the princi-
ple by ab initio quantum transport calculations. Analogous
to the metal-semiconductor junction diode (the Schottky-
barrier diode), HMM-SGS junctions act as a diode, the
operation principle of which relies on the spin-dependent
transport properties of the HMM and SGS materials. We
show that HMM and SGS materials form an Ohmic con-
tact under any finite forward bias, giving rise to linear
current-voltage (I -V) characteristics, while for a reverse
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bias the current is blocked due to the filtering of the elec-
trons. In contrast to the Schottky diode, the proposed diode
does not require the doping of the SGS and also does
not have a junction barrier and thus it has a zero thresh-
old voltage VT and an infinite on:off current ratio at zero
temperature. However, at finite temperatures, non-spin-flip
thermally excited high-energy electrons as well as low-
energy spin-flip excitations can give rise to leakage current
and thus reduce the on:off ratio under a reverse bias. More-
over, due to the Ohmic HMM-SGS contact, the proposed
diode has a much higher current drive capability and low
resistance, which is advantageous compared to conven-
tional semiconductor diodes. To demonstrate the linear
I -V characteristics of the concept, we construct a planar
HMM-SGS junction based on 2D half-metallic Fe/MoS2
and spin-gapless semiconducting VS2 and employ the
nonequilibrium Green’s function method combined with
density-functional theory (DFT). We find that at zero bias
the VS2 and Fe/MoS2 electrodes couple ferromagneti-
cally; however, this coupling changes sign from ferro-
to antiferromagnetic for a critical forward bias voltage
of V = 180 mV. The VS2–Fe/MoS2 junction diode pos-
sesses linear I -V characteristics for forward bias voltages
up to V = 180 mV and a very small threshold voltage of
VT = 30 meV, which can be attributed to the minority-
electron conduction-band minimum of the spin-gapless
semiconducting VS2 material. Moreover, we obtain a very
high current density (J = 2350 μA/μm for V = 180 mV),
which makes the VS2–Fe/MoS2 OSD highly promising for
low-temperature nanoelectronic applications.

II. HMM-SGS JUNCTIONS

The structure of the proposed OSD and its I -V charac-
teristics are shown schematically in Fig. 3. Analogous to
the metal-semiconductor Schottky-barrier diode, the OSD
is composed of a HMM electrode and a type-II SGS elec-
trode. Depending on the magnetization direction of the
electrodes, the diode conducts current either under for-
ward bias [Fig. 3(a), parallel orientation (ferromagnetic
interelectrode coupling)] or under reverse bias [Fig. 3(a),
antiparallel orientation (antiferromagnetic interelectrode
coupling)], similar to the case of the backward diode men-
tioned in Sec. I. In the presentation of the schematic I -V
characteristics of the OSD in Fig. 3, we assume that HMM
material possesses a gap in the spin-up channel around
the Fermi level, while type-II SGS material has a gap in
the spin-up (spin-down) channel above (below) the Fermi
level, as shown schematically in Fig. 2. In type-II SGSs,
the conduction- and valence-band edges of the different
spin channels touch at the Fermi energy, while in type-I
SGSs the spin-up (majority-spin) band looks like the one
in HMMs but the difference is in the spin-down (minority-
spin) band. The valence- and conduction-band edges are
touching at the Fermi energy, so that a zero-width gap

V

I

V

I

(a) (b)

FIG. 3. (a) A schematic representation of the HMM-SGS junc-
tion for parallel orientation of the magnetization directions of the
electrodes and the corresponding current-voltage (I -V) curves.
(b) The same as (a) for the antiparallel orientation of the mag-
netization directions of the electrodes. The white arrows indicate
the direction of the magnetization of the electrodes.

exists. One of the important advantages of type-I SGSs
is that no energy is required for the excitation of the
electrons from the valence to the conduction band and
excited electrons or holes can be 100% spin-polarized as
in HMMs. In construction of the OSD, the use of a type-I
SGS instead of the HMM is also possible.

The linear I -V characteristics of the OSD presented in
Fig. 3(a) can be qualitatively explained on the basis of
the schematic energy-band diagram shown in Fig. 4. If
we assume that both HMM and SGS electrodes have the
same work function and equal Fermi levels, then no charge
transfer takes place between the electrodes. However, in
real materials, due to different work functions there might
be a charge transfer from one material to another at the
interface, which might give rise to band bending for the
SGS. Besides this, due to interactions, junction materi-
als might not retain their half-metallic and spin-gapless
semiconducting properties near the interface and hence
the band diagram will not be as sharp as in Fig. 4. For
the device configuration shown in Fig. 3(a), the relevant
channel for the transport is the minority-spin (spin-down)
channel, whereas the majority-spin (spin-up) channel is
insulating due to the spin gap of the HMM material on the
right-hand side of the junction. In the spin-down channel,
the HMM behaves like a normal metal, with states below
and above the Fermi energy, while the SGS electrode on
the left-hand side behaves like a semiconductor (or insula-
tor) but with a Fermi level touching the conduction-band
minimum. Due to this electronic band structure of the
SGS, in contrast to the Schottky diode, no energy bar-
rier is formed at the interface between a HMM and a
SGS material. Such a junction acts as an Ohmic contact
under forward bias, as shown in Fig. 4(b). In this case,
the spin-down electrons from the occupied valence band
of the HMM electrode can flow into the unoccupied con-
duction band of the SGS electrode without experiencing
a potential barrier, while for a reverse bias the current is
blocked due to the spin gap of the HMM material [see
Fig. 4(c)]. Note that under a forward bias, the current flow-
ing through the OSD is 100% spin polarized. Note also that
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FIG. 4. A schematic representation of the band diagram and thermal (non-spin-flip) electron-hole excitations for spin-up and spin-
down electrons for the SGS-HMM contact for parallel (P) orientation of the magnetization directions of the electrodes: (a) for zero
bias, (b) for forward bias, and (c) for reverse bias. The Fermi level is denoted by red dashed line. (d)–(f) The same as (a)–(c) for the
antiparallel (AP) orientations of the magnetization directions of the electrodes [see Figs. 3(a) and 3(b)].

the same discussion applies in the case of antiparallel ori-
entations of the magnetization directions of the electrodes
[see Figs. 4(d), 4(e), and 4(f)].

As the HMM-SGS contact is Ohmic under a forward
bias, the current I through the diode varies linearly with
the applied voltage V and the ratio V/I gives the combi-
nation of the interface (RI ) and series resistance (RS) of
the HMM and SGS materials (V/I = RI + RS). The resis-
tance of SGS materials is usually much lower than that of
conventional n- or p-type semiconductors [23] and thus
the combination of low resistance with the Ohmic nature
of the interface allows a much higher current drive capa-
bility of the proposed OSD. It is worth noting that diodes
with low resistance are critical for the performance of high-
speed electronic devices. Besides the higher current drive
capability of the OSD, the threshold voltage VT can be
tuned by a proper choice of the SGS material. The value
of VT is set by the energy difference between the minority-
spin conduction-band minimum and the Fermi level. In an
ideal SGS, this difference is zero and thus VT = 0. Note,
however, that in type-II SGSs, the spin-gapless semicon-
ducting properties are not protected by any symmetry and
thus ideal SGS behavior can only arise if a free parame-
ter—e.g., pressure, strain, or doping—is tuned to a specific
value. A zero VT allows one to detect extremely weak sig-
nals, even when no external bias circuit is used. Similar
to the Schottky diode, the OSD is also a majority-carrier
diode but it does not require doping and it will possess
all the advantages of the Schottky diode, such as high
operation frequencies, low resistance and capacitance, etc.
Note also that, in principle, a Schottky diode can be turned
into an Ohmic contact by heavily doping the semicon-
ductor electrode; however, in this case it loses its diode
functionality.

Up to now, the discussion of the I -V characteristics of
the OSD is based on the schematic band diagram at zero
temperature and thus an infinite on:off current ratio can
be achieved. However, at finite temperatures, thermally
excited electrons and holes can significantly reduce the
on:off ratio. At this point, it is important to note that in con-
ventional metal-semiconductor Schottky diodes, electrons
flow from the semiconductor to the metal electrode under
a forward bias, whereas in the OSD shown in Fig. 3(a),
the process is just the opposite, i.e., from the half-metal
to the spin-gapless semiconductor. In the former case, the
on-state current stems from the combination of thermionic
emission over the Schottky barrier and tunneling through
the barrier [24–26]. A very detailed analysis of these
processes and their relative contributions to the total for-
ward (on-state) current in Schottky diodes can be found
in Ref. [24]. Similarly, under a reverse bias, both pro-
cesses contribute to the leakage current in Schottky diodes,
with a significant weight coming from the tunneling (or
thermionic field emission), since in this case the height of
the Schottky barrier is fixed and only a very small frac-
tion of the thermally excited high-energy electrons, which
are at the tail of the Fermi-Dirac distribution function, can
pass over the barrier. By increasing the height of the Schot-
tky barrier, the contribution of thermionic emission can be
significantly reduced, as the Fermi-Dirac distribution func-
tion decays exponentially at high energies [see Fig. 3(a)];
however, the contribution of the tunneling through the bar-
rier cannot be prevented and at the same time the threshold
voltage VT increases. In the OSD, the leakage current due
to tunneling does not exist; however, thermally excited
high-energy electrons contribute to the reverse current,
similar to the case of the Schottky diode. In Figs. 5(b) and
5(c), we show schematically the population of unoccupied
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FIG. 5. (a) The Fermi-Dirac distribution for T = 0 K (black)
and T > 0 K (red) and a thermal population of states around
the Fermi level for (b) a HMM and (c) type-II SGS. The occu-
pied and unoccupied states above and below the Fermi level,
respectively, are marked with a shaded red color.

states around the Fermi energy for a HMM and a type-II
SGS. In a HMM, thermal population of the states obeys the
Fermi-Dirac distribution, i.e., more states in the metallic
spin-channel and very few states for the insulating spin-
channel, as they are far from the Fermi level. However, the
situation turns out to be slightly different in type-II SGSs,
due to their band structure, i.e., only a small fraction of
the electrons can be thermally excited due to the gap in
both spin channels, somewhat similar to the case of intrin-
sic semiconductors. Consequently, the reverse-bias current
(or the leakage current) is mainly determined by the size of
the band gaps in SGS and HMM electrodes and by a proper
choice of the large band-gap materials, the on:off current
ratio can be significantly increased in OSDs. In addition
to thermal excitation, spin-flip processes can reduce the
on:off current ratio and this will be discussed later.

In contrast to the Schottky diode, the spin degree of
freedom provides a rich configuration space for the I -V
curves of the OSD, which are determined by two param-
eters: (i) the magnetic coupling between electrodes, which
allows the dynamical configuration of the diode in the case
of antiferromagnetic interelectrode coupling via an exter-
nal magnetic field; and (ii) the spin character of the gap
in HMMs and SGSs. Depending on the magnetic cou-
pling between electrodes, the OSD is in the on state either
under forward bias (ferromagnetic interelectrode coupling
or parallel orientation) or under reverse bias (antiferromag-
netic interelectrode coupling or antiparallel orientation),
as shown in Fig. 3. The second parameter, which plays a
decisive role in determining the I -V characteristics of the
OSD, is the spin-channel dependence of the gap in HMM
and SGS electrodes. For instance, as mentioned above in
the presentation of the schematic I -V characteristics of the
OSD in Fig. 3, we assume that the HMM material has a
gap in the spin-up channel and that the SGS material has
gaps in the spin-down (below EF ) and spin-up channels
(above EF ). Although all known type-II SGSs possess an
electronic band structure similar to that in Fig. 2(c), there

TABLE I. The I -V characteristics of the OSD for parallel (P)
and antiparallel (AP) orientations of the magnetization directions
of the electrodes and all possible combinations of the spin char-
acter of the gaps in HMMs and SGSs. SGS (↓↑) indicates the
spin channel, where the gap exists below and above the Fermi
level.

Spin gap Orientation Forward bias
Reverse

bias

SGS (↓↑)/HMM (↑↑) P On Off
SGS (↓↑)/HMM (↑↑) AP Off On
SGS (↓↑)/HMM (↓↓) P Off On
SGS (↓↑)/HMM (↓↓) AP On Off
SGS (↑↓)/HMM (↑↑) P Off On
SGS (↑↓)/HMM (↑↑) AP On Off
SGS (↑↓)/HMM (↓↓) P On Off
SGS (↑↓)/HMM (↓↓) AP Off On

are many HMMs, such as Heusler alloys, with a gap in the
spin-down channel and OSD diodes constructed from such
materials might have a different current direction than the
present case. For completeness, in Table I we present the
I -V characteristics of the OSD by taking into account both
magnetic configurations of the electrodes and all possible
combinations of the spin character of the gaps in HMMs
and SGSs.

As the OSD is comprised of magnetic materials, its
operation temperature is limited by the Curie tempera-
ture TC of the constituent materials and thus for realiza-
tion of the OSD, HMMs and SGSs with high TC values
are required. Two-dimensional transition-metal dichalco-
genides [27–30] and 3D quaternary Heusler compounds
[31–36] offer a unique platform to design, within the same
family of compounds, HMMs and SGSs with high TC val-
ues and similar lattice parameters and compositions, which
allow coherent growth of these materials on top of each
other. Besides high TC values, large spin gaps in HMMs
and SGSs are crucial in order to achieve a high on:off cur-
rent ratio in the OSD. In recent years, 2D transition-metal
dichalcogenides have received significant experimental
and theoretical interest, as they present unique electronic,
optical, mechanical, and magnetic properties, thus hold-
ing great promise for a wide range of device applications.
Devices ranging from vertical tunnel diodes to vertical and
lateral tunnel field-effect transistors (TFETs) have been
experimentally demonstrated [37–44]. In particular, 2D
lateral heterojunctions have opened up a direction in mate-
rials science and device applications [45]. TFETs based on
2D material heterojunctions (WTe2-MoS2, MoTe2-MoS2)
have been reported to exhibit a subthreshold slope below 5
mV per decade and high Ion/Ioff ratios (approximately 108)
at a low drain bias of 0.3 V, making them ideal candidates
for ultralow-power computing [46].

Among the 2D transition-metal dichalcogenides,
V-based compounds (VS2, VSe2, VTe2) have attracted
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particular interest due to their intrinsic ferromagnetism.
These compounds can crystallize into two different struc-
tures: the 1H phase and the 1T phase. The former phase is
energetically more stable and possesses a SGS ground state
[47,48]. Although, theoretically, both 1H and 1T phases
of V-based 2D compounds have been predicted to show
ferromagnetism [49], experimentally the ferromagnetism
has, however, only been observed in the 1T phase of VS2
[50] and VSe2 [51]. Note that the 1T phase of VSe2 does
not present SGS behavior; it is a normal ferromagnetic
metal. However, in the one-monolayer limit, several 2D
transition-metal dichalcogenides can adopt either a 1T or a
1H structure depending on the growth conditions [52]. It
is very likely that VS2 can also be grown in a 1H structure.

III. COMPUTATIONAL METHOD

Ground-state electronic structure calculations are car-
ried out using DFT, implemented in the QuantumATK
P-2019.03 package [53]. We use the generalized-gradient-
approximation (GGA)–Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [54] together with Pseu-
doDojo pseudopotentials [55] and LCAO basis sets. A
dense 24 × 24 × 1 k-point grid and a density mesh cutoff
of 120 hartree are used. To prevent interactions between
the periodically repeated images, 20 Å of vacuum are
added and Dirichlet and Neumann boundary conditions are
employed. The electron temperature is set to 10 K. The
total energy and forces converge to at least 10−4 eV and
0.01 eV/Å, respectively. In order to estimate the magnetic
anisotropy energy, we employ the magnetic force theorem,
including spin-orbit coupling [56].

The transport calculations are performed using DFT
combined with the nonequilibrium Green’s function
method (NEGF). We use a 24 × 1 × 172 k-point grid in
self-consistent DFT-NEGF calculations. The I -V charac-
teristics are calculated within a Landauer approach [57],
where I(V) = (2e/h)

∑
σ

∫
Tσ (E, V)[fL(E, V) − fR(E, V)]

dE. Here, V denotes the bias voltage, Tσ (E, V) is the spin-
dependent transmission coefficient for an electron with
spin σ , and fL(E, V) and fR(E, V) are the Fermi-Dirac dis-
tributions of the left and right electrodes, respectively.
The transmission coefficient Tσ (E, V) is calculated using
a 300 × 1 k-point grid.

IV. RESULTS AND DISCUSSION

The OSD concept introduced in Sec. II can be realized
either by using 3D Heusler compounds or 2D transition-
metal dichalcogenides. In the following, due to their
structural simplicity, we focus on the 2D materials and
demonstrate the proof of principle by ab initio quantum
transport calculations. As the electrode materials of the
OSD, we choose VS2 and Fe/MoS2. The former is an
intrinsic ferromagnet with spin-gapless semiconducting

behavior in the monolayer 1H phase, while the half-
metallic ferromagnetism in the latter Fe/MoS2 material
is achieved by functionalization of the 1H semiconduct-
ing MoS2. Based on first-principles calculations, Jiang et
al. [58] have shown that deposition of the Fe atoms on
MoS2 gives rise to the 2D half-metallic ferromagnetism
with a relatively high TC value of 465 K and a large spin
gap, which makes the Fe/MoS2 a promising material for
spintronic and nanoelectronic applications.

Since the electronic and magnetic as well as the struc-
tural properties of both electrode materials have been
extensively discussed in the literature, in the following we
will briefly overview their basic properties, which will be
necessary in order to understand the transport character-
istics of the OSD. In Table II, we present the optimized
lattice constants and the total magnetic moments as well
as the magnetic anisotropy energies for the 1H phase of
VS2 and Fe/MoS2. Our ground-state calculations for both
materials are in good agreement with previously published
data. In particular, similar lattice parameters and composi-
tions, as well as the same 1H phase, of the two materials
are crucial for realization of the planar VS2-Fe/MoS2 het-
erojunctions. VS2 has a relatively simple band structure,
shown in Fig. 6(b), where the exchange splitting of the
V-3d (predominantly dz2 ) bands around the Fermi energy
is responsible for its spin-gapless semiconducting nature
and thus it has a magnetic moment of 1 μB, carried by the
V atom. Furthermore, VS2 is not a perfect SGS; it has a
very small indirect band gap of 50 meV, i.e., the valence-
band maximum and the conduction-band minimum are
at around 20 meV and 30 meV, respectively. The former
plays a decisive role in determining the threshold voltage
VT of the OSD in the case of ferromagnetic coupling of
the VS2 and Fe/MoS2 electrodes, while the latter plays the
same role in the case of antiferromagnetic coupling. Note
that in the present OSD based on a planar VS2-Fe/MoS2
heterostructure, the coupling between the electrodes is fer-
romagnetic, as is discussed later. On the other hand, the
Fe-deposited MoS2 turns into a half-metallic magnet with
a gap of about 1 eV in the spin-up channel and with a total
magnetic moment of 2 μB, which is localized on the Fe
atom. Note that PBE is well known to underestimate the
band gap of semiconductors compared to the more accu-
rate GW approach. However, the situation is different for
2D SGSs, since the application of the GW method for the
similar material VSe2 reduces the band gap from 250 meV
(PBE) to 170 meV [29]. We expect a similar behavior for
the VS2 compound when the GW method is employed.
Also, spin-orbit coupling has a negligible effect on the spin
polarization of both materials and thus it is not taken into
account in our device calculations.

In Fig. 6(a), we show the atomic structure of the
OSD, which is formed by joining one monolayer of VS2
(left electrode) and one monolayer of Fe/MoS2 (right
electrode) laterally in a single plane. Due to the almost
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(a)

(b)

FIG. 6. (a) The atomic structure of the VS2-Fe/MoS2 Ohmic spin diode. The arrows show the magnetic moments of V and Fe atoms
in the SGS and HMM electrodes within the scattering region. The size of the arrows is proportional to the magnitude of the magnetic
moments. The system is periodic in the x direction in the plane orthogonal to the magnetization direction, which is also the transport
direction. The vertical dashed lines denote the interface. (b) The calculated spin-resolved bulk electronic band structure along the
high-symmetry lines in the Brillouin zone for VS2 (left-hand panel) and Fe/MoS2 (right-hand panel). For both compounds, the dashed
lines denote the Fermi energy, which is set to zero.

identical lattice parameters of both materials, as well as
their similar compositions, they form a perfect interface.
We assume periodicity of the device in the x direction. The
z direction is chosen as the transport direction. The total
length of the scattering region is about 115.5 Å, which
consists of 77 Å VS2 and 38.5 Å Fe/MoS2. The length
of the former electrode is chosen to be larger because of
the longer screening length in SGSs.

When the half-metallic Fe/MoS2 makes contact with
VS2, free electrons will flow from the half-metallic
Fe/MoS2 side to the spin-gapless semiconducting VS2
side, because the work function of the Fe/MoS2 is smaller
than that of VS2 (see Table II). Note that the work function
of the SGS VS2 is defined in the same way as in metals, i.e.,
the energy difference between the vacuum level and the

TABLE II. The calculated lattice parameter a, the total mag-
netic moment mT, the magnetic anisotropy energy K (per formula
unit), and the work function φ for VS2 and Fe/MoS2. The values
of the Curie temperature Tc are taken from the literature.

Compound a mT K φ TC

(Å) (μB) (meV) (eV) (K)

VS2 3.174 1.00 0.20 5.71 138 [49]
Fe/MoS2 3.175 2.00 0.42 4.72 465 [58]

Fermi energy EF . When the charge redistribution reaches
equilibrium, near the interface region the Fe/MoS2 will
be positively charged, whereas the VS2 will be negatively
charged. Thus, an electric dipole will be induced at the
interface region. Such a charge redistribution influences
the electronic and magnetic properties of the materials near
the interface, as seen in the zero-bias projected device den-
sity of states (DDOS) shown in Fig. 7. Near the interface,
charge transfer takes place within the spin-down channel
and thus the magnetic moment of the Fe atoms increases
toward the interface, i.e., 2.15 μB → 2.17 μB → 2.56 μB,
as shown by the arrows in Fig. 6(a), where the size of the
arrows is proportional to the magnitude of the magnetic
moments. The transferred charge occupies the spin-down
channel on the VS2 side by creating interface states, which
can be clearly seen on the projected DDOS shown in Fig. 7
and as a consequence the magnetic moment of the V atoms
at the interface and subinterface lines is reduced from its
bulk value of 1.13 μB to 0.53 μB and 0.95 μB, respectively.
As can be seen, the influenced region is rather small, being
within four atomic lines and restricted to the spin-down
channel. The change in the spin-up channel is more or less
negligible.

Long-range magnetic order is prohibited in 2D mag-
nets at finite temperatures due to the Mermin-Wagner
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FIG. 7. (a) The zero-bias pro-
jected device density of states
(DDOS) for the majority (left-
hand panel) and minority (right-
hand panel) electrons for the
Ohmic spin diode around the
interface (see Fig. 6 for the atomic
structure of the OSD). The hori-
zontal white dashed lines indicate
the Fermi level. The vertical red
dashed lines denote the interface.

theorem [59]. However, this restriction can be removed
by magnetic anisotropy and it enables the occurrence of
2D magnetic order at finite temperatures. For both mate-
rials, we calculate the magnetic anisotropy energies K ,
which are presented in Table II. Both materials have an in-
plane magnetization with K values of 0.2 meV (VS2) and
0.42 meV (Fe/MoS2). However, the magnetic anisotropy
within the plane for VS2 is negligibly small (a few nano-
electronvolts), while for Fe/MoS2 it is around 5 μeV,
which is large enough for a finite-temperature magnetic
order. The negligible value of K for VS2 implies the
lack of finite-temperature magnetic order by virtue of
the Mermin-Wagner theorem. However, room-temperature
ferromagnetism has been experimentally detected in simi-
lar materials such as VSe2 [51], which has also negligible
in-plane magnetic anisotropy, and the origin of the long-
range ferromagnetic order is attributed to the finite-size
effects [60,61]. However, in the VS2-Fe/MoS2 junction,
the Fe/MoS2 acts as a pinning electrode, which introduces
a preferred in-plane magnetic orientation in the VS2 elec-
trode via the ferromagnetic interelectrode coupling. Our
calculations show that ferromagnetic interelectrode cou-
pling is preferable compared to antiferromagnetic inter-
electrode coupling and that the energy difference between
the two configurations is about 22 meV.

Besides the magnetic anisotropy energy K and the inter-
electrode coupling, another important parameter for the
realization of the OSD is the Curie temperature TC of the
constituent materials. The TC values for both materials
have been estimated from first principles in Refs. [49] and
[58] (see Table II). The TC value of Fe/MoS2 is higher
than room temperature, while for VS2 (TC = 139 K) it
is below room temperature. Nevertheless, such a value
is high enough for an experimental demonstration of the
device.

Next, we discuss the electronic and transport proper-
ties of the OSD under a finite bias voltage. As mentioned
above, although at zero bias the coupling between the

SGS and HMM electrodes is ferromagnetic, we find that
this coupling changes sign from ferromagnetic to antifer-
romagnetic under a forward bias of about 180 mV. Note
that electric field or voltage control of magnetism on the
nanoscale is highly appealing for the development of nano-
electronic devices with low power consumption [62–64].
A voltage-induced interlayer exchange coupling in mag-
netic tunnel junctions has been discussed theoretically via
high-voltage tunneling [65–67] and has been experimen-
tally demonstrated via mobile oxygen vacancies [68]. A
sign change in magnetic coupling with the bias voltage
allows the realization of devices with unique function-
alities, which will be considered in a separate paper. In
Figs. 8(a) and 8(b), we show the spin-resolved projected
DDOS for bias voltages of 0.3 V (forward bias) and
−0.3 V (reverse bias), respectively. Note that for the
purpose of the demonstration of the OSD concept, we
constrain the magnetic coupling between electrodes to
the ferromagnetic state (parallel orientation) in the VS2-
Fe/MoS2 junction for bias voltages higher than 180 mV.
As can be seen, for a forward bias, the spin-gapless and
the half-metallic behavior is more or less preserved at the
interface for both spin channels. Just a few new states
arise at the interface in the spin-up channel, this being
due to antiferromagnetic coupling of the single V atom
at the interface. The interface V atom possesses a mag-
netic moment of −0.55 μB and variation of the magnetic
moments in Fe and other V atoms near the interface is also
negligible.

On the other hand, for a reverse bias, the coupling
between electrodes remains ferromagnetic and thus the
electronic and magnetic structure near the interface is sim-
ilar to the zero-bias case with the exception of the band
bending in the VS2 electrode, which take places near the
interface region, within 40 Å. Note that the band bend-
ing is not linear due to charge transfer as well as the
complex metallic screening of the Fe/MoS2 electrode.
Indeed, we observe a flat region of about 15 Å on the
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(a)

(b)

FIG. 8. (a) The projected device density of states (DDOS) for the majority (left-hand panel) and minority (right-hand panel) electrons
for the VS2-Fe/MoS2 Ohmic spin diode (see Fig. 6 for the atomic structure of the Ohmic spin diode) under a positive voltage of
V = 0.3 V. The middle panel shows the calculated transmission spectrum for the majority and minority electrons for the same applied
voltage of V = 0.3 V. The upper and lower white (black) dashed lines indicate the Fermi level of the SGS and HMM electrodes. (b)
The same as (a) for a negative voltage of V = −0.3 V.

projected DDOS [see Fig. 8(b)] of the junction on the VS2
side and then the potential drops more or less linearly with
distance.

The I -V characteristics of the VS2-Fe/MoS2 OSD can
be qualitatively explained on the basis of the projected
DDOS shown in Fig. 8. For a forward bias, the OSD is
in the on state, i.e., minority-spin electrons from the occu-
pied states of the Fe/MoS2 electrode can flow into the
unoccupied states of the VS2 electrode due to the Ohmic
contact and thus the transmission coefficient takes finite
values within the bias window, as shown in the middle
panel of Fig. 8(a). Meanwhile, for majority-spin electrons
the transmission coefficient is zero because both Fe/MoS2
and VS2 have no states within the voltage window. Thus
the on-state current of the OSD is 100% spin polarized.
On the other hand, for a reverse bias voltage, no current
flows through the OSD, since the energy gap in the major-
ity spin channel of the Fe/MoS2 electrode prevents the
flow of the spin-up electrons from the VS2 electrode into
the Fe/MoS2 [see Fig. 8(b) left-hand panel], giving rise
to a zero transmission coefficient. Similarly, the transmis-
sion coefficient for the spin-down channel is also zero due
to the energy gap in the VS2 electrode below the Fermi
level.

Figure 9 shows the calculated I -V characteristics of the
VS2-Fe/MoS2 OSD at zero temperature. In the on state,
the current increases linearly with the applied bias and
reaches 2350 μA/μm for a bias voltage of 180 mV, which
is the maximum bias voltage at which ferromagnetic cou-
pling between electrodes is retained. The VS2-Fe/MoS2
diode possesses a very small threshold voltage of about
30 mV, stemming from the indirect band gap of the SGS
VS2 electrode, which has a conduction-band minimum of
30 meV [see Fig. 6(b)] as discussed before. For bias volt-
ages larger than 180 mV, the I -V curve of the OSD takes a
plateau shape, i.e., the current first monotonically increases
up to 250 mV and then it starts to decrease. Such behav-
ior can be attributed to the antiferromagnetic coupling of
a single V atom at the interface, which now has a gap in
the spin-down channel above the Fermi energy, in con-
trast to the rest of the atoms in the junction. This energy
gap acts as a small potential barrier, giving rise to more
reflection of the electrons, and thus it reduces the trans-
mission. Furthermore, in the bias-voltage range from 180
mV to 300 mV, the magnetic moment of the V atom at the
interface increases from −0.2 μB to −0.55 μB, which also
explains the plateaulike shape of the I -V curve at higher
voltages.
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FIG. 9. The calculated current-voltage (I -V) characteristics
of the VS2-Fe/MoS2 Ohmic spin diode. The red line shows
the Ohmic behavior in the voltage range between 40 mV and
180 mV. The inset shows an enlargement of the range between
−10 mV to 60 mV, to specify the threshold voltage VT.

A feature of the proposed VS2–Fe/MoS2 OSD is that
it has a much higher current-drive capability, i.e., in the
on state, for a bias voltage of V = 180 meV the calculated
current density turns out to be around I = 2350 μA/μm.
This value is much higher than the on-state current den-
sity of devices based on 2D semiconducting materials [69]
and lies far above the International Roadmap for Devices
and Systems (IRDS) [69,70] requirement (1350 μA/μm).
A negligible turn-on voltage of VT = 30 mV allows us to
detect extremely weak signals and thus the OSD might find
potential applications in antenna-coupled diode solar cells
[71–73]. Besides this, the VS2-Fe/MoS2 OSD possesses
an infinite on:off current ratio at zero temperature. How-
ever, as discussed in Sec. II, thermally excited high-energy
electrons would reduce the on:off current ratio to finite
values. In the Landauer formalism of electronic current,
the temperature effects can be taken into account via the
Fermi-Dirac distribution function of the left [fL(E, V, T)]
and right [fR(E, V, T)] electrodes (see Ref. [24]) and thus
the on:off current ratio can be calculated for a given tem-
perature T. However, this standard treatment should be
modified for SGS materials due to their electronic band
structure, which is discussed in Sec. II. Specifically, each
spin channel of the SGS material with a proper population
of the states above and below the Fermi energy should be
taken into account. Since this modification has not been
implemented in the current version of the QuantumATK
package, we present the I -V characteristics only for zero
temperature in Fig. 9.

As mentioned in Sec. II, the spin degree of freedom
brings a certain functionality to the OSD, which can be
dynamically configured by an external magnetic field;
thus the OSD can be used as a switch. However, this is
possible only for OSDs having electrodes that couple anti-
ferromagnetically (the AP orientation). So in this case,

in reversing the magnetization direction of one electrode
from the antiparallel to the parallel orientation, the OSD
switches from the on state to the off state like a transis-
tor. This switching can be easily understood with the help
of the schematic band diagram shown in Fig. 4 and will
not be discussed here. The situation is even more inter-
esting in the case of VS2–Fe/MoS2 OSD, i.e., in addition
to the voltage-induced switching from the on state to the
off state at around V = 180 mV, the OSD can again be
switched back to the on state by a weak external magnetic
field, making the VS2–Fe/MoS2 OSD highly appealing for
nanoelectronic applications.

Finally, we would like to comment on the effect of low-
energy spin excitations on the I -V characteristics of the
VS2-Fe/MoS2 OSD. Apart from the high-energy thermal
(non-spin-flip) excitations that we discuss in Sec. II, the
temperature affects the electronic and magnetic structure of
the VS2 and Fe/MoS2 via spin-dependent excitations, i.e.,
Stoner excitation and collective spin waves or magnons.
In type-II SGSs such as VS2, electrons can be excited from
the majority-spin channel to the minority-spin channel via
spin flip with almost vanishing energy [see Fig. 2(c)].
These excitations are known as single-particle Stoner exci-
tations. They can populate the unoccupied minority-spin
channel of VS2 just above the Fermi energy. However, in
VS2, Stoner excitations require a large momentum transfer,
since the valance-band maximum and the conduction-band
minimum are at different k points in the Brillouin zone.
The former is at the � point, while the latter is close to
the M point [for the band structure of VS2, see Fig. 6(b)]
and thus single-particle spin-flip excitation requires a large
momentum transfer and takes place at high temperatures
close to the Curie temperature TC. Nevertheless, they can
populate the unoccupied minority channel above the Fermi
energy and give rise to a leakage current under a reverse
bias [see Fig. 4(c)]. Moreover, the on:off current ratio will
be further reduced. On the other hand, in half-metallic
Fe/MoS2, Stoner excitations are not allowed due to the
existence of the spin gap; however, at finite temperatures,
electron-magnon interaction can give rise to the appear-
ance of nonquasiparticle states within the half-metallic gap
just above the Fermi energy [74]. Thus, such states can
reduce the spin polarization of the half-metallic Fe/MoS2
and affect its transport properties. Lastly, in addition to
non-spin-flip as well as spin-flip excitations, defects at the
interface, which destroy the SGS or HMM behavior, can
also reduce the on:off current ratio of the OSD.

V. CONCLUSIONS

In conclusion, we propose a diode concept that we
call the OSD, based on SGS and HMM materials. Anal-
ogous to the metal-semiconductor junction diode (the
Schottky-barrier diode), HMM-SGS junctions act as a
diode the operation principle of which relies on the
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spin-dependent transport properties of the constituent
HMM and SGS materials. We show that the HMM and
SGS materials form an Ohmic contact under any finite
forward bias voltage, giving rise to linear I -V character-
istics, while for a reverse bias the current is blocked due
to spin-dependent filtering of the electrons. In contrast to
the Schottky diode, the proposed OSD does not require
doping of the SGS electrode and it also does not have a
junction barrier; thus it has a zero threshold voltage VT and
an infinite on:off current ratio at zero temperature. How-
ever, at finite temperatures, non-spin-flip thermally excited
high-energy electrons as well as low-energy spin-flip exci-
tations can give rise to a leakage current and thus reduce
the on:off ratio under a reverse bias. As the leakage current
is mainly determined by the size of the band gaps in SGS
and HMM electrodes and by a proper choice of large band-
gap materials, the on:off current ratio can be significantly
increased in OSDs. Moreover, the spin degree of freedom
provides a rich configuration space for the I -V characteris-
tics of the OSD, which are determined by two parameters:
(i) the spin character of the gap in HMM and SGS; and (ii)
the magnetic coupling between electrodes, which allows
the dynamical configuration of the diode in the case of
antiferromagnetic coupling (antiparallel orientation) via an
external magnetic field. We show that depending on the
magnetic coupling between electrodes, the OSD is in the
on state either under forward bias (parallel orientation) or
under reverse bias (antiparallel orientation).

By employing the NEGF method combined with DFT,
we demonstrate the rectification characteristics of the pro-
posed OSD based on 2D half-metallic Fe/MoS2 and spin-
gapless semiconducting VS2 planar heterojunctions. We
find that the VS2-Fe/MoS2 junction diode possesses linear
I -V characteristics for forward bias voltages up to 180 mV
and that a bias voltage-induced ferromagnetic to antiferro-
magnetic interelectrode coupling then takes place. Such a
sign change in magnetic coupling with bias voltage allows
the realization of devices with unique functionalities,
which will be considered in a separate paper. Moreover,
the VS2-Fe/MoS2 OSD has a much higher current-drive
capability (I = 2350 μA/μm) and a very small thresh-
old voltage of VT = 30 mV, which allows us to detect
extremely weak signals; thus it might find potential appli-
cations in antenna-coupled diode solar cells. We expect
that our results will pave the way for experimentalists to
fabricate the OSD based on 2D materials.
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ERSOY ŞAŞIOĞLU et al PHYS. REV. APPLIED 14, 014082 (2020)

[17] Nianbei Li and Jie Ren, Non-reciprocal geometric wave
diode by engineering asymmetric shapes of nonlinear mate-
rials, Sci. Rep. 4, 6228 (2014).

[18] X. L. Wang, Proposal for a New Class of Materials: Spin
Gapless Semiconductors, Phys. Rev. Lett. 100, 156404
(2008).

[19] Xiaolin Wang, Germanas Peleckis, Chao Zhang, Hideo
Kimura, and Shixue Dou, Colossal electroresistance and
giant magnetoresistance in doped PbPdO2 thin films, Adv.
Mater. 21, 2196 (2009).

[20] R. A. De Groot, F. M. Mueller, P. G. Van Engen, and
K. H. J. Buschow, New Class of Materials: Half-Metallic
Ferromagnets, Phys. Rev. Lett. 50, 2024 (1983).
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6 Results and Discussion

6.4 Design of Ohmic spin diodes based on quaternary Heusler
compounds

In the previous section, we introduced the concept of the OSD using HMMs and SGSs. Due to
their SGS and HMM properties as well as very high Curie temperatures, quaternary Heusler
compounds offer a platform to design OSDs for room temperature applications.

In the last paper, ”First principles design of Ohmic spin diodes based on quaternary Heusler
compounds” [TA4], we computationally design four different OSDs using the SGSs FeVNbAl,
FeVTaAl, and FeVTiSi and HMMs Co2MnSi, MnVTiAl, and FeVHfAl. Our calculations
indicate that all four OSDs exhibit linear I − V characteristics in the on-state and possess
zero threshold voltages (see Fig. 6.4). The obtained on/off current ratios vary between 30
and 105. The small values can be attributed to the leakage current in the off-state. We
demonstrate that the leakage current mainly stems from the small overlaps between the
valance and conduction band edges of opposite spin channels at the Fermi level in the SGS
materials.

Figure 6.4: (a)-(d) Calculated I−V curves for the four suggested OSDs based on quaternary
Heusler compounds. The red dashed lines illustrate a linear fit and the coupling of
the electrodes is represented by a small graphic in the lower right corner. Adapted
(figure) from (T. Aull et al. Appl. Phys. Lett. 118, 052405 (2021); First principles design of Ohmic spin
diodes based on quaternary Heusler compounds., Ref. [TA4]), with the permission of AIP Publishing.

The following publication: Reprinted (whole article) from (T. Aull et al. Applied Physics Letters 118, 052405 (2021);

First principles design of Ohmic spin diodes based on quaternary Heusler compounds., Ref. [TA4]), with the permission

of AIP Publishing.
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ABSTRACT

The Ohmic spin diode (OSD) is a recent concept in spintronics, which is based on half-metallic magnets and spin-gapless semiconductors
(SGSs). Quaternary Heusler compounds offer a unique platform to realize the OSD for room temperature applications as these materials pos-
sess very high Curie temperatures as well as half-metallic and spin-gapless semiconducting behavior within the same family. Using state-of-
the-art first-principles calculations combined with the nonequilibrium Green’s function method, we design four different OSDs based on
half-metallic and spin-gapless semiconducting quaternary Heusler compounds. All four OSDs exhibit linear current–voltage (I–V) character-
istics with zero threshold voltage VT. We show that these OSDs possess a small leakage current, which stems from the overlap of the conduc-
tion and valence band edges of opposite spin channels around the Fermi level in the SGS electrodes. The obtained on/off current ratios vary
between 30 and 105. Our results can pave the way for the experimental fabrication of the OSDs within the family of ordered quaternary
Heusler compounds.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037085

Spintronics is a rapidly emerging field in current nanoelectronics.
Due to their diverse and tunable electronic and magnetic properties,
Heusler compounds received great interest for potential applications
in spintronics. In particular, within the last two decades, half metallic
Heusler compounds with 100% spin polarization of the conduction
electrons at the Fermi energy1 have been extensively studied both, the-
oretically and experimentally, for memory and sensor applications. In
addition to half metallicity in ordinary X2YZ-type Heusler com-
pounds, several quaternary Heuslers with chemical formula XX0YZ,
with X, X0, and Y being transition-metal atoms and Z being an sp ele-
ment, have been theoretically predicted to exhibit spin-gapless semi-
conducting behavior and some of them have been experimentally
synthesized.2–5 Spin-gapless semiconductors (SGSs) possess a unique
electronic structure, in which conduction- and valence-band edges of
opposite spins touch at the Fermi level6 and thus SGS behavior leads
to unique functionalities and device concepts.

Half-metallic Heusler compounds have been considered as ideal
electrode materials in magnetic tunnel junctions for spin-transfer tor-
que magnetic memory applications due to their very high Curie tem-
peratures. The use of Co-based Heusler compounds in magnetic
tunnel junctions made the experimental observation of high tunnel
magnetoresistance (TMR) effects possible.8–12 However, magnetic

tunnel junctions constructed with half metals do not present any recti-
fication (or diode effect) for logic operations. Lately, logic functionality
in magnetic tunnel junctions is achieved by replacing one of the elec-
trodes by a SGS material. In Ref. 13, based on half-metallic magnets
(HMMs) and SGSs, a reconfigurable magnetic tunnel diode and tran-
sistor have been proposed. This concept combines logic and memory
on the diode and transistor level. Moreover, in a recent publication,
the present authors proposed another device concept based on HMMs
and SGSs, which is the so-called Ohmic spin diode (OSD).14 It has
been computationally demonstrated that the OSD comprising two-
dimensional half-metallic Fe/MoS2 and spin-gapless semiconducting
VS2 exhibits linear current–voltage (I–V) characteristics with zero
threshold voltage VT. OSDs have a much higher current drive capabil-
ity and low resistance, which is advantageous compared to conven-
tional semiconductor p–n junction diodes and metal–semiconductor
Schottky diodes.

The aim of the present Letter is a computational design of OSDs
based on quaternary Heusler compounds for room temperature appli-
cations. Heusler compounds offer a unique platform to realize the
OSD as these materials possess very high Curie temperatures (much
above room temperature) as well as half-metallic and spin-gapless
semiconducting behavior within the same family. To this end, the

Appl. Phys. Lett. 118, 052405 (2021); doi: 10.1063/5.0037085 118, 052405-1
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selection of the SGS and HMM electrode materials from the Heusler
family for the design of OSDs is based on our recent study in Ref. 7,
where we focus on Curie temperatures, spin-gaps, formation energy,
and Hull distance for a large number of quaternary Heusler com-
pounds. Among the considered materials, three SGSs (FeVNbAl,
FeVTaAl, and FeVTiSi) turn out to be promising for device applica-
tions. As for the half-metallic Heusler compounds, we have a large
variety of choice, but we stick to the quaternary ones (MnVTiAl,
FeVHfAl) with similar lattice constants to the SGSs in order to ensure
a coherent growth on top of each other. Additionally, we also consider
the well-known half-metallic Co2MnSi system among the ordinary full
Heusler compounds as an electrode material.

Our first-principles design of the OSDs is based on the density
functional theory (DFT) using the QUANTUMATK package (version
P-2019.12).15,16 As the exchange-correlation functional, we chose the
Perdew-Burke-Ernzerhof (PBE) parametrization17 combined with
norm-conserving PseudoDojo pseudopotentials18 and linear combina-
tions of atomic orbitals (LCAO) as the basis set. As a k-point grid for the
ground state properties, we use a 15! 15! 15 Monkhorst-Pack grid
and a density mesh cutoff of 120 Hartree. For the transport calculations,
we combined DFT with the nonequilibrium Green’s function method
(NEGF). We use a 15! 15! 160 k-point mesh in self-consistent
DFT-NEGF calculations. The I–V characteristics were calculated
within the Landauer approach,19 where IðVÞ ¼ e=h

P
r

Ð
TrðE;VÞ

½fLðE;VÞ & fRðE;VÞ'dE. V stands for the bias voltage and the transmis-
sion coefficient TrðE;VÞ depends additionally on spin r of an electron
and energy E. Furthermore, fLðE;VÞ and fRðE;VÞ denote the
Fermi–Dirac distribution of the left and right electrodes, respectively.
For the calculation of TrðE;VÞ, we chose a 25! 25 k-point grid.

In Fig. 1, we present schematically the structure of the OSD and
the corresponding I–V characteristics. The concept of the OSD has
been extensively discussed in Ref. 14 and thus here we will only give a
short overview of the device. The OSD consists of HMM and SGS
materials and possesses linear I–V characteristics. The schematic den-
sity of states (DOS) of these materials is also shown in Fig. 1.
Depending on the choice of the junction materials, the HMM and SGS
electrodes can couple ferromagnetically (ferromagnetic OSD) or anti-
ferromagnetically (antiferromagnetic OSD) at the interface giving rise

to corresponding I–V curves shown in Fig. 1. The operation principle
of the OSD relies on the unique spin-dependent transport properties
of HMMs and SGSs as discussed in Ref. 14 in detail.

In the proposal of the OSD,14 the proof of principle was demon-
strated by using two-dimensional transition-metal dichalcogenides
VS2 (SGS) and Fe/MoS2 (HMM) as electrode materials. Since VS2 pos-
sesses an estimated Curie temperature of 138K,20 it is not suitable for
room temperature applications. For more realistic devices, we now
consider six Heusler compounds as mentioned before and construct
four different OSDs: (i) FeVHfAl–FeVTiSi, (ii) FeVHfAl–FeVNbAl,
(iii) MnVTiAl–FeVTaAl, and (iv) Co2MnSi–FeVTaAl. All six Heusler
compounds possess extremely high Curie temperatures as presented
in Table I. For the construction of the OSD, we assume the situation
where one material needs to be grown on top of the other one. Thus,
in our simulations, we take one electrode (SGS) in the cubic structure
and relax the second electrode material (HMM) with respect to the
in-plane lattice parameter of the first one. Therefore, in Table I, we
include the c/a ratios for the half metallic electrode materials, which
take the tetragonal structure. In Table I, we present also the obtained
magnetic moments, magnetic anisotropy energies (MAEs), and work
functions. As expected, tetragonal distortion results in a significant
change in the magnetic anisotropy energy of HMMs, which is at least
two orders of magnitude larger than the SGSs, being in good agree-
ment with the literature.21

We now focus on the first OSD and discuss its structural, elec-
tronic, and magnetic properties. Figure 2(a) illustrates the atomic
structure of the OSD based on half-metallic MnVTiAl (left electrode)
and spin-gapless semiconducting FeVTaAl (right electrode) quater-
nary Heusler compounds. We use a minimal tetragonal unit cell along
the [001] direction containing eight atoms. For each electrode, this
cells was repeated five times and defines the screening region. The
length (screening region) of the device is around 62 Å. In the other
three OSDs, the considered screening region lies in between 61 Å and
63 Å, depending on the materials. As the strength of the spin–orbit
coupling (SOC) is very weak in these materials, we neglect the SOC in
transport calculations and thus we chose the z-direction as the trans-
port direction and also adjusted the alignment of the magnetic
moments to the z-axis. The red arrows and their size in Fig. 2(a) repre-
sent the direction and magnitude of the atomic magnetic moments in
the junction materials. In this OSD, the HMM and SGS electrodes
couple ferromagnetically at the interface, i.e., the energy difference
between ferromagnetic and antiferromagnetic coupling is about
400meV.

Looking at the magnetic moments at the interface region in Fig. 2,
we notice that the size of the arrows deviates from their bulk behavior,
i.e., far from the interface. In particular, the magnetic moment of the
Mn atom in MnVTiAl at the interface decreases from 2.42 lB to 0.07
lB. This is due to the fact that in the interface region, MnVTaAl is
formed, which also presents HMM behavior with bulk magnetic
moments of mMn ¼ 0:08lB, mV ¼ 1:97lB; mTa ¼ &0:04lB, and
mAl ¼ &0:01 lB. Therefore, the half metallic character of the
MnVTiAl compound is retained at the interface. However, the
FeVTaAl compound loses its spin-gapless semiconducting nature near
the interface region as it will be discussed later in detail.

Next, we would like to discuss the electronic properties of the
MnVTiAl–FeVTaAl junction at equilibrium, i.e., at zero bias. The bulk
band structure along the transport direction of the junction materials

FIG. 1. (a) Upper part: schematic representation of the Ohmic spin diode and corre-
sponding current–voltage (I–V) characteristics. Arrows show the magnetization
direction of the HMM and SGS electrodes (ferromagnetic OSD). Lower part: sche-
matic representation of the density of states for a HMM and SGS. (b) The same as
(a) for antiferromagnetic coupling of the HMM and SGS electrodes (antiferromag-
netic OSD).
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is shown in Fig. 2(b). MnVTiAl is a HMM with a bandgap of around
650meV in the minority-spin channel, while FeVTaAl shows SGS
properties. Note that the spin-gapless semiconducting behavior along
the chosen directions is not well seen, and for a detailed discussion,
the reader is referred to Refs. 4 and 7. Nikolaev et al.22 and Bai et al.23

provided a detailed discussion about the importance of band matching
for the transport properties of giant magnetoresistance (GMR) spin-
tronic devices. In our case, as seen in Fig. 2(b), there is a good band
matching for the majority spin states near the Fermi level close to the
C-point between the electrode materials, especially along the C–R and

C–A directions. Note that a good band matching suppresses the elec-
tron back scattering at the interface and ensures a smooth propagation
of majority spin electrons from the FeVTaAl electrode to the
MnVTiAl electrode. In Fig. 3, we present the device density of states
(DDOS) of the MnVTiAl–FeVTaAl junction. As mentioned above,
the half metallicity of MnVTiAl is preserved at the interface, which
can be seen in the majority-spin and minority-spin channel DDOS
presented in Fig. 3. However, the SGS character of FeVTaAl is lost
near the interface region due to the charge transfer from the half-
metallic electrode to the SGS (see the left panel of Fig. 3). This charge

TABLE I. Material composition of the considered OSDs, coupling of the electrodes, lattice constants a, c/a ratio, sublattice and total magnetic moments, work function (U), the
magnetic anisotropy energy (MAE), Curie temperatures TC of the cubic phase and the electronic ground state. The TC values are taken from Ref. 7.

HMM–SGS junction Coupling Compound
a0
(Å)

c/a mX

(lB)
mX0

(lB)
mY

(lB)
m total
(lB)

U
(eV)

MAEa

(leV/at.)
TC
(K)

Ground
state

MnVTiAl–FeVTaAl "" FeVTaAl 6.10 1.00 0.85 2.38 &0.19 3.00 3.75 0.63 681 SGS
MnVTiAl 6.10 1.01 &2.42 2.61 0.86 1.00 3.59 11.94 963 HMM

FeVHfAl–FeVTiSi "" FeVTiSi 5.91 1.00 0.57 2.33 0.10 3.00 3.52 &0.94 464 SGS
FeVHfAl 5.91 1.12 &0.15 2.06 0.10 2.00 4.10 117.44 742 HMM

FeVHfAl–FeVNbAl "" FeVNbAl 6.11 1.00 0.81 2.32 &0.11 3.00 3.72 0.25 693 SGS
FeVHfAl 6.11 1.04 &0.68 2.41 0.29 2.00 3.45 62.44 742 HMM

Co2MnSi–FeVTaAl "# FeVTaAl 6.10 1.00 0.79 2.32 &0.11 3.00 3.75 0.63 681 SGS
CoCoMnSi 6.10 0.86 1.01 1.01 3.18 5.00 3.83 57.50 920 HMM

aOut-of-plane magnetization is marked as negative MAE.

FIG. 2. (a) The atomic structure of the MnVTiAl–FeVTaAl Ohmic spin diode. The system is periodic in x- and y-direction in the plane orthogonal to the z-direction, which is the
transport direction. The red arrows illustrate the direction as well as the magnitude of the magnetic moments within the scattering region. Small magnetic moments are over-
layed by the atomic radii. The black dashed box denotes the interface. (b) The calculated spin-resolved bulk electronic band structure along the device stack direction, [001],
for MnVTiAl (left panel) and FeVTaAl (right panel). For both compounds, the Fermi level is set to zero (dashed black line).
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transfer stems from the work function difference of 160meV between
the two electrode materials. As MnVTiAl has the lower work function,
electrons flow from the majority-spin channel of MnVTiAl to the
majority spin-channel of FeVTaAl. Once the charge redistribution
reaches equilibrium, MnVTiAl will be positively charged near the
interface region, whereas FeVTaAl will be negatively charged and
hence an electric dipole will be induced. This dipole influences the
electronic and magnetic properties of both materials. Since the mag-
netic moment of the Mn atom in the MnVTiAl electrode has already
been discussed above, we will briefly comment on the magnetic
moment of the V atoms near the interface region. The magnetic
moment of the V atoms in MnVTiAl is reduced to 2.25lB close to the
interface and recovers to the bulk value within two unit cells. On the
other hand, the variation of magnetic moments in the FeVTaAl elec-
trode near the interface region is around 0.1lB. Thus, the affected
region by the charge transfer is restricted to five atomic layers for the
majority-spin channel. The minority-spin channel is not substantially
affected for both junction materials.

Until now, we discussed the properties of the OSD for zero bias
and will now focus on the current–voltage (I–V) characteristics when
a bias voltage is applied. Therefore, Figs. 4(a) and 4(b) illustrate the
DDOS for both spin channels for the MnVTiAl–FeVTaAl junction
under a bias voltage of þ0.3V and &0.3V, respectively. Also, the cor-
responding transmission spectra are presented there. For both forward
and reverse bias, the electronic and magnetic properties of both mate-
rials are not influenced by the bias voltage. The I–V characteristics of
the MnVTiAl–FeVHfAl junction presented in Fig. 5(a) can be
explained on the basis of the DDOS. Under a forward bias voltage,
majority spin electrons from the occupied states below the Fermi level
in FeVTaAl can be transmitted to unoccupied states above the Fermi
level in MnVTiAl. Thus, the transmission coefficient has a finite value
in this case. However, for the minority spin electrons, the transmission
coefficient is zero because both materials have no states that could
contribute to transport in the given voltage window. Thus, the forward
current (on-current) is 100% spin polarized. Also, under an applied

reverse bias voltage, the transmission coefficient for minority-spin
electrons is zero due to the energy gap in both materials. On the other
hand, the overlap of conduction and valence bands of opposite spin
channels around the Fermi energy in FeVTaAl gives rise to a nonzero
transmission coefficient for majority-spin electrons, which leads to a
leakage current that will be discussed in detail in the following
paragraph.

Before we discuss the origin of the leakage current, we will briefly
comment on the I–V characteristics of the other three OSDs, which
are also presented in Fig. 5. As seen there, for all OSDs we obtain a lin-
ear behavior starting from around þ0.15V for the ferromagnetic
OSDs (MnVTiAl–FeVTaAl, FeVHfAl–FeVTiSi, and
FeVHfAl–FeVNbAl junctions) and around &0.15V in the case of the
antiferromagnetic OSD Co2MnSi–FeVTaAl. For the three ferromag-
netic OSDs, the I–V curves are more or less similar to each other, while
the Co2MnSi–FeVTaAl junction is in the off state for a forward bias
and in the on state for a reverse bias, which is somewhat similar to the
backward diode.24–26 An interesting feature of this latter OSD would
be its dynamical configuration since the magnetic coupling strength of
the electrodes at the interface is rather weak ()17meV). Thus, by
applying an external magnetic field, the I–V curves of the diode can be
reversed similar to the case of reconfigurable magnetic tunnel diode
concept in Ref. 13. Returning back to the discussion of the I–V charac-
teristics, all four OSDs exhibit exactly zero threshold voltage VT under
forward bias. It is worth noting that all semiconductor diodes have
sizeable threshold voltages VT (VT )0.7V for silicone p–n diodes),
which gives rise to the power dissipation (P ¼ VT * I) in form of heat
and thus this is an undesirable effect. The larger the value of the
threshold voltage VT, the higher is the power dissipation in a diode.
Furthermore, for all OSDs, the leakage currents are small compared to
the on-currents. The leakage current can be traced back to the small
overlap of conduction and valence band edges of opposite spin chan-
nels around the Fermi level in the SGS electrode as schematically
shown in Figs. 5(e) and 5(f) (see Refs. 4 and 7 for the band structure
and DOS of the SGS materials). Band overlaps allow in the

FIG. 3. Projected device density of states (DDOS) at zero bias (equilibrium) for the majority (left panel) and minority spin channel (right panel) of the MnVTiAl–FeVTaAl OSD
(the atomic structure is given in Fig. 2). The white dashed lines display the Fermi level while the vertical yellow dashed lines denote the interface.
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ferromagnetic (antiferromagnetic) OSD the flow of majority spin elec-
trons from the occupied states of the HMM (SGS) material into the
unoccupied states of the SGS (HMM) electrode. Thus, this process
gives rise to a small leakage current. However, the leakage current is
absent in the minority-spin channel in both cases due to the energy
gaps in the electrode materials. Therefore, leakage currents can be pre-
vented by using ideal SGS materials, i.e., without an overlap in conduc-
tion and valence band edges of opposite spin channels around the
Fermi energy. Since FeVTiSi exhibits an overlap of 150meV while
FeVNbAl and FeVTaAl possess overlaps of 45meV and 60meV,
respectively, the FeVHfAl–FeVTiSi junction shows the largest leakage
current.

Finally, we would like to comment on the on/off ratios and cur-
rent densities of the OSDs. The ION=IOFF ratios at 60:3 V vary
between 30 (FeVHfAl–FeVTiSi) and 105 (MnVTiAl–FeVTaAl) at zero
temperature. Since FeVTiSi possesses the largest overlap between the
conduction and valence band edges of opposite spin channels around
EF, the FeVHfAl–FeVTiSi junction shows the largest leakage current
as discussed above and thus the lowest on/off ratio. From that point of
view, also the on/off current ratios can be increased by using materials
with ideal spin-gapless semiconducting behavior. Here, the
MnVTiAl–FeVTaAl junction seems to be the best candidate for realiz-
ing the OSD. Another aspect that influences the on/off ratios is tem-
perature, which is neglected in our transport calculations due to the
technical limitation of the QUANTUMATK package for spintronic mate-
rials as discussed in Ref. 14. Temperature effects as well as the spin-flip

excitations can further reduce the on/off current ratio in OSDs (see
Ref. 14 for a detailed discussion). As for the current densities, the cal-
culated values are comparable to the elementary metals and much
higher than conventional p–n or p& i& n diodes.27–30 It is worth
noting that in transport calculations within the QUANTUMATK
package, all inelastic scattering processes stemming from phonons as
well as electrons and magnons are neglected. All these neglected
processes can substantially reduce the current density of the OSDs.

In conclusion, the OSD is a recently proposed concept in spin-
tronics and requires materials with unique electronic properties, in
particular, half-metallic and spin-gapless semiconducting behavior.
Since both properties have already been identified in the family of
ordered quaternary Heusler compounds, this family is a preferable
choice for the realization of such devices. Moreover, most of the com-
pounds within this family possess very high Curie temperatures, mak-
ing them potential candidates for spintronic applications at room
temperature. By using first-principles DFT calculations combined with
the NEGF method, we proposed four different HMM–SGS junctions
(or OSDs) within the family of quaternary Heusler compounds. All
four OSDs show linear I–V characteristics with zero threshold voltage
VT in the on state and small leakage currents in the off state, which
can be attributed to the small overlap of conduction and valence band
edges of opposite spin channels around the Fermi level in the SGS
electrode. In three of the designed OSDs, the HMM and SGS electro-
des couple ferromagnetically, while in the Co2MnSi–FeVTaAl junc-
tion, this coupling is antiferromagnetic and thus this diode can be

FIG. 4. (a) Projected local device density of states (DDOS) for the majority (left panel) and minority (right panel) spin channel in MnVTiAl–FeVTaAl OSD (the atomic structure
of an OSD is provided in Fig. 2) for a bias voltage of V¼ 0.3 V. In the middle panel, we present the calculated transmission spectrum for both spin channels. The dashed lines
indicate the Fermi energy of the left and right electrode. (b) displays the same as (a) for a bias voltage V ¼ &0:3 V.
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configured dynamically via an external magnetic field. Furthermore,
the zero threshold voltageVT is important for reducing the power con-
sumption in a diode as it scales linearly with VT. We hope that our
results pave the way for the experimental fabrication of OSDs based
on quaternary Heusler compounds.
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7 Summary and Outlook

Summary The current non-volatile magnetic memory technology (STT-MRAM, SOT-
MRAM, and beyond), as well as several magnetic logic concepts, utilize conventional mag-
netic tunnel junctions (MTJs) with limited functionalities. Despite large tunnel magnetore-
sistance (TMR) values, conventional tunnel junctions do not present current rectification,
i.e., a diode effect. Using spin-gapless semiconductors (SGSs) and half-metallic magnets
(HMMs) as electrode materials in MTJs leads to new functionalities, i.e., current rectifica-
tion, reconfigurability, and inverse TMR effect. Thus, in the present thesis, we investigated
novel spintronic device concepts based on SGSs and HMMs. Quaternary Heusler compounds
allow designing within the same family HMMs and SGSs with similar lattice constants, large
energy gaps below and above the Fermi level, and high Curie temperatures for room tempera-
ture applications. By employing state-of-the-art DFT calculations, we identified 25 materials
within the family of quaternary Heusler compounds for possible application in spintronic
devices. Next, based on the screening of SGSs and HMMs within the family of ordered qua-
ternary Heusler compounds, we computationally designed two different MTJs using SGSs and
HMMs as electrode materials separated by different thicknesses of MgO layers as a tunnel
barrier. We discussed their current-voltage characteristics and the TMR ratio for magnetic
logic and memory application. Finally, we introduced a new device concept based on SGSs
and HMMs called Ohmic spin diode (OSD), which is to some extent similar to conventional
metal-semiconductor diodes (Schottky-barrier diodes). The OSDs show linear I − V curves
under any finite forward bias voltage, possess zero threshold voltage, and block the current
under reverse bias due to spin-dependent filtering of the electrons. By employing the NEGF
method combined with DFT, we proposed four different HMM−SGS junctions within the
family of quaternary Heusler compounds.

Outlook The current computing technology is based on the von-Neumann architecture.
There, the memory and the central processing unit (CPU) are connected via a shared bus
system which causes high power consumption and the well-known memory bandwidth bot-
tleneck. Thus, for many computing tasks, a large amount of energy and time is needed to
transfer data between the memory and the CPU, rather than the information processing
itself. Spintronics is a research field that aims to solve the major problems in the existing
conventional microelectronics. MTJs played a crucial role in spintronics development since
they are suitable for several applications ranging from non-volatile memory devices to read-
head sensors as well as from logic-in-memory computing to non-volatile logic concepts. The
transfer from conventional electronics to spintronics paves the way for realizing devices with
low power consumption, high storage capacity, as well as fast operation. In fact, conventional
tunnel junctions are used as non-volatile memory elements, e.g., in STT- or SOT-MRAM
devices, and new magnetic logic concepts based on MTJs have been proposed and demon-
strated. Nevertheless, several magnetic logic concepts and the current non-volatile magnetic
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7 Summary and Outlook

memory technology employ MTJs with limited functionality. The unique characteristics of
devices based on HMMs and SGSs offer new ways for magnetic logic concepts and memory
elements as they combine an inverse TMR effect and a dynamically reconfigurable diode ef-
fect in a single device. Especially magnetic tunnel junction logic is of particular interest as it
opens the way to logic-in-memory computing, i.e., processing and storing information within
a single device and hence providing a possibility to explore computing architectures beyond
the von-Neumann architecture. Besides this, tunnel junctions that exhibit a current recti-
fication effect are of particular interest for cross-point STT-MRAM applications since they
eliminate the necessity of selection devices. Moreover, the MTJs under study are the basis
of the three-terminal reconfigurable magnetic tunnel transistors with exceptional properties.
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