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Abstract

For many structures designed for high temperature apgitate.g. piping systems
and pressure vessels, an important problem is the life tseessment in the creep
range. The objective of this work is to present an extensieeview about the the-
oretical modeling and numerical analysis of creep and kengp strength of struc-
tures. The study deals with three principal topics inclgdaonstitutive equations
for creep in structural materials under multi-axial stretsdes, structural mechanics
models of beams, plates, shells and three-dimensionalsselnd numerical proce-
dures for the solution of initial-boundary value problenigr@ep mechanics.

Within the framework of the constitutive modeling we dissugrious exten-
sions of the von Mises-Odqvist type creep theory to take atwount stress state
effects, anisotropy as well as hardening and damage pexeBer several cases
of material symmetries appropriate invariants of the stteasor, equivalent stress
and strain expressions as well as creep constitutive esaéire derived. Primary
creep and transient creep effects can be described by tlgluiction of harden-
ing state variables. Models of time, strain and kinematicéaing are examined
as they characterize multi-axial creep behavior under Ieirapd non-proportional
loading conditions. A systematic review and evaluation afistitutive equations
with damage variables and corresponding evolution equatiecently applied to
describe tertiary creep and long term strength is presefdss state effects of
tertiary creep and the damage induced anisotropy are gisdus detail.

For several structural materials creep curves, constutguations, response
functions and material constants are summarized accotdimgcently published
data. Furthermore, a new model describing anisotropicpcire@ multi-pass weld
metal is presented.

Governing equations for creep in three-dimensional salidsntroduced to for-
mulate initial-boundary value problems, variational mdgres and time step algo-
rithms. Various structural mechanics models of beamsegpland shells are dis-
cussed in context of their applicability to creep problef@mphasis is placed on
effects of transverse shear deformations, boundary lsmisgeometrical nonlin-
earities.

A model with a scalar damage variable is incorporated inebANSYS finite
element code by means of a user defined material subroutingerify the sub-
routine several benchmark problems are developed anddsbivspecial numerical
methods. Results of finite element analysis for the samdgmabillustrate the ap-
plicability of the developed subroutine over a wide rangelement types including
shell and solid elements. Furthermore, they show the infeierf the mesh size on
the accuracy of solutions. Finally an example for long tetrargjth analysis of a
spatial steam pipeline is presented. The results showtbatdveloped approach is
capable to reproduce basic features of creep and damagespescin engineering
structures.



Zusammenfassung

Fur zahlreiche Bauteile fur Hochtemperaturanwendunigemlie Lebensdauerab-
schatzung im Kriechbereich die wichtigste Aufgabe bei\d@bereitung von Ein-
satzentscheidungen. Ziel dieser Arbeit ist es, einen wafaerUberblick Uber die
theoretische Modellierung und die Analyse des Kriechertsder Langzeitfestig-
keit von Bauteilen zu geben. Dabei stehen folgende Schwktpum Mittelpunkt:
Konstitutivgleichungen fiir das Kriechen von Ingenieurkgtoffen unter mehrach-
sigen Beanspruchungen, strukturmechanische ModelBdlken, Platten, Schalen
und dreidimensionale Korper sowie numerische Verfahigrdfe Losung nichtli-
nearer Anfangs-Randwertaufgaben der Kriechmechanik.

Im Rahmen der konstitutiven Modellierung werden zahlrei@rweiterungen
der Mises-Odqvist-Kriechtheorie wie die Einbeziehung Agrdes Spannungszu-
standes, der Anisotropie sowie der Verfestigungs- undadighingsvorgange dis-
kutiert. FUr Sonderfalle der Materialsymmetrien werdgeignete Invarianten des
Spannungstensors, Ansatze fur Vergleichsspannunggrdehnungen sowie Kon-
stitutivgleichungen zum anisotropen Kriechen formuli®&as Primarkriechen und
transiente Kriechvorgange konnen durch die Einfuhruag Verfestigungsvaria-
blen beschrieben werden. Die Modelle der Zeit- und Defoionat sowie der kine-
matischen Verfestigung werden beziglich der Vorhers&gitades mehrachsigen
Kriechens untersucht. Danach erfolgen ein systematisoberblick und die Be-
wertung der Konstitutivgleichungen mit Schadigungsafaien, die bisher auf die
Beschreibung des Tertiarkriechens und der Langzeiglesti angewandt wurden.

Fur einige Ingenieurwerkstoffe werden Kriechkurven, Kiativgleichungen,
konstitutive Funktionen und Werkstoffkennwerte anhandinleler Literatur publi-
zierten Daten zusammengefasst. Ferner wird ein neues MageBeschreibung
des anisotropen Kriechens in einem mehrlagigen Schweifdggestellt.

Die Grundgleichungen fur das Kriechen in dreidimensienaKorpern werden
zum Zweck der Formulierung von Anfangs-Randwertproblenvamiationsverfah-
ren und Zeitschrittalgorithmen zusammengefasst. ZatleeModelle der Struktur-
mechanik fur Balken, Platten und Schalen werden beziigficer Anwendbarkeit
auf Kriechprobleme diskutiert. Hier wird auf Effekte wie €sachubverzerrung,
Randschichten und geometrische Nichtlineatitaten atksaen gemacht.

Modelle mit Schadigungsvariablen werden mit Hilfe einenbtzerdefinierten
subroutine in das Programmsystem ANSYS eingebunden. &i@ndverifikation
werden Testaufgaben entwickelt und mit Hilfe speziellemetischer Verfahren
gelost. Berechnungen der selben Aufgaben mit der Metheddimiten Elemente
illustrieren die Anwendbarkeit der entwickelten subroatifir verschiedene Ty-
pen von finiten Elementen. Weiterhin zeigen sie den EinflessNktzdichte auf
die Losungsgenauigkeit. AbschlieRend wird die Langesiifjkeitsanalyse einer
raumlichen Rohrleitung vorgestellt. Die Ergebnisse erjgdass das entwickelte
Verfahren in der Lage ist, die wesentlichen Kriech- und&siapingsvorgange in
Ingenieurkonstruktionen darzustellen.
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1 Introduction

Creep is the progressive time-dependent inelastic detamander constant load
and temperature. Relaxation is the time-dependent decoéasress under the con-
dition of constant deformation and temperature. For maryctiral materials, for
example steel, both the creep and the relaxation can bevelosabove a certain
critical temperature. The creep process is accompaniedany mifferent slow mi-
crostructural rearrangements including dislocation mawet, ageing of microstruc-
ture and grain-boundary cavitation.

The above definitions of creep and relaxation are relatedgcase of uni-axial
homogeneous stress states realized in standard matestialgteUnder “creep in
structures” we understand time-dependent changes afi stnali stress states taking
place in structural components as a consequence of exteathhg and tempera-
ture. Examples of these changes include progressive defims, relaxation and
redistribution of stresses, local reduction of materigdrsgth, etc. Furthermore, the
strain and stress states are inhomogeneous and multikaxmedst cases. The scope
of “creep modeling for structural analysis” is to develomal twhich allows to sim-
ulate the time-dependent behavior in engineering strastup to the critical state
of creep rupture.

In Chapter 1 we discuss basic features of creep behavior @&rialg and struc-
tures, present the state of the art within the framework @égmodeling and define
the scope of this contribution.

1.1 Creep Phenomena in Structural Materials

The analysis of the material behavior can be based on ditfergperimental ob-
servations, for example, macroscopic and microscopic. €ifggneering approach
is related to the stress-strain analysis of structures asllynbased on the standard
mechanical tests. In this section we discuss basic featfitee creep behavior ac-
cording to recently published results of creep testing undeaxial and multi-axial
stress states.

1.1.1 Uni-Axial Creep

Uni-axial creep tests belong to the basic experiments ofrtaierial behavior eval-
uation. A standard cylindrical tension specimen is heatedouthe temperature
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' F— const, T = const, <o, 03T, <T<05T,
c=oon®n, c=F/A

fracture

strain €)

minimum creep rate

7} instantaneous elastic straifh

time (t)

Figure 1.1 Strain vs. time curve under constant load and temperatur@rimary creep,
Il - secondary creep, Il - tertiary creep

0.3 — 0.5T, (T}, is the melting temperature of the material) and loaded bysile
force. The value of the normal stress in the specimés usually much less than
the yield limit of the materiab,. The instantaneous material response is therefore
elastic. The load and the temperature are kept constamgltire test and the ax-
ial engineering straim is plotted versus time. A typical creep curve for a metal is
schematically shown in Fig. 1.1. The instantaneous regpoas be characterized
by the strain value’. The time-dependent response is the slow increase of ig str
¢ with a variable rate. Following Andrade [95], three stagas be considered in a
typical creep curve: the first stage (primary or reducedmebe second stage (sec-
ondary or stationary creep) and the third stage (tertiancoelerated creep). During
the primary creep stage the creep rate decreases to a calia@n(minimum creep
rate). The secondary stage is characterized by the appatedyrconstant creep rate.
During the tertiary stage the strain rate increases. At titedd the tertiary stage
creep rupture of the specimen occurs.

A number of properties can be deduced from the uni-axialpceegve. These
are the duration of the stages, the value of minimum creey tta time to fracture
and the strain value before fractdire

The shape of the creep curve and the duration of the creegpssi@gend strongly
on the stress and temperature values, Fig. 1.2. The depeedamn stress and tem-
perature are of primary interest to an engineer designingessiructure or machine.
In order to obtain mechanical properties of the materiaieseof creep tests are
usually performed for different stress and temperatureesl From the resulting
families of creep curves one can obtain the minimum creep vat stress curve,
the minimum creep rate vs. temperature curve, the creepvsatéme curve and
the stress vs. time to fracture curve (long term strengthieduil he ranges of stress
and temperature should be selected according to the rargested in the structure

1 The fracture strain is sometimes related to the ductilitthefmaterial.
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o = const

t t

Figure 1.2 Influence of stress and temperature on the creep behav&iress dependence
b temperature dependence

during the service. Examples of the above mentioned cuegarious materials
can be found in monographs [77, 173, 202, 236, 234, 250] amy epers related
to the experimental analysis of creep, e.g. [105, 144, 183].1

Two additional forms of the time-dependent stress-straimalgior are creep re-
covery and stress relaxation, Fig 1.3. Creep recovery iallysobserved, when after
a certain period of time the load is spontaneously removigd 1E3b. After unload-
ing the strain drops about the valifé (recovery of the elastic strain). Then the strain
slowly decreases down to the permanent (irrecoverableleval”, whereas’* is
the recovered inelastic strain. A typical stress relaxatiorve is shown in Fig. 1.3c.
Stress relaxation is observed when the strain is held aonstdime € = const).
A uni-axial specimen is instantaneously deformed to thairstvalues®’ = o/E,
whereE is the Young’s modulus. During the test the load is contirslypdecreased
in such a way that the initial strain remains constant. Aghodd of the initial stress
(strain) exists below which the relaxation is not obsergabl

In many cases it is convenient to introduce the inelastiegg) straire” as the
difference between the measured straand the calculated elastic straifi. The
creep curves can be presented as creep strain vs. time chiged.3a, b. In the
case of relaxation, it is usually assumed, e.g. [202, 30}, the total zero strain
rate is the sum of the elastic and creep strain rates, i.e.

. o o

&= E +¢" =0
According to this assumption the creep strain with a decpyate develops during
the relaxation test, Fig 1.3c.

In addition to creep and relaxation, many different teseurvariable loading
and/or strain conditions are discussed in the literatuxantples for the creep curves
under stepwise loading are presented in [113, 202] amorgytin this case the
creep test starts under a certain value of the load. Afteshing steady state creep
rate the load is rapidly increased (decreased) and keptasdrm/er a period of time
(holding time). Such tests allow to analyze transient cefégrts, e.g. the duration
of primary creep after the rapid change of loading. Furtlteeemthey indicate that
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o(t) 0 e(t)

a(t) = o(t) = o [H(t) — H(t — £1)] e(t) =&

g@l \
b arec
y €
Sf

Spﬂl

SCY SCT eCT’

t t t

Figure 1.3 Different forms of time-dependent stress-strain behawiater constant temper-
ature.a Creep at constant streds,creep recoveryH (¢) denotes the Heaviside function),
C stress relaxation

the steady state creep rate in the current loading step deper only on the value
of the applied stress but also on the loading history (eg.nilimber of previous
stress cycles, the holding time, etc.).

A periodically varied load causes cyclic creep response.gdriodic stress can
be characterized by the amplitud®, the periodr, and the mean stresg”. Two
typical cases of the periodic loading are presented in Fidga, b. Let us assume
that the maximum stress™* = ¢™ + ¢“ is much less than the yield limit of the
material. Creep behavior for the case of periodic loadinth i holding time is
schematically illustrated in Fig. 1.4c. Here the mean stré§ the amplituder?,
the rate of loading/unloading and the holding time influetite creep response.
The case of harmonic loading is shown in Fig. 1.4b. Such t@ad important in
those engineering applications, where technological eraifpnal conditions (non-
stationary flow, combustion, acoustic action, etc.) cabsadevelopment of forced
vibrations. The harmonic stress variation can be descilsddllows

m AL ~ o 27
c=0"(14+Asin2), A= =t 0= - =2nf (1.1.2)
Creep behavior under harmonic loading (1.1.1) with fregie=sy > 1...2 Hz is
studied in [43, 179, 302, 303]. For this cyclic loading cdiui primary, secondary



1.1 Creep Phenomena in Structural Materials 5

VY VY
0-)11 O.m
t: ('E) t >
c d
SCY SCV
dynamic creepA < A,
Sirl 777777777777 |
|
o A* > Az > Al ‘
ol — ‘ ‘
creep-fatigue | |
A > A* ‘ ‘
\ (A1 =0 }
e X ‘
| |

t t*Z t*l t

Figure 1.4 Types of loading and corresponding cyclic creep curaeSyclic loading with
holding,b harmonic loading with high frequencg, creep response for cyclic loading with
holding,d different responses for high frequent loading

and tertiary stages can be observed similarly to the staie,drig. 1.4d. Further-
more, the shape of the cyclic creep curve is geometricathylai to the static one
caused by the stregs= ¢, but the creep rate is rather higher and the time to frac-
ture is essentially smaller. It was found that creep under dgclic loading is not
sensitive to the frequency of stress variation, e.g. [3¥¢ontrast, the stress cycle
asymmetry parametet has significant influence on the creep rate. For a number of
investigated materials a material constanthas been found which is termed as the
critical value of the stress cycle asymmetry parameted ¥ A, the high cyclic
creep process is similar to the static one with increaseshaise and decreased time
to fracture. IfA > A, such a behavior is not observable, and fracture takes pface a
a consequence of creep-fatigue interaction. Followin@[B04, 265], the processes
of high-frequency cyclic creep are classified as: dynangepiforA < A, and high
cyclic creep forA > A.. Creep curves for both cases are schematically presented
in Fig. 1.4d.
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é increasing\

£
Figure 1.5 Strain rate dependence of the stress-strain behavior

Typical stress-strain diagrams, obtained from a strairothed test under con-
stant strain rate and temperature are illustrated in Fhy. I1.is obvious that the
stress-strain behavior depends significantly on the valukeostrain rate. Various
examples of experimental data for steels obtained from tilaénscontrolled tests
are presented in [176, 301].

Creep behavior is highly sensitive to the type of materiacpssing (e.g. plas-
tic forming, heat treatment). As an example, let us illustréne effect of sponta-
neous plastic pre-strain on the subsequent creep behkigor].6. The first creep
curve (solid line) is a typical creep curve under the coristtnessoy. The dotted
lines present the second and the third creep curves aftatagpmous loading to the

stresses; ando, > o3 leading to small plastic strairxﬁl andsgl > e’i’l, respec-
tively, and subsequent unloading to the strggsThe creep rate after the loading
to the plastic strain is significantly lower compared to theep rate of the “virgin”
material. The effect of reduction in creep rate becomesigeowith increase of the
prior plastic strain. Effects of this type are sometimestdt as “plasticity-creep”
or “creep-plasticity” interactions, e.g. [148, 174, 17638

Several materials show anisotropic creep behavior. Exasrgle: directionally
solidified nickel-based superalloys, e.g. [323], fiber f@iced materials, e.g. [273,
274], deep drawing sheets, e.g. [50, 57], and multi-pasd meltals [141]. In these
cases series of uni-axial creep tests for specific loadiregtibns are performed in
order to establish the material behavior. The number of ¢lgeired tests and the
corresponding loading directions are dictated accordirthed assumed symmetries
of the material microstructure.
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Figure 1.6 Effect of initial plastic strain on creep behavior, for detgee [157]

1.1.2 Multi-Axial Creep and Stress State Effects

Experimental data obtained from uni-axial tests allow talelgsh basic features of
the creep behavior and to find relations between strainstitss, temperature, time,
etc. Most structural members are, however, subjected to-amibl stress and strain
conditions. In order to analyze the influence of the strese sin the time dependent
material behavior, multi-axial creep tests are required.

Various techniques have been developed to test materidés umulti-axial load-
ing conditions. Examples of multi-axial specimens for préssting are: thin-walled
pipes subjected to axial force and torque, e.g. [168], twwt taree-dimensional

cruciform specimens subjected to axial forces, e.g. [2&3],2circumferentially

notched specimens subjected to axial force, e.g. [146. 251]
Figure 1.7 shows a thin-walled pipe under the axial force tangue with the

magnitudes- and M, respectively. Let,, be the mean radius of the cross section,
the wall thickness andl the gauge length. With the local cylindrical basise, and
k, as shown in Fig. 1.7, the stress state can be charactenzibe following tensor

F M
=ck®k k+k = = — 1.1.2
oc=0ck@k+1(e, 0k +k®e,), o T Y (1.1.2)
The deviatoric part of the stress tensor is
(1.1.3)

1
s:a(k®k—§l)+r(e¢®k+k®e¢),
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Mi x j

Fk

Figure 1.7 Thin-walled pipe for multi-axial creep tests

wherel is the second rank unit tensor, see Sect. A.1.4. As a stressumsewhich al-
lows to compare different multi-axial creep tests let usthsevon Mises equivalent
stressr,); Which is defined as follows

3
Tom = || 588 = Vo2 + 372

From the measured elongati&vL and the angle of twispr the axial straire; and
the shear strairy can be computed

. % 7’m‘,bT

L’ "TL
Assuming that the material behavior is isotropic, the ststate in a pipe can be
characterized by the following tensor

€L

1
e=ek@k+eq(I—kok) +57(ey 0k +kaey),

whereeg = Ary /1y is the transverse normal strain. The creep strain tensor is
defined as the difference between the strain tensshich includes the measur-
able quantities and the tensor of initial elastic straingctvlcan be calculated from
Hooke's law. As a result we obtain

1-2v \ 1 (1+v) 1
e = <€L—|—28Q— E U>§I+<8L—8Q— T a>(k®k—§l)
1 2(1
+ E(y—%r) (kwey,+ep, k),

(1.1.4)
wherev is the Poisson’s ratio. The basic assumption related to thie-axial creep
behavior is the volume constancy during the creep defoomaé.g. [234, 236]. In
this case the following relations should be satisfied
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1—2v
E

tre =tre! = e +2eg = o

From (1.1.4) follows

3 1 1 1 2(1
e’ = > (sL—Ea> (k®@k— §I)+§ <’y—%r> (kxey+ey k)

Under the condition of stationary loading the creep ratsders

1 1
6 — T — %éL(k@)k 3D+ ke, +e, 9k) (1.1.5)

The von Mises equivalent creep rate is defined by

. 2. 2 1.,
fom = \[ g€ €= SL+§7

The results of creep tests on tubes are usually presentettaigse; and+y vs. time
curves, e.g. [136, 148, 157], creep strains

2(1
€ch=€L—%, 7”27—7( ;V)T

vs. time curves, e.g [218, 248, 238], von Mises equivalegg¢rstrain

/2 1
ngM = g‘gcr coglr — \/(sch)Z + §<,),cr)2

vs. time curves, e.g. [168, 170], and the so-called spedsgmhtion work

F F
t :/é- /ELU—F’)’T
0 0

vs. time curves [296, 297].

Figure 1.8 illustrates typical results of creep testingarmcbnstant von Mises
stressr, 1. Sketches of creep curves are presented for the case ajriansier the
normal stress = 0,51, and torsion under the shear stress: o,/ /3. For many
structural materials the kind of the stress state (e.giders torsion) has negligible
influence on the primary and secondary creep behavior. Hemvévis is not the
case for the tertiary creep and the long term strength. aunlsglecimen subjected to
tension usually exhibit much shorter lifetime and lowertditg if compared to the
case of pure torsion. This stress state effect has beenveldster copper in [168]
and for austenitic steels in [229, 310], for example.

Many results of creep tests under combined tension-torsiading are pub-

lished. Figure 1.9a shows the plot of the equatidnt- 312 = ¢2,, = const with

respect to coordinates and v/37. Different stress states leading to the same fixed
value of the von Mises stress can be conveniently charaetelly the angle (stress
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Figure 1.8 Stress state effect of tertiary creep
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Figure 1.9 Creep response under combined tension-torsion loadifdane stress statb,
strain trajectory

state angle). The corresponding values for the normal amdhlar stress can be
then calculated as follows
sinw
0 = Oypm COS &, T = U'UMW
For examplex = 0 corresponds to the case of tension ang- 77/2 to the case
of torsion.0 < a < /2 characterizes the combined loading case. The loading
conditions realized in creep tests can be classified asifsllo

a) stationaryr,); and different but stationary,

b) time-varying (e.g. stepwise or cyclic),, under fixedx,
¢) time-varyinga under fixedr,»; and

d) botho, s anda are time-varying.

The loading cases a) and b) are called simple or proportioaaings, while the

cases c) and d) are classified as non-proportional loadifigs.results of creep
tests under the combined loading can be conveniently pledesy //3 vs. e
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curves (so-called strain trajectories), e.g. [218, 228%katch of such a curve for
the loading case a) is presented in Fig. 1.9b. For many matalslloys, e.g. [218,
228, 245], the direction of the strain trajectory charaeegt by the angep, Fig.
1.9b, coincides with the direction of the applied stresgesteharacterized by the
anglex. According to this result one can assume that the creepaaset is coaxial
and collinear with the stress deviator, ige= As. Taking into account (1.1.2) and
(1.1.5) the following relations can be obtained

&L _ o
Y/V3 V3T

In many cases, experimental results show that the abov@redare well satisfied,
e.g. [136, 218, 228, 245].

Non-coincidence of the strain-trajectory and the streste stngles indicates the
anisotropy of the creep behavior. Anisotropic creep may desed either by the
initial anisotropy of the material microstructure as a testimaterial processing
or by the anisotropy induced during the creep process. Ebamipr anisotropic
tension-torsion creep are presented for a directionalligifed nickel-based su-
peralloy in [239] and for a fiber-reinforced material in [27874]. The trajecto-
ries of creep strains presented in [157] for austeniticl stdees demonstrate that
initial small plastic pre-strain causes the anisotropyuifsequent creep behavior.
The deformation induced anisotropy may be observed in ctegs under non-
proportional loading conditions. The effects of the indiiemisotropy are usually
related to anisotropic hardening, e.g. [245, 157, 228], dentdiage processes, e.g.
[218].

Another stress state effect is the different creep behawider tensile and com-
pressive loadings. Examples are presented for severgsali106, 195, 301, 339],
for polymers in [187], and for ceramics in [254]. Experimanesults show that for
the same value of stress in tension and compression, the @hlthe creep rate
under tension is significantly greater than the correspandbsolute value under
compression. This effect indicates that besides the voedvegjuivalent stress, ad-
ditional characteristics of the stress state (e.g. the ns&@ss) may influence the
creep process.

3. 1.
EEL—)\O', E’)’—)\T =

1.2 Creep in Engineering Structures

Creep in structures is a variety of time dependent changsaih and stress states
including progressive deformations, relaxation and tebigtion of stresses, local
reduction of the material strength. To illustrate thesecesses let us consider a
beam with a rectangular cross section. We assume that ttme iselaeated up to

a certain temperature, clamped at the ends and uniformtetbas shown in Fig.
1.10a. The loading is moderate leading to spontaneouscetiefbrmation of the
beam. Let the maximum deflection of the beam in the referentzstic” state be
wo and the maximum bending stress dae Furthermore, let us assume that creep
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Figure 1.10 Uniformly loaded clamped beana. Geometry and loadindy sketch of the
assumed creep curves under tension and compression
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Figure 1.11 Creep of a uniformly loaded clamped beaniNormalized maximum deflection
vs. hormalized timeh) normalized maximum bending stress vs. time

curves of the material under uni-axial tension and compresse as sketched in
Fig. 1.10b. Here the time to fracture of a uni-axial specinuaded by the tensile
stress with the magnitudg (the magnitude of maximum reference bending stress
in the beam) is specified by. The tertiary creep stage is stress state dependent,
i.e. for the same stress magnitudes in tension and compnetts creep rate under
tension is much greater then the corresponding absolute vadder compression.
The dotted line in 1.10b shows the idealized creep curvenigamly the stress state
independent secondary stage.

Creep processes in a beam under the constantjl@ad the assumed material
behavior are the progressive deformation which may be ctexized by the max-
imum deflection vs. time curve, Fig. 1.11a, the relaxatiothef bending stresses,
Fig. 1.11b, and the stress redistributions, Fig. 1.12. Hselts illustrated in Figs
1.11 and 1.12 are obtained from the finite element calculd225]. Here let us
discuss some basic features of creep in the case of the nmoogemeous stress
and strain states. First let us explain origins of the siamdbus increase of defor-
mations and the relaxation of stresses. For this purposesswaree that the beam
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Figure 1.12 Distributions of the normalized bending stress at diffeténe steps

deforms in such a manner that every cross section behawes lilgid plane, i.e.
it may only translate and rotate about the axis which is gtinal to the plane of
bending. Furthermore, we assume that mechanical interectietween the cross
sections are only due to forces and moments. The above assaomare the basis
of various theories of beams. Let us note that the resultepted in Figs 1.11 and
1.12 are obtained without these assumptions. However, @yeshow that they are
well satisfied [225].

Figure 1.13a is a sketch of the elastic deformation of therbieeathe reference
state. In Figure 1.13b the clamped edges are replaced byrtteipports and the
momentsMy. These moments must be applied in order to fix the zero cras®ise
rotations at the ends. As a result of creep, the deformatibrise beam increase
in time. If the momentsVl; are kept constant then, after a period of time the beam
would have a deformed shape as sketched in Fig. 1.13c. Icdlkis the angles of
cross section rotations at the ends increase in time. Iir ¢ode=ep the zero cross
section rotations the moments must be relaxed, Fig. 1.13de Imaterial behaves
as shown in Fig. 1.10b by the dotted line, a steady statesex@t which the mo-
ments do not depend on time and the deflection increases wihstant rate. The
steady state solutions for the maximum deflection and bergiiess are presented
in Fig. 1.11 by dotted lines. The rate of maximum deflectitw, inaximum bend-
ing moment and the maximum bending stress in the steadyctatbe estimated
according to the elementary beam theory [77, 202, 234].



14 1 Introduction

a b
My My
. l N
c d
My My M(t) < My M(t) < My
<« —>

- . - g!!/

Figure 1.13 Relaxation of bending moments in clamped edgeBeformed elastic beam
in the reference staté, equivalent elastic beam with simple supports and edge mayen
“crept” beam under constant edge momedts;rept” beam under relaxed edge moments

The next feature is the redistribution of bending momentsnduthe creep
process. The origin can be explained based on equilibriunditons. As an ex-
ample let us write down the equilibrium condition for the memts considering a
half of the beam

2
M(t) + My, (t) = % = Myu=-M

whereM(t) is the edge bending moment, Fig. 1.13c, &gl (¢) is the bending mo-
ment in the middle cross section. The momeafirelaxes down as a consequence
of creep process. The above equilibrium condition statasttie momeniVi,,, in-
creases. The rate of increase is equal to the rate of redaxati

Similar considerations explain the redistribution of biegdstresses. For the
sake of brevity assume that the beam is simply supportedVi(¢) = My = 0.
In this statically determined case the bending momentd icre$s sections remain
constant during the creep process. However, the stressles points of cross sec-
tions redistribute essentially. The outer tensile and gesgive layers exhibit the
highest creep rates due to the maximum stress values infdremee state. There-
fore they will show the highest relaxation rates at the baigim of the creep process.
The redistribution of stresses over the cross section igres@d by the essential non-
linearity of the creep rate with respect to the stress magdeitSteady state creep
solutions for bending stresses are discussed in [77, 2@2, 23

Results presented in Fig. 1.12 show that the distributidredbsolute values of
the bending stresses are non-symmetrical with respeat toghim centerline. This is
the consequence of the assumed stress state dependany dep behavior, Fig.
1.10. Tensile layers of the beam cross section “creep” wighdr rates compared
to compressive layers.

Creep fracture originates in outer tensile layers of thenpkad cross sections
[225]. These layers exhibit, however, the lowest valuedrekses at the final stage
of creep process, Figs 1.11b and 1.12. This result can beiard by material
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damage processes (e.g. grain boundary cavitation andgagemicrostructure) ac-
companying creep deformation. These processes develogimewith the rates
determined not only by the reference stress values but glsbebcomplete load-
ing history. A damaged material has lower ultimate stresapaved to the virgin
one. Outer tensile layers of the clamped cross sectionslacegwith the highest
“damage grade”.

The above discussed features of creep are common for maeyuses operating
under high-temperature conditions. Examples are straictamponents of power
plants, chemical refineries or heat engines, e.g. [124]ignex pipework systems,
rotors, turbine blades, etc. requires the consideratianedp. Creep processes may
cause excessive deformations, damage, buckling, craktion and growth.

Different types of creep failure that have occurred in theen¢ years are dis-
cussed in the literature. Examples of critical structurahmbers include pipe bends
[180], welds [290], turbine blade root fixings [124], etc.eThossibilities to analyze
a structural prototype in the laboratory are limited by theg duration of tests and
related costs. Furthermore, examinations of creep and giastates in a structure
during the service (e.g. replicas) can be only made at spemifier surface posi-
tions and after certain periods of time. The modeling of prpscesses in struc-
tures is therefore an essential contribution to optimaigheand residual life assess-
ment. Furthermore it contributes to understanding andyaizabf time-dependent
deformations, stress redistributions and damage growdtbngiven temperature and
loading conditions.

1.3 State of the Art in Creep Modeling

The basic approaches to the description of creep behavwobeazlassified as fol-
lows. Theempirical modeling is the study of correlations between the creep rate,
stress, temperature and time. In addition, extrapolatiethods are developed to
predict time-dependent deformations and life time of acétme based on experi-
mental data from short-term uni-axial creep tests. The dithie approach is to
derive simple formulae for an estimation of the structuetidwior under creep con-
ditions. An example is the Monkman-Grant relation whichesahat the product of
the minimum creep rate and the time to fracture is a conskday different em-
pirical relations of this type are reviewed in [250]. Theg aseful in early stages of
design for a robust prediction of the components operatfenlt should be noted
that the empirical approach provides one-dimensionatiogls. The dependencies
of creep behavior on the type of stress state are not distuBsethermore, the
possibility of stress redistributions cannot be considere

Within the materials science modeling, creep is characterized by a variety
of microstructural rearrangements. According to assunoeshegios of transport
processes in the microscale (diffusion of vacancies, cimibglide of dislocations,
etc.) equations for the creep rate are derived. The formeo$piecific rate equation
depends on the assumed deformation and damage mechanisspeddic ranges
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of stress and temperature, e.g. [117]. Many diverse equgad this type are re-
viewed in [116, 156, 222]. In addition, kinetic equations iftternal state variables
are discussed. Examples for these variables include disdocdensity, [110], inter-
nal (back) stress, e.g. [116], and various damage parasreteociated with ageing
and cavitation processes, [101]. The aim of this approatd fisovide correlations
between quantities characterizing the type of microstinecand processing (grain
size, types of alloying and hardening, etc.) and quantdiesacterizing the mater-
ial behavior, e.g. the creep rate. Furthermore, the mesimebased classification of
different forms of creep equations including differenest and temperature func-
tions is helpful in the structural analysis. However, thedele proposed within the
materials science are usually one-dimensional and opeititescalar-valued quan-
tities like magnitudes of stress and strain rates.

The micromechanical models deal with discrete simulations of material behav-
ior for a representative volume element with geometridiaialized microstructure.
Simplifying assumptions are made for the behavior of cturestits and their interac-
tions, for the type of the representative volume elementfanthe exerted bound-
ary conditions. Examples include numerical simulationsad growth in a power
law creeping matrix material, e.g. [315, 318], crack prai#m through a power
law creeping multi-grain model, e.g. [241, 317], stressstethutions between con-
stituents in a creeping binary medium, e.g. [226]. Microh@tcal models con-
tribute to understanding creep and damage processes irogebeous systems.
With respect to engineering applications the micromea@napproach suffers,
however, from significant limitations. One of them is thagjgital high-temperature
structural material, for example steel, has a complex caitipa including dislo-
cation structures, grain boundaries, dispersion pastigleecipitates, etc. A reliable
micromechanical description of creep in a structural sterlld therefore require a
rather complex model of a multi-phase medium with many euaghand interacting
constituents.

The objective ofcontinuum mechanics modeling is to investigate creep in ide-
alized three-dimensional solids. The idealization istezlao the hypothesis of a
continuum, e.g. [131]. The approach is based on balancdiegsdormulated for
material volume elements and assumptions regarding tharidtics of deforma-
tion and motion. Creep behavior is described by means oftitathge equations
which relate deformation processes and stresses. Detdadpaogical changes of
microstructure like subgrain size or mean radius of carpi@eipitates are not con-
sidered. The processes associated with these changesidening, recovery, age-
ing and damage can be taken into account by means of hiddateanal state vari-
ables and corresponding evolution equations, [58, 185,Z8H. Creep constitutive
equations with internal state variables can be appliedrtwtstral analysis. Various
models and methods recently developed within the mechanissuctures can be
extended to the solution of creep problems. Examples aoei#iseof rods, plates and
shells as well as direct variational methods, e.g. [6, 58202, 255, 292]. Numeri-
cal solutions by the finite element method combined withowsitime step integra-
tion techniques allow to simulate time dependent struttuehavior up to critical
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state of failure. Examples of recent studies include cifememtially notched bars
[133], pipe weldments [137] and thin-walled tubes [177].these investigations
gualitative agreements between the theory and experinvant®ed out on model
structures have been established. Constitutive equatihsnternal state variables
have been found to be mostly suited for the creep analysisugitares [137]. How-
ever, it should be noted that this approach requires nursegrperimental data of
creep for structural materials over a wide range of streddemperature as well as
different stress states.

1.4 Scope and Outline

This work is a contribution to the continuum mechanics miogebf creep with
the aim of structural analysis. This type of modeling is tedato the fields “creep
mechanics” [58, 235] and “creep continuum damage mechgdi8s] and requires
the following steps [77, 139, 234]

— formulation of a constitutive model including constitutignd evolution equations
to reflect basic features of creep behavior of a structurén@under multi-axial
stress states,

— identification of material constants in constitutive andlation equations based
on experimental data of creep and long-term strength,

— application of a structural mechanics model by taking intmoaint creep
processes and stress state effects,

— formulation of an initial-boundary value problem based ba tonstitutive and
structural mechanics models,

— development of numerical solution procedures and

— verification of results

The text is organized as follows. Chapter 2 provides an dserof constitutive
models that describe creep processes under multi-axegssstates. The starting
point of the engineering creep theory is the introductioithef inelastic strain, the
creep potential, the flow rule, the equivalent stress argtnat state variables. Con-
stitutive models of isotropic secondary creep based ondgheMises-Odqvist creep
potential are introduced. To account for stress state teffgeep potentials that in-
clude three invariants of the stress tensor are discussatsideration of material
symmetries provide restrictions for the creep potentiaho&el direct approach to
find scalar valued arguments of the creep potential for tkienggroup of mater-
ial symmetries is proposed. Transverse isotropy and edhiat symmetry are two
important types of symmetries in the creep mechanics [58]tltese two cases ap-
propriate invariants of the stress tensor, equivalensstamd strain expressions as
well as constitutive equations are derived.

Further extensions of the classical creep theory are tetatprocesses accom-
panying creep deformation. Primary creep and transiempceffects can be de-
scribed by the introduction of hardening state variabldwe fime and strain hard-
ening models as well as the back stress concept are exanstiaeyagpredict multi-
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axial creep behavior. Tertiary creep and long term strengthbe characterized by
the introduction of damage state variables. A systematieweof different types
of constitutive equations with damage variables and cpareding evolution equa-
tions is presented. Stress state effects and damage indosdropy are discussed
in detail.

Chapter 3 deals with the application of constitutive modelhe description of
creep for several structural materials. Constitutive armdigion equations, response
functions and material constants are presented accordirecéntly published ex-
perimental data. Furthermore a new model for anisotrogiefcin a multi-pass weld
metal is presented.

In Chapter 4 we discuss structural mechanics problems. &vewith a sum-
mary of governing equations describing creep in three-dsimmal solids. Several
simplifying assumptions are made in order to illustrate blasic ideas of initial-
boundary value problems, direct variational methods and step algorithms. Then
various structural mechanics models of beams, plates aglil$ siie reviewed and
evaluated in the context of their applicability to creeplpems. An emphasis is
placed on effects of transverse shear deformation, boynagers and geometrical
nonlinearities.

A model with a scalar damage variable is incorporated indoANSY S finite el-
ement code by means of a user defined material subroutine=rifp the developed
subroutine several benchmark problems are presentedh&se problems special
numerical solutions based on the Ritz method are obtairieile Element solutions
for the same problems are performed to illustrate that thecsiine is correctly
coded and implemented. Furthermore these benchmarks edeaustudy the ap-
plicability of the developed subroutine over a wide rangelement types including
shell and solid elements. Based on several examples, therek of the mesh size
on the accuracy of solutions is demonstrated. Finally amgiafor a spatial steam
pipeline is presented. Results are compared with the dataéngineering practice
discussed in the literature.

Appendix A is a summary of the direct tensor notation anddgsisor opera-
tions used throughout the text. This notation has an adgardéa clear, compact
and coordinate free representation of constitutive maaedsinitial-boundary value
problems. The theory of anisotropic tensor functions amdriants is discussed in
detail. A novel approach to derive the basic set of funcllgrindependent invari-
ants for vectors and second rank tensors for the given symmetup is presented.
The invariants are found as integrals of a generic partfidréintial equation (basic
equation for invariants).
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Analysis of creep in engineering structures requires thaddation and the solution

of an initial-boundary value problem including the balaegeations and the consti-
tutive assumptions. Equations describing the kinemafitsree-dimensional solids
as well as balance equations of mechanics of media are peesenmonographs

and textbooks on continuum mechanics, e.g. [29, 35, 44,0,,131, 178, 199]. In

what follows we discuss constitutive equations for the dpson of creep behavior

in three-dimensional solids.

The starting point of the engineering creep theory is thedhiction of the in-
elastic strain, the creep potential, the flow rule, the emjaivt stress and internal
state variables, Sect. 2.1. In Sect. 2.2 we discuss catatitonodels of secondary
creep. We start with the von Mises-Odqvist creep potentidltae flow rule widely
used in the creep mechanics. To account for stress statetseffeeep potentials
that include three invariants of the stress tensor aredntred. Consideration of
material symmetries provide restrictions for the creegpudl. A novel direct ap-
proach to find scalar valued arguments of the creep potdati#the given group of
material symmetries is proposed. For several cases of islaggmmetry appropri-
ate invariants of the stress tensor, equivalent stress tagid gxpressions as well
as constitutive equations for anisotropic creep are deriire Sect. 2.3 we review
experimental foundations and models of transient creepviehunder different
multi-axial loading conditions. Section 2.4 is devotedhe tlescription of tertiary
creep under multi-axial stress states. Various modelsmitte framework of con-
tinuum damage mechanics are discussed.

All equations are presented in the direct tensor notatidiis Mmotation guaran-
tees the invariance with respect to the choice of the coateisystem and has the
advantage of clear and compact representation of com&itassumptions, partic-
ularly in the case of anisotropic creep. The basic rules efdihect tensor calculus
as well as some new results for basic sets of invariants wespact to different
symmetry classes are presented in Appendix A.

2.1 General Remarks

The modeling of creep under multi-axial stress states i&élyestep in the adequate
prediction of the long-term structural behavior. Such a eliod requires the in-
troduction of tensors of stress, strain, strain rate antesponding inelastic parts.
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Usually, they are discussed within the framework of conimumechanics start-
ing from fundamental balance equations. One of the most itapband funda-

mental questions is that of the definition (or even the emtst® of a measure of
the inelastic strain and the decomposition of the totalirstirdo elastic and irre-

versible parts within the material description. From theottetical point of view

this is still a subject of many discussions within the noveér continuum mechan-
ics, e.q. [45, 46, 223, 246].

In engineering mechanics, these concepts are often irteodbased on intu-
itive assumptions, available experimental data and agbics. Therefore, a lot of
formulations of multi-axial creep equations can be founthim literature. In what
follows some of them will be discussed. First let us recalksal assumptions usu-
ally made in the creep mechanics [58, 235].

The assumption of infinitesimal strains allows to negleetdtference between
the true stresses and strains and the engineering stregssgrains. According to
the continuum mechanics there are no differences betweeikdlerian and the
Lagrangian approaches within the material descriptiore@requations in the geo-
metrical non-linear case (finite strains) are discussedheénnhonograph [67], for
example. Finite strain equations based on rheological teate presented in the
monographs [175, 246]. The linearized equations of creepiraaum mechanics
can be used in the majority of engineering applications b&eatructures are usu-
ally designed such that the displacements and strainagasia consequence of the
applied loading do not exceed the prescribed small valuss eXception is the case
of thin-walled shells, where geometrical non-linearitiegst be considered even if
strains are infinitesimal, see Sect. 4.4.

The assumption of the classical non-polar continuum wsttihe class of mate-
rials. The equations of motion within the continuum mecbaimmclude the balance
of momentum and the balance of angular momentum, e.g. [T68ke equations in-
troduce the stress and the moment stress tensors. Polaiatsedee those which are
characterized by constitutive equations with respect th temsors (in general, they
are non-symmetric). In addition, the rotation degrees e¢diom, i.e. the rotation
tensor and the angular velocity, are introduced as indeggrgantities. Models of
polar media found application to granular or porous matefv, 104, 214], fiber
suspensions [22, 109], or other media with changing mianogire. At present, the
moment stress tensor and the anti-symmetric part of thesstemsor are not con-
sidered in the engineering creep theories. The reason i@ighhe higher order
complexity of the models and as a consequence increasatl feffdhe identifica-
tion of material characteristics.

The assumption of isothermal conditions makes it possibtietouple the ther-
mal and the mechanical problem. Furthermore, heat trapstdiems are not con-
sidered. The influence of the constant temperature on trep awde is described
by an Arrhenius function, see Sect. 2.2.3. Coupled therraoh@nical problems of
creep and damage are discussed in [291], where the influéicceep cavitation on
thermal conductivity is considered.
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In this chapter we shall use the following notation. belbe the Cauchy stress
tensor and be the tensor of infinitesimal strains as they are defineddng2, 199],
among others. Let the symmetric second rank teéSobe the tensor of the rate
of infinitesimal inelastic strains induced by the creep pssc For the infinitesimal
strains one can assume the additive split of the total steainto elastic and creep
parts, i.e£ = ¢/ + &7, The constitutive equation relating the stress tensor and
the elastic part of the strain tensor can be formulated dowgrto the generalized
Hooke’s law [29, 55, 126, 199] and will be introduced latere€p deformation is
accompanied by various microstructural changes havirigrdiit influences on the
strain rate. The current state of the material microstrnecits determined by the
entire previous history of the creep process. It can be ctariaed by a set of addi-
tional field variables termed as internal or hidden stateées. In this chapter we
shall discuss internal state variables characterizingtidtes of hardening/recovery
and damage. In order to distinguish between the hardenithda@mage mechanisms
we shall specify the “internal hardening variables” Hyand the “internal damage
variables” byw;. The number of such variables and the corresponding ewaluti
equations (ordinary differential equations with respecthie time variable) is dic-
tated by the knowledge of creep-damage mechanisms for disdeuetal or alloy,
the availability of experimental data on creep and long tstrength as well as the
type of the structural analysis application. In some casesnternal state variables
must be introduced as tensors of different rank in order ¢tugte effects of the
deformation or damage induced anisotropy.

Constitutive equations of multi-axial creep are usuallgdzhon the concept of
the creep potential and the flow rule. The associated flowhagethe origin in the
engineering theory of plasticity. The basic assumptiornisftheory are:

— The existence of a yield condition (creep condition, sed,[&5 example) ex-
pressed by the equatidhc) = 0, whereF is a scalar valued function. In the
general case one can presume thatepends not only on the stress tensor but
also on the internal state variables and the temperatuts D], i.e. the yield
condition has a form

F(a’,Hi,wj,T)zo, i=1,...,n, j=1,...,m (2.1.1)

— The existence of a flow potential as a function of the stressoiep (o).

The flow rule (sometimes called the normality rule) is théolwing assumption for

the inelastic strain rate tensor
éin = f]—, 2.1.2
oo ( )

wheres; is a scalar factor. In the special case that the flow poteatigicides with
the yield function i.e® = F (2.1.2) represents the associated flow rule. With respect

to the variation of the stress tensor one distinguishes between the cases of elastic
state, unloading from an elastic-plastic state, neutediltg and loading, i.e.
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F(o) <0, elastic state

F(o) =0, and JF =dc - 2—5 < 0 unloading

F(o) =0, and ¢F =éo - 3—5 =0 neutral loading

F(o) =0, and JF = éo - 2—5 >0 loading

For work hardening materials > 0 is set in the case of loading/neutral loading,
otherwisej = 0, see e.g. [201]. Further details of the flow theory as wellfsrént
arguments leading to (2.1.2) can be found in textbooks ooryhef plasticity, e.g.
[138, 151, 153, 161, 201, 206, 292].

Within the creep mechanics the flow theory is usually apphgtiout the con-
cept of the yield stress or yield condition. This is motieht®y the fact that creep
is a thermally activated process and the material startsstepoeven under low and
moderate stresses lying below the yield limit. Furthermatehigh temperatures
05T, < T < 0.7T,, the main creep mechanism for metals and alloys is the dif-
fusion of vacancies, e.g. [117]. Under this condition th&stexice of a yield or a
creep limit cannot be verified experimentally. In [185], {82t is stated that “the
concept of a loading surface and the loading-unloadingrioih which was used in
plasticity is no longer necessary”. In monographs [55, 88,, 202, 250] the flow
rule is applied as follows

& = ;72#:, i >0 (2.1.3)

Equation (2.1.3) states the “normality” of the creep rateste to the surfaces
®(0) = const. The scalar factor; is determined according to the hypothesis of
the equivalence of the dissipation power [2, 58]. The detgym power is defined
by P = &7 .- 0. It is assumed thaP = egga@q, wheres"é{7 is an equivalent creep
rate andr,, is an equivalent stress. The equivalent measures of stdsseep rate
are convenient to compare experimental data under diffstegss states (see Sect.
1.1.2). From the above hypothesis follows

. P _ égZUeq
T T
Jdo Jdo
The equivalent creep rate is defined as a function of the alpuit/stress according

to the experimental data for uni-axial creep as well as creephanisms operating
for the given stress range. An example is the power law stoegsion

(2.1.4)
3

€oq(0eq) = a0, (2.1.5)

Another form of the flow rule without the yield condition hasdm proposed by
Odqvist, [234, 236]. The steady state creep theory by Otosée [234], p.21 is
based on the variational equatidW = do -- ¢ leading to the flow rule
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oW
e = — 2.1.6
¢ e (2.1.6)
where the scalar valued functidti(c) plays the role of the creep potentialn or-
der to specify the creep potential, the equivalent strgg#) is introduced. Taking
into account thatV (o) = W (o, (")) the flow rule (2.1.6) yields

&Cl s —

. oW aa@q __Cr ao—eﬂ — oW

= = = 2.1.7
90 00 Tor’ " 3o, @1.7)

The creep potentiahV (o) is defined according to experimental data of creep under
uni-axial stress state for the given stress range. An exaispghe Norton-Bailey-

Odqvist creep potential
o ToMm n+1
= , 2.1.8

n+1 ( 0o > ( )

widely used for the description of steady state creep of imatad alloys. In (2.1.8)
oy andn are material constants auagy, is the von Mises equivalent stress. Below
we discuss various restrictions on the potentials, e.gsyinemetries of the creep
behavior and the inelastic incompressibility.

In order to compare the flow rules (2.1.3) and (2.1.6) let uspmate the dissipa-
tion power. From (2.1.7) it follows

~ OW dogg

P:e’cr..g_ . — -0,
00y 00 “ 9o

We observe that the equivalence of the dissipation powkwslfrom (2.1.7) if the
equivalent stress satisfies the following partial difféi@requation

aoeq
Jo

Furthermore, in this case the flow rules (2.1.3) and (2.28&l to the same creep
constitutive equation. Many proposed equivalent strepsessions satisfy (2.1.9).
The above potential formulations originate from the worksRichard von

Mises, where the existence of variational principles isias=l in analogy to those
known from the theory of elasticity (the principle of the nmmum of the com-
plementary elastic energy, for example). Richard von Miseste [320]: “Die
Formanderung regelt sich derart, dalR die pro Zeiteintmitifar verzehrte Arbeit
unverandert bleibt gegeniiber kleinen Variationen deanBpngen innerhalb der
FlieRgrenze. Da die Elastizitatstheorie einen ahnticAesammenhang zwischen
den Deformationsgrof3en und dem elastischen Potentidl gehnenne ich die Span-
nungsfunktionF auch das “plastische Potential” oder “FlieBpotentialt.’can be
shown that the variational principles of linear elastiGtg special cases of the en-
ergy balance equation (for isothermal or adiabatic pr&g)ssee e.g. [198], p. 148,

o=0, 2.1.9)
q (

1 The dependence on the temperature is dropped for the sakevitfyb
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for example. Many attempts have been made to prove or to atetihe potential
formulations within the framework of irreversible thernyoémics. For quasi-static
irreversible processes various extremum principles (bayprinciple of least irre-
versible force) are stipulated in [337]. Based on thesecjpies and additional ar-
guments like material stability, the potential formulatscand the flow rules (2.1.1)
and (2.1.6) can be verified. In [185], p. 63 a complementasgigation potential
as a function of the stress tensor as well as the number di@uali forces conju-
gate to internal state variables is postulated, whose piepge.g. the convexity, are
sufficient conditions to satisfy the dissipation inequyalih [206] theories of plastic-
ity and visco-plasticity are based on the notion of the geisbn pseudo-potentials.
However, as far as we know, the flow rules (2.1.1) and (2.1ibyepresent the as-
sumptions confirmed by various experimental observatidrsteady state creep in
metals rather than consequences of the fundamental lawsadvantage of varia-
tional statements is that they are convenient for the foatian of initial-boundary
value problems and for the numerical analysis of creep inneeging structures.
The direct variational methods (for example, the Ritz métlioe Galerkin method,
the finite element method) can be applied for the numeridatisa.

Finally, several creep theories without creep potentiady e found in the lit-
erature. In the monograph [246] various constitutive @quatof elastic-plastic and
elastic-visco-plastic behavior in the sense of rheoldgitadels are discussed with-
out introducing the plasticity, creep or dissipation ptigds. For example, the mod-
els of viscous flow of isotropic media known from rheology.4123, 269], can be
formulated as the relations between two coaxial tensors

g = GOI + Glé + Gzé - € (2110)

or
¢ = Hyl + Hio + Hyo - 0, (2.1.11)

whereG; is a function of invariants of while H; depend on invariants @f. The
application of the dissipative inequality provides regions imposed oii;; or H;.
The existence of the potential requires tGabr H; must satisfy certain integrability
conditions [58, 199].



2.2 Secondary Creep 25

2.2 Secondary Creep

Secondary or stationary creep is for many applications thstnimportant creep
model. After a relatively short transient period the matecreeps in such a manner
that an approximate equilibrium between hardening an@sioft) processes can be
assumed. This equilibrium exists for a long time and the {@mg behavior of a
structure can be analyzed assuming stationary creep pgexcds this section sev-
eral models of secondary creep are introduced. The secoondatationary creep
assumes constant or slowly varying loading and temperatomeitions. Further-
more, the stress tensor is assumed to satisfy the conditiproportional loading,
i.e.o(t) = ¢(t)op, whereg(t) is a slowly varying function of time andy is a
constant tensor.

2.2.1 Isotropic Creep

In many cases creep behavior can be assumed to be isotnopihalt follows the
classical potential and the potential formulated in terrhthcee invariants of the
stress tensor are introduced.

2.2.1.1 Classical Creep Equations. The starting point is the Odqvist flow rule
(2.1.6). Under the assumption of the isotropic creep, theri@l must satisfy the
following restriction

W(Q-o-Q") =W(o) (2.2.1)

for any symmetry transformatio®, Q - Q7 = I, detQ = +1. From (2.2.1) it
follows that the potential depends only on the three invesiaf the stress tensor
(see Sect. A.3.1). Applying the principal invariants

W) =tro, Ja(0) = 2[(tre): —tro?),
2 (2.2.2)

1 1
(tro)® — Ztrotro? 4+ ~tr o

1
J3(0) = deto = ¢ 5 3

one can write
W(o) =W(1, )2 J3)

Any symmetric second rank tensor can be uniquely decomposedhe spherical
part and the deviatoric part. For the stress tensor thisrmdposition can be written
down as follows
1
0-:0'm1+s, trS:0:>0'm:§t1‘0',

wheres is the stress deviator ag, is the mean stress. With the principal invariants
of the stress deviator

1, 1 1. 5 1
= ——trs’ = ——-§--8, = trs°==(s-8) -8
J2p St > Jap 3t 3( )
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the potential takes the form

W =W(J1, J2p, J3p),

Applying the rule for the derivative of a scalar valued fuoctwith respect to a
second rank tensor (see Sect. A.2.4) and (2.1.6) one caimobta

ow ow oW 1
&= —I— —s5+— <s2 — —tr s21> 2.2.3
di  9dhp  9J3p 3 (2.2.3)
In the classical creep theory it is assumed that the inelagtiormation does not
produce a significant change in volume. The spherical paftetreep rate tensor
is neglected, i.ér & = 0. Setting the trace of (2.2.3) to zero results in

oW
tré" =3—=0 = W= W(]ZD/]SD)
1
From this follows that the creep behavior is not sensitivéhto hydrostatic stress
statec = —pl, wherep > 0 is the hydrostatic pressure. The creep equation (2.2.3)
can be formulated as

gor = W W <52
dp  9Jzp

The last term in the right-hand side of (2.2.4) is non-line@ih respect to the stress
deviators. Equations of this type are called tensorial non-linearagiqus, e.g. [35,
58, 202, 265]. They allow to consider some non-classicatoord order effects of
the material behavior [35, 66]. As an example let us conditepure shear stress
states = T(m @ n +n ® m), wheret is the magnitude of the shear stress and
andn are orthogonal unit vectors. From (2.2.4) follows

— %tr s21> (2.2.4)

e —a—wr(m®n+n®m) + a—wrz <ll—p®p>
dap 9J3p 3 ’
where the unit vectop is orthogonal to the plane spannedmrandn. We observe
that the pure shear load leads to shear creep rate, andbaddlitito the axial creep
rates (Poynting-Swift effect). Within the engineeringepanechanics such effects
are usually neglected.
The assumption that the potential is a function of the secowatiant of the
stress deviator only, i.e.
W=W(57)

leads to the classical von Mises type potential [320]. Iniapfions it is convenient
to introduce the equivalent stress which allows to complagecteep behavior un-
der different stress states including the uni-axial temsithe von Mises equivalent
stress is defined as follows

/3
OoM = ES s =+/—-3Dp, (225)
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where the factoB/2 is used for convenience (in the case of the uni-axial tension
with the stresg the above expression providesy = ¢). With W = W (o,p(0))
the flow rule (2.1.6) results in

. aW((T M) aO'M aW((T M)3 S
cr o 0 0 . 0 e
&= aO'UM oo aUUM 2 0uMm (226)

The second invariant @& can be calculated as follows

2
&L g — § aW(UUM)

2 GO};M
Introducing the notatio#? ,, = 3& -- & and taking into account that

oW (‘%M)
P = - 7 >
ATum o 2 0

one can write 3 W ( )
.or . s . W(oum

_° , = oV 2.2.7

¢ oM - &oM o, ( )

The constitutive equation of steady state creep (2.2.7) pragosed by Odqvist
[236]. Experimental verifications of this equation can bani, for example, in
[295] for steel 45, in [228] for titanium alloy Ti-6Al-4V anith [245] for alloys Al-

Si, Fe-Co-V and XC 48. In these works tubular specimens waaddd by tension
force and torque leading to the plane stress stateon @ n+ t(n@m+m n),
wherec andt are the magnitudes of the normal and shear stresses (seé.3ett
Surfaces2,, = 02 4+ 312 = const corresponding to the same steady state values of
é,m Were recorded. Assuming the Norton-Bailey type potenfdl.g), from (2.2.7)

it follows

3
£ = Ea(rg]\_dls (2.2.8)
This model is widely used in estimations of steady-statere structures, e.g.
[77, 80, 236, 250, 265].

2.2.1.2 Creep Potentials with Three Invariants of the Stres s Tensor. In
some cases, deviations from the von Mises type equivalegsstvere found in ex-
periments. For example, different secondary creep ratésruansile and compres-
sive loading were observed in [195] for Zircaloy-2, in [1G6} aluminium alloy
ALC101 and in [301], p. 118 for the nickel-based alloy RebBé ©ne way to con-
sider such effects is to construct the creep potential asaitun of three invariants
of the stress tensor. Below we discuss a generalized creeptjad, proposed in
[9]. This potential leads to tensorial non-linear consitiel equations and allows to
predict the stress state dependent creep behavior anddsexctar effects. The 6 un-
known parameters in this law can be identified by some basis.t€reep potentials
formulated in terms of three invariants of the stress teaseitermed non-classical

[9].



28 2 Constitutive Models of Creep

By analogy to the classical creep equations, the dependenties stress tensor
is defined by means of the equivalent stregs Various equivalent stress expres-
sions have been proposed in the literature for the fornaradif yield or failure
criteria, e.g. [27]. In the case of creep, different equamhlstress expressions are
summarized in [160]. In [9] the following equivalent strésgroposed

Ueq = a01 + PO + 03 (2.2.9)
with the linear, the quadratic and the cubic invariants
o1 =uily, 03 =wli +ush, 03 =pusly +pushh+ pels, (2.2.10)

wherel; = tr o' (i = 1,2,3) are basic invariants of the stress tensor (see Sect.
A3.1),u; (j=1,...,6) are parameters, which depend on the material properties.
«, B,y are numerical coefficients for weighting the influence of difeerent parts
in the equivalent stress expression (2.2.9). Such a weiggiusual in phenomeno-
logical modelling of material behavior. For example, in 213imilar coefficients
are introduced for characterizing different failure mades

The von Mises equivalent stress (2.2.5) can be obtained f202m9) by setting
x=7=08=1landuyz = 1.5, yp = —0.5. In what follows we sep = 1 and
the equivalent stress takes the form

Oeg = 001 + 02 + Y03 (2.2.11)

It can be verified that the equivalent stress (2.2.11) sasi#.1.9).
The flow rule (2.1.6) allows to formulate the constitutivauation for the creep
rate tensor

éCI’ .

00 a0 a0 \Yor Tor T

( dr | oo 7%) (2.2.12)

Taking into account the relations between the invariantnd the basic invariants
I; and using the rules for the derivatives of the invariante Gect. A.2.4), we obtain

aﬂ do . ]/12[11+]/l30'

w Ml 5 = o
0 g 21+ %121 + §y5[10' b oo (2.2.13)
oo o2
As a result, the creep constitutive equation can be forredlas follows
&7 = W (0eq) e po i I+ HO (P‘4I12 + %b) I+ §y511¢7+ HeO - O
d0¢q o 05%
(2.2.14)

Introducing the notation
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: OW (0eq)
eq = 00
the constitutive equation takes the form

? + &12
SCT T "112111—1— H3o <‘M4 1 3
¢7 =&, ol + o +y (7%

2
> I+ §y511(7+y6(7-(7

(2.2.15)
Equation (2.2.15) is non-linear with respect to the stressdr. Therefore, second
order effects, e.g. [35, 56, 312] are included in the mdtbeghavior description. In
addition, the volumetric creep rate can be calculated fr212.15) as follows

(914 + 2u5) 1§ + 3(ps + p6) I
3(73

(Bpa +u3)hh +y
%]

& = &y [30&]41 +
(2.2.16)
The volumetric creep rate is different from 0, i.e. the coesgibility or dilatation

can be considered.
The derived creep equation has the form (2.1.11) of the géredation between
two coaxial tensors. The comparison of (2.1.11) and (2)2idvides

. paly 3usli + psh
Hy = SZ; (Wl + 7 +7 3032 ,
. 2usly 2.2.17
b= (B3 , (2.2.17)
1 8et] (0—2 +’Y 30_% >
6
H2 - Seq’)/y

03

In [9] the power law function of the equivalent stress (2)1sf@applied to model
creep behavior of several materials. Four independenpdests are required to
identify the material constants. The stress states rehiizeests should include uni-
axial tension, uni-axial compression, torsion and hy@tas{pressure. Let us note,
that experimental data which allows to identify the full eétaterial constants in
(2.2.15) are usually not available. In applications one maysider the following
special cases of (2.2.15) with reduced number of materratents.

The classical creep equation based on the von Mises equiivatiess can be
derived assuming the following values of material constant

\/——12 12 ,/ (2.2.19)

The creep rate tensor takes the form
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. 3 30 — 111 3 g‘ég (UUM)
cr __ aer P, i 2.2.20
" = ¢gp (\/ 58 s) - TV ( )

24/ Zg--
558

Assuming identical behavior in tension and compressionragiecting second
order effects fromx = v = 0, the following equivalent stress can be obtained

Ueg = 02 = \/ 122 + sl (2.2.21)

The corresponding creep constitutive equation takes time fo

SCT

€ €

R oI I+ 30
= &6y (o) P2

(2.2.22)

The parameterg, and 3 can be determined from uni-axial tension and torsion
tests. Based on the experimental data presented in [16%,fd66chnical pure
copper M1E (Cu 99,9%) df = 573 K the parameterg, and s are identified in
[24].

Neglecting the influence of the third invariang = 0), the creep rate tensor can
be expressed as follows

£ = ¢ (00) <0¢y11 + %) (2.2.23)
The above equation describes different behavior in teremmihcompression, and in-
cludes the volumetric creep rate. Three independent tgtstension, compression
and torsion are required to identify the material constants:, andys;.
With the quadratic invariant and the reduced cubic invaisaneral special cases
with three material constants can be considered. Setting € 4 = ps = 0) the
tensorial non-linear equation can be obtained

LI :
" = 57 (0e) (M LN +7y6az 0) (2.2.24)
(72 03

With apiy = pugs = pg = 0 the creep rate tensor takes the form

LI LI+ 21
e — &) (““ ARCLAENLIL S 1‘”) (2.225)

o) o3

The material constants in (2.2.23), (2.2.24) and (2.2.2&ewdentified in [2, 28]
according to data from multi-axial creep tests for plas(e¥C) at room temper-
ature [187] and aluminium alloy AK4-1T at 473 K [94, 125, 29&lrthermore,
simulations have been performed in [2, 28] to compare Eds43), (2.2.24) and
(2.2.25) as they characterize creep behavior under difféoading conditions. The
conclusion was made that cubic invariants applied in (2)2ahd (2.2.25) do not
deliver any significant improvement in the material behadescription.
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2.2.2 Creep of Initially Anisotropic Materials

Anisotropic creep behavior and anisotropic creep moddimgsubjects which are
rarely discussed in the classical monographs and textbooksreep mechanics
(only in some books one may found the flow potentials intreduby von Mises
[320] and Hill [138]). The reason for this is that the expegimal data from creep
tests usually show large scatter within the range of 20% enewore. Therefore,
it was often difficult to recognize whether the differencecireep curves mea-
sured for different specimens (cut from the same materiaiffierent directions)
is the result of the anisotropy. Therefore, it was no use msaropic models with
higher order complexity, since the identification of maikdonstants was difficult
or even impossible. In the last two decades the importanogoiteling anisotropic
creep behavior of materials and structures is discussedaimy rpublications. In
[47, 200, 259, 260, 261, 262] experimental results of crdeguperalloys SRR99
and CMSX-4 are reported, which demonstrate significantosmipy of creep be-
havior for different orientations of specimens with regpecthe crystallographic
axes. In [141] experimental creep curves of a 9CrMoNbV weddaare presented.
They show significant difference for specimens cut in lamgjital (welding) direc-
tion and transverse directions. Another example is a natainforced by fibers,
showing quite different creep behavior in direction of fiband in the transverse
direction, e.qg. [273, 274].

Within the creep mechanics one usually distinguishes lerivie/o kinds of
anisotropy: the initial anisotropy and the deformation ameége induced anisotropy.
In what follows the first case will be introduced. The secoaskecwill be discussed
in Sects 2.3.2 and 2.4.2.

The modeling of anisotropic behavior starts with the coteep material sym-
metry, physical symmetry, symmetry transformation and regtny group, e.g.
[331]. The material symmetry group is related to the symiegtof the materials
microstructure, e.g. the crystal symmetries, the symeetiue to the arrangement
of fibers in a fiber-reinforced materials, etc. The symmetandformations are de-
scribed by means of orthogonal tensors. Two important ahthee

— the reflection
Qn)=I1-2n®n, (2.2.26)

wheren is the unit normal to the mirror plane,
— the rotation about a fixed axis

Q(om) =m@m+ cos (I —m@m) + sinpm x I, (2.2.27)

wherem is the axis of rotation angh (—7 < ¢ < ) is the angle of rotation.

Any arbitrary rotation of a rigid body can be described asmpuosition of three ro-
tations (2.2.27) about three fixed axes [333]. Any symmetgdformation can be
represented by means of rotations and reflections, i.eetisots of the type (2.2.26)
and (2.2.27). The notion of the symmetry group as a set of sstnyntransforma-
tions was introduced in [230]. The symmetry groups of potat axial tensors are
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discussed in [332]. According to [313], p. 82 a “simple sbiglcalled aelotropic or
anisotropic, if its symmetry group is a proper subgroup efdaithogonal group.

The concept of the “physical symmetry group” is related ® sgmmetries of
the material behavior, e.g. linear elasticity, thermalasgion, plasticity, creep, etc.
It can only be established based on experimental obsengatRhysical symmetries
must be considered in the formulation of constitutive eiguat and constitutive
functions. As an example let us consider the symmetry grdupenfourth rank
elasticity tensof¥)C = CiiKle; @ e; @ e, @ ¢, as the set of orthogonal tensa@s
satisfying the equation, e.g. [25, 332],

e =CMQei2Q e 0Q e 2Q e ="C (2.2.28)

The physical symmetries or the set of orthogonal solutidr{2.8.28) can be found
only if all the 21 coordinates of the elasticity tens®tC for a selected basis are
identified from tests. Vice versa, if the physical symmetryup is known then one
can find the general structure of the elasticity tensor base®.2.28). Clearly,
neither the elasticity tensor nor the physical symmetryugrof the linear elastic
behavior can be exactly found from tests. Establishmenhgsigal symmetries of
creep behavior is rather complicated due to relativelydacatter of experimental
data. However, one can relate physical symmetries to thekisgmmetries of ma-
terials microstructure. According to the Neumann prireipidely used in different
branches of physics and continuum mechanics, e.g. [25,3322,

The symmetry group of the reason belongs to the symmetry group of the
consequence.

Considering the material symmetries as one of the “reasand’the physical sym-
metries as a “consequence” one can apply the followingreeé [331]

For a material element and for any of its physical properties every material
symmetry transformation of the material element is a physical symmetry
transformation of the physical property.

In many cases the material symmetry elements are evidemt thhe arrangement
of the materials microstructure as a consequence of manufag conditions, for
example. The above principle states that the physical hehavg. the steady state
creep, contains all elements of the material symmetry. Tlysipal symmetry group
usually possesses more elements than the material symgnetry, e.g. [232].

2.2.2.1 Classical Creep Equations. Here we discuss steady state creep equa-
tions based on the flow rule (2.1.6) and assumption that thepcpotential has a
quadratic form with respect to the invariants of the stressdr. These invariants
must be established according to the assumed symmetry meiwfethe creep be-
havior. The assumption of the quadratic form of the flow ptémriginates from

the von Mises work on plasticity of crystals [320]. Therefothe equations pre-
sented below may be termed as von Mises type equations.
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Transverse Isotropy. In this case the potentid (o) must satisfy the following
restriction

W(Q-o-Q") =W(r), Q(em)=me@m+cosp(l —mxm)+sinem x I
(2.2.29)
In (2.2.29)Q(¢m) is the assumed element of the symmetry group, wheneliy
a constant unit vector ang is the arbitrary angle of rotation abomt. From the
restriction (2.2.29) follows that the potentidd must satisfy the following partial
differential equation (see Sect. A.3.2)
aw\ "
(mxo U><m)--<aa> =0 (2.2.30)
The set of integrals of this equation represent the set aftimmally independent
scalar valued arguments of the potenti#l with respect to the symmetry trans-
formation (2.2.29). The characteristic system of (2.2i80he system of ordinary
differential equations
do
ds
Any system oz linear ordinary differential equations has not more than1 func-
tionally independent integrals [92]. Singds symmetric, (2.2.31) is a system of six
ordinary differential equations and has not more than fivetionally independent
integrals. The lists of these integrals are presented B8.18) and (A.3.26). Within
the classical von Mises type theory second order effectmegéected. Therefore,
we have to neglect the arguments which are cubic with regpdbe stress tensor.
In this case the difference between various kinds of traisgvisotropy considered
in Sect. A.3.2 vanishes. It is possible to use differens It of scalar arguments.
The linear and quadratic arguments from (A.3.15) are

=(mxoc—0xm) (2.2.31)

tro, tro?, m-c-m, m-o*-m (2.2.32)

Instead of (2.2.32) one can use other arguments, for exg@ifba,

1
tro, trs>=tro?— g(tr 0‘)2,

1
m-s-m:m-a-m—gtra, (2.2.33)

2 1
2 2-m—gm-s-mtrcf—g(tra)2

m-sc-m=m-0o

In what follows we prefer another set of invariants which barrelated to (2.2.32)
but has a more clear mechanical interpretation. Let us dposenthe stress tensor
as follows

0= 0pmnMOM+0p+ Ty QM+ MR Ty (2.2.34)

with the projections
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Figure 2.1 Stress state in a transversely isotropic medium and canelpg projections
Tmm, Op QN Ty,

Omm — M - g- m,

op=I-mem)-c-(I-mxm), (2.2.35)

Ty=m-0- (I —-mxm)
The meaning of the decomposition (2.2.34) is obviayg,, is the normal stress
acting in the plane with the unit normat, o}, stands for the “plane” part of the
stress tensor representing the stress state in the isqitepy.t,, is the shear stress

vector in the plane with the unit normed. For the orthonormal basks I andm the
projections are (see Fig. 2.1)

T = Tk + Tl
oy = U'kkk®k—|—0'lll®1+Tkl(k®l—|—l®k)

The plane part of the stress tensor can be further decomppesetiows
1

Now we can introduce the following set of transversely ispitt invariants
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hiw = Omgpm=m-0-m,
Ly = trop=tro—m-o-m,

1 2 1 2 1 2
I3Wl = Etrsp = Etr(fp— Z(tr(fp)

1 1
= 5 (tr02+(m-a-m)2) —m-o’z'm—z(tro'—m'o"m)z,

Ly = Tp-Tm=m-0>m—(m-c-m)>=mxc-m)-(mxo-m)
(2.2.37)
In the above listly;, and I3, are two invariants o, and I, = 1'51 =Ty Tnm
is the square of the length of the shear stress vector adiitigei plane with the
unit normalm. It is shown in Sect. A.3.2 that the above invariants aregiratis of
(2.2.312).

Taking into account the relations

alﬂ =mem, alﬂ =I-m®m,
Jo Jo
o3 ol
a—gm =5, a—am =Ty OM+mMQ Ty
and the flow rule (2.1.6) we obtain the following creep equrati
or ow ow ow
¢ = —meom+—({I-mem)+—s,
W Lz Lz (2.2.38)
+ —(Tm@M+mQRTy)
Olym

The next assumption of the classical theory is the zero vettioncreep rate. Taking
the trace of (2.2.38) we obtain

W AW 1
tr & = 3 + 2—812 =0 = W=W(,— > Lo I3, Lyy)  (2.2.39)
m m

’ = I - —I =m-0-m— —tro

the creep equation (2.2.38) takes the form

19W oW W
aor -9V B
&= (BGmem—1I)+ 35 T oL, (Tm@M+meTy) (2.2.40)

By analogy to the isotropic case we formulate the equivadeets as follows

0o = fp 302l + 33 L

2 (2.2.41)
_ 1 3 2 | 3pa72
= wq({m-oc-m-— Etra'p + Eaztrsp+ 03 Ty



36 2 Constitutive Models of Creep

The positive definiteness of the quadratic form (2.2.41)aewipled by the conditions
w; > 0,1=1,2,3. The deviatoric part of the stress tensor and its second invariant
can be computed by

1
s = ]m<m®m_§l>+sp+7m®m+m®7mz
2
trs? = g],%1thrs,294rzr,%,

Consequently, the von Mises equivalent stress (2.2.5%vsllfrom (2.2.41) by set-
tingtxl =uay = a3 = 1.

The advantage of the introduced invariants over (2.2.322.@.33) is that they
can be specified independently from each other. For examgti¢he second invari-
ant in (2.2.32) to zero, i.@r 0> = o --o = 0. From this follows thatr = 0 and
consequently all other invariants listed in (2.2.32) amutianeously equal to zero.
In addition, the introduced invariants can be related tacglpstress states which
should be realized in creep tests for the identification ofstitutive functions and
material constants. With the equivalent stress (2.2.4d)ctieep equation (2.2.40)
can be rewritten as follows

o 3 oW
20,4 00,

1
[‘lem <m Km — §I> + a8y +0¢3(Tm Xdm-+m ®Tm)}

(2.2.42)

With the notatiores), = go‘_’v (2.2.42) takes the form
oq

) 3 éCV 1
&7 = E% [oqlm (m @m— 51) + 28y +a3(Ty @m +m ®Tm):| (2.2.43)
eq

Let us introduce the following parts of the creep rate tensor

gr. = m-¢7-m,
g = (I-mom)-&"-(I-mxm),
_ _ 1 (2.2.44)
& = & - Es’%m(l —mem),
¥y = m-¢7-(I-mem)
From (2.2.42) we obtain
&cr 3 &cr sCr
Scr eq ACT eq LT eq
Emm — 0(10_—61/]];7/1, ep = ED‘ZU_G(/]SP’ Y = Eﬂéga_—equ (2245)

Similarly to the isotropic case the equivalent creep ratelmacalculated as follows

1 21 41
Cr . 2 . .. . = . . .
€oq = \/“1 (&5im) gazeg 6%’/ 3 0637% Y (2.2.46)
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Figure 2.2 Stress state in an orthotropic medium and correspondifgqonscy,n,, Tnn,

The equivalent creep rate (2.2.46) is useful for the vetificeof the creep potential
hypothesis and the assumed quadratic form of the equivatesgs with respect
to the transversely isotropic invariants of the stressaenbhe introduced creep
equation contains three material constantand the equivalent creep ratg.

The assumptions of transverse isotropy and the quadraticddthe equivalent
stress are widely used in models of elasticity, plasti@tgep and failure of fiber
reinforced composites, e.q. [7, 74, 273, 274, 279, 298],carettionally solidified
superalloys [42, 213]. The proposed equations will be appin Sect. 3.2 to the
description of anisotropic creep in a multi-pass weld metal

Orthotropic Symmetry. In this case the potentidV/ (o) must satisfy the follow-
ing restriction

W(Q;-c-QN) =W(r), Qi=I-non;, i=123 (2.2.47)

In (2.2.47)Q; denote the assumed symmetry elements - three reflectiohgavit
spect to the planes with unit normats;, Fig. 2.2. The unit vectorgny, +n,, +tn;
are assumed to be orthogonal, he: n; = 0,1 # j . In Sect. A.3.3 a set of scalar
arguments which satisfy the above restrictions is predenye(A.3.32). As in the
previous paragraph we assume the quadratic form of the fialtarith respect to
the stress tensor. One can use different sets of scalar argsiof the stress tensor
satisfying (2.2.47), see for example [73],

n-o0-ny, Mny-0-n3, N3-0-Mn3,

ni-o%-ny, ny-0%-ny, nz-o’-n3
Figure 2.2 shows the components of the stress tensor in aszartframe;, three
planes of symmetry characterized by the unit vectars and components of the

stress tensor with respect to the planes of symmetry. Teesstensor can be repre-
sented as follows
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O = Opn N1 QN1+ OnynyN2 QN + Opyny iz @ N3
+ Tnlnz(m KNy +ny ® n1) + Tnyn, (n1 ®Nn3 +n3® nl)
+  Tayn, (nz QN3 +n3 X nz)
with
Oning =M1+ 0N, Opyny =MN2+0 N3, Opzpny = N30 N3,
Tiyn, —=N1°0 N2, Tyny =MN1:0-N3, Tyny —HN2-0-N3

According to Sect. A.3.3 we use the following orthotropiganants of the stress
tensor
Iy = Omny, Ingny = Ononys Ingny = Ongns,

_ 2 _ 2 _ 2
Inlnz - Tnlnzf In1n3 - Tnlngf In2n3 - Tnzns

Assuming that the creep potential is a function of six arguisietroduced, the flow
rule (2.1.6) leads to the following creep equation

°14%
= nq X nq +
aInlnl
14%
alnlnz
oW
a1711713
°14%

+ Ny 0-n3(nx@n3 +n3@ny)

(2.2.48)

e’ ny Qny + n3 @ nj

W

_|_

ny-o-ny(ng@ny;+ny;Rnq)
(2.2.49)
_|_

ny-0-n3(n @n3 +n3n)

The assumption of zero volumetric creep rate leads to

e — oW + oW + oW
Onn,  Olnyn, — Olnn,

=0 (2.2.50)

From the partial differential equation (2.2.50) followsathtthe potentialV is a
function of five scalar arguments of the stress tensor. Theacteristic system of
(2.2.50) is ; ; ;

Inlnl _ Iﬂz"z _ In3n3 _

i 1, i 1, 15 = 1 (2.2.51)
The above system of three ordinary differential equatiasstivo independent inte-
grals. One can verify that the following invariants

1 1 1
]1 = _(Inznz - In3n3), ]2 = _(In3n3 - Inlnl)/ ]3 = _(Inlnl - Inznz)

2 2 2
(2.2.52)
are integrals of (2.2.51). Only two of them are independarg th the relation
J1 + J» + Jz = 0. If the principal directions of the stress tensor coincidéhe
directionsn; thenrni,,/, = 0,1 # j and the above invariants represent the principal
shear stresses. An alternative set of integrals of (2.2s51)
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- 1 - 1 - 1
]1 = Inlnl — gtr ag, ]2 = In2n2 — gtr g, ]3 = In3n3 — gtI‘O' (2253)

If the principal directions of the stress tensor coincidéhwj then the above invari-
ants are the principal values of the stress deviator. Fofotimeulation of the creep
potential in terms of invariants the relatign 4 ], + J5 = 0 must be taken into
account.

In what follows we apply the invariants (2.2.52). The eqlewa stress can be
formulated as follows

0k = 2B1J7 +2B2J3 +2B3)3
+  3B12Inyn, + 3B131Ininy + 3P231Inym,

The von Mises equivalent stress (2.2.5) follows from (2428 setting8; = B> =
B3 = B12 = P13 = P23 = 1. Applying the flow rule (2.1.6) we obtain the following
creep equation

(2.2.54)

éCV

¢ = f {.31]1 (ny @ny —n3 @ng)
eq

+B2f2(n3 @n3 —ny @nyq)

+B3J3(n @ny —ny @ny)

3 (2.2.55)
+§,312Tn1n2 (m ®@ny +ny@n)

3
+§ﬁ13Tn1n3 (m ®@n3z +n3@n)

3
+§,823Tn2n3 (n2 XNz +n3Q nz)}

The equivalent stress and the creep equation includesd®pendent material
constants. Therefore six independent homogeneous stagss should be realized
in order to identify the whole set of constants. In addititte dependence of the
creep rate on the equivalent stress must be fitted from thdtsex uni-axial creep
tests for different constant stress values. For examptaeipower law stress func-
tion provides a satisfactory description of steady-stagee then the constamt
must be additionally identified.

An example of orthotropic creep is discussed in [163] fordaheminium alloy
D16AT. Plane specimens were removed from rolled sheet alomg directions:
the rolling direction, the transverse direction as well adar the angle of 45to the
rolling direction. Uni-axial creep tests were performe@ a8 C and 300C within
the stress range 63-90 MPa. The results have shown that aC2x#8ep curves
depend on the loading direction while at 3@the creep behavior is isotropic.

Other cases. The previous models are based on the assumption of the digadra
form of the creep potential with respect to the stress tenBoe most general
guadratic form can be formulated as follows

0 = %a-. 4B..o, (2.2.56)
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whereoe, plays the role of the equivalent stress. The fourth rankoeff$B must
satisfy the following restrictions

a..(4)B..a > 0, a-- (4)B = (4)B..a, C“(4)B :0,

T/ c = _CT/

(2.2.57)
Va,cwitha—=a

wherea andc are second rank tensors. Additional restrictions folloanfrthe as-
sumed symmetries of the steady state creep behavior. Foypéxaf the orthogonal
tensorQ stands for a symmetry element, the structure of the teisBrcan be es-
tablished from the following equation

(B = BNQ.e;0Q-¢;0Q e, ©Q-e; =B, (2.2.58)

wheree;, i = 1,2,3 are basis vectors.

The flow rule (2.1.6) provides the following generalizedsaiopic creep equa-
tion o

o Eeq (4)B B cr 14%

20¢4

7 feq = 00
The fourth rank tensors satisfying the restrictions (Z2.&e well-known from
the theory of linear elasticity. They are used to represtadtie material proper-
ties in the generalized Hooke'’s law. The components of thessors in a Carte-
sian coordinate system are given in the matrix notation inyrtextbooks on lin-
ear elasticity as well as in books and monographs on congposdterials, e.g.
[6, 7, 29, 122, 256, 309]. Furthermore, different coordentee representations of
fourth rank tensors of this type are discussed in the liieeatFor a review we re-
fer to [76]. One of these representations - the projectaresamtation is applied in
[47, 48, 200] to constitutive modeling of creep in singlestey alloys under as-
sumption of the cubic symmetry.

Let us recall that (2.2.59) is the consequence of the creggnpal hypothesis
and the quadratic form of the equivalent stress with respmethe stress tensor.
Similarly to the case of linear elasticity [309] one can mrdkat only eight basic
symmetry classes are relevant according to these assursplibe basic symmetry
classes and the corresponding number of independent natediof the tensot'B
are listed in Table 2.1. The number of independent cooréiiaidicates the number
of material constants which should be identified from crespst This number can
be reduced if the volume constancy is additionally assuried.example, in the
cases of transverse isotropy and orthotropic symmetry tineber of independent
coordinates oB reduces to 3 and 5, respectively (see previous paragraphs).

(2.2.59)

2.2.2.2 Non-classical Creep Equations.  Non-classical effects are the depen-
dence of secondary creep rate on the kind of loading and decater effects,
see Sect. 2.2.1. Examples of such behavior are differemipcrates under ten-
sile and compressive stress or the effect of reversal of ltlearsstress. The last
case is observed in creep tests on tubular specimens unpkedagorque. The
change of the direction of the applied torque leads to diffevalues of the shear
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Table 2.1 Basic symmetry classes and number of independent cooedinéthe tensot*) B

Symmetry class Number of independent
coordinates of*)B

triclinic symmetry 21

monoclinic symmetry 13

orthotropic or rhombic symmetry
trigonal symmetry

tetragonal symmetry

transverse isotropy or hexagonal symmetry
cubic symmetry
isotropic symmetry

strain rate. The effect of shear stress reversal is ususfiiaimed to be the result
of the anisotropy induced by the deformation process (e@igoaopic hardening)
or anisotropy induced by damage evolution. Phenomendabgiodels of induced
anisotropy will be introduced in Sect. 2.3.2 and 2.4. Herecaasider the case of
initial anisotropy without discussion of histories of thefakmation, damage or man-
ufacturing processes. Nevertheless, a phenomenologmétinof anisotropic creep
should be able to reflect the above mentioned effects simgedte observed exper-
imentally. In order to describe non-classical effects thadyatic form of the creep
potential should be replaced by a more general form inctudihinvariants of the
stress tensor for the assumed symmetry group. In this caseutnber of material
constants rapidly increases. Furthermore, the idenidicaind verification of the
model requires creep tests under combined multi-axiadsstates. In what follows
we limit ourselves to some remarks regarding the genenattsire of constitutive
equations and kinds of tests for the identification.

Transverse isotropy. The creep potential must satisfy the restriction (2.2.29)
leading to the partial differential equation (2.2.30). Tiheegrals represent the set
of functionally independent arguments of the creep paikntine integrals are pre-
sented in Sect. A.3.2 for two transverse isotropy groups. first group is formed
by all the rotations about a given axs i.e

Q(ym) =mem+cosp(I —-m@m) +sinym x I

The second group additionally includes rotations on thdeangabout any axis
orthogonal tamn, i.e.

Qi =Q(np)=2p©p—1, detQ=1, p-m=0

Let us note that there is an essential difference in thesegtaaps since the creep
potential depends on different non-quadratic argumenthefstress tensor. Here
we limit our considerations to the second case which is widécussed in the

literature on anisotropic elasticity, plasticity and @¢&8, 73, 84, 279, 286], where
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the following invariants are applied

tro, tro?, tro°, m-c-m, m-c*-m (2.2.60)

To be consistent with derivations in Sect. 2.2.2.1 let uslwselecomposition of the
stress tensor (2.2.34) leading to the following set of iargs

hy = Owm=m-0-m,
Ly = trop=troc—m-o-m,

1 -1 5, 1 2
I3Wl = Etrsp = Etr(fp — Z(tr(fp)

2 2

1 1
= = [traz%—(m-a-m)z} -m-0*-m— —(trc—m-o-m)?,

2 4
Ly = Ty Tm=m-0>m—(m-c-m)>=mxc-m)-(mxo-m)
Iy = Tw-Sp-Tm=m-0°-m—2(m-0-m)(m-0*-m)

3 2

1
—5(tro—m-c-m) [m-a em— (m-o-m)?

(2.2.61)
The meaning of the first four invariants is explained in intS@c2.2.1. The last
cubic invariant is introduced instearlo>. One can prove the following relation

+ (m-o-m)

3 1
tr 0’3 = Il3m + 3 Ly + 3Dy I3 + EIZmLLm + Elgm + 35

Assuming that the creep potentidl is a function of five scalar arguments (2.2.61)
and applying the flow rule (2.1.6) we obtain the followingaepeequation

1
& =himem-+ (h2—§h514m)(1—m®m) +h3op +hy(Tw@m+m®Ty)

+hs (T @ T + MR Ty Ty + Ty 0y @),
(2.2.62)

where
oW

oI,
The last term in the right-hand side of (2.2.62) describesrs# order effects. The

meaning of these effects is obvious. In the case of non-zeansverse shear stress”
vector

h; = i=1,2...,5

Ty=m-0-(I —mxm)

the elongation in the direction af,, can be considered. The vect; = s, - T
belongs to the isotropy plane, ig, -m = 0. In the case thag,, # 0 (2.2.62)
describes an additional “transverse shear strain rateteff

2 For the description of elastic material behavior instead @ftrain tensor, e.g. the Cauchy-
Green strain tensor is introduced. The five transverselydpix invariants are the argu-
ments of the strain energy density function.
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In order to formulate the creep constitutive equation ormukhspecify an ex-
pression for the equivalent stress as a function of thedoted invariants. As an
example we present the equivalent stress by use of polyfowiizhe type (2.2.9)
and (2.2.10)

Oeq = a0y + 02 + Y03, (2.2.63)
with
o = pnhm+ p2lm,
o = unl?, +poolimlm + w3l3,, + woalsm + poslam, (2.2.64)
o3 = umnB, +usld, by + usahimls, + uzals,, + paslhimlam

+  mselomIzm + M3z limlam + H3glom lam + U39 lsm

The equivalent stress (2.2.63) includes 16 material cotsstg; and two weight-

ing factorsa and «y. The identification of all material constants requires etiff

ent independent creep tests under multi-axial stresssstate example, in order

to find the constanjzg creep tests under stress states with nonzero cubic invari-
ant Is,, should be carried out. An example is the tension in the ipgtrolane
combined with the transverse shear stress leading to thsssstate of the type

o =opny @ny + (M ®m+m nq), whereoy > 0 andt > 0 are the mag-
nitudes of the applied stressas, is the direction of tension and, - m = 0. In this
case

1 1 5
sp = an(nl ®ny—np®ny), ny-ny =0, Tm = TN, Isy = EU’QTO

By analogy to the non-classical models of isotropic creequuised in Sect.
2.2.1 different special cases can be introduced. Settirg 0 in (2.2.64), second
order effects will be neglected. The resulting constiritimodel takes into account
different behavior under tension and compression. To fisdtnstants;; andp
creep tests under tension (compression) along the direstias well as tension
(compression) along any direction in the isotropy planeukhbe carried out. Set-
ting « = 0 the model with the quadratic form of the creep potential witonstants
can be obtained. The assumption of the zero volumetric asepwill lead to the
model discussed in Sect. 2.2.2.1.

Second order effects of anisotropic creep were discusseBelign [52, 58].
He found disagreements between creep equations based threting of isotropic
functions and the creep equation of the type (2.2.62) acupro the potential hy-
pothesis and the flow rule. The conclusion was made that ttem{i@ theory leads
to restrictive forms of constitutive equations if compatedhe representations of
tensor functions.

Let us recall the results following from the algebra of ispic tensor functions
[71]. In the case of transverse isotropy group charactérigethe symmetry ele-
ments (A.3.18) the statement of the problem is to find the ig¢mepresentation of
the isotropic tensor function of the stress tens@nd the dyadn ® m (so-called
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structure tensor). The constitutive equation describirggdreep behavior must be
found as follows

¢ = floomem),

wheref is an isotropic tensor function of two tensor arguments. Jéweral repre-
sentation of this function is [73]

flomam) = fim@m+ fo(I —-m@m) + f30 + f40>

+ fs(mem-c+o-mem)+ ff(meam-0>+0?-mem),
(2.2.65)
where the scalarg, i = 1,...,6, depend on the five invariants of the stress tensor
(2.2.60). Betten found that the last term in (2.2.65) is mggs$n the constitutive
equation which is based on the potential theory. In orderisouss the meaning
of the last term in (2.2.65) let us introduce the identitigsick follow from the
decomposition of the stress tensor by Eqgs (2.2.34) and3@).2.

o> = Izmsp+(13m+}11§m)(1—m®m)+m®s,,-rm+rm-sp®m
+ (Ilm+%12m)(rm®m+m®rm)+(112m+14m)m®m+7m®rm,
(2.2.66)
mm-c+oc-mem = TpuOmM+mTy +2L,meOm,
MOM-0>+0>-mOM = MRSy Ty +Ty-Spdm

1
+ (hm+ EIm)(rm@@m +mMRTy)

After inserting (2.2.66), (2.2.34) and (2.2.36) into (BZ). we obtain the following
creep equation

&7 = gmeam+g(I—mem)+ g8y + ga(m Ty + Ty @m)
+ g5(M®Sy T +Tm+5p @M) + 86T @ T
(2.2.67)
with ) )
g1 = fi+ fa(Ii, + L) +2fshim + 2f6 (Iam + I3,,),
1 1
g =fo+ §f312m + f4(Izm + ZI%m)/
93 = fa+ bufa,
1
g4 = (fa+ fo) (I + EIZm) + fs,
85 = fa+ fe,

6 = fa
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We observe that Eqg. (2.2.67) based on the theory of isottepsor functions does
not deliver any new second order effect in comparison to.62)2 The only dif-
ference is that the two last terms in (2.2.67) charactayizive second order ef-
fects appear with two different influence functions. The panson of (2.2.67) with
(2.2.62) provides the following conditions for the exigterof the potential

oW - oW _ +1 I
—alm = 81 —aIZm = 2g5 oy
514% 514% 514%

@:83/ m=g4/ Ezga 86 =85

Furthermore, the functiong must satisfy the integrability conditions which can be
obtained by equating the mixed derivatives of the potentitid respect to invariants,
i.e.
FW o PW

0L 0 Iy B aIkmaliml
Let us note that the models (2.2.62) and (2.2.67) are re=drio the special case of
transverse isotropy. In the general case one should antdigzzreep potential with
the invariants listed in (A.3.26).

Other cases. Alternatively a phenomenological constitutive equatidraniso-
tropic creep can be formulated with the help of material desise.g. [2]. Introduc-
ing three material tensotd, ('B and (6)C the equivalent stress (2.2.63) can be
generalized as follows

itk ik=12,...,5

Oeq = X071 + 02 + Y03 (2.2.68)
with
o] :A..g’/ 0'22 =0-- (4)B..gl (fg =0 (0.. (6)C..g) (2269)

The structure of the material tensors must be establisloed the following restric-
tions

A’:Q-A-QT:AifQ-ei@)Q.ej:A,
@B = BHQ.;0Q-6;©Q-e,®Q-¢; =B,

(6)c' = Ciikm.e; 2 Qe ©Q e, 9Q- e, ©Q e, © Q- ey =)C,
(2.2.70)
whereQ is an element of the physical symmetry group. The creep patdrypoth-
esis and the flow rule (2.1.6) lead to the following creep &éqna

. oW 80'1 802 803
cr . 777 -1 4 79
£ = 3%y (tx o g 7 80> (2.2.71)
Taking into account the relations
ooy dcy, WBeo 303 o-0C-0
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a generalized anisotropic creep equation can be formuéetéollows

@B.. . (6)C..
&f:gg<mA+- Bro o-"C ”), =W 5573

3 o3 “T doey

In [51, 265] the following anisotropic creep equation isgwsed
¢ =H+WM-o+(OL-0)-0 (2.2.74)

Comparing the Egs (2.2.73) and (2.2.74) the material terfdof* M and(®)L can
be related to the tensors, (/B and(®)C.

The tensors4, (B and (6)C contain 819 coordinatesA(- 9, (4)B - 81, (6)C
- 729). From the symmetry of the stress tensor and the creéeperasor as well as
from the potential hypothesis follows that “only” 83 coardtes are independem (
-6, B -21,(6)C - 56). Further reduction is based on the symmetry considesat
The structure of material tensors and the number of indeggegrmbordinates can be
obtained by solving (2.2.70).

Another possibility of simplification is the establishind special cases of
(2.2.73). For instance, equations with a reduced numberni@meters can be de-
rived as follows

—a=19=0
4)B ..
Oeq = 01 + 02, &7 = ég] (A + 0) , (2.2.75)
%]
—a=0v7=1
. . (4)B..¢7 o-- (6)C..0'
Ueqg = 02 + 03, & = 8?:7 ( o + 0_% ’ (2.2.76)
—a=09=0
. . (4)B o
Oeg = 03, &7 = gg; ( o ) (2.2.77)

The last case has been discussed in Sect. 2.2.2.1. Exanfiglpplication of con-
stitutive equation (2.2.73) as well as different cases airegtries are discussed in
[2,9].

2.2.3 Functions of Stress and Temperature

In all constitutive equations discussed in Sects 2.2.1 ah@ 2he creep potential or
the equivalent creep rate must be specified as functionseadhivalent stress and

the temperature, i.e.
oW
~Cr _
Eeq ao'eq f(UQQ’ T)
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In [176] the functionf is termed to be the constitutive or response function. Fer th
formulation of constitutive functions one may apply themwad foundations from
materials science with regard to mechanisms of creep detomand related forms
of stress and temperature functions. Furthermore, expetehdata including fam-
ilies of creep curves obtained from uni-axial creep testcéotain ranges of stress
and temperature are required. It is convenient to presesetfamilies in a form
of minimum creep rate vs. stress and minimum creep rate rgdmture curves
in order to find mechanical properties of the material wittie steady-state creep
range.

Many empirical functions of stress and temperature whidbwato fit exper-
imental data have been proposed in the literature, e.g. [226, 266, 292]. The
starting point is the assumption that the creep rate may beridd as a product of
two separate functions of stress and temperature

Sce; = fo(0eq) fr(T)
The widely used functions of stress are:

— power law

n—1

00

Ug q

fo(0eq) = &0 (2.2.78)

00

The power law contains three constaritg ¢y, ) but only two of them are inde-
pendent. Instead @f andoy one material constant

[
1l

can be introduced.
— power law including the creep limit

!

o n
fo(oeq) = £ <% — > , Oeq > 0]
0

If 0eg < 0y, the creep rate is equal zero. In this ca§és the assumed creep limit.

Let us note that the experimental identification of its vatudifficult, e.g. [266].

— exponential law

. Ueq
Oeq) = €9 €XP —
fo( eq) 0 €xXp %

¢y, 0g are material constants. The disadvantage of this expresssibat it predicts
a nonzero creep rate for a zero equivalent stress

fa(o) =& 5& 0

— hyperbolic sine law

N
= nh —
fg (0’@5]) SO S1 0_0
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For low stress values this function provides the linear ddpace on the stress

Ug q

fo(0eq) = 5'00—0

Assuming the constant temperature equations for the dguivereep rate can be
summarized as follows

s";g = aafq Norton, 1929Bailey, 1929

o,
egg =b <exp Uig — 1) Soderberg, 1936

0 _
¢ = asinh aio" Prandil, 1928Nadai, 1938McVetty, 1943 (2 2 79)
€7 = o) + a0, Johnson etal., 1963

o n
& =a (sinh ﬂ) Garofalo, 1965
)

wherea, b, a1,a,,09,1n,1n1 andn, are material constants. The dependence on the
temperature is usually expressed by the Arrhenius law

fr(T) = exp[-Q/RT],

whereQ andR denote the activation energy and the Boltzmann’'s constaspec-
tively.

For the use of stress and temperature functions one shdddirteo account
that different deformation mechanisms may operate foegfiit specific ranges of
stress and temperature. An overview is provided by the deftion mechanisms
maps proposed by Frost and Ashby [117], Fig. 2.3. Contoucsiatant strain rates
are presented as functions of the normalized equivaleessty, /G and the ho-
mologous temperaturgé/ T,,, whereG is the shear modulus arfg, is the melting
temperature. For a given combination of the stress and thedmature, the map
provides the dominant creep mechanism and the strain rate.

Let us briefly discuss different regions on the map, the mashas of creep
deformation and constitutive functions derived in matsrigcience. For compre-
hensive reviews one may consult [116, 156, 222]. The originthe inelastic de-
formation at the temperature ran@e& < T/T, < 0.7 are transport processes
associated with motion and interaction of dislocations diffdision of vacancies.
Here we limit our consideration to the two classes of physitadels - dislocation
and diffusion creep. Various creep rate equations withéndilslocation creep range
are based on the Bailey-Orowan recovery hypothesis. Amatéarrier stress;,;;
being opposed to the dislocation movement is assumed. Wikgpldstic strain oc-
curs the internal stress increases as a result of work hagldoe to accumulation
of deformation and due to increase of the dislocation dgn&g the material is sub-
jected to the load and temperature over certain time, tieeriat stress;,;; recovers.
In the uni-axial case the rate of change of the internal sireassumed as follows
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Figure 2.3 Schematic deformation-mechanism map (L.T.Creep - low &atpre creep,
H.T.Creep - high temperature creep)
O'int = héCV — Oint,

whereh andr are material properties related to hardening and recoresyectively.
In the steady staté;,,; = 0 so that

) T'Tint
SCV — mn
h
Specifying the values far, h ando;,,; various models for the steady state creep rate

have been derived. An example is the following expressiondétails of derivation
we refer to [116])

« Do Q
o D e (_ﬁ)
whereD is the diffusion coefficient.

Further models of dislocation creep are discussed undemassamption of
the climb-plus-glide deformation mechanism. At high teraperes and moderate
stresses, dislocations can climb as well as glide. The glidislocations produced
by the applied stress is opposed by obstacles. Due to diffusi vacancies, the
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dislocations can climb around strengthening particle® iflelastic strain is then
controlled by the glide, while its rate is determined by thmb. The climb-plus-
glide mechanism can be related to the recovery-hardenipgthgsis. The harden-
ing results from the resistance to glide due to interactibmoving dislocations
with other dislocations, precipitates, etc. The recovegchanism is the diffusion
controlled climb which releases the glide barriers. Theblplus-glide based creep
rate models can be found in [116, 117, 222]. The common réstie power-law

creep
cr Oeqg \" Q

Equation (2.2.80) can be used to fit experimental data fongeraf stresses up
to 1073G. The exponent: varies from 3 to about 10 for metallic materials. At
higher stresses abou® 3G the power law (2.2.80) breaks down. The measured
strain rate is greater than the Eq. (2.2.80) predicts. Withé range of the power-
law break down a transition from the climb-plus-glide to tilele mechanism is
assumed [117]. The following empirical equation can beiagpk.g. [117, 222],

€oy [sinh (a%)rexp <—%> , (2.2.81)

wherea is a material constant. lfo,; /G < 1 then (2.2.81) reduces to (2.2.80).

At higher temperaturesi(/ T,, > 0.7) diffusion mechanisms control the creep
rate. The deformation occurs at much lower stresses anttséxam diffusion of
vacancies. The mechanism of grain boundary diffusion (€ckgep) assumes dif-
fusive transport of vacancies through and around the sesfa€grains. The devi-
atoric part of the stress tensor changes the chemical jtenhatoms at the grain
boundaries. Because of different orientations of grainndaries a potential gra-
dient occurs. This gradient is the driving force for the grbundary diffusion.
The diffusion through the matrix (bulk diffusion) is the divant creep mechanism
(Nabarro-Herring creep) for temperatures close to theinggftoint. For details con-
cerning the Coble and the Nabarro-Herring creep models fee te [116, 222].
These models predict the diffusion controlled creep rateet@ linear function of
the stress.

In addition to the dislocation and the diffusion creep, tremgboundary sliding
is the important mechanism for poly-crystalline materidlsis mechanism occurs
because the grain boundaries are weaker than the orderg@lltmg structure of
the grains [222, 271]. Furthermore, the formation of voidsl anicro-cracks on
grain boundaries contributes to the sliding. The whole ae&tion rate depends on
the grain size and the grain aspect ratio (ratio of the gramedsions parallel and
perpendicular to the tensile stress direction). Samplésaiarger grain size usually
exhibit a lower strain rate.
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2.3 Primary Creep and Creep Transients

In structural analysis applications it is often desirallednsider stress redistribu-
tions from the beginning of the creep process up to the cretpoanstant rate. Let
us note, that in a statically undetermined structure stredistributions take place
even if primary creep is ignored. In the case of rapid chamjeternal loading
one must take into account transient effects of the mateelavior. Let us discuss
some experimental results related to creep under variablg-axial loading con-
ditions. The majority of multi-axial creep tests have beerfgrmed on thin-walled
tubes under combined action of tension (compression) famdeorque. In this case
the uniform stress state = on ® n + t(n ® m + m ® n) is assumed, where
andt are calculated from the force and torque as well as the geprmokthe cross
section (see Sect. 1.1.2). Figure 2.4 presents a sketclpefimental data for type

e, %
L5

0 2.5 5 7.5 10

0 2.5 5 7.5 10

Figure 2.4 Transient creep at combined tension and torsion. Effechefriormal stress
reversala Normal strain vs. timeh shear strain vs. time (after [148])
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Figure 2.5 Creep under shear stress reversals (after [248])

304 steel (%Cr-lMo) at 600C [148]. A tube was loaded the first 5 hours by the
constant tension force and the constant torque. After tigatlirection of the force
was reversed while the torque kept constant. The norméhstsatime creep curve
under compressive force after the reversal differs subatgnfrom the reference
creep curve under tensile force, Fig. 2.4a. The absoluteeval the strain rates be-
fore and after the reversal differs significantly. Furthere) the shear strain vs. time
creep curve is influenced by the reversal of the axial forag, E4b.

Figure 2.5 shows a sketch of experimental results obtaing@48] for IN-
CONEL Alloy 617 (NiCr22Co12Mo) tubes at 990G under cyclic torsion. Every
100 h the applied torque was reversed leading to the chanfje sfgn of the shear
stress. The inelastic shear strain accumulated after gatd af positive (negative)
torque decreases rapidly after few cycles of reversalsil&@itmehavior is reported
in [238] for the type 304 steel, where, in addition, the dffetcthermal exposure
before and during the loading is discussed. Creep behatisteels is usually ac-
companied by the thermally induced evolution of structureasbide precipitates
(coarsening or new precipitation). The effect of ageing aaggnificant influence
on the transient creep of steels as discussed in [238]. Feongbe, the decrease of
inelastic shear strain under alternating torsion was ne¢ed if tubular specimens
were subjected to the thermal exposure within the timevatesf 500 h before the
loading.

Additional effects have been observed in the case of relgeadahe applied
torque combined with the constant tension force, Fig. 2i&t,Fthe axial strain
response is significantly influenced by the cyclic torsioacé@d, the rate of the
shear strain depends on the sign of the applied torque. Sedpanse indicates the
anisotropic nature of the hardening processes.

Multi-axial creep behavior is significantly influenced by ttheformation history.
As an example, Fig. 2.7 presents a sketch of results repuorfdd 7] for type 304
stainless steel. Tubular specimens were first loaded upetsttiessr leading to
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Figure 2.6 Creep at combined tension and torsion. Effect of the sheassteversala
Normal strain vs. timeh shear strain vs. time (after [248])

the plastic strain 08%. After that the specimens were unloadedr§o Subsequent
creep tests have been performed under combined constamalgiraine and shear
strain T. Different stress states leading to the same value of theMises stress
ooM = V024312 = 0y were realized. The results show that the tensile creep
curve of the material after plastic pre-straining diffeigngicantly from the creep
curve of the “virgin material” (curve a). Furthermore, thenvMises creep strain
vs. time curves after plastic pre-straining depend signitly on the type of the
applied stress state (compare, for example, tension, @jrt@sion, curve b, and
compression, curve e).

In this section we discuss phenomenological models to desprimary creep
and creep transients under multi-axial stress states.afergth models of time and
strain hardening. After that we introduce the concept oékiatic hardening which
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Figure 2.7 Effect of initial tensile plastic strain on subsequent preehavior under com-
bined tension and torsion, for details see [157]

is widely used for the characterization of transient crefégcts under constant and
varying loading. Our purpose is to discuss general ideasrréban enter into details
of empirical functions of stress and temperature as weliféerent forms of evolu-
tion equations for hardening variables (the so-calledérard) rules). Regarding the
hardening rules one may consult the comprehensive revi@éws237] and mono-
graphs [174, 185, 208, 301]. For classification and assegsofalifferent unified
models of plasticity-creep interaction we refer to [1489]1L4

2.3.1 Time and Strain Hardening

The time hardening model assumes a relationship betweagthealent creep rate,
the equivalent stress and the time at fixed temperature, i.e.

ft(écerqfaeq/t) =0

The strain hardening model postulates a relationship kerivtiee equivalent creep
rate, the equivalent creep strain and the equivalent satés®d temperature. In this
case

fS(éceZ;/E%/Ueq) =0
Figure 2.8 illustrates the uni-axial creep response affi@ading (stress jump from
o1 toon att = t,). Based on the time hardening model the strain rate at t, is
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Figure 2.8 Creep response at variable loading (the open circles déypital experimental
values)

determined by the stregs and the time, only. Thus the creep curve for > ¢,
can be obtained by translation of the cuBB€ to the pointD. Following the strain
hardening model the strain rate depends on the stress amdtdhenulated strain.
The creep curve after the stress jump can be determinedrstatag the curveAC
(the creep curve for the stress starting from the creep strasy accumulated in
timet,) along the time axis. It can be shown that for specific fumgiof stress, time
and strain as well as under the assumption of the constasssind temperature the
strain and the time hardening models lead to the same desaripor example, if
we set

€oq = AT t" (2.3.1)

according to the time hardening withn andm as the material constants the inte-
gration with respect to the time variable assumipg= const ands‘;f7 =0att=0
leads to

1
ecn = aoy, | i (2.3.2)

On the other hand applying the strain hardening model, thepcequation can be
formulated as

£ = bk, (e5n)' (2.3.3)
Taking into account (2.3.2) the time variable can be elit@ddrom (2.3.1). As a
result the following relations between the material comist@an be obtained

1 n m
b=la(m+1)"m1, k Y l ——
Vice versa, the strain hardening equation (2.3.2) can tegyiated for the special
choice ofk and! and foro,; = const. Again, if sg; = 0 att = 0 we obtain (2.3.2).
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Applying the time hardening model the von Mises-Odqvistepréheory (see
Sect. 2.2) can be generalized as follows

3
&7 = Eaaz’fl\_/fl t"s (2.3.4)
By analogy one can formulate the creep constitutive equatith the strain hard-
ening

3
&7 = Sbogy (e5)'s (2.3.5)

The time and the strain hardening models provide simple erapdescription
of the uni-axial creep curve within the range of primary greed are still popular
in characterizing the material behavior, e.g. [137, 143,)1Despite the simplicity,
both the models suffer from significant limitations, eveajplied stress and tem-
perature are constant. The disadvantage of the time haglemdel is that the time
variable appears explicitly in equation (2.3.1) for thesgreate. An additional draw-
back is that the constants and! take usually the values1 <m < 0,—-1 <1 <0
as the result of curve fitting. HCJ; = 0 att = 0then Eq. (2.3.3) provides an infinite
starting creep rate. One can avoid this problem in a timg{sésed numerical pro-
cedure assuming a small non-zero creep equivalent stréle attarting time step.
Finally, both models can be applied only for the case of thestamt or slowly vary-
ing stresses. Transient creep effects under rapid chamdmesding and particularly
in the case of stress reversals cannot be described.

Further details of time and strain hardening models can tedaon [173, 250].
In [173] a modified strain hardening model is proposed basethe idea of creep
strain origins.

2.3.2 Kinematic Hardening

The common approach in describing transient creep effexterucomplex loading
paths is the introduction of internal state variables anat@mriate evolution equa-
tions (the so-called hardening rules). The scalar-valnégtnal state variables are
introduced in the literature to characterize isotropiaeaing and ageing processes.
An example will be discussed in Sect. 2.4.1.3. Several “classical” effects ob-
served in tests under non-proportional loading have miativéhe use of tensor-
valued variables (usually second rank tensors).

The idea of kinematic hardening (translation of the yieldae in the stress
space) originates from the theory of plasticity and has hetaduced by Prager
[257]. In the creep mechanics the kinematic hardening wapgsed by Malinin
and Khadjinsky [203, 204]. The starting point is the adéitdlecomposition of the
stress tensor into two parts:= & + &, whered is called the active or the effective
part of the stress tensor andlenotes the additional or translation part of the stress
tensor (back stress tensor). The introduced tensors caurtheIf decomposed into
spherical and deviatoric parts
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1
6':§tr6'1+§, trs =0,
1
a= gtr al + B, trp=0, (2.3.6)

1
o= g(tr6+tra)1+s, s=5+P

Itis assumed that the inelastic strain rate is determinetidgctive part of the stress
tensor. The creep potential is then a function of the actreqd the stress tensor, i.e.
W =W(o) =W(o —u), e.g. [245]. As in the case of the classical isotropic creep
(Sect. 2.2.1.1) only the second invariant of the deviaisrconsidered. Introducing
the von Mises equivalent stress

_ 3. 3
ToM = \/Es--s: \/E(s—ﬁ)-- (s —B) (2.3.7)
the flow rule (2.1.6) leads to the following constitutive atjan
) e, . 2. .
£ = 5621;5’ Eop = 56” o g (2.3.8)

The equivalent creep rate can be expressed by the use o amdstemperature
functions discussed in Sect. 2.2.3. For example, with tlreepdaw stress function
and the Arrhenius temperature dependence

g = a0y, 4 = dgexp <—%> (2.3.9)

Equations (2.3.8) contain the deviatoric part of the bagssB. This internal state
variable is defined by the evolution equation and the indaidition. In [201, 202]
the following evolution equation is postulated

a2 2 SCT g(‘va)
p=3be St B (2.3.10)

%ME\/%

For the functiong various empirical relations were proposed. One examp0s,|
202]

with

g(apm) = caly, € =coexp (—%)

Equation (2.3.10) is the multi-axial utilization of the Baji-Orowan recovery hy-
pothesis, see Sect. 2.2I8and ¢y are material constants arig,. is the activation
energy of recovery.

Let us show how the model behaves for the uni-axial homogenstress state
o(t) = o(t)n ® n, whereo(t) is the magnitude of the applied stress anis the
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Figure 2.9 Primary and secondary creep stages of a uni-axial creeg curv

unit vector. Withw (0) = 0 one can assume theft) is coaxial with the stress tensor.
Therefore one can write [201, 202]

1 _
a=anQn, ‘B:zx<n®n—§I>, ToM = |0 —a|,  appm = |«]

From Egs (2.3.9) and (2.3.10) follows

¢ =asign(c —a)|c —a|", & =n-¢"-n,

_ (2.3.11)
& = b — csignu|a|”
Let us assume that(t) = oy > 0,(0) = 0,09 —« > 0 and introduce the variable
H = a/0p. From (2.3.11) we obtain

¢ =aoy (1—-H)",

H =0} '[ba(l — H)" — cH"]
The constitutive and evolution Egs (2.3.12) describe tivagny and the secondary
stages of a uni-axial creep curve, Fig. 2.9. In the consitleese of the uni-axial
tension the parametér < H < H, < 1is equal to zero at the beginning of the

creep process and increases over time. In the steadyrétaté,, whereH, is the
saturation value. From the second equation in (2.3.12) edrob

(2.3.12)

1
H, = _, ou=— (2.3.13)
14 un ab
The minimum creep rate in the steady state is calculated by
e, = a0y (1—H.)" =aoy, a=a(l—H,)" (2.3.14)

The constantg andn can be obtained from the experimental data of steady state
creep. For the given value &, the second equation in (2.3.12) can be integrated
providing the duration time of primary creep, (see Fig. 2.9)
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Figure 2.10 Uni-axial creep after unloading. Simulations based on R 15) for the case
n =3 andH, = 0.7. a Creep strain vs. timdy hardening variable vs. time.

H,

_ 9(Hy) _/ dH
pr = bacl ’ o(H.) = / (1—H)" — uH"

From the first equation in (2.3.12) the creep strzﬁfpfollows att = t,, (see Fig.
2.9) as
H,
o 00 (1-H)"dH

sf”‘?o (1—H)" — pH"

The above equations can be used for the identification ofrmabt®nstants.
To discuss the model predictions for the case of the unitaxigic loading let
us introduce the following dimensionless variables

i. i. Ccr
o(t) . £

o= _ = 7 €= 7

where gy denotes the constant stress value in the first loading cfdeations
(2.3.11) take the form

de . | — H|"

g~ s = H) S

dH . . ) 1—H,.\"
T = o(H.) [signte i)l — " —sign(rt) (15 )

(2.3.15)
Figures 2.10 and 2.11 illustrate the results of the numleintegration of (2.3.15)
with n = 3, H, = 0.7 and the initial conditions(0) = 0 andH (0) = 0. In the first
case presented in Fig. 2.10 we assume ¢y within the time interval0, 2t,,], so
that the hardening variable increases up to the saturatiom and remains constant.
The creep curve exhibits both the primary and the secondages, Fig. 2.10b. At
t = 2t,, we assume a spontaneous unloadingyi.e. 0. We observe that the model
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Figure 2.11 Uni-axial creep under cyclic loading. Simulations basedtga (2.3.15) for the
casen = 3 andH. = 0.7. a Creep strain vs. timdy hardening variable vs. time.

4 5 6

(2.3.15) is able to describe the creep recovery (see Fib).1Fgure 2.11 presents
the numerical results for the case of cyclic loading. Thasling cycles with the
constant stressesop and the holding time\t = 2t,,, Fig. 2.11a, are considered.
We observe that the model (2.3.15) predicts identical cresponses for the first
and the third loading cycle.

Let us give some comments on the model predictions undeii-exi#tl stress
states. For this purpose we consider the case that the daesgors is the known
constant tensor within a given interval of tirftg, t|. Equations (2.3.8) and (2.3.10)
can be rewritten as follows

T gf(ﬁvM) (S _ﬁ)/

Po—
2 Oym
_ (2.3.16)
p=1/ (s g sltlg
oM XyM

In the steady creep stafe= B., wherep, is the saturation value of the back stress
deviator. From the second equation in (2.3.16) it follows

pf o) (o gy 8leom) g (2:317)
OoM, XyM.,

o, =\ 36~ B) - 5 B), taws. = /3. B.

The double inner product of (2.3.17) with itself results in

(b (0om.)]? = [g(wom, )]

Sincef (d,pr,) > 0andg(ayy, ) > 0 we obtain

bf(oom,) = §(aom,) (2.3.18)

where
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From (2.3.17) it follows

ﬁ* _ a'I)M*

=———8 =  0OymM, =0 ! 2.3.19
(7-Z)M* T KoM oM. oM T oM. ( )
Now the steady state value of the back stress deviator caaltdated

S
OuvM

B = auu. (2.3.20)

Let us assume power functions fpandg. Then from (2.3.18) it follows

ba(oom — aom, )" = cagpy,

As in the uni-axial case we introduce the hardening variéble- «a;y;/0pp. The
saturation valuéd, is then determined by (2.3.13). From the first Eq. in (2.36)
obtain

5CT n—1

3 -
€y — Eﬂlfvm S, a

We observe that the kinematic hardening model (2.3.16)lteesu the classical
Norton-Bailey-Odqvist constitutive equation of steadigts creep discussed in Sect.
2.2.1. This model predicts isotropic steady state creegpaddently from the initial
condition for the back stress deviafrFurthermore, different stress states leading
to the same value of the von Mises equivalent stress willigdeothe same steady
state value of the equivalent creep rate.

The model (2.3.16) is applied in [202, 245] for the desooiptof creep for dif-
ferent materials under simple or non-proportional loadingditions. It is demon-
strated that the predictions agree with experimental tesddbwever, in many cases
deviations from the Norton-Bailey-Odgvist type steadyestaeep can be observed
in experiments. For example, in the case shown in Fig. 2.6thady state shear
creep rate changes significantly after the shear stresssedsealthough the von
Mises equivalent stress remains constant. The resultemqezsin Fig. 2.7 indicate
that the initial hardening state due to plastic pre-straithe reason for the stress
state dependence of the subsequent creep behavior. Téis edfinnot be described
by the model (2.3.16).

The models with the back stress of the type (2.3.16) are lystemed to be
the models with anisotropic hardening, e.g. [202]. The tgpbanisotropy is then
determined by the symmetry group of the back stress tensdewator. The sym-
metry group of any symmetric second rank tensor includesyswine elements,
e.g. [199]. For the tensg@ the symmetry elements are

a(1— H,)" (2.3.21)

Qﬁ =dn®@nytny; ¥ny £n3dng, (2.3.22)

wheren; are the principal axes. In order to verify the assumed symesedf hard-
ening one should perform creep tests with non-proportitwzaling of the following
type. During the first cycle a homogeneous constant strass sith the deviatoric
parts should be applied over a period of tinf& t,], t; < t,,. During the second
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loading cycle the stress stat€s - s - QiT should be applied, where the orthogonal
tensord); do not belong to the symmetry groupsofAmong all stress states of this
type the stress stat€3g - s - Qg should exist leading to the same (with respect to

the scatter of experimental data) creep response aftedielp.

As shown in [72] kinematic hardening of the type (2.3.16}ket0 a restrictive
form of orthotropic inelastic behavior. In order to demaoatt this let us write down
the back stress deviator in the following form

B = Bini®@n+Pony@ny — (1 + Po)nz @mn3
= Bi(m®@n;—n3@n3) + Pa(ny @ny —nz Qn3),

wherep; andf; are the principal values and, n, andns are the principal direc-
tions of B. For the given back stress deviathe equivalent stress (2.3.7) takes the
form

2 2
02y = 31 1—@) 3?<1—@> E””(l—@) <1—@>
oha = 3 (1-2) waR (1= ) 30k (1-5) (1- 7
+ 3L, +3L4 ., + 311

113 2nz’

(2.3.23)
where the invariant§ are defined by Egs (2.2.53) and the invaridn;,sj are defined
by Egs (2.2.48). Steady state creep with initial orthottagimmetry is discussed in
Sect. 2.2.2. In this case the von Mises type equivalentssiretudes 6 invariants
and 6 independent material constants. The equivalentss{fe3.23) contains all
6 orthotropic invariants. However, the last three termse@hshear stresses with
respect to the three planes of the orthotropic symmetry)nateaffected by the
hardening. Furthermore, in the steady state range thess temish since the back
stress deviatoB. is coaxial with the stress deviator according to (2.3.20).

The possibilities to improve the predictions of the kineimatardening model
are:

— Introduction of additional state variables like isotropiardening variable, e.g.
[87], ageing variable, e.g. [238], or damage variables, [A.@1]. Models with
damage variables will be discussed in Sect. 2.4.

— Formulation of the creep potential as a general isotropiction of two tensorg
anda. Such an approach is proposed in [72] for the case of plastiod includes
different special cases of kinematic hardening,

— Consideration of the initial anisotropy of the material &abr, e.g. [148].

Creep models with kinematic hardening of the type (2.3.8) different specific

forms of the hardening evolution equation are discusseti5f,[159, 202, 238, 245,
272] among others. For the description of creep and cresstipity interaction at

complex loading conditions a variety of unified models isilaide including the

hardening variables as second rank tensors. For detailsfeeto [174, 176, 185,
208]. Several unified models are reviewed and evaluatedti [149]. The historical

background of the development of non-linear kinematic éairty rules is presented
in [87].
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2.4 Tertiary Creep and Creep Damage

Tertiary creep stage is the final part of the creep processulmi-axial creep curve
tertiary creep is observed as the increase of the creepTrageshape of the final
part of the creep curve and the duration of the tertiary cdsgggnds on the material
composition, the stress level and the temperature. For straetural steels, the
tertiary creep is the major part of the whole creep procegs[H05, 242].

The origins of tertiary creep are progressive damage psesesicluding the
formation, growth and coalescence of voids on grain boueslacoarsening of pre-
cipitates and environmental effects. The voids may nueleatlier during the creep
process, possibly at primary creep stage or even afterapeotis deformation. The
initially existing micro-defects have negligible influenon the creep rate. As their
number and size increase with time, they weaken the mafemaiding the de-
crease in the load-bearing capacity. The coalescence itfesagr propagation of
micro-cracks lead to the final fracture. Creep fracture isallg inter-granular [33].
Dyson [99] distinguishes three main categories of creepadg@mthe strain induced
damage, the thermally induced damage and the environrhemeduced damage.
The strain induced damage may be classified as follows [101]

— excessive straining at constant load,
— grain boundary cavitation and
— progressive multiplication of the dislocation substruetu

The first two damage mechanisms occur in all poly-crystalhmaterials, whereas
the third one is essential for nickel-based super-alloys.

The thermally induced damage mechanisms include mateyeah@ processes
which lead to the loss of strength and contribute to the raticle and growth of
cavities. The example of the thermally induced ageing ihetuthe coarsening of
carbide precipitates for ferritic steels (increase of nudufraction of carbide precip-
itates or new precipitation), e.g. [251]. The rate of agalogs not depend on the
applied stress, but is influenced by the temperature andecaiebtified by exposing
test-pieces to thermal environment.

The environmentally induced damage (corrosion, oxidatein.) appears due
to the attack of chemical species contained within the suding medium. The
environmental damage rate can be inversely related to #tgiece (component)
dimensions [99].

The dominance of a creep damage mechanism depends on theaitposi-
tion, on the fabrication route and on the service conditidits several metals and
alloys, fracture mechanism maps are available [33]. ByagyalWith the deforma-
tion mechanism maps, regions with different fracture madesndicated depending
on the stress and the temperature ranges.

Physical modeling of creep damage is complicated by thetfiattmany differ-
ent mechanisms may operate and interact in a specific matadar given loading
conditions. This interaction should be taken into accoaorthe damage rate equa-
tions. Models related to the grain boundary cavitation @&eussed and reviewed in
[155, 271].
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The characterization of tertiary creep under multi-axte¢ss states is the im-
portant step in a creep analysis of engineering structéréetime prediction of a
specific load bearing component designed for creep, or duasiifetime estima-
tion of a structure operating at elevated temperature resja model which takes
into account tertiary creep and damage evolution underifaxitl stress states.

The damage rate and consequently the creep rate are degdrinirthe stress
level, the accumulated damage and the temperature. Thpsadincies can be es-
tablished based on experimental data from the uni-axiajctesting. If the material
is subjected to multi-axial loading, the kind of stressestads a significant influence
on the damage growth. Tension and compression lead toatiffereep rates. Dif-
ferent stress states corresponding to the same von Miséskm stress lead, in
general, to different equivalent tertiary creep rates athike equivalent strain rate in
the secondary stage is approximately the same. These faastablished from the
data of creep tests under combined tension and torsion[169, 170], as well as
from biaxial and triaxial creep tests [282, 283]. Stresgestdfects must be consid-
ered in the damage evolution equation. In Sect. 2.4.1 weisksearious possibilities
to characterize the tertiary creep behavior by means oéswalued damage para-
meters. Under non-proportional loading conditions, theitamhal factor is the in-
fluence of the damage induced anisotropy. Examples are @sspunder combined
tension and alternating torsion, e.g. [218], and creep tesder biaxial loading with
alternating direction of the first principal stress [283]bdoth cases the assumption
of isotropic creep behavior and the scalar measure of daieadeo disagreement
with experimental observations. In Sect. 2.4.2 we reviemeexperimental results
illustrating the damage induced anisotropy and discusspetdamage models with
tensor-valued damage variables.

2.4.1 Scalar-Valued Damage Variables

Many microstructural observations show the directiongdatfof creep damage. For
example, during a cyclic torsion test on copper voids nuelead grow predomi-
nantly on those grain boundaries, which are perpendicaléné first principal di-
rection of the stress tensor, e.g. [134]. Creep damage kasfoine an anisotropic
nature and should be characterized by a tensor. Howevde iinitially isotropic
material is subjected to constant or monotonic loading tifleeénce of the damage
anisotropy on the observed creep behavior, i.e. the stgitiwe curves, is not sig-
nificant. If the state of damage is characterized by a teisser $ect. 2.4.2) then such
a tensor can be assumed to be coaxial with the stress terggrmonotonic loading
conditions. In such a case only the scalar damage measufrestsr the creep con-
stitutive equation. Below we introduce different modeldatiary creep including
the phenomenological, the so-called micromechanicalhsisbent and mechanism
based models. The effect of damage is described by meanalaf selued damage
parameters and corresponding evolution equations. Thess#tate influences are
expressed in the equivalent stress responsible for thegiamalution.

2.4.1.1 Kachanov-Rabotnov Model. The phenomenological creep-damage
equations were firstly proposed by L. Kachanov [150] and Raho[263]. A new
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internal variable has been introduced to characterize ¢betinuity” or the “dam-
age” of the material. The geometrical interpretation ofdbetinuity variable starts
from changes in the cross-section area of a uni-axial spETi®pecifying the initial
cross-section area of a specimendyand the area of voids, cavities, micro-cracks,
etc. byAp, the Kachanov's continuity is defined as follows (see [152])

_Ap—Ap
ll)_ AO

The valueyp = 1 means the virgin, fully undamaged state, the conditjor= 0
corresponds to the fracture (completely damaged crogmisic

Rabotnov [263, 264, 265] introduced the dual damage variablin [264] he
pointed out that the damage state variablémay be associated with the area frac-
tion of cracks, but such an interpretation is connected witbugh scheme and is
therefore not necessary”. Rabotnov assumed that the catefsradditionally de-
pendent on the current damage state. The constitutiveiequgiould have the form

s-cr — S'CV(O',CL))
Furthermore, the damage processes can be reflected in thé@vequation
w=w(o,w), wli==0 w<ws,

wherew, is the critical value of the damage parameter for which theens fails.
With the power functions of stress and damage the consgt@quation may be
formulated as follows

CT ac”
S 24.1
S T (2.4.1)
Similarly, the damage rate can be expressed by
bok
V)= ——— 2.4.2

These equations contain the material dependent constahts:, m, [, k. It is easy
to prove that for the damage free state & 0), the first equation results in the
power law creep constitutive equation.

Settingm = n the first equation can be written as

¢’ = ad", (2.4.3)
whered = o/(1 — w) is the so-called net-stress or effective stress. In thie cas
(2.4.3) is a generalization of the Norton-Bailey secondaegep law for the descrip-
tion of tertiary creep process. Lemaitre and Chaboche [p8&30sed the effective
stress concept to formulate constitutive equations foratged materials based on
available constitutive equation for “virgin” materialsnAnterpretation can be given
for a tension bar, Fig. 2.12. Herl) denotes the initial cross-section area of the bar,
Fig. 2.12a. From the given tensile forEdhe stress can be computedvas- F/ Ag.
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F=0A F=0A

Figure 2.12 Strain and damage of a barlnitial state,b damaged state, fictitious undam-
aged state

The axial strain for the loaded bar= (I —1y)/ly can be expressed as a func-
tion of the stress and the actual damage f(c,w), Fig. 2.12b. For the effective
cross-sectiod = Ay — Ap the effective stress is

. F 0
T AT 1w
Now a fictitious undamaged bar with a cross-section atedig. 2.12c, having
the same axial strain response as the actual damaged=baf(d) = f(o, w) is
introduced. The strain equivalence principle [183] st#tes any strain constitutive
equation for a damaged material may be derived in the sameawdgr a virgin
material except that the usual stress is replaced by thetigfestress. Thus the
constitutive equation for the creep rate (2.4.3) is the pdaw generalized for a
damaged material.
Let us estimate the material constants in the model

k
S
(1-w)

based on uni-axial creep curves, Fig. 2.13. Setiing 0 the first equation yields the

minimum creep rate. The material constantmdn can be determined from steady
state creep. Let”. . andé . , be minimum creep rates at the constant stresges
ando», respectively. Then the material constants can be estihfiaim

o ecr scr scr
_ 08 (& /i) Eimt _ i (2.4.6)

log(oy /o)~ = of ol

(2.4.4)

(2.4.5)
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Figure 2.13 Phenomenological description of uni-axial creep curves

For a constant stressthe second equation (2.4.5) can be integrated as follows

Wi

ty
/(1—w)ldw - /bakdt
0

0

with ¢, as time to fracture of the specimen. Setting the critical agenvaluev, = 1

we obtain ,

(I +1)bo*
This equation describes the failure time - applied strelsdioa. For a number of
metals and alloys the experimental data of the long-terength can be approxi-
mated by a straight line in a double logarithmic scale. Nthtat such an approxi-
mation is valid only for a specific stress range, Fig. 2.14hmspecial cask = [

the material constanfsandb may be estimated from the long-term strength curve
as follows

t = (2.4.7)

. log(t*z/t*l) 1 1
Clog(oi/on) " tg(k+ 1)k ta(k+1)0k

with t,q, t,» as failure times corresponding to the applied stressemdo,. Inte-
gration of the second Eq. (2.4.5) with respect to time by dig6q00(2.4.7) provides

w(t):1—<1—£>1+11
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Figure 2.14 Long-term strength curve

After integration of the creep rate equation (2.4.5) witk- const we obtain

er(p) — ga’n*k 1 1 t Hlilk;n
OBl iy Ll E

The creep strain{ at timet, (fracture strain) can be calculated as

o {,Z(Tnfk
&) = a1

If k > n then the fracture strain is a decreasing function of strElss is usually
observed in the case of moderate stresses.

The phenomenological model (2.4.5) characterizes theteffedamage evolu-
tion and describes the tertiary creep in a uni-axial testaHmumber of metals and
alloys material constants are available, see e.g. [18,89,32, 141, 142, 143, 144,
163, 169, 184, 185, 216]. Instead of the power law functidrsdress or damage itis
possible to use another kind of functions, e.g. the hypérisihe functions in both
the creep and damage evolution equations. In addition, déyntnoduction of suit-
able hardening functions or internal hardening varialitessmodel can be extended
to consider primary creep.

In applying (2.4.5) to the analysis of structures one shbelar in mind that the
material constants are estimated from experimental creees, usually available
for a narrow range of stresses. The linear dependenciegbelug ¢/, andlog
or betweenlogt, andlogc do not hold for wide stress ranges. For example, it is
known from materials science that for higher stresses thieada mode may change
from inter-granular to transgranular, e.g. [33]. Alteivelly, tertiary creep can be
described by the introduction of several internal variabMhich are responsible
for different interacting damage mechanisms. Exampless@mh models will be
discussed later.
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The model (2.4.5) is a system of two ordinary differential&ipns, which must
be integrated over time in order to obtain the current créignsand damage. For
the analysis of statically indeterminate structures thegiration must be performed
numerically, even in the case of a uni-axial stress statsoine cases the effect of
tertiary creep rate does not lead to significant stresstrémigon and one can ne-
glect the damage variable in the constitutive equation.12.4.9. [276]. The dam-
age evolution equation can be integrated separately pnoyvithe time to fracture
estimation for the given constant stress in the steadg-staep range.

To discuss multi-axial versions of (2.4.1) and (2.4.2) kehaglect primary creep
effects and assume the von Mises type secondary creep ahaexdel introduced

in Sect. 2.2.1 3
. s
& = EaUgM -

(2.4.8)

Rabotnov [264] assumed that the the creep potential for aheaded material has
the same form as for the secondary creep. His propositiontveamtroduction of
an effective stress tensér= f (o, w). For the case of distinct principal values of
the stress tenser; > o7 > oy andop > 0 the following expression is suggested
[264]

~ oy
0= 1M en oy @ny+omi @ n

If we apply the strain equivalence principle [185] than tlmmstitutive equation
(2.4.8) can be modified by replacing the stress teasaith the effective one. As-
suming the effective stress tensor in the fatm= o /(1 — w), the constitutive

equation (2.4.8) can be generalized as follows [182]

3 o, " s
T oM
= — 2.4.9
£ 2”(1—w> ot (2:4.9)

The next step is the formulation of the damage evolution &guaBy analogy with
the uni-axial case, the damage rate should have a form

w=w(o,w)

The dependence on the stress tensor can be expressed by ohélamsdamage
equivalent stress’&e‘*gl(cf) which allows to compare tertiary creep and long term
strength under different stress states. With the damagiwadet stress, the uni-
axial equation (2.4.2) can be generalized as follows
b(og)

=] (2.4.10)

W=
The material constants b, 11, k and! can be identified from uni-axial creep curves.
In order to find a suitable expression for the damage equit/ateess, the data from
multi-axial creep tests up to rupture are required. In @neg[] can be formulated
in terms of three invariants of the stress tensor, for exarti@ basic invariants (see
Sect. 2.2.1)



70 2 Constitutive Models of Creep

eg = egl11(0), I2(0), I3(0)]

Similarly to the uni-axial case, see Eq. (2.4.7), the damagw@ution equation
(2.4.10) can be integrated assuming that the stress tessocanstant function of
time. As a result, the relationship between the time to cfesgiure and the equiv-
alent stress can be obtained
1
t, = m(agj])*k (2.4.11)

Sdobyrev [288] carried out long-term tests on tubular speois made from alloys
El-237B (Ni-based alloy) and EI-405 (Fe-based alloy) uneesion, torsion and
combined tension-torsion. The results of the tests are sarmed for different tem-
peratures with the help of equivalent stress vs. fractune fplots. The following
dependence was established

%(‘TI +oom) = f(logts) (2.4.12)
He found that the linear functiofi provides a satisfactory description of the ex-
perimental results. The equivalent stress responsiblégdang term strength at
elevated temperatures is theg = %(U] + o,Mm). Based on different mechanisms
which control creep failure, the influence of three streategbarameters (the mean
stressoy, = I /3, the first positive principal stress or the maximum tensifess
omaxt = (07 + |07])/2 and the von Mises stress) is discussed by Trunin in [314].
The Sdobyrev criterion was extended as follows

1 30,

o == (oypm + 0, al =2 =" 2.4.13
“ 2 ( oM maxt) 1 OoM + Omaxt ( )

wherea is a material constant. For special loading cases this alguivstress yields

— uni-axial tension

— uni-axial compression
B3
Ueqg = T n=-1

— pure torsion

o V3+1
eq — 2
The constant can be calculated from the ultimate stress values leaditigeteame

fracture time for a given temperature. For example, if thienalte tension and shear
stresses are, andt,, respectively, then

Ta, n=0

M
V341
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Hayhurst [132] proposed the following relationship
by = A(“Umaxt + BL + ’)’UUM)ixr (2.4.14)

where A and y are material constant$, = 30, anda + B + v = 1. Comparing
this equation with Eqg. (2.4.11) one can obtain

1
A= m, X = k, 0'5;] = KOmaxt + ‘Bll + YOoM (2415)
Hayhurst introduced the normalized stress te@sor o /oy and the normalized
time to fracturet, = t./t.o, Wheret,q is the time to fracture in a uni-axial test
conducted at the stresg. From Eqgs (2.4.7) and (2.4.11) it follows

—k

E o= <§> = (o)~

0o

By setting the normalized rupture time equal to unity, theahpn(fg; = 1 follows,
which is connecting the stress states leading to the eqpélinaitime. In [132]
the data of biaxial tests (biaxial tension test, combinegita and torsion of tubu-
lar specimens) for different materials are summarized.al$ found convenient to
present the results in terms of the isochronous ruptur@aseirfvhich is the plot of
the equation'f;;; = 1 for the specified values of and$ in the normalized stress
space. For plane stress states the isochronous rupturedlodie presented in the
normalized principal stress axes. Examples for differeatemials are presented in
[132]. The coefficients andp are specific for each material and, in addition, they
may depend on the temperature. Figure 2.15 shows the ismlsaupture loci for
three special cases;;; = Omaxt, (7;;; = OyM anda«;g = 30,,. The first two represent
the extremes of the material behavior [182].

A more general expression for the damage equivalent stegsbe formulated
by the use of three invariants of the stress tensor. With theifivariant/;, the von
Mises equivalent stress,,; and

, 27 (s-s) s T T
=22 2 _D<cEr< )
Sin ¢ 2 oum 6 =6= 6

as a cubic invariant, the following equivalent stress hanl@oposed in [27]

(7'2; = Moypmsing + Axopn cos € + Asoppm + Aglh + Aslisiné + Agly cos ¢
(2.4.16)
The identification of coefficientd;, i = 1,...,6 requires six independent tests.
Equation (2.4.16) contains a number of known failure aaters special cases, see
[27]. For example, setting; = A, = Ay = A5 = A¢ = 0 the equation provides
the von Mises equivalent stress. Taking into account

1 . 27 1 . 3 1
o = 3 |:ZUUM sin <§+ ?> + 11] = —g%M sin¢ + gtva cos¢ + 511
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Figure 2.15 Plane stress isochronous rupture loci, for details se€ [132

and with

one can obtairg; = 5 (o7 + o). With

M= —ia Azzﬁa, As = B, A4:1—§a

: 8 —B, As=Ag=0

Eq. (2.4.16) yieldsry = aop + Boom + (1 — a — B)I1. Other examples are dis-
cussed in [3].

In order to identify the material constants, e.g.in (2.4.13) ora and g in
(2.4.14), the values of the ultimate stresses leading tcséimee failure time for
different stress states are necessary. Therefore seriedagfendent creep tests up
to rupture are required. For each kind of the test the long &rength curve (stress
vs. time to fracture curve), see Fig. 2.14, must be obtaiRed.example, a series
of torsion tests (at least two) under different stress vakigould be performed.
Usually, experimental data from creep tests under comptessstates are limited
and the scatter of the experimental results is unavoidailerefore, the constitu-
tive and the evolution equation (2.4.9) and (2.4.10) with tivo-parametric dam-
age equivalent stress (2.4.15) are widely used in modediriaty creep. Examples
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of material constants as well as structural mechanics egiins can be found in
[18, 69, 77,132, 142, 143, 144, 163, 169] among others.

2.4.1.2 Micromechanically-Consistent Models. The creep constitutive
equation (2.4.9) includes the effect of damage by meanseoktjuivalent stress
concept. An alternative approach to formulate the creestitative equation can
be based on micromechanics. Rodin and Parks [277] condidarénfinite block
from incompressible isotropic material containing a gidéstribution of cracks and
subjected to a far field homogeneous stress. As a measurarziggathey used
p = a®N/V, whereN is the number of cracks (voids) in a volurireanda is the
averaged radius of a crack. Assuming power law creep, thaydfdhat the creep
potential for such a material has the following form

€000 ToMm n+1
W(e,p,n) = <¢r,,> 0 , 2.4.17
@,pm) = 20 £ (¢l0) ) (22 (2.417)
where¢ is the reference creep rai®, is the reference stress ands a material
constant{ (o) is a function representing the influence of the kind of stetate. In
[277] the following particular expression is proposed

o1

(o) = —,

OuvM

wherecy is the maximum principal stress. The creep potential (Z)4ahd the flow
rule (2.1.6) give

W _ OW oo | WA
o0 Jdoyy OO o7 do
n
(o[B8, Cfz ) s fz
N 80<ao> [2<f n+1 UUM+n+1nI®nI ’
wheren; is the first principal direction of the stress tensor. Thecfiom f must
satisfy the following convexity condition [277]

ffe— fz>0,

The form of the functionf is established for the assumed particular distribution of
cracks and by use of a self-consistent approach. In [278ptleeving expression is
proposed

8'CV

(2.4.18)

n
n+1

n+1

2

f@Gom) = [1+a(pm] *
20 (2n+3)p*>  (n+3)p° (n+3)p*
n+1 nn+1)2  9Inn+1)3  108n(n+1)*

a(o,n) =

Models of the type (2.4.18) are popular in materials scieratated literature,
e.g. [121, 211]. They are based on micromechanical coradides and therefore
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seem to be more preferable for creep-damage analysis. owavy idealized

damage states, e.g. dilute non-interacting cracks or witls a given density

and specific distribution can be considered. Furthermargresent there is no
micromechanically-consistent way to establish the fornthef evolution equation
for the assumed damage variable. Different empirical égusiare proposed in the
literature. For example, Mohrmann and Sester [211] asshatettie cavity nucle-

ation is strain controlled and recommend the following diqua

»
A
Pf <W>

wherepy, e and-y are material constants which should be identified from “macr
Scopic” creep responses.

Bassani and Hawk [36] proposed to use a phenomenologicagaparameter
w (see Sect. 2.4.1.1) instead@fThe functionf is then postulated as follows

n+1

2

f(g,w,n) = m <1 — aow + zxowgz) (2.4.19)
Here oy oh
g = (1 — Dél)UUM —|—(X100M

andk, n, ag andaq are material constants. From Eqgs (2.4.18) and (2.4.19visl|

n
1 .
= o () e et 7
0 sw (2.4.20)
X {E(l—rxow)aM+txow§[(1—¢x1)n1®n1+tx11]}
v

With oy = 1 andk = n (2.4.20) yields the Kachanov-Rabotnov type constitutive
equation (2.4.9). By settingg = 1, k = (n+1)/2 andw < 1 Eq. (2.4.20)
approximates the Rodin and Parks micro-mechanical baselIni@77]. For the
casek = n, ap = 1 andaq = 1 the constitutive equation for the creep rate can be
presented as follows

n—1 3 S
T 21—
y(1—w —

é“:%[—ﬂﬂ—ﬂna—w+wé) + wil

0’0(1 —w

From Eq. (2.4.20) one can calculate the volumetric creap rat

n
¢y = tr &7 = 20 <U;é\/l> (1 —1w)k (1 — Kow + Oéoa)gz)nT_l [Déo&]é(l + 20(1)]
We observe that the damage growth induces dilatation. Greestitutive equations
(2.4.18) or (2.4.20) include the first principal dyad of thess tensor. It should be
noted that the dyad; ® n; can be found only itr; £ 0, 07 # o7 andoy # oyp;.

In this case, e.g. [199]
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1
(UI - UH)(UI —Um)

Inserting (2.4.21) into (2.4.18) or into (2.4.20) we obsetvat not only the volumet-
ric strain but also second order effects (see Sect. 2.2digoussion) are “induced”
by damage.

2.4.1.3 Mechanism-Based Models. The constitutive and evolution equations
(2.4.9) and (2.4.10) are formulated in terms of power lawcfioms of stress. It
is known from materials science that the power law creep ingdarantees the
correct description only for a specific stress range (seéB2@). In addition, the
power law stress and damage functions used in Egs. (2.4d9pah10) may lead to
numerical problems in finite element simulations of creeptiactures with stress
concentrations or in attempts to predict the creep cracktirfil92, 281].

The uni-axial creep tests are usually performed under &se stress and tem-
perature levels in order to accelerate the creep processh&dong term analysis
of structures the material model should be able to predegtrates for wide stress
ranges including moderate and small stresses. Within therra science many
different damage mechanisms which may operate dependitfteasiress level and
the temperature are discussed, e.g., [99]. Each of the damaghanisms can be
considered by a state variable with an appropriate kingticgon.

Another way for the formulation of a creep-damage constguimodel is the
so-called mechanism-based approach. The internal statbhs are introduced
according to those creep and damage mechanisms which denfaraa specific
material and specific loading conditions. Furthermordediit functions of stress
and temperature proposed in materials science can beedtilizhe form and the
validity frame of such a function depend on many factorsudirig the stress and
temperature levels, type of alloying, grain size, etc. Tlaemals science formula-
tions do not provide the values of material constants (dméykiounds are given).
They must be identified from the data of standard tests, aigaxial creep test.
Examples of mechanism-based models can be found in [133,1734 243, 251].
Here we discuss the model proposed by Perrin and Hayhur&6it] for a 0.5Cr-
0.5Mo0-0.25V ferritic steel in the temperature range 600 5°€7

The starting point is the assumption that the rate of thel lgein boundary
deformation is approximately a constant fraction of theralleeformation rate.
From this follows that the constitutive equations for them creep rate can be
formulated in terms of empirical relationships between ltieal grain boundary
deformation rate and the stress, the temperature, theatiawnitrate, etc.

For ferritic steels the nucleation of cavities has beenmieskat carbide particles
on grain boundaries due to the local accumulation of disioes. The nucleation
kinetics can be therefore related to the local deformattamthermore, the cavity
nucleation depends on the stress state characterized/ by,,. Cane [83] observed
that the area fraction of intergranular cavities in the plaormal to the applied
stress increases uniformly with the accumulated creemstig proposed that the
nucleation and growth can be combined into an overall measiucavitation. The
cavitated area fractior s can be related to the von Mises equivalent creep strain,

deto

nyen = 0> — (tro—o7)o + I (2.4.21)
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the von Mises equivalent stress and the maximum principassty the equation

Af = De (”I >H (2.4.22)
f oM U'UM ’ T
whereD andyu are constants depending on the material microstructureinRend
Hayhurst define the damage state variablas the cavitated area fraction. The fail-
ure condition in a uni-axial creep test is the complete e#aih of all grain bound-
aries normal to the applied stress. The cavitated areadnaof such cavities at
failure is approximatelyt /3. Therefore, the critical state at which the material fails,
can be characterized by, = 1/3.

The important mechanism of creep damage for the ferritiel steder consid-
eration is the temperature dependent coarsening of capbet@pitates. First, the
carbide precipitates restrict the deformation of the gmafarior and second, they
provide sites for nucleation of cavities. Following Dys@®], the particle coars-
ening can be characterized by the state varighbte 1 — I;/] related to the initial
(1;) and curren{]) spacing of precipitates. The kinetic equation is derivedithe
coarsening theory [99, 101]

¢ = (%) (1—¢)* (2.4.23)

with K, as the material dependent constant for a given temperdtheerate of the
coarsening variable is independent from the applied s@adscan be integrated
with respect to time. The primary creep is characterizechbywork hardening due
to the formation of the dislocation substructure. For thiggpse a scalar hardening
state variableH is introduced. This variable varies from zero to a saturatialue
H., at which no further hardening takes place. The proposeldittamo equation is

o heEdT, H
H=—M(1_-~ 2.4.24
OuM < H*) ( )

with k. as the material constant.

The creep rate is controlled by the climb plus glide deforamatechanism. For
the stress dependence of the creep rate, the hyperbolistsgss function is used.
The materials science arguments for the use of hyperbale fsinction instead of
power law function are discussed, for example, by Dyson andddn [102]. With
the assumed mechanisms of hardening, cavitation and agedhtiie corresponding
state variables the following equation for the von Misepreate is proposed

BUUM<1 _ H)
(1-¢)(1-w)

The previous equations are formulated with respect to a tieegberature. The in-
fluence of the temperature on the processes of creep defonneteep cavitation
and coarsening can be expressed by Arrhenius functionsapiphopriate activa-
tion energies. Further details of the physical motivatiomdiscussed in [251]. The
following set of constitutive and evolution equations hasibproposed

¢, = Asinh (2.4.25)
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cr _§ s A sinh Boym(1 — H)
20um 1-¢)1-w)’
el (1)
oM H. ’

(2.4.26)

whereN = 1 foro; > 0 andN = 0 for o7 < 0. Ao, By, Do, K¢y, he, Hy, Qa, O,
Qp andQg, are material constants which must be identified from unalasieep
tests. The material constant the so-called stress state index, can be determined
from multi-axial creep rupture data. These constants amtiiied in [251] based on
the experimental data of uni-axial creep over the stresgerafi28 — 110 MPa and
over the temperature range ®@f5 — 690° C. In [252] Eqgs (2.4.26) are applied to
model creep in different zones of a weldment4d° C including the weld metal,
the heat affected zone and the parent material.

It should be noted that Eqs (2.4.26) are specific for the densd material and
can only be applied with respect to the dominant mechanigithe@wreep deforma-
tion and damage evolution. Further examples of mechanisadoaaterial models
are presented in [244] for a nickel-based super-alloy and7f] for an aluminium
alloy.

2.4.1.4 Models Based on Dissipation.  Sosnin [296, 297] proposed to charac-
terize the material damage by the specific dissipation wilk. following damage

variable has been introduced
t

qg= /aé”dT (2.4.27)
0
For the variabley the evolution equation was postulated

= fo(@)f1(T) fq(q)

For the multi-axial stress and strain states this variabtiefined as follows
t
q= / o--¢7dt
0

In [297] Sosnin presented experimental data for varioaititm and aluminium
alloys in a form ofg vs. time curves. He found that a critical valge exists at
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which the material fails under creep conditions. The vajueloes not depend on
the kind of applied stress and can be considered as a matensiant.
For isotropic materials the creep rate equation can be fiateul as follows (see
Sect. 2.2.1) .
aCr 3 P ACT ~CT
& =-—=s8, P=0-& =0oymé,my (2.4.28)
2 OuoM
Sosnin assumed the dissipation poweo be a function of the von Mises equivalent
stress, the temperature and the internal state variedefollows

§ =P = fo(oom) fr(T)fy(q)

In many cases the following empirical equation providestesfeatory agreement
with experimental results

n
ball

, (2.4.29)
gk (qitt — gktym

q':

whereb, n, k, m andg, are material constants. In [297] experimental data obthine
from uni-axial tests and tests on tubular specimens undebowd tension and
torsion are presented. Particularly the results of combteasion and torsion tests
show that the;y versust curves do not depend on the kind of the stress state. The
material constants are identified for titanium alloys OB4;5 and BT-9, for the
aluminium alloy D16T and for the steel 45. In [28] the Sossidissipation damage
measure is applied to the description of creep-damage ditdréum alloy OT-4
and the aluminium alloy D16T considering stress state tsffé [341]Zyczkowski
calculated the dissipation powerstarting from the Kachanov-Rabotnov constitu-
tive equation (2.4.9). He found that for a class of mateiiids possible to express
the damage evolution equation (2.4.10) in terms of the ph$igin power. He con-
cluded that this approach allows to reduce the number ofiahtmnstants to be
determined from creep tests.

2.4.2 Damage-Induced Anisotropy

The dominant damage mechanism for many materials is theatimh and growth
of cavities and formation of micro-cracks. Cavities nutdean grain boundaries
having different orientations. At the last stage beforeepraupture the coalescence
of cavities and the formation of oriented micro-cracks iseved. The direction of
the orientation depends on the material microstructureoarttie kind of the applied
stress. For example, micrographs of copper specimensl t@stker torsion show that
the micro-cracks dominantly occur on the grain boundariessg normals coincide
with the direction of the maximum positive principal strg¢$84, 136, 212]. The
strongly oriented micro-cracks may induce anisotropiepnesponses particularly
at the last stage of the creep process. Creep responses afigtenitic steel X8
CrNiMoNb 1616 and the ferritic steel 13 CrMo 4 4 are experitaiy studied in
[63, 105] with respect to different loading orientationggu¥e 2.16 schematically
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Figure 2.16 Uni-axial creep tests with different orientations of thadong directiona Creep
curve for a flat specimen and creep curves for small speciaesdifferent prestraining,
b creep curves for different loading directions after praising of0.75¢5" (after [63, 105])

presents the results of testing. Uni-axial creep tests wanéed out on flat speci-
mens at different stress and temperature levels. In ordestablish the influence of
the creep history (pre-loading and pre-damage), serieatadgkecimens were tested
up to different values of the creep strain. The values of tkeg pre-straining were
e = 0.25¢;0.5¢;0.75¢5, wheree? is the creep strain at fracture. After unload-
ing, small specimens were manufactured from the pre-stiaflat specimens with
different orientation to the loading axis, Fig. 2.16b. The-axial tests performed
on the small specimens show that the creep responses depehd angle of the
orientationd. In [105] it is demonstrated that for small specimens praiséd up
to 0.25¢S" the creep response is not sensitive to the afglEhe significant depen-
dence of the creep curves and the fracture times on the @rgds been observed
for specimens pre-strained upag’5eS.

In [218] creep tests were carried out on thin-walled coppees$ under com-
bined tension and torsion. The loading history and the cregponses are schemat-
ically presented in Fig. 2.17. During the first cycle the spens were preloaded by
constant normal and shear stresses within the time int@hval. In the second cy-
cle from¢#; up to creep rupture the specimens were loaded under the sarsiict
normal stress but the reversed constant shear stressrébe state after the reversal
is characterized by the change of the principal directidhg.angle between the first
principal direction in the reference state and after thensal can be controlled by
the values of the normal and the shear stresses. Creep sesgon different angles
are discussed in [218]. It is demonstrated that the creepaga model with a scalar
damage parameter, see Sect. 2.4.1, is not able to predictabe behavior after the
shear stress reversal. Particularly, it significantly wagiémates the fracture time in
all loading cases. Similar results are discussed in [218¢&an tests on Nimonic
80A.
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Figure 2.17 Creep tests at combined tension and torsahoading history,b creep re-
sponses (after [218])

The introduced examples of experimental observationsa@teithat the creep
rate and the lifetime of a specimen additionally depend erotiientation of micro-
defects with respect to the principal axes of the stresote@ne way to consider
such a dependence is the use of a tensor-valued damage paEralngecond rank
damage tensor was firstly introduced by Vakulenko and M. idaok [316] for
the description of elastic-brittle damage. The first attetopuse a tensor-valued
damage parameter in creep mechanics is due to Murakami and Rmh5, 217].
They considered a characteristic voluvien the material havingN wedge cracks
and specified the area of the grain boundary occupied bithherack bydA’é‘,. They
assumed that the state of damage can be characterized lmjithérfg second rank
symmetric tensor

3 N

0= Y, [imt @ m* k(1 - mt mb)]aal, (2.4.30)
%4

A(V) (3

wherem! is the unit normal vector to theth crack andA¢ (V) is the total area of
all grain boundaries ifV. w* characterizes the effect of tieh crack on the area
reduction in the planes whose normals are perpendicutaf tSpecifying the three
principal values of2 by (2;, j = 1,2,3, and the corresponding principal directions
by the unit vectors:; the damage tensor can be formulated in the spectral form

3
0= Z Q]n] Qn; (2.4.31)
j=1
The principal values of the damage tenérare related to the cavity area fractions

in three orthogonal planes with the unit normats; . The cases2; = 0 and
(2; = 1 correspond to the undamaged state and the creep-rupture jihtplane,
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respectively. By analogy with the uni-axial bar (see Fig22 Murakami and Ohno
introduced a fictitious undamaged configuration in a solidniBans of effective
infinitesimal area elements. From three orthogonal plaaeib the unit normals
—n; aninfinitesimal tetrahedron is constructed with area efemedi;d A; andiid A
so that

(2.4.32)

With Q]n] :n]--.() :.Q.n]-
fdA = (I -Q)-ndA (2.4.33)

The stress vector acting in the plane with the unit nomnedn be specified hy(n).
The resultant force vector acting in the plah# is

dAG ) = dAn-0 =dAi-(I1-Q) ' -0c=dAn-6, 6=(1-0Q) "0,
(2.4.34)
wheregd is the effective stress tensor. Introducing the so-calladabe effect tensor
@ = (I - Q) ! one can write
c=o.0 (2.4.35)

According to the strain equivalence principle [185], thesttutive equation for the
virgin material, for example the constitutive equation fioe secondary creep, can
be generalized to the damaged material replacing the Casidgs tensar by the
net stress tensa@r. The net stress tensor (2.4.35) is non-symmetric. Intrioduihe
symmetric part

5 = %(U-GH—CID-U) (2.4.36)
the secondary creep equation (2.4.8) is generalized asv®[219]

3 1 3
- Eaaggdlés, § =0 -0l Gom = /58 & (2.4.37)

é
The rate of the damage tensor is postulated as a functiore sttess tensor and the
current damage state. The following evolution equatiorrappsed in [218] for the
description of creep damage of copper

Q = b[ad; + (1 — )55, (n] - @-n9)'nf @nJ, (2.4.38)

whereb, a, k and! are material constants and the unit veatrdenotes the di-
rection corresponding to the first positive principal sdrés The constitutive and
evolution equations (2.4.37) and (2.4.38) have been aplif219] for the descrip-
tion of creep-damage behavior of Nimonic 80A. The second damage tensor
(2.4.31) and the net stress (2.4.36) have been used in [2t8Me\Vetty-type creep
equations for the prediction of creep-damage of copper.rébelts show that the
model with the damage tensor provides better agreementexjirimental data if
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compared to the model with a scalar damage parameter, se2.Frg In [217] the
following damage evolution equation is utilized

€2 = (a5} + B + (1 —a — By (tr @) 72 [y1 + (1 —p)nf @],
(2.4.39)
wherep andy are material constants. This equation takes into accoernbtluence
of the mean stress on the damage rate. Furthermore, thegsoprart of the damage
tensor associated with the growth of voids is included.

To discuss the damage tensor (2.4.31) let us consider aiatiFomogeneous
stress state = oym @ m with oy > 0 andm = const. Let us specify2 = 0 as the
initial condition. The evolution equation (2.4.38) takhe form

Q) =witmeom, w= L w(0) =0 (2.4.40)

- ¢ T (1 — w)kH - o

The equation for the scalar can be integrated as shown in Sect. 2.4.1. As a result
one can find the relation between the time to fracture andtteessy. Based on
this relation and experimental data one can estimate thesalf material constants
b, k and! (Sect. 2.4.1). According to the introduced damage mealue3(l) the
damage stat® = wm ® m corresponds to the case of uniformly distributed penny-
shaped cracks (circular planes) with the unit normals

Now let us assume that the damage sfte= wom @m, 0 < wy < 1is
induced as a result of the constant stress- cym @ m exerted over a period of
time and in the next loading cycle= opp @ p, p- m = 0. In this case the solution
of (2.4.38) can be written down as follows

ba{)‘
(T —wn’

The model predicts that in the second cycle the materialveshike a virgin un-
damaged material. The corresponding time to fracture doedapend on the initial
damageuvy. The rate of nucleation and growth of new voids (cracks) enplanes
orthogonal tg will not be affected by cracks formed in the first loading eydfur-
thermore, if a compressive stress oe= —oyp ® p is applied in the second cycle
the model predicts no damage accumulation.

Let us note that the evolution equations (2.4.38) and (2)4&8n only be applied
if o1 # 0,07 # &7 andy # 7y In this case the dyae? @ n9 can be found from
the identity (2.4.21). For the stress states- gl oroc = ap Qp +b(I —p @ p),

a < b, there is an infinite number of first principal directionscBistress states are
typical for several structural components. For example,stiness state of the type
oc=ap®p+b(I—p®p) arises in the midpoint of a transversely loaded square
plate with all for edges to be fixed (e.g. supported or clamgugks), [13]. In the
loaded (top) surface of such a pldte< a < 0 while in the bottom surfacé > a,

a < 0,b > 0. Stress states of the same type arise in different rotdljosEammetric
problems of structural mechanics. For analysis of suchlenad a modified form of
the evolution equation (2.4.39) is required [119].

Q) =wmdm+w (Hpp, @ = w1(0) =0 (2.4.41)
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Various forms of creep-damage constitutive equations settond rank damage
tensors have been utilized. In [12] the effective stressden

G=0%.0-0!/2 (2.4.42)

proposed in [91] is applied to formulate the creep-damagestidative equation.
Mechanisms of damage activation and deactivation are takenaccount. The
model predictions are compared with experimental data eégrin copper. In
[259, 260, 261, 262] a second rank damage tensor is applrethdomodeling of
creep of nickel-based single crystal super-alloys SRR @PG¥SX-6 at760° C.
The proposed constitutive equations take into accountthethitial anisotropy and
the damage induced anisotropy.

The symmetry group of a symmetric second rank tensor inslatkast nine el-
ements (see Sect. 2.3.2). With the second rank damage terdstire effective stress
tensors (2.4.36) or (2.4.42) only restrictive forms of otthpic tertiary creep can be
considered (a similar situation is discussed in Sect. R.Blerefore in many works
it is suggested to introduce higher order damage tensordifferent definitions
of damage tensors one may consult [8, 10, 55, 172, 183, 29t}itikal review
is given in [284]. At present, the available experimentaladan creep responses
do not allow to verify whether the orthotropic symmetry isappropriate symme-
try assumption for the modeling of anisotropic creep-daenaigpcesses. From the
micro-structural point of view one may imagine rather coexpihree-dimensional
patterns of voids and cracks which nucleate and propagé#te assult of multi-axial
non-proportional loadings. An attempt to predict thesdegpas would result in a
complex mathematical model with a large (or even infinitanbar of internal vari-
ables including tensors of different rank. A model to cheeaze different patterns
of cracks may be based on the orientation distribution foncorientation averag-
ing and the so-called orientation tensors. This approaetidsly used in different
branches of physics and materials science for the statisnodeling of oriented
micro-structures. Examples include fiber suspensions][i8iktures [112], poly-
mers and polymer composites [21, 307]. The application iehtational averaging
to characterize damage states under creep conditiongissdisd in [212, 240, 300].

Finally let us note, that the material behavior at elevatgdperature and non-
proportional loading is a complex interaction of differglgformation and damage
mechanisms such as hardening, softening, creep-damégegfaamage, etc. Sev-
eral unified models utilize constitutive equations of credth kinematic and/or
isotropic hardening and include damage effects by meankeokffective stress
concept and the strain equivalence principle. In [158] tlailvh-Khadjinsky kine-
matic hardening rule, see Sect. 2.3.2 and isotropic KachRatotnov type damage
variable are discussed. The damage rate is additionallgrged by the magnitude
of the hardening variable, so that the coupling effect of @genand strain harden-
ing/softening can be taken into account. It is shown thatkihematic hardening
coupled with isotropic damage predicts well the effect ofger life-time after the
stress reversal. In [98] the Chaboche-Rousselier visastiplty model is modified
to predict the coupled creep-plasticity-damage behaiibe scalar damage vari-
able is introduced as a sum of the accumulated time-depeaddrtycle-dependent
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components. Various approaches to formulate a unified rmbhtaodel within the
framework of continuum damage mechanics and thermodysanfidissipative
processes are discussed in [85, 86, 88, 185].

The verification of a unified model with non-linear anisoimardening
and damage coupling requires a large number of independstd tinder non-
proportional loading. As a rule, accurate experimentahdae rarely available.
Furthermore, non-uniform stress and strain fields may berg¢éed in a standard
uni-axial specimen under non-proportional cyclic loadeunditions [189]. They
may be the reason for the large scatter of experimental adatarésleading inter-
pretations.



3 Examples of Constitutive Equations for
Selected Materials

In Chapter 2 we discussed theoretical approaches to thelimpad creep behav-
ior. Chapter 3 deals with applications to several engingematerials. The mod-
els include specific forms of the constitutive equation fa treep rate tensor and
evolution equations for internal state variables. In addjtconstitutive functions of
stress and temperature are specified. In order to find a settefial constants, creep
tests under constant load and temperature leading to a lemaogs stress state are
required. The majority of available experimental data isspnted as creep strain
versus time curves from standard uni-axial tests. Basebesetcurves the material
constants are identified. It should be taken into accounteti@erimental data may
show a large scatter generated by testing a series of speziramoved from the
same material. The origins of scatter in creep testing aeudsed in [100]. Fur-
thermore, unlike small strain elasticity, the creep bebrariay significantly depend
on the kind of processing of specimens, e.g. the heat tredtAs a result, differ-
ent data sets for the material with the same chemical corigosnay be found in
the literature. For example, one may compare experimeatal for 9CriMo (P91)
ferritic steel obtained in different laboratories [1, 9031162, 242, 326].

Section 3.1 provides an overview of constitutive equatiatently applied to
characterize isotropic creep and long term strength ofrabe#loys. The objective
of Sect. 3.2 is to develop a model for anisotropic creep hehava weld metal pro-
duced by multi-pass welding. To explain the origins of atngaic creep, a mechan-
ical model for a binary structure composed of “fine-grainadd “coarse-grained”
constituents with different creep properties is introalcehe results illustrate the
basic features of the stress redistribution and damagetigriovthe constituents of
the weld metal and agree qualitatively with experimentadestations. The struc-
tural analysis of a welded joint requires a constitutive agiqun of creep for the
weld metal under multi-axial stress states. For this puepes apply the approaches
developed in Sect 2.2.2 to model creep for initially anigpic materials. The out-
come is the a coordinate-free equation for secondary ciaepufated in terms of
the Norton-Bailey-Odqvist creep potential and three ifardgs of the stress tensor.
The material constants are identified according to the @xjeital data presented
in the literature.



86 3 Examples of Constitutive Equations for Selected Malkeri

3.1 Models of Isotropic Creep for Several Alloys

Models of isotropic creep are discussed in Sects 2.2.1,i2i2a.1. The creep rate
tensor is assumed to be coaxial with the stress tensor {deviend the internal
state variables characterizing the hardening and damagegses are scalars. The
assumption of isotropic creep is usually a good approxindior many metals and
alloys in the case of proportional loading. In this sectiasummarize the phenom-
enological and mechanism-based material models and prbsespecific forms of
response functions and material constants for severgisallo

3.1.1 Type 316 Steel
The first example is type 316 stainless steel at’850In [193] the following creep
equations are applied

¢ = §f1(UvM)8l (W)U:M/ w = f2 [‘72}7(‘7)] g2(w),

ei=0=0, wli=0=0, 0<w<w,, (3.1.1)

1 3
s=0— gtral, OoM = Es'.s

Heree is the creep strain tensar,is the stress tensay is the scalar valued dam-
age parameter artcgg is the damage equivalent stress (see Sects 2.2.1 and 2.4.1).
The response functions, f», g1, andg, are

file) = ac™, (w)=(1-w)™",
f;(g) = bgk, §§(Z) =(1- Z)fk (3.1.2)

The material constants are presented in [193] as follows

a=213-10"B MPa"/h, b=9.1-10"10 MPa*/h,

n=235 k=28 (313

Note, that the constantsandb in (3.1.2) are found for the constant temperature. In
the general case they must be replaced by functions of tetyper It is assumed
that the damage evolution is controlled by the maximum terssiess. In this case
the damage equivalent stress takes the form

_ o+

Ueq (0) - T/

wherecy is the first principal stress. The elastic material behaigaharacterized
by the following values of the Young’s moduliéisand the Poisson’s ratio

E=144-10°MPg v =0.314 (3.1.4)

Let us note that the response functions and material cdsstagqgs (3.1.1) can
be found in the literature for numerous metals and alloysnies are presented
in the monographs [77, 185, 202, 250, 255, 265, 291].
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3.1.2 Steel 13CrMo4-5

In [289] the creep behavior of steel 13CrMo4-5580° C is described by (3.1.1)
with the following response functions

file) =ao", gi(w)=1-p+p(l—w)™,
f;(U) = bo*, gl(w) =(1 _pw)el (3.1.5)

The material constants are

a=194-10"MPa"/h, b=23.302-10"13 MPa*/h,

n=4354, k=23955 [=1423, p=0.393 (3.1.6)

The damage equivalent stress is assumed in the form

oy + |oy|

oir(0) = a”

eq + (1= a)oum

with « = 0.43. The elastic material constants dfe= 1.6 - 10° MPa andv = 0.3.

3.1.3 Aluminium Alloy D16AT

Figure 3.1 shows the experimental data of uni-axial creefhialloy AICuMg?2 at
300° C[163]. The creep behavior is described by (3.1.1) with tleding response
functions L) . (@)= ( "y
1(0) =a0", g1(w)=(1-w")"",
3.1.7
folo) = bot, gafw) = (1- ) N

The material constants are estimated as follows [163]

a=0335-1007MPa"/h, b=19-10"7 MPa*/h,

n=3 r=14, w,=038 (3.1.8)

The multi-axial tertiary creep is assumed to be controliedhle von Mises equiva-
lent stress, i.ezg; (o) = o, The elastic material constants &re= 0.65 - 10° MPa
andv = 0.3.

3.1.4 Aluminium Alloy BS 1472

The experimental data for aluminium alloy BS 1472 at33m5° C (Al, Cu, Fe, Ni,
Mg and Si alloy) are published in [171]. The authors propadsedescribe the uni-
axial creep curves (loading conditions 227.53, 241.3 arglMPBa) by use of two
approaches. The first approach is based on (3.1.1) and thenhtindening function.
The proposed model is

1 The given abbreviation (DIN 1745) correspond to RussianAT1&he alloy is similar to
the American alloy 24ST4.
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Figure 3.1 Experimental data and model predictions for the aluminilloyalCuMg?2 at
300° C (after [163])

3 ac’ ! b(ow)k
acr 2 oM gm - eq gm 1.9
20-w) " YT A ) (3.19)

with (7;;; = o,pm. The material constants in (3.1.9) are identified as foll{Hv4 ]

a=3511-10"3 MPa " /h"*1, b =1.960-10"2 MPa ¥ /h"+1,
n=11.034, k=8.220, [=12107, m = —0.3099
(3.1.10)

The elastic material constants afe= 0.71 - 10° MPa andv = 0.3. Equations
(3.1.9) include the time hardening function. The problemssoaiated with the use
of the time hardening model are discussed in Sect. 2.3.1piliheipal shortcoming
is that the creep behavior characterized by (3.1.9) depamtize choice of the time
scale. Alternatively the experimental data presented Tii]Tan be described by
the following equations

o 3 acht _ bag)k

with the following set of material constants

a=135-10"¥ MPa"/h, b =3.029-103¢ MPa ¥/h,

n=1437, k=12895 [=125 m=10 (3.1.12)

In the above equations the primary creep effect is negle€igdre 3.2 presents the
experimental results and the predictions by Eqs (3.1.9 arid11).
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Figure 3.2 Experimental data and model predictions for the aluminidloyeBS 1472 at
150+ 0.5° C (after [171])

The second approach applied in [171] is the mechanism-bagpbach (see
Sect. 2.4.1). The model equations can be summarized aw/$ollo

, 3 A s . Bo,pm(1—H)
cor ¥ h oM
M Y CER T [ 1-@ }
: he A ) Bo,pm(1—H) H
H= ——sinh | ——————~| (1 — —
oot (1 — ) o [ 1- o H, )’
. K. 4
b ==(1-)%,
<(1- @)
iz _ (3.1.13)
W = DA (%] N sinh BUUM(l H) )
(1—w)® \opm 1—-9
_ BUvM(l_H) BUvM(l_H)
n= 1o coth 1o ,
N=1 for o7 >0, N=0 for o7 <0,
0<w<03 0<d<«l, 0<H<H,

The set of equations (3.1.13) includes the creep consgtetjuation and evolution
equations with respect to three internal state variablés. Hardening variablél
is introduced to describe primary creep. The variableharacterizes the ageing
process. The variabley is responsible for the grain boundary creep constrained
cavitation.

The material constants in (3.1.13) may be divided into tlyerips: the con-
stantsh, and H, must be obtained from the primary creep stageand B charac-
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Figure 3.3 Experimental data and simulations for the aluminium allog B472 at
150+ 0.5° C (after [171])

terize the secondary creep (minimum creep strain vs. $trasd K. and D must
be found from the tertiary creep stage. The constar# the so-called stress state
index, which characterizes the stress state dependenige datnage evolution. The
material constants are identified in [171] as follows

A=2960-10"1h"1 B=7167-10"2MPa},
h. =1.370-10° MPa,  H, = 0.2032, (3.1.14)
K. =19310-10°h"1, D =46.630

Figure 3.3 presents the experimental creep curves andcpcedi based on (3.1.13).

This example illustrates that the same experimental datebeadescribed by
quite different relations (3.1.9), (3.1.11) and (3.1.I3¥)e model (3.1.13) seems to
be more preferable since it is based on material scienceragis. One feature of
(3.1.13) is the use of a hyperbolic function for the dependeof the minimum
creep rate on the stress instead of the power function inl(B.1Let us compare
how the models (3.1.11) and (3.1.13) describe the secorwlaeep rate for a wide
stress range. For this purpose we assum& 1 in (3.1.11) leading to the Norton-
Bailey creep equatioét!, = ac”.In (3.1.13)we setd = H,,w < Tand® < 1
resulting in¢. = Asinh[Bo(1 — H,)]. Figure 3.4 shows the minimum creep
rate as a function of stress calculated by the use of matmiatants (3.1.14) and
(3.1.12). We observe that within the stress ra2gje— 262 MPa the minimum creep
rate vs. stress curves coincide. The coincidence of cusvestisurprising since the
material constants in both models were identified from ctes{s carried out within
the stress rang227 — 262 MPa. This stress range is marked in Fig. 3.4 as the iden-
tification range. Furthermore, a wider stress range exastwhich the power law
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Figure 3.4 Minimum creep rate vs. stress by use of the power law and simttibns

and the hyperbolic sine functions provide nearby the saradigtion, Fig. 3.4. If
a structure is loaded in such a way that the von Mises equivateess lies within
this range, than both the models would lead to similar resaflstructural analysis,
e.g. time dependent deformations. However, in most agmitsone has to analyze
statically indeterminate structures. In this case, if tktemal loads are constant, the
stresses may rapidly relax down at the beginning of the cpeepess. Therefore,
the range of moderate and small stress values is importaheistructural analy-
sis. For this range the two applied models lead to quite mdiffepredictions, Fig.
3.4. In [5, 30] we utilized the models (3.1.11) and (3.1.1®)the structural analy-
sis of pressurized cylindrical shells and transverselgdolrectangular plates. The
maximum values of the von Mises equivalent stress in theeete elastic state of
structures were within the identification range. The resaftcreep analysis based
on the models (3.1.11) and (3.1.13) qualitatively agreg ahthe beginning of the
creep process as long as the maximum values of the von Misi@gatmt stress
lay within the range of the same prediction. With the reletatand redistribution
of stresses, the discrepancy between the results incrisssisg to quite different
long term predictions. The differences in estimated lifieets were of up to a factor
5.

3.2 Model for Anisotropic Creep in a Multi-Pass Weld
Metal

For many structures designed for high-temperature apjgita e.g., piping sys-
tems and pressure vessels, an important problem is thesessatsof creep strength
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Figure 3.5 Typical microstructure of welded joint and material beloavi

of welded joints. The lifetime of the welded structure isnmarily determined by
the behavior in the local zones of welds, where time-depancieep and damage
processes dominate. Different types of creep failure thatloccurred in recent
years are discussed in [290], for example. The design ofededttuctures and their
residual life estimations require engineering mechanicdets that would be able to
characterize creep strains, stress redistributions, anthde evolution in the zones
of welds.

A weld is usually considered as a metallurgical notch. Ttesoa for this is
the complex microstructure in the weld metal itself and ia treighboring heat-
affected zone. In recent years many research activities baen directed to the
study of welded joints. First, theoretical and experimeatelyzes have addressed
the welding process with the aim of predicting the formatiéthe microstructure
of the welds and analyzing residual stresses [34]. Secaedye¢havior of welded
joints under the mechanical and thermal loadings was iigagsd [145]. Here one
must consider that the stress—strain response at room tatuggeis quite different
for the weld metal, the heat-affected zone, and the basel ifpateent material),
particularly if they are loaded beyond the yield limit. Aeeated temperatures quite
different inelastic strain vs. time curves can be obtainedlifferent zones even
in the case of a constant moderate load. Figure 3.5 illestrabnes with different
microstructures and the variation in material behaviohimithe weld.
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The results of creep testing of cross-weld specimens [144], &nd specimens
with a simulated microstructure [197, 205, 324, 326] shaynisicant variation in
creep properties in different material zones within thedv€&urthermore, they il-
lustrate that the intercritical region of the heat-affect®ne is the weakest part of
the weld with respect to the creep properties. The materiiil the heat-affected
zone microstructure usually exhibits the highest creep aatl the shortest time to
failure if compared to other material zones within the wealdthe same load and
temperature.

For thick and moderately thick cross sections, multi-pastding is usually
preferred, where many stringer beads are deposited in aedefiequence. As a
result of heating and cooling cycles during the welding pes; the complex bead-
type microstructure of the weld metal is formed, where egangle bead consists of
columnar, coarse-grained, and fine-grained regions, [@4p]. The results of uni-
axial creep tests for the weld metal 9CrMoNbV are reportefil#i]. They show
that the creep strain vs. time curves significantly differdpecimens removed from
the weld metal in the longitudinal (welding) direction am@ transverse direction.
Furthermore, different types of damage were observed ®tahgitudinal and the
transverse specimens.

One possibility for studying the creep behavior in struesuis the use of con-
tinuum damage mechanics, e.g., [20, 16, 133]. The apmitatf this approach to
welded joints is discussed in [129, 137, 145], for examplergthe weld is consid-
ered as a heterogeneous structure composed of at leasttm&@uents—the weld
metal, the heat-affected zone, and the parent material diffésrent creep proper-
ties. Constitutive and evolution equations that are ableflect experimental data
of primary, secondary, and tertiary creep in different zoatthe welded joint are
presented in [103, 129, 137, 145, 324], among others. Thitses finite element
simulations illustrate stress redistributions, creepiss, and damage evolution in
different zones of the weld [103, 129, 137, 145]. Furthemntrey allow to analyze
the influence of numerous factors like weld dimensions, sygfeexternal loading,
and material properties on the creep behavior of weldedtsires, e.g., [145]. How-
ever, as far as we know, the anisotropic creep of multi-padd metals has not been
considered.

3.2.1 Origins of Anisotropic Creep

A weld bead produced by a single pass welding has a columfidifisation mi-
crostructure. During the multi-pass welding many weld Iseaict deposited in the
groove by a defined sequence. As a subsequent weld bead,ithkiaigart of the
metal produced in previous cycles is subjected to the lafaating and cooling.
As a result, the weld beads consist of columnar, coarse agtaamd fine grained
microstructural zones [141, 145]. A sketch for the typicatnostructure of a multi-
pass weld metal is presented in Fig. 3.6. This microstreati@pends on many fac-
tors of the welding process like bead size, travel speetiijusequence, interpass
temperature, and type of postweld heat treatment [141]r&$dting inelastic mate-
rial behavior will be apparently determined by the disttitw and size of columnar,
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Figure 3.6 Microstructure of the weld metal (after [145])

coarse-grained, and fine-grained zones as well as resitessas in the weld metal.
It is well established that creep behavior is very sensttiviine type of microstruc-
ture and, in particular, to grain size. Experimental ddtssiiating the significant
influence of grain size on creep behavior are presented fgparan [167] and for
various types of steel in [197, 324, 326]. The grain size ddpace is explained
in materials science by two creep mechanisms: grain boyrglamling and grain
boundary diffusion. These mechanisms operate under medesing and within
a temperature range 05 < T/T, < 0.7, whereT,, is the melting tempera-
ture [222] (See Sect. 2.2.3). The principal damage mecimaisishe nucleation and
growth of voids on grain boundaries. Many experimental ola®ns show that
the finer the grain structure, the higher the secondary aepand the higher the
damage rate for the same loading and temperature conditions

To discuss the origins of the anisotropic creep in a weld hietais consider a
uni-axial model of a binary structure composed of constitsivith different creep
properties. In what follows let us term the first constitutfime-grained” or “creep-
weak” and the second one “coarse-grained” or “creep-stidreg us describe the
creep behavior of the constituents by use of the KachandwetRav model (See
Sect. 2.4.1.1)

or ac" bo*

R (N (R

In what follows we use the subscriptsandc for the fine-grained and coarse-grained
constituents, respectively. For the sake of simplicity w&uane that the constituents
have the same value of Young’'s modulbisand the same values of constantsc
and! in (3.2.1). Let us introduce the dimensionless quantities

(3.2.1)

Ccr
€ € t
7 €= — eCl’ = T

g - (3.2.2)
o0 €0 €0 byp

S =
wheret, r is the time to fracture of the fine-grained constituentjs the reference

stress and, is the elastic strain aty, i.e. ey = o0p/E. Equations (3.2.1) can be
formulated for two constituents as follows
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Figure 3.7 Creep curves for constituents

de‘ijV - s degr i s
dt (1 —wp)" dt (1 —we)"
L , P , (3.2.3)
dwf - s dew, - 15
i = ° l it~ PP Aoy
T (1—wy) T (1—w)
where
1 n 7 1 Z::Cmrinc t*f
1o (i) P e Ao

Figure 3.7 illustrates creep curves obtained after integraf (3.2.3) for the cases
n=3k=n+1ll=n+2€e, =5a=015p=025s=1

Let us consider a connection of constituents in parallek asually the case for
composite materials, e.g. [4, 89]. The strains and therstedes can be assumed to
be the same (iso-strain concept)

e=¢f=¢, €=¢f=¢ (3.2.4)

We assume that a constant loBd= oy A, Fig. 3.8, is applied to the composite,
where A is the cross section area. Specifying Ky and N, the internal forces in
the constituents so thaif + N, = F we can write

0pAf+0cAc = 00A, 1o+ (1—ng)oc =00, npsp+(1—15)sc =1
(3.2.5)
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Figure 3.8 Normalized stresses vs. normalized time for connectiomoétituents in parallel

wherer; = A¢/A is the volume fraction of the fine-grained constituent. fer t
stresses we apply the following constitutive equations

o =E(e— ejf), 0. =E(e—¢) (3.2.6)

Based on Eqgs (3.2.3) — (3.2.6) one can formulate a systendofasy differential
equations describing the stress redistribution betweastitoents. With respect to
the stress in the fine-grained constituent the followingag¢ign can be obtained

dsp _ o (-mpsp)" 5

E = ﬂ(l - nf) (1 — nf)n (1 — wc)n - (1 — Wf)n (327)
Equation (3.2.7) is numerically solved together with theletion equations for the
damage parameters (3.2.3) and initial conditiops= 1, wy = w. = 0 providing
time variation of the stress:. The stress. can be then computed from (3.2.5). The
results are shown in Fig. 3.8 for the cape = 0.3. In addition, Fig. 3.9 presents
creep strains and the damage parameters in the constitaenell as the creep
strain of the “compositee® = e — 1. At the beginning of the creep process the
creep rate is higher in the fine-grained constituent, Figa.3Therefore, the stress
in the fine-grained constituent relaxes down while the stieghe coarse-grained
constituent increases, Fig. 3.8. If we neglect the influesfcdamage on the creep
process, i.e. set; = w. = 0in (3.2.7), we obtain the steady-state creep solution.
The corresponding results are plotted in Fig. 3.8 by dottextl We observe that the
maximum value oé. and the minimum value of; in the case of creep-damage al-
most coincide with the corresponding steady-state valltes steady-state solution
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Figure 3.9 Connection of constituents in parallaeiINormalized creep strains vs. normalized
time, b damage parameters vs. normalized time

for s; follows from (3.2.7) by settingvy = we =0 and%f = 0. The correspond-

ing value fors, is obtained from (3.2.5). The results are
oc% 1
1.7 Scmax = 1
T—np(1—an) T—np(1—an)

We observe that these stress values are determined by tm@e/dtaction of the
"fine-grained”constituent;, and the ratio of minimum creep rates The stress
values, is higher thars ( after the initial stress redistribution. Therefore, tharse-
grained constituent exhibits the higher creep rate and ifjleeh damage rate in
the final stage of the creep process, Fig. 3.9. The calculgtredicts the failure
initiation in the coarse-grained constituent.

In the case of a connection of constituents in series (iEsStapproach) we
assume

Sfmin =

00 =0y =0c, & =npef +(1—np)ed
The results can be obtained by integration (3.2.3ffo= s. = 1. The correspond-
ing plots of normalized creep strains are presented in Frig.The maximum creep
and damage rates are now in the fine-grained constituentifétieme of the binary
structure is determined by the lifetime of the fine-grainedstituent for the given
constant stress.

Figure 3.10 shows the creep curves obtained for the two deresd cases of the
binary structure under the same constant load. The redulte @resented model
provide an analogy to the creep behavior of a weld metal kbade¢he longitudi-
nal (welding) and the transverse directions. The experiat@meep curves for the
specimen removed from the weld metal in two directions aesgmted in [141].
They show, that the transverse specimens exhibit higheinmam creep rate. Fur-
thermore, the creep curves for transverse specimens hawela shorter tertiary
stage and lower values of fracture strain if compared toesufer specimens re-
moved in the welding direction. The times to fracture for ttemsverse specimens
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Figure 3.10 Creep curves for the binary structure in the cases of paeaildseries connec-
tions of constituents

are much shorter than those for the longitudinal specinfemsn the results in Fig.

3.10 we observe that these effects are predicted by the mieahanodel of the bi-

nary structure. Furthermore, our results for the damagkigon qualitatively agree

with the results of microstructural damage observatioesgmted in [141]. For the
longitudinal specimens extensive voids and cracks wererged in columnar and
coarse-grained regions along the entire specimen lengththE transverse speci-
mens voids and cracks are localized near the fracture surfde fracture surface
has fine-grained structure and the failure propagated dgiwalie fine-grained re-
gions of the specimen.

Based on the presented results we may conclude that among difeerent
creep and damage mechanisms which may operate and interaag the creep
process an essential role plays the stress redistribuétmelen the creep weak and
creep strong constituents. For longitudinal specimemssigichanism leads to a pro-
longed tertiary creep stage. The material behaves like a€'moctile” material, al-
though the damage and failure occur in the “more brittleeprstrong constituent.

3.2.2 Modeling of Secondary Creep

For the analysis of welded structures a model which is ableflect anisotropic
creep in a weld metal under multi-axial stress states hag tdeleloped. Three-
dimensional models for binary or multi-component mediadiseussed within the
framework of continuum mechanics (e.g. [22]). A generaiara of the compos-
ite model developed in the previous section to the multalasiress states would
however require the knowledge of creep properties of crestts under multi-axial
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stress states. Furthermore, creep mechanisms of interdatitween constituents,
like frictional sliding should be taken into account.

In what follows we assume the weld metal to be a quasi-honemen
anisotropic material. For a description of creep we prédferengineering creep me-
chanics approach, where the creep potential hypothesisgfitesentation of tensor
functions and internal state variables are incorporated (hapt. 2). The result-
ing constitutive equations are compatible with the finiengeent method and can be
utilized in standard finite element codes for structuralysis purposes.

Examples for anisotropic creep behavior and related dotigé equations are
presented for single-crystal alloys in [48] and for fiberferced materials in [273].
One problem of anisotropic creep modeling is that the asdumnegerial symmetries
(microstructure symmetries) are difficult to verify in cpetests due to the rela-
tively large scatter of experimental data. Furthermore,rttaterial may lose some
or even all symmetries during the creep as a consequencedsfitiag and damage
processes. In our case the material symmetries can beiglsébhccording to the
arrangement of the weld beads in the weld metal. For thetateipresented in Fig.
3.6 one can assume the reflectiQp = I — 2m @ m, the rotationQ, =2l @1 — I
and the reflectio); = Q; - Q> = I — 2k ® k to be the elements of the material
symmetry group, whergis the second rank unit tensor ald andm are orthogo-
nal unit vectors.

However, this material symmetry group is poor for the mauglf creep. In-
deed, based on the model discussed in the previous sectioamassume that the
same creep mechanisms will operate by loading the weld rimgtabr I- directions.
Although the experimental data presented in [141] are awkglonly for specimen
removed inm- andk- directions, one may assume that that the difference betwee
the experimental creep curves by loadindg4imndl- directions will be not essential
with respect to the usual scatter of experimental data. Werassume transversely
isotropic creep, where the plane spanned on the vektansl] is the quasi-isotropy
plane.

The models of steady state creep under the assumption siv&Eme isotropy
are derived in Sec 2.2.2.1 and 2.2.2.2. Here we apply the casstitutive equation
(2.2.43).

3.2.3 Identification of Material Constants

In the equivalent stress expression (2.2.41xtkeplay the role of dimensionless
factors. Three independent uniform stress states shoutddbieed in order to de-
terminew;. The relevant stress states are

— Uni-axial tension in the directiom (longitudinal tension test). In this case the
stress tensor i = oym @ m, wherecy > 0 is the magnitude of the applied
stress. From (2.2.41) and (2.2.43) follows

Jm =00, Iym = Iy =0, Oeq = 00+/21,

1 (3.2.8)
&7 = Jajéyy MM — E(I—m@m)
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— Uni-axial tension in the directiok (transverse tension test), i®.= opk ® k,
0p > 0. From (2.2.41) and (2.2.43) we obtain

1 1

SPZEUO(k®k—l®l), ]m:_EUOI
1 1

I3y, = 103, Iy =0, 0 = ! + 32,

. €eq

€ = ——L  [(a1 + 30k @k + (07 —3m)l Q1 —2aym@m
2m [( 1 2) ( 1 2) 1 ]

(3.2.9)
— Uniform shear in the plane spanned mnandk, i.e.c = p(m @k +k @ m),
T9 > 0. From (2.2.41) and (2.2.43)

écr _ \/30(3
2

The next step is the form of the creep potenié(c,) or the form of the creep
rate vs. stress dependence in the steady-state range. ilgt@dor the choice of
a suitable function are the type of the deformation mechasisperating for the
given stress and temperature range as well as the best 6ftihg experimentally
obtained strain vs. time curves. Experimental data for tellwnetal 9CrMoNbV

are presented in [141] for the stress range 87-100 MPa ancbtistant tempera-
ture 650 C. The authors used a power law in order to fit the experimelati for

secondary creep of longitudinal and transverse specinhetisis case the Norton-
Bailey-Odqvist creep potential can be applied [236]

Jn=Tam =0, Iy =13, tgme@k+kam)  (3.2.10)

a n+1
W(Ueq) n+1 gq ’ Seq = ﬂU'e

wherea andn are material constants. For the longitudinal directiomfi(®.2.8) and
(3.2.11) it follows

! (3.2.11)

n+l
¢ =m-€"m=ayoy, ap=an,’ (3.2.12)
Taking the longitudinal direction to be the “reference’edition we set in (3.2.12)
a1 = 1. From (3.2.9) and (3.2.11) we obtain for the transversection

il
1 —|—30(2 2
4

In [141] the values for the material constants are preseitediever, the exponent
n is found to be different for the longitudinal and the tramseedirections. Different
values forn contradict to the creep potential hypothesis employed enpttevious
section. Here we compute the values dgr ar andn based on the following func-
tional

¢T =k-¢" -k=arpo), ar=a ( (3.2.13)

i=1
logar, o =logoy, ¢ =logé, ér=logér,
(3.2.14)

k k
F(a = Z (@ +no; —&,)* + Y (ar + no; — &,)?,
iy =

ir =logay,
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Figure 3.11 Minimum creep rates vs. stress (experimental data afte]]14

wherek is the number of experimental data points. Setting the fasation of F to
zero leads to the system of three algebraic equations wsgpent toi;, i andn.
As the result we obtain the following set of material conttan

ap = 1.377-1072'MPa " /h, ar =2.023-10"2'MPa"/h, n =8.12
(3.2.15)
Figure 3.11 shows the experimental data presented in [Iatliree numerical pre-
dictions by use of (3.2.12), (3.2.13) and (3.2.15).
Finally let us summarize the constitutive equation for seleoy creep and the
set of identified material constants as follows

. 3 . 1
& = an'e”q 1 []m <m®m— §I> —|—Dézsp+063('l'm QM+mQTy)|,

2
U= (m-0o-m— Str 0p> - %D&ztr s%, + 30372,

a=1377-10"2'"MPa"/h, n =812, ap=1.117

(3.2.16)

The weighting factons, which stands for the influence of the transverse sheasstres
remains undetermined in (3.2.16). Future work should bectid toward the under-
standing of creep and damage mechanisms in weld metals latedréesting under
stress states with nonzero vectoy.

Model (3.2.16) is limited only to secondary creep behaviod allows to re-
produce only the secondary part of the creep curves preseni@41]. For the de-
scription of the whole creep process including the primany trtiary creep stages,

model (3.2.16) can be modified by use of hardening and daneggbles.
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4 Modeling of Creep in Structures

In Chapters 2 and 3 we introduced constitutive and evolwgiumations for the mod-
eling of creep in engineering materials. The objective c&d@h4 is the application
of creep constitutive models to structural analysis. IntSéd we start with the
discussion of aims and basic steps in modeling of creep urctsires. In Sect. 4.2
we formulate initial-boundary value problems describimgep behavior in three-
dimensional solids and give an overview on numerical sofutirocedures. Sections
4.3 — 4.4 are devoted to the review and evaluation of stractmechanics models of
beams, plates and shells in the context of their applicglidi the analysis of creep
and long term strength. For several problems we develogdiémm solutions and
special numerical solutions based on the Ritz method. Thétssare applied to ver-
ify finite element solutions obtained by a general purposeefaiement code and a
user defined material subroutine. Special numerical exesrgle selected to illus-
trate the influence of various discretisation parameteesfnsize, number of Gauss
points, etc.) on the solution accuracy. Furthermore, tHeywdo compare creep life-
time predictions based on different structural mechaniocdets and related types of
finite elements. To discuss the applicability of the devetbpechniques to real en-
gineering problems an example of a spatial steam pipelipessented. Long term
behavior of the pipeline under constant internal pressndecanstant temperature
is simulated by the finite element method. Numerical resukscompared with the
data from engineering practice.

4.1 General Remarks

The aim of creep modeling is to reflect basic features of ciresfyuctures including
the development of inelastic deformations, relaxation rdistribution of stresses
as well as the local reduction of material strength (see.3e2}. A model should
be able to account for material deterioration processesd@rdo predict long term
structural behavior and to analyze critical zones of cre@pre. Structural analysis
under creep conditions usually requires the following step

1. Assumptions must be made with regard to the geometry ddttheture, types
of loading and heating as well as kinematical constraints.

2. A suitable structural mechanics model must be applieédas the assump-
tions concerning kinematics of deformations, types ofrimaé forces (mo-
ments) and related balance equations.
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3. A reliable constitutive model must be formulated to rdfleme dependent
creep deformations and processes accompanying creegli#teriing/recovery
and damage.

4. A mathematical model of the structural behavior (inibalundary value prob-
lem) must be formulated including the material independeptations, consti-
tutive (evolution) equations as well as initial and boundawnditions.

5. Numerical solution procedures to solve non-linearahitioundary value prob-
lems must be developed.

6. The verification of the applied models must be performetuating the struc-
tural mechanics model, the constitutive model, the mattieaianodel as well
as the numerical methods and algorithms.

The first two steps are common within continuum mechanicseagiheering me-
chanics. Here, mathematical models of idealized solidsémdtures are developed
and investigated. Examples include the models of threexd@ional solids, beams,
rods, plates and shells. The idealizations are relatedet@antinuum hypothesis,
cross section assumptions, etc. The above models wereahjgileveloped within
the theory of linear elasticity, e.g. [126, 308]. In creepcimanics they are applied
together with constitutive and evolution equations désog idealized creep behav-
ior (e.g. steady state creep) [77, 139, 173, 202, 234]. Astiovead in Sect. 1.1.2
and Chapt. 2, many structural materials exhibit non-atassireep phenomena such
as different creep rates under tension and compressi@sssitate dependence of
tertiary creep, damage induced anisotropy, etc. Congideraf such effects may
require various extensions of available structural meidsamodels. For example,
the concept of the stress free (neutral) plane widely us#tkitheory of beams and
plates becomes invalid in creep mechanics if the mater@tsidifferent creep rates
under tension and compression (see Sect. 1.2). Below wasdishe applicability
of classical and refined models of beams, plates and shelletoreep analysis.
Bases on several examples we examine the accuracy of cigmsassumptions
for displacement and stress fields.

The mathematical model of creep in structure is the intiimndary value prob-
lem (IBVP) which usually includes partial differential eafions describing kine-
matics of deformation and balance of forces, ordinary ciffiial equations de-
scribing creep processes as well as initial and boundargittons. The numeri-
cal solution can be organized as follows, e.g. [77, 250]. lFmwn values of the
creep strain tensor and internal state variables at a fixeel the boundary value
problem (BVP) is solved. Here direct variational methodg, the Ritz method, the
Galerkin method, the finite element method are usually adpln addition, a time
step procedure is required to integrate constitutive antligen equations of creep.
Below various methods are reviewed and discussed with cespéheir efficiency
and numerical accuracy.

In recent years the finite element method has become theywadekpted tool
for structural analysis. The advantage of the finite elemagthod is the possibil-
ity to model and analyze engineering structures with compkometries, various
types of loadings and boundary conditions. General purfioge element codes
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ABAQUS, ADINA, ANSYS, COSMOS, etc. were developed to solegigus prob-
lems in solid mechanics. In application to the creep anslgse should take into
account that a general purpose constitutive equation wdlictivs to reflect the
whole set of creep and damage processes in structural alatevier a wide range
of loading and temperature conditions is not available esg@nt. Therefore, a spe-
cific constitutive model with selected internal state Valea, special types of stress
and temperature functions as well as material constantdifiéel from available
experimental data should be incorporated into the commieficite element code
by writing a user defined material subroutine. Below the Al$Sfifite element
code is applied to the numerical analysis of creep in strastun order to consider
damage processes the subroutines “usercreep” and “usareuteveloped and im-
plemented. The former serves to introduce constitutivegous with damage state
variables and corresponding evolution equations. Therlattows the postprocess-
ing of damage, i.e. the creation of contour plots visuatjzime damage distributions.

An important question in the creep analysis is that on réifplof the applied
models, numerical methods and obtained results. The i@jjahssessment may
require the following verification steps:

— Verification of developed finite element subroutines. Teeasghat the subrou-
tines are correctly coded and implemented, results of figléenent computa-
tions must be compared with reference solutions of bendhmanblems. Sev-
eral benchmark problems have been proposed in [38] based ioAt@use finite
element code. Below we formulate and solve own benchmanklgmgs includ-
ing beams and transversely loaded plates. The advantagesaf problems is the
possibility to obtain reference solutions by means of thiz Riethod without a
finite element discretisation. Furthermore, they allowddfy finite element sub-
routines over a wide range of finite element types includiegrb, shell and solid
type elements.

— Verification of applied numerical methods. Here the prolderhthe suitable fi-
nite element mesh density, the time step size and the tinpecstarol must be
analyzed. They are of particular importance in creep damalgeed simulations.
Below these problems are discussed based on numericakltestsy means of
comparison with reference solutions.

— Verification of constitutive and structural mechanics msd&his step requires
creep testing of model structural components and the quoneng numerical
analysis by the use of the developed techniques. Examplezeht experimen-
tal studies of creep in structures include beams [77], ensely loaded plates
[163, 224], thin-walled tubes under internal pressure [164], pressure vessels
[103, 114], circumferentially notched bars [133]. Let usentihat the experimen-
tal data for model structures are usually limited to sherirt creep tests. The
finite element codes and subroutines are designed to anedgtengineering
structures. Therefore long-term analysis of several dipstructures should be
performed and the results should be compared with datactetidrom engineer-
ing practice of power and petrochemical plants. Below ampta of the creep
finite element analysis for a spatial steam pipeline is dised.
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4.2 Initial-Boundary Value Problems and General
Solution Procedures

The objective of this Section is to discuss the governinghaeical equations de-
scribing creep in three-dimensional solids and related erigal solution proce-
dures. The set of equations includes material independgrdtiens, constitutive
and evolution equations, see Chapt. 2, as well as the imitidl boundary condi-
tions. The formulated IBVP must be solved by numerical mashdexplicit and

implicit time integration methods are reviewed with regpectheir accuracy and
efficiency. Within the time-step procedures, differentgbiities are discussed to
solve linearized boundary value problems. The attentidhb&igiven to the varia-
tional formulations and the use of direct variational meho

4.2.1 Governing Equations

Let us consider a solid occupying the volurifewith the surfaceA. We assume
that the solid is fixed on the surface patt, and loaded by surface forces on the
part A,. The position of a material point within the solid in the meflece state is
described by the position vectofq’) = e;q', i = 1,2,3, wheree; are basis vectors
and qi are coordinates (see Sect. A.2.1). The correspondingiqosit the actual
state can be characterized by the position veRiy, t) or by the displacement
vectoru(q',t) = R(q',t) —r(g'). The problem is to find the time sequence of the
actual configuration® (4',t) as a result of external actions for a given time inter-
val anqui € V. The governing equations are discussed in continuum méashan
e.g. [29, 35, 44, 57, 108, 131, 178, 199]. Constitutive dqnatdescribing creep
processes have been introduced in Chapt. 2. Besides thadiical quantities, ad-
ditional unknowns are the creep strain tens6(q’, t) and the set of internal state
variablesHy(q',t),k = 1,...,n andw;(q',t),I = 1,...,m. They are introduced
to characterize the current state of the material microgira and to reflect the en-
tire previous history of the creep process (see Sect. Zilthis section we limit
our considerations to linearized kinematical equationhéisense of infinitesimal
strains and displacements. Furthermore, we assume acelaesn-polar contin-
uum, quasi-static processes and isothermal conditionsrdlated comments were
made in Sect. 2.1.

The governing equations can be summarized as follows

— kinematical equations
e strain-displacement relation

_ 1 T i
=3 (Vu + (Vu) ) gev, (4.2.1)

wheree is the tensor of infinitesimal strains.
e compatibility condition

Vx(Vxe)l =0, g€V, (4.2.2)
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— equilibrium conditions
V-o+pf=0, 0,=0 g eV, (4.2.3)

wherep is the material density anflis the density of volumetric forces
— boundary conditions ‘
u=—i, e Ay,
T (4.2.4)
c-v=p, q €A,
wherei is the given displacement vector apds the vector of given surface forces
andv is the outward unit normal tel,. The vectorsf, p andi can be, in general,
functions of coordinates and time.
With the assumption of infinitesimal strains the additiveataposition of the
total strain into elastic, thermal and creep parts is ugymdbstulated

e =¢ +el e (4.2.5)

The constitutive equation for the stress tensor can be assumthe form of the
generalized Hooke’s law as follows

o= ®WC. (e—el —e7) (4.2.6)
In the case of isotropic elasticity the tens$dIC takes the form
WC=MI+uleloe +e0e e ©eb), (4.2.7)
whereA andyu are the Lamé’s constants

E vE
FECE Ay AT arva—a)

E is the Young's modulus is the shear modulus,is the Poisson’s ratio.
If an isotropic solid is heated from the reference tempeealy up to T, the
thermal part of the strain tensor is

e = arATI, AT=T-T,, (4.2.8)

wherear is the coefficient of the thermal expansidil’ can be a function of coor-
dinates and time too.

The constitutive equations for the creep rate and evol@orations for internal
state variables are discussed in Chapt. 2. Here we will seatie equations in the
following form

o 0P (aeq(a), Hk,wl; T)
N oo
Hy = Hy (UeIZ,I(‘T),Hk, wl;T> , W =@ (UE‘ZI (0), Hi, wy; T)

éCi’

, k=1,...,n, 1=1,...,m,

(4.2.9)
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The hardening variabled; and the damage variableg can be scalars or tensors.
For the creep strain as well as for the set of hardening andaganariables the
initial conditions must be specified. Let us assume

e’ =0, Hy| =H}, =, 4.2.10
t=0 li=o ke t=0 “I ( )
whereH]? andw? are the initial values of the hardening and the damage paeasne
Equations (4.2.1) — (4.2.10) describe the quasi-statiepcpeocess in a solid.

4.2.2 Vector-Matrix Representation

To formulate initial-boundary value problems and numéraution procedures
let us rewrite EQs (4.2.1) — (4.2.10) in the vector-matrixation. For the sake of
brevity we introduce the Cartesian coordinatgsy,, x3. The Cartesian components
of vectors and tensors can be collected into the followingniarical” vectors and
matrices:

Stress vector o ol = |01 o9 033 015 023 031]
Strain vector & el = [enn €2 €33 112 723 7131
Displacement vector u ul = [uq up ug)
Vector of creep strains e el = ¢S e% 55 v 15h 754
Vector of internal variables§ &7 = [Hy Hy ... Hy wy wy ... Wy
. T
Vector of thermal strains e e"" = [arAT arAT a7AT 00 0]
Vector of body forces f 1 = [hhF
Vector of surface forcesp ~ pT = [p1 p2 73]
Stress vector, onvdA ol = [0y, 0y, 0uy]
Normal vector v vl = [ 1w,
v; = cos(v,x;)
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u u 1 0 0
Transformation matrix T T = 010
| 0 0 1
o o I v O 0 v 0 v
Transformation matrix T T = 0O v 0 11 v3 0
| 0 0 »3 0 v 1n ]

Differential matrixD

D

I
o
%

N
o
v

S
v

[eS)
o

Differential matrixD4

0 03 03 0 —00; 0
03 0 0? 0 0  —003
D, — 03 0? 0 —019, 0 0
0 0 -9y —135 10185 10,95
~30; 0 0 10 -1 1910,
0 —9195 0 1305 190, 107 |

with

) o ()
Ji = ox; 9% = ox?

Elasticity matrix (stiffness matrixk

[ (2u+A) A A 0 0 O
(u+A) A 0 0 O
E_ 2u+A) 0 0 O
u 0 0
u 0

| SYM i
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Reciprocal elasticity matrix (compliance matrig) !

1 -V =V
1 —v

E ' =

| =

N

~—~

[y
NESHESESE -

SYM 2(14v)

With the introduced notations and = [x1 x2 x3] we can rewrite the governing
equations (4.2.1) — (4.2.10) as follows

Kinematical equations.
Strain-displacement relation

e=D"u, xevV (4.2.11)

Compatibility condition
D=0, xcV (4.2.12)

Prescribed boundary displacemeiaten A,

u
Tu=u, xcA, (4.2.13)

Equilibrium condition: .
Do+f=0 xecV (4.2.14)

Prescribed surface forcgson A,

To=0,=p, x€cA (4.2.15)

Constitutive and evolution equations:

c=E(e—¢"—¢7), xeV (4.2.16)
e = g(o,T)
P hedT) (4.2.17)

Initial conditions
e’ (x,0) =0, ¢&(x,0)=4¢ (4.2.18)
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The functiong can be formulated if the creep potenti@lis specified, see Sect.
2.1. The vecto and and the functiok can be defined for the selected internal
state variables and the corresponding evolution equatExemples of hardening
variables are presented in Sect. 2.3. Damage variablessaresded in Sect. 2.4.

4.2.3 Numerical Solution Techniques

Let us assume that the creep strain vector and the vectotevhal state variables
are known functions of the coordinates for a fixed time. Wit gtrain-displacement
relations (4.2.11), the constitutive equations (4.2.H) lse written as follows

o0 =E(DTu — ¢ — ) (4.2.19)

Taking into account the equilibrium conditions (4.2.143 éme static boundary con-
ditions (4.2.15) we obtain

DED'™u = —f+DEe" + DEe”, xcV,

o o o (4.2.20)
TED'w = p+TEe"+TEe", xc A,

With the kinematic boundary conditions (4.2.13), the padudifferential equations
and the boundary conditions (4.2.20) represent the BVP théldisplacement vec-
tor u as an unknown vector. Introducing the fictitious force vesmorresponding
to the given thermal strains and the creep strains at fixed W@ can write Eqs
(4.2.20) as follows

DED™u = _j‘ _|_fth +fcr, th _ DEeth, fcr = DEg‘",

o o o (4.2.21)
T EDTy = P+ pth + p“, pth —T Eeth, p" =T Ee
These equations are the equilibrium conditions expressttms of three unknown
components of the displacement vector. After the solutibBgs (4.2.21) one can
obtain the six components of the stress vector from Eqg.18)2Inserting the stress
vector into the creep constitutive equations (4.2.17) amecalculate the rates of the
creep strains and those of the internal variables. Baseldeoadquations introduced,
the IBVP of the type¥ = G(Y) can be formulated, whené includes the vectors
of creep strains and internal variables. The oper&tamvolves the solution of the
linearized boundary value problem for the fixed creep straimd internal variables.
The initial conditions are Egs (4.2.18).

An alternative formulation can be based on the compatjglinditions (4.2.12).
First the constitutive equations (4.2.16) after differatidn with respect to time can
be written as

g=E@—¢&"—¢)=E [e — & oo, E; T)]
Reordering this equation the total strain vector takes dha f

¢=Elo4¢" +g(0,&T) (4.2.22)
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For isothermal processe$’ = 0. The compatibility condition (4.2.12) can be
rewritten in terms of the strain rate vector

D=0 (4.2.23)
After inserting (4.2.22) into (4.2.23) we obtain
DE ¢ +Dig(0,&T) =0 (4.2.24)

The six equations (4.2.24) describe the stress redigwibduring the creep process.
The initial conditions are the solutions of the linear ataptoblem for the stresses

D.E 'o(x,0) =0,

as well ag(x,0) = &. The IBVP can be formulated again ¥s= G(Y), whereY
includes now the stress vector and the vector of interns stariables. The stress
redistribution equation (4.2.24) can be also formulatetéims of stress functions.
A variety of stress functions can be found in such a way theetjuilibrium condi-
tions (4.2.14) are identically satisfied. As an example weictoduce the vector of
stress functiong, so thatr = D1. It is easy to verify that in the absence of body
forces the equilibrium conditionBo = DD13p = 0 are identically satisfied. With
the stress functiong we can write (4.2.24) as follows

D.E~'Di¢ + D.1g(D19,&T) =0

Because there exist identities between the six compayilmiinditions (only three
of them are independent), see e.g. [126], it is possibleaiostorm the six equa-
tions (4.2.24) into three independent equations. For el@nome can express six
components of the stress vector by three Maxwell’s strasstions [126, 253]. Af-
ter inserting into (4.2.24) one can obtain three equationghree unknown stress
functions.

In addition to the displacement formulation (4.2.21) anel $hress formulation
(4.2.24), it is possible to express the governing equaiiotsrms of displacements
and stresses. Such mixed formulations can be useful foingpbreep problems of
beams, plates and shells.

4.2.3.1 Time Integration Methods. The governing equations include first or-
der time derivatives and the prescribed initial conditionse unknown displace-
ments in Eqgs (4.2.21) or the unknown stresses in (4.2.24juaions of coordi-
nates and time. The exact integration of these equatiors re#ipect to the time
variable is feasible only for one-dimensional problemg, &r bars or beams. In
the general case of the structural analysis, numericalitibegration methods must
be applied for solving non-linear IBVP. The commonly usellison technique in
mechanics and thermodynamics is the finite difference ndethloe time derivatives
are replaced by finite differences. Starting with the ihit@anditions (in our case the
elastic displacement or stress fields), the finite diffeeemethod leads to a step-by-
step solution. A variety of time integration algorithms dsnfound in textbooks on
numerical methods, e.g. [93, 107, 127, 287].
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Here we discuss some typical examples of time integratiosguures mostly
used in creep analysis. Let us start with the displacemeniuiation of the gov-
erning equations and neglect the thermal strains for the sikrevity. The initial
condition is the solution of the elasticity problem

DED'uy = —f, o0y =ED"u, (4.2.25)

with ug = u(x,0) andoy = o(x,0). One way to obtain the displacements and
stresses at timg = ty + At; is to assume that the rates of the creep strains and the
internal state variables are approximately constant withe time intervalty, t1].
Then for any time intervat,,, t,, 1| we can write

€1 = & A8, Gni1 = Gnt Ay,
Aﬁif - Atng(an,gn; Tn), Agn - Atnh(o-n,gn; Tn), (4226)
Aty = tp41—tn

The displacements and stressegat; can be updated using Egs (4.2.19) and
(4.2.21). Based on the equations introduced we can formtifet following time
integration scheme:

set n=0, ¢gf =0, =0

sol ve BVP DED"uy = —f, cal cul ate oy = ED"u,
1: calculate

Aey) = Atng(0n, &, Tn), AGn = Atyh(0y,8n, Tn)

eilr—&—l - eilr + AE,C[, §n+1 = gn + Agn/
sol ve BVP
DED"u,,, = —f+DEe”,,,
4.2.27
Cuit — E(Duy1 €7, (4-2.27)

if t,y1 <ty and w; < wy,,l =1,...,m then set n:=n+1 go
to 1

el se finish

The calculations can be repeated within the whole givemateof time [, fy]
by settingn := n 4 1 in Eqgs (4.2.26). For the creep-damage related analysis it is
necessary to prove of whether the critical damage statehis\ad. If the damage
variablew;,l = 1,...,m attains the critical valuev;, the calculations must be
terminated.

The forward difference equations (4.2.26) correspond ¢odihe-step explicit
Euler method. This method is widely used in the creep armlgscause of sim-
plicity. The accuracy of the method depends on the time siap Burthermore,
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this method is conditionally stable that means that theilgtals restricted to small

time steps. Therefore stable results can be obtained onl&tfe< At..;;. There is

no general recipe how to control the time step size by thehsene step explicit
method. For example, in [338] it is recommended to compugeithe step size from
the condition that the increment of the creep strain doeexcged one half of the
elastic strain, i.e.

1_._
Atng(amgn} Tn) < EE 10'11

A further restriction is connected with the assumption that stresses have to be
constant within the time intervat,, t,.1]. Therefore this method can be recom-
mended for structural analysis under constant or monotoaiding and tempera-
ture conditions only. In the case of loading jumps or cyatiading changes very
small time steps are necessary in order to provide a stahitoso

One way to improve the accuracy of time-dependent solutisrtbe use of
multi-step methods of the Runge-Kutta type, see e.g. [77, 1B7]. These explicit
methods are conditionally stable as well. However, thewigeo higher order ac-
curacy if compared with the one-step forward differencehmét Furthermore, for
the creep-damage related analysis the so-called embedstedas [127], which al-
low to control the time step size, can be recommended. In]&Ythe embedded
fourth order Kutta-Merson method has been applied to creelplggms of shells of
revolution.

The next possibility to improve the one-step method is tleeaishe generalized
trapezoidal rule [93]

€1 =€, +AE[(1—0)&) + 08 ,],
Eni1=Cn+AL[(1—0)E, +0E,.1],

wheref (0 < 0 < 1) is the parameter controlling the stability. The rule (28).
includes different well-known methods as special casetin§é = 0 the forward
difference explicit Euler method (4.2.26) follows. Fbr> 0 we obtain a variety of
implicit methods: ford = 1/2 - the trapezoidal rule (Crank-Nicolson method), and
for 6 = 1 the backward difference method (implicit Euler method)e Huvantage
of the implicit methods is their unconditional stabilityathrmeans that the solution
will be stable independently on the time step size. The ddcehe unconditional
stability is the necessity to solve non-linear equationsaagh time step. Equations
(4.2.28) can be rewritten as follows

(4.2.28)

€1 = & +Ae],
= + A ,
C"*; En + AL (4.2.29)
Asn = Aty [(1 - G)g(an, gfl/' Tn) + Gg(0n+1/ gnJrl/ Tn+1)] ’
A‘:n = Atn [(1 - 9)h(0n, gn} Tn) + Gh(an—i—l/ gn—i—l/ Tn+1)]

Equations (4.2.29) are non-linear with respecfta, for 6 > 0. Note that for a
material model with strain hardening, the vecfgrincludes the equivalent creep
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strain. In this case Eqs (4.2.29) are non-linear with retsjoes;’, ;. These equations
can be solved using known iteration methods. The simplessipiity is the fixed
point iteration method leading to the following scheme attime steft,, t,, 1]

, 0 '

set i=0, e =¢€/, & =8 0,4 =04

1: calculate

A" = Aty [(1 — 0)8(0n, &0 T) + 68(0h 11,8115 Tn+1>} %
NG =Dty [(1 = 0)h(0, &; T) + 6h(0, 1,80 15 Tur1)]
€0 =& 4 Ae,  EHL =&+ A,

. i+1 i ] j

i f "EZVH _£1C1r+1| > e and |§;1J;11 - :1+1| > €

t hen sol ve BVP

T,i+1 7 critl

DED un+1 - _fn+1 + DEen—i—l ’ 4.2 30
ol = E(DTyitl _gr''! (4.2.30)

n+1 n+1 n+1

set i:=i+1 goto 1

el se
o _ goritl _ =i+l

set €11 = &1y Cnr1 = n+1

The accuracy and the efficiency of the implicit method in @wtion with the in-
troduced iteration scheme is now additionally dependeriheriolerance and the
convergence rate of the fixed point iterations. The firsatien in the above intro-
duced scheme is the forward difference predictor. Sincedngergence rate of the
fixed point iterations is highly dependent on the “quality'tlee first iteration, the
efficiency of this scheme is determined again by the time sitap If the desired ac-
curacye is not reached withifi — 4 iterations the time step size should be decreased
and the calculations repeated starting from the step 1. [Blaeconvergence of the
fixed point iterations is the drawback of the proposed algori However, in the
case of creep-damage studies this algorithm is more effici@@mparison with the
explicit forward method. Some examples are discussed in4248]. Furthermore,
it is possible to combine the implicit time integration scteewith the Newton-
Raphson iteration method or its modifications providinghleigconvergence rates.
Examples can be found in [338].

Another widely used technique is to construct an expliditesee based on the
generalized trapezoidal rule (4.2.28), see e.g. [36, 2k can be accomplished
by linearizing (4.2.29 with respect fbﬂﬂ. For the sake of brevity let us assume
that the functiong andh are independent froffi. Then we can write

62:—1 = g(o-nlgn) +g,l7(0-1’l/§1’l)A0-l’l +g,(:(0-1’l/§l’l>A§1’l/

(4.2.31)
h(0n,8n) +ho(0n,8n)A0, +h,§(‘7nr§n)A§n

I

§n+1
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with
0g og oh oh

gla:g’ gg ag h/‘T:%/ h/g:i
From (4.2.29) we obtain

Ae" = At +6 Aoy, +0¢, zAC ),
" (81 + 08us 7 + 0815 080) (4.2.32)
Agn — Atn (hn + Ghn,g'Aan + GhnrgAgn) ’
where
g = &lowCn), hy, = h(owGn),
0
8o = a_g(‘fnrgn) e = ag(o'nfgn)
oh oh
hn,o' = % (Unr‘:n) hn,i;' = ag (‘angn)
The second equation (4.2.32) can be rewritten as
AZn = Aty [I— AtyOhyg] " [y + Ol e i) (4.2.33)

Inserting this equation into the first equation (4.2.32) \v&am

N = Aty (8 + 08noAt0)+ AR, & [T — AtyOhy 2]~ [y + Oy g A,]
(4.2.34)
Neglecting the last term in the right-hand side of (4.2.34¢, first Eq. in (4.2.20)
takes the form

DED'Au, = DEAeS =2 At,DE [g, + 08,0007 (4.2.35)

Here]r = const ande!" = const are assumed. From (4.2.19) the increment of the
stress vector can be computed as follows

Aan - E |:DTAun - Atngn - Atnegn,g'Aan] ;
or
Aoy = [I+ Atn0Egus) " EDT Au, — Aty [I+ At,0Eg,,] 'Eg,  (4.2.36)
After inserting into (4.2.35) we obtain
D [E - E}] DT Au, = At,DEg,,
. (4.2.37)
E:jl — AtnGEgnlg [I + AtnGEgnlg]i E

Based on the derived equations it is possible to formulagefaowing explicit
one-step method:
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set n=0, e =0, =0

sol ve BVP DED"uy = —f, cal cul ate oy = ED"u,
1: calculate

Ae] = Aty (gn + 0gnoAtoy),

A& = Aty [T — AtyOhyg] " [y + Ok oAy,

E; = At,0Eg,, [I + At,0Eg, ] 'E

sol ve BVP
D[E—-E;|D"Au, = AtDEg,,
Ao, = E(DTAu, — Ae) (4.2.38)
cal cul ate
g1 = & +A&, Cu1 = Tnt+ACn
Upp1 = Uy + Ay, Opt1 = oy + Aoy

if <ty and wy<wp, I=1,...,m
then set n:=n+1go to 1
el se finish

For 6 > 0 this method provides an accuracy of higher order if compavi
that for the explicit one-step Euler method. For examplepfe= 1/2 the method
has a second order accuracy while the explicit Euler metfoé (0) provides a
first order accuracy. Following this algorithm the fictit®torce vectorAtDEg),

and the stiffness matri€ — E;, must be computed at each time step. The modified
stiffness leads to an additional effort in solving the boanydsalue problem (4.2.38).
Furthermore, the matri€ — E;; is non-symmetric.

4.2.3.2 Solution of Boundary Value Problems. According to the discussed
time integration algorithms, linearized boundary valuelyms have to be solved
at each time or iteration step. These problems include seoater partial differen-
tial equations with respect to the unknown displacemefist, ) or displacement
incrementsAu(x, t,,). The effect of the accumulated creep strain is considered by
means of fictitious force vectors and/or complementarjngtifis matrices. The accu-
mulated creep strain is determined by the entire deformdtistory. Therefore, the
known analytical methods from the theory of elasticity,. élgp Fourier series ap-
proach [6] and the complex stress functions approach [B2é]not applicable in the
general case of creep with internal state variables. Omlgdme one-dimensional
problems, e.g. for the Bernoulli-Euler type beam, anafyt@osed form solutions
of the creep problems can be obtained [77, 202, 236]. Théstmst are helpful for
the verification of the general computational methods oegarpurpose solvers.
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In what follows let us briefly discuss the numerical methoelsently used in
creep mechanics. These methods are:

— the finite difference method,
— the direct variational methods and
— the boundary element method.

Applying the finite difference method the partial differ@hioperators are replaced
by finite differences leading to the solution of algebraicia@ppns instead of the
partial differential ones. The utilization is mostly eféai for creep problems lead-
ing to ordinary differential equations. Examples inclucésymmetrically loaded
shells of revolution and circular plates [17, 18, 30, 60,8&1,,82, 221, 255, 291].

The widely used approach is based on the variational fortiouka of the creep
problem. Starting from appropriate variational functilsrae following direct vari-
ational methods can be applied: the Ritz method, the Galeriethod and the
Vlasov-Kantorovich method. We will briefly discuss the waional formulations
and the classical variational methods in the next subseclibe most powerful
variational method for the structural analysis is the fielement method [37, 338]
which is the basis of commercial general purpose solvags, 8BBAQUS, ADINA,
ANSYS, COSMOS, etc. The possibility to incorporate a cregpemal model with
internal state variables is available in commercial codliBs.implementation can be
performed by writing a user defined material subroutine.

The boundary element method is based on the transformatiive partial dif-
ferential equations into boundary integral equations.rbfento solve these equa-
tions the boundary of the domain is divided into finite eletaeAs a result a set
of algebraic equations with respect to the vector of disataents (tractions) in the
discretisation points of the boundary can be obtained. éncéise of creep an ad-
ditional domain discretisation is necessary in order toestbe components of the
creep strain vector [39]. For details of the boundary eldntechnique we refer to
[78, 130, 253].

4.2.3.3 Variational Formulations and Procedures. Variational formulations
are widely used in several problems of solid mechanics. Bneyhe basis for direct
variational methods, e.g. the Ritz method, the Galerkinhiodt the finite element
method. With respect to the type of the BVP, different vioizdl functionals have
been proposed. Here let us consider a variational fundtionerms of the displace-
ment vector. Let(q, t) be the solution of the BVP (4.2.1) - (4.2.6) under gie€n
Let éu be the vector of virtual displacements satisfying the kiagmboundary
conditions (4.2.4). Starting from the equilibrium conaliti(4.2.3) we can write

/(V .o+ of ) - 6udV = 0 (4.2.39)
1%

According to (A.2.2)

/(V-a)»(SudV:/[V-(a'éu)—a-- (Véu)T| av (4.2.40)
1% 1%
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Applying the divergence theorem (see Sect. A.2.3) and titecdtoundary condi-
tions (4.2.4) we obtain
/v- (- 6u)dV = /(v-a)-éudA . /f;-éudA (4.2.41)

A Ap

Withe - (Vou)T =0+ 5(Vu)T = o-- de, (4.2.40) and (4.2.41), Eq. (4.2.39) takes
the form

/a-- sedV — /pf-éudV - /ﬁ-éudA —0, (4.2.42)
14 14 Ap
or
SW; + W, =0, OW; = —/m-&edV, 5we:/f.5udv+/p~5udA
\%4 \%4
(4.2.43)

The principle of virtual displacements (4.2.43) stateg tha deformable system
is in equilibrium then the sum of the virtual work of exterrzaitionsé W, and the
virtual work of internal forceW; is equal to zero, e.g., [6, 253, 321]. With the
constitutive equation (4.2.6)

o--0e = <(4)C (e —gT — e”’)) .. b€
= %5(8“ (4)C..e) — (ecr+eth).. (4)C..5e
the variational equation (4.2.43) can be formulated asvl

5%/ B edv — /fudV /pudA

v Ay

— /(e" +eh) .. AC.edv| =0
4

or 6IT(u) = 0 with

IT(u) =

/e YC - edV — /fudV /pudA

1
2

v Ap (4.2.44)
/e"+s”’ 4C - edv
\%4

Applying the vector-matrix notation we can write

M) = ;/(DT YTED udV — /f udv — /p udA
v Ap (4.2.45)
/ e"EDTudv — / ¢"EDTudV
14
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It is easy to verify that from the conditiafi () = 0 follows the partial differential
equation with respect to the displacement vector and thie §iaundary condition
(4.2.20).

The variational functional (4.2.45) has been derived fram principle of vir-
tual displacements. By analogy a variational functiondabmms of stresses or stress
functions can be formulated providing Eqgs (4.2.24) as Eedeiations. Furthermore,
a mixed variational formulation in terms of displacemenmtd stresses can be conve-
nient for numerous structural mechanics problems. In [28] 2 mixed variational
functional has been utilized for the solution of the vonian type plate equations.
In [16, 20, 225] a mixed formulation has been applied to detine first order shear
deformation beam equations.

To solve the variational problem classical direct variagiomethods can be uti-
lized. Let usillustrate the application of the Ritz methodite variational functional
(4.2.45). The approximate solution for the displacementoret is presented in the
form of series

=z

I = ) akidri(x1,x2,x3), k=123 (4.2.46)
i=1
(no summation ovek) or
~ T
Uuq a{¢1 ¢1 0 0 aq
=i |=|algy |=|0 ¢ 0 a, | =Gla, (4.2.47)
13 a3T¢3 0 0 ¢s3 as

wheregy are vectors of the trial (basis or shape) functions whichuhbe speci-
fied a priori andz; are vectors of unknown (free) parameters. The functignasn
(4.2.46) must be linearly independent and satisfy the kateral boundary condi-
tions. Furthermore, the set of these functions must be catenjoh order to provide
the convergence ai asN — oo. Inserting the approximate solutianinto the
variational functional (4.2.45) we can obtain for the tinieps,,

(@) = a' 1/(DTG)TEDTde a—a” [Gfav —a" [Gpia
1%

2
14 A,
I / (DTG)TEe" av + / (DTG)TEe Tav
1 14 14
= EaTKa —aT(f + f" + f) = [1,,(a)
(4.2.48)

with
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K= / (DTG)TED"GAV = / B"EB4V, B=D’G,
4
f= / GFdV — / GpdA,
14 Ay
fih = / BTEe" dv, fo = / BTEeTav
14 14
From the conditioTT,(a) = 0 follows the set of linear algebraic equations

Ka=f+fh 4 fo (4.2.49)

After the solution of (4.2.49) the displacements can be agegpfrom (4.2.47) and
stresses from (4.2.19). With the Ritz method and the expliwie integration pro-
cedure the step-by-step solution of a creep problem canilizdtas follows:

set n=0, ¢ =0, =0

select the matrix of trial functions G

cal cul ate

K= / BTEBdV, f= / GFdV — / Gpda, ff = / (DTG)TEe" qv
1% 1% Ay 1%

sol ve BVP Kay = f + f cal cul ate ity = GTay, oo = ED"ii

1: calculate

Ae] = At,g(04,8n, Tn), NG, = Atyh(0,,8n, Ty)

€1 =& +Ag/, Cnt1 = Gn + AGn,
cal cul ate
71— [ (DTG)"Eef,av
1%

solve Ka,iq=f+f"+fr,

calcul ate @,41 =G"a,1, 0411 = E(DTit, 1 — € 4)
if ty <ty and w; <wp,l=1,...,m

then set n:=n+1go to 1

el se finish

The vectorf; must be computed at each time step through a numerical atiegr
Therefore, the domain discretisation is required to stbeevectore® andg. The
accuracy of the solution by the Ritz method depends on thalitgliand the num-
ber of trial functions. For special problems with simple getry, homogeneous
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boundary conditions, etc., trial functions can be fornedain terms of elemen-
tary functions (e.g. orthogonal polynomials, trigonontetr hyperbolic functions
etc.) defined within the whole domain, e.qg. [6]. Examplesstorh problems include
beams [14, 77, 225] and plates [18, 224]. The Ritz methodhiplsi in utilization
and provides an approximate analytical solution.

In the general case of complex geometry, a powerful tool esfithite element
method. The domain is subdivided into finite elements angitheewise trial func-
tions (polynomials) are defined within the elements. FoaitieDf finite element
techniques we refer to the textbooks [37, 56, 325, 338]. Bylagy with the Ritz
method the finite element procedure results in a set of agelequations of the
type

Kb, = f+ f" + £, (4.2.50)

whereK is the overall stiffness matri¥,, is the vector of unknown nodal displace-
ments andf, f* and f& are the nodal force vectors computed from given loads,
thermal strains as well as creep strains at the time oriberatep. The commercial
codes usually include more sophisticated time integratiethods allowing the au-
tomatic time step size control. The vecifff depends on the distribution of creep
strains at the current time step. The creep strains arendieted by the constitutive
model and a variety of constitutive models can be applieé&déing on the material
type, type of loading, available experimental data, eteréfore the possibility to
incorporate a user defined material law is usually availab®mmercial codes.
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4.3 Beams

Beams are widely discussed in monographs and textbooks emp anechanics
[77, 139, 152, 173, 201, 202, 234, 250, 292]. The presentathpbes are, how-

ever, limited to the classical Bernoulli-Euler beam theand Norton-Bailey con-

stitutive equations of steady state creep. The objectivhisfsection is to analyze
time dependent behavior of beams under creep-damage iomisdiEor this purpose
we apply the classical beam theory and a refined theory whidiides the effect

of transverse shear deformation (Timoshenko type theBagded on several exam-
ples we compare both theories as they describe creep-dgmaggsses in beams.
Furthermore, we develop and solve several benchmark pnsbl€he reference so-
lutions obtained by the Ritz method are applied to verifyrukedined creep-damage
material subroutines for the ANSYS finite element code.

4.3.1 Classical Beam Theory

4.3.1.1 Governing Equations. Letus consider a straight homogeneous beam in
the Cartesian coordinate systefy, z as shown in Fig. 4.1. For the sake of brevity
we consider the case of symmetrical bending in the planenggaon thex and

z coordinate lines. Furthermore we introduce geometridailgar equations. Their
validity is restricted to the case of infinitesimal straidssplacements and cross
section rotations. The governing equations can be sumethag follows

— kinematical equations

r(x,y,z) =ex +1:(y,z)
r(y,z) =eyy +ez

€x

e,
tt
P Centroid of cross section

Figure 4.1 Beam with a rectangular cross section. Geometry, loadidganrdinates
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u(x,z) = uo(x) + ¢(x)z,  ¢(x) = —w'(x),

(4.3.1)
ex(x,z) = uy(x) + ¢’ (x)z,

whereu(x,z) is the axial displacementsy(x) is the axial displacement of the
beam centerlinep(x) is the angle of the cross section rotatiarix) is the trans-
verse displacement (deflection) and prime denotes theatiegwvith respect to
X.

— equilibrium conditions
N'(x) =0, Q'(x)+4q(x) =0, M'(x)=0Q(x), (4.3.2)

whereN(x) is the normal forceQ(x) is the shear forceM(x) is the bending
moment andj(x) is the given distributed load.
— constitutive equations

e normal (bending) stress
ox(x,z) = Elex(x,z) —arAT(x,z) — el (x,z)] 4.3.3)
= Eleo(x) + x(x)z — ap(x, 2)AT — e (x,2)],

wheree( = u() is the strain of the beam centerline apd= —w" is the beam

curvature.
e stress resultants
N(x) = / A = EA[eo(x) — e (x) —eff ()],
“ (4.3.4)
Mx) = [eozdd = Elx(0)-x"(x) - x"(x)],
A

whereA is the cross sectional arelais the moment of inertia and

£ (x) = % [eraaa, e = aT% [ a1(x2)da,
1 g 1 g

x7(x) = 7 /sgf(x,z)sz, xM(x) = ars /AT(x,z)sz
A A

are averages of thermal and creep strains. In terms ofdiasitiorces and mo-

ments Eqgs (4.3.4) can be rewritten as follows
N(x) = EAeo(x) - N(x) — N'(x), w3
M(x) = Elx(x) - M7(x) - M™(x) B

with
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e creep-damage constitutive and evolution equations (seie 5é.1.1)

_ k
o o] oy . bU&i || + 0%
= - = —, — [E S 1 —
x (1—(4])” Y (1—w)l Ueq 11 +( Dé)|0'x’
(4.3.6)

The boundary conditions at= 0 andx = [ (! is the beam length) must be formu-
lated with respect to the kinematical quantitiese and/or the dual static quantities
Q, M. The initial conditions at = 0 are¢{/ = 0 andw = 0.

4.3.1.2 Closed Form Solutions.  Assuming the idealized creep behavior with
the secondary creep stage only (see Sect. 1.2) a steadyesiste for which the
bending stress and the deflection rate in a beam are conS@amdtitutive equation
for secondary creep follows from (4.3.6) by setting= 0. For the sake of brevity
let us neglect the thermal strains. The constitutive eqodtr the bending stress
(4.3.5) takes the form

ox(x,z) = E [x(x)z — & (x,2)] (4.3.7)

In the following derivations let us drop the arguments. fgkihe time derivative of
(4.3.7) and applying the constitutive equation (4.3.6) Wweam

o = E(xz — a|oy " loy) (4.3.8)

Equation (4.3.8) describes the stress redistribution iecarh The steady state solu-
tion follows from (4.3.8) by setting, = 0

1
1\7" 19,
oy = (E) Xz xz (4.3.9)

The bending moment in the steady state can be calculatedl@sso
n 1 l
M :/axsz = (E) In])'d%’l)'(, (4.3.10)
A

where o
I, :/|Z|E*122dA
A

is the generalized moment of inertia.

As an example let us consider a simply supported beam undafaraly dis-
tributed loady. In this statically determined case the bending momeM{x) =
gx(I — x)/2. From (4.3.10) follows the differential equation for thefldetion rate

n
wx)" =L nq ) g<x <l (4.3.11)

For integer values of the powerthe solution is
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n n
w(x) = Ia—ng—nx ) ap (PHRFT etk (4.3.12)
n k=0
with
n! [k

_(_1\k
w = (1) K(n—k)! (n+k+1)(n+k+2)
The reference elastic deflection is

q 2 2

w(x) = 24E1x(x D(x®—Ix—17)
Let us note that the closed form solution for the steady stefiection rate (4.3.12)
is a polynomial of the ordetn + 2. Therefore, if the creep problem is numerically
solved applying variational methods (see Sect. 4.2.h8)rtal functions for the de-
flection or deflection rate should contain the polynomiaiiof the orden + 2
instead of 4 in the elastic case. The order of the polynorerahs$ of the creep solu-
tion is material-dependent sineds the creep exponent in the Norton-Bailey creep
law. Furthermore, for the analysis of steady state creepcaurate solution cannot
be obtained applying approximations justified from theteda®lution. Closed form
solutions for steady state creep in beams with various tgpbsundary conditions
and loading are presented in [77, 202, 234].

4.3.1.3 Approximate Solutions by the Ritz Method. Starting from the prin-
ciple of virtual displacements (4.2.43) we can write

1 1
/axésde = EI/ w”&w”dx—l—EA/ué(Su()dx
0 0

\%4
l )

+ / M 50" dx — / N 6uldx

0 0
= /qéwdx
0

Assuming the creep strain to be known function of the coateisi andz for the
fixed timet we can formulate the following functional

l /
1 1
ITi(w,uy) = EEI/w”zdx+§EA/u62dx
0 0

! ! !
+ / MW" dx — / Nupdx — / qudx

0 0 0
The problem is to find such functions andu that yield an extremum of the func-

tional. The approximate solutions for the fixed titngan be represented in the form
of series
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N M
w(x) =aggq (x) + ) a9’ (x), uo(x) =) aj'gf(x) (4.3.13)
i=1 i=1

For the simply supported beam the trial functions can be fiteited as follows.
¢¥(x) = x(x—1I) (x> — Ix — I2) is the first approximation from the elastic solution.
For ¢i (x) we apply the following polynomials satisfying the boundagnditions
for the deflectionw = 0 and for the bending momeM = 0 atx = 0 andx =/

¢ (x) = xT2(1 — x)' T2 (4.3.14)

Assuming thatiy = 0 atx = 0 the functionsp? (x) = x’ can be utilized. Collecting
the unknown constant coefficients into the veatdr = [awT a“T] with g =
lay a¥],i=1,...,N anda"’ = [a}],i =1,..., M, the Ritz method yields a set

1
of linear algebraic equations

E)Ht - R%% 0 a% B fw
a—ﬂk —0, |:0 Ruu :| |:au :| - |:fu :| (4315)
with
l‘
z;w — EI/QD]?//(P?)//dx’ k=1,...,N, j:1,...,N,
0
I
RE = EA[gfpldx,  k=1..M,  j=1..M,
0

I

1
fi = q/¢,i"dx—/M"¢,1””dx, k=1,...,N,
0

IO
o= [NTgEay k=1..M
0

After solution of (4.3.15) the stress (x,z,t) can be calculated from (4.3.3). For
the known values of the stress and the damage parameter rikétuiive model
(4.3.6) yields the rates of creep strain and damage for the #ti From these the
new values for the time + At are calculated using the implicit time integration
procedure (4.2.28)

e (x,z,t + At) = " (x,z,t) + At[(1 — 0)e (x,z,t) + 0 (x, z, t + At)],
w(x,z,t+ At) = w(x,z,t) + At[(1 — 0)w(x, z,t) + 0w(x,z, t + At)],
e"(x,2,0) =0, w(x,z0) =0, w(xzt) < ws

For the calculation of the fictitious creep foré&” and the creep momen”
the Gauss method with 9 integration points in the thicknésection is used. To
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obtain the matriceR™"(m,n = w,u) and the vectorg™ and f* in (4.3.15) the
Simpson quadrature rule wifl; integration points along the beam length axiis
applied. The values of creep strain and damage at the cumemtstep are stored
for all integration points along the beam axis and over tiekiiess direction. They
are used for the calculations at the next time step. The acgwf the numerical
solution depends on the number of trial functions in Eq..38 on the number of
integration points, and on the time step size.

4.3.1.4 Example. In the following numerical example we examine the conver-
gence of the approximate solution by the Ritz method apglyiifferent number
of trial functions. Furthermore, we perform the finite elemanalysis by ANSYS
code to verify the developed material subroutine and tstilate the solution accu-
racy with respect to the mesh density.

Solution by the Ritz Method.  Let us consider a simply supported and uniformly
loaded beam with a rectangular cross secgion/, whereg is the width andz is the
height. For the numerical analysis we get 60 N/mm,/ = 10% mm,h = 80 mm,

ly, = 30 mm. We apply the creep-damage material model (3.1.11) waterial
constants for the aluminium alloy BS 1472 (3.1.12) (see.Sett4). The damage
evolution is controlled by the von Mises equivalent str€msequently, the damage
rate will be the same for tensile and compressive layers efolam. By setting
a = 0in (4.3.6) we obtairv,; = |oy|. Therefore, the distribution diry| will

be symmetrical with respect to the beam centerline. Furibeg, in Eqs (4.3.15)
N =0, f* = 0 and consequently" = 0.

The time step solutions are performed until the critical dgenis achieved in
one of the integration points. The condition of terminatisn;(xf, zf, te) > 0.9,
where the integration poirﬂ’(xf, zf) can be specified as a point of failure initia-
tion and the time step, as the time to failure initiation. Figure 4.2 illustrate® th
maximum deflection and the maximum stress as functions @.firhe results have
been obtained with different number of polynomial term8(#4) in Egs (4.3.13).
We observe that all applied approximations to the defledtimction provide the
same result for the reference elastic state. However, thdtsefor creep are quite
different and depend essentially on the number of trial ions, Fig. 4.2. The ap-
proximation adjusted to the elastic solution (fourth ordetynomial, curves 1) is
hardly sufficient for the creep-damage analysis. The diffee between the life-time
estimations for the case N(= 1) and for the case 4\ = 8) is up to the factor six.
Figure 4.3 illustrates the convergence against the aegdtition with increasing
number of trial functions. As shown in Sect. 4.3.1.2, thesetbform solution for
deflection rate in the steady state creep range is a polyhaiiae order2n + 2,
wheren is the material constant in the power law. If the damage éawius taken
into account then the steady state creep range does nqtleigistt.3. By analogy
with the uni-axial creep curve three creep stages for thenlezan be observed. The
“primary” stage is characterized by the decrease in the acafterate and signifi-
cant stress relaxation. The “secondary” stage can be faehbtly slow changes in
the rates of deflection growth and stress relaxation. Dutieg'‘tertiary” stage the
rates rapidly increase. The applied approximations in dses 3-6, Fig. 4.3, provide
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Figure 4.2 Solutions for a Bernoulli beam based on the Ritz method vkigretpproximation
(4.3.13) and polynomial functions (4.3.14)Time variation of maximum deflectiot, time
variation of maximum stress, 1 — approximation using etadiflection function, 2 N =1,
3-N=2,4-N=8

almost the same solutions for the primary and secondanp gtges. The results
differ only in the final stage. Therefore we may conclude thatconsideration of
damage needs an increased order of approximation, in casupawith the steady
state creep analysis.

Finite Element Solution.  The constitutive model (3.1.3) is incorporated into the
ANSYS finite element code by means of the user defined creegriaasubrou-
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tine. For details of the ANSYS User Programmable Featurdstlas utilized time
integration methods we refer to [258, 338].

To verify the developed subroutine and to analyze the acgwfinite element
solutions with respect to the mesh density, the type of figliégenents, the type of
the time integration procedure, etc., benchmark problerasrequired. Here we
consider the example solved before by the Ritz method. Fonteshing we used



4.3 Beams 131

Wimax, MM
22
5 4 3
20 /
° \ / /
18 7 "/
i N
3 1
14 | o
i / )
o b 2
10 /
8 L Il L 1 1 1 1 1 Il Il Il Il 1 1 1 1 Il 1 1 1 1 Il 1 1 1
0 10000 20000 30000 40000 50000 6oooo L h
b
240
q=4q/g
220
200
180 § L7
5 —
160 F —

z NS——
140 b \ \ \
120
; o AT ]
100 g

0 10000 20000 30000 40000 50000 60000 t' h

Figure 4.4 Solutions for a Bernoulli beam using the ANSYS code with edate SHELL 43.
a Time variation of maximum deflectiob, time variation of maximum stress, 1 — 8 elements,
2 —10 elements, 3 — 20 elements, 4 — 40 elements, 5 — 80 elerGen®0 elements

e

the 4-node shell element SHELL 43 available in ANSYS for praad plasticity
analysis. For the time integration we applied the autorahtime stepping feature
with a minimum time ste.1 h.

Figure 4.4 illustrates time variations for the maximum @é&fe and the max-
imum stress. The results have been obtained with a differemtber of elements
along the beam axis. We observe that all of the used meshégi@tbe same solu-
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tions for the reference elastic state. However, the creleicos are highly sensitive
to the mesh density. The best solution (case 6) has beemebttaith 200 elements
and after 96 time steps. This solution agrees well with thetism obtained by the
Ritz method, Fig. 4.3. A mesh adjusted to the convergentisolof the linear elas-
ticity problem (case 1) is not fine enough for the creep amalyhe results in the
cases 3-6, Fig. 4.4 agree well in the primary and secondasgpcstages and dif-
fer only in the final stage. However, such a difference is resieatial if we take
into account the scatter of material data and inaccuradyeoitaterial behavior de-
scription. In this sence the mesh adjusted to the conveggution in the pimary
and secondary creep stages is fine enough for the numefedintie predictions.
In [14, 15] several benchmark problems for beams and regtanglates solved by
the Ritz method are presented. Finite element solutionthésame problems have
been perfomed by use of shell, plane and solid type eleméhngsresults illustrate
the correctness of the developed subroutine over the witlgeraf element types.
Furthermore, the conclusion was made, that the mesh adjtst@nvergent solu-
tions in the primary and secondary creep range providesgénaacuracy for the
analysis of the whole creep process.

4.3.2 Refined Theories of Beams

4.3.2.1 Stress State Effects and Cross Section Assumptions . For many
materials stress state dependent tertiary creep has bservet in multi-axial tests
(see Sect. 1.1.2). The primary and secondary creep ratemani@antly controlled
by the von Mises stress. The accelerated creep is addiyianfiienced by the kind
of the stress state. For example, different tertiary credgsrand times to fracture
can be obtained from creep tests under uni-axial tensidmtiwi stresg and under
torsion with the shear stresg3t = o, e.g. [169]. Figure 4.5a shows creep curves
for tensile, compressive and shearing stresses simuletedding to the constitutive
model (3.1.1), (3.1.2) and the material constants (3.bB}ype 316 stainless steel
at 650 C. The selected stress values provide the same value of thdiges stress.
It is obvious that the tertiary creep rate is significantiypeedent on the kind of
loading. Figure 4.5b presents creep curves calculatedéogdimbined action of the
normal and shear stresses. We observe that even a smajpassipeishear stress can
significantly influence the axial strain response and dserdfze fracture time. Fur-
thermore, combined tension-shear and compression-sbadings with the same
stress magnitudes lead to quite different creep respombeschange of the sign of
the normal stress influences both the normal and the shesy ates.

The considered loading case is typical for transverselgddébeams, plates and
shells. For beams the local stress state is characterizedrnyal (bending) stress
and small superposed transverse shear stress. Trandveasessess and transverse
shear deformation are neglected within the classical hebbeams. The consid-
ered example indicates that small shear stress can sigtifidafluence the ma-
terial response and cause significant shear strains. Fonohe, the dependence of
creep on the sign of the normal stress can lead to non-ciighickness distribu-
tions of the displacement, strain and stress fields. For pkarthe concept of the
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Figure 4.5 Creep responses for various stress states computed ussn@HBdL) — (3.1.3).
a Responses by tension, torsion and compressiaesponses by combined tension (com-
pression) and torsion

neutral stress-free plane fails and the distribution oftthesverse shear stresses is
non-symmetrical with respect to the midplane.

Cross section assumptions are usually the basis for ditfeegined models of
beams, plates and shells developed within the theory dfigtgsBelow we apply
the first order shear deformation theory (Timoshenko-tyigety) to creep analysis.
For a beam with a rectangular cross section we compare thiksressed on differ-



134 4 Modeling of Creep in Structures

ent structural mechanics models (classical beam, sheamadaible beam and plane
stress model).

4.3.2.2 First Order Shear Deformation Equations. The first order shear de-
formation beam theory can be derived either by the directagmh, e.g. [32], or by
a variational method applied to three-dimensional eqnatie.g. [20, 140].

Within the direct approach the beam is modeled as a defoar@i#nted line.
The deformed configuration is characterized by two indepenkinematical quan-
tities: the vector describing the positions of points onlte and the rotation tensor
or vector describing the orientation of cross sectionstieumore, it is assumed that
the mechanical interaction between neighboring crossosecis only due to forces
and moments. The balance equations are applied directlyetaléformable line
and formulated with respect to the beam quantities, i.eliteemass density (mass
density per unit arc length), the vectors of forces and mdspehe line density
of internal energy, etc. The constitutive equations cohtiexforces and moments
with the strains. A direct approach to formulate constiitgquations for rods and
shells in the case of elasticity is discussed in [23]. Destiie elegance of this ap-
proach several problems arise in application to creep nmicharl he creep consti-
tutive equations must be formulated for inelastic partsezrh like strains (tensile,
transverse shear and bending strains). By analogy to tkee theories discussed in
Chapt. 2 the creep potential should be constructed as adoratthe force and the
moment vectors. For example, [Etbe the force vector anM the moment vector.
Following the classical creep theory (see Sect. 2.2.1.Boarivalent stress for the
deformable line can be formulated as a quadratic form wipeet toI' and M

ty = %T-A-T+T-B-M+%M-C-M

The structure of second rank material tensdrsB andC must be established ac-
cording to the material symmetries and geometrical symesetf the beam cross
section. The material constants have to be identified dither creep tests on beams
or by comparing the solutions of beam equations with theespwnding solutions

of three- or two-dimensional problems for special casesading. Only a few such

solutions are available in creep mechanics. An exampleesthre bending of a

beam under power law secondary creep condition (see S8ct.2). In this case

the steady state creep constitutive equation for the bgnstimin rate can be ob-
tained from (4.3.10) as follows

a
(= —|M|""'M
x= M

Alternatively the beam equations may be derived in the sefegproximate so-
lution of two- or three-dimensional equations. First, tigh-the-thickness approx-
imations of displacements and/or stresses are specifiezh, The two- or three-
dimensional boundary value problem is reduced to ordin#fgrdntial equations
by means of a variational principle. In order to discuss dpigroach let us consider
a beam with a rectangular cross-section, Fig. 4.6. The gowgitwo-dimensional
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v
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Figure 4.6 Straight beam with a rectangular cross-section

equations for this case can be derived from (4.2.1) - (41h8ler the assumption of
the plane stress state, ice-e, = 0. The principle of virtual displacements (4.2.43)
yields

2

I 1 !
gh / / (dex + Ty + 020e2)d0dx = / G(x)sw(x, —h/2)dx  (4.3.16)
0-—1 0

Here!l denotes the beam lengtt, 0y, Tx; andey, €y, v, are the Cartesian com-
ponents of the stress and strain tensors, respectively,the beam deflection and
¢ = 2z/h is the dimensionless thickness coordinate. Here and indih@ning
derivations we use the abbreviations

(...),x;%(...), (...),Zzaa—z(...), (...)/z%(...),
(...)-Ed%(...), (.1.)5%(...)

Specifying through-the-thickness approximations for dlk&l displacement:
and the deflectionv, various one-dimensional displacement based beam tlseorie
can be derived [268]. The classical Bernoulli-Euler thestyased on the following
displacement approximations

u(x,z) = ug(x) — w{)(x)gg, w(x,z) = wy(x), (4.3.17)

whereu, wq are the displacements of the beam centerline. The refinedhasisn

u(x,z) = up(x) + (p(x)gg, (4.3.18)

where ¢ denotes the independent cross-section rotation, prowfiuedirst order
shear deformation (Timoshenko-type) beam theory. Anatéined displacement
based beam model can be obtained with
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u(x,g) = MO(x)"_(P(x)gC"i‘ul(x)(p(C)/ (4.3.19)
w(x,§) = wo(x)+ w1 (x)Q(E),

whereuy andwy are the displacements of the beam centerlihé]) and (2({)
are distribution functions, which should be specified, apdc) andw; (x) are un-
known functions of the:-coordinate. The assumptiodg?) = (Zh/2)3,Q(z) =0
result in a Levinson-Reddy type theory [186, 267]. From tharwary conditions
Yxz(x, £1) = 0 it follows

w(nd) = uolx) +p()at ~ [wh(x) + ()] 2L,
w(x,C) - ZUO(X)

and
Ao _do
dZ lg=—1 dC lg=1
The next possibility is the use of stress based approximstieor example,
the equations following from the elasticity solution of tBernoulli-Euler beam
equations are given as

Oy - 6]g\/1h(2x)€/
~3Q(x)

T (1 —g2>, (4.3.20)
_ o 3qx) (2, 14

0z = 4g < §+C 3€>

Applying the stress approximations equations for an elastear deformable plate
have been derived by E. Reissner [270] by means of a mixedtiaral principle.
The displacement approximations (4.3.19) neglecting énhedu; P and w2 or
the stress approximations (4.3.20) lead to the first ordearsdeformation beam
theory. The stress approximations (4.3.20) are not seitkdvlcreep problems be-
cause even in the case of steady state creep the normal stréss non-linear
function of the thickness coordinate (see Sect. 4.3.1@)avbid this problem, in
[20] the following approximations for the transverse sheadt normal stresses were
applied

2009t
h gh o (4.3.21)
o, — q;x) lp(g)llj()lp(l), Py = 770(1) _ 770(_1)

P(¢) is a given function satisfying the boundary conditiop$(+1) = 0. Fur-
thermore, the linear through-the-thickness approxinmatibthe axial displacement
u(x,) = ug(x) + {e(x)h/2 was assumed. Applying a mixed type variational
principle the following beam equations were derived in [20]
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— equilibrium conditions
N =0, M-Q=0, Q+4g=0, (4.3.22)

— constitutive equation for the shear force

Q= GAk(p + @' —4), (4.3.23)
whereG is the shear modulus and
1 1
1 2 o2 N _ 1
P v e = o e ow @
1 - (4.3.24)

~Cr _ i oy °
7(@—-%4%4@¢@%

By settingGAk — co and¥“" = 0 in (4.3.23) the classical beam equations can be
obtained. In this case = —@’ (the straight normal hypothesis). Let us note that
Egs (4.3.22) and (4.3.23) can be derived applying the dapptoach. For plates
and shells this way is shown in [26]. However, in this casentlieaning of the quan-
tities GAk and4“" is different. The shear stiffne€sAk plays the role of the beam
like material constant and must be determined either fr@ts ter by comparison
of results according to the beam theory with solutions oéehdimensional equa-
tions of elasto-statics or -dynamics. For a review of dédférestimates of the shear
correction factork we refer to [154]. Furthermore, the direct approach would re
quire a constitutive equation for the rate of transverseushzainy“’ . Within the
applied variational procedure, Egs (4.3.22) and (4.3.8B)asent an approximate
solution of the plane stress problem under special triattfons (4.3.21). Therefore

k and¥¢" appear in (4.3.24) as numerical quantities and depend arhtiiee of the
functiony(Z). For example, setting({) = ¢ we obtain

k=1, /7 (4.3.25)
With ¢() = ¢ — 73 /3 we obtain the Reissner type approximation (4.3.20) and

1
k=5/6, 77() =3 [0 - )i (4.3.26)
-1

As the next choice let us consider the steady state creefiosolof a Bernoulli-
Euler beam (see Sect. 4.3.1.2). According to (4.3.9) argl1@) the bending stress
oy can be expressed as

M(x )2(2n+1)|€| (1/n)—

ox(x,0) =
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After inserting this equation into the equilibrium conditi

2
Ux,x + Esz’é — 0 (4.3.27)
and the integration with respectfove obtain the transverse shear stress
Q(x)2n+1

_ 2 -(1/n) 1
Txz gh n+1 (1 4 |€| )

With the trial functions
Po(Q) = 1=, Q) = -

from (4.3.24) follows

n
2n+1

Zlg)n ! (4.3.28)

1
= 2T [0 01 - e (4329

-1

_ 3n+2
4n 42’

7 (x)

By settingn = 1 in (4.3.29) we obtain (4.3.26). The value ofusually varies be-
tween 3 and 10 for metallic materials. For example, i 3;10,k = 11/14;16/21,
respectively. It can be observed that with increasing ceqmnent and conse-
guently with increasing creep rate the valuekoflecreases (fon — oo we ob-
tain koo = 3/4). The effect of damage is connected with the increase of riésepc
rate. Therefore a decrease of the value @fan be expected if damage evolution
is taken into account. In addition, if the damage rate diffier tensile and com-
pressive stresses, the thickness distribution of the ‘esiss shear stress will be
non-symmetrical. In this case the functigf cannot be selected a priori.

4.3.2.3 Example. In[225] the first order shear deformation equations areesblv
by the use of the Ritz method and a time step integration pkgee At a current time
step the transverse shear stress is recovered by an apptexdoiution of (4.3.27).
The proposed numerical procedure allows to modify the tuattions as well a
and4*" according to the time dependent redistributiorcof

Figure 4.7 presents the results for the uniformly loadedrbeath clamped
edges. The calculations have been performed Wwith 1000 mm, ¢ = 50 mm,
h = 100 mm andgy = 50 N/mm. The constitutive model (3.1.1) and the material
constants for the type 316 stainless steel at’85(3.1.3) were applied. Curve 1
in Fig. 4.7a is the time dependent maximum deflection caledlay the use of the
Bernoulli-Euler beam theory. The corresponding equateams the numerical pro-
cedure are presented in Sec. 4.3.1.1. Curve 2 is obtaindtehyste of the first order
shear deformation equations with the approximations Z8)3and (4.3.26). Curve
3 is the solution of the same equations but with the modifiedi finctions. Curve
4 is the ANSYS code solution of the plane stress problem wements PLANE
42. It is obvious that the Bernoulli-Euler beam theory cdratequately predict the
deflection growth. Furthermore, the first order shear deftion equations with the
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Figure 4.7 Time-dependent solutions for a clamped bearivlaximum deflection vs. time,
b shear correction factor vs. time, 1 — Bernoulli-Euler be&eoty, 2 — first order shear
deformation theory with parabolic shear stress distridntB — first order shear deformation
theory with modified shear stress distribution, 4 — planesstrsolution using the ANSYS
code with PLANE 42 elements

fixed trial functions underestimate the deflection pardédyl in the tertiary creep
range. The best agreement with the plane stress solutidrtased if the trial func-
tions are modified according to redistribution of the tramse shear stress. In this
case the shear correction factor is time-dependent, Fib. ¥ith decreasing value
of k we can conclude that the influence of the shear correctionstér increases.
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Figure 4.8 Damage distribution in a beam at last time step

The results for the beam show that the modified shear strégenges the de-
flection growth in the creep-damage process. On the otheat iiame neglect the
damage evolution, the steady state creep solution protideshear stress distribu-
tion close to the parabolic one, see Eq. (4.3.28).

Figure 4.8 shows the distribution of the damage parametéedast step of cal-
culation. The damage evolution is controlled by the maxinteinsile stress, see Eqs
(3.1.1) and (3.1.3). Therefore the zones of the dominantagenare tensile layers
of the clamped edges. Figure 4.9a presents the results fabtained by ANSYS
code with PLANE 42 elements. It can be observed that in thghteirhood of the
beam edges, where the maximum damage occurs, the digiritnftthe transverse
shear stress is non-symmetrical with respect to the beamlame. Figures 4.9b
and 4.9c show the solution for the transverse shear stressdiitg to the derived
beam equations. The transverse shear stress is calcutagegraduct of the shear
force, the distribution functionp® and a constant factor. For the considered beam
the shear forc&(x) = ¢(I/2 — x) remains constant during the creep process.
Therefore, the time redistribution of the transverse skgass is only determined
by the time-dependence of the functigfl. Figure 4.9c illustrateg*® for different
time steps.

The presented example illustrates that transverse shéamasion and trans-
verse shear stress cannot be ignored in creep-damage iaradlyyeams. The first
order shear deformation theory provides satisfactorylte#fucompared to the re-
sults of the plane stress model. Further investigationgeqeired to establish the
constitutive equations and material constants for bearttsaslitrary cross sections.
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4.4 Plates and Shells

Thin and moderately thick structural components are wideld in the power and
petrochemical plant industry. Examples include pressessels, boiler tubes, steam
transfer lines, etc. At elevated temperature the load rayrgapacity and the life-
time of a structure are limited by the development of irrsilde creep strains and
damage processes. The failure modes under creep-damadjgéactnmay include
unacceptable changes of the components shape, creepniguakti loss of the ma-
terial strength, e.g. [275]. The first two modes are assediatith excessive creep
deformations and stress redistributions. Local changeshape of the component
may lead to the loss of functionality of the whole structuteeep buckling may
occur if external loading leads to compressive stressebirvalled structure de-
signed against spontaneous “elastic” buckling may faéradt certain critical time
as a consequence of stress redistribution. The degradstioaterial strength is the
result of damage processes including creep cavitatiommieageing, oxidation,
etc.

4.4.1 Approaches to the Analysis of Plates and Shells

To discuss available results of creep in plate and shelttstres let us categorize
the recent studies according to the problem statementyfieedf the constitutive
model and the type of the structural mechanics model indoilvéhe analysis. Creep
problems for thin and moderately thick plates and shellssaramarized in Table
4.1. Constitutive equations of creep under multi-axia¢sdrstates were discussed
in Chapt. 2. Table 4.2 provides an overview of several canste models recently
applied to the analysis of plates and shells. The correspgratructural mechanics
models are given in Table 4.3. The overviews presented ite$ahl — 4.3 lead
to a conclusion that the type and the order of complexity efapplied structural

References Type of Problem

[82, 220, 221] | Shells of revolution, steady state creep

[224, 327] Plates, primary and secondary creep

[17, 60, 62] Shells of revolution, plates, finite deflections, creep tingk
[11, 80, 81] Shells of revolution, dynamic creep, long-term strength
[18, 19] Shells of revolution, shallow shells, plates, creep-danag
[305, 306] Moderately thick and layered shells, steady state creep
[5, 30] Shells of revolution, plates, creep-damage

[70, 118] Plates, thermo-mechanical coupling, creep-damage
[16, 31] Moderately thick plates, curved shells, creep-damage
[13, 64, 120] Moderately thick plates, damage induced anisotropy
[114, 177, 164]| Moderately thick shells, creep-damage

Table 4.1 Problem statements for creep in plates and shells
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Type of Constitutive Model for Creep Stages

Primary | Secondary Tertiary
References Time Power Kachanov-| Mecha-| Damage
or Strain or sinh Rabotnov-| nism- | Tensors
Hardening law Hayhurst | based
[82, 220, 221] X
[224, 327] X
[17, 60, 62] X X
[11, 80, 81] X X
[18, 19] X X
[305, 306] X X
[5, 30] X X X X
[70, 118, 225] X X X
[16, 31] X X
[13, 64, 120] X X
[114, 177, 164] X X X
Table 4.2 Constitutive models applied to analysis of plates and shell
Type of Structural Mechanics Model Verification
References Kirchhoff- | FOSDT | Geomet- 3-D Experi-
Love rical Non- | Models mental
Type linearities Analysis
[82, 220, 221] X
[224, 327] X X X
[17, 60, 62] X X
[11, 80, 81] X X
[18, 19] X X
[305, 306] X
[5, 30] X X
[70, 118, 225] X
[16, 31] X X
[13, 64, 120] X X
[114, 177, 164] X X
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Table 4.3 Structural mechanics models of plates and shells (FOSDBtdider shear de-

formation theory)

mechanics models are connected with the problem statemdnwigh the type of
the material behavior description.

The early works were primarily concerned with the analydisteady-state
creep in plates and shells. The creep behavior was assuntevéoonly primary
and secondary creep stages and the Norton-Bailey-Odqeisp constitutive equa-
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tion sometimes extended by strain or time hardening funstiwwas applied. The
structural mechanics models were those of the Kirchhotiepéand the Kirchhoff-
Love shell. In [190] the biharmonic equation describing #ei¢ion surface of the
Kirchhoff plate taking into account the given distributiohcreep strains has been
derived. It is shown that the deflection of the plate can bepuded by applying
additional fictitious lateral loads on the plate face andtaatthl fictitious moments
on the plate edges. In many cases this equation can be sojvspebial numer-
ical methods, e.g. the finite difference method [255] or direariational methods
[19, 77]. These solutions are useful in verifying generappge finite element codes
and user defined creep material subroutines. A benchmalkgondor a rectangular
plate is presented in [14]. Equations for creep in axisymicedty loaded shells of
revolution were derived in [249] by the use of the Kirchhbéive hypotheses. The
influence of creep is expressed in terms of fictitious men@farces and bending
moments. In [82, 220, 221] the problems of stress redidtdba from the reference
state of elastic deformation up to the steady creep state saved for axisymmet-
rically loaded shells of revolution by means of the finitdatiénce method.

The classical models of Kirchhoff plate or Kirchhoff-Lovhedl are based on
geometrically linear equations. Because the developnferreep strains may lead
to significant changes of the components shape, geométricahlinear terms
should be taken into account in the kinematical equatiorts anwell as in the
equilibrium conditions. For elastic plates the governiggations (finite deflection
model) were originally proposed by von Karman [319]. Getmcally non-linear
equations for creep in membranes and plates have beendlegv@dqvist [233].
Problems of long-term stability and long-term strengtheheaquired the use of re-
fined geometrically-nonlinear structural mechanics madeteep buckling analysis
of cylindrical shells under internal pressure and compves®rce has been per-
formed in [62, 209, 210] (see also references cited ther&ing¢ governing equa-
tions correspond to the Kircchoff-Love type shell with gesirical non-linearities
in von Karman’s sense. In [17, 18, 19, 30] we applied a ge¢noadly-nonlinear
theory to the creep-damage analysis of rectangular platkésydindrical shells. We
demonstrated that the effect of geometrical non-linearigy be associated with
“structural hardening”, i.e. an increase in the structtgalstance to time dependent
deformations. Furthermore, we have shown that even in tbe @moderate bend-
ing, the classical geometrically-linear theory leads tagaiScant underestimation
of the life-time and overestimation of the deformation.

A first order shear deformation shell theory has been firgipliad in [305] to
analyze primary and secondary creep of simply supportaddnidal shells under
internal pressure. The initial-boundary value problemalved by the use of the
finite difference method. Time dependent distributions isplcements and stress
resultants are compared with those according to the Kirfttitowve type theory. It
is demonstrated that the results agree well only for thilsha the case of mod-
erately thick shells the difference between the resultsssitial and increases with
time. Reissner type plate equations were applied in [118] fb? the creep-damage
analysis of a simply supported circular plate considerimgrmho-mechanical cou-
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plings. The derived plate equations as well as the equabitihe three-dimensional
theory were solved by means of the finite difference methad.demonstrated that
in the tertiary creep range the thickness distribution ef tilansverse shear stress
differs from the parabolic one. Similar effects have beérsitated for beams in
Sect. 4.3.2.3.

Let us note that unlike the Kirchhoff-Love type theories first order shear
deformation theories have been found more convenient ®fitlite element im-
plementations due t6° continuity [338]. They are standard in commercial finite
element codes, e.g. [258]. Examples of creep-damage @alyplates and shells
by the use of ANSYS code are presented in [14, 16].

Numerous refined finite element techniques were designediie son-linear
problems of shells. For reviews we refer to [325, 329]. Orauere of the refined
theories of plates and shells is that except special typbswidary conditions (e.g.
simple support) they describe additional edge zone effddie use of the finite
element or the finite difference method to solve refined egusidf plates and shells
requires advanced numerical techniques to representpitdyraarying behavior in
the edge zones. Several closed form and approximate a@dlglutions of the
first order shear deformation plate equations in the lindastie range illustrate
edge zone effects for different types of boundary condsti@ng. [227, 336]. Similar
solutions in the case of creep-damage in plates and shellsoaiavailable. Further
investigations should be made to formulate correspondemghimark problems and
to assess the validity of different available shell anddstjipe finite elements in
problems of creep mechanics.

4.4.2 Examples

4.4.2.1 Edge Effects in a Moderately-Thick Plate. ~ An important step in the
creep analysis of plates and shells is to select a suitabietstal mechanics model.
One way is the “three-dimensional approach” which is basethmee-dimensional
equations of continuum mechanics. This approach seemspreferable for creep-
damage analysis since the existing constitutive modelsegfpzdamage are devel-
oped with respect to the Cauchy stress and strain (ratedreasid the proposed
measures of damage (scalars or tensors of different raekjlefmed in the three-
dimensional space. Another way is the use of the classiaaldimensional struc-
tural mechanics equations of beams, plates and shells anldatance equations
formulated in terms of force and moment tensors. This ampradten finds ap-
plication because of the simplicity of the model creatianabier effort in solving
non-linear initial-boundary value problems of creep, aasilg interpretable results.
The governing mechanical equations describing creep ieetdimensional
solids are summarized in Sect. 4.2. Various approachegiiedeshell theory have
been recently applied within the assumption of elastic scaglastic material be-
havior. As far as we know, a “closed form” shell theory in tlase of creep does not
exist at present. The principal problem lies in establighire constitutive equations
of creep with respect to the shell type strain measurestheemembrane strains,
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changes of curvature and transverse shear strains. Althaugeneral structure of

such equations can be found based on the direct approach2®,.@6], the open

guestion is the introduction of appropriate damage measasavell as the identifi-

cation of damage mechanisms under the shell type stress,stat under bending

and twisting moments, membrane and transverse shear forabeir interactions.
Here we apply the standard approach which can be summazZeti@avs:

1. Assume that equations (4.2.1) — (4.2.9) are applicabieet@nalysis of creep-
damage in a moderately thick solid.

2. Formulate a variational equation of statics (e.g., basdtie principle of virtual
displacements) with the known tengsf for a fixed time (time step).

3. Specify cross-section approximations for the functitmbe varied (e.g., the

displacement vectar).

Formulate and solve the two-dimensional version of Eqa 13— (4.2.9).

Recover the three-dimensional stress frefcbm the two-dimensional solution.

Inserto into constitutive equations (4.2.9) in order to calculdte time incre-

ments ofe”” andw.

7. Update the tensaf” for the next time step and repeat the cycle from step 2.

o gk

Depending on the type of the applied variational equatiog.(elisplacement
type or mixed type) and the type of incorporated cross-seciissumptions, dif-
ferent two-dimensional versions of Egs (4.2.1) — (4.2.%hvei different order of
complexity can be obtained (i.e. models with forces and nmaser models with
higher order stress resultants). In the case of lineatielpkates a huge number
of such kind plate theories has been proposed, e.g., [194,287Y]. Note that the
steps 2 and 3 can be performed numerically applying e.g. tlerkdn method to
Egs (4.2.1) — (4.2.9). Various types of finite elements whigre developed for
the inelastic analysis of shells are reviewed in [325]. Letote that if studying
the creep behavior coupled with damage, the type of assumusg-section ap-
proximations may have a significant influence on the reswt. é&xample, if we
use a mixed type variational equation and approximate Ilhatldisplacements and
stresses, a parabolic through-the-thickness approxamédir the transverse shear
stress or a linear approximation for the in-plane stresssgeneral not suitable for
the creep-damage estimations [20]. In what follows we comfiaite element solu-
tions based on the three-dimensional approach and a twerdional plate model
and discuss the possibilities and limitations of each aggitan connection with the
creep-damage analysis.

Consider a square plate with = [, = 1000 mm, 2 = 100 mm, loaded
by a pressurgg = 2 MPa uniformly distributed on the top surface as shown in
Fig. 4.10. The edges = 0 andx = [, are simply supported (hard hinged sup-
port) and the edges = 0 andy = [, are clamped. According to the first order
shear deformation plate model we can specify the vectorplafé displacements”
uy(x,y) = uo(x,y) +w(x,y)n,ug-n = 0 and cross-section rotatioggx, y) on
the linesx = const ory = const, Fig. 4.10. Applying such a model and assum-
ing infinitesimal cross-section rotations the displacetwentoru(x, y, z) is usually
assumed to be



4.4 Plates and Shells 147

<

SHELL

ux(x,y)ex + uy(x,y)ey, +w(x,y)n,
up(x,y) + w(x,y)n

Px(x,y)ey X 1+ @y (x,y)n x ex

SOLID

ux(x,y,z)ex +uy(x,y,z)e, +w(x,y,z)n
uo(x,y,z) +w(x,y,z)n

q q
SHELLéHHHHx pad LT R
‘ u(0,y) =u(ly,y) =0 Ve ! u(x,0) =u(x,1,) =0,
9x(0,y) = ¢x(lx,y) = 0 ¢(x,0) = (x,1,) =0,

< TYPEI

SOLID ﬁ>[ ﬁ
D s 3

Y2 u(0,1,0) =l w0 =0 uo(x,0,2) 7u0xzy
uy(0,y,2) = uy(lv,y,2) = w(x,0,0) = w(x, 1y, 0) 0

% - < ( TYPEII %
% > ) clamped edg%}

z u(x,0,z) = u(x,ly,z) =0

Figure 4.10 Rectangular plate: geometry, loading and kinematical dagnconditions
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In the case of the three-dimensional model the displacewettoru(x,y,z) =
uo(x,y,z) +w(x,y,z)n can be prescribed on the planesy,z or x, y., z of the
plate edgesx = x. ory = y.. Figure 4.10 illustrates the kinematical boundary
conditions used for the shell and the solid models. Let us tiwit different bound-
ary conditions which correspond to the clamped edge can éefia if we ap-
ply the three-dimensional model. Here we discuss two typeéleoclamped edge
conditions. For the first type (TYPE 1), see Fig. 4.10, we assthe vector of in-
plane displacements, to be zero. The deflectiow is zero only in the points of
the plate mid-surface. In the second type (TYPE Il) the witidplacement vector
u is assumed to be zero in all points which belong to the plagegdrhe TYPE I
boundary condition is the simplest possibility with respgedhe effort in the model
creation on the computer and the preprocessing since adll mispblacements can
be simultaneously set to zero on the whole surfaces of thesedg= const and
Yy = const.

The analysis has been performed using the ANSYS finite elecuwte after
incorporating the material model (3.1.1) with the help of tiser defined creep-
damage material subroutine. In Sects 4.3.1.4 and 4.3.2d8seessed various exam-
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ples for beams, which verify the developed subroutine. I8meixamples for plates
may be found in [14]. The finite elements available in the ANESXde for plasticity
and creep analysis were applied as follows: the 20 noded slgiment SOLID 95
and the 4 nodes shell element SHELL 38.x 15 elements were used for a half of
the plate in the case of the shell model &ddx 15 x 3 elements in the case of the
solid model. The meshes have been justified based on th&igjasblutions and
the steady state creep solutions neglecting damage. Véisie tmeshes the reference
stress distributions as well as the distributions of theMaisges stresses in the steady
creep state were approximately the same for both the sotidtenshell elements
and did not change anymore by further re-meshing. The autcehéime stepping
feature with a minimum time stea1 h has been applied. For details of the used
elements, the time integration and equilibrium iteratioatmods used in ANSYS
for creep calculations we refer to [258] and [338]. The tirepdased calculations
were performed up to = w, = 0.9, wherew, is the selected critical value of the
damage parameter.

Figure 4.11 illustrates the results of the computationsre@lthe maximum de-
flection and the maximum value of the damage parameter atieghlas functions
of time. From Fig. 4.11a we observe that the starting valfiesaximum deflection
as well as the starting rates of the deflection growth duedepcare approximately
the same for the shell and the two solid models. Consequérdlyype of the ele-
ments (shell or solid) and the type of the applied boundangditimns in the case of
the solid elements has a small influence on the descriptitimec$teady-state creep
process. However, the three used models lead to quiteetitféfe time predictions.
The difference can be seen in Fig. 4.11b. The shell modekstiarates the time to
failure, while the result based on the solid model depemgtsfgiantly on the type
of the clamped edge boundary conditions. In the case of tHeETY clamped edge
much more accelerated damage growth is obtained. The porrdimg time to fail-
ure is approximately four times shorter compared to thosedban the TYPE |
clamped edge. All considered models predict the zone of maxi damage to be
in the midpoint of the clamped edge on the plate top surfacshawn in Fig. 4.12.

The creep response of a structure is connected with thedependent stress
redistributions. If the applied load and the boundary ctowls are assumed to be
constant and the effect of tertiary creep is ignored, thaasymptotic stress state
exists, which is known as the state of stationary or steadg(see Sect. 1.2). If
tertiary creep is considered, then stresses change wighupno the critical damage
state. It is obvious that the damage growth and the tertieggbehavior of the
considered plate are controlled by the local stress stdkesivicinity of the clamped
edges. Figure 4.13 illustrates the stress states in theamnidpf the clamped edge
with the coordinates = I,./2,y = 0. Four components of the stress tensor (the two
remaining components are zero due to symmetry conditiorg)latted as functions
of the normalized thickness coordinate. The startingieldsgtributions (solid lines)
as well as the creep solutions at the last time step (dotted)liare presented. The
maximum starting stresses obtained by the use of the thregdeved models are
the normal in-plane stresseg, andoy (the stresses which results in the maximum
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bending and twisting moments in the clamped edges), Fi@. A hese in-plane
stresses remain dominant during the whole creep proceshdoused shell and
solid elements. Therefore, all the applied models pretietdamage evolution in
the zone of the clamped edge on the plate top side. Howewemfluence of the
“second order” stresses (stresses which are usually riedlécthe plate theories)
is different and depends on the type of the boundary comditi&or the TYPE |
clamped edge the effect of the transverse normal strgesdecreases with time and
has negligible influence on the stress state. In contrastiédl YPE Il clamped edge
the initial transverse normal stregs, remains approximately constant, whifg,
relaxes with time as the consequence of creep. The trarswersial stress becomes
comparable with the bending stress and cannot be considsrie “second order”
effect anymore.
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Figure 4.12 Deformed shape of a half of the plate and distribution of thimadge parameter
in the zone of a clamped edge (SOLID elements, TYPE Il boyndanditions, last time
step)

In order to explain the difference in life-time predictiofet us compare the
stress states in the critical zone for the considered modétk respect to the trans-
verse normal and transverse shear stresses, the TYPE | @l TYoundary con-
ditions lead to different results. For the TYPE | clampedeetige transverse normal
stressr,, has the value of the applied transverse lganh the top plate face and re-
mains constant during the creep process. The transveraesthess,, is zero due
to the applied boundary conditions. The stress state orofhsitle of the plate is
primarily determined by two in-plane stressgs ando,, Fig. 4.13. Such a stress
state with dominant in-plane stresses and small transwerseal and shear stresses
can be obtained applying the first order shear deformatiate pheory. In contrast,
if applying the TYPE Il boundary conditions the results shtbe/considerable value
of the transverse normal strasg which remains approximately constant during the
creep process.

Now let us estimate the stress state for the TYPE Il clampgé gé= y.. In this
case we have to sefx, y.,z) = 0 on the planex, y., z, Fig. 4.10. Fol0 < x < I,
and—h/2 < z < h/2 we can write

u_ o _ ou
ox 0z
tre(x,y.,z) =V -u=—=

(4.4.1)

In addition, we can set, - u(I,/2,y,z) = 0 due to the symmetry condition. The
starting elastic stress statetat 0 can be obtained from the constitutive equations
(4.2.6) by setting® =0
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11+4+v duy ow
Um|t=0 = gm(foz 0y = 2G@|t=0/ T = G@h:o,

Sli—o = %(TQ [2e, @e,— (I —e,®e,)] + (e, @n+ney),
11_ 21; (I—e,®ey)|+10(e,@n+nxey)
(4.4.2)

From the last equation in (4.4.2) we see that= oy, = oyv/(1 —v). This well
known result of the theory of linear isotropic elasticityregs with the obtained
finite element solution for = 0.314, Fig. 4.13b (solid lines).

Let us estimate the stress redistribution in the TYPE Il gdathedge as a conse-
qguence of creep. For this purpose we neglect the damagdiewdhy settingo = 0
in (3.1.1). Because the boundary conditions and the appliessure are indepen-
dent of time, we can estimate the type of the stress state gtat@nary state creep

by settingé ~ ¢, ¢y ~ 0 or

Oli—o = 0o |ey @ey +

v
1—v

1 ou ou 3
2 (‘fy Yo Ty ®ey> ~eT = Saolls,  Veim0  (443)
Consequently
10w 3
E@(ey Xn+n ®ey) ~ Ea(fg]\_/ll (444)
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From Eq. (4.4.4) we observe that the stress deviator in daglgtstate creep has the
forms ~ (e, ® n +n ®e,) and is completely determined by the transverse shear
stress. The mean stresg cannot be determined from the constitutive equation, it
must be found from the equilibrium conditions (4.2.3). Thess state in the zone
of the clamped edgé.(/2,y, z) is then of the typer ~ 0,1 + (e, @n +nxe,).
We observe that,, ~ 0, ~ 0xx = 0y, after the transient stress redistribution. This
estimation agrees again with the obtained finite elementisal Fig. 4.13b (dotted
lines). The transverse normal stress is approximatelyleaqube in-plane stresses
and cannot be neglected.

Let us compare the finite element results for the mean stresgha von Mises
equivalent stress. Figure 4.14a shows the correspondimg tariations in the ele-
ment A of the solid model for the TYPE | and TYPE Il boundary condiso We
observe that the TYPE Il boundary condition leads to a lovemtiag value of the
von Mises stress and a higher starting value of the mearsstifesn compared with
those for the TYPE | boundary condition. In addition, for tR€PE Il clamped
edge we observe that the mean stress rapidly decreases thighshort transition
time and after that remains constant while the von Misesstrelaxes during the
whole creep process. With the relaxationogj, the stress state tendsdo= o, 1.
The relatively high constant value of;, is the reason for the obtained increase of
damage and much shorter time to fracture in the case of theelliy&amped edge
(see Fig. 4.11b). Note that the above effect of the meansstra&s a local character
and is observed only in the neighborhood of the edge. As Flghishows the value
of the transverse normal stress decreases rapidly witkased distance from the
boundary.

We discussed the possibilities of creep-damage behavialelimg in moder-
ately thick structural elements. The selected consteutiodel of creep is based on
the assumption that the secondary creep strain rate iswiat by the deviatoric
part of the stress tensor and the von Mises equivalent sidsle the increase of
the creep rate in the tertiary range is due to isotropic deneaglution which is
controlled by the mean stress, the first principal stresdlamgon Mises equivalent
stress. The use of this model in connection with long-teredijations of thin-walled
structural elements has motivated a numerical comparsiiivgy of two approaches:
the three-dimensional approach and the approach basea dinstrorder shear de-
formation type plate theory. The finite element results ab asesome simplified
estimates have shown that the approaches based on staotidrdnsl shell finite
elements provide quite different predictions. The modeEdzon the shell elements
overestimates the fracture time. The reason for the oltadiféerences is the local
stress response in the zone of the clamped edge. In the ctiseanfisotropic elas-
ticity, the transverse normal and shear stresses in theafdhe clamped edge can
be assumed to be the second order quantities in comparitio® dominant in-plane
stresses. In the case of steady state creep, the transwensal mnd shear stresses
are comparable with the in-plane stresses due to the sadissribution. If studying
the creep behavior coupled with damage, the influence ottfeedors cannot be
ignored.
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If a shell or a plate theory is considered to be an approximatsion of the
three-dimensional equations (4.2.1) — (4.2.9) then we ocaclade that “more ac-
curate” cross-section approximations for the transvemenal and shear stresses
have to be used in the case of creep. In this sense it is maablecto solve the
three-dimensional equations (4.2.1) — (4.2.9) which amee"ffrom ad hoc assump-
tions for the displacements and stresses.
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4.4.2.2 Long Term Strength Analysis of a Steam Transfer Line . Fromthe
practice of power and petrochemical plants it is well knohait ppipe bends are the
most critical structural components with respect to pdssiteep failures, e.g. [180,
196]. An example for a steam transfer line between a headka aesuperheater of
a boiler is presented in [180]. The pipeline from steel 1&8Mb (13CrMo4-5) had
operated under the temperature in the rasife— 550° C and the internal pressure
11.8 MPa. After a service life of 77000 h rupture occurred alorgdhter radius of
a pipe bend. A metallographic analysis of a section cut frioenltend close to the
main crack has shown typical creep damage due to microvaidisrécrocracks on
grain boundaries. Several incidents of pipe bend failunedifferent power plants
are reported in [128]. Inspection techniques were developexamine the state of
creep damage during the service. However, as noted in [&8§]inspection must
be conducted at exactly the critical position, or the presesf damage may not be
detected.

Many investigations have addressed the analysis of mexdid@havior of pres-
surized curved tubes. Problems of elastic and elastazplaformation and stability
are reviewed in [65, 188]. Creep and creep—damage prociessaed tubes were
discussed in [16, 77, 147, 322]. These studies were corat&vitle the analysis of a
single pipe bend subjected to special loading conditiaes,n-plane bending mo-
ments and internal pressure. In the following example wdyaagahe behavior of
pipe bends in a real spatial pipeline. Figure 4.15 showsdference geometry of
the structure which includes three straight pipe segménits énd V) and two pipe
bends (Il and IV). The lengths of the pipe segments, the meaneder of the cross
section and the wall thickness correspond to the data givgl80]. In addition, we
take into account the non-uniformity of the wall thicknesdhie pipe bends as a re-
sult of processing by induction bending. The circumfeirttiickness distribution
is selected according to standard tolerances presentdd,ia]5, 196]. The flanges
of the pipeline are clamped. The internal pressure and thpdeature are assumed
to be constant during the creep process. The corresponédingssare presented in
Fig. 4.16. The constitutive model and the material constéotsteel 13CrMo4-5 at
550° C are taken from [289] (see Sect. 3.1.2).

Figure 4.16 illustrates the deformed shape and the disimibwf the magni-
tude of the displacement vector in the reference stater&il7 shows the corre-
sponding distribution of the von Mises equivalent stresent-the results we may
conclude that both the pipe bends are subjected to compégiakjmading and de-
formation conditions as a result of internal pressure arifbum heating.

Time dependent changes in the deformation and stress stadfustrated in
Figs 4.18 — 4.20. In addition the values of the von Mises exjeiut stress in three
points of the pipe bend IV are plotted as functions of timecading to the results
the creep process of the pipeline may be divided into thagest During the first
stage (approximately 50% of the total live) significant s$reedistributions occur
leading to quite different stress state in the pipeline fp. 4.17 and Fig. 4.19).
The second stage (approximately 45% of the total live) igadtarized by slow
changes in the stress state. In the final stage (approxyriz&elof the total live) we
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observe additional stress redistributions, Fig. 4.20. dis&ibution of the damage
parameter at the final time step is shown in Fig. 4.21. Acogrdo the results the
critical position of possible creep failure is the poifitof the pipe bend IV. This

result agrees well with the data presented in [180], whezethep failure has been
detected at the same position.

Similar processes have been already discussed in Sects44.3.3.2.3 and
4.4.2.1. One feature of the example considered here is lileafinal creep stage
is not only the result of the local material deterioration istadditionally governed
by the flattening (ovalisation) of the pipe bend cross sactio

Let us note that some parameters of the reference pipe bemdegiges were
not given in [180] and have been assumed in the presentedlat&a. Further-
more, many additional details including the initial out @undness of the cross
section, inhomogeneous material properties as a resultogepsing, shutdowns
and startups during the service, are not included in theepted model. Therefore
the obtained numerical result for the failure time (49000styhtly” differs from
the value 77000 h given in [180]. Nevertheless, the resdtaahstrate the ability
of the modeling to represent basic features of the creepepsda a structure and to
predict critical zones of possible creep failure.



Geometry after [180]

Finite element model:
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Figure 4.15 Pipeline: geometry and finite element mesh
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Temperature:
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550°C
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Figure 4.16 Deformed shape and magnitude of the displacement vectbeireference elastic state
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Figure 4.17 Distribution of the von Mises equivalent stress in the refiee elastic state and corresponding time variations @etpoints of the pipe
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Figure 4.18 Distribution of the von Mises equivalent stresg at 2000 h and corresponding time variations in three points of tipe pend
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Figure 4.20 Distribution of the von Mises equivalent stress at the lasétstep and corresponding time variations in three poifitiseopipe bend
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5 Conclusions

In this work we discussed models for the analysis of creeplamgiterm strength
behavior of engineering structures under high-tempegatonditions. Approaches
to formulate

1. Constitutive equations for creep in structural material

2. Structural mechanics models of beams, plates, shells¢hard-dimensional
solids and

3. Numerical procedures for the solution of non-lineariatiboundary value
problems

are systematically reviewed and evaluated with respedidiv teliability and effi-
ciency. Furthermore, we contributed to recent studies in

1. Formulation of multi-axial constitutive equations foreep and damage
processes which account for stress state effects and iamgot

2. Development of a rational framework to find invariantsta stress tensor ap-
propriate for constitutive modeling of anisotropic creep,

3. Assessment of several models for beams, plates and sheléep and damage
related structural analysis,

4. Development and verification of creep-damage matertaiosuines for the use
in general purpose finite element codes,

5. Formulation and solution of several problems to illustrdne applicability of
developed techniques

The outcome of our investigations is a numerical method &lyae structural be-
havior in the creep-damage range. Several examples dtesthat the developed
method is capable to reproduce basic features of creep imesTqNg Structures
including time-dependent changes in shape, stress iibdifins and formation of
critical zones of possible creep failure.

Let us summarize the main conclusions of our study and socoemmendations

1. The accurate description of creep and damage processe&adtural materials
requires accurate data obtained from creep tests. Regamafievhich phenom-
enological approach to formulate the constitutive equatég. “pure phenom-
enological”, “mechanism-based” or “micromechanicalbnsistent”) is used,
the choice of the response function, the introduction ofdfeivalent stress
and the identification of material constants require maketata over a wide
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range of stresses, stress states and temperatures. Agi#dsn Sect. 3.1.4 the
available creep curves for an aluminium alloy can be desdrily different ma-

terial models with the same accuracy. In this sense no etercan be made
between different approaches to constitutive equatiosveder, in structural

analysis applications, different constitutive models rtead to quite different

life time estimations (see Sect. 3.1.4). Therefore thetopresf what approach

should be selected to formulate constitutive equationsoo&nbe discussed in
connection with the structural mechanics analysis.

Further investigations are required to assess recentlgogsal constitutive

models as they predict creep and long term strength forrdiftetypes of struc-

tures.

. Hardening and damage processes have in general anisotatpre since they

are associated with topological changes of the microstractsotropic consti-
tutive models of creep have been found to be inappropriatesaribing exper-
imental data from tests under non-proportional loadingdd@ns. Therefore
in many works it is suggested to operate with hardening amdade tensors
instead of scalars. Let us note that the principal role o$aewalued internal
state variables is to reflect the local changes of materiahsgtries during the
creep process. However, the available experimental dathyhellow to verify
both the type of the assumed symmetry (e.g. isotropy, texgevisotropy, or-
thotropic symmetry, etc.) and the orientation of symmetangs or axes. The
proposed kinematic hardening rules and damage evolutioatieqs are suffi-
cient to characterize creep behavior under simple monotamntyclic loading.
However, they are poorly suited for the description of tramiscreep effects
under non-proportional loading conditions.

Refined models for beams, plates and shells includingtsftd the transverse
shear deformation and geometrical non-linearities shbalgreferred in long
term strength analysis of thinwalled structures. For betimsffects of trans-
verse shear deformation has been illustrated in Sect..8.3Rveral examples
for plates and shells presented in the literature (see &dci.) show that even in
the case of “moderate” bending, the classical geometyidiakkar theory leads
to a significant underestimation of the life-time and oveéneation of the defor-
mation. Further benchmark problems which are able to rejp®dthe behavior
of boundary layers in the creep range are required. Theydmiluseful in the
assessment of different available shell type finite element

. Numerical solutions of creep-damage problems by thesfieliement method

are highly sensitive to the mesh density. A mesh which peswisatisfactory
accurate results in the linear-elastic range is not suffidie solve creep prob-
lems (see Sect. 4.3.1.4). Furthermore, the mesh densityreedor an accurate
solution depends not only on the geometry and loading ofttiaetsire but also
on the type of the applied creep constitutive equation. W&tadying creep-
damage in structures with complex geometry it is difficultast the mesh sen-
sitivity and prove the solution convergence due to large matational time.
From our experience we may recommend to adjust the mesh tmtivergent
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solution in the steady-state creep range. With such mekhesturacy of long-
term predictions was not less than the accuracy of the nahtita involved in
the computations.

The currently available approaches of creep mechanicsedpéuhin understanding
mechanisms of structural behavior under creep and damam#tions and can be
recommended for design and remnant life assessments cfusts. Results of our
study could lead to further investigations with the follogitopics

1. Consideration of manufacturing conditions as they imfteéethe subsequent
creep behavior of structures. In the example presenteddn &£4.2.2 the wall
thinning due to processing of the pipe bend was taken intowaxtcIt would be
of interest to examine the influence of other factors deteechiby processing,
e.g. initial out of roundness and inhomogeneous materdigaties.

A model developed in Sect. 3.2 could be the basis of furthetias of creep
in welded structures by taking into account the initial ammspy in multi-pass
weld metals.

2. Several databases exist, where experiences from engmeeactice in power
and petrochemical plants are collected for a wide rangerottsires. With the
gained experience in modeling and numerical analysis @citis possible
and useful to analyze recently documented cases of crdapefaiSuch studies
could provide new suggestions in the creep constitutiveetiogl and stimulate
further experimental investigations.
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A Some Basic Rules of Tensor Calculus

The tensor calculus is a powerful tool for the descriptiotheffundamentals in con-
tinuum mechanics and the derivation of the governing equatfor applied prob-
lems. In general, there are two possibilities for the regm&stion of the tensors and
the tensorial equations:

— the direct (symbolic) notation and
— the index (component) notation

The direct notation operates with scalars, vectors anditsres physical objects
defined in the three dimensional space. A vector (first rankdga is considered
as a directed line segment rather than a triple of numbemdowmtes). A second
rank tenso# is any finite sum of ordered vector pafls=a®b+...+c®d. The
scalars, vectors and tensors are handled as invarianp@ndent from the choice of
the coordinate system) objects. This is the reason for taetithe direct notation
in the modern literature of mechanics and rheology, e.g.32949, 123, 131, 199,
246, 313, 334] among others.

The index notation deals with components or coordinategctiors and tensors.
For a selected basis, egy, i = 1,2, 3 one can write

a :aigi, A= (aibj+...+cidj) 8i®gj

Here the Einstein’s summation convention is used: in oneesgon the twice re-
peated indices are summed up from 1to 3, e.g.

3 ‘ 3. .
d'gr =Y dg, A =Y Akp
k=1 k=1

In the above examplédsis a so-called dummy index. Within the index notation the
basic operations with tensors are defined with respect todberdinates, e. g. the
sum of two vectors is computed as a sum of their coordindtes a' + b'. The
introduced basis remains in the background. It must be rédyaesd that a change
of the coordinate system leads to the change of the commoétensors.

In this work we prefer the direct tensor notation over theeindne. When solv-
ing applied problems the tensor equations can be “tramSlatdéo the language
of matrices for a specified coordinate system. The purpogki®Appendix is to
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give a brief guide to notations and rules of the tensor cakw@lpplied through-
out this work. For more comprehensive overviews on tenstouttes we recom-
mend [54, 96, 123, 191, 199, 311, 334]. The calculus of megris presented in
[40, 111, 340], for example. Section A.1 provides a briefreiav of basic alge-
braic operations with vectors and second rank tensors.r&endes from tensor
analysis are summarized in Sect. A.2. Basic sets of invarim different groups
of symmetry transformation are presented in Sect. A.3, henovel approach to
find the functional basis is discussed.

A.1 Basic Operations of Tensor Algebra

A.1.1 Polar and Axial Vectors

A vector in the three-dimensional Euclidean space is defasea directed line seg-
ment with specified magnitude (scalar) and direction. Thgnitade (the length) of
a vectora is denoted byja|. Two vectorsa andb are equal if they have the same
direction and the same magnitude. The zero vetras a magnitude equal to zero.
In mechanics two types of vectors can be introduced. Thexeof the first type are
directed line segments. These vectors are associatedrasitsldtions in the three-
dimensional space. Examples for polar vectors includedheef the displacement,
the velocity, the acceleration, the momentum, etc. Thersktype is used to char-
acterize spinor motions and related quantities, i.e. theemt, the angular velocity,
the angular momentum, etc. Figure A.1a shows the so-cgtliedvectora, which
represents a rotation about the given axis. The directiawtation is specified by
the circular arrow and the “magnitude” of rotation is theresponding length. For
the given spin vectoa, the directed line segmentis introduced according to the
following rules [334]:

1. the vectom is placed on the axis of the spin vector,

2. the magnitude df is equal to the magnitude af,,

W < I R S

a, a a.

a

Y

Figure A.1 Axial vectors.a Spin vectorp axial vector in the right-screw oriented reference
frame,c axial vector in the left-screw oriented reference frame
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3. the vectom is directed according to the right-handed screw, Fig A.1b, o
the left-handed screw, Fig A.1c

The selection of one of the two cases in 3. corresponds todheeation of ori-
entation of the reference frame [334] (it should be not ceafuwith the right- or
left-handed triples of vectors or coordinate systems). dinected line segment is
called a polar vector if it does not change by changing thentaiion of the refer-
ence frame. The vector is called to be axial if it changes iipe Isy changing the
orientation of the reference frame. The above definitiomsvatid for scalars and
tensors of any rank too. The axial vectors (and tensors) mlelywsed in the rigid
body dynamics, e.g. [333], in the theories of rods, platessiells, e.g. [25], in the
asymmetric theory of elasticity, e.g. [231], as well as imawics of micro-polar
media, e.g. [108]. By dealing with polar and axial vectorshibuld be remembered
that they have different physical meanings. Thereforeaaia polar and an axial
vector has no sense.

A.1.2 Operations with Vectors

Addition. For a given pair of vectorg andb of the same type the sum=a + b
is defined according to one of the rules in Fig. A.2. The sumthasfollowing
properties

— a+ b = b + a (commutativity),
— (a+b)+c=a+ (b+c) (associativity),
—a+0=a

Multiplication by a Scalar.  For any vecton and for any scalar a vectob = aa
is defined in such a way that

— |b| = |a]la],
— for « > 0 the direction ofh coincides with that o,
— for a < 0 the direction ob is opposite to that of.

Fora = 0 the product yields the zero vector, i0e= 0Oa. It is easy to verify that

a(@+b)=aa+ab, (a+p)a=aa+ pa

a b
b c c
b
a a

Figure A.2 Addition of two vectorsa Parallelogram ruley triangle rule
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a

27T — @ n,=— (b-n,)n,

Figure A.3 Scalar product of two vectora.Angles between two vectorb,unit vector and
projection

Scalar (Dot) Product of two Vectors.  For any pair of vectors andb a scalar
w is defined by
x =a-b=|a||b|cos e,

whereg is the angle between the vectarandb. As ¢ one can use any of the two
angles between the vectors, Fig. A.3a. The properties afdakar product are

— a-b = b-a (commutativity),
—a-(b+c)=a-b+a-c (distributivity)

Two nonzero vectors are said to be orthogonal if their sqadaduct is zero. The
unit vector directed along the vectois defined by (see Fig. A.3b)

a

n
© la]

The projection of the vectdr onto the vecton is the vector(b - n,)n,, Fig. A.3b.
The length of the projection i$|| cos ¢|.

Vector (Cross) Product of Two Vectors. For the ordered pair of vectossand
b the vectorc = a x b is defined in two following steps [334]:

— the spin vector, is defined in such a way that
e the axis is orthogonal to the plane spanned amdb, Fig. A.4a,
e the circular arrow shows the direction of the “shortest’atimn froma to b,
Fig. A.4b,
e the length ida||b| sin ¢, whereg is the angle of the “shortest” rotation fram
tob,
— from the resulting spin vector the directed line segnegatconstructed according
to one of the rules listed in Subsect. A.1.1.

The properties of the vector product are
axb=—-bxa, ax((b+c)=axb+axc

The type of the vectoc = a x b can be established for the known types of the
vectorsa andb, [334]. If a andb are polar vectors the result of the cross product
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/<§0>\b\ agﬁ&b /%\

a a b

Figure A.4 Vector product of two vectora Plane spanned on two vectobsspin vectorc
axial vector in the right-screw oriented reference frame

will be the axial vector. An example is the moment of momentana mass point:
defined byr x (m®), wherer is the position of the mass point ands the velocity
of the mass point. The next example is the formula for theidigion of velocities
in a rigid bodyv = w x r. Here the cross product of the axial vecter(angular
velocity) with the polar vector (position vector) results in the polar vectmr

The mixed product of three vectarsb andc is defined by(a x b) - ¢. The result
is a scalar. For the mixed product the following identities alid

a-(bxc)=>b-(cxa)=c-(axb) (A.1.1)

If the cross product is applied twice, the first operation inigsset in parentheses,
e.g.,a x (b x ¢). The result of this operation is a vector. The following tiela can
be applied

ax((bxc)=bla-c)—c(a-b) (A.1.2)

By use of (A.1.1) and (A.1.2) one can calculate
(@axb)-(cxd) = a-bx(cxd)]

= a-(cb-d—db-c) (A.1.3)
a-cb-d—a-db-c

A.1.3 Bases

Any triple of linear independent vectogs, e;, es is called basis. A triple of vectors
e; is linear independent if and onlyéf - (e, x e3) # 0.
For a given basie; any vectom can be represented as follows

a=a'e; +a’e, +a’es = d'e;

The numbers’ are called the coordinates of the veatdor the basig;. In order to
compute the coordinates the dual (reciprocal) befSis introduced in such a way

that L
k k 1, =1
e 'ei:éi:{ 0, kAi
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(Sf.‘ is the Kronecker symbol. The coordinatésan be found by
e-a=a-e =a"e, e =a"5 =a
For the selected baststhe dual basis can be found from

1 ey X e3 2 e3 X eq 3 e Xep
e =— e€€=—— &£ =—"— (A.1.4)
(e1 x e2)-e3’ (e1 xe2)-e3” (e1 xe2)-e3

By use of the dual basis a vecibcan be represented as follows

3

a=me' +me’ +aze® =aie', a,=a-e, a"+ay

In the special case of the orthonormal vecteys.e. |e;] = 1 ande; - e, = 0 for
i # k, from (A.1.4) follows thae* = e; and consequently;, = a*.

A.1.4 Operations with Second Rank Tensors

A second rank tensor is a finite sum of ordered vector phitsa @b+ ... +c®d
[334]. One ordered pair of vectors is called the dyad. Thelbsr® is called the
dyadic (tensor) product of two vectors. A single dyad or a @frtwo dyads are
special cases of the second rank tensor. Any finite sum of tharethree dyads can
be reduced to a sum of three dyads. For example, let

n
A=) a; @b
i=1

be a second rank tensor. Introducing a bagithe vectorsz;) can be represented
bya(i) = a’(‘i)ek, Wherea’(‘) are coordinates of the vectarg). Now we may write

i
a = k k_ Vv ok
1= 1= 1=
Addition. The sum of two tensors is defined as the sum of the correspggpndin

dyads. The sum has the properties of associativity and cdativity. In addition,
for a dyada @ b the following operation is introduced

a®(b+c)=ax®b+axc, (@a+b)®c=a®c+b®c

Multiplication by a Scalar.  This operation is introduced first for one dyad. For
any scalaw and any dyad ® b

a(a®b) = (ma) @b =a® (ab),

(a+Bab=aaxb+paxb (A.1.5)

By settingax = 0 in the first equation of (A.1.5) the zero dyad can be defined, i.
0O(a®b) =0®b =a®0. The above operations can be generalized for any finite
sum of dyads, i.e. for second rank tensors.
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Inner Dot Product. For any two second rank tensadsandB the inner dot prod-
uct is specified byA - B. The rule and the result of this operation can be explained
in the special case of two dyads, i.e. by settthg=-a ® b andB = c ®d

A-B=a®b-c®d=(b-cla®wd=0a®d, a=b-c

The result of this operation is a second rank tensor. NoteAhaB # B - A. This
can be again verified for two dyads. The operation can be gkrexul for two second
rank tensors as follows

3 3 3
A-B=) a;@bg - ) cry®@dgy =) ) (bu-cwag @dy,
j k=1 i=1k=1

Transpose of a Second Rank Tensor.  The transpose of a second rank tensor
A is constructed by the following rule

3 r 3
AT = (Z;%) ®b<z‘>> = ;bm ®a

Double Inner Dot Product.  For any two second rank tensatsandB the double
inner dot product is specified 4 -- B The result of this operation is a scalar. This
operation can be explained for two dyads as follows

A-B=a®b-cod=(b-c)(a-d)

By analogy to the inner dot product one can generalize thesatjpn for two second
rank tensors. It can be verified that-- B = B -- A for second rank tensor4 and
B. For a second rank tensdrand for a dyad ® b

A-a®b=b-A-a (A.1.6)
A scalar product of two second rank tensdr&ndB is defined by
a=A-BT

One can verify that
A-BT=BT..A=B-.. AT

Dot Products of a Second Rank Tensor and a Vector. The right dot product
of a second rank tensat and a vectoc is defined by

3 3

A-c= (Z“(i) ®b<z‘>> =) (b -c)ag
i=1 i=1

For a single dyad this operation is

a®b-c=a(b-c)
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The left dot product is defined by

3
c-A=c- (Z”(i) ®b(z‘)> =) (c-ag)bg
i=1 ‘

The results of these operations are vectors. One can vhaty t
A-c#c-A, A-c=c-AT

Cross Products of a Second Rank Tensor and a Vector. The right cross
product of a second rank tensdrand a vectoc is defined by

3 3
Axc= (Z”(i) ®b(z‘)> xe=) a4 ® (b xc)
i—1 i=1

The left cross product is defined by
3 3
cxA=cx Za(i)@)b(i) :Z(cxa(i))@)b(i)
i=1 i=1
The results of these operations are second rank tensoes biecshown that
Axc=—[cx AT

Trace. The trace of a second rank tensor is defined by

3 3
trA=tr (Za(i) ®b(i)> =243 bg)
i=1 i=1

By taking the trace of a second rank tensor the dyadic pradueplaced by the dot
product. It can be shown that

trA=trA’, tr(A-B)=tr(B-A)=tr(AT-BT)=A-B

Symmetric Tensors. A second rank tensor is said to be symmetric if it satisfies
the following equality
A=AT

An alternative definition of the symmetric tensor can be gias follows. A second
rank tensor is said to be symmetric if for any veatc# 0 the following equality is
valid

c-A=A-c

An important example of a symmetric tensor is the unit or igmensorl, which
is defined by such a way that for any veator

c-I=1-c=c
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The representations of the identity tensor are
Iz%@&zﬁ@@
for any basi®, ande*, e.-e" = (5}?. For three orthonormal vectons, n andp
[=n@n+mem+pep

A symmetric second rank tens#¥ satisfying the conditiol® - P = P is called
projector. Examples of projectors are

mom, nIn+pp=l-mem,

wherem, n andp are orthonormal vectors. The result of the dot product ofehsor
m ® m with any vectom is the projection of the vectar onto the line spanned on
the vectorm, i,em @m-a = (a-m)m. The result ofn @n +p @ p) -a is the
projection of the vectog onto the plane spanned on the vectorndp.

Skew-symmetric Tensors. A second rank tensor is said to be skew-symmetric
if it satisfies the following equality

A=—AT

or if for any vectorc
ccA=-A-c

Any skew symmetric tensoA can be represented by
A=axI=1xa

The vectom is called the associated vector. Any second rank tensoreaniguely
decomposed into the symmetric and skew-symmetric parts

A:%<A+AT>+%<A—AT> — A+ Ay,
A= (A+aT), A=Al
AZZ%(A—AT), Ay = AT

Vector Invariant. The vector invariant or “Gibbsian Cross” of a second rank ten
sor A is defined by

3
Ax = (Za(i) ®b<i>>
i=1

The result of this operation is a vector. The vector invdradra symmetric tensor is
the zero vector. The following identities can be verified

3
= 2%’) x b
1=

X

(@axI)xy=-2a, axIxb=b®a—(a-b)l
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Linear Transformations of Vectors. A vector valued function of a vector ar-
gumentf (a) is called to be linear if (x1a1 + acaz) = a1 f(a1) + azf (a2) for any
two vectorsz; anda, and any two scalarg; anda,. It can be shown that any linear
vector valued function can be representedfity) = A - a, whereA is a second
rank tensor. In many textbooks, e.g. [32, 293] a second ramsorA is defined to
be the linear transformation of the vector space into itself

Determinant and Inverse of a Second Rank Tensor. Leta, b andc be ar-
bitrary linearly-independent vectors. The determinara second rank tensdt is
defined by
(A-a)-[(A-b) x (A-c)]

a-(bxc)

The following identities can be verified

detA =

det(AT) = det(A), det(A-B) = det(A) det(B)

The inverse of a second rank tengbr! is introduced as the solution of the follow-
ing equation
AT A=A -A1=1]

A is invertible if and only ifdetA # 0. A tensorA with detA = 0 is called
singular. Examples of singular tensors are projectors.

Cayley-Hamilton Theorem. Any second rank tensor satisfies the following
equation
A’ —[1(A)A* + 1 (A)A — 3(A)I =0, (A.1.7)

whereA2 =A-A, A3=A-A-Aand

L(A) =tr A, J(A) = %[(tr AP —tr A7,
1
6

(A.1.8)

J3(A) = detA = ~(tr A — %tr Atr A + %tr A3

The scalar-valued functions(A) are called principal invariants of the tensér

Coordinates of Second Rank Tensors.  Lete; be a basis anef the dual basis.
Any two vectorsa andb can be represented as follows

a=ade = ajef, b="Ue = bue"
A dyada ® b has the following representations
axb= aibjei (029 e]' = aibjei ®Bj = aibjei &® ej = aibfei X e]'

For the representation of a second rank te@sone of the following four bases can
be used o '
e e, e, é ®ej, e ®e

With these bases one can write



A.1 Basic Operations of Tensor Algebra 177

A= Aleje=Aye el = Alle;vel = Alle @e;

For a selected basis the coordinates of a second rank teasdseccomputed as
follows - , )

A’]:ei-A-e]-, Ai]-:el'A-e],

A;’;—ei-A-e], A, =¢-A-eg

Principal Values and Directions of Symmetric Second Rank Te nsors.
Consider a dot product of a second rank temd@nd a unit vecton. The resulting
vectora = A - n differs in general frorm both by the length and the direction.
However, one can find those unit vectarsfor which A - n is collinear withn, i.e.
only the length of1 is changed. Such vectors can be found from the equation

A-n=An or (A-Al)-n=0 (A.1.9)

The unit vectom is called the principal vector and the scalathe principal value

of the tensorA. Let A be a symmetric tensor. In this case the principal values are
real numbers and there exist at least three mutually orthedgarincipal vectors.
The principal values can be found as roots of the charatitepislynomial

det(A — AI) = =A% 4+ J1(A)A? — 2(A)A + J3(A) =0

The principal values are specified Ry, A;;, Arrr. For known principal values and
principal directions the second rank tensor can be repreders follows (spectral
representation)

A=Amr@ni+ Ay @nrp + Agm @ngp

Orthogonal Tensors. A second rank tensdp is said to be orthogonal if it sat-
isfies the equatio®” - Q = I. If Q operates on a vector its length remains un-
changed, i.e. leh = Q- a, then

b>?=b-b=a-Q"-Q-a=a-a=|af?

Furthermore, the orthogonal tensor does not change tharswalduct of two arbi-
trary vectors. For two vectomsandb as well ast’ = Q -a andb’ = Q - b one can

calculate
a-b=a-Q"-Q-b=a-b

From the definition of the orthogonal tensor follows
Q"=Q" QT-Q=Q-Q"=1
det(Q-QT) = (detQ)? =detI=1 = detQ==+1

Orthogonal tensors withet Q = 1 are called proper orthogonal or rotation tensors.
The rotation tensors are widely used in the rigid body dymrare.g. [333], and in
the theories of rods, plates and shells, e.g. [25, 32]. Atlyogional tensor is either



178 A Some Basic Rules of Tensor Calculus

the rotation tensor or the composition of the rotation (progthogonal tensor) and
the tensor—1I. Let P be a rotation tensotjet P = 1, then an orthogonal tens@
with detQ = —1 can be composed by

Q= (-I)-P=P-(—I), detQ =det(—I)detP = —1

For any two orthogonal tenso€3; andQ, the compositiofQ3; = Q4 - Q» is the or-
thogonal tensor, too. This property is used in the theoryofraetry and symmetry
groups, e.g. [232, 331]. Two important examples for ortmageensors are

e rotation tensor about a fixed axis
Q(ym)=mem+cosp(I —m@m) + sinym x I,
—nt<yp<m detQ=1,

where the unit vectam represents the axis andis the angle of rotation,
e reflection tensor
Q=I1-2n®n, detQ= -1,

where the unit vectar represents a normal to the mirror plane.

One can prove the following identities [334]

(Q-a) x (Q-b) = detQQ- (a xb)

(A.1.10)
Q-(@axQ")=Q-(axI)-Q" =detQ[(Q-a) x I

A.2 Elements of Tensor Analysis

A.2.1 Coordinate Systems

The vectorr characterizing the position of a poiRtcan be represented by use of
the Cartesian coordinates as follows, Fig. A.5,

r(x!, x2,x%) = xle; 4+ x%e, + x%e3 = xle;

Instead of coordinates’ one can introduce any triple of curvilinear coordinates
q',4%,g° by means of one-to-one transformations

xk — xk(qlzq2/513) o qk — qk<x1,x2, x3)

It is assumed that the above transformations are continandsontinuous differ-
entiable as many times as necessary and for the Jacobians

oxk o'
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Figure A.5 Cartesian and curvilinear coordinates

must be valid. With these assumptions the position vectorbeaconsidered as a
function of curvilinear coordinateg, i.e.r = r(q%,4?,¢°). Surfaces;! = const,

q> = const, andg® = const, Fig. A.5, are called coordinate surfaces. For given
fixed valuess> = g2 andg®> = 45 a curve can be obtained along which ogly
varies. This curve is called thg -coordinate line, Fig. A.5. Analogously, one can
obtain theg?- andg>-coordinate lines. The partial derivatives of the positiector
with respect the to selected coordinates

or or or
rl:a_ql’ rzza—qz, r3:8—q3’ ri-(rpxr3) #0
define the tangential vectors to the coordinate lines in at@iFig. A.5. The vec-
torsr; are used as the local basis in the pdmtBy use of (A.1.4) the dual basis
rk can be introduced. The vectdr connecting the poinP with a pointP’ in the
differential neighborhood oP is defined by

The square of the arc length of the line element in the difféaéneighborhood of
P is calculated by

ds* = dr - dr = (ridq') - (redq") = gudq'dq’,

whereg;, = r; - ry are the so-called contravariant components of the metngote
With g;x one can represent the basis vectotsy the dual basis vector$ as follows

1= (ri-m)r* = gur*



180 A Some Basic Rules of Tensor Calculus

Similarly ' ' ' ' '

= (rz . rk)rk _ glkrk, glk =i rk,
whereg’* are termed covariant components of the metric tensor. Fosétected
bases; andr the second rank unit tensor has the following represemistio

I=rior=rie¢rn=9¢ron=gror=ror,

A.2.2 The Hamilton (Nabla) Operator

A scalar field is a function which assigns a scalar to eachapatint P for the
domain of definition. Let us consider a scalar figlt) = ¢(q',4?,4%). The total
differential of ¢ by moving from a poin® to a pointP’ in the differential neighbor-
hood is 5 3 3 3
P ;1 Y ;2 Y3 P ok
dp = —d —=d —dq’ = —-d

Taking into account thatg® = dr - r¥

9
d(p:dr'rka—;i —dr-Vg

The vectorV ¢ is called the gradient of the scalar figpdand the invariant operator
V (the Hamilton or nabla operator) is defined by

For a vector fieldz(r) one may write

da = (dr-rk)aa—;{ :dr-rk®§—(;< —dr-Voa= (Vea)'-dr,

Veoa=re a_ak
9q
The gradient of a vector field is a second rank tensor. TheatipeV can be applied

to tensors of any rank. For vectors and tensors the followigdjtional operations
are defined

divan-a:rk-a—ak
9q
rotanxa:rkxa—ak
9q

The following identities can be verified

V®r:rk®;—;<:rk®rk21, V.r=3
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For a scalar, a vectom and for a second rank tensdrthe following identities are
valid

V() =r"® ag;z) = (rk;)—;;> ®a+ark® ;—;k = (Va)®@a+aV®a,
(A.2.1)
d(A-a) d oa
_ Lk _ Lk k
V-(A-a) = o r -a—qk-a—kr -A-a—qk
da (A.2.2)
= (V-A)-a+A--<a—qk®r>

= (V-A)-a+A-(Vea)

Here the identity (A.1.6) is used. For a second rank tedlsand a position vectar
one can prove the following identity
0A

d(A xr) or
_ Lk _ Lk k
V- (Axr) = r°. ok _r.aqur—i—r-Axaqk (A2.3)
= (V- A)xr4+rfiAxr=(V-A) xr— Ay

Here we used the definition of the vector invariant as follows

A, = (rk®rk-A>X =rex (rf-A) = —rF - Axr

A.2.3 Integral Theorems

Let ¢(r), a(r) and A(r) be scalar, vector and second rank tensor fields.VLee
the volume of a bounded domain with a regular surfddé’) andn be the outer
unit normal to the surface at The integral theorems can be summarized as follows

— Gradient Theorems

/VgodV - / nedA,
v A(V)
/V@adV = /n®adA,
v A(V)
/V®Adv - /n®AdA
v A(V)

— Divergence Theorems

‘/V-adv = A(/V)n-adA,
‘ZV-AdV - A(é)n-AdA
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— Curl Theorems

/andV = /nxadA,
v A(V)
/VxAdV = /nxAdA
v A(V)

A.2.4 Scalar-Valued Functions of Vectors and Second
Rank Tensors

Let ¢ be a scalar valued function of a vecimand a second rank tensd, i.e.
¢ = ¢(a,A). Introducing a basie; the functiony can be represented as follows

p(a,A) = y(a'e;, Ale; @ ej) = p(a’, A7)

The partial derivatives ofy with respect tmm and A are defined according to the
following rule

0 9P
dp = ﬁda +8AifdA

9 . ) ..
— Lol 1T .. pl 1T 1
da-e 5 +dA--e ®e aAifdA

In the coordinates-free form the above rule can be rewrétefollows

(A.2.4)

a0 op\" _ T
dp =da- = +dA - (ﬂ) =da-p,+dA- (Pa) (A.2.5)
with oy ap 2 2
Ya=%0 =% VAT 94~ 347
One can verify thatp, andy 4 are independent from the choice of the basis. One
may prove the following formulae for the derivatives of mijpal invariants of a

second rank tensaot

e e

(A e = I (A% =247, J1(A%) 4 =347,

’

h(A)a = Jh(AI-AT, (A.2.6)

’

(A e = A —N(AAT + (A = [3(A) (A7)

A.3 Orthogonal Transformations and Orthogonal
Invariants

An application of the theory of tensor functions is to find aibaet of scalar invari-
ants for a given group of symmetry transformations, suchetheh invariant relative
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to the same group is expressible as a single-valued funotithre basic set. The ba-
sic set of invariants is called functional basis. To obtaicoenpact representation
for invariants, it is required that the functional basisrigducible in the sense that
removing any one invariant from the basis will imply that anmete representation
for all the invariants is no longer possible.

Such a problem arises in the formulation of constitutiveadigums for a given
group of material symmetries. For example, the strain gndemsity of an elastic
non-polar material is a scalar valued function of the seagamit symmetric strain
tensor. In the theory of the Cosserat continuum two straiasmes are introduced,
where the first strain measure is the polar tensor while tbergkone is the axial
tensor, e.g. [108]. The strain energy density of a thin elastell is a function of
two second rank tensors and one vector, e.g. [25]. In allscéseproblem is to find
a minimum set of functionally independent invariants foe tonsidered tensorial
arguments.

For the theory of tensor functions we refer to [71]. Représt@ms of tensor
functions are reviewed in [280, 330]. An orthogonal transfation of a scalar, a
vectora and a second rank tensdris defined by [25, 332]

o = (detQ)n, a' = (detQ)*Q-a, A’ = (detQ)*Q-A-QT, (A3.1)

whereQ is an orthogonal tensor, i.€Q - QT = I, detQ = +1, I is the second
rank unit tensor{ = 0 for absolute (polar) scalars, vectors and tensorsiaad1

for axial ones. An example of the axial scalar is the mixeddpob of three polar
vectors, i.ea = a- (b x c). Atypical example of the axial vector is the cross product
of two polar vectors, i.ec = a x b. An example of the second rank axial tensor
is the skew-symmetric tens®W = a x I, wherea is a polar vector. Consider a
group of orthogonal transformatioSge.g., the material symmetry transformations)
characterized by a set of orthogonal tend@r#\ scalar-valued function of a second
rank tensorf = f(A) is called to be an orthogonal invariant under the gr6uf

VQeS: f(A') = (detQ)f(A), (A3.2)

wherern = 0 if values of f are absolute scalars and= 1 if values of f are axial
scalars.

Any second rank tensd@ can be decomposed into the symmetric and the skew-
symmetric part, i.eB = A +a x I, whereA is the symmetric tensor amis the
associated vector. TherefoféB) = f(A,a). If B is a polar (axial) tensor, thenis
an axial (polar) vector. For the set of second rank tensatssantors the definition
of an orthogonal invariant (A.3.2) can be generalized devid

VQeS: f(ALAL,... A4, .. a)

= (detQ)Uf(Al,Az, .. .An,al,az, .. .,ak), Ai = AZT
(A.3.3)
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A.3.1 Invariants for the Full Orthogonal Group

In [335] orthogonal invariants for different sets of secaadk tensors and vectors
with respect to the full orthogonal group are presented $hiown that orthogonal
invariants are integrals of a generic partial differenéigliation (basic equations for
invariants). Let us present two following examples

— Orthogonal invariants of a symmetric second rank tesare
I, =trAY, k=1,2,3

Instead ofl; it is possible to use the principal invariarfisdefined by (A.1.8).
— Orthogonal invariants of a symmetric second rank te#sand a vecton are

L =trAY, k=123 L=a-a, Ils=a-A-a,

I6Za~A2-a, I7:a'A2-(a><A.a) (A.3.4)

In the above set of invariants only 6 are functionally indegent. The relation
between the invariants (so-called syzygy, [71]) can be tdated as follows

Iy Is Is
=15 Is a-A%-a |, (A.3.5)
Ip, a-A%-a a-A*-a

wherea - A% -a anda - A* - a can be expressed by, | = 1,...6 applying the
Cayley-Hamilton theorem (A.1.7).

The set of invariants for a symmetric second rank tems@nd a vecton can be
applied for a non-symmetric second rank tenBosince it can be represented by
B=A+axI A=AT.

A.3.2 Invariants for the Transverse Isotropy Group

Transverse isotropy is an important type of the symmetnysficcmation due to a
variety of applications. Transverse isotropy is usuallguased in constitutive mod-
eling of fiber reinforced materials, e.g. [21], fiber suspens, e.g. [22], direction-
ally solidified alloys, e.g. [213], deep drawing sheets, 0, 57] and piezoelectric
materials, e.g. [285]. The invariants and generating settehsor-valued functions
with respect to different cases of transverse isotropy s@idsed in [79, 328] (see
also relevant references therein). In what follows we aeatihe problem of a func-
tional basis within the theory of linear first order partiéfatential equations rather
than the algebra of polynomials. We develop the idea praposg35] for the in-
variants with respect to the full orthogonal group to thesaafstransverse isotropy.
The invariants will be found as integrals of the generic iphdifferential equa-
tions. Although a functional basis formed by these invdsatoes not include any
redundant element, functional relations between them muy. ét may be there-
fore useful to find out simple forms of such relations. We stibat the proposed
approach may supply results in a direct, natural manner.
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Invariants for a Single Second Rank Symmetric Tensor. Consider the
proper orthogonal tensor which represents a rotation abtixéd axis, i.e.

Q(gm) =m@m+cosep(I —-mxm)+singm x I, det Q(¢m) =1,

(A.3.6)
wherem is assumed to be a constant unit vector (axis of rotation)aaénotes
the angle of rotation abowt. The symmetry transformation defined by this tensor
corresponds to the transverse isotropy, whereby five diffezases are possible, e.g.
[299, 331]. Let us find scalar-valued functions of a secomét symmetric tensoA
satisfying the condition

f(A'(9)=f(Q(pm)- A-Q" (gm)) = f(A), A'(p)=Q(gm)-A-Q'(gm)
(A.3.7)

Equation (A.3.7) must be valid for any angle of rotatignin (A.3.7) only the left-

hand side depends @n Therefore its derivative with respectgocan be set to zero,

ie.
df dA" [of \T
T (W) _o (A.3.8)
The derivative ofA’ with respect tap can be calculated by the following rules
dA'(9) = dQ(pm) - A- Q" (pm) +Q(gm) - A-dQ" (ym),
AQ(pm) =m x Q(gm)dp = dQ"(pm) = —Q' (em) x md¢

(A.3.9)
By inserting the above equations into (A.3.8) we obtain
afr\"
(mxA—Axm)-- A =0 (A.3.10)

Equation (A.3.10) is classified in [92] to be the linear homogous first order par-
tial differential equation. The characteristic systemAuf3(10) is

%
ds

Any system ofn linear ordinary differential equations has not more ther 1
functionally independent integrals [92]. By introducindpasise; the tensorA can
be written down in the fornrA = AYe; ® e; and (A.3.11) is a system of six ordi-

nary differential equations with respect to the coordisaté. The five integrals of
(A.3.11) may be written down as follows

=(mxA—Axm) (A.3.11)

Si(A)=¢, 1=12,...,5

wherec; are integration constants. Any function of the five integglis the so-
lution of the partial differential equation (A.3.10). Tleéore the five integralg;
represent the invariants of the symmetric tendowith respect to the symmetry
transformation (A.3.6). The solutions of (A.3.11) are
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AX(s) = Q(sm) - AS-QT(sm), k=1,2,3, (A.3.12)

whereAj is the initial condition. In order to find the integrals, theriables must
be eliminated from (A.3.12). Taking into account the follogyidentities

tr (Q-AF-QT) =tr (QT-Q-AN) =tr AX, m-Q(sm)=m,
(Q-a) x(Q-b) = (detQ)Q- (a xb)

and using the notatio@,, = Q(sm) the integrals can be found as follows
tr (A¥) = tr(Af), k=123,

- Qum .Aé . QL -m

‘Al-m, 1=1,2,

Qy AF Qu- (mx Q- A Qi -m)

CAG Q- [(Qom) < (Qpy - Ao m)]

+AZ- (mx Ag-m)

(A.3.13)

S
%,
8
X
>
)
I
I 3 8 8 8

(A.3.14)
As a result we can formulate the six invariants of the temsavith respect to the
symmetry transformation (A.3.6) as follows

I =tr (A", k=123 L=m-A-m,

(A.3.15)
Is=m-A?>-m, Ig=m-A%>-(mxA-m)

The invariants with respect to various symmetry transfdiona are discussed in
[79]. For the case of the transverse isotropy six invarianésderived in [79] by the
use of another approach. In this sense our result coincididstie result given

in [79]. However, from our derivations it follows that onlwé invariants listed
in (A.3.15) are functionally independent. Taking into ascbthatly is the mixed
product of vectorsn, A - m andA? - m the relation between the invariants can be
written down as follows

1 I Is
Z=det| I Is m-A3-m (A.3.16)
Is m-A>m m-A*-m
One can verify thatn - A3 -m andm - A* - m are transversely isotropic invari-

ants, too. However, applying the the Cayley-Hamilton teen(A.1.7) they can be
uniquely expressed by, I», . .. I5 in the following way [54]

m-A3-m = Jils+ ly+ s,
m-At-m = (P+])+ (ha+)3)+ s

where 1, J» and J3 are the principal invariants ofl defined by (A.1.8). Let us
note that the invarianky cannot be dropped. In order to verify this, it is enough to
consider two different tensors
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A and B:Qn'A'le
where
Qu.=Q(mm)=2ne@n—-1, n-n=1, n-m=0, detQ,=1

One can prove that the tens@t and the tensoB have the same invariants
I, I,...,Is. Taking into account tham - Q, = —m and applying the last iden-
tity in (A.3.13) we may write

I(B) = m-B>-(mxB-m)=m-A%>-Ql-(mxQ,-A-m)
= —m-A>-(mxA-m)=—Ig(A)

We observe that the only difference between the two consitlEmsors is the sign
of I. Therefore, the triples of vectors, A - m, A%>-m andm, B-m , B> - m have
different orientations and cannot be combined by a rotaticshould be noted that
the functional relation (A.3.16) would in no way imply thaetinvariantls should
be “dependent” and hence “redundant”, namely should be vechfyom the basis
(A.3.15). In fact, the relation (A.3.16) determines the magle but not the sign of
Ig.

To describe yielding and failure of oriented solids a dydd= v ® v has been
used in [53, 75], where the vectorspecifies a privileged direction. A plastic po-
tential is assumed to be an isotropic function of the symimé&auchy stress tensor
and the tensor generatM. Applying the representation of isotropic functions the
integrity basis including ten invariants was found. In tipedal casew = m the
number of invariants reduces to the fiyel,, . . . Is defined by (A.3.15). Further de-
tails of this approach and applications in continuum meitsaare given in [59, 71].
However, the problem statement to find an integrity basis ©frametric tensoA
and a dyad, i.e. to find scalar valued functionf§ A, M) satisfying the condition

f(Q-A-QT,Q-M-Q") = (detQ)"f(A,M),
VQ, Q-QT =1 detQ=+1

essentially differs from the problem statement (A.3.7)otder to show this we
take into account that the symmetry group of a dpddi.e. the set of orthogonal
solutions of the equatio@ - M - QT = M includes the following elements

(A.3.17)

Qi = =,

v
Q = Q(¢pm), m= o’ (A.3.18)
Qi = Q(mm)=2n®n—-1, n-n=1, n-v=0,

where Q(¢m) is defined by (A.3.6). The solutions of the problem (A.3.17 a
automatically the solutions of the following problem

f(Qi-A-Q,M) = (detQ,)"f(A,M), i=1,234,
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i.e. the problem to find the invariants df relative to the symmetry group (A.3.18).
However, (A.3.18) includes much more symmetry elementsriffgared to the prob-
lem statement (A.3.7).

An alternative set of transversely isotropic invarianta ba formulated by the
use of the following decomposition

A=uom@m+B(I-mem)+A,p+tam+mat, (A.3.19)

wherea, B, A,p andt are projections ofA. With the projector; = m ® m and
P, = I —m ®m we may write

« — m.A.m:tr(A'Pl)/
1 1
= SlrA-m-A-m)=tr(A-Py), (A.3.20)
ApD = PZ'A'Pz_ﬁPZI
¢ = m-A-P,

The decomposition (A.3.19) is the analogue to the follomiagresentation of a
vectora

a=Il-a=meom-a+(I-meom)-a=ym+7v, p=a-m, T=Py-a

(A.3.21)
Decompositions of the type (A.3.19) are applied in [68, T3e projections intro-
duced in (A.3.20) have the following properties

tr (APD) =0, ApD -m=m- APD =0, t-m=0 (A.3.22)

With (A.3.19) and (A.3.22) the tensor equation (A.3.11) banransformed to the
following system of equations

(A.3.23)

From the first two equations we observe thandp are transversely isotropic in-
variants. The third equation can be transformed to onersaathone vector equation
as follows
dA,p
ds

with b = A,p -t. We observe thatr (A%D) = Ayp -+ Ayp is the transversely
isotropic invariant, too. Finally, we have to find the intalgrof the following system

M:O @:mxb
ds " ods

wAp=0 =
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dt

— =t xXm,

gg (A.3.24)
—=bxm

ds

The solutions of (A.3.24) are
t(s) = Q(sm)-to, b(s) =Q(sm)-by,

wherety andb are initial conditions. The vectofsandb belong to the plane of
isotropy, i.e.t-m = 0 andb-m = 0. Therefore, one can verify the following
integrals

t-t=ty-to, b-b :bo'bo, t-b :tO'bO/ (t xb)m = (to Xbo)'m
(A.3.25)
We found seven integrals, but only five of them are functignaddependent. In
order to formulate the relation between the integrals wepam

b.bzt.Af,D.t, t-b=t-A,p-t
For any plane tensafl , satisfying the equationd, - m = m - A, = 0 the Cayley-
Hamilton theorem can be formulated as follows, see e.g. [71]
1
A3~ (tr Ap)Ap + [(tr 4y — b (A2)] (T—m@m) =0
Sincetr A,p = 0 we have
1
240, = tr (Ap)(I—m@m), t-A5,-t= Str (A7p)(t-t)

Becauser (AI%D) andt - t are already defined, the invariant b can be omitted.
The vectort x b is spanned on the axis. Therefore

txb=vym, y=(txb)-m,

¥ =t xb)-(t xb) = (t-t)(b-b) — (t-b)?

Now we can summarize six invariants and one relation betwsan as follows

- - - 1
11:“/ IZZ,B/ I

3=t (Abp), Li=t-t=t-A-m,
T5 = t'ApD't, T6 = (t X ApD't) -m, (A326)
R=Dh-

Let us assume that the symmetry transformafdn= Q(7tn) belongs to the

symmetry group of the transverse isotropy, as it was madéling9]. In this case
f(A") = f(Qu-A-QI) = f(A) must be valid. WithQ,, - m = —m we can write

D‘/ = K, ﬁ/ = ﬁ/ AlpD = ApD/ t/ = _Q}’l -t
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Therefore in (A.3.26)] = I;,k=1,2,...,5and
Té = (t/XA;QD‘t/)'m:((Qn't)XQn'ApD't)'m
= (tXApD't)'Qn‘m: —(tXApD-t)'m: _T6
Consequently
f(A/) = f(T{/ I_é/ . -/I_é/ Té) - f(Tll I_Z/- . -11_5/_T6)
= flA)=f(ILL... )

andfé can be omitted due to the last relation in (A.3.26).

Invariants for a Set of Vectors and Second Rank Tensors. By setting
Q = Q(¢m) in (A.3.3) and taking the derivative of (A.3.3) with respé&ztp results
in the following generic partial differential equation

n T k
Z(;{j;) . (mXAi—Aixm)+Z%-(m><aj):0 (A3.27)
=1 AT =198

The characteristic system of (A.3.27) is
dA;

7 =mxA;—A;xm), i=12,...,n,

da? (A.3.28)
] .

%:mxaj, i=12...k

The above system is a systemobrdinary differential equations, whehe = 6n +

3k is the total number of coordinates Af; anda; for a selected basis. The system
(A.3.28) has not more theN — 1 functionally independent integrals. Therefore we
can formulate:

Theorem A.3.1. A set of n symmetric second rank tensors and k vectors with
N = 6n + 3k independent coordinates for a given basis has not more than N — 1
functionally independent invariants for N > 1 and one invariant for N = 1 with
respect to the symmetry transformation Q (¢gm).

In essence, the proof of this theorem is given within the mhed linear first order
partial differential equations [92].

As an example let us consider the set of a symmetric secokdeasorA and
a vectora. This set has eight independent invariants. For a visualepéion it is
useful to keep in mind that the considered set is equivatent t

A a, A-a, A’-a
Therefore it is necessary to find the list of invariants, vehfbsation determines this

set as arigid whole. The generic equation (A.3.27) take$oiime

afF\T" of _
(ﬂ) --(m><A—A><m)+$-(m><a)—0 (A.3.29)
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The characteristic system of (A.3.29) is

dA da
e =mxA—Axm, ds—mxa (A.3.30)
This system of ninth order has eight independent integgasof them are invariants
of A anda with respect to the full orthogonal group. They fix the corsadl set as
a rigid whole. The orthogonal invariants are defined by Eq8.4) and (A.3.5).

Let us note that the invariard in (A.3.4) cannot be ignored. To verify this it is

enough to consider two different sets

A, a and B=Q,-A-Q}, a,
whereQ, = I -2p@p,p-p = 1, p-a = 0. One can prove that the invariants
L, Db, ..., I are the same for these two sets. The only difference is tlagiamnt I,
i.e.a-B>-(axB-a) = —a-A?-(a x A-a) Therefore the triples of vectoas A -
a, A®-a anda, B - a, B - a have different orientations and cannot be combined by

a rotation. In order to fix the considered set with respechéounit vectomn it is
enough to fix the next two invariants

Is=m-A-m, Iy=m-a (A.3.31)

The eight independent transversely isotropic invariamés (A.3.4), (A.3.5) and
(A.3.31).

A.3.3 Invariants for the Orthotropic Symmetry Group

Consider orthogonal tenso@; = I —2n; ®n; andQ, = I —2n, ® ny,
detQ; = detQ, = —1. These tensors represent the mirror reflections, whereby
the unit orthogonal vector&n; and +n,, are the normal directions to the mirror
planes. The above tensors are the symmetry elements oftti@ropic symmetry
group. The invariants must be found from

f(Qi-A-Qf)=f(Q2-A-Qf) = f(A)

Consequently,

fQ1-Q-A-Q-Q1) = f(Qi-A-Qf) = f(Q-A-Q]) = f(4)
and the tensd@; = Q1 - Q> = 2n3 ® n3 — I belongs to the symmetry group, where

the unit vectom; is orthogonal taz; andn,. Taking into account thd®; -n; = —n;
(no summation convention)Q; -n; = n;, i # j and using the notatiod! =

Q;- A- QT we can write

tr (A'F) = tr (A", k=1,...,3, i=1,23
ni-A-n; = ni-Qi-A-Ql-m;

= ni-A-n, i=123 (A.3.32)
ni-A%-n; = n;-Q;-A*-Qf -

= n;-A*>-n;, i=1,23
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The above set of includes 9 scalars. The number of indepesdatars is 7 due to
the obvious relations

tr (AK) =ny-A¥ ny+ny- A¥ ny4n3-AFn3, k=123
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