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Summary

One of the main interest in polymer science is to obtain information about the structure of

the sample correlated with spatial distribution of the neighbouring nuclei. For determining

distances between atoms and the orientation of their connecting vectors, measurement of

the direct spin-spin interaction (dipolar coupling) can be used.

Nuclear magnetic resonance (NMR) has been used in this work to measure dipolar

couplings in amorphous polymers. For this purpose multiple quantum (MQ) coherences

excited by proper multiple r.f. pulse sequences are used. In this work MQ NMR methods

based on protons 1H have been chosen to accomplish it. Because the spin quantum number

of 1H is 1/2 , energy level system has to be formed with a certain number of spins to permit

occurrence of MQ transitions. The efficiency of their excitation is the larger the stronger

the coupling between the spins is. Thus, estimation and comparison of the intensities of

the excited coherences can give information about the relative strength of the coupling.

The main aim of this work was to compare high resolution MQ and double quantum (DQ)

NMR techniques under fast magic angle spinning (MAS) with low resolution static MQ

techniques with respect to elastomers and to determine the residual couplings in natural

rubber.

In MQ spectroscopy which usually deals with a lot of r.f. pulses precise timing between

them is one of the most important requirements. Usually NMR spectrometers can not

provide ideal pulses with the rectangular shape as well as phase switching delays between

them are of importance. The theoretical calculations presented in this work show that the

influence of finite switching times between r.f. pulses to the zero-order average Hamiltonian

for BABA r.f. pulse sequence is small if the delays between these pulses are smaller than

0.5 µs, which is nowadays in commercial spectrometers good fulfilled. Care has to be

taken for proper design of the multiple-pulse sequences especially under fast MAS. The

timing of the pulses has to be symmetric with respect to the rotor period. In addition
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iv Summary

new phase cycling techniques to remove r.f. field inhomogeneities for MQ experiment as

well as improvements of already existing techniques to select DQ coherence are presented.

Detailed description of performing MQ experiments for static solids as well as for high

resolution MAS is made in this work. Comparing of standard TPPI techniques with

’hypercomplex’ methods in connection to DQ spectroscopy are detailed discussed which

was up to now not reported. It is shown that ’hypercomplex’ acquisition may be preferred

for C7 based r.f. pulse sequences but on the other hand for BABA and DRAMA r.f. pulse

sequences TPPI acquisition is preferred.

In systems where chemical shift anisotropy interactions can be neglected with compar-

ison to the dipolar coupling strength ωD, simple MAS methods are suitable for measuring

dipolar couplings ([Got95]). The important information about it is comprised in the side-

band intensities. Comparing intensities of the spinning sidebands the ratio between dipolar

coupling and rotational frequency can be calculated if the spin-1/2 pair approximation is

valid. Already existing theoretical approaches for calculating this ratio are extended for

moderate spinning speeds where spinning angular frequency is much more close to the

dipolar coupling strength (ωr ' ωD).

The r.f. pulse sequences POST C7, C7, BABA and DRAMA used in high resolution

MQ MAS experiments were applied for elastomers. Their advantages and disadvantages

are discussed. With the help of them residual dipolar couplings in Natural Rubber (NR)

systems were measured. C7 ([Lee95]) as well as its modified version POST C7 ([Hoh98])

were found to be the most effective for elastomers. They provide unique selectivity of the

dipolar couplings between protons in the same as well as between protons belonging to

the different functional groups.

New low resolutions static DQ experiments were successfully applied on polymers. As a

test sample polybutadiene melt was chosen. It was shown that static DQ experiments can

be sometimes preferred besides higher resolution MAS experiments. They does not require

high spinning speeds, therefore higher filling factors are possible. This has a consequence

in improving signal to noise ratios. MAS, on the other hand, is limited to the size of the

rotor which is necessarily small enough to obtain high spinning speeds.

A thirty-two r.f. pulse sequence was used to excite higher order coherences in high

crosslinked polybutadiene rubber (PBR) under static conditions. Up to the 6-th order of

coherence was clearly visible which was not up to now not realized on elastomers.

MQ as well as DQ spectroscopy are well established in modern NMR. They are not
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restricted to use only for 1H systems. They can be extended also to other spin-1/2 nuclei.

Recently published experiment based on C7 r.f. pulse sequence shows that modified C7

([Hon99]) can be used to achieve even higher selectivity in INADEQUATE experiment.

This with connection to DQ techniques presented in this work might be used to measure

connectivities between functional groups which were not distinguished to measure with

classical DQ spectroscopy.
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Zusammenfassung

Ein wichtiges Teilgebiet der Polymerforschung befasst sich mit der Untersuchung der

molekularen Struktur und Beweglichkeit. Für die Bestimmung von Atomabständen sowie

von Orientierungen bestimmter Molekülsegmente kann die dipolare Kopplung zwischen

den Kernspins als Sonde dienen.

In der hier vorgestellten Arbeit wurde die kernmagnetische Resonanz (NMR) zur Mes-

sung dipolarer Kopplungen in amorphen Polymeren eingesetzt. Zu diesem Zwecke wurden

mittels geeigneter Impulsgruppen Multiquanten (MQ) - Kohärenzen im Protonenspinsys-

tem angeregt. Da die Spinquantenzahl der Protonen 1/2 beträgt, ist eine bestimmte Anzahl

von gekoppelten Spins notwendig, damit ein komplexes Energieniveauschema vorliegt, in

dem Multiquanten-Übergänge stattfinden können. Die Effizienz von deren Anregung ist

um so größer, je stärker die Kopplung der Spins ist, so dass die Bestimmung und der Ver-

gleich der Intensitäten der angeregten Kohärenzen Aussagen über die relative Stärke von

Kopplungen und über die Größe von Clustern gekoppelter Spins gestattet. Das Ziel dieser

Arbeit ist dabei zum einen der Vergleich von hochauflösenden MQ- und DQ- Verfahren

unter MAS mit statischen MQ-Techniken hinsichtlich der Anwendung auf Elastomere, zum

anderen die Bestimmung von dipolaren Rest-Kopplungen in Naturkautschuk.

Die MQ-Spektroskopie, die normalerweise eine Vielzahl von Impulsen verwendet, er-

fordert eine genaue Einhaltung der vorgesehenen Impulslängen und der Abstände. Reale

Impulse weichen jedoch mehr oder weniger von der idealen Rechteckform ab. Hinzu

kommt, dass das Schalten der Phasen eine zusätzliche Verzögerung erzeugen kann.

Theoretische Berechnungen in dieser Arbeit zeigen, dass der Einfluss von endlichen

Schaltzeiten zwischen den HF-Impulsen einer BABA-Impulsfolge auf den gemittelten

Hamilton-Operator sehr klein ist, wenn die Impulsabstände kleiner als 0,5 s sind. Diese Be-

dingung kann mit den heutigen Spektrometern meist erfüllt werden. Es sollte aber darauf

geachtet werden, dass die unter schnellem MAS verwendeten Impulsfolgen symmetrisch
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bezüglich einer Rotationsperiode aufgebaut sind. Darüberhinaus werden neue Phasen-

zyklen vorgestellt, mit deren Hilfe der Einfluss der Inhomogenitäten der HF-Impulse auf die

MQ-Experimente reduziert und gleichzeitig die Doppelquanten-Selektion verbessert wer-

den kann. Detailliert wird die Ausführung von MQ-Experimenten beschrieben, die sowohl

statisch als auch unter MAS-bedingungen ausgeführt wurden. Die Selektion der DQ-

Kohärenzen entweder mit Standard-TPPI (Time-Proportional Phase Incrementation)-

Verfahren oder durch Erzeugung hyperkomplexer Datensätze wird detailliert beschrieben.

Beide Möglichkeiten wurden erstmalig miteinander verglichen. Dabei zeigte sich, dass die

hyperkomplexe Datenaufnahme bei auf C7 basierenden Impulsfolgen bevorzugt werden

sollte, während bei BABA- und DRAMA-Impulsfolgen die TPPI-Methode günstiger ist.

In Stoffsystemen, bei denen die Anisotropie der chemischen Verschiebung gegenüber

der dipolaren Kopplung vernachlässigbar ist, sind einfache MAS-Experimente ausreichend

um diese Kopplungen zu bestimmen ([Got95]). Die Information hierüber ist in den Seit-

enbandintensitäten enthalten. Aus deren gegenseitigem Verhältnis kann man unter der

Voraussetzung der Zwei-Spin-Näherung den Quotienten von dipolarer Kopplung und Ro-

tationsfrequenz bestimmen. Bereits hierfür existierende theoretische Ansätze wurden er-

weitert, um sie für den Fall, dass Rotationsfrequenz und dipolare Kopplung nahe beieinan-

der liegen (ωr ' ωD), anwenden zu können.

Die Impulsfolgen C7, POST C7, BABA und DRAMA wurden als hochauflösende

MQ-Experimente auf Elastomere angewandt. Die Vor- und Nachteile der einzelnen Ver-

fahren werden hier diskutiert. Mit deren Hilfe wurden dipolare Rest-Kopplungen in

Naturkautschuk bestimmt. Dabei erwiesen sich C7 ([Lee95]) und deren modifizierte Vari-

ante POST-C7 ([Hoh98]) bezüglich der Selektivität der Kopplungen sowohl zwischen den

Protonen der gleichen Atomgruppe als auch zwischen denen verschiedener Gruppen als

die geeignetsten Methoden.

Neuere statische DQ-Experimente wurden erfolgreich auf Polymere angewandt. Als

Testsubstanz ist dabei eine Polybutadien-Schmelze verwendet worden. Es zeigte sich, dass

die statischen Experimente in manchen Fällen den MAS-Verfahren überleben sind trotz des

höheren Auflösungsvermögens der zuletztgenannten. Die statischen Verfahren ermöglichen

größere Substanzmengen, wodurch sich ein günstigeres Signal-Rausch-Verhältnis ergibt.

MAS-Proben sind demgegen über auf die Größe der Rotoren-Innenräume beschränkt, die

umso kleiner sein werden, je höher die angestrebte Rotationsfrequenz ist.

Mit einer Impulsfolge, die aus Zyklen zu je 32 Impulsen besteht, konnten unter
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Zusammenfassung ix

statischen Bedingungen auch Kohärenzen höherer Ordnung in vernetztem Polybutadien-

Kautschuk (PBR) angeregt werden. Dabei gelang es, auch die 6. Ordnung noch klar

sichtbar zu machen, was bisher in Elastomeren nicht bekannt war.

MQ- und speziell DQ-Experimente können auch auf andere Spin-1/2 -Kerne angewandt

werden. Jüngst veröffentlichte Experimente auf der Basis von C7 ([Hon99]) zeigen, dass

man in Verbindung mit INADEQUATE eine höhere Selektivität erreichen kann. Dies

könnte eine Möglichkeit sein, um die Konnektivitäten zwischen solchen Gruppen zu bes-

timmen, deren Resonanzen mit den bisherigen DQ-Verfahren nicht voneinander getrennt

werden konnten.
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Introduction

The aim of this work is to develop and to implement the methods for determining the

local structure and dynamics of amorphous solids like e.g. polymers or glasses. Due to

the missing periodicity in these systems X-ray and neutron scattering give not enough

sufficient results with comparison to the crystalline samples. Therefore, nuclear magnetic

resonance (NMR) has been chosen in this work to study the structure and dynamics.

The main advantage of NMR spectroscopy is its unique selectivity. It allows to monitor

selectively different nuclei with characteristic Larmor frequency ω0. The fine structure

of the NMR spectrum for spin-1/2 nuclei is mainly determined by two interactions, the

chemical shift interaction describing the shielding of the nuclear spin from the external

field by the electron clouds and by the direct spin-spin interaction. Both interactions can

be used to get an information about the chemical structure and the space distribution

of the neighbouring nuclei. Measuring of the direct spin-spin interaction the distances

between nuclear spins and the orientation of their connecting vectors can be determined.

In solids the direct spin-spin interaction for protons is formed by interactions between

a lot of strongly coupled spins, which leads to very broad spectral lines. Therefore, infor-

mation about the chemical shift interaction is usually suppressed and can not be resolved.

Various techniques have been used in past to compensate to the certain order the effects

of dipolar couplings for increasing the spectral resolution ([Ern87, Rhi73]). They can be

in principle divided into three categories: static multiple-pulse techniques, simple magic

angle spinning (MAS), and combination of multiple-pulses and MAS. All three methods

can be used to get the higher resolution spectra, where dipolar couplings corresponding

to the different chemical shifts can be assigned.

To get detailed information about the structure and dynamics of amorphous polymers

multiple quantum (MQ) spectroscopy will be used. Multiple quantum NMR is nowadays

well established for determining dipolar couplings. MQ coherences used for this purpose
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2 Introduction

are coherent transitions between states, which differs in magnetic quantum number p about

more than one unit. The excitation of this coherences in spin-1/2 systems is possible only

when the coupling between spins exists ([Pin88]) and under the usage of special r.f. pulse

sequences designed for this purpose. MQ coherences does not induce directly the signal to

the detecting coil in NMR instruments hence, indirect detection scheme is required. Thus,

MQ NMR experiment requires an experiment with two-dimensional structure ([Ern87]).

In recent years a substantial effort has been recorded in combination of MAS and

multiple-pulse techniques for exciting MQ coherences. With increasing rotational fre-

quencies resolution and sensitivity have been improved and it was possible to achieve

high resolution spectra also for abundant nuclei like e.g. protons 1H. This so-called

fast MAS effectively averages out dipolar couplings, which was a disadvantage, so it

was necessary to reintroduce them by designing appropriate multiple-pulse sequences

([Gee94, Fei96a, Lee95, Hoh98]). In the case of amorphous polymers well above the glass

temperature high resolution MQ spectra can be used to obtain new information about the

local structure and dynamics. This is a prerequisite for improving the material.

In this work we concentrate to develop and demonstrate NMR measuring methods

for detecting MQ and double (DQ) coherences for spin-1/2 systems coupled via dipolar

coupling. This was done with designing special multiple-pulse sequences which are appli-

cable in modern NMR instruments. Besides this methodical developments we compared

static as well as MAS multiple quantum techniques with connection to polymer melts and

elastomers well above the glass temperature.

MQ spectroscopy was used to determine dipolar connectivities between spin-1/2 nuclei

for protons and carbons in organic solids ([Spi97, Got95, Gra98b, Som95]) an for 31P

in crystalline or glassy phosphates ([Fei98, Gee97]). Elastomers represent a technolog-

ically important class of materials. They have been investigated by various techniques

([Add93]) including also MQ spectroscopy ([Gra98a, Sch99]). From the view point of

NMR, crosslinked elastomers exhibit both liquid-like and solid-like features. At tempera-

tures well above the glass temperature, the time scales of molecular motions are liquid-like.

However, the presence of topological constraints and permanent crosslinks prevents the

chain motion from being isotropic. Thus, anisotropic spin interactions, such as direct

spin-spin interaction are not fully averaged out and give rise to solid like NMR properties.

This allows us to use high resolution proton MQ spectroscopy to measure residual dipolar

interactions under the conditions of fast MAS.



Introduction 3

The aim of this work is to compare high resolution MQ and DQ NMR techniques

under fast MAS with low resolution static MQ techniques with connection to elastomers.

Various multiple-pulse sequences have to be compared which are useful to study the

structure and dynamics in polymer melts and crosslinked elastomers.

The chapters are organized as follows:

In chapter 1 the theoretical bases of NMR are elucidated. We concentrated to the

homonuclear dipolar interaction which is extensively used in this work. Irreducible tensors

representation of dipolar coupling Hamiltonian can be found in section 1.4. Simple magic

angle spinning (MAS) experiment is theoretically described in section 1.6. Basics of two-

dimensional NMR which is necessary for MQ experiment can be found in section 1.7.

Chapter 2 deals with detailed theoretical analysis of MQ experiment for static solids

(section 2.4) and for high resolution MQ techniques under MAS (section 2.5). The basics of

average Hamiltonian theory (section 1.3) are extensively used for characterizing multiple-

pulse sequences exciting even order coherences in sections 2.4.1 and 2.5.1. Influence of finite

switching delays between r.f. pulses on the zero order average Hamiltonian are derived and

discussed for BABA r.f. pulse sequence in section 2.5.1.2.

In chapter 3 MQ as well as double quantum coherences have been used to measure

mainly residual dipolar couplings in elastomers. In sections 3.2 and 3.3 DQ build-up curves

are used for measuring residual dipolar couplings in polybutadiene melt and in natural

rubber. Effectiveness of high resolution r.f. pulse sequences like C7, POST C7, BABA

and DRAMA are compared with connection to elastomers. Section 3.4 deals with NMR

experiment used for determining sizes of the dipolar clusters of coupled spins in solids

under fast MAS. In section 3.5 new DQ and multiple quantum experiments for static

solids are presented. Comparison with high resolution MAS techniques is also made. High

order coherences in high crosslinked polybutadiene rubber are measured in section 3.5.2.

In chapter 4 practical hints for NMR spectroscopists to realize MQ experiments are

discussed. Comparison of hypercomplex and TPPI acquisition with connection to DQ

spectroscopy can be found in section 4.2. DQ filtering and phase cycling techniques are

explained in sections 4.3 and 4.4, respectively.





Chapter 1

Theoretical bases

Just after the discovery of nuclear magnetic resonance (NMR) in 1945 in bulk mat-

ter [Blo46, Pur46] this phenomenon has become of interest for many structural eluci-

dation techniques. NMR can measure a magnetic moment produced by spin charged

atoms embedded to the strong magnetic field. It took 25 years from continuous wave

(CW) low resolution detection techniques till development of pulse Fourier spectroscopy,

which enables an expansion of modern high-resolution NMR techniques. The response to

a δ-function pulse according to the superposition principle, which is valid in linear sys-

tems, is a linear superposition of the responses of all frequency components called FID

(free induction decay) and the transfer function, called spectrum, can be obtained from

the FID by a Fourier transformation. The Fourier transformation became a routine for

characterization of a spectrum in modern NMR instruments. Further improvements were

made with discovery of a new dimension, where frequency response spectrum S(ω) became

a spectrum of two variables S(ω1, ω2). The two-dimensional (2D) spectroscopy [Ern87]

was able to distinguish between two independent precession periods, i.e. evolution and de-

tection period. The evolution during preceding period is monitored indirectly through the

phase and amplitude of the magnetization at the beginning of the detection period. This

scheme has many crucial advantages, for example, to observe multiple quantum coherence

indirectly.

In this chapter the theoretical bases of NMR will be presented in a very short overview.

We will focus our interest to the solid state NMR with connection to the spin-1/2 systems.

Magic angle spinning experiment for dipolar coupled spin-1/2pair will be also presented. We

will conclude this chapter with the bases of 2D spectroscopy. Deep theoretical descriptions
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6 1.1. Types of interactions in NMR

of NMR can be found in monographs like e.g. Abragam ([Abr61]) and Ernst et al.

([Ern87]). The methods of solid state NMR spectroscopy are fully or partially described in

monographs from Mehring ([Meh83]) and Slichter ([Sli92]). The possible applications on

polymers are discussed in monograph from Schmidt-Rohr/Spiess ([SR94]). In this mono-

graph, for convenience, we will assume all Hamiltonians as the operators correspond to

E/~, where energy eigenvalues are measured in angular frequency units.

1.1 Types of interactions in NMR

The dynamics of N coupled spins is not possible to describe in terms of the motion of

classical magnetization vectors, but it is necessary to treat quantum mechanical formalism.

The most convenient description of quantum mechanical system dynamics can be made

with the help of density operator ρ̂. We will recall some of its basic properties

ρ̂ = ρ̂+, Tr {ρ̂} = 1, ρ̂2 = ρ̂ . (1.1)

For the time-dependent Schröninger equation [Ern87, Sli92], one can derive the equation

of motion for the density operator ρ̂ under Hamiltonian Ĥ

d

dt
ρ̂(t) = −i[Ĥ(t), ρ̂(t)], (1.2)

called Liouville-von Neumann equation or simply density operator equation. Its formal

solution may be written

ρ̂(t) = Û(t) ρ̂(0) Û
+
(t) , (1.3)

with the time evolution unity operator (propagator)

Û(t) = T̂ e
−i

t∫
0

Ĥ(t′) dt′
, (1.4)

where the Dyson time-ordering operator T̂ defines a prescription for evaluating the ex-

ponential functions in cases where the Hamiltonians at different times do not commute,

[Ĥ(t′), Ĥ(t′′)] 6= 0. For the time independent Hamiltonians Ĥ(t) = Ĥ equation (1.4) can

be rewritten in the form

Û(t) = e−iĤ t , (1.5)

where time-ordering operator T̂ has no more importance. The expectation value of an

arbitrary observable operator Â in the Schrödinger representation can be found〈
Â

〉
= Tr

{
Â · ρ̂(t)

}
(1.6)
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by evaluating the trace of the product of the observable operator and density operator.

In most of the cases the complete Hamiltonian Ĥ of the molecular system is enormously

complex, and to derive the exact solutions of equation of motion (1.2) is very complicated.

This is a good reason to describe magnetic resonance experiments by a spin Hamiltonian

ĤS . It acts only on the spin variables and is obtained by averaging the full Hamiltonian

over the lattice coordinates,

ĤS = Trf

{
Ĥ

}
. (1.7)

The nuclear spin Hamiltonian contains only nuclear spin operators and some phenomeno-

logical constants [Ern87]. In solid state NMR we are going to distinguish nuclear spin

interactions between external fields and internal fields, and the nuclear spin Hamiltonian

ĤS can be written

ĤS = Ĥext + Ĥ int , (1.8)

where

Ĥext = ĤZ + ĤRF and Ĥ int = ĤCS + ĤD + ĤJ + ĤQ , (1.9)

where ĤZ , ĤRF , ĤCS , ĤD, ĤJ , and ĤQ are Zeeman, radio-frequency field, chem-

ical shift, direct spin-spin, indirect spin-spin, and quadrupole interactions, respec-

tively.

If we assume a strong external magnetic field ~B0 (B0 À 1 T) thus the Zeeman

interaction ĤZ has the dominant contribution to the spin Hamiltonian ĤS :

ĤZ = − ~M · ~B0 , (1.10)

where ~M is the macroscopic magnetization of the nuclear spins Ii. All other terms (ex-

cept ĤQ) can be written as perturbations. If we assume the orientation of the external

magnetic field to the z-direction ~B0 = B0 ~ez of a laboratory system, equation (1.10) may

be expressed as

ĤZ = −
∑

i

γiB0 Î
i
z =

∑
i

ω0, i Î
i
z , (1.11)

where the Larmor frequency ω0, i of spin i is defined through the magnetogyric ratio γi

and the strength of the external magnetic field

ω0, i = − γiB0 . (1.12)

All measurements in this work were done under the external magnetic field B0 = 9.4 T

which corresponds to the Larmor frequency for protons 1H: ω0, 1H/2π = 400 MHz and for

carbons 13C: ω0, 13C/2π = 100 MHz.
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Radio-frequency (r.f.) field interaction ĤRF has the same form as the Zeeman

interaction

ĤRF (t) = −
∑

i

γi
~̂I i · ~B1(t) . (1.13)

The applied r.f. field ~B1 oscillate with the frequency ω1 and is normally linearly polarized

with the phase ϕ

~B1(t) = 2B1 cos(ω1t) [~ex cos ϕ + ~ey sinϕ] . (1.14)

In this conditions equation (1.13) can be written in the form:

ĤRF (t) = − 2 B1 cos(ω1t)
∑

i

γi

{
Î

i
x cos ϕ + Î

i
y sinϕ

}
. (1.15)

To solve the density operator equation (1.2), it is advisable to make the r.f. field Ham-

iltonian time independent by the transformation in to the rotating frame. In general a

Hamiltonian Ĥ(t) = ĤZ+Ĥ1(t) can be transformed to the ĤZ-interaction representation

by the transformation [SR94]

Ĥ
r

= e iĤZ t Ĥ(t) e−iĤZ t = ĤZ + e iĤZ t Ĥ1(t) e−iĤZ t . (1.16)

The transformation of the r.f. field Hamiltonian to the rotating frame as follows from the

equation (1.16) can be written as

Ĥ
r
RF = e iĤZ t ĤRF (t) e−iĤZ t . (1.17)

After assumption ĤZ =
∑

i ω0, i Î
i
z (see equation (1.11)) and the basics trigonometric

relations, equation (1.17) may be expressed as

Ĥ
r
RF = − 2 B1 cos(ω1t)

∑
i

γi

{
Î

i
x cos(ω0, i t − ϕ) − Î

i
y sin(ω0, i t − ϕ)

}
. (1.18)

Further mergence of the trigonometric functions in the equation (1.18) will lead to the

equation which contains two sets of coefficients ω1 + ω0, i, ω1 − ω0, i as an arguments in

the cos, sin functions, respectively. Choosing ω1 ' ω0, i, the oscillations at frequencies

ω1+ω0, i ' 2 ω0, i can be neglected since the nuclear magnetization is influenced appreciably

only by fields rotating with the angular frequency close to the nuclear Larmor frequency

ω0, i. It can be written that

Ĥ
r
RF = −B1

∑
i

γi

{
Î

i
x cos(Ωi t + ϕ) + Î

i
y sin(Ωi t + ϕ)

}
, (1.19)
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where Ωi = ω1 −ω0, i is the offset with respect to the carrier frequency ω1. If the spins are

in resonance (Ωi ' 0) the r.f. field Hamiltonian became explicitly time independent and

it may be written in the form of

Ĥ
r
RF = −B1

∑
i

γi

{
Î

i
x cos(ϕ) + Î

i
y sin(ϕ)

}
. (1.20)

The chemical shift Hamiltonian ĤCS describes the shielding of the nuclear spin from

the external ~B0 field by the electron clouds. Due to the strong ~B0 field the orbital angular

momentum of the electron cloud is partially aligned in the external field direction which

generate local field ~BS scaled with the ~B0 field, ~BS = σ̃ ~B0. Under such conditions the

Hamiltonian of the chemical shift leads ([Meh83], p.11 and Appendix A):

ĤCS =
∑

i

γi
~̂I i · σ̃ i,LF · ~B0 = −

∑
i

ω0, i

{
Î

i
x σ i,LF

xz + Î
i
y σ i,LF

yz + Î
i
z σ i,LF

zz

}
. (1.21)

The ~B0 field was chosen to the z-direction (0,0,B0). The σ̃ i,LF represent the chemical-shift

(CS) tensor in the laboratory-frame representation with elements σ̃ i,LF
αβ (α, β = x, y, z). In

the case of high external fields (B0 À 1 T), local fields felt by 1H, 2H, 13C, 15H, 19F, 29Si,

or 31P nuclei are smaller compared with B0 field and CS Hamiltonian (equation (1.21))

can be simplified assuming first-order perturbation theory so

ĤCS = −
∑

i

ω0, iÎ
i
z σ i,LF

zz . (1.22)

The asymmetric components 1
2 (σ̃−σ̃T) of the CS tensor σ̃ contribute to the resonance fre-

quency shift only in the second order and can be usually neglected ([Meh83], Appendix C).

The symmetric part of the CS tensor 1
2 (σ̃ + σ̃T) is characterized most conveniently in the

coordinate system in which it is diagonal. This is the ’principal axes system’ (PAS). For

polar coordinate system where ϕ and ϑ are the polar coordinates of ~B0 in PAS, equation

(1.22) with the CS tensor σ̃ and its eigenvalues σ PAS
xx , σ PAS

yy , and σ PAS
zz , may be for a single

spin written [SR94] as

ĤCS =
{−ω0 σiso + 1

2 δ (3 cos2 ϑ − 1 − η sin2 ϑ cos 2ϕ)
}

Îz , (1.23)

where

σiso = 1
3

{
σ PAS

xx + σ PAS
yy + σ PAS

zz

}
δ = −ω0

(
σ PAS

zz − σiso

)
(1.24)

η =
σ PAS

yy − σ PAS
xx

σ PAS
zz − σiso
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are the isotropic chemical shift parameter, the anisotropy parameter and the asymmetry

parameter, respectively. The first part of the equation (1.23) corresponds to an isotropic

frequency and the second part to an anisotropic frequency. To make the CS interaction

independent on the magnetic field B0 it is useful to measure it in dimensionless units

independent to each nucleus (ω0, i . 10−6). The scale is called ppm-scale. The typical

values for protons 1H lays between 0 and 10 ppm.

The direct spin-spin interaction among spin i and j can be described by dipolar

Hamiltonian ĤD according to the Correspondence Principle

ĤD = −
∑
i<j

µ0~
4π

γiγj

3
(
~̂I i · ~e ij

r

) (
~̂I j · ~e ij

r

)
− ~̂I i · ~̂I j

|~rij |3
(1.25)

=
∑
i<j

~̂I i · D̃ ij · ~̂I j , (1.26)

where ~rij determines the vector from nucleus i to nucleus j with its basis vector

~e ij
r = ~rij/ |~rij |. D̃

ij
represents the dipolar coupling tensor in the appropriate base defined

through ~e ij
r vector. The dipolar-coupling constant is measured in the angular frequency

units and is defined as

dij =
µ0~
4π

γiγj

r3
ij

. (1.27)

For example, we calculate that for 1H − 1H spin pair in a CH2 group

(γ1H = 2.675 × 108 T−1s−1) with a distance of 1.8 Å (0.18 nm), the coupling strength

is d1H−1H = 105.4 kHz × (2.675)2/ (1.8)3 = 2π × 20.6 kHz. In the case of high static

field (similar like for the CS interaction) only those components of the Hamiltonian con-

tribute to the spectrum in the first order approximation which are time independent and

the Hamiltonian defined by equation (1.25) can be truncated. For homonuclear dipolar

interactions between spins Ii the truncated Hamiltonian can be written [Meh83] as

Ĥ
II
D = −

∑
i<j

d II
ij

1
2

(
3 cos2 ϑij − 1

) (
3 Î

i

zÎ
j

z − ~̂I i · ~̂I j
)

. (1.28)

Angle ϑij is the angle between the magnetic field B0 and the vector ~e ij
r connecting spin

Ii and Ij (Index {II} on the dipolar-coupling constant dij represent the equivalence of

nuclei: γi = γj = γI). The truncated Hamiltonian of heteronuclear dipolar couplings is

given by (Ii and Si spins)

Ĥ
IS
D = −

∑
i,j

d IS
ij

1
2

(
3 cos2 ϑij − 1

)
2 Î

i
zŜ

j
z . (1.29)
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The indirect spin-spin coupling (J-coupling), which result from electron-nuclear

interactions have the form

ĤJ = −
∑
i<j

~̂I i · J̃ ij · ~̂I j , (1.30)

where J̃
ij

is the indirect spin-spin coupling tensor. On contrary to the direct coupling

between spins (dipolar coupling) the J-coupling provide an information about the con-

nectivities of the electron clouds surrounding nuclei to the neighboured nuclear spins Ii.

Usually it is very weak (≈ 100Hz) and in the solid-state NMR it can be neglected. In liq-

uids, in the case of high static external field B0 only the scalar component of the J-coupling

tensor (Jij = 1
3Tr{J̃}) contribute to the spectrum and the time independent part of the

Hamiltonian ’secular part’ reads:

ĤJ = −
∑
i<j

Jij Î
i
z Î

j
z . (1.31)

Nuclei with Ii ≥ 1 generates electric field gradients with the nuclear quadrupole

moment Qi and their interaction with other nuclei can be described by the Hamiltonian

ĤQ =
∑

i

eQi

2Ii(2Ii − 1)~
~̂I i · Ṽ i · ~̂I i , (1.32)

where Ṽ
i
is the electric field gradient tensor at the site of nucleus i and e is the elementary

charge. After averaging (B0 À 1 T) the secular part of the quadrupolar Hamiltonian

can be written in the form [SR94] of

ĤQ =
∑

i

eQi

2Ii(2Ii − 1)~
V i, LF

zz
1
2

(
3 Î

i

z Î
i

z − ~̂I i · ~̂I i
)

. (1.33)

Typical values for quadrupolar coupling are in the range 200 kHz−2 GHz (Br, I, As, . . . ).

In this work the quadrupolar coupling has no importance because we were concentrated

to the nuclei with spin I = 1
2 and in such cases it vanishes.

1.2 Equilibrium density operator

The density operator represents a valid synthesis of quantum mechanics with statistical

mechanics. In thermal equilibrium at a temperature T and with Hamiltonian Ĥ of the

system, the density operator of the spin system is analogous to the classical Boltzmann

distribution (we will reintroduce for a moment ~ into Hamiltonian Ĥ in order to obtain

unitless ratio ~γB0/kBT )

ρ̂eq =
e−~Ĥ/kBT

Z
with Z = Tr

{
e−~Ĥ/kBT

}
, (1.34)
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where kB is the Boltzmann constant. The dominant contribution to the spin Hamiltonian

Ĥ has the Zeeman interaction (equation (1.11)) for a B0 fields stronger than 1 Tesla and

for individual spins can be written

ρ̂ i
eq =

e
− ~ ω0, i

kBT
Î

i
z

Zi
. (1.35)

At temperatures above 1 K in the fields currently available |~ ω0| À kBT , exponential

function in equation (1.35) can be expanded so that the quadratic and all higher terms

vanish compared to the linear term

e
− ~ ω0, i

kBT
Î

i
z ' 1̂1

i − ~ ω0, i

kBT
Î

i
z . (1.36)

The denominator of equation (1.35) corresponds to all possible states of the system 2Ii +1

and for N equivalent spins equilibrium density operator takes a form

ρ̂eq ' N

(2I + 1)N

(
1̂1 − ~ ω0

kBT
Îz

)
. (1.37)

The unity operator 1̂1 commutes with all operators and is irrelevant in most cases. Ac-

cording to equation (1.37) it can be defined the initial density operator of the system

so

ρ̂(0) def= cÎz , (1.38)

where c = −~ ω0/kBT .

1.3 Average Hamiltonian theory

In NMR the spin interaction Hamiltonian is usually time-dependent and it is much more

convenient to describe an experiment by the average Hamiltonian ([Hae76]) which repre-

sent the ’average’ motion of the spin system. Most of the multiple quantum experiments

can be described by an average Hamiltonian theory and this is the goal of this work.

In general the Hamiltonian in the rotating frame is split into two parts (equation (1.8))

Ĥ = Ĥext(t) + Ĥ int , (1.39)

where Ĥext and Ĥ int are defined by the equation (1.9). To find the solution for the density

operator equation (equation (1.2)) one has to derive the time evolution propagator

Û(t) = T̂ e
−i

t∫
0

dt′(Ĥext(t′)+Ĥint)
. (1.40)
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T̂ is the Dyson time-ordering operator (see also equation (1.4)) defined through the fol-

lowing relations

T̂
{

Ĥ(t1)Ĥ(t2)
}

=


 Ĥ(t1)Ĥ(t2) for t1 > t2

Ĥ(t2)Ĥ(t1) for t1 < t2 .
(1.41)

Now we attempt to separate the effects of explicitly time-independent Hamiltonian Ĥ int

and time-dependent Hamiltonian Ĥext(t) and to divide the propagator from the equation

(1.40) into two products

Û(t) = Û1(t)Û int(t) (1.42)

with

Û1(t) = T̂ e
−i

t∫
0

Ĥext(t′) dt′
(1.43)

and

Û int(t) = T̂ e
−i

t∫
0

ˆ̃H(t′) dt′
, (1.44)

where Û1(t) depends only on the perturbation Ĥext(t).
ˆ̃H(t) in equation (1.44) is the

Hamiltonian in the time-dependent interaction representation with respect to Ĥext(t),

often called the toggling frame. To assume Ĥ Hermitan it follows Û
+
(t) = Û

−1
(t) and

the initially time-dependent toggling frame Hamiltonian can be written

ˆ̃H(t) = Û
−1
1 (t) Ĥ int Û1(t) . (1.45)

We can further assume, that the external field may be periodic with a period τc i.e.

Ĥext(t + n τc) = Ĥext(t); n = 0, 1, 2, . . . (1.46)

which is for our cases good fulfilled (see chapter 2). From equation (1.46) follows

Û1(n τc) = Û
n
1 (τc) (1.47)

and it also leads to a periodicity of toggling frame Hamiltonian with

ˆ̃H(t) = ˆ̃H(t + n τc) (1.48)

and

Û int(n τc) = Û
n
int(τc) . (1.49)

If in addition the external field is cyclic in the sense

Û1(τc) = 1̂1 , (1.50)
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the general propagator Û(τc) (equation (1.42)) is described by the one cycle propagator

Û int(τc) i.e.

Û(τc) = Û int(τc) and Û(n τc) = Û
n
int(τc) . (1.51)

Our goal is to express equation (1.44) in the sense

Û int(τc) = e−i ˆ̄Hτc , (1.52)

where ˆ̄H is an average Hamiltonian and it can be divided into contributions from different

orders

ˆ̄H = ˆ̄H (0) + ˆ̄H (1) + ˆ̄H (2) + . . . . (1.53)

Using Magnus expansion [Ern87] which forms the basis of average Hamiltonian theory it

can be written

ˆ̄H (0) =
1
τc

τc∫
0

dt ˆ̃H(t) (1.54)

ˆ̄H (1) =
−i

2τc

τc∫
0

dt2

t2∫
0

dt1[
ˆ̃H(t2),

ˆ̃H(t1)] (1.55)

ˆ̄H (2) = − 1
6τc

τc∫
0

dt3

t3∫
0

dt2

t2∫
0

dt1

{
[ ˆ̃H(t3), [

ˆ̃H(t2),
ˆ̃H(t1)]]

+ [ ˆ̃H(t1), [
ˆ̃H(t2),

ˆ̃H(t3)]]
}

. (1.56)

In most cases multiple-pulse sequences are designed to remove higher terms ˆ̄H (1), . . .

from average Hamiltonian and only zero-order ˆ̄H (0) term survive. Zero-order term has a

particularly simple form. It is just the time average of the toggling frame Hamiltonian ˆ̃H(t)

and it has the most importance for the multiple-pulse sequences which we will investigate

in this work.

1.4 Dipolar interaction and irreducible tensors

In this section we would like to represent dipolar Hamiltonian introduced at the page 10

in another form i.e. with the help of irreducible spherical tensors. This representation of

spin Hamiltonian is much more convenient in the case of magic-angle-spinning experiment

described in the section 1.6.



1. Theoretical bases 15

The spin interaction Hamiltonian may be expressed in the terms of irreducible spherical

tensors as [Meh83, Spi78, SR94]

Ĥ =
2∑

k=0

+k∑
q=−k

(−1)q Ak,qT̂ k,−q , (1.57)

where Ak,q contains all lattice and T̂ k,q all spin variables. Due to the fact that the spin

interactions in NMR are expressed by second rank tensors the summation in equation

(1.57) goes only until k = 2. In the high field case (B0 À 1 T) all terms with q 6= 0

are neglected in the first order approximation and only secular terms (q = 0) remains.

In addition antisymmetric part with k = 1 of spin interactions does not contribute to

the spectrum in the first order and can also be neglected ([Meh83] p.41). Under these

conditions equation (1.57) is reduced to

Ĥ (0) = A0,0T̂ 0,0 + A2,0T̂ 2,0 . (1.58)

In the case of dipolar coupling due to the symmetry of dipolar coupling tensor D̃

A0,0 = 0 (A0,0 = − 1√
3
Tr{Dij}) and equation (1.58) for homonuclear coupling may be

expressed in the form1

ĤD = −
∑
i<j

d II
ij Rij

2,0T̂
ij
2,0 (1.59)

with

Rij
2,0 =

√
3
2

(
3 cos2 ϑij − 1

)
(1.60)

T̂
ij
2,0 = 1√

6

(
3 Î

i

z Î
j

z − ~̂I i · ~̂I j
)

. (1.61)

Rij
2,0 contains only pure geometrical variables and d II

ij is the dipolar-coupling constant de-

fined by equation (1.27). With the help of spherical harmonics Y2,q, geometrical parameter

R2,q can be defined in more general way

R2,q =
√

24 π
5 Y2,q . (1.62)

Definitions of Yk,q can be found in [SR94] p.451.

1We will not use the mark (0) for secular dipolar Hamiltonian to prevent interchange it with zero order

average Hamiltonian using in Magnus expansion series (see equation (1.54))
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Figure 1.1: Schematic picture of one pulse experiment. The r.f. pulse is oriented in x-direction

and rotates the magnetization in rotating frame about 90 o (π
2 ).

1.5 One pulse experiment

The most simplest experiment in NMR is an one pulse experiment, schematically showed

in Figure 1.1. The interactions between spins can be detected in the detection period just

after the excitation of the system with the r.f. pulse in detection period. To describe an

experiment we will assume an ensemble of equivalent spins Ii = 1
2 where the initial state

of the system is defined through the initial density operator (equation (1.38)). The effect

of r.f. pulse in the rotating frame is described by the equation (1.20) and using equations

(1.3−1.5) the density operator just after the r.f. pulse applied in the x -direction has the

form

ρ̂(trf) = e iγB1trfÎx cÎz e−iγB1trfÎx . (1.63)

If the strength B1 and the duration trf of the r.f. pulse matches the condition

γB1trf =
π

2
, (1.64)

the pulse rotate the magnetization about 900 (left handed sense rotation around x -axis

using the definitions in equation (1.20) and (1.11)) equation (1.63) may be rewritten

ρ̂(trf) = ρ̂(0+) = cÎy . (1.65)

The state prepared by the initial pulse now decays due to the Zeeman interaction an

internal spin interaction according to the Liouville-von Neumann equation

d

dt
ρ̂(t) = −i[ĤZ + Ĥ int, ρ̂(t)] (1.66)

and the NMR decay signal can be obtained in the α (α = x, y) direction of the rotating

frame as

Sα(t) =
Tr

{
Îαρ̂(t)

}
Tr

{
Îzρ̂(0)

} . (1.67)
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Figure 1.2: The shift of frequency due to isotropic chemical shift interaction.

Let us assume only isotropic chemical shift interaction (ωiso
CS = ω0σiso) from internal

Hamiltonian Ĥ int. The density operator for a single spin after the x -pulse at t > trf can

be found

ρ̂(t) = e iωiso
CSt Îz ρ̂(0+)e−iωiso

CSt Îz

= c
[
Îy cos(ωiso

CSt) + Îx sin(ωiso
CSt)

]
. (1.68)

To evaluate the NMR signal from equation (1.68), which corresponds to the magnetization,

with the help of equation (1.67) we will get

Sy(t) = cos(ωiso
CSt) (1.69)

and

Sx(t) = sin(ωiso
CSt) (1.70)

for a signal detected in the y,x-direction, respectively. Due to the strong magnetic field

B0 applied to the system, NMR signal relax with the typical relaxation time T2 and is

called FID (free induction decay). In modern NMR spectrometers the acquisition of both

signals (equation (1.69) and (1.70)) at the same time often called quadrature detection is

possible. After digitalization and complex fourier transformation of the data we will get

a spectrum shown in Figure 1.2.

1.6 Magic Angle Spinning

One of the experimental technique to improve the resolution of NMR spectra is magic-

angle-spinning (MAS). The sample rotates about an axis which is tilted by an angle ϑm
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Figure 1.3: a) Schematic description of MAS where rotor axis is tilted from the ~B0 field by the

angle ϑm = 54.7◦. b) Relative orientation of PAS and LabS under sample rotation described by the

angle Ωij
PL(t), which is built up by two successive rotational transformations with angles Ωij

PR and

ΩRL(t).

(called ’magic angle’) with respect to the magnetic field ~B0 (see Figure 1.3a). It was

noted independently by Andrew ([And58]) and Lowe ([Low58]) that in such a case dipolar

interactions and chemical shift anisotropy are averaged out from the spectrum and usually

only narrow isotropic lines remains. If the spinning rate ωr of the sample is much larger

than the anisotropic spin interaction the spinning sidebands2 are well separated from the

isotropic lines and became vanishingly small with increasing ωr. We are going to consider

only dipolar spin interactions in this section because this is of main interest in this work.

To derive dipolar Hamiltonian under MAS lets start with a little bit different repre-

sentation of geometrical part of the Hamiltonian used in equations (1.59) and (1.60)

Rij
2,0 = √

6 D(2)
0,0(Ω

ij
PL) , (1.71)

where the Wigner rotation matrices D(2)
k,q can be found in Appendix B. The Euler angle

Ωij
PL = (ϕij

PL, ϑij
PL, ψij

PL) specify the relative orientation of two coordinate systems i.e.

Principle axis system (PAS) and Laboratory system (LabS). If the sample rotate about

an axis tilted by an angle ϑRL from the main field ~B0 director the geometrical part Rij
2,0

became time dependent Rij
2,0(t). It is convenient to describe it by two successive rota-

tions (see Figure 1.3b) and by the time dependent rotation matrix D(2)
0,0(t). According to

2Additional lines in the spectrum originating from the sample rotation, separated from the isotropic

line exactly at the rotor frequency intervals.
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equation (B.2) it can be written as

D(2)
0,0(Ω

ij
PL(t)) =

2∑
q=−2

D(2)
0,q(Ω

ij
PR)D(2)

q,0(ΩRL(t)) , (1.72)

where Ωij
PR corresponds to the relative orientation of PAS and Rotor system and ΩRL(t)

describe the rotation of the rotor seen from the Laboratory system through the Wigner

matrices (see equation (B.1))

D(2)
q,0(ΩRL(t)) = e−iq ϕRL(t) d

(2)
q,0(ϑRL) . (1.73)

Factors d
(2)
q,0 are defined in Table B.1. Due to the fix angle ϑRL in Rotor system the time

dependence in equation (1.73) is introduced through an angle ϕRL(t) = ϕ0 +ωr t with the

starting point ϕ0. Combining equations (1.71−1.73) we will get

Rij
2,0(t) =

2∑
q=−2

√
6 D(2)

0,q(Ω
ij
PR) e−iq ϕ0 d

(2)
q,0(ϑRL) e−iq ωr t , (1.74)

where Rij
2,0(t) describes the time dependence of dipolar Hamiltonian:

ĤD(t) = −
∑
i<j

d II
ij Rij

2,0(t) T̂
ij
2,0 . (1.75)

It is immediately evident from equation (1.74) that rotational sidebands appear at mul-

tiples of the frequency ωr and 2ωr away from the central isotropic lines (see Figure 1.4).

Before proofing this aspect further, let us go back to the rapid spinning case. If ωr is

very large (ωr À ||ĤD||) or stroboscopic observation at time intervals τ = n 2π/ωr is per-

formed, only the time independent part (with q = 0) of Rij
2,0(t) in equation (1.74) survives,

i.e.

R̄ij
2,0 = d

(2)
0,0(ϑRL)R2,0(Ω

ij
PR) . (1.76)

In this case, the time independent dipolar Hamiltonian

ˆ̄HD = − 1
2

(
3 cos2 ϑRL − 1

) ∑
i<j

d II
ij R2,0(Ω

ij
PR) T̂

ij
2,0 (1.77)

governs the spectrum. It is evident from equation (1.77) that for the angle ϑRL :=

ϑm = arccos(
√

1
3
) .= 54.7◦ called ’magic angle’ the dipolar coupling Hamiltonian vanish

and only isotropic part of the secular Hamiltonian remain ([Meh83]).

In the case of moderate spinning speed ωr ' ||ĤD|| dipolar coupling influence the

spectrum and the spinning sidebands become visible. Analytical description of this situa-

tion is for the behaviour of the spin system with many spins usually very complicated due
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to the complexity of the dipolar Hamiltonian in equation (1.75). Therefore it will be made

only for two dipolar coupled spins-1/2 . After applying 90◦-pulse in the x-direction of the

rotating frame the initial state of the system for Ii and Ij spins is according to equation

(1.65) given by

ρ̂(0+) = c
(
Î

i
y + Î

j
y

)
. (1.78)

The time evolution of the density matrix is described by the Liouville-von Neumann equa-

tion (1.2) with its formal solution in equation (1.3). The Dyson time-ordering operator

in equation (1.4) has for two spin system no importance and the Liouville-von Neumann

equation can be formally solved (see also Table A.1 and equation (A.4)):

ρ̂(t) = e
−i

t∫
0

ĤD(t′) dt′
ρ̂(0+) e

i
t∫
0

ĤD(t′) dt′

= c e
i

t∫
0

dt′ d II
ij Rij

2,0(t′)T̂ ij
2,0

(
Î

i
y + Î

j
y

)
e
−i

t∫
0

dt′ d II
ij Rij

2,0(t′)T̂ ij
2,0

(1.79)

= c
(
Î

i
y + Î

j
y

)
cos


 t∫

0

ωij
D(t′) dt′


 − 2c

(
T̂

ij
2,1 − T̂

ij
2,−1

)
sin


 t∫

0

ωij
D(t′) dt′




with

ωij
D(t) =

√
3
8
d II

ij Rij
2,0(t) . (1.80)

The products with T̂
ij
2,±1 have no influence on the signal detected in α = x, y direction of

the rotating frame because their trace vanish

Tr
{

Î
i
α T̂

ij
2,±1

}
= Tr

{
Î

j
α T̂

ij
2,±1

}
= 0 (1.81)

and can be neglected. According to equation (1.67) the NMR decay signal in the

y-direction of the rotating frame can be obtained trough the trace:

S MAS
y (t) =

Tr
{

(Î
i
y + Î

j
y )ρ̂(t)

}
Tr

{
(Î

i
z + Î

j
z )ρ̂(0)

} = cos


 t∫

0

ωij
D(t′) dt′


 . (1.82)

To calculate the integral of the ωij
D(t) function defined by equation (1.80) it is convenient

to neglect initial starting point of the rotor ϕ0 = 0 (see equation (1.74)). Also coefficient

dq,0(ϑm) with q = 0 under MAS conditions vanish and equation (1.82) can be solved

[Got95]

S MAS
y (t) =

〈
cos

{
3
2

d II
ij

ωr

[√
2 sin(2ϑij) sin( 1

2ωrt) cos(ψij + 1
2ωrt)

− 1
2 sin2(ϑij) sin(ωrt) cos(2ψij + ωrt)

]}〉
, (1.83)
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Figure 1.4: Simulated spinning sideband pattern of single MAS experiment for different ratios

between rotational frequency ωr and dipole-dipole coupling d II
ij ( ωr

d II
ij

). Parameter a represents the

amplitude of the highest point in each spectrum. Theoretical signal intensity (see equation (1.83))

is multiplied with Gaussian decay function to simulate more or less experimental FID.

where 〈. . .〉 means the powder averaging over the orientation of the dipolar coupled spin

pairs. Analysing equation (1.83) it can be directly seen that for times t = k · τr (k ∈ N)

the argument of the cos function vanish because sin(1
2ωrt) = 0 as well as sin(ωrt) = 0

so the signal becomes maximal for this time points. In addition intensity of the signal

strongly depends on the orientation of the PAS to the rotor system. If PAS is oriented

along the rotor axes i.e. ϑij = 0 signal will be constant and no rotor modulation can be
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seen. For another orientation of the PAS system rotor modulation of the signal will be

already preset. The Fourier transformation of equation (1.83) directly leads to the NMR

spectrum with the sideband pattern. Simulated results3 for powder sample are shown in

Figure 1.4 for different ratios between rotational frequency ωr and dipolar coupling d II
ij .

Static spectrum of dipolar coupled spin-1/2 pair ( ωr

dII
ij

= 0 in the figure) is clearly split to the

sideband pattern spectra with increasing spinning speed. At higher rotational frequencies

(ωr > 0.5 d II
ij ) central line already dominate the spectrum. Further increasing of ωr leads

to decreasing spinning sidebands as well as to increasing intensity of the central line as it

is indicated in Figure 1.4. Experimental results from MAS experiment can be found in

section 3.1.

1.7 Two-dimensional NMR spectroscopy

Up to now only one-dimensional (1D) spectroscopy has been considered where signal

intensity is plotted only along one frequency axis. One r.f. pulse has been used to disturbs

the spin system from its equilibrium. Just after that the system has been evolved under

the influence of local interactions as FID (free induction decay), S(t2), during time t2.

Fourier transformation of S(t2) converts the time-domain signal into a frequency domain

spectrum S(ω2). In most of the cases in liquids as well as in solids the spectrum of

desired sample is so complicated that lines of different nuclear species overlap and wished

information can not be obtained. To overcome this difficulty a second time period, t1,

between preparation and detection periods can be included. During this period, called

evolution period, nuclear motions may be different than during t2 which can eventually

influence the signal S(t2).

An intuitive scheme of two-dimensional (2D) experiment is shown in Figure 1.5. It

consist of four periods in general: preparation, evolution, mixing and detection. Mixing

period is not each time necessary ([Ern87, Rah86, Fre97]). The preparation period may

be formed by a series of r.f. pulses to convert the system to the desired state. It can also

consist of a delay long enough to allow the nuclei to reach equilibrium. During evolution

time t1 the system propagates under the influence of some internal Hamiltonians (see

section 1.1). To manipulate the spin system after the evolution period the mixing period

3Home made computer program has been used for performing integrations over angles ϑ, ψ in equa-

tion (1.83).
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Figure 1.5: Symbolic scheme for two-dimensional experiment.

can be included (see e.g. [SR94]). In the last period a signal is detected for each increment

of t1 separately, thus a 2D free induction decay signal S(t1, t2) is obtained. Double Fourier

transformation of S(t1, t2) will lead to the two-dimensional spectrum S(ω1, ω2).

So far the relaxation of the time-domain signal has not been considered. Including it

into FID artificial broadening of the spectrum lines is introduced. Fourier transformation

(FT) of such a damping signal leads to the spectrum which can be written in terms of

absorptive (A) and dispersive (D) components ([SR94]):

S(t2)
FT−→ S(ω2) = A(ω2) + i D(ω2) (1.84)

In most of the cases only absorptive part A(ω2) is interesting. It is positive definite and its

integral does not vanish. Dispersive lineshape D(ω2) exhibits antisymmetry and always

consists of positive and negative intensities which superimposes in a complicated way.

Thus, due to the antisymmetry, the integral over the dispersive lineshape vanishes. In

addition dispersive signal has broader wings than the absorbtion component, resulting in

a worse resolution.

In 2D spectroscopy it is often necessary to have purely absorptive spectrum

A(ω1)A(ω2), in short A1A2, in order to have optimum resolution and no spectral dis-

tortions. However, two successive Fourier transformations, over t2 (FT2) and t1 (FT1),

from the 2D time-domain signal S(t1, t2) give the spectrum

S(t1, t2)
FT1(FT2)−→ S(ω1, ω2) = (A1A2 − D1D2) + i (D1A2 − A1D2) (1.85)

which contains a mixture of absorptive and dispersive parts. To obtain pure absorptive

spectrum the data processing has to be modified (see [SR94] chapter 4, or [Ern87] chap-

ter 6). It is often required to obtain real (cosine), Sc, and imaginary (sine), Ss, part of

the time-domain signal according to t1. This can be written shortly ([SR94])

Sc(t1, t2) = cos(ω̃1t1) ei ω̃2t2

Ss(t1, t2) = i sin(ω̃1t1) ei ω̃2t2 ,
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where ω̃1 and ω̃2 represent schematically all components present. Performing separately

for both Sc and Ss Fourier transformation and setting dispersive part to zero, D2 = 0, the

real part of the spectrum corresponds to

Re [Sc,s(ω1, ω2)] = 1
2 (A(ω1 − ω̃1) ± A(ω1 + ω̃1)) A2 . (1.86)

Adding both Sc(ω1, ω2) and Ss(ω1, ω2) full absorption spectrum is obtained A1A2. This

technique is usually encountered in modern NMR instruments. It requires measuring of

both Sc(t1, t2) and Ss(t1, t2) which together represent a hypercomplex dataset ([Ern87]).

On the other hand an equivalent absorption spectrum can be obtained by TPPI (t
¯
ime-

p
¯
roportional p

¯
hase i

¯
ncrementation) method of the sampling of the data. This method will

be extensively used in this work. More details about TPPI used in the connection to a

multiple quantum spectroscopy can be found in sections 2.4.3, 2.5.2 and 4.2.

2D spectroscopy covers a huge part of NMR. It can be intuitively divided in three

categories: separation experiments, correlation experiments and exchange experiments.

Basis overview of these experiments can be found in the excellent monographs [SR94]

and [Ern87]. Besides this experimental techniques 2D spectroscopy enables also to study

coherent transitions which do not contribute to the magnetization and can not be detected

directly. This multiple quantum transitions/coherences can be detected indirectly during

time t1 with the help of 2D Fourier spectroscopy as will be seen in next chapters.



Chapter 2

Multiple Quantum NMR

In the following sections, we want to elucidate the meaning of multiple quantum (MQ)

coherence in the special case of dipolar coupled spin-1/2 systems, and to illustrate how the

experiment is accomplished to produce and detect such a phenomenon. We will focus our

interest to the excitation and detection of MQ and double quantum (DQ) coherence on

the proton (1H) systems under static and MAS experimental conditions, respectively.

The first experimental evidence of MQ phenomenon was made by the CW NMR spec-

troscopy in the end of 1950s. But until the mid 1970s the time domain MQ spectra of this

kind were not investigated, because the theoretical and experimental methods of average

Hamiltonian theory were not sufficiently developed. The literature overview of most of

the important methods and applications of this phenomenon through 1980 can be found

in [Bod81]. A highly detailed analysis of the major theoretical concepts and experimental

techniques up to the middle of 1982 was made in [Wei83]. The first solid state MQ exper-

iments were done in the group of A. Pines ([Mun87, Wei83]) in the middle of 1980s. They

have used the samples (like Benzene partially oriented in nematic liquid crystal) where

no other NMR methods were necessary to improve the spectral resolution, because the

dipole-dipole coupling between spins was much reduced due to the high mobility of the

system. In this chapter it will be also shown how MQ methods can be combined with the

MAS experiment to get the high resolution spectra in solids.

25
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2.1 Basics definitions

The definition of the coherence is based on the expansion of the time-dependent wave

function |Ψ(t)〉 of the system in terms of stationary basis function |i〉:

|Ψ(t)〉 =
n∑

i=1

ci(t)|i〉 (2.1)

with time dependent coefficients ci(t) and n as the dimension of the Hilbert space. A

coherence between states |r〉 and |s〉 exist when the ensemble average of the product of

coefficients

ρrs(t) = cr(t) c∗s(t) (2.2)

does not vanish ([Sli92]). The elements ρrs(t) defined by equation (2.2) forms the density

matrix. It has to be noted that a coherent state is not an eigenstate of the Hamiltonian

operator and it is time dependent. The coherent state should not by exchange with the

statistical ensemble where the spins can be always found in the eigenstates |r〉 and |s〉.
In the high field NMR the Zeeman interaction cause the splitting of the energy levels

according to the field direction and the difference between magnetic quantum numbers

4mrs = mr − ms (2.3)

defines the order of coherence. In general, a matrix element ρrs represents p-quantum

coherence (p = mr − ms).

One special case of the coherence is a single quantum (SQ) coherence (4mrs = ±1),

which corresponds to an observable transverse magnetization. It can be excited e.g. by

the one 90◦-pulse like was shown in the section 1.5. Such a coherence corresponds to the

NMR signal, which is induced in the detection coil and can be directly observed. It can

be schematically represented by the transitions between two energy levels | ↑〉 and | ↓〉 for

one isolated spin I = 1
2 , where ↑ reflects the ”spin-up” state and ↓ the ”spin-down” state

of the spin.

Let us consider a spin pair, where are four Zeeman energy levels corresponding to

the four possible states, which can be noted | ↑↑〉, | ↓↓〉, | ↑↓〉 and | ↓↑〉. In the case of

homonuclear spins (i.e. γ1 = γ2), the energy levels corresponding to | ↑↓〉 and | ↓↑〉 are

degenerated and three Zeeman levels remain that are equally spaced (see Figure 2.1a).

Thus, one single NMR line would result in the spectrum from the ’allowed’1 (p = ±1)

1Directly detected in the magnetization with the r.f. coil.
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SQ transitions. This would be the result only if no coupling between them is taken into

account. If now the dipolar coupling between is present, the resulting energy levels are

slightly shifted due to the Hamiltonian ĤD (see equation (1.28)). This shift is such, that

the two allowed SQ transitions now have different frequencies (see Figure 2.1b). Hence,

a splitting of the line by 2ωD results (see Figure 2.1b) which depends on the dipolar

coupling strength. Coherence between the states |↑↑〉 and |↓↓〉 (see Figure 2.1), so-called

double quantum (DQ) coherence, and between | ↑↓〉 and | ↓↑〉, so-called zero-quantum

(ZQ) coherence, is ’forbidden’, that is, it cannot be detected directly. When extending

this consideration from the two-spin system to a multiple-spin system, we find a wealthy

of such p-quantum (p 6= ±1) ’forbidden’ coherence. We are calling it multiple quantum

(MQ) coherence. In liquids it is caused by indirect spin-spin coupling (J-coupling) and in

solids by direct dipolar coupling (Quadrupolar coupling is not considered). J-coupling is

in solids usually very small with comparison to the direct dipolar coupling, so it will be

not considered latter in this work.

Figure 2.1: Energy levels of a two-spin system with equivalent spins. a) Zeeman energy levels for

the states | ↑↑〉, | ↓↓〉, | ↑↓〉 and | ↓↑〉. The allowed single quantum (SQ) transitions and ’forbidden’

zero-quantum (ZQ) and double quantum (DQ) transitions are indicated. b) Energy level diagram

of the spin pair including the effect of the dipolar coupling. The eigenstates of the Hamiltonian

are now superpositions of the states | ↑↑〉, | ↓↓〉, | ↑↓〉, | ↓↑〉, so-called triplet (symmetric) and

singlet (antisymmetric) states. The energy levels of the triplet states |1, 1〉 = | ↑↑〉, |1,−1〉 = | ↓↓〉
and |1, 0〉 = 1√

2
(| ↑↓〉 + | ↓↑〉) are shifted compared to the Zeeman levels as indicated. Transitions

between antisymmetric |0, 0〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) and symmetric states (triplet states) are not

allowed. As indicated only SQ transitions are directly observable, so that the lines appear at the

positions ±ωD = 3
2dII

12(3 cos2 ϑ − 1) in the spectrum. dII
12 is the dipolar-coupling constant for two

homonuclear spins (see the page 10).
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2.2 Three pulse Experiment

A simple three pulse sequence [Aue76] was historically the first example of nonselective

pulsed MQ excitation. It is capable to create coherences of orders zero through N in a

system of N coupled spins-1/2 . To understand the working of this basic experiment, we

will once again consider a pair of dipolar coupled spin-1/2 nuclei. For convenience we will

define initial state of the two spin system Ii and Ij through overall spin operator Îz:

Îz = Î
i
z + Î

j
z . (2.4)

After the first π
2 -pulse applied in the x-direction of the rotating frame the density matrix

is found as a transverse magnetization (see section 1.5):

ρ̂(0+) = c
(
Î

i
y + Î

j
y

)
= cÎy . (2.5)

Just after the pulse the system evolves under the influence of dipolar Hamiltonian and for

two coupled spins the Liouville-von Neumann equation (1.2) can be formally solved (see

e.g. equation (1.79)):

ρ̂(τ−) = c Îy cos
[
ωij

D τ
]
− 2c

(
T̂

ij
2,1 − T̂

ij
2,−1

)
sin

[
ωij

D τ
]

(2.6)

ωij
D =

√
3
8
d II

ij Rij
2,0 .

To excite DQ coherence the second pulse has to be applied. The best time τ for introducing

that pulse is, when the second coefficient in equation (2.6) has the maximal value. This is

the point when cos
[
ωij

D τ
]

(the first term) is zero. The schematic evolution of the Îy spin

operator is shown in Figure 2.2. The result of the second pulse consist of two components2:

ρ̂(τ+) = ei π
2
Îx ρ̂(τ−) e−i π

2
Îx = −c Îz cos

[
ωij

D τ
]
− i 2c

(
T̂

ij
2,2 − T̂

ij
2,−2

)
sin

[
ωij

D τ
]

. (2.7)

2Marks τ−/+ means before/after the r.f. pulse.

Figure 2.2: Optimal time τ for the second pulse in the three pulse experiment.
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Figure 2.3: Excitation of double quantum coherence.

The first one represents to the longitudinal magnetization Îz and the second one describes

the DQ coherence T̂ 2,±2. According to the definition of T̂ 2,±2 (see Appendix A) DQ

coherence can be formally illustrated as the change of the orientation of the two spins at

the same time (Figure 2.1):

T̂
ij
2,2 − T̂

ij
2,−2 = 1

2

(
Î

i
+Î

j
+ − Î

i
−Î

j
−
)

. (2.8)

If the second pulse is applied at time τ = 1/ωij
D (Figure 2.3) the first term in equation

(2.7) vanishes and the DQ coherence will become maximal:

ρ̂(τ+) = −i c
(
Î

i
+Î

j
+ − Î

i
−Î

j
−
)

. (2.9)

It is necessary to note that the coherence described by this equation is not visible in the

magnetization because the expectation value vanishes (α = x, y):

Tr
{

Î
i
α T̂

ij
2,±2

}
= Tr

{
Î

j
α T̂

ij
2,±2

}
= 0 . (2.10)

To detect it the third last pulse called detection pulse has to be added after time t1.

If we again assume the dipolar coupled spin pair, after the second pulse the DQ co-

herence does not evolve because the Hamiltonian operator ĤD of the two dipolar coupled

spin pair commute with the operator T̂
ij
2,±2:

[T̂
ij
2,0, T̂

ij
2,±2] = 0 . (2.11)

In this case the density matrix at time t1 is given like

ρ̂(τ + t−1 ) = −c e−iĤD t1 Îz eiĤD t1 cos
[
ωij

D τ
]
− i 2c

(
T̂

ij
2,2 − T̂

ij
2,−2

)
sin

[
ωij

D τ
]

. (2.12)

The first term also does not evolve under the dipolar Hamiltonian but it appears as

detectable magnetization. But by means of the cycling of the phases of the pulses it can
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Figure 2.4: The complete three pulse sequence used for excitation and detection of DQ coherence

in the coupled two spin system. The optimal time τ is connected to the coupling strength ωij
D and

the same is valid for time τ ′, τ ′ = τ .

be filtered out and we will not assume it in the next calculations. The second term in

equation (2.12) describes DQ coherence which does not evolve during time t1 (only when

in resonance excitation is assumed, more details see section 2.4.2). The third π
2 -pulse

converts it to the SQ coherence and under the above spoken condition for excitation time

τ = 1/ωij
D the density matrix can be written as

ρ̂(τ + t+1 ) = ei π
2
Îx ρ̂(τ + t−1 ) e−i π

2
Îx = 2c

(
T̂

ij
2,1 − T̂

ij
2,−1

)
. (2.13)

The terms T̂
ij
2,±1 are still not visible in the magnetization but under the evolution due to

dipolar coupling they can be detected and then

ρ̂(τ + t1 + τ ′) = 2c
(
T̂

ij
2,1 − T̂

ij
2,−1

)
cos

[
ωij

D τ ′
]

+ c Îy sin
[
ωij

D τ ′
]

. (2.14)

The second term in equation (2.14) represents the measurable magnetization induced in the

detecting coil. It can be seen that the signal is maximal only when τ ′ = τ (see Figure 2.4).

To detect the DQ time-evolution it is not necessary to acquire whole spectrum but only

one point at time t2 = 0 (see Figure 2.4) is enough. The signal at this point is then given

by

ρ̂(τ, τ ′, t1, t2 = 0) = c
(
Î

i
y + Î

j
y

)
sin

[
ωij

D τ
]
sin

[
ωij

D τ ′
]

. (2.15)

Under the optimal conditions for times τ and τ ′ the whole magnetization in the case of

two spins interaction is transferred to the DQ coherence and at the end it is completely

reconverted back. The signal is for the isolated spin-pair independent to evolution time t1.

An interesting information is not the modulation of the signal but the amplitude. It carries

an information about the amount of the magnetization transferred to the DQ coherence

at defined time τ . If a system consists of more strongly coupled spin pairs their intensities

in the spectrum carry the relative information about their strength. If in addition one of
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the coupling strength is known the others can be calculated from their intensities. This

method will be more extensively used in this work.

If we assume now also chemical shift interactions, some additional terms have to be

added to the above calculations. More detailed description can be found in [Sli92] or

[Mun87]. It can be seen from their calculations that introducing chemical shifts and

resonant offsets the simple three pulse sequence (Figure 2.4) generates also SQ transverse

magnetization terms and other unwanted terms which can not be filtered out by the phase

cycling of the pulses. The problem can be overcome by inserting of a π-pulse midway into

the excitation period between the first and the second π
2 -pulse. The resulting sequence

will after that look like

Excitation︷ ︸︸ ︷
(π

2 )x · · · τ
2 · · · (π)x · · · τ

2 · · · (π
2 )x . . . . . . t1 . . . . . .︸ ︷︷ ︸

Evolution

Reconversion︷ ︸︸ ︷
(π

2 )x,y · · · τ ′ . . . . . . t2 . . . . . .︸ ︷︷ ︸
Detection

.

It can be seen that in such a sequence chemical shift and resonant offset terms have

influence to DQ coherence only during evolution time t1. The DQ coherence operator will

oscillate during time t1 at the frequency defined by a sum of chemical shift frequencies for

two spins.

To study the time evolution of the multiple quantum (MQ) coherence the two-

dimensional experiment has to be accomplished where time t1 is increased step by step.

At the certain point t1 the time evolution of MQ coherence will be interrupted and trans-

ferred by the reconversion pulse to the transverse magnetization. Only the first point of

the time signal at t2 = 0 is necessary to acquire to get the overall information. More

detailed description can be found in the next sections.

2.3 General scheme of MQ experiment

Any experimental attempt to monitor the dynamic evolution of the spin system in which

there exists a condition of multiple quantum (MQ) coherence must inevitably be used

upon the detection of single quantum (SQ) transverse magnetization. However, complex

the structure of a multilevel system may be, these relatively few magnetic dipole modes

still remain the only coherences directly observable with conventional radio-frequency (r.f.)

technology. Operating within this constraint, MQ experiments typically employ a method

of indirect detection using two-dimensional spectroscopy (see section 1.7) and then to

record their response to either naturally occurring or externally manipulated local fields.
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Figure 2.5: General form of a two-dimensional MQ experiment.

The basics scheme for detecting MQ coherence is illustrated in Figure 2.5. The first

part called excitation period is designed to excite MQ coherence by the proper design of

the high frequency pulses. Selection of the correct pulse sequence is strongly dependent

on the system which we want to study. The basic sequence was shown in the section 2.2.

In the second part evolution period, MQ coherence evolves during time t1 under the

influence of local fields of the system and the strong static external field ~B0. Because

MQ coherences can not be observed directly they have to be transferred to the SQ modes

in the reconversion period. After this step they are still laying parallel to the ~B0 field

and they can not be seen in the magnetization. To make them visible a last detection

pulse has to be added to the sequence after which they can be acquired during time t2

in the detection period by the conventional spectrometer. Only one condition has to be

fulfilled for a reconversion operator Û rec. It has to be equal to the time reversal excitation

propagator Û
+

exc ([Mun87]).

2.3.1 Excitation and Reconversion

In this part we will discuss the basic properties of the reconversion period and how it can

be constructed from the excitation period. We will see that it depends on the order of

coherence p excited by the excitation Hamiltonian. Two Hamiltonian operators Ĥexc and

Ĥrec will be used for description of the pulse sequence during excitation and reconversion

period. To realize time reversal ([Yen83]) during the reconversion period the following

condition has to be fulfilled:

Û rec = Û
+

exc = Û
−1
exc = eiĤexc t ⇒ Ĥrec = −Ĥexc . (2.16)

This leads to the simple modification of the excitation pulse sequence during reconversion

period, which can be done by the phase shift. Let us define an angle of the phase shift as

φ with the phase propagator exp(−iφÎz). The reconversion Hamiltonian in this case can

be written as

Ĥrec = e−iφÎz Ĥexc eiφÎz . (2.17)
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Let us assume the excitation Hamiltonian defined by the irreducible spherical tensors

([Meh83, Sli92]) Ĥexc
∼= Am,n T̂ m,n, where Am,n contains all lattice variables, which are

under the phase rotation of the pulse sequence invariant. In this notation the quantum

number n = −m,−m + 1, . . . ,+m can be identified with the coherence order p and the

rank of the tensors m = 0, 1, . . . , 2L defined through total spin quantum number L, which

represent the sum of the spin quantum numbers of the component nuclei (e.g. for two

spins I = 1
2 , L = 1). If we use the transformation property for the spin operators T̂ m,n

by e−iφÎz T̂ m,n eiφÎz = e−inφ T̂ m,n (see [Ern87] p. 269 or [SR94] p. 108), we can express

equation (2.17) as

e−iφÎz

(
Am,n T̂ m,n

)
eiφÎz = e−inφ Am,n T̂ m,n . (2.18)

To fulfill the condition of the time reversibility of the reconversion Hamiltonian (see equa-

tion (2.16)), the condition for the phase shift φ can be directly seen from the above

equation:

e−inφ = −1 if φ =
π

|n| . (2.19)

To find a correct reconversion sequence for any excitation sequence is than very simple.

For n-quantum coherence all phases of the r.f. pulses have to be shifted by an angle π
n

3.

In this manner one has to find for an experiment only the correct excitation sequence.

2.4 Static MQ experiment

In this section MQ r.f. pulse sequences for static solids will be described. We will concen-

trate to the excitation and detection of high-order MQ coherences in proton (1H) systems.

Coherences of very high order are usually possible where an extensive network of dipolar

couplings exist. Typical example are strongly coupled abundant nuclear spin-1/2 systems

like e.g. adamantane or hexamethylbenzene (HMB). In this systems the influence of a cou-

pling between two spins on the development of the system depends on the time elapsed,

with the value d II
ij τ (see equation (1.27) and Figure 2.5) providing a measure of the ef-

fectiveness of a particular pair interaction at each instant. When excitation time τ is not

enough long i.e. d II
ij τ ¿ 1, the interaction between i and j spins is negligible. However,

with increasing time τ more couplings become sufficiently large to contribute to the re-

sulting spectrum. In addition, the strongly coupled spins, which determine the early time

3In this work 90◦phase shift for n = 2 will be used as will be shown later.
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Figure 2.6: Symbolic representation of the growth of a cluster sizes with time. Initially, the spins

act independently, having had insufficient time to communicate via dipole-dipole interactions. As

longer the excitation time τ as higher the probability for spins to interact between each other.

development continue to influence the dynamics at later times. The growth of the so-called

’spin clusters’ under the influence of a many body bilinear Hamiltonian is schematically

shown in Figure 2.6. In general, for many number of coupled spins up to the effective

’size’ of the system at time τ , can be excited. In the next part we will introduce some

pulse sequences which can monitor the evolution of the spin clusters.

2.4.1 Time reversal pulse sequences

Already over 16 years ago, Yen and Pines ([Yen83]) demonstrated the possibility to detect

MQ coherences in strongly coupled systems of spins-1/2 in solids. Up to now there are

plenty of time reversal multiple-pulse sequences, which are able to do it (reader is referred

to overview monographs [Bod81, Wei83, Mun87]. The methods are developed further as

a tool for estimating the sizes of nuclear spin clusters in solids ([Bau85, Shy88]). General

scheme for such experiments is shown in Figure 2.5.

To understand the effect of these sometimes complicated pulse sequences one has to

solve the density operator equation (1.3) under the action of various pulses and evolution

Hamilton operators. This will lead in most of the cases to the cumbersome calculations,

which can be avoided by considering of the evolution of the initial density operator in the

presence of an average Hamiltonian. Such a treatment of Average Hamiltonian Theory (see

section 1.3) requires the pulse sequence to be periodic (and cyclic) so that it is sufficient to

calculate the average Hamiltonian for a limited number of pulses and evolution intervals,
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Figure 2.7: A pulse sequence for double quantum excitation for static case. It can be repeated for

increasing excitation time τ .

so-called cycle. We will make a small example for calculating the average Hamiltonian in

the case of the pulse sequence shown in Figure 2.7 where the cycle consist of four x-pulses.

It will be shown that this pulse sequence generates double quantum (DQ) average Ham-

iltonian in the first order approximation. Two methods of calculations will be presented.

One a little bit more sophisticated requiring more calculations and the second one with

the pictorial representation of the toggling frame Hamiltonian ([Ern87]).

We start with the evolution of the density operator under the action of the pulse

sequence (Figure 2.7) with the cycle time 6∆. We will assume δ-pulses for simplicity. The

density operator at the end of the cycle, for this pulse sequence, is given by

ρ̂(6∆) = Û(6∆) ρ̂(0) Û
−1

(6∆) (2.20)

with the time-evolution operator (’propagator’) for the full cycle4

Û(6∆) = L̂
( 1
2
)

z P̂ xL̂
(2)
z P̂ xL̂zP̂ xL̂

(2)
z P̂ xL̂

( 1
2
)

z , (2.21)

where P̂ x = eiγB1 Îx trf is the pulse operator and L̂
( 1
2
)

z = e−iĤz
∆
2 , L̂z = e−iĤz ∆ and

L̂
(2)
z = e−iĤz 2∆ governs the evolution under the influence of the Hamiltonian Ĥz, which

can be the Hamiltonian for homonuclear dipolar coupling Ĥz = Ĥzz = Ĥ
II
D (see equa-

tion (1.28)) or in the case of chemical shift Ĥz = ωCS Îz (see equation (1.22)). As initial

density operator ρ̂(0), we use ρ̂(0) = cÎz like in equation (1.38).

4Interactions are going from right to left but because of the symmetry of this particular pulse sequence

it has no importance.
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Note, that all Hamiltonians are characterized by spin operators so that the transforma-

tion of the spin operators by the pulses directly determines the transformation properties

for the propagator L̂z (P̂−x = P̂
−1
x )

P̂ x L̂z P̂−x = L̂y and P̂ y L̂z P̂−y = L̂
−
x . (2.22)

The corresponding transformation properties can be found also for L̂x and L̂y. The minus

sign in the superscript of the evolution operator in the second term of equation (2.22)

reminds us that the corresponding spin operators have been transformed from Îα to −Îα

(α = x, y, z; e.g.: Ĥ
−
zz = Ĥzz). The only difference between L̂z and L̂y (or Ĥz and Ĥy)

is that the corresponding spin operators Îz have been transformed to Îy. For homonuclear

dipolar Hamiltonian we will use abbreviation5

Ĥyy = −
∑
i<j

d II
ij

1
2

(
3 cos2 ϑij − 1

) (
3 Î

i

yÎ
j

y − ~̂I i · ~̂I j
)

. (2.23)

Inserting unity operator 1̂1 = P̂−x P̂ x into equation (2.21) after each L̂z operator and

performing the transformation according to equation (2.22) we obtain

Û(6∆) = L̂
( 1
2
)

z L̂
(2)
y P̂ xL̂yP̂ xL̂

(2)
y P̂ xL̂

( 1
2
)

y P̂ x , (2.24)

where the pulse propagators have been shifted one step to the right. Repeating this

procedure two more times results in

Û(6∆) = L̂
( 1
2
)

z L̂
(2)
y L̂

−
z L̂

(2)−
y L̂

( 1
2
)

y P̂ xP̂ xP̂ xP̂ x , (2.25)

where the evolution and pulse propagators have been separated. Realizing that the four(
π
2

)
x

pulses corresponds to a 360◦ rotation and thus can be omitted (more formally using

that the pulse sequence is cyclic, i.e. Û rf = ±1 for the pulse cycle, where Û rf is the

propagator corresponding to all pulses), we are left with a propagator from which the

pulses are removed. This can be interpreted such that we transform from the conventional

rotating frame to a frame fixed to the pulses, so-called the toggling frame. We therefore

view the evolution Hamiltonian from this frame, which accounts for the change from L̂z

to L̂
−
y in two of the evolution intervals.

To analyze equation (2.25) further, let us make an approximation for short times ∆.

Expanding the exponential operators L̂z and L̂y, multiplying the resulting terms and

5For Ĥxx spin operators Î
i

y Î
j

y are replaced by Î
i

xÎ
j

x .
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sorting them according to their order we are getting that

Û(6∆) = 1 − i
(
Ĥz + Ĥ

−
z + 2(Ĥy + Ĥ

−
y )

)
∆ + higher orders ≈ e−i ˆ̄H 6∆ . (2.26)

Exact calculation of the above equation will lead to so-called the Magnus expansion (see

equations (1.54 - 1.56)). The first order approximation corresponds to the linear terms

and can be written as

ˆ̄H (0) 6∆ =
(
Ĥz + Ĥ

−
z + 2(Ĥy + Ĥ

−
y )

)
∆ . (2.27)

This lowest order of approximation is sufficient only for very short ∆ values. We will

not deal with higher-order terms explicitly and only note that they contain commutators

between the Hamiltonians at different times. For two-spin system these commutators are

zero and our zero order treatment is exact. Whereas for a multiple-spin Hamiltonian

higher-orders have to be calculated to obtain a satisfactory description of the pulse se-

quence. However, the zero-order average Hamiltonian always has to be derived as a first

step, even if an analysis of higher-order terms is performed. The higher-order correction

terms will be in this work considered only in the form of symmetry rules for the pulse

sequence.

For calculation of the zero order homonuclear dipolar Hamiltonian Ĥ
II
D with its bilin-

ear form so that Ĥz = Ĥ
−
z = Ĥzz, we will obtain from equation (2.27)

ˆ̄HD
(0) =

1
3

(
Ĥzz + 2Ĥyy

)
=

1
3

(
Ĥyy − Ĥxx

)
. (2.28)

For the last step, so-called the magic-zero condition

Ĥxx + Ĥyy + Ĥzz = 0 (2.29)

has been used, which can be easily verified. It can be shown that equation (2.28) corre-

sponds to the products of the raising and lowering operators ([Bau85])
{

Î
i
+Î

j
+ + Î

i
−Î

j
−
}

for two spins Ii and Ij , which represent ±DQ coherence in the case of the two spin

interaction.

The zero order chemical shift average Hamiltonian over the full cycle can also be

calculated from equation (2.27) as

ˆ̄HCS
(0) =

1
6

(
Îz − Îz + 2(Îy − Îy)

)
= 0 . (2.30)

Thus this sequence removes chemical shift (or offset terms) in the first order approximation.
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Now the effect of such a ’pure’ DQ zero-order average Hamiltonian (equation (2.28))

for two spin system on the initial density operator has to be calculated. It follows from

its calculation for dipolar coupled two spins Ii and Ij under the initial density operator

ρ̂(0) = c( Î
i
z + Î

j
z ) that

ρ̂(τc) = c
(
Î

i
z + Î

j
z

)
cos

[
Dij τc

]
+ i c

(
Î

i
+Î

j
+ − Î

i
−Î

j
−
)

sin
[
Dij τc

]
(2.31)

Dij = d II
ij

1
2

(
3 cos2 ϑij − 1

)
.

The cycle time is τc = 6∆ in the case of δ-pulses. From equation (2.31) it can be directly

seen that the second coefficient represents to DQ coherence and thus the pulse sequence

shown in Figure 2.7 excite DQ transitions. The first part of the mentioned equation

corresponds to the longitudinal magnetization and without additional cycling of the pulses

it can not be removed out from the resulting spectrum. For more detailed discussion about

equation (2.31) see section 2.2.

So far, we have concentrated on the zero-order analysis, which is not each time suffi-

cient. For optimizing multiple-pulse sequences, however, it is useful to be aware of some

few symmetric principles for elimination of higher-order terms. The so-called ’super’ cy-

cles that is, well designed combination of the different variants of the basic cycles can be

used for this purpose. The design of such super-cycles is possible when the zero-order

chemical shift (or offset terms) vanishes for a basic cycles. Then higher-order effects left

over by the basics cycles are additive and thus when generated with the opposite sign

in two following periods will cancel each other. Odd-order correction terms in the Mag-

nus expansion, for instance, can be cancelled using super-cycles that are symmetric with

respect to the toggling-frame states ([Hae76]). Four pulse sequence shown in Figure 2.7

fulfills the condition for the symmetric cycle for the toggling-frame states as will be shown

in the next section.

Finite pulse lengths can also contribute to the resulting spectrum in the detection

period and therefore it is useful to eliminate their effects. This can be done by designing

the reflection symmetric pulse sequences. Our four pulse sequence than does not fulfill

this condition and has to be extended as will be shown is section 2.4.1.2.

2.4.1.1 Determining toggling-frame states for four pulse sequence

For analysis of multiple-pulse sequences under the average Hamiltonian theory toggling

frame states have to be calculated. Let us assume for the moment infinite narrow r.f. pulses,



2. Multiple Quantum NMR 39

represented by the transformation P̂ α1 , P̂ α2 , . . ., P̂ αn (α = ±x,±y) and separated by free

precession periods. Each pulse rotates the toggling frame into a new position, where the

toggling frame Hamiltonian ˆ̃H(t) (see equation (1.45)) remains constant. For the interval

∆k between two pulses k and k + 1 it can be then written ˆ̃H(t) = ˆ̃H(k) and the toggling

Hamiltonian can be calculated by stepwise transformations

ˆ̃H(0) = Ĥ int

ˆ̃H(1) = P̂
−1
α1

Ĥ int P̂ α1

ˆ̃H(2) = P̂
−1
α1

P̂
−1
α2

Ĥ int P̂ α2 P̂ α1 (2.32)
... ,

where Ĥ int = Ĥz represents the secular Hamiltonian for particular interaction. It is

important to note an unexpected order of the transformation in equation (2.32). All

previous pulses are arranged in reverse order and appear with reversed sense of rotation

([Ern87]).

The zero-order average Hamiltonian is obtained from a weighted sum

ˆ̄H (0) =
1
τc

n∑
k=0

∆k P̂
−1
α1

. . . P̂
−1
αk

Ĥ int P̂ αk
. . . P̂ α1 . (2.33)

This analysis enables us to make the detailed description of a pulse sequence. Determina-

tion of the toggling frame states are also the basics for calculating average Hamiltonians

of the higher orders, which leads to the Magnus expansion series (see section 1.3). Usu-

ally multiple-pulse sequences are designed to remove higher order terms (or to suppress

them to have negligible influence) and then only zero-order average Hamiltonian became

of importance.

According to equation (2.32) the graphical representation of the toggling frame states

can be done ([Haf98]). It is based on simple rotations of the spin operators. Rotations in

the spin space can be performed quite easily, either by a suitable computer program, or by

the help of a cube that is rotated. This graphical determination of the toggling frame states

provide us much simple and intuitively more appealing model than sometimes cumbersome

calculations presented in the previous section. A sketch of such a cube, which serves as a

simple model for the toggling frame is shown in Figure 2.8. Each of its sides is labelled by

the corresponding operator Îα, where α = ±x, ±y, ±z, so that a right-handed coordinate

system is built. The cube is placed on a plane, where x and y axis are drawn indicating

the orientation of the corresponding r.f. pulses. In the initial state this ’magic cube’ is
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Figure 2.8: The ’magic cube’, a convenient tool for determining toggling-frame states Îx, Îy, Îz

for the given pulse sequence. The cube is oriented so that the initial state Îz is pointing upwards.

The cube is rotated around the two fixed axes x or y according to the pulse sequence. The spin

operator that is pointing upwards for each rotation step reflects the toggling-frame state for the

corresponding time interval.

oriented such, that Îz operator is up and the Îx and Îy operators are pointing in the

direction of the corresponding axes as shown in the drawing. Now, the investigated pulse

sequence can be analyzed pulse by pulse in the straightforward way by simple rotating

the cube around the two fixed axes in accordance with the pulse sequence. In our case

the rotations have left handed sense. It hangs on the definition of the ~B1(t) field (see

equation (1.14)). The toggling-frame state for each rotational step is then determined by

the operator, which is pointing upwards.

Using this simple cube model the four pulse sequence introduced in the previous sec-

tion can be analyzed. Corresponding toggling frame states for the dipolar interaction and

the chemical shift interaction are shown in Figure 2.9. After that, according to equa-

tion (2.33), zero-order average Hamiltonian can be directly calculated. It can be simply

shown that average Hamiltonians for the particular interaction have the same form as in

equations (2.28) and (2.30). Reflection symmetry of a cycle to the toggling frame states

can be easily recognized from Figure 2.9.

It should be stressed, that such a simple ’magic cube’ formalism for determining tog-

gling frame states and follow-up zero-order average Hamiltonian can be used only in the

case of δ-pulses. For pulses of finite length equation (2.33) is not more valid and has to

be extended by the duration of the pulses, where toggling frame changes continuously.
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Figure 2.9: The four pulse sequence for DQ excitation with the given toggling frame states for

chemical shift and dipolar interaction. The rotation of the coordinate system, known as toggling

frame is schematically drawn.

It can be calculated that for our four pulse sequence the contribution of this parts to the

average Hamiltonian is additive and thus lead even in the first order approximation to the

incorrect results. This imperfections can be avoided by adding additional period of the

pulses shifted by 180◦ as will be shown in the next section.

2.4.1.2 Eight pulse sequence

Most extensively used pulse sequence for exciting multiple quantum coherences in static

solids was at the beginning of eighties in the group of A. Pines, eight pulse sequence.

With its two versions adopted from J. Baum et al. ([Bau85]) it is shown in Figure 2.10.

Both pulse sequences consist of eight π
2 -pulses of duration tp separated by delays ∆ and

∆′ = 2∆+tp. On contrary to the previous section where δ-pulses were assumed, period ∆′

was enlarged by the duration of the π
2 -pulse, tp, for proper zero-order average Hamiltonian.

These pulse sequences can excite even order coherences for homonuclear dipolar coupling

and their zero-order even-quantum average Hamiltonian is derived as ([War80, Bau85])

ˆ̄HD, 8p
(0) = −

∑
i<j

Dij

(
T̂

ij
2,2 + T̂

ij
2,−2

)
(2.34)

Dij =
µ0~
4π

γ2

r3
ij

1
2

(
3 cos2 ϑij − 1

)
.

Equation (2.34) represents for two spin system ’pure’ DQ operator. The cycle time τc

is equal to 12(tp + ∆) for both pulse sequences. Due to their reflection symmetry the

part, where toggling frame changes continuously (during r.f. pulses), from the zero-order
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Figure 2.10: Two time reversal pulse sequences for exciting multiple quantum coherences for

static solids. Excitation and reconversion time can be increased by repeating of the pulses N times.

In the case of δ-pulses ∆′ = 2∆, but for finite pulse length tp it has to be increased to ∆′ = 2∆+tp.

average Hamiltonian is removed and in addition also ˆ̄HD, 8p
(1) = 0 (equation (1.55)).

Pulse sequence shown in Figure 2.10a is preferred whenever resistance to resonance offset

effects during excitation and reconversion is particularly important. On the other hand

pulse sequence in Figure 2.10b is more appropriate in cases when r.f. field inhomogeneity

is a serious problem. In this work experimental results were made with pulse sequence

b). It can be seen (see section 2.4.1) that chemical shift interaction (or offset terms) are

removed from the average Hamiltonian in the case when ||ĤD|| À ||ĤCS ||, which is a

limitation for using eight pulse sequence. To avoid relaxation of the multiple quantum

signal during excitation and reconversion period the cycle time τc has to be enough small,

i.e. ||Ĥ (0)

D || τc ¿ 1. Beyond this condition overall excitation time τ = Nτc has to be

comparable with the coupling strength, i.e. ||Ĥ (0)

D || τ ≥ 1.

2.4.1.3 Thirty-two pulse sequence

In some cases eight pulse sequence introduced in section 2.4.1.2 is not enough efficient

to excite MQ coherences in static solids. As was recently proposed by O.N. Antzukin

([Ant99]) in systems where homonuclear dipole-dipole coupling strength is in the order

of chemical shift anisotropy (CSA) or higher, CSA Hamiltonian ĤCSA interferes with

coherence averaging of dipolar Hamiltonian ĤD and produce large CSA/dipole-dipole
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Figure 2.11: Thirty-two pulse sequence used in excitation and reconversion period for exciting MQ

coherences in the systems where ||ĤCSA|| . ||ĤD||. The cycle with characteristic time τc consist

of eight π
2 -pulses (see also Figure 2.10a) centered about delays ∆ = 1

16 τc and ∆′ = 2∆ = 1
8 τc.

Twenty-four π pulses (full rectangles), inserted to average out anisotropic chemical shifts on a time

scale of 1
24 τc, are centered about times 2m+1

48 τc, m = 0, 1, 2, . . . , 23. The π pulses phases follow the

pattern x,−x,−x, x, repeated six times.

cross terms in average Hamiltonian. For this reason eight pulse sequence was improved

by inserting twenty-four additional π-pulses into each cycle to average out chemical shifts.

This pulse sequence is shown in Figure 2.11. Twenty-four pulses are inserted on the time

scale τecho = 1
24 τc and cycle time is chosen so that the conditions ||ĤD|| τc < 1 and

||ĤCSA|| τecho < 1 are accomplished.

In the next sections two kind of experiments for exciting MQ coherences for studying

static solids will by explained. Some of the basic were already made in section 2.3.

2.4.2 Separation of MQ coherences

Until now no method was explicitly mentioned for separating of MQ coherences. DQ

propagator prepared by time reversal pulse sequences (see e.g. section 2.4.1.2) can ex-

cite for the system with more coupled spins also quantum coherences of higher orders.

These coherences usually merge together (e.g. in Adamantane in the case of on-resonance

excitation). To separate them some methods listed below can be used:

• Separation of quantum-orders by magnetic field variation.

Changing of the static magnetic field ∆B0 will lead to the change of the Larmor fre-

quency ∆ωL = γi ∆B0 of spin Ii. In the case of homonuclear p-quantum coherence

the resulting frequency will be proportional to the sum of ∆ωL =
∑p

i=1 γi ∆B0 =

p · γI ∆B0. During evolution time t1 such a coherence evolves with different fre-

quencies corresponding to different quantum orders and can be separated by the

Fourier transformation. This technique allow us to be on-resonance while exciting
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MQ coherences but requires on the other hand spectrometer, which is able to switch

rapidly magnetic field with a good homogeneity. This is usually a big problem and

for our spectrometer not applicable.

• Separation of quantum-orders by off-resonance excitation.

By off-resonance excitation of MQ coherences, where the resonance offset is defined

by ∆ωoff , the p-quantum coherence is shifted by p · ∆ωoff , written in the density

matrix formalism as

ρ̂(τ, t1) =
∑

p

ρ̂ p(τ, t1) e−i p ∆ωoff t1 . (2.35)

This phenomenon can also be used for separating of different orders of coherences.

It has to be noted that also line-width of the quantum orders is proportional to

the increasing of the order. To resolve higher-quantum orders is than necessary to

by strongly out off resonance. On the other hand offsets can influence also average

Hamiltonian during excitation and reconversion period and this can cause problems

if pulse sequence is not designed to remove these terms. If resonance offsets are very

high, compensation in most of the cases does not work properly and unwanted arti-

facts can appear in the spectrum. This leads to decreasing of the resolution of the

particular order of coherence. To get a sufficient resolution a lot of t1 increments has

to be done, which rapidly increase measuring time. Some of the examples for sepa-

ration of quantum orders by off-resonance excitation can be found in M. Munowitz

et al. ([Mun87]).

• Separation of quantum orders by phase change.

Shifting of the pulses in the excitation period by an angle ∆φ from the pulses in the

reconversion period leads also to the separation of the quantum orders. p-quantum

coherence will by then shifted by p ·∆φ. This effect can by also written using density

matrix formalism as

ρ̂(τ, t1) =
∑

p

ρ̂ p(τ, t1) e−i p φ . (2.36)

It can be seen that this method provides separation of different orders of coher-

ence even when no evolution during t1 presents (e.g. on-resonance excitation).

Either unwanted broadening of the higher orders caused by off-resonance excita-

tion is removed. Changing of the phase allow us to detect maximum ±pmax orders
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of coherence if the size of the increment is determined according to the relation

∆φ = π/pmax ([Yen83]).

In this work the last method for separating of orders of coherences was used. If on-

resonance excitation is not possible due to the complicated structure of the sample the

second method will also influence the spectrum. In these cases both effects, namely arti-

ficial phase change and off-resonance excitation, coexist and ∆φ and ∆t1 must be chosen

such that aliasing and overlapping of the coherences is avoided within the available band-

width equal to 1/∆t1.

Two experimental methods used in this work for exiting and detecting different orders

of coherences in static solids will be presented. The first one commonly called t
¯
ime-

p
¯
roportional p

¯
hase i

¯
ncrementation (TPPI) and the second one called ’spin-counting’ where

no evolution during t1 take place (t1 = 0).

2.4.3 TPPI MQ experiment

To separate coherences of different orders time-proportional phase incrementation (TPPI)

method can be used. How to realize such an experiment is schematically shown in

Figure 2.12. This method allows us to excite and resolve desired orders of coherence

without introducing the resonance offset. The r.f. pulses of the excitation period are

shifted in addition to the r.f. pulses in reconversion period synchronically with increment-

ing of time t1, i.e. φ = ∆ωφ t1 (t1 = 0, ∆t1, 2∆t1, . . .). Fourier transformation of the signal

Sα = Tr
{

Îαρ̂
}

with respect to t1 distributes the different orders over the bandwidth in

ω1 dimension equal to 1
∆t1

. Adjacent orders are therefore separated by the apparent offset

frequency ∆ωφ = ∆φ
∆t1

. The number of orders detected is ±pmax and is determined by the

size of the phase increment so that ∆φ = π
pmax

. It means e.g. for pmax = 4 maximum

four quantum orders of coherences can be seen in the spectrum. Important is also to

chose ∆t1 and ∆φ so that all signals from different coherence orders fit into the available

bandwidth ( 1
∆t1

) to prevent aliasing and overlapping of the lines in the spectrum.

The demonstration of the excitation of MQ coherences was made on the polycrystalline

Adamantane (C10H16). Adamantane at room temperature forms a plastic crystal in which

the nearby spherical molecules tumble rapidly and isotropically. The motion averages all

intra-molecular dipolar couplings to zero, but does not eliminate inter-molecular couplings.

However, the motion leaves only one distinct coupling between every pair of molecules,
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Figure 2.12: General form of pulse sequences for 2D MQ NMR spectroscopy for static solids.

Separation of p-quantum orders is accomplished by shifting the excitation pulses by an amount

φ = ∆ωφ t1 (TPPI, see text). Time reversal is made by shifting excitation pulses by π
2 during

reconversion period: Ĥrec = (Ĥexc)φ=π/2 = −Ĥexc (see also section 2.3.1). The delay τ0 between

reconversion period and detection pulse can be included to allow dephasing of undesirable coher-

ences. This delay should be not so long to prevent unwanted magnetization exchange during this

time.

thereby reducing the Adamantane molecule to a point dipole source containing 16 spins.

The molecules pack into face-centered-cubic lattice, with each Adamantane molecule sur-

rounded by 12 neighbours at a distance of 6.60 Å, 6 more at 9.34 Å, and additional 16 at

11.4 Å ([Now45]).

Experimental results of 1H MQ spectrum of polycrystalline Adamantane can be found

in Figure 2.13. Experiment was made with eight pulse sequence presented in Figure 2.10b

(see page 42) which was applied during excitation and reconversion period. Separation

of different orders has been accomplished by TPPI, so that ∆φ and ∆t were chosen as

∆φ = 8◦ and ∆t1 = 0.1 µs, respectively, to prevent aliasing and overlapping of adjacent

coherence orders. The basic eight pulse sequence cycle τc was repeated N = 8 times

to get the overall excitation time τ = 384 µs. Time spectrum was transformed by the

conventional Fourier transformation to get the resulting spectrum shown in Figure 2.13.

Since coherences of +p and −p are equally probable, the spectrum is naturally symmetric

about p = 0. To obtain then all the information available only one-half of the spectrum is

necessary to be displayed. Up to 22 even order coherences can be seen.

In some cases we are not interested to have the information about the line shapes

of MQ coherences and so time evolution between excitation and reconversion pulses (see

Figure 2.12) can be simply omitted (t1 = 0). This kind of experiment will be presented in

the next section.
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Figure 2.13: 400MHz 1H multiple quantum spectrum of polycrystalline Adamantane at room

temperature. Eight pulse sequence (Figure 2.10b) was used to excite up to 22 (pmax = 22) order of

coherences with excitation time τ = 384 µs. The basic cycle time τc was chosen 48 µs (tp = 3.2 µs,

∆ = 0.8 µs, and ∆′ = 4.8 µs). Separation of different orders of coherences has been made by

TPPI (for details see text). A delay of τ0 = 1.6 ms was included after reconversion period to

allow unwanted transients to decay away from the spectrum. The z-component of magnetization is

monitored by π
2 detection pulse with the phase ±x which is cycled to remove spectrometer offset.

2.4.4 Spin counting MQ experiment

Time reversal MQ experiment shown in the previous section where TPPI method for

exciting coherences of very high orders has been used, is very time consuming. One has

to realize enough time t1 increments to get the sufficient resolution of the adjacent MQ

coherences. In such an experiment the important information about growing of the spin

clusters is contained in the integrated intensities of the MQ orders, rather than in the

different frequencies occurring within each order. Shykind et al. ([Shy88]) showed that

even integration of individual coherence orders is in most of the cases not necessary for

obtaining the cluster sizes. In these cases time evolution from MQ experiments can be

simply omitted (t1 = 0). Measuring time than will be rapidly decreased from e.g. 12 hours

(with TPPI) to couple of tens minutes (without TPPI). This kind of experiment will be

called ”spin counting” experiment in this work (similar like in literature).

The basic scheme of MQ spin counting experiment is shown in Figure 2.14. Reconver-

sion period follows immediately excitation period without supplementary evolution time

t1. The separation of quantum orders is made by changing of r.f. pulse phases during

the excitation period while phases of the r.f. pulses in the reconversion period are holding
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Figure 2.14: Design of the spin counting experiment. Pulses during excitation period are shifted

according the rule φ = m.∆φ with m = 0, 1, . . . , q − 1 in the same way like in TPPI experiment

(more details can be found in the text and in the description under Figure 2.12).

constant. The phase change about φ of the r.f. pulses will lead to the p · φ phase change

for desired p-quantum order which can be written using density matrix formalism as (see

e.g. equation (2.36))

ρ̂(τ) =
∑

p

ρ̂ p(τ) e−i p φ . (2.37)

Similar like in TPPI experiment (see section 2.4.3) the phases of excitation pulses will be

changed as φ = m · ∆φ where ∆φ = π
pmax

is determined by the maximum pmax quantum

order of visible coherences in the spectrum. Because the signal is strictly periodic with

the period 2π it is enough to vary the phase φ only in the range 0 . . . 2π. Hence number of

phase increments q (m = 0, 1, . . . , q−1) has to be chosen as q = k 2π
∆φ where k (k = 1, 2, . . .)

represents periodicity. Additionally, to realize the numerical Fourier transformation (fast

fourier transform, FFT) of the periodic function, k and pmax have to fulfill the condition

k · pmax = 2j (j ∈ N) to get the correct results. Experimental results of spin counting

experiment can be found in section 3.5.2.

2.5 MAS MQ experiment

On contrary to the static MQ experiments MAS provides much higher spectral resolution

for studying abundant spins in solids. MAS effectively suppress dipole-dipole interac-

tion (see section 1.6) as well as chemical shift anisotropy (CSA) interaction ([Meh83]).

Three possible strategies can be used while combining more quantum NMR methods with

rotation of the sample at magic angle:

• quasi-static excitation: Conventional static multiple-pulse sequences (see sec-

tions 2.2 and 2.4.1) can be used to excite MQ coherences with the limitation for ex-

citation time τ ≤ 0.5τr. This strong condition where excitation time can not exceed
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half of the rotor period τr, limits the use of this method for slow spinning speeds.

Dipolar coupling is in this case still not sufficiently averaged by MAS (ωr ≤ ||ĤD||)
so effective high resolution is not achieved. This method leads to the compromise

between an optimal spectrum resolution and the enough long excitation time τ for

detecting higher MQ coherences. Using quasi-static method MQ coherences in liquid

samples can be excited with the help of e.g. three pulse sequence.

• MAS synchronized excitation: If the spinning frequency becomes high enough to

resolve averaged dipolar interaction (ωr À ||ĤD||) time reversal pulse sequences used

for static samples (see section 2.4.1) will not more effectively excite MQ coherences in

solids. MAS during excitation and reconversion periods causes a ’self-time reversal’,

and MQ coherences disappear after each full rotor period 6. The solution suggested

by Meier and Earl ([Mei86]) to prevent this process of ’self-time reversal’ involves

phase switching the original pulse sequences every half rotor period. The average

Hamiltonian in a multiple-pulse sequence has been manipulated such that its sign

has been changed synchronously with the spinner rotation. However, this method

is necessarily limited to situations in which the spinning rate is sufficiently slow to

allow at least two cycles of the multiple-pulse sequence to fit into a single rotor

period (2τc ≤ τr). This method is therefore restricted to samples with small dipolar

couplings e.g. for studying labelled pairs of 13C nuclei ([Mei87]).

• fast MAS excitation (rotor synchronized): An alternative approach to the

second method proposed by Meier and Earl will be used in this work where cycle

time τc is a whole number of rotor periods (τc = n · τr; n = 1, 2, . . .). This leads

to MQ experiments suitable even at very fast MAS speeds. In some cases these

high spinning speeds are required to obtain high-resolution spectra for abundant

spins in solids. Under the fast MAS conditions (||ĤD|| ¿ ωr) where spectral lines

are successfully narrowed dipole-dipole coupling is averaged to zero
〈
ĤD

〉
→ 0

which act like a disadvantage. Consequently recoupling of the dipolar coupling is

necessary. This can be done by a rotor synchronized recoupling pulse sequences like

e.g. DRAMA, BABA, C7, . . . (see section 2.5.1). For strong coupled spin systems

(ωD/2π À 10 kHz) recoupling pulse sequences are already not so often used because

higher terms of effective average Hamiltonians reduced by this sequences in the

6This is a consequent of the fact that the dipolar interaction has an isotropic value of zero.
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Magnus expansion (see section 1.3) can have unexpected effects during recoupling.

For rigid solids where ωD/2π ' 50 kHz this method is not more useful because of the

limitation in MAS spinning speeds (up to now ωr/2π ' 40 kHz have been reached).

Due to the synchronization of the r.f. pulses to the spinning frequency the excitation

time τ can be only the whole number of the rotor period τr (except C7) which is in

some cases also disadvantage.

In the following part we will introduce some recoupling pulse sequences which are suitable

for qualitative measuring of dipolar couplings for abundant spins in solids. Some of them

can be effectively used for monitoring the evolution of the spin clusters under MAS as will

be shown in section 2.5.3.

2.5.1 Recoupling pulse sequences

In recent years a lot of recoupling pulse sequences were developed for measuring dipole-

dipole couplings under MAS for solids. High spinning speeds are in most of the cases

prerequisite for obtaining high resolution spectra in solids. Recoupling pulse sequences

can be divided in principle into two categories.

The first one is dealing with high power r.f. pulses which are for calculating average

Hamiltonian operators of particular pulse sequence described via δ-pulses. Such a treat-

ment was in more details introduced in section 2.4.2 for static solids. Duration of the

r.f. pulses tp has to be for these pulse sequences much smaller compared to the rotational

period τr. Consequently with increasing spinning speeds higher r.f. powers and shorter

r.f. pulses are required. This is the strong demand for a very good spectrometer if spinning

speeds exceed fr > 20 kHz.

In the second category are recoupling pulse sequences working with relatively long

r.f pulses (spinlock-pulses) where duration of the pulses is fixed to the rotor period. In

other words, the r.f. field strength witch leads to the precession of the spins I in the rotating

frame with the angular frequency ω1 = γIB1 has to be a whole number of the rotational

angular frequency ωr (ω1 = n · ωr; n = 1, 2, . . .). For calculating average Hamiltonians,

periods of r.f. pulses where toggling-frame Hamiltonians7 are changing continuously have

to be assumed. In general these pulse sequences are sensitive to the homogeneity of

the r.f. field as well as to the sufficiently fast changing of the phases between pulses.

7Frame where Hamiltonians of the spin system are expressed in the interaction frame of the r.f. field

(see also equation (1.45)).
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Figure 2.15: Rotor synchronize DRAMA pulse sequence. a) Original pulse sequence which leads

to the recoupling of the dipolar coupling under MAS. b) The second variant where DQ average

Hamiltonian is prepared after finishing of full rotor cycle τr (τ1 = τr/4, τ2 = 2 τ1). Overall

excitation time τ can be manipulated through integer number N (τ = N τr).

Their efficiency is generally higher (e.g. for C7 [Lee95] or for MELODRAMA [Sun94])

than for that with ’δ-pulses’.

We will concentrate in this work to the MQ recoupling pulse sequences working with

short ’δ-pulses’ like DRAMA or BABA, and for that with spin-lock pulses like C7 or

POST-C7 ([Hoh98]). In the next part these pulse sequences will be explained in more

details.

2.5.1.1 DRAMA

The oldest pulse sequence which was able to recover dipole-dipole coupling under fast

MAS was DRAMA (dipolar recovery at the magic angle) proposed by R. Tycko and G.

Dabbagh [Tyc90]. It is shown in Figure 2.15a. Because this simple version consisting of

two 90◦-pulses was not able to efficiently recover homonuclear dipolar coupling several

improvements were made in the case of 13C NMR spectroscopy ([Tyc91, Tyc93]). Extend-

ing of the original pulse sequence by two additional pulses shifted by 90◦ phase from the

original ones and positioning them at the beginning and at the end of the cycle interval

as it is shown in Figure 2.15b even quantum order selective dipolar Hamiltonian can be

derived. This pulse sequence was successfully applied for proton 1H systems under fast

MAS by H. Geen et al. [Gee94]. It was shown ([Gee95]) that it generates ’pure’ double

quantum (DQ) average Hamiltonian for homonuclear dipole-dipole coupling in samples

where CSA and resonance offsets can be neglected.

Assuming isolated spin pair coupled via dipole-dipole interaction toggling-frame

states for DRAMA can be determined as can be seen from Figure 2.16 (more details

see section 2.4.1.1). Because the geometrical part R ij
2,0 of the dipolar Hamiltonian
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(equation (1.60)) becomes time dependent under MAS as was shown in equation (1.74)

we will define for better understanding of the pulse sequence rotor-modulated functions

FS1 = sin(ωrt) , FC1 = cos(ωrt) , FS2 = sin(2ωrt) , FC2 = cos(2ωrt) . (2.38)

These functions can be used for an intuitive description of the modulation of a particular

Hamiltonian by equation (1.74) under MAS. Combining now toggling frame Hamiltonians

prepared after each pulse in DRAMA pulse sequence with the rotor modulated functions

it can be directly shown that DQ average Hamiltonian (more details see section 2.4.1)

ˆ̄H
(0)

D, DRAMA ≈ 1
2

(
Ĥxx − Ĥyy

)
(2.39)

is recoupled in FC1 component (see Figure 2.16). It can be simply proven that average

Hamiltonian presented in equation above represents ’pure’ DQ operator for a system with

two coupled spins. It is clear that this simple description can by used only for the intu-

itive understanding of the pulse sequence. Detailed theoretical analysis made by R. Graf

et al. [Gra97b] (can be proven by assuming equations (1.74), (1.61), (1.59) and (1.45),

(1.54)) shows that zero-order average Hamiltonian for homonuclear coupling in the limit

of δ-pulses is given by

ˆ̄H
(0)

D, DRAMA = −
∑
i<j

3
π
√

2
d II

ij sin(2ϑij) cos(ψij + ωrt
0)

(
T̂

ij
2,2 + T̂

ij
2,−2

)
. (2.40)

d II
ij represents the dipolar coupling constant defined by equation (1.27) and T̂

ij
2,±2 are

irreducible tensor operators (see Appendix A) describing ±DQ coherence. The Euler

angles (ϕij , ϑij , ψij) relate the principal axes of dipolar coupling tensor to the reference

frame fixed on the rotor (more details see section 1.6). ωrt
0 describes modulation of the

ψij angle with the initial position of the rotor represented by time point t0 at which the

pulse sequence is initiated. It is especially important during reconversion period.

Introducing CSA or resonance offset terms written in the general form Ĥz = ΩÎz, zero

order average Hamiltonian can be calculated for these interaction. Non zero contribution to

the average Hamiltonian will be found only in the FC1 component of the rotor-modulated

function (see Figure 2.16) and it can be written as

ˆ̄H
(0)

Ω, DRAMA ≈ 1
2 Ω

(
Îx + Îy

)
. (2.41)

This term represents an unwanted contribution to the signal. This version of DRAMA

therefore does not lead do the correct results if CSA or resonance offset can not be neglected
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Figure 2.16: DRAMA pulse sequence reflected by the four rotor-modulated functions (see equa-

tion (2.38) and equation (1.74)). Toggling frame Hamiltonians for each interval between pulses

are indicated for CSA (or resonance offsets) and dipolar interaction respectively. These states

are weighted by the areas under the rotor-modulated function for the time during which they are

present. Positive or negative contributions of the toggling Hamiltonians to the average Hamil-

tonian are indicated with sign + or −. In this way, a non-vanishing DQ average Hamiltonian

ĤDQ = Ĥxx − Ĥyy is created only in FC1 component. As can be seen average Hamiltonian is

in other components cancelled. CSA interaction (or resonance offset terms) are not removed from

the average Hamiltonian a can contribute to the resulting spectrum (more details see text).

(e.g. if sample has more than one isotropic components). Several attempts to compensate

these unwanted signal were made for DRAMA pulse sequence ([Tyc91, Tyc93]). They lead

to the complicated pulse sequences with long cycle times which are in experiment hard to

handle. It will be shown that another compensated pulse sequences like BABA and C7

are much more efficient.
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Figure 2.17: Rotor synchronize BABA pulse sequence. a) Original version where timing is set to

τ ′ = τr/2 in the δ-pulses limit. b) Improved version where resonance offsets and CSA are averaged

out in the zero-order average Hamiltonian during two full rotor periods 2τr. Overall excitation

time can be manipulated trough integer number N (τ = N · τr or τ = N · 2τr).

2.5.1.2 BABA

BABA pulse sequence has been developed on the basis of Meier-Earl [Mei86] syn-

chronization scheme setting the r.f. pulses back-to-back. Initially the pulse sequence(−∆
2 − (π

2 )x − τ ′ − (π
2 )−x − ∆ − (π

2 )y − τ ′ − (π
2 )−y − ∆

2

)
acting in the presence of fast

MAS has been regarded [Som95]. Considering δ-pulses DQ average Hamiltonian is pre-

pared for this pulse sequence if the synchronization is accomplished as τ ′ = τr/2 and

∆ → 0. The basic version of BABA pulse sequence is shown in Figure 2.17a. As will

be shown later this simplest version acting on the one rotor cycle does not remove CSA

terms and is also sensitive to the resonance offsets like DRAMA pulse sequence. Improved

version proposed by Feike et al. [Fei96a] which is shown in Figure 2.17b can solve this

problem. Full compensation can be achieved during two rotor cycles.

Similar like for DRAMA (section 2.5.1.1) pulse sequence the zero order average Ham-

iltonian in the Magnus expansion can be intuitively estimated using toggling frame states

modulated with the rotor functions defined by equations (2.38). Toggling frame Hamilto-

nians for basic version of BABA pulse sequence are shown in Figure 2.18. It can be simply

seen from the drawing that zero-order average Hamiltonian for homonuclear dipolar cou-

pling in the δ-pulse limit (∆ = 0, τ ′ = τr/2) is found in the FS1 rotor-modulated function

as

ˆ̄H
(0)

D, BABA ≈ 1
2

(
Ĥyy − Ĥxx

)
. (2.42)

It is the same average Hamiltonian as for DRAMA (see equation (2.39)) pulse sequence

(except sign8). More detailed calculations shows the exact value of the zero order average

8Sign is not important in this intuitive approximation. It can be changed by proper time integration

of the geometrical function R2,0(t) (see equation (1.74)) over the full cycle of the pulse sequence.
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Figure 2.18: Basic version of BABA pulse sequence reflected by four rotor-modulated functions

(see also description under Figure 2.16). Non vanishing DQ average dipolar Hamiltonian ĤDQ =

Ĥyy−Ĥxx is created in FS1 rotor function. In other components it is averaged out. CSA terms or

resonance offsets written in the general form Ĥz = ΩÎz can contribute to the resulting zero-order

average Hamiltonian also in FS1 rotor function and can be written as ˆ̄H
(0)

Ω ≈ −1
2 Ω

(
Îx + Îy

)
.

Shaded areas represent error term arising from finite switching delays ∆ between pulses in the case

of δ-pulses (more retails see text).

Hamiltonian in the δ-pulse limit approximation ([Fei96a]) as

ˆ̄H
(0)

D, BABA = −
∑
i<j

3
π
√

2
d II

ij sin(2ϑij) cos(ψij + ωrt
0)

(
T̂

ij
2,2 + T̂

ij
2,−2

)
. (2.43)

This result exactly correspond to zero-order average Hamiltonian for DRAMA pulse

sequence (equation (2.40)). Both pulse sequences then excite even order MQ coherences

with the same efficiency. This is limited to the short excitation times (1−2 rotor periods)

and the samples with the small chemical shifts ([Fei96b]). An advantage of BABA pulse
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sequence is in the second variant (Figure 2.17b) where CSA and resonance offsets are com-

pensated (detailed analysis see [Fei96a]). Error terms arising from finite pulse lengths can

be compensated by shifting of the all pulses in BABA pulse sequence about 180◦ in the

next full cycle. This lead to the reducing of the zero-order average Hamiltonian presented

in equation (2.43) by the small amount. Therefore, very short r.f. pulses are prerequisite

for both BABA and DRAMA pulse sequences.

We will now shortly discus the problem of the switching of the phases between pulses

for BABA pulse sequence. It is known that such a delay ∆ is needed for each pulse

after setting the phase of the pulse until the phase settle. Design of the BABA pulse

sequence force us to think about this problem, which was not the case of DRAMA pulse

sequence where no pulses were so close together. Error contributions to the zero-order

average Hamiltonian for the original version of BABA pulse sequence are representing

by the shadow areas of each rotor-modulated function (see Figure 2.18). For simplicity

δ-pulses has been assumed. As can be seen from the drawing non-zero component to the

average Hamiltonian appear only from FC2 component of the rotor-modulated function.

It can be calculated in the limit of ∆ ¿ τr that contributions from the finite switching

delay (FSD) to the homonuclear dipolar Hamiltonian have the form:

ˆ̄H
(0)

D, FSD ≈ 3 ∆
τr

Ĥzz . (2.44)

Error terms to the zero-order CSA (or resonance offsets) average Hamiltonian Ĥz = ΩÎz

can also be calculated by

ˆ̄H
(0)

Ω, FSD ≈ ∆
τr

(
2ΩÎz + ΩÎy − ΩÎx

)
. (2.45)

Same analysis can be applied for the full compensated BABA pulse sequence shown in

Figure 2.17b. It will be found that contributions to the zero-order homonuclear dipolar

Hamiltonian and CSA (or resonance offsets) average Hamiltonian can be written

ˆ̄H
(0)

D, FSD ≈ 6 ∆
τr

Ĥzz , ˆ̄H
(0)

Ω, FSD = 0 , (2.46)

respectively. Full compensation of the CSA terms and resonance offsets is directly seen

from equation above even when small phase-switching delays ∆ are presented. It is impor-

tant to note that homonuclear contribution to the average Hamiltonian was not removed

but doubled. This error is than increased proportionally with increasing number of cycles

N . It can not be removed even by shifting of the phases of the pulses by 180◦ in the
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next full cycle which eliminates the error terms arising from finite pulse length. Beside

the fact that this effect is additive it is very small because ∆ < 0.5 µs in commercial

spectrometers and even for very high spinning speeds fr = 40 kHz can be neglected. In

addition it contribute to the zero-quantum coherence (from equation 2.44: Ĥzz ≈ T̂ 2,0)

and can by separated from the DQ spectra by TPPI as will be shown in sections 2.5.2 and

2.5.3.

2.5.1.3 C7

C7 pulse sequence belongs to the second category of the recoupling pulse sequences. It

works with relatively long r.f. pulses (spinlock-pulses) with duration fixed to the rotor

period despite δ-pulses sequences like DRAMA and BABA. It is a full compensated pulse

sequence first time proposed by Y.K. Lee et al. [Lee95]. The name of the C7 is derived from

the sevenfold-symmetric phase shift scheme acting on the two rotor periods 2τr. It provides

homonuclear dipolar recoupling with better efficiency than previous pulse sequences and is

much less sensitive to higher resonance offsets and CSA terms. It was shown by Y.K. Lee

et al. that its efficiency is around two times higher for 13C systems with large chemical

shifts (both isotropic and anisotropic) than DRAMA pulse sequence.

The 1H version of C7 pulse sequence is shown in Figure 2.19. Seven elements (Cφ ′)

are timed to occupy two rotational periods. Neighbouring elements differ in phase by

∆φ ′ = 2π
7 always rotating in the same sense. In the simplest version ([Lee95]) each element

Cφ ′ consists of two r.f. pulses (see Figure 2.19a), both with r.f. phases differing by π. The

strength of the r.f. field B1 has to be adjusted in order to be equal seven times the spinning

frequency ωB1 = 7ωr. This condition leads to the 2π flip angle of the r.f. pulse. Then,

each element can be described in the conventional notation by Cφ ′ = (2π)φ ′(2π)φ ′+π. The

duration of the Cφ ′ element can be simply estimated as 2τr
7 . As was shown in reference

[Lee95] zero-order homonuclear dipolar average Hamiltonian for C7 can be calculated as9

ˆ̄H
(0)

D, C7 =
∑
k<l

{
ωkl T̂

kl
2,2 + ω∗

kl T̂
kl
2,−2

}
, (2.47)

where

ωkl =
343(i + eiπ/14)

520π
√

2
d II

kl sin(2ϑkl) ei(ωrt0−ψkl) . (2.48)

9We will change indexation for this section from traditional ij to kl to clearly distinguish between

indexes and imaginary number i.
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Figure 2.19: C7 pulse sequence. Seven fold-symmetric r.f. pulse scheme timed on two rotor periods

2τr leads to the compensation of all unwanted interactions (more details see text). Each element

with duration τc = 2τr/7 differs in the phase from the previous one by 2π/7. In the basic version

a) each element consists of two 2π r.f. pulses differing in the phase by π. The second version b)

called POST C7 having three pulses in the base element is even much less sensitive to resonance

offsets (see text). Overall excitation time τ can be changed by integer number N (τ = N · 2τr).

It was shown by [Lee95] that even incomplete C7 cycles (τ = n · τc, n ≥ 7) generates DQ average

Hamiltonian. The full compensation is established only after full sevenfold cycle (n = 7N).

Detailed explanation of the symbols in equation above can be seen under equation (2.40).

t0 represents the time point at which the pulse sequence is initiated. It is especially im-

portant during reconversion period because it indicates the phase of the DQ Hamiltonian.

On contrary to DRAMA and BABA pulse sequences magnitude of zero-order dipolar av-

erage Hamiltonian (equation (2.48)) does not depend on the angle ψkl and leads to the

higher efficiency of C7 pulse sequence especially in powders. C7 shown in Figure 2.19a

compensate isotropic resonance offsets and r.f. inhomogeneity to first-order in the Magnus

expansion.

In Figure 2.19b the second variant of C7 is shown. It was named as POST C7 [Hoh98]

(permutationally offset stabilized C7). Theoretical and experimental analysis performed

by M. Hohwy et al. [Hoh98] shows that POST C7 is even less sensitive to the resonance

offsets as original version of C7. POST C7 consist of three pulses in the base element

Cφ ′ = (π
2 )φ ′(2π)φ ′+π(3π

2 )φ ′ (see Figure 2.19b). The zero-order homonuclear dipolar av-

erage Hamiltonian of POST C7 is identical with C7 (see equations (2.47)−(2.48)). It

is supposed to eliminate isotropic resonance offsets up to fourth-order in the Magnus
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expansion and isotropic resonance offsets/r.f. inhomogeneity up to third-order. It also

removes the effects of CSA in the zero-order expansion similar like C7.

Comparing C7 with other recoupling pulse sequences of the same kind like HORROR

(homonuclear rotary resonance, [Nie94]) it provides better experimental results with higher

efficiency. The basic version of C7 was also used in 31P NMR spectroscopy to obtain high

resolution spectra in powders ([Dol97]). Besides POST C7 other compensation schemes

were designed [Rie98] which might lead to even greater efficiencies. In this work most of

the experiments were performed with POST C7 because of sufficiently high compensation.

2.5.2 Two-dimensional MQ experiment

General form of the pulse sequence scheme for two-dimensional (2D) MQ experiment under

MAS is shown in Figure 2.20. It is nearly identical with the design of 2D MQ experiment

for static solids (see Figure 2.12) with an exception of rotor synchronization for the pulses

during excitation and reconversion period. Synchronization of the detecting pulse (n0τr)

is not a prerequisite for this kind of experiment, but it was used in this work.

Separation of different orders of coherence is accomplished by TPPI similar like in sec-

tion 2.4.3. Time reversal during reconversion period is made by shifting of the r.f. pulses by
π
2 in comparison to the pulses acting during excitation period (for details see section 2.3.1).

Pulse sequences used in this work can be described by average Hamiltonian representing

’pure’ DQ operator for the two spins-1/2 system and can be written in the general form as

(see also sections 2.5.1.1 - 2.5.1.3)

ˆ̄HDQ =
∑
i<j

{
ωij(ϑ, ψ, t0) T̂

ij
2,2 + ω∗

ij(ϑ, ψ, t0) T̂
ij
2,−2

}
. (2.49)

The complex term ωij corresponds to the amplitude and to the phase of the DQ Hamilto-

nian. It depends on Euler angles (ϑ, ψ) and on the starting time point t0 of the particular

pulse sequence (see e.g. equation (2.40)). DQ Hamiltonian shown in equation (2.49) can

excite even order of coherences under ideal conditions ([War80]).

TPPI in 2D MQ experiment (Figure 2.20) is performed by the phase change of the

r.f. pulses during excitation period synchronically with increasing evolution time t1 as:

φ = φ(t1) = ∆ωφt1 (t1 = 0, ∆t1, 2∆t1, . . .). Such a phase change gives rise to the transfor-

mation of the DQ spin operator T̂ 2,±2 as ([Ern87, SR94])

e−iφÎz T̂ 2,±2 eiφÎz = e∓i 2φ T̂ 2,±2 . (2.50)
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Figure 2.20: Design of the 2D single channel (in t1 dimension) MQ experiment under MAS.

Rotor synchronized pulse sequences like DRAMA, BABA and C7 can be used in the excitation and

reconversion periods, respectively. n represent symbolically rotor synchronization (n = 1, 2, . . .).

Separation of different orders is made by TPPI (see text). A period n0τr (n0 = 1, 2, . . .) is inserted

between the reconversion and detection period to allow undesired coherences to dephase.

Simply speaking it evokes changing of the phase for DQ coherence by an angle 2φ. Inserting

equation (2.50) in to equation (2.49) the DQ average Hamiltonian during excitation period

is derived and is dolds

ˆ̄H
exc

DQ =
∑
i<j

{
ωij(ϑ, ψ, t0 = 0) e−i 2φ(t1) T̂

ij
2,2 + ω∗

ij(ϑ, ψ, t0 = 0) ei 2φ(t1) T̂
ij
2,−2

}
. (2.51)

Initial position of the rotor has for ˆ̄H
exc

DQ no importance and can be set to zero: t0 = 0.

The response of the spin system to the excitation Hamiltonian (equation (2.51)), in the

case of spin pairs, is simplified by the fact that DQ coherence does not evolve under

the influence of the dipolar coupling (see also equation (2.11) and equation (1.75)) since

[ĤD(t), ˆ̄H
exc

DQ] = 0.

The influence of the sample rotation to the resulting signal is described by reconversion

Hamiltonian. Its DQ form where rotor modulation is present during evolution time t1 is

written as (see also equations (2.40), (2.43), (2.47))

ˆ̄H
rec

DQ = −
∑
i<j

{
ωij(ϑ, ψ, t0 = t1) T̂

ij
2,2 + ω∗

ij(ϑ, ψ, t0 = t1) T̂
ij
2,−2

}
. (2.52)

The minus sign in the prefactor of this Hamiltonian is the result of the π
2 -phase shift of

the pulses of the reconversion period compared with the excitation period.

This kind of experiment, where pulse sequence is characterized by the DQ operator

excites even-order coherences which are distributed over the bandwidth in ω1 dimension

equal to 1
∆t1

. TPPI separate adjacent orders of coherences by the apparent offset frequency

∆ωφ = ∆φ
∆t1

10, where the phase increment is: ∆φ = π
pmax

. The highest quantum order

detected is ±pmax. In addition each order is modulated by the spinning frequency ωr

10For neighbouring even quantum orders is the offset frequency than 2 · ∆ωφ.
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which leads to the supplementary offset to the p-quantum coherence offset (p ·∆ωφ). This

results in the sideband spectrum for each p-quantum order (especially for DQ sideband

pattern see section 3.2). This can lead to the very complicated spectrum where a lot of

sidebands originating from the neighboured quantum orders overlap. Care has to be taken

to choose proper ∆t1, ∆φ and spinning frequency ωr to prevent overlapping and aliasing

of the sidebands from different orders. Selective excitation ([War79, War80, War81]) or

DQ filtering (see section 4.3) may be the solution to this problem.

Due to the fact that 2D MAS experiment is quite time consuming and for strong

coupled systems of spins-1/2 , ∆φ (pmax) has to be chosen small (high) enough which

decrease the resolution of the Fourier spectrum and thus more t1 increments has to be

made, we where concentrated to systems with relatively weak couplings (see section 3.3).

2.5.3 Spin counting MQ experiment

Spin counting experiment already described in section 2.4.4 can be realized under MAS

conditions. It is particularly important for systems with strong couplings where also higher

order coherences may be expected and line shapes are not of interest. It was shown by

H. Geen et al. [Gee99] that such an experiment can be used for studying spin clusters

under MAS on Adamantane. Their results show an agreement with the result from the

traditional experiment provided on static solids [Bau85] where eight pulse sequence (see

section 2.4.1.2) was used.

The general scheme of MQ spin counting experiment is shown in Figure 2.21. Evo-

lution time t1 between excitation and reconversion period is simply omitted (t1 = 0).

Excitation and reconversion periods are strictly rotor synchronized in the same way like

in section 2.5.2. Phase of the r.f. pulses acting during excitation period are changed in the

similar way like in TPPI experiment φ = m ·∆φ, where ∆φ = π
pmax

is related to the max-

imum observed coherence order pmax in the spectrum. DQ average Hamiltonian during

excitation period for pulse sequences like DRAMA, BABA and C7 (see sections 2.5.1.1,

2.5.1.2 and 2.5.1.3) according to their general form presented by equation (2.49) can be

written as (see also equation (2.50))

ˆ̄H
exc

DQ =
∑
i<j

{
ωij(ϑ, ψ, t0 = 0) e−i 2m·∆φ T̂

ij
2,2 + ω∗

ij(ϑ, ψ, t0 = 0) ei 2m·∆φ T̂
ij
2,−2

}
. (2.53)

DQ coherence will be thus shifted by the amount 2∆φ in each step of m. Starting time

point of the pulse sequence t0 is for excitation period not relevant and can be set to zero
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Figure 2.21: Spin counting MQ experiment under MAS. Reconversion period follows immediately

excitation period and both are rotor synchronized. R.f. pulses acting during excitation period are

shifted as follows: φ = m · ∆φ, where m = 0, 1, . . . , q − 1 (more details see text). Undesired

coherences are dephased during purging period n0τr (n0 = 1, 2, . . .).

like in section 2.5.2.

During reconversion period higher order coherences are reconverted to longitudinal

magnetization. In spin counting experiment reconversion period follows immediately ex-

citation period resulting in the initial phase to be the same like for the excitation Hamil-

tonian (t0 = n · τr ≡ t0 = 0)11. This can be simply written as:

ˆ̄H
rec

DQ = −
∑
i<j

{
ωij(ϑ, ψ, t0 = 0) T̂

ij
2,2 + ω∗

ij(ϑ, ψ, t0 = 0) T̂
ij
2,−2

}
. (2.54)

Minus sign presented in above equation takes care for the time reversibility of the recon-

version Hamiltonian.

Calculating of the intensity of the signal resulting from two successive periods excita-

tion and reconversion it will be found that it arise in longitudinal magnetization (see also

appendix C). DQ part of that signal is modulated by the cos(2∆φ · m) (see section 3.2)

term. Presence of the cosine factor shows that negative and positive frequencies can not

be distinguished corresponding to the single-channel detection ([SR94]). Fourier transfor-

mation according to m will shift DQ signal by the frequency 2 ∆φ · fsw, where fsw is the

half spectral width. In general each p-quantum order will be shifted by p ∆φ ·fsw. Because

effective average Hamiltonian representing by equations (2.53) and (2.54) is a ”pure” DQ

one ([War80]) it can excite only even orders of coherence. Therefore, visible coherences

will be p = 0, 2, 4, 6, . . . ,≤ pmax.

It is important to note that the p-quantum signal consequent upon spin counting

experiment is strictly periodic with the period 2π. Hence it is enough to vary the phase

11Reconversion Hamiltonian is rotor modulated (see e.g. equations (2.43)) and thus any changes in the

phase by 2π are not relevant.
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φ only in the range 0 . . . 2π. Number of phase increments q can not be varied arbitrary

(m = 0, 1, . . . , q − 1). Only complete phase cycles can be sampled and thus q has to fulfil

condition q = k ·2pmax, where k (k = 1, 2, . . .) represent periodicity. In addition numerical

Fourier transformation (fast fourier transform, FFT) requires 2j (j ∈ N) data sets and

thus k · pmax = 2j for obtaining correct results. Experimental results on Adamantane will

be presented in section 3.4.



Chapter 3

Measuring of Homonuclear

Dipole-Dipole couplings

In this chapter a various NMR r.f. pulse techniques will be used and compared for measur-

ing dipole-dipole couplings in amorphous polymers. If chemical shift anisotropies (CSA)

can be neglected with comparison to the dipolar coupling strength as well as B1 field

inhomogeneities the simple r.f. pulse experiment under MAS can be used for estimat-

ing dipolar couplings. Already existing theoretical analysis valid for fast spinning regime

([Got96, Gra97a]) are extended for moderate spinning speeds in section 3.1. As an ex-

perimental example hexamethylbenzene (HMB) has been chosen for evaluating the dipo-

lar coupling. In sections 3.2 and 3.3 high resolution multiple-pulse sequences like C7,

POST C7, BABA and DRAMA which are suitable for site selective measuring of the

dipolar couplings under fast MAS are compared. Their efficiencies are studied with con-

nection to elastomers. Initial part of the build-up curves is used to evaluate the relative

residual dipolar couplings in more complicated systems like natural rubber in section 3.3.2.

In section 3.4 the high resolution MAS spin counting experiment is presented. POST C7

pulse sequence (see section 2.5.1.3) has been used to measure the sizes of the dipolar spin

clusters in adamantane. It is shown that POST C7 provides comparable results to the al-

ready existing measurements performed by Geen et al. ([Gee99]) with C7 pulse sequence.

In the last section (section 3.5) double quantum (DQ) as well as multiple quantum (MQ)

coherences on static solids are presented. DQ filtering techniques (see section 4.3) are ap-

plied for eight pulse sequence and for thirty-two pulse sequence, respectively. Both pulse

sequences can be used for measuring relative dipolar couplings. Their efficiencies with

64
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respect to elastomers are compared in section 3.5.1. In section 3.5.2 MQ spin counting

experiment on elastomers is presented. Up to the 6-th order of coherence has been mea-

sured in high crosslinked polybutadiene rubber with thirty-two pulse sequence which was

up to now not reported on elastomers.

3.1 Single Quantum MAS experiment

In this section dipolar coupling will be measured from a single quantum (SQ) MAS ex-

periment. Theoretical bases for simple one pulse MAS experiment were already done in

section 1.6. Two spin-1/2 system coupled via dipole-dipole coupling was chosen to sim-

ulate the NMR signal (see equation (1.83)). Neglecting CSA terms it was shown that

MAS generate a symmetric SQ spinning sidebands spectrum (see Figure 1.4). Compar-

ing intensities of the spinning sidebands dipolar coupling strength d II
ij can be calculated

([Gra97a, Fil97]). For moderate spinning speeds when ωr w d II
ij an approximate solution

of the equation (1.83) will be presented. It was found by our computer simulation that

approximation up to the 6-th order is sufficient for this spinning regime.

For rapid spinning case (ωr À d II
ij ) equation (1.83) describing the signal from the

dipolar coupled spin-1/2 pair can be formally solved. The cosine function may be expanded

into the Taylor series and only up to the second-order coefficients will be considered.

Calculating the powder average through angles ϑ, ψ it can be found the approximate

solution

S̃ MAS
y (t) = 1 − 27

80
µ2︸ ︷︷ ︸

Central line

+
3
10

µ2 cos(ωrt)︸ ︷︷ ︸
1. Order sidebands

+
3
80

µ2 cos(2ωrt)︸ ︷︷ ︸
2. Order sidebands

(3.1)

with the parameter µ = d II
ij /ωr. Detailed derivation of the equation above can be found in

Graf thesis ([Gra97a], Appendix A). Assuming the integral intensity of the first sideband

Is1 and the integral intensity of the central line I0 the dipolar coupling can be calculated

by the help of equation (3.1) as

d II
ij = ωr

√
20 Is1/I0

3+ 27
4

Is1/I0
. (3.2)

This simple two spin system approximation can not be used if the MAS spectrum is

asymmetric which can be caused by spectrometer problems or by the influence of an

anisotropic coupling (e.g. B1 field inhomogeneity, CSA). The restriction for the second

order approximation can be made according to Filip et al. ([Fil97]) calculations as µ ≤ 0.5

(ωr ≥ 2d II
ij ). This restriction can be therefore considered as a condition for very fast
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spinning limit. For smaller µ the difference between the exact and the approximate result

became negligible for two spin system. In general the dipolar coupling can be also cal-

culated from the integral intensity of the second order sideband (see equation (3.1)) but

for the fast spinning case (µ ≤ 0.5) the intensity is at least 200 times smaller than the

intensity of the central line and thus due to the big experimental error of evaluating the

integral it has no use.

For moderate spinning speeds the error introduced by the considering only the second-

order terms increasing rapidly as µ approaches the value µ = 1 (Neglecting terms of

order four and higher an error of 25% is introduced to calculate ratio 1.-order sideband
central line when

µ = 1). The extension to higher orders is necessary to get sufficient precise results. In

moderate spinning regime (µ . 1) the expansion until 6-th order of equation (1.83) is

sufficiently enough. Integral intensities of the central line I0, 1.-order sideband Is1 and

2.-order sideband Is2 for powder sample were calculated and result can be written in

following form

I0/Ist = 1 − 27
80 µ2 + 2043

35840 µ4 − 89343
16400384 µ6

Is1/Ist = 3
20 µ2 − 153

4480 µ4 + 10611
2928640 µ6 (3.3)

Is2/Ist = 3
160 µ2 + 9

2560 µ4 − 241623
328007680 µ6 .

The intensities are normalized by the integral intensity of the static NMR spectrum Ist.

Due to the symmetry of the sideband spectrum (see e.g. Figure 1.4) only integral inten-

sities of the one half of the spectrum are represented by symbols Is1 and Is2. From set of

equations (3.3) dipolar coupling can be directly determined similar like in equation (3.2).

Three different solutions can be found comparing intensities of Is1/I0, Is2/I0 and Is2/Is1.

Due to the small intensity of the 2.-order sideband (Is2) which brings a big experimen-

tal error in evaluating of the integral, only first solution (Is1/I0) will be considered for

evaluating dipolar coupling d II
ij .

If the sample has transverse isotropy the similar formula like equation (3.3) can be

derived for the ϑ angle dependence. The expansion until 4-th order for such a case can be

found elsewhere ([Fil97]).

According to equation (3.3) the dipolar coupling d II
ij was calculated combining expres-

sion for the 1.-order sideband and the central line in hexamethylbenzene (HMB). MAS

spectra of HMB for different rotational frequencies are shown in Figure 3.1. It has to be

noted that HMB is not the ideal two spin system sample. The molecule itself rotate very
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Figure 3.1: 1H MAS spectra of hexamethylbenzene (HMB) measured at different rotational fre-

quencies ωr at room temperature. Spectra are normalized to the same amplitude.

fast and intra-molecular dipolar coupling between protons (1H) in the same molecule are

averaged out. Only the spin-spin interactions between molecules (inter-molecular) still

remains. Thus, only ’effective’ dipolar coupling could be measured. The last spectrum in

Figure 3.1, where sample was rotating around the rotor axis under MAS conditions with

the frequency ωr/2π = 11 kHz, was chosen to evaluate the coupling. The ’effective’ dipo-

lar coupling until the 6-th order approximation was estimated as dij,ef = 2π × 8.8 kHz.



68 3.2. DQ sideband pattern under MAS

3.2 DQ sideband pattern under MAS

In this section the main difference between δ-pulses sequence (DRAMA/BABA) and spin-

lock pulse sequences (C7/POST C7) will be elucidated. Influence of their DQ dipolar

average Hamiltonians (see section 2.5.1) on the spin system coupled via dipolar coupling

will be studied. We will concentrate on the calculation of the intensities of the DQ co-

herence which can be used for determining dipolar couplings. Experimental confirma-

tion of the spinning sideband pattern for DRAMA/BABA and C7 will be also presented.

Two-dimensional MQ experiment is going to be considered only in this section (see also

section 2.5.2).

For deriving DQ intensities at the end of the reconversion period the general form of

the zero-order average Hamiltonian for excitation and reconversion period will be used

and

ˆ̄H
exc/rec

DQ =
∑
i<j

ω
exc/rec
ij T̂

ij
2,2 + (ωexc/rec

ij )∗ T̂
ij
2,−2 . (3.4)

ω
exc/rec
ij in above equation represents the amplitude and the phase of the excita-

tion/reconversion average Hamiltonian (see equations (2.51),(2.52)). In general ω
exc/rec
ij

is the complex term and it is useful to separate the phase Φexc/rec
ij and the amplitude

|ωexc/rec
ij | variables from it as

ω
exc/rec
ij = |ωexc/rec

ij | ei Φ
exc/rec
ij . (3.5)

Detailed calculation for the DQ signal intensity for a two spin-1/2 system at the end of the

reconversion period was shown in Appendix C and has the form (see equation (C.20)):

SDQ
I = cos(Φrec

ij − Φexc
ij ) sin(|ωrec

ij |τ) sin(|ωexc
ij |τ) . (3.6)

In addition |ωexc/rec
ij | and Φexc/rec

ij can depend from Euler angles ϑ and ψ (e.g. see sec-

tion 2.5.1.1). Presuming the same probability for all angles ϑ,ψ powder average over

angles ϑ,ψ has to be performed to get the resulting signal intensity of the DQ coherence

SDQ
I in equation (3.6). τ represents an equivalence of the duration of the excitation and

reconversion period.

For the moment the phase factor in equation (3.6) inside of the cos function will be not

regarded because it has no influence to the amplitude of the DQ signal for pulse sequence

like DRAMA/BABA as well as for C7 (see sections 3.2.1,3.2.2). In addition let us assume
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a) b)

Figure 3.2: Orientation dependence of DQ intensities from angles ϑ,ψ presented in spherical

coordinates for: a) C7/POST C7 pulse sequences, b) DRAMA/BABA pulse sequences.

for simplicity |ωrec
ij | = |ωexc

ij | = |ωij(ϑ, ψ)| the DQ intensity gets the form

SDQ
I =

〈
sin2(|ωij(ϑ, ψ)|τ)

〉
ϑ,ψ

. (3.7)

In the limit of small excitation/reconversion times τ ¿ |ωij(ϑ, ψ)|−1 the sin function in

equation (3.7) can be spread to the Taylor series, where higher orders can be neglected.

Separating for convenience |ωij(ϑ, ψ)| to the orientation independent norm ωij,norm and

angle dependent function g(ϑ, ψ) where |g(ϑ, ψ)| < 1 the DQ intensity for short time limits

is derived and it holds that

SDQ
I ' 〈|g(ϑ, ψ)|2〉

ϑ,ψ
ω2

ij,norm τ2 . (3.8)

The angle dependent functions |g(ϑ, ψ)|2 for C7 and DRAMA/BABA pulse sequences are

shown in Figure 3.2. Equation (3.8) shows us that each pulse sequence is characterized by

the average factor ḡ which can be derived for DRAMA/BABA pulse sequences (see also

section 3.2.1) from1

ḡ2
DRAMA/BABA =

1
4π

∫ π

0
dϑ sin(ϑ)

∫ 2π

0
dψ sin2(2ϑ) cos2(ψ) =

4
15

(3.9)

and for C7 pulse sequence (see also section 3.2.2) from

ḡ2
C7 =

1
2

∫ π

0
dϑ sin(ϑ) sin2(2ϑ) =

8
15

. (3.10)

1Powder averaging over angles ϑ, ψ is considered.



70 3.2. DQ sideband pattern under MAS

Multiplying the average factor ḡ with the orientation independent norm ωij,norm for par-

ticular pulse sequence (see equation (3.8)) effectiveness of the recoupling pulse sequences

can be calculated. More details about DRAMA/BABA and C7 will be presented in the

next sections.

3.2.1 DRAMA/BABA

It was shown in sections 2.5.1.1 and 2.5.1.2 that DRAMA and BABA pulse sequences can

be described by the same zero-order average Hamiltonian. Improved version of BABA

pulse sequence acting on the two rotor periods (see Figure 2.17b) has better compen-

sation properties with respect to resonance offsets and small CSA (||ĤCSA|| ¿ ||ĤD||).
The signal intensity just after the detecting pulse in two-dimensional MQ experiment (sec-

tion 2.5.2) can be assumed as the signal stored in the longitudinal magnetization just after

the reconversion period (see also discussion in Appendix C). If in addition so-called total

spin coherence ([Wei83, Mun87]) is excited during excitation period all coupled spins are

active in MQ coherences and therefore no evolution occurs under the influence of dipolar

Hamiltonian (equation (1.59)). Under this conditions signal intensity at the beginning of

the detection period (t2 = 0) can be calculated for two spin-1/2 system (see equation (3.6)

and equation (C.14))

SI(t1) =
〈
cos(|ωrec

ij (t1)|τ) cos(|ωexc
ij |τ)

〉
+ cos(2∆ωφt1)

〈
sin(|ωrec

ij (t1)|τ) sin(|ωexc
ij |τ)

〉
,

(3.11)

where

ωexc
ij = − 3

π
√

2
d II

ij sin(2ϑij) cos(ψij)e−i2 ∆ωφ t1 (3.12)

ωrec
ij (t1) = − 3

π
√

2
d II

ij sin(2ϑij) cos(ψij + ωrt1) . (3.13)

The symbol 〈. . .〉 represents the powder average over the angles ϑ, ψ in equation (3.11).

Time dependence of the ωexc
ij in equation (3.12) is omitted because it appears only in

the complex term e−i2 ∆ωφ t1 and thus is not relevant in its absolute value used in equa-

tion (3.11). Nevertheless it influences the phase of the resulting signal described in the

cos term. τ corresponds to the duration of the excitation/reconversion period and can be

only incremented in steps of the rotor period τr (τ = N · τr, or τ = N · 2τr
2).

2For improved version of BABA pulse sequence acting on the two rotor periods (see section 2.5.1.2).
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Figure 3.3: Simulated DQ spinning sideband pattern for DRAMA/BABA pulse sequence for

different number of rotor cycles: a) N = 2, b) N = 4. The dependence on the parameter η = ωr

dij

for different coupling strength dij is shown. The relative amplitude of the first DQ sideband is

represented by symbol a.

The first term in equation (3.11) describes the rotor-modulated longitudinal magne-

tization and is usually filtered out from the spectrum (see also section 4.3). The second

term is the TPPI-labeled DQ coherence where TPPI-labeling is represented by the phase

factor Φexc = 2 ∆ωφ t1. Using Fourier-Bessel series this term can be evaluated ([Got96])

SDQ
I (t1) =

∞∑
k=−∞

1
2

{
1−(−1)k

} 〈
J 2

k

( 3
π
√

2
d II

ij sin(2ϑij) τ
)〉

cos
(
(2∆ωφ +kωr)t1

)
, (3.14)

where Jk are the integer-order Bessel functions. The presence of the cos factor in equa-

tion (3.14) shows that negative and positive frequencies can not be distinguished cor-

responding to single-channel detection. The argument of the cos function describes the

separation of the DQ coherence by TPPI procedure. The DQ spectrum is than shifted to

the frequency (2 ∆ωφ)/2π with symmetrically distributed sidebands left from this point at

k ·ωr (ωr = 2πfr). Hence, a symmetric spinning sideband pattern is generated in indirect

t1 dimension (DQ dimension) with no central line. Only odd-order spinning sidebands at

the frequencies ±(2k + 1)fr, (k ∈ N) are present with an intensity modulated by Bessel

functions. The relative intensities of the sidebands are determined by the orientation
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Figure 3.4: Simulated DQ spinning sideband pattern for different excitation times τ = N · τr.

Dipolar coupling strength is chosen 5 times smaller than rotational frequency fr which corresponds

to the dipolar coupling strength dij = 2π 1.6 kHz for fr = 8 kHz. More details see description

under Figure 3.3.

and the strength of the dipolar coupling and by duration of the excitation/reconversion

period τ .

Simulated spectra of DQ spinning sideband pattern for DRAMA/BABA pulse sequence

are shown in Figure 3.3. Isolated spin-1/2 pairs in a powder have been only considered.

Simulations of equation (3.11) (DQ part only) and equation (3.14) showed the conformity

for powders as it was expected. The patterns for different excitation time τ = N · 1
fr

of DRAMA and the basic version of BABA pulse sequence are shown in Figure 3.3 as a

function of the ratio ωr
dij

= η (see equation (3.14)) for N = 2 and N = 4. The powder

average is performed numerically. Rotational frequency is chosen fr = 8 kHz. As can

be seen from Figures 3.3a and 3.3b number of sidebands are decreasing with increasing

η (decreasing the coupling strength dij) in both cases. For very weak dipolar couplings

(or very high spinning speeds) only the first order sidebands govern the spectrum. In
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Figure 3.5: Simulated DQ build-up curves for spin-1/2 pairs with different dipolar couplings dij =

2π 0.3 kHz (asterisks) and dij = 2π 0.5 kHz (squares) for DRAMA/BABA pulse sequence. Rotor

frequency was chosen fr = 8 kHz. The points represent integral intensities of DQ coherence

calculated at full rotor periods.

this regime, the strength of the dipolar coupling is solely reflected in the intensity of this

lines and no additional information can be obtained from other spinning sidebands. With

increasing number of cycles N = 4 (Figure 3.3b) number of sidebands is increasing, thus

for very high excitation times one has to expect many sidebands where the probability

of overlapping with sidebands from other coherence orders is very high. Growing of the

sidebands with increasing excitation/reconcersion time is shown in Figure 3.4. Dipolar

coupling was chosen five times smaller than the spinning frequency (dij = 2π 1.6 kHz).

Summing the intensities of the odd-order DQ sidebands up to the sufficient order3

(equation (3.14)) for different excitation times τ (τ = N · τr) so-called build-up curves can

be generated. The simulated DQ build-up curves for spin-1/2pairs in a powder are presented

in Figure 3.5. Comparison of different dipolar coupling strengths for DRAMA/BABA

pulse sequence in the regime of fast MAS (ωr À dij) is presented. The strong dependence

on the coupling strength is evident from the figure even for small changes of the coupling.

The initial part of the build-up curves can be used for evaluating dipolar coupling strength.

3Where the influence of higher orders is negligible.
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Figure 3.6: 1H 400 MHz DQ spectrum of polybutadiene melt measured with DRAMA pulse

sequence at room temperature. Only the trace which corresponds to the CH2 group from 2D exper-

iment (more details see section 3.3) was chosen to visualize the appearance of the DQ sidebands.

TPPI is performed to separate DQ coherence (∆ωφ = π/(4∆t1); ∆t1 = 12.5 µs). In addition 32

step DQ filter (see section 4.3) was used to filter out higher order coherences and pulse imperfec-

tions. Rotational frequency was chosen fr = 10 kHz and excitation time τ = 300µs. The length of

the π
2 r.f. pulses was 3µs. 20 ms delay after the reconversion period was chosen to allow unwanted

transients to decay (see Figure 2.20; n0 = 200).

Its slope versus the square of the excitation/reconversion time (Nτr)2 is proportional to the

square of the dipolar coupling d 2
ij (see also equation (3.8)). As can be seen from Figure 3.5

the maximum integral intensity of the DQ coherence can reach about 52% of the initial

Zeeman order for a spin-1/2 pair in a powder. Increasing excitation/reconversion time

τ further the DQ coherence exhibits oscillatory behaviour. Experimental results shows

(see section 3.3) that this behaviour can not be used for evaluating dipolar couplings.

Increasing number of rotor synchronized cycles both the intensity of DQ spectra and the

sideband pattern might be influenced by the molecular dynamics and pulse imperfections.

Therefore, oscillatory regime will be in most of the cases strongly influenced in real system.

Experimental confirmation of the spinning sidebands pattern is shown in

Figure 3.6 for DRAMA pulse sequence. Investigated sample was polybutadiene melt

{−CH2 − CH = CH − CH2−} (more details see section 3.3 and Figure 3.10). Experi-

mental results shows that in the fast spinning regime fr = 10 kHz the first order spin-

ning sidebands dominate the spectrum for protons (1H) in CH2 group. In fact this is
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only illustrative result that spinning sidebands appear and can not be used for further

investigation. Due to the bad compensation property of DRAMA pulse sequence (see

section 2.5.1.1) resonance offsets influence the spectrum. Influence of CSA can be ne-

glected for this high spinning regime for this sample. Even after the DQ filtration (see

section 4.3) performed in this experiment the rotor modulated magnetization behaving

like a zero-quantum coherence (first term in equation (3.11)) is observed in the middle of

the spectrum (see Figure 3.6). Influence of the neighboured protons from CH group on

the protons in CH2 group was completely not visible for DRAMA pulse sequence. More

details see section 3.3.

Experimental results performed on the same sample with C7 pulse sequence will be

presented in the following part.

3.2.2 C7/POST C7

C7 pulse sequence is much more efficient with the comparison to DRAMA and BABA

pulse sequences for powders. Improved version called POST C7 is even much less sen-

sitive to the resonance offsets as the original one (more details see section 2.5.1.3). To

calculate the signal intensity just after the detecting pulse (see section 2.5.2) zero-order

average Hamiltonians for excitation and reconversion period have to be derived, respec-

tively. According to equations (3.4), (2.51) and (2.52) the complex factors ω
exc/rec
ij can be

estimated for both periods

ωexc
ij = ω ij

C7 e−i(2∆ωφt1+ψij) and ωrec
ij = ω ij

C7 ei(ωrt1−ψij) , (3.15)

where

ω ij
C7 =

343(i + eiπ/14)
520π

√
2

d II
ij sin(2ϑij) . (3.16)

As can be seen from above relations both ωexc
ij and ωrec

ij are time t1 independent in

their absolute values which is not the case for DRAMA/BABA pulse sequence (see

equations (3.12), (3.13)). Separating the phase and the amplitude variables from equa-

tion (3.15) the intensity of the signal (t2 = 0) for system consisting of two coupled spins-1/2

can be calculated (see equation (3.6) and equation (C.14)) as

SI(t1) =
〈
cos2(|ω ij

C7|τ)
〉

+ cos
(
(2∆ωφ + ωr)t1

) 〈
sin2(|ω ij

C7|τ)
〉

, (3.17)

where

|ω ij
C7| =

343
520π

d II
ij sin(2ϑij)

√
1 + sin

π

14
. (3.18)
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Figure 3.7: Comparison of the effectiveness of C7/POST C7 (asterisks) and DRAMA/BABA

(squares) pulse sequence. DQ build-up curves were simulated for dipolar coupling strength dij =

2π 1.0 kHz and for rotational frequency fr = 8 kHz. The points represent integral intensities of the

DQ coherence calculated at full rotor periods.

Averaging over all possible orientations is described by the symbol 〈. . .〉 in equation (3.17).

Unlike DRAMA and BABA pulse sequences the magnitude of the factor |ω ij
C7| for C7 pulse

sequence does not depend on the Euler angle ψij (see equation (3.18)), leading to a high

overall efficiency for orientationally disordered samples such as powders.

The first term in equation (3.17) describes the remaining part of the initial Zeeman

order and has to be filtered out from the resulting spectrum. Despite of DRAMA/BABA

pulse sequence (see first term in equation (3.11)) it is not rotor modulated. The second

term in equation (3.17) is the most important DQ coherence, modulated by the rotor

frequency. Modulation can be seen from the argument of the cos function. Orientation

dependent norm |ω ij
C7| of the C7 pulse sequence (equation (3.18)) does not depend on the

evolution time t1 hence no spinning sidebands will be seen unlike DRAMA/BABA pulse

sequence. Desired DQ signal will be found at the frequency (2∆ωφ + ωr)/2π in indirect

dimension (ω1 dimension), where ∆ωφ represent the phase shifting of the pulses during

excitation period by TPPI procedure (see section 2.5.2). The relative intensity of the DQ
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Figure 3.8: 1H 400 MHz DQ spectrum of polybutadiene melt measured with POST C7 pulse se-

quence at room temperature. Similar like in Figure 3.6 only the trace corresponding to the frequency

of the CH2 group in ω2 (direct) dimension is shown. Separation of DQ coherence was made by

TPPI so: ∆ωφ = π/(4∆t1), ∆t1 = 15.625 µs. 32 step DQ filter (see section 4.3) was chosen to

filter out all unwanted coherences and pulse imperfections. Excitation time τ was set to 500 µs.

Strength of the r.f. pulses was ωB1 = 7ωr (ωB1 ' 56 kHz). To allow unwanted transients to decay

15 µs delay was inserted between reconversion and detection pulse (see Figure 2.20; n0 = 120).

signal is determined by the orientation and the strength of the dipolar coupling and by

the duration of the excitation/reconversion period (see argument in the sin function in

equation (3.17)).

Assuming spin-1/2 pairs in a powder simulation of the DQ build-up curves was per-

formed to compare the effectiveness of C7/POST C7 and DRAMA/BABA pulse sequences.

It is shown in Figure 3.7. The maximum DQ integral intensity for C7 pulse sequence is

about 73% of the initial Zeeman order, unlike DRAMA where it is only about 52%. For

higher excitation times C7 exhibit oscillatory behaviour similar like DRAMA. To evaluate

dipolar coupling strength it is enough to regard the initial part of the build-up curve. The

slope of this part versus τ2 is proportional to the square of the dipolar coupling d 2
ij (see

equation (3.8)).

DQ spectrum of the polybutadiene melt {−CH2 − CH = CH − CH2−} with

POST C7 pulse sequence is shown in Figure 3.8 similar like for DRAMA pulse sequence

(see page 74). Fast spinning regime was chosen with the frequency fr = 8 kHz. The highest

peak in the figure corresponds to the strong connectivity between the protons in the CH2

group. Zero frequency position in Figure 3.8 was set to the frequency related to the TPPI
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phase shifting procedure which results for DQ coherence as 2∆ωφ/2π. No additional peaks

appear in the negative frequency region in the DQ spectrum as was expected. Remaining

peak left from the CH2 group is related to the dipolar coupling between protons in the

CH and CH2 group in polybutadiene which was not observable in the case of DRAMA

pulse sequence (see Figure 3.6). Experimental results from POST C7 show much highest

effectiveness than from DRAMA pulse sequence. Positive and negative frequencies were

clearly distinguished in DQ spectrum which was not the case for DRAMA as well as for

BABA pulse sequence. More details will be presented in the next section.

3.3 DQ spectroscopy under MAS

In this section 2D MQ spectroscopy will be explained. As was already mentioned in

sections 2.5.2 and 3.2 MQ coherences are detectable in indirect ω1 dimension. Thus

two-dimensional experiment is necessary to perform. The coherences are excited during

excitation period (see e.g. Figure 2.20) followed by the evolution period t1. If so-called

total spin coherence is excited MQ coherences does not evolve under the influence of the

dipolar Hamiltonian (see equation (2.11)). Nevertheless evolution under the influence of

chemical shift interaction is present4. In real system pure on-resonance excitation is usually

impossible, thus resonance offsets caused by linear interactions like e.g. isotropic chemical

shifts or CSA will appear p-times shifted from resonance frequency in ω1 dimension for

each p-quantum coherence (see equation (2.35)). Broadening caused by CSA will be

than p-times higher in ω1 dimension compared to ω2 dimension. For DQ coherence these

frequency shifts (caused by linear interactions) will be twice larger in ω1 dimension (double

quantum dimension) than in ω2 dimension (single quantum dimension).

In Figure 3.9 the model system of two functional groups representing with two chem-

ical shifts ωA and ωB is shown. It serves as the intuitive model for understanding DQ

coherence. In Figure 3.9a system with two isolated spins is shown. The dipolar coupling

between them is very weak and can be neglected. Only DQ coherence between spins within

the same group (intragroup coupling) is excited during the excitation period of the pulse

sequence and it appears at the frequency positions 2ωA and 2ωB in the DQ dimension,

respectively. In the single quantum (SQ) dimension frequencies for different groups re-

mains unchanged at positions ωA and ωB. In Figure 3.9b a model system is shown for

4Other interactions like e.g. J-coupling will be not assumed because they are negligible for our samples.
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Figure 3.9: Structure of DQ spectrum for two model systems consisting of two functional groups.

spins where dipolar coupling between different functional groups is already present (inter-

group coupling). This coupling evolves during evolution time with sum of the chemical

shifts for both groups and thus appear at the frequency ωA + ωB in DQ dimension. After

reconversion period spins from the different groups carries the original frequency at which

they appear in the SQ dimension during detection period. Drawing diagonal line between

the coherences appeared from spins originated from the same functional groups, DQ co-

herences representing the connectivities between this groups appear equally distributed

around this line as can be seen from Figure 3.9b.

For demonstrating connectivities between different functional groups the sample of

polybutadiene melt was chosen. From the viewpoint of NMR polybutadiene exhibit both

liquid-like and solid-like features. At temperatures well about the glass transition temper-

ature dipolar couplings are averaged out by fast molecular motion. However, the presence

of topological constrains and permanent crosslinks prevent the chain motion to be free.

Thus, dipolar interaction is not completely averaged out and the residual dipolar cou-

pling is possible to measure. Our measurements were performed at room temperature

which was well above the glass transition temperature (Tg = 175K for our sample). At

this temperature residual dipolar coupling is scaled in order of 1 kHz which allows us to

measure connectivities between groups like e.g. CH and CH2 in the regime of fast MAS

(ωr À ωD). Influence of the CSA for our investigated polybutadiene melt will be neglected

(||ĤCSA|| ¿ ||ĤD||).
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Figure 3.10: 1H 400 MHz DQ MAS spectrum of polybutadiene melt at room temperature.

POST C7 was used at rotor frequency 8 kHz. To separate DQ coherence TPPI phase shifting

scheme is performed as in Figure 3.8. Excitation time τ was 1.5 ms to see the maximal DQ signal

intensity. A delay 15 ms was included after reconversion period to allow unwanted transients to

decay.

Chemical structure of the polybutadiene melt is shown in Figure 3.10a

(Mw=129 000 g/mol, Mn=125 000 g/mol). Cis and Trans conformations of polybutadiene

were not possible to distinguish from our measurements. The spinning speed fr = 8 kHz

was not high enough to separate them at the proton frequency ω0, 1H/2π = 400 MHz. The

percentage of the vinyl butadiene (labeled (c) in Figure 3.10a) was found to be 8% and

thus, it was not visible in DQ spectrum (see Figure 3.10b). The SQ projection is found at

the top of the DQ spectrum. Experiment qualitatively agree with that made by R. Graf

([Gra97a]). Existence of the peaks in DQ spectrum shows that DQ coherences were estab-

lished between spins which are relatively close neighbours in space. Only such spins which

are close together can contribute to the intensity of the peaks. Dipolar connectivities were

found between both groups CH and CH2. Due to the low intensity of the signal originated

from protons (labelled c) in vinyl group connectivities between other groups were not ob-

served. When comparing intensities of different groups one should keep in mind that also

the (relative) number of protons of the corresponding group influence them as well as the

molecular dynamics. The strongest DQ signal is found between protons inside of CH2

group (labelled b − b) in polybutadiene. Dipolar connectivities between protons from the

double bond group (a− a) are also visible. Cross-peaks equally distributed from diagonal
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line (labelled a− b) shows that dipolar coupling between different groups CH and CH2 is

not completely averaged out by fast molecular motion. The cross-peaks indicates that DQ

spectroscopy is an unique technique for measuring dipolar connectivities between different

groups in polybutadiene melt and thus residual dipolar couplings can be estimated (see

section 3.3.1).

For measuring residual dipolar couplings between different and within the same func-

tional groups single DQ experiment presented in Figure 3.10 is still not sufficient. Necessity

of more 2D experiment for different excitation/reconversion times is required. Build-up

curves has to be generated as will be shown in the next part.

3.3.1 DQ build-up curves

Intensities of DQ coherences were already expressed in sections 3.2.1 and 3.2.2 for

DRAMA/BABA and C7/POST C7 pulse sequences, respectively (see DQ part of equa-

tions (3.11) and (3.17)). For short excitation times τ this relations, valid for two spin-1/2

system, can be approximated by parabolic time τ dependence (equation (3.8)). It was

shown ([Gra97a]) by computer simulations that this approximative solution can be used

even for systems where more spins interact together. In these cases amplitude of the build-

up curve is strongly modulated as well as its oscillatory behaviour (see e.g. Figure 3.7).

Thus for longer excitation times two spin approximation can not by used. Nevertheless

the short excitation time part of the build-up curve can be used for evaluating the dipolar

coupling strength. It was simulated ([Gra97a]) that for excitation time τ < 0.5 2π
dij

for

C7/POST C7 pulse sequence (τ < 0.25 2π
dij

for DRAMA/BABA pulse sequence) the error

assuming isolated pairs of spins is less than 10% comparing results from a system where

more spins were coupled together. This allow us to use two spin system model in the limit

of short excitation and reconversion times. In real experiment equation (3.8) for intensity

of the DQ coherence can be in this cases rewritten in the more useful way5

IDQ ≈ A ḡ2 K2
norm (d II

ij )2 τ2 , (3.19)

where A represents the instrumental parameter and can not be avoided from an exper-

iment. ḡ is the average geometrical factor and together with the norm Knorm of the

particular pulse sequence describes their excitation strength. Pulse sequence parameters

5Knorm is the dipolar coupling independent norm of the particular pulse sequence, Knorm =
ωij, norm

d II
ij

(see equation (3.8)).
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Pulse Sequence |g(ϑ, ψ)| Knorm ḡ · Knorm

DRAMA/BABA sin(2ϑ) cos(ψ) 3
π
√

2
0.348

C7/POST C7 sin(2ϑ) 343
520π

√
1 + sin π

14 0.169

Table 3.1: Excitation strength of the pulse sequences. In the last column powder average is used

for calculating average geometrical factor ḡ.

ḡ and Knorm are listed in Table 3.1. Excitation/reconversion time τ in equation (3.19)

can be incremented only in steps of 2τr for C7/POST C7 and BABA6. In real systems

relaxation of spins during excitation as well as during reconversion period has to be taken

into account. It can be described approximately through effective relaxation rate Teff and

equation (3.19) can be extended as

IDQ ≈ A ḡ2 K2
norm (d II

ij )2 τ2 e
− τ

Teff . (3.20)

Experimental factor A plays a crucial role and can not be removed from above equation.

As a consequence only relative intensities are possible to measure with the help of build-up

curves.

DQ build-up curves measured on the polybutadiene melt which has been already pre-

sented in Figure 3.10a are shown in Figure 3.11. Different intensities correspond to the

different functional groups as it is indicated. Experimental results show that the strongest

coupling comes from the protons in CH2 group as was expected. Fitting the experimental

DQ build-up curves for different functional groups using equation (3.20) the relative values

of the residual couplings for different groups can be estimated by7

(
Dres

CH2

)
:
(
Dres

CH2−CH

)
: (Dres

CH=CH) = 1.0 : 0.63 : 0.51 . (3.21)

The relative values are scaled to the value of Dres
CH2

. Dres represent the scaled dipolar

coupling due to the fast molecular motion. Error during the fitting process was 2%, 4%

and 6% for each group respectively. It has to be noted that the fitting curves already

represent quite big error because we were out of the limit for small excitation times. Thus

this fitting errors are not so relevant and they might be even higher for our sample. At

6Extended version of BABA is only assumed (see Figure 2.17b). DRAMA and basic version of BABA

will be not used because of their bad compensation effects.
7We will use the symbol Dres instead of dII for residual dipolar coupling.
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Figure 3.11: Proton DQ build-up curves for polybutadiene melt measured at room temperature.

POST C7 pulse sequence was used to record build-up curves (more details see description under the

Figure 3.10). Excitation time was varied in steps of 2τr (τr = 125 µs) to achieve full compensation

in POST C7 (see section 2.5.1.3). Solid lines represent fitting results from equation (3.20) with

fitting parameters d II
ij and Teff .

this rotor frequency fr = 8 kHz we were not able to distinguish between Cis and Trans

conformations in polybutadiene thus, all values Dres
CH2

, Dres
CH2−CH and Dres

CH=CH represent

effective residual dipolar couplings coming from both conformations. To resolve Cis from

Trans conformations from DQ spectra higher rotational frequencies or stronger ~B0 fields

are required.

3.3.2 Residual dipolar couplings in natural rubber.

In this section residual dipolar couplings between different functional groups in natural

rubber will be measured with the help of 1H DQ spectroscopy. Results from different pulse

sequences namely BABA, C7 and POST C7 will be qualitatively compared.

Natural rubber (NR) belongs to the category of elastomers. In elastomers at tempera-

tures well above the glass transition temperature dipolar couplings are much reduced due

to the fast molecular motions. However, presence of topological constraints and perma-

nent crosslinks prevent the chain motion to be free so dipolar interactions are not fully
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Figure 3.12: 400 MHz 1H spectra of Natural Rubber with its structure schematically shown in

figure a) measured at different rotational frequencies namely: b) fr = 0 Hz; c) fr = 4 kHz; d)

fr = 8 kHz.

averaged out. Depending on the degree of motional restrictions, these residual dipolar

interactions may be quite small. In NR residual dipolar couplings are scaled on the order

of few kHz. This gives rise to measure dipolar connectivities between different functional

groups with DQ spectroscopy under the condition of fast MAS.

NR investigated in this section was crosslinked with sulfur (S) in the traditional way

where a certain amount of sulfur was added together with an accelerator into the rubber

material, before the vulcanization at temperature 150 ◦C was done. The sulfur and accel-

erator content was 3.0 phr (parts-per-hundred rubber) and 0.54 phr, respectively. The glass

transition temperature has been estimated by DSC (differential scanning calorimetry) to

be Tg = 208K. Thus NR was at room temperature (298K) well above the glass tran-

sition temperature. From GPC (gel-permeation chromatography) molecular mass of the

precursor chains was established as Mw = 850 000 g/mol. Averaged molecular mass of

inter-crosslink chains Mc was estimated using uniaxial stress-strain measurements and

swelling measurements ([Men99]) as Mc = 3700 g/mol.

Measured NR is schematically shown in Figure 3.12a. Three different groups were

found with 1H NMR spectroscopy namely CH, CH2 and CH3. Spectra at different rota-

tional frequencies are shown in Figure 3.12b−d. Without MAS the three different groups
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Figure 3.13: 1H DQ spectrum of Natural Rubber (Figure 3.12a) acquired with BABA pulse se-

quence (see Figure 2.17b) at rotor frequency fr = 8 kHz. R.f. pulse width was chosen comparable to

C7 pulse sequence (see Figure 3.14) as tp = 4.3 µs. DQ coherences were excited during excitation

period with duration τ = 500 µs.

were not resolved (see Figure 3.12b). Spinning the sample about the rotor axes tilted

by 54.7◦ from the ~B0 field direction additional averaging is introduced. Thus, for high

rotational frequencies dipole-dipole coupling as well as CSA8 are averaged out and only

isotropic chemical shift survives (more details see section 1.6). At frequencies 4 kHz and

8 kHz (Figure 3.12c and d) the different groups were almost fully resolved. Comparing

figures c) and d) it can be seen that the ratio between CH2 (labeled (b)) and CH3 (labeled

(c)) group is changed with increasing rotational frequency. This interesting behaviour is

most probably caused by better averaging during MAS for protons in CH2 group than

in CH3 group. CH2 group is ”fixed” to the chain therefore is much less mobile than

CH3 group which is relatively free, hence MAS acting like complementary averaging has

stronger influence to the CH2 group so the line becomes higher and narrower. In addition

also intergroup dipolar coupling (b) − (b) (see Figure 3.12a) is averaged out by MAS and

can cause similar effects of narrowing of the line corresponding to the CH2 group.

DQ spectrum of NR is shown in Figure 3.13. BABA pulse sequence was chosen (see

Figure 2.17b) to excite DQ coherences at rotational frequency fr = 8 kHz. Clear evidence

8Asymmetry part of the chemical shift interaction is not considered (see equation (1.23)).
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Figure 3.14: Comparison of effectiveness of C7 a) and POST C7 b) pulse sequences. Proton

DQ spectra are presented for NR similar like in Figure 3.13 at spinner frequency fr = 8 kHz and

excitation/reconversion time τ = 1.25 ms. Peaks marked (a), (b), (c) corresponds to the various

functional groups in NR (see Figure 3.12a). Dipolar connectivities between different groups are

assigned in DQ dimension as it is indicated. Peak (d) represents unwanted magnetization exchange

which was established during time τ0 = 15 ms, needed after reconversion period for dephasing

unwanted transients.

of rotational sidebands in DQ dimension can be seen from the right spectrum in Figure 3.13

as was already explained in section 3.2.1. Dipolar connectivities between different func-

tional groups can be seen from the left spectrum in the figure. BABA pulse sequence was

not so efficient for exciting DQ coherences. Quite a lot of noise in DQ dimension can be

seen in the spectrum. Intensity of the inter-molecular dipolar coupling CH ↔ CH was

hardly resolved from noise. Detailed description of dipolar connectivities between differ-

ent functional groups can be seen from Figure 3.14a where C7 was used for recording the

signal. C7 as well as POST C7 (Figure 3.14b) were much more effective than BABA pulse

sequence. It can be directly seen comparing Figures 3.14 and 3.13 that signal to noise in

DQ dimension was increased and all possible dipolar couplings were seen as it is indicated
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in Figure 3.14a. On the top of the two-dimensional spectra the SQ projections are shown.

Some conclusions can be made from qualitative analysis of the DQ spectra. First of all

it has to be noted that we were not able to separate intergroup dipolar coupling CH2 ↔
CH3 (labeled as (c) − (b), (b) − (c) in Figure 3.14a) from intragroup couplings between

protons of CH2 ((b) − (b)) and CH3 ((c) − (c)) groups. Hence, effective residual dipolar

couplings can be only discussed for this groups. Nevertheless dipolar connectivities through

space between CH2 ↔ CH ((b)−(a)) and CH3 ↔ CH ((c)−(a)) were clearly distinguished

in DQ dimension. However, when comparing intensities of the different functional groups,

one should keep in mind that (relative) number of protons of the corresponding group has

to be also taken into account as well as the molecular dynamics. Assuming only structural

parameters DQ signal from CH3 group is expected to be higher comparing to CH2 group.

However, CH3 group is relatively free in motion while CH2 group is ”fixed” in the chain

which limits its mobility. This results in reduction of the residual dipolar coupling for CH3

group. Results from POST C7 (see Figure 3.14b) pulse sequence are qualitatively the same

as from C7 pulse sequence. In addition peak labeled as (d) appeared which was not the

case of C7 pulse sequence. This indicates that the delay between reconversion period

and detecting pulse t0 = n0τr (see Figure 2.20) for POST C7 during which unwanted

transients are supposed to decay was a little bit longer as was necessary. Thus unwanted

magnetization exchange between protons of CH2 and CH as well as CH3 and CH could

be established. Another experiments with shorter τ0 showed vanishing of this peak which

is the confirmation that magnetization exchange took place.

The experimental proton DQ build-up curves for the NR are presented in Figure 3.15.

Different categories of functional groups are assigned with symbols A, B, . . . , E as it is

indicated in the left part of the figure. Series of two-dimensional experiments at different

excitation times with POST C7 pulse sequence were performed to record the signal. As

was already mentioned we were not able to resolve all couplings from the experiment thus,

symbols A and B corresponds to the overall residual couplings as it is indicated in the

figure. Due to the fast axial rotation of the CH3 group around three fold axis the proton

dipolar coupling is reduced by the factor of 1
2 compared to the rigid case ([Sch99]). This is

the main reason why residual dipolar coupling of the CH3 group is reduced such that it is

a little bit lower than residual dipolar coupling of the CH2 group (compare intensities B

and A in Figure 3.15). As a consequence of existence of crosslinks between chains, inter-

molecular dipolar coupling between protons of CH ↔ CH (labeled as E) of neighboured
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Figure 3.15: 1H DQ build-up curves of NR recorded with POST C7 pulse sequence (Figure 2.19b).

Symbols A, . . . , E corresponds to the dipolar connectivities between different groups as it is indicated

in the left part of the figure. Solid lines represent fitting curves (more details see text).

chains9 is not fully averaged out. As expected this residual dipolar coupling was found to

be smallest. Equation (3.20) was used to fit experimental DQ build-up curves for different

groups. Due to the unknown experimental factor A of that equation only relative values

of residual couplings Dres could be calculated. Fitting results

(Dres
A ) : (Dres

B ) : (Dres
C ) : (Dres

D ) : (Dres
E ) = 1.0 : 0.92 : 0.51 : 0.38 : 0.15 (3.22)

are normalized to the maximal value of the residual coupling Dres
A found in the spectrum.

Fitting errors were calculated for A, . . ., E respectively as 1%, 1%, 2%, 4%, 8%. Similar

like in section 3.3.1 these error values are not so relevant and can be even higher for our

sample.

9Also coupling between protons from the same chain might contribute to the resulting intensity of the

DQ signal labeled as E.
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Absolute values of residual dipolar coupling which may be estimated from the first

order spinning sidebands in SQ MAS experiment (see section 3.1) were not possible to

be measured due to the non-symmetrical spinning sidebands. This asymmetry might be

caused by spectrometer problems or by presence of CSA. Therefore more detailed analysis

of NR were not made. Nevertheless it was shown that 1H DQ spectroscopy permits site-

selective measurements of residual dipolar couplings between protons belonging to the

same or to the different functional groups even for more complicated structures like NR.

To resolve all dipolar connectivities higher rotational speeds or stronger ~B0 fields are

required which was not available.

3.4 Spin counting under MAS

Experimental results from spin counting experiment will be shown in this section. The-

oretical bases can be found in section 2.5.3. Adamantane was used as a test sample to

excite higher order coherences under MAS. As was already explained in section 2.5.3 no

evolution of the spin system in spin counting experiment take place on contrary to the

DQ spectroscopy (see section 3.3) thus, no spinning sidebands are expected in second

dimension. POST C7 will be used to excite multiple quantum (MQ) coherences. Only

even quantum coherences will be expected because POST C7 is described by ’pure’ DQ

Hamiltonian for two spin-1/2 system ([War80]).

Experimental results from MQ spin counting experiment made on Adamantane are

shown in Figure 3.16. Adamantane represents a relatively strong coupled spin system

(more details see page 45) where higher order coherences can be expected. Experiment

was carried out at MAS frequency fr = 8 kHz. Two different excitation times τ were

chosen to demonstrate the effect of dynamics of the MQ coherences. Increasing excitation

time higher order coherences were exited with POST C7 pulse sequence as was expected

(compare Figure 3.16a and b). MQ coherences are modulated by cos(p ∆φ · m) (see

[Shy88] and section 2.5.3) therefore Fourier transformation with respect to m (representing

second dimension) give rise to a series of δ-function spikes corresponding to the MQ

coherence order p. Separation of different quantum orders is accomplished by ∆φ. Up

to the 14-th order of coherences were clearly visible in Adamantane with excitation time

τ = 1 ms (Figure 3.16b) recording the signal with this phase incremented method.

Effective size of the dipole-dipole coupled spin clusters N(τ) for given
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Figure 3.16: 1H MAS spin counting MQ experiment for Adamantane at rotational frequency

fr = 8 kHz. POST C7 was chosen to excite MQ coherences. Two different excitation times a)

τ = 750 µs and b) τ = 1 ms corresponding to complete multiples of rotor period were used to

visualize growing of higher order coherences. DQ coherence is normalized to the same amplitude

for both experiments. Solid lines represent the fitting curve for evaluating sizes of the spin clusters

N(τ) by equation (3.23). ∆φ was chosen 11.25◦ to see up to the 16-th order (pmax = 16) of

coherence. Only 32 phase increments were recorded which correspond to the full 2π cycle. 1 ms

delay (τ0) was included after reconversion period to allow unwanted transients to decay.

excitation/reconversion time τ can be extracted from spin counting experiment by as-

suming that the intensity of p-quantum coherence is related to the number of different

transitions of order p in a system of N(τ) spins. These can be calculated directly from

combinatorial arguments which can then be approximated by a Gaussian distribution

([Bau85]) for large clusters N(τ) ≥ 6. Hence, MQ intensities can be fitted by Gaussian

distribution of the form ([Bau86, Shy88])

IMQ(p, τ) = A exp
( −p2

N(τ)

)
(3.23)

with variance σ2 = N(τ)/2, where A is normalization constant and N(τ) is the cluster size

which develops over the time τ . Solid lines plotted over the intensities of MQ coherences

in Figure 3.16 represent fitting curves by equation (3.23). Fitting results N(750µs) =

24.7 ± 2.0 and N(1 ms) = 41.2 ± 1.7 shows increasing amount of correlated spins as was

expected. Results are in a good agreement with R. Graf measurements ([Gra97a]), where

C7 pulse sequence was used.

It is important to note that in spin counting experiment the linewidth information

from the second dimension is eliminated which is not always desired. However, when
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MQ intensities are required, rather than lineshape information, spin counting experiment

provides a sensitive and much less time consuming experiment than conventional two-

dimensional MQ experiment where t1 is incremented in the sense of TPPI as was presented

in section 2.5.2. In the case of Adamantane where resonance offsets are negligible also

incomplete cycles ([Gee99]) can be used for exciting higher order coherences with C7

pulse sequence. Care has to be taken when more isotropic lines can be resolved by MAS.

Full compensation of resonance offsets and r.f. field inhomogeneities is accomplished only

after complete 7-fold cycles (multiples of twice rotor period) in C7 as well as in POST C7

pulse sequence ([Lee95, Hoh98]) so incomplete cycles are not desired in these cases when

on resonance excitation is impossible.

3.5 MQ coherences for static solids

In this section a quantitative comparison of eight pulse sequence (see section 2.4.1.2) and

thirty-two pulse sequence (see sections 2.4.1.3) will be made. DQ build-up curves for static

solids where dipolar couplings are relatively weak (in the order of few kHz) will be pre-

sented for both pulse sequences. Comparison with high resolution MAS (see section 3.3.1)

will be also discussed. In the second part of this section MQ spin counting experiment

with thirty-two pulses sequence will be described. Up to the 6-th order of coherences were

observed in polybutadiene rubber. Two samples were chosen to accomplish experiments.

The first one was polybutadiene melt (PBM) (see Figure 3.17a,b) already described in

section 3.3 (see page 79 and Figure 3.10). MAS spectrum recorded at rotational frequency

fr = 3 kHz is shown in Figure 3.17b. At this spinning frequency both groups CH and

CH2 were clearly resolved. The vinyl group (Figure 3.17b labelled as c) was much smaller

than another isotropic lines so its influence to the resulting integral in static experiment

in Figure 3.17a is less than 10% so it will be neglected. PBM will be used in section 3.5.1.

The second sample was polybutadiene rubber (PBR) with a high crosslink density. It

is based on a commercial cis–1,4 polybutadiene (BUNA cis 132) with Mn = 120 000 g/mol

and Mw = 450 000 g/mol. Crosslinking has been done with dicumyl peroxide (DCP) in

the traditional way where DCP was mixed with the rubber material, before the vulcan-

ization process at temperature 145 ◦C during 1 h with pressure 10 MPa was performed.

The resulting mean molecular mass between two crosslinks, Mc = 6500 g/mol ([Eka00]),

was determined as the average value from stress-strain measurements [Mat92], swelling
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Figure 3.17: Proton 1H spectra measured at rotational frequencies fr = 0 Hz for a), c) and

fr = 3 kHz for b), d). Two different samples were measured: a), b) polybutadiene melt (PBM);

c), d) polybutadiene rubber (PBR). Labels a,b,c correspond to the different groups resolved by MAS

(see Figure 3.10a).

measurements ([Lec93]) and NMR relaxation measurements ([Sim92]). Free chains of

polybutadiene melt with Mn = 1800 g/mol were incorporated into the rubber network

with weight amount of 20% (wt.%) ([Eka00]). Originally two effects due to this incorpo-

ration were expected. The first one is like swelling and should give rise for small swelling

degrees to a better mobility. For large swelling degrees the mobility can decrease again

([Men99, Sch89]). The second effect could results in additional topological hindrances

due to the comparable incorporated free chain length with the size of the entanglement

chain length. This should increase the residual coupling (decrease mobility). But after

this incorporation procedure rubber network appears extremely rigid. The mechanical

properties were extremely worse (it breaks immediately), which was not expected. The

most possible cause for this behaviour is additional crosslinking of the short free chains

inside the original sample, which result in extremely high crosslinked piece of the sample.

As a check measurement the resulting mean molecular mass between two crosslinks after
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incorporation was measured again with 1H Hahn-Echo experiment ([Men99, Sim92]) as

Mc = 700 g/mol. This high crosslinking density can increase the probability to observe

higher order coherences in PBR. Glass temperature of PBR was estimated from DSC

(differential scanning calorimetry) to be Tg = 168K. Proton NMR spectra of PBR at

fr = 0 kHz and fr = 3 kHz are shown in Figure 3.17c and 3.17d, respectively. Comparing

Figure 3.17a with Figure 3.17b not so much differences can be seen. PBR will be used as

a test sample in section 3.5.2 to observe higher order coherences.

3.5.1 DQ build-up curves of polybutadiene melt

Similar formalism like for C7 and DRAMA/BABA pulse sequences (see sections 3.2.1 and

3.2.2) can be used for calculating intensities of the signal arising from dipolar coupled two

spins 1/2 for eight pulse sequence as well as for thirty-two pulse sequence (more details see

Appendix C and e.g. section 3.2.1 or section 3.2.2). To derive DQ average Hamiltonians

during excitation and reconversion periods equations (2.51) and (2.52) (or equations (2.53)

and (2.54)) can be used, respectively. With the help of equation (2.34) which represents

zero-order average Hamiltonian for both pulse sequences for a system of spins-1/2coupled via

dipole-dipole interaction, factors ω
exc/rec
ij (see section 3.2) can be estimated for excitation

as well as for reconversion period10:

ωexc
ij = Dij e−2φ and ωrec

ij = Dij , (3.24)

where

Dij = d II
ij

1
2

(
3 cos2 ϑij − 1

)
. (3.25)

φ corresponds to the phase shifting of the pulses during excitation period and can be

φ = ∆ωφ t1 for TPPI MQ experiment (see section 2.4.3) or φ = m · ∆φ for spin counting

MQ experiment (see section 2.4.4).

The phase and the amplitude can be separated from equation (3.24) and for dipolar

coupled spin-1/2 pair the signal intensity arising from this coupling can be calculated for

t2 = 0 (see equation (C.20) and equation (C.14)) as

SI(φ) =
〈
cos2(Dij τ)

〉
+ cos(2φ)

〈
sin2(Dij τ)

〉
. (3.26)

Averaging over all possible orientations is described by the symbol 〈. . .〉. The first term

in equation (3.26) similar like for C7 and DRAMA/BABA pulse sequences represents

10More details see section 2.5.2 or section 2.5.3.
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Pulse Sequence |g(ϑ, ψ)| Knorm ḡ · Knorm

8p/32p 1
2 (3 cos2 ϑ − 1) 1 0.447

DRAMA/BABA sin(2ϑ) cos(ψ) 3
π
√

2
0.348

Table 3.2: Comparison of excitation strengths of eight (8p) and thirty-two (32p) pulse sequence

with DRAMA/BABA pulse sequence. In the last column powder average is used for calculating

average geometrical factor ḡ (see e.g. equation (3.9)).

remaining part from the initial magnetization. It can be filtered out from the spectrum

by conventional double quantum (DQ) filter (see section 4.3). DQ part of the signal is

described by the second term in equation (C.14). The first term of the DQ signal (cos(2φ))

carries information about the phase and only the second sin term represents the intensity

of the DQ signal.

In the limit of short excitation and reconversion times τ the intensity of DQ signal

(see sin part of equation (3.26)) can be approximated by quadratic dependence on τ

(more details see section 3.3.1). Assuming relaxation of the spin system during excita-

tion/reconversion period described through Teff the DQ intensity can be written in the

form

IDQ ' A ḡ2 K2
norm (d II

ij )2 τ2 e
− τ

Teff . (3.27)

Average geometrical parameter ḡ and orientation independent norm Knorm for eight pulse

sequence as well as for thirty-two pulse sequence are listed in Table 3.2. Comparison

with DRAMA/BABA pulse sequence (Table 3.1) is also shown. Simulation of the DQ

intensities from equation (3.26) shows (performed numerically with home made program)

that maximum DQ intensity for powders is about 61% of the initial Zeeman order which

is even higher than for DRAMA/BABA pulse sequence where it was about 52% (see

section 3.2.1). Disadvantage of eight and thirty-two pulse sequences are their low res-

olution capabilities in comparison to pulse sequences working under MAS. Nevertheless

if high resolution is not required static MQ pulse sequences can be sometimes preferred.

Their excitation/reconversion time τ is not rotor synchronized in spite of C7 as well as

BABA/BRAMA pulse sequences, which is an advantage in some cases when high speed

MAS is not available and beginning part of the build-up curve has to be recorder with

higher accuracy.



3. Measuring of Homonuclear Dipole-Dipole couplings 95

Figure 3.18: Comparison of 1D DQ build-up curves between eight pulse sequence a) and thirty

two pulse sequence b) for polybutadiene melt (PBM). Experiment was carried out at 400 MHz

Larmor frequency for protons 1H. Solid lines represent fitting curves by equation (3.27). The

vertical dashed lines mark the excitation times for maximum signal for the protons of group A,

which differs for each pulse sequence. The group A symbolized DQ signal corresponding to the

−CH2− and CH2 − CH couplings and the group B to CH2 − CH and CH = CH couplings.

The cycle time τc was 100 µs (tp = 3.4 µs, ∆ = 4.9 µs and ∆′ = 13.2 µs) for a) and 300 µs

(tp = 3.4 µs, ∆ = 21.6 µs and ∆′ = 46.6 µs) for b), respectively (see sections 2.4.1.2 and 2.4.1.3).

A delay of τ0 = 4 ms was included after reconversion period to allow unwanted transients to decay

away from the spectrum.

DQ build-up curves for eight pulse sequence (see Figure 2.10b) and for thirty-two

pulse sequence (see Figure 2.11) are shown in Figure 3.18. As was already mentioned

polybutadiene melt (PBM) was chosen (see Figure 3.17a). Performing double quantum

filtration (DQF) in equation (3.26) (see section 4.3) the first term can be filtered out

from the spectrum and only DQ term survives11. For PBM higher order coherences are

low probable due to its high mobility. Thus, DQF is sufficient to filter out all unwanted

coherences. This kind of experiment was performed in Figure 3.18 while time t1 between

excitation and reconversion period was zero (t1 = 0) and only excitation/reconversion time

τ was incremented. This experiment will be called one dimensional (1D) DQ experiment.

The main drawback of 1D DQ is that it is no able to resolve dipolar couplings between

different groups (intergroup coupling). Hence, we were not able to resolve the dipolar

coupling CH − CH2. In comparison with two-dimensional (2D) DQ experiment (see

11This assumption can be made only in the limit of relatively short excitation and reconversion times τ ,

where higher order coherences (6, 10, . . .-orders) are not expected.
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Figure 3.11) 1D DQ experiment provides less information. Nevertheless 1D DQ experiment

is much less time consuming, hence full build-up curves can be obtained in couple of hours

which is not the case of 2D MQ experiment.

Comparing Figures 3.18a and 3.18b the different relaxation rates of the spin system

during excitation/reconversion period can be directly seen (compare e.g. excitation times

belonging to the vertical dashed lines in the figure). For eight pulse sequence (Figure 3.18a)

even the relaxation rates for different groups (labeled A and B in the figure) are seen.

The origin of this behaviour might be in insufficient compensation of isotropic chemical

shifts for eight pulse sequence (see also section 2.4.1.2). Higher order terms in average

Hamiltonian in Magnus expansion (section 1.3) can influence the spectrum, thus, with

increasing excitation time τ the error is rising for eight pulse sequence. Thirty-two pulse

sequence on the other hand provides better compensation of resonance offsets so this

spurious effects are not seen (see Figure 3.18). Nevertheless the initial part of the build-

up curves can be used for fitting to obtain residual dipolar couplings for different groups A

and B also for eight pulse sequence. Equation (3.27) was used for fitting 1D DQ build-up

curves for both pulse sequences (solid lines in Figure 3.18) with the result

(
Dres

8p,A

)
:
(
Dres

8p,B

)
= 1.0 : 0.60 and

(
Dres

24p,A

)
:
(
Dres

24p,B

)
= 1.0 : 0.63 , (3.28)

where Dres
8p,A and Dres

8p,B represents residual dipolar coupling for eight pulse sequence for

groups A and B, respectively, and Dres
32p,A, Dres

32p,B for thirty-two pulse sequence. Fitting

errors were for both cases up to 2%. It has to be noted that PBM only hardly corresponds

to the isolated two spin system so using the initial part of the build-up curve for fitting

an error of about 10% ([Gra97a]) in real experiment is introduced. In addition group

labeled as A in Figure 3.18 carries an information about overall residual dipolar coupling

arising from CH = CH and CH − CH2 groups and group B from CH − CH2 and CH2

(intragroup) groups as can be seen from 2D DQ experiment (see Figure 3.10b). Hence,

intergroup and intragroup couplings can not be distinguished from 1D DQ experiment.

In spite of that neglecting chemical shift anisotropy comparison with two-dimensional

DQ MAS experiment can be made where C7 pulse sequence was used (see section 3.3.1).

Simple quadratic dependence of the dipolar coupling strength to the integrated intensity

can be used (see equation 3.27) and assuming results (3.21) the ratio between residual
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couplings from the group A and the group B can be calculated as12

(Dres
A ) : (Dres

B ) = 1.0 : 0.61 . (3.29)

Assuming an experimental error of around 10% for estimating of each residual coupling

constant from results (3.21) the overall standard deviation error for estimating the ratio

(3.29) can be up to 14% for each group, respectively. In spite of this relatively big error

we find a good agreement with the results from thirty-two pulse sequence as well as from

eight pulse sequence (ratios (3.28)).

3.5.2 Spin counting in polybutadiene rubber

Recently thirty-two pulse sequence proposed by Antzukin and Tycko has been used for

exiting higher order coherences in singly-13C-labeled organic solids (see section 2.4.1.3

and [Ant99]). In this section demonstration of excitation and detection of higher order

coherences among 1H nuclei in elastomers using this pulse sequence will be presented.

Higher order MQ NMR spectroscopy has not been previously reported on elastomers. In

strongly dipole-dipole coupled spin-1/2 systems in solids high-order MQ coherences were

demonstrated over 16 years ago by Yen and Pines ([Yen83] and Figure 2.13) with the help

of eight pulse sequence (see section 2.4.1.2 and Figure 2.13). In elastomers well above

the glass temperature fast molecular motion reduce the dipolar coupling to few kHz. We

found eight pulse sequence to be not enough effective to excite higher order coherences in

high crosslinked polybutadiene rubber (PBR) presented in Figure 3.17c,d. Nevertheless

thirty-two pulse sequence was more effective.

Up to the 6-th order of coherences were clearly visible in the proton spectrum of PBR

with thirty-two pulse sequence. The experimental results are shown in Figure 3.19. MQ

coherences are modulated by cos(p ∆φ · m) function similar like in spin counting MQ ex-

periment under MAS (see section 3.4). Hence, performing Fourier transformation with

respect to m which represents second dimension, give rise to a series of δ-functions cor-

responding to the MQ coherence order p. Different orders of coherence are separated by

∆φ = π
pmax

, where pmax = 16 to observe up to the 16-th order of coherent transitions.

Single quantum (SQ) dimension (see Figure 3.19a) corresponds to the Fourier transformed

signal which evolves in the direct ω2 dimension during detection period (see Figure 2.14).

In Figure 3.19b traces representing different groups CH and CH2 are shown, respectively.

12Complementary normalization to the Dres
A was used.
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Figure 3.19: 1H spin counting MQ experiment for PBR (see page 91). MQ coherences were

excited with thirty-two pulse sequence with excitation and reconversion time τ = 8 ms. At the top

and at the side of the figure a) projections of MQ coherences and single quantum (SQ) spectrum

(ω2 dimension) are shown, respectively (More details about SQ dimension see Figure 3.17c,d).

Figure b) represents the traces corresponding to the different functional groups as it is indicated.

To separate different orders of coherences ∆φ was chosen 11.25◦ to resolve up to the 16-th order

(pmax = 16) of coherence (more details see section 2.4.4). Only 32 phase increments were recorded

corresponding to the full 2π cycle. The cycle time τc was 2 ms (tp = 3.2 µs, ∆ = 163.4 µs and

∆′ = 330 µs). A delay of τ0 = 1 ms was included after reconversion period to allow unwanted

transients to decay.

Pulse imperfections and higher order correction terms in Magnus expansion (see equa-

tions (1.55) and (1.56)) leads to the odd-order signals in Figure 3.19b for both groups.

It has to be noted that it was quite difficult to observe higher order coherences in

PBR. Most probably it is due to the fast relaxation of the spin system during excitation

period. Relatively low dipole-dipole coupling strength caused by fast molecular motion

force to choose long excitation/reconversion times τ to excite higher order coherences

which interfere with relaxation of the spin system during this time τ . Solution of this

problem might be to choose even high crosslinked samples or to decrease the temperature.

It has to be stressed that decreasing the temperature leads to lowering the molecular
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motion which increase the line-width, so static MQ spin counting experiment might by

not able to resolve different functional groups. To overcome this difficulty high resolution

MAS pulse sequences like C7 or POST C7 can be used in spin counting experiment (see

section 3.4) to excite higher order coherences.



Chapter 4

Realization of MQ Experiment

In this section some practical hints will be elucidated for realization of MQ experiment. It

will be shown that TPPI in two-dimensional experiment (see sections 2.4.3 and 2.5.2) can

be sometimes replaced by hypercomplex ([Ern87, SR94]) method for recoding the data.

Also experimental methods like DQ filtering and phase cycling for removing spectrometer

errors will be presented, respectively.

4.1 Spectrometer

To perform MQ experiment fast electronic which allows quick switching between r.f. pulses

has to be available. To achieve high resolution of MQ spectra also high B0 fields are

preferred. In this work Varian Unity Plus and later Unity INOVA has been used to

perform experiments with B0 = 9.4 T corresponding to 400 MHz for protons 1H. Short

switching delays are especially important for C7, POST C7 as well as for BABA pulse

sequences. In our case the minimal time between r.f. pulses until the phase is settled has

been 0.2 µs for phases differing in 90◦. In addition NMR spectrometer has to be equipped

to perform r.f. pulses with phases which differ in phase smaller than 90◦called small angle

phase switching. Also strong B1 r.f. fields allowing short r.f. pulses (of order of 3 µs) for

proton experiments are an advantage especially for pulse sequences working with δ-like

pulses (DRAMA, BABA, eight and thirty-two pulse sequences).

4.1.1 Requirements for MAS

To realize MAS experiment, probes which allows high spinning speeds are required. Mea-

sured sample has to be filled into the cylindrical rotor closed by the cap which rotate

100
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about the axes tilted from the ~B0 field by magic angle 54.7◦. Nowadays the rotors are

made by ceramic materials like Zirconia-oxid (Zr02) or Silicon Nitride (Si3N4), which have

proper mechanical features under high spinning speeds in the presence of magnetic field.

They should not be made from materials, which consists of the same nuclei as an investi-

gated sample to prevent overlapping of the signals. Due to the high rotational frequencies

(fr ≥ 10 kHz) the centrifugal force acting on the outer wall of the rotor is very high which

has to be also taken into account for the design of the rotor. The high spinning caps

(schematically shown in Figure 1.3a) usually made from Torlon has a special design to

allow high rotations realized by driven-air. To get the stable rotation the rotor is sur-

rounded by the bearing-air flow which can be regulated independently to the driven-air.

The resulting rotational frequency fr can be regulated by the increasing or decreasing of

the driving-air pressure. For all MAS experiments in this work rotors with an average of

the cylinder of 5 mm are used. They allow to rotate up to fr = 13 kHz. To get better

B1 field homogeneity the sample should not exceed the size of the r.f. coil which can be

achieved by the filling of the rotor by the Teflon cylindrical fillers inserted from both sides

of the sample.

4.2 Hypercomplex versus TPPI acquisition

In two-dimensional (2D) DQ spectroscopy it is sometimes preferred to record the DQ

signal in the sense of hypercomplex data sets ([Ern87, SR94]) instead of TPPI (see e.g.

section 2.4.3) data sets. When it is useful will be discussed in this section.

Intensity of the DQ signal can be written according to equations (3.14), (3.17) and

(3.26) in general in the form

SDQ
I (t1, t2 = 0) = cos

(
2 ∆ωφ t1 + Ω(t1)

)
IDQ , (4.1)

where IDQ represents the amplitude of DQ signal. The cos term in equation (4.1) deter-

mines the phase of the DQ signal. For pulse sequences acting under MAS like DRAMA,

BABA, C7 or POST C7 factor Ω(t1) represents rotor modulation of the DQ signal. It can

be Ω(t1) = ωrt1 for C7/POST C7 pulse sequence or Ω(t1) = k ·ωrt1 (k = ±1,±3,±5, . . .)1

for DRAMA/BABA pulse sequence. For eight pulse sequence and thirty-two pulse se-

quence Ω(t1) = 0, so there is no rotor modulation (see equation (3.26)).

1More details about DQ signal for DRAMA/BABA pulse sequence see equation (3.14).
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Figure 4.1: Comparison of TPPI a) and hypercomplex b) sampling of the data in DQ spec-

troscopy. Shaded area in figure a) corresponds to the mirroring of the right part of the spectrum

due to the cosine Fourier transformation. Frequency fΩ describes the rotor modulation of the DQ

signal. It is fΩ = fr for C7/POST C7 pulse sequence and fΩ = k · fr for DRAMA/BABA pulse

sequence, respectively. Dashed peaks represent symbolically negative first-order spinning sideband

(k = −1) for DRAMA/BABA pulse sequence (see section 3.2.1).

If we choose in TPPI experiment 2 ∆ωφ t1 = π
2 m in equation (4.1), where m =

0, 1, 2, . . . represents time proportional incrementing of the phase of the r.f. pulses dur-

ing excitation period (t1 = ∆t1 · m) the DQ signal will follow the scheme

cos
(
Ω(0)

)
IDQ, sin

(
Ω(∆t1)

)
IDQ, − cos

(
Ω(2 ∆t1)

)
IDQ, − sin

(
Ω(3 ∆t1)

)
IDQ, . . . . (4.2)

This directly corresponds to the sampling of the data in the sense of Redfield ([Red75]).

Hence, this acquisition technique allows to distinguish between positive and negative fre-

quencies even when no imaginary part of the signal in ω1 dimension is available. Cosine

Fourier transformation of the DQ signal recorded in the sense of scheme (4.2) leads to the

spectrum shown in Figure 4.1a. Only the right part of the full spectrum in Figure 4.1a

represent the correct spectrum. To display it in the proper way the scale has to be changed

as it is indicated. Thus, in TPPI experiment recorded by this technique only frequencies
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inside of the ’Nyquist zone’ ([SR94]) between positive and negative Nyquist frequencies

±fφ = ±(4 ∆t1)−1 can be seen. To prevent aliasing of the signal from outside of the

Nyquist zone, fφ has to be chosen in 2D DQ experiment as

fφ ≥ fr and fφ ≥ |k| · fr (k = ±1,±3, . . .) (4.3)

for C7/POST C7 and for DRAMA/BABA2 pulse sequences, respectively.

Instead of TPPI it follows from equation (4.1) that DQ signal can be recorded in the

sense of hypercomplex data sampling if 2 ∆ωφ t1 = π
2 m and m = 0, 1 without incrementing

the time t1. Hence DQ signal will follow the scheme3

cos
(
Ω(0)

)
IDQ, cos

(
Ω(∆t1)

)
IDQ, . . .

sin
(
Ω(0)

)
IDQ, sin

(
Ω(∆t1)

)
IDQ, . . . . (4.4)

Fourier transformation of this signal leads directly to the spectrum shown in Figure 4.1b

where positive and negative frequencies are clearly distinguished. Nyquist zone is in this

case defined by the Nyquist frequency ±fH
φ = ±(2 ∆t1)−1.

Comparing TPPI and hypercomplex acquisition with connection to the DQ spec-

troscopy one might think that hypercomplex method of sampling of the data is preferred

due to its twice higher Nyquist frequency fH
φ = 2fφ. In fact the cost of this is recording

twice number of data points in ω1 dimension, thus, measuring time is doubled. It has

to be noted that the same conditions can be achieved by TPPI choosing the sampling

period half of the original one presented by acquisition scheme (4.2), ∆t1 → ∆t1/2, and

increasing twice number of measuring points. Hence, TPPI and hypercomplex acquisition

in DQ spectroscopy will become equivalent.

In fact hypercomplex acquisition may be preferred for C7 as well as for POST C7 pulse

sequences in DQ spectroscopy. Cumbersome mirroring (see shaded area in Figure 4.1a)

caused by recording the data in the sense of Redfield ([Red75]) is overcome by hypercom-

plex data sampling. In addition if for some reasons (caused by e.g. r.f. pulse imperfections)

double quantum filtration (see section 4.3) will not work properly, the remaining part of

the initial Zeeman order described by the first term in equation (3.17) (see section 3.2.2)

appear in the spectrum. It is important to note that it will appear in the middle of the

spectrum in Figure 4.1b, thus, it will not disturb DQ signal if rotational frequency fr is

2k represents the highest DQ spinning sideband order in the ω1 dimension (see section 3.2.1).
3Second two data sets rising from ω2 dimension are for simplicity omitted (more details see e.g. [SR94]).
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high enough. On the other hand hypercomplex acquisition is not preferred for DRAMA

as well as for BABA pulse sequences. The first term in equation (3.11) despite of C7 pulse

sequence is rotor modulated and in the case of hypercomplex acquisition will merge with

DQ signal. Hence, TPPI method where this problem is overcome by shifting of the DQ

signal to the frequency fφ + k · fr (k = ±1,±3, . . .) is preferred for DRAMA and BABA

pulse sequences. To prevent overlapping of DQ signal in TPPI method with mentioned

remaining part of the initial Zeeman order enough small sampling interval ∆t1 has to be

chosen to fit all expected DQ sidebands to the spectrum without overlapping and aliasing.

4.3 Double quantum filtering

Multiple quantum (MQ) filtration techniques are often used to select desired order of

coherence and suppress other coherent transitions. Characteristic response to a phase

shift φ of the r.f. pulses used during excitation period to a p-quantum coherence can be

written as ([Mun87, Wei83])

ρ̂ p(φ) = ρ̂ p(0) e−i p φ , (4.5)

where ρ̂ p(φ) describes coherence order p according to the phase φ. This behaviour can be

used to select coherences of order p.

If phase between excitation and reconversion period (see e.g. Figure 2.12) is incre-

mented in steps of ∆φ = π
p after each experiment and, in addition, experiments are step

by step added and subtracted, all coherences p′ up to the certain order4 which differ from p,

|p′| 6= |p|, will be filtered out from the spectrum. To realize this selection of p-quantum co-

herence one need 2p sets of data. To proof this p-quantum filter the intensity of p′-quantum

coherence IMQ, p′ can be calculated as ([Bod81, Gra97a])

IMQ, p′ =
2p−1∑
k=0

(−1)k e
−i π

p
p′·k =

2p−1∑
k=0

e
−i π

p
(p−p′)·k

. (4.6)

In the last summation the relation (−1)k = eiπk is used. It can be directly seen from

equation (4.6) that for p′ = ±p the exponent is 0 or 2π, thus, the full intensity of coherence

order p equal to 2p will be seen. To calculate intensities of orders |p′| 6= |p| summation in

equation (4.6) can be expressed as a geometrical series as

IMQ, p′ =
ei 2π(p−p′) − 1

ei π
p
(p−p′) − 1

. (4.7)

4See later discussion.
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φexc φref

0◦ 0◦

90◦ 180◦

180◦ 0◦

270◦ 180◦

Table 4.1: Phase cycling to select DQ coherence (p = 2).

Analysing equation (4.7) it can be seen that nearly all coherences p′ ∈ N are filtered out.

Only coherences where also denominator is zero i.e. p′ = p (2k + 1), where k ∈ N can not

be filtered out from the spectrum by this p-quantum filter.

To realize double quantum (DQ) filter (p = 2), it follows from above discussion, it

is sufficient to add and subtract four different coherences. The phase of the r.f. pulses

acting during excitation period is then advanced in increments of π
2 (90◦) which cause

the DQ signal to alternate in sign. The phases of excitation period φexc and reference

frequency (receiver phase) φref are shown for DQ filter in Table 4.1. It has to be noted that

coherences of order 6, 10, 14, . . . will be not filtered out from the spectrum. Hence, this filter

is 4k +2 (k ∈ N) quantum selective. To realize even higher selectivity more sophisticated

approach proposed by Wokaun and Ernst ([Wok77]) can be used. Disadvantage of this

method is that it requires 2pmax different two-dimensional experiments which are stored

separately, where pmax is the maximum desired order of coherence to be filtered out.

Hence, to distinguish 6-quantum coherence from DQ coherence it would be necessary to

record separately 12 two-dimensional experiments. This would increase measuring time

three times with comparison to the DQ filter presented in Table 4.1. Nevertheless, if higher

order coherences are expected to see in the MQ experiment this price has to be payed for

selecting DQ coherence, if good results are required.

4.4 MQ phase cycling techniques

In MQ spectroscopy only rarely multiple-pulse sequences generate pure MQ coherences

according to the theoretical predictions. It is often necessary to use sophisticated phase

cycling techniques to remove spurious signals coming from r.f. pulse imperfections as well as

from background signals. In this work mainly two different phase cycling techniques were
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φexc φrec φdet φref φ32+...
rec φ32+...

det φ32+...
ref

0◦+φ 90◦ 0◦ 0◦ 0◦ 0◦ 180◦

90◦+φ 90◦ 0◦ 180◦ 0◦ 0◦ 0◦

180◦+φ 90◦ 0◦ 0◦ 0◦ 0◦ 180◦

270◦+φ 90◦ 0◦ 180◦ 0◦ 0◦ 0◦

0◦+φ 90◦ 180◦ 180◦ 0◦ 180◦ 0◦

90◦+φ 90◦ 180◦ 0◦ 0◦ 180◦ 180◦

180◦+φ 90◦ 180◦ 180◦ 0◦ 180◦ 0◦

270◦+φ 90◦ 180◦ 0◦ 0◦ 180◦ 180◦

0◦+φ 90◦ 90◦ 90◦ 0◦ 90◦ 270◦

90◦+φ 90◦ 90◦ 270◦ 0◦ 90◦ 90◦

180◦+φ 90◦ 90◦ 90◦ 0◦ 90◦ 270◦

270◦+φ 90◦ 90◦ 270◦ 0◦ 90◦ 90◦

0◦+φ 90◦ 270◦ 270◦ 0◦ 270◦ 90◦

90◦+φ 90◦ 270◦ 90◦ 0◦ 270◦ 270◦

180◦+φ 90◦ 270◦ 270◦ 0◦ 270◦ 90◦

270◦+φ 90◦ 270◦ 90◦ 0◦ 270◦ 270◦

0◦+φ 270◦ 0◦ 0◦ 180◦ 0◦ 180◦

90◦+φ 270◦ 0◦ 180◦ 180◦ 0◦ 0◦
...

...
...

...
...

...
...

Table 4.2: Phase cycling for DQ filtered experiment. It can be performed in steps of 4,

8, 16, 32 or 64 increments. Phase φ corresponds to the TPPI or hypercomplex acquisition

(see section 4.2). In TPPI DQ experiment it is varied in steps of ∆φ = 45◦ as φ =

{0, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦} with respect to evolution time t1.

used. The first one in the connection to the DQ spectroscopy presented in sections 3.3

and 3.5.1 where DQ filtering (see section 4.3) was used to select DQ coherence. This

phase cycling of excitation φexc and reconversion φrec period, detecting pulse φdet, and

reference frequency (receiver phase) φref is shown in Table 4.2, respectively. It was adopted

from Gottwald ([Got96]) and extended to the full compensation 64 phase cycle to remove

even more artifacts. The second phase cycling technique has been used in spin counting

experiments in section 3.4 for MAS experiments as well as in section 3.5.2 for experiments
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φexc φrec φdet = φref

0◦+φ 90◦ 0◦

0◦+φ 90◦ 90◦

0◦+φ 90◦ 180◦

0◦+φ 90◦ 270◦

180◦+φ 270◦ 0◦

180◦+φ 270◦ 90◦

180◦+φ 270◦ 180◦

180◦+φ 270◦ 270◦

90◦+φ 180◦ 0◦

90◦+φ 180◦ 90◦

90◦+φ 180◦ 180◦

90◦+φ 180◦ 270◦

270◦+φ 0◦ 0◦

270◦+φ 0◦ 90◦

270◦+φ 0◦ 180◦

270◦+φ 0◦ 270◦

Table 4.3: Phase cycling for spin counting MQ experiment. Phase of a detecting pulse φdet

and a reference (receiver) phase φref has to be cycled synchronically. Phases 0◦, 90◦, 180◦and

270◦correspond to the phases of r.f. pulses marked in this work as x, y, x̄, and ȳ, respectively.

without MAS. The phase cycle is shown in Table 4.3. It is in principle modified CYCLOPS

(cyclically ordered pulse sequence, [Ste74a, Ste74b]) for MQ excitation. To perform full

compensation 16-step phase cycle is sufficient to remove all possible artifacts coming from

r.f. pulse imperfections. The phase of the reconversion period can not be set arbitrary. It

has to follow excitation period to achieve proper time reversal (see section 2.3.1).



Conclusions

Multiple quantum (MQ) NMR spectroscopy has been used to investigate the dipole-dipole

couplings in amorphous polymers. Various high resolution MQ and double quantum (DQ)

NMR techniques under fast magic angle spinning (MAS) and low resolution static MQ

techniques were compared with respect to application to polymers.

The theory for exciting MQ coherences under fast MAS and under static conditions

has been unified for multiple-pulse sequences which are characterized by DQ Hamilto-

nian. It is shown that intensity of DQ coherence, which is used for estimating dipolar

couplings, has the same form for MAS as well as for static experiments in the limit of two

spin approximation. Initial part of the DQ build-up curve was used to evaluate dipolar

couplings. In addition numerical simulations of intensities of DQ build-up curves confirm

the theoretical predictions that POST C7 and C7 r.f. pulse sequences are more efficient

than DRAMA and BABA r.f. pulse sequences.

The theoretical calculations show that the influence of finite switching times between

r.f. pulses to the zero-order average Hamiltonian for BABA r.f. pulse sequence is small if

the delays between these pulses are smaller than 0.5 µs, which is nowadays in commercial

spectrometers good fulfilled. Care has to be taken for proper design of the multiple-pulse

sequences especially under fast MAS. The timing of the pulses has to be symmetric with

respect to the rotor period.

Proton experimental results on elastomers confirm the theoretical predictions that

POST C7 as well as C7 r.f. pulse sequences are more efficient in comparison to BABA

r.f. pulse sequence. DRAMA r.f. pulse sequence was not applicable on elastomers. It

does not remove resonance offsets and chemical shift anisotropies (CSA) during excita-

tion/reconversion period, which has dramatic influence to the DQ zero-order average Ham-

iltonian produced by this pulse sequence. It was also shown that 1H DQ spectroscopy per-

mits site-selective measurements of residual dipolar couplings between protons belonging

108
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to the same or to the different functional groups even for more complicated samples like

natural rubber.

Measurements of the residual dipolar couplings in polybutadiene melt (PBM) under

fast MAS conditions and without sample spinning show in the frame of experimental error

the same results. In PBM the effect of rotation to the residual coupling is expected to be

small because of no crosslinks present. It has to be noted that with such a comparison

one has to be very careful especially for samples with higher crosslinking density. High

spinning frequencies induce high centrifugal forces, which press the sample to the wall

inside of the rotor. Due to this high pressure sample can be deformed and mobility of

the crosslinks can be influenced. Hence, residual dipolar couplings for different functional

groups can be different when comparing fast MAS and static experiment.

It is shown that high resolution MAS MQ experiment can be used for determining

growing of the spin clusters. Number of correlated spins is increased with increasing

excitation time. It was experimentally confirmed that also POST C7 can measure sizes of

the spin clusters in Adamantane. Results are in the good agreements with the literature

([Gra97a, Gee99]) where C7 was used.

A thirty-two r.f. pulse sequence successfully excite up to the 6-th order of coherences

in high crosslinked polybutadiene rubber (PBR) under static conditions. Gaussian dis-

tribution ([Bau85]) was not appropriate to measure sizes of the dipolar spin clusters in

PBR. Its use is limited for large clusters bigger than: 6. Our attempt to fit higher order

coherences using Gaussian distribution model shows the size of the clusters: 4, hence this

is the confirmation that Gaussian model can not be used for PBR. Nevertheless, this ex-

periment showed that both groups CH and CH2 exhibit the same amount of correlated

spins.

Problems of TPPI and ’hypercomplex’ Fourier transformation are discussed in con-

nection to DQ spectroscopy for various multiple-pulse sequences. It is shown that ’hyper-

complex’ acquisition may be preferred for C7 based r.f. pulse sequences but on the other

hand for BABA and DRAMA r.f. pulse sequences TPPI acquisition is preferred.

Proton DQ NMR spectroscopy permits site-selective measurements of residual dipolar

couplings belonging to the same or to the different functional groups. Another possibility

to measure directly such couplings has been recently reported by Malveau et al. ([Mal97]).

It exploits the indirect observation of protons through 13C resonances in two-dimensional

(2D) WISE experiment ([SR94, Eul00]). The advantage of site-selective DQ experiment
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with comparison to this conceptually relatively simple technique is that the acquisition of

the signal from low abundant nuclei is avoided. Dipolar connectivities between different

functional groups can be investigated also by 2D magnetization exchange spectroscopy in

the short mixing-time regime ([Gas99]). However, for evaluating the data, a model of the

spin topology is required. In comparison to DQ spectroscopy this is a disadvantage. DQ

high resolution MAS as well as static DQ spectroscopy allows a model-free access to the

ratio of the site-selective couplings when a spin-1/2 pair approximation is valid.

MQ as well as DQ spectroscopy are well established in modern NMR. They are not

restricted to use only for 1H systems. They can be extended also to other spin-1/2 nu-

clei. Recently published experiment based on C7 r.f. pulse sequence shows that modified

C7 ([Hon99]) can be used to achieve even higher selectivity in INADEQUATE ([Ern87])

experiment. This with the connection to DQ techniques presented in this work might be

used to measure connectivities between functional groups, which can not be distinguished

with classical DQ spectroscopy.



Appendix

A. Irreducible tensors

Basic relations:

Î
i
± = Î

i
x ± iÎ

i
y

Î
i
x = 1

2

(
Î

i
+ + Î

i
−
)

(A.1)

Î
i
y = i

2

(
Î

i
− − Î

i
+

)
.

Single spin irreducible operators:

T̂
i
1,0 = Î

i
z

T̂
i
1,±1 = ∓ 1√

2

(
Î

i
x ± iÎ

i
y

)
. (A.2)

Irreducible tensors for two spin system coupled via dipolar coupling:

T̂
ij
2,0 = 1√

6

(
3 Î

i

z Î
j

z − ~̂I i · ~̂I j
)

T̂
ij
2,±1 = ∓1

2

(
Î

i
z Î

j
± + Î

i
±Î

j
z

)
(A.3)

T̂
ij
2,±2 = 1

2 Î
i
±Î

j
± .

We can drop indexes in equation (A.3) and for two spins Ii and Ij we will write (α = x, y, z

and k = 0, 1, 2):

Îα = Î
i
α + Î

j
α

T̂ 2,k = 2 T̂
ij
2,k . (A.4)

With the help of these definitions the relations in Tables A.1 and A.2 can be derived.
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Table A.1: Effect of dipolar Hamiltonian ĤD = −
√

2
3
ωD T̂ 2,0 on spherical tensor operators.

ρ̂ e
i
√

2
3
T̂ 2,0 ωD t

ρ̂ e
−i

√
2
3
T̂ 2,0 ωD t

Îz Îz (invariant)

T̂ 2,0 T̂ 2,0 (invariant)

(T̂ 2,2 ± T̂ 2,−2) (T̂ 2,2 ± T̂ 2,−2) (invariant)

Îx Îx cos(ωD t) − i(T̂ 2,1 + T̂ 2,−1) sin(ωD t)

Îy Îy cos(ωD t) − (T̂ 2,1 − T̂ 2,−1) sin(ωD t)

(T̂ 2,1 + T̂ 2,−1) (T̂ 2,1 + T̂ 2,−1) cos ωD t − iÎx sin(ωD t)

(T̂ 2,1 − T̂ 2,−1) (T̂ 2,1 − T̂ 2,−1) cos ωD t + Îy sin(ωD t)

Table A.2: Effect of 900 r.f. pulses x,y on spherical tensor operators, respectively.

ρ̂ e∓i π
2
Îx ρ̂ e±i π

2
Îx e∓i π

2
Îy ρ̂ e±i π

2
Îy

Îz ∓Îy ±Îx

Îx Îx (invariant) ∓Îz

Îy ±Îz Îy (invariant)

T̂ 2,0 −1
2 T̂ 2,0 −

√
3
8
(T̂ 2,2 + T̂ 2,−2) −1

2 T̂ 2,0 +
√

3
8
(T̂ 2,2 + T̂ 2,−2)

(T̂ 2,1 + T̂ 2,−1) −(T̂ 2,1 + T̂ 2,−1) ∓(T̂ 2,2 − T̂ 2,−2)

(T̂ 2,1 − T̂ 2,−1) ∓i(T̂ 2,2 − T̂ 2,−2) −(T̂ 2,1 − T̂ 2,−1)

(T̂ 2,2 + T̂ 2,−2) −√
3
2
T̂ 2,0 + 1

2(T̂ 2,2 + T̂ 2,−2)
√

3
2
T̂ 2,0 + 1

2(T̂ 2,2 + T̂ 2,−2)

(T̂ 2,2 − T̂ 2,−2) ∓i(T̂ 2,1 − T̂ 2,−1) ±(T̂ 2,1 + T̂ 2,−1)
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B. Wigner rotation matrices

The coordinate transformation with Euler angles (ϕ, ϑ, ψ) is described by the Wigner

rotation matrices D(L)
k,q given by ([SR94, Hae76])

D(L)
k,q (ϕ, ϑ, ψ) = e−ikϕ d

(L)
k,q (ϑ) e−iqψ , (B.1)

where factors d
(2)
k,q(ϑ) relevant for this work are defined in Table B.1.

A useful relation of the Wigner matrices is their ’addition theorem’. It relates the

Wigner matrices of two successive rotations A→B and B→C to the Wigner matrices of

overall rotation A→C:

D(L)
q,q′(ΩAC) =

L∑
m=−L

D(L)
q,m(ΩAB)D(L)

m,q′(ΩBC) . (B.2)

Euler angle ΩAC = (ϕAC , ϑAC , ψAC) represents overall rotation A→C, etc.

Table B.1: ϑ dependent factors d
(2)
k,q(ϑ) of the Wigner functions D(L)

k,q (ϕ, ϑ, ψ).

d
(2)
k,q(ϑ) q = 2 q = 1 q = 0

k = 2 1
4(1 + cosϑ)2 −1

2(1 + cos ϑ) sin ϑ
√

3
8
sin2 ϑ

k = 1 1
2(1 + cos ϑ) sin ϑ 1

2(cos ϑ − 1) + cos2 ϑ −√
3
8
sin 2ϑ

k = 0
√

3
8
sin2 ϑ

√
3
8
sin 2ϑ 1

2(3 cos2 ϑ − 1)

k = −1 1
2(1 − cos ϑ) sin ϑ 1

2(1 + cos ϑ) − cos2 ϑ
√

3
8
sin 2ϑ

k = −2 1
4(1 − cos ϑ)2 1

2(1 − cos ϑ) sin ϑ
√

3
8
sin2 ϑ

d
(2)
k,q(ϑ) q = −1 q = −2

k = 2 −1
2(1 − cos ϑ) sin ϑ 1

4(1 − cos ϑ)2

k = 1 1
2(1 + cos ϑ) − cos2 ϑ −1

2(1 − cos ϑ) sin ϑ

k = 0 −√
3
8
sin 2ϑ

√
3
8
sin2 ϑ

k = −1 1
2(cos ϑ − 1) + cos2 ϑ −1

2(1 + cos ϑ) sin ϑ

k = −2 1
2(1 + cos ϑ) sin ϑ 1

4(1 + cos ϑ)2
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C. Intensity of the DQ coherence for two spins-1/2 coupled via

dipolar coupling

Intensity of the signal SI just after the reconversion period in MQ experiment is going

to be calculated. System of two spins-1/2 coupled via dipolar coupling isolated from the

surrounding will be only considered. It will be shown that DQ signal just after the recon-

version period is stored in the longitudinal magnetization. Considering this assumption no

evolution during purging period between reconversion and detection pulse (see e.g. Fig-

ure 2.20) take place because of the vanishing commutator relation [T̂ 2,0, Îz] = 0 valid for

dipolar coupled spins (see also equation (1.59)). Under this circumstance DQ signal just

after the reconversion period is assumed to be the signal detected just after the detecting

pulse.

In addition if so-called total spin coherence ([Wei83, Mun87]) is excited during excita-

tion period all coupled spins are active in MQ coherences, therefore, no evolution (during

evolution period) under total dipolar Hamiltonian (equation (1.59)) take place. Assuming

this condition signal intensity just after the reconversion period can be written as

SI =
Tr

{
Îz Û recÛ exc cÎz Û

+

excÛ
+

rec

}
Tr

{
Îz cÎz

} . (C.1)

Û exc and Û rec are propagators for excitation and reconversion period, respectively. Initial

state of the system is ρ̂(0) = cÎz. Invariance of the trace from the cyclic change of the

operators can be used for equation (C.1) and we will get (Tr{Î 2
z } = 2 for two spin-1/2

system)

SI = 1
2 Tr

{
Û

+

recÎzÛ rec Û excÎzÛ
+

exc

}
. (C.2)

We will for the moment assume that Û rec = Û
+

exc = eiĤDQ t. This is good valid for static

solids. In general it is also valid for rotating solids with an exception that reconversion

Hamiltonian is in addition rotor modulated (see e.g. equations (2.52) and (2.48)). To

calculate equation (C.2) it is enough to concentrate to the evaluation of the term

f(t) def= Û Îz Û
+

, (C.3)

where Û will be expressed in the form Û = e−iĤDQ t. At this point it is good to define DQ

Hamiltonian in the general form ĤDQ =
∑

i<j ωij T̂
ij
2,2 + ω∗

ij T̂
ij
2,−2 which represents time

independent average Hamiltonian during excitation period as well as during reconversion
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period for particular pulse sequence (see e.g sections 2.5.1.1 - 2.5.1.3 or section 2.4.1.2).

Propagator of the time independent average Hamiltonian is than given as

Û = e
−i

∑
i<j

(
ωij T̂

ij
2,2+ω∗

ij T̂
ij
2,−2

)
t
. (C.4)

In general operators in exponent do not commute and thus we will now assume only two

spin approximation. Hence, in the limit of two spin system interaction summation from

equation (C.4) can be removed. Substituting propagator Û in equation (C.3) with above

equation we will get

f(t) = e
−i

(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t
Îz e

i
(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t
. (C.5)

Differentiating of this equation by time up to the second order and using commutator

relation valid for two spin-1/2 system

[T̂
ij
2,±2, Îz] = ∓ 2 T̂

ij
2,±2 , (C.6)

we will get

ḟ(t) = −i e
−i

(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t [ω T̂

ij
2,2 + ω∗ T̂

ij
2,−2, Îz] e

i
(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t

= 2 i e
−i

(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t
(
ω T̂

ij
2,2 − ω∗ T̂

ij
2,−2

)
e
i
(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t (C.7)

f̈(t) = 2 e
−i

(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t [ω T̂

ij
2,2 + ω∗ T̂

ij
2,−2, ω T̂

ij
2,2 − ω∗ T̂

ij
2,−2]e

i
(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t

= −4 (ω · ω∗) e
−i

(
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2,2+ω∗ T̂

ij
2,−2

)
t [T̂

ij
2,2, T̂

ij
2,−2] e

i
(
ω T̂
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2,2+ω∗ T̂

ij
2,−2

)
t
. (C.8)

In the limit of two spin interaction we can write commutator in equation (C.8) as

[T̂
ij
2,2, T̂

ij
2,−2] =

1
4
(Î

i
z + Î

j
z ) =

1
4
Îz , (C.9)

so second derivation of the f(t) can be now directly evaluated

f̈(t) = −|ω|2 e
−i

(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t
Îz e

i
(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t = −|ω|2 f(t) . (C.10)

This represents differential equation with the formal solution

f(t) = A cos(|ω|t) + B sin(|ω|t) . (C.11)

Arguments A and B can be simply derived comparing results from equations (C.5), (C.7)

at t = 0 (f(t = 0), ḟ(t = 0)). It can be found that

A = Îz and B = 2 i

(
ω

|ω| T̂
ij
2,2 −

ω∗

|ω| T̂
ij
2,−2

)
. (C.12)
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If f(t) is already known intensity of the signal SI at the end of the reconversion period

can be calculated (see equation (C.2)). Under the assumption Û rec = Û
+

exc and relations

valid for two spin-1/2 system

T̂
ij
2,±2 · T̂

ij
2,±2 = 0 and Tr

{
T̂

ij
2,±2 · Îz

}
= 0 (C.13)

the signal intensity gets the form

SI = 1
2Tr

{
f(t)2

}
= 1

2Tr
{

Î
2
z cos2(|ω|t)

}
+ Tr

{
2
(
T̂

ij
2,2 ·T̂

ij
2,−2 + T̂

ij
2,−2 ·T̂

ij
2,2

)
sin2(|ω|t)

}
.

(C.14)

The second term in this equation correspond to the DQ signal and the first one represents

the polarization of the spin system and has to be filtered out from the spectrum. The first

term also can not by manipulated through e.g. TPPI (see section 2.4.3) and will appear

at the different frequency position as DQ coherence. Using the condition valid for two

spin-1/2 system

Tr
{

T̂
ij
2,2 · T̂

ij
2,−2 + T̂

ij
2,−2 · T̂

ij
2,2

}
= Tr

{
1
8

1̂1
}

=
1
2

(C.15)

intensity of DQ coherence from equation (C.14) can be simply evaluated

SDQ
I = sin2(|ω|t) . (C.16)

The rest magnetization of the spin system is than

Mz = cos2(|ω|t) . (C.17)

In the case when Û rec 6= Û
+

exc the result given in equation for DQ intensity is not more

valid and equation (C.2) has to be solved in more details. One has to calculate separately

differential equation for reconversion period and the result will end up with the following

equation1

SDQ
I = Φω sin(|ωrec|t) sin(|ωexc|t) , (C.18)

where

Φω =
ωrec ω∗

exc + ω∗
rec ωexc

2 |ωrec| |ωexc| . (C.19)

Complex terms ωexc and ωrec represent amplitudes and phases of DQ excitation and

reconversion Hamiltonian one by one. Φω is the phase of the DQ signal. t is excita-

tion/reconversion time usually marked in this work like τ . To write equations (C.18) and

(C.19) in more convenient way it is useful to separate amplitude and the phase from ω so:

1We will assume that duration of the excitation and the reconversion period is equal texc = trec = t.
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ωrec = |ωrec|ei Φrec , ωexc = |ωexc|ei Φexc . Using this definitions equations (C.18) and (C.19)

will become more transparent. It holds that

SDQ
I = cos(Φrec − Φexc) sin(|ωrec|τ) sin(|ωexc|τ) . (C.20)

The phase modulation of the DQ signal is from above equation evident from cosine factor

cos(Φrec − Φexc). It has to be noted that this phase modulation has no influence to the

signal originating from the polarization of the spin system described by equation (C.17).
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