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1. INTRODUCTION

It’s known that solids after being subjected to strong enough deformation alter their shape 
irreversibly. This phenomenon is generally called plastic deformation of solids. During
many decades microscopic processes that take place in a crystal in the course of its
deformation received studies of many scientists. At first they failed to explain the fact of
existence of significantly lower experimental values of crystal strength in comparison with
the theoretical value, which approximately equals to 1010 Pa [Ash79]. In some cases there
was a difference of several orders between the two values. Low strength of well-prepared
crystals was a mystery for throughout dozens of years. It was discovered, however, that the
strength of relatively badly prepared crystals reaches closely the theoretical value. But it
was also found out that the crystal strength decreased sharply after the improvement of its
structure (for instance by means of annealing). In that case it would have been natural to
suppose that the observed strength of more perfect samples should reach the theoretical
value but the real situation was far different from that supposition.

In 1934 Taylor [Tay34], Orowan [Oro34] and Polyani [Pol34] tried to explain such
crystal behavior with help of dislocations. They suggested that almost in all real crystals
there are dislocations and their movement originates plastic deformation. However, the
experimentally observed dependence of stress from deformation (deformation curve) when
crystal is stretched cannot be explained only by means of glide of dislocations that were
present in a crystal before the deformation. It turned out that it was possible to explain
qualitatively the dependence of stress from deformation assuming that:

a) The concentration of dislocations can change if the deformation size is changed;
b) There are obstacles that impede the movement of dislocations and the influence of

such obstacles can be higher or lower depending on the deformation size.

Exploring the crystal behavior Frank and Read came to conclusion that the dislocation
line if it is fixed in two points bends in these two points. Increase in external stress applied
to the dislocation leads to approaching of the bends to each other so that they annihilate and
create a new dislocation cycle. The remaining segment of dislocation line can again bend
until another dislocation cycle is created. These Frank-Read views allow us to propose an
explanation for the increase in number (and, accordingly, in concentration) of dislocations
in a crystal when it is being subjected to deformation. But concerning the mechanisms of
movement of dislocations Peierls [Pei40] suggested a model according to which the
dislocation line moves in the periodic potential with the Burgers vector periodicity. This
means that during their movement dislocations have to overcome obstacles –a certain
potential barriers. It turned out, however, that experimental values of dislocations velocity
cannot be explained using this model only. And thus come to opinion that there are other
obstacles that influence the movement of dislocations. Such obstacles are other dislocations
and defects that exist in the initial non-deformed crystal. Other obstacles are defects that are
not present in the initial crystal and that originate during the movement of dislocations in
the process of deformation of the sample. Crystal lattice vacancies and interstitials are
examples of such defects.

Seitz [Sei50] was the first who used the views of vacancies origination at time when
dislocations move for experimental data interpretation (here the experimental data of
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electrical conductivity measurement of NaCl plastically deformed crystals are meant; [Gyu
28] and [Ste33]). During the past years with help of different experimental methods
scientists proved the origination of point defects in the course of plastic deformation in ion
crystals, metals and semiconductors [Bro87].
Mott [Mot60] suggested the model of movement of screw dislocation by means of jogs
creation. Jogs appear in the dislocation line but do not lie in the slip plane. The movement
of jogs may be effected by emission or absorption of point defects (vacancies or
interstitials). Such approach serves to explain the emergence of defects during the
movement of dislocations. In [Sch65, Bar65, Mec80, Mil94] works also provide us with the
quantitative models that explain the emergence of point defects during the movement of
dislocations and the influence of the said defects on the dislocation motion.

Nevertheless, the existing qualitative models that explain the emergence of point defects
during the movement of dislocations and the influence of these defects on the dislocation
motion do not permit us, unfortunately, to make quantitative prognosis of the dependence
of crystal stress from its deformation at different experimental conditions. Such conditions
include temperature of the sample, deformation velocity, doping level and the alloy
impurity type if a semiconductor material is tested. And so experimental studies of the
influence of the plastic deformation on the crystal properties are still of current importance.

The purpose of the present thesis consists in acquiring more concrete information
concerning the mechanism of the movement of dislocations and types of defects that appear
during the process of dislocation motion on the basis of systematic experimental studies of
the GaAs deformation. Experimental studies concerning the dependence of the stress of the
samples from their deformation at different values of the deformation parameters (like
temperature and deformation speed) were conducted in this paper. Moreover, the values of
defects concentration that emerge in crystals during their deformation were analyzed later
on. Different facets were considered when choosing the object of the study (GaAs samples
in particular):

1. Semiconductor materials are easily processed.
2. GaAs materials are widely used in industrial microelectronics.
3. GaAs samples availability and operational experience with semiconductor material

that our working group has are also of great importance.

To determine the concentration of defects introduced in samples during the deformation
process the positron annihilation spectroscopy (PAS) method was used. This method is
effective when studying defects with open volume (defects without positive atom nucleus)
namely crystal lattice vacancies and their clusters that represent traps for positrons.
This method is a very important one in comparison with the other similar methods for types
of defects identification because vacancies and their clusters represent one of the basic
types of defects that emerge during the deformation of samples.

The second chapter of this paper deals with models of movement of dislocations and
origination of defects during deformation of the samples. In the third chapter channels and
models of positron annihilation in the GaAs samples are investigated. In the forth chapter
the used experimental methods, preparation procedure of test samples and technical data of
conducted experiments are described. The fifth chapter shows the results of deformation
experiments. The sixth chapter shows the results of positron lifetime measurements by the
PAS method. In the seventh chapter one can find analyses of the values of defects
concentration that were introduced in samples during deformation.
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2. PLASTIC DEFORMATION

During the deformation of a solid the measurable macroscopic magnitudes are: the force
F applied to the sample and linear dimensions of the sample. The combination of these
magnitudes allows us to calculate the average stress and average deformation :

A
F

 ( A is the sectional area that changes during the deformation process and to which

the force F is applied), ll / (where ll, are length variation and initial length of the
test sample accordingly).If stretching (pressing) of the crystal occurs at constant

deformation speed ( const


 ), then we speak about dynamic regime of deformation (and
this very regime is studied further in the paper). It is supposed that in dynamic regime of
tests the material preserves its elastic properties in the area of plastic deformation and it is
believed, in this case, that the deformation consists of two parts [Rab79]:

elastplast   . (2.1)

The purpose of the most works dedicated to plastic deformation is to determine interactions
between macroscopic magnitudes that characterize the properties of test material during
deformation and microscopic magnitudes that characterize the movement of dislocations.
In connection with this in the first part of the present chapter the deformation curve is
analyzed qualitatively, i.e. macroscopic parameters of the deformation are examined. Then
our attention switches to qualitative and quantitative models of the microprocesses that
flow in different deformation stages. Finally models of kinetics of the origination of point
defects are scrutinized.

2.1 Deformation curve during stretching

Deformation curve during stretching in dynamic regime conditions can be divided into
several areas [Die56]. Figure 2.1 represents the qualitative dependence of stress  from
deformation . It should be noted that in real experiments these or that areas do not
necessarily become apparent (in the figure 2.1 the most general situation is depicted).

Area of the first curve rise corresponds to the area of elastic deformation or the Hooke
area. It is characterized by the linear dependence of stress from deformation and
reversibility of the deformation process.
The area of elastic deformation borders with the area where the decrease in stress at the increase
in stretching is observed. There the plastic deformation begins and the area is called liquidity
area, 

ly and ly are accordingly called the upper and lower yield stress. It should be mentioned
that the nature of dependence of from in that area to a considerable degree is determined by
the initial state of the sample. For example it may be determined by the concentration of
dislocations before the deformation. Moreover the dependence may take different values, e.g.
constant stress can be traced during the deformation.

The area of easy glide denominated as stage I adjoins the liquidity area. In this phase
dislocations are free to move almost in any direction in single slip system increasing the
deformation without significant rise in stress [Lak80]. This phase is sometimes called the phase
of insignificant hardening. It is also possible that the stress in that area remains the same. In the
time of strong deformation the phase of multiple slip is seen meaning that dislocations move in
two or more systems [Lak80] (phase II ). In this phase the dislocation structure becomes very
complicated and density of dislocations increases in comparison with its initial state.
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Fig. 2.1 Deformation curve during stretching
in dynamic deformation conditions

)( const


 [Sie93a].

Because of the dislocations interaction the resistance to their movement grows sharply and
so the stress should also rise to ensure their motion. Phase II is called the hardening phase.

Phase III is called the phase of dynamic recovery. Such term was chosen to describe it
because in this phase dislocations disappear and then appear again.
At high temperature deformation additional stages of hardening ( IV ) and recovery (V )
may appear.

2.2 Movement of dislocations

Geometry. The plastic deformation is occurs due to dislocation motion. The simplest
types of dislocations are edge and screw dislocations. The edge dislocation model is shown
on figure 2.2. If we imagine extra crystalline half plane (on the picture it coincides with the
upper half plane zy, ; the z axis is directed vertically with respect to the picture plane) that
is inserted into the lattice (its section is shown on the picture) then the edge line of that half
plane (it coincides with the z axis on the picture) represents the edge dislocation. After the
entire bypass about the dislocation line the lattice points displacement vector gains the

increment


b . This vector is called the Burgers vector and it is equal to one of the lattice
vectors. In case of the edge dislocation the Burgers vector is perpendicular to the
dislocation line, in case of the screw dislocation the vector is parallel to the dislocation line.

In [Rab79] it is shown that if there are no defects in the crystal (vacancies and interstitials)
then dislocations are able to move only in directions where the following is true:

0)(  bldud


. (2.2)

Here ld


is the dislocation line element, ud

–vector of dislocation shift. It results from the

(2.2) correlation that the edge dislocation is able to move only in the plane in which the
dislocation is found and where the Burgers vector is present. On the contrary, according to
the (2.2) equality the screw dislocation is able to move in any plane that contains the
dislocation line because in this case the Burgers vector is parallel to the dislocation line.
This means that in the process of its movement the dislocation line is able to move from
one plane to another.

Theoretically possible directions of movement of dislocations were discussed above.
However, the slip (displacement of separate crystal parts with regard to each other) in the
crystal lattice is mainly realized along planes and directions with higher density of atoms
where the magnitude of shear resistance is minimal.
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Fig. 2.2: Edge dislocation model. Contour is painted

by continuous arrows. The Burgers vector


b is
painted by the dotted arrow. The dislocation line is
placed vertically with respect to the plane of the draft.

This is because the distance between such neighboring atomic planes reaches its maximum
and thus the bonds between them are extremely weak. The slip plane and the slip direction
that lie in these planes constitute the slip system. It is possible that more than one slip
system act in crystals simultaneously. For instance in crystals with face-centered cubic
lattice the slip is effected in planes (111) [Lak80]. The more slip planes and directions exist
in a crystal, the more it is exposed to plastic deformation. It must be noted, however, that
the slip process should not be considered as a process of simultaneous displacement of one
crystal part with relatively to the other. Such simultaneous shear would require far greater
stress, probably hundred times as great as that at which the process of plastic deformation
runs in reality. The real shear mechanism is quite different. The movement of dislocations
at distances that are significantly greater than interatomic distances leads to the following.
Two crystal parts that are divided by a plane in which dislocation moves come closer at the
distance that equals to interatomic distance; and visible shear is detected after the repeated
movement of dislocations on the slip plane.

Tangential stress  that influences the dislocation in a certain slip system can be
calculated by the formula sm , and the shear of a crystal in the slip plane for the
case of little deformations )1(  by sm/ . Here sm is the Schmidt factor and

 coscossm ( is the angle between the deformation axis and the unit vector that is
perpendicular to the slip plane; is the angle between the deformation axis and the
Burgers vector). The Schmidt factor takes into account, in particular, direction of the
influence of the external load on the crystal (using for this purpose the deformation axis)
and the orientation of the slip plane (by means of orientation of the unit vector that is
perpendicular to the slip plane).

Peierls potential. For the movement of the dislocation line along the lattice vector it is
necessary to successively (as the dislocation moves) break the bond between the adjacent
atoms on all dislocation length (see figure 2.2). To effect such movement the dislocation
has to absorb large quantity of energy and that casts doubt on the mere possibility of the
movement of dislocations itself. But in fact the dislocation can move consuming little
energy. Peierls [Pei40] suggested the model that describes the movement of the dislocation
according to which it moves in the periodic potential by the law:













pa
y

WW
2

0 sin (2.3)

At that the magnitude pa is equal to the Burgers vector. The scheme on picture 2.3 shows
the movement of the dislocation line in the potential (2.3). Kinks appear on the dislocation
that lies in the slip plane. These kinks are able to appear as a result of thermogeneration.

y

x

b
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A

B

0Wpa

pa2

y

Fig. 2.3: Movement of dislocation line. Hatched and continuous lines represent maximum and
minimum potential value. AB is the dislocation line segment and it is restricted by two fractures.
According to [Kra84].

The movement is effected by the successive overcoming of barriers by segments (elements
of the dislocation line that include two kinks). This process of segments flow over the
barrier (like a wave) is much more beneficial from the energy point of view than the
process of barrier overcoming by the whole dislocation at once. Such dislocations motion
regime is generally called the fracture movement regime.

The studied qualitative model of the movement of dislocations–when dislocations cover
large distances without any difficulties –can be used to explain phase I of crystal
deformation (see figure 2.1).

Obstacles in the slip process. As a rule, crystals contain defects of different types that
impede the movement of dislocations. These are impurity atoms, point defects and their
clusters (existing both in the initial crystal and appearing during the deformation process),
dislocations themselves.

The figure 2.4 shows the model that illustrates the stretching of the dislocation line that
is fixed on obstacles (for example, on impurity atoms). In the first position the dislocation
line is fixed.

Fig. 2.4: Model for stretching of the dislocation line. Position 1 –
dislocation line before tearing off from obstacles. Position 2 –
dislocation line after tearing off from obstacles. According to [Kra
84].

If the external stress  effecting the dislocation at the location of obstacles is strong
enough then the dislocation stretches and tears off from the obstacles (position 2). In the
time of further stretching the dislocation tears off from the layer of impurity atoms and hits



d

1 2

y


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upon the next layer of impurity atoms that are located more to the right along the y axis.
Such dislocation motion regime is called the stretching regime.
Other dislocations can also be obstacles for the movement of dislocations due to their interaction.
Interaction force between the two parallel screw dislocations related to the dislocation length unit
near the isotropic medium is [Lan87]:

.
2 1

21

d
bb

FS 
 (2.4)

The similar magnitude for the two parallel edge dislocations that lie in the single slip plane
is [Rab79]:

.
)1(2 1

21

d
bb

FE 



 (2.5)

At this  is the shear modulus,  is the Poisson coefficient, 1d –distance between the
dislocations, 21,bb –absolute value of the Burgers vector of the first and the second
dislocation accordingly. From (2.4) and (2.5) results that dislocations draw if Burgers
vectors )0( 21 bb are pointed into opposite directions but if vectors )0( 21 bb are
pointed into one direction then dislocations push off.
Mutual influence of dislocations on their movement can be more complicated. A crystal
may have dislocations located in different slip planes and not in the single plane. Thus
dislocations located in one slip plane are influenced by other dislocations located in other
slip planes. Such influence can be illustrated in the following manner. Let a certain slip
plane S1 (figure 2.5) contain infinite number of identical parallel rectilinear edge
dislocations removed on equal distance h one from another (dislocation lines are directed
along the z axis).

y

z

x

1S

2S

0x

h



Fig. 2.5: Dislocation wall scheme. 1S is the plane of arrangement of dislocations (dislocations are

directed along the z axis and are shown by straight lines). 2S is the plane of observation. hx ,0 are
the distances between the planes and dislocations accordingly.is the tangential stress.
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Such dislocation system is called the dislocation wall. In the plane S2 (the plane S2 is
parallel to the plane S1 and is removed from it on the distance 0x ) this dislocation wall
creates tangential stress  that works parallel the y axis. If there are dislocations in the
plane S2 then this stress effects their movement. In approximation the isotropic medium
and there where the condition hx 0 is realized the expression for  is [Lan87]:

)./2cos()/2exp(4)( 02
02 hyhx

h
bx

By   (2.6)

At this )1(2/  B , b is the Burgers vector length for the edge dislocation.
Dislocation walls are comprised, as a rule, from dislocations of little mobility and represent
obstacles for mobile dislocations. Dislocations of little mobility (as well as dislocation
walls) located in different slip planes constitute the system of almost immobile tree-like
dislocations that influence a lot the movement of mobile dislocations. Tree-like
dislocations can appear both in the process of crystal growth and during crystal
deformation. Increase in the concentration of the tree-like dislocations influences crystal
strengthening that is noted in stage II of the deformation curve during stretching (see fig.
2.1).

2.3 Multiplication of dislocations

The concentration of dislocations is determined as the ratio of all dislocations length to the
volume of the sample. This means that change in concentration of dislocations is not
always connected with the change in number of separate dislocations because the change in
total length of dislocations also means change in their concentration. In this aspect increase
both in number of dislocations and their total length means multiplication. Let us focus on
several mechanisms of multiplication of dislocations.

The dislocation line cannot simply end in a crystal: it rather appears on the surface of the
crystal or forms a closed loop. For such dislocations the Burgers vector has constant value
and direction throughout the entire dislocation line but the angle between the Burgers
vector and the dislocation line element changes along the dislocation line. Proof of this
statement can be found, for example, in [Lan87]. Mechanisms of multiplication of closed
dislocations can be explain with help of the Frank -Read mechanisms.

Frank –Read Source. The figure 2.6 illustrates the multiplication of closed dislocation
loops (closed dislocation cycles). The segment A of the dislocation line

Fig.2.6: The Frank-Reed deformation source. Segment A of the
dislocation stretches between the phases B and C. A new
dislocation appears on the phase D.

A

B

C

D
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(the initial dislocation itself is already a closed loop) that is fixed on two obstacles stretches
under the influence of the external stress applied to it. As the stress increases the segment
A progresses through several phases. The figure 2.6 represents two such phases B and C .
The process enters into the phase D after the specific stress value has been achieved and
there both dislocation line bends merge forming a single closed dislocation. The remaining
part of the segment A of the initial dislocation line can again stretch and form a new
dislocation.

The multiplication of dislocations and their movement in the Peierls potential serves to
explain the nature of dependence of stress from crystal deformation in the liquidity area
(see fig. 2.1). The stress in the elasticity area is high enough to allow dislocations to
overcome obstacles there where the elasticity area borders the plasticity area [Ale68a].

Cross Slip. As has been described above (see chapter 2.2), the Burgers vector and direction
of the dislocation line determine only one slip plane of the edge dislocation. During its
movement the edge dislocation stays within the borders of the slip plane. Theoretically, any
plane can be a slip plane for screw dislocations but in practice only planes with the densest
concentration of dislocations participate in the slip process. It’s known that, theoretically, a 
screw dislocation can move freely in any direction so there are no restrictions for it to
change slip planes. Such movement from one slip plane to another occurs under the
influence of neighbouring dislocations and other obstacles on the viewed dislocation. In
this case we observe what is called double cross slip of dislocations. The figure 2.7
illustrates this double cross slip.

2

21 1

3

M

N

L

E

C

D

N

Fig. 2.7: Double cross slip of dislocations. MN- initial dislocation line. LE, ND-dislocation line
segments. The segment C can act as at he Frank-Reed source.

The initial dislocation moves in the slip plane (1). Here MN is the dislocation line. At a
certain moment a kink can appear in the screw dislocation. Kink represents a dislocation
segments (LE, ND are dislocation segments) in the form of a step. The segment slip plane
(2 is the segment slip plane) is perpendicular to the slip plane of the initial dislocation. The
slip process in the plane (2) causes the segment to pass from this plane to the plane (3)
which is parallel to the slip plane of the initial dislocation (1). The segment C can act here
as the Frank-Read source. After the segment has moved to the plane (3) it can again return
to the initial slip plane (1) and so the initial dislocation will continue its movement in the
plane (1). In this very manner segments and dislocations slip in lateral planes (planes 2 and
1 respectively).
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Destrengthening of the stress curve during stretching seen in the stage V (see fig. 2.1)
associates with more rapid cross slip because, on the one hand, dislocations density
increases and, on the other hand, the velocity of dislocations also increases as the cross slip
helps to avoid obstacles during the slip process.

One must remember, however, that speaking about the multiplication of dislocations one
should consider the possible reduction in density of dislocations due to annihilation. If the
total Burgers vector of some of the interacting dislocations takes zero value then these
dislocations will disappear.

2.4 Kinetics of the movement of dislocations

Qualitative analysis of the causes that influence the behaviour of the dependence of stress
from crystal deformation has been already considered above (see chapters 2.2 and 2.3). To
sum up we can say that the behaviour of dislocations, i.e. their movement and
multiplication, determines significantly the behaviour of the deformation curve. This
statement concerns both the dislocations that were present in the crystal long before the
deformation and those that were emerged during the deformation process. To be able to
analyze the behaviour of dislocations in a deformed crystal one needs certain equations that
connect experimentally observed magnitudes, as well as those parameters that characterize
the conditions at which the deformation process runs like deformation values, deformation
velocity, and crystal temperature, with the magnitudes that characterize kinetics of the
movement of dislocations, i.e. velocity and density. This chapter deals with these
equations.

Effective Stress Model. It is very important to know what stress affects the dislocation
line. Apart from the external stress on dislocation line is affected, stress fields of crystal
dislocations. In [Ale68a] got expressions for stresses caused by dislocations with the
density dN :

  .)1(2/( 2/1
d

E
i Nb   (2.7)

2/1]2/[ d
S
i Nb   . (2.8)

The first equation serves to measure the stress in edge dislocations, the second is used in
case of screw dislocations. To determine the stress applied to the dislocation line one
should substitute the effective stress eff for the external tangential stress  that
influences dislocations in a certain slip system [Haa62]:

2/1
dieff AN  . (2.9)

Here the constant A includes different types of dislocations. The minus sign appears in the
formula because dislocations strive to reduce overall stress in a crystal. Using (2.9) the only
thing we can do is measure the maximum possible density of dislocations. Assuming

0eff ( 0eff ) the maximum value of dislocations density will be ( 2)/ A . As a rule,
it’s better to use (2.10) to determine the density of dislocations at a given external stress 
applied to the sample [Ger86]:

2/1
dbN . (2.10)
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At this  is a constant determined by the geometry of the crystal structure and takes its
values between 0.5 and 1 [Mec81].

Orowan Equation. Orowan [Oro40] was the first to view plastic deformation as a dynamic
process. He supposed that plastic deformation is similar to other transport processes that
run in a solid, for example, the process of movement of charge carriers. The difference is
that in this case dislocations act as charge carriers. The following correlation was obtained
to define the velocity of crystal shear along the dislocations slip plane:



 dmbN . (2.11)

Here is mobile dislocations velocity, dmN is mobile dislocations density.

Dislocations Velocity. There are two models that relate between dislocation velocity to
parameters that characterize experimental conditions: stress and temperature of the sample
[Sch65], [Ale68a].

Schoeck [Sch65] followed thermodynamic understanding of the phenomenon and studied
the changing of the thermodynamic Gibbs potential G (the Gibbs enthalpy) of a crystal
during its deformation1, i.e. studied the enthalpy difference G before and after crystal
deformation. In [Zon94] the equation for G was given in its commonest form:

effAVUG  . (2.12)

Here U is the energy barrier that dislocations have to pass during gliding. AV is the
activation volume of the movement of dislocations [Wee83a]:

bdlVa  . (2.13)

Here l is the length of a dislocation element fixed on the two nearest obstacles (see fig.
2.4); d is the stretching amplitude of that dislocation element in lateral direction with
respect to the element line at the moment it tears off from obstacles under the influence of
the external stress.
In [Wee83a] relying on the Schoeck model [Sch65] the following was obtained to define
dislocation glide velocity:

)./exp( TkGlf B (2.14)

At this f is the oscillation frequency of the dislocation line, Bk is the Boltzmann
constant. Later, assuming that the activation volume does not depend on the external stress

1 The enthalpy G for deformed crystal is G=E-TS- ikik u . [Lan87]. Here E, T, S are internal energy,

temperature and enthalpy of a deformed crystal accordingly; ik is the external stress tensor, it functions in

the kx coordinate direction in the plane perpendicular to the ix coordinate; iku is the deformation tensor

which is )(
2
1

i

k

k

i
ik x

u
x
u

u







 ; ju shows the crystal points displacement along the jx axis.
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and taking into consideration 2.9, 2.12 and 2.14 the following expression is derived to
connect dislocation velocity with stress : )exp(~  . However, it was experimentally
found out that the functional dependence between  and  is expressed like m~ ,
where rate of stress indicator m takes values from 1 to 2 (for semiconductor materials)
[Sch67].

In [Ale68a] Alexander and Haasen suggested a model for movement of dislocations
velocity assuming that dislocations move in the fracture regime (see fig. 2.3). Taking into
consideration this supposition and with regard to the assumption that fractures appear due
to thermal activation (by means of passing some of oscillating atoms’ energy to 
dislocations) dislocations velocity is given by:

)/exp( TkUB B
m   . (2.15)

Here U is the activation energy of movement of dislocation which is the sum of formation
energy and double fractures migration energy. B is the empiric constant. Rate of stress
indicator takes values from 1 to 1.5.

If we use the Schoeck model to describe movement of dislocations velocity, then AV and
U will be the parameters to characterize the movement of dislocations. But if, on the
contrary, we take the Alexander and Haasen model [Ale68a] for this purpose , then m and
U will be the parameters to characterize the movement of dislocations.
   Let’s determine the activation volume AV of the movement of dislocations. Using the

Orowan equation (2.11) for expressing  we’ll have: )/(
mdbN



 . Given that sm/

we come to sm/


 . Now for movement of dislocations velocity we arrive at

)/(
mdsbNm



 . Substituting this expression for velocity into (2.14) and finding the
logarithm of the expression we get:

Tk
G

blfNm
B

ds m






)ln(ln .

Using (2.12) for G and (2.9) for eff we see that:

)ln(ln
2/1

blfNm
Tk

NAVU
Tk

V
mds

B

dA

B

A 



 
 .

Assuming that the dislocations density dN does not depend on  the following is obtained:

constT
B

A

Tk
V
























ln

Taking into account that sm (  is the external stress applied in a certain direction)
we arrive at:

I
Tk

V B
A  . (2.16)
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Here

constT

smI

























ln
. (2.17)

Let’s express rate of stress indicator m . Substituting the above found expression for

velocity )/(
mdsbNm



  into (2.15) and taking the logarithm we’ll finally have:

Tk
U

BbNmm
B

ds m




)ln(lnln  .

Assuming that the density of dislocations is a constant value and taking into account that
sm we arrive at the expression for m:

constT

m


























ln
ln

. (2.18)

It is possible to determine AV and m but first we need to determine experimentally the

dependence of from


. But to do this it’s necessary for the value of dislocations density 
to be a constant. Changing the stretching velocity the density of dislocations can also
change. This means that at the chosen experimental conditions for determining the values

AV and m stretching velocity should be changed abruptly. Then the abrupt changing of



prevents the changing of dislocations density because the necessary processes have very
little time to run smoothly till the end.
   Unfortunately, it’s impossible to determine the value of U in this case. For example, if
the above described method to determine U is used then, assuming that the Alexander and
Haasen model [Ale68a] is right, we have:

U

Tk

m

Tk
constNBconstNB

dd








































































1
ln

1
ln 

.

As the strain rate


does not depend on parameter T under the experimental conditions,
we arrive at:

constdNBTk

mU



































1
ln

.
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The assumption that the Schoeck model [Sch65] is right gives the following expression for
U :

.
1

1

constdNB

B
sA

Tk
Tk

mVU






































It results from these formulae, deduced for activation energy U of the movement of
dislocations, that to define the value of U  under the given experimental conditions it’s 
necessary to change abruptly the crystal temperature. Such change, however, should be
made so that the density of dislocations retains its constant value, but it’s technically 
impossible as the speed of crystal warming has its limit. So a different method is used to
define the activation energy U of the movement of dislocations. In [Ale68b] the relation
between the liquidity lower limit ly (see fig. 2.1) and U was derived as:

  .
2

exp
)2/(1














Tkm
U

C
B

m

ly  (2.19)

Here C is an empiric constant. Using (2.19) we come to:

.ln
)2(

ln
)2(

1
ln C

Tm
U

m B
ly 












Hence, for U and m we have:

constB

ly

Tk

mU







































1

ln
)2( . (2.20)

constT

ly

m


 


















 



ln

ln

2
1

. (2.21)

Thus, from experiments for dependence of the lower yield stress ly from the strain

rate


at a maintained temperature we can define using (2.21) the rate of stress indicator
m value. Later, having defined the experimental dependence of ly from the crystal

temperature T at a constant strain rate


, it is possible to find )2/( mU  using (2.20).
Finally, from these experiments we are able to find U and m but not the value of the
activation volume AV of movement of dislocations. To determine AV one must first

experimentally determine the dependence of from


changing abruptly the value of



during one experiment. At the same time the temperature of a sample must be kept constant
during the experiment. Then the value of AV is derived using (2.16) and (2.17).
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Moreover, these very experiments help to define the value of m using (2.18); in this case

it’s unnecessary to conduct experiments with abrupt changingof


for determination of m
because as has been stated above the value of m may be obtained from other experiments.
However, the comparison of the values of m obtained by two above described methods is
of great interest.

2.5 Formation of point defects

2.5.1 Models

Dislocations Climb. When (2.2) is true a dislocation moves conservatively in a slip plane.
But when the (2.2) correlation doesn’t apply dislocations may come out of the slip plane by
means of climb and such movement of dislocations is considered to be nonconservative.
Such kind of movement can be realized as long as a crystal lattice contains vacancies
(defects) and interstitials capable of moving freely due to disproportional distribution of the
thermal oscillation energy between atoms. We can imagine a defect located within a
dislocation neighbourhood to move, such movement having diffusion inherent
characteristics. The dislocation starts moving and follows the defect leaving its own slip
plane. However, in most cases such movement of dislocations can be seen only at
extremely high temperatures.

As a matter of principle, dislocations climb is a mechanism that may be used for
generation of point defects because such movement of dislocations may be effected by
means of emission or absorption of point defects. The emission of point defects, in its turn,
may be explained the following way. A crystal lattice vacancy adjoining the dislocation can
be rapidly transported along the dislocation line with help of diffusion and drifting
movement in the mechanical stress field created by the dislocation [Cui96]. The dislocation
line is a ‘narrow gully’ for vacancies [Mec80]. This can be explained by creation of 
alternate mechanical stress in anisotropic environment by the dislocation. The stress causes
the dislocation to move to those areas containing the dislocation line where the crystal is
compressed. As a result, crystal stress there where the dislocation rests now relaxes a little.
The emission of crystal lattice vacancies can be affected only when reduction in the energy
of the system (comprising vacancies with the dislocation) is higher than the energy required
to form crystal lattice vacancies. The reduction is possible due to partial relaxation of stress
in the locality of vacancies.

In [Wee83b] the following expression was obtained for the concentration of a point
defect near dislocations that move according to the climb mechanism:

)/exp()/exp( 3
00 TdkLbTkECCC BB  . (2.22)

Here C is the concentration of vacancies near the dislocation; 0C is the concentration of
vacancies at the thermodynamic equilibrium of the crystal away from dislocations (there
where there’s no influence of dislocations on the concentration of vacancies); E is the
vacancy formation energy;  is the mechanical stress caused by the dislocation; L , d
denote the average way of the dislocation line before annihilation with another dislocation
during dislocation glide and climb accordingly. The plus (minus) sign in the second
exponential member corresponds to the emission (absorption) of crystal lattice vacancies
by the dislocation.
Phase III on the deformation curve during stretching (see fig.2.1) is explained by
dislocations climb [Haa89].
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Fracture Resistance. In case a screw dislocation is studied, there is one more reason (in
addition to that considered above) that causes emission and absorption of defects. During
its movement a screw dislocation experiences a kink in certain cases. Such kinks on the
dislocation line can be of different nature. Some appear due to double cross slip of
dislocations (see fig. 2.7). The influence of mechanical stress fields of other dislocations on
the given dislocation can, in particular, be the reason why a screw dislocation travels to a
neighbouring slip plane, such movement being caused by double cross slip.

But there is another reason for appearance of kinks. Kinks may appear by virtue of
crossing of two screw dislocations. Figure 2.8 (the scheme was taken from [Hub98])
illustrates how kinks appear.

1t

1t

2t

2t

Fig. 2.8: Crossing of two screw dislocations ( 1t is the time moment before crossing, 2t is the time
moment after crossing).

As after the passage of a dislocation one-crystal part (that one above the dislocation slip
plane) displaces with regarding to the other part of the crystal (that one under the slip
plane) on the Burgers vector, the dislocation line itself also moves, i.e. a kink appears.

Mott [Mot60] suggested a model explaining how a screw dislocation moves having
gained impulse of a kink during emission or absorption of point defects. A kink in a
dislocation line is a graded dislocation segment. The kink slip plane is perpendicular to the
screw dislocation slip plane. The screw dislocation kink affects nonconcervative climb
motion. Such nonconservative motion can be realized by emission or absorbing point
defects and such dislocation movement mechanism is called fracture resistance. Series of
defects may be formed by means of fracture resistance. But such defects configuration
(series) is sometimes unstable. As a result, two-dimensional or three-dimensional defects
clusters may originate. In particular, three-dimensional vacancies clusters are constituted.

2.5.2 Kinetics of formation of point defects

Both processes that lead to defects emergence and processes that are responsible for their
annihilation should be taken into consideration when analyzing the kinetics of formation of
point defects. There are different ways of annihilation of vacancies and interstitials
(interstice atoms):

1. Recombination of crystal lattice vacancies with interstitials.
2. Interaction of vacancies and interstitials with dislocations and atoms of different

impurity (in this case other point defects emerge).
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To make the annihilation of vacancies and interstitials possible it is required that they be
mobile at crystal deformation temperature. Further on, for formation of stable defects –
complex of a vacancy (interstitial atom) and an impurity atom – it’s necessary that the 
annealing temperature of such complex be higher than the deformation temperature, or else
these complex will not be formed. The difficulty to conduct analysis of the annihilation
process in this case lies in the impossibility to use experimental data obtained for an
undeformed crystal. The point is that dislocation mechanical stress may significantly
influence the defects formation processes in a deformed crystal (there is no such influence
in an undeformed crystal).

Formation of point defects velocity

Two completely different approaches are used to determine the velocity of formation of
vacancies and interstitial atoms during the movement of dislocations. The Mott [Mot60]
and Popov [Pop90] models study macroscopic processes, while the Estrin-Mecking model
[Mec80] uses energetic considerations rather than macroscopic ones.

A kink generates point defects during screw dislocation glide and it is believed to be the
initial moment of the formation of point defects velocity model. Mott was the first who
paid attention to screw dislocations glide that contain kinks [Mot60]. Taking into
consideration processes of kinks creation resulting from crossing of gliding screw
dislocations with noncoplanar slip system dislocations (tree-like dislocations), and their
annihilation or merger, Mott proposed the following:

2/1
2/1

22
d

V bN
C 






. (2.23)

Here VC is the relative concentration of vacancies (ratio of the true concentration of
vacancies to the concentration of lattice atoms),  is the ratio of tree-like dislocations
density to the general density of dislocations. Popov proceeds from the same considerations
as Mott but examines the conservative movement of kinks along the screw dislocation in
more detail [Pop90]. In that model it’s assumed that to form point defects it is necessary for
the following to be true:

jjb  / . (2.24)

If (2.24) is not right, defects cannot be formed. Here j is the kinks glide velocity,  is

the movement of dislocations velocity, j is the distance between kinks on the dislocation
line. The (2.24) condition was obtained proceeding from the following suppositions. To
form defect it is necessary that a dislocation has covered the distance l before kinks
annihilation. This distance is larger than the Burgers vector length. The time required for
two neighbouring kinks to annihilate can be measured up by jjt  / . During this time

the dislocation has to cover bl jj   / . Hence we have (2.24). When (2.24) is true
we get [Pop90]:
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Here VIC , is the relative concentration of interstitial atoms )(I and vacancies )(V , jP is
density of tree dislocations that create kinks on a screw dislocation to the general density of
dislocations. Unfortunately, the dependence of  /,VIC from parameters that characterize

experimental conditions (from strain rate


 and temperature of the sample) cannot be
valued by (2.23) and (2.25). It’s quite difficult to use these formulae to make practical 
evaluations. To determine the formation of point defects velocity the authors of [Mec80]
and [Mil93, Mil94] proceeded from energetic considerations. It is assumed that the
formation energy kE of the type k point defect (a crystal lattice vacancy or an interstitial)

is proportional to 3b . The starting point in the Estrin-Mecking model is the fact that a
certain amount of work done during the deformation of a crystal is used to form point
defects. The equation for the formation of point defects velocity P is noted as:

3
1 b

P




 . (2.26)

Here 1 is a constant,  is the portion of the overall work done that is spent on
formation of point defects. This formula is preferential to (2.23) and (2.25) when making

practical evaluations because here we have the apparent dependence of P from and


.

Point defects annihilation velocity

The already formed crystal lattice vacancies and interstice atoms can react with
impurity atoms during the diffusion process thus constituting new point defects. These
processes together with vacancies and interstitials generation processes determine the value
of concentration of vacancies and interstitials. Generation velocities have been treated
before in the present paper. Here let’s consider interaction velocities of vacancies and 
interstitials with impurity atoms.

A number of scientific works were dedicated to studies of velocities of diffusionally
controlled reactions in a solid state. These are reactions velocities of which are limited by
the diffusion process of the reaction components. Notable are [Vin72a, Vin72b, Vin75],
[Koz81] works. The [Koz81] findings are given below because this paper takes account of
the other mentioned works’ findings. Velocities of diffusionally controlled reactions in 
semiconductor materials between two components (at least one of them must be mobile)
were examined in [Koz81]. The coulomb interaction between the components having
charge condition spectrum in the semiconductor band –gap was taken consideration of in
the work. The following was obtained for velocity of reactions:

.
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jiijjiijij frfFrf ,11, )()(   . (2.30)
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Here is the reaction velocity; r is the distance between the reacting defects; 0r is the
reaction radius (the distance at which the components must come closer so that the reaction
will run and a new defect will form); iD is the diffusion coefficient of the reaction first
component in the charge condition i ; jD is the diffusion coefficient of the reaction second

component in the charge condition j ; ijU is the coulomb interaction energy between the

reacting components having ie and je charges ( e is the electron charge); )(rf ij is the
probability that at the distance r between the interacting components one of them is found
in the charge condition i and the other one is found in the charge condition j ; )(rU is
the average energy of electrostatic interaction between the reaction components removed
on the distance r ; )(rD is the average total diffusion coefficient of the two components
removed on the distance r ; ijF and ij are the functions of the distance r between the
reaction components, electrons and holes concentration, crystal temperature, energy levels
in the semiconductor band –gap (of the charge condition spectrum) for each reaction
component; all charge conditions of the reaction components are summed.

Qualitatively the reaction process can be explained the following way. The reaction
components are found initially at the distance 0rr  . This distance is taken equal to the
infinity, so in the (2.27) integral the integration upper limit is infinity. The components
have ie and je charges. For instance, if the first component is in the single negative
charge condition and the second one is in the single positive charge condition, then 1i
and j = -1. As defects come closer, it may turn out that at a certain distance r between the
components the condition having different i and j values will be more beneficial from the
energetic point of view. If the components continue their approaching motion the values of
i and j can again change. So ijf depends on the distance r and the components’ mutual 
diffusion coefficient and the interaction energy between them is characterized by average
values (see (2.28) and (2.29) equations). In case the reaction components are neutral (when

ijU 0 and, hence, 0U and constD  ) we get the common formula for the velocity of
diffusionally controlled (diffusionally limited) reaction:

021 )(4 rDD  . (2.32)

Here 1D , 2D are the diffusion coefficients of the first and the second components
accordingly. From (2.27) results that if one component attracts the other ( 0ijU and hence

0U ) the reaction velocity value is higher then the similar magnitude in case the
components are neutral. And vice versa: if one component repulsion the other ( 0ijU and
hence 0U ) the reaction velocity value is less then the similar magnitude in case the
components are neutral. In other words, attraction between the components speeds the
reaction up, while repulsion slows it.
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The discussed reaction velocity model can be applied to the case of formation of defects
located in the field of dislocation mechanical stress. First, however, the influence of
dislocation stress on energy levels values and on activation energies of the reaction
components migration in various charge conditions must be considered in the (2.272.30)
equations. The model as it is cannot be applied to practical estimation of reactions velocity
values that run in the field of dislocation mechanical stress. In [Mec80] a model of
annihilation velocity of vacancies that are situated in the dislocation neighbourhood was
proposed:

).( 0CCA  (2.33)

Here A is the annihilation velocity, C is the relative concentration of vacancies, 0C is
the relative concentration of vacancies (away from dislocations) in the crystal
thermodynamic equilibrium. The constant  is calculated by the following expression
[Mec80]:

23
0 


bC
DV . (2.34)

Here VD is the vacancy diffusion coefficient,  is the average distance between
annihilation centers.

Stationary concentration

The stationary concentration of vacancies is reached when vacancies emission velocity is
equal to annihilation velocity. In the framework of the Estrin-Mecking model [Mec80], the
stationary concentration can be determined from AP  assuming that only dislocations
constitute annihilation centers (see (2.26) and (2.34) equations). Then:
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Here 0CCC  is the surplus relative concentration of vacancies.
Let’s multiply the numerator and the denominator in the right part of the equation by the
density of dislocations dN . After that, let’s express the density of dislocations in the 

denominator with help of (2.10): .)/( 2bN d  Then the following expression is
obtained for C :
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From (2.15) results that m/1~ ( m is the rate of stress indicator) and from (2.11) and
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 . Finally we come to:
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Here 
mdN is the density of mobile dislocations. From (2.35) results that at a constant

deformation velocity

2~C . (2.38)

From (2.37) results that, given that the density of dislocations has a constant value, the

dependence of C from


is:
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2.6 Dislocations in the diamond structure

The diamond lattice can be viewed as superposition of two face-centered cubic lattices
displaced with respect to each other in the direction of the volume diagonal for ¼ of its
length. If, in this case, the diamond lattice contains atoms of two different types, then we
deal with zinc blende structure. The GaAs lattice is the blende type lattice.

Plastic deformation occurs as a result of shear in a certain crystallographic plane in a
certain direction in that plane. The combination of the slip plane and the slip direction in
that plane is called the slip system. Slip plane is a plane with the densest packing of atoms
(because distances between such planes are maximal) and slip direction is a direction for
which distances between adjacent atoms centers in a slip plane are minimal. The diamond
lattice does not possess all the properties of cube symmetry. However, by its macroscopic
parameters a diamond crystal has cube symmetry [Ans78]. That’s why here let’s consider
slip systems and as an example take face-centered lattice. Figure 2.9 represents the plane
(111) and all the possible slip directions in it. Slip planes are planes NAC, MDB, EDB. So
we have four systems of physically equivalent planes: {111} slip systems each having three
slip directions. Thus, in the general case a face-centered lattice can have up to twelve slip
systems.

Fig. 2.9: Slip systems and slip directions scheme. The ALC plane is the (111) slip plane. QK, KG,
GQ directions are the slip directions in the ALC plane (atoms in the cube vertices and in the middle
of the AEND, DNMC, ELMN facets are not shown on the scheme).

A D

E

L M

CB

G

K

NQ



2. Plastic deformation

23

The real quantity of slip systems under specific experimental conditions may be less then
their maximum theoretically possible number. This can be explained the following way. It
has been discussed above that the relation between the external stress () and the
tangential stress ( ) affecting a dislocation (and causing its movement) in the slip plane is
expressed like: sm . The Schmidt factor ( )sm value is determined by direction of the
unit vector which is perpendicular to the slip plane, the Burgers vector plane and by
stretching direction. If we have such stretching direction that for any slip systems sm =0
then in this slip system 0  and there’s no dislocation glide in it. Hence, the quantity of 
real slip systems will be less then their theoretically possible quantity. For example, in a
diamond lattice there are 8 slip systems for the [100] stretching direction (four slip plane
systems and two slip directions in slip planes), four slip systems for the [110] direction.
Since the GaAs lattice is nothing more nor less than superposition of two face-centered
lattices with different atoms (Ga and As), two types of dislocations exist there: 600-degree
 dislocations (in Ga atoms lattice) and 060 degree -dislocations (in As atoms lattice)

[Mat74]. There are two possible positions of slip planes in the diamond structure [Ale68a]:
slip planes can be situated between plane couples, or, in the other case, between planes
within one couple. That makes the diamond structure so peculiar. In the slip regime
complete dislocations can dissociate for two partial dislocations. As a result, the atomic
structure deformation reduces. The greater part of dislocations in the diamond lattice
decomposes (dissociates) for partial dislocations. During dissociated screw dislocation
cross slip dislocation line segments that stay in the cross slip plane constitute 060 degree
dislocations. If two screw dislocations cross we have the similar situation: 060 degree
jumps appear on both screw dislocations after their crossing.

Conclusions

Proceeding from the above-explained material, we may conclude that two principal factors
–changing in the density of dislocations (both mobile and immobile) and their velocity –
determine the nature of experimentally observed deformation curves during stretching of a
sample. In all probability we can state that nowadays there are clear and understandable
notion concerning reasons that lead to changes in the values of the discussed dislocation
characteristics during plastic deformation of crystals. To be more precise, impurity, point
defects and their clusters, and other dislocations influence the movement of dislocations
velocity. The fact that defects impeding the movement of dislocations appear during the
proper movement of dislocations (in the process of kinks climb in screw dislocations)
complicates studies of the matter. The concentration of dislocations changes as a result of
movement of dislocations as well (double cross slip of dislocations). It’s comprehensible 
that to be able to quantitatively interpret experimental data and to make prognosis
concerning the behaviour of deformation curves under these or that experimental
conditions (like sample temperature and stretching velocity) we need equations that

connect together concentration of defects, macroscopic parameters ( ),,, T


 , and
parameters that characterize the movement of dislocations ( ).,,

mdd NN Such equations are
those discussed earlier in this work: (2.10), (2.11), (2.152.17), (2.192.21), (2.38),
(2.39). Unfortunately, these do not form a closed system. For example, there’s no evident 
connection between concentration of defects and movement of dislocations velocity. Later,
if in the (2.15) equation for movement of dislocations velocity we substitute for  using

sm and then make use of (2.10), we’ll arrive at:
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)/exp(~ 2/ TkUN B
m
d  .

This means that  grows as dN ( )0m grows. In reality, however,  should decrease
with the increases of dN because dislocations are obstacles for movement of mobile
dislocations. Thus, the movement of dislocations activation energy U should rise as
density of dislocation dN increase. The activation energy should rise if concentration of
defects increases, too, because they are obstacles for the movement of dislocations. In this
situation the use of AV , m , U parameters for description of the movement of dislocations
is justified only if these parameters depend very little on those that characterize

experimental conditions ( ,


T).
[Hub98] provides us with findings of systematic experimental research of GaAs

deformation curves at the crystal temperature range of CT 0)800400(  and strain rate of

.)1010( 135 


 s In particular, for an undoped GaAs during stretching the following
results were obtained (the crystal was stretched in the [110] direction) [Hub98]: in the

range of


 145 )1010(   s at CT 0400 , CC 00 600,500 C0800 the research gave
6,05,42 m , 3.0 ,4.0 3.7 ,3.0 3.9 3.0 values accordingly; eVmU 44.0)2/( 

( 15108 


 s ). Thus, very weak relation between rate of stress indicator ( m ) value and
the value of the activation energy (U ) of the movement of dislocations was determined.
These experimental data prove that the use of m and U parameters and, perhaps, AV is
justified. It’s sad, however, that in [Hub98] and in other works there are no data for the 

values of AV in a vast range of


and T parameters.
[Hub98] also proved that there is influence from part of doped impurity on the value of

U , i.e. defects influence significantly the processes of movement of dislocations. It was
stated above, however, that the system of expressions describing processes of movement of
dislocations doesn’t directly connect the values of U and concentration of defects. This
fact does not allow us to determine the value of concentration of defects (leaving alone
their type) directly from the experimental data obtained for crystal deformation. That’s why 
to determine the concentration and type of defects in deformed crystal scientists use
additional experimental methods. The PAS method (that is further treated in detail) was
used in the present paper. Using experimental data obtained by the PAS method it will be
possible to make a conclusion concerning the applicability of (2.38) and (2.39) when

determining functional relation between concentration of defects and with


.
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3. POSITRON ANNIHILATION SPECTROSCOPY

3.1 Positronium in vacuum

During interaction of an electron with a positron a hydrogen-like system –positronium -
can emerge. There are two types of positronium: parapositronium (system of an electron
and a positron with antiparallel spins) and orthopositronium (system of an electron and a
positron with parallel spins). It was demonstrated in the work [Ber68], that levels of
positronium energy could be classified in accordance with the value of complete spin S .
Since for parapositronium 0S , it could be only in one state (i.e. parapositronium
constitutes singlet state with spin projection 0zS ). For orthopositronium 1S , that’s 
why it could be in three states (i.e. orthopositronium constitutes triplet state with spin
projection ).1,0,1zS

Positron annihilation is accompanied by emission of one, two or more  quanta. One-
photon annihilation of an electron-positron pair is possible only in presence of any third
substance (electron, atom), which perceives recoil momentum. This could be explained in
the following way: during annihilation of an electron-positron pair the energy conservation
law and the impulse conservation law, are implemented. If we consider an electron-
positron pair within the system of center of inertia (in such a coordinate system
positronium is stationary, its components have speeds different from zero), positronium
momentum is equal to zero. After annihilation total momentum of the system will be equal
to the momentum of  quantum (one-photon annihilation) differ from zero, which is
impossible due to the momentum conservation law. Thus one more substance shall be
present, which as a result of positronium annihilation acquires a momentum so as to
complete momentum of  quantum and this substance is equal to zero. At this point we
will consider positronim without any other solid, that’s why process of one-photon
annihilation will be excluded. During positronium annihilation С charge parity[Ber68] of
the system shall be preserved. Positronium charge parity [Ber68] is as follows:
C sl)1( ( sl, orbital moment and positronium spin, accordingly), and system’s charge 

of parity is as follows: NC )1( ( N number of photons). Since positronium orbital
moment has the only value [Ber68] ,0l positronium charge of parity .)1( SC  As to
parapositronium )0( S 1C and, consequently, annihilation occurs with formation of
even number of photons. For orthopositronium )1( S .1C Thus, ortopositronium’s 
annihilation is accompanied by emission of odd number of photons. Hence, the main
process-determining lifetime of positronium is two-photon annihilation in case of
parapositronium and three-photon annihilation in case of ortopositronium [Ber68]
(processes with a great number of photons are not considered, because they are less likely).
Let’s determine lifetime of positronium for the case 1/, Cpe (C - light speed, eand

p - speed of electron and positron in positronium). Equations for sections of two-photon

2 and three-photon 3 annihilations in the system of center of inertia have are the
following [Ber68]:

,2

2

2 


c
cm

e

e




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


 (3.1)
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Where  relative velosity of electron and positron in positronium, ),/(2 ce  em -
electron mass.

Normalized to unity wave function of positronium ground state is as follows:

)./exp()()( 2/13 arar   (3.3)

where   mema e
1022 10)/(2 Bohr radius of positronium. Possibility of two-photon

annihilation of parapositronium 0w is as follows [Ber68]:

.)0(4 2
2

0 w (3.4)

Substitute into equation (3.4) values 2 and
2

)0( from equations (3.1) and (3.3) we can
get the following for parapositronium lifetime:

.1023.1
21 10

52
0

2 s
cmw e







(3.5)

Energy 0E of positronium ground state and level width 0are as follows:

.8.6
4 2

4

0 eV
em

E e 


.104.5/ 6
20 eV 

Hence, level width is small as compared to 0E . Namely this fact allows considering
positronium as a quasistationary system. For three-photon ortopositronium annihilation life
time s7

3 104,1  [Ber68]. In this case level width is also small as compared to ground
state energy and orthoposirtonium can be considered as a quasistationary system.

3.2 Positronium in crystals

Results represented in the foregoing section cannot be directly used to evaluate positronium
lifetime in crystals. Electron density in positronium atom

2
)0( according to equation

(3.3) depends on Bohr radius of positronium:
2

)0( .~ 3a To acquire expression for
2

)0(
S

 in crystal we should place in the above mentioned expression for Bohr radius of

positronium )/( 
  mmmmm instead of 2/em and multiply Bohr radius of

positronium by 0. At this point m and m - effective mass of electron and positron in
crystal, 0 static permittivity of crystal. Then we get the following:
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.)0()0(
22

 SS
 (3.6)

Where 3
0 )]/([8  eS mm .

As a consequence of this annihilation rate of positronium in crystal )3(2  and vacuum
0

)3(2  are connected as follows:

)3(2  0
)3(2 S . (3.7)

In this case   2
0
2 /1 and   3

0
3 /1 (values of 2 and 3 were represented in the

foregoing section). We can calculate binding energy SE of positronium in crystal by using

expression for the same value in vacuum ,0E if we decrease 0E by 2
0 (binding energy of

electron in hydrogen-like atom placed in a medium with permittivity 0decreases by 2
0)

and replace 2/em by m . Then we get the following:
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

. (3.8)

Let’s evaluate S and SE values for GaAs. Provided that 0 12.53 [Gri91],

emm 065.0 [Ask85] and assuming that emm ~ (quite good approximation for metals

[Are83]), we get the following: eVES
3105.5  , .10 6S It follows that

,0SE where 0 - energy of deformation optical phonon ( eV036.00  [Gri91]).
Hence during interaction with phonons positronium is able to dissociate (decompose into
free positron and electron). Dissociation possibility ~ )./exp( TkE BS Therefore we could

expect that positronium exists in quasistable state under .60/ KkET BS  At high
temperatures positronium is most likely unstable. Further taking into account equations
(3.5), (3.7) и χ values we can get the following: 14

2 108.0  s .
Thus positronium spontaneous annihilation is a very slow process (with characteristic time
of annihilation ~ )10 4 s and most probably is not an important channel of positron
annihilation (at this point we should take into account that in GaAs without any defects
characteristic time of annihilation is about )10 10 s .

There is one more channel of positronium annihilation (in addition to spontaneous
positronium annihilation which was examined earlier) –positronium annihilation by its
interaction with an electron of lattice atom (or with a free electron). Reaction is carried out
in accordance with the following model: eePS  2 ( SP positronium, e free
electron of conduction band or electron of lattice atom). Such a process is called pick-off
annihilation of positronium [Are83] (this process can be observed in particular in ionic
crystals). Pick-off annihilation takes place in case if positronium is in quasistable state. It
was demonstrated earlier that most probably this condition is implemented at low
temperatures. At temperatures at which positronium is most probably unstable
( BS kET / ) pick-off annihilation is improbable. However the following needs to be
explained. It was noted earlier that positronium dissociation at temperatures determined is



3.2 Positronium in crystals

28

caused by its interaction with phonons. However if characteristic time pof energy transfer
from phonon to positronium (period between collisions of positronium and phonons) is
higher than characteristic time of pick-off annihilation pick , for process of time of pick-off

annihilation positronium could be considered nevertheless stable. Time spick
1010 (since

it was experimentally determined in crystals without any defects that time of positrons
annihilation is about s1010 ). Time p is unknown. However if we assume that collision
rate of phonons and positronium coincides in order of magnitude with collision rate of
phonons and free electrons (approximately 11310 s ), then we can get the
following: sp

1310~  .Consequently, pickp  . Hence, pick-off annihilation does not

contribute to positron annihilation under BS kET / . According to the above mentioned
analysis spontaneous positronium annihilation in GaAs does not substantially contribute to
positron annihilation, pick-off annihilation of positronium can affect processes of positron
annihilation only at low temperatures of crystal: under BS kET / .

3.3 Annihilation of free positrons

Positron and electron in crystal are sometimes in zone state and sometimes–in bound state
constituting positronium (at this point crystal without any defects is considered). Possible
channels of positron annihilation through formation of positronium (with subsequent
annihilation of related positron and electron in positronium) were discussed earlier. At this
point we consider two channels of free positron annihilation with electrons: annihilation
with free electrons of conduction band and electrons of lattice atom. Annihilation rate of
positron with free electrons is as follows:

.2,2 nn    (3.9)

where 2 is determined in accordance with equation (3.1),  relative speed of electron
and positron in system of center of inertia, n concentration of free electrons. By using
equations (3.4) and (3.9) we can get the following:

02,2
)0(4

w
n

n


 .

Since 132
)()0(  a and 20 /1w (see equations (3.3) and (3.5)), we can finally get

the following:
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It was demonstrated earlier that ,10 10 ma  .1023.1 10
2 s (3.5). By real concentration

of dopants concentration of free electrons does not exceed value of .10 319 cm As a result
we can get the following: .10 15

,2
 sn Hence lifetime of positrons caused by annihilation

at free electrons is as follows: .10/1 5
,2 sn

 This value is considerably higher than values
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acquired during the experiment (approximately ).10 10 s Thus this channel can be
considered inessential for annihilation. To evaluate positron annihilation rate at electrons of
lattice atoms equation (3.9) is usually used [Are83]. At the same electrons concentration n
is interpreted as an effective value .efn  Let’s demonstrate that the mechanism under 
consideration can substantially contribute to positron annihilation. In accordance with
equation (3.10), given that ,efnn  we can get the following:

1
2

3

,2 4
  


 ef

n

na
ef

. (3.11)

Let’s assume that Aef Znn  ( An concentration of crystal atoms; Z number of electrons

in atom equal to atomic number). For GaAs ,104.4 322  cmnA ,31GaZ 33AsZ for
evaluation average value is as follows: 32Z . In accordance with equation (3.11) we can
get the following: .10 110

,2
 s

efn Hence positron lifetime resulting from its annihilation

with electrons of lattice atoms is as follows: s
efn

10
,2 10/1  (this value coincides in order

of magnitude with values acquired experimentally). Therefore this annihilation mechanism
can substantially affect positron lifetime. However it is worth at this point noting the
following. For this evaluation equation Aef Znn  was used. This resulted to .~,2 Z

efn
Meanwhile according to the measuring results positron lifetime is hardly dependent on
chemical composition of the substance, in particular on Z [Wei64], [Are83]. Absence of
visible dependence of lifetime on atomic number could be explained if we take into
account that because of Coulomb repulsion of positron by atom nucleus not all electrons of
atom are equally participating in positron annihilation. As a result of this .Aef Znn 
However this fact does not change the conclusion that the positron annihilation channel
under consideration is of great importance.

Earlier during analysis of possible mechanisms of positron annihilation (annihilation of
free positrons and positronium) thermalized positrons were examined. However source-
emanating positrons possess energy .51,0 MeVE p  In crystals positrons become slower
returning energy for ionization of lattice atoms, activation of phonons, excitons [Per70]. To
determine number )(zN of non-thermalized positrons at depth of Z crystal the following
damping model is used [Bra77]:

),exp()0()( zNzN   .
)(

)/(
17 43,1

3

MeVE
смg

p


  (3.12)

At this point  density of crystal material,  linear damping coefficient. Given that
MeVE p 51,0 and 3/4,5 смg [Gri91] we can get the following: 40/1 

micrometers. Therefore we can assume that for 40z micrometers all positrons are
thermalized, i.e. practically in the whole crystal volume we have to do with thermalized
positrons. At the same time positron thermalization time make up several picoseconds.
Since positron thermalization time is far less than its annihilation time, thermalized
positrons are mainly annihilated.

Therefore main mechanisms of positron annihilation in GaAs crystal without any defects
are: two-photon annihilation of free thermalized positrons with electrons of lattice atoms
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(at the rate of ),2 efn and perhaps two-photon pick-off annihilation of positronium at low

crystal temperatures (at the rate of )pick . Three-photon annihilation processes are not taken
into account because they are essentially slower. Two-photon annihilation rate

,2 consequently, is as follows:

.,22 picknef
   (3.13)

3.4 Positron annihilation on defects

Above annihilation mechanisms of thermalized positrons in the crystal without any defects
are examined. If there are defects in the crystal present one more annihilation channel of
thermalized positrons can emerge: annihilation with electron of defect. Process of
interaction of positron with defect can be conditionally divided into three phases: phase of
approach of free (delocalized) positron to defect (diffusion phase), positron trapping phase
by defect (after approach of positron to defect for a certain distance positron can be
entrapped by defect and as a result of it positron transform to localized state), annihilation
phase of localized positron with electrons of defects. Let’s discuss two phases of
interaction of positron with defect.

If diffusive phase is slower than trapping phase, interaction reaction of positron with
defect is diffusion-limiting reaction. If trapping phase of positron is slower reaction is
limited by trapping phase. Rate of reaction between positron and defect can be figured as
follows:

.
111

~
tr

d
d 

 (3.14)

where d trapping rate, d

~

 rate of diffusion phase of the reaction, tr trapping phase

rate. It appears from equation (3.14) that if ,
~

trd   then .
~

dd   At this point

diffusion-limiting reaction takes place. If ,
~

trd   then trd   and reaction limited by

trapping takes place. If ,

~

~ trdk  then the both phases of the reaction contribute to reaction

rate. Usually d

~

 и tr are represented as follows:

,
~

ddd n  dtrtr n  . (3.15)

At this point dn concentration of defects interacting with positron, d specific trapping
coefficient of diffusion- limiting reaction, tr specific trapping coefficient of positron by
defect.

3.4.1 Diffusion - limited reaction

Let’s determine d specific coefficient of diffusion-limited phase of reaction of positron
with a defect. Let’s assume that:
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1. Defects are point.
2. Defects in crystal are allocated uniformly.
3. Defects are isolated, i.e. their concentration is not enough to consider interaction

between them.
4. )(rU interaction energy of positron with a defect depends solely on r interval

between them.

Figure 3.1 represents a diagram explaining further reasoning.

Fig. 3.1: Diagram of diffusion phase of reaction
between positron )( e and defect (1). R - interval equal

to half-interval between defects, 0r reaction radius.

On the surface of R radius sphere the following equation is taking place )( Rrnd  
( n concentration of positrons in crystal volume,  magnitude of positron flow in unit
time trough spherical surface of R radius directed to the defect). This equation reflects the
fact of retention of positron number: positron number disappeared in unit time in crystal
volume (this number is equal to ))(Rnd  is equal to positron number passed in unit time
through the surface with R radius (this number is equal to ). Further .0)( 0  rrn
This condition arises because during approach of positrons with a defect to the interval of

0r reaction radius positrons are being captured by the defect and their concentration in
delocalized condition under 0rr  is equal to zero. Furthermore ,)( 0 constRrr 
because there are no other sources (apart from the defect given) of positron absorption in
the spherical layer Rrr 0 . Positron flow in unit time trough spherical surface with r
radius is as follows:

.4 2r
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At this point D positron diffusion coefficient, first summand in the right part is
conditional on diffusive part of the flow, the second one –drift part of the flow in the
electrostatic field of defect  (in the general case defects can be charged). Let’s make the 
following change:

]./)(exp[)()(
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Then, given equations (3.16) and (3.17), we can get the following:
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Let’s transfer two co-factors of the right part of the equation (3.18) into the left part and
integrate. Then we get the following:
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It is specified at this point that const (see above), .constD  Since ,0)( 0  rn then

0)( 0

~

 rn (see equation (3.17)). With the help of equation (3.19) and given that
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Since dRn   )(/ (see above) we get the following:
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Assuming that concentration of defects is small enough and ,)( TkRrU B we finally
get the following:
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If interaction between defect and positron does not exist ( 0)(( rU neutral defect), then
with the help of equation (3.20) we can get the following:
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Given that ,0rR  we get the following:

.4 0rDd  (3.21)

Short conclusion from equation (3.20) for case mobile and charged point defects contains
in the work [Ent73]. According to equation (3.20) attraction (U <0) between positron and
defect leads to acceleration of diffusion-limited phase of the reaction
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(increase of d ) in comparison with neutral defect )0( U . Repulsion (U >0) leads to
deceleration of the reaction (decrease of ).d

It is worth noting that equation (3.20) can be used to determine d and in case of
interaction of positrons with defect clusters if we assume that cluster has a spherical and
symmetric form. At this point )(rU interaction energy of cluster and positron,

0r reaction radius of positron and cluster.
   Let’s analyze dependence of d on temperature of the crystal. Let’s address Coulomb 
interaction between charged defect and positron:

.)(
0

2

r
Qe

rU
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 (3.22)

Where Qe defect charge. If we substitute equation (3.21) with equation (3.22) then we get
the following:
а) in case of attraction
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b) in case of repulsion
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Let’s perform the following evaluation:
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It is considered at this point that cmaeVae BB
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0
2 1053.0,53.12,2.27/   - Bohr

radius of hydrogen atom, eVTkB )1010(~ 12   (for example under KT 300
),1058,2 2 eVTkB

 mar ~0 interatomic interval.
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It is accepted at this point that R >> cmaB
62 1053.010  (since ,~ 3/1

dnR this condition is

applicable under ,10 318  cmnd dn defects concentration). Given the results of the
evaluation we can get the following:

а) in case of attraction
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  (3.23)

b) in case of repulsion
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D coefficient of positron diffusion has the following dependence on temperature (taking
into account that positrons are scattering only at acoustic phonons) [Saa89]:

.~ 2/1
 TD (3.25)

With the help of equations (3.21), (3.23), (3.24) and (3.25) we can finally get the following:

а) in case of attraction
.~ 2/3Td (3.26)

b) in case of lack of interaction

.~ 2/1Td (3.27)
с) in case of repulsion
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B

According to equations (3.26), (3.27) and (3.28) sharper dependence of d on T
corresponds to repulsion, less sharper –to lack of interaction. At the same time in case of
attraction ,~ Qd dependence of d on amount of charge in the defect in case of repulsion

is essentially stronger: ),exp(~ BQQd  where )./( 00
2 TrkeB B

For defects clusters equations (3.21), (3.23), (3,24) can be used (and accordingly,
equations (3.26), (3,27), (3,28)), if we assume that clusters have spherical and symmetric
form and for them as well as for point defects the following conditions are applicable:

1/ TkW BR and 1/
0

TkW Br (see above). For clusters 0r cluster radius, R –half-
interval between clusters, Qe cluster charge. In the general case defects can have a
spectrum of charged states. If we change conditions of the experiment (concentration of
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dopant, crystal temperature) charge state (charge) of the defect can change and this can lead
to substantial change of .d One of the basics defects arising during deformation of GaAs
are vacancies and their clusters. Figure 3.1 (a, b) shows levels of vacancy conversion into
various charge states. Values of energy levels were calculated by different authors.
Differentials of results received by different authors huge.

0

2

0.20

0.53
0.73

0
0.07

2 0.28

0.483

0
0.11

0.222

0.333

0 0.19
0.20

2
0.323

+
0.034
0.0783

gE

GaV

VE

2/gE

CE

3

]85[Bar ]89[ Jan ]89[Pus ]91[Zha ]95[Seo

Fig. 3.2(а): Energy levels of gallium vacancies ).( GaV E energy of valence band ceiling,

CE energy of conduction band bottom, gE width of band gap eVEg 52.1(  [Gri91]). Values

of energy levels of vacancy are given with regard to valence band ceiling (in eV).
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Fig. 3.2(b): Energy levels of arsenic vacancies ).( AsV Values of energy levels of vacancy are given (
in eV) with regard to valence band ceiling [Jan89] and conduction band bottom [Pus89], [Seo95].

This fact essentially complicates quantitative analysis of rate of diffusion phase of positron
reaction with vacancies ).,( AsGa VV However it is worth noting that this situation is quite
definite for the reaction GaVe  in n-GaAs (according to the data presented in figure
3.2(a) GaV in n-GaAs has one charge state: thrice-repeated negative and, hence, attraction of
positron and GaV is taking place in equation (3.23) 3Q ) and for reaction AsVe  in p-
GaAs (according to the data presented in figure 3.2(b) AsV in p-GaAs has one charge state:
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single positive and, hence, repulsion of positron and AsV is taking place in equation (3.24)
1Q ).

3.4.2 Positron capture

There are shallow and deep positron traps. If binding energy is ,TkE Bb  there is a shallow
positron trap. If binding energy is ,TkE Bb  there is a deep positron trap. The same trap
can be at one crystal temperature shallow and at another –deep. In case of a shallow trap
not only positron trap can be observed but also thermal ejection of positron from the trap.
For deep traps possibility of thermal ejection of positrons is rather low. Coupling between
thermal ejection rate S ( 1s ) of positron and specific trapping coefficient tr )( 13 scm , see
equation (3.15)) of thermalized positrons of a shallow trap is follows [Man81]:
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Equation (3.29) is applicable if a shallow trap is a point center. If dislocation is a shallow
trap, connection between thermal ejection rate )( 1sd of positron and its specific trapping

coefficient )( 12 scmtrd is as follows [Man81]:
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In the general case calculation of specific trapping coefficient of a particle (in this case–of
a thermalized positron) on a trap is a very intricate problem, particularly because
calculation results are highly dependent on choice of interaction potential between a trap
and a particle, which is as a rule unknown. However in some cases it is possible to
determine by means of calculation temperature dependence of trapping coefficient of a
particle on a trap. In particular one can manage to apply it for positron capture in a
negatively charged vacancy. A vacancy does not have any positively charged nucleus
(defect with an open volume). In this case Coulomb potential rQe 0/ ( 0r correspond to
vacancy center, Qe vacancy charge) is added to vacancy potential. This leads to potential
shift near vacancy to )(1.0 eVQ [Pus90]. Figure 3.3 shows in diagram form interaction
energy of a negatively charged vacancy with a positron. Because due to of Coulomb
component Rydberg states in energy spectrum appear (three states are reflected in Figure
3.3: with energies ).,, 321 EEE At first free positron is captured into shallow state with 1E
energy (transition 1), further it goes into state with 2E energy (transition 2), 3E energy and
so on until it comes to ground state with energy ).(1.00 eVQE  Difference between
energy magnitudes of Rydberg states is comparable to phonon energy. That’s why in the 
process of such cascaded transition of positron energy evolving is passed to phonon (at



3.4 Positron annihilation on defects

37

every phase: 1,2,3,4 energy is passed to one phonon). Another type of capture is possible.
Free positron turns into ground state at once (direct transition 5). In this case energy
evolving substantially exceeds phonon energy. At this point energy evolving is transferred
not to phonon (multiphonon process is improbable), but to a free electron or one of the
atoms electrons surrounding the vacancy.

Fig. 3.3: Potential interaction energy V(r) of a negatively charged vacancy with a positron [Pus 94].
Explanations are given in the text.

In the work [Pus90] calculations of specific trapping coefficient for negatively charged
vacancy were carried out. Connection between specific trapping coefficient tr and
temperature is as follows [Pus90]:

.~ 2/1Ttr (3.31)

Such dependence is applicable both for cascaded and direct capture mechanisms ( Q
magnitude does not influence nature of temperature dependence). To calculate transition
probability v (in unit time) of positron from free state into localized state we can use golden
Fermi rule:
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At this point if transition probability (in unit time) of positron from free state i into

localized state f ; iP probability of positron being in free state i ; fP probability of

final state f in the trap is free for positron; itrfM matrix element of transition from
initial state i into final state f through intermediate states rt, (in figure 3.3 intermediate
states are Rydberg states with energies ;,, 321 EEE intermediate
transitions: ).,,, 332211 fi EEEEEEEE  In  function reflects energy

conservation law during transition: iE free positron energy in state fEi; positron

energy in final localized state ifEf ; energy evolving during transition of positron from
state i into state .f In case of direct transition (transition 5 in figure 3.3) intermediate
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transitions do not exist, as a result of it summation by indexes tr, disappears and indexes
tr, disappear in matrix element.
Dependence of tr from T (3.31) is also applicable for shallow acceptor traps

(negatively charged ions), since in this case it is assumed that interaction energy of a
shallow trap and positron has Coulomb aspect. If we compare equations (3.26) and (3.31)
we can see that rate of diffusion phase of reaction of positron with negatively charged point
defect depends more on T than specific trapping coefficient phase. Increase of T role of
diffusive phase rise. In the work [Tru92] equation for positron trapping coefficient trc
with regard to vacancies accumulation was calculated:

).1(0 Ttrc   (3.33)

where  and 0 constants independent on crystal temperature. According to equations
(3.26) and (3.33) rate of diffusion phase of reaction of positron and capture phase ratio for
vacancies accumulation have different temperature dependence. At the same time increase
of temperature of role of diffusive phase is rise.

3.4.3 Kinetics of annihilation of positrons

If there are any defects in the crystal, positron annihilation can occur on these defects as
well. Positron annihilation kinetics in crystals with defects was studied in a number of
works (Brandt and Paulin [Bra72]; Frank and Seeger [Fra74]; Krause-Rehberg and Leipner
[Kra99]). Further we will follow ideology proposed in the above-mentioned works.

Case of one type of deep traps

   Let’s consider an easy case at first. Let’s assume that deep positron traps of one type are
contained in the crystal. In this case number of )(tN p free positrons decreases due to two

processes: capture of free positrons into deep traps at the rate ;( 1sd see equation (3.14))
and annihilation of free positrons with electrons of lattice atoms and possibly pick-off-
annihilation (see equation (3.13)) at the rate ).( 1sb Number of traps ),(tN d containing
positrons, increases due to capture at the trapping rate of dk free positrons and decreases at

the rate )( 1sd due to annihilation at the trap of positrons captured. We will ignore
thermal ejection of positrons out of trap to the zone (where positrons are in free state), since
traps are deep. Kinetics of these processes can be described trough the following combined
equations:

,
)(

pdpb
p NkN

dt

tdN
 

.
)(

ddpd
d NNk

dt
tdN

 (3.34)

Initial conditions for combined equations (3.34) are as follows:
.0)0(,)0( 0  tNNtN dp At this point kinetics of thermalized positron is considered.

There are not concentrations of free positrons and traps containing positrons, but numbers
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of positrons )(tN p and traps with positrons )(tNd in combined equations (3.34). This can
be explained due to the fact that during experiments such a positron source will be chosen
that the sample does not contain more than one positron at any moment of time. When
meeting this condition in the right part of combined equations (3.34) one should not take
into account increase of dN due to positron source. Role of positron source is reflected in
the initial condition: .)0( 0NtN p 

During the experiments only acts of annihilation are to be registered (acts of positron
capture into traps are not to be fixed). This process is characterized by frequency ratio of
acts of annihilation :)( 1sD

.)( ddpb NNtD   (3.35)

If we add both parts of equation (3.34), then we can get the following:

.
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)(
dt

NNd
tD dp  (3.36)

Therefore to evaluate ),(tD one should determine )(),( tNtN dp and then use equation

(3.36). Let’s determine )(tN p and ).(tN d Using the first equation of system (3.34) and

given initial condition for pN we can get the following:

.)( )(
0

tk
p

dbeNtN   (3.37)

Let’s calculate )(tN d as follows:
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Let’s set )(tN d from equation (3.38) into the second part of equation (3.34). Then given
initial condition for dN we get the following:
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Using equations (3.36), (3.37) and (3.39) we can get the following:
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Frequency ratio of annihilation can be characterized by the function :/)()( 0NtDtN 
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At this point i lifetime for i component of spectrum with intensity .iI According to
equation (3.41) positron annihilation process is characterized by lifetime spectrum with
relevant intensity. At the same time second component of spectrum )( 2 is connected
solely with positron annihilation in trap, first component of spectrum )( 1 is not to be
determined only by positron annihilation in zone. According to equations (3.40) 211 ,, II
depend on positron trapping rate in defect as against to .2 Using equation (3.40) we can
get the following:
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where db , lifetime conditional on positron annihilation in zone and defect, accordingly
( ;/1,/1 ddbb   it is worth noting that ).2 d
From the experimental data and given equation (3.42) we can define defects concentration
as follows. It follows from equations (3.14) and (3.15) that
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At this point  coefficient of reaction rate, dn defect concentration. Coefficient of
diffusion phase of reaction d can be calculated on the basis of equation (3.23) (cases of
attraction of positron and defect are to be considered at this point). If we for example
consider negatively charged vacancy as a defect, then according to equation (3.31)

  AATtr (2/1 unknown constant). If we from the experimental data and equation (3.42)
define value of dk at two different temperatures 1T and 2T (it is important to choose 1T and

2T so, that the value of defect concentration at these temperatures is equal). Then using
equation
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we can evaluate A parameter, and hence ).(T Then we will determine concentration
using equation ).(/)( TTkn dd 

Since d does not depend on positron capture rate in defect (and hence on defect
concentration), it can be characteristic for a defect with open volume. For example, for
isolated vacancies in silicium .25.1/ bd  Average lifetime of aV positrons is to be
evaluated as follows:
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where N number of defect types. In most cases value of average lifetime is less sensitive
to numerical procedures during spectrum handling. In this connection it is worth
determining trapping rate of positron by defect on the basis of the equation:
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which could be obtained from equations (3.40) and (3.41). For a very big defect
concentration, when average interval dL between defects is considerably smaller than
diffusive positron length L in zone (diffusive length conditional on positron annihilation
in zone), positrons are not able to annihilate in zone, but are captured and annihilate in
defects. In this case 1,0 21  II (see equation (3.40) for 1I and 2I given that

)bdk  and .daV   This case is called saturated capture. Since in this situation
spectrum consists of one component ,d that is independent on positron trapping rate (and
therefore independent on defect concentration), it is impossible to determine value of defect
concentration at this point. One can only evaluate low limit of defect concentration. Let’s 
perform this evaluation. Since bDL  ~ and 3/1)/2( dd nL  (this equation can be

obtained from the condition that ),13/4)2/( 3 dd Ln then we get the following:
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Given that ,10~ 10 sb
 121~ 

 scmD (in the work [Saa89] for GaAs the following value

was obtained ),3.1 12 
 scmD we get the following: .10)/2( 53/1 cmnd

 It appears from

this that under magnitudes of defect concentration approximately 31710 cm and more effect
of saturated capture can be observed. If magnitude of defect concentration is rather small to
meet the condition ,bdk  then defects cannot be detected (and therefore value of their
concentration can not be determined) by means of evaluation of positron lifetime. In this
case positrons are not able to be captured by defects and annihilate only in zone. In this
situation 0,1 21  II (see equation (3.40) for 1I and 2I given that )bdk  and

.baV    Let’s evaluate magnitude of defect concentration under which defects can not be 
detected. As an illustration let’s consider a model situation: defects have single negative 
charge and reaction rate of positron and defect is diffusion-limited. Then ddd nk 
( d specific trapping coefficient of diffusion-limited reaction). Using equation (3.23)
(under 1Q ) and given that :bdk 

.4
0

2

b
B

d

Tk
ne

D 


  (3.47)
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As a result of it we obtain that under values 315102  cmnd defects cannot be detected.

It was assumed in evaluation that KT 300 , 11010~ sb ( ,/1 bb  ).10~ 10 sb
 If

reaction of positron and defect is limited not by diffusion, but capture, then constant
magnitude is less than assumed in evaluation. As a result of this values of ,dn under which
defects cannot be detected, will be higher than values obtained during evaluation.

Case of several types of traps

Let’s consider case of three traps: one shallow and two deep traps. Such a situation 
corresponds as a rule to general case for GaAs exposed to plastic deformation. At the same
time deep traps mean single vacancies associated with dislocations (non-isolated vacancy)
and vacancies clusters (second type of deep traps). Shallow traps means gallium ions in
acceptor state or negatively charged dislocation. Figure 3.4 schematically presents
processes of positron capture and annihilation for the case given.

e e e e

stk st

st stN
1dk

1d 1dN

2dk

2d 2dN

Fig. 3.4: Processes of positron capture and annihilation. Explanations are given in the text.

It is considered that positrons annihilate in zone (at the rate of ),b at shallow traps (at the
rate of ),st at deep traps (at the rate of

1d and
2d at deep traps of first and second types,

accordingly). Positrons are captured at shallow traps (at the rate of ),stk deep traps (at the
rate of 1dk and 2dk at traps of first and second types, accordingly). Thermal ejection of
positrons from shallow trap to zone is to be accounted (at the rate of ).st Thermal ejection
of positrons from deep traps is not to be accounted. Thus number of positrons in zone

)(tN p decreases due to annihilation in zone, capture at shallow and deep traps and
increases due to thermal ejection of positrons to zone from shallow traps. Number of
shallow traps containing positron )(tN st increases due to positron capture from zone and
decreases due to annihilation at these traps of positrons captured and thermal ejection of
positrons. Number of deep traps of first type containing positrons )(

1
tN d increases due to

positron capture at trap and decreases due to annihilation at these traps of positrons
captured. The same case is for deep traps of second type. System kinetic equations
explaining the above mentioned processes is as follows:
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.)(
21 pddstbstst

p NkkkN
dt

dN
 

.)( stststpst
st NNk

dt
dN

  (3.48)

.
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1

ddpd
d NNk

dt

dN


.
222

2

ddpd
d NNk

dt

dN


Initial conditions are as follows:

.0)0(;0)0(;0)0(;)0(
210  tNtNtNNtN ddstp

Since during the experiment acts of positron annihilation are registered (and not acts of
capture), the following value is characteristic for the process:

.)(
2211 ddddststpb NNNNtD   (3.49)

If we sum all equations of combined equations (3.48), then we get for positron annihilation
rate )(tD the following equation:

.
)(

)( 21

dt

NNNNd
tD ddstp 

 (3.50)

Positron annihilation rate can be characterized by the following function ./)()( 0NtDtN 
Using set of equations (3.48) we can determine )(tD trough equation (3.50) and hence we
can define ).(tN Equation for )(tN is as follows:

),/exp()(
4

1
i

i i

i t
I

tN 





(3.51)

where
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).(1 4321 IIII  (3.53)
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
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


dd

dststdk
I (3.56)

.
21 stddststb kkk   (3.57)

.4)( 2
21 stststddststb kkkk   (3.58)

According to equation (3.51) spectrum components 3 and 4 are solely connected with
positron annihilation at deep traps of first and second types, accordingly. At that

11
/13 dd   , 

2122
,(/14 dddd  positron lifetime conditional on annihilation at

deep traps of first and second types, accordingly). Spectrum component 2 is not
determined solely by positron annihilation rate at shallow trap. That’s why 2 can not be
interpreted as positron lifetime conditional on annihilation at shallow traps

)./1( 2 ststst   Spectrum component 1 can not be interpreted as positrons lifetime
conditional on their annihilation in zone )./1( 1 bbb   Average positron lifetime is
determined in the following way:

.
4

1
i

i
iav I  



 (3.59)

Let’s consider the case of low temperature, when we could assume that .0st Then it
follows from equations (3.57) and (3.58) that:

,
21 ddststb kkk   .

21 ddststb kkk   Thus st 2 and

.22 st  Then using equations (3.55) and (3.56) we get the following:

.
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3
dddstb

d

kkk

k
I

 
 (3.60)

.
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2

4
dddstb

d

kkk

k
I

 
 (3.61)

From the equations (3.60) and (3.61) we can define
1dk and ,

2dk using joint system of
equations (3.60) and (3.61):

.
)1(

)]()[(
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43 211

1 II

IkI
k dddstb

d 





(3.62)
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
(3.63)

In these equations stk trapping rate of positron at shallow trap is unknown. Additional
connection between stk and

21
, dd kk can be ascertained in the following way. Using

equation (3.54) we can get the following (on the assumption that :)0st
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It follows that:
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Since )/( stst k tends to zero, we get the following:
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From the equation we can determine :stk
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1 21

2

2
ddstbst kk

I
I

k 


  (3.64)

Using equations (3.62), (3.63), (3.64) we get the following:

)}.1()2()2({ 433443
1

2
12

IIIIII
I
I

k stddbst   (3.65)

Therefore from the equations (3.62), (3.63), (3.65) we can determine
1

, dst kk and
2dk at low

crystal temperature. At this point ./1,/1,/1,/1
2211 ddddststbb   At that

2 st (which follows from equation for 2(3.52) under ).0st If we consider the
situation of one type of deep traps (where ),0,0,0,0,0,0

222
 stdstddst kkNN 

then it follows from equation (3.62) that:
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Further it is necessary to identify 34 ,0 II  with .1, 132 III  Then we get the following:
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which is coincide with equation (3.42) obtained for positron trapping rate by deep trap
within the framework of model of one type of deep traps. Thus equations describing
positron annihilation kinetics in case of three types of traps explain more easy situations as
well.

Conditions (3.46) and (3.47) restricting limit of trap concentration (where measurement
method of positron lifetime is effective to determine value of trap concentration) are
applicable for each type of traps in the case in question. Estimation method for trap
concentration on the basis of fixed magnitudes of positron trapping rate at traps is given
below.

3.5 Trap concentration

Magnitude of trap concentration can be determined if trapping rate and specific trapping
coefficient are known: dk and (see equation (3.43))

/dd kn  , .
111

trd 


Further we will consider the case of three traps: one type of shallow point traps with ,stn
concentration, one type of deep traps with

1dn concentration and one type of deep traps with

2dn concentration representing accumulations of defects (clusters). First we will obtain

equations for ,
1dn then for stn and further for .

2dn In case of attraction of positron to point

trap coefficients of diffusive phase of reaction d and capture phase tr are as follows (see
equations (3.23) and (3.31)):
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At this point 
1dA constant independent from temperature. For

1d we get the following:

,/)(1068.1 3
1

TTQDd 
 where TscmDscmd ),/(),/( 23

1  is specified in Kelvin degree.
Then we obtain for the following equation:
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(3.66)

Let’s evaluate .
1dA  For this purpose let’s take up equation )(/)( 12 11

TkTk dd for trapping

rates at two measurement temperatures (values of 1T and 2T are to be chosen from T
interval where defect concentration is constant, i.e. :))()( 21 11

TnTn dd 
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It follows from equation (3.66) that:

.

)()(
106.0

)()(
106.0

)(
)(

1

1

2/1
2

22

2
3

2/1
1

11

1
3

1

2



































d

d

A
T

TDTQ
T

A
T

TDTQ
T

T
T




(3.68)

Let’s choose 1T and 2T from T interval where not only value of defect concentration does
not change, but also number of electrons localized at defect, i.e. ).()( 21 TQTQ  Using
equations (3.67) and (3.68) we can determine value of :

1dA
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At this point
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From the equations (3.66) and (3.69) we get the following:
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Since 2/1~)( 
 TTD [Saa89], we can get the following:
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Given these equations and equation (3.70) we get the following:
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From the equations (3.71) and /
11 dd kn  we can obtain equation for product of trap

concentration and number of electrons localized at trap:
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Similarly we can get for shallow traps the following:

 
 .1

)(
)(106.0

2/1
2

2/1
1

2/3
1

2/3
2

3
















 bTTT

TbT
TD

TTk
nQ st

stst (3.73)

At this point
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To evaluate cluster concentration let’s do the following. Let’s determine relation between 
coefficient diffusive phase of positron reaction with cluster and capture phase: ./

2 trcd  In

case of attraction of positron to cluster
2d can be determined from the equation (3.23)

where Q –number of electrons localized at one cluster. As to capture phase coefficient
,trc it can be determined on the basis of equation (3.33) where 0 and - unknown

constants. However it is worth noting the following: results of calculations of particle
capture ratio (in this case - positron) to attractive center (in this case –vacancy
accumulation) are very sensitive to choice of type of interaction potential between particle
and trapping center. In case of cluster this type of potential is characterized by several
factors: in particular by size of cluster and number of charged vacancies containing in
cluster (these characteristics influence charge density in cluster and hence determine
electrostatic potential of cluster), geometric shape of cluster (usually cluster is assumed to
be spherically symmetric). As a rule size of cluster and number of charged vacancies
containing in cluster is unknown. Assumption of spherically symmetric shape of cluster is
an idealization. In such situation it is impossible to evaluate correctly interaction potential
between charged cluster and positron. Therefore it is difficult to obtain reliable results on

trc magnitudes from quantum-mechanical calculations of transition probability of positron
from free state into localized state in cluster (equation (3.33) was obtained of such
calculations [Tru92]. At this point to evaluate trc  let’s do the following. Let’s show trc in
form of ,trc where  capture cross-section of positron by cluster,  velocity
of free thermalized positron. We can determine magnitude of capture cross-section as
follows: ,2

cr where cr capture radius of positron by cluster ( 0r corresponds to
center of spherically symmetric cluster). Magnitude of cr  can be evaluated as follows: let’s 
consider positron to be captured when it approaches at such distance cr to center of cluster
at which absolute value of electrostatic interaction energy is equal to kinetic energy of free
positron. If we assume that probability of different values of free positron impulse is
specified by Maxwellian distribution, then kinetic energy of free positron is equal to

.2/3 TkB Then we get the following:
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At this point 
2dQ number of electrons localized at one cluster. Magnitude of  can be

evaluated on the basis of the following equation:
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As a result of it we get the following:
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If we assume that scmD /1~ 2
 [Saa89] and given that ,1

2
dQ then we can get the

following: at measurement temperature KT 300 relation is .1)/(
2

trcd  Hence
interaction reaction between positron and cluster is most likely limited by diffusion phase
of reaction. Accordingly, in this case reaction rate is determined by diffusion phase:

.
222 ddd nk  Given this equation and equation (3.23) we can get the following:
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On the basis of this equation we can finally get the following:
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It follows from equations (3.72), (3.73) and (3.75) that for evaluation of magnitudes of trap
concentration it is necessary to determine values of rate ( ),,

21 ddst kkk and number of

electrons localized at traps ( ).,,
21 ddst QQQ  Let’s address these two tasks one after another.

Using experimental data values of trapping rate can be determined on the basis of
equations (3.62), (3.63) and (3.65). These equations were obtained under condition that

0st (practically –under condition that ( ).1)/ stst k  Let’s evaluate limit of 
temperature at which this condition is met. Given equation (3.29) we get the following:
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At this point stE positron binding energy in shallow trap. It follows from literary data

that: eVEst
2104  [Dan91], eVEst

210)0.13.6(  [Saa90], eVEst
2103.4  [Kra94].

For evaluation let’s take on value of .104 2 eVEst

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Then we can get the following:
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Minimum value of trap concentration (when they can be detected by method of positron
annihilation yet) is approximately equal to 31510 cm (see section 3.4.3). Therefore it makes
sense to analyze the situation when .10 315  cmnst If we place value of 31510  cmnst into
equation (3.76), we can get the following:
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It follows from this condition that KT 50
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Thus equations (3.62), (3.63) and (3.65) are applicable at measurement temperature
KT 50 (values of 1T and 2T in equations (3.72) and (3.73) should meet this condition). If

spectrum of charge states of point defect and position of Fermi level in band gap of
semiconductor are known, then it is possible to determine number of electrons localized at
defect using the following equation [Ash79]:
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At this point FE value of Fermi level in band gap of semiconductor; )( jE and j energy
and number of electrons in j charge state of point defect. All charge states of defect are
summed up. Relation between energy )( jE in j charge state and energy )1( jE in

1j charge state is as follows:

.)1()(
j

jj EEE   (3.78)

At this point jE energy level of defect transition from 1j charge state into j charge
state. If spectrum of charge states of defect are known, then magnitudes in equation (3.78)
are known. Therefore for evaluation of magnitude of Q on the basis of equation (3.77) it is
necessary to determine .FE Position of Fermi level can be determined as follows.
   Let’s consider the case of nondegenerated semiconductor when the following conditions
are met:

TkEE BFc  for n -type (3.79)
TkEE BF   for p -type
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At this point EEc, energy for conduction band valence band ceiling, accordingly. When
conditions (3.79) are met, value of n electron concentration in semiconductor of n -type
and P holes in semiconductor of p -type are connected with Fermi level by the following
equations [Ash79]:

]/)(exp[)()( TkEETNTn BFcc  for n -type (3.80)
]/)(exp[)()( TkEETNTp BF   for p -type
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ec mmm ,,  density mass of electron states in conduction band, holes in valence band and
electron mass, accordingly. For GaAs ece mmmm 065.0,5.0  [Gri91]. According to
equations (3.80) conditions (3.79) are met if )()( TNTn c and ).()( TNTp  If
concentration of electrons and holes is known (for example from Hall measurement), then
on the basis of equations (3.80) we can evaluate magnitudes of .FE If experimental data
are not available, we can do the following. In the general case value of Fermi level is
determined on the basis of electroneutrality equation:

.)()()()()()( akF
m

mFazFdF
k

kFFd nEQENEnnEQEpEN
kz   (3.81)

At this point akdazdz nnNN
k
,,, concentration of charged donors, charged acceptors,

defects of donor -type and defects of acceptor m -type, accordingly; mk QQ , number of
holes localized at donor defect of -type and number of electrons localized at acceptor
defect of m -type, accordingly. All k - and m -types of defect are summed up. Let’ s 
consider several situations.

Intrinsic semiconducting material

In intrinsic semiconducting material (undoped or low-doped) concentration of electrons
and holes substantially exceeds magnitudes of

zdN and .
adN Before crystal deformation

defect concentration was far less than magnitudes of n and p . After deformation of
intrinsic semiconducting material there are defects in the sample (of donor and acceptor
types), which have appear in the process of deformation. Generally the following condition
is met:

pnnQnQ
k m

dmdk mk
,  . (3.82)

As a result of it electroneutrality equation (3.81) is as follows:

).()( FF EpEn  (3.83)



3.5 Trap concentration

52

Using equations (3.80) and (3.83) we can get the following:
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At this point gE value of band gap width. According to equation (3.84) in undoped
semiconductor Fermi level is situated before and after crystal deformation near midgap (a
little bit higher than midgap since ).1)/( cmm

N-type semiconducting material

The following conditions are met in n -type material:
zz ad NN  and .pn  Before

deformation defect concentration can be ignored in comparison with concentration of donor
dopant. In the process of deformation in crystal defects are arising, but in actual practice
concentration of these defects is low as compared to concentration of charged donor
dopants. As a result of it using equation (3.81) we can obtain a more simple equation:

).()( FFd EnEN
z

 (3.85)

For concentration of charged donor dopant
zdN the following equation is applicable [Ash

79]:
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At this point dN full concentration of donor dopant, dE energy level of donor dopant. It
follows from equations (3.80), (3.86) and (3.85) that:
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Therefore value of Fermi level for n -type semiconducting material can be determined on
the basis of equation (3.87) for both cases: before and after crystal deformation.

P-type semiconducting material

The following conditions are met in p -type material:
zz ad NN  and pn  . As to defect

concentration all that, what was set out with regard to n -type material, is applicable. In this
case electoneutrality equation is as follows:

).()( FFa EpEN
z

 (3.88)

For concentration of charged acceptor dopant
zaN the following equation is applicable [Ash

79]:
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At this point aN full concentration of acceptor dopant, aE energy level of acceptor
dopant. Using equations (3.80), (3.89) and (3.88) we can get the following:
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Accordingly, value of Fermi level for semiconducting p -type material can be determined
with help of equation (3.90) for both cases: before and after crystal deformation. Let’s 
consider Q values for point traps: for gallium vacancies )( GaV and gallium ions substituting
arsenic atoms ( ).AsGa It follows from literary data for GaV that (see figure 3.2(а)):

1. In n -type semiconductor gallium vacancy is in one charge state –triple negative.
Therefore at this point for GaV 3Q and there is no need to make calculations by
formula (3.77).

2. Since for GaAs relation is ,1)/( cmm in undoped (intrinsic) semiconductor
Fermi level is situated a little bit higher than midgap (see equation (3.84)). Hence in
undoped semiconductor GaV is in one charge state –triple negative. Therefore at
this point 3Q and there is no need to make calculations by formula (3.77).

3. In p-type semiconductor GaV can be in different charge states and at this point for
determination of Q value we should use formula (3.77), but beforehand it is
necessary to determine value of Fermi level on the basis of equation (3.90).
However it follows from literary data (see figure 3.2(а)) that results of different 
authors on values of GaV energy levels in different charge states strongly differ.
Calculation results by formula (3.77) strongly depend on values of GaV energy
levels taken on in different charge states. In such situation it does not make sense to
carry out calculations by formula (3.77) and we should admit that in p -type
semiconductor it is impossible to uniquely determine Q value for GaV at different
measurement temperatures and doping levels. Therefore in p -GaAs on the basis of
measurement of positron lifetime it is possible to evaluate not GaV concentration,
but concentration product per number of electrons localized at gallium vacancy:
nQ . It follows from literary data for AsGa [Bar85], [Jan89], [Zha91] that:

1. In undoped semiconductor and n -type semiconductor AsGa ions are in one charge
state - double negative. Therefore at this point for AsGa 2Q and there is no need
to make calculations by formula (3.77).

2. In p -type semiconductor AsGa ions can be in different charge states. However
literary data on values of AsGa energy levels in different charge states are
conflicting. That’s why in p -GaAs on the basis of measurement of positron
lifetime it is possible to evaluate AsGa ions concentration product per number of
electrons localized at AsGa ion. As to AsV arsenic vacancies and arsenic ions

,GaAs substituting gallium atoms, then it follows from literary data that:
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1. Ions ,GaAs in GaAs can be in donor and neutral charge states [Bar85], [Jan89],
[Zha91]. Therefore ratio of trapping rate of positron with ions ,GaAs is far less than
ratio of trapping rate of positron with AsGa ions. In this connection AsGa ions most
likely have more influence on value of positron lifetime than ions .GaAs

2. In undoped semiconductor and p -type semiconductor AsV is in donor charge state
(see figure 3.2(b)). Therefore at this point ratio of trapping rate of positron and AsV
is far less than trapping rate of positron with GaV . In this connection at this point
gallium vacancies most likely have more influence on value of positron lifetime
than arsenic vacancies.

3. In n -type semiconductor AsV can be under certain conditions (at relevant values of
doping levels and measurement temperature) in single negative or double negative
charge state [Pus89] (see figure 3.2(b)). That’s why at this point trapping rate of 
positron and AsV can be compared with trapping rate of .GaV But according to
calculations [Jan89] in n -GaAs arsenic vacancy formation energy

AsE ( AsE eV0.4 ) is considerably higher than gallium vacancy formation energy
).)25.0(( eVEE GaGa  As a result of it concentration of gallium vacancies

,.GaV formed by crystal deformation of n -GaAs can be substantially higher than
arsenic vacancy concentration AsV . In this regard gallium vacancies have more
influence on value of positron lifetime than arsenic vacancies.

Therefore on the basis of the above mentioned analysis we can draw the following
conclusion: using measurement of positron lifetime in undoped GaAs and n -GaAs it is
possible to determine values of trap concentration. In p -type GaAs it is possible to
determine not value of concentrations, but values of trap concentration product per number
of electrons localized at trap: .nQ

Equations (3.72) and (3.73) for concentration of point traps were obtained using two
assumptions (see above): at measurement temperatures 1T and 2T )()( 21 TnTn  and

).()( 21 TQTQ  Condition )()( 21 TnTn  is usually met (during limit of measurement
temperature of positron lifetime trap concentration do not change). As to the second
condition in undoped GaAs and n -GaAs point traps are in fixed charge states remaining
constant during change of measurement temperature (see above). Hence condition

)()( 21 TQTQ  is satisfiability. In p -GaAs condition )()( 21 TQTQ  can be disturbed.
However at this point on the basis of measurement not trap concentration is to be evaluated
but Qn product, that’s why formulas (3.72) and (3.73) can be applied. Formulas (3.72) and 
(3.73) contain trapping rates stk and .

1dk If these rates are to be evaluated on the basis of
equations (3.62) and (3.65), which are applicable at measurement temperatures ,50KT 
then 1T and 2T should be chosen taking into account this temperature constraints.

In literature [Pus90] values for positron trapping rate at vacancy at different
temperatures were obtained. However the above-mentioned method of evaluation of point
trap concentration does not use values of ,tr obtained in the work [Pus90], but take into

account dependence of tr on T : tr~ 2/1T [Pus90]. At that A constant is to be determined
taking into consideration experimental data. Such approach can be explained for several
reasons:

1. In the work [Pus90] values of tr were obtained for isolated vacancy. However in
deformed sample vacancies are as a rule not isolated and are situated in electrostatic
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and deformative fields of dislocations. These fields can have influence on positron
capture process by vacancy (i.e. they can influence value of tr ).

2. There are other point defects as well, for example gallium ions AsGa in acceptor
state. In this case dependence of tr on T is similar to dependence for charged
vacancy, but absolute values can differ.

3. Reaction of positron and trap consists of two phases: diffusion phase and positron
capture phase and not only positron capture phase.

In this regard for evaluation of tr one should better rely on experimental data. At that
dependence of tr on T is assumed in accordance with results of the work [Pus90].

In vacancy cluster value of number of electrons localized in Q cluster is unknown since
number of vacancies in cluster is unknown as well. In this connection on the basis of
measurement of positron lifetime for vacancy cluster and equation (3.75) we can determine
value of .

22 dd nQ At the same time if we evaluate rate of ,
2dk which is part of equation

(3.75), on the basis of equation (3.63) applicable under ,50KT  then we should
determine value of

22 dd nQ under KT 50 .

Conclusions

1. Main positron annihilation channels in crystal GaAs without defects are the
following: annihilation of free thermalized positrons with electrons of lattice atoms
and possibly (at low crystal temperatures) annihilation of parapositronium with
electrons of lattice atoms (pick-off-annihilation).

2. In crystals GaAs exposed to plastic deformation additional positron annihilation
channels appear. In literature annihilation at three trap types is considered (as a
most general case): shallow traps of one type and two types of deep traps. At that
vacancies associated with dislocations and vacancy clusters are considered to be
deep traps for positrons. Negatively charged dislocations or (and) negatively
charged gallium ions are considered to be shallow traps.

3. Measurement method of positron lifetime is effective to determine value of dn trap
concentration in certain concentration limit (it follows from estimation
that: ).1010 317315   cmcmnd Low bound of dn value (see condition (3.47)) is
conditional on the following: at low values of trap concentration when positron
annihilation rate in zone considerably exceeds their trapping rate (trapping rate is
proportional to trap concentration) at traps only one component in spectrum appears
connected solely with positron annihilation in zone. In this case experimental data is
lacking information on traps. Upper bound of dn value (see condition (3.46)) is
conditional on the following: at high values of trap concentration when positron
trapping rate by traps considerably exceeds positron annihilation rate in zone and at
traps components in spectrum appear connected solely with positron annihilation
(case of saturated positron capture). Experimental data will be lacking information
on positron trapping rate by traps. It not enables evaluating value of trap
concentration.

4. Rates of diffusive phase and positron capture phase at negatively charged traps have
different temperature dependence (see equations (3.26), (3.31), (3.33)). In this
regard on the basis of experimental data on dependence of reaction rate of positron
and trap on measurement temperature (subject to constant value of trap
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concentration) it is possible to determine the phase limiting reaction rate of positron
and trap.

5. Reaction of positron and vacancy cluster is most likely limited by diffusive phase.
6. On the basis of positron lifetime it is possible to determine values of point trap

concentration in undoped GaAs and in n -GaAs. In p -GaAs it is possible to
determine point trap concentration product per number of electrons localized at
trap: dQn (number of electrons localized at trap means exceeding of number of
electrons at charged trap in comparison with number of electrons at neutral trap).

7. On the basis of positron lifetime in GaAs it is possible to evaluate for vacancy
cluster product of cluster concentration per number of electrons localized in cluster.
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4. Materials and Methods

4.1 Test material

The tested gallium arsenide was given from “Freiberger Compound Materials GmbH”. The n -
type GaAs is a tellurium-doped material with electron concentration of 317100.5  cm , and
dislocation density 2410  cmN d .

4.2 Samples preparation for experiments

First, 4mm-6mm-thickness semiconductor washers have been used to saw out rectangular
parallelepipeds with approximate dimensions of 4x4x12 (mm x mm x mm) and [110]
crystallographic orientation using a diamond thread milling machine. The surfaces of the
samples have not been polished up as 32OB is chemically active: at C0800 the sample may
be destroyed due to chemical reaction between the boron oxide and the polished surface of
the sample. Lateral sides have been rounded off to avoid fractures.

For experiments which determine average positron lifetime by means of positron
annihilation spectroscopy method two discs of about 0,7mm thickness have been obtained
from the middle of the parallelepiped. To eliminate imperfections that appeared after
sawing the discs have been etched out in a 3% solution of bromide methanol for some time.

4.3 Deformation experiments

The apparatus produced by “Material Testing System” has been applied for deformations 
over quite wide range of the velocity of extension. The machine is monitored with the
computer recording the readings. Figure 4.1 represents the deformation machine.

Fig. 4.1: Deformation equipment. А combustion chamber, B
vacuum diaphragm, C flange for connect a pump. The smaller
figure shows the sample between quartz plates.
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Equipment must meet specific requirements. As deformation temperature can amount to
1000C, diffusion of impurity may occur and chemical reactions may run on surface of the
samples. Thus, deformation process should be made possible in vacuum or under action of
protective gas. Moreover, a rapid cooling of samples should be provided after deformation
in order to detect their actual configuration at the end of deformation. Cooling speed of
samples reaches .min/1000 C The vacuum diaphragm helps to part the combustion chamber
from the sample very rapidly. So it’s possible to cool the sample down within a couple of 
minutes. The cooling process can run at applied loads and that helps to prevent the
relaxation of samples. The achievable cooling speed is sufficient to freeze configuration of
dislocations but, however, there’s little hope that partial annealing of defects during the 
cooling process can be totally avoided.

The value of deformation has been obtained by measurement of piston way. In order to
measure deformation of samples more precisely the sample-free toughness of all equipment
has been determined. It can be determined during measurement by control program.
Temperature is regulated by a thermoelement, which is placed inside the combustion
chamber.

Pressure bars consist of aluminoxide ceramics and are able to withstand required force.
Silica glass discs are found between the puncheon and the sample. They are placed there to
avoid contamination of the sample and to protect the ceramics discs. Measurement
schedule is the following. First, the press puncheon approaches the sample until
dynamometer detects a weak force (40N). At such a force the sample can be placed
precisely in superposition. Attainment thermal equilibrium can be traced in course of
thermal stretching. If changes in length of the sample are not registered anymore (i.e.
there’s thermal equilibrium), we can proceed directly to the deformation. Experiments have 
been conducted in dynamic regime, i.e. the deformation of the sample runs at a constant
speed during the whole process. Once the specified value of final deformation has been
achieved, the combustion chamber turns off and the sample is cooled. After the cooling is
completed, the sample is taken out of the mount.

4.4 Positron annihilation spectroscopy method

In positron annihilation spectroscopy experiments NaCl mineral salt is used as a source of
positrons. The source is wrapped in a .5.1 m -thick aluminium foil. As a result of 
disintegration of Na22 isotope a positron and a  quantum with 1.28MeV are born. The
positron penetrating into the sample annihilates. The result is a new  quantum with the
energy of 0.51MeV is born.

The main idea of the positron lifetime determining method is to measure the speed of
delayed  coincidences between of  quanta with the energy of 1.28MeV (nuclear
 quanta) and annihilation  quanta with the energy of 0.51MeV. To register
 quanta two detectors are used. One is designed to register the moment of positron birth

in the source (this is achieved by registering nuclear  quantum), the other –to register
the moment of positron annihilation (this is achieved by registering annihilation
 quantum). Birth and annihilation of positrons are identified by the energy of  quanta

with help of a discriminator of equal parts. Time interval between the beginning and the
end of signals (between birth and annihilation of a positron) is time of delay which is
converted by means of “time-amplitude” converter to a impulse with voltage amplitude 
proportionate to time of delay. Spectrum of impulse is registered by a multichannel
analyzer.
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Positron annihilation processes occur not only into the tested GaAs sample but also in the
proper source of positrons and in the foil. It had been found out [Sta96] that there are three
positron lifetime components for annihilation of positrons in the source and the foil. The
first component ((36515)ps) forms due to annihilation in the salt, the second
((1653)ps) –due to annihilation in the foil. The third component ))5.02(( ns due to
annihilation of positronium that formed in the salt [Mog95]. This components must be
delete from the positron lifetime spectrum as they have nothing to do with the GaAs sample
positron annihilation processes. That’s why an experiment with a non-deformed sample
should be conducted.

Positron lifetime in a reference sample (non-deformed and without defects) is 230ps [Geb
2000]–that is so because positrons annihilate with electrons of the lattice (bulk life time).
The power of source is chosen so that at any moment of time there’s only one positron in 
the sample. As the value p of positron lifetime in the sample has the order of ps210 ,

radioactivity A of the source must meet this criterion: .1pA Hence, A < 1010 acts per

second that is A < Bq1010 . In experiments radioactivity of the source has been
(1 Bq610)5.1  .

From 6103 to 6106.3  acts of annihilation have been registered in every experiment
for more or less precisedecomposition of spectra. Computer program “Lifspecfit” has been 
used to analyze spectra [Pus78]. We should dwell on one problem connected with
decomposition of spectra. To ensure splitting of two components it is necessary that they
differ in lifetime at least by 30ps [Som96]. Otherwise they both blend.
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5. Results of Deformation Experiments

Two important things have been considered when conducting experiments. On the one
hand, it has been necessary to get samples deformed in a specific way in order to put them
to the test of positron lifetime spectroscopy later. On the other hand, deformation
experiments have been aimed at determining such values as rate of stress indicator,
activation energy of plastic deformation, hardening coefficient, which are used to
characterize deformation mechanism. The first requirement places certain restrictions on
parameters of deformation. We tried to choose them to identify defects with concentration
within area of sensitivity of the positron lifetime spectroscopy method. Defects can form
only then when dislocations become active on more than one slip plane (see chapter 2).
That’s why the present paper treated samples that have been subject to deformation in the 
[110] direction (complex dislocation glide orientation). Dislocations glide there in four slip
systems (see appendix A).

5.1 Doped gallium arsenide

Fig. 5.1 shows deformation curves of tellurium-doped GaAs samples with electrons
concentration of 317100.5  cmn . Samples have been deformed in [110] direction at

different deformation temperature T and different strain rate .



Fig. 5.1 information lets us think that in all cases there’s no overt liquidity area (except the 

experiment with CT 0950 and ,1027.2 15 


 s where liquidity stage is seen in the

area of )%)5.01.0(  . For CT 0800 (at every


value), CT 0900 (at
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deformation curves have a convex bend.
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Fig. 5.1:GaAs:Te deformation curves in [110] direction at different values of T and .
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(a) CT 0800 1) ,1023.2 14 


 s 2) ,1006.1 14 


 s 3) .1027.2 15 


 s

(b) CT 0900 1) 141028.2 


 s 2) ,1008.1 14 


 s 3) .1026.2 15 


 s

(c) CT 0950 1) ,103.2 14 


 s 2) ,100.1 14 


 s 3) .1027.2 15 

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(d) CT 01000 1) ,103.2 14 

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
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

 s

The explanation is that these samples experience initiation of cross slip processes very
early due to high stress. This leads, on the one hand, to increase in concentration of mobile
dislocations, and, on the other hand, to increase in concentration of tree-like dislocations.
The first factor leads to reduction in the hardening coefficient, the latter –to its increase.
These factors’ impact on each other leads to dependence of the hardening coefficient on the 
value of . For these cases there’s no phase of glide (phase I).
Tables 5.1, 5.2, 5.3 contain values of at which this or that phase of plastic deformation
could be observed.

Table 5.1: values of for GaAs samples have been deformed in the [110] direction.
CTdef

0900 I II III IV V

14103,2 


 s

14100,1 


 s

15103,2 


 s %4%1  %4
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Table 5.2

Table 5.3
CTdef

01000 I II III IV V

14103,2 


 s
%5,1

14100,1 


 s
%5,2%1  %4%5,2  %4

15103,2 


 s
%1%5,0  %7,1%1  %5,2%2  %5,2

It’s clear from the above analysis of experimental data that in the considered value intervals

of T and


:
1. Number of regions of plastic deformation increases with increasing of defT and (or)

with decreasing of


.
2. The value of  at which this or that phase begins decreases with increase of

defT and (or) with decrease of


.
In [Hub98] for [110] direction deformed GaAs it was observed that:

1. Number of phases of a plastic deformation increases with decreases of



)600( 0 CT  when undoped GaAs is being deformed.

2. The value of at which the glide phase begins decreases if


 is decreased for
undoped GaAs ( CT 0400 ), for zinc-doped GaAs ( CT 0400 ), for tellurium-
doped GaAs )500( 0 CT  . The value of  decreases if there’s increase of defT

)600400 00 CCT  for undoped GaAs.
Increase of plastic deformation phases viewed in experiments as a result of increase of a
sample’s temperature is because if we increase T , processes that run on this or that phase
will reveal themselves at lower stresses in samples.

Processes responsible for origination of this or that phase run at certain velocities. Let, for
instance, a process run in the strain interval .21  If, under experimental conditions, the

CTdef
0950 I II III IV V

14103,2 


 s

14100,1 


 s
%5,4%7,1  %5,4

15103,2 


 s
%8,0%5,0  %2%1  %5,3%2  %5,3
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value of


is chosen so that the time interval during which the deformation of the sample
changes from 1 to ,2 is significantly lower than the usual required time on this phase,

then at this


the phase is not be seen. That means that reduction of


leads to increase in
number of plastic deformation phases viewed in the experiment.
The observed dependence of ε value (at which this or that plastic deformation phase 

begins) on T and


can be qualitatively explained for the case of the glide phase (phase I)
the following way. In the glide phase dislocations moves relatively free passing the Peierls
potential (see chapter 2.2). Movement of dislocations velocity can be obtained from (2.15)
where activation energy U of movement of dislocations should be taken as the Peierls
potential (2.3). This is, however, true for the case of phase of glide only because on other
phases of plastic deformation activation energy of movement of dislocations is of a
different nature and isn’t directly connected with the Peierls potential. The Peierls potential 
value is determined by the crystal condition before deformation and doesn’t change during 
the glide phase. If we assume that all samples are identical before deformation then we may
think that the Peierls potential value is the same for all the samples of a single ingot and is
constant during the glide phase. It results from (2.15) that the value of dislocation velocity
is determined by crystal temperature and stress in the slip plane of a dislocation. Increase of
T gives the same value of dislocation velocity at lower  and, hence, at lower  (as

).sm Hence, if we increase T dislocations will move more rapidly on an earlier phase

of deformation. The


value is not apparent in (2.15). From the Orowan equation (2.11)

and sm/


 results that )./(
mdsbNm



 Hence if we reduce


the velocity will also

reduce. However, concentration of mobile dislocations
mdN on glide phase slightly changes.

According to (2.15) lower movement of dislocations velocity is due to reduction of 

(T =const) and, hence, reduction of . So at lower


 shear will occur on an earlier
deformation phase.

Experimental results shown on fig. 5.1 prove that in studied value intervals of T and



hardening coefficients on the glide phase I and on the hardening phases ,II IV reduce

with increase in temperature of the sample and (or) with decrease of )./(  


Table
5.4 contain values of hardening coefficient at different deformation temperatures and

strain rate .



The values of have been obtained from:

.
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(5.1)

Here  ll / is the relative error when measuring change in length of the sample during
deformation; )( 2 and )( 1 are absolute errors for  at 2 and 1
respectively.
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Table 5.4: values of hardening coefficient .
defT 14103,2 



 s 14100,1 


 s 15103,2 


 s

C0800

C0900 MPaI 5,1127

MPaII 3200
C0950 MPaI 7,1141

MPaII 8,2180

MPaI 5,052
MPaII 2,2174

MPaVI 2,5215

C01000 MPaI 6,2171 MPaI 6,3120

MPaII 5,4151

MPaI 6,030
MPaII 6,196
MPaVI 8,1110

[Hub98] came to the following conclusions:

1. There’s no systematic dependence of I on


 in the interval

1514 106.1106.1 


 ss in an undoped GaAs at CT 0400 . The author of
[Hub98] explains strong variations of values of I for samples on the glide phase
by dependence of I on hard controllable parameters such as value of dislocations
density before deformation and plane-parallelism of edge surfaces of samples.

2. There is decrease of I with decrease of


 in the interval of

1514 107.1107.2 


 ss in a zinc-doped GaAs at CT 0400
( )105.2 318  cmp .

3. The value of I is constant in the interval of 1615 108103 


 ss in a
tellurium-doped GaAs at CT 0500 )105.2( 318  cmn .

However, there’s no information about the dependence of I on T at a constant


in [Hub
98]. Still, the experimental data obtained in the paper help us to get the following for an

undoped GaAs: at CT 0400 and MPas I 840106.1 15  


 , at СТ 0600 and

MPas I 360102.1 15  


 . So I reduces with increase in temperature.
Using the above mentioned experimental data for values of I obtained in the present
paper and in [Hub98] it’s hard to say for sure whether there is systematic dependence of I

on T and .


 Let us show that, most likely, there is systematic dependence of I on T and
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

for identical samples: the hardening coefficient on the glide phase reduces with increase

in T and (or) with decrease of


. Taking into consideration )10.2( we get:
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Dislocation density changes slightly on the phase of glide. That’s why in (5.2) the 
value of dN can be determined on the initial period of the slip phase at ly ( ly is the

value of , at which ).ly Then we get:
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Taking into account (2.19) and (5.3) we arrive at:
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Change of dislocation density on the glide phase is small at any


and T . Hence, we

may suppose that here on this phase  /ln dN depend little not only on , but also on




and T (still, the dependence of dN on


and T can be strong). Then from (5.4) we get:
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It results from (5.5) that I reduces with increase of T and (or) decrease of


. This
statement agrees with experimental data obtained in the present paper. What is to findings
of [Hub98] stated above, they do not contradict the conclusion about the dependence of I
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on


and T with the exception of data for dependence of I on


for an undoped GaAs at
deformation temperature of samples CT 0400  (there’s no systematic dependence of I

from


here). It has been said above that the author of [Hub98] relates the absence of

systematic dependence of I on ,


 in particular, to unequal dislocation density in samples
before deformation. Under the experimental conditions [Hub98] values of ly (values of

, at which the region of easy glide begins) are in the interval of .)7040( MPa It results
from (2.10) that at these dislocation density is

PacmNd
10298 100.5,1~()1010(~    [Sch82],  ab 2/2 , where the constant of

the GaAs lattice is cma 81069.5  [Gri91]). To ensure that the initial dislocation density

0dN (dislocation density before deformation) influences the value of dN on the glide phase

the following must be true: .)1010(~ 298  cmN
od Typical values of the average

dislocation density before deformation take, as a rule, these values:
.)1010(~ 254

0

 cmN d To ensure that the initial dislocation density in the sample is
comparable to the dislocation density on the glide phase, the relative fluctuation of
dislocation density 

00
/ dd NN in a ingot should reach to almost .104 If this is done

then fluctuations in values of the initial dislocation density in samples prepared from a

single ingot may result in random dependence of I on T and


(see (5.2)).

The experimental data shown on fig. 5.1 prove that in the value interval of T and




studied the value of ly decreases with decrease of


 (in cases when the liquidity area

cannot be clearly seen during the experiment, the value of ly is determined the following
way: a tangent is drawn from the coordinated origin to the deformation curve; then from
the point where %2.0 another line is drawn parallel to the tangent; the value of
projection of point of intersection of this line with the deformation curve on axis is taken
as the value of ly ). Table 5.5 contain values of ly at different deformation temperatures

and strain rate .




Table 5.5: values of lower yield stress .ly

defT 14103,2 


 s 14100,1 


 s 15103,2 


 s

C0800 MPaly 11 MPaly 2,8 MPaly 6,5

C0900 MPaly 8 MPaly 3,4 MPaly 5,1

C0950 MPaly 7 MPaly 3 MPaly 15,0

C01000 MPaly 4,3 MPaly 2,2 MPaly 5,0
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Such a dependence of ly from


results from (2.19), too. According to (2.19), the value of

ly decreases with increase of T (if


is constant). The information given above confirms

that this very dependence of ly on T is observed for 14100.1 


 s and

14102.2 


 s . For 15103.2 


 s , ly decreases with increase of T in temperature

interval СС 00 950800  and increases with increase of T in temperature interval
.1000950 00 СС The growth of ly if T is increased can be qualitatively explained the

following way. For СС 00 1000950  and 15103.2 


 s .)5.015.0( MPaly  This ly

value agrees with values of dislocation density 254 )1010(~  cmN d (according to (2.10)).
These values of dislocation density are comparable to the dislocation density in the sample
before deformation. Hence, insignificant fluctuations in values of dislocation density in
samples before deformation may lead to ruining of systematic dependence of ly on T (see

(2.10)). It should be noted here that at bigger values of T and lower values of ,


 when
MPaly 0.1~  (and lower), it’s possible that not onlysystematic dependence of ly on T

will be ruined, but also that from


because of great influence of the initial dislocation
density (dislocation density before deformation) on values of ly .

Let’s mention that systematic dependence of ly on T and


was obtained in [Hub98]

as well: ly reduces with increase of T and (or) with decrease of


. Tables 5.6 and 5.7
contain values of )2( m and mU 2/ calculated using:
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Here t is the absolute error time of experiment; 21 , tt are experiment duration times

for 21 ,


 accordingly; ly is the absolute error of Tly  ;  is the absolute error of Т.

Table 5.6: values of (2+m).

defТ , ).( 1


s
45 100.1103.2   44 103.2100.1  

C0800 1.09.3  1.09.2 
C0900 03.04.1  05.03.1 
C0950 01.05.0  03.00.1 
C01000 02.00.1  07.00.2 
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Table 5.7: Values of U/(2+m),eV.

defТ , ).( 1


s
5103.2  4100.1  4103.2 

CC 00 900800  03.043.1  02.069.0  01.035.0 

CC 00 950900  16.04.5  04.087.0  02.032.0 

CC 00 1000950  04.083.0  09.087.1 

For dislocations moving in the fracture regime the rate of stress indicator for
semiconductor materials takes values 5.10.1 m [Ale68a]. Table 5.6 data prove that at
the temperature of CT 0800 rate of stress indicator values do not fluctuate too much
from the above figure. At different deformation temperature rate of stress indicator values
fluctuate significantly from the expected 5.10.1 m . So, (2.19) does not quantitatively

describe the dependence of ly on


 and T (the case when CT 0800 and

1415 103.2103.2 


 ss is an exception). We should mention that by means of

expression (2.19) we can qualitative description of the dependence of ly on


and T .

Tables 5.6 and 5.7 show that at CT 0800 the plastic deformation activation energy U

value is highly dependable on the value of


:

eVU )07.00.1(  for ,103.2 14 


 s

eVU )26.057.5(  for .103.2 15 


 s
We do not include the value of U for CT 0800 here as for other T the expression

(2.19) does not give a qualitative description of the dependence of ly on T and


. Table

5.7 doesn’t include the value of mU 2/ for CCT 00 1000950  and ,103.2 15 


 s

because at this


in the interval of CT 00 1000950   there’s increase of ly with increase
of T . This leads to mU 2/ obtaining negative value.

In [Hub98] for GaAs with tellurium impurity )105.2( 318  cmn at CT 0500 and

.0.22:108103 1615  


mss As a result, the author concluded that the

expression relating ly to T and


 cannot be used to quantitative interpretation
experimental data. The following conclusions can be made using the above mentioned
analysis of experimental data obtained at CCT 00 1000800  and

1415 103.2103.2 


 ss :

1. (2.10), (2.11), (2.19) allow us to qualitatively describe certain regularities observed
in experiments:

а) the increase in number of plastic deformation phases at increase deformation 

temperature T and (or) after reduction of


;
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b) decrease in the value of , at which the beginning of this or that plastic

deformation phase is seen, if T is increased and (or)


is decreased;
c) reduction of the hardening coefficient I on the glide phase if T is increased and

(or)


is decreased;

d) reduction of ly if T is increased and (or)


is decreased;

2. (2.19) can be applied to measure the rate of stress indicator value and the value of
the activation energy at deformation temperature of CT 0800  and can’t be 
applied when .8000 CT 

The no-best plane-parallelism of side surfaces of samples explains inclinations of
deformation curves one away from the other in the elasticity area at different experimental

conditions (at different T and


). Too divergent deformation curves let us assume that
corresponding mechanisms of deformation differ one from another and that dislocation
movement mechanisms are different, too. Studies of dislocation movement have shown
[Yon89], that doping of GaAs samples has a significant impact over movement of
dislocations velocity. At the same time, doping process influences different dislocation
types in a different manner. This means that change in concentration of doping impurity
may result in rise of the activation energy and the rate of stress indicator of dislocation
movement in a particular dislocation type, and may reduce the activation energy and the
rate of stress indicator for other dislocations. As concentration of dislocations of this or that

dislocation type may change at different experimental conditions (if changing T and


),
values of the activation energy and the rate of stress indicator of dislocation movement may
also change. This results, in particular, from the experimental data shown in tables 5.6 and
5.7. This serves to qualitatively explain that deformation curves are not parallel at different
experimental conditions (beginning from the first phase).

It has been said above, that (2.19) can be used to determine the rate of stress indicator
and the activation energy of dislocation movement for samples subject to deformation at

.8000 CT  Using U and m (see Tables 5.6 and 5.7) we can quantitative determine by
(2.15) the dependence of the movement of dislocations velocity on parameters that specify
experimental conditions. Speaking about the movement of dislocations velocity we mean
an averaged value because there are different types of dislocations with different velocities
in a crystal. But there is a problem. As velocity is exponentially dependable on the
activation energy, then the slightest error when determining U and (or) insignificant
change of U when experimental conditions change will lead to grave errors for calculating
velocity. There’s no such a problem, if U does not depend on the experimental conditions
and may be precisely evaluated. So it’s better to have such an expression for velocity that 
doesn’t include exponential dependence of on U . For this purpose we may proceed as
follows. From (2.19) we get:

).exp()( )2(2

Tk
U

C
B

mm
ly


  

Using this and (2.15) we arrive at:
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.)( )2(2 mmm
ly BC  


 (5.8)

Using sm and (5.8) we have:

.)( )2(2 mm
s

mm
ly BmC  


 (5.9)

Let analyze the dependence of on


and T at such values of  that correspond to the
end of the liquidity phase, that is at ly . In case there is the glide phase in the

experiment, ly corresponds to the very beginning of the glide phase. From (5.9) we get

(taking into consideration ly ):

.)2(
2

m
s

m

ly

mCB  






If the rate of stress indicator changes insignificantly at altering experimental conditions

(table 5.6 data prove that at CT 0800 and 1415 103.2103.2 


 ss the value of
2m changes from 3.9 to 2.9), we may roughly assume:

.~
2
ly



(5.10)

Fig. 5.2 represents the dependence of the movement of dislocations relative velocity at the

end of the liquidity area on


for GaAs: Te samples ( ),105 317  cmn deformed in the
[110] direction at CT 0800 . It has been calculated using (5.10) (the experimental values

of ly have been shown earlier in this paper). This proves that increase of


 gives an

increase in velocity. At the same time, increase of


 results in slower increase in the
dislocations velocity.

Fig. 5.2:calculated dependence of movement
of dislocations relative velocity at the end of

the liquidity area on


 for GaAs: Te
samples deformed in the [110] direction at

CT 0800 ( 1 is the velocity of

dislocations at 151027.2 


 s ).
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Fig. 5.3 represents calculated dependence of movement of dislocations relative velocity at

the end of the liquidity area on


 for undoped GaAs samples deformed in the [110]
direction at CT 0500 . To effect calculations experimental data have been taken from

[Hub98]: MPaly 18 at ,1026.3 13 


 s MPaly 13 at ,105.1 13 


 s

MPaly 0.8 at ,100.3 14 


 s MPaly 0.5 at ,104.7 15 


 s MPaly 5.2 at

151088.2 


 s . Using the findings of the experiments the [Hub98] author have found
out that 8,32 m . This allows us to consider that for these experiments the expression
(2.19) may be used to determine the rate of stress indicator and the movement of
dislocations activation energy. Hence, (5.10) can be used to analyze the dependence of

movement of dislocations velocity on


.

Fig. 5.3:calculated dependence of movement
of dislocations relative velocity at the end of

the liquidity area on


 for undoped GaAs
samples. The samples have been deformed
in the [110] direction at CT 0500 ( 1 is
the velocity of dislocations at

).1088.2 15 


 s

Here we observe non-monotonous dependence of movement of dislocations velocity on


.
Fig. 5.4 depicts calculated dependence of movement of dislocations relative velocity at the

end of the liquidity area on


for undoped GaAs samples deformed in the [110] direction
at CT 0400 . To effect calculations experimental data have been taken from [Hub98]:

MPaly 65 at ,106.1 14 


 s MPaly 48 at ,103.3 15 


 s MPaly 39 at

15106.1 


 s . Here, as well, (2.19) may be used to determine the rate of stress indicator
and the movement of dislocations activation energy and, hence, (5.10) may be used to

analyze the dependence of movement of dislocations velocity on


. Here we have a

monotonous increase in velocity if


is increased.
Fig. 5.25.4 results prove that the movement of dislocations velocity at the end of the

liquidity area (or in the beginning of the glide phase in case it can be clearly seen) is a non-

monotonous


function that has its minimum. However, change of


in a large spectrum
gives a slight change in velocity.
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Fig. 5.4: Calculated dependence of movement of
dislocations relative velocity at the end of the

liquidity area on


for undoped GaAs samples.
Samples have been deformed in the [110]
direction at CT 0400 ( 1 is the velocity of

dislocations at ).106.1 15 


 s

From (5.10) it is clear that the velocity of dislocations at the end of the liquidity area
increases monotonously with increase of deformation temperature T (it has been said that

ly goes down if T rises at const


 ,/1~ 2
ly ). As there is exponential dependence of

ly on T (see (2.19)), we may expect a very strong dependence of velocity of dislocations
on T . Experimental data provided by [Hub98] and discussed above when analyzing the

dependence of  on


 (fig. 5.3, 5.4), and (5.10) (at const


 ) testify that increase in
deformation temperature T from С0400 to С0500 in an undoped GaAs sample results in
a 370-time rise of the velocity of dislocations at the end of the liquidity area ( MPaly 5.2

at ,5000 CT  MPaly 48 at ,4000 CT  and in both cases ).103 15 


 s

Using sm/


 and (2.11), (5.10) for density dmN of mobile dislocations at the end of
the liquidity area we get:

.~ 2
lydmN  (5.11)

From (5.11) results that the concentration of mobile dislocations at the end of the liquidity
area decreases monotonously when there’s increase in deformation temperature and (or) 

decrease of


 (for the case of complete density of dislocations dN this results from
(2.10)).

It should be said, that conclusions with respect to the dependence of  and dmN on



and T at the end of the liquidity area refer to cases when (2.19) quantitative describes the

dependence of ly from T and


. These conclusions require an experimental examination
further on.

Fig. 5.5 shows deformation curves of a tellurium-doped GaAs samples
( ),105 317  cmn at different values of T and at different total values of f . These data,
together with the experimental data shown on fig. 5.1(а) and on fig. 5.1(b) (curves 1), will
be used later on to analyze the impact that the values of f have over concentration of
defects.
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Fig. 5.5: GaAs: Te deformation curves in the [110] direction at different values of temperature T

( ).103.2 14 


 s The samples have been deformed until two different total values ( f ) were

achieved: f = 3% (curves 1) and %2f (curves 2). (а) .8000 CT  (b) .9000 CT 

It has been said that when deforming GaAs samples in the interval of CT 0)1000800(  ,
certain regularities can be seen in the experimental data. The same regularities are evident,
too, when deforming GaAs samples at significantly lower deformation temperature. Fig.
5.6 and fig. 5.7 represent deformation curves of tellurium-doped GaAs samples
( ),105 317  cmn at deformation temperatures .600,300,20 000 CCCT  At CT 020 and

C0300 we can see the liquidity and the glide phases (at CT 020 we see only the
beginning of the glide phase). At CT 0600 we can see the glide and the hardening

phases. In case then 161023.2 


 s , the liquidity phase is observed.

Fig. 5.6: Deformation curves of GaAs: Te in the [110] direction at different values of temperature T

( ).1023.2 15 


 s .20)( 0 CTa  (b) .3000 CT 
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Fig. 5.7: Deformation curves of GaAs: Te in

the [110] direction at different values of



( )6000 CT 

.1023.2)21023.2)1 1615 





 ss 

Experimental data shown on figures 5.6(а), 5.6(b), 5.7 prove that:

1. The number of phases observed is growing with increase of T and (or) with

decrease of


.
2. The values of , at which the glide phase (stage I) and the hardening phase (stage

II) begin, reduce with increase of T and (or) with decrease of


 (stage I can be

seen for CT 020 and 151023.2 


 s (in the value area of %),6 for

CT 0300 and 151023.2 


 s (in the value area of %),5,2 for CT 0600

at two values of


: 151023.2 


 s (in the area )%)5.25.1(  and

161023.2 


 s (in the area )%21(  ; stage II can be seen at CT 0600 for

two values of :


 151023.2 


 s (in the area %)5,2 and 161023.2 


 s
(in the area %)).2

3. The values of hardening coefficients I and II reduce with increase of T and (or)

with decrease of


(for 151023.2 


 s at CT 0300 MPaI )652000(  , at

CT 0600 MPaI )11430(  and ;)15510( MPaII  for 161023.2 


 s at
CT 0600 MPaI )0.7230(  and ).)0.9320( MPaII 

4. The values of ly reduce with increase of T and (or) with decrease of


 (for

151023.2 


 s at CT 020 ,1850MPaly  at CT 0300 ,320MPaly  at

CT 0600 ;5.6 MPaly  for 161023.2 


 s at CT 0600 ).0.2 MPaly 

For CT 0600 in the interval 156 )1023.21023.2( 


 s .03.09.12 m

For 151023.2 


 s in the interval CT 0)30020(  mU 2/ eV)01.01.0( 
and in the interval CT 0)600300(  .)04.053.0()2/( eVmU 

Here rate of stress indicator values differ a lot from expected values. This signifies that in
doped GaAs movement of dislocations is considerably influenced by doping impurity
atoms (and their accumulations). [Yon89] shows that doping of a GaAs has its impact on
the movement of dislocations velocity, i.e. has its impact on the value of rate of stress
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indicator and the movement of dislocations activation energy. This may be caused by
doping impurity atoms interaction with the nucleus of dislocations (as has been proposed in
[Sie93b] for a GaAs with impurity of indium). The author of [Hub98] also found out that
the rate of stress indicator value differs a lot form the expected values for a tellurium-doped
GaAs )105.2( 318  cmn and a zinc-doped GaAs ( ),105.2 318  cmp . In case of
tellurium we have 22 m , in case of zinc 2.08.12 m . Experimental data for
doped GaAs have been obtained in [Hub98] for two values of deformation temperature:

CT 0400 (a zinc-doped GaAs), CT 0500 (a tellurium-doped GaAs). The experiments
of the present paper gave results for a wide range of temperatures.

Conclusions

Experimental data for deformation of tellurium-doped GaAs samples
( ),105 317  cmn deformed in the [110] direction at temperatures

CCCCCCCT 0000000 1000,950,900,800,600,300,20 and with strain rate

,102.2 16 


 s 141415 102.2,100.1,102.2   sss , prove that:

1.When increasing T and (or) decreasing


we observe:
а) more phases of plastic deformation (when these phases can be clearly viewed);
b) lower stretching (deformation) values () at which this or that plastic deformation

phase begins;
c) lower values of hardening coefficients I on the glide phase and lower values of
hardening coefficients II and IV on hardening phases;
d) decreasing values of lower yield stress ly .
2. Equations (2.10),(2.11),(2.15) and (2.19) serve to qualitatively explain the above

considered regularities (except dependencies of II and IV on T and ).




3. The rate of stress indicator value is highly dependable on T and


 (there’s no 
regularity) and is a lot different from the values of 5.10.1 m (that are usual for
movement of dislocations in the fracture regime on the glide phase). The case for

,8000 CT  where ,9.39.22 m is an exception.
4. Equation (2.19) cannot be applied to determine the values of rate of stress indicator

and of movement of dislocations activation energy (excluding the case when
),8000 CT  but can be applied to qualitatively describe the dependence of ly

from T and .



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6. Experimental Data for Lifetime of Positrons

The chapter deals with experimental data for values of lifetime of positron of the tellurium-
doped GaAs being previously subject to deformation (one can find deformation
experiments results in the previous chapter). The data were collected after studying the
dependence of temperature and stretching (deformation) velocity on positron lifetime, as
well as the dependence of total value of deformation on it.

6.1Influence of deformation temperature

Fig. 6.1 represents data on the dependence of positron lifetime in the GaAs: Te
( )105 317  cmn on measurement temperature. Samples had been previously subject to
deformation at .1000,900,800 000 CCС Positron lifetime has been measured according to the
method described in chapter 3 (see (3.44), (3.52 3.58) expressions).
Results of the three-component adaptation of positron lifetime spectrum are given for С0800
and С01000 . The two-component adaptation results are given for С0900 .
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Fig. 6.1: Dependence of positron lifetime in the GaAs: Te on temperature of measurement. Samples
have been deformed in the [110] direction. a) deformation temperature is ,8000С strain rate –

,1023.2 14  s total stretching value –5%. (b) deformation temperature is С0900 , strain rate –

,1028.2 14  s total stretching value –5%. (c) deformation temperature is ,10000С strain rate –

,103.2 14  s total stretching value –5%. The upper part –lifetime due to annihilation of

positron with electron of defects ( ).2
The middle part of figures represents average lifetime ( )aV ; the lower –inner positron lifetime

( )1 (inner lifetime is 230ps in the basic sample).

For CCС 000 1000,900,800 spectra adaptation is firm in temperature intervals of
,30085 KTK  ,300285 KTK  KTK 300135  accordingly, as at these

temperatures .2301 ps  Here we’ll analyse to changes in positron lifetime within these
very intervals of measurement temperature where spectra adaptation is firm.

It results from the information on the fig. 6.1 that the avarage positron lifetime is more
than in the basic material (230ps). Samples deformed at ,8000 C have psaV )299291( 
(increase of T from 85 K to 135 K gives increase of aV which decreases later if we

continue to increase T ), if deformation temperature is C0900 , psaV 343 (in the

interval of ),300285 KTK  if temperature is C01000 , psaV )384338( 
(measurement temperature increase from K135 to K300 results in fluctuations of aV
values and, however, aV does up). This testifies that open volume defects are formed
during deformation.

The first lifetime component 1 ( 1, which reduces with increase of measurement
temperature for all three cases) is connected with the process of positron annihilation with
lattice electrons and with processes of capture of positrons on defects (see expressions
(3.52)) but has no connection with positron annihilation with electrons of defects. That’s 
why information on 1 values does not allow us to draw conclusions about the nature of
defects.

The second lifetime component ( )2 is fully connected with processes of positron
annihilation on defects (see (3.52) expressions). At temperature of deformation equal to

С0900 2 changes from (479 ps)3 to .)3481( ps
At С01000 2 decreases (taking into consideration errors occurring when calculating the
magnitude) with increase of measurement temperature from (455 ps)17 to (412 .)6 ps
Taking temperature equal to C0800 , we note that 2 largely fluctuates. However, if we
take into account the error when calculating the magnitude, we’ll have an approximately 
constant 2 of (403 ,)22 ps in the interval KTK 28585  , and at KT 300

.)9438(2 ps
From the literature data we know that lifetime of positrons in the GaAs influenced by

annihilation on accumulations of vacancies is 460ps [Kra94], (500 ps)600 [Pog84]. Most
likely, at deformation temperatures of CCC 000 1000,900,800 2 is connected with
positrons annihilation on accumulations of vacancies. Decreases 1 with increase of
measurement temperature because the trapping rate of positron by accumulations of
vacancies increases (in this case defects do not totally absorb positrons when ,db k
and, hence, the value of concentration of defects can be measured here). Decrease of 2



6.1 Influence of deformation temperature

78

with increase of measurement temperature when deformation temperature is C01000
(when deformation temperature is C0800 or C0900 2 slightly depends on measurement
temperature within the limits of error) can be qualitatively explained if assumed that there
are accumulations with a different number of vacancies in a sample. In accumulations with
different number of vacancies lifetime of positron is also different. Reading [Hub98], one
will find calculated dependence of lifetime of positrons at annihilation on accumulation of
vacancies on the number of such vacancies (according to a method explained in [Pus83]).
Hence, increase of number of vacancies in an accumulation results is increase lifetime of
positrons which comes closer to the saturation value (approximately 500ps). If higher
measurement temperature produces more annihilation acts on accumulations with a smaller
amount of vacancies (with shorter lifetime), the 2 parameter will decrease.

When deformation temperature is C01000 decrease of 1 and 2 with increase of
measurement temperature does not result in lower ,aV as intensity of the second
component rises (from 0.302 to 0.598). This is the reason why the product of ,22I grows
increasing .aV

When deformation temperature is C0800 2I increases (from 0.273 to 0.384) if
measuring temperature is increased from K85 to K200 , and decreases (from 0.384 to
0.349) if we continue to increase temperature. This leads to initial increase of aV and then
to its decrease (with increase of measurement temperature).

The data shown on fig. 6.1 prove that:

1. Higher deformation temperature average positron lifetime increases, and results
in initial increase of 1 and 2 (in the value interval of deformation temperature
from C0800 to ),9000 C and in subsequent decrease of their values (in the
interval of ).1000900 00 CC 

2. There is one type of deep positron traps –accumulation of vacancies. Most
likely, value of concentration of monovacancies (of monovacancy complex) in
these samples doesn’t reach the sensitivity limits of the positron annihilation 
spectroscopy method.

3. Higher deformation temperature gives rise to the number of vacancies contained
into an accumulation (in the temperature interval from С0800 to 900 ),0С but
then decrease (in the interval from С0900 to ).10000С

[Hub98] showed that not only accumulations of vacancies could be seen in an undoped

GaAs samples deformed in the [110] direction at С0400 ),106.1( 15 


 s

)109.6(600 150 


 sС and 130 103.3(800 


 sC  and )108.4 15 


 s , but also
monovacancies (or monovacancy complexes). The situation is the same in the GaAs: Te

( ),105.2 318  cmn deformed in the [110] direction at )105.2(500 150 


 sС [ Hub 98].
The experimental data of the present paper and findings of [Hub98] prove that if we

change deformation temperature and strain rate the set of deep traps types also changes.
Further explanations also serve to prove this fact.

Fig. 6.2 represents how lifetime of positrons in GaAs:Te samples depends on
measurement temperature. Samples have been subjected to deformation in the [110]
direction at .300,200 00 CС Results of the three-component adaptation spectrum are given
for samples deformed at С0200 and .3000С At C0200 and C0300 adaptation of spectra
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is firm for every measurement temperature (here ).2301 ps Fig. 6.2 data prove that
average positron lifetime is higher in the basic material: in samples deformed at ,2000С

aV slightly decreases (from 239ps to 235ps) if measurement temperature is increased, and

in samples deformed at ,3000С aV slightly increases (from 239ps to 243ps).

Fig. 6.2: Dependence of positron lifetime in GaAs: Te on measurement temperature strain rate
.1023.2 15  s (a) deformation temperature is ;2000 C total stretching value is 5%. (b)

deformation temperature is ;3000С total stretching value is 4.5%.

When the temperature is С0200 1 is almost independable on measurement temparature
within error. When it is С0300 1 decreases with increase of measurement temperature
from K35 to K150 , but then goes up.

At deformation temperature equal to С0300 2 is within error and is slightly depend on
measurement temparature. The average 2 in the temperature interval amount 318ps. At
deformation temperature equal to С0200 a wide range of 2 values is viewed (even if we
take into account the error when determining the magnitude as ).)128( ps Here 2
changes within (276 .)339 ps

Other papers studied argue that positron lifetime in the GaAs conditional by the
annihilation on monovacancies or on complexes containing a monovacancy (e.g. on
acceptor complex AsTe ),GaV lies within the interval from 255ps [Kra94] to 297ps [Cor
90]. Lifetime determined by annihilation on divacancies is 332ps [Geb99] (calculated
value). At deformation temperature equal to С0300 the value of 2 (318ps–see above) is
notably higher than the values of 2 typical for annihilation on monovacancies and(or)
complexes containing a monovacancy (255ps ).297 ps At the same time 2 is significantly
lower than the lifetime connected with annihilation on divacancies. It’s natural to suppose 
that 2 is a mixed component connected with the positron annihilation on divacancies and
monovacancies (or on complexes containing a monovacancy). At a deformation
temperature of С0200 2, supposedly, is a mixed component as well connected with
annihilation of positrons on divacancies and monovacancies (complexes containing a
monovacancy).Unlike deformation at CС 00 900,800 and C01000 , here in this case (at
temperatures running at C0200 and )3000 C deep positron traps are represented by
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monovacancies (monovacancy complexes) and divacancies but not accumulations of
vacancies.

6.2 Influence of stretching velocity

Fig. 6.3 shows data for dependence of positron lifetime in the GaAs: Te on measurement
temperature. Samples have been deformed at C0800 and C0900 at lower stretching
velocities in comparison with the cases treated in the previous chapter. Fig. 6.3(а) 
represents results for the three-component adaptation spectrum, and fig. 6.3 (b)–results for
the two-component adaptation spectrum.

Fig. 6.3: Dependence of lifetime of positrons in the GaAs:Te on measurement temperature.
Samples have been deformed in the [110] direction. (a) Deformation temperature – C0800 , strain
rate – ,1006.1 14  s total stretching value –5%. (b) Deformation temperature – C0900 , strain

rate– ,1008.1 14  s total deformation value–5%.

It results from the data on fig. 6.3(а) that if we increase measurement temperature (the 
interval of temperature values from K100 to K300 is considered as )2301 ps 2 will
also increase (taking into account the error when determining ).2  It’s natural to suppose 
that 2 is a mixed component connected with positron annihilation on divacancies and
monovacancies (or on complexes containing a monovacancy). So different positron traps
can be seen in samples deformed at ,8000С : if strain rate is 141023.2  s then
accumulations of vacancies are traps (see data on fig. 6.1(а)), if strain rate is 141006.1  s
then point defects –monovacancies are traps (or complexes containing a monovacancy)
and a divacancy). This weights in favour of the conclusion (see chapter 6.1) that changes in
deformation temperature and stretching velocity produce changes in sets of deep traps of
positrons.

The data on the fig. 6.3(b) let us believe that in the value interval of measurement
temperature from K135 to K300 (where )2301 ps aV and 1 change only a little.
Values of 2 mean that accumulations of vacancies are traps for positrons in this case.
Comparing data on fig. 6.1(b) and fig. 6.3(b) (comparison can only be made in the value
interval of measurement temperature from K285 to K300 because that which is shown on
fig. 6.1(b) is true in this very interval) we have: changes in strain rate from 141028.2  s
to 141008.1  s do not alter type of positron traps; the number of vacancies in an
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accumulation is always the same because in both cases the values of 2 are very close
taking into account errors occurring when determining them.

6.3 Influence of total stretching value

Fig. 6.4 represents data for dependence of positron lifetime on measurement temperature in
GaAs:Te samples deformed at C0800 .

Fig. 6.4: Dependence of positron lifetime on measurement temperature in the GaAs:Te. Samples
have been deformed in the [110] direction at C0800 , strain rate being equal to .1023.2 14  s (а) 
Total stretching value is 2%.(b) Total stretching value is 3%.

Total stretching values have been taken as 2% and 3%. Fig. 6.4(а) shows results for the 
three-component adaptation spectrum, fig. 6.4(b) shows results for the two-component
adaptation spectrum. Experimental data prove that in both cases accumulations of
vacancies are traps for positrons. Comparing results on fig. 6.1(а) and on fig. 6.4 we 
conclude that increase in the rate of stretching (from 2% to 3%) gives initial incrementation
to the number of vacancies in accumulations which, subsequently, decreases (if we
continue to change stretching value from 3% to 5%).

Fig. 6.5 represents data for dependence of positron lifetime on measurement
temperature in GaAs: Te samples deformed at .9000С The adaptation is the three-
component. Total stretching value is 3%. The experimental data prove that accumulations
of vacancies are traps for positrons in this case. Experimental data for total stretching value
of 2% are also evidence of the fact that accumulations of vacancies are traps as here, for
example, at measurement temperature is equal to K300 ).)7481(2 ps If deformation
temperature is C0900 the number of vacancies in an accumulation, first, reduces when
stretching value is increased from 2% to 3%, and then rises (when stretching value is
increased from 3% to 5%).

If we compare dependence of number of vacancies in accumulations on rate of
stretching for deformation temperatures С0800 and C0900  we’ll see that these 
dependencies are quite different. As the stretching process progresses, not only changes of
defect concentration occur but also restructuring of defects takes place, i.e. number of
vacancies in accumulations changes.
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Fig. 6.5: Dependence of positron lifetime on
measurement temperature in the GaAs:
Te.The sample has been deformed in the
[110] direction at C0900 and strain rate
being equal to .1028.2 14  s Total
stretching value is 3%.

Fig.6.6 represents data for dependence of positron lifetime on measurement temperature in
undeformed GaAs:Te. Here 1and 2highly different then the values of 1and 2in
deformed samples.Therefore in deformed samples we can observe a defects that appear
during the deformation process.
The error of 2,1 for all experiments is %.5

Fig. 6.6: Dependence of positron lifetime on
measurement temperature in undeformed

GaAs.

Mechanisms of formation of defects are treated in the next chapter.

Conclusions

1. In all samples either accumulations of vacancies or point defects –monovacancies
(or complexes containing a monovacancy) or divacancies –have been detected.
Both point defects and accumulations of vacancies have not been seen at the same
time.

2. Changes in deformation temperature and stretching velocity produce changes in
type of traps of positrons. If deformation temperature and stretching velocity reduce
then formation of point defects is more preferential.

3. Changes in deformation temperature and stretching velocity produce changes in the
number of vacancies that are contained in defects.

4. Higher stretching rate restructures accumulations of vacancies: the number of
vacancies in accumulations changes. At this the nature of dependence of the number
of vacancies in an accumulation on rate of stretching is not the same for different
deformation temperatures.
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7. Analysis of Results for Positrons Lifetime

This chapter relying upon experimental data for positrons lifetime analyzes the influence
that deformation conditions (deformation temperature, stretching velocity, total value of
deformation) exert on concentration of defects introduced in GaAs samples during
deformation. Dependencies of concentration of defects on deformation experiments
parameters obtained have been compared with results arising from existing models(see
chapter 2.5.2).

7.1 Specific trapping coefficient of positron by defect

To determine concentration of defects one sould resort to this equation (arising from
(3.43)):

,


d
d

k
n  (7.1)

where

.
111

trd 


Here dn concentration of defects; dk trapping rate of a positron by a defect;
trd  ,, specific trapping coefficient, coefficient of the diffusion phase of the reaction

and capture phase accordingly. The value of trapping rate dk is obtained from experimental
data for positrons lifetime. Thus, to determine the value of concentration of defects dn one
must know the value of specific trapping coefficient , that is values d and tr .

Expressions for d one can find in chapter (3.4.1): (3.21) applies when a positron
interacts with a neutral point defect or with an accumulation of neutral defects with
different reactions radius 0r for point defect and accumulation of defects; (3.23) applies
when a positron and a defect (a point charged defect) or an accumulation of charged defects
attract; (3.24) applies when a positron and a charged defect (a point defect) or an
accumulation of defects repulse.
The following cases are of practical importance:
   (а) interaction between a positron and a negatively charged point defect (d can be found

from (3.23));
(b) interaction between a positron and a negatively charged accumulation of defects ( d

can be found from (3.23));
   (с) interaction between a positron and a neutral accumulation of defects (d can be found
from(3.21)). Here saying ‘point defect’ we mean a monovacancy, a divacancy or a 
complexes containing a monovacancy. For the case of attraction between a positron and a
negatively charged vacancy tr can be present as (see chapter 3.5): ,2/1 TAdtr as

2/1~ Ttr [Pus90].
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Value of dA can be defined with help of (3.69). If we assume that for any other point
defects tr can be expressed similarly dA , in this case, is also determined by (3.69) (at this

dA values for various types of point defects are not the same). As a result, if we view the
case of attraction between a positron and a point defect can be determined by (3.70). For
the case of attraction between a positron and an accumulation of charged defects it has been
shown (see (3.74)) that the reaction of interaction between the positron and the
accumulation is limited, most likely, by the diffusion phase of the reaction and d ( d
is determined by (3.23)). Unfortunately, scientific papers lack evaluations for tr for the
case of interaction between a positron and a neutral accumulation, so let’s take d ( d
is determined by (3.21)). Thus, for practically important cases the value of  can be
determined.

However, the expression (3.23) for d in case of attraction between a positron and a
charged defect (a point defect or an accumulation of defects) has been obtained given that
the interaction energy between the positron and the defect is expressed by the Coulomb
type (see (3.22), attraction is noted by the minus sign). Strictly speaking, this is true for a
slightly doped or an undoped semiconductor. In the present paper experiments have been
conducted with heavy doped GaAs samples. For results for values of d to be used in this
case as well the expression (3.23) should be modified a little which, in fact, will be done
further.

If we have an doped sample in the interaction energy )(rU between a positron and a
charged defect we must take into account screening by free charge carriers (by electrons in
this case as the n-GaAs is treated here):

),/exp()(
0

2

drr
r

Qe
rU 


(7.2)

where dr is the Debye screening radius. The expression for dr is given by [Ans78]:

,
4

2/1

2
0 








ne
Tk

r B
d 


(7.3)

where n is concentration of electrons in the conduction band. Then the equation for d can
be obtained by substituting (7.2) in (3.20). The integral in the right part of (3.20) cannot be
calculated analytically in case )(rU  is determined by (7.2). Let’s write down )(rU as:

r
Qe

rU
0

2

)(


 for drrr 0

and (7.4)

0)( rU for drrR  .

Then form (3.20) taking into account (7.4) we get:

,4 efd RD (7.5)
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where
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Taking into account that 0)( drU (see (7.4)) and 1/)( 0 TkrU B (see chapter (3.4.1)),
we get:
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From (7.5) and (7.6) we have:
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(7.7) and (3.23) are coincide if the expression below holds:

.1
11
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RrTk

Qe

dB
(7.8)

Taking into account (7.3) from (7.8) we get (for values interval of measurement
temperature of :))30030( K

.10 315  cmn (7.9)

We have considered that, Q ~1, and concentration of defects is 31710  cmNd and

.
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

Thus, if (7.9) holds (for instance, in undoped sample) we should take (3.23) to determine
d, otherwise (7.3) and (7.7) apply. For further analysis it’s necessary to know the exact 

value of electrons concentration .105 317  cmn Then cmKTrd
2/16 )300/(106.0  and

.10 6 cmR  As a result for d we have:

.
300

74.01

1300
106.5)/( 2/3

63



































 



T
K

Q
T

K
QDccmd (7.10)



7. Analysis of results for positrons lifetime

86

The expression for tr in case of point defects is: .2/1 TAdtr Using (7.10) and the
expression for ,tr we are able to calculate the value of dA by the method explained in
chapter (3.5).

Chapter (3.5) (see (3.74)) showed that the reaction of interaction between a positron and a
charged accumulation of defects is limited, in all probability, by the diffusion phase of the
reaction and .d At that to evaluate d we used (3.23), and for tr we took

),3/(2 0
2 TkQer Bc  where cr is the capture radius of a positron by an accumulation of

defects. Having 317105  cmn for d we should use (7.10), and for   2
ctr r (see

chapter (3.5)) .dc rr  Then for tr we get:
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Using (7.10) and (7.11) for charged accumulations of defects we get:
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Findings of [Saa89] prove that for KT 400 ,)/300( 2/1
0 TKDD  where 0D is the

diffusion of positron coefficient value at KT 0300 )./1( 2
0 scmD  At that we assumed

that positrons are scattering on acoustic phonons. It’s true for undoped and slightly doped 
samples when we can disregard the scattering of a thermalised positron on charged doping
admixtures. When concentration of doping impurity is 317105  cm scattering of electrons
on acoustic phonons prevails over scattering on charged impurities at KT 200 [Bon77].
Supposing that mechanisms of scattering of positrons and electrons are the same we get:
the expression for D [Saa89] is true in this case if .400200 KTK  Using the
expression for D obtained in [Saa89] and (7.12) for values interval of measurement
temperature :)300200( K we get: 1~/ trd  for any ).1( QQ Thus, in this case

)105( 317  cmn when determining the value of for the reaction of interaction between
a positron and a charged accumulation of defects we should take into consideration both
coefficients d( and )tr while in case of undoped and slightly doped samples (when (7.9)
is true) we should take into consideration only d . Thereby it must be noted that the fifth
conclusion made in the third chapter is true for those GaAs samples for which (7.9) holds.
Later on, from (7.10) and (7.11) it results that in the values interval of measurement
temperature of K)300200(  4.2)1(/)(  QQ dd  and 9.1)1(/)(  QQ 
(maximum is at KT 300 ). Hence, in case of strongly doped GaAs samples the
dependence of d and  on Q is rather weak unlike that for the case of undoped or
slightly doped samples where the dependence ( in case accumulation of defects )d is
linear (see 3.23). Thus, the seventh conclusion made in the third chapter is true for the case
of undoped and slightly doped GaAs samples.
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7.2 Comparison with experimental data

As the trapping rate of positrons by defects is closely connected with the specific trapping
coefficient by ,dd n  the natures of dependence of dk and  on measurement
temperature coincide (measurement temperature has such values that the concentration of
defects stays the same).

[Hub98] lists results for dependence of dk on temperature. The results have been
obtained on the basis of experimental data. It follows that for undoped GaAs samples
deformed in the [110] direction dk monotonously decreases with increase of measurement
temperature both of monovacancies (point defects) and of accumulations of vacancies.
Analysis of those results gives:

1. For samples deformed at С0800 with strain rate equal to 15108.4  s 1~ Tkd

for accumulations and 2.1~ Tkd for monovacancies (in the values interval of
measurement temparature of (100 ).)400 K

2. For samples deformed at С0800 with strain rate equal to 13103.3  s 8.0~ Tkd

for accumulations and 5.1~ Tkd for monovacancies (in the values interval of
measurement temperature of (200 ).)400 K

3. For samples deformed at C0600 with strain rate equal to 15109.6  s 2.1~ Tkd

for monovacancies (in the values interval of measurement temperature of
(300 ).)500 K The dependence of d on T for accumulations cannot be measured
here due to large fluctuation values of .dk

As appears from above:
1. For the case of interaction of positrons with point defects ,~  T where

.5.12.1  If when calculating we take into consideration both d (according

to (3.26) ),~ 2/3Td and tr (according to (3.31) ),~ 2/1Ttr we’ll manage to 
explain such a dependence of from T .

2. For the case of interaction of positrons with accumulations of vacancies ,~  T
where .1 If we suppose that there are charged accumulations of vacancies (for
which, according to (3.26), )~ 2/3T and accumulations of neutral vacancies (for
which, according to (3.21), ),~ 2/1T  in samples we’ll manage to explain such a 
dependence of on T .

Let’s consider strongly doped GaAs:Te samples. Fig. 7.1 shows data for dependence of the 
trapping rate dk of positrons by accumulations of vacancies on measurement
temperature.Values of dk have been determined according to the model (3.52) )58.3(
taking into consideration experimental data for iI and .i Only the most typical
dependencies of dk on measurement temperature are shown. For any other cases of
interaction between positrons and accumulations of vacancies the dependence of dk on
measurement temperature is very mush the same as the one portrayed either on fig. 7.1(а), 
or on fig. 7.1(b). Data represented on fig. 7.1 let us consider that the nature of dependence
of dk on measurement temperature for the case of strongly doped and undoped GaAs
samples is quite different.

If to determine the specific trapping coefficient  of positrons in accumulations of
vacancies we use (3.23) (negatively charged accumulations) or (3.21) (neutral
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accumulations) we’ll get a monotonous decrease of  with increase of measurement
temperature. This contradicts data shown on fig. 7.1. Hence, (3.21) and (3.23) correct for
undoped GaAs samples and are wrong for a strongly doped GaAs.
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Fig. 7.1: Dependence of the trapping rate dk of positrons in accumulations of vacancies on
measurement temperature in GaAs:Te. Samples have been deformed in the [110] direction. (a).
Deformation temperature is ,8000С strain rate is ,1023.2 14  s total stretching value is 5.0%.

(b). Deformation temperature is ,10000 C strain rate is ,103.2 14  s total stretching value is 5.0%.
The error of trapping rate is )%.128( 

Fig. 7.2 represents calculated dependencies of trapping coefficient of the diffusion phase of
the reaction d (according to (7.10)) and specific trapping coefficient  (according to
(7.1), (7.10) and (7.11)) of positrons with negatively charged accumulations of vacancies
on measurement temperature for GaAs:Te. For the specific trapping coefficient for the
capture phase of positrons by negatively charged accumulations of vacancies holds:

2/3~ Ttr (according to (7.11)).

Fig. 7.2: Dependence of specific trapping coefficient of the diffusion phase of the reaction d and
specific trapping coefficient of positrons on negatively charged accumulations of vacancies on
measurement temperature T in the GaAs:Te. Curves 1 have been obtained for ,Q curves 2–
for ,10Q curves 3 –for 1Q ( Q is the excessive amount of electrons located on
accumulations of vacancies if compared to the number of electrons in a neutral accumulation). (а) 
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Comparison of results from fig. 7.1 and fig. 7.2(b) gives: if supposing that for
accumulations of vacancies )101( Q (which is quite reasonable since the number of
vacancies in accumulations ~10) natures of dependencies of the trapping rate and specific
trapping coefficient of positrons with accumulations of vacancies on measurement
temperature lying in the interval from K200 to K300 are almost the same. It follows from
the said that:

1. Expressions (7.10) and (7.11) can be used for determination if .105 317  cmn
2. When determining for accumulations of vacancies one should take into account

both coefficient d and .tr
3. Concentration of accumulations can be determined using (7.1) at any measurement

temperature in the interval from K200 to K300 , and the result is almost
independent on the value of temperature.

Calculations based on (7.1), (7.10) and (7.11) show that the nature of dependence of on
measurement temperature for 10,1  QQ and Q (see fig. 7.2(b)) stays the same with
increase of measurement temperature to K400 .

Expressions (7.10) may be used to determine d beyond the limits of the values interval
of measurement temperature ( .400200 KKT  ) as well but first one must fix )(TD for

KT 200 and for .400KT  Here a qualitative analysis of dependence of d and on
T at KT 200 may be given. In a strongly doped sample in the interval of

KKТ 200100  charged doping impurities and acoustic phonons contribute to scattering
of free charge carriers (positrons in this case) [Bon77]. When concentration of doping
impurity )1010( 318317   cmcm drift mobility of charge carriers d slightly changes in
the interval of KKT 200100  [Bon77], so we may roughly assume .constd  Then,
using the known equation between drift mobility and diffusion coefficient for a mobile
particle (for a positron in this case) )/( TkqD Bd  ( q is the charge of the patricle) we
get .~)( TTD As a result if we increase T from K100 to K200 d will increase (see
(7.10)). Taking into account that tr also increases with increase of T (see (7.11)) we get
that increase of T from K100 to K200 gives increase of . Hence, natures of
dependencies of and dk on T in the interval of KKT 200100  are the same (see fig.
7.1).

We draw your attention that at other values of electrons concentration (not )105 317  cm
to determine one should take (7.1), (7.7) and   2

dtr r (here dr is found from (7.3) for
every electrons concentration), because (7.10) and (7.11) have been derived for a specific
case when .105 317  cmn

Fig. 7.3 represents data for dependence of trapping rate dk of positrons on point defects

on measurement temperature for GaAs:Te deformed at C0200 and .3000 C Point defects
have been viewed in these two cases: mixed component from monovacancies and
divacancies (see chapter 6.1). It follows from the data on fig. 7.3 that the nature of
dependence of dk on T for strongly doped and undoped GaAs samples is completely
different.

If to determine the specific trapping coefficient of positrons on negatively charged
point defects we use (3.23) that holds for d in case of undoped samples,

and ,/ 2/1TAdtr   we’ll have a monotonous decrease of from measurement
temperature.
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This contradicts that which is shown on fig. 7.3(b). If to determine d we use (7.10) (at

,1~Q which is true for point defects) which holds for 317105  cmn (at this
),/ 2/1TAdtr   we’ll be able to explain data shown on fig. 7.3:

Fig. 7.3: Dependence of trapping rate dk of positrons on point defects (monovacancies and
divacancies) on measurement temperature in GaAs:Te samples. Samples have been deformed in the
[110] direction. (a). Deformation temperature is ,2000С strain rate is ,1023.2 15  s total

stretching value is 5%. (b). Deformation temperature is ,3000 C strain rate is ,1023.2 15  s total
stretching value is 4.5%. The error of trapping rate is )%.107( 

1. Choosing dA parameter so that in the viewed values interval of measurement

temperature ,dtr   holds we get .~ 2/1 Ttr This dependence of on T
qualitatively coincides with that of dk on T shown on fig. 7.3(а).

2. Choosing dA parameter so that in the viewed values interval of measurement
temperature ,trd   holds we get .d In the interval KK 200100  d
doubles with increase of temperature (at KKT 200100  TD ~ - see above).

In the interval KK 300200  d decreases with increase of temperature (see
curve 3 on fig. 7.2(а)). Hence,  depends on T nonmonotonously (there is a
maximum). Such a dependence of on T qualitatively coincides with the dependence
of dk on T shown on fig. 7.3(b).

Earlier when analysing the dependence of on T for point defects we stated that dA can
take different values at different deformation conditions. The fact that the process of
capture of positrons by point defects is influenced by electric and deformation field of
dislocations serves an explanation for this. At different conditions of deformation these
fields may have different values in the localities of point defects. From the above analysis
for point defects results that:

1. Values of  obtained from (7.1), (7.10) and ,2/1 TAdtr can be used to
determine concentration of defects.

2. Diffusion phase of the reaction and the capture phase of positrons by defects
influence on the value of .
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7.3 Concentration of defects

This chapter contains information on dependence of concentration of accumulation of
vacancies cln and concentration of vacancies (supposing that anglomerated vacancies in an
accumulation are evenly distributed in the crystal) Vn on deformation parameters, i.e. on
temperature of deformation and stretching velocity as well as on total stretching value.
According to (7.1) we have:

.
1

dcl kn


 (7.13)

Concentration of accumulation of vacancies has been determined at measurement
temperature KT 0300 . Chapter 7.2 showed that values of concentration of accumulations
are hardly dependances on temperature because dependencies of dk and on T are very
similar. Concentration of vacancies is determined by

,VclV Nnn  (7.14)

where VN is the average amount of vacancies in an accumulation. The values of VN
have been calculated according to [Hub98]:

Fig. 7.4: Dependence of positrons lifetime
from number of vacancies in accumulation
for GaAs [Hub98].

Then, if experimental conditions for measuring positron lifetime are chosen so that dk
increases monotonously with increase of measurement temperature (see fig. 7.1(b)) it is
taken 10~Q when determining (see curve 2 on fig. 7.2(b)). In this case at KT 300

136103.4  scm (according to (7.1), (7.10), (7.11)). If d decreases in the interval of
KKT 300200  (see fig. 7.1(а)) it is taken 1~Q when determining (see curve 3 on

fig. 7.2(b)). In this case at KT 300 1361054.2  scm (according to (7.1), (7.10),
(7.11)).

Dependence of concentration of defects on total stretching value

Fig. 7.5 represents dependencies of concentrations of accumulations and vacancies on total
stretching value for GaAs:Te samples.
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Fig. 7.5: Dependence of concentration of defects in GaAs:Te samples on rate of stretching.
Samples have been deformed in the [110] direction. Curves 1 show concentration of vacancies Vn
(it’s assumed that anglomerated vacancies in an accumulation are evenly distributed in the crystal), 
curves 2 show concentration of accumulation of vacancies .cln (а). Deformation temperature is

,8000 C strain rate is .1023.2 14  s (b) Deformation temperature is ,9000 C strain rate is

.1028.2 14  s

Tables 7.1, 7.2 contain data for calculation of concentration of defects.

Table 7.1
CTdef

0800 %5 %3 %2

dk 1101011.0  skd
1101048.0  skd

1101019.0  skd

 scm /1054.2 36 scm /1054.2 36 scm /103.4 36

VNQ, 10),1~( VNQ 27),1~( VNQ 6),10~( VNQ

2 ps)11430(2  ps)1496(2  ps)37398(2 

Table 7.2
CTdef

0900 %5 %3 %2

dk 1101036.0  skd
110102.0  skd

191051.0(  skd

 scm /103.4 36 scm /103.4 36 scm /1054.2 36

VNQ, 24),10~( VNQ 6),10~( VNQ 24),1~( VNQ

2 ps)3479(2  ps)10338(2  ps)7481(2 

Dependence of concentration of defects on stretching velocity

Fig. 7.6 represents dependencies of concentration of accumulations and vacancies on

stretching velocity of the GaAs:Te sample.Here for 1914 1079.01008.1 


 ss d and

scm /1054.2 36 (Q~1), 24VN ).)5481(( 2 ps
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Fig. 7.6: Dependence of concentration of
defects in the GaAs:Te sample on stretching
velocity. Samples have been deformed in
the [110] direction at C0900 to stretching
value of 5%. Curve 1 shows concentration
of vacancies Vn  (it’s assumed that 
anglomerated vacancies in an accumulation
are evenly distributed in the crystal). Curve
2 shows concentration of accumulation of
vacancies .cln

For deformation temperature of С0800 at strain rate equal to 141023.2  s accumulations
of vacancies are viewed (see fig. 6.1(а)) being 31510)28.03.4(  cmnV  (see fig. 7.5(а)). 

At strain rate equal to 141006.1  s  vacancies and divacancies are viewed (see fig. 6.3(а)). 
At that dk decreases monotonously with increase of measurement temperature (such a
dependence of dk on T is similar to that shown on fig. 7.3(а)). Chapter 7.2 showed that in 
this case dtr   and .tr Hence, concentration of defects meets this condition:

.
d

d

tr

dd
d

kkk
n


 (7.15)

As point defects are viewed in this case )1~(Q , scmd /1054.2 36 when
measurement temperature is K300 (according to (7.10)). As a result from (7.15) we get:

.10)028.018.0( 316  cmnd Taking into account that here ),)18302((1~ 2 psNV 

we get 31510)28.08.1(  cmnV (as for a mixed component of vacancies and
divacancies tr is unknown, we cannot determine the value of ).Vn Comparing this with

31510)28.03.4(  cmnV at ,1023.2 14 


 s we may conclude that at deformation

temperature equal to C0800 concentration of vacancies, most likely, decreases with
increase of stretching velocity. Thus, dependencies of Vn on stretching velocity at

deformation temperatures of C0800 and C0900 are qualitatively different.

Dependence of concentration of defects on deformation temperature

Fig. 7.7 represents dependencies of concentration of accumulations and vacancies on
deformation temperature for GaAs: Te samples. For deformation temperature of C01000
we have: for %0.5 11010)03.035.0(  skd and scm /103.4 36 10~Q ,

9VN ).)7421(( 2 ps Similar data for other cases have been considered above.

For deformation temperatures of С0200 and С0300 at strain rate of 151023.2  s (total
stretching value is )%)55.4(  point defects are viewed i.e. monovacancies and
divacancies (see chapter 6.1). At deformation temperature of C0200 dk decreases
monotonously with increase of measurement temperature (see fig. 7.3(а)) and in this case 

dtr   and tr (see chapter 7.2).
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Fig. 7.7: Dependence of concentration of
defects in GaAs: Te samples on
deformation temperature. Samples have
been deformed in the [110] direction at
strain rate of .10)3.223.2( 14  s
Curves 1 show concentration of vacancies

Vn  (t’s assumed that anglomerated 
vacancies in an accumulation are evenly
distributed in the crystal), curves 2 show
concentration of accumulation of
vacancies .cln (а). Totalstretching value is

%5 (b). Total stretching value is 3%. (c).
Total stretching value is 2%.

Hence, concentration of defects meets condition (7.15). Taking into account that at
measurement temperature of K300 1910)046.044.0(  skd and

scmd /1054.2 36 ,1~(Q because defects are point ones) we get:

.10)018.017.0( 315  cmnd For deformation temperature of C0300 trd   and

d (see chapter 7.2). Taking into account that at measurement temperature of K300
1910)11.07.0(  skd and scmd /1054.2 36 )1~(Q we get:

.10)043.027.0( 315  cmnd In these two cases the values of 2 at measurement

temperature of K300 are the same within the error: ps)12325(2  )200( 0 C and
ps)15338(2  ).300( 0 C  That’s why the number of vacancies ,VN in point defects is

the same. Hence, here concentration of vacancies decreases with increase of deformation
temperature from С0200 to .3000С If when determining concentration of defects and
vacancies one uses the same (any) value of  in all cases, values of concentration
themselves will be different, but dependencies of concentration of defects and vacancies do
not change from parameters of deformation values shown on fig. 7.75.7  .

The error of defects concentration is )%.128( 
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Analysis of results for dependence of concentration of defects on parameters of
deformation values

Vacancies are formed as a result of movement of dislocations with jogs. There are three
main mechanisms of formation of jogs on the screw dislocation:

1. Thermal formation of jogs (thermal energy of atoms vibration is transfered on a
dislocation which may result in formation of jogs; at this the number of jogs
increases with increase of deformation temperature). The posibility of thermal
formation of jogs is discussed in [Mie93] and [Mil94].

2. As a result of double cross slip (see chapter 2.3).
3. As a result of crossing of dislocations (see chapter 2.5).

As a rule, in case of complex dislocations glide (that in several slip systems, in particular,
when deformation runs in [110] and [100] directions) the third mechanism dominates the
second [Cui96]. In case of easy glide (that in one system, for example, in the [213]
direction) the second mechanism dominates the third [Cui96].

On concentration of vacancies critical influence is exerted by density of mobile
dislocations and their velocity, as well as by velocity of transportation of a jogs along the
dislocation line and the number of such jogs on it. (see chapter 2.5.2). Relationship
between velocity and density of mobile dislocations and concentration of vacancies is
evident: with increase of density and (or) velocity of dislocations concentration of
vacancies also increases. Influence of number of jogs and velocity of their transportation
along the dislocation line is clear : with increase (decrease) of velocity of jogs the
possibility of their mutual annihilation increases (decreases) which leads to decrease
(increase) in concentration of vacancies; increase (decrease) of number of jogs gives
increase (decrease) of concentration of vacancies.

When rate of stretching of samples is higher (deformation temperature and stretching
velocity are assumed constant) the stress  applying to mobile dislocations increases

).(  sm According to (2.15) mobile dislocations velocity rises. General density of
dislocations, according to (2.10), rises as well. This increases the probability that a mobile
dislocation will cross with a motionless one (or with a mobile, too). As a result during to
the crossing of dislocations mechanism the number of jogs increases. Due to thermal
mechanism the number of jogs stays the same because the temperature of the sample is the
same. Thus, as stretching increases the number of jogs also increases which leads to
increase of concentration of vacancies.

Increase of stretching velocity (deformation temperature and rate of stretching are
assumed constant) results in increase of general density of dislocations according to (2.10)
which leads to higher probability that a mobile dislocation will cross with a motionless one
(or with mobile as well). As a result, higher stretching velocity gives rise to concentration
of vacancies. Here, as well, thermal mechanism does not contribute to changes in number
of jogs because deformation temperature stays the same.

Increase in deformation temperature (total stretching value and stretching velocity being
constant) the general density of dislocations decreases according to (2.10). This reduces the
probability that a mobile dislocation will cross with a motionless one (or with a mobile,
too). As a result the number of jogs on a mobile dislocation decreases with increase of
deformation temperature. On the other hand, due to thermal mechanism of generation of
jogs they increase in number with increase of deformation temperature. Hence, there may
be a complex dependence of the number of jogs and, consequently, concentration of
vacancies on deformation temperature: different values intervals of deformation
temperature may increase or decrease concentration of vacancies.
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Processes of generation of vacancies as a result of movement of dislocations with jogs
(primary processes) have been considered above. Supposing that accumulations are
constituted from vacancies appearing close to each other (and not as a result of secondary
processes, i.e. long-distanced diffusion of vacancies in the crystal with subsequent
formation of accumulations due to interaction of vacancies) then the dependencies of
concentration of accumulations and vacancies anglomerated in accumulations on
parameters of deformation with help of primary processes only. Hence, these dependencies
will be the same as those for the number of jogs on parameters of deformation:

1. Increase of total deformation value and (or) stretching velocity results in increase of
anglomerated vacancies;

2. Increase of deformation temperature results in increase or decrease of concentration
of anglomerated vacancies depending on the temperature interval viewed.

Such dependencies of concentration of anglomerated vacancies on parameters of
deformation have been viewed in experiments results for which can be found in [Hub98]:

1. For doped GaAs: Te samples ),105.2( 318  cmn deformed in the [110] direction
at ,5000 C concentration of anglomerated vacancies increases both with increase of
stretching velocity and with increase of total deformation value. Increase of
deformation temperature in the interval of СС 00 800450  reduces concentration of
anglomerated vacancies.

2. For undoped GaAs samples deformed in the [110] direction at temperatures of
С0500 and С0800 , and in the [100] direction at С0600 , and in the [213] direction

at С0500 , concentration of anglomerated vacancies increases with increase of
stretching velocity. Increase of total stretching value of undoped samples deformed
in the [100] direction at С0600 results in increase of concentration of anglomerated
vacancies. When deformation temperature changes from С0350 to С0550
concentration of anglomerated vacancies in undoped samples deformed in the [100]
direction changes nonmonotonously (having its maximum): temperature rise from

С0350 to С0450 gives rise to concentration of vacancies; temperature rise from
С0450 to С0550 reduces concentration of vacancies.

These dependencies of concentration of anglomerated vacancies on parameters of
deformation prove that under the experimental conditions primary processes of generation
of vacancies during movement of dislocations with jogs play a decisive part in kinetics of
formation of defects (the author of [Hub98] also came to this conclusion).

Chapter 2.5.2 contains quantitative models of kinetics of formation of vacancies taking
into account only primery processes: the Mott model [Mot60] (see (2.23)), the Popov
model [Pop90] (see (2.25)), the Estrin-Mecking model [Mec80] (see (2.26)). The Mott and
Popov models have  and jP parameters ( jP is the ratio of density of tree-like
dislocations creating jumps on a screw dislocation to general density of dislocations; is
the ratio of density of tree-like dislocations to general density of dislocations).
Dependencies of and jP on parameters of deformation are unknown. Thus we cannot
use these models to analyse experimental data contained in [Hub98]. But let’s consider the
Estrin-Mecking model. According to (2.26) we have:

.3
1 b

nV












(7.16)
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Using sm/ and integrating (7.16) we get:

.)(~
0




dnV 


(7.17)

   It’s evident from (7.17) that increase of total stretching value and (or) of stretching 
velocity (higher streching velocity increases )( ) results in increase of concentration of
vacancies Vn which agrees with experimental data of [Hub98]. Increase of deformation
temperature leads to, according to (7.17), monotonous decrease of Vn (because )(
reduces with increase of deformation temperature) which agrees with experimental data of
[Hub98] for dependence of Vn  on doped samples’ deformation temperature. However, the 
model fails to explain nonmonotonous dependence (with a maximum) of Vn on
deformation temperature for undoped samples ([Hub98].

If in the Mott and the Popov models we assume that parameters and jP are constants,
we’ll have the same dependencies of concentration of vacancies on parameters of 
deformation based on these models as the ones based on the Estrin-Mecking model.

Results of the present paper for dependence of concentration of defects on parameters of
deformation (fig. 7.5 ),7.7 prove that at high-temperature deformation )1000800( 00 CC 
secondary processes play a decisive part in kinetics of formation of defects. The
significance of secondary processes is expressly illustrated by dependence of concentration
of defects on total stretching value at different deformation temperatures (fig. 7.5).
Considering only primery processes concentration of defects can only increase with
increase of total stretching value. This doesn’t agree with data shown on fig. 7.5. Fig. 
7.8 10.7 represents the dependence of the avarege number of vacancies VN in an
accumulation on parameters of deformation. It results from the data of fig. 7.8 10.7 that
number of vacancies in accumulations is strongly dependable on parameters of
deformation. Hence, changes in parameters of deformation restructure accumulations (apart
from changing concentration of accumulations). We’d like to draw your attention that when
one (any) of the parameters of deformation changes (other parameters maintaining their
constant value) the maximum number of vacancies in accumulations is approximately the
same: )2724(  . Hence, accumulations that contain a larger number of vacancies are
unstable at any parameters of deformation here considered. At different parameters of
deformation stability of accumulations can be achieved with different number of vacancies.

One can imagine kinetics of formation of accumulations this way. For example, when
rate of stretching becomes higher concentration of vacancies, due to primery processes,
increases. At that concentration of accumulations and number of vacancies in them will
increase until accumulations will stability. Further increase of rate of stretching may
unstable accumulations. As a result, accumulations will dissociate, partly or totally.
Released vacancies and those generated as a result of primery processes will annihilate
mainly with interstitial atoms (or will enter into reactions with other components). This will
lead to decrease in concentration of accumulations and in number of vacancies. Generally,
increase of concentration of accumulations and of number of vacancies in accumulations
when this or that parameter of deformation grows can be explained within the framework
of primery processes of generation of vacancies supposing that accumulations are stable.
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Fig. 7.8: Dependence of number of vacancies

VN in an accumulation on rate of stretching
of GaAs: Te. Samples have been deformed in
the [110] direction. Curve 1: deformation
temperature is ,8000С strain rate is

.1023.2 14  s Curve 2: deformation
temperature is ,9000 C strain rate is

.1028.2 14  s

Fig. 7.9: Dependence of number of
vacancies VN in an accumulation on
stretching velocity of GaAs: Te. Samples
have been deformed in the [110] direction
at C0900 until total value of 5%.

Fig. 7.10: Dependence of number of vacancies

VN in an accumulation on deformation
temperature of GaAs: Te. Samples have been
deformed in the [110] direction at a strain rate
of .10)3.223.2( 14  s Curve 1: total
stretching value is %.5
Curve 2: total stretching value is 3%. Curve 3:
total stretching value is 2%.

Decrease of concentration of
accumulations and number of vacancies in accumulations can be explained by secondary
processes, i.e. by dissociation of accumulations (partial or total). When concentration of
accumulations decreases the number of vacancies in an accumulation also decreases see
fig. ).10.75.7  This argues for dissociation of accumulations.

Taking into consideration primery processes of generation of vacancies (during
movement of dislocations with jogs) and secondary processes (dissociation of
accumulations of vacancies) we can qualitatively explain data shown on fig. .7.75.7 

2,0 2,5 3,0 3,5 4,0 4,5 5,0

5

10

15

20

25

30
N

um
be

r
of

va
ca

nc
ie

s

Strain (%)

1

2

1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4
22

23

24

25

26

27

N
um

be
r

of
va

ca
nc

ie
s

Strain rate (104s-1)

800 850 900 950 1000
0

4

8

12

16

20

24

28

1

N
um

be
r

of
va

ca
nc

ie
s

Deformation temperature (0C)

1

2
3



7.3 Concentration of defects

99

It has been clarified earlier that if deformation temperature changes from С0200 to С0300
concentration of defects decreases. This dependence is explained by primery processes (see
above).

Taking into account that in intervals of deformation temperature from C0200 to C0300
(findings of the present paper) and from C0400 to C0800 (findings of [Hub98])
dependencies of concentration of defects on parameters of deformation can be interpreted
only within primery processes, the following conclusion is made: secondary processes play
an important part in kinetics of formation of defects at high-temperature deformation of the
GaAs (at ).8000 CТ

Conclusions

1. It results from analysis of data for dependence of concentration of defects on
deformation conditions of GaAs:Te samples that at high-temperature deformation

))1000800(( 0СТ  on kinetics of formation of defects is influenced both by
primery processes (generation of vacancies during movement of dislocations with
jogs), and secondary ones (dissociation of accumulations of vacancies). However,
kinetics of formation of defects at CT 0800 can be described only by means of
primery processes.

2. During high-temperature deformation (stretching) of GaAs:Te samples not only
concentration of accumulation of vacancies change, but also accumulations
restructure: the number of vacancies in stable accumulatins changes.

3. Nature of dependence of trapping rate dk of positrons on accumulations of
vacancies on temperature T of the crystal in case of strongly doped GaAs:Te
samples )105( 317  cmn and in case of undoped samples is totally different: in
undoped samples dk decreases monotonously with increase of T ; in strongly doped
samples dk either increases monotonously or changes nonmonotonously (having its
maximum).

4. An expression has been obtained for the specific trapping coefficient of positrons
by negatively charged defects taking into account the diffusion phase of the reaction
and the capture phase of positrons by defect. It has been shown that using this
expression one can qualitatively explain the dependence of trapping rate dk of
positrons by defects on crystal temperature both for undoped and for strongly doped
GaAs samples.Thus one can use the expression when calculating values of
concentration of defects.
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8. Summary

1. When increasing deformation temperature (in the interval from С0800 to )10000С
and (or) decreasing strain rate (from 15102.2  s to )102.2 14  s of GaAs:Te
samples )105( 317  cmn we view:

a) increase in the number of phases of a plastic deformation;
b) decrease of the values of stretching at which this or that plastic deformation

phase begins;
c) decrease of values of strengthening coefficients in the dislocations glide

phase and hardening phases.
2. It has been shown that using (2.10), (2.11), (2.15), (2.19) which are generally used
in the theory of plastic deformation it’s possible to qualitatively explain the above
mentioned regularities.

3. The expression that relates liquidity limits to deformation temperature and strain
rate (2.19)is not to be applied to determine rate of stress exponent and activation
energy of movement of dislocations.

4. In all deformed samples either accumulations of vacancies or point defects
(monovacancies and divacancies) have been found. Both point defects and
accumulations have not been detected simultaneously. When changing deformation
temperature and stretching velocity type of positron traps changes: with decrease of
deformation temperature and stretching velocity formation of point defects becomes
more preferential.

5. During the process of high-temperature deformation of GaAs:Te samples not only
concentration of accumulation of vacancies changes but accumulations themselves
restructure: the number of vacancies in stable accumulations changes.

6. At high-temperature deformation )1000800( 00 CCT  of GaAs:Te samples
kinetics of formation of accumulations of vacancies in influenced both by primery
processes (generation of vacancies during movement of dislocations with jogs), and
secondary ones (dissociation of accumulations of vacancies). However, kinetics of
formation of defects at CT 0800 can be described only within the framework of
primery processes.

7. Nature of dependence of trapping rate dk of positrons on accumulations of
vacancies on temperature T of the crystal in case of doped GaAs:Te samples

)105( 317  cmn and in case of undoped samples is totally different: in undoped
samples dk decreases monotonously with increase of T , in doped samples dk
either increases monotonously or changes nonmonotonously (having its maximum).

8. Expression (7.7),(7.10),(7.11) have been obtained for specific trapping coefficient
of positrons on negatively charged defects taking into account the diffusion phase
of the reaction and the capture phase of positrons by defect. It has been shown that
using this expression one can qualitatively explain the dependence of trapping rate
of positrons on defects (with accumulations of vacancies and point defects) on
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crystal temperature both for undoped and for doped GaAs samples
)105( 317  cmn . Thus one can use the expression when calculating values of

concentration of defects.
9. In the future conduction of similar systematic research using other concentrations of

doping impurity (and using other doping admixtures) seems appropriate. This will
help determine the influence of concentration of impurities and of types of
impurities on kinetics of formation of defects.
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Appendix А

Slip systems of dislocations

There are twelve slip systems of dislocations in the gallium arsenide (see chapter 2.6).
These are they:

1. In (111) planes there are three slip directions: ].110[],101[],110[


2. In )111(


planes there are three slip directions: ].110[],110[],011[


3. In )111(


planes there are three slip directions: ].110[],110[],101[


4. In )111(


planes there are three slip directions: ].110[],101[],101[


The actual number of slip systems can be less. This depends on direction of deformation
of the sample. If for any slip system ,0sm  there’s no dislocations glide in this system 
because there 0 and, according to (2.15), dislocations velocity ).0 Hence, to find
the actual number of slip systems in this or that direction of deformation we need to
determine the Schmidt factor for all 12 theoretically possible slip systems. The Schmidt
factor is  coscossm [Hir72], where  is the angle between the deformation axis
and the unit vector that is perpendicular to the slip plane;  is the angle between the
deformation axis and the slip direction. Slip direction coincides with the Burgers vector
because in (2.3) for the Peierls potential 2

0 ~ bW [Hir72] and dislocations glide in the
direction where the value of the Burgers vector length is minimal, i.e. in the direction in the
slip system where atoms are most densely packed. Thus we may take the angle  as an
angle between the deformation axis and the Burgers vector.

,
)(

cos





nd

nd
.

)(
cos






ld

ld

Here 


d is the vector in the direction of deformation; 


n is the vector that is

perpendicular to the slip plane; 


l is the vector in the slip direction.
Let a sample be deformed in the ].[ 321 hhh direction. Considering slip in the )( 321 ggg

plane in the ][ 321 mmm slip direction, we may write ,332211



 ahahahd

,332211



 amamaml


 332211 agagagn (vector which is perpendicular to the
plane with Miller indices ),( 321 ggg has the same indices )( 321 ggg [Ans78]). Here




321 ,, aaa are unit and mutually perpendicular lattice vectors.
Table А1 lists values of sm that are mostly used in experiments for direction of
deformation. It’s evident from the table that when deformation runs in the [110] direction 
there are actually four equal slip systems (with values of ).408.0sm
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Table. А1: Values of sm for different slip systems of dislocations and
for different directions of deformation of GaAs samples.

D
ire

ct
io

n
of

de
fo

rm
at

io
n

[1
10

]
[1

00
]

[2
13

]

Slip systems

]110[ ]101[ ]110[ ]011[ ]110[ ]110[ ]101[ ]110[ ]110[ ]101[ ]101[ ]110[

)111( )111( )111( )111(

sm

sm

sm

0.408 0.408 0.4080.4080 0 0 0 0 0 0 0

0 0.408 0.408 0.408 0 0.408 0.408 0 0.408 0.408 0.408 0

0.35 0.175 0.175 0.117 0.467 0.35 0.29 0.117 0.175 0 0 0

Here dislocations glide in four slip systems. When deformation runs in the [100] direction
there are actually eight equal slip systems (with values of ).408.0sm Here dislocations
glide in eight slip systems. When deformation runs in the [213] direction there are actually
nine unequal slip systems (with different values of ).sm The slip system where the Schmidt
factor is the highest is preferential ).467.0( sm Here dislocations glide only in one slip
system (for it ).467.0sm

Appendix В

Conventional signs

A Point defects annihilation velocity
a The lattice constant and the Bohr radius of positronium

pa The Peierls potential period
b The Burgers vector length
C Concentration of defects

IС Concentration of interstitials

VC Concentration of vacancies
d Stretching amplitude of a dialocation element and the average distance traveled by the

dislocation line before annihilation (with another dislocation) during its entrance
VD Diffusion coefficient of vacancies

D Diffusion coefficient of positrons

aE Energy level of acceptor impurity

bE Bond energy of a positron in a trap

CE Bottom energy of the conducting band

dE Energy level of a donor impurity

FE The Fermi level
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0E Bond energy of a positronium in vacuum

SE Bond energy of a positronium in the crystal

E Valence zone ceiling energy
f Oscillations frequancy of the dislocation line
G The Gibbs enthalpy

iI Intensity of the i-th component of positron lifetime

Bk The Boltzmann constant

dk Trapping rate of a positron on a defect

dk
~

Coefficient of the diffusion phase of reaction of a positron with a defect
trk Coefficient of the capture phase of a positron by a defect

L The average distance traveled by the dislocation line before annihilation (with another
dislocation) during its glide

m Stress exponent
m Effective mass of the positron

m Effective mass of the electron

em Mass of the electron

cm Mass of density of states of electrons

sm Schmidt factor

m Mass of density of state of holes
n Concentration of electrons

ZaN Concentration of charged acceptors

dN Number of traps with positrons and density of dislocaions

zdN Concentrations of charged donors

zan Concentration of acceptor-type defects

dzn Concentration of donor-type defects

dmN Density of mobile dislocations

pN Number of free positrons
P Formation of point defects velocity
p Concentration of holes

fP Probability that the condition f in a trap is not taken by a positron

iP Probability that a positron is in free condition i
T Crystal temperature
U Activation energy of dislocation motion

AV Activation volume
 Dislocation velocity and relative velocity of an electron and a positron in a positronium

j Velocity of jogs glide on dislocations
W The Peierls potential
 Constant (in different formulas)

1 Constant

 Linear damping coefficient
 Constant
 Constant
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S Constant
 Deformation (relative change in length of the sample)

0 Static permittivity of the crystal
 Shear and specific trapping coefficient of a positron in a defect

d Coefficient of the diffusionally limited reaction

0 Constant

tr Coefficient of the capture phase of a positron by a defect

0 Positronium level width

d Thermal shooting velocity of a positron located on a dislocation

st Thermal shooting velocity of a positron located on a shallow point trap
Average distance between capture centres of vacancies and interstitials and annihilation

rate of positrons
b Annihilation rate of positrons in a non-defective crystal

j Distance between jogs on the dislocation line
 Shear modulus
 The Poisson coefficient
 Density of crystal
 Internal stress and section of capture of a positron by a cluster of defects

eff Effective stress

i Stress created by dislocations
 External stress and positron lifetime

aV Average lifetime of positrons

b Bulk lifetime

i Components of positron lifetime
 Ratio of density of tree-like dislocations to the general density of dislocations
 Hardening coefficient
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