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Halle (Saale), im April 2006

Konstantin Naumenko



Abstract

For many structures designed for high temperature applications, e.g. piping systems
and pressure vessels, an important problem is the life time assessment in the creep
range. The objective of this work is to present an extensive overview about the the-
oretical modeling and numerical analysis of creep and long-term strength of struc-
tures. The study deals with three principal topics including constitutive equations
for creep in structural materials under multi-axial stressstates, structural mechanics
models of beams, plates, shells and three-dimensional solids, and numerical proce-
dures for the solution of initial-boundary value problems of creep mechanics.

Within the framework of the constitutive modeling we discuss various exten-
sions of the von Mises-Odqvist type creep theory to take intoaccount stress state
effects, anisotropy as well as hardening and damage processes. For several cases
of material symmetries appropriate invariants of the stress tensor, equivalent stress
and strain expressions as well as creep constitutive equations are derived. Primary
creep and transient creep effects can be described by the introduction of harden-
ing state variables. Models of time, strain and kinematic hardening are examined
as they characterize multi-axial creep behavior under simple and non-proportional
loading conditions. A systematic review and evaluation of constitutive equations
with damage variables and corresponding evolution equations recently applied to
describe tertiary creep and long term strength is presented. Stress state effects of
tertiary creep and the damage induced anisotropy are discussed in detail.

For several structural materials creep curves, constitutive equations, response
functions and material constants are summarized accordingto recently published
data. Furthermore, a new model describing anisotropic creep in a multi-pass weld
metal is presented.

Governing equations for creep in three-dimensional solidsare introduced to for-
mulate initial-boundary value problems, variational procedures and time step algo-
rithms. Various structural mechanics models of beams, plates and shells are dis-
cussed in context of their applicability to creep problems.Emphasis is placed on
effects of transverse shear deformations, boundary layersand geometrical nonlin-
earities.

A model with a scalar damage variable is incorporated into the ANSYS finite
element code by means of a user defined material subroutine. To verify the sub-
routine several benchmark problems are developed and solved by special numerical
methods. Results of finite element analysis for the same problems illustrate the ap-
plicability of the developed subroutine over a wide range ofelement types including
shell and solid elements. Furthermore, they show the influence of the mesh size on
the accuracy of solutions. Finally an example for long term strength analysis of a
spatial steam pipeline is presented. The results show that the developed approach is
capable to reproduce basic features of creep and damage processes in engineering
structures.



Zusammenfassung

Für zahlreiche Bauteile für Hochtemperaturanwendungenist die Lebensdauerab-
schätzung im Kriechbereich die wichtigste Aufgabe bei derVorbereitung von Ein-
satzentscheidungen. Ziel dieser Arbeit ist es, einen umfassendenÜberblick über die
theoretische Modellierung und die Analyse des Kriechens und der Langzeitfestig-
keit von Bauteilen zu geben. Dabei stehen folgende Schwerpunkte im Mittelpunkt:
Konstitutivgleichungen für das Kriechen von Ingenieurwerkstoffen unter mehrach-
sigen Beanspruchungen, strukturmechanische Modelle fürBalken, Platten, Schalen
und dreidimensionale Körper sowie numerische Verfahren für die Lösung nichtli-
nearer Anfangs-Randwertaufgaben der Kriechmechanik.

Im Rahmen der konstitutiven Modellierung werden zahlreiche Erweiterungen
der Mises-Odqvist-Kriechtheorie wie die Einbeziehung derArt des Spannungszu-
standes, der Anisotropie sowie der Verfestigungs- und Sch¨adigungsvorgänge dis-
kutiert. Für Sonderfälle der Materialsymmetrien werdengeeignete Invarianten des
Spannungstensors, Ansätze für Vergleichsspannungen und -dehnungen sowie Kon-
stitutivgleichungen zum anisotropen Kriechen formuliert. Das Primärkriechen und
transiente Kriechvorgänge können durch die Einführungvon Verfestigungsvaria-
blen beschrieben werden. Die Modelle der Zeit- und Deformations- sowie der kine-
matischen Verfestigung werden bezüglich der Vorhersagbarkeit des mehrachsigen
Kriechens untersucht. Danach erfolgen ein systematischerÜberblick und die Be-
wertung der Konstitutivgleichungen mit Schädigungsvariablen, die bisher auf die
Beschreibung des Tertiärkriechens und der Langzeitfestigkeit angewandt wurden.

Für einige Ingenieurwerkstoffe werden Kriechkurven, Konstitutivgleichungen,
konstitutive Funktionen und Werkstoffkennwerte anhand der in der Literatur publi-
zierten Daten zusammengefasst. Ferner wird ein neues Modell zur Beschreibung
des anisotropen Kriechens in einem mehrlagigen Schweißgutvorgestellt.

Die Grundgleichungen für das Kriechen in dreidimensionalen Körpern werden
zum Zweck der Formulierung von Anfangs-Randwertproblemen, Variationsverfah-
ren und Zeitschrittalgorithmen zusammengefasst. Zahlreiche Modelle der Struktur-
mechanik für Balken, Platten und Schalen werden bezüglich ihrer Anwendbarkeit
auf Kriechprobleme diskutiert. Hier wird auf Effekte wie Querschubverzerrung,
Randschichten und geometrische Nichtlineatitäten aufmerksam gemacht.

Modelle mit Schädigungsvariablen werden mit Hilfe einer benutzerdefinierten
subroutine in das Programmsystem ANSYS eingebunden. Für deren Verifikation
werden Testaufgaben entwickelt und mit Hilfe spezieller numerischer Verfahren
gelöst. Berechnungen der selben Aufgaben mit der Methode der finiten Elemente
illustrieren die Anwendbarkeit der entwickelten subroutine für verschiedene Ty-
pen von finiten Elementen. Weiterhin zeigen sie den Einfluss der Netzdichte auf
die Lösungsgenauigkeit. Abschließend wird die Langzeitfestigkeitsanalyse einer
räumlichen Rohrleitung vorgestellt. Die Ergebnisse zeigen, dass das entwickelte
Verfahren in der Lage ist, die wesentlichen Kriech- und Sch¨adigungsvorgänge in
Ingenieurkonstruktionen darzustellen.
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1 Introduction

Creep is the progressive time-dependent inelastic deformation under constant load
and temperature. Relaxation is the time-dependent decrease of stress under the con-
dition of constant deformation and temperature. For many structural materials, for
example steel, both the creep and the relaxation can be observed above a certain
critical temperature. The creep process is accompanied by many different slow mi-
crostructural rearrangements including dislocation movement, ageing of microstruc-
ture and grain-boundary cavitation.

The above definitions of creep and relaxation are related to the case of uni-axial
homogeneous stress states realized in standard material testing. Under “creep in
structures” we understand time-dependent changes of strain and stress states taking
place in structural components as a consequence of externalloading and tempera-
ture. Examples of these changes include progressive deformations, relaxation and
redistribution of stresses, local reduction of material strength, etc. Furthermore, the
strain and stress states are inhomogeneous and multi-axialin most cases. The scope
of “creep modeling for structural analysis” is to develop a tool which allows to sim-
ulate the time-dependent behavior in engineering structures up to the critical state
of creep rupture.

In Chapter 1 we discuss basic features of creep behavior of materials and struc-
tures, present the state of the art within the framework of creep modeling and define
the scope of this contribution.

1.1 Creep Phenomena in Structural Materials

The analysis of the material behavior can be based on different experimental ob-
servations, for example, macroscopic and microscopic. Theengineering approach
is related to the stress-strain analysis of structures and mostly based on the standard
mechanical tests. In this section we discuss basic featuresof the creep behavior ac-
cording to recently published results of creep testing under uni-axial and multi-axial
stress states.

1.1.1 Uni-Axial Creep

Uni-axial creep tests belong to the basic experiments of thematerial behavior eval-
uation. A standard cylindrical tension specimen is heated up to the temperature
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σσσ = σnnn ⊗ nnn, σ = F/A0

σ < σy, 0.3Tm < T < 0.5Tm
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III

fracture

instantaneous elastic strainεel

Figure 1.1 Strain vs. time curve under constant load and temperature. I- primary creep,
II - secondary creep, III - tertiary creep

0.3 − 0.5Tm (Tm is the melting temperature of the material) and loaded by a tensile
force. The value of the normal stress in the specimenσ is usually much less than
the yield limit of the materialσy. The instantaneous material response is therefore
elastic. The load and the temperature are kept constant during the test and the ax-
ial engineering strainε is plotted versus time. A typical creep curve for a metal is
schematically shown in Fig. 1.1. The instantaneous response can be characterized
by the strain valueεel . The time-dependent response is the slow increase of the strain
ε with a variable rate. Following Andrade [95], three stages can be considered in a
typical creep curve: the first stage (primary or reduced creep), the second stage (sec-
ondary or stationary creep) and the third stage (tertiary oraccelerated creep). During
the primary creep stage the creep rate decreases to a certainvalue (minimum creep
rate). The secondary stage is characterized by the approximately constant creep rate.
During the tertiary stage the strain rate increases. At the end of the tertiary stage
creep rupture of the specimen occurs.

A number of properties can be deduced from the uni-axial creep curve. These
are the duration of the stages, the value of minimum creep rate, the time to fracture
and the strain value before fracture1.

The shape of the creep curve and the duration of the creep stages depend strongly
on the stress and temperature values, Fig. 1.2. The dependencies on stress and tem-
perature are of primary interest to an engineer designing some structure or machine.
In order to obtain mechanical properties of the material, series of creep tests are
usually performed for different stress and temperature values. From the resulting
families of creep curves one can obtain the minimum creep rate vs. stress curve,
the minimum creep rate vs. temperature curve, the creep ratevs. time curve and
the stress vs. time to fracture curve (long term strength curve). The ranges of stress
and temperature should be selected according to the ranges expected in the structure

1 The fracture strain is sometimes related to the ductility ofthe material.
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Figure 1.2 Influence of stress and temperature on the creep behavior.a Stress dependence
b temperature dependence

during the service. Examples of the above mentioned curves for various materials
can be found in monographs [77, 173, 202, 236, 234, 250] and many papers related
to the experimental analysis of creep, e.g. [105, 144, 143, 162].

Two additional forms of the time-dependent stress-strain behavior are creep re-
covery and stress relaxation, Fig 1.3. Creep recovery is usually observed, when after
a certain period of time the load is spontaneously removed, Fig. 1.3b. After unload-
ing the strain drops about the valueεel (recovery of the elastic strain). Then the strain
slowly decreases down to the permanent (irrecoverable) value εpm, whereasεrec is
the recovered inelastic strain. A typical stress relaxation curve is shown in Fig. 1.3c.
Stress relaxation is observed when the strain is held constant in time (ε = const).
A uni-axial specimen is instantaneously deformed to the strain valueεel = σ/E,
whereE is the Young’s modulus. During the test the load is continuously decreased
in such a way that the initial strain remains constant. A threshold of the initial stress
(strain) exists below which the relaxation is not observable.

In many cases it is convenient to introduce the inelastic (creep) strainεcr as the
difference between the measured strainε and the calculated elastic strainεel . The
creep curves can be presented as creep strain vs. time curves, Fig. 1.3a, b. In the
case of relaxation, it is usually assumed, e.g. [202, 301], that the total zero strain
rate is the sum of the elastic and creep strain rates, i.e.

ε̇ =
σ̇

E
+ ε̇cr = 0

According to this assumption the creep strain with a decaying rate develops during
the relaxation test, Fig 1.3c.

In addition to creep and relaxation, many different tests under variable loading
and/or strain conditions are discussed in the literature. Examples for the creep curves
under stepwise loading are presented in [113, 202] among others. In this case the
creep test starts under a certain value of the load. After reaching steady state creep
rate the load is rapidly increased (decreased) and kept constant over a period of time
(holding time). Such tests allow to analyze transient creepeffects, e.g. the duration
of primary creep after the rapid change of loading. Furthermore, they indicate that
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Figure 1.3 Different forms of time-dependent stress-strain behaviorunder constant temper-
ature.a Creep at constant stress,b creep recovery (H(t) denotes the Heaviside function),
c stress relaxation

the steady state creep rate in the current loading step depends not only on the value
of the applied stress but also on the loading history (e.g. the number of previous
stress cycles, the holding time, etc.).

A periodically varied load causes cyclic creep response. The periodic stress can
be characterized by the amplitudeσa, the periodτc and the mean stressσm. Two
typical cases of the periodic loading are presented in Figs 1.4a, b. Let us assume
that the maximum stressσmax = σm + σa is much less than the yield limit of the
material. Creep behavior for the case of periodic loading with a holding time is
schematically illustrated in Fig. 1.4c. Here the mean stress σm, the amplitudeσa,
the rate of loading/unloading and the holding time influencethe creep response.
The case of harmonic loading is shown in Fig. 1.4b. Such loading is important in
those engineering applications, where technological or operational conditions (non-
stationary flow, combustion, acoustic action, etc.) cause the development of forced
vibrations. The harmonic stress variation can be describedas follows

σ = σm(1 + Â sin Ωt), Â =
σa

σm
, Ω =

2π

τc
= 2π f (1.1.1)

Creep behavior under harmonic loading (1.1.1) with frequencies f > 1 . . . 2 Hz is
studied in [43, 179, 302, 303]. For this cyclic loading condition primary, secondary
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Figure 1.4 Types of loading and corresponding cyclic creep curves.a Cyclic loading with
holding,b harmonic loading with high frequency,c creep response for cyclic loading with
holding,d different responses for high frequent loading

and tertiary stages can be observed similarly to the static case, Fig. 1.4d. Further-
more, the shape of the cyclic creep curve is geometrically similar to the static one
caused by the stressσ = σm, but the creep rate is rather higher and the time to frac-
ture is essentially smaller. It was found that creep under fast cyclic loading is not
sensitive to the frequency of stress variation, e.g. [304].In contrast, the stress cycle
asymmetry parameter̂A has significant influence on the creep rate. For a number of
investigated materials a material constantÂ∗ has been found which is termed as the
critical value of the stress cycle asymmetry parameter. IfÂ < Â∗ the high cyclic
creep process is similar to the static one with increased creep rate and decreased time
to fracture. IfÂ > Â∗ such a behavior is not observable, and fracture takes place as
a consequence of creep-fatigue interaction. Following [179, 304, 265], the processes
of high-frequency cyclic creep are classified as: dynamic creep forÂ < Â∗ and high
cyclic creep forÂ > Â∗. Creep curves for both cases are schematically presented
in Fig. 1.4d.
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ε

σ

ε̇ increasing

Figure 1.5 Strain rate dependence of the stress-strain behavior

Typical stress-strain diagrams, obtained from a strain controlled test under con-
stant strain rate and temperature are illustrated in Fig. 1.5. It is obvious that the
stress-strain behavior depends significantly on the value of the strain rate. Various
examples of experimental data for steels obtained from the strain controlled tests
are presented in [176, 301].

Creep behavior is highly sensitive to the type of material processing (e.g. plas-
tic forming, heat treatment). As an example, let us illustrate the effect of sponta-
neous plastic pre-strain on the subsequent creep behavior,Fig. 1.6. The first creep
curve (solid line) is a typical creep curve under the constant stressσ0. The dotted
lines present the second and the third creep curves after spontaneous loading to the

stressesσ1 andσ2 > σ1 leading to small plastic strainsε
pl
1 andε

pl
2 > ε

pl
1 , respec-

tively, and subsequent unloading to the stressσ0. The creep rate after the loading
to the plastic strain is significantly lower compared to the creep rate of the “virgin”
material. The effect of reduction in creep rate becomes stronger with increase of the
prior plastic strain. Effects of this type are sometimes termed as “plasticity-creep”
or “creep-plasticity” interactions, e.g. [148, 174, 176, 208].

Several materials show anisotropic creep behavior. Examples are: directionally
solidified nickel-based superalloys, e.g. [323], fiber reinforced materials, e.g. [273,
274], deep drawing sheets, e.g. [50, 57], and multi-pass weld metals [141]. In these
cases series of uni-axial creep tests for specific loading directions are performed in
order to establish the material behavior. The number of the required tests and the
corresponding loading directions are dictated according to the assumed symmetries
of the material microstructure.
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Figure 1.6 Effect of initial plastic strain on creep behavior, for details see [157]

1.1.2 Multi-Axial Creep and Stress State Effects

Experimental data obtained from uni-axial tests allow to establish basic features of
the creep behavior and to find relations between strain rate,stress, temperature, time,
etc. Most structural members are, however, subjected to multi-axial stress and strain
conditions. In order to analyze the influence of the stress state on the time dependent
material behavior, multi-axial creep tests are required.

Various techniques have been developed to test materials under multi-axial load-
ing conditions. Examples of multi-axial specimens for creep testing are: thin-walled
pipes subjected to axial force and torque, e.g. [168], two- and three-dimensional
cruciform specimens subjected to axial forces, e.g. [282, 283], circumferentially
notched specimens subjected to axial force, e.g. [146, 251].

Figure 1.7 shows a thin-walled pipe under the axial force andtorque with the
magnitudesF andM, respectively. Letrm be the mean radius of the cross section,h
the wall thickness andL the gauge length. With the local cylindrical basiseeer, eeeϕ and
kkk, as shown in Fig. 1.7, the stress state can be characterized by the following tensor

σσσ = σkkk ⊗ kkk + τ(eeeϕ ⊗ kkk + kkk ⊗ eeeϕ), σ =
F

2πrmh
, τ =

M

2πr2
mh

(1.1.2)

The deviatoric part of the stress tensor is

sss = σ(kkk ⊗ kkk − 1

3
III) + τ(eeeϕ ⊗ kkk + kkk ⊗ eeeϕ), (1.1.3)
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Figure 1.7 Thin-walled pipe for multi-axial creep tests

whereIII is the second rank unit tensor, see Sect. A.1.4. As a stress measure which al-
lows to compare different multi-axial creep tests let us usethe von Mises equivalent
stressσvM which is defined as follows

σvM =

√

3

2
sss ······ sss =

√

σ2 + 3τ2

From the measured elongation∆L and the angle of twistφT the axial strainεL and
the shear strainγ can be computed

εL =
∆L

L
, γ =

rmφT

L

Assuming that the material behavior is isotropic, the strain state in a pipe can be
characterized by the following tensor

εεε = εLkkk ⊗ kkk + εQ(III − kkk ⊗ kkk) +
1

2
γ(eeeϕ ⊗ kkk + kkk ⊗ eeeϕ),

whereεQ = ∆rm/rm is the transverse normal strain. The creep strain tensor is
defined as the difference between the strain tensorεεε which includes the measur-
able quantities and the tensor of initial elastic strains which can be calculated from
Hooke’s law. As a result we obtain

εεεcr =

(

εL + 2εQ − 1 − 2ν

E
σ

)

1

3
III +

(

εL − εQ − (1 + ν)

E
σ

)

(kkk ⊗ kkk − 1

3
III)

+
1

2

(

γ − 2(1 + ν)

E
τ

)

(kkk ⊗ eeeϕ + eeeϕ ⊗ kkk),

(1.1.4)
whereν is the Poisson’s ratio. The basic assumption related to the multi-axial creep
behavior is the volume constancy during the creep deformation, e.g. [234, 236]. In
this case the following relations should be satisfied
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tr εεε = tr εεεel ⇒ εL + 2εQ =
1 − 2ν

E
σ

From (1.1.4) follows

εεεcr =
3

2

(

εL −
1

E
σ

)

(kkk ⊗ kkk − 1

3
III) +

1

2

(

γ − 2(1 + ν)

E
τ

)

(kkk ⊗ eeeϕ + eeeϕ ⊗ kkk)

Under the condition of stationary loading the creep rate tensor is

ε̇εε = ε̇εεcr =
3

2
ε̇L(kkk ⊗ kkk − 1

3
III) +

1

2
γ̇(kkk ⊗ eeeϕ + eeeϕ ⊗ kkk) (1.1.5)

The von Mises equivalent creep rate is defined by

ε̇vM =

√

2

3
ε̇εε ······ ε̇εε =

√

ε̇2
L +

1

3
γ̇2

The results of creep tests on tubes are usually presented as:strainsεL andγ vs. time
curves, e.g. [136, 148, 157], creep strains

εcr
L = εL −

σ

E
, γcr = γ − 2(1 + ν)

E
τ

vs. time curves, e.g [218, 248, 238], von Mises equivalent creep strain

εcr
vM =

√

2

3
εεεcr ······ εεεcr =

√

(εcr
L )2 +

1

3
(γcr)2

vs. time curves, e.g. [168, 170], and the so-called specific dissipation work

q(t̄) =

t̄
∫

0

ε̇εε······ sssdt =

t̄
∫

0

(ε̇Lσ + γ̇τ)dt

vs. time curves [296, 297].
Figure 1.8 illustrates typical results of creep testing under constant von Mises

stressσvM. Sketches of creep curves are presented for the case of tension under the
normal stressσ = σvM, and torsion under the shear stressτ = σvM/

√
3. For many

structural materials the kind of the stress state (e.g. tension or torsion) has negligible
influence on the primary and secondary creep behavior. However, this is not the
case for the tertiary creep and the long term strength. Tubular specimen subjected to
tension usually exhibit much shorter lifetime and lower ductility if compared to the
case of pure torsion. This stress state effect has been observed for copper in [168]
and for austenitic steels in [229, 310], for example.

Many results of creep tests under combined tension-torsionloading are pub-
lished. Figure 1.9a shows the plot of the equationσ2 + 3τ2 = σ2

vM = const with
respect to coordinatesσ and

√
3τ. Different stress states leading to the same fixed

value of the von Mises stress can be conveniently characterized by the angleα (stress
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Figure 1.8 Stress state effect of tertiary creep
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Figure 1.9 Creep response under combined tension-torsion loading.a Plane stress state,b
strain trajectory

state angle). The corresponding values for the normal and the shear stress can be
then calculated as follows

σ = σvM cos α, τ = σvM
sin α√

3

For example,α = 0 corresponds to the case of tension andα = π/2 to the case
of torsion.0 < α < π/2 characterizes the combined loading case. The loading
conditions realized in creep tests can be classified as follows

a) stationaryσvM and different but stationaryα,
b) time-varying (e.g. stepwise or cyclic)σvM under fixedα,
c) time-varyingα under fixedσvM and
d) bothσvM andα are time-varying.

The loading cases a) and b) are called simple or proportionalloadings, while the
cases c) and d) are classified as non-proportional loadings.The results of creep
tests under the combined loading can be conveniently presented asγcr/

√
3 vs. εcr



1.2 Creep in Engineering Structures 11

curves (so-called strain trajectories), e.g. [218, 228]. Asketch of such a curve for
the loading case a) is presented in Fig. 1.9b. For many metalsand alloys, e.g. [218,
228, 245], the direction of the strain trajectory characterized by the angelβ, Fig.
1.9b, coincides with the direction of the applied stress state, characterized by the
angleα. According to this result one can assume that the creep rate tensor is coaxial
and collinear with the stress deviator, i.e.ε̇εε = λsss. Taking into account (1.1.2) and
(1.1.5) the following relations can be obtained

3

2
ε̇L = λσ,

1

2
γ̇ = λτ ⇒ ε̇L

γ̇/
√

3
=

σ√
3τ

In many cases, experimental results show that the above relations are well satisfied,
e.g. [136, 218, 228, 245].

Non-coincidence of the strain-trajectory and the stress state angles indicates the
anisotropy of the creep behavior. Anisotropic creep may be caused either by the
initial anisotropy of the material microstructure as a result of material processing
or by the anisotropy induced during the creep process. Examples for anisotropic
tension-torsion creep are presented for a directionally solidified nickel-based su-
peralloy in [239] and for a fiber-reinforced material in [273, 274]. The trajecto-
ries of creep strains presented in [157] for austenitic steel tubes demonstrate that
initial small plastic pre-strain causes the anisotropy of subsequent creep behavior.
The deformation induced anisotropy may be observed in creeptests under non-
proportional loading conditions. The effects of the induced anisotropy are usually
related to anisotropic hardening, e.g. [245, 157, 228], anddamage processes, e.g.
[218].

Another stress state effect is the different creep behaviorunder tensile and com-
pressive loadings. Examples are presented for several alloys in [106, 195, 301, 339],
for polymers in [187], and for ceramics in [254]. Experimental results show that for
the same value of stress in tension and compression, the value of the creep rate
under tension is significantly greater than the corresponding absolute value under
compression. This effect indicates that besides the von Mises equivalent stress, ad-
ditional characteristics of the stress state (e.g. the meanstress) may influence the
creep process.

1.2 Creep in Engineering Structures

Creep in structures is a variety of time dependent changes ofstrain and stress states
including progressive deformations, relaxation and redistribution of stresses, local
reduction of the material strength. To illustrate these processes let us consider a
beam with a rectangular cross section. We assume that the beam is heated up to
a certain temperature, clamped at the ends and uniformly loaded as shown in Fig.
1.10a. The loading is moderate leading to spontaneous elastic deformation of the
beam. Let the maximum deflection of the beam in the reference “elastic” state be
w0 and the maximum bending stress beσ0. Furthermore, let us assume that creep
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Figure 1.10 Uniformly loaded clamped beam.a Geometry and loading,b sketch of the
assumed creep curves under tension and compression
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Figure 1.11 Creep of a uniformly loaded clamped beam.a Normalized maximum deflection
vs. normalized time,b normalized maximum bending stress vs. time

curves of the material under uni-axial tension and compression are as sketched in
Fig. 1.10b. Here the time to fracture of a uni-axial specimenloaded by the tensile
stress with the magnitudeσ0 (the magnitude of maximum reference bending stress
in the beam) is specified byt f . The tertiary creep stage is stress state dependent,
i.e. for the same stress magnitudes in tension and compression the creep rate under
tension is much greater then the corresponding absolute value under compression.
The dotted line in 1.10b shows the idealized creep curve having only the stress state
independent secondary stage.

Creep processes in a beam under the constant loadq and the assumed material
behavior are the progressive deformation which may be characterized by the max-
imum deflection vs. time curve, Fig. 1.11a, the relaxation ofthe bending stresses,
Fig. 1.11b, and the stress redistributions, Fig. 1.12. The results illustrated in Figs
1.11 and 1.12 are obtained from the finite element calculation [225]. Here let us
discuss some basic features of creep in the case of the non-homogeneous stress
and strain states. First let us explain origins of the simultaneous increase of defor-
mations and the relaxation of stresses. For this purpose we assume that the beam
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Figure 1.12 Distributions of the normalized bending stress at different time steps

deforms in such a manner that every cross section behaves like a rigid plane, i.e.
it may only translate and rotate about the axis which is orthogonal to the plane of
bending. Furthermore, we assume that mechanical interactions between the cross
sections are only due to forces and moments. The above assumptions are the basis
of various theories of beams. Let us note that the results presented in Figs 1.11 and
1.12 are obtained without these assumptions. However, one may show that they are
well satisfied [225].

Figure 1.13a is a sketch of the elastic deformation of the beam in the reference
state. In Figure 1.13b the clamped edges are replaced by the pin supports and the
momentsM0. These moments must be applied in order to fix the zero cross section
rotations at the ends. As a result of creep, the deformationsof the beam increase
in time. If the momentsM0 are kept constant then, after a period of time the beam
would have a deformed shape as sketched in Fig. 1.13c. In thiscase the angles of
cross section rotations at the ends increase in time. In order to keep the zero cross
section rotations the moments must be relaxed, Fig. 1.13d. If the material behaves
as shown in Fig. 1.10b by the dotted line, a steady state exists, for which the mo-
ments do not depend on time and the deflection increases with aconstant rate. The
steady state solutions for the maximum deflection and bending stress are presented
in Fig. 1.11 by dotted lines. The rate of maximum deflection, the maximum bend-
ing moment and the maximum bending stress in the steady statecan be estimated
according to the elementary beam theory [77, 202, 234].



14 1 Introduction

M0

M0M0

M0 M(t) < M0M(t) < M0

a b

c d

Figure 1.13 Relaxation of bending moments in clamped edges.a Deformed elastic beam
in the reference state,b equivalent elastic beam with simple supports and edge moments,c
“crept” beam under constant edge moments,d “crept” beam under relaxed edge moments

The next feature is the redistribution of bending moments during the creep
process. The origin can be explained based on equilibrium conditions. As an ex-
ample let us write down the equilibrium condition for the moments considering a
half of the beam

M(t) + Mm(t) =
ql2

8
⇒ Ṁm = −Ṁ

whereM(t) is the edge bending moment, Fig. 1.13c, andMm(t) is the bending mo-
ment in the middle cross section. The momentM relaxes down as a consequence
of creep process. The above equilibrium condition states that the momentMm in-
creases. The rate of increase is equal to the rate of relaxation.

Similar considerations explain the redistribution of bending stresses. For the
sake of brevity assume that the beam is simply supported, i.e. M(t) = M0 = 0.
In this statically determined case the bending moments in all cross sections remain
constant during the creep process. However, the stresses inthe points of cross sec-
tions redistribute essentially. The outer tensile and compressive layers exhibit the
highest creep rates due to the maximum stress values in the reference state. There-
fore they will show the highest relaxation rates at the beginning of the creep process.
The redistribution of stresses over the cross section is enhanced by the essential non-
linearity of the creep rate with respect to the stress magnitude. Steady state creep
solutions for bending stresses are discussed in [77, 202, 234].

Results presented in Fig. 1.12 show that the distributions of absolute values of
the bending stresses are non-symmetrical with respect to the beam centerline. This is
the consequence of the assumed stress state dependent tertiary creep behavior, Fig.
1.10. Tensile layers of the beam cross section “creep” with higher rates compared
to compressive layers.

Creep fracture originates in outer tensile layers of the clamped cross sections
[225]. These layers exhibit, however, the lowest values of stresses at the final stage
of creep process, Figs 1.11b and 1.12. This result can be explained by material
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damage processes (e.g. grain boundary cavitation and ageing of microstructure) ac-
companying creep deformation. These processes develop over time with the rates
determined not only by the reference stress values but also by the complete load-
ing history. A damaged material has lower ultimate stress compared to the virgin
one. Outer tensile layers of the clamped cross sections are places with the highest
“damage grade”.

The above discussed features of creep are common for many structures operating
under high-temperature conditions. Examples are structural components of power
plants, chemical refineries or heat engines, e.g. [124]. Design of pipework systems,
rotors, turbine blades, etc. requires the consideration ofcreep. Creep processes may
cause excessive deformations, damage, buckling, crack initiation and growth.

Different types of creep failure that have occurred in the recent years are dis-
cussed in the literature. Examples of critical structural members include pipe bends
[180], welds [290], turbine blade root fixings [124], etc. The possibilities to analyze
a structural prototype in the laboratory are limited by the long duration of tests and
related costs. Furthermore, examinations of creep and damage states in a structure
during the service (e.g. replicas) can be only made at specific outer surface posi-
tions and after certain periods of time. The modeling of creep processes in struc-
tures is therefore an essential contribution to optimal design and residual life assess-
ment. Furthermore it contributes to understanding and analysis of time-dependent
deformations, stress redistributions and damage growth under given temperature and
loading conditions.

1.3 State of the Art in Creep Modeling

The basic approaches to the description of creep behavior can be classified as fol-
lows. Theempirical modeling is the study of correlations between the creep rate,
stress, temperature and time. In addition, extrapolation methods are developed to
predict time-dependent deformations and life time of a structure based on experi-
mental data from short-term uni-axial creep tests. The aim of this approach is to
derive simple formulae for an estimation of the structural behavior under creep con-
ditions. An example is the Monkman-Grant relation which states that the product of
the minimum creep rate and the time to fracture is a constant.Many different em-
pirical relations of this type are reviewed in [250]. They are useful in early stages of
design for a robust prediction of the components operation life. It should be noted
that the empirical approach provides one-dimensional relations. The dependencies
of creep behavior on the type of stress state are not discussed. Furthermore, the
possibility of stress redistributions cannot be considered.

Within the materials science modeling, creep is characterized by a variety
of microstructural rearrangements. According to assumed scenarios of transport
processes in the microscale (diffusion of vacancies, climband glide of dislocations,
etc.) equations for the creep rate are derived. The form of the specific rate equation
depends on the assumed deformation and damage mechanisms for specific ranges
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of stress and temperature, e.g. [117]. Many diverse equations of this type are re-
viewed in [116, 156, 222]. In addition, kinetic equations for internal state variables
are discussed. Examples for these variables include dislocation density, [110], inter-
nal (back) stress, e.g. [116], and various damage parameters associated with ageing
and cavitation processes, [101]. The aim of this approach isto provide correlations
between quantities characterizing the type of microstructure and processing (grain
size, types of alloying and hardening, etc.) and quantitiescharacterizing the mater-
ial behavior, e.g. the creep rate. Furthermore, the mechanisms based classification of
different forms of creep equations including different stress and temperature func-
tions is helpful in the structural analysis. However, the models proposed within the
materials science are usually one-dimensional and operatewith scalar-valued quan-
tities like magnitudes of stress and strain rates.

Themicromechanical models deal with discrete simulations of material behav-
ior for a representative volume element with geometricallyidealized microstructure.
Simplifying assumptions are made for the behavior of constituents and their interac-
tions, for the type of the representative volume element andfor the exerted bound-
ary conditions. Examples include numerical simulations ofvoid growth in a power
law creeping matrix material, e.g. [315, 318], crack propagation through a power
law creeping multi-grain model, e.g. [241, 317], stress redistributions between con-
stituents in a creeping binary medium, e.g. [226]. Micromechanical models con-
tribute to understanding creep and damage processes in heterogeneous systems.
With respect to engineering applications the micromechanical approach suffers,
however, from significant limitations. One of them is that a typical high-temperature
structural material, for example steel, has a complex composition including dislo-
cation structures, grain boundaries, dispersion particles, precipitates, etc. A reliable
micromechanical description of creep in a structural steelwould therefore require a
rather complex model of a multi-phase medium with many evolving and interacting
constituents.

The objective ofcontinuum mechanics modeling is to investigate creep in ide-
alized three-dimensional solids. The idealization is related to the hypothesis of a
continuum, e.g. [131]. The approach is based on balance equations formulated for
material volume elements and assumptions regarding the kinematics of deforma-
tion and motion. Creep behavior is described by means of constitutive equations
which relate deformation processes and stresses. Details of topological changes of
microstructure like subgrain size or mean radius of carbideprecipitates are not con-
sidered. The processes associated with these changes like hardening, recovery, age-
ing and damage can be taken into account by means of hidden or internal state vari-
ables and corresponding evolution equations, [58, 185, 265, 291]. Creep constitutive
equations with internal state variables can be applied to structural analysis. Various
models and methods recently developed within the mechanicsof structures can be
extended to the solution of creep problems. Examples are theories of rods, plates and
shells as well as direct variational methods, e.g. [6, 58, 77, 202, 255, 292]. Numeri-
cal solutions by the finite element method combined with various time step integra-
tion techniques allow to simulate time dependent structural behavior up to critical
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state of failure. Examples of recent studies include circumferentially notched bars
[133], pipe weldments [137] and thin-walled tubes [177]. Inthese investigations
qualitative agreements between the theory and experimentscarried out on model
structures have been established. Constitutive equationswith internal state variables
have been found to be mostly suited for the creep analysis of structures [137]. How-
ever, it should be noted that this approach requires numerous experimental data of
creep for structural materials over a wide range of stress and temperature as well as
different stress states.

1.4 Scope and Outline

This work is a contribution to the continuum mechanics modeling of creep with
the aim of structural analysis. This type of modeling is related to the fields “creep
mechanics” [58, 235] and “creep continuum damage mechanics” [135] and requires
the following steps [77, 139, 234]

– formulation of a constitutive model including constitutive and evolution equations
to reflect basic features of creep behavior of a structural material under multi-axial
stress states,

– identification of material constants in constitutive and evolution equations based
on experimental data of creep and long-term strength,

– application of a structural mechanics model by taking into account creep
processes and stress state effects,

– formulation of an initial-boundary value problem based on the constitutive and
structural mechanics models,

– development of numerical solution procedures and
– verification of results

The text is organized as follows. Chapter 2 provides an overview of constitutive
models that describe creep processes under multi-axial stress states. The starting
point of the engineering creep theory is the introduction ofthe inelastic strain, the
creep potential, the flow rule, the equivalent stress and internal state variables. Con-
stitutive models of isotropic secondary creep based on the von Mises-Odqvist creep
potential are introduced. To account for stress state effects creep potentials that in-
clude three invariants of the stress tensor are discussed. Consideration of material
symmetries provide restrictions for the creep potential. Anovel direct approach to
find scalar valued arguments of the creep potential for the given group of mater-
ial symmetries is proposed. Transverse isotropy and orthotropic symmetry are two
important types of symmetries in the creep mechanics [58]. For these two cases ap-
propriate invariants of the stress tensor, equivalent stress and strain expressions as
well as constitutive equations are derived.

Further extensions of the classical creep theory are related to processes accom-
panying creep deformation. Primary creep and transient creep effects can be de-
scribed by the introduction of hardening state variables. The time and strain hard-
ening models as well as the back stress concept are examined as they predict multi-
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axial creep behavior. Tertiary creep and long term strengthcan be characterized by
the introduction of damage state variables. A systematic review of different types
of constitutive equations with damage variables and corresponding evolution equa-
tions is presented. Stress state effects and damage inducedanisotropy are discussed
in detail.

Chapter 3 deals with the application of constitutive modelsto the description of
creep for several structural materials. Constitutive and evolution equations, response
functions and material constants are presented according to recently published ex-
perimental data. Furthermore a new model for anisotropic creep in a multi-pass weld
metal is presented.

In Chapter 4 we discuss structural mechanics problems. We start with a sum-
mary of governing equations describing creep in three-dimensional solids. Several
simplifying assumptions are made in order to illustrate thebasic ideas of initial-
boundary value problems, direct variational methods and time step algorithms. Then
various structural mechanics models of beams, plates and shells are reviewed and
evaluated in the context of their applicability to creep problems. An emphasis is
placed on effects of transverse shear deformation, boundary layers and geometrical
nonlinearities.

A model with a scalar damage variable is incorporated into the ANSYS finite el-
ement code by means of a user defined material subroutine. To verify the developed
subroutine several benchmark problems are presented. For these problems special
numerical solutions based on the Ritz method are obtained. Finite element solutions
for the same problems are performed to illustrate that the subroutine is correctly
coded and implemented. Furthermore these benchmarks are used to study the ap-
plicability of the developed subroutine over a wide range ofelement types including
shell and solid elements. Based on several examples, the influence of the mesh size
on the accuracy of solutions is demonstrated. Finally an example for a spatial steam
pipeline is presented. Results are compared with the data from engineering practice
discussed in the literature.

Appendix A is a summary of the direct tensor notation and basic tensor opera-
tions used throughout the text. This notation has an advantage of a clear, compact
and coordinate free representation of constitutive modelsand initial-boundary value
problems. The theory of anisotropic tensor functions and invariants is discussed in
detail. A novel approach to derive the basic set of functionally independent invari-
ants for vectors and second rank tensors for the given symmetry group is presented.
The invariants are found as integrals of a generic partial differential equation (basic
equation for invariants).



2 Constitutive Models of Creep

Analysis of creep in engineering structures requires the formulation and the solution
of an initial-boundary value problem including the balanceequations and the consti-
tutive assumptions. Equations describing the kinematics of three-dimensional solids
as well as balance equations of mechanics of media are presented in monographs
and textbooks on continuum mechanics, e.g. [29, 35, 44, 57, 108, 131, 178, 199]. In
what follows we discuss constitutive equations for the description of creep behavior
in three-dimensional solids.

The starting point of the engineering creep theory is the introduction of the in-
elastic strain, the creep potential, the flow rule, the equivalent stress and internal
state variables, Sect. 2.1. In Sect. 2.2 we discuss constitutive models of secondary
creep. We start with the von Mises-Odqvist creep potential and the flow rule widely
used in the creep mechanics. To account for stress state effects creep potentials
that include three invariants of the stress tensor are introduced. Consideration of
material symmetries provide restrictions for the creep potential. A novel direct ap-
proach to find scalar valued arguments of the creep potentialfor the given group of
material symmetries is proposed. For several cases of material symmetry appropri-
ate invariants of the stress tensor, equivalent stress and strain expressions as well
as constitutive equations for anisotropic creep are derived. In Sect. 2.3 we review
experimental foundations and models of transient creep behavior under different
multi-axial loading conditions. Section 2.4 is devoted to the description of tertiary
creep under multi-axial stress states. Various models within the framework of con-
tinuum damage mechanics are discussed.

All equations are presented in the direct tensor notation. This notation guaran-
tees the invariance with respect to the choice of the coordinate system and has the
advantage of clear and compact representation of constitutive assumptions, partic-
ularly in the case of anisotropic creep. The basic rules of the direct tensor calculus
as well as some new results for basic sets of invariants with respect to different
symmetry classes are presented in Appendix A.

2.1 General Remarks

The modeling of creep under multi-axial stress states is thekey step in the adequate
prediction of the long-term structural behavior. Such a modeling requires the in-
troduction of tensors of stress, strain, strain rate and corresponding inelastic parts.
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Usually, they are discussed within the framework of continuum mechanics start-
ing from fundamental balance equations. One of the most important and funda-
mental questions is that of the definition (or even the existence) of a measure of
the inelastic strain and the decomposition of the total strain into elastic and irre-
versible parts within the material description. From the theoretical point of view
this is still a subject of many discussions within the non-linear continuum mechan-
ics, e.g. [45, 46, 223, 246].

In engineering mechanics, these concepts are often introduced based on intu-
itive assumptions, available experimental data and applications. Therefore, a lot of
formulations of multi-axial creep equations can be found inthe literature. In what
follows some of them will be discussed. First let us recall several assumptions usu-
ally made in the creep mechanics [58, 235].

The assumption of infinitesimal strains allows to neglect the difference between
the true stresses and strains and the engineering stresses and strains. According to
the continuum mechanics there are no differences between the Eulerian and the
Lagrangian approaches within the material description. Creep equations in the geo-
metrical non-linear case (finite strains) are discussed in the monograph [67], for
example. Finite strain equations based on rheological models are presented in the
monographs [175, 246]. The linearized equations of creep continuum mechanics
can be used in the majority of engineering applications because structures are usu-
ally designed such that the displacements and strains arising as a consequence of the
applied loading do not exceed the prescribed small values. The exception is the case
of thin-walled shells, where geometrical non-linearitiesmust be considered even if
strains are infinitesimal, see Sect. 4.4.

The assumption of the classical non-polar continuum restricts the class of mate-
rials. The equations of motion within the continuum mechanics include the balance
of momentum and the balance of angular momentum, e.g. [108].These equations in-
troduce the stress and the moment stress tensors. Polar materials are those which are
characterized by constitutive equations with respect to both tensors (in general, they
are non-symmetric). In addition, the rotation degrees of freedom, i.e. the rotation
tensor and the angular velocity, are introduced as independent quantities. Models of
polar media found application to granular or porous materials [97, 104, 214], fiber
suspensions [22, 109], or other media with changing microstructure. At present, the
moment stress tensor and the anti-symmetric part of the stress tensor are not con-
sidered in the engineering creep theories. The reason for this is the higher order
complexity of the models and as a consequence increased effort for the identifica-
tion of material characteristics.

The assumption of isothermal conditions makes it possible to decouple the ther-
mal and the mechanical problem. Furthermore, heat transferproblems are not con-
sidered. The influence of the constant temperature on the creep rate is described
by an Arrhenius function, see Sect. 2.2.3. Coupled thermo-mechanical problems of
creep and damage are discussed in [291], where the influence of creep cavitation on
thermal conductivity is considered.
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In this chapter we shall use the following notation. Letσσσ be the Cauchy stress
tensor andεεε be the tensor of infinitesimal strains as they are defined in [29, 57, 199],
among others. Let the symmetric second rank tensorε̇εεcr be the tensor of the rate
of infinitesimal inelastic strains induced by the creep process. For the infinitesimal
strains one can assume the additive split of the total strainrate into elastic and creep
parts, i.e.ε̇εε = ε̇εεel + ε̇εεcr. The constitutive equation relating the stress tensor and
the elastic part of the strain tensor can be formulated according to the generalized
Hooke’s law [29, 55, 126, 199] and will be introduced later. Creep deformation is
accompanied by various microstructural changes having different influences on the
strain rate. The current state of the material microstructure is determined by the
entire previous history of the creep process. It can be characterized by a set of addi-
tional field variables termed as internal or hidden state variables. In this chapter we
shall discuss internal state variables characterizing thestates of hardening/recovery
and damage. In order to distinguish between the hardening and damage mechanisms
we shall specify the “internal hardening variables” byHi and the “internal damage
variables” byωj. The number of such variables and the corresponding evolution
equations (ordinary differential equations with respect to the time variable) is dic-
tated by the knowledge of creep-damage mechanisms for a specified metal or alloy,
the availability of experimental data on creep and long termstrength as well as the
type of the structural analysis application. In some cases the internal state variables
must be introduced as tensors of different rank in order to include effects of the
deformation or damage induced anisotropy.

Constitutive equations of multi-axial creep are usually based on the concept of
the creep potential and the flow rule. The associated flow rulehas the origin in the
engineering theory of plasticity. The basic assumptions ofthis theory are:

– The existence of a yield condition (creep condition, see [55], for example) ex-
pressed by the equationF(σσσ) = 0, whereF is a scalar valued function. In the
general case one can presume thatF depends not only on the stress tensor but
also on the internal state variables and the temperature [202, 265], i.e. the yield
condition has a form

F(σσσ, Hi, ωj, T) = 0, i = 1, . . . , n, j = 1, . . . , m (2.1.1)

– The existence of a flow potential as a function of the stress tensorΦ(σσσ).

The flow rule (sometimes called the normality rule) is the following assumption for
the inelastic strain rate tensor

ε̇εεin = η̇
∂Φ

∂σσσ
, (2.1.2)

whereη̇ is a scalar factor. In the special case that the flow potentialcoincides with
the yield function i.e.Φ = F (2.1.2) represents the associated flow rule. With respect
to the variation of the stress tensorδσσσ one distinguishes between the cases of elastic
state, unloading from an elastic-plastic state, neutral loading and loading, i.e.
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F(σσσ) < 0, elastic state

F(σσσ) = 0, and δF = δσσσ ······ ∂F

∂σσσ
< 0 unloading

F(σσσ) = 0, and δF = δσσσ ······ ∂F

∂σσσ
= 0 neutral loading

F(σσσ) = 0, and δF = δσσσ ······ ∂F

∂σσσ
> 0 loading

For work hardening materialṡη > 0 is set in the case of loading/neutral loading,
otherwiseη̇ = 0, see e.g. [201]. Further details of the flow theory as well as different
arguments leading to (2.1.2) can be found in textbooks on theory of plasticity, e.g.
[138, 151, 153, 161, 201, 206, 292].

Within the creep mechanics the flow theory is usually appliedwithout the con-
cept of the yield stress or yield condition. This is motivated by the fact that creep
is a thermally activated process and the material starts to creep even under low and
moderate stresses lying below the yield limit. Furthermore, at high temperatures
0.5Tm < T < 0.7Tm the main creep mechanism for metals and alloys is the dif-
fusion of vacancies, e.g. [117]. Under this condition the existence of a yield or a
creep limit cannot be verified experimentally. In [185], p.278 it is stated that “the
concept of a loading surface and the loading-unloading criterion which was used in
plasticity is no longer necessary”. In monographs [55, 58, 201, 202, 250] the flow
rule is applied as follows

ε̇εεcr = η̇
∂Φ

∂σσσ
, η̇ > 0 (2.1.3)

Equation (2.1.3) states the “normality” of the creep rate tensor to the surfaces
Φ(σσσ) = const. The scalar factoṙη is determined according to the hypothesis of
the equivalence of the dissipation power [2, 58]. The dissipation power is defined
by P = ε̇εεcr ······ σσσ. It is assumed thatP = ε̇cr

eqσeq, whereε̇cr
eq is an equivalent creep

rate andσeq is an equivalent stress. The equivalent measures of stress and creep rate
are convenient to compare experimental data under different stress states (see Sect.
1.1.2). From the above hypothesis follows

η̇ =
P

∂Φ

∂σσσ
······ σσσ

=
ε̇cr

eqσeq

∂Φ

∂σσσ
······ σσσ

(2.1.4)

The equivalent creep rate is defined as a function of the equivalent stress according
to the experimental data for uni-axial creep as well as creepmechanisms operating
for the given stress range. An example is the power law stressfunction

ε̇cr
eq(σeq) = aσn

eq (2.1.5)

Another form of the flow rule without the yield condition has been proposed by
Odqvist, [234, 236]. The steady state creep theory by Odqvist, see [234], p.21 is
based on the variational equationδW = δσσσ ······ ε̇εεcr leading to the flow rule
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ε̇εεcr =
∂W

∂σσσ
, (2.1.6)

where the scalar valued functionW(σσσ) plays the role of the creep potential1. In or-
der to specify the creep potential, the equivalent stressσeq(σσσ) is introduced. Taking
into account thatW(σσσ) = W(σeq(σσσ)) the flow rule (2.1.6) yields

ε̇εεcr =
∂W

∂σeq

∂σeq

∂σσσ
= ε̇cr

eq

∂σeq

∂σσσ
, ε̇cr

eq ≡
∂W

∂σeq
(2.1.7)

The creep potentialW(σeq) is defined according to experimental data of creep under
uni-axial stress state for the given stress range. An example is the Norton-Bailey-
Odqvist creep potential

W =
σ0

n + 1

(

σvM

σ0

)n+1

, (2.1.8)

widely used for the description of steady state creep of metals and alloys. In (2.1.8)
σ0 andn are material constants andσvM is the von Mises equivalent stress. Below
we discuss various restrictions on the potentials, e.g. thesymmetries of the creep
behavior and the inelastic incompressibility.

In order to compare the flow rules (2.1.3) and (2.1.6) let us compute the dissipa-
tion power. From (2.1.7) it follows

P = ε̇εεcr ······ σσσ =
∂W

∂σeq

∂σeq

∂σσσ
······ σσσ = ε̇cr

eq

∂σeq

∂σσσ
······ σσσ,

We observe that the equivalence of the dissipation power follows from (2.1.7) if the
equivalent stress satisfies the following partial differential equation

∂σeq

∂σσσ
······ σσσ = σeq (2.1.9)

Furthermore, in this case the flow rules (2.1.3) and (2.1.6) lead to the same creep
constitutive equation. Many proposed equivalent stress expressions satisfy (2.1.9).

The above potential formulations originate from the works of Richard von
Mises, where the existence of variational principles is assumed in analogy to those
known from the theory of elasticity (the principle of the minimum of the com-
plementary elastic energy, for example). Richard von Miseswrote [320]: “Die
Formänderung regelt sich derart, daß die pro Zeiteinheit von ihr verzehrte Arbeit
unverändert bleibt gegenüber kleinen Variationen der Spannungen innerhalb der
Fließgrenze. Da die Elastizitätstheorie einen ähnlichen Zusammenhang zwischen
den Deformationsgrößen und dem elastischen Potential lehrt, so nenne ich die Span-
nungsfunktionF auch das “plastische Potential” oder “Fließpotential”.” It can be
shown that the variational principles of linear elasticityare special cases of the en-
ergy balance equation (for isothermal or adiabatic processes), see e.g. [198], p. 148,

1 The dependence on the temperature is dropped for the sake of brevity.
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for example. Many attempts have been made to prove or to motivate the potential
formulations within the framework of irreversible thermodynamics. For quasi-static
irreversible processes various extremum principles (e.g.the principle of least irre-
versible force) are stipulated in [337]. Based on these principles and additional ar-
guments like material stability, the potential formulations and the flow rules (2.1.1)
and (2.1.6) can be verified. In [185], p. 63 a complementary dissipation potential
as a function of the stress tensor as well as the number of additional forces conju-
gate to internal state variables is postulated, whose properties, e.g. the convexity, are
sufficient conditions to satisfy the dissipation inequality. In [206] theories of plastic-
ity and visco-plasticity are based on the notion of the dissipation pseudo-potentials.
However, as far as we know, the flow rules (2.1.1) and (2.1.6) still represent the as-
sumptions confirmed by various experimental observations of steady state creep in
metals rather than consequences of the fundamental laws. The advantage of varia-
tional statements is that they are convenient for the formulation of initial-boundary
value problems and for the numerical analysis of creep in engineering structures.
The direct variational methods (for example, the Ritz method, the Galerkin method,
the finite element method) can be applied for the numerical solution.

Finally, several creep theories without creep potentials may be found in the lit-
erature. In the monograph [246] various constitutive equations of elastic-plastic and
elastic-visco-plastic behavior in the sense of rheological models are discussed with-
out introducing the plasticity, creep or dissipation potentials. For example, the mod-
els of viscous flow of isotropic media known from rheology, e.g. [123, 269], can be
formulated as the relations between two coaxial tensors

σσσ = G0III + G1ε̇εε + G2ε̇εε · ε̇εε (2.1.10)

or
ε̇εε = H0III + H1σσσ + H2σσσ ··· σσσ, (2.1.11)

whereGi is a function of invariants oḟεεε while Hi depend on invariants ofσσσ. The
application of the dissipative inequality provides restrictions imposed onGi or Hi.
The existence of the potential requires thatGi or Hi must satisfy certain integrability
conditions [58, 199].
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2.2 Secondary Creep

Secondary or stationary creep is for many applications the most important creep
model. After a relatively short transient period the material creeps in such a manner
that an approximate equilibrium between hardening and softening processes can be
assumed. This equilibrium exists for a long time and the long-term behavior of a
structure can be analyzed assuming stationary creep processes. In this section sev-
eral models of secondary creep are introduced. The secondary or stationary creep
assumes constant or slowly varying loading and temperatureconditions. Further-
more, the stress tensor is assumed to satisfy the condition of proportional loading,
i.e. σσσ(t) = ϕ(t)σσσ0, whereϕ(t) is a slowly varying function of time andσσσ0 is a
constant tensor.

2.2.1 Isotropic Creep

In many cases creep behavior can be assumed to be isotropic. In what follows the
classical potential and the potential formulated in terms of three invariants of the
stress tensor are introduced.

2.2.1.1 Classical Creep Equations. The starting point is the Odqvist flow rule
(2.1.6). Under the assumption of the isotropic creep, the potential must satisfy the
following restriction

W(QQQ ··· σσσ ··· QQQT) = W(σσσ) (2.2.1)

for any symmetry transformationQQQ, QQQ ··· QQQT = III, det QQQ = ±1. From (2.2.1) it
follows that the potential depends only on the three invariants of the stress tensor
(see Sect. A.3.1). Applying the principal invariants

J1(σσσ) = tr σσσ, J2(σσσ) =
1

2
[(tr σσσ)2 − tr σσσ2],

J3(σσσ) = detσσσ =
1

6
(tr σσσ)3 − 1

2
tr σσσtr σσσ2 +

1

3
tr σσσ3

(2.2.2)

one can write
W(σσσ) = W(J1, J2, J3)

Any symmetric second rank tensor can be uniquely decomposedinto the spherical
part and the deviatoric part. For the stress tensor this decomposition can be written
down as follows

σσσ = σmIII + sss, tr sss = 0 ⇒ σm =
1

3
tr σσσ,

wheresss is the stress deviator andσm is the mean stress. With the principal invariants
of the stress deviator

J2D = −1

2
tr sss2 = −1

2
sss ······ sss, J3D =

1

3
tr sss3 =

1

3
(sss ··· sss) ······ sss
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the potential takes the form

W = W(J1, J2D, J3D),

Applying the rule for the derivative of a scalar valued function with respect to a
second rank tensor (see Sect. A.2.4) and (2.1.6) one can obtain

ε̇εεcr =
∂W

∂J1
III − ∂W

∂J2D
sss +

∂W

∂J3D

(

sss2 − 1

3
tr sss2III

)

(2.2.3)

In the classical creep theory it is assumed that the inelastic deformation does not
produce a significant change in volume. The spherical part ofthe creep rate tensor
is neglected, i.etr ε̇εεcr = 0. Setting the trace of (2.2.3) to zero results in

tr ε̇εεcr = 3
∂W

∂J1
= 0 ⇒ W = W(J2D , J3D)

From this follows that the creep behavior is not sensitive tothe hydrostatic stress
stateσσσ = −pIII, wherep > 0 is the hydrostatic pressure. The creep equation (2.2.3)
can be formulated as

ε̇εεcr = − ∂W

∂J2D
sss +

∂W

∂J3D

(

sss2 − 1

3
tr sss2III

)

(2.2.4)

The last term in the right-hand side of (2.2.4) is non-linearwith respect to the stress
deviatorsss. Equations of this type are called tensorial non-linear equations, e.g. [35,
58, 202, 265]. They allow to consider some non-classical or second order effects of
the material behavior [35, 66]. As an example let us considerthe pure shear stress
statesss = τ(mmm ⊗ nnn + nnn ⊗mmm), whereτ is the magnitude of the shear stress andmmm
andnnn are orthogonal unit vectors. From (2.2.4) follows

ε̇εεcr = − ∂W

∂J2D
τ(mmm ⊗ nnn + nnn ⊗mmm) +

∂W

∂J3D
τ2

(

1

3
III − ppp ⊗ ppp

)

,

where the unit vectorppp is orthogonal to the plane spanned onmmm andnnn. We observe
that the pure shear load leads to shear creep rate, and additionally to the axial creep
rates (Poynting-Swift effect). Within the engineering creep mechanics such effects
are usually neglected.

The assumption that the potential is a function of the secondinvariant of the
stress deviator only, i.e.

W = W(JD
2 )

leads to the classical von Mises type potential [320]. In applications it is convenient
to introduce the equivalent stress which allows to compare the creep behavior un-
der different stress states including the uni-axial tension. The von Mises equivalent
stress is defined as follows

σvM =

√

3

2
sss ······ sss =

√

−3J2D , (2.2.5)
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where the factor3/2 is used for convenience (in the case of the uni-axial tension
with the stressσ the above expression providesσvM = σ). With W = W(σvM(σσσ))
the flow rule (2.1.6) results in

ε̇εεcr =
∂W(σvM)

∂σvM

∂σvM

∂σσσ
=

∂W(σvM)

∂σvM

3

2

sss

σvM
(2.2.6)

The second invariant ofε̇εεcr can be calculated as follows

ε̇εεcr ······ ε̇εεcr =
3

2

[

∂W(σvM)

∂σvM

]2

Introducing the notatioṅε2
vM = 2

3 ε̇εεcr ······ ε̇εεcr and taking into account that

P =
∂W(σvM)

∂σvM
σvM ≥ 0

one can write

ε̇εεcr =
3

2
ε̇vM

sss

σvM
, ε̇vM =

∂W(σvM)

∂σvM
(2.2.7)

The constitutive equation of steady state creep (2.2.7) wasproposed by Odqvist
[236]. Experimental verifications of this equation can be found, for example, in
[295] for steel 45, in [228] for titanium alloy Ti-6Al-4V andin [245] for alloys Al-
Si, Fe-Co-V and XC 48. In these works tubular specimens were loaded by tension
force and torque leading to the plane stress stateσσσ = σnnn ⊗nnn + τ(nnn⊗mmm +mmm ⊗nnn),
whereσ andτ are the magnitudes of the normal and shear stresses (see Sect. 1.1.2).
Surfacesσ2

vM = σ2 + 3τ2 = const corresponding to the same steady state values of
ε̇vM were recorded. Assuming the Norton-Bailey type potential (2.1.8), from (2.2.7)
it follows

ε̇εεcr =
3

2
aσn−1

vM sss (2.2.8)

This model is widely used in estimations of steady-state creep in structures, e.g.
[77, 80, 236, 250, 265].

2.2.1.2 Creep Potentials with Three Invariants of the Stres s Tensor. In
some cases, deviations from the von Mises type equivalent stress were found in ex-
periments. For example, different secondary creep rates under tensile and compres-
sive loading were observed in [195] for Zircaloy-2, in [106]for aluminium alloy
ALC101 and in [301], p. 118 for the nickel-based alloy René 95. One way to con-
sider such effects is to construct the creep potential as a function of three invariants
of the stress tensor. Below we discuss a generalized creep potential, proposed in
[9]. This potential leads to tensorial non-linear constitutive equations and allows to
predict the stress state dependent creep behavior and second order effects. The 6 un-
known parameters in this law can be identified by some basic tests. Creep potentials
formulated in terms of three invariants of the stress tensorare termed non-classical
[9].
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By analogy to the classical creep equations, the dependenceon the stress tensor
is defined by means of the equivalent stressσeq. Various equivalent stress expres-
sions have been proposed in the literature for the formulation of yield or failure
criteria, e.g. [27]. In the case of creep, different equivalent stress expressions are
summarized in [160]. In [9] the following equivalent stressis proposed

σeq = ασ1 + βσ2 + γσ3 (2.2.9)

with the linear, the quadratic and the cubic invariants

σ1 = µ1 I1, σ2
2 = µ2 I2

1 + µ3 I2, σ3
3 = µ4 I3

1 + µ5 I1 I2 + µ6 I3, (2.2.10)

where Ii = tr σσσi (i = 1, 2, 3) are basic invariants of the stress tensor (see Sect.
A.3.1), µj (j = 1, . . . , 6) are parameters, which depend on the material properties.
α, β, γ are numerical coefficients for weighting the influence of thedifferent parts
in the equivalent stress expression (2.2.9). Such a weighting is usual in phenomeno-
logical modelling of material behavior. For example, in [132] similar coefficients
are introduced for characterizing different failure modes.

The von Mises equivalent stress (2.2.5) can be obtained from(2.2.9) by setting
α = γ = 0, β = 1 andµ3 = 1.5, µ2 = −0.5. In what follows we setβ = 1 and
the equivalent stress takes the form

σeq = ασ1 + σ2 + γσ3 (2.2.11)

It can be verified that the equivalent stress (2.2.11) satisfies (2.1.9).
The flow rule (2.1.6) allows to formulate the constitutive equation for the creep

rate tensor

ε̇εεcr =
∂W(σeq)

∂σeq

∂σeq

∂σσσ
=

∂W(σeq)

∂σeq

(

α
∂σ1

∂σσσ
+

∂σ2

∂σσσ
+ γ

∂σ3

∂σσσ

)

(2.2.12)

Taking into account the relations between the invariantsσi and the basic invariants
Ii and using the rules for the derivatives of the invariants (see Sect. A.2.4), we obtain

∂σ1

∂σσσ
= µ1III,

∂σ2

∂σσσ
=

µ2 I1III + µ3σσσ

σ2
,

∂σ3

∂σσσ
=

µ4 I2
1 III +

µ5

3
I2III +

2

3
µ5 I1σσσ + µ6σσσ ··· σσσ

σ2
3

(2.2.13)

As a result, the creep constitutive equation can be formulated as follows

ε̇εεcr =
∂W(σeq)

∂σeq






αµ1III+

µ2 I1III + µ3σσσ

σ2
+γ

(

µ4 I2
1 +

µ5

3
I2

)

III +
2

3
µ5 I1σσσ + µ6σσσ ··· σσσ

σ2
3







(2.2.14)
Introducing the notation
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ε̇cr
eq ≡

∂W(σeq)

∂σeq

the constitutive equation takes the form

ε̇εεcr = ε̇cr
eq






αµ1III +

µ2 I1III + µ3σσσ

σ2
+ γ

(

µ4 I2
1 +

µ5

3
I2

)

III +
2

3
µ5 I1σσσ + µ6σσσ ··· σσσ

σ2
3







(2.2.15)
Equation (2.2.15) is non-linear with respect to the stress tensor. Therefore, second
order effects, e.g. [35, 56, 312] are included in the material behavior description. In
addition, the volumetric creep rate can be calculated from (2.2.15) as follows

ε̇cr
V = ε̇cr

eq

[

3αµ1 +
(3µ2 + µ3)I1

σ2
+ γ

(9µ4 + 2µ5)I2
1 + 3(µ5 + µ6)I2

3σ2
3

]

(2.2.16)
The volumetric creep rate is different from 0, i.e. the compressibility or dilatation
can be considered.

The derived creep equation has the form (2.1.11) of the general relation between
two coaxial tensors. The comparison of (2.1.11) and (2.2.15) provides

H0 = ε̇cr
eq

(

αµ1 +
µ2 I1

σ2
+ γ

3µ4 I2
1 + µ5 I2

3σ2
3

)

,

H1 = ε̇cr
eq

(

µ3

σ2
+ γ

2µ5 I1

3σ2
3

)

,

H2 = ε̇cr
eqγ

µ6

σ2
3

(2.2.17)

In [9] the power law function of the equivalent stress (2.1.5) is applied to model
creep behavior of several materials. Four independent creep tests are required to
identify the material constants. The stress states realized in tests should include uni-
axial tension, uni-axial compression, torsion and hydrostatic pressure. Let us note,
that experimental data which allows to identify the full setof material constants in
(2.2.15) are usually not available. In applications one mayconsider the following
special cases of (2.2.15) with reduced number of material constants.

The classical creep equation based on the von Mises equivalent stress can be
derived assuming the following values of material constants

α = γ = 0, µ2 = −1/2, µ3 = 3/2, (2.2.18)

σeq = σ2 =

√

−1

2
I2
1 +

3

2
I2 =

√

3

2
sss ······ sss = σvM (2.2.19)

The creep rate tensor takes the form
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ε̇εεcr = ε̇cr
eq

(
√

3

2
sss ······ sss

)

3σσσ − I1III

2

√

3

2
sss ······ sss

=
3

2

ε̇cr
eq(σvM)

σvM
sss (2.2.20)

Assuming identical behavior in tension and compression andneglecting second
order effects fromα = γ = 0, the following equivalent stress can be obtained

σeq = σ2 =
√

µ2 I2
1 + µ3 I2 (2.2.21)

The corresponding creep constitutive equation takes the form

ε̇εεcr = ε̇cr
eq(σ2)

µ2 I1III + µ3σσσ

σ2
(2.2.22)

The parametersµ2 and µ3 can be determined from uni-axial tension and torsion
tests. Based on the experimental data presented in [165, 166] for technical pure
copper M1E (Cu 99,9%) atT = 573 K the parametersµ2 andµ3 are identified in
[24].

Neglecting the influence of the third invariant(γ = 0), the creep rate tensor can
be expressed as follows

ε̇εεcr = ε̇cr
eq(σeq)

(

αµ1III +
µ2 I1III + µ3σσσ

σ2

)

(2.2.23)

The above equation describes different behavior in tensionand compression, and in-
cludes the volumetric creep rate. Three independent tests,e.g. tension, compression
and torsion are required to identify the material constantsµ1, µ2 andµ3.

With the quadratic invariant and the reduced cubic invariant several special cases
with three material constants can be considered. Setting (αµ1 = µ4 = µ5 = 0) the
tensorial non-linear equation can be obtained

ε̇εεcr = ε̇cr
eq(σeq)

(

µ2 I1III + µ3σσσ

σ2
+ γ

µ6σσσ ··· σσσ

σ2
3

)

(2.2.24)

With αµ1 = µ4 = µ6 = 0 the creep rate tensor takes the form

ε̇εεcr = ε̇cr
eq(σeq)

(

µ2 I1III + µ3σσσ

σ2
+ γ

µ5(I2III + 2I1σσσ)

σ2
3

)

(2.2.25)

The material constants in (2.2.23), (2.2.24) and (2.2.25) were identified in [2, 28]
according to data from multi-axial creep tests for plastics(PVC) at room temper-
ature [187] and aluminium alloy AK4-1T at 473 K [94, 125, 294]. Furthermore,
simulations have been performed in [2, 28] to compare Eqs (2.2.23), (2.2.24) and
(2.2.25) as they characterize creep behavior under different loading conditions. The
conclusion was made that cubic invariants applied in (2.2.24) and (2.2.25) do not
deliver any significant improvement in the material behavior description.
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2.2.2 Creep of Initially Anisotropic Materials

Anisotropic creep behavior and anisotropic creep modelingare subjects which are
rarely discussed in the classical monographs and textbookson creep mechanics
(only in some books one may found the flow potentials introduced by von Mises
[320] and Hill [138]). The reason for this is that the experimental data from creep
tests usually show large scatter within the range of 20% or even more. Therefore,
it was often difficult to recognize whether the difference increep curves mea-
sured for different specimens (cut from the same material indifferent directions)
is the result of the anisotropy. Therefore, it was no use for anisotropic models with
higher order complexity, since the identification of material constants was difficult
or even impossible. In the last two decades the importance inmodeling anisotropic
creep behavior of materials and structures is discussed in many publications. In
[47, 200, 259, 260, 261, 262] experimental results of creep of superalloys SRR99
and CMSX-4 are reported, which demonstrate significant anisotropy of creep be-
havior for different orientations of specimens with respect to the crystallographic
axes. In [141] experimental creep curves of a 9CrMoNbV weld metal are presented.
They show significant difference for specimens cut in longitudinal (welding) direc-
tion and transverse directions. Another example is a material reinforced by fibers,
showing quite different creep behavior in direction of fibers and in the transverse
direction, e.g. [273, 274].

Within the creep mechanics one usually distinguishes between two kinds of
anisotropy: the initial anisotropy and the deformation or damage induced anisotropy.
In what follows the first case will be introduced. The second case will be discussed
in Sects 2.3.2 and 2.4.2.

The modeling of anisotropic behavior starts with the concepts of material sym-
metry, physical symmetry, symmetry transformation and symmetry group, e.g.
[331]. The material symmetry group is related to the symmetries of the materials
microstructure, e.g. the crystal symmetries, the symmetries due to the arrangement
of fibers in a fiber-reinforced materials, etc. The symmetry transformations are de-
scribed by means of orthogonal tensors. Two important of them are

– the reflection
QQQ(nnn) = III − 2nnn ⊗ nnn, (2.2.26)

wherennn is the unit normal to the mirror plane,
– the rotation about a fixed axis

QQQ(ϕmmm) = mmm ⊗mmm + cos ϕ(III −mmm ⊗mmm) + sin ϕmmm × III, (2.2.27)

wheremmm is the axis of rotation andϕ (−π < ϕ < π) is the angle of rotation.

Any arbitrary rotation of a rigid body can be described as a composition of three ro-
tations (2.2.27) about three fixed axes [333]. Any symmetry transformation can be
represented by means of rotations and reflections, i.e. the tensors of the type (2.2.26)
and (2.2.27). The notion of the symmetry group as a set of symmetry transforma-
tions was introduced in [230]. The symmetry groups of polar and axial tensors are
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discussed in [332]. According to [313], p. 82 a “simple solid” is called aelotropic or
anisotropic, if its symmetry group is a proper subgroup of the orthogonal group.

The concept of the “physical symmetry group” is related to the symmetries of
the material behavior, e.g. linear elasticity, thermal expansion, plasticity, creep, etc.
It can only be established based on experimental observations. Physical symmetries
must be considered in the formulation of constitutive equations and constitutive
functions. As an example let us consider the symmetry group of the fourth rank
elasticity tensor(4)CCC = Cijkleeei ⊗ eeej ⊗ eeek ⊗ eeel as the set of orthogonal tensorsQQQ
satisfying the equation, e.g. [25, 332],

(4)CCC′ = CijklQQQ ··· eeei ⊗QQQ ··· eeej ⊗QQQ ··· eeek ⊗QQQ ··· eeel =(4) CCC (2.2.28)

The physical symmetries or the set of orthogonal solutions of (2.2.28) can be found
only if all the 21 coordinates of the elasticity tensor(4)CCC for a selected basis are
identified from tests. Vice versa, if the physical symmetry group is known then one
can find the general structure of the elasticity tensor basedon (2.2.28). Clearly,
neither the elasticity tensor nor the physical symmetry group of the linear elastic
behavior can be exactly found from tests. Establishment of physical symmetries of
creep behavior is rather complicated due to relatively large scatter of experimental
data. However, one can relate physical symmetries to the known symmetries of ma-
terials microstructure. According to the Neumann principle widely used in different
branches of physics and continuum mechanics, e.g. [25, 232,332]

The symmetry group of the reason belongs to the symmetry group of the
consequence.

Considering the material symmetries as one of the “reasons”and the physical sym-
metries as a “consequence” one can apply the following statement [331]

For a material element and for any of its physical properties every material
symmetry transformation of the material element is a physical symmetry
transformation of the physical property.

In many cases the material symmetry elements are evident from the arrangement
of the materials microstructure as a consequence of manufacturing conditions, for
example. The above principle states that the physical behavior, e.g. the steady state
creep, contains all elements of the material symmetry. The physical symmetry group
usually possesses more elements than the material symmetrygroup, e.g. [232].

2.2.2.1 Classical Creep Equations. Here we discuss steady state creep equa-
tions based on the flow rule (2.1.6) and assumption that the creep potential has a
quadratic form with respect to the invariants of the stress tensor. These invariants
must be established according to the assumed symmetry elements of the creep be-
havior. The assumption of the quadratic form of the flow potential originates from
the von Mises work on plasticity of crystals [320]. Therefore, the equations pre-
sented below may be termed as von Mises type equations.
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Transverse Isotropy. In this case the potentialW(σσσ) must satisfy the following
restriction

W(QQQ ··· σσσ ···QQQT) = W(σσσ), QQQ(ϕmmm) = mmm ⊗mmm + cos ϕ(III −mmm ⊗mmm) + sin ϕmmm × III
(2.2.29)

In (2.2.29)QQQ(ϕmmm) is the assumed element of the symmetry group, wherebymmm is
a constant unit vector andϕ is the arbitrary angle of rotation aboutmmm. From the
restriction (2.2.29) follows that the potentialW must satisfy the following partial
differential equation (see Sect. A.3.2)

(mmm × σσσ − σσσ ×mmm) ······
(

∂W

∂σσσ

)T

= 0 (2.2.30)

The set of integrals of this equation represent the set of functionally independent
scalar valued arguments of the potentialW with respect to the symmetry trans-
formation (2.2.29). The characteristic system of (2.2.30)is the system of ordinary
differential equations

dσσσ

ds
= (mmm × σσσ − σσσ ×mmm) (2.2.31)

Any system ofn linear ordinary differential equations has not more thann− 1 func-
tionally independent integrals [92]. Sinceσσσ is symmetric, (2.2.31) is a system of six
ordinary differential equations and has not more than five functionally independent
integrals. The lists of these integrals are presented by (A.3.15) and (A.3.26). Within
the classical von Mises type theory second order effects areneglected. Therefore,
we have to neglect the arguments which are cubic with respectto the stress tensor.
In this case the difference between various kinds of transverse isotropy considered
in Sect. A.3.2 vanishes. It is possible to use different lists of of scalar arguments.
The linear and quadratic arguments from (A.3.15) are

tr σσσ, tr σσσ2, mmm ··· σσσ ···mmm, mmm ··· σσσ2 ···mmm (2.2.32)

Instead of (2.2.32) one can use other arguments, for example[273],

tr σσσ, tr sss2 = tr σσσ2 − 1

3
(tr σσσ)2,

mmm ··· sss ···mmm = mmm ··· σσσ ···mmm − 1

3
tr σσσ,

mmm ··· sss2 ···mmm = mmm ··· σσσ2 ···mmm − 2

3
mmm ··· sss ···mmmtr σσσ − 1

9
(tr σσσ)2

(2.2.33)

In what follows we prefer another set of invariants which canbe related to (2.2.32)
but has a more clear mechanical interpretation. Let us decompose the stress tensor
as follows

σσσ = σmmmmm ⊗mmm + σσσp + τττm ⊗mmm + mmm ⊗ τττm (2.2.34)

with the projections
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Figure 2.1 Stress state in a transversely isotropic medium and corresponding projections
σmm, σσσp andτττm

σmm = mmm ··· σσσ ···mmm,

σσσp = (III −mmm ⊗mmm) ··· σσσ ··· (III −mmm ⊗mmm),

τττm = mmm ··· σσσ ··· (III −mmm ⊗mmm)

(2.2.35)

The meaning of the decomposition (2.2.34) is obvious.σmm is the normal stress
acting in the plane with the unit normalmmm, σσσp stands for the “plane” part of the
stress tensor representing the stress state in the isotropyplane.τττm is the shear stress
vector in the plane with the unit normalmmm. For the orthonormal basiskkk, lll andmmm the
projections are (see Fig. 2.1)

τττm = τmkkkk + τmllll,

σσσp = σkkkkk ⊗ kkk + σlllll ⊗ lll + τkl(kkk ⊗ lll + lll ⊗ kkk)

The plane part of the stress tensor can be further decomposedas follows

σσσp = sssp +
1

2
tr σσσp(III −mmm ⊗mmm), tr sssp = 0 (2.2.36)

Now we can introduce the following set of transversely isotropic invariants
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I1m = σmm = mmm ··· σσσ ···mmm,

I2m = tr σσσp = tr σσσ −mmm ··· σσσ ···mmm,

I3m =
1

2
tr sss2

p =
1

2
tr σσσ2

p −
1

4
(tr σσσp)

2

=
1

2

(

tr σσσ2 + (mmm ··· σσσ ···mmm)2
)

−mmm ··· σσσ2 ···mmm − 1

4
(tr σσσ −mmm ··· σσσ ···mmm)2,

I4m = τττm ··· τττm = mmm ··· σσσ2 ···mmm − (mmm ··· σσσ ···mmm)2 = (mmm × σσσ ···mmm) ··· (mmm × σσσ ···mmm)
(2.2.37)

In the above listI2m and I3m are two invariants ofσσσp and I4m = τττ2
m = τττm ··· τττm

is the square of the length of the shear stress vector acting in the plane with the
unit normalmmm. It is shown in Sect. A.3.2 that the above invariants are integrals of
(2.2.31).

Taking into account the relations

∂I1m

∂σσσ
= mmm ⊗mmm,

∂I2m

∂σσσ
= III −mmm ⊗mmm,

∂I3m

∂σσσ
= sssp,

∂I4m

∂σσσ
= τττmmm ⊗mmm + mmm ⊗ τττmmm

and the flow rule (2.1.6) we obtain the following creep equation

ε̇εεcr =
∂W

∂I1m
mmm ⊗mmm +

∂W

∂I2m
(III −mmm ⊗mmm) +

∂W

∂I3m
sssp

+
∂W

∂I4m
(τττmmm ⊗mmm + mmm ⊗ τττmmm)

(2.2.38)

The next assumption of the classical theory is the zero volumetric creep rate. Taking
the trace of (2.2.38) we obtain

tr ε̇εεcr =
∂W

∂I1m
+ 2

∂W

∂I2m
= 0 ⇒ W = W(I1m − 1

2
I2m, I3m, I4m) (2.2.39)

Introducing the notation

Jm ≡ I1m − 1

2
I2m = mmm ··· σσσ ···mmm − 1

2
tr σσσp

the creep equation (2.2.38) takes the form

ε̇εεcr =
1

2

∂W

∂Jm
(3mmm ⊗mmm − III) +

∂W

∂I3m
sssp +

∂W

∂I4m
(τττmmm ⊗mmm + mmm ⊗ τττmmm) (2.2.40)

By analogy to the isotropic case we formulate the equivalentstress as follows

σ2
eq = α1 J2

m + 3α2 I3m + 3α3 I4m

= α1

(

mmm ··· σσσ ···mmm − 1

2
tr σσσp

)2

+
3

2
α2tr sss2

p + 3α3τ2
mmm

(2.2.41)
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The positive definiteness of the quadratic form (2.2.41) is provided by the conditions
αi > 0, i = 1, 2, 3. The deviatoric partsss of the stress tensor and its second invariant
can be computed by

sss = Jm

(

mmm ⊗mmm − 1

3
III

)

+ sssp + τττm ⊗mmm + mmm ⊗ τττm,

tr sss2 =
2

3
J2
m + tr sss2

p + 2τ2
mmm

Consequently, the von Mises equivalent stress (2.2.5) follows from (2.2.41) by set-
ting α1 = α2 = α3 = 1.

The advantage of the introduced invariants over (2.2.32) or(2.2.33) is that they
can be specified independently from each other. For example,set the second invari-
ant in (2.2.32) to zero, i.e.tr σσσ2 = σσσ ······ σσσ = 0. From this follows thatσσσ = 000 and
consequently all other invariants listed in (2.2.32) are simultaneously equal to zero.
In addition, the introduced invariants can be related to typical stress states which
should be realized in creep tests for the identification of constitutive functions and
material constants. With the equivalent stress (2.2.41) the creep equation (2.2.40)
can be rewritten as follows

ε̇εεcr =
3

2σeq

∂W

∂σeq

[

α1 Jm

(

mmm ⊗mmm − 1

3
III

)

+ α2sssp + α3(τττm ⊗mmm + mmm ⊗ τττm)

]

(2.2.42)

With the notationε̇cr
eq ≡ ∂W

∂σeq
(2.2.42) takes the form

ε̇εεcr =
3

2

ε̇cr
eq

σeq

[

α1 Jm

(

mmm ⊗mmm − 1

3
III

)

+ α2sssp + α3(τττm ⊗mmm + mmm ⊗ τττm)

]

(2.2.43)

Let us introduce the following parts of the creep rate tensor

ε̇cr
mm ≡ mmm ··· ε̇εεcr ···mmm,

ε̇εεcr
p ≡ (III −mmm ⊗mmm) ··· ε̇εεcr ··· (III −mmm ⊗mmm),

ǫ̇ǫǫcr
p ≡ ε̇εεcr

p − 1

2
ε̇cr

mm(III −mmm ⊗mmm),

γ̇γγcr
m ≡ mmm ··· ε̇εεcr ··· (III −mmm ⊗mmm)

(2.2.44)

From (2.2.42) we obtain

ε̇cr
mm = α1

ε̇cr
eq

σeq
Jm, ǫ̇ǫǫcr

p =
3

2
α2

ε̇cr
eq

σeq
sssp, γ̇γγcr

m =
3

2
α3

ε̇cr
eq

σeq
τττm (2.2.45)

Similarly to the isotropic case the equivalent creep rate can be calculated as follows

ε̇cr
eq =

√

1

α1
(ε̇cr

mm)2 +
2

3

1

α2
ǫ̇ǫǫcr

p ······ ǫ̇ǫǫcr
p +

4

3

1

α3
γ̇γγcr

m ··· γ̇γγcr
m (2.2.46)
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Figure 2.2 Stress state in an orthotropic medium and corresponding projectionsσnnninnni
, τnnninnnj

The equivalent creep rate (2.2.46) is useful for the verification of the creep potential
hypothesis and the assumed quadratic form of the equivalentstress with respect
to the transversely isotropic invariants of the stress tensor. The introduced creep
equation contains three material constantsαi and the equivalent creep rateε̇cr

eq.
The assumptions of transverse isotropy and the quadratic form of the equivalent

stress are widely used in models of elasticity, plasticity,creep and failure of fiber
reinforced composites, e.g. [7, 74, 273, 274, 279, 298], anddirectionally solidified
superalloys [42, 213]. The proposed equations will be applied in Sect. 3.2 to the
description of anisotropic creep in a multi-pass weld metal.

Orthotropic Symmetry. In this case the potentialW(σσσ) must satisfy the follow-
ing restriction

W(QQQi ··· σσσ ··· QQQT
i ) = W(σσσ), QQQi = III − nnni ⊗ nnni, i = 1, 2, 3 (2.2.47)

In (2.2.47)QQQi denote the assumed symmetry elements - three reflections with re-
spect to the planes with unit normals±nnni, Fig. 2.2. The unit vectors±nnn1,±nnn2,±nnn3

are assumed to be orthogonal, i.e.nnni ··· nnnj = 0, i 6= j . In Sect. A.3.3 a set of scalar
arguments which satisfy the above restrictions is presented by (A.3.32). As in the
previous paragraph we assume the quadratic form of the potential with respect to
the stress tensor. One can use different sets of scalar arguments of the stress tensor
satisfying (2.2.47), see for example [73],

nnn1 ··· σσσ ··· nnn1, nnn2 ··· σσσ ··· nnn2, nnn3 ··· σσσ ··· nnn3,

nnn1 ··· σσσ2 ··· nnn1, nnn2 ··· σσσ2 ··· nnn2, nnn3 ··· σσσ2 ··· nnn3

Figure 2.2 shows the components of the stress tensor in a Cartesian frameeeei, three
planes of symmetry characterized by the unit vectors±nnni and components of the
stress tensor with respect to the planes of symmetry. The stress tensor can be repre-
sented as follows
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σσσ = σnnn1nnn1
nnn1 ⊗ nnn1 + σnnn2nnn2nnn2 ⊗ nnn2 + σnnn3nnn3nnn3 ⊗ nnn3

+ τnnn1nnn2
(nnn1 ⊗ nnn2 + nnn2 ⊗ nnn1) + τnnn1nnn3

(nnn1 ⊗ nnn3 + nnn3 ⊗ nnn1)

+ τnnn2nnn3(nnn2 ⊗ nnn3 + nnn3 ⊗ nnn2)

with

σnnn1nnn1
= nnn1 ··· σσσ ··· nnn1, σnnn2nnn2 = nnn2 ··· σσσ ··· nnn2, σnnn3nnn3 = nnn3 ··· σσσ ··· nnn3,

τnnn1nnn2 = nnn1 ··· σσσ ··· nnn2, τnnn1nnn3 = nnn1 ··· σσσ ··· nnn3, τnnn2nnn3 = nnn2 ··· σσσ ··· nnn3

According to Sect. A.3.3 we use the following orthotropic invariants of the stress
tensor

Innn1nnn1
= σnnn1nnn1

, Innn2nnn2 = σnnn2nnn2 , Innn3nnn3 = σnnn3nnn3 ,

Innn1nnn2 = τ2
nnn1nnn2

, Innn1nnn3 = τ2
nnn1nnn3

, Innn2nnn3 = τ2
nnn2nnn3

(2.2.48)

Assuming that the creep potential is a function of six arguments introduced, the flow
rule (2.1.6) leads to the following creep equation

ε̇εεcr =
∂W

∂Innn1nnn1

nnn1 ⊗ nnn1 +
∂W

∂Innn2nnn2

nnn2 ⊗ nnn2 +
∂W

∂Innn3nnn3

nnn3 ⊗ nnn3

+
∂W

∂Innn1nnn2

nnn1 ··· σσσ ··· nnn2(nnn1 ⊗ nnn2 + nnn2 ⊗ nnn1)

+
∂W

∂Innn1nnn3

nnn1 ··· σσσ ··· nnn3(nnn1 ⊗ nnn3 + nnn3 ⊗ nnn1)

+
∂W

∂Innn2nnn3

nnn2 ··· σσσ ··· nnn3(nnn2 ⊗ nnn3 + nnn3 ⊗ nnn2)

(2.2.49)

The assumption of zero volumetric creep rate leads to

tr ε̇εεcr =
∂W

∂Innn1nnn1

+
∂W

∂Innn2nnn2

+
∂W

∂Innn3nnn3

= 0 (2.2.50)

From the partial differential equation (2.2.50) follows that the potentialW is a
function of five scalar arguments of the stress tensor. The characteristic system of
(2.2.50) is

dInnn1nnn1

ds
= 1,

dInnn2nnn2

ds
= 1,

dInnn3nnn3

ds
= 1 (2.2.51)

The above system of three ordinary differential equations has two independent inte-
grals. One can verify that the following invariants

J1 =
1

2
(Innn2nnn2 − Innn3nnn3), J2 =

1

2
(Innn3nnn3 − Innn1nnn1

), J3 =
1

2
(Innn1nnn1

− Innn2nnn2)

(2.2.52)
are integrals of (2.2.51). Only two of them are independent due to the relation
J1 + J2 + J3 = 0. If the principal directions of the stress tensor coincide with the
directionsnnni thenτnnninnnj

= 0, i 6= j and the above invariants represent the principal
shear stresses. An alternative set of integrals of (2.2.51)is
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J̃1 = Innn1nnn1 −
1

3
tr σσσ, J̃2 = Innn2nnn2 −

1

3
tr σσσ, J̃3 = Innn3nnn3 −

1

3
tr σσσ (2.2.53)

If the principal directions of the stress tensor coincide with nnni then the above invari-
ants are the principal values of the stress deviator. For theformulation of the creep
potential in terms of invariants the relatioñJ1 + J̃2 + J̃3 = 0 must be taken into
account.

In what follows we apply the invariants (2.2.52). The equivalent stress can be
formulated as follows

σ2
eq = 2β1 J2

1 + 2β2 J2
2 + 2β3 J2

3

+ 3β12 Innn1nnn2 + 3β13 Innn1nnn3 + 3β23 Innn2nnn3

(2.2.54)

The von Mises equivalent stress (2.2.5) follows from (2.2.54) by settingβ1 = β2 =
β3 = β12 = β13 = β23 = 1. Applying the flow rule (2.1.6) we obtain the following
creep equation

ε̇εεcr =
ε̇cr

eq

σeq

[

β1 J1(nnn2 ⊗ nnn2 − nnn3 ⊗ nnn3)

+β2 J2(nnn3 ⊗ nnn3 − nnn1 ⊗ nnn1)

+β3 J3(nnn1 ⊗ nnn1 − nnn2 ⊗ nnn2)

+
3

2
β12τnnn1nnn2(nnn1 ⊗ nnn2 + nnn2 ⊗ nnn1)

+
3

2
β13τnnn1nnn3(nnn1 ⊗ nnn3 + nnn3 ⊗ nnn1)

+
3

2
β23τnnn2nnn3(nnn2 ⊗ nnn3 + nnn3 ⊗ nnn2)

]

(2.2.55)

The equivalent stress and the creep equation includes six independent material
constants. Therefore six independent homogeneous stress states should be realized
in order to identify the whole set of constants. In addition,the dependence of the
creep rate on the equivalent stress must be fitted from the results of uni-axial creep
tests for different constant stress values. For example, ifthe power law stress func-
tion provides a satisfactory description of steady-state creep then the constantn
must be additionally identified.

An example of orthotropic creep is discussed in [163] for thealuminium alloy
D16AT. Plane specimens were removed from rolled sheet alongthree directions:
the rolling direction, the transverse direction as well as under the angle of 45◦ to the
rolling direction. Uni-axial creep tests were performed at273◦C and 300◦C within
the stress range 63-90 MPa. The results have shown that at 273◦C creep curves
depend on the loading direction while at 300◦C the creep behavior is isotropic.

Other cases. The previous models are based on the assumption of the quadratic
form of the creep potential with respect to the stress tensor. The most general
quadratic form can be formulated as follows

σ2
eq =

1

2
σσσ ······ (4)BBB ······ σσσ, (2.2.56)
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whereσeq plays the role of the equivalent stress. The fourth rank tensor (4)BBB must
satisfy the following restrictions

aaa ······ (4)BBB ······ aaa ≥ 0, aaa ······ (4)BBB = (4)BBB ······ aaa, ccc ······ (4)BBB = 000,

∀ aaa, ccc with aaa = aaaT, ccc = −cccT,
(2.2.57)

whereaaa andccc are second rank tensors. Additional restrictions follow from the as-
sumed symmetries of the steady state creep behavior. For example, if the orthogonal
tensorQQQ stands for a symmetry element, the structure of the tensor(4)BBB can be es-
tablished from the following equation

(4)BBB′ = BijklQQQ ··· eeei ⊗QQQ ··· eeej ⊗QQQ ··· eeek ⊗QQQ ··· eeel =(4)BBB, (2.2.58)

whereeeei, i = 1, 2, 3 are basis vectors.
The flow rule (2.1.6) provides the following generalized anisotropic creep equa-

tion

ε̇εεcr =
ε̇cr

eq

2σeq

(4)BBB ······ σσσ, ε̇cr
eq ≡ ∂W

∂σeq
(2.2.59)

The fourth rank tensors satisfying the restrictions (2.2.57) are well-known from
the theory of linear elasticity. They are used to represent elastic material proper-
ties in the generalized Hooke’s law. The components of thesetensors in a Carte-
sian coordinate system are given in the matrix notation in many textbooks on lin-
ear elasticity as well as in books and monographs on composite materials, e.g.
[6, 7, 29, 122, 256, 309]. Furthermore, different coordinate free representations of
fourth rank tensors of this type are discussed in the literature. For a review we re-
fer to [76]. One of these representations - the projector representation is applied in
[47, 48, 200] to constitutive modeling of creep in single crystal alloys under as-
sumption of the cubic symmetry.

Let us recall that (2.2.59) is the consequence of the creep potential hypothesis
and the quadratic form of the equivalent stress with respectto the stress tensor.
Similarly to the case of linear elasticity [309] one can prove that only eight basic
symmetry classes are relevant according to these assumptions. The basic symmetry
classes and the corresponding number of independent coordinates of the tensor(4)BBB
are listed in Table 2.1. The number of independent coordinates indicates the number
of material constants which should be identified from creep tests. This number can
be reduced if the volume constancy is additionally assumed.For example, in the
cases of transverse isotropy and orthotropic symmetry the number of independent
coordinates ofBBB reduces to 3 and 5, respectively (see previous paragraphs).

2.2.2.2 Non-classical Creep Equations. Non-classical effects are the depen-
dence of secondary creep rate on the kind of loading and second order effects,
see Sect. 2.2.1. Examples of such behavior are different creep rates under ten-
sile and compressive stress or the effect of reversal of the shear stress. The last
case is observed in creep tests on tubular specimens under applied torque. The
change of the direction of the applied torque leads to different values of the shear
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Table 2.1 Basic symmetry classes and number of independent coordinates of the tensor(4)BBB

Symmetry class Number of independent
coordinates of(4)BBB

triclinic symmetry 21
monoclinic symmetry 13
orthotropic or rhombic symmetry 9
trigonal symmetry 6
tetragonal symmetry 6
transverse isotropy or hexagonal symmetry 5
cubic symmetry 3
isotropic symmetry 2

strain rate. The effect of shear stress reversal is usually explained to be the result
of the anisotropy induced by the deformation process (e.g. anisotropic hardening)
or anisotropy induced by damage evolution. Phenomenological models of induced
anisotropy will be introduced in Sect. 2.3.2 and 2.4. Here weconsider the case of
initial anisotropy without discussion of histories of the deformation, damage or man-
ufacturing processes. Nevertheless, a phenomenological model of anisotropic creep
should be able to reflect the above mentioned effects since they are observed exper-
imentally. In order to describe non-classical effects the quadratic form of the creep
potential should be replaced by a more general form including all invariants of the
stress tensor for the assumed symmetry group. In this case the number of material
constants rapidly increases. Furthermore, the identification and verification of the
model requires creep tests under combined multi-axial stress states. In what follows
we limit ourselves to some remarks regarding the general structure of constitutive
equations and kinds of tests for the identification.

Transverse isotropy. The creep potential must satisfy the restriction (2.2.29)
leading to the partial differential equation (2.2.30). Theintegrals represent the set
of functionally independent arguments of the creep potential. The integrals are pre-
sented in Sect. A.3.2 for two transverse isotropy groups. The first group is formed
by all the rotations about a given axismmm, i.e

QQQ(ψmmm) = mmm ⊗mmm + cos ψ(III −mmm ⊗mmm) + sin ψmmm × III

The second group additionally includes rotations on the angle π about any axis
orthogonal tommm, i.e.

QQQ1 = QQQ(πppp) = 2ppp ⊗ ppp − III, det QQQ = 1, ppp ···mmm = 0

Let us note that there is an essential difference in these twogroups since the creep
potential depends on different non-quadratic arguments ofthe stress tensor. Here
we limit our considerations to the second case which is widely discussed in the
literature on anisotropic elasticity, plasticity and creep [58, 73, 84, 279, 286], where
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the following invariants are applied2

tr σσσ, tr σσσ2, tr σσσ3, mmm ··· σσσ ···mmm, mmm ··· σσσ2 ···mmm (2.2.60)

To be consistent with derivations in Sect. 2.2.2.1 let us usethe decomposition of the
stress tensor (2.2.34) leading to the following set of invariants

I1m = σmm = mmm ··· σσσ ···mmm,

I2m = tr σσσp = tr σσσ −mmm ··· σσσ ···mmm,

I3m =
1

2
tr sss2

p =
1

2
tr σσσ2

p −
1

4
(tr σσσp)

2

=
1

2

[

tr σσσ2 + (mmm ··· σσσ ···mmm)2
]

−mmm ··· σσσ2 ···mmm − 1

4
(tr σσσ −mmm ··· σσσ ···mmm)2,

I4m = τττm ··· τττm = mmm ··· σσσ2 ···mmm − (mmm ··· σσσ ···mmm)2 = (mmm × σσσ ···mmm) ··· (mmm × σσσ ···mmm)

I5m = τττm ··· sssp ··· τττm = mmm ··· σσσ3 ···mmm − 2(mmm ··· σσσ ···mmm)(mmm ··· σσσ2 ···mmm)

+ (mmm ··· σσσ ···mmm)3 − 1

2
(tr σσσ −mmm ··· σσσ ···mmm)

[

mmm ··· σσσ2 ···mmm − (mmm ··· σσσ ···mmm)2
]

(2.2.61)
The meaning of the first four invariants is explained in in Sect. 2.2.2.1. The last
cubic invariant is introduced insteadtr σσσ3. One can prove the following relation

tr σσσ3 = I3
1m + 3I1m I4m + 3I2m I3m +

3

2
I2m I4m +

1

2
I3
2m + 3I5m

Assuming that the creep potentialW is a function of five scalar arguments (2.2.61)
and applying the flow rule (2.1.6) we obtain the following creep equation

ε̇εεcr = h1mmm ⊗mmm + (h2−
1

2
h5 I4m)(III −mmm ⊗mmm) + h3σσσp + h4(τττm ⊗mmm + mmm ⊗ τττm)

+h5

(

τττm ⊗ τττm + mmm ⊗ σσσp ··· τττm + τττm ··· σσσp ⊗mmm
)

,
(2.2.62)

where

hi =
∂W

∂Iim
, i = 1, 2, . . . , 5

The last term in the right-hand side of (2.2.62) describes second order effects. The
meaning of these effects is obvious. In the case of non-zero “transverse shear stress”
vector

τττm = mmm ··· σσσ ··· (III −mmm ⊗mmm)

the elongation in the direction ofτττm can be considered. The vectorςςςm = sssp ··· τττm

belongs to the isotropy plane, i.e.ςςςm ··· mmm = 0. In the case thatςςςm 6= 000 (2.2.62)
describes an additional “transverse shear strain rate” effect.

2 For the description of elastic material behavior instead ofσσσ a strain tensor, e.g. the Cauchy-
Green strain tensor is introduced. The five transversely isotropic invariants are the argu-
ments of the strain energy density function.
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In order to formulate the creep constitutive equation one should specify an ex-
pression for the equivalent stress as a function of the introduced invariants. As an
example we present the equivalent stress by use of polynomials of the type (2.2.9)
and (2.2.10)

σeq = ασ1 + σ2 + γσ3, (2.2.63)

with

σ1 = µ11 I1m + µ12 I2m,

σ2 = µ21 I2
1m + µ22 I1m I2m + µ23 I2

2m + µ24 I3m + µ25 I4m,

σ3 = µ31 I3
1m + µ32 I2

1m I2m + µ33 I1m I2
2m + µ34 I3

2m + µ35 I1m I3m

+ µ36 I2m I3m + µ37 I1m I4m + µ38 I2m I4m + µ39 I5m

(2.2.64)

The equivalent stress (2.2.63) includes 16 material constants µij and two weight-
ing factorsα and γ. The identification of all material constants requires differ-
ent independent creep tests under multi-axial stress states. For example, in order
to find the constantµ39 creep tests under stress states with nonzero cubic invari-
ant I5m should be carried out. An example is the tension in the isotropy plane
combined with the transverse shear stress leading to the stress state of the type
σσσ = σ0nnn1 ⊗ nnn1 + τ0(nnn1 ⊗mmm + mmm ⊗ nnn1), whereσ0 > 0 andτ0 > 0 are the mag-
nitudes of the applied stresses,nnn1 is the direction of tension andnnn1 ···mmm = 0. In this
case

sssp =
1

2
σ0(nnn1 ⊗ nnn1 − nnn2 ⊗ nnn2), nnn1 ··· nnn2 = 0, τττm = τ0nnn1, I5m =

1

2
σ0τ2

0

By analogy to the non-classical models of isotropic creep discussed in Sect.
2.2.1 different special cases can be introduced. Settingγ = 0 in (2.2.64), second
order effects will be neglected. The resulting constitutive model takes into account
different behavior under tension and compression. To find the constantsµ11 andµ12

creep tests under tension (compression) along the direction mmm as well as tension
(compression) along any direction in the isotropy plane should be carried out. Set-
ting α = 0 the model with the quadratic form of the creep potential with5 constants
can be obtained. The assumption of the zero volumetric creeprate will lead to the
model discussed in Sect. 2.2.2.1.

Second order effects of anisotropic creep were discussed byBetten [52, 58].
He found disagreements between creep equations based on thetheory of isotropic
functions and the creep equation of the type (2.2.62) according to the potential hy-
pothesis and the flow rule. The conclusion was made that the potential theory leads
to restrictive forms of constitutive equations if comparedto the representations of
tensor functions.

Let us recall the results following from the algebra of isotropic tensor functions
[71]. In the case of transverse isotropy group characterized by the symmetry ele-
ments (A.3.18) the statement of the problem is to find the general representation of
the isotropic tensor function of the stress tensorσσσ and the dyadmmm ⊗ mmm (so-called
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structure tensor). The constitutive equation describing the creep behavior must be
found as follows

ε̇εεcr = fff (σσσ, mmm ⊗mmm),

where fff is an isotropic tensor function of two tensor arguments. Thegeneral repre-
sentation of this function is [73]

fff (σσσ, mmm ⊗mmm) = f1mmm ⊗mmm + f2(III −mmm ⊗mmm) + f3σσσ + f4σσσ2

+ f5(mmm ⊗mmm ··· σσσ + σσσ ···mmm ⊗mmm) + f6(mmm ⊗mmm ··· σσσ2+ σσσ2 ···mmm ⊗mmm),
(2.2.65)

where the scalarsfi, i = 1, . . . , 6, depend on the five invariants of the stress tensor
(2.2.60). Betten found that the last term in (2.2.65) is missing in the constitutive
equation which is based on the potential theory. In order to discuss the meaning
of the last term in (2.2.65) let us introduce the identities which follow from the
decomposition of the stress tensor by Eqs (2.2.34) and (2.2.36)

σσσ2 = I2msssp + (I3m +
1

4
I2
2m)(III −mmm ⊗mmm) + mmm ⊗ sssp ··· τττm + τττm ··· sssp ⊗mmm

+ (I1m +
1

2
I2m)(τττm ⊗mmm + mmm ⊗ τττm) + (I2

1m + I4m)mmm ⊗mmm + τττm ⊗ τττm,

(2.2.66)
mmm ⊗mmm ··· σσσ + σσσ ···mmm ⊗mmm = τττm ⊗mmm + mmm ⊗ τττm + 2I1mmmm ⊗mmm,

mmm ⊗mmm ··· σσσ2 + σσσ2 ···mmm ⊗mmm = mmm ⊗ sssp ··· τττm + τττm ··· sssp ⊗mmm

+ (I1m +
1

2
I2m)(τττm⊗mmm + mmm⊗τττm)

+ 2(I4m + I2
1m)mmm⊗mmm

After inserting (2.2.66), (2.2.34) and (2.2.36) into (2.2.65) we obtain the following
creep equation

ε̇εεcr = g1mmm ⊗mmm + g2(III −mmm ⊗mmm) + g3sssp + g4(mmm ⊗ τττm + τττm ⊗mmm)

+ g5(mmm ⊗ sssp ··· τττm + τττm ··· sssp ⊗mmm) + g6τττm ⊗ τττm

(2.2.67)
with

g1 = f1 + f4(I2
1m + I4m) + 2 f5 I1m + 2 f6(I4m + I2

1m),

g2 = f2 +
1

2
f3 I2m + f 4(I3m +

1

4
I2
2m),

g3 = f3 + I2m f4,

g4 = ( f4 + f6)(I1m +
1

2
I2m) + f5,

g5 = f4 + f6,

g6 = f4
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We observe that Eq. (2.2.67) based on the theory of isotropictensor functions does
not deliver any new second order effect in comparison to (2.2.62). The only dif-
ference is that the two last terms in (2.2.67) characterizing the second order ef-
fects appear with two different influence functions. The comparison of (2.2.67) with
(2.2.62) provides the following conditions for the existence of the potential

∂W

∂I1m
= g1,

∂W

∂I2m
= g2 +

1

2
g5 I4m,

∂W

∂I3m
= g3,

∂W

∂I4m
= g4,

∂W

∂I5m
= g5, g6 = g5

Furthermore, the functionsgi must satisfy the integrability conditions which can be
obtained by equating the mixed derivatives of the potentialwith respect to invariants,
i.e.

∂2W

∂Iim∂Ikm
=

∂2W

∂Ikm∂Iim
, i 6= k, i, k = 1, 2, . . . , 5

Let us note that the models (2.2.62) and (2.2.67) are restricted to the special case of
transverse isotropy. In the general case one should analyzethe creep potential with
the invariants listed in (A.3.26).

Other cases. Alternatively a phenomenological constitutive equation of aniso-
tropic creep can be formulated with the help of material tensors, e.g. [2]. Introduc-
ing three material tensorsAAA, (4)BBB and (6)CCC the equivalent stress (2.2.63) can be
generalized as follows

σeq = ασ1 + σ2 + γσ3 (2.2.68)

with

σ1 = AAA ······ σσσ, σ2
2 = σσσ ······ (4)BBB ······ σσσ, σ3

3 = σσσ ······ (σσσ ······ (6)CCC ······ σσσ) (2.2.69)

The structure of the material tensors must be established from the following restric-
tions

AAA′ = QQQ ··· AAA ···QQQT = AijQQQ ··· eeei ⊗QQQ ··· eeej = AAA,

(4)BBB′ = BijklQQQ ··· eeei ⊗QQQ ··· eeej ⊗QQQ ··· eeek ⊗QQQ ··· eeel =(4)BBB,

(6)CCC′ = CijklmnQQQ ··· eeei ⊗QQQ ··· eeej ⊗QQQ ··· eeek ⊗QQQ ··· eeel ⊗QQQ ··· eeem ⊗QQQ ··· eeen =(6)CCC,
(2.2.70)

whereQQQ is an element of the physical symmetry group. The creep potential hypoth-
esis and the flow rule (2.1.6) lead to the following creep equation

ε̇εεcr =
∂W

∂σeq

(

α
∂σ1

∂σσσ
+

∂σ2

∂σσσ
+ γ

∂σ3

∂σσσ

)

(2.2.71)

Taking into account the relations

∂σ1

∂σσσ
= AAA,

∂σ2

∂σσσ
=

(4)BBB ······ σσσ

σ2
,

∂σ3

∂σσσ
=

σσσ ······ (6)CCC ······ σσσ

σ2
3

(2.2.72)
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a generalized anisotropic creep equation can be formulatedas follows

ε̇εεcr = ε̇cr
eq

(

αAAA +
(4)BBB ······ σσσ

σ2
+ γ

σσσ ······ (6)CCC ······ σσσ

σ2
3

)

, ε̇cr
eq ≡

∂W

∂σeq
(2.2.73)

In [51, 265] the following anisotropic creep equation is proposed

ε̇εεcr = HHH + (4)MMM ······ σσσ + ((6)LLL ······ σσσ) ······ σσσ (2.2.74)

Comparing the Eqs (2.2.73) and (2.2.74) the material tensors HHH, (4)MMM and(6)LLL can
be related to the tensorsAAA, (4)BBB and(6)CCC.

The tensorsAAA, (4)BBB and (6)CCC contain 819 coordinates (AAA - 9, (4)BBB - 81, (6)CCC
- 729). From the symmetry of the stress tensor and the creep rate tensor as well as
from the potential hypothesis follows that “only” 83 coordinates are independent (AAA
- 6, (4)BBB - 21, (6)CCC - 56). Further reduction is based on the symmetry considerations.
The structure of material tensors and the number of independent coordinates can be
obtained by solving (2.2.70).

Another possibility of simplification is the establishing of special cases of
(2.2.73). For instance, equations with a reduced number of parameters can be de-
rived as follows

– α = 1, γ = 0:

σeq = σ1 + σ2, ε̇εεcr = ε̇cr
eq

(

AAA +
(4)BBB ······ σσσ

σ2

)

, (2.2.75)

– α = 0, γ = 1:

σeq = σ2 + σ3, ε̇εεcr = ε̇cr
eq

(

(4)BBB ······ σσσ

σ2
+

σσσ ······ (6)CCC ······ σσσ

σ2
3

)

, (2.2.76)

– α = 0, γ = 0:

σeq = σ2, ε̇εεcr = ε̇cr
eq

(

(4)BBB ······ σσσ

σ2

)

(2.2.77)

The last case has been discussed in Sect. 2.2.2.1. Examples of application of con-
stitutive equation (2.2.73) as well as different cases of symmetries are discussed in
[2, 9].

2.2.3 Functions of Stress and Temperature

In all constitutive equations discussed in Sects 2.2.1 and 2.2.2 the creep potential or
the equivalent creep rate must be specified as functions of the equivalent stress and
the temperature, i.e.

ε̇cr
eq =

∂W

∂σeq
= f (σeq, T)
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In [176] the functionf is termed to be the constitutive or response function. For the
formulation of constitutive functions one may apply theoretical foundations from
materials science with regard to mechanisms of creep deformation and related forms
of stress and temperature functions. Furthermore, experimental data including fam-
ilies of creep curves obtained from uni-axial creep tests for certain ranges of stress
and temperature are required. It is convenient to present these families in a form
of minimum creep rate vs. stress and minimum creep rate vs. temperature curves
in order to find mechanical properties of the material withinthe steady-state creep
range.

Many empirical functions of stress and temperature which allow to fit exper-
imental data have been proposed in the literature, e.g. [236, 250, 266, 292]. The
starting point is the assumption that the creep rate may be descried as a product of
two separate functions of stress and temperature

ε̇cr
eq = fσ(σeq) fT(T)

The widely used functions of stress are:

– power law

fσ(σeq) = ε̇0

∣

∣

∣

∣

σeq

σ0

∣

∣

∣

∣

n−1 σeq

σ0
(2.2.78)

The power law contains three constants (ε̇0, σ0, n) but only two of them are inde-
pendent. Instead ofε̇0 andσ0 one material constant

a ≡ ε̇0

σn
0

can be introduced.
– power law including the creep limit

fσ(σeq) = ε̇′0

(

σeq

σ′
0

− 1

)n′

, σeq > σ′
0

If σeq ≤ σ′
0 the creep rate is equal zero. In this caseσ′

0 is the assumed creep limit.
Let us note that the experimental identification of its valueis difficult, e.g. [266].

– exponential law

fσ(σeq) = ε̇0 exp
σeq

σ0

ε̇0, σ0 are material constants. The disadvantage of this expression is that it predicts
a nonzero creep rate for a zero equivalent stress

fσ(0) = ε̇0 6= 0

– hyperbolic sine law

fσ(σeq) = ε̇0 sinh
σeq

σ0
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For low stress values this function provides the linear dependence on the stress

fσ(σeq) ≈ ε̇0
σeq

σ0

Assuming the constant temperature equations for the equivalent creep rate can be
summarized as follows

ε̇cr
eq = aσn

eq Norton, 1929, Bailey, 1929,

ε̇cr
eq = b

(

exp
σeq

σ0
− 1

)

Soderberg, 1936,

ε̇cr
eq = a sinh

σeq

σ0
Prandtl, 1928, Nadai, 1938, McVetty, 1943,

ε̇cr
eq = a1σ

n1
eq + a2σn2

eq Johnson et al., 1963,

ε̇cr
eq = a

(

sinh
σeq

σ0

)n

Garofalo, 1965,

(2.2.79)

wherea, b, a1, a2, σ0, n, n1 and n2 are material constants. The dependence on the
temperature is usually expressed by the Arrhenius law

fT(T) = exp[−Q/RT],

whereQ andR denote the activation energy and the Boltzmann’s constant,respec-
tively.

For the use of stress and temperature functions one should take into account
that different deformation mechanisms may operate for different specific ranges of
stress and temperature. An overview is provided by the deformation mechanisms
maps proposed by Frost and Ashby [117], Fig. 2.3. Contours ofconstant strain rates
are presented as functions of the normalized equivalent stressσeq/G and the ho-
mologous temperatureT/Tm, whereG is the shear modulus andTm is the melting
temperature. For a given combination of the stress and the temperature, the map
provides the dominant creep mechanism and the strain rate.

Let us briefly discuss different regions on the map, the mechanisms of creep
deformation and constitutive functions derived in materials science. For compre-
hensive reviews one may consult [116, 156, 222]. The originsof the inelastic de-
formation at the temperature range0.5 < T/Tm < 0.7 are transport processes
associated with motion and interaction of dislocations anddiffusion of vacancies.
Here we limit our consideration to the two classes of physical models - dislocation
and diffusion creep. Various creep rate equations within the dislocation creep range
are based on the Bailey-Orowan recovery hypothesis. An internal barrier stressσint

being opposed to the dislocation movement is assumed. When the plastic strain oc-
curs the internal stress increases as a result of work hardening due to accumulation
of deformation and due to increase of the dislocation density. As the material is sub-
jected to the load and temperature over certain time, the internal stressσint recovers.
In the uni-axial case the rate of change of the internal stress is assumed as follows
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Figure 2.3 Schematic deformation-mechanism map (L.T.Creep - low temperature creep,
H.T.Creep - high temperature creep)

σ̇int = hε̇cr − rσint,

whereh andr are material properties related to hardening and recovery,respectively.
In the steady statėσint = 0 so that

ε̇cr =
rσint

h

Specifying the values forr, h andσint various models for the steady state creep rate
have been derived. An example is the following expression (for details of derivation
we refer to [116])

ε̇cr ∝
D

RT

σ4

G3
exp

(

− Q

RT

)

,

whereD is the diffusion coefficient.
Further models of dislocation creep are discussed under theassumption of

the climb-plus-glide deformation mechanism. At high temperatures and moderate
stresses, dislocations can climb as well as glide. The glideof dislocations produced
by the applied stress is opposed by obstacles. Due to diffusion of vacancies, the
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dislocations can climb around strengthening particles. The inelastic strain is then
controlled by the glide, while its rate is determined by the climb. The climb-plus-
glide mechanism can be related to the recovery-hardening hypothesis. The harden-
ing results from the resistance to glide due to interaction of moving dislocations
with other dislocations, precipitates, etc. The recovery mechanism is the diffusion
controlled climb which releases the glide barriers. The climb-plus-glide based creep
rate models can be found in [116, 117, 222]. The common resultis the power-law
creep

ε̇cr
eq ∝

(σeq

G

)n
exp

(

− Q

RT

)

(2.2.80)

Equation (2.2.80) can be used to fit experimental data for a range of stresses up
to 10−3G. The exponentn varies from 3 to about 10 for metallic materials. At
higher stresses above10−3G the power law (2.2.80) breaks down. The measured
strain rate is greater than the Eq. (2.2.80) predicts. Within the range of the power-
law break down a transition from the climb-plus-glide to theglide mechanism is
assumed [117]. The following empirical equation can be applied, e.g. [117, 222],

ε̇cr
eq ∝

[

sinh
(

α
σeq

G

)]n
exp

(

− Q

RT

)

, (2.2.81)

whereα is a material constant. Ifασeq/G < 1 then (2.2.81) reduces to (2.2.80).
At higher temperatures (T/Tm > 0.7) diffusion mechanisms control the creep

rate. The deformation occurs at much lower stresses and results from diffusion of
vacancies. The mechanism of grain boundary diffusion (Coble creep) assumes dif-
fusive transport of vacancies through and around the surfaces of grains. The devi-
atoric part of the stress tensor changes the chemical potential of atoms at the grain
boundaries. Because of different orientations of grain boundaries a potential gra-
dient occurs. This gradient is the driving force for the grain boundary diffusion.
The diffusion through the matrix (bulk diffusion) is the dominant creep mechanism
(Nabarro-Herring creep) for temperatures close to the melting point. For details con-
cerning the Coble and the Nabarro-Herring creep models we refer to [116, 222].
These models predict the diffusion controlled creep rate tobe a linear function of
the stress.

In addition to the dislocation and the diffusion creep, the grain boundary sliding
is the important mechanism for poly-crystalline materials. This mechanism occurs
because the grain boundaries are weaker than the ordered crystalline structure of
the grains [222, 271]. Furthermore, the formation of voids and micro-cracks on
grain boundaries contributes to the sliding. The whole deformation rate depends on
the grain size and the grain aspect ratio (ratio of the grain dimensions parallel and
perpendicular to the tensile stress direction). Samples with a larger grain size usually
exhibit a lower strain rate.
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2.3 Primary Creep and Creep Transients

In structural analysis applications it is often desirable to consider stress redistribu-
tions from the beginning of the creep process up to the creep with constant rate. Let
us note, that in a statically undetermined structure stressredistributions take place
even if primary creep is ignored. In the case of rapid changesof external loading
one must take into account transient effects of the materialbehavior. Let us discuss
some experimental results related to creep under variable multi-axial loading con-
ditions. The majority of multi-axial creep tests have been performed on thin-walled
tubes under combined action of tension (compression) forceand torque. In this case
the uniform stress stateσσσ = σnnn ⊗ nnn + τ(nnn ⊗ mmm + mmm ⊗ nnn) is assumed, whereσ
andτ are calculated from the force and torque as well as the geometry of the cross
section (see Sect. 1.1.2). Figure 2.4 presents a sketch of experimental data for type
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Figure 2.4 Transient creep at combined tension and torsion. Effect of the normal stress
reversal.a Normal strain vs. time,b shear strain vs. time (after [148])
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Figure 2.5 Creep under shear stress reversals (after [248])

304 steel (214Cr-1Mo) at 600◦C [148]. A tube was loaded the first 5 hours by the
constant tension force and the constant torque. After that the direction of the force
was reversed while the torque kept constant. The normal strain vs. time creep curve
under compressive force after the reversal differs substantially from the reference
creep curve under tensile force, Fig. 2.4a. The absolute value of the strain rates be-
fore and after the reversal differs significantly. Furthermore, the shear strain vs. time
creep curve is influenced by the reversal of the axial force, Fig. 2.4b.

Figure 2.5 shows a sketch of experimental results obtained in [248] for IN-
CONEL Alloy 617 (NiCr22Co12Mo) tubes at 900◦C under cyclic torsion. Every
100 h the applied torque was reversed leading to the change ofthe sign of the shear
stress. The inelastic shear strain accumulated after each cycle of positive (negative)
torque decreases rapidly after few cycles of reversals. Similar behavior is reported
in [238] for the type 304 steel, where, in addition, the effect of thermal exposure
before and during the loading is discussed. Creep behavior of steels is usually ac-
companied by the thermally induced evolution of structure of carbide precipitates
(coarsening or new precipitation). The effect of ageing hasa significant influence
on the transient creep of steels as discussed in [238]. For example, the decrease of
inelastic shear strain under alternating torsion was not observed if tubular specimens
were subjected to the thermal exposure within the time interval of 500 h before the
loading.

Additional effects have been observed in the case of reversals of the applied
torque combined with the constant tension force, Fig. 2.6. First, the axial strain
response is significantly influenced by the cyclic torsion. Second, the rate of the
shear strain depends on the sign of the applied torque. Such aresponse indicates the
anisotropic nature of the hardening processes.

Multi-axial creep behavior is significantly influenced by the deformation history.
As an example, Fig. 2.7 presents a sketch of results reportedin [157] for type 304
stainless steel. Tubular specimens were first loaded up to the stressσ1 leading to
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Figure 2.6 Creep at combined tension and torsion. Effect of the shear stress reversals.a
Normal strain vs. time,b shear strain vs. time (after [248])

the plastic strain of3%. After that the specimens were unloaded toσ0. Subsequent
creep tests have been performed under combined constant normal strainσ and shear
strain τ. Different stress states leading to the same value of the vonMises stress
σvM =

√
σ2 + 3τ2 = σ0 were realized. The results show that the tensile creep

curve of the material after plastic pre-straining differs significantly from the creep
curve of the “virgin material” (curve a). Furthermore, the von Mises creep strain
vs. time curves after plastic pre-straining depend significantly on the type of the
applied stress state (compare, for example, tension, curvea, torsion, curve b, and
compression, curve e).

In this section we discuss phenomenological models to describe primary creep
and creep transients under multi-axial stress states. We start with models of time and
strain hardening. After that we introduce the concept of kinematic hardening which
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Figure 2.7 Effect of initial tensile plastic strain on subsequent creep behavior under com-
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is widely used for the characterization of transient creep effects under constant and
varying loading. Our purpose is to discuss general ideas rather than enter into details
of empirical functions of stress and temperature as well as different forms of evolu-
tion equations for hardening variables (the so-called hardening rules). Regarding the
hardening rules one may consult the comprehensive reviews [87, 237] and mono-
graphs [174, 185, 208, 301]. For classification and assessment of different unified
models of plasticity-creep interaction we refer to [148, 149].

2.3.1 Time and Strain Hardening

The time hardening model assumes a relationship between theequivalent creep rate,
the equivalent stress and the time at fixed temperature, i.e.

ft(ε̇cr
eq, σeq, t) = 0

The strain hardening model postulates a relationship between the equivalent creep
rate, the equivalent creep strain and the equivalent stressat fixed temperature. In this
case

fs(ε̇cr
eq, εcr

eq, σeq) = 0

Figure 2.8 illustrates the uni-axial creep response after reloading (stress jump from
σ1 to σ2 at t = tr). Based on the time hardening model the strain rate att ≥ tr is
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Figure 2.8 Creep response at variable loading (the open circles denotetypical experimental
values)

determined by the stressσ2 and the timetr only. Thus the creep curve fort ≥ tr

can be obtained by translation of the curveBC to the pointD. Following the strain
hardening model the strain rate depends on the stress and theaccumulated strain.
The creep curve after the stress jump can be determined by translating the curveAC
(the creep curve for the stressσ2 starting from the creep strainεcr

A accumulated in
time tr) along the time axis. It can be shown that for specific functions of stress, time
and strain as well as under the assumption of the constant stress and temperature the
strain and the time hardening models lead to the same description. For example, if
we set

ε̇cr
eq = aσn

eqtm (2.3.1)

according to the time hardening witha, n andm as the material constants the inte-
gration with respect to the time variable assumingσeq = const andεcr

eq = 0 at t = 0
leads to

εcr
eq = aσn

eq
1

m + 1
tm+1 (2.3.2)

On the other hand applying the strain hardening model, the creep equation can be
formulated as

ε̇cr
eq = bσk

eq(εcr
eq)

l (2.3.3)

Taking into account (2.3.2) the time variable can be eliminated from (2.3.1). As a
result the following relations between the material constants can be obtained

b = [a(m + 1)m]
1

m+1 , k =
n

m + 1
, l =

m

m + 1

Vice versa, the strain hardening equation (2.3.2) can be integrated for the special
choice ofk andl and forσeq = const. Again, if εcr

eq = 0 at t = 0 we obtain (2.3.2).
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Applying the time hardening model the von Mises-Odqvist creep theory (see
Sect. 2.2) can be generalized as follows

ε̇εεcr =
3

2
aσn−1

vM tmsss (2.3.4)

By analogy one can formulate the creep constitutive equation with the strain hard-
ening

ε̇εεcr =
3

2
bσk−1

vM (εcr
vM)lsss (2.3.5)

The time and the strain hardening models provide simple empirical description
of the uni-axial creep curve within the range of primary creep and are still popular
in characterizing the material behavior, e.g. [137, 145, 171]. Despite the simplicity,
both the models suffer from significant limitations, even ifapplied stress and tem-
perature are constant. The disadvantage of the time hardening model is that the time
variable appears explicitly in equation (2.3.1) for the creep rate. An additional draw-
back is that the constantsm andl take usually the values−1 < m < 0, −1 < l < 0
as the result of curve fitting. Ifεcr

eq = 0 at t = 0 then Eq. (2.3.3) provides an infinite
starting creep rate. One can avoid this problem in a time-step based numerical pro-
cedure assuming a small non-zero creep equivalent strain atthe starting time step.
Finally, both models can be applied only for the case of the constant or slowly vary-
ing stresses. Transient creep effects under rapid changes of loading and particularly
in the case of stress reversals cannot be described.

Further details of time and strain hardening models can be found in [173, 250].
In [173] a modified strain hardening model is proposed based on the idea of creep
strain origins.

2.3.2 Kinematic Hardening

The common approach in describing transient creep effects under complex loading
paths is the introduction of internal state variables and appropriate evolution equa-
tions (the so-called hardening rules). The scalar-valued internal state variables are
introduced in the literature to characterize isotropic hardening and ageing processes.
An example will be discussed in Sect. 2.4.1.3. Several “non-classical” effects ob-
served in tests under non-proportional loading have motivated the use of tensor-
valued variables (usually second rank tensors).

The idea of kinematic hardening (translation of the yield surface in the stress
space) originates from the theory of plasticity and has beenintroduced by Prager
[257]. In the creep mechanics the kinematic hardening was proposed by Malinin
and Khadjinsky [203, 204]. The starting point is the additive decomposition of the
stress tensor into two parts:σσσ = σ̄σσ + ααα, whereσ̄σσ is called the active or the effective
part of the stress tensor andααα denotes the additional or translation part of the stress
tensor (back stress tensor). The introduced tensors can be further decomposed into
spherical and deviatoric parts
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σ̄σσ =
1

3
tr σ̄σσIII + s̄ss, tr s̄ss = 0,

ααα =
1

3
tr αααIII + βββ, tr βββ = 0,

σσσ =
1

3
(tr σ̄σσ + tr ααα)III + sss, sss = s̄ss + βββ

(2.3.6)

It is assumed that the inelastic strain rate is determined bythe active part of the stress
tensor. The creep potential is then a function of the active part of the stress tensor, i.e.
W = W(σ̄σσ) = W(σσσ − ααα), e.g. [245]. As in the case of the classical isotropic creep
(Sect. 2.2.1.1) only the second invariant of the deviators̄ss is considered. Introducing
the von Mises equivalent stress

σ̄vM ≡
√

3

2
s̄ss ······ s̄ss =

√

3

2
(sss − βββ) ······ (sss − βββ) (2.3.7)

the flow rule (2.1.6) leads to the following constitutive equation

ε̇εεcr =
3

2

ε̇cr
vM

σ̄vM
s̄ss, ε̇vM ≡

√

2

3
ε̇εεcr ······ ε̇εεcr (2.3.8)

The equivalent creep rate can be expressed by the use of stress and temperature
functions discussed in Sect. 2.2.3. For example, with the power law stress function
and the Arrhenius temperature dependence

ε̇cr
vM = aσ̄n

vM, a = a0 exp

(

− Q

RT

)

(2.3.9)

Equations (2.3.8) contain the deviatoric part of the back stressβββ. This internal state
variable is defined by the evolution equation and the initialcondition. In [201, 202]
the following evolution equation is postulated

β̇ββ =
2

3
bε̇εεcr − g(αvM)

αvM
βββ (2.3.10)

with

αvM ≡
√

3

2
βββ ······ βββ

For the functiong various empirical relations were proposed. One example is [201,
202]

g(αvM) = cαn
vM, c = c0 exp

(

− Qr

RT

)

Equation (2.3.10) is the multi-axial utilization of the Bailey-Orowan recovery hy-
pothesis, see Sect. 2.2.3.b and c0 are material constants andQr is the activation
energy of recovery.

Let us show how the model behaves for the uni-axial homogeneous stress state
σσσ(t) = σ(t)nnn ⊗ nnn, whereσ(t) is the magnitude of the applied stress andnnn is the
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Figure 2.9 Primary and secondary creep stages of a uni-axial creep curve

unit vector. Withααα(0) = 000 one can assume thatααα(t) is coaxial with the stress tensor.
Therefore one can write [201, 202]

ααα = αnnn ⊗ nnn, βββ = α

(

nnn ⊗ nnn − 1

3
III

)

, σ̄vM = |σ − α|, αvM = |α|

From Eqs (2.3.9) and (2.3.10) follows

ε̇cr = asign(σ − α)|σ − α|n, ε̇cr ≡ nnn ··· ε̇εεcr ··· nnn,

α̇ = bε̇cr − csignα|α|n
(2.3.11)

Let us assume thatσ(t) = σ0 > 0, α(0) = 0, σ0 − α > 0 and introduce the variable
H = α/σ0. From (2.3.11) we obtain

ε̇cr = aσn
0 (1 − H)n,

Ḣ = σn−1
0 [ba(1 − H)n − cHn]

(2.3.12)

The constitutive and evolution Eqs (2.3.12) describe the primary and the secondary
stages of a uni-axial creep curve, Fig. 2.9. In the considered case of the uni-axial
tension the parameter0 ≤ H < H∗ < 1 is equal to zero at the beginning of the
creep process and increases over time. In the steady stateH = H∗, whereH∗ is the
saturation value. From the second equation in (2.3.12) we obtain

H∗ =
1

1 + µ
1
n

, µ ≡ c

ab
(2.3.13)

The minimum creep rate in the steady state is calculated by

ε̇cr
min = aσn

0 (1 − H∗)n = ãσn
0 , ã ≡ a(1 − H∗)n (2.3.14)

The constants̃a andn can be obtained from the experimental data of steady state
creep. For the given value ofH∗ the second equation in (2.3.12) can be integrated
providing the duration time of primary creeptpr (see Fig. 2.9)
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Figure 2.10 Uni-axial creep after unloading. Simulations based on Eqs (2.3.15) for the case
n = 3 andH∗ = 0.7. a Creep strain vs. time,b hardening variable vs. time.

tpr =
ϕ(H∗)
baσn

0

, ϕ(H∗) =

H∗
∫

0

dH

(1 − H)n − µHn

From the first equation in (2.3.12) the creep strainεcr
pr follows at t = tpr (see Fig.

2.9) as

εcr
pr =

σ0

b

H∗
∫

0

(1 − H)ndH

(1 − H)n − µHn

The above equations can be used for the identification of material constants.
To discuss the model predictions for the case of the uni-axial cyclic loading let

us introduce the following dimensionless variables

σ̃ =
σ(t)

σ0
, τ =

t

tpr
, ǫ =

εcr

a(1 − H∗)σn
0 tpr

,

where σ0 denotes the constant stress value in the first loading cycle.Equations
(2.3.11) take the form

dǫ

dτ
= asign(σ̃ − H)

|σ̃ − H|n
1 − H∗ ,

dH

dτ
= ϕ(H∗)

[

sign(σ̃ − H)|σ̃ − H|n − sign(H)

(

1 − H∗
H∗

)n

|H|n
]

(2.3.15)
Figures 2.10 and 2.11 illustrate the results of the numerical integration of (2.3.15)
with n = 3, H∗ = 0.7 and the initial conditionsǫ(0) = 0 andH(0) = 0. In the first
case presented in Fig. 2.10 we assumeσ = σ0 within the time interval[0, 2tpr ], so
that the hardening variable increases up to the saturation value and remains constant.
The creep curve exhibits both the primary and the secondary stages, Fig. 2.10b. At
t = 2tpr we assume a spontaneous unloading, i.e.σ = 0. We observe that the model
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Figure 2.11 Uni-axial creep under cyclic loading. Simulations based onEqs (2.3.15) for the
casen = 3 andH∗ = 0.7. a Creep strain vs. time,b hardening variable vs. time.

(2.3.15) is able to describe the creep recovery (see Fig. 1.3b). Figure 2.11 presents
the numerical results for the case of cyclic loading. Three loading cycles with the
constant stresses±σ0 and the holding time∆t = 2tpr, Fig. 2.11a, are considered.
We observe that the model (2.3.15) predicts identical creepresponses for the first
and the third loading cycle.

Let us give some comments on the model predictions under multi-axial stress
states. For this purpose we consider the case that the stressdeviatorsss is the known
constant tensor within a given interval of time[t0, t]. Equations (2.3.8) and (2.3.10)
can be rewritten as follows

ε̇εεcr =
3

2

f (σ̄vM)

σ̄vM
(sss − βββ),

β̇ββ = b
f (σ̄vM)

σ̄vM
(sss − βββ)− g(αvM)

αvM
βββ

(2.3.16)

In the steady creep stateβββ = βββ∗, whereβββ∗ is the saturation value of the back stress
deviator. From the second equation in (2.3.16) it follows

b
f (σ̄vM∗ )

σ̄vM∗
(sss − βββ∗) =

g(αvM∗)

αvM∗
βββ∗, (2.3.17)

where

σ̄vM∗ =

√

3

2
(sss − βββ∗) ······ (sss − βββ∗), αvM∗ =

√

3

2
βββ∗ ······ βββ∗

The double inner product of (2.3.17) with itself results in

[b f (σ̄vM∗ )]
2 = [g(αvM∗ )]

2

Since f (σ̄vM∗) > 0 andg(αvM∗) > 0 we obtain

b f (σ̄vM∗) = g(αvM∗) (2.3.18)
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From (2.3.17) it follows

βββ∗ =
αvM∗

σ̄vM∗ + αvM∗
sss ⇒ σ̄vM∗ = σvM + αvM∗ (2.3.19)

Now the steady state value of the back stress deviator can be calculated

βββ∗ = αvM∗
sss

σvM
(2.3.20)

Let us assume power functions forf andg. Then from (2.3.18) it follows

ba(σvM − αvM∗)
n = cαn

vM∗

As in the uni-axial case we introduce the hardening variableH = αvM/σvM. The
saturation valueH∗ is then determined by (2.3.13). From the first Eq. in (2.3.16)we
obtain

ε̇εεcr
st =

3

2
ãσn−1

vm sss, ã ≡ a(1 − H∗)n (2.3.21)

We observe that the kinematic hardening model (2.3.16) results in the classical
Norton-Bailey-Odqvist constitutive equation of steady-state creep discussed in Sect.
2.2.1. This model predicts isotropic steady state creep independently from the initial
condition for the back stress deviatorβββ. Furthermore, different stress states leading
to the same value of the von Mises equivalent stress will provide the same steady
state value of the equivalent creep rate.

The model (2.3.16) is applied in [202, 245] for the description of creep for dif-
ferent materials under simple or non-proportional loadingconditions. It is demon-
strated that the predictions agree with experimental results. However, in many cases
deviations from the Norton-Bailey-Odqvist type steady state creep can be observed
in experiments. For example, in the case shown in Fig. 2.6 thesteady state shear
creep rate changes significantly after the shear stress reversals, although the von
Mises equivalent stress remains constant. The results presented in Fig. 2.7 indicate
that the initial hardening state due to plastic pre-strain is the reason for the stress
state dependence of the subsequent creep behavior. This effect cannot be described
by the model (2.3.16).

The models with the back stress of the type (2.3.16) are usually termed to be
the models with anisotropic hardening, e.g. [202]. The typeof anisotropy is then
determined by the symmetry group of the back stress tensor ordeviator. The sym-
metry group of any symmetric second rank tensor includes always nine elements,
e.g. [199]. For the tensorβββ the symmetry elements are

QQQβββ = ±nnn1 ⊗ nnn1 ± nnn2 ⊗ nnn2 ± nnn3 ⊗ nnn3, (2.3.22)

wherennni are the principal axes. In order to verify the assumed symmetries of hard-
ening one should perform creep tests with non-proportionalloading of the following
type. During the first cycle a homogeneous constant stress state with the deviatoric
partsss should be applied over a period of time[0, t1], t1 < tpr. During the second
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loading cycle the stress statesQQQi ··· sss ··· QQQT
i should be applied, where the orthogonal

tensorsQQQi do not belong to the symmetry group ofsss. Among all stress states of this
type the stress statesQQQβββ ··· sss ··· QQQT

βββ should exist leading to the same (with respect to
the scatter of experimental data) creep response after reloading.

As shown in [72] kinematic hardening of the type (2.3.16) leads to a restrictive
form of orthotropic inelastic behavior. In order to demonstrate this let us write down
the back stress deviator in the following form

βββ = β1nnn1 ⊗ nnn1 + β2nnn2 ⊗ nnn2 − (β1 + β2)nnn3 ⊗ nnn3

= β1(nnn1 ⊗ nnn1 − nnn3 ⊗ nnn3) + β2(nnn2 ⊗ nnn2 − nnn3 ⊗ nnn3),

whereβ1 andβ2 are the principal values andnnn1, nnn2 andnnn3 are the principal direc-
tions ofβββ. For the given back stress deviatorβββ the equivalent stress (2.3.7) takes the
form

σ̄2
vM = 3 J̃2

1

(

1 − β1

J̃1

)2

+ 3 J̃2
2

(

1 − β2

J̃2

)2

+
3

2
J̃1 J̃2

(

1 − β1

J̃1

)(

1 − β2

J̃2

)

+ 3I2
nnn1nnn2

+ 3I2
nnn1nnn3

+ 3I2
nnn2nnn3

,
(2.3.23)

where the invariants̃Ji are defined by Eqs (2.2.53) and the invariantsInnninnnj
are defined

by Eqs (2.2.48). Steady state creep with initial orthotropic symmetry is discussed in
Sect. 2.2.2. In this case the von Mises type equivalent stress includes 6 invariants
and 6 independent material constants. The equivalent stress (2.3.23) contains all
6 orthotropic invariants. However, the last three terms (three shear stresses with
respect to the three planes of the orthotropic symmetry) arenot affected by the
hardening. Furthermore, in the steady state range these terms vanish since the back
stress deviatorβββ∗ is coaxial with the stress deviator according to (2.3.20).

The possibilities to improve the predictions of the kinematic hardening model
are:

– Introduction of additional state variables like isotropichardening variable, e.g.
[87], ageing variable, e.g. [238], or damage variables, e.g. [101]. Models with
damage variables will be discussed in Sect. 2.4.

– Formulation of the creep potential as a general isotropic function of two tensorsσσσ
andααα. Such an approach is proposed in [72] for the case of plasticity and includes
different special cases of kinematic hardening,

– Consideration of the initial anisotropy of the material behavior, e.g. [148].

Creep models with kinematic hardening of the type (2.3.8) and different specific
forms of the hardening evolution equation are discussed in [158, 159, 202, 238, 245,
272] among others. For the description of creep and creep-plasticity interaction at
complex loading conditions a variety of unified models is available including the
hardening variables as second rank tensors. For details we refer to [174, 176, 185,
208]. Several unified models are reviewed and evaluated in [148, 149]. The historical
background of the development of non-linear kinematic hardening rules is presented
in [87].
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2.4 Tertiary Creep and Creep Damage

Tertiary creep stage is the final part of the creep process. Ina uni-axial creep curve
tertiary creep is observed as the increase of the creep rate.The shape of the final
part of the creep curve and the duration of the tertiary creepdepends on the material
composition, the stress level and the temperature. For somestructural steels, the
tertiary creep is the major part of the whole creep process, e.g. [105, 242].

The origins of tertiary creep are progressive damage processes including the
formation, growth and coalescence of voids on grain boundaries, coarsening of pre-
cipitates and environmental effects. The voids may nucleate earlier during the creep
process, possibly at primary creep stage or even after spontaneous deformation. The
initially existing micro-defects have negligible influence on the creep rate. As their
number and size increase with time, they weaken the materialproviding the de-
crease in the load-bearing capacity. The coalescence of cavities or propagation of
micro-cracks lead to the final fracture. Creep fracture is usually inter-granular [33].
Dyson [99] distinguishes three main categories of creep damage: the strain induced
damage, the thermally induced damage and the environmentally induced damage.
The strain induced damage may be classified as follows [101]

– excessive straining at constant load,
– grain boundary cavitation and
– progressive multiplication of the dislocation substructure

The first two damage mechanisms occur in all poly-crystalline materials, whereas
the third one is essential for nickel-based super-alloys.

The thermally induced damage mechanisms include material ageing processes
which lead to the loss of strength and contribute to the nucleation and growth of
cavities. The example of the thermally induced ageing includes the coarsening of
carbide precipitates for ferritic steels (increase of volume fraction of carbide precip-
itates or new precipitation), e.g. [251]. The rate of ageingdoes not depend on the
applied stress, but is influenced by the temperature and can be identified by exposing
test-pieces to thermal environment.

The environmentally induced damage (corrosion, oxidation, etc.) appears due
to the attack of chemical species contained within the surrounding medium. The
environmental damage rate can be inversely related to the test-piece (component)
dimensions [99].

The dominance of a creep damage mechanism depends on the alloy composi-
tion, on the fabrication route and on the service conditions. For several metals and
alloys, fracture mechanism maps are available [33]. By analogy with the deforma-
tion mechanism maps, regions with different fracture modesare indicated depending
on the stress and the temperature ranges.

Physical modeling of creep damage is complicated by the factthat many differ-
ent mechanisms may operate and interact in a specific material under given loading
conditions. This interaction should be taken into account in the damage rate equa-
tions. Models related to the grain boundary cavitation are discussed and reviewed in
[155, 271].
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The characterization of tertiary creep under multi-axial stress states is the im-
portant step in a creep analysis of engineering structures.A lifetime prediction of a
specific load bearing component designed for creep, or a residual lifetime estima-
tion of a structure operating at elevated temperature requires a model which takes
into account tertiary creep and damage evolution under multi-axial stress states.

The damage rate and consequently the creep rate are determined by the stress
level, the accumulated damage and the temperature. These dependencies can be es-
tablished based on experimental data from the uni-axial creep testing. If the material
is subjected to multi-axial loading, the kind of stress state has a significant influence
on the damage growth. Tension and compression lead to different creep rates. Dif-
ferent stress states corresponding to the same von Mises equivalent stress lead, in
general, to different equivalent tertiary creep rates while the equivalent strain rate in
the secondary stage is approximately the same. These facts are established from the
data of creep tests under combined tension and torsion, e.g.[169, 170], as well as
from biaxial and triaxial creep tests [282, 283]. Stress state effects must be consid-
ered in the damage evolution equation. In Sect. 2.4.1 we discuss various possibilities
to characterize the tertiary creep behavior by means of scalar valued damage para-
meters. Under non-proportional loading conditions, the additional factor is the in-
fluence of the damage induced anisotropy. Examples are creeptests under combined
tension and alternating torsion, e.g. [218], and creep tests under biaxial loading with
alternating direction of the first principal stress [283]. In both cases the assumption
of isotropic creep behavior and the scalar measure of damagelead to disagreement
with experimental observations. In Sect. 2.4.2 we review some experimental results
illustrating the damage induced anisotropy and discuss creep-damage models with
tensor-valued damage variables.

2.4.1 Scalar-Valued Damage Variables

Many microstructural observations show the directional effect of creep damage. For
example, during a cyclic torsion test on copper voids nucleate and grow predomi-
nantly on those grain boundaries, which are perpendicular to the first principal di-
rection of the stress tensor, e.g. [134]. Creep damage has therefore an anisotropic
nature and should be characterized by a tensor. However, if the initially isotropic
material is subjected to constant or monotonic loading the influence of the damage
anisotropy on the observed creep behavior, i.e. the strain vs. time curves, is not sig-
nificant. If the state of damage is characterized by a tensor (see Sect. 2.4.2) then such
a tensor can be assumed to be coaxial with the stress tensor under monotonic loading
conditions. In such a case only the scalar damage measures will enter the creep con-
stitutive equation. Below we introduce different models oftertiary creep including
the phenomenological, the so-called micromechanically consistent and mechanism
based models. The effect of damage is described by means of scalar valued damage
parameters and corresponding evolution equations. The stress state influences are
expressed in the equivalent stress responsible for the damage evolution.
2.4.1.1 Kachanov-Rabotnov Model. The phenomenological creep-damage
equations were firstly proposed by L. Kachanov [150] and Rabotnov [263]. A new
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internal variable has been introduced to characterize the “continuity” or the “dam-
age” of the material. The geometrical interpretation of thecontinuity variable starts
from changes in the cross-section area of a uni-axial specimen. Specifying the initial
cross-section area of a specimen byA0 and the area of voids, cavities, micro-cracks,
etc. byAD, the Kachanov’s continuity is defined as follows (see [152])

ψ =
A0 − AD

A0

The valueψ = 1 means the virgin, fully undamaged state, the conditionψ = 0
corresponds to the fracture (completely damaged cross-section).

Rabotnov [263, 264, 265] introduced the dual damage variable ω. In [264] he
pointed out that the damage state variableω “may be associated with the area frac-
tion of cracks, but such an interpretation is connected witha rough scheme and is
therefore not necessary”. Rabotnov assumed that the creep rate is additionally de-
pendent on the current damage state. The constitutive equation should have the form

ε̇cr = ε̇cr(σ, ω)

Furthermore, the damage processes can be reflected in the evolution equation

ω̇ = ω̇(σ, ω), ω|t=0 = 0, ω < ω∗,

whereω∗ is the critical value of the damage parameter for which the material fails.
With the power functions of stress and damage the constitutive equation may be
formulated as follows

ε̇cr =
aσn

(1 − ω)m
(2.4.1)

Similarly, the damage rate can be expressed by

ω̇ =
bσk

(1 − ω)l
(2.4.2)

These equations contain the material dependent constants:a, b, n, m, l, k. It is easy
to prove that for the damage free state (ω = 0), the first equation results in the
power law creep constitutive equation.

Settingm = n the first equation can be written as

ε̇cr = aσ̃n, (2.4.3)

where σ̃ = σ/(1 − ω) is the so-called net-stress or effective stress. In this case
(2.4.3) is a generalization of the Norton-Bailey secondarycreep law for the descrip-
tion of tertiary creep process. Lemaitre and Chaboche [185]proposed the effective
stress concept to formulate constitutive equations for damaged materials based on
available constitutive equation for “virgin” materials. An interpretation can be given
for a tension bar, Fig. 2.12. HereA0 denotes the initial cross-section area of the bar,
Fig. 2.12a. From the given tensile forceF the stress can be computed asσ = F/A0.
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Figure 2.12 Strain and damage of a bar.a Initial state,b damaged state,c fictitious undam-
aged state

The axial strain for the loaded barε = (l − l0)/l0 can be expressed as a func-
tion of the stress and the actual damageε = f (σ, ω), Fig. 2.12b. For the effective
cross-sectionÃ = A0 − AD the effective stress is

σ̃ =
F

Ã
=

σ

1 − ω
(2.4.4)

Now a fictitious undamaged bar with a cross-section areaÃ, Fig. 2.12c, having
the same axial strain response as the actual damaged barε = f (σ̃) = f (σ, ω) is
introduced. The strain equivalence principle [183] statesthat any strain constitutive
equation for a damaged material may be derived in the same wayas for a virgin
material except that the usual stress is replaced by the effective stress. Thus the
constitutive equation for the creep rate (2.4.3) is the power law generalized for a
damaged material.

Let us estimate the material constants in the model

ε̇cr = aσ̃n, ω̇ =
bσk

(1 − ω)l
(2.4.5)

based on uni-axial creep curves, Fig. 2.13. Settingω = 0 the first equation yields the
minimum creep rate. The material constantsa andn can be determined from steady
state creep. Leṫεcr

min1 and ε̇cr
min2 be minimum creep rates at the constant stressesσ1

andσ2, respectively. Then the material constants can be estimated from

n =
log(ε̇cr

min1/ε̇cr
min2)

log(σ1/σ2)
, a =

ε̇cr
min1

σn
1

=
ε̇cr

min2

σn
2

(2.4.6)
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Figure 2.13 Phenomenological description of uni-axial creep curves

For a constant stressσ the second equation (2.4.5) can be integrated as follows

ω∗
∫

0

(1 − ω)ldω =

t∗
∫

0

bσkdt

with t∗ as time to fracture of the specimen. Setting the critical damage valueω∗ = 1
we obtain

t∗ =
1

(l + 1)bσk
(2.4.7)

This equation describes the failure time - applied stress relation. For a number of
metals and alloys the experimental data of the long-term strength can be approxi-
mated by a straight line in a double logarithmic scale. Note,that such an approxi-
mation is valid only for a specific stress range, Fig. 2.14. Inthe special casek = l
the material constantsk andb may be estimated from the long-term strength curve
as follows

k =
log(t∗2/t∗1)

log(σ1/σ2)
, b =

1

t∗1(k + 1)σk
1

=
1

t∗2(k + 1)σk
2

with t∗1, t∗2 as failure times corresponding to the applied stressesσ1 andσ2. Inte-
gration of the second Eq. (2.4.5) with respect to time by use of Eq. (2.4.7) provides

ω(t) = 1 −
(

1 − t

t∗

) 1
l+1
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Figure 2.14 Long-term strength curve

After integration of the creep rate equation (2.4.5) withσ = const we obtain

εcr(t) =
aσn−k

b(l + 1 − n)

[

1 −
(

1 − t

t∗

) l+1−n
l+1

]

The creep strainεcr
∗ at timet∗ (fracture strain) can be calculated as

εcr
∗ (t∗) =

aσn−k

b(l + 1 − n)

If k > n then the fracture strain is a decreasing function of stress.This is usually
observed in the case of moderate stresses.

The phenomenological model (2.4.5) characterizes the effect of damage evolu-
tion and describes the tertiary creep in a uni-axial test. For a number of metals and
alloys material constants are available, see e.g. [18, 69, 77, 132, 141, 142, 143, 144,
163, 169, 184, 185, 216]. Instead of the power law functions of stress or damage it is
possible to use another kind of functions, e.g. the hyperbolic sine functions in both
the creep and damage evolution equations. In addition, by the introduction of suit-
able hardening functions or internal hardening variables,the model can be extended
to consider primary creep.

In applying (2.4.5) to the analysis of structures one shouldbear in mind that the
material constants are estimated from experimental creep curves, usually available
for a narrow range of stresses. The linear dependencies betweenlog ε̇cr

min andlog σ
or betweenlog t∗ and log σ do not hold for wide stress ranges. For example, it is
known from materials science that for higher stresses the damage mode may change
from inter-granular to transgranular, e.g. [33]. Alternatively, tertiary creep can be
described by the introduction of several internal variables which are responsible
for different interacting damage mechanisms. Examples forsuch models will be
discussed later.
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The model (2.4.5) is a system of two ordinary differential equations, which must
be integrated over time in order to obtain the current creep strain and damage. For
the analysis of statically indeterminate structures the integration must be performed
numerically, even in the case of a uni-axial stress state. Insome cases the effect of
tertiary creep rate does not lead to significant stress redistribution and one can ne-
glect the damage variable in the constitutive equation (2.4.1), e.g. [276]. The dam-
age evolution equation can be integrated separately providing the time to fracture
estimation for the given constant stress in the steady-state creep range.

To discuss multi-axial versions of (2.4.1) and (2.4.2) let us neglect primary creep
effects and assume the von Mises type secondary creep material model introduced
in Sect. 2.2.1

ε̇εεcr =
3

2
aσn

vM
sss

σvM
(2.4.8)

Rabotnov [264] assumed that the the creep potential for the damaged material has
the same form as for the secondary creep. His proposition wasthe introduction of
an effective stress tensorσ̃σσ = fff (σσσ, ω). For the case of distinct principal values of
the stress tensorσI > σI I > σI I I andσI > 0 the following expression is suggested
[264]

σ̃σσ =
σI

1 − ω
nnnI ⊗ nnnI + σI InnnI I ⊗ nnnI I + σI I InnnI I I ⊗ nnnI I I

If we apply the strain equivalence principle [185] than the constitutive equation
(2.4.8) can be modified by replacing the stress tensorσσσ with the effective one. As-
suming the effective stress tensor in the formσ̃σσ = σσσ/(1 − ω), the constitutive
equation (2.4.8) can be generalized as follows [182]

ε̇εεcr =
3

2
a

(

σvM

1 − ω

)n sss

σvM
(2.4.9)

The next step is the formulation of the damage evolution equation. By analogy with
the uni-axial case, the damage rate should have a form

ω̇ = ω̇(σσσ, ω)

The dependence on the stress tensor can be expressed by meansof the “damage
equivalent stress”σω

eq(σσσ) which allows to compare tertiary creep and long term
strength under different stress states. With the damage equivalent stress, the uni-
axial equation (2.4.2) can be generalized as follows

ω̇ =
b(σω

eq)
k

(1 − ω)l
(2.4.10)

The material constantsa, b, n, k andl can be identified from uni-axial creep curves.
In order to find a suitable expression for the damage equivalent stress, the data from
multi-axial creep tests up to rupture are required. In general, σω

eq can be formulated
in terms of three invariants of the stress tensor, for example the basic invariants (see
Sect. 2.2.1)
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σω
eq = σω

eq[I1(σσσ), I2(σσσ), I3(σσσ)]

Similarly to the uni-axial case, see Eq. (2.4.7), the damageevolution equation
(2.4.10) can be integrated assuming that the stress tensor is a constant function of
time. As a result, the relationship between the time to creepfracture and the equiv-
alent stress can be obtained

t∗ =
1

(l + 1)b
(σω

eq)
−k (2.4.11)

Sdobyrev [288] carried out long-term tests on tubular specimens made from alloys
EI-237B (Ni-based alloy) and EI-405 (Fe-based alloy) undertension, torsion and
combined tension-torsion. The results of the tests are summarized for different tem-
peratures with the help of equivalent stress vs. fracture time plots. The following
dependence was established

1

2
(σI + σvM) = f (log t∗) (2.4.12)

He found that the linear functionf provides a satisfactory description of the ex-
perimental results. The equivalent stress responsible to the long term strength at
elevated temperatures is thenσ∗

eq = 1
2 (σI + σvM). Based on different mechanisms

which control creep failure, the influence of three stress state parameters (the mean
stressσm = I1/3, the first positive principal stress or the maximum tensile stress
σmaxt = (σI + |σI |)/2 and the von Mises stress) is discussed by Trunin in [314].
The Sdobyrev criterion was extended as follows

σ∗
eq =

1

2
(σvM + σmaxt) a1−2η , η =

3σm

σvM + σmaxt
, (2.4.13)

wherea is a material constant. For special loading cases this equivalent stress yields

– uni-axial tension

σ∗
eq = σ, η =

1

2

– uni-axial compression

σ∗
eq =

σa3

2
, η = −1

– pure torsion

σ∗
eq =

√
3 + 1

2
τa, η = 0

The constanta can be calculated from the ultimate stress values leading tothe same
fracture time for a given temperature. For example, if the ultimate tension and shear
stresses areσu andτu, respectively, then

a =
2√

3 + 1

σu

τu
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Hayhurst [132] proposed the following relationship

t∗ = A(ασmaxt + βI1 + γσvM)−χ, (2.4.14)

whereA andχ are material constants,I1 = 3σm andα + β + γ = 1. Comparing
this equation with Eq. (2.4.11) one can obtain

A =
1

(l + 1)b
, χ = k, σω

eq = ασmaxt + βI1 + γσvM (2.4.15)

Hayhurst introduced the normalized stress tensorσ̄σσ = σσσ/σ0 and the normalized
time to fracturet̄∗ = t∗/t∗0, wheret∗0 is the time to fracture in a uni-axial test
conducted at the stressσ0. From Eqs (2.4.7) and (2.4.11) it follows

t̄∗ =

(

σω
eq

σ0

)−k

= (σ̄ω
eq)

−k

By setting the normalized rupture time equal to unity, the equationσ̄ω
eq = 1 follows,

which is connecting the stress states leading to the equal rupture time. In [132]
the data of biaxial tests (biaxial tension test, combined tension and torsion of tubu-
lar specimens) for different materials are summarized. It was found convenient to
present the results in terms of the isochronous rupture surface, which is the plot of
the equation̄σω

eq = 1 for the specified values ofα and β in the normalized stress
space. For plane stress states the isochronous rupture locican be presented in the
normalized principal stress axes. Examples for different materials are presented in
[132]. The coefficientsα andβ are specific for each material and, in addition, they
may depend on the temperature. Figure 2.15 shows the isochronous rupture loci for
three special cases:σ̄ω

eq = σ̄maxt, σ̄ω
eq = σ̄vM andσ̄ω

eq = 3σ̄m. The first two represent
the extremes of the material behavior [182].

A more general expression for the damage equivalent stress can be formulated
by the use of three invariants of the stress tensor. With the first invariantI1, the von
Mises equivalent stressσvM and

sin 3ξ = −27

2

(s · ss · ss · s) ······ sss

σ3
vM

, −π

6
≤ ξ ≤ π

6
,

as a cubic invariant, the following equivalent stress has been proposed in [27]

σω
eq = λ1σvM sin ξ + λ2σvM cos ξ + λ3σvM + λ4 I1 + λ5 I1 sin ξ + λ6 I1 cos ξ

(2.4.16)
The identification of coefficientsλi, i = 1, . . . , 6 requires six independent tests.
Equation (2.4.16) contains a number of known failure criteria as special cases, see
[27]. For example, settingλ1 = λ2 = λ4 = λ5 = λ6 = 0 the equation provides
the von Mises equivalent stress. Taking into account

σI =
1

3

[

2σvM sin

(

ξ +
2π

3

)

+ I1

]

= −1

3
σvM sin ξ +

√
3

3
σvM cos ξ +

1

3
I1
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Figure 2.15 Plane stress isochronous rupture loci, for details see [132]

and with

λ1 = −1

6
, λ2 =

√
3

6
, λ3 =

1

2
, λ4 =

1

6
, λ5 = λ6 = 0

one can obtainσω
eq = 1

2 (σI + σvM). With

λ1 = −1

3
α, λ2 =

√
3

3
α, λ3 = β, λ4 = 1 − 2

3
α − β, λ5 = λ6 = 0

Eq. (2.4.16) yieldsσω
eq = ασI + βσvM + (1 − α − β)I1. Other examples are dis-

cussed in [3].
In order to identify the material constants, e.g.,a in (2.4.13) orα and β in

(2.4.14), the values of the ultimate stresses leading to thesame failure time for
different stress states are necessary. Therefore series ofindependent creep tests up
to rupture are required. For each kind of the test the long term strength curve (stress
vs. time to fracture curve), see Fig. 2.14, must be obtained.For example, a series
of torsion tests (at least two) under different stress values should be performed.
Usually, experimental data from creep tests under complex stress states are limited
and the scatter of the experimental results is unavoidable.Therefore, the constitu-
tive and the evolution equation (2.4.9) and (2.4.10) with the two-parametric dam-
age equivalent stress (2.4.15) are widely used in modeling tertiary creep. Examples
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of material constants as well as structural mechanics applications can be found in
[18, 69, 77, 132, 142, 143, 144, 163, 169] among others.

2.4.1.2 Micromechanically-Consistent Models. The creep constitutive
equation (2.4.9) includes the effect of damage by means of the equivalent stress
concept. An alternative approach to formulate the creep constitutive equation can
be based on micromechanics. Rodin and Parks [277] considered an infinite block
from incompressible isotropic material containing a givendistribution of cracks and
subjected to a far field homogeneous stress. As a measure of damage they used
ρ = a3N/V, whereN is the number of cracks (voids) in a volumeV anda is the
averaged radius of a crack. Assuming power law creep, they found that the creep
potential for such a material has the following form

W(σσσ, ρ, n) =
ε̇0σ0

n + 1
f
(

ζ(σσσ), ρ, n
)

(

σvM

σ0

)n+1

, (2.4.17)

where ε̇0 is the reference creep rate,σ0 is the reference stress andn is a material
constant.ζ(σσσ) is a function representing the influence of the kind of stressstate. In
[277] the following particular expression is proposed

ζ(σσσ) =
σI

σvM
,

whereσI is the maximum principal stress. The creep potential (2.4.17) and the flow
rule (2.1.6) give

ε̇εεcr =
∂W

∂σσσ
=

∂W

∂σvM

∂σvM

∂σσσ
+

∂W

∂ζ

∂ζ

∂σσσ

= ε̇0

(

σvM

σ0

)n [3

2

(

f − ζ f,ζ

n + 1

)

sss

σvM
+

f,ζ

n + 1
nnnI ⊗ nnnI

]

,

(2.4.18)

wherennnI is the first principal direction of the stress tensor. The function f must
satisfy the following convexity condition [277]

f f,ζζ −
n

n + 1
f 2
,ζ > 0,

The form of the functionf is established for the assumed particular distribution of
cracks and by use of a self-consistent approach. In [278] thefollowing expression is
proposed

f (ζ, ρ, n) =
[

1 + α(ρ, n)ζ2
] n+1

2
,

α(ρ, n) =
2ρ

n + 1
+

(2n + 3)ρ2

n(n + 1)2
+

(n + 3)ρ3

9n(n + 1)3
+

(n + 3)ρ4

108n(n + 1)4

Models of the type (2.4.18) are popular in materials sciencerelated literature,
e.g. [121, 211]. They are based on micromechanical considerations and therefore
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seem to be more preferable for creep-damage analysis. However, only idealized
damage states, e.g. dilute non-interacting cracks or voidswith a given density
and specific distribution can be considered. Furthermore, at present there is no
micromechanically-consistent way to establish the form ofthe evolution equation
for the assumed damage variable. Different empirical equations are proposed in the
literature. For example, Mohrmann and Sester [211] assume that the cavity nucle-
ation is strain controlled and recommend the following equation

ρ

ρ f
=

(

εvM

ε f

)γ

,

whereρ f , ε f andγ are material constants which should be identified from “macro-
scopic” creep responses.

Bassani and Hawk [36] proposed to use a phenomenological damage parameter
ω (see Sect. 2.4.1.1) instead ofρ. The functionf is then postulated as follows

f (ζ, ω, n) =
1

(1 − ω)k

(

1 − α0ω + α0ωζ2
) n+1

2
(2.4.19)

Here
ζ = (1 − α1)

σI

σvM
+ α1

σH

σvM

andk, n, α0 andα1 are material constants. From Eqs (2.4.18) and (2.4.19) follows

ε̇εεcr = ε̇0

(

σvM

σ0

)n 1

(1 − ω)k
(1 − α0ω + α0ωζ2)

n−1
2 ×

×
{

3

2
(1 − α0ω)

sss

σvM
+ α0ωζ[(1 − α1)nnnI ⊗ nnnI + α1III]

} (2.4.20)

With α0 = 1 andk = n (2.4.20) yields the Kachanov-Rabotnov type constitutive
equation (2.4.9). By settingα0 = 1, k = (n + 1)/2 and ω ≪ 1 Eq. (2.4.20)
approximates the Rodin and Parks micro-mechanical based model [277]. For the
casek = n, α0 = 1 andα1 = 1 the constitutive equation for the creep rate can be
presented as follows

ε̇εεcr = ε̇0

[

σvM

σ0(1 − ω)

]n

(1 − ω + ωζ2)
n−1

2

[

3

2
(1 − ω)

sss

σvM
+ ωζIII

]

From Eq. (2.4.20) one can calculate the volumetric creep rate

ε̇V = tr ε̇εεcr = ε̇0

(

σvM

σ0

)n 1

(1 − ω)k
(1 − α0ω + α0ωζ2)

n−1
2 [α0ωζ(1 + 2α1)]

We observe that the damage growth induces dilatation. Creepconstitutive equations
(2.4.18) or (2.4.20) include the first principal dyad of the stress tensor. It should be
noted that the dyadnnnI ⊗ nnnI can be found only ifσI 6= 0, σI 6= σI I andσI 6= σI I I .
In this case, e.g. [199]
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nnnI ⊗ nnnI =
1

(σI − σI I)(σI − σI I I)

[

σσσ2 − (tr σσσ − σI)σσσ +
detσσσ

σI
III

]

(2.4.21)

Inserting (2.4.21) into (2.4.18) or into (2.4.20) we observe that not only the volumet-
ric strain but also second order effects (see Sect. 2.2.1 fordiscussion) are “induced”
by damage.

2.4.1.3 Mechanism-Based Models. The constitutive and evolution equations
(2.4.9) and (2.4.10) are formulated in terms of power law functions of stress. It
is known from materials science that the power law creep model guarantees the
correct description only for a specific stress range (see Sect 2.2.3). In addition, the
power law stress and damage functions used in Eqs. (2.4.9) and (2.4.10) may lead to
numerical problems in finite element simulations of creep instructures with stress
concentrations or in attempts to predict the creep crack growth [192, 281].

The uni-axial creep tests are usually performed under increased stress and tem-
perature levels in order to accelerate the creep process. For the long term analysis
of structures the material model should be able to predict creep rates for wide stress
ranges including moderate and small stresses. Within the materials science many
different damage mechanisms which may operate depending onthe stress level and
the temperature are discussed, e.g., [99]. Each of the damage mechanisms can be
considered by a state variable with an appropriate kinetic equation.

Another way for the formulation of a creep-damage constitutive model is the
so-called mechanism-based approach. The internal state variables are introduced
according to those creep and damage mechanisms which dominate for a specific
material and specific loading conditions. Furthermore, different functions of stress
and temperature proposed in materials science can be utilized. The form and the
validity frame of such a function depend on many factors including the stress and
temperature levels, type of alloying, grain size, etc. The materials science formula-
tions do not provide the values of material constants (only the bounds are given).
They must be identified from the data of standard tests, e.g. uni-axial creep test.
Examples of mechanism-based models can be found in [133, 134, 171, 243, 251].
Here we discuss the model proposed by Perrin and Hayhurst in [251] for a 0.5Cr-
0.5Mo-0.25V ferritic steel in the temperature range 600 – 675◦C.

The starting point is the assumption that the rate of the local grain boundary
deformation is approximately a constant fraction of the overall deformation rate.
From this follows that the constitutive equations for the overall creep rate can be
formulated in terms of empirical relationships between thelocal grain boundary
deformation rate and the stress, the temperature, the cavitation rate, etc.

For ferritic steels the nucleation of cavities has been observed at carbide particles
on grain boundaries due to the local accumulation of dislocations. The nucleation
kinetics can be therefore related to the local deformation.Furthermore, the cavity
nucleation depends on the stress state characterized byσI/σvM. Cane [83] observed
that the area fraction of intergranular cavities in the plane normal to the applied
stress increases uniformly with the accumulated creep strain. He proposed that the
nucleation and growth can be combined into an overall measure of cavitation. The
cavitated area fractionA f can be related to the von Mises equivalent creep strain,
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the von Mises equivalent stress and the maximum principal stress by the equation

A f = DεvM

(

σI

σvM

)µ

, (2.4.22)

whereD andµ are constants depending on the material microstructure. Perrin and
Hayhurst define the damage state variableω as the cavitated area fraction. The fail-
ure condition in a uni-axial creep test is the complete cavitation of all grain bound-
aries normal to the applied stress. The cavitated area fraction of such cavities at
failure is approximately1/3. Therefore, the critical state at which the material fails,
can be characterized byω∗ = 1/3.

The important mechanism of creep damage for the ferritic steel under consid-
eration is the temperature dependent coarsening of carbideprecipitates. First, the
carbide precipitates restrict the deformation of the graininterior and second, they
provide sites for nucleation of cavities. Following Dyson [99], the particle coars-
ening can be characterized by the state variableφ = 1 − li/l related to the initial
(li) and current(l) spacing of precipitates. The kinetic equation is derived from the
coarsening theory [99, 101]

φ̇ =

(

Kc

3

)

(1 − φ)4 (2.4.23)

with Kc as the material dependent constant for a given temperature.The rate of the
coarsening variable is independent from the applied stressand can be integrated
with respect to time. The primary creep is characterized by the work hardening due
to the formation of the dislocation substructure. For this purpose a scalar hardening
state variableH is introduced. This variable varies from zero to a saturation value
H∗, at which no further hardening takes place. The proposed evolution equation is

Ḣ =
hc ε̇cr

vM

σvM

(

1 − H

H∗

)

(2.4.24)

with hc as the material constant.
The creep rate is controlled by the climb plus glide deformation mechanism. For

the stress dependence of the creep rate, the hyperbolic sinestress function is used.
The materials science arguments for the use of hyperbolic sine function instead of
power law function are discussed, for example, by Dyson and McLean [102]. With
the assumed mechanisms of hardening, cavitation and ageingand the corresponding
state variables the following equation for the von Mises creep rate is proposed

ε̇cr
vM = A sinh

BσvM(1 − H)

(1 − φ)(1 − ω)
(2.4.25)

The previous equations are formulated with respect to a fixedtemperature. The in-
fluence of the temperature on the processes of creep deformation, creep cavitation
and coarsening can be expressed by Arrhenius functions withappropriate activa-
tion energies. Further details of the physical motivation are discussed in [251]. The
following set of constitutive and evolution equations has been proposed
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ε̇εεcr =
3

2

sss

σvM
A sinh

BσvM(1 − H)

(1 − φ)(1 − ω)
,

Ḣ =
hc ε̇cr

vM

σvM

(

1 − H

H∗

)

,

φ̇ =

(

Kc

3

)

(1 − φ)4,

ω̇ = DNε̇cr
vM

(

σI

σvM

)µ

,

A = A0B exp

(

−QA

RT

)

, B = B0 exp

(

−QB

RT

)

,

Kc =
Kc0

B3
exp

(

−QKc

RT

)

, D = D0 exp

(

−QD

RT

)

,

(2.4.26)

whereN = 1 for σI > 0 andN = 0 for σI ≤ 0. A0, B0, D0, Kc0 , hc, H∗, QA, QB,
QD andQKc are material constants which must be identified from uni-axial creep
tests. The material constantµ, the so-called stress state index, can be determined
from multi-axial creep rupture data. These constants are identified in [251] based on
the experimental data of uni-axial creep over the stress range of28 − 110 MPa and
over the temperature range of615 − 690◦ C. In [252] Eqs (2.4.26) are applied to
model creep in different zones of a weldment at640◦ C including the weld metal,
the heat affected zone and the parent material.

It should be noted that Eqs (2.4.26) are specific for the considered material and
can only be applied with respect to the dominant mechanisms of the creep deforma-
tion and damage evolution. Further examples of mechanism based material models
are presented in [244] for a nickel-based super-alloy and in[171] for an aluminium
alloy.

2.4.1.4 Models Based on Dissipation. Sosnin [296, 297] proposed to charac-
terize the material damage by the specific dissipation work.The following damage
variable has been introduced

q =

t
∫

0

σε̇crdτ (2.4.27)

For the variableq the evolution equation was postulated

q̇ = fσ(σ) fT(T) fq(q)

For the multi-axial stress and strain states this variable is defined as follows

q =

t
∫

0

σσσ ······ ε̇εεcrdτ

In [297] Sosnin presented experimental data for various titanium and aluminium
alloys in a form ofq vs. time curves. He found that a critical valueq∗ exists at
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which the material fails under creep conditions. The valueq∗ does not depend on
the kind of applied stress and can be considered as a materialconstant.

For isotropic materials the creep rate equation can be formulated as follows (see
Sect. 2.2.1)

ε̇εεcr =
3

2

Ṗ

σvM
sss, P = σσσ ······ ε̇εεcr = σvM ε̇cr

vM (2.4.28)

Sosnin assumed the dissipation powerṖ to be a function of the von Mises equivalent
stress, the temperature and the internal state variableq as follows

q̇ ≡ Ṗ = fσ(σvM) fT(T) fq(q)

In many cases the following empirical equation provides a satisfactory agreement
with experimental results

q̇ =
bσn

vM

qk(qk+1
∗ − qk+1)m

, (2.4.29)

whereb, n, k, m andq∗ are material constants. In [297] experimental data obtained
from uni-axial tests and tests on tubular specimens under combined tension and
torsion are presented. Particularly the results of combined tension and torsion tests
show that theq versust curves do not depend on the kind of the stress state. The
material constants are identified for titanium alloys OT-4,BT-5 and BT-9, for the
aluminium alloy D16T and for the steel 45. In [28] the Sosnin’s dissipation damage
measure is applied to the description of creep-damage of thetitanium alloy OT-4
and the aluminium alloy D16T considering stress state effects. In [341]Życzkowski
calculated the dissipation powerP starting from the Kachanov-Rabotnov constitu-
tive equation (2.4.9). He found that for a class of materialsit is possible to express
the damage evolution equation (2.4.10) in terms of the dissipation power. He con-
cluded that this approach allows to reduce the number of material constants to be
determined from creep tests.

2.4.2 Damage-Induced Anisotropy

The dominant damage mechanism for many materials is the nucleation and growth
of cavities and formation of micro-cracks. Cavities nucleate on grain boundaries
having different orientations. At the last stage before creep rupture the coalescence
of cavities and the formation of oriented micro-cracks is observed. The direction of
the orientation depends on the material microstructure andon the kind of the applied
stress. For example, micrographs of copper specimens tested under torsion show that
the micro-cracks dominantly occur on the grain boundaries whose normals coincide
with the direction of the maximum positive principal stress[134, 136, 212]. The
strongly oriented micro-cracks may induce anisotropic creep responses particularly
at the last stage of the creep process. Creep responses of theaustenitic steel X8
CrNiMoNb 1616 and the ferritic steel 13 CrMo 4 4 are experimentally studied in
[63, 105] with respect to different loading orientations. Figure 2.16 schematically
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Figure 2.16 Uni-axial creep tests with different orientations of the loading direction.a Creep
curve for a flat specimen and creep curves for small specimensafter different prestraining,
b creep curves for different loading directions after pre-straining of0.75εcr

∗ (after [63, 105])

presents the results of testing. Uni-axial creep tests werecarried out on flat speci-
mens at different stress and temperature levels. In order toestablish the influence of
the creep history (pre-loading and pre-damage), series of flat specimens were tested
up to different values of the creep strain. The values of the creep pre-straining were
εcr = 0.25εcr

∗ ; 0.5εcr
∗ ; 0.75εcr

∗ , whereεcr
∗ is the creep strain at fracture. After unload-

ing, small specimens were manufactured from the pre-strained flat specimens with
different orientation to the loading axis, Fig. 2.16b. The uni-axial tests performed
on the small specimens show that the creep responses depend on the angle of the
orientationθ. In [105] it is demonstrated that for small specimens pre-strained up
to 0.25εcr

∗ the creep response is not sensitive to the angleθ. The significant depen-
dence of the creep curves and the fracture times on the angleθ has been observed
for specimens pre-strained up to0.75εcr

∗ .
In [218] creep tests were carried out on thin-walled copper tubes under com-

bined tension and torsion. The loading history and the creepresponses are schemat-
ically presented in Fig. 2.17. During the first cycle the specimens were preloaded by
constant normal and shear stresses within the time interval[0, t1]. In the second cy-
cle from t1 up to creep rupture the specimens were loaded under the same constant
normal stress but the reversed constant shear stress. The stress state after the reversal
is characterized by the change of the principal directions.The angle between the first
principal direction in the reference state and after the reversal can be controlled by
the values of the normal and the shear stresses. Creep responses for different angles
are discussed in [218]. It is demonstrated that the creep-damage model with a scalar
damage parameter, see Sect. 2.4.1, is not able to predict thecreep behavior after the
shear stress reversal. Particularly, it significantly underestimates the fracture time in
all loading cases. Similar results are discussed in [219] based on tests on Nimonic
80A.
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Figure 2.17 Creep tests at combined tension and torsion.a Loading history,b creep re-
sponses (after [218])

The introduced examples of experimental observations indicate that the creep
rate and the lifetime of a specimen additionally depend on the orientation of micro-
defects with respect to the principal axes of the stress tensor. One way to consider
such a dependence is the use of a tensor-valued damage parameter. A second rank
damage tensor was firstly introduced by Vakulenko and M. Kachanov [316] for
the description of elastic-brittle damage. The first attempt to use a tensor-valued
damage parameter in creep mechanics is due to Murakami and Ohno [215, 217].
They considered a characteristic volumeV in the material havingN wedge cracks
and specified the area of the grain boundary occupied by thekth crack bydAk

g. They
assumed that the state of damage can be characterized by the following second rank
symmetric tensor

ΩΩΩ =
3

Ag(V)

N

∑
k=1

∫

V

[mmmk ⊗mmmk + wk(III −mmmk ⊗mmmk)]dAk
g, (2.4.30)

wheremmmk is the unit normal vector to thekth crack andAg(V) is the total area of
all grain boundaries inV. wk characterizes the effect of thekth crack on the area
reduction in the planes whose normals are perpendicular tommmk. Specifying the three
principal values ofΩΩΩ by Ωj, j = 1, 2, 3, and the corresponding principal directions
by the unit vectorsnnnj the damage tensor can be formulated in the spectral form

ΩΩΩ =
3

∑
j=1

Ωjnnnj ⊗ nnnj (2.4.31)

The principal values of the damage tensorΩj are related to the cavity area fractions
in three orthogonal planes with the unit normals±nnnj . The casesΩj = 0 and
Ωj = 1 correspond to the undamaged state and the creep-rupture in the jth plane,
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respectively. By analogy with the uni-axial bar (see Fig. 2.12) Murakami and Ohno
introduced a fictitious undamaged configuration in a solid bymeans of effective
infinitesimal area elements. From three orthogonal planes having the unit normals
−nnnj an infinitesimal tetrahedron is constructed with area elements−ñnnidÃi andñnndÃ
so that

ñnndÃ =
3

∑
j=1

nnnjdÃj =
3

∑
j=1

(1 − Ωj)nnnjdAj (2.4.32)

With Ωjnnnj = nnnj ···ΩΩΩ = ΩΩΩ ··· nnnj

ñnndÃ = (III −ΩΩΩ) ··· nnndA (2.4.33)

The stress vector acting in the plane with the unit normalnnn can be specified byσσσ(nnn).
The resultant force vector acting in the planedA is

dAσσσ(nnn) = dAnnn ··· σσσ = dÃñnn ··· (III −ΩΩΩ)−1 ··· σσσ = dÃñnn ··· σ̃σσ, σ̃σσ ≡ (III −ΩΩΩ)−1 ··· σσσ,
(2.4.34)

whereσ̃σσ is the effective stress tensor. Introducing the so-called damage effect tensor
ΦΦΦ ≡ (III −ΩΩΩ)−1 one can write

σ̃σσ = ΦΦΦ ··· σσσ (2.4.35)

According to the strain equivalence principle [185], the constitutive equation for the
virgin material, for example the constitutive equation forthe secondary creep, can
be generalized to the damaged material replacing the Cauchystress tensorσσσ by the
net stress tensor̃σσσ. The net stress tensor (2.4.35) is non-symmetric. Introducing the
symmetric part

σ̃σσs =
1

2
(σσσ ···ΦΦΦ + ΦΦΦ ··· σσσ) (2.4.36)

the secondary creep equation (2.4.8) is generalized as follows [219]

ε̇εεcr =
3

2
aσ̃n−1

vM s̃sss, s̃sss = σ̃σσs − 1

3
trσ̃σσsIII, σ̃vM =

√

3

2
s̃sss ············ s̃sss (2.4.37)

The rate of the damage tensor is postulated as a function of the stress tensor and the
current damage state. The following evolution equation is proposed in [218] for the
description of creep damage of copper

Ω̇ΩΩ = b[ασ̃s
I + (1 − α)σ̃s

vM]k(nnnσ̃σσ
I ···ΦΦΦ ··· nnnσ̃σσ

I )
lnnnσ̃σσ

I ⊗ nnnσ̃σσ
I , (2.4.38)

whereb, α, k and l are material constants and the unit vectornnnσ̃σσ
I denotes the di-

rection corresponding to the first positive principal stress σ̃I . The constitutive and
evolution equations (2.4.37) and (2.4.38) have been applied in [219] for the descrip-
tion of creep-damage behavior of Nimonic 80A. The second rank damage tensor
(2.4.31) and the net stress (2.4.36) have been used in [218] with McVetty-type creep
equations for the prediction of creep-damage of copper. Theresults show that the
model with the damage tensor provides better agreement withexperimental data if
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compared to the model with a scalar damage parameter, see Fig. 2.17. In [217] the
following damage evolution equation is utilized

Ω̇ΩΩ = b[ασ̃s
I + βσ̃m + (1 − α − β)σ̃s

vM]k(tr ΦΦΦ2)l/2
[

ηIII + (1 − η)nnnσ̃σσ
I ⊗ nnnσ̃σσ

I

]

,

(2.4.39)
whereβ andη are material constants. This equation takes into account the influence
of the mean stress on the damage rate. Furthermore, the isotropic part of the damage
tensor associated with the growth of voids is included.

To discuss the damage tensor (2.4.31) let us consider a uni-axial homogeneous
stress stateσσσ = σ0mmm ⊗mmm with σ0 > 0 andmmm = const. Let us specifyΩΩΩ = 000 as the
initial condition. The evolution equation (2.4.38) takes the form

Ω̇ΩΩ(t) = ω̇(t)mmm ⊗mmm, ω̇ =
bσk

0

(1 − ω)k+l
, ω(0) = 0 (2.4.40)

The equation for the scalarω can be integrated as shown in Sect. 2.4.1. As a result
one can find the relation between the time to fracture and the stressσ0. Based on
this relation and experimental data one can estimate the values of material constants
b, k and l (Sect. 2.4.1). According to the introduced damage measure (2.4.31) the
damage stateΩΩΩ = ωmmm⊗mmm corresponds to the case of uniformly distributed penny-
shaped cracks (circular planes) with the unit normalsmmm.

Now let us assume that the damage stateΩΩΩ = ω0mmm ⊗ mmm, 0 < ω0 < 1 is
induced as a result of the constant stressσσσ = σ0mmm ⊗ mmm exerted over a period of
time and in the next loading cycleσσσ = σ0ppp ⊗ ppp, ppp ···mmm = 0. In this case the solution
of (2.4.38) can be written down as follows

ΩΩΩ(t) = ω0mmm ⊗mmm + ω1(t)ppp ⊗ ppp, ω̇1 =
bσk

0

(1 − ω1)k+l
, ω1(0) = 0 (2.4.41)

The model predicts that in the second cycle the material behaves like a virgin un-
damaged material. The corresponding time to fracture does not depend on the initial
damageω0. The rate of nucleation and growth of new voids (cracks) on the planes
orthogonal toppp will not be affected by cracks formed in the first loading cycle. Fur-
thermore, if a compressive stress i.e.σσσ = −σ0ppp ⊗ ppp is applied in the second cycle
the model predicts no damage accumulation.

Let us note that the evolution equations (2.4.38) and (2.4.39) can only be applied
if σ̃I 6= 0, σ̃I 6= σ̃I I andσ̃I 6= σ̃I I I . In this case the dyadnnnσ̃σσ

I ⊗nnnσ̃σσ
I can be found from

the identity (2.4.21). For the stress statesσσσ = a0III or σσσ = appp ⊗ ppp + b(III − ppp ⊗ ppp),
a < b, there is an infinite number of first principal directions. Such stress states are
typical for several structural components. For example, the stress state of the type
σσσ = appp ⊗ ppp + b(III − ppp ⊗ ppp) arises in the midpoint of a transversely loaded square
plate with all for edges to be fixed (e.g. supported or clampededges), [13]. In the
loaded (top) surface of such a plateb < a < 0 while in the bottom surfaceb > a,
a < 0, b > 0. Stress states of the same type arise in different rotationally symmetric
problems of structural mechanics. For analysis of such problems a modified form of
the evolution equation (2.4.39) is required [119].
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Various forms of creep-damage constitutive equations withsecond rank damage
tensors have been utilized. In [12] the effective stress tensor

σ̃σσ = ΦΦΦ1/2 ··· σσσ ···ΦΦΦ1/2 (2.4.42)

proposed in [91] is applied to formulate the creep-damage constitutive equation.
Mechanisms of damage activation and deactivation are takeninto account. The
model predictions are compared with experimental data of creep in copper. In
[259, 260, 261, 262] a second rank damage tensor is applied for the modeling of
creep of nickel-based single crystal super-alloys SRR 99 and CMSX-6 at760◦ C.
The proposed constitutive equations take into account boththe initial anisotropy and
the damage induced anisotropy.

The symmetry group of a symmetric second rank tensor includes at least nine el-
ements (see Sect. 2.3.2). With the second rank damage tensorand the effective stress
tensors (2.4.36) or (2.4.42) only restrictive forms of orthotropic tertiary creep can be
considered (a similar situation is discussed in Sect. 2.3.2). Therefore in many works
it is suggested to introduce higher order damage tensors. For different definitions
of damage tensors one may consult [8, 10, 55, 172, 183, 291]. Acritical review
is given in [284]. At present, the available experimental data on creep responses
do not allow to verify whether the orthotropic symmetry is anappropriate symme-
try assumption for the modeling of anisotropic creep-damage processes. From the
micro-structural point of view one may imagine rather complex three-dimensional
patterns of voids and cracks which nucleate and propagate asthe result of multi-axial
non-proportional loadings. An attempt to predict these patterns would result in a
complex mathematical model with a large (or even infinite) number of internal vari-
ables including tensors of different rank. A model to characterize different patterns
of cracks may be based on the orientation distribution function, orientation averag-
ing and the so-called orientation tensors. This approach iswidely used in different
branches of physics and materials science for the statistical modeling of oriented
micro-structures. Examples include fiber suspensions [181], mixtures [112], poly-
mers and polymer composites [21, 307]. The application of orientational averaging
to characterize damage states under creep conditions is discussed in [212, 240, 300].

Finally let us note, that the material behavior at elevated temperature and non-
proportional loading is a complex interaction of differentdeformation and damage
mechanisms such as hardening, softening, creep-damage, fatigue-damage, etc. Sev-
eral unified models utilize constitutive equations of creepwith kinematic and/or
isotropic hardening and include damage effects by means of the effective stress
concept and the strain equivalence principle. In [158] the Malinin-Khadjinsky kine-
matic hardening rule, see Sect. 2.3.2 and isotropic Kachanov-Rabotnov type damage
variable are discussed. The damage rate is additionally governed by the magnitude
of the hardening variable, so that the coupling effect of damage and strain harden-
ing/softening can be taken into account. It is shown that thekinematic hardening
coupled with isotropic damage predicts well the effect of longer life-time after the
stress reversal. In [98] the Chaboche-Rousselier visco-plasticity model is modified
to predict the coupled creep-plasticity-damage behavior.The scalar damage vari-
able is introduced as a sum of the accumulated time-dependent and cycle-dependent
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components. Various approaches to formulate a unified material model within the
framework of continuum damage mechanics and thermodynamics of dissipative
processes are discussed in [85, 86, 88, 185].

The verification of a unified model with non-linear anisotropic hardening
and damage coupling requires a large number of independent tests under non-
proportional loading. As a rule, accurate experimental data are rarely available.
Furthermore, non-uniform stress and strain fields may be generated in a standard
uni-axial specimen under non-proportional cyclic loadingconditions [189]. They
may be the reason for the large scatter of experimental data and misleading inter-
pretations.



3 Examples of Constitutive Equations for
Selected Materials

In Chapter 2 we discussed theoretical approaches to the modeling of creep behav-
ior. Chapter 3 deals with applications to several engineering materials. The mod-
els include specific forms of the constitutive equation for the creep rate tensor and
evolution equations for internal state variables. In addition, constitutive functions of
stress and temperature are specified. In order to find a set of material constants, creep
tests under constant load and temperature leading to a homogeneous stress state are
required. The majority of available experimental data is presented as creep strain
versus time curves from standard uni-axial tests. Based on these curves the material
constants are identified. It should be taken into account that experimental data may
show a large scatter generated by testing a series of specimens removed from the
same material. The origins of scatter in creep testing are discussed in [100]. Fur-
thermore, unlike small strain elasticity, the creep behavior may significantly depend
on the kind of processing of specimens, e.g. the heat treatment. As a result, differ-
ent data sets for the material with the same chemical composition may be found in
the literature. For example, one may compare experimental data for 9Cr1Mo (P91)
ferritic steel obtained in different laboratories [1, 90, 103, 162, 242, 326].

Section 3.1 provides an overview of constitutive equationsrecently applied to
characterize isotropic creep and long term strength of several alloys. The objective
of Sect. 3.2 is to develop a model for anisotropic creep behavior in a weld metal pro-
duced by multi-pass welding. To explain the origins of anisotropic creep, a mechan-
ical model for a binary structure composed of “fine-grained”and “coarse-grained”
constituents with different creep properties is introduced. The results illustrate the
basic features of the stress redistribution and damage growth in the constituents of
the weld metal and agree qualitatively with experimental observations. The struc-
tural analysis of a welded joint requires a constitutive equation of creep for the
weld metal under multi-axial stress states. For this purpose we apply the approaches
developed in Sect 2.2.2 to model creep for initially anisotropic materials. The out-
come is the a coordinate-free equation for secondary creep formulated in terms of
the Norton-Bailey-Odqvist creep potential and three invariants of the stress tensor.
The material constants are identified according to the experimental data presented
in the literature.
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3.1 Models of Isotropic Creep for Several Alloys

Models of isotropic creep are discussed in Sects 2.2.1, 2.3 and 2.4.1. The creep rate
tensor is assumed to be coaxial with the stress tensor (deviator) and the internal
state variables characterizing the hardening and damage processes are scalars. The
assumption of isotropic creep is usually a good approximation for many metals and
alloys in the case of proportional loading. In this section we summarize the phenom-
enological and mechanism-based material models and present the specific forms of
response functions and material constants for several alloys.

3.1.1 Type 316 Steel

The first example is type 316 stainless steel at 650◦ C. In [193] the following creep
equations are applied

ε̇εεcr =
3

2
f1(σvM)g1(ω)

sss

σvM
, ω̇ = f2

[

σω
eq(σσσ)

]

g2(ω),

εεεcr|t=0 = 000, ω|t=0 = 0, 0 ≤ ω ≤ ω∗,

sss = σσσ − 1

3
tr σσσIII, σvM =

√

3

2
sss ······ sss

(3.1.1)

Hereεεεcr is the creep strain tensor,σσσ is the stress tensor,ω is the scalar valued dam-
age parameter andσω

eq is the damage equivalent stress (see Sects 2.2.1 and 2.4.1).
The response functionsf1, f2, g1, andg2 are

f1(σ) = aσn , g1(ω) = (1 − ω)−n,

f2(σ) = bσk , g2(ω) = (1 − ω)−k (3.1.2)

The material constants are presented in [193] as follows

a = 2.13 · 10−13 MPa−n/h, b = 9.1 · 10−10 MPa−k/h,
n = 3.5, k = 2.8

(3.1.3)

Note, that the constantsa andb in (3.1.2) are found for the constant temperature. In
the general case they must be replaced by functions of temperature. It is assumed
that the damage evolution is controlled by the maximum tensile stress. In this case
the damage equivalent stress takes the form

σω
eq(σσσ) =

σI + |σI |
2

,

whereσI is the first principal stress. The elastic material behavioris characterized
by the following values of the Young’s modulusE and the Poisson’s ratioν

E = 1.44 · 105 MPa, ν = 0.314 (3.1.4)

Let us note that the response functions and material constants in Eqs (3.1.1) can
be found in the literature for numerous metals and alloys. Examples are presented
in the monographs [77, 185, 202, 250, 255, 265, 291].
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3.1.2 Steel 13CrMo4-5

In [289] the creep behavior of steel 13CrMo4-5 at550◦ C is described by (3.1.1)
with the following response functions

f1(σ) = aσn , g1(ω) = 1 − ρ + ρ(1 − ω)−n,

f2(σ) = bσk , g2(ω) = (1 − ω)−l (3.1.5)

The material constants are

a = 1.94 · 10−15 MPa−n/h, b = 3.302 · 10−13 MPa−k/h,
n = 4.354, k = 3.955, l = 1.423, ρ = 0.393

(3.1.6)

The damage equivalent stress is assumed in the form

σω
eq(σσσ) = α

σI + |σI |
2

+ (1 − α)σvM

with α = 0.43. The elastic material constants areE = 1.6 · 105 MPa andν = 0.3.

3.1.3 Aluminium Alloy D16AT

Figure 3.1 shows the experimental data of uni-axial creep for the alloy AlCuMg21 at
300◦ C [163]. The creep behavior is described by (3.1.1) with the following response
functions

f1(σ) = aσn , g1(ω) = (1 − ωr)−n,

f2(σ) = bσk , g2(ω) = (1 − ωr)−k (3.1.7)

The material constants are estimated as follows [163]

a = 0.335 · 10−7 MPa−n/h, b = 1.9 · 10−7 MPa−k/h,
n = 3, r = 1.4, ω∗ = 0.8

(3.1.8)

The multi-axial tertiary creep is assumed to be controlled by the von Mises equiva-
lent stress, i.e.σω

eq(σσσ) = σvM. The elastic material constants areE = 0.65 · 105 MPa
andν = 0.3.

3.1.4 Aluminium Alloy BS 1472

The experimental data for aluminium alloy BS 1472 at 150± 0.5◦ C (Al, Cu, Fe, Ni,
Mg and Si alloy) are published in [171]. The authors proposedto describe the uni-
axial creep curves (loading conditions 227.53, 241.3 and 262 MPa) by use of two
approaches. The first approach is based on (3.1.1) and the time hardening function.
The proposed model is

1 The given abbreviation (DIN 1745) correspond to Russian D16AT. The alloy is similar to
the American alloy 24ST4.



88 3 Examples of Constitutive Equations for Selected Materials

0 4 8 1 2 1 6 2 0 2 4 2 8 3 2
0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1

0 . 1 2

0 . 1 4

0 . 1 6

0 . 1 8

t, h

εcr

σ = 41 MPa52.8 MPa63 MPa

Figure 3.1 Experimental data and model predictions for the aluminium alloy AlCuMg2 at
300◦ C (after [163])

ε̇εεcr =
3

2

aσn−1
vM

(1 − ω)n
ssstm, ω̇ =

b(σω
eq)

k

(1 − ω)l
tm (3.1.9)

with σω
eq = σvM. The material constants in (3.1.9) are identified as follows[171]

a = 3.511 · 10−31 MPa−n/hm+1, b = 1.960 · 10−23 MPa−k/hm+1,
n = 11.034, k = 8.220, l = 12.107, m = −0.3099

(3.1.10)
The elastic material constants areE = 0.71 · 105 MPa andν = 0.3. Equations
(3.1.9) include the time hardening function. The problems associated with the use
of the time hardening model are discussed in Sect. 2.3.1. Theprincipal shortcoming
is that the creep behavior characterized by (3.1.9) dependson the choice of the time
scale. Alternatively the experimental data presented in [171] can be described by
the following equations

ε̇εεcr =
3

2

aσn−1
vM

(1 − ω)m
sss, ω̇ =

b(σω
eq)

k

(1 − ω)l
(3.1.11)

with the following set of material constants

a = 1.35 · 10−39 MPa−n/h, b = 3.029 · 10−36 MPa−k/h,
n = 14.37, k = 12.895, l = 12.5, m = 10

(3.1.12)

In the above equations the primary creep effect is neglected. Figure 3.2 presents the
experimental results and the predictions by Eqs (3.1.9) and(3.1.11).
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Figure 3.2 Experimental data and model predictions for the aluminium alloy BS 1472 at
150± 0.5◦ C (after [171])

The second approach applied in [171] is the mechanism-basedapproach (see
Sect. 2.4.1). The model equations can be summarized as follows

ε̇εεcr =
3

2

A

(1 − ω)n

sss

σvM
sinh

[

BσvM(1 − H)

1 − Φ

]

,

Ḣ =
hc

σvM

A

(1 − ω)n
sinh

[

BσvM(1 − H)

1 − Φ

] (

1 − H

H∗

)

,

Φ̇ =
Kc

3
(1 − Φ)4,

ω̇ =
DA

(1 − ω)n

(

σI

σvM

)µ

N sinh

[

BσvM(1 − H)

1 − Φ

]

,

n =
BσvM(1 − H)

1 − Φ
coth

[

BσvM(1 − H)

1 − Φ

]

,

N = 1 for σI > 0, N = 0 for σI ≤ 0,

0 ≤ ω < 0.3, 0 ≤ Φ < 1, 0 ≤ H ≤ H∗

(3.1.13)

The set of equations (3.1.13) includes the creep constitutive equation and evolution
equations with respect to three internal state variables. The hardening variableH
is introduced to describe primary creep. The variableΦ characterizes the ageing
process. The variableω is responsible for the grain boundary creep constrained
cavitation.

The material constants in (3.1.13) may be divided into threegroups: the con-
stantshc andH∗ must be obtained from the primary creep stage;A andB charac-
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Figure 3.3 Experimental data and simulations for the aluminium alloy BS 1472 at
150± 0.5◦ C (after [171])

terize the secondary creep (minimum creep strain vs. stress); andKc and D must
be found from the tertiary creep stage. The constantµ is the so-called stress state
index, which characterizes the stress state dependence of the damage evolution. The
material constants are identified in [171] as follows

A = 2.960 · 10−11 h−1, B = 7.167 · 10−2 MPa−1,
hc = 1.370 · 105 MPa, H∗ = 0.2032,

Kc = 19.310 · 10−5 h−1, D = 6.630

(3.1.14)

Figure 3.3 presents the experimental creep curves and predictions based on (3.1.13).

This example illustrates that the same experimental data can be described by
quite different relations (3.1.9), (3.1.11) and (3.1.13).The model (3.1.13) seems to
be more preferable since it is based on material science arguments. One feature of
(3.1.13) is the use of a hyperbolic function for the dependence of the minimum
creep rate on the stress instead of the power function in (3.1.11). Let us compare
how the models (3.1.11) and (3.1.13) describe the secondarycreep rate for a wide
stress range. For this purpose we assumeω ≪ 1 in (3.1.11) leading to the Norton-
Bailey creep equatioṅεcr

min = aσn . In (3.1.13) we setH = H∗, ω ≪ 1 andΦ ≪ 1
resulting in ε̇cr

min = A sinh[Bσ(1 − H∗)]. Figure 3.4 shows the minimum creep
rate as a function of stress calculated by the use of materialconstants (3.1.14) and
(3.1.12). We observe that within the stress range227− 262 MPa the minimum creep
rate vs. stress curves coincide. The coincidence of curves is not surprising since the
material constants in both models were identified from creeptests carried out within
the stress range227 − 262 MPa. This stress range is marked in Fig. 3.4 as the iden-
tification range. Furthermore, a wider stress range exist, for which the power law
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Figure 3.4 Minimum creep rate vs. stress by use of the power law and sinh functions

and the hyperbolic sine functions provide nearby the same prediction, Fig. 3.4. If
a structure is loaded in such a way that the von Mises equivalent stress lies within
this range, than both the models would lead to similar results of structural analysis,
e.g. time dependent deformations. However, in most applications one has to analyze
statically indeterminate structures. In this case, if the external loads are constant, the
stresses may rapidly relax down at the beginning of the creepprocess. Therefore,
the range of moderate and small stress values is important inthe structural analy-
sis. For this range the two applied models lead to quite different predictions, Fig.
3.4. In [5, 30] we utilized the models (3.1.11) and (3.1.13) for the structural analy-
sis of pressurized cylindrical shells and transversely loaded rectangular plates. The
maximum values of the von Mises equivalent stress in the reference elastic state of
structures were within the identification range. The results of creep analysis based
on the models (3.1.11) and (3.1.13) qualitatively agree only at the beginning of the
creep process as long as the maximum values of the von Mises equivalent stress
lay within the range of the same prediction. With the relaxation and redistribution
of stresses, the discrepancy between the results increasesleading to quite different
long term predictions. The differences in estimated life times were of up to a factor
5.

3.2 Model for Anisotropic Creep in a Multi-Pass Weld
Metal

For many structures designed for high-temperature applications, e.g., piping sys-
tems and pressure vessels, an important problem is the assessment of creep strength
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of welded joints. The lifetime of the welded structure is primarily determined by
the behavior in the local zones of welds, where time-dependent creep and damage
processes dominate. Different types of creep failure that have occurred in recent
years are discussed in [290], for example. The design of welded structures and their
residual life estimations require engineering mechanics models that would be able to
characterize creep strains, stress redistributions, and damage evolution in the zones
of welds.

A weld is usually considered as a metallurgical notch. The reason for this is
the complex microstructure in the weld metal itself and in the neighboring heat-
affected zone. In recent years many research activities have been directed to the
study of welded joints. First, theoretical and experimental analyzes have addressed
the welding process with the aim of predicting the formationof the microstructure
of the welds and analyzing residual stresses [34]. Second, the behavior of welded
joints under the mechanical and thermal loadings was investigated [145]. Here one
must consider that the stress–strain response at room temperature is quite different
for the weld metal, the heat-affected zone, and the base metal (parent material),
particularly if they are loaded beyond the yield limit. At elevated temperatures quite
different inelastic strain vs. time curves can be obtained in different zones even
in the case of a constant moderate load. Figure 3.5 illustrates zones with different
microstructures and the variation in material behavior within the weld.
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The results of creep testing of cross-weld specimens [143, 144], and specimens
with a simulated microstructure [197, 205, 324, 326] show significant variation in
creep properties in different material zones within the weld. Furthermore, they il-
lustrate that the intercritical region of the heat-affected zone is the weakest part of
the weld with respect to the creep properties. The material with the heat-affected
zone microstructure usually exhibits the highest creep rate and the shortest time to
failure if compared to other material zones within the weld for the same load and
temperature.

For thick and moderately thick cross sections, multi-pass welding is usually
preferred, where many stringer beads are deposited in a defined sequence. As a
result of heating and cooling cycles during the welding process, the complex bead-
type microstructure of the weld metal is formed, where everysingle bead consists of
columnar, coarse-grained, and fine-grained regions, e.g.,[145]. The results of uni-
axial creep tests for the weld metal 9CrMoNbV are reported in[141]. They show
that the creep strain vs. time curves significantly differ for specimens removed from
the weld metal in the longitudinal (welding) direction and the transverse direction.
Furthermore, different types of damage were observed for the longitudinal and the
transverse specimens.

One possibility for studying the creep behavior in structures is the use of con-
tinuum damage mechanics, e.g., [20, 16, 133]. The application of this approach to
welded joints is discussed in [129, 137, 145], for example. Here the weld is consid-
ered as a heterogeneous structure composed of at least threeconstituents—the weld
metal, the heat-affected zone, and the parent material withdifferent creep proper-
ties. Constitutive and evolution equations that are able toreflect experimental data
of primary, secondary, and tertiary creep in different zones of the welded joint are
presented in [103, 129, 137, 145, 324], among others. The results of finite element
simulations illustrate stress redistributions, creep strains, and damage evolution in
different zones of the weld [103, 129, 137, 145]. Furthermore, they allow to analyze
the influence of numerous factors like weld dimensions, types of external loading,
and material properties on the creep behavior of welded structures, e.g., [145]. How-
ever, as far as we know, the anisotropic creep of multi-pass weld metals has not been
considered.

3.2.1 Origins of Anisotropic Creep

A weld bead produced by a single pass welding has a columnar solidification mi-
crostructure. During the multi-pass welding many weld beads are deposited in the
groove by a defined sequence. As a subsequent weld bead is laid, the part of the
metal produced in previous cycles is subjected to the local reheating and cooling.
As a result, the weld beads consist of columnar, coarse grained and fine grained
microstructural zones [141, 145]. A sketch for the typical microstructure of a multi-
pass weld metal is presented in Fig. 3.6. This microstructure depends on many fac-
tors of the welding process like bead size, travel speed, buildup sequence, interpass
temperature, and type of postweld heat treatment [141]. Theresulting inelastic mate-
rial behavior will be apparently determined by the distribution and size of columnar,
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Figure 3.6 Microstructure of the weld metal (after [145])

coarse-grained, and fine-grained zones as well as residual stresses in the weld metal.
It is well established that creep behavior is very sensitiveto the type of microstruc-
ture and, in particular, to grain size. Experimental data illustrating the significant
influence of grain size on creep behavior are presented for copper in [167] and for
various types of steel in [197, 324, 326]. The grain size dependence is explained
in materials science by two creep mechanisms: grain boundary sliding and grain
boundary diffusion. These mechanisms operate under moderate loading and within
a temperature range of0.5 < T/Tm < 0.7, whereTm is the melting tempera-
ture [222] (See Sect. 2.2.3). The principal damage mechanism is the nucleation and
growth of voids on grain boundaries. Many experimental observations show that
the finer the grain structure, the higher the secondary creeprate and the higher the
damage rate for the same loading and temperature conditions.

To discuss the origins of the anisotropic creep in a weld metal let us consider a
uni-axial model of a binary structure composed of constituents with different creep
properties. In what follows let us term the first constituent“fine-grained” or “creep-
weak” and the second one “coarse-grained” or “creep-strong.” Let us describe the
creep behavior of the constituents by use of the Kachanov–Rabotnov model (See
Sect. 2.4.1.1)

ε̇cr =
aσn

(1 − ω)n
, ω̇ =

bσk

(1 − ω)l
(3.2.1)

In what follows we use the subscriptsf andc for the fine-grained and coarse-grained
constituents, respectively. For the sake of simplicity we assume that the constituents
have the same value of Young’s modulusE and the same values of constantsn, k
andl in (3.2.1). Let us introduce the dimensionless quantities

s =
σ

σ0
, ǫ =

ε

ε0
, ǫcr =

εcr

ε0
, τ =

t

t∗ f

, (3.2.2)

wheret∗ f
is the time to fracture of the fine-grained constituent,σ0 is the reference

stress andε0 is the elastic strain atσ0, i.e. ε0 = σ0/E. Equations (3.2.1) can be
formulated for two constituents as follows
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where

ã = ǫ∗ f

(

1 − n

l + 1

)

, b̃ =
1

l + 1
, α =

ε̇cr
minc

ε̇cr
min f

, β =
t∗ f

t∗c

Figure 3.7 illustrates creep curves obtained after integration of (3.2.3) for the cases
n = 3, k = n + 1, l = n + 2, ǫ∗ f

= 5, α = 0.15, β = 0.25, s = 1.
Let us consider a connection of constituents in parallel, asis usually the case for

composite materials, e.g. [4, 89]. The strains and the strain rates can be assumed to
be the same (iso-strain concept)

ε = ε f = εc, ε̇ = ε̇ f = ε̇c (3.2.4)

We assume that a constant loadF = σ0 A, Fig. 3.8, is applied to the composite,
whereA is the cross section area. Specifying byN f and Nc the internal forces in
the constituents so thatN f + Nc = F we can write

σf A f + σc Ac = σ0 A, η f σf + (1 − η f )σc = σ0, η f s f + (1 − η f )sc = 1
(3.2.5)
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Figure 3.8 Normalized stresses vs. normalized time for connection of constituents in parallel

whereη f = A f /A is the volume fraction of the fine-grained constituent. For the
stresses we apply the following constitutive equations

σf = E(ε − εcr
f ), σc = E(ε − εcr

c ) (3.2.6)

Based on Eqs (3.2.3) – (3.2.6) one can formulate a system of ordinary differential
equations describing the stress redistribution between constituents. With respect to
the stress in the fine-grained constituent the following equation can be obtained

ds f

dτ
= ā(1 − η f )

[

α

(1 − η f )n

(1 − η f s f )
n

(1 − ωc)n
−

sn
f

(1 − ω f )n

]

(3.2.7)

Equation (3.2.7) is numerically solved together with the evolution equations for the
damage parameters (3.2.3) and initial conditionss f = 1, ω f = ωc = 0 providing
time variation of the stresss f . The stresssc can be then computed from (3.2.5). The
results are shown in Fig. 3.8 for the caseη f = 0.3. In addition, Fig. 3.9 presents
creep strains and the damage parameters in the constituentsas well as the creep
strain of the “composite”ǫcr ≡ ǫ − 1. At the beginning of the creep process the
creep rate is higher in the fine-grained constituent, Fig. 3.9a. Therefore, the stress
in the fine-grained constituent relaxes down while the stress in the coarse-grained
constituent increases, Fig. 3.8. If we neglect the influenceof damage on the creep
process, i.e. setω f = ωc = 0 in (3.2.7), we obtain the steady-state creep solution.
The corresponding results are plotted in Fig. 3.8 by dotted lines. We observe that the
maximum value ofsc and the minimum value ofs f in the case of creep-damage al-
most coincide with the corresponding steady-state values.The steady-state solution
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Figure 3.9 Connection of constituents in parallel.a Normalized creep strains vs. normalized
time,b damage parameters vs. normalized time

for s f follows from (3.2.7) by settingω f = ωc = 0 and
ds f

dτ = 0. The correspond-
ing value forsc is obtained from (3.2.5). The results are

s fmin
=

α
1
n

1 − η f (1 − α
1
n )

, scmax =
1

1 − η f (1 − α
1
n )

We observe that these stress values are determined by the volume fraction of the
”fine-grained”constituentη f and the ratio of minimum creep ratesα. The stress
valuesc is higher thans f after the initial stress redistribution. Therefore, the coarse-
grained constituent exhibits the higher creep rate and the higher damage rate in
the final stage of the creep process, Fig. 3.9. The calculation predicts the failure
initiation in the coarse-grained constituent.

In the case of a connection of constituents in series (iso-stress approach) we
assume

σ0 = σf = σc, εcr = η f εcr
f + (1 − η f )εcr

c

The results can be obtained by integration (3.2.3) fors f = sc = 1. The correspond-
ing plots of normalized creep strains are presented in Fig. 3.7. The maximum creep
and damage rates are now in the fine-grained constituent. Thelifetime of the binary
structure is determined by the lifetime of the fine-grained constituent for the given
constant stress.

Figure 3.10 shows the creep curves obtained for the two considered cases of the
binary structure under the same constant load. The results of the presented model
provide an analogy to the creep behavior of a weld metal loaded in the longitudi-
nal (welding) and the transverse directions. The experimental creep curves for the
specimen removed from the weld metal in two directions are presented in [141].
They show, that the transverse specimens exhibit higher minimum creep rate. Fur-
thermore, the creep curves for transverse specimens have a much shorter tertiary
stage and lower values of fracture strain if compared to curves for specimens re-
moved in the welding direction. The times to fracture for thetransverse specimens
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Figure 3.10 Creep curves for the binary structure in the cases of parallel and series connec-
tions of constituents

are much shorter than those for the longitudinal specimens.From the results in Fig.
3.10 we observe that these effects are predicted by the mechanical model of the bi-
nary structure. Furthermore, our results for the damage evolution qualitatively agree
with the results of microstructural damage observations presented in [141]. For the
longitudinal specimens extensive voids and cracks were observed in columnar and
coarse-grained regions along the entire specimen length. For the transverse speci-
mens voids and cracks are localized near the fracture surface. The fracture surface
has fine-grained structure and the failure propagated through the fine-grained re-
gions of the specimen.

Based on the presented results we may conclude that among many different
creep and damage mechanisms which may operate and interact during the creep
process an essential role plays the stress redistribution between the creep weak and
creep strong constituents. For longitudinal specimens this mechanism leads to a pro-
longed tertiary creep stage. The material behaves like a “more ductile” material, al-
though the damage and failure occur in the “more brittle” creep-strong constituent.

3.2.2 Modeling of Secondary Creep

For the analysis of welded structures a model which is able toreflect anisotropic
creep in a weld metal under multi-axial stress states has to be developed. Three-
dimensional models for binary or multi-component media arediscussed within the
framework of continuum mechanics (e.g. [22]). A generalization of the compos-
ite model developed in the previous section to the multi-axial stress states would
however require the knowledge of creep properties of constituents under multi-axial
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stress states. Furthermore, creep mechanisms of interaction between constituents,
like frictional sliding should be taken into account.

In what follows we assume the weld metal to be a quasi-homogeneous
anisotropic material. For a description of creep we prefer the engineering creep me-
chanics approach, where the creep potential hypothesis, the representation of tensor
functions and internal state variables are incorporated (see Chapt. 2). The result-
ing constitutive equations are compatible with the finite element method and can be
utilized in standard finite element codes for structural analysis purposes.

Examples for anisotropic creep behavior and related constitutive equations are
presented for single-crystal alloys in [48] and for fiber-reinforced materials in [273].
One problem of anisotropic creep modeling is that the assumed material symmetries
(microstructure symmetries) are difficult to verify in creep tests due to the rela-
tively large scatter of experimental data. Furthermore, the material may lose some
or even all symmetries during the creep as a consequence of hardening and damage
processes. In our case the material symmetries can be established according to the
arrangement of the weld beads in the weld metal. For the structure presented in Fig.
3.6 one can assume the reflectionQQQ1 = III − 2mmm ⊗mmm, the rotationQQQ2 = 2lll ⊗ lll − III
and the reflectionQQQ3 = QQQ1 ··· QQQ2 = III − 2kkk ⊗ kkk to be the elements of the material
symmetry group, whereIII is the second rank unit tensor andkkk, lll andmmm are orthogo-
nal unit vectors.

However, this material symmetry group is poor for the modeling of creep. In-
deed, based on the model discussed in the previous section wecan assume that the
same creep mechanisms will operate by loading the weld metalin kkk- or lll- directions.
Although the experimental data presented in [141] are available only for specimen
removed inmmm- andkkk- directions, one may assume that that the difference between
the experimental creep curves by loading inkkk- andlll- directions will be not essential
with respect to the usual scatter of experimental data. Herewe assume transversely
isotropic creep, where the plane spanned on the vectorskkk andlll is the quasi-isotropy
plane.

The models of steady state creep under the assumption of transverse isotropy
are derived in Sec 2.2.2.1 and 2.2.2.2. Here we apply the creep constitutive equation
(2.2.43).

3.2.3 Identification of Material Constants

In the equivalent stress expression (2.2.41) theαi ’s play the role of dimensionless
factors. Three independent uniform stress states should berealized in order to de-
termineαi. The relevant stress states are

– Uni-axial tension in the directionmmm (longitudinal tension test). In this case the
stress tensor isσσσ = σ0mmm ⊗ mmm, whereσ0 > 0 is the magnitude of the applied
stress. From (2.2.41) and (2.2.43) follows

Jm = σ0, I3m = I4m = 0, σeq = σ0
√

α1,

ε̇εεcr =
√

α1 ε̇eq

[

mmm ⊗mmm − 1

2
(III −mmm ⊗mmm)

]

(3.2.8)



100 3 Examples of Constitutive Equations for Selected Materials

– Uni-axial tension in the directionkkk (transverse tension test), i.e.σσσ = σ0kkk ⊗ kkk,
σ0 > 0. From (2.2.41) and (2.2.43) we obtain

sssp =
1

2
σ0(kkk ⊗ kkk − lll ⊗ lll), Jm = −1

2
σ0,

I3m =
1

4
σ2

0 , I4m = 0, σeq =
1

2
σ0

√

α1 + 3α2,

ε̇εεcr =
ε̇eq

2
√

α1 + 3α2
[(α1 + 3α2)kkk ⊗ kkk + (α1 − 3α2)lll ⊗ lll − 2α1mmm ⊗mmm]

(3.2.9)
– Uniform shear in the plane spanned onmmm andkkk, i.e. σσσ = τ0(mmm ⊗ kkk + kkk ⊗ mmm),

τ0 > 0. From (2.2.41) and (2.2.43)

Jm = I3m = 0, I4m = τ2
0 , ε̇εεcr =

√
3α3

2
ε̇eq(mmm ⊗ kkk + kkk ⊗mmm) (3.2.10)

The next step is the form of the creep potentialW(σeq) or the form of the creep
rate vs. stress dependence in the steady-state range. The criteria for the choice of
a suitable function are the type of the deformation mechanisms operating for the
given stress and temperature range as well as the best fittingof the experimentally
obtained strain vs. time curves. Experimental data for the weld metal 9CrMoNbV
are presented in [141] for the stress range 87-100 MPa and theconstant tempera-
ture 650◦C. The authors used a power law in order to fit the experimentaldata for
secondary creep of longitudinal and transverse specimens.In this case the Norton-
Bailey-Odqvist creep potential can be applied [236]

W(σeq) =
a

n + 1
σn+1

eq , ε̇eq = aσn
eq, (3.2.11)

wherea andn are material constants. For the longitudinal direction from (3.2.8) and
(3.2.11) it follows

ε̇cr
L ≡ mmm ··· ε̇εεcrmmm = aLσn

0 , aL ≡ aα
n+1

2
1 (3.2.12)

Taking the longitudinal direction to be the “reference” direction we set in (3.2.12)
α1 = 1. From (3.2.9) and (3.2.11) we obtain for the transverse direction

ε̇cr
T ≡ kkk ··· ε̇εεcr ··· kkk = aTσn

0 , aT ≡ a

(

1 + 3α2

4

) n+1
2

(3.2.13)

In [141] the values for the material constants are presented. However, the exponent
n is found to be different for the longitudinal and the transverse directions. Different
values forn contradict to the creep potential hypothesis employed in the previous
section. Here we compute the values foraL, aT andn based on the following func-
tional

F(ãL, ãT , n) =
k

∑
i=1

(ãL + nσ̃i − ˜̇εLi
)2 +

k

∑
i=1

(ãT + nσ̃i − ˜̇εTi
)2,

ãL ≡ log aL, ãT ≡ log aT , σ̃ ≡ log σ0, ˜̇εL ≡ log ε̇L, ˜̇εT ≡ log ε̇T ,
(3.2.14)
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Figure 3.11 Minimum creep rates vs. stress (experimental data after [141])

wherek is the number of experimental data points. Setting the first variation ofF to
zero leads to the system of three algebraic equations with respect toãL, ãT andn.
As the result we obtain the following set of material constants

aL = 1.377 · 10−21MPa−n/h, aT = 2.023 · 10−21MPa−n/h, n = 8.12
(3.2.15)

Figure 3.11 shows the experimental data presented in [141] and the numerical pre-
dictions by use of (3.2.12), (3.2.13) and (3.2.15).

Finally let us summarize the constitutive equation for secondary creep and the
set of identified material constants as follows

ε̇εεcr =
3

2
aσn−1

eq

[

Jm

(

mmm ⊗mmm − 1

3
III

)

+ α2sssp + α3(τττm ⊗mmm + mmm ⊗ τττm)

]

,

σ2
eq =

(

mmm ··· σσσ ···mmm − 1

2
tr σσσp

)2

+
3

2
α2tr sss2

p + 3α3τ2
mmm,

a = 1.377 · 10−21MPa−n/h, n = 8.12, α2 = 1.117
(3.2.16)

The weighting factorα3, which stands for the influence of the transverse shear stress,
remains undetermined in (3.2.16). Future work should be directed toward the under-
standing of creep and damage mechanisms in weld metals and related testing under
stress states with nonzero vectorτττm.

Model (3.2.16) is limited only to secondary creep behavior and allows to re-
produce only the secondary part of the creep curves presented in [141]. For the de-
scription of the whole creep process including the primary and tertiary creep stages,
model (3.2.16) can be modified by use of hardening and damage variables.
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4 Modeling of Creep in Structures

In Chapters 2 and 3 we introduced constitutive and evolutionequations for the mod-
eling of creep in engineering materials. The objective of Chapt. 4 is the application
of creep constitutive models to structural analysis. In Sect. 4.1 we start with the
discussion of aims and basic steps in modeling of creep in structures. In Sect. 4.2
we formulate initial-boundary value problems describing creep behavior in three-
dimensional solids and give an overview on numerical solution procedures. Sections
4.3 – 4.4 are devoted to the review and evaluation of structural mechanics models of
beams, plates and shells in the context of their applicability to the analysis of creep
and long term strength. For several problems we develop closed-form solutions and
special numerical solutions based on the Ritz method. The results are applied to ver-
ify finite element solutions obtained by a general purpose finite element code and a
user defined material subroutine. Special numerical examples are selected to illus-
trate the influence of various discretisation parameters (mesh size, number of Gauss
points, etc.) on the solution accuracy. Furthermore, they allow to compare creep life-
time predictions based on different structural mechanics models and related types of
finite elements. To discuss the applicability of the developed techniques to real en-
gineering problems an example of a spatial steam pipeline ispresented. Long term
behavior of the pipeline under constant internal pressure and constant temperature
is simulated by the finite element method. Numerical resultsare compared with the
data from engineering practice.

4.1 General Remarks

The aim of creep modeling is to reflect basic features of creepin structures including
the development of inelastic deformations, relaxation andredistribution of stresses
as well as the local reduction of material strength (see Sect. 1.2). A model should
be able to account for material deterioration processes in order to predict long term
structural behavior and to analyze critical zones of creep failure. Structural analysis
under creep conditions usually requires the following steps:

1. Assumptions must be made with regard to the geometry of thestructure, types
of loading and heating as well as kinematical constraints.

2. A suitable structural mechanics model must be applied based on the assump-
tions concerning kinematics of deformations, types of internal forces (mo-
ments) and related balance equations.
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3. A reliable constitutive model must be formulated to reflect time dependent
creep deformations and processes accompanying creep like hardening/recovery
and damage.

4. A mathematical model of the structural behavior (initial-boundary value prob-
lem) must be formulated including the material independentequations, consti-
tutive (evolution) equations as well as initial and boundary conditions.

5. Numerical solution procedures to solve non-linear initial-boundary value prob-
lems must be developed.

6. The verification of the applied models must be performed including the struc-
tural mechanics model, the constitutive model, the mathematical model as well
as the numerical methods and algorithms.

The first two steps are common within continuum mechanics andengineering me-
chanics. Here, mathematical models of idealized solids andstructures are developed
and investigated. Examples include the models of three-dimensional solids, beams,
rods, plates and shells. The idealizations are related to the continuum hypothesis,
cross section assumptions, etc. The above models were originally developed within
the theory of linear elasticity, e.g. [126, 308]. In creep mechanics they are applied
together with constitutive and evolution equations describing idealized creep behav-
ior (e.g. steady state creep) [77, 139, 173, 202, 234]. As mentioned in Sect. 1.1.2
and Chapt. 2, many structural materials exhibit non-classical creep phenomena such
as different creep rates under tension and compression, stress state dependence of
tertiary creep, damage induced anisotropy, etc. Consideration of such effects may
require various extensions of available structural mechanics models. For example,
the concept of the stress free (neutral) plane widely used inthe theory of beams and
plates becomes invalid in creep mechanics if the material shows different creep rates
under tension and compression (see Sect. 1.2). Below we discuss the applicability
of classical and refined models of beams, plates and shells tothe creep analysis.
Bases on several examples we examine the accuracy of cross section assumptions
for displacement and stress fields.

The mathematical model of creep in structure is the initial-boundary value prob-
lem (IBVP) which usually includes partial differential equations describing kine-
matics of deformation and balance of forces, ordinary differential equations de-
scribing creep processes as well as initial and boundary conditions. The numeri-
cal solution can be organized as follows, e.g. [77, 250]. Forknown values of the
creep strain tensor and internal state variables at a fixed time the boundary value
problem (BVP) is solved. Here direct variational methods, e.g. the Ritz method, the
Galerkin method, the finite element method are usually applied. In addition, a time
step procedure is required to integrate constitutive and evolution equations of creep.
Below various methods are reviewed and discussed with respect to their efficiency
and numerical accuracy.

In recent years the finite element method has become the widely accepted tool
for structural analysis. The advantage of the finite elementmethod is the possibil-
ity to model and analyze engineering structures with complex geometries, various
types of loadings and boundary conditions. General purposefinite element codes
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ABAQUS, ADINA, ANSYS, COSMOS, etc. were developed to solve various prob-
lems in solid mechanics. In application to the creep analysis one should take into
account that a general purpose constitutive equation whichallows to reflect the
whole set of creep and damage processes in structural materials over a wide range
of loading and temperature conditions is not available at present. Therefore, a spe-
cific constitutive model with selected internal state variables, special types of stress
and temperature functions as well as material constants identified from available
experimental data should be incorporated into the commercial finite element code
by writing a user defined material subroutine. Below the ANSYS finite element
code is applied to the numerical analysis of creep in structures. In order to consider
damage processes the subroutines “usercreep” and “userout” are developed and im-
plemented. The former serves to introduce constitutive equations with damage state
variables and corresponding evolution equations. The latter allows the postprocess-
ing of damage, i.e. the creation of contour plots visualizing the damage distributions.

An important question in the creep analysis is that on reliability of the applied
models, numerical methods and obtained results. The reliability assessment may
require the following verification steps:

– Verification of developed finite element subroutines. To assess that the subrou-
tines are correctly coded and implemented, results of finiteelement computa-
tions must be compared with reference solutions of benchmark problems. Sev-
eral benchmark problems have been proposed in [38] based on an in-house finite
element code. Below we formulate and solve own benchmark problems includ-
ing beams and transversely loaded plates. The advantage of these problems is the
possibility to obtain reference solutions by means of the Ritz method without a
finite element discretisation. Furthermore, they allow to verify finite element sub-
routines over a wide range of finite element types including beam, shell and solid
type elements.

– Verification of applied numerical methods. Here the problems of the suitable fi-
nite element mesh density, the time step size and the time step control must be
analyzed. They are of particular importance in creep damagerelated simulations.
Below these problems are discussed based on numerical testsand by means of
comparison with reference solutions.

– Verification of constitutive and structural mechanics models. This step requires
creep testing of model structural components and the corresponding numerical
analysis by the use of the developed techniques. Examples ofrecent experimen-
tal studies of creep in structures include beams [77], transversely loaded plates
[163, 224], thin-walled tubes under internal pressure [164, 177], pressure vessels
[103, 114], circumferentially notched bars [133]. Let us note that the experimen-
tal data for model structures are usually limited to short-term creep tests. The
finite element codes and subroutines are designed to analyzereal engineering
structures. Therefore long-term analysis of several typical structures should be
performed and the results should be compared with data collected from engineer-
ing practice of power and petrochemical plants. Below an example of the creep
finite element analysis for a spatial steam pipeline is discussed.
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4.2 Initial-Boundary Value Problems and General
Solution Procedures

The objective of this Section is to discuss the governing mechanical equations de-
scribing creep in three-dimensional solids and related numerical solution proce-
dures. The set of equations includes material independent equations, constitutive
and evolution equations, see Chapt. 2, as well as the initialand boundary condi-
tions. The formulated IBVP must be solved by numerical methods. Explicit and
implicit time integration methods are reviewed with respect to their accuracy and
efficiency. Within the time-step procedures, different possibilities are discussed to
solve linearized boundary value problems. The attention will be given to the varia-
tional formulations and the use of direct variational methods.

4.2.1 Governing Equations

Let us consider a solid occupying the volumeV with the surfaceA. We assume
that the solid is fixed on the surface partAu and loaded by surface forces on the
part Ap. The position of a material point within the solid in the reference state is
described by the position vectorrrr(qi) = eeeiq

i, i = 1, 2, 3, whereeeei are basis vectors
and qi are coordinates (see Sect. A.2.1). The corresponding position in the actual
state can be characterized by the position vectorRRR(qi, t) or by the displacement
vectoruuu(qi, t) = RRR(qi, t) − rrr(qi). The problem is to find the time sequence of the
actual configurationsRRR(qi, t) as a result of external actions for a given time inter-
val and∀qi ∈ V. The governing equations are discussed in continuum mechanics
e.g. [29, 35, 44, 57, 108, 131, 178, 199]. Constitutive equations describing creep
processes have been introduced in Chapt. 2. Besides the kinematical quantities, ad-
ditional unknowns are the creep strain tensorεεεcr(qi, t) and the set of internal state
variablesHk(qi, t), k = 1, . . . , n andωl(qi, t), l = 1, . . . , m. They are introduced
to characterize the current state of the material microstructure and to reflect the en-
tire previous history of the creep process (see Sect. 2.1). In this section we limit
our considerations to linearized kinematical equations inthe sense of infinitesimal
strains and displacements. Furthermore, we assume a classical non-polar contin-
uum, quasi-static processes and isothermal conditions. The related comments were
made in Sect. 2.1.

The governing equations can be summarized as follows

– kinematical equations
• strain-displacement relation

εεε =
1

2

(

∇∇∇uuu + (∇∇∇uuu)T
)

, qi ∈ V, (4.2.1)

whereεεε is the tensor of infinitesimal strains.
• compatibility condition

∇∇∇××× (∇∇∇× εεε)T = 000, qi ∈ V, (4.2.2)
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– equilibrium conditions

∇∇∇··· σσσ + ρ f̄ff = 000, σσσ× = 000, qi ∈ V, (4.2.3)

whereρ is the material density and̄fff is the density of volumetric forces
– boundary conditions

uuu = ūuu, qi ∈ Au,

σσσ ··· ννν = p̄pp, qi ∈ Ap,
(4.2.4)

whereūuu is the given displacement vector andp̄pp is the vector of given surface forces
andννν is the outward unit normal toAp. The vectors̄fff , p̄pp andūuu can be, in general,
functions of coordinates and time.

With the assumption of infinitesimal strains the additive decomposition of the
total strain into elastic, thermal and creep parts is usually postulated

εεε = εεεel + εεεth + εεεcr (4.2.5)

The constitutive equation for the stress tensor can be assumed in the form of the
generalized Hooke’s law as follows

σσσ = (4)CCC ······ (εεε − εεεth − εεεcr) (4.2.6)

In the case of isotropic elasticity the tensor(4)CCC takes the form

(4)CCC = λIII ⊗ III + µ(eeek ⊗ III ⊗ eeek + eeei ⊗ eeek ⊗ eeei ⊗ eeek), (4.2.7)

whereλ andµ are the Lamé’s constants

µ = G =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1 − 2ν)

E is the Young’s modulus,G is the shear modulus,ν is the Poisson’s ratio.
If an isotropic solid is heated from the reference temperature T0 up to T, the

thermal part of the strain tensor is

εεεth = αT∆TIII, ∆T ≡ T − T0, (4.2.8)

whereαT is the coefficient of the thermal expansion.∆T can be a function of coor-
dinates and time too.

The constitutive equations for the creep rate and evolutionequations for internal
state variables are discussed in Chapt. 2. Here we will use the rate equations in the
following form

ε̇εεcr =
∂Φ
(

σeq(σσσ), Hk, ωl; T
)

∂σσσ
, k = 1, . . . , n, l = 1, . . . , m,

Ḣk = Ḣk

(

σH
eq(σσσ), Hk, ωl; T

)

, ω̇l = ω̇l

(

σω
eq(σσσ), Hk, ωl; T

)
(4.2.9)
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The hardening variablesHk and the damage variablesωl can be scalars or tensors.
For the creep strain as well as for the set of hardening and damage variables the
initial conditions must be specified. Let us assume

εεεcr
∣

∣

∣

t=0
= 000, Hk

∣

∣

∣

t=0
= H0

k , ωl

∣

∣

∣

t=0
= ω0

l , (4.2.10)

whereH0
k andω0

l are the initial values of the hardening and the damage parameters.
Equations (4.2.1) – (4.2.10) describe the quasi-static creep process in a solid.

4.2.2 Vector-Matrix Representation

To formulate initial-boundary value problems and numerical solution procedures
let us rewrite Eqs (4.2.1) – (4.2.10) in the vector-matrix notation. For the sake of
brevity we introduce the Cartesian coordinatesx1, x2, x3. The Cartesian components
of vectors and tensors can be collected into the following “numerical” vectors and
matrices:

Stress vector σσσ σσσT = [σ11 σ22 σ33 σ12 σ23 σ31]

Strain vector εεε εεεT = [ε11 ε22 ε33 γ12 γ23 γ31]

Displacement vector uuu uuuT = [u1 u2 u3]

Vector of creep strains εεεcr εεεcrT = [εcr
11 εcr

22 εcr
33 γcr

12 γcr
23 γcr

31]

Vector of internal variables ξξξ ξξξT = [H1 H2 . . . Hn ω1 ω2 . . . ωm]

Vector of thermal strains εεεth εεεthT
= [αT∆T αT∆T αT∆T 0 0 0]

Vector of body forces f̄ff f̄ff
T

= [ f̄1 f̄2 f̄3]

Vector of surface forces p̄pp p̄ppT = [p̄1 p̄2 p̄3]

Stress vectorσσσννν onνννdA σσσT
ννν = [σν1

σν2 σν3 ]

Normal vector ννν νννT = [ν1 ν2 ν3],
νi = cos(ννν, xi)
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Transformation matrix
uuu
TTT

uuu
TTT =





1 0 0
0 1 0
0 0 1





Transformation matrix
σσσ
TTT

σσσ
TTT =





ν1 0 0 ν2 0 ν3

0 ν2 0 ν1 ν3 0
0 0 ν3 0 ν2 ν1





Differential matrixDDD

DDD =





∂1 0 0 ∂2 0 ∂3

0 ∂2 0 ∂1 ∂3 0
0 0 ∂3 0 ∂2 ∂1





Differential matrixDDD1

DDD1 =



















0 ∂2
3 ∂2

2 0 −∂2∂3 0

∂2
3 0 ∂2

1 0 0 −∂1∂3

∂2
2 ∂2

1 0 −∂1∂2 0 0

0 0 −∂1∂2 − 1
2 ∂2

3
1
2 ∂1∂3

1
2 ∂2∂3

−∂2∂3 0 0 1
2 ∂1∂3 − 1

2 ∂2
1

1
2 ∂1∂2

0 −∂1∂3 0 1
2 ∂2∂3

1
2 ∂1∂2 − 1

2 ∂2
2



















with

∂i =
∂(. . .)

∂xi
, ∂2

i =
∂2(. . .)

∂x2
i

Elasticity matrix (stiffness matrix)EEE

EEE =

















(2µ + λ) λ λ 0 0 0
(2µ + λ) λ 0 0 0

(2µ + λ) 0 0 0
µ 0 0

µ 0
SYM µ



















110 4 Modeling of Creep in Structures

Reciprocal elasticity matrix (compliance matrix)EEE−1

EEE−1 =
1

E

















1 −ν −ν 0 0 0
1 −ν 0 0 0

1 0 0 0
2(1 + ν) 0 0

2(1 + ν) 0
SYM 2(1 + ν)

















With the introduced notations andxxxT = [x1 x2 x3] we can rewrite the governing
equations (4.2.1) – (4.2.10) as follows

Kinematical equations:
Strain-displacement relation

εεε = DDDTuuu, xxx ∈ V (4.2.11)

Compatibility condition
DDD1εεε = 000, xxx ∈ V (4.2.12)

Prescribed boundary displacementsūuu on Au

uuu
TTT uuu = ūuu, xxx ∈ Au (4.2.13)

Equilibrium condition:
DσDσDσ + f̄ff = 000, xxx ∈ V (4.2.14)

Prescribed surface forcesp̄pp on Ap

σσσ
TTT σσσ = σσσννν = p̄pp, xxx ∈ Ap (4.2.15)

Constitutive and evolution equations:

σσσ = EEE(εεε − εεεth − εεεcr), xxx ∈ V (4.2.16)

ε̇εεcr = ggg(σσσ, ξξξ; T)
ξ̇ξξ = hhh(σσσ, ξξξ; T)

(4.2.17)

Initial conditions
εεεcr(xxx, 0) = 000, ξξξ(xxx, 0) = ξξξ0 (4.2.18)
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The functionggg can be formulated if the creep potentialΦ is specified, see Sect.
2.1. The vectorξξξ and and the functionhhh can be defined for the selected internal
state variables and the corresponding evolution equations. Examples of hardening
variables are presented in Sect. 2.3. Damage variables are discussed in Sect. 2.4.

4.2.3 Numerical Solution Techniques

Let us assume that the creep strain vector and the vector of internal state variables
are known functions of the coordinates for a fixed time. With the strain-displacement
relations (4.2.11), the constitutive equations (4.2.16) can be written as follows

σσσ = EEE(DDDTuuu − εεεth − εεεcr) (4.2.19)

Taking into account the equilibrium conditions (4.2.14) and the static boundary con-
ditions (4.2.15) we obtain

DDDEEEDDDTuuu = − f̄ff + DDDEEEεεεth + DDDEEEεεεcr, xxx ∈ V,
σσσ
TTT EEEDDDTuuu = p̄pp+

σσσ
TTT EEEεεεth+

σσσ
TTT EEEεεεcr, xxx ∈ Ap

(4.2.20)

With the kinematic boundary conditions (4.2.13), the partial differential equations
and the boundary conditions (4.2.20) represent the BVP withthe displacement vec-
tor uuu as an unknown vector. Introducing the fictitious force vectors corresponding
to the given thermal strains and the creep strains at fixed time we can write Eqs
(4.2.20) as follows

DDDEEEDDDTuuu = − f̄ff + fff th + fff cr, fff th = DDDEEEεεεth, fff cr = DDDEEEεεεcr,
σσσ
TTT EEEDDDTuuu = p̄pp + pppth + pppcr, pppth =

σσσ
TTT EEEεεεth, pppcr =

σσσ
TTT EEEεεεcr

(4.2.21)

These equations are the equilibrium conditions expressed in terms of three unknown
components of the displacement vector. After the solution of Eqs (4.2.21) one can
obtain the six components of the stress vector from Eq. (4.2.19). Inserting the stress
vector into the creep constitutive equations (4.2.17) one can calculate the rates of the
creep strains and those of the internal variables. Based on the equations introduced,
the IBVP of the typeẎYY = GGG(YYY) can be formulated, whereYYY includes the vectors
of creep strains and internal variables. The operatorGGG involves the solution of the
linearized boundary value problem for the fixed creep strains and internal variables.
The initial conditions are Eqs (4.2.18).

An alternative formulation can be based on the compatibility conditions (4.2.12).
First the constitutive equations (4.2.16) after differentiation with respect to time can
be written as

σ̇σσ = EEE(ε̇εε − ε̇εεth − ε̇εεcr) = EEE
[

ε̇εε − ε̇εεth − ggg(σσσ, ξξξ; T)
]

Reordering this equation the total strain vector takes the form

ε̇εε = EEE−1σ̇σσ + ε̇εεth + ggg(σσσ, ξξξ; T) (4.2.22)
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For isothermal processesε̇εεth = 000. The compatibility condition (4.2.12) can be
rewritten in terms of the strain rate vector

DDD1ε̇εε = 000 (4.2.23)

After inserting (4.2.22) into (4.2.23) we obtain

DDD1EEE−1σ̇σσ + DDD1ggg(σσσ, ξξξ; T) = 000 (4.2.24)

The six equations (4.2.24) describe the stress redistribution during the creep process.
The initial conditions are the solutions of the linear elastic problem for the stresses

DDD1EEE−1σσσ(xxx, 0) = 000,

as well asξξξ(xxx, 0) = ξξξ0. The IBVP can be formulated again asẎYY = GGG(YYY), whereYYY
includes now the stress vector and the vector of internal state variables. The stress
redistribution equation (4.2.24) can be also formulated interms of stress functions.
A variety of stress functions can be found in such a way that the equilibrium condi-
tions (4.2.14) are identically satisfied. As an example we can introduce the vector of
stress functionsψψψ, so thatσσσ = DDD1ψψψ. It is easy to verify that in the absence of body
forces the equilibrium conditionsDDDσσσ = DDDDDD1ψψψ = 000 are identically satisfied. With
the stress functionsψψψ we can write (4.2.24) as follows

DDD1EEE−1DDD1ψ̇ψψ + DDD1ggg(DDD1ψψψ, ξξξ; T) = 000

Because there exist identities between the six compatibility conditions (only three
of them are independent), see e.g. [126], it is possible to transform the six equa-
tions (4.2.24) into three independent equations. For example, one can express six
components of the stress vector by three Maxwell’s stress functions [126, 253]. Af-
ter inserting into (4.2.24) one can obtain three equations for three unknown stress
functions.

In addition to the displacement formulation (4.2.21) and the stress formulation
(4.2.24), it is possible to express the governing equationsin terms of displacements
and stresses. Such mixed formulations can be useful for solving creep problems of
beams, plates and shells.

4.2.3.1 Time Integration Methods. The governing equations include first or-
der time derivatives and the prescribed initial conditions. The unknown displace-
ments in Eqs (4.2.21) or the unknown stresses in (4.2.24) arefunctions of coordi-
nates and time. The exact integration of these equations with respect to the time
variable is feasible only for one-dimensional problems, e.g. for bars or beams. In
the general case of the structural analysis, numerical timeintegration methods must
be applied for solving non-linear IBVP. The commonly used solution technique in
mechanics and thermodynamics is the finite difference method. The time derivatives
are replaced by finite differences. Starting with the initial conditions (in our case the
elastic displacement or stress fields), the finite difference method leads to a step-by-
step solution. A variety of time integration algorithms canbe found in textbooks on
numerical methods, e.g. [93, 107, 127, 287].
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Here we discuss some typical examples of time integration procedures mostly
used in creep analysis. Let us start with the displacement formulation of the gov-
erning equations and neglect the thermal strains for the sake of brevity. The initial
condition is the solution of the elasticity problem

DDDEEEDDDTuuu0 = − f̄ff , σσσ0 = EEEDDDTuuu0 (4.2.25)

with uuu0 = uuu(xxx, 0) andσσσ0 = σσσ(xxx, 0). One way to obtain the displacements and
stresses at timet1 = t0 + ∆t1 is to assume that the rates of the creep strains and the
internal state variables are approximately constant within the time interval[t0, t1].
Then for any time interval[tn, tn+1] we can write

εεεcr
n+1 = εεεcr

n + ∆εεεcr
n , ξξξn+1 = ξξξn + ∆ξξξn,

∆εεεcr
n = ∆tnggg(σσσn, ξξξn; Tn), ∆ξξξn = ∆tnhhh(σσσn, ξξξn; Tn),

∆tn = tn+1 − tn

(4.2.26)

The displacements and stresses attn+1 can be updated using Eqs (4.2.19) and
(4.2.21). Based on the equations introduced we can formulate the following time
integration scheme:

set n = 0, εεεcr
0 = 000, ξξξ0 = 000

solve BVP DDDEEEDDDTuuu0 = − f̄ff , calculate σσσ0 = EEEDDDTuuu0

1: calculate

∆εεεcr
n = ∆tnggg(σσσn, ξξξn, Tn), ∆ξξξn = ∆tnhhh(σσσn, ξξξn, Tn)

εεεcr
n+1 = εεεcr

n + ∆εεεcr
n , ξξξn+1 = ξξξn + ∆ξξξn,

solve BVP

DDDEEEDDDTuuun+1 = − f̄ff + DDDEEEεεεcr
n+1,

σσσn+1 = EEE(DDDTuuun+1 − εεεcr
n+1)

(4.2.27)

if tn+1 < tN and ωl < ωl∗, l = 1, . . . , m then set n := n + 1 go
to 1

else finish

The calculations can be repeated within the whole given interval of time [t0, tN ]
by settingn := n + 1 in Eqs (4.2.26). For the creep-damage related analysis it is
necessary to prove of whether the critical damage state is achieved. If the damage
variable ωl, l = 1, . . . , m attains the critical valueωl∗ the calculations must be
terminated.

The forward difference equations (4.2.26) correspond to the one-step explicit
Euler method. This method is widely used in the creep analysis because of sim-
plicity. The accuracy of the method depends on the time step size. Furthermore,
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this method is conditionally stable that means that the stability is restricted to small
time steps. Therefore stable results can be obtained only for ∆t ≤ ∆tcrit. There is
no general recipe how to control the time step size by the use the one step explicit
method. For example, in [338] it is recommended to compute the time step size from
the condition that the increment of the creep strain does notexceed one half of the
elastic strain, i.e.

∆tnggg(σσσn, ξξξn; Tn) ≤ 1

2
EEE−1σσσn

A further restriction is connected with the assumption thatthe stresses have to be
constant within the time interval[tn, tn+1]. Therefore this method can be recom-
mended for structural analysis under constant or monotonicloading and tempera-
ture conditions only. In the case of loading jumps or cyclic loading changes very
small time steps are necessary in order to provide a stable solution.

One way to improve the accuracy of time-dependent solutionsis the use of
multi-step methods of the Runge-Kutta type, see e.g. [77, 107, 127]. These explicit
methods are conditionally stable as well. However, they provide higher order ac-
curacy if compared with the one-step forward difference method. Furthermore, for
the creep-damage related analysis the so-called embedded methods [127], which al-
low to control the time step size, can be recommended. In [17,18] the embedded
fourth order Kutta-Merson method has been applied to creep problems of shells of
revolution.

The next possibility to improve the one-step method is the use of the generalized
trapezoidal rule [93]

εεεcr
n+1 = εεεcr

n + ∆t
[

(1 − θ)ε̇εεcr
n + θε̇εεcr

n+1

]

,

ξξξn+1 = ξξξn + ∆t
[

(1 − θ)ξ̇ξξn + θξ̇ξξn+1

]

,
(4.2.28)

whereθ (0 ≤ θ ≤ 1) is the parameter controlling the stability. The rule (4.2.28)
includes different well-known methods as special cases. Setting θ = 0 the forward
difference explicit Euler method (4.2.26) follows. Forθ > 0 we obtain a variety of
implicit methods: forθ = 1/2 - the trapezoidal rule (Crank-Nicolson method), and
for θ = 1 the backward difference method (implicit Euler method). The advantage
of the implicit methods is their unconditional stability that means that the solution
will be stable independently on the time step size. The pricefor the unconditional
stability is the necessity to solve non-linear equations ateach time step. Equations
(4.2.28) can be rewritten as follows

εεεcr
n+1 = εεεcr

n + ∆εεεcr
n ,

ξξξn+1 = ξξξn + ∆ξξξn,

∆εεεcr
n = ∆tn [(1 − θ)ggg(σσσn, ξξξn; Tn) + θggg(σσσn+1, ξξξn+1, Tn+1)] ,

∆ξξξn = ∆tn [(1 − θ)hhh(σσσn, ξξξn; Tn) + θhhh(σσσn+1, ξξξn+1, Tn+1)]

(4.2.29)

Equations (4.2.29) are non-linear with respect toξξξn+1 for θ > 0. Note that for a
material model with strain hardening, the vectorξξξn includes the equivalent creep
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strain. In this case Eqs (4.2.29) are non-linear with respect to εεεcr
n+1. These equations

can be solved using known iteration methods. The simplest possibility is the fixed
point iteration method leading to the following scheme at the time step[tn, tn+1]:

set i = 0, εεεcr0

n+1 = εεεcr
n , ξξξ i

n = ξξξn, σσσ0
n+1 = σσσn

1: calculate

∆εεεcri

n =∆tn

[

(1 − θ)ggg(σσσn, ξξξn; Tn) + θggg(σσσi
n+1, ξξξ i

n+1; Tn+1)
]

,

∆ξξξ i
n =∆tn

[

(1 − θ)hhh(σσσn, ξξξn; Tn) + θhhh(σσσi
n+1, ξξξ i

n+1; Tn+1)
]

,

εεεcri+1

n+1 = εεεcr
n + ∆εεεcri

n , ξξξ i+1
n+1 = ξξξn + ∆ξξξ i

n,

if |εεεcri+1

n+1 − εεεcri

n+1| > ǫ and |ξξξ i+1
n+1 − ξξξ i

n+1| > ǫ

then solve BVP

DDDEEEDDDTuuui+1
n+1 = − f̄ff n+1 + DDDEEEεεεcri+1

n+1 ,

σσσi+1
n+1 = EEE

(

DDDTuuui+1
n+1 − εεεcri+1

n+1

) (4.2.30)

set i := i + 1 go to 1

else

set εεεcr
n+1 = εεεcri+1

n+1 , ξξξn+1 = ξξξ i+1
n+1

The accuracy and the efficiency of the implicit method in connection with the in-
troduced iteration scheme is now additionally dependent onthe toleranceǫ and the
convergence rate of the fixed point iterations. The first iteration in the above intro-
duced scheme is the forward difference predictor. Since theconvergence rate of the
fixed point iterations is highly dependent on the “quality” of the first iteration, the
efficiency of this scheme is determined again by the time stepsize. If the desired ac-
curacyǫ is not reached within3− 4 iterations the time step size should be decreased
and the calculations repeated starting from the step 1. The slow convergence of the
fixed point iterations is the drawback of the proposed algorithm. However, in the
case of creep-damage studies this algorithm is more efficient in comparison with the
explicit forward method. Some examples are discussed in [19, 224]. Furthermore,
it is possible to combine the implicit time integration scheme with the Newton-
Raphson iteration method or its modifications providing higher convergence rates.
Examples can be found in [338].

Another widely used technique is to construct an explicit scheme based on the
generalized trapezoidal rule (4.2.28), see e.g. [36, 247].This can be accomplished
by linearizing (4.2.29 with respect tȯξξξn+1. For the sake of brevity let us assume
that the functionsggg andhhh are independent fromT. Then we can write

ε̇εεcr
n+1

∼= ggg(σσσn, ξξξn) + ggg,σσσ(σσσn, ξξξn)∆σσσn + ggg,ξξξ(σσσn, ξξξn)∆ξξξn,

ξ̇ξξn+1
∼= hhh(σσσn, ξξξn) + hhh,σσσ(σσσn, ξξξn)∆σσσn + hhh,ξξξ(σσσn, ξξξn)∆ξξξn

(4.2.31)
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with

ggg,σσσ =
∂ggg

∂σσσ
, ggg,ξξξ =

∂ggg

∂ξξξ
, hhh,σσσ =

∂hhh

∂σσσ
, hhh,ξξξ =

∂hhh

∂ξξξ

From (4.2.29) we obtain

∆εεεcr
n = ∆tn

(

gggn + θgggn,σσσ∆σσσn + θgggn,ξξξ ∆ξξξn

)

,

∆ξξξn = ∆tn
(

hhhn + θhhhn,σσσ∆σσσn + θhhhn,ξξξ ∆ξξξn
)

,
(4.2.32)

where
gggn ≡ ggg(σσσn, ξξξn), hhhn ≡ hhh(σσσn, ξξξn),

gggn,σσσ ≡ ∂ggg

∂σσσ
(σσσn, ξξξn), gggn,ξξξ ≡ ∂ggg

∂ξξξ
(σσσn, ξξξn),

hhhn,σσσ ≡ ∂hhh

∂σσσ
(σσσn, ξξξn), hhhn,ξξξ ≡ ∂hhh

∂ξξξ
(σσσn, ξξξn)

The second equation (4.2.32) can be rewritten as

∆ξξξn = ∆tn
[

III − ∆tnθhhhn,ξξξ

]−1
[hhhn + θhhhn,σσσ∆σσσn] (4.2.33)

Inserting this equation into the first equation (4.2.32) we obtain

∆εεεcr
n =∆tn(gggn + θgggn,σσσ∆tσσσn)+∆t2

nhhhn,ξξξ

[

III − ∆tnθhhhn,ξξξ

]−1
[hhhn + θhhhn,σσσ∆σσσn]

(4.2.34)
Neglecting the last term in the right-hand side of (4.2.34),the first Eq. in (4.2.20)
takes the form

DDDEEEDDDT∆uuun = DDDEEE∆εεεcr
n
∼= ∆tnDDDEEE [gggn + θgggn,σσσ∆σσσn] (4.2.35)

Here f̄ff = const andεεεth = const are assumed. From (4.2.19) the increment of the
stress vector can be computed as follows

∆σσσn = EEE
[

DDDT∆uuun − ∆tngggn − ∆tnθgggn,σσσ∆σσσn

]

,

or

∆σσσn = [III + ∆tnθEEEgggn,σσσ]−1 EEEDDDT∆uuun − ∆tn [III + ∆tnθEEEgggn,σσσ]−1 EEEgggn (4.2.36)

After inserting into (4.2.35) we obtain

DDD [EEE − EEE∗
n] DDDT∆uuun = ∆tnDDDEEEgggn,

EEE∗
n = ∆tnθEEEgggn,σσσ [III + ∆tnθEEEgggn,σσσ]−1 EEE

(4.2.37)

Based on the derived equations it is possible to formulate the following explicit
one-step method:
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set n = 0, εεεcr
0 = 000, ξξξ0 = 000

solve BVP DDDEEEDDDTuuu0 = − f̄ff , calculate σσσ0 = EEEDDDTuuu0

1: calculate

∆εεεcr
n =∆tn(gggn + θgggn,σσσ∆tσσσn) ,

∆ξξξn = ∆tn

[

III − ∆tnθhhhn,ξξξ

]−1
[hhhn + θhhhn,σσσ∆σσσn] ,

EEE∗
n = ∆tnθEEEgggn,σσσ [III + ∆tnθEEEgggn,σσσ]−1 EEE

solve BVP

DDD [EEE − EEE∗
n] DDDT∆∆∆uuun = ∆tDDDEEEgggn,

∆σσσn = EEE(DDDT∆∆∆uuun − ∆εεεcr
n )

(4.2.38)

calculate

εεεcr
n+1 = εεεcr

n + ∆εεεcr
n , ξξξn+1 = ξξξn + ∆ξξξn,

uuun+1 = uuun + ∆uuun, σσσn+1 = σσσn + ∆σσσn

if tn+1 < tN and ωl < ωl∗, l = 1, . . . , m

then set n := n + 1 go to 1

else finish

For θ > 0 this method provides an accuracy of higher order if comparedwith
that for the explicit one-step Euler method. For example, for θ = 1/2 the method
has a second order accuracy while the explicit Euler method (θ = 0) provides a
first order accuracy. Following this algorithm the fictitious force vector∆tDDDEEEgggn

and the stiffness matrixEEE − EEE∗
n must be computed at each time step. The modified

stiffness leads to an additional effort in solving the boundary value problem (4.2.38).
Furthermore, the matrixEEE − EEE∗

n is non-symmetric.

4.2.3.2 Solution of Boundary Value Problems. According to the discussed
time integration algorithms, linearized boundary value problems have to be solved
at each time or iteration step. These problems include second order partial differen-
tial equations with respect to the unknown displacementsuuu(xxx, tn) or displacement
increments∆uuu(xxx, tn). The effect of the accumulated creep strain is considered by
means of fictitious force vectors and/or complementary stiffness matrices. The accu-
mulated creep strain is determined by the entire deformation history. Therefore, the
known analytical methods from the theory of elasticity, e.g. the Fourier series ap-
proach [6] and the complex stress functions approach [126],are not applicable in the
general case of creep with internal state variables. Only for some one-dimensional
problems, e.g. for the Bernoulli-Euler type beam, analytical closed form solutions
of the creep problems can be obtained [77, 202, 236]. These solutions are helpful for
the verification of the general computational methods or general purpose solvers.
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In what follows let us briefly discuss the numerical methods recently used in
creep mechanics. These methods are:

– the finite difference method,
– the direct variational methods and
– the boundary element method.

Applying the finite difference method the partial differential operators are replaced
by finite differences leading to the solution of algebraic equations instead of the
partial differential ones. The utilization is mostly efficient for creep problems lead-
ing to ordinary differential equations. Examples include axi-symmetrically loaded
shells of revolution and circular plates [17, 18, 30, 60, 61,80, 82, 221, 255, 291].

The widely used approach is based on the variational formulations of the creep
problem. Starting from appropriate variational functionals the following direct vari-
ational methods can be applied: the Ritz method, the Galerkin method and the
Vlasov-Kantorovich method. We will briefly discuss the variational formulations
and the classical variational methods in the next subsection. The most powerful
variational method for the structural analysis is the finiteelement method [37, 338]
which is the basis of commercial general purpose solvers, e.g., ABAQUS, ADINA,
ANSYS, COSMOS, etc. The possibility to incorporate a creep material model with
internal state variables is available in commercial codes.The implementation can be
performed by writing a user defined material subroutine.

The boundary element method is based on the transformation of the partial dif-
ferential equations into boundary integral equations. In order to solve these equa-
tions the boundary of the domain is divided into finite elements. As a result a set
of algebraic equations with respect to the vector of displacements (tractions) in the
discretisation points of the boundary can be obtained. In the case of creep an ad-
ditional domain discretisation is necessary in order to store the components of the
creep strain vector [39]. For details of the boundary element technique we refer to
[78, 130, 253].

4.2.3.3 Variational Formulations and Procedures. Variational formulations
are widely used in several problems of solid mechanics. Theyare the basis for direct
variational methods, e.g. the Ritz method, the Galerkin method, the finite element
method. With respect to the type of the BVP, different variational functionals have
been proposed. Here let us consider a variational functional in terms of the displace-
ment vector. Letuuu(qi, t) be the solution of the BVP (4.2.1) - (4.2.6) under givenεεεcr.
Let δuuu be the vector of virtual displacements satisfying the kinematic boundary
conditions (4.2.4). Starting from the equilibrium condition (4.2.3) we can write

∫

V

(∇∇∇ ··· σσσ + ρ f̄ff ) ··· δuuudV = 0 (4.2.39)

According to (A.2.2)
∫

V

(∇∇∇ ··· σσσ) ··· δuuudV =
∫

V

[

∇∇∇ ··· (σσσ ··· δuuu) − σσσ ······ (∇∇∇δuuu)T
]

dV (4.2.40)
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Applying the divergence theorem (see Sect. A.2.3) and the static boundary condi-
tions (4.2.4) we obtain

∫

V

∇∇∇ ··· (σσσ ··· δuuu)dV =
∫

A

(ννν ··· σσσ) ··· δuuudA =
∫

Ap

p̄pp ··· δuuudA (4.2.41)

With σσσ ······ (∇∇∇δuuu)T = σσσ ······ δ(∇∇∇uuu)T = σσσ ······ δεεε, (4.2.40) and (4.2.41), Eq. (4.2.39) takes
the form

∫

V

σσσ ······ δεεεdV −
∫

V

ρ f̄ff ··· δuuudV −
∫

Ap

p̄pp ··· δuuudA = 0, (4.2.42)

or

δWi + δWe = 0, δWi = −
∫

V

σσσ ······ δεεεdV, δWe =
∫

V

f̄ ··· δuuudV +
∫

Ap

p̄pp ··· δuuudA

(4.2.43)
The principle of virtual displacements (4.2.43) states that if a deformable system
is in equilibrium then the sum of the virtual work of externalactionsδWe and the
virtual work of internal forcesδWi is equal to zero, e.g., [6, 253, 321]. With the
constitutive equation (4.2.6)

σσσ ······ δεεε =
(

(4)CCC ······ (εεε − εεεcr − εεεth)
)

······ δεεε

=
1

2
δ(εεε ······ (4)CCC ······ εεε) − (εεεcr + εεεth) ······ (4)CCC ······ δεεε

the variational equation (4.2.43) can be formulated as follows

δ







1

2

∫

V

εεε ······ (4)CCC ······ εεεdV −
∫

V

f̄ff ··· uuudV −
∫

Ap

p̄pp ··· uuudA

−
∫

V

(εεεcr + εεεth) ······ (4)CCC ······ εεεdV



 = 0

or δΠ(uuu) = 0 with

Π(uuu) =
1

2

∫

V

εεε ······ (4)CCC ······ εεεdV −
∫

V

f̄ff ··· uuudV −
∫

Ap

p̄pp ··· uuudA

−
∫

V

(εεεcr + εεεth) ······ (4)CCC ······ εεεdV
(4.2.44)

Applying the vector-matrix notation we can write

Π(uuu) =
1

2

∫

V

(DDDTuuu)TEEEDDDTuuudV −
∫

V

f̄ff
T

uuudV −
∫

Ap

p̄ppTuuudA

−
∫

V

εεεthEEEDDDTuuudV −
∫

V

εεεcrEEEDDDTuuudV
(4.2.45)
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It is easy to verify that from the conditionδΠ(uuu) = 0 follows the partial differential
equation with respect to the displacement vector and the static boundary condition
(4.2.20).

The variational functional (4.2.45) has been derived from the principle of vir-
tual displacements. By analogy a variational functional interms of stresses or stress
functions can be formulated providing Eqs (4.2.24) as Eulerequations. Furthermore,
a mixed variational formulation in terms of displacements and stresses can be conve-
nient for numerous structural mechanics problems. In [18, 224] a mixed variational
functional has been utilized for the solution of the von Kármán type plate equations.
In [16, 20, 225] a mixed formulation has been applied to derive the first order shear
deformation beam equations.

To solve the variational problem classical direct variational methods can be uti-
lized. Let us illustrate the application of the Ritz method to the variational functional
(4.2.45). The approximate solution for the displacement vector ũuu is presented in the
form of series

ũk =
N

∑
i=1

akiφki(x1, x2, x3), k = 1, 2, 3 (4.2.46)

(no summation overk) or

ũuu ≡







ũ1

ũ2

ũ3






=









aaaT
1 φφφ1

aaaT
2 φφφ2

aaaT
3 φφφ3









=







φφφ1 000 000

000 φφφ2 000

000 000 φφφ3







T 





aaa1

aaa2

aaa3






= GGGTaaa, (4.2.47)

whereφφφk are vectors of the trial (basis or shape) functions which should be speci-
fied a priori andaaak are vectors of unknown (free) parameters. The functionsφki in
(4.2.46) must be linearly independent and satisfy the kinematical boundary condi-
tions. Furthermore, the set of these functions must be complete in order to provide
the convergence of̃uuu as N → ∞. Inserting the approximate solutioñuuu into the
variational functional (4.2.45) we can obtain for the time step tn

Π̃n(ũuu) = aaaT





1

2

∫

V

(DDDTGGG)TEEEDDDTGGGdV



 aaa − aaaT
∫

V

GGGf̄ff dV − aaaT
∫

Ap

GGGp̄ppdA

− aaaT





∫

V

(DDDTGGG)TEEEεεεthT
dV +

∫

V

(DDDTGGG)TEEEεεεcr
n

TdV





=
1

2
aaaTKKKaaa − aaaT( fff + fff th + fff cr

n ) = Π̃n(aaa)

(4.2.48)
with
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KKK =
∫

V

(DDDTGGG)TEEEDDDTGGGdV =
∫

V

BBBTEEEBBBdV, BBB = DDDTGGG,

fff =
∫

V

GGGf̄ff dV −
∫

Ap

GGGp̄ppdA,

fff th =
∫

V

BBBTEEEεεεthT
dV, fff cr

n =
∫

V

BBBTEEEεεεcr
n

TdV

From the conditionδΠ̃n(aaa) = 0 follows the set of linear algebraic equations

KKKaaa = fff + fff th + fff cr
n (4.2.49)

After the solution of (4.2.49) the displacements can be computed from (4.2.47) and
stresses from (4.2.19). With the Ritz method and the explicit time integration pro-
cedure the step-by-step solution of a creep problem can be utilized as follows:

set n = 0, εεεcr
0 = 000, ξξξ0 = 000

select the matrix of trial functions GGG

calculate

KKK =
∫

V

BBBTEEEBBBdV, fff =
∫

V

GGGf̄ff dV −
∫

Ap

GGGp̄ppdA, fff th =
∫

V

(DDDTGGG)TEEEεεεthT
dV

solve BVP KKKaaa0 = fff + fff th calculate ũuu0 = GGGTaaa0, σσσ0 = EEEDDDTũuu0

1: calculate

∆εεεcr
n = ∆tnggg(σσσn, ξξξn, Tn), ∆ξξξn = ∆tnhhh(σσσn, ξξξn, Tn)

εεεcr
n+1 = εεεcr

n + ∆εεεcr
n , ξξξn+1 = ξξξn + ∆ξξξn,

calculate

fff cr
n+1 =

∫

V

(DDDTGGG)TEEEεεεcr
n+1

TdV

solve KKKaaan+1 = fff + fff th + fff cr
n+1

calculate ũuun+1 = GGGTaaan+1, σσσn+1 = EEE(DDDTũuun+1 − εεεcr
n+1)

if tn+1 < tN and ωl < ωl∗, l = 1, . . . , m

then set n := n + 1 go to 1

else finish

The vectorfff cr
n must be computed at each time step through a numerical integration.

Therefore, the domain discretisation is required to store the vectorsεεεcr andξξξ. The
accuracy of the solution by the Ritz method depends on the “quality” and the num-
ber of trial functions. For special problems with simple geometry, homogeneous
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boundary conditions, etc., trial functions can be formulated in terms of elemen-
tary functions (e.g. orthogonal polynomials, trigonometric or hyperbolic functions
etc.) defined within the whole domain, e.g. [6]. Examples forsuch problems include
beams [14, 77, 225] and plates [18, 224]. The Ritz method is simple in utilization
and provides an approximate analytical solution.

In the general case of complex geometry, a powerful tool is the finite element
method. The domain is subdivided into finite elements and thepiecewise trial func-
tions (polynomials) are defined within the elements. For details of finite element
techniques we refer to the textbooks [37, 56, 325, 338]. By analogy with the Ritz
method the finite element procedure results in a set of algebraic equations of the
type

KKKδδδn = fff + fff th + fff cr
n , (4.2.50)

whereKKK is the overall stiffness matrix,δδδn is the vector of unknown nodal displace-
ments andfff , fff th and fff cr

n are the nodal force vectors computed from given loads,
thermal strains as well as creep strains at the time or iteration step. The commercial
codes usually include more sophisticated time integrationmethods allowing the au-
tomatic time step size control. The vectorfff cr

n depends on the distribution of creep
strains at the current time step. The creep strains are determined by the constitutive
model and a variety of constitutive models can be applied depending on the material
type, type of loading, available experimental data, etc. Therefore the possibility to
incorporate a user defined material law is usually availablein commercial codes.
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4.3 Beams

Beams are widely discussed in monographs and textbooks on creep mechanics
[77, 139, 152, 173, 201, 202, 234, 250, 292]. The presented examples are, how-
ever, limited to the classical Bernoulli-Euler beam theoryand Norton-Bailey con-
stitutive equations of steady state creep. The objective ofthis section is to analyze
time dependent behavior of beams under creep-damage conditions. For this purpose
we apply the classical beam theory and a refined theory which includes the effect
of transverse shear deformation (Timoshenko type theory).Based on several exam-
ples we compare both theories as they describe creep-damageprocesses in beams.
Furthermore, we develop and solve several benchmark problems. The reference so-
lutions obtained by the Ritz method are applied to verify user-defined creep-damage
material subroutines for the ANSYS finite element code.

4.3.1 Classical Beam Theory

4.3.1.1 Governing Equations. Let us consider a straight homogeneous beam in
the Cartesian coordinate systemx, y, z as shown in Fig. 4.1. For the sake of brevity
we consider the case of symmetrical bending in the plane spanned on thex and
z coordinate lines. Furthermore we introduce geometricallylinear equations. Their
validity is restricted to the case of infinitesimal strains,displacements and cross
section rotations. The governing equations can be summarized as follows

– kinematical equations

eeex

eeex

eeez

eeez

eeey

eeey

x

q(x)eeez

z

P

P
rrr

rrrt
Centroid of cross section

rrr(x, y, z) = eeexx + rrrt(y, z)

rrrt(y, z) = eeeyy + eeezz

Figure 4.1 Beam with a rectangular cross section. Geometry, loading and coordinates
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u(x, z) = u0(x) + ϕ(x)z, ϕ(x) = −w′(x),

εx(x, z) = u′
0(x) + ϕ′(x)z,

(4.3.1)

whereu(x, z) is the axial displacement,u0(x) is the axial displacement of the
beam centerline,ϕ(x) is the angle of the cross section rotation,w(x) is the trans-
verse displacement (deflection) and prime denotes the derivative with respect to
x.

– equilibrium conditions

N′(x) = 0, Q′(x) + q(x) = 0, M′(x) = Q(x), (4.3.2)

whereN(x) is the normal force,Q(x) is the shear force,M(x) is the bending
moment andq(x) is the given distributed load.

– constitutive equations
• normal (bending) stress

σx(x, z) = E[εx(x, z) − αT∆T(x, z) − εcr
x (x, z)]

= E[ε0(x) + χ(x)z − αT(x, z)∆T − εcr
x (x, z)],

(4.3.3)

whereε0 = u′
0 is the strain of the beam centerline andχ = −w′′ is the beam

curvature.
• stress resultants

N(x) =
∫

A

σxdA = EA
[

ε0(x) − εcr
0 (x) − εth

0 (x)
]

,

M(x) =
∫

A

σxzdA = EI
[

χ(x)− χcr(x) − χth(x)
]

,
(4.3.4)

whereA is the cross sectional area,I is the moment of inertia and

εcr
0 (x) =

1

A

∫

A

εcr
x (x, z)dA, εth

0 (x) = αT
1

A

∫

A

∆T(x, z)dA,

χcr(x) =
1

I

∫

A

εcr
x (x, z)zdA, χth(x) = αT

1

I

∫

A

∆T(x, z)zdA

are averages of thermal and creep strains. In terms of fictitious forces and mo-
ments Eqs (4.3.4) can be rewritten as follows

N(x) = EAε0(x) − Ncr(x) − Nth(x),

M(x) = EIχ(x)− Mcr(x) − Mth(x)
(4.3.5)

with

Ncr(x) = E
∫

A

εcr
x (x, z)dA, Nth(x) = EαT

∫

A

∆T(x, z)dA,

Mcr(x) = E
∫

A

εcr
x (x, z)zdA, Mth(x) = EαT

∫

A

∆T(x, z)zdA,
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• creep-damage constitutive and evolution equations (see Sect. 2.4.1.1)

ε̇cr
x =

a|σx |n−1σx

(1 − ω)n
, ω̇ =

bσk
eq

(1 − ω)l
, σeq = α

|σx | + σx

2
+ (1 − α)|σx |

(4.3.6)

The boundary conditions atx = 0 andx = l (l is the beam length) must be formu-
lated with respect to the kinematical quantitiesw, ϕ and/or the dual static quantities
Q, M. The initial conditions att = 0 areεcr

x = 0 andω = 0.

4.3.1.2 Closed Form Solutions. Assuming the idealized creep behavior with
the secondary creep stage only (see Sect. 1.2) a steady stateexists, for which the
bending stress and the deflection rate in a beam are constant.Constitutive equation
for secondary creep follows from (4.3.6) by settingb = 0. For the sake of brevity
let us neglect the thermal strains. The constitutive equation for the bending stress
(4.3.5) takes the form

σx(x, z) = E [χ(x)z − εcr
x (x, z)] (4.3.7)

In the following derivations let us drop the arguments. Taking the time derivative of
(4.3.7) and applying the constitutive equation (4.3.6) we obtain

σ̇x = E(χ̇z − a|σx |n−1σx) (4.3.8)

Equation (4.3.8) describes the stress redistribution in a beam. The steady state solu-
tion follows from (4.3.8) by settinġσx = 0

σx =

(

1

a

) 1
n

|χ̇z| 1
n −1χ̇z (4.3.9)

The bending moment in the steady state can be calculated as follows

M =
∫

A

σxzdA =

(

1

a

) 1
n

In|χ̇|
1
n −1χ̇, (4.3.10)

where
In =

∫

A

|z| 1
n−1z2dA

is the generalized moment of inertia.
As an example let us consider a simply supported beam under a uniformly dis-

tributed loadq. In this statically determined case the bending moment isM(x) =
qx(l − x)/2. From (4.3.10) follows the differential equation for the deflection rate

ẇ(x)′′ = − a

In
n

qn

2n
xn(l − x)n, 0 ≤ x ≤ l (4.3.11)

For integer values of the powern the solution is
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ẇ(x) =
a

In
n

qn

2n
x

n

∑
k=0

αk(ln+k+1 − xn+k+1) (4.3.12)

with

αk = (−1)k n!

k!(n − k)!

ln−k

(n + k + 1)(n + k + 2)

The reference elastic deflection is

w(x) =
q

24EI
x(x − l)(x2 − lx − l2)

Let us note that the closed form solution for the steady statedeflection rate (4.3.12)
is a polynomial of the order2n + 2. Therefore, if the creep problem is numerically
solved applying variational methods (see Sect. 4.2.3.3), the trial functions for the de-
flection or deflection rate should contain the polynomial terms of the order2n + 2
instead of 4 in the elastic case. The order of the polynomial terms of the creep solu-
tion is material-dependent sincen is the creep exponent in the Norton-Bailey creep
law. Furthermore, for the analysis of steady state creep, anaccurate solution cannot
be obtained applying approximations justified from the elastic solution. Closed form
solutions for steady state creep in beams with various typesof boundary conditions
and loading are presented in [77, 202, 234].

4.3.1.3 Approximate Solutions by the Ritz Method. Starting from the prin-
ciple of virtual displacements (4.2.43) we can write

∫

V

σxδεxdV = EI

l
∫

0

w′′δw′′dx + EA

l
∫

0

u′
0δu′

0dx

+

l
∫

0

Mcrδw′′dx −
l
∫

0

Ncrδu′
0dx

=

l
∫

0

qδwdx

Assuming the creep strain to be known function of the coordinatesx andz for the
fixed timet we can formulate the following functional

Πt(w, u0) =
1

2
EI

l
∫

0

w′′2dx +
1

2
EA

l
∫

0

u′2
0 dx

+

l
∫

0

Mcrw′′dx −
l
∫

0

Ncru′
0dx −

l
∫

0

qwdx

The problem is to find such functionsw andu0 that yield an extremum of the func-
tional. The approximate solutions for the fixed timet can be represented in the form
of series
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w(x) = aw
0 φw

0 (x) +
N

∑
i=1

aw
i φw

i (x), u0(x) =
M

∑
i=1

au
i φu

i (x) (4.3.13)

For the simply supported beam the trial functions can be formulated as follows.
φw

0 (x) = x(x− l)(x2 − lx− l2) is the first approximation from the elastic solution.
For φw

i (x) we apply the following polynomials satisfying the boundaryconditions
for the deflectionw = 0 and for the bending momentM = 0 at x = 0 andx = l

φω
i (x) = xi+2(l − x)i+2 (4.3.14)

Assuming thatu0 = 0 atx = 0 the functionsφu
i (x) = xi can be utilized. Collecting

the unknown constant coefficients into the vectoraaaT = [aaawT
aaauT

] with aaawT
=

[aw
0 aw

i ], i = 1, . . . , N andaaauT
= [au

i ], i = 1, . . . , M, the Ritz method yields a set
of linear algebraic equations

∂Πt

∂ak
= 0,

[

RRRww 000
000 RRRuu

] [

aaaw

aaau

]

=

[

fff w

fff u

]

(4.3.15)

with

Rww
kj = EI

l
∫

0

φw
k
′′φw

j
′′dx, k = 1, . . . , N, j = 1, . . . , N,

Ruu
kj = EA

l
∫

0

φu
k
′φu

j
′dx, k = 1, . . . , M, j = 1, . . . , M,

f w
k = q

l
∫

0

φw
k dx −

l
∫

0

Mcrφw
k
′′dx, k = 1, . . . , N,

f u
k =

l
∫

0

Ncrφu
k
′dx, k = 1, . . . , M

After solution of (4.3.15) the stressσx(x, z, t) can be calculated from (4.3.3). For
the known values of the stress and the damage parameter the constitutive model
(4.3.6) yields the rates of creep strain and damage for the time t. From these the
new values for the timet + ∆t are calculated using the implicit time integration
procedure (4.2.28)

εcr(x, z, t + ∆t) = εcr(x, z, t) + ∆t[(1 − θ)ε̇cr(x, z, t) + θε̇cr(x, z, t + ∆t)],

ω(x, z, t + ∆t) = ω(x, z, t) + ∆t[(1 − θ)ω̇(x, z, t) + θω̇(x, z, t + ∆t)],

εcr(x, z, 0) = 0, ω(x, z, 0) = 0, ω(x, z, t) < ω∗

For the calculation of the fictitious creep forceNcr and the creep momentMcr

the Gauss method with 9 integration points in the thickness direction is used. To
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obtain the matricesRRRmn(m, n = w, u) and the vectorsfff w and fff u in (4.3.15) the
Simpson quadrature rule withNs integration points along the beam length axisx is
applied. The values of creep strain and damage at the currenttime step are stored
for all integration points along the beam axis and over the thickness direction. They
are used for the calculations at the next time step. The accuracy of the numerical
solution depends on the number of trial functions in Eq. (4.3.13), on the number of
integration points, and on the time step size.

4.3.1.4 Example. In the following numerical example we examine the conver-
gence of the approximate solution by the Ritz method applying different number
of trial functions. Furthermore, we perform the finite element analysis by ANSYS
code to verify the developed material subroutine and to illustrate the solution accu-
racy with respect to the mesh density.

Solution by the Ritz Method. Let us consider a simply supported and uniformly
loaded beam with a rectangular cross sectiong× h, whereg is the width andh is the
height. For the numerical analysis we setq = 60 N/mm, l = 103 mm,h = 80 mm,
ly = 30 mm. We apply the creep-damage material model (3.1.11) with material
constants for the aluminium alloy BS 1472 (3.1.12) (see Sect. 3.1.4). The damage
evolution is controlled by the von Mises equivalent stress.Consequently, the damage
rate will be the same for tensile and compressive layers of the beam. By setting
α = 0 in (4.3.6) we obtainσeq = |σx |. Therefore, the distribution of|σx | will
be symmetrical with respect to the beam centerline. Furthermore, in Eqs (4.3.15)
Ncr = 0, fff u = 000 and consequentlyaaau = 0.

The time step solutions are performed until the critical damage is achieved in
one of the integration points. The condition of terminationis ω(x f , z f , t∗) > 0.9,
where the integration pointP(x f , z f ) can be specified as a point of failure initia-
tion and the time stept∗ as the time to failure initiation. Figure 4.2 illustrates the
maximum deflection and the maximum stress as functions of time. The results have
been obtained with different number of polynomial terms (4.3.14) in Eqs (4.3.13).
We observe that all applied approximations to the deflectionfunction provide the
same result for the reference elastic state. However, the results for creep are quite
different and depend essentially on the number of trial functions, Fig. 4.2. The ap-
proximation adjusted to the elastic solution (fourth orderpolynomial, curves 1) is
hardly sufficient for the creep-damage analysis. The difference between the life-time
estimations for the case 1 (N = 1) and for the case 4 (N = 8) is up to the factor six.
Figure 4.3 illustrates the convergence against the accurate solution with increasing
number of trial functions. As shown in Sect. 4.3.1.2, the closed form solution for
deflection rate in the steady state creep range is a polynomial of the order2n + 2,
wheren is the material constant in the power law. If the damage evolution is taken
into account then the steady state creep range does not exist, Fig. 4.3. By analogy
with the uni-axial creep curve three creep stages for the beam can be observed. The
“primary” stage is characterized by the decrease in the deflection rate and signifi-
cant stress relaxation. The “secondary” stage can be identified by slow changes in
the rates of deflection growth and stress relaxation. Duringthe “tertiary” stage the
rates rapidly increase. The applied approximations in the cases 3-6, Fig. 4.3, provide
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Figure 4.2 Solutions for a Bernoulli beam based on the Ritz method with the approximation
(4.3.13) and polynomial functions (4.3.14).a Time variation of maximum deflection,b time
variation of maximum stress, 1 – approximation using elastic deflection function, 2 –N = 1,
3 – N = 2, 4 – N = 8

almost the same solutions for the primary and secondary creep stages. The results
differ only in the final stage. Therefore we may conclude thatthe consideration of
damage needs an increased order of approximation, in comparison with the steady
state creep analysis.

Finite Element Solution. The constitutive model (3.1.3) is incorporated into the
ANSYS finite element code by means of the user defined creep material subrou-
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Figure 4.3 Convergence of time-dependent solution for a Bernoulli beam using polynomial
functions (4.3.14).a Time variation of maximum deflection,b time variation of maximum
stress, 1 –N = 1, 2 – N = 2, 3 – N = 3, 4 – N = 5, 5 – N = 7, 6 – N = 8

tine. For details of the ANSYS User Programmable Features and the utilized time
integration methods we refer to [258, 338].

To verify the developed subroutine and to analyze the accuracy of finite element
solutions with respect to the mesh density, the type of finiteelements, the type of
the time integration procedure, etc., benchmark problems are required. Here we
consider the example solved before by the Ritz method. For the meshing we used
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Figure 4.4 Solutions for a Bernoulli beam using the ANSYS code with elements SHELL 43.
a Time variation of maximum deflection,b time variation of maximum stress, 1 – 8 elements,
2 – 10 elements, 3 – 20 elements, 4 – 40 elements, 5 – 80 elements, 6 – 200 elements

the 4-node shell element SHELL 43 available in ANSYS for creep and plasticity
analysis. For the time integration we applied the automatical time stepping feature
with a minimum time step0.1 h.

Figure 4.4 illustrates time variations for the maximum defection and the max-
imum stress. The results have been obtained with a differentnumber of elements
along the beam axis. We observe that all of the used meshes provide the same solu-
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tions for the reference elastic state. However, the creep solutions are highly sensitive
to the mesh density. The best solution (case 6) has been obtained with 200 elements
and after 96 time steps. This solution agrees well with the solution obtained by the
Ritz method, Fig. 4.3. A mesh adjusted to the convergent solution of the linear elas-
ticity problem (case 1) is not fine enough for the creep analysis. The results in the
cases 3-6, Fig. 4.4 agree well in the primary and secondary creep stages and dif-
fer only in the final stage. However, such a difference is not essential if we take
into account the scatter of material data and inaccuracy of the material behavior de-
scription. In this sence the mesh adjusted to the convergentsolution in the pimary
and secondary creep stages is fine enough for the numerical life-time predictions.
In [14, 15] several benchmark problems for beams and rectangular plates solved by
the Ritz method are presented. Finite element solutions forthe same problems have
been perfomed by use of shell, plane and solid type elements.The results illustrate
the correctness of the developed subroutine over the wide range of element types.
Furthermore, the conclusion was made, that the mesh adjusted to convergent solu-
tions in the primary and secondary creep range provides enough accuracy for the
analysis of the whole creep process.

4.3.2 Refined Theories of Beams

4.3.2.1 Stress State Effects and Cross Section Assumptions . For many
materials stress state dependent tertiary creep has been observed in multi-axial tests
(see Sect. 1.1.2). The primary and secondary creep rates aredominantly controlled
by the von Mises stress. The accelerated creep is additionally influenced by the kind
of the stress state. For example, different tertiary creep rates and times to fracture
can be obtained from creep tests under uni-axial tension with the stressσ and under
torsion with the shear stress

√
3τ = σ, e.g. [169]. Figure 4.5a shows creep curves

for tensile, compressive and shearing stresses simulated according to the constitutive
model (3.1.1), (3.1.2) and the material constants (3.1.3) for type 316 stainless steel
at 650◦ C. The selected stress values provide the same value of the von Mises stress.
It is obvious that the tertiary creep rate is significantly dependent on the kind of
loading. Figure 4.5b presents creep curves calculated by the combined action of the
normal and shear stresses. We observe that even a small superposed shear stress can
significantly influence the axial strain response and decrease the fracture time. Fur-
thermore, combined tension-shear and compression-shear loadings with the same
stress magnitudes lead to quite different creep responses.The change of the sign of
the normal stress influences both the normal and the shear creep rates.

The considered loading case is typical for transversely loaded beams, plates and
shells. For beams the local stress state is characterized bynormal (bending) stress
and small superposed transverse shear stress. Transverse shear stress and transverse
shear deformation are neglected within the classical theory of beams. The consid-
ered example indicates that small shear stress can significantly influence the ma-
terial response and cause significant shear strains. Furthermore, the dependence of
creep on the sign of the normal stress can lead to non-classical thickness distribu-
tions of the displacement, strain and stress fields. For example, the concept of the
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Figure 4.5 Creep responses for various stress states computed using Eqs (3.1.1) – (3.1.3).
a Responses by tension, torsion and compression,b responses by combined tension (com-
pression) and torsion

neutral stress-free plane fails and the distribution of thetransverse shear stresses is
non-symmetrical with respect to the midplane.

Cross section assumptions are usually the basis for different refined models of
beams, plates and shells developed within the theory of elasticity. Below we apply
the first order shear deformation theory (Timoshenko-type theory) to creep analysis.
For a beam with a rectangular cross section we compare the results based on differ-
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ent structural mechanics models (classical beam, shear deformable beam and plane
stress model).

4.3.2.2 First Order Shear Deformation Equations. The first order shear de-
formation beam theory can be derived either by the direct approach, e.g. [32], or by
a variational method applied to three-dimensional equations, e.g. [20, 140].

Within the direct approach the beam is modeled as a deformable oriented line.
The deformed configuration is characterized by two independent kinematical quan-
tities: the vector describing the positions of points on theline and the rotation tensor
or vector describing the orientation of cross sections. Furthermore, it is assumed that
the mechanical interaction between neighboring cross sections is only due to forces
and moments. The balance equations are applied directly to the deformable line
and formulated with respect to the beam quantities, i.e. theline mass density (mass
density per unit arc length), the vectors of forces and moments, the line density
of internal energy, etc. The constitutive equations connect the forces and moments
with the strains. A direct approach to formulate constitutive equations for rods and
shells in the case of elasticity is discussed in [23]. Despite the elegance of this ap-
proach several problems arise in application to creep mechanics. The creep consti-
tutive equations must be formulated for inelastic parts of beam like strains (tensile,
transverse shear and bending strains). By analogy to the creep theories discussed in
Chapt. 2 the creep potential should be constructed as a function of the force and the
moment vectors. For example, letTTT be the force vector andMMM the moment vector.
Following the classical creep theory (see Sect. 2.2.1.1) anequivalent stress for the
deformable line can be formulated as a quadratic form with respect toTTT andMMM

t2
eq =

1

2
TTT ··· AAA ··· TTT + TTT ··· BBB ··· MMM +

1

2
MMM ···CCC ··· MMM

The structure of second rank material tensorsAAA, BBB andCCC must be established ac-
cording to the material symmetries and geometrical symmetries of the beam cross
section. The material constants have to be identified eitherfrom creep tests on beams
or by comparing the solutions of beam equations with the corresponding solutions
of three- or two-dimensional problems for special cases of loading. Only a few such
solutions are available in creep mechanics. An example is the pure bending of a
beam under power law secondary creep condition (see Sect. 4.3.1.2). In this case
the steady state creep constitutive equation for the bending strain rate can be ob-
tained from (4.3.10) as follows

χ̇ =
a

In
n
|M|n−1 M

Alternatively the beam equations may be derived in the senseof approximate so-
lution of two- or three-dimensional equations. First, through-the-thickness approx-
imations of displacements and/or stresses are specified. Then, the two- or three-
dimensional boundary value problem is reduced to ordinary differential equations
by means of a variational principle. In order to discuss thisapproach let us consider
a beam with a rectangular cross-section, Fig. 4.6. The governing two-dimensional
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Figure 4.6 Straight beam with a rectangular cross-section

equations for this case can be derived from (4.2.1) - (4.2.9)under the assumption of
the plane stress state, i.e.σσσ ··· eeey = 000. The principle of virtual displacements (4.2.43)
yields

gh

2

l
∫

0

1
∫

−1

(σxδεx + τxzδγxz + σzδεz)dζdx =

l
∫

0

q̄(x)δw(x,−h/2)dx (4.3.16)

Here l denotes the beam length,σx, σy, τxz and εx, εy, γxz are the Cartesian com-
ponents of the stress and strain tensors, respectively,w is the beam deflection and
ζ = 2z/h is the dimensionless thickness coordinate. Here and in the following
derivations we use the abbreviations

(. . .),x ≡ ∂

∂x
(. . .), (. . .),z ≡

∂

∂z
(. . .), (. . .)′ ≡ d

dx
(. . .),

(. . .)• ≡ d

dζ
(. . .), ˙(. . .) ≡ d

dt
(. . .)

Specifying through-the-thickness approximations for theaxial displacementu
and the deflectionw, various one-dimensional displacement based beam theories
can be derived [268]. The classical Bernoulli-Euler theoryis based on the following
displacement approximations

u(x, z) = u0(x) − w′
0(x)

h

2
ζ, w(x, z) = w0(x), (4.3.17)

whereu0, w0 are the displacements of the beam centerline. The refined assumption

u(x, z) = u0(x) + ϕ(x)
h

2
ζ, (4.3.18)

where ϕ denotes the independent cross-section rotation, providesthe first order
shear deformation (Timoshenko-type) beam theory. Anotherrefined displacement
based beam model can be obtained with



136 4 Modeling of Creep in Structures

u(x, ζ) = u0(x) + ϕ(x)
h

2
ζ + u1(x)Φ(ζ),

w(x, ζ) = w0(x) + w1(x)Ω(ζ),
(4.3.19)

whereu0 and w0 are the displacements of the beam centerline,Φ(ζ) and Ω(ζ)
are distribution functions, which should be specified, andu1(x) andw1(x) are un-
known functions of thex-coordinate. The assumptionsΦ(ζ) = (ζh/2)3 , Ω(z) = 0
result in a Levinson-Reddy type theory [186, 267]. From the boundary conditions
γxz(x,±1) = 0 it follows

u(x, ζ) = u0(x) + ϕ(x)
h

2
ζ − [w′

0(x) + ϕ(x)]
h

6
ζ3,

w(x, ζ) = w0(x)

and
dΦ

dζ

∣

∣

∣

ζ=−1
=

dΦ

dζ

∣

∣

∣

ζ=1

The next possibility is the use of stress based approximations. For example,
the equations following from the elasticity solution of theBernoulli-Euler beam
equations are given as

σx =
6M(x)

gh2
ζ,

τxz =
3Q(x)

2gh

(

1 − ζ2
)

,

σz =
3q(x)

4g

(

−2

3
+ ζ − 1

3
ζ3

)

(4.3.20)

Applying the stress approximations equations for an elastic shear deformable plate
have been derived by E. Reissner [270] by means of a mixed variational principle.
The displacement approximations (4.3.19) neglecting the termsu1Φ andw1Ω or
the stress approximations (4.3.20) lead to the first order shear deformation beam
theory. The stress approximations (4.3.20) are not suitable for creep problems be-
cause even in the case of steady state creep the normal stressσx is a non-linear
function of the thickness coordinate (see Sect. 4.3.1.2). To avoid this problem, in
[20] the following approximations for the transverse shearand normal stresses were
applied

τxz =
2Q(x)

gh

ψ•(ζ)

ψ0
,

σz =
q(x)

g

ψ(ζ) − ψ(1)

ψ0
, ψ0 = ψ(1) − ψ(−1)

(4.3.21)

ψ(ζ) is a given function satisfying the boundary conditionsψ•(±1) = 0. Fur-
thermore, the linear through-the-thickness approximation of the axial displacement
u(x, ζ) = u0(x) + ζϕ(x)h/2 was assumed. Applying a mixed type variational
principle the following beam equations were derived in [20]
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– equilibrium conditions

N′ = 0, M′ − Q = 0, Q′ + q = 0, (4.3.22)

– constitutive equation for the shear force

Q = GAk(ϕ + w̃′ − γ̃cr), (4.3.23)

whereG is the shear modulus and

1

k
=

2

ψ2
0

1
∫

−1

ψ•2
(ζ)dζ, w̃(x) =

1

ψ0

1
∫

−1

w(x, ζ)ψ•(ζ)dζ,

γ̃cr(x) =
1

ψ0

1
∫

−1

γcr
xz(x, ζ)ψ•(ζ)dζ

(4.3.24)

By settingGAk → ∞ andγ̃cr = 0 in (4.3.23) the classical beam equations can be
obtained. In this caseϕ = −w̃′ (the straight normal hypothesis). Let us note that
Eqs (4.3.22) and (4.3.23) can be derived applying the directapproach. For plates
and shells this way is shown in [26]. However, in this case themeaning of the quan-
tities GAk andγ̃cr is different. The shear stiffnessGAk plays the role of the beam
like material constant and must be determined either from tests or by comparison
of results according to the beam theory with solutions of three-dimensional equa-
tions of elasto-statics or -dynamics. For a review of different estimates of the shear
correction factork we refer to [154]. Furthermore, the direct approach would re-
quire a constitutive equation for the rate of transverse shear strain ˙̃γ

cr. Within the
applied variational procedure, Eqs (4.3.22) and (4.3.23) represent an approximate
solution of the plane stress problem under special trial functions (4.3.21). Therefore
k andγ̃cr appear in (4.3.24) as numerical quantities and depend on thechoice of the
functionψ(ζ). For example, settingψ(ζ) = ζ we obtain

k = 1, γ̃cr(x) =
1

2

1
∫

−1

γcr
xz(x, ζ)dζ (4.3.25)

With ψ(ζ) = ζ − ζ3/3 we obtain the Reissner type approximation (4.3.20) and

k = 5/6, γ̃cr(x) =
3

4

1
∫

−1

γcr
xz(x, ζ)(1 − ζ2)dζ (4.3.26)

As the next choice let us consider the steady state creep solution of a Bernoulli-
Euler beam (see Sect. 4.3.1.2). According to (4.3.9) and (4.3.10) the bending stress
σx can be expressed as

σx(x, ζ) =
M(x)

gh2

2(2n + 1)

n
|ζ|(1/n)−1ζ
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After inserting this equation into the equilibrium condition

σx,x +
2

h
τxz,ζ = 0 (4.3.27)

and the integration with respect toζ we obtain the transverse shear stress

τxz =
Q(x)

gh

2n + 1

n + 1
(1 − ζ2|ζ|(1/n)−1)

With the trial functions

ψ•(ζ) = 1 − ζ2|ζ|(1/n)−1, ψ(ζ) = ζ − n

2n + 1
ζ|ζ| 1

n +1 (4.3.28)

from (4.3.24) follows

k =
3n + 2

4n + 2
, γ̃cr(x) =

2n + 1

2n + 2

1
∫

−1

γcr
xz(x, ζ)(1 − ζ2|ζ|(1/n)−1)dζ (4.3.29)

By settingn = 1 in (4.3.29) we obtain (4.3.26). The value ofn usually varies be-
tween 3 and 10 for metallic materials. For example, ifn = 3; 10, k = 11/14; 16/21,
respectively. It can be observed that with increasing creepexponent and conse-
quently with increasing creep rate the value ofk decreases (forn → ∞ we ob-
tain k∞ = 3/4). The effect of damage is connected with the increase of the creep
rate. Therefore a decrease of the value ofk can be expected if damage evolution
is taken into account. In addition, if the damage rate differs for tensile and com-
pressive stresses, the thickness distribution of the transverse shear stress will be
non-symmetrical. In this case the functionψ• cannot be selected a priori.

4.3.2.3 Example. In [225] the first order shear deformation equations are solved
by the use of the Ritz method and a time step integration procedure. At a current time
step the transverse shear stress is recovered by an approximate solution of (4.3.27).
The proposed numerical procedure allows to modify the trialfunctions as well ask
andγ̃cr according to the time dependent redistribution ofτxz.

Figure 4.7 presents the results for the uniformly loaded beam with clamped
edges. The calculations have been performed withl = 1000 mm, g = 50 mm,
h = 100 mm andq0 = 50 N/mm. The constitutive model (3.1.1) and the material
constants for the type 316 stainless steel at 650◦ C (3.1.3) were applied. Curve 1
in Fig. 4.7a is the time dependent maximum deflection calculated by the use of the
Bernoulli-Euler beam theory. The corresponding equationsand the numerical pro-
cedure are presented in Sec. 4.3.1.1. Curve 2 is obtained by the use of the first order
shear deformation equations with the approximations (4.3.20) and (4.3.26). Curve
3 is the solution of the same equations but with the modified trial functions. Curve
4 is the ANSYS code solution of the plane stress problem with elements PLANE
42. It is obvious that the Bernoulli-Euler beam theory cannot adequately predict the
deflection growth. Furthermore, the first order shear deformation equations with the
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Figure 4.7 Time-dependent solutions for a clamped beam.a Maximum deflection vs. time,
b shear correction factor vs. time, 1 – Bernoulli–Euler beam theory, 2 – first order shear
deformation theory with parabolic shear stress distribution, 3 – first order shear deformation
theory with modified shear stress distribution, 4 – plane stress solution using the ANSYS
code with PLANE 42 elements

fixed trial functions underestimate the deflection particularly in the tertiary creep
range. The best agreement with the plane stress solution is obtained if the trial func-
tions are modified according to redistribution of the transverse shear stress. In this
case the shear correction factor is time-dependent, Fig. 4.7b. With decreasing value
of k we can conclude that the influence of the shear correction terms in increases.
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ω

Figure 4.8 Damage distribution in a beam at last time step

The results for the beam show that the modified shear stress influences the de-
flection growth in the creep-damage process. On the other hand if we neglect the
damage evolution, the steady state creep solution providesthe shear stress distribu-
tion close to the parabolic one, see Eq. (4.3.28).

Figure 4.8 shows the distribution of the damage parameter atthe last step of cal-
culation. The damage evolution is controlled by the maximumtensile stress, see Eqs
(3.1.1) and (3.1.3). Therefore the zones of the dominant damage are tensile layers
of the clamped edges. Figure 4.9a presents the results forτxz obtained by ANSYS
code with PLANE 42 elements. It can be observed that in the neighborhood of the
beam edges, where the maximum damage occurs, the distribution of the transverse
shear stress is non-symmetrical with respect to the beam midplane. Figures 4.9b
and 4.9c show the solution for the transverse shear stress according to the derived
beam equations. The transverse shear stress is calculated as a product of the shear
force, the distribution functionψ• and a constant factor. For the considered beam
the shear forceQ(x) = q(l/2 − x) remains constant during the creep process.
Therefore, the time redistribution of the transverse shearstress is only determined
by the time-dependence of the functionψ•. Figure 4.9c illustratesψ• for different
time steps.

The presented example illustrates that transverse shear deformation and trans-
verse shear stress cannot be ignored in creep-damage analysis of beams. The first
order shear deformation theory provides satisfactory results if compared to the re-
sults of the plane stress model. Further investigations arerequired to establish the
constitutive equations and material constants for beams with arbitrary cross sections.
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Figure 4.9 Time-dependent solutions of a clamped beam.a Transverse shear stresses at last
time step, solution with PLANE 42 elements,b shear force according to the beam equations,
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4.4 Plates and Shells

Thin and moderately thick structural components are widelyused in the power and
petrochemical plant industry. Examples include pressure vessels, boiler tubes, steam
transfer lines, etc. At elevated temperature the load carrying capacity and the life-
time of a structure are limited by the development of irreversible creep strains and
damage processes. The failure modes under creep-damage conditions may include
unacceptable changes of the components shape, creep buckling and loss of the ma-
terial strength, e.g. [275]. The first two modes are associated with excessive creep
deformations and stress redistributions. Local changes ofshape of the component
may lead to the loss of functionality of the whole structure.Creep buckling may
occur if external loading leads to compressive stresses. A thinwalled structure de-
signed against spontaneous “elastic” buckling may fail after a certain critical time
as a consequence of stress redistribution. The degradationof material strength is the
result of damage processes including creep cavitation, thermal ageing, oxidation,
etc.

4.4.1 Approaches to the Analysis of Plates and Shells

To discuss available results of creep in plate and shell structures let us categorize
the recent studies according to the problem statement, the type of the constitutive
model and the type of the structural mechanics model involved in the analysis. Creep
problems for thin and moderately thick plates and shells aresummarized in Table
4.1. Constitutive equations of creep under multi-axial stress states were discussed
in Chapt. 2. Table 4.2 provides an overview of several constitutive models recently
applied to the analysis of plates and shells. The corresponding structural mechanics
models are given in Table 4.3. The overviews presented in Tables 4.1 – 4.3 lead
to a conclusion that the type and the order of complexity of the applied structural

References Type of Problem
[82, 220, 221] Shells of revolution, steady state creep
[224, 327] Plates, primary and secondary creep
[17, 60, 62] Shells of revolution, plates, finite deflections, creep buckling
[11, 80, 81] Shells of revolution, dynamic creep, long-term strength
[18, 19] Shells of revolution, shallow shells, plates, creep-damage
[305, 306] Moderately thick and layered shells, steady state creep
[5, 30] Shells of revolution, plates, creep-damage
[70, 118] Plates, thermo-mechanical coupling, creep-damage
[16, 31] Moderately thick plates, curved shells, creep-damage
[13, 64, 120] Moderately thick plates, damage induced anisotropy
[114, 177, 164] Moderately thick shells, creep-damage

Table 4.1 Problem statements for creep in plates and shells
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Type of Constitutive Model for Creep Stages
Primary Secondary Tertiary

References Time Power Kachanov- Mecha- Damage
or Strain or sinh Rabotnov- nism- Tensors

Hardening law Hayhurst based
[82, 220, 221] x
[224, 327] x
[17, 60, 62] x x
[11, 80, 81] x x
[18, 19] x x
[305, 306] x x
[5, 30] x x x x
[70, 118, 225] x x x
[16, 31] x x
[13, 64, 120] x x
[114, 177, 164] x x x

Table 4.2 Constitutive models applied to analysis of plates and shells

Type of Structural Mechanics Model Verification
References Kirchhoff- FOSDT Geomet- 3-D Experi-

Love rical Non- Models mental
Type linearities Analysis

[82, 220, 221] x
[224, 327] x x x
[17, 60, 62] x x
[11, 80, 81] x x
[18, 19] x x
[305, 306] x
[5, 30] x x
[70, 118, 225] x
[16, 31] x x
[13, 64, 120] x x
[114, 177, 164] x x

Table 4.3 Structural mechanics models of plates and shells (FOSDT – first order shear de-
formation theory)

mechanics models are connected with the problem statement and with the type of
the material behavior description.

The early works were primarily concerned with the analysis of steady-state
creep in plates and shells. The creep behavior was assumed tohave only primary
and secondary creep stages and the Norton-Bailey-Odqvist creep constitutive equa-
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tion sometimes extended by strain or time hardening functions was applied. The
structural mechanics models were those of the Kirchhoff plate and the Kirchhoff-
Love shell. In [190] the biharmonic equation describing a deflection surface of the
Kirchhoff plate taking into account the given distributionof creep strains has been
derived. It is shown that the deflection of the plate can be computed by applying
additional fictitious lateral loads on the plate face and additional fictitious moments
on the plate edges. In many cases this equation can be solved by special numer-
ical methods, e.g. the finite difference method [255] or direct variational methods
[19, 77]. These solutions are useful in verifying general purpose finite element codes
and user defined creep material subroutines. A benchmark problem for a rectangular
plate is presented in [14]. Equations for creep in axisymmetrically loaded shells of
revolution were derived in [249] by the use of the Kirchhoff-Love hypotheses. The
influence of creep is expressed in terms of fictitious membrane forces and bending
moments. In [82, 220, 221] the problems of stress redistributions from the reference
state of elastic deformation up to the steady creep state were solved for axisymmet-
rically loaded shells of revolution by means of the finite difference method.

The classical models of Kirchhoff plate or Kirchhoff-Love shell are based on
geometrically linear equations. Because the development of creep strains may lead
to significant changes of the components shape, geometrically nonlinear terms
should be taken into account in the kinematical equations and as well as in the
equilibrium conditions. For elastic plates the governing equations (finite deflection
model) were originally proposed by von Kármán [319]. Geometrically non-linear
equations for creep in membranes and plates have been derived by Odqvist [233].
Problems of long-term stability and long-term strength have required the use of re-
fined geometrically-nonlinear structural mechanics models. Creep buckling analysis
of cylindrical shells under internal pressure and compressive force has been per-
formed in [62, 209, 210] (see also references cited therein). The governing equa-
tions correspond to the Kircchoff-Love type shell with geometrical non-linearities
in von Kármán’s sense. In [17, 18, 19, 30] we applied a geometrically-nonlinear
theory to the creep-damage analysis of rectangular plates and cylindrical shells. We
demonstrated that the effect of geometrical non-linearitymay be associated with
“structural hardening”, i.e. an increase in the structuralresistance to time dependent
deformations. Furthermore, we have shown that even in the case of moderate bend-
ing, the classical geometrically-linear theory leads to a significant underestimation
of the life-time and overestimation of the deformation.

A first order shear deformation shell theory has been firstly applied in [305] to
analyze primary and secondary creep of simply supported cylindrical shells under
internal pressure. The initial-boundary value problem is solved by the use of the
finite difference method. Time dependent distributions of displacements and stress
resultants are compared with those according to the Kirchhoff-Love type theory. It
is demonstrated that the results agree well only for thin shells. In the case of mod-
erately thick shells the difference between the results is essential and increases with
time. Reissner type plate equations were applied in [118, 120] for the creep-damage
analysis of a simply supported circular plate considering thermo-mechanical cou-
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plings. The derived plate equations as well as the equationsof the three-dimensional
theory were solved by means of the finite difference method. It is demonstrated that
in the tertiary creep range the thickness distribution of the transverse shear stress
differs from the parabolic one. Similar effects have been illustrated for beams in
Sect. 4.3.2.3.

Let us note that unlike the Kirchhoff-Love type theories, the first order shear
deformation theories have been found more convenient for the finite element im-
plementations due toC0 continuity [338]. They are standard in commercial finite
element codes, e.g. [258]. Examples of creep-damage analysis of plates and shells
by the use of ANSYS code are presented in [14, 16].

Numerous refined finite element techniques were designed to solve non-linear
problems of shells. For reviews we refer to [325, 329]. One feature of the refined
theories of plates and shells is that except special types ofboundary conditions (e.g.
simple support) they describe additional edge zone effects. The use of the finite
element or the finite difference method to solve refined equations of plates and shells
requires advanced numerical techniques to represent the rapidly varying behavior in
the edge zones. Several closed form and approximate analytical solutions of the
first order shear deformation plate equations in the linear elastic range illustrate
edge zone effects for different types of boundary conditions, e.g. [227, 336]. Similar
solutions in the case of creep-damage in plates and shells are not available. Further
investigations should be made to formulate corresponding benchmark problems and
to assess the validity of different available shell and solid type finite elements in
problems of creep mechanics.

4.4.2 Examples

4.4.2.1 Edge Effects in a Moderately-Thick Plate. An important step in the
creep analysis of plates and shells is to select a suitable structural mechanics model.
One way is the “three-dimensional approach” which is based on three-dimensional
equations of continuum mechanics. This approach seems morepreferable for creep-
damage analysis since the existing constitutive models of creep-damage are devel-
oped with respect to the Cauchy stress and strain (rate) tensors and the proposed
measures of damage (scalars or tensors of different rank) are defined in the three-
dimensional space. Another way is the use of the classical two-dimensional struc-
tural mechanics equations of beams, plates and shells and the balance equations
formulated in terms of force and moment tensors. This approach often finds ap-
plication because of the simplicity of the model creation, smaller effort in solving
non-linear initial-boundary value problems of creep, and easily interpretable results.

The governing mechanical equations describing creep in three-dimensional
solids are summarized in Sect. 4.2. Various approaches to derive a shell theory have
been recently applied within the assumption of elastic or viscoelastic material be-
havior. As far as we know, a “closed form” shell theory in the case of creep does not
exist at present. The principal problem lies in establishing the constitutive equations
of creep with respect to the shell type strain measures, i.e.the membrane strains,
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changes of curvature and transverse shear strains. Although, a general structure of
such equations can be found based on the direct approach, e.g. [23, 26], the open
question is the introduction of appropriate damage measures as well as the identifi-
cation of damage mechanisms under the shell type stress states, i.e. under bending
and twisting moments, membrane and transverse shear forces, or their interactions.

Here we apply the standard approach which can be summarized as follows:

1. Assume that equations (4.2.1) – (4.2.9) are applicable tothe analysis of creep-
damage in a moderately thick solid.

2. Formulate a variational equation of statics (e.g., basedon the principle of virtual
displacements) with the known tensorεεεcr for a fixed time (time step).

3. Specify cross-section approximations for the functionsto be varied (e.g., the
displacement vectoruuu).

4. Formulate and solve the two-dimensional version of Eqs (4.2.1) – (4.2.9).
5. Recover the three-dimensional stress fieldσσσ from the two-dimensional solution.
6. Insertσσσ into constitutive equations (4.2.9) in order to calculate the time incre-

ments ofεεεcr andω.
7. Update the tensorεεεcr for the next time step and repeat the cycle from step 2.

Depending on the type of the applied variational equation (e.g., displacement
type or mixed type) and the type of incorporated cross-section assumptions, dif-
ferent two-dimensional versions of Eqs (4.2.1) – (4.2.9) with a different order of
complexity can be obtained (i.e. models with forces and moments or models with
higher order stress resultants). In the case of linear-elastic plates a huge number
of such kind plate theories has been proposed, e.g., [194, 207, 267]. Note that the
steps 2 and 3 can be performed numerically applying e.g. the Galerkin method to
Eqs (4.2.1) – (4.2.9). Various types of finite elements whichwere developed for
the inelastic analysis of shells are reviewed in [325]. Let us note that if studying
the creep behavior coupled with damage, the type of assumed cross-section ap-
proximations may have a significant influence on the result. For example, if we
use a mixed type variational equation and approximate both the displacements and
stresses, a parabolic through-the-thickness approximation for the transverse shear
stress or a linear approximation for the in-plane stresses is in general not suitable for
the creep-damage estimations [20]. In what follows we compare finite element solu-
tions based on the three-dimensional approach and a two-dimensional plate model
and discuss the possibilities and limitations of each approach in connection with the
creep-damage analysis.

Consider a square plate withlx = ly = 1000 mm, h = 100 mm, loaded
by a pressureq = 2 MPa uniformly distributed on the top surface as shown in
Fig. 4.10. The edgesx = 0 and x = lx are simply supported (hard hinged sup-
port) and the edgesy = 0 and y = ly are clamped. According to the first order
shear deformation plate model we can specify the vectors of “plate displacements”
uuup(x, y) = uuu0(x, y) + w(x, y)nnn, uuu0 ··· nnn = 0 and cross-section rotationsϕϕϕ(x, y) on
the linesx = const or y = const, Fig. 4.10. Applying such a model and assum-
ing infinitesimal cross-section rotations the displacement vectoruuu(x, y, z) is usually
assumed to be
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= uuu0(x, y, z) + w(x, y, z)nnn

Figure 4.10 Rectangular plate: geometry, loading and kinematical boundary conditions

uuu(x, y, z) ≈ uuup(x, y) + zϕϕϕ(x, y) × nnn, ϕϕϕ ··· nnn = 0

In the case of the three-dimensional model the displacementvectoruuu(x, y, z) =
uuu0(x, y, z) + w(x, y, z)nnn can be prescribed on the planesxc, y, z or x, yc, z of the
plate edgesx = xc or y = yc. Figure 4.10 illustrates the kinematical boundary
conditions used for the shell and the solid models. Let us note that different bound-
ary conditions which correspond to the clamped edge can be specified if we ap-
ply the three-dimensional model. Here we discuss two types of the clamped edge
conditions. For the first type (TYPE I), see Fig. 4.10, we assume the vector of in-
plane displacementsuuu0 to be zero. The deflectionw is zero only in the points of
the plate mid-surface. In the second type (TYPE II) the wholedisplacement vector
uuu is assumed to be zero in all points which belong to the plate edges. The TYPE II
boundary condition is the simplest possibility with respect to the effort in the model
creation on the computer and the preprocessing since all nodal displacements can
be simultaneously set to zero on the whole surfaces of the edges x = const and
y = const.

The analysis has been performed using the ANSYS finite element code after
incorporating the material model (3.1.1) with the help of the user defined creep-
damage material subroutine. In Sects 4.3.1.4 and 4.3.2.3 wediscussed various exam-
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ples for beams, which verify the developed subroutine. Similar examples for plates
may be found in [14]. The finite elements available in the ANSYS code for plasticity
and creep analysis were applied as follows: the 20 nodes solid element SOLID 95
and the 4 nodes shell element SHELL 43.30 × 15 elements were used for a half of
the plate in the case of the shell model and30 × 15 × 3 elements in the case of the
solid model. The meshes have been justified based on the elasticity solutions and
the steady state creep solutions neglecting damage. With these meshes the reference
stress distributions as well as the distributions of the vonMises stresses in the steady
creep state were approximately the same for both the solid and the shell elements
and did not change anymore by further re-meshing. The automatical time stepping
feature with a minimum time step0.1 h has been applied. For details of the used
elements, the time integration and equilibrium iteration methods used in ANSYS
for creep calculations we refer to [258] and [338]. The time step based calculations
were performed up toω = ω∗ = 0.9, whereω∗ is the selected critical value of the
damage parameter.

Figure 4.11 illustrates the results of the computations, where the maximum de-
flection and the maximum value of the damage parameter are plotted as functions
of time. From Fig. 4.11a we observe that the starting values of maximum deflection
as well as the starting rates of the deflection growth due to creep are approximately
the same for the shell and the two solid models. Consequentlythe type of the ele-
ments (shell or solid) and the type of the applied boundary conditions in the case of
the solid elements has a small influence on the description ofthe steady-state creep
process. However, the three used models lead to quite different life time predictions.
The difference can be seen in Fig. 4.11b. The shell model overestimates the time to
failure, while the result based on the solid model depends significantly on the type
of the clamped edge boundary conditions. In the case of the TYPE II clamped edge
much more accelerated damage growth is obtained. The corresponding time to fail-
ure is approximately four times shorter compared to those based on the TYPE I
clamped edge. All considered models predict the zone of maximum damage to be
in the midpoint of the clamped edge on the plate top surface, as shown in Fig. 4.12.

The creep response of a structure is connected with the time-dependent stress
redistributions. If the applied load and the boundary conditions are assumed to be
constant and the effect of tertiary creep is ignored, than anasymptotic stress state
exists, which is known as the state of stationary or steady creep (see Sect. 1.2). If
tertiary creep is considered, then stresses change with time up to the critical damage
state. It is obvious that the damage growth and the tertiary creep behavior of the
considered plate are controlled by the local stress state inthe vicinity of the clamped
edges. Figure 4.13 illustrates the stress states in the midpoint of the clamped edge
with the coordinatesx = lx/2, y = 0. Four components of the stress tensor (the two
remaining components are zero due to symmetry conditions) are plotted as functions
of the normalized thickness coordinate. The starting elastic distributions (solid lines)
as well as the creep solutions at the last time step (dotted lines) are presented. The
maximum starting stresses obtained by the use of the three considered models are
the normal in-plane stressesσyy andσxx (the stresses which results in the maximum
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Figure 4.11 Time variations:a maximum Deflection;b damage parameter

bending and twisting moments in the clamped edges), Fig. 4.13. These in-plane
stresses remain dominant during the whole creep process forthe used shell and
solid elements. Therefore, all the applied models predict the damage evolution in
the zone of the clamped edge on the plate top side. However, the influence of the
“second order” stresses (stresses which are usually neglected in the plate theories)
is different and depends on the type of the boundary conditions. For the TYPE I
clamped edge the effect of the transverse normal stressσzz decreases with time and
has negligible influence on the stress state. In contrast, for the TYPE II clamped edge
the initial transverse normal stressσzz remains approximately constant, whileσyy

relaxes with time as the consequence of creep. The transverse normal stress becomes
comparable with the bending stress and cannot be consideredas the “second order”
effect anymore.
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ω

TYPE II Clamped edge

Simply supported edge

Simply supported edge

Figure 4.12 Deformed shape of a half of the plate and distribution of the damage parameter
in the zone of a clamped edge (SOLID elements, TYPE II boundary conditions, last time
step)

In order to explain the difference in life-time predictionslet us compare the
stress states in the critical zone for the considered models. With respect to the trans-
verse normal and transverse shear stresses, the TYPE I and TYPE II boundary con-
ditions lead to different results. For the TYPE I clamped edge the transverse normal
stressσzz has the value of the applied transverse loadq on the top plate face and re-
mains constant during the creep process. The transverse shear stressτxz is zero due
to the applied boundary conditions. The stress state on the top side of the plate is
primarily determined by two in-plane stressesσxx andσyy, Fig. 4.13. Such a stress
state with dominant in-plane stresses and small transversenormal and shear stresses
can be obtained applying the first order shear deformation plate theory. In contrast,
if applying the TYPE II boundary conditions the results showthe considerable value
of the transverse normal stressσzz which remains approximately constant during the
creep process.

Now let us estimate the stress state for the TYPE II clamped edgey = yc. In this
case we have to setuuu(x, yc, z) = 000 on the planex, yc , z, Fig. 4.10. For0 < x < lx

and−h/2 < z < h/2 we can write

∂uuu

∂x
=

∂uuu

∂z
= 000 ⇒ ∇∇∇uuu(x, yc, z) = eeey ⊗

∂uuu

∂y
,

trεεε(x, yc, z) = ∇∇∇ ··· uuu =
∂uy

∂y

(4.4.1)

In addition, we can seteeex ··· uuu(lx/2, y, z) = 0 due to the symmetry condition. The
starting elastic stress state att = 0 can be obtained from the constitutive equations
(4.2.6) by settingεεεcr = 000
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(4.4.2)
From the last equation in (4.4.2) we see thatσzz = σxx = σyyν/(1 − ν). This well
known result of the theory of linear isotropic elasticity agrees with the obtained
finite element solution forν = 0.314, Fig. 4.13b (solid lines).

Let us estimate the stress redistribution in the TYPE II clamped edge as a conse-
quence of creep. For this purpose we neglect the damage evolution by settingω = 0
in (3.1.1). Because the boundary conditions and the appliedpressure are indepen-
dent of time, we can estimate the type of the stress state under stationary state creep
by settingǫ̇ǫǫ ≈ ε̇εεcr, ε̇V ≈ 0 or

1

2

(

eeey ⊗
∂u̇uu

∂y
+

∂u̇uu

∂y
⊗ eeey

)

≈ ε̇εεcr =
3

2
aσn−1

vM sss, ∇∇∇ ··· u̇uu ≈ 0 (4.4.3)

Consequently
1

2

∂ẇ

∂y
(eeey ⊗ nnn + nnn ⊗ eeey) ≈

3

2
aσn−1

vM sss (4.4.4)
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From Eq. (4.4.4) we observe that the stress deviator in the steady-state creep has the
form sss ≈ τ(eeey ⊗ nnn + nnn ⊗ eeey) and is completely determined by the transverse shear
stress. The mean stressσm cannot be determined from the constitutive equation, it
must be found from the equilibrium conditions (4.2.3). The stress state in the zone
of the clamped edge (lx/2, y, z) is then of the typeσσσ ≈ σmIII + τ(eeey ⊗ nnn + nnn ⊗ eeey).
We observe thatσzz ≈ σyy ≈ σxx ≈ σm after the transient stress redistribution. This
estimation agrees again with the obtained finite element solution Fig. 4.13b (dotted
lines). The transverse normal stress is approximately equal to the in-plane stresses
and cannot be neglected.

Let us compare the finite element results for the mean stress and the von Mises
equivalent stress. Figure 4.14a shows the corresponding time variations in the ele-
ment A of the solid model for the TYPE I and TYPE II boundary conditions. We
observe that the TYPE II boundary condition leads to a lower starting value of the
von Mises stress and a higher starting value of the mean stress when compared with
those for the TYPE I boundary condition. In addition, for theTYPE II clamped
edge we observe that the mean stress rapidly decreases within the short transition
time and after that remains constant while the von Mises stress relaxes during the
whole creep process. With the relaxation ofσvM the stress state tends toσσσ = σmIII.
The relatively high constant value ofσm is the reason for the obtained increase of
damage and much shorter time to fracture in the case of the TYPE II clamped edge
(see Fig. 4.11b). Note that the above effect of the mean stress has a local character
and is observed only in the neighborhood of the edge. As Fig. 4.14b shows the value
of the transverse normal stress decreases rapidly with increased distance from the
boundary.

We discussed the possibilities of creep-damage behavior modeling in moder-
ately thick structural elements. The selected constitutive model of creep is based on
the assumption that the secondary creep strain rate is determined by the deviatoric
part of the stress tensor and the von Mises equivalent stress, while the increase of
the creep rate in the tertiary range is due to isotropic damage evolution which is
controlled by the mean stress, the first principal stress andthe von Mises equivalent
stress. The use of this model in connection with long-term predictions of thin-walled
structural elements has motivated a numerical comparativestudy of two approaches:
the three-dimensional approach and the approach based on the first order shear de-
formation type plate theory. The finite element results as well as some simplified
estimates have shown that the approaches based on standard solid and shell finite
elements provide quite different predictions. The model based on the shell elements
overestimates the fracture time. The reason for the obtained differences is the local
stress response in the zone of the clamped edge. In the case oflinear isotropic elas-
ticity, the transverse normal and shear stresses in the zoneof the clamped edge can
be assumed to be the second order quantities in comparison tothe dominant in-plane
stresses. In the case of steady state creep, the transverse normal and shear stresses
are comparable with the in-plane stresses due to the stress redistribution. If studying
the creep behavior coupled with damage, the influence of these factors cannot be
ignored.
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If a shell or a plate theory is considered to be an approximateversion of the
three-dimensional equations (4.2.1) – (4.2.9) then we can conclude that “more ac-
curate” cross-section approximations for the transverse normal and shear stresses
have to be used in the case of creep. In this sense it is more reliable to solve the
three-dimensional equations (4.2.1) – (4.2.9) which are “free” from ad hoc assump-
tions for the displacements and stresses.
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4.4.2.2 Long Term Strength Analysis of a Steam Transfer Line . From the
practice of power and petrochemical plants it is well known that pipe bends are the
most critical structural components with respect to possible creep failures, e.g. [180,
196]. An example for a steam transfer line between a header and a desuperheater of
a boiler is presented in [180]. The pipeline from steel 1Cr0.5Mo (13CrMo4-5) had
operated under the temperature in the range500 − 550◦ C and the internal pressure
11.8 MPa. After a service life of 77000 h rupture occurred along the outer radius of
a pipe bend. A metallographic analysis of a section cut from the bend close to the
main crack has shown typical creep damage due to microvoids and microcracks on
grain boundaries. Several incidents of pipe bend failures in different power plants
are reported in [128]. Inspection techniques were developed to examine the state of
creep damage during the service. However, as noted in [180],any inspection must
be conducted at exactly the critical position, or the presence of damage may not be
detected.

Many investigations have addressed the analysis of mechanical behavior of pres-
surized curved tubes. Problems of elastic and elasto-platic deformation and stability
are reviewed in [65, 188]. Creep and creep–damage processesin curved tubes were
discussed in [16, 77, 147, 322]. These studies were concerned with the analysis of a
single pipe bend subjected to special loading conditions, i.e. in-plane bending mo-
ments and internal pressure. In the following example we analyze the behavior of
pipe bends in a real spatial pipeline. Figure 4.15 shows the reference geometry of
the structure which includes three straight pipe segments (I, III and V) and two pipe
bends (II and IV). The lengths of the pipe segments, the mean diameter of the cross
section and the wall thickness correspond to the data given in [180]. In addition, we
take into account the non-uniformity of the wall thickness in the pipe bends as a re-
sult of processing by induction bending. The circumferential thickness distribution
is selected according to standard tolerances presented in [41, 115, 196]. The flanges
of the pipeline are clamped. The internal pressure and the temperature are assumed
to be constant during the creep process. The corresponding values are presented in
Fig. 4.16. The constitutive model and the material constants for steel 13CrMo4-5 at
550◦ C are taken from [289] (see Sect. 3.1.2).

Figure 4.16 illustrates the deformed shape and the distribution of the magni-
tude of the displacement vector in the reference state. Figure 4.17 shows the corre-
sponding distribution of the von Mises equivalent stress. From the results we may
conclude that both the pipe bends are subjected to complex spatial loading and de-
formation conditions as a result of internal pressure and uniform heating.

Time dependent changes in the deformation and stress statesare illustrated in
Figs 4.18 – 4.20. In addition the values of the von Mises equivalent stress in three
points of the pipe bend IV are plotted as functions of time. According to the results
the creep process of the pipeline may be divided into three stages. During the first
stage (approximately 50% of the total live) significant stress redistributions occur
leading to quite different stress state in the pipeline (cp.Fig. 4.17 and Fig. 4.19).
The second stage (approximately 45% of the total live) is characterized by slow
changes in the stress state. In the final stage (approximately 5% of the total live) we
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observe additional stress redistributions, Fig. 4.20. Thedistribution of the damage
parameter at the final time step is shown in Fig. 4.21. According to the results the
critical position of possible creep failure is the pointA of the pipe bend IV. This
result agrees well with the data presented in [180], where the creep failure has been
detected at the same position.

Similar processes have been already discussed in Sects 4.3.1.4, 4.3.2.3 and
4.4.2.1. One feature of the example considered here is that the final creep stage
is not only the result of the local material deterioration but is additionally governed
by the flattening (ovalisation) of the pipe bend cross section.

Let us note that some parameters of the reference pipe bend geometries were
not given in [180] and have been assumed in the presented calculation. Further-
more, many additional details including the initial out of roundness of the cross
section, inhomogeneous material properties as a result of processing, shutdowns
and startups during the service, are not included in the presented model. Therefore
the obtained numerical result for the failure time (49000 h)“slightly” differs from
the value 77000 h given in [180]. Nevertheless, the results demonstrate the ability
of the modeling to represent basic features of the creep process in a structure and to
predict critical zones of possible creep failure.
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Figure 4.16 Deformed shape and magnitude of the displacement vector in the reference elastic state
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Figure 4.18 Distribution of the von Mises equivalent stress att = 2000 h and corresponding time variations in three points of the pipe bend
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Figure 4.19 Distribution of the von Mises equivalent stress att = 20000 h and corresponding time variations in three points of the pipe bend
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Figure 4.20 Distribution of the von Mises equivalent stress at the last time step and corresponding time variations in three points of the pipe bend
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5 Conclusions

In this work we discussed models for the analysis of creep andlong-term strength
behavior of engineering structures under high-temperature conditions. Approaches
to formulate

1. Constitutive equations for creep in structural materials,
2. Structural mechanics models of beams, plates, shells andthree-dimensional

solids and
3. Numerical procedures for the solution of non-linear initial-boundary value

problems

are systematically reviewed and evaluated with respect to their reliability and effi-
ciency. Furthermore, we contributed to recent studies in

1. Formulation of multi-axial constitutive equations for creep and damage
processes which account for stress state effects and anisotropy,

2. Development of a rational framework to find invariants of the stress tensor ap-
propriate for constitutive modeling of anisotropic creep,

3. Assessment of several models for beams, plates and shellsin creep and damage
related structural analysis,

4. Development and verification of creep-damage material subroutines for the use
in general purpose finite element codes,

5. Formulation and solution of several problems to illustrate the applicability of
developed techniques

The outcome of our investigations is a numerical method to analyze structural be-
havior in the creep-damage range. Several examples illustrate that the developed
method is capable to reproduce basic features of creep in engineering structures
including time-dependent changes in shape, stress redistributions and formation of
critical zones of possible creep failure.

Let us summarize the main conclusions of our study and some recommendations

1. The accurate description of creep and damage processes instructural materials
requires accurate data obtained from creep tests. Regardless of which phenom-
enological approach to formulate the constitutive equation (e.g. “pure phenom-
enological”, “mechanism-based” or “micromechanically-consistent”) is used,
the choice of the response function, the introduction of theequivalent stress
and the identification of material constants require material data over a wide
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range of stresses, stress states and temperatures. As illustrated in Sect. 3.1.4 the
available creep curves for an aluminium alloy can be described by different ma-
terial models with the same accuracy. In this sense no preference can be made
between different approaches to constitutive equations. However, in structural
analysis applications, different constitutive models maylead to quite different
life time estimations (see Sect. 3.1.4). Therefore the question of what approach
should be selected to formulate constitutive equations canonly be discussed in
connection with the structural mechanics analysis.
Further investigations are required to assess recently proposed constitutive
models as they predict creep and long term strength for different types of struc-
tures.

2. Hardening and damage processes have in general anisotropic nature since they
are associated with topological changes of the microstructure. Isotropic consti-
tutive models of creep have been found to be inappropriate indescribing exper-
imental data from tests under non-proportional loading conditions. Therefore
in many works it is suggested to operate with hardening and damage tensors
instead of scalars. Let us note that the principal role of tensor-valued internal
state variables is to reflect the local changes of material symmetries during the
creep process. However, the available experimental data hardly allow to verify
both the type of the assumed symmetry (e.g. isotropy, transverse isotropy, or-
thotropic symmetry, etc.) and the orientation of symmetry planes or axes. The
proposed kinematic hardening rules and damage evolution equations are suffi-
cient to characterize creep behavior under simple monotonic or cyclic loading.
However, they are poorly suited for the description of transient creep effects
under non-proportional loading conditions.

3. Refined models for beams, plates and shells including effects of the transverse
shear deformation and geometrical non-linearities shouldbe preferred in long
term strength analysis of thinwalled structures. For beamsthe effects of trans-
verse shear deformation has been illustrated in Sect. 4.3.2.3. Several examples
for plates and shells presented in the literature (see Sect.4.4.1) show that even in
the case of “moderate” bending, the classical geometrically-linear theory leads
to a significant underestimation of the life-time and overestimation of the defor-
mation. Further benchmark problems which are able to reproduce the behavior
of boundary layers in the creep range are required. They could be useful in the
assessment of different available shell type finite elements.

4. Numerical solutions of creep-damage problems by the finite element method
are highly sensitive to the mesh density. A mesh which provides satisfactory
accurate results in the linear-elastic range is not sufficient to solve creep prob-
lems (see Sect. 4.3.1.4). Furthermore, the mesh density required for an accurate
solution depends not only on the geometry and loading of the structure but also
on the type of the applied creep constitutive equation. Whenstudying creep-
damage in structures with complex geometry it is difficult totest the mesh sen-
sitivity and prove the solution convergence due to large computational time.
From our experience we may recommend to adjust the mesh to theconvergent
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solution in the steady-state creep range. With such meshes the accuracy of long-
term predictions was not less than the accuracy of the material data involved in
the computations.

The currently available approaches of creep mechanics are helpful in understanding
mechanisms of structural behavior under creep and damage conditions and can be
recommended for design and remnant life assessments of structures. Results of our
study could lead to further investigations with the following topics

1. Consideration of manufacturing conditions as they influence the subsequent
creep behavior of structures. In the example presented in Sect. 4.4.2.2 the wall
thinning due to processing of the pipe bend was taken into account. It would be
of interest to examine the influence of other factors determined by processing,
e.g. initial out of roundness and inhomogeneous material properties.
A model developed in Sect. 3.2 could be the basis of further studies of creep
in welded structures by taking into account the initial anisotropy in multi-pass
weld metals.

2. Several databases exist, where experiences from engineering practice in power
and petrochemical plants are collected for a wide range of structures. With the
gained experience in modeling and numerical analysis of creep it is possible
and useful to analyze recently documented cases of creep failures. Such studies
could provide new suggestions in the creep constitutive modeling and stimulate
further experimental investigations.
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A Some Basic Rules of Tensor Calculus

The tensor calculus is a powerful tool for the description ofthe fundamentals in con-
tinuum mechanics and the derivation of the governing equations for applied prob-
lems. In general, there are two possibilities for the representation of the tensors and
the tensorial equations:

– the direct (symbolic) notation and
– the index (component) notation

The direct notation operates with scalars, vectors and tensors as physical objects
defined in the three dimensional space. A vector (first rank tensor)aaa is considered
as a directed line segment rather than a triple of numbers (coordinates). A second
rank tensorAAA is any finite sum of ordered vector pairsAAA = a ⊗ ba ⊗ ba ⊗ b + . . . + c ⊗ dc ⊗ dc ⊗ d. The
scalars, vectors and tensors are handled as invariant (independent from the choice of
the coordinate system) objects. This is the reason for the use of the direct notation
in the modern literature of mechanics and rheology, e.g. [29, 32, 49, 123, 131, 199,
246, 313, 334] among others.

The index notation deals with components or coordinates of vectors and tensors.
For a selected basis, e.g.gggi, i = 1, 2, 3 one can write

aaa = aigggi, AAA =
(

aibj + . . . + cidj
)

gggi ⊗ gggj

Here the Einstein’s summation convention is used: in one expression the twice re-
peated indices are summed up from 1 to 3, e.g.

akgggk ≡
3

∑
k=1

akgggk, Aikbk ≡
3

∑
k=1

Aikbk

In the above examplesk is a so-called dummy index. Within the index notation the
basic operations with tensors are defined with respect to their coordinates, e. g. the
sum of two vectors is computed as a sum of their coordinatesci = ai + bi. The
introduced basis remains in the background. It must be remembered that a change
of the coordinate system leads to the change of the components of tensors.

In this work we prefer the direct tensor notation over the index one. When solv-
ing applied problems the tensor equations can be “translated” into the language
of matrices for a specified coordinate system. The purpose ofthis Appendix is to
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give a brief guide to notations and rules of the tensor calculus applied through-
out this work. For more comprehensive overviews on tensor calculus we recom-
mend [54, 96, 123, 191, 199, 311, 334]. The calculus of matrices is presented in
[40, 111, 340], for example. Section A.1 provides a brief overview of basic alge-
braic operations with vectors and second rank tensors. Several rules from tensor
analysis are summarized in Sect. A.2. Basic sets of invariants for different groups
of symmetry transformation are presented in Sect. A.3, where a novel approach to
find the functional basis is discussed.

A.1 Basic Operations of Tensor Algebra

A.1.1 Polar and Axial Vectors

A vector in the three-dimensional Euclidean space is definedas a directed line seg-
ment with specified magnitude (scalar) and direction. The magnitude (the length) of
a vectoraaa is denoted by|aaa|. Two vectorsaaa andbbb are equal if they have the same
direction and the same magnitude. The zero vector000 has a magnitude equal to zero.
In mechanics two types of vectors can be introduced. The vectors of the first type are
directed line segments. These vectors are associated with translations in the three-
dimensional space. Examples for polar vectors include the force, the displacement,
the velocity, the acceleration, the momentum, etc. The second type is used to char-
acterize spinor motions and related quantities, i.e. the moment, the angular velocity,
the angular momentum, etc. Figure A.1a shows the so-called spin vectoraaa∗ which
represents a rotation about the given axis. The direction ofrotation is specified by
the circular arrow and the “magnitude” of rotation is the corresponding length. For
the given spin vectoraaa∗ the directed line segmentaaa is introduced according to the
following rules [334]:

1. the vectoraaa is placed on the axis of the spin vector,

2. the magnitude ofaaa is equal to the magnitude ofaaa∗,

aaa∗aaa∗aaa∗

aaa

aaa

a b c

Figure A.1 Axial vectors.a Spin vector,b axial vector in the right-screw oriented reference
frame,c axial vector in the left-screw oriented reference frame
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3. the vectoraaa is directed according to the right-handed screw, Fig A.1b, or
the left-handed screw, Fig A.1c

The selection of one of the two cases in 3. corresponds to the convention of ori-
entation of the reference frame [334] (it should be not confused with the right- or
left-handed triples of vectors or coordinate systems). Thedirected line segment is
called a polar vector if it does not change by changing the orientation of the refer-
ence frame. The vector is called to be axial if it changes the sign by changing the
orientation of the reference frame. The above definitions are valid for scalars and
tensors of any rank too. The axial vectors (and tensors) are widely used in the rigid
body dynamics, e.g. [333], in the theories of rods, plates and shells, e.g. [25], in the
asymmetric theory of elasticity, e.g. [231], as well as in dynamics of micro-polar
media, e.g. [108]. By dealing with polar and axial vectors itshould be remembered
that they have different physical meanings. Therefore, a sum of a polar and an axial
vector has no sense.

A.1.2 Operations with Vectors

Addition. For a given pair of vectorsaaa andbbb of the same type the sumccc = aaa + bbb
is defined according to one of the rules in Fig. A.2. The sum hasthe following
properties

– aaa + bbb = bbb + aaa (commutativity),
– (aaa + bbb) + ccc = aaa + (bbb + ccc) (associativity),
– aaa + 000 = aaa

Multiplication by a Scalar. For any vectoraaa and for any scalarα a vectorbbb = αaaa
is defined in such a way that

– |bbb| = |α||aaa|,
– for α > 0 the direction ofbbb coincides with that ofaaa,
– for α < 0 the direction ofbbb is opposite to that ofaaa.

For α = 0 the product yields the zero vector, i.e.000 = 0aaa. It is easy to verify that

α(aaa + bbb) = αaaa + αbbb, (α + β)aaa = αaaa + βaaa

aaaaaa

bbb

bbb cccccc

a b

Figure A.2 Addition of two vectors.a Parallelogram rule,b triangle rule
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aaaaaa

bbbbbb

ϕϕ

2π − ϕ nnnaaa =
aaa

|aaa| (bbb ··· nnnaaa)nnnaaa

a b

Figure A.3 Scalar product of two vectors.a Angles between two vectors,b unit vector and
projection

Scalar (Dot) Product of two Vectors. For any pair of vectorsaaa andbbb a scalar
α is defined by

α = aaa ··· bbb = |aaa||bbb| cos ϕ,

whereϕ is the angle between the vectorsaaa andbbb. As ϕ one can use any of the two
angles between the vectors, Fig. A.3a. The properties of thescalar product are

– aaa ··· bbb = bbb ··· aaa (commutativity),
– aaa ··· (bbb + ccc) = aaa ··· bbb + aaa ··· ccc (distributivity)

Two nonzero vectors are said to be orthogonal if their scalarproduct is zero. The
unit vector directed along the vectoraaa is defined by (see Fig. A.3b)

nnnaaa =
aaa

|aaa|

The projection of the vectorbbb onto the vectoraaa is the vector(bbb ··· nnnaaa)nnnaaa, Fig. A.3b.
The length of the projection is|bbb|| cos ϕ|.
Vector (Cross) Product of Two Vectors. For the ordered pair of vectorsaaa and
bbb the vectorccc = aaa × bbb is defined in two following steps [334]:

– the spin vectorccc∗ is defined in such a way that
• the axis is orthogonal to the plane spanned onaaa andbbb, Fig. A.4a,
• the circular arrow shows the direction of the “shortest” rotation fromaaa to bbb,

Fig. A.4b,
• the length is|aaa||bbb| sin ϕ, whereϕ is the angle of the “shortest” rotation fromaaa

to bbb,
– from the resulting spin vector the directed line segmentccc is constructed according

to one of the rules listed in Subsect. A.1.1.

The properties of the vector product are

aaa × bbb = −bbb × aaa, aaa × (bbb + ccc) = aaa × bbb + aaa × ccc

The type of the vectorccc = aaa × bbb can be established for the known types of the
vectorsaaa andbbb, [334]. If aaa andbbb are polar vectors the result of the cross product
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aaaaaaaaa bbbbbbbbb
ϕϕϕ

ccc∗

ccc

a b c

Figure A.4 Vector product of two vectors.a Plane spanned on two vectors,b spin vector,c
axial vector in the right-screw oriented reference frame

will be the axial vector. An example is the moment of momentumfor a mass pointm
defined byrrr × (mv̇vv), whererrr is the position of the mass point andvvv is the velocity
of the mass point. The next example is the formula for the distribution of velocities
in a rigid bodyvvv = ωωω × rrr. Here the cross product of the axial vectorωωω (angular
velocity) with the polar vectorrrr (position vector) results in the polar vectorvvv.

The mixed product of three vectorsaaa, bbb andccc is defined by(aaa × bbb) ··· ccc. The result
is a scalar. For the mixed product the following identities are valid

aaa ··· (bbb × ccc) = bbb ··· (ccc × aaa) = ccc ··· (aaa × bbb) (A.1.1)

If the cross product is applied twice, the first operation must be set in parentheses,
e.g.,aaa × (bbb × ccc). The result of this operation is a vector. The following relation can
be applied

aaa × (bbb × ccc) = bbb(aaa ··· ccc) − ccc(aaa ··· bbb) (A.1.2)

By use of (A.1.1) and (A.1.2) one can calculate

(aaa × bbb) ··· (ccc × ddd) = aaa ··· [bbb × (ccc × ddd)]
= aaa ··· (ccc bbb ··· ddd − ddd bbb ··· ccc)
= aaa ··· ccc bbb ··· ddd − aaa ··· ddd bbb ··· ccc

(A.1.3)

A.1.3 Bases

Any triple of linear independent vectorseee1, eee2, eee3 is called basis. A triple of vectors
eeei is linear independent if and only ifeee1 ··· (eee2 × eee3) 6= 0.

For a given basiseeei any vectoraaa can be represented as follows

aaa = a1eee1 + a2eee2 + a3eee3 ≡ aieeei

The numbersai are called the coordinates of the vectoraaa for the basiseeei. In order to
compute the coordinates the dual (reciprocal) basiseeek is introduced in such a way
that

eeek ··· eeei = δk
i =

{

1, k = i,
0, k 6= i
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δk
i is the Kronecker symbol. The coordinatesai can be found by

eeei ··· aaa = aaa ··· eeei = ameeem · eeei = amδi
m = ai

For the selected basiseeei the dual basis can be found from

eee1 =
eee2 × eee3

(eee1 × eee2) ··· eee3
, eee2 =

eee3 × eee1

(eee1 × eee2) ··· eee3
, eee3 =

eee1 × eee2

(eee1 × eee2) ··· eee3
(A.1.4)

By use of the dual basis a vectoraaa can be represented as follows

aaa = a1eee1 + a2eee2 + a3eee3 ≡ aieee
i, am = aaa ··· eeem, am 6= am

In the special case of the orthonormal vectorseeei, i.e. |eeei| = 1 andeeei ··· eeek = 0 for
i 6= k, from (A.1.4) follows thateeek = eeek and consequentlyak = ak.

A.1.4 Operations with Second Rank Tensors

A second rank tensor is a finite sum of ordered vector pairsAAA = aaa⊗bbb + . . . + ccc⊗ddd
[334]. One ordered pair of vectors is called the dyad. The symbol ⊗ is called the
dyadic (tensor) product of two vectors. A single dyad or a sumof two dyads are
special cases of the second rank tensor. Any finite sum of morethan three dyads can
be reduced to a sum of three dyads. For example, let

AAA =
n

∑
i=1

aaa(i) ⊗ bbb(i)

be a second rank tensor. Introducing a basiseeek the vectorsaaa(i) can be represented

by aaa(i) = ak
(i)

eeek, whereak
(i)

are coordinates of the vectorsaaa(i). Now we may write

AAA =
n

∑
i=1

ak
(i)eeek ⊗ bbb(i) = eeek ⊗

n

∑
i=1

ak
(i)bbb(i) = eeek ⊗ dddk, dddk ≡

n

∑
i=1

ak
(i)bbb(i)

Addition. The sum of two tensors is defined as the sum of the corresponding
dyads. The sum has the properties of associativity and commutativity. In addition,
for a dyadaaa ⊗ bbb the following operation is introduced

aaa ⊗ (bbb + ccc) = aaa ⊗ bbb + aaa ⊗ ccc, (aaa + bbb)⊗ ccc = aaa ⊗ ccc + bbb ⊗ ccc

Multiplication by a Scalar. This operation is introduced first for one dyad. For
any scalarα and any dyadaaa ⊗ bbb

α(aaa ⊗ bbb) = (αaaa) ⊗ bbb = aaa ⊗ (αbbb),
(α + β)aaa ⊗ bbb = αaaa ⊗ bbb + βaaa ⊗ bbb

(A.1.5)

By settingα = 0 in the first equation of (A.1.5) the zero dyad can be defined, i.e.
0(aaa ⊗ bbb) = 000 ⊗ bbb = aaa ⊗ 000. The above operations can be generalized for any finite
sum of dyads, i.e. for second rank tensors.
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Inner Dot Product. For any two second rank tensorsAAA andBBB the inner dot prod-
uct is specified byAAA ··· BBB. The rule and the result of this operation can be explained
in the special case of two dyads, i.e. by settingAAA = aaa ⊗ bbb andBBB = ccc ⊗ ddd

AAA ··· BBB = aaa ⊗ bbb ··· ccc ⊗ ddd = (bbb ··· ccc)aaa ⊗ ddd = αaaa ⊗ ddd, α ≡ bbb ··· ccc

The result of this operation is a second rank tensor. Note that AAA · BBB 6= BBB · AAA. This
can be again verified for two dyads. The operation can be generalized for two second
rank tensors as follows

AAA ··· BBB =
3

∑
i=1

aaa(i) ⊗ bbb(i) ···
3

∑
k=1

ccc(k) ⊗ ddd(k) =
3

∑
i=1

3

∑
k=1

(bbb(i) ··· ccc(k))aaa(i) ⊗ ddd(k)

Transpose of a Second Rank Tensor. The transpose of a second rank tensor
AAA is constructed by the following rule

AAAT =

(

3

∑
i=1

aaa(i) ⊗ bbb(i)

)T

=
3

∑
i=1

bbb(i) ⊗ aaa(i)

Double Inner Dot Product. For any two second rank tensorsAAA andBBB the double
inner dot product is specified byAAA ······ BBB The result of this operation is a scalar. This
operation can be explained for two dyads as follows

AAA ······ BBB = aaa ⊗ bbb ······ ccc ⊗ ddd = (bbb ··· ccc)(aaa ··· ddd)

By analogy to the inner dot product one can generalize this operation for two second
rank tensors. It can be verified thatAAA ······ BBB = BBB ······ AAA for second rank tensorsAAA and
BBB. For a second rank tensorAAA and for a dyadaaa ⊗ bbb

AAA ······ aaa ⊗ bbb = bbb ··· AAA ··· aaa (A.1.6)

A scalar product of two second rank tensorsAAA andBBB is defined by

α = AAA ······ BBBT

One can verify that
AAA ······ BBBT = BBBT ······ AAA = BBB ······ AAAT

Dot Products of a Second Rank Tensor and a Vector. The right dot product
of a second rank tensorAAA and a vectorccc is defined by

AAA ··· ccc =

(

3

∑
i=1

aaa(i) ⊗ bbb(i)

)

··· ccc =
3

∑
i=1

(bbb(i) ··· ccc)aaa(i)

For a single dyad this operation is

aaa ⊗ bbb ··· ccc = aaa(bbb ··· ccc)
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The left dot product is defined by

ccc ··· AAA = ccc ···
(

3

∑
i=1

aaa(i) ⊗ bbb(i)

)

=
3

∑
i=1

(ccc ··· aaa(i))bbb(i)

The results of these operations are vectors. One can verify that

AAA ··· ccc 6= ccc ··· AAA, AAA ··· ccc = ccc ··· AAAT

Cross Products of a Second Rank Tensor and a Vector. The right cross
product of a second rank tensorAAA and a vectorccc is defined by

AAA × ccc =

(

3

∑
i=1

aaa(i) ⊗ bbb(i)

)

× ccc =
3

∑
i=1

aaa(i) ⊗ (bbb(i) × ccc)

The left cross product is defined by

ccc × AAA = ccc ×
(

3

∑
i=1

aaa(i) ⊗ bbb(i)

)

=
3

∑
i=1

(ccc × aaa(i))⊗ bbb(i)

The results of these operations are second rank tensors. It can be shown that

AAA × ccc = −[ccc × AAAT ]T

Trace. The trace of a second rank tensor is defined by

tr AAA = tr

(

3

∑
i=1

aaa(i) ⊗ bbb(i)

)

=
3

∑
i=1

aaa(i) ··· bbb(i)

By taking the trace of a second rank tensor the dyadic productis replaced by the dot
product. It can be shown that

tr AAA = tr AAAT, tr (AAA ··· BBB) = tr (BBB ··· AAA) = tr (AAAT ··· BBBT) = AAA ······ BBB

Symmetric Tensors. A second rank tensor is said to be symmetric if it satisfies
the following equality

AAA = AAAT

An alternative definition of the symmetric tensor can be given as follows. A second
rank tensor is said to be symmetric if for any vectorccc 6= 000 the following equality is
valid

ccc ··· AAA = AAA · ccc

An important example of a symmetric tensor is the unit or identity tensorIII, which
is defined by such a way that for any vectorccc

ccc ··· III = III ··· ccc = ccc
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The representations of the identity tensor are

III = eeek ⊗ eeek = eeek ⊗ eeek

for any basiseeek andeeek, eeek ··· eeem = δm
k . For three orthonormal vectorsmmm, nnn andppp

III = nnn ⊗ nnn + mmm ⊗mmm + ppp ⊗ ppp

A symmetric second rank tensorPPP satisfying the conditionPPP ··· PPP = PPP is called
projector. Examples of projectors are

mmm ⊗mmm, nnn ⊗ nnn + ppp ⊗ ppp = III −mmm ⊗mmm,

wheremmm, nnn andppp are orthonormal vectors. The result of the dot product of thetensor
mmm ⊗mmm with any vectoraaa is the projection of the vectoraaa onto the line spanned on
the vectormmm, i.e.mmm ⊗mmm ··· aaa = (aaa ··· mmm)mmm. The result of(nnn ⊗ nnn + ppp ⊗ ppp) ··· aaa is the
projection of the vectoraaa onto the plane spanned on the vectorsnnn andppp.

Skew-symmetric Tensors. A second rank tensor is said to be skew-symmetric
if it satisfies the following equality

AAA = −AAAT

or if for any vectorccc
ccc ··· AAA = −AAA · ccc

Any skew symmetric tensorAAA can be represented by

AAA = aaa × III = III × aaa

The vectoraaa is called the associated vector. Any second rank tensor can be uniquely
decomposed into the symmetric and skew-symmetric parts

AAA =
1

2

(

AAA + AAAT
)

+
1

2

(

AAA − AAAT
)

= AAA1 + AAA2,

AAA1 =
1

2

(

AAA + AAAT
)

, AAA1 = AAAT
1 ,

AAA2 =
1

2

(

AAA − AAAT
)

, AAA2 = −AAAT
2

Vector Invariant. The vector invariant or “Gibbsian Cross” of a second rank ten-
sorAAA is defined by

AAA× =

(

3

∑
i=1

aaa(i) ⊗ bbb(i)

)

×
=

3

∑
i=1

aaa(i) × bbb(i)

The result of this operation is a vector. The vector invariant of a symmetric tensor is
the zero vector. The following identities can be verified

(aaa × III)× = −2aaa, aaa × III × bbb = bbb ⊗ aaa − (aaa ··· bbb)III
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Linear Transformations of Vectors. A vector valued function of a vector ar-
gumentfff (aaa) is called to be linear iffff (α1aaa1 + α2aaa2) = α1 fff (aaa1) + α2 fff (aaa2) for any
two vectorsaaa1 andaaa2 and any two scalarsα1 andα2. It can be shown that any linear
vector valued function can be represented byfff (aaa) = AAA ··· aaa, whereAAA is a second
rank tensor. In many textbooks, e.g. [32, 293] a second rank tensorAAA is defined to
be the linear transformation of the vector space into itself.

Determinant and Inverse of a Second Rank Tensor. Let aaa, bbb andccc be ar-
bitrary linearly-independent vectors. The determinant ofa second rank tensorAAA is
defined by

det AAA =
(AAA ··· aaa) ··· [(AAA ··· bbb)× (AAA ··· ccc)]

aaa ··· (bbb × ccc)

The following identities can be verified

det(AAAT) = det(AAA), det(AAA ··· BBB) = det(AAA) det(BBB)

The inverse of a second rank tensorAAA−1 is introduced as the solution of the follow-
ing equation

AAA−1 ··· AAA = AAA ··· AAA−1 = III

AAA is invertible if and only ifdet AAA 6= 0. A tensorAAA with det AAA = 0 is called
singular. Examples of singular tensors are projectors.

Cayley-Hamilton Theorem. Any second rank tensor satisfies the following
equation

AAA3 − J1(AAA)AAA2 + J2(AAA)AAA − J3(AAA)III = 000, (A.1.7)

whereAAA2 = AAA ··· AAA, AAA3 = AAA ··· AAA ··· AAA and

J1(AAA) = tr AAA, J2(AAA) =
1

2
[(tr AAA)2 − tr AAA2],

J3(AAA) = det AAA =
1

6
(tr AAA)3 − 1

2
tr AAAtr AAA2 +

1

3
tr AAA3

(A.1.8)

The scalar-valued functionsJi(AAA) are called principal invariants of the tensorAAA.

Coordinates of Second Rank Tensors. Let eeei be a basis andeeek the dual basis.
Any two vectorsaaa andbbb can be represented as follows

aaa = aieeei = ajeee
j, bbb = bleeel = bmeeem

A dyadaaa ⊗ bbb has the following representations

aaa ⊗ bbb = aibjeeei ⊗ eeej = aibjeeei ⊗ eeej = aibjeee
i ⊗ eeej = aib

jeeei ⊗ eeej

For the representation of a second rank tensorAAA one of the following four bases can
be used

eeei ⊗ eeej, eeei ⊗ eeej, eeei ⊗ eeej, eeei ⊗ eeej

With these bases one can write
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AAA = Aijeeei ⊗ eeej = Aijeee
i ⊗ eeej = Ai∗

∗jeeei ⊗ eeej = A
∗j
i∗eeei ⊗ eeej

For a selected basis the coordinates of a second rank tensor can be computed as
follows

Aij = eeei ··· AAA · eeej, Aij = eeei ··· AAA · eeej,

Ai∗
∗j = eeei ··· AAA · eeej, A

∗j
i∗ = eeei ··· AAA · eeej

Principal Values and Directions of Symmetric Second Rank Te nsors.
Consider a dot product of a second rank tensorAAA and a unit vectornnn. The resulting
vectoraaa = AAA ··· nnn differs in general fromnnn both by the length and the direction.
However, one can find those unit vectorsnnn, for which AAA ··· nnn is collinear withnnn, i.e.
only the length ofnnn is changed. Such vectors can be found from the equation

AAA ··· nnn = λnnn or (AAA − λIII) ··· nnn = 000 (A.1.9)

The unit vectornnn is called the principal vector and the scalarλ the principal value
of the tensorAAA. Let AAA be a symmetric tensor. In this case the principal values are
real numbers and there exist at least three mutually orthogonal principal vectors.
The principal values can be found as roots of the characteristic polynomial

det(AAA − λIII) = −λ3 + J1(AAA)λ2 − J2(AAA)λ + J3(AAA) = 0

The principal values are specified byλI , λI I , λI I I . For known principal values and
principal directions the second rank tensor can be represented as follows (spectral
representation)

AAA = λInnnI ⊗ nnnI + λI InnnI I ⊗ nnnI I + λI I InnnI I I ⊗ nnnI I I

Orthogonal Tensors. A second rank tensorQQQ is said to be orthogonal if it sat-
isfies the equationQQQT ··· QQQ = III. If QQQ operates on a vector its length remains un-
changed, i.e. letbbb = QQQ ··· aaa, then

|bbb|2 = bbb ··· bbb = aaa ··· QQQT ···QQQ ··· aaa = aaa ··· aaa = |aaa|2

Furthermore, the orthogonal tensor does not change the scalar product of two arbi-
trary vectors. For two vectorsaaa andbbb as well asaaa′ = QQQ ··· aaa andbbb′ = QQQ ··· bbb one can
calculate

aaa′ ··· bbb′ = aaa ···QQQT ···QQQ ··· bbb = aaa ··· bbb

From the definition of the orthogonal tensor follows

QQQT = QQQ−1, QQQT ···QQQ = QQQ ···QQQT = III,

det(QQQ ··· QQQT) = (det QQQ)2 = det III = 1 ⇒ det QQQ = ±1

Orthogonal tensors withdet QQQ = 1 are called proper orthogonal or rotation tensors.
The rotation tensors are widely used in the rigid body dynamics, e.g. [333], and in
the theories of rods, plates and shells, e.g. [25, 32]. Any orthogonal tensor is either
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the rotation tensor or the composition of the rotation (proper orthogonal tensor) and
the tensor−III. Let PPP be a rotation tensor,det PPP = 1, then an orthogonal tensorQQQ
with detQQQ = −1 can be composed by

QQQ = (−III) ··· PPP = PPP ··· (−III), det QQQ = det(−−−I) det PPP = −1

For any two orthogonal tensorsQQQ1 andQQQ2 the compositionQQQ3 = QQQ1 ···QQQ2 is the or-
thogonal tensor, too. This property is used in the theory of symmetry and symmetry
groups, e.g. [232, 331]. Two important examples for orthogonal tensors are

• rotation tensor about a fixed axis

QQQ(ψmmm) = mmm ⊗mmm + cos ψ(III −mmm ⊗mmm) + sin ψmmm × III,

−π < ψ < π, detQQQ = 1,

where the unit vectormmm represents the axis andψ is the angle of rotation,
• reflection tensor

QQQ = III − 2nnn ⊗ nnn, det QQQ = −1,

where the unit vectornnn represents a normal to the mirror plane.

One can prove the following identities [334]

(QQQ ··· aaa) × (QQQ ··· bbb) = det QQQQQQ ··· (aaa × bbb)

QQQ ··· (aaa ×QQQT) = QQQ ··· (aaa × III) ···QQQT = det QQQ [(QQQ ··· aaa)× III]
(A.1.10)

A.2 Elements of Tensor Analysis

A.2.1 Coordinate Systems

The vectorrrr characterizing the position of a pointPPP can be represented by use of
the Cartesian coordinatesxi as follows, Fig. A.5,

rrr(x1, x2, x3) = x1eee1 + x2eee2 + x3eee3 = xieeei

Instead of coordinatesxi one can introduce any triple of curvilinear coordinates
q1, q2, q3 by means of one-to-one transformations

xk = xk(q1, q2, q3) ⇔ qk = qk(x1, x2, x3)

It is assumed that the above transformations are continuousand continuous differ-
entiable as many times as necessary and for the Jacobians

det

(

∂xk

∂qi

)

6= 0, det

(

∂qi

∂xk

)

6= 0
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eee1
eee2

eee3

x2

x3

x1

rrr

q1

q2

q3

rrr1

rrr2

rrr3

P q
3 = const

Figure A.5 Cartesian and curvilinear coordinates

must be valid. With these assumptions the position vector can be considered as a
function of curvilinear coordinatesqi, i.e.rrr = rrr(q1, q2, q3). Surfacesq1 = const,
q2 = const, andq3 = const, Fig. A.5, are called coordinate surfaces. For given
fixed valuesq2 = q2

∗ and q3 = q3
∗ a curve can be obtained along which onlyq1

varies. This curve is called theq1-coordinate line, Fig. A.5. Analogously, one can
obtain theq2- andq3-coordinate lines. The partial derivatives of the positionvector
with respect the to selected coordinates

rrr1 =
∂rrr

∂q1
, rrr2 =

∂rrr

∂q2
, rrr3 =

∂rrr

∂q3
, rrr1 ··· (rrr2 × rrr3) 6= 0

define the tangential vectors to the coordinate lines in a point P, Fig. A.5. The vec-
tors rrri are used as the local basis in the pointP. By use of (A.1.4) the dual basis
rrrk can be introduced. The vectordrrr connecting the pointP with a point P′ in the
differential neighborhood ofP is defined by

drrr =
∂rrr

∂q1
dq1 +

∂rrr

∂q2
dq2 +

∂rrr

∂q3
dq3 = rrrkdqk

The square of the arc length of the line element in the differential neighborhood of
P is calculated by

ds2 = drrr ··· drrr = (rrridqi) ··· (rrrkdqk) = gikdqidqk ,

wheregik ≡ rrri ··· rrrk are the so-called contravariant components of the metric tensor.
With gik one can represent the basis vectorsrrri by the dual basis vectorsrrrk as follows

rrri = (rrri ··· rrrk)rrr
k = gikrrrk
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Similarly
rrri = (rrri ··· rrrk)rrrk = gikrrrk, gik ≡ rrri ··· rrrk,

wheregik are termed covariant components of the metric tensor. For the selected
basesrrri andrrrk the second rank unit tensor has the following representations

III = rrri ⊗ rrri = rrri ⊗ gikrrrk = gikrrri ⊗ rrrk = gikrrri ⊗ rrrk = rrri ⊗ rrri

A.2.2 The Hamilton (Nabla) Operator

A scalar field is a function which assigns a scalar to each spatial point P for the
domain of definition. Let us consider a scalar fieldϕ(rrr) = ϕ(q1, q2, q3). The total
differential of ϕ by moving from a pointP to a pointP′ in the differential neighbor-
hood is

dϕ =
∂ϕ

∂q1
dq1 +

∂ϕ

∂q2
dq2 +

∂ϕ

∂q3
dq3 =

∂ϕ

∂qk
dqk

Taking into account thatdqk = drrr ··· rrrk

dϕ = drrr ··· rrrk ∂ϕ

∂qk
= drrr ···∇∇∇ϕ

The vector∇∇∇ϕ is called the gradient of the scalar fieldϕ and the invariant operator
∇∇∇ (the Hamilton or nabla operator) is defined by

∇∇∇ = rrrk ∂

∂qk

For a vector fieldaaa(rrr) one may write

daaa = (drrr ··· rrrk)
∂aaa

∂qk
= drrr ··· rrrk ⊗ ∂aaa

∂qk
= drrr ···∇∇∇⊗ aaa = (∇∇∇⊗ aaa)T ··· dddrrr,

∇∇∇⊗ aaa = rrrk ⊗ ∂aaa

∂qk

The gradient of a vector field is a second rank tensor. The operation∇∇∇ can be applied
to tensors of any rank. For vectors and tensors the followingadditional operations
are defined

divaaa ≡ ∇∇∇··· aaa = rrrk ··· ∂aaa

∂qk

rotaaa ≡ ∇∇∇× aaa = rrrk × ∂aaa

∂qk

The following identities can be verified

∇∇∇⊗ rrr = rrrk ⊗ ∂rrr

∂qk
= rrrk ⊗ rrrk = III, ∇∇∇ ··· rrr = 3
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For a scalarα, a vectoraaa and for a second rank tensorAAA the following identities are
valid

∇∇∇(αaaa) = rrrk ⊗ ∂(αaaa)

∂qk
=

(

rrrk ∂α

∂qk

)

⊗ aaa + αrrrk ⊗ ∂aaa

∂qk
= (∇∇∇α) ⊗ aaa + α∇∇∇⊗ aaa,

(A.2.1)

∇∇∇ ··· (AAA ··· aaa) = rrrk ··· ∂(AAA ··· aaa)

∂qk
= rrrk ··· ∂AAA

∂qk
··· aaa + rrrk ··· AAA ··· ∂aaa

∂qk

= (∇∇∇ ··· AAA) ··· aaa + AAA ······
(

∂aaa

∂qk
⊗ rrrk

)

= (∇∇∇ ··· AAA) ··· aaa + AAA ······ (∇∇∇⊗ aaa)T

(A.2.2)

Here the identity (A.1.6) is used. For a second rank tensorAAA and a position vectorrrr
one can prove the following identity

∇∇∇ ··· (AAA × rrr) = rrrk ··· ∂(AAA × rrr)

∂qk
= rrrk ··· ∂AAA

∂qk
× rrr + rrrk ··· AAA × ∂rrr

∂qk

= (∇∇∇ ··· AAA)× rrr + rrrk ··· AAA × rrrk = (∇∇∇ ··· AAA) × rrr − AAA×
(A.2.3)

Here we used the definition of the vector invariant as follows

AAA× =
(

rrrk ⊗ rrrk ··· AAA
)

×
= rrrk × (rrrk ··· AAA) = −rrrk ··· AAA × rrrk

A.2.3 Integral Theorems

Let ϕ(rrr), aaa(rrr) andAAA(rrr) be scalar, vector and second rank tensor fields. LetV be
the volume of a bounded domain with a regular surfaceA(V) andnnn be the outer
unit normal to the surface atrrr. The integral theorems can be summarized as follows

– Gradient Theorems
∫

V

∇∇∇ϕ dV =
∫

A(V)

nnnϕ dA,

∫

V

∇∇∇⊗ aaa dV =
∫

A(V)

nnn ⊗ aaa dA,

∫

V

∇∇∇⊗ AAA dV =
∫

A(V)

nnn ⊗ AAA dA

– Divergence Theorems
∫

V

∇∇∇ ··· aaa dV =
∫

A(V)

nnn ··· aaa dA,

∫

V

∇∇∇ ··· AAA dV =
∫

A(V)

nnn · AAA dA
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– Curl Theorems
∫

V

∇∇∇× aaa dV =
∫

A(V)

nnn × aaa dA,

∫

V

∇∇∇× AAA dV =
∫

A(V)

nnn × AAA dA

A.2.4 Scalar-Valued Functions of Vectors and Second
Rank Tensors

Let ψ be a scalar valued function of a vectoraaa and a second rank tensorAAA, i.e.
ψ = ψ(aaa, AAA). Introducing a basiseeei the functionψ can be represented as follows

ψ(aaa, AAA) = ψ(aieeei, Aijeeei ⊗ eeej) = ψ(ai, Aij)

The partial derivatives ofψ with respect toaaa and AAA are defined according to the
following rule

dψ =
∂ψ

∂ai
dai +

∂ψ

∂Aij
dAij

= daaa ··· eeei ∂ψ

∂ai
+ dAAA ······ eeej ⊗ eeei ∂ψ

∂Aij
dAij

(A.2.4)

In the coordinates-free form the above rule can be rewrittenas follows

dψ = daaa ··· ∂ψ

∂aaa
+ dAAA ······

(

∂ψ

∂AAA

)T

= daaa ··· ψ,aaa + dAAA ······ (ψ,AAA)T (A.2.5)

with

ψ,aaa ≡
∂ψ

∂aaa
=

∂ψ

∂ai
eeei, ψ,AAA ≡ ∂ψ

∂AAA
=

∂ψ

∂Aij
eeei ⊗ eeej

One can verify thatψ,aaa andψ,AAA are independent from the choice of the basis. One
may prove the following formulae for the derivatives of principal invariants of a
second rank tensorAAA

J1(AAA),AAA = III, J1(AAA2),AAA = 2AAAT, J1(AAA3),AAA = 3AAA2T
,

J2(AAA),AAA = J1(AAA)III − AAAT, (A.2.6)

J3(AAA),AAA = AAA2T − J1(AAA)AAAT + J2(AAA)III = J3(AAA)(AAAT)−1

A.3 Orthogonal Transformations and Orthogonal
Invariants

An application of the theory of tensor functions is to find a basic set of scalar invari-
ants for a given group of symmetry transformations, such that each invariant relative
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to the same group is expressible as a single-valued functionof the basic set. The ba-
sic set of invariants is called functional basis. To obtain acompact representation
for invariants, it is required that the functional basis is irreducible in the sense that
removing any one invariant from the basis will imply that a complete representation
for all the invariants is no longer possible.

Such a problem arises in the formulation of constitutive equations for a given
group of material symmetries. For example, the strain energy density of an elastic
non-polar material is a scalar valued function of the secondrank symmetric strain
tensor. In the theory of the Cosserat continuum two strain measures are introduced,
where the first strain measure is the polar tensor while the second one is the axial
tensor, e.g. [108]. The strain energy density of a thin elastic shell is a function of
two second rank tensors and one vector, e.g. [25]. In all cases the problem is to find
a minimum set of functionally independent invariants for the considered tensorial
arguments.

For the theory of tensor functions we refer to [71]. Representations of tensor
functions are reviewed in [280, 330]. An orthogonal transformation of a scalarα, a
vectoraaa and a second rank tensorAAA is defined by [25, 332]

α′ ≡ (det QQQ)ζα, aaa′ ≡ (det QQQ)ζQQQ ··· aaa, AAA′ ≡ (det QQQ)ζQQQ ··· AAA ··· QQQT, (A.3.1)

whereQQQ is an orthogonal tensor, i.e.QQQ ··· QQQT = III, detQQQ = ±1, III is the second
rank unit tensor,ζ = 0 for absolute (polar) scalars, vectors and tensors andζ = 1
for axial ones. An example of the axial scalar is the mixed product of three polar
vectors, i.e.α = aaa ··· (bbb× ccc). A typical example of the axial vector is the cross product
of two polar vectors, i.e.ccc = aaa × bbb. An example of the second rank axial tensor
is the skew-symmetric tensorWWW = aaa × III, whereaaa is a polar vector. Consider a
group of orthogonal transformationsS (e.g., the material symmetry transformations)
characterized by a set of orthogonal tensorsQQQ. A scalar-valued function of a second
rank tensorf = f (AAA) is called to be an orthogonal invariant under the groupS if

∀QQQ ∈ S : f (AAA′) = (det QQQ)η f (AAA), (A.3.2)

whereη = 0 if values of f are absolute scalars andη = 1 if values of f are axial
scalars.

Any second rank tensorBBB can be decomposed into the symmetric and the skew-
symmetric part, i.e.BBB = AAA + aaa × III, whereAAA is the symmetric tensor andaaa is the
associated vector. Thereforef (BBB) = f (AAA, aaa). If BBB is a polar (axial) tensor, thenaaa is
an axial (polar) vector. For the set of second rank tensors and vectors the definition
of an orthogonal invariant (A.3.2) can be generalized as follows

∀QQQ ∈ S : f (AAA′
1, AAA′

2, . . . , AAA′
n, aaa′1, aaa′2, . . . , aaa′k)

= (det QQQ)η f (AAA1, AAA2, . . . AAAn, aaa1, aaa2, . . . , aaak), AAAi = AAAT
i

(A.3.3)
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A.3.1 Invariants for the Full Orthogonal Group

In [335] orthogonal invariants for different sets of secondrank tensors and vectors
with respect to the full orthogonal group are presented. It is shown that orthogonal
invariants are integrals of a generic partial differentialequation (basic equations for
invariants). Let us present two following examples

– Orthogonal invariants of a symmetric second rank tensorAAA are

Ik = tr AAAk, k = 1, 2, 3

Instead ofIk it is possible to use the principal invariantsJk defined by (A.1.8).
– Orthogonal invariants of a symmetric second rank tensorAAA and a vectoraaa are

Ik = tr AAAk, k = 1, 2, 3, I4 = aaa ··· aaa, I5 = aaa ··· AAA ··· aaa,
I6 = aaa ··· AAA2 ··· aaa, I7 = aaa ··· AAA2 ··· (aaa × AAA ··· aaa)

(A.3.4)

In the above set of invariants only 6 are functionally independent. The relation
between the invariants (so-called syzygy, [71]) can be formulated as follows

I2
7 =

∣

∣

∣

∣

∣

∣

I4 I5 I6

I5 I6 aaa ··· AAA3 ··· aaa
I6 aaa ··· AAA3 ··· aaa aaa ··· AAA4 ··· aaa

∣

∣

∣

∣

∣

∣

, (A.3.5)

whereaaa ··· AAA3 ··· aaa andaaa ··· AAA4 ··· aaa can be expressed byIl , l = 1, . . . 6 applying the
Cayley-Hamilton theorem (A.1.7).

The set of invariants for a symmetric second rank tensorAAA and a vectoraaa can be
applied for a non-symmetric second rank tensorBBB since it can be represented by
BBB = AAA + aaa × III, AAA = AAAT.

A.3.2 Invariants for the Transverse Isotropy Group

Transverse isotropy is an important type of the symmetry transformation due to a
variety of applications. Transverse isotropy is usually assumed in constitutive mod-
eling of fiber reinforced materials, e.g. [21], fiber suspensions, e.g. [22], direction-
ally solidified alloys, e.g. [213], deep drawing sheets, e.g. [50, 57] and piezoelectric
materials, e.g. [285]. The invariants and generating sets for tensor-valued functions
with respect to different cases of transverse isotropy are discussed in [79, 328] (see
also relevant references therein). In what follows we analyze the problem of a func-
tional basis within the theory of linear first order partial differential equations rather
than the algebra of polynomials. We develop the idea proposed in [335] for the in-
variants with respect to the full orthogonal group to the case of transverse isotropy.
The invariants will be found as integrals of the generic partial differential equa-
tions. Although a functional basis formed by these invariants does not include any
redundant element, functional relations between them may exist. It may be there-
fore useful to find out simple forms of such relations. We showthat the proposed
approach may supply results in a direct, natural manner.
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Invariants for a Single Second Rank Symmetric Tensor. Consider the
proper orthogonal tensor which represents a rotation abouta fixed axis, i.e.

QQQ(ϕmmm) = mmm ⊗mmm + cos ϕ(III −mmm ⊗mmm) + sin ϕmmm × III, det QQQ(ϕmmm) = 1,
(A.3.6)

wheremmm is assumed to be a constant unit vector (axis of rotation) andϕ denotes
the angle of rotation aboutmmm. The symmetry transformation defined by this tensor
corresponds to the transverse isotropy, whereby five different cases are possible, e.g.
[299, 331]. Let us find scalar-valued functions of a second rank symmetric tensorAAA
satisfying the condition

f (AAA′(ϕ))= f (QQQ(ϕmmm) ···AAA ···QQQT(ϕmmm)) = f (AAA), AAA′(ϕ) ≡ QQQ(ϕmmm) ···AAA ···QQQT(ϕmmm)
(A.3.7)

Equation (A.3.7) must be valid for any angle of rotationϕ. In (A.3.7) only the left-
hand side depends onϕ. Therefore its derivative with respect toϕ can be set to zero,
i.e.

d f

dϕ
=

dAAA′

dϕ
······
(

∂ f

∂AAA′

)T

= 0 (A.3.8)

The derivative ofAAA′ with respect toϕ can be calculated by the following rules

dAAA′(ϕ) = dQQQ(ϕmmm) ··· AAA ···QQQT(ϕmmm) + QQQ(ϕmmm) ··· AAA ··· dQQQT(ϕmmm),

dQQQ(ϕmmm) = mmm ×QQQ(ϕmmm)dϕ ⇒ dQQQT(ϕmmm) = −QQQT(ϕmmm) ×mmm dϕ
(A.3.9)

By inserting the above equations into (A.3.8) we obtain

(mmm × AAA − AAA ×mmm) ······
(

∂ f

∂AAA

)T

= 0 (A.3.10)

Equation (A.3.10) is classified in [92] to be the linear homogeneous first order par-
tial differential equation. The characteristic system of (A.3.10) is

dAAA

ds
= (mmm × AAA − AAA ×mmm) (A.3.11)

Any system ofn linear ordinary differential equations has not more thenn − 1
functionally independent integrals [92]. By introducing abasiseeei the tensorAAA can
be written down in the formAAA = Aijeeei ⊗ eeej and (A.3.11) is a system of six ordi-

nary differential equations with respect to the coordinates Aij. The five integrals of
(A.3.11) may be written down as follows

gi(AAA) = ci, i = 1, 2, . . . , 5,

whereci are integration constants. Any function of the five integrals gi is the so-
lution of the partial differential equation (A.3.10). Therefore the five integralsgi

represent the invariants of the symmetric tensorAAA with respect to the symmetry
transformation (A.3.6). The solutions of (A.3.11) are
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AAAk(s) = QQQ(smmm) ··· AAAk
0 ···QQQT(smmm), k = 1, 2, 3, (A.3.12)

whereAAA0 is the initial condition. In order to find the integrals, the variables must
be eliminated from (A.3.12). Taking into account the following identities

tr (QQQ ··· AAAk ···QQQT) = tr (QQQT ···QQQ ··· AAAk) = tr AAAk, mmm ···QQQ(smmm) = mmm,

(QQQ ··· aaa) × (QQQ ··· bbb) = (det QQQ)QQQ ··· (aaa × bbb)
(A.3.13)

and using the notationQQQm ≡ QQQ(smmm) the integrals can be found as follows

tr (AAAk) = tr (AAAk
0), k = 1, 2, 3,

mmm ··· AAAl ···mmm = mmm ···QQQm ··· AAAl
0 ···QQQT

m ···mmm

= mmm ··· AAAl
0 ···mmm, l = 1, 2,

mmm ··· AAA2 ··· (mmm × AAA ·········mmm) = mmm ···QQQT
m ··· AAA2

0 ···QQQm ··· (mmm ×QQQT
m ··· AAA0 ··· QQQm ···mmm)

= mmm ··· AAA2
0 ···QQQm ···

[

(QQQT
m ···mmm) × (QQQT

m ··· AAA0 ···mmm)
]

= mmm ··· AAA2
0 ··· (mmm × AAA0 ···mmm)

(A.3.14)
As a result we can formulate the six invariants of the tensorAAA with respect to the
symmetry transformation (A.3.6) as follows

Ik = tr (AAAk), k = 1, 2, 3, I4 = mmm ··· AAA ···mmm,

I5 = mmm ··· AAA2 ···mmm, I6 = mmm ··· AAA2 ··· (mmm × AAA ·········mmm)
(A.3.15)

The invariants with respect to various symmetry transformations are discussed in
[79]. For the case of the transverse isotropy six invariantsare derived in [79] by the
use of another approach. In this sense our result coincides with the result given
in [79]. However, from our derivations it follows that only five invariants listed
in (A.3.15) are functionally independent. Taking into account that I6 is the mixed
product of vectorsmmm, AAA ··· mmm andAAA2 ··· mmm the relation between the invariants can be
written down as follows

I2
6 = det





1 I4 I5

I4 I5 mmm ··· AAA3 ···mmm
I5 mmm ··· AAA3 ···mmm mmm ··· AAA4 ···mmm



 (A.3.16)

One can verify thatmmm ··· AAA3 ··· mmm and mmm ··· AAA4 ··· mmm are transversely isotropic invari-
ants, too. However, applying the the Cayley-Hamilton theorem (A.1.7) they can be
uniquely expressed byI1, I2, . . . I5 in the following way [54]

mmm ··· AAA3 ···mmm = J1 I5 + J2 I4 + J3,

mmm ··· AAA4 ···mmm = (J2
1 + J2)I5 + (J1 J2 + J3)I4 + J1 J3,

where J1, J2 and J3 are the principal invariants ofAAA defined by (A.1.8). Let us
note that the invariantI6 cannot be dropped. In order to verify this, it is enough to
consider two different tensors
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AAA and BBB = QQQn ··· AAA ···QQQT
n ,

where

QQQn ≡ QQQ(πnnn) = 2nnn ⊗ nnn − III, nnn ··· nnn = 1, nnn ···mmm = 0, det QQQn = 1

One can prove that the tensorAAA and the tensorBBB have the same invariants
I1, I2, . . . , I5. Taking into account thatmmm ··· QQQn = −mmm and applying the last iden-
tity in (A.3.13) we may write

I6(BBB) = mmm ··· BBB2 ··· (mmm × BBB ···mmm) = mmm ··· AAA2 ···QQQT
n ··· (mmm ×QQQn ··· AAA ···mmm)

= −mmm ··· AAA2 ··· (mmm × AAA ···mmm) = −I6(AAA)

We observe that the only difference between the two considered tensors is the sign
of I6. Therefore, the triples of vectorsmmm, AAA ···mmm, AAA2 ···mmm andmmm, BBB ···mmm , BBB2 ···mmm have
different orientations and cannot be combined by a rotation. It should be noted that
the functional relation (A.3.16) would in no way imply that the invariantI6 should
be “dependent” and hence “redundant”, namely should be removed from the basis
(A.3.15). In fact, the relation (A.3.16) determines the magnitude but not the sign of
I6.

To describe yielding and failure of oriented solids a dyadMMM = vvv ⊗ vvv has been
used in [53, 75], where the vectorvvv specifies a privileged direction. A plastic po-
tential is assumed to be an isotropic function of the symmetric Cauchy stress tensor
and the tensor generatorMMM. Applying the representation of isotropic functions the
integrity basis including ten invariants was found. In the special casevvv = mmm the
number of invariants reduces to the fiveI1, I2, . . . I5 defined by (A.3.15). Further de-
tails of this approach and applications in continuum mechanics are given in [59, 71].
However, the problem statement to find an integrity basis of asymmetric tensorAAA
and a dyadMMM, i.e. to find scalar valued functionsf (AAA, MMM) satisfying the condition

f (QQQ ··· AAA ···QQQT, QQQ ··· MMM ···QQQT) = (det QQQ)η f (AAA, MMM),

∀QQQ, QQQ ···QQQT = III, det QQQ = ±1
(A.3.17)

essentially differs from the problem statement (A.3.7). Inorder to show this we
take into account that the symmetry group of a dyadMMM, i.e. the set of orthogonal
solutions of the equationQQQ ··· MMM ···QQQT = MMM includes the following elements

QQQ1,2 = ±III,

QQQ3 = QQQ(ϕmmm), mmm =
vvv

|vvv| ,
QQQ4 = QQQ(πnnn) = 2nnn ⊗ nnn − III, nnn ··· nnn = 1, nnn ··· vvv = 0,

(A.3.18)

whereQQQ(ϕmmm) is defined by (A.3.6). The solutions of the problem (A.3.17) are
automatically the solutions of the following problem

f (QQQi ··· AAA ···QQQT
i , MMM) = (det QQQi)

η f (AAA, MMM), i = 1, 2, 3, 4,
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i.e. the problem to find the invariants ofAAA relative to the symmetry group (A.3.18).
However, (A.3.18) includes much more symmetry elements if compared to the prob-
lem statement (A.3.7).

An alternative set of transversely isotropic invariants can be formulated by the
use of the following decomposition

AAA = αmmm ⊗mmm + β(III −mmm ⊗mmm) + AAApD + ttt ⊗mmm + mmm ⊗ ttt, (A.3.19)

whereα, β, AAApD andttt are projections ofAAA. With the projectorsPPP1 = mmm ⊗mmm and
PPP2 = III −mmm ⊗mmm we may write

α = mmm ··· AAA ···mmm = tr (AAA ··· PPP1),

β =
1

2
(tr AAA −mmm ··· AAA ···mmm) =

1

2
tr (AAA ··· PPP2),

AAApD = PPP2 ··· AAA ··· PPP2 − βPPP2,

ttt = mmm ··· AAA ··· PPP2

(A.3.20)

The decomposition (A.3.19) is the analogue to the followingrepresentation of a
vectoraaa

aaa = III ··· aaa = mmm ⊗mmm ··· aaa + (III −mmm ⊗mmm) ··· aaa = ψmmm + τττ, ψ = aaa ···mmm, τττ = PPP2 ··· aaa
(A.3.21)

Decompositions of the type (A.3.19) are applied in [68, 79].The projections intro-
duced in (A.3.20) have the following properties

tr (AAApD) = 0, AAApD ···mmm = mmm ··· AAApD = 000, ttt ···mmm = 0 (A.3.22)

With (A.3.19) and (A.3.22) the tensor equation (A.3.11) canbe transformed to the
following system of equations











































dα

ds
= 0,

dβ

ds
= 0,

dAAApD

ds
= mmm × AAApD − AAApD ×mmm,

dttt

ds
= mmm × ttt

(A.3.23)

From the first two equations we observe thatα andβ are transversely isotropic in-
variants. The third equation can be transformed to one scalar and one vector equation
as follows

dAAApD

ds
······ AAApD = 0 ⇒ d(AAApD ······ AAApD)

ds
= 0,

dbbb

ds
= mmm × bbb

with bbb ≡ AAApD ··· ttt. We observe thattr (AAA2
pD) = AAApD ······ AAApD is the transversely

isotropic invariant, too. Finally, we have to find the integrals of the following system
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









dttt

ds
= ttt ×mmm,

dbbb

ds
= bbb ×mmm

(A.3.24)

The solutions of (A.3.24) are

ttt(s) = QQQ(smmm) ··· ttt0, bbb(s) = QQQ(smmm) ··· bbb0,

wherettt0 andbbb0 are initial conditions. The vectorsttt andbbb belong to the plane of
isotropy, i.e.ttt ··· mmm = 0 andbbb ··· mmm = 0. Therefore, one can verify the following
integrals

ttt ··· ttt = ttt0 ··· ttt0, bbb ··· bbb = bbb0 ··· bbb0, ttt ··· bbb = ttt0 ··· bbb0, (ttt × bbb) ···mmm = (ttt0 × bbb0) ···mmm
(A.3.25)

We found seven integrals, but only five of them are functionally independent. In
order to formulate the relation between the integrals we compute

bbb ··· bbb = ttt ··· AAA2
pD ··· ttt, ttt ··· bbb = ttt ··· AAApD ··· ttt

For any plane tensorAAAp satisfying the equationsAAAp ···mmm = mmm ··· AAAp = 000 the Cayley-
Hamilton theorem can be formulated as follows, see e.g. [71]

AAA2
p − (tr AAAp)AAAp +

1

2

[

(tr AAAp)
2 − tr (AAA2

p)
]

(III −mmm ⊗mmm) = 000

Sincetr AAApD = 0 we have

2AAA2
pD = tr (AAA2

pD)(III −mmm ⊗mmm), ttt ··· AAA2
pD ··· ttt =

1

2
tr (AAA2

pD)(ttt ··· ttt)

Becausetr (AAA2
pD) andttt ··· ttt are already defined, the invariantbbb ··· bbb can be omitted.

The vectorttt × bbb is spanned on the axismmm. Therefore

ttt × bbb = γmmm, γ = (ttt × bbb) ···mmm,

γ2 = (ttt × bbb) ··· (ttt × bbb) = (ttt ··· ttt)(bbb ··· bbb)− (ttt ··· bbb)2

Now we can summarize six invariants and one relation betweenthem as follows

Ī1 = α, Ī2 = β, Ī3 =
1

2
tr (AAA2

pD), Ī4 = ttt ··· ttt = ttt ··· AAA ···mmm,

Ī5 = ttt ··· AAApD ··· ttt, Ī6 = (ttt × AAApD ··· ttt) ···mmm,

Ī2
6 = Ī2

4 Ī3 − Ī2
5

(A.3.26)

Let us assume that the symmetry transformationQQQn ≡ QQQ(πnnn) belongs to the
symmetry group of the transverse isotropy, as it was made in [71, 59]. In this case
f (AAA′) = f (QQQn ··· AAA ···QQQT

n ) = f (AAA) must be valid. WithQQQn ···mmm = −mmm we can write

α′ = α, β′ = β, AAA′
pD = AAApD, ttt′ = −QQQn ··· ttt



190 A Some Basic Rules of Tensor Calculus

Therefore in (A.3.26)̄I′k = Īk, k = 1, 2, . . . , 5 and

Ī′6 = (ttt′ × AAA′
pD ··· ttt′) ···mmm =

(

(QQQn ··· ttt) ×QQQn ··· AAApD ··· ttt
)

···mmm

= (ttt × AAApD ··· ttt) ··· QQQn ···mmm = −(ttt × AAApD ··· ttt) ···mmm = − Ī6

Consequently

f (AAA′) = f ( Ī′1, Ī′2, . . . , Ī′5, Ī′6) = f ( Ī1, Ī2, . . . , Ī5,− Ī6)

⇒ f (AAA) = f ( Ī1, Ī2, . . . , Ī5, Ī2
6 )

and Ī2
6 can be omitted due to the last relation in (A.3.26).

Invariants for a Set of Vectors and Second Rank Tensors. By setting
QQQ = QQQ(ϕmmm) in (A.3.3) and taking the derivative of (A.3.3) with respectto ϕ results
in the following generic partial differential equation

n

∑
i=1

(

∂ f

∂AAAi

)T

······ (mmm × AAAi − AAAi ×mmm) +
k

∑
j=1

∂ f

∂aaaj
··· (mmm × aaaj) = 0 (A.3.27)

The characteristic system of (A.3.27) is










dAAAi

ds
= (mmm × AAAi − AAAi ×mmm), i = 1, 2, . . . , n,

daaaj

ds
= mmm × aaaj, j = 1, 2, . . . , k

(A.3.28)

The above system is a system ofN ordinary differential equations, whereN = 6n +
3k is the total number of coordinates ofAAAi andaaaj for a selected basis. The system
(A.3.28) has not more thenN − 1 functionally independent integrals. Therefore we
can formulate:

Theorem A.3.1. A set of n symmetric second rank tensors and k vectors with
N = 6n + 3k independent coordinates for a given basis has not more than N − 1
functionally independent invariants for N > 1 and one invariant for N = 1 with
respect to the symmetry transformation QQQ(ϕmmm).

In essence, the proof of this theorem is given within the theory of linear first order
partial differential equations [92].

As an example let us consider the set of a symmetric second rank tensorAAA and
a vectoraaa. This set has eight independent invariants. For a visual perception it is
useful to keep in mind that the considered set is equivalent to

AAA, aaa, AAA ··· aaa, AAA2 ··· aaa

Therefore it is necessary to find the list of invariants, whose fixation determines this
set as a rigid whole. The generic equation (A.3.27) takes theform

(

∂ f

∂AAA

)T

······ (mmm × AAA − AAA ×mmm) +
∂ f

∂aaa
··· (mmm × aaa) = 0 (A.3.29)
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The characteristic system of (A.3.29) is

dAAA

ds
= mmm × AAA − AAA ×mmm,

daaa

ds
= mmm × aaa (A.3.30)

This system of ninth order has eight independent integrals.Six of them are invariants
of AAA andaaa with respect to the full orthogonal group. They fix the considered set as
a rigid whole. The orthogonal invariants are defined by Eqs (A.3.4) and (A.3.5).

Let us note that the invariantI7 in (A.3.4) cannot be ignored. To verify this it is
enough to consider two different sets

AAA, aaa and BBB = QQQp ··· AAA ···QQQT
p , aaa,

whereQQQp = III − 2ppp ⊗ ppp, ppp ··· ppp = 1, ppp ··· aaa = 0. One can prove that the invariants
I1, I2, . . . , I6 are the same for these two sets. The only difference is the invariant I7,
i.e.aaa ···BBB2 ··· (aaa × BBB ··· aaa) = −aaa ···AAA2 ··· (aaa × AAA ··· aaa) Therefore the triples of vectorsaaa, AAA ···
aaa, AAA2 ··· aaa andaaa, BBB ··· aaa, BBB2 ··· aaa have different orientations and cannot be combined by
a rotation. In order to fix the considered set with respect to the unit vectormmm it is
enough to fix the next two invariants

I8 = mmm ··· AAA ···mmm, I9 = mmm ··· aaa (A.3.31)

The eight independent transversely isotropic invariants are (A.3.4), (A.3.5) and
(A.3.31).

A.3.3 Invariants for the Orthotropic Symmetry Group

Consider orthogonal tensorsQQQ1 = III − 2nnn1 ⊗ nnn1 and QQQ2 = III − 2nnn2 ⊗ nnn2,
det QQQ1 = det QQQ2 = −1. These tensors represent the mirror reflections, whereby
the unit orthogonal vectors±nnn1 and±nnn2, are the normal directions to the mirror
planes. The above tensors are the symmetry elements of the orthotropic symmetry
group. The invariants must be found from

f (QQQ1 ··· AAA ···QQQT
1 ) = f (QQQ2 ··· AAA ···QQQT

2 ) = f (AAA)

Consequently,

f (QQQ1 ··· QQQ2 ··· AAA ···QQQT
2 ···QQQT

1 ) = f (QQQ1 ··· AAA ···QQQT
1 ) = f (QQQ2 ··· AAA ···QQQT

2 ) = f (AAA)

and the tensorQQQ3 = QQQ1 ···QQQ2 = 222n3 ⊗nnn3 − III belongs to the symmetry group, where
the unit vectornnn3 is orthogonal tonnn1 andnnn2. Taking into account thatQQQi ···nnni = −nnni

(no summation convention),QQQi ··· nnnj = nnnj, i 6= j and using the notationAAA′
i =

QQQi ··· AAA ···QQQT
i we can write

tr (AAA′k) = tr (AAAk), k = 1, . . . , 3, i = 1, 2, 3

nnni ··· AAA′ ··· nnni = nnni ···QQQi ··· AAA ··· QQQT
i ··· nnni

= nnni ··· AAA ··· nnni, i = 1, 2, 3

nnni ··· AAA′2 ··· nnni = nnni ···QQQi ··· AAA2 ···QQQT
i ··· nnni

= nnni ··· AAA2 ··· nnni, i = 1, 2, 3

(A.3.32)
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The above set of includes 9 scalars. The number of independent scalars is 7 due to
the obvious relations

tr (AAAk) = nnn1 ··· AAAk ··· nnn1 + nnn2 ··· AAAk ··· nnn2 + nnn3 ··· AAAk ··· nnn3, k = 1, 2, 3
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gungsmechanik. Neue Hütte34, 6, 214 – 219
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340. Zurmühl, R., Falk, S. (1992): Matrizen und ihre Anwendungen. Springer, Berlin et al.
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