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Zusammenfassung 

Der Rehabilitationsprozess von Patienten, die aufgrund von neurologischen Defiziten, wie 

sie zum Beispiel nach einem Schlaganfall auftreten, an Gangstörungen leiden, umfasst ein 

breites Spektrum an Behandlungsmethoden.  

Nicht-pharmakologische Rehabilitationstechniken wie robotergestütztes Gangtraining 

oder funktionelle Elektrostimulation können dabei die Rehabilitation dieser Patienten 

unterstützen. In der klinischen Routine werden beide Technologien meist getrennt 

voneinander eingesetzt. Durch die Kombination dieser Techniken können jedoch 

potenzielle Nachteile wie eine inkorrekte Muskelaktivierung aufgrund passiv induzierter 

Bewegung kompensiert werden, was zu einer Verbesserung des Therapieeffektes und zu 

besseren Rehabilitationsergebnissen führen kann. 

Für eine prospektive Kombination dieser Technologien wurde ein Algorithmus entwickelt, 

der Gangereignisse während des robotergestützten Gangtrainings unter Verwendung von 

linearer-Beschleunigungs- und Winkelgeschwindigkeitsdaten aus Inertialsensoren 

extrahiert. Diese Gangereignisse können perspektivisch zur Auslösung einer funktionellen 

elektrischen Stimulation während der robotergestützten Gangrehabilitation verwendet 

werden. Da dieser neuartige Ansatz unabhängig von den roboterspezifischen 

Schnittstellen und den vom Roboter bereitgestellten Daten ist, kann der Aufbau autonom 

betrieben werden, was die Möglichkeit bietet, eine große Bandbreite an Gangtrainern mit 

dieser Technologie auszustatten. In dieser Arbeit wurden Machbarkeit, Anwendbarkeit, 

Robustheit und Leistungsfähigkeit des neu entwickelten Konzepts evaluiert. 

Zunächst werden die Entwicklung des Detektionsalgorithmus im Detail beschrieben und 

die Methoden zur Erkennung von Gangereignissen und zur Fehlerbehandlung erläutert. 

Des Weiteren wurde ein Algorithmus für eine willkürliche Sensorausrichtung entwickelt. 

Dieser wird im Detail beschrieben und evaluiert. 

Als nächster Schritt wird die Machbarkeit des Systems bestehend aus Inertialsensoren für 

die Erfassung von Gangereignissen beim robotergestützten Gangtraining evaluiert. Für 

diese Auswertung führte ein gesunder Proband insgesamt sechs Trainingseinheiten mit 

zwei unterschiedlichen Gangtrainern durch (exoskelettales System und endeffektor-

basiertes System). Die Daten wurden mit dem entwickelten Algorithmus analysiert, und 

es wurde eine Gesamterkennungsrate von ca. 99% für das exoskelettale System und 

ca. 96% für das endeffektor-basierte System erreicht. Zusätzlich wurden die Falsch-

Positiven, welche falsch erkannte Schritte darstellen, berechnet. Der Gesamtwert der 

Falsch-Positiven betrug ca. 1% für beide Systeme. 
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In einem dritten Schritt werden die Anwendbarkeit und Robustheit des Systems in der 

klinischen Routine berücksichtigt. Dazu wurde eine Gesamtzahl von n=10 Probanden mit 

Schlaganfall für die Teilnahme an einer klinischen Studie rekrutiert. 

Die Patienten wurden entsprechend ihrem Leistungsniveau in zwei Gruppen aufgeteilt 

und den robotergestützten Gangtrainern (exoskelettales System und endeffektor-basiertes 

System) zugewiesen. Mit den entsprechenden Gangtrainern führten sie ihre normale 

Rehabilitationsroutine durch, die Erhebung der Bewegungsdaten erfolgte mittels 

Inertialsensoren. Der entwickelte Algorithmus wurde mit den Daten der klinischen Studie 

getestet. Die Erkennungsrate über alle Patienten betrug ca. 96% für das endeffektor-

basierende System, die Analyse des exoskelettalen Systems zeigte einen Erkennungsrate 

von ca. 99%. Zusätzlich wurden die Falsch-Positiven berechnet; der Wert über alle 

Patienten betrug ca. 1% sowohl für das endeffektor-basierte System als auch das 

exoskelettale System. 

In einem letzten Schritt wurde die Leistungsfähigkeit des Algorithmus und die 

Möglichkeit zur Auslösung einer funktionellen elektrischen Stimulation auf Grundlage der 

extrahierten Gangereignisse untersucht. Die Leistung des Algorithmus basiert dabei auf 

der induzierten Verzögerung der Mess- und Ausführungskette des Konzepts. Insgesamt 

induziert der Algorithmus (bei einem Sensor) eine mittlere Latenzzeit von ca. 282μs. Die 

mittlere Latenzzeit einer seriellen Übertragung zum Senden des Stimulationsbefehls der 

funktionellen elektrischen Stimulation betrug ca. 2μs. Darüber hinaus wurden die 

Bluetooth-induzierte Latenz und die Latenz aufgrund physiologischer Prozesse wie der 

elektromechanischen Verzögerung theoretisch untersucht. Das Resultat war eine 

Gesamtverzögerung von ca. 148ms, die eine realisierbare Grundlage für eine zukünftige 

funktionelle elektrische Stimulation während der Behandlung mit Gangtrainern darstellt. 

Im Ergebnis liefert das Konzept in Abhängigkeit der Schrittdauer des Gangtrainers und 

der induzierten Verzögerung durch die Mess- und Ausführungskette sowie der 

Verzögerung durch physiologische Prozesse vielversprechende Ergebnisse für die 

zukünftige Forschung – und eine Technik, die den Rehabilitationsprozess von Menschen 

mit Gangstörungen durch die Kombination von roboterunterstütztem Gangtraining mit 

funktioneller elektrischer Stimulation verbessern kann. Die in dieser Arbeit vorgestellten 

Ergebnisse zeigen den ersten wissenschaftlich fundierten Ansatz der Verwendung von 

Inertialsensoren zur Gangereigniserkennung beim robotischen Gangtraining mit der 

Perspektive, die Therapie mit funktioneller elektrischer Stimulation zu unterstützen.  
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Abstract 

The rehabilitation process of patients who suffer from gait disorders caused by 

neurological defects such as stroke involves a broad variety of treatment methods. Non-

pharmacological rehabilitation approaches such as robotic gait training or functional 

electrical stimulation have shown to support the rehabilitation of these patients. In clinical 

rehabilitation routine, both technologies are mainly used separately from each other. By 

combining these techniques, potential disadvantage such as improper muscle activation 

due to passively induced movement can be compensated and can lead to an improvement 

of therapy effects and better rehabilitation results. 

For a prospective combination of the mentioned technologies, an easy and lightweight 

algorithm was designed. The goal of the algorithm is to detect certain gait events during 

clinical robotic gait therapy. The detection is based on sensor data such as linear 

acceleration and angular velocity. Recognized phases perspectively can be utilised to 

activate functional electrical stimulation during the rehabilitation with robotic gait trainers. 

As this novel setup is independent from robot-specific interfaces, it can be operated 

autonomously, which offers the possibility to equip a wide variety of robotic gait trainers 

with this technology. In this work the feasibility, applicability, robustness and performance 

of the newly developed concept was evaluated. 

First, the development of the algorithm is described in detail and the gait event detection 

and error handling methods are elaborated. Furthermore, an arbitrary sensor alignment 

algorithm is introduced and explained. 

Second, the feasibility of a concept with inertial sensors for the acquisition of gait events 

during robotic gait therapy is evaluated. For this evaluation, a healthy subject performed 

six recording sessions with two different robotic gait trainers (one exoskeletal robotic 

system and one end-effector based system). The data was analysed with the generated 

algorithm and detection rates were calculated. A value of approx. 99% for the exoskeletal 

system and a value of approx. 96% for the end-effector based system were achieved. 

Additionally, false-positives representing incorrect detected steps were calculated. The 

value for both systems was approx. 1%. 

As a third step, the applicability and robustness of the proposed system during clinical 

routine was taken into consideration. Therefore, a number of n=10 stroke patients was 

recruited to participate in a clinical study. Before the recordings, as a part of the normal 

rehabilitation routine, specially trained therapists screened the participants and decided 

whether the subject should perform the therapy in the exoskeletal robotic system or in the 
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end-effector based system. The specially designed algorithm was tested using the collected 

data from the clinical trial. As a result, an approximate value of 96% over all patients for 

the detection rate in end-effector based system was achieved. The detection rate of the 

exoskeletal system over all patients had a value of approx. 99%. Furthermore, false-

positives were calculated. The value of false-positives over all patients was approx. 1% for 

both systems. 

As a last step, the performance of the algorithm and possibility to trigger functional 

electrical stimulation based on the extracted gait events was investigated. The performance 

of the algorithm is focussed on the induced delay of the measurement and execution chain 

of the proposed concept. Overall, the algorithm for one sensor induces a mean latency of 

approx. 282μs. The mean latency of a serial transmission to send the stimulation command 

for the trigger of functional electrical stimulation was approx. 2μs. Furthermore, the 

Bluetooth-induced latency and the latency due to physiological processes such as the 

electromechanical delay were investigated theoretically and resulted in an approximate 

overall delay of the proposed concept of approx. 148ms, which provides a feasible basis for 

a future functional electrical stimulation during the robotic treatment.  

As a result, depending on the step duration of the robotic system, the induced delay due 

to the measurement/execution chain and the delay due to physiological processes, the 

proposed concept delivers encouraging findings for future research and provides a method 

that can improve the recovery of people with walking disturbances by actively activating 

the muscles with electrical stimulation during the robotic gait therapy. The results 

presented in this thesis show the first scientifically based approach of using inertial 

measurement units for the gait recognition during robotic gait training with the 

perspective of triggering functional electrical stimulation during the therapy.  
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1 Introduction  

Human walking requires a close collaboration of the motor and sensory system of human 

beings. Besides, it is a vital activity of daily living and a key factor for well-being and 

health. Diseases of the nervous or the cardiovascular system such as stroke, multiple 

sclerosis and parkinsonism as well as trauma such as spinal cord injury, can disturb the 

precision and the coordination of the collaborating systems and can lead to gait disorders 

or walking impediments. Particularly the performance of activities of daily living such as 

functional mobility is highly restricted for people with walking dysfunctions. Moreover, 

they can lead to falls and can decrease the overall quality of life. As reported by Global 

Health Estimates of the World Health Organization, cerebrovascular diseases like strokes 

are the second most frequent causes of death and the third most frequent reasons for 

disability worldwide [1]. Furthermore, for stroke survivors, gait disorders and walking 

impediment are main problems in their daily life [2,3]. As a result, for stroke survivors, the 

restauration of gait and independent walking is seen to be a major goal of rehabilitation 

[4]. For the treatment of gait disorders in the clinical routine, various rehabilitation 

techniques such as physiotherapy and occupational therapy are used. In addition to the 

conventional therapy, modern techniques like robot-assisted gait training (also called 

electromechanical gait training, robotic gait training or robotic gait therapy) are more 

frequently used to support the treatment of the patients. The technical setup of robotic gait 

trainers incorporates a body strap attached to a supporting system, which is needed as a 

support for the paretic lower limbs and which can act as a compensation for insufficient 

balance reactions. In addition, it provides physical relief for the therapists as the body 

weight of the patient is carried by the robot. The gait is thereby induced by a robot-specific 

pattern and defines the cyclic movement of the gait. Robotic gait trainers can be classified 

as exoskeletal types that move the joints such as ankle or knee of a patient during the 

training, and end-effector based systems that move only the feet of a patient [5]. Thus, gait 

robots can be categorized based on their principal of motion. Two successive systematic 

reviews dedicated to robot-assisted gait training for walking after stroke conclude that the 

combination of robotic gait training and conventional physiotherapy is more effective in 

achieving independent walking in stroke survivors with gait disorders compared to 

patients who did not receive robotic gait training [6,7]. Nonetheless, negative aspects of 

robotic gait training are described in the literature as well. For example, the harness which 

supports the body weight of the patient can lead to the inhibition of muscle activity [8]. 
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Additionally, depending on the robot-specific movement strategy, the movement of pelvis 

and legs are constrained to a certain degree, which can influence the natural occurring 

muscle activation pattern [9]. In order to tackle these drawbacks, some manufacturers of 

robotic gait trainers developed techniques which aim to allow the subject to influence the 

induced movement pattern actively to enhance the rehabilitation output. An example for 

that is a biofeedback mode which allows the robotic device to measure the patients’ 

remaining walking activity and adapts the induced gait pattern. Another example would 

be the change of the guidance force of the exoskeleton which can be altered towards the 

abilities of the patient.  

Another commonly used technique in rehabilitation to promote lower and upper extremity 

function is functional electrical stimulation [10–17]. The rehabilitation approach of 

functional electrical stimulation (FES) describes the usage of external artificial electrical 

impulses to stimulate muscles with disrupted nervous control. The aim of the stimulation 

is to provide a muscular contraction and to produce a functional useful movement [18]. 

For stroke survivors, FES has shown to be beneficial in improving aspects of everyday 

activity performance [19]. Additionally, for patients with multiples sclerosis, FES can 

provide a positive orthotic effect [20]. Nevertheless, innovations and advances in clinical 

approaches for the FES therapy are needed to increase medical efficacy and usability of 

this treatment method [20]. Compared to conventional neuromuscular electrical 

stimulation which does not elicit a distinct movement of the muscles, FES treatment for 

gait training of stroke survivors can be considered superior as it improves mobility and 

balance, reduced spasticity in the muscles and can improve the overall gait performance 

[21]. Furthermore, for spinal cord injury patients, medical benefits such as the incremental 

change in the activity of the nervous system following FES treatment contribute 

significantly to the improvement in quality of life [22]. 

The combination of a guided movement like cycling and FES has shown to provide positive 

effects on parameters like speed of walking and walking ability [23]. Furthermore, the 

combination of FES and the aforementioned robotic gait training seems to be a promising 

technique for stroke rehabilitation. The combination of FES and robot-assisted gait training 

can be termed “hybrid robotic rehabilitation system”. This combination of rehabilitation 

techniques has demonstrated a higher medical efficacy in comparison to robotic gait 

training alone [24]. The goal of hybrid robotic rehabilitation systems is to combine the 

positive aspects of both approaches and simultaneously counteracting potential 

drawbacks of the individual techniques. In particular, the advantages of robotic gait 

training such as high repetition, long durations and physical relief of the therapists can be 

maintained with simultaneous improvement of muscle activation through active electrical 
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stimulation of the muscles of the lower limbs. Approaches to combine commercially 

available gait trainers with electrical stimulation are promising.  

So far, however, the approaches require information provided by the robot itself [25–32], 

focus on intramuscular electrodes  [25,33], require human interaction using a finger switch 

[33], or provide only limited amounts of stimulated muscles such as stimulation for foot 

drop [26,27]. Furthermore, some commercially available systems do not publish their 

operating principle scientifically or do not have open hard/software interfaces to allow a 

connection with external systems, limiting the possibility for peer reviewing and research.  

An approach to overcome the above-mentioned limitation (that information provided by 

the robotic system itself is needed for the setup) is to use sensors like inertial measurement 

units (IMU) to record the movement of the subject or the robot during therapy. Based on 

the recorded movement, events during the gait cycle can be detected and further be 

processed with the aim to use them as a trigger instant for FES during the gait training. 

Additionally, due to the independent data collection, the scope of potential robotic gait 

trainers is large. Furthermore, the number of stimulated muscles can be improved by the 

explicit knowledge of the individual gait events. 

Gait event detection is a well-researched area and commercially available analysis systems 

as described in [34–37] provide valid and reliable spatial-temporal gait parameters. Yet, 

the main focus of these systems is to analyse human walking rather than recording and 

analysing robotic gait trainers with their system-dependent characteristics of movement. 

Furthermore, most of them do not aim to use gait events as a trigger instant for FES. 

Therefore, within this work we propose a novel technique which records the movement of 

robotic gait trainers and provides a real-time gait event detection algorithm including an 

unsupervised adaptability to the robotic gait pattern with the future aim to use the detected 

gait events as a trigger instant for FES to support future rehabilitation. 
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1.1 Goals and Non-Goals 

Goals  

One goal of this thesis is to develop an algorithm for gait recognition during robotic 

training. The algorithm should be able to process data which is gathered by IMUs. The raw 

data consists of linear acceleration (m/s2) and angular velocity (°/s). Based on the raw data, 

the developed algorithm should extract four main gait events from the gait cycle in real 

time. The feasibility of the algorithm should be tested. Furthermore, the suitability for the 

usage in a clinical setting should be evaluated. The algorithm should be developed in 

MATLAB in such a way that it can be extracted as C-Code using the MATLAB Coder in 

order to provide the basis for a potential implementation in external processing units. The 

developed algorithm should be adaptable to provide the possibility for the usage of 

various robot-assisted gait trainers. Additionally, the usage for a broad range of training 

velocities should be possible. The algorithm should support an arbitrary sensor alignment 

to ensure an easy set-up of the IMUs. The developed concept should be able to provide a 

trigger instant for FES during robotic gait training based on the detected gait cycle. The 

concept should take the meaningfulness and applicability of the electrode positioning 

during clinical routine into account. Thus, a reasonable number of muscles on the lower 

extremity must be identified. Furthermore, the detected gait events must be mapped to the 

muscle activity during walking in order to define the stimulation patterns. The concept 

must provide the possibility to freely choose the stimulation patterns and the parameters 

for the electrical stimulation. Bench testing of the proposed concept should be executed. 

 

Non-Goals: 

The developed algorithm does not have to be validated against gold standards for gait 

event detection such as optical marker systems or pressure sensitive walkways.  

The medical efficacy of the developed system with functional electric stimulation does not 

have to be shown. Furthermore, the usage of the concept together with patients in a clinic 

does not have to be evaluated. 
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2 Theoretical Background 

The following chapters provide a theoretical background on the topics addressed within 

this thesis. It is split into the following parts: 2.1 Nervous System, 2.2 Human Gait Cycle, 

2.3 Electrical Stimulation, 2.4 Robotic Gait Training  and 2.5 Inertial Measurement Units. 

Depending on their importance in the context of the thesis, the respective chapters vary in 

detail of their explanation. 

 

2.1 Nervous System 

The nervous system can be separated according to its localisation (central – peripheral) and 

functionality (somatic – autonomic). The brain and the spinal cord form the central nervous 

system. The peripheral nervous system is formed by the somatic and the autonomic 

nervous system. Additionally, the autonomic nervous system can be further divided into 

sympathetic nervous system and parasympathetic nervous system. The separation of the 

various parts is visualised in Figure 1. 

 

Figure 1: Structure of the nervous system 
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2.1.1 Brain 

To simplify the segmentation of the brain, it can be separated into three domains: 

cerebrum, cerebellum and brain stem (Figure 2). 

 

Figure 2: Brain—simplified segmentation [38] 

 

The brainstem is connected to the spinal cord and comprises important centres for 

breathing and the circulatory system. The pons which is located in the brain stem works as 

a connection between the cerebrum and the cerebellum. Other important parts of the brain 

stem are the mid brain, the formation reticularis, the nucleus ruber and the substantia nigra 

(affected region of Parkinson’s disease, chapter 2.1.5 ) which work as motoric centres. The 

remaining parts of the brain stem are called striatum, thalamus and palladium. The 

cerebrum can be separated in frontal, parietal, occipital and temporal lobe. Arbitrary 

movements are represented in the motoric cortex which is located in the frontal lobe. The 

cerebellum takes part in the regulation and correction of the motoric system and therefore 

is part of the static of a human being [38]. 

 

2.1.2 Spinal Cord 

Within the spinal cord there is a clear differentiation between grey and white matter. The 

grey matter in the centre of the spinal cord mainly consists of nerve cells. It is surrounded 

by the white matter which consists of axons. The grey matter can be separated into 

posterior horn and anterior horn (Figure 3). Sensory information collected by the spinal 

ganglion is forwarded via the posterior root and the posterior horn to the brain (ascending 

pathways). Motoric information coming from the brain use the pyramidal pathways 
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(descending pathways) which pass signals via the anterior horn and root to motor neurons 

and result in an innervation of a muscle.  

 

Figure 3: Cross-section of the spinal cord [38] 

 

Spinal nerves consisting of posterior and anterior horn are specifically designated to a 

segment of the spinal cord. The segments are called cervical (C 1-8), thoracic (Th 1-12), 

lumbar (L 1-5) and sacral (S 1-5). The segments are represented in the periphery as 

dermatomes on the skin (Figure 4). Dermatomes are important indicators for the severity 

of paralysis as a lack of sensation in a specific dermatome can be exactly assigned to a 

specific spinal cord segment and its nerve. 

 

 

Figure 4: Spinal cord segments (left) and corresponding dermatomes (right) [39] 
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2.1.3 Neurons  

Functionality 

Neurons, also called nerve cells, can be divided into three main groups. Motoric neurons 

(efferent) sensory neurons (afferent) and interneurons. Motoric neurons are coupled with 

muscles or glands; their task is to pass information from the spinal cord to the distinctive 

muscle or gland, therefore they are called efferent neurons which means “away from the 

brain”. In contrast to that, afferent neurons pass sensory information from the periphery 

of various receptors to the brain. Inter neurons are neither specifically afferent nor efferent 

and can operate between motoric and sensory neurons. 

A neuron can be divided into four main functional units (Figure 5). Signals which are 

gathered by the dendrites are integrated by the soma and passed to the axon hillock. The 

axon hillock summarises this information and an action potential is created. The 

information of the summarized signals is encoded in the frequency of the action potential 

[40]. The propagation of the action potential is done by an axon. At its end, the axon is 

either connected to an electrical synapse (gap junction) or to a chemical synapse. In case of 

a motoric neuron, the synapse is called neuromuscular junction which is a chemical 

synapse and triggers a muscle fibre [40]. Details for chemical synapses are elaborated in 

section 2.1.4.  

 

 

Figure 5: Structure and function of a neuron [40] 
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Action Potential (AP) 

The nerve impulse is initiated if a neuron is excited, and the balance of its charges is altered. 

This alteration of charges occurs due to chemical disturbances at a synapse or receptor or 

due to disturbances such as an external electrical impulse [41]. The AP is initiated by a 

depolarisation which starts slowly from the resting potential of about -70mV. When a 

certain threshold is reached, the depolarisation briefly speeds up to a maximum value of 

about 30mV (all-or-nothing principle). This is followed by a repolarisation and a 

hyperpolarisation which restores the resting potential. Figure 6 shows a sample AP, VRP 

indicates the rest potential, VT the threshold potential and VH the potential reached during 

hyperpolarisation. 

 

 

Figure 6: Schematical representation of an action potential [40] 

 

The creation of action potential of all excitable cells (nerve cells, skeletal muscle cells, heart 

muscle cells) work in the same way but they differ in shape and curve [40]. 

 

2.1.4 Chemical Synapse 

A chemical synapse or neuromuscular junction (Figure 7) is needed for the propagation of 

a signal between a neuron and other cells. The AP of an axon leads the synapse to release 

neurotransmitters. The neurotransmitter diffuses through the presynaptic membrane into 

the synaptic gap. The transmitter diffuses through the synaptic gap to the postsynaptic 

membrane. In the membrane the transmitter can bind to the corresponding receptors. This 

binding leads to a depolarisation of the postsynaptic membrane which excites the 
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propagation of the signal (excitatory synapse) or to a hyperpolarisation which inhibits the 

propagation (inhibitory synapse) [42]. 

 

 

Figure 7: Chemical synapse [40] 

 

With this process, an electrical signal is converted to a chemical signal. This chemical signal 

is translated via neurotransmitters and specific membrane receptors back into an electrical 

signal. Action potentials in motoneurons result in the release of acetylcholine. 

Acetylcholine triggers the depolarization of the muscle fibre membrane resulting in a wave 

of depolarisation along the muscle fibre membrane causing the whole muscle fibre to 

contract and trigger a movement [40]. 

 

2.1.5 Defects of the Nervous System 

Stroke: A stroke is a medical condition mostly caused by insufficient blood circulation in 

the brain leading to cellular death of the affected area. The two major types of stroke are 

the ischemic stroke caused by clot narrowing or blocking of blood vessels  

(ICD–10–GM–I63) and the haemorrhagic stroke caused by blood from a damaged blood 

vessel in the brain or in the subarachnoid space (ICD–10–GM–I61) [43]. Early symptoms of 

a stroke include face dropping or numbness, arm weakness and slurred speech.  

Common long-term effects include muscles weakness, spasticity and drop foot.  

 

Spinal cord injury (SCI): Spinal cord injury (ICD–10–GM–S14, S24, S34) describes 

damages of the spinal cord with temporary or permanent changes in its function. SCI can 

be divided into traumatic and non-traumatic causes [44]. Traumatic SCI refers to damages 
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of the spinal cord, which are caused by external impacts such as car accidents, falls or 

violence. In contrast to that, non-traumatic SCI are caused by disc diseases (acute, chronic, 

degenerative) or infection [45]. Depending on the localisation of the lesion (cervical, 

thoracic, lumbar, sacral; see Figure 4) different segments and dermatomes of the body are 

affected. Symptoms include impairment of sensory and motor function and are graded 

according to the ASIA Impairment Scale [46]. 

 

Parkinson’s disease: Parkinson’s disease (ICD–10–GM–G20) refers to a neurodegenerative 

disorder caused by the death of dopamine-producing neurons located in the substantia 

nigra. Symptoms include motoric symptoms (e.g.: bradykinesia, tremors, etc.) and non-

motoric symptoms (e.g.: depression, insomnia, etc.) [47].  

 

Multiple’s sclerosis: Multiple sclerosis (ICD–10–GM–G35) is a disease which destroys the 

myelin sheath of nerve cells in the brain and the spinal cord. This disease is also referred 

to as encephalitis disseminate, which indicates the occurring centres of inflammation that 

are scattered throughout the central nervous system. Despite increasing understanding of 

the disease mechanisms and the increase of therapeutic options, the exact cause of multiple 

sclerosis is unknown, yet a combination of genetic and environmental factors act to confer 

susceptibility to the disease [48]. Symptoms may include unsafe movement (ataxia), loss of 

muscle mass, spasticity and sensitive disorders. 

 

Treatment: The above-mentioned defects of the nervous symptoms and their symptoms 

such as spasticity, drop foot, and other impairments, are treated using pharmacological 

and non-pharmacological methods. Non-pharmacological treatments such as functional 

electrical stimulation (section 2.3.1) and robot-assisted gait training (section 2.4) are 

therapies recommended by the guidelines of the German Association of Neurology [49,50]. 

 

2.1.6 Neuroplasticity 

Neuroplasticity is the neurobiological basis of functional restitution of the nervous system. 

Neuroplasticity can be seen as the ability to make adaptive changes related to the structure 

and function of the nervous system [51]. The two types which are mainly described in this 

context are the structural neuroplasticity which refers to changes in the structure, such as 

change in strength between neurons, whereas functional neuroplasticity refers mainly to 

the learning process and memory [52]. Thus, neuroplasticity is a summation of various 

biological adjustment procedures which can an occur during rehabilitation with 
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techniques such as robotic gait training and functional electrical stimulation. The 

underlying mechanisms can be described as follows [53]:  

Vicariation: Vicariation describes the function that a destroyed area of the brain is adopted 

by an intact but not related area of the brain. An example is that the visual cortex of blind 

people can be adopted and is activated when learning braille. Nevertheless, vicariation is 

a hypothetical concept and is replaced by a more plausible concept called 

unmasking/redundancy recovery [54]. 

Plasticity of cortical representations (unmasking/redundancy recovery): This concept 

describes the ability of the brain to use connections which are normally not used but 

already available. This means redundant (latent) connections are activated if the initial 

connections are destroyed. This redundant connectivity is already existent but stays 

inactive until activated. 

Sprouting of nerve endings: As the name indicates, sprouting refers to the recovery of 

injured or cut nerve endings. In the peripheral nervous system, this process leads to new 

functional neural connections. This process is less relevant in the central nervous system 

as the basic conditions for sprouting such as the existence of swan cells is not given there. 

Collateral axon sprouting: This mechanism refers to denervated neurons which can 

receive signals from other synapses. Collateral axon sprouting lead to untwined 

functionality as nerve cells in the CNS are highly specific regarding their tasks. Intact areas 

may create a plasticity. Intact areas form axon collaterals act as a plastic response to a 

distant lesion, which sprout as denervated areas and form synapses. 

Diaschisis: The concept describes that a lesion in the brain can affect other, more distant 

areas of the brain. This affects the functionality and has no structural changes. The 

functional changes are reversible as soon as the impact of the lesion fades. 

Synaptic plasticity: Synaptic plasticity describes the process where synchronous activation 

patterns of synapses change their synaptic strength (“Cells that fire together, wire 

together” [55]). This process is thought to contribute to memory and learning.  

Enriched environment: The environment of the patient influences the neurorehabilitation. 

A high motivation with better goals and a good quality of social contacts leads to better 

results of plasticity. As it is quite difficult and ethically problematical to control the 

environment of a human being, this concept is hard to evaluate. 

Neurogenesis: Neurogenesis is the process of creating nervous system cells out of neural 

stem cells.  

Neuronal stem cells: Neuronal stem cells are immature cells of the central nervous system. 

They have the ability to divide and renew themselves and produce mature neurons.  
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2.2 Human Gait Cycle 

The human gait is one of the most essential activity of daily living. It is executed by a 

repetitive movement of the extremities propelled by the muscles. Corresponding to Figure 

8, the functional basis for walking can be described in seven steps. The gait is initiated by 

the CNS which registrates the gait command and activates the motor neurons (1). As a next 

step, the signals are transmitted via the peripheral nervous system (2). The muscles are 

activated and muscle tension is developed (3). Forces and moments are generated using 

the synovial joints (4). The skeletal muscles support the regulation of joint forces and 

moments (5). This interplay leads to a displacement of the limbs, causes a gait movement 

(6) and thus, ground reaction forces are generated (7) [56]. 

 

 

Figure 8: Seven components that form the functional basis for walking [56]. 

 

The generated gait cycle is defined by two phases and eight gait events as depicted in 

Figure 9. The start is indicated by the initial contact (IC) which corresponds to the first 

contact of the foot with the ground. This event is followed by the load response (LR) when 

the contralateral foot lifts off. The LR incorporates the full contact (FC). Heel off (HO) 

corresponds to the heel lifting off the ground. Opposite initial contact corresponds to the 

first contact of the heel from the opposite limb with the ground. During a normal gait cycle, 
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this happens at 50% of gait cycle. Toe off (TO) is indicated by the lifting of the forefoot from 

the ground. Feet adjacent (FA) refers to when the swing leg passes stance leg. Tibia vertical 

(TV) corresponds to the vertical oriented tibia of the swing leg. The end of the movement 

sequence is again indicated by an IC. Thus, the IC starts and ends a gait cycle. 

 

 

Figure 9: Human gait cycle [57]  

 

2.2.1 Muscle Activation during Gait  

The proportion of the muscle activity during gait is not permanent; many factors such as 

age, walking speed, personal fitness, injuries and anthropometric data influence the muscle 

contribution during gait. Nevertheless, the activation of muscles during gait can be defined 

as a function of the movement pattern. The muscle activation can be divided into the 

muscle sequence of the stance phase and the sequence of the swing phase. Additionally, 

the muscle activation needed for controlling the foot joint can be taken into consideration. 

During stance phase, three main activities are performed by the muscles: 1.) swing to stance 

transition at the terminal swing phase, 2.) weight acceptance during initial contact and 

loading response, and 3.) progression over the supporting foot during mid stance, terminal 

stance, and start of pre swing [58]. The corresponding muscle activation sequences of the 

upper leg can be seen in Table 1: 
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Muscle 
On 

(% of gait cycle) 

Peak 

(% of gait cycle) 

Off 

(% of gait cycle) 

Anterior tibialis 56 0 13 

Semimembranosus 81 88 15 

Biceps femoris long head 82 93 5 

Semitendinosus 88 98 17 

Vastus medialis oblique 89 6 14 

Vastus lateralis 90 8 16 

Vastus medialis longus 91 4 16 

Vastus intermedius 95 8 20 

Adductor magnus 92 1 7 

Gluteus maximus, lower 95 3 10 

Gluteus maximus, upper 95 3 24 

Gluteus medius 96 7 29 

Posterior tibialis 0 44 50 

Soleus 7 43 52 

Gastrocnemius 9 40 50 

Flexor digitorum longus 1 47 54 

Peroneus longus 15 41 51 

Peroneus brevis 20 46 55 

Flexor hallucis longus 31 49 54 

Table 1: Muscle activation sequence during stance, adapted from [58] 

 

The swing phase is initiated by the pre swing and limb advancement is accomplished 

during this phase. The muscle activation patterns with regards to the gait cycle, in 

particular the swing phase, can be seen in Table 2. 

 



 

 

16 

 

Muscle 
On 

(% of gait cycle) 

Peak 

(% of gait cycle) 

Off 

(% of gait cycle) 

Adductor longus 46 50 77 

Gracilis 50 69 4 

Rectus femoris 57 59 65 

Sartorius 60 65 71 

Iliacus 63 69 74 

Biceps femoris short head 65 71 82 

Anterior tibialis 56 0 13 

Extensor digitorum longus 57 70 12 

Extensor hallucis longus 58 74 9 

Table 2: Muscle activation sequence during swing, adapted from [58] 

 

Throughout the stance phase, the foot joints must be stabilised and are supported by the 

muscles of the lower leg. Furthermore, the swing and stance phase requires the foot to fulfil 

movements such as plantar and dorsiflexion, inversion and eversion. The according 

muscles and their activation sequence can be seen in Table 3. 

 

Muscle 
On 

(% of gait cycle) 

Peak 

(% of gait cycle) 

Off 

(% of gait cycle) 

Anterior tibialis 56 0 13 

Extensor digitorum longus 57 70 12 

Extensor hallucis longus 58 74 9 

Posterior tibialis 0 44 50 

Soleus 7 43 52 

Gastrocnemius 9 40 50 

Flexor digitorum longus 13 47 54 

Peroneus longus 15 41 51 

Peroneus brevis 20 46 55 

Flexor hallucis longus 31 49 54 

Table 3: Muscle activation sequence of the foot joints, adapted from [58] 
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2.3 Electrical Stimulation 

For the treatment of patients with neurological disorders, various types of electrical 

stimulation can be used. The most common terms for electrical stimulation are: electrical 

muscle stimulation (EMS), neuromuscular electrical stimulation (NMES), motor electrical 

stimulation (MES), functional electrical stimulation (FES), and transcutaneous electrical 

nerve stimulation (TENS). The terms EMS and NMES are similar as both describe the 

creation of isolated muscle contraction using electrical impulses. In TENS, electric current 

is mainly used to stimulate the nerves for therapeutic purposes such as the reduction of 

pain [41]. The term MES refers to the production of a muscle contraction by the use of 

electrical stimulation [41]. Furthermore, MES can be differentiated into two subsections 

whereas one section refers to electrical stimulation which is applied to the nerve (electrical 

stimulation of innervated muscles) and the other section refers to electrical stimulation 

which is applied directly to the muscles (electrical stimulation of denervated muscle). In 

FES, the main goal of the applied electrical impulses is the production of a functional 

movement such as walking or grasping. However, all abbreviations mentioned above refer 

to the same basic principle—the application of electrical impulses to increase or decrease 

the muscular activity or the activity in the CNS. The differentiation between the terms is 

not unified in the literature and mainly depends on the intended use of the stimulation. A 

detailed elaboration of the inconsistencies of the terminology and its application can be 

found in [59]. 

 

2.3.1 Functional Electrical Stimulation  

After a damage of the CNS (brain or spinal cord, section 2.1), the transmission of motor 

commands to the muscles in the periphery can be interrupted. In case the innervating 

nerves of the muscle are intact, a localized external electrical field can be applied to replace 

the missing physiological signal. The method of applying an external electrical impulse to 

generate muscle contraction of paralyzed muscles with the aim to mimic a functional 

movement such as walking or grasping is termed functional electrical stimulation (FES). 

Referring to the terms introduced in section 2.3, FES can also be described as organised and 

patterned NMES with the aim to create a coordinated movement [60]. Furthermore, the 

application of FES can refer to the restoration of functions of the human sensory system 

such as auditory or visual neuroprostheses. In order to replace the interrupted pathway 

between the CNS and the peripheral muscles, the applied electric field generates an 

artificial action potential. This AP depolarises the neuromuscular junction which 
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ultimately leads to a functional muscular contraction. The device creating the artificial AP 

is placed on the motor neuron (lower motor neuron) of the affected muscle and the energy 

is transmitted via stimulation electrodes (Figure 10).  

 

 

Figure 10: Schematic representation of a surface FES system 

 

FES applications for motor functions generally activates rather nerve (electrical stimulation 

of innervated muscles) than muscle fibres (electrical stimulation of denervated muscle) 

[61]. A reason for that is that the threshold for producing AP in neurons is lower compared 

to muscle fibres (Figure 11). Furthermore, FES usually only benefits patients with an intact 

lower motor neuron (spastic paraplegia). Patients who suffer from a flaccid paralysis often 

have a very low response to electrical stimulation and thus FES does not support their 

treatment [62]. 

 

 

Figure 11: Strength-duration curve of a denervated cat tibialis anterior muscle [61] 
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The clinical use of FES is broad and depending on the field of application, the efficacy of 

the treatment can be determined. Especially the use of FES combined with other 

technologies such as robot-assisted gait training or cycling seem to be a promising 

rehabilitation modality for the future rehabilitation. 
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2.4 Robotic Gait Training  

Since high repetition in the movement pattern tends to play a significant role in the 

recovery of walking function [63], rehabilitation approaches such as body-weight-

supported treadmill training (BWSTT) which provide a highly repetitive movement seem 

to be a promising training method. In BWSTT (Figure 12), the bodyweight of the subject is 

supported by a harness and a control unit while the lower limbs are moved and guided by 

therapists.  

 

Figure 12: Body-weight-supported treadmill training (BWSTT), adapted from [64] 

 

BWSTT can improve walking function for patients after stroke or SCI [65,66]. Moreover, 

the LEAPS study which included more than 400 stroke patients showed the superiority of 

BWSTT followed by overground training compared to conventional care with regard to 

the walking ability of the patients [12]. Despite the positive aspects of BWSTT, the therapy 

setting is labour-intensive as it mostly requires two therapists (one therapist per lower 

extremity). Additionally, the non-ergonomic working posture of the therapists and the 

high physical effort needed to move the lower extremities of the patient may limit the 

duration of the training due to exhaustion of the therapist. 

Rehabilitation technologies such as robot-assisted gait training (RAGT) also termed robotic 

gait training can compensate the aforementioned drawbacks of BWSTT by guiding the gait 

cycle of the patient with a robot-specific movement strategy. This may lead to longer 

training time as the physical exhaustion of the therapist is minimized. Longer training 
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durations have shown to provide positive effects on the activities of daily living (ADLs) 

[66,67]. Additionally, the therapist can focus on other aspects of the rehabilitation such as 

correct breathing or the posture of the patient and robot-assisted gait trainer may offer the 

possibility to use technologies like virtual reality to enhance the participation of the 

patients during therapy [68]. Furthermore, robots can provide objective data using 

embedded sensors of the individual device which may be used to overcome some 

limitations of traditional clinical assessments [69]. Two successive systematic reviews 

dedicated to RAGT for walking after stroke conclude that the combination of RAGT and 

conventional physiotherapy is more effective in achieving independent walking in stroke 

survivors with gait disorders compared to patients who did not receive robotic gait 

training [6,7]. Additionally, neural plasticity as mentioned in section 2.1.6 can be enhanced 

as robotic gait training allows high-dosage and high-intensity training [70]. The movement 

principle of the robotic devices categorises the specific robots; so far there are two main 

groups: exoskeletal robotic systems and end-effector-based systems [5]. 

Exoskeletal robotic systems: In an exoskeletal robotic system, the joints of the patients 

(knee and ankle) are moved to produce the gait pattern. They are designed in a way that 

the mechanical structure of the device is similar to the human anatomy of lower limbs and 

the corresponding joints [71]. Most of the segments of the exoskeleton can be adjusted to 

the individual subject. This individual adjustment offers a high flexibility but also increases 

setup time. A crucial point concerning the setup is the alignment as the segments of the 

exoskeleton have to be carefully aligned with the joints of the subject in order to generate 

a physiological walking movement. Typical examples for exoskeletal robotic systems are 

depicted in Figure 13. 

 

 

Figure 13: Left: Lokomat (Hocoma, Volketswil, Switzerland) 

Right: ReoAmbulator (Motorika, Mount Laurel, USA)  
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End-effector-based systems: In end-effector-based systems, also termed controllers of 

endpoint trajectories, solely the feet of the subject are moved by the robot, the knee joint is 

not connected to a mechanical structure of the robot [5]. The subject’s leg is usually fixed 

to footplates the trajectories of which simulate the movement. On the one hand, these 

systems are easy to adjust to different subjects and reduce donning time compared to 

exoskeletal systems; on the other hand, subjects may lack in movement guidance as the hip 

and knee joints are not guided by the robot. Typical examples for these systems are 

depicted in Figure 14 and Figure 15. 

 

 

Figure 14: Left: Lyra (Thera Trainer, Hochdorf, Germany) 

Right: G-EO (Reha Technology AG, Olten, Switzerland) 

 

  

Figure 15: Left: LEXO® (Tyromotion, Graz, Austria) 

Right: Gangtrainer GTII (Reha-Stim Medtec, Schlieren, Switzerland) 
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Despite the positive aspects of RAGT, drawbacks must be mentioned as well. Compared 

to manually assisted therapy, the guided movement of RAGT may decrease metabolic 

costs of the subject during training. However, these differences can be minimised when the 

patients are asked to maximise their effort during robotic therapy [72]. Thus, it could be 

possible that the guided training promotes slacking which would decrease the effect of 

recovery [71]. Furthermore, RAGT could cause alterations in the naturally occurring 

muscle activation patterns [8]. Additionally, the robot-induced movement and the weight 

support system can partially impede muscle activity [9]. Some of these drawbacks have 

already been tackled by introducing new developments for the individual robots. 

Examples in this regard are change of the guidance force and FreeD mode of Lokomat, the 

biofeedback mode of Lyra, the support of active walking of LEXO and the active-

assistive/active mode of G-EO. These control strategies are aiming on supporting the 

patients' efforts and encouraging the self-initiation of movements. As a result, all strategies 

aim to prevent the "learned non-use phenomenon" (Figure 16) of the affected side. 

 

 

Figure 16: Development of learned non-use phenomenon [73] 

 

Overground gait training: The mentioned robotic systems specify the trajectory of the feet 

and lower limbs and guide the movement of the subject. As there is no clear evidence that 

a fixed gait pattern is the best approach to maximise brain plasticity, studies which 

investigated a more functional training approach including overground walking were 

performed [74,75]. Based on the results of the performed investigations, overground gait 

training seems to be another valuable technique for gait rehabilitation. Depending on the 

degree of disability and the stage of rehabilitation, devices such as Andago or FLOAT 

(Figure 17) enable the subject to move more freely compared to the gait robots mentioned 

so far. These systems include a body strap attached to a supporting system which catches 

the patient in case of falling.  
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Figure 17: Left: FLOAT (Reha-Stim Medtec, Schlieren, Switzerland) 

Right: Andago (Hocoma, Volketswil, Switzerland) 

 

Furthermore, ambulatory exoskeletons such as EksoGT and ReWalk (Figure 18) which 

both provide overground walking must be mentioned. Another positive aspect for 

ambulatory exoskeletons is that they could provide more physiological movement and 

allow patients to move around in an environment that is similar to their home environment 

[5]. 

 

 

Figure 18: Left: EksoNRTM (Ekso Bionics, Richmond, USA) 

Right: ReWalk (ReWalk Robotics, Yokneam, Israel) 

 

Most of the devices require a specific training for safe and effective usage and all have their 

specific field of application in the context of rehabilitation. Their usage must be carefully 

adjusted to the patients’ needs and to the specific goal of the rehabilitation.  
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2.5 Inertial Measurement Units 

Inertial measurement units (IMU) are physical sensors which typically contain three 

orthogonal accelerometers and three orthogonal gyroscopes, enabling the sensors to 

measure linear acceleration and angular velocity. Additionally, some IMUs provide 

magnetometers offering the possibility to measure the local gravitational field. IMUs 

collect the raw data in their local coordination system (Figure 19).  

 

 

Figure 19: Global and local coordinate system 

 

The local coordinate system of most sensors is a cartesian coordinate system (right hand 

rule [76]) by default, the global coordinate system can be defined as a cartesian coordinate 

system as well and represents the earth-fixed coordinate system. 

A sensor rigidly attached to a body is commonly termed strapdown system. For strapdown 

systems, it is necessary to define the coordinate system of the body. Depending on the 

application and the targeted body, the body coordinate system should be chosen 

reasonably so that it can reflect the movement of the object. A schematic representation of 

a strapdown system can be seen in Figure 20. 

 



 

 

26 

 

 

Figure 20: Strapdown system 

 

For most applications with a moving body, it is necessary to align the local coordinate 

system of the sensor with the body coordinate system of the moving object to guarantee 

that the gathered data reflects the targeted movement. For that purpose, two approaches 

can be used. 

1. The sensor can be tightly attached to the object and the coordinate system can be 

aligned manually. 

2. The current alignment of the sensor in respect to the object can be determined and 

the coordinate systems can be aligned mathematically using a rotation matrix. 

Both approaches aim to align the coordinate systems to enable a recording of data in the 

body coordinate system, yet the latter option is desirable under real conditions as it allows 

flexibility in the attachment. Furthermore, it offers the possibility to repeat the process 

throughout the measurements allowing the alignment of the coordinate systems to be 

adjusted frequently. Thus, slight movements of the sensor attachment are less likely to 

cause errors in the recording sessions. The used mathematical approach within this work 

is presented in section 5. 
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3 State-of-the-Art 

The state-of-the-art section aims to address the current research in the related topics gait 

event detection methods with wearable sensors and hybrid robotic rehabilitation systems 

whereas both topics will be addressed individually. Section 3.1 and 3.2 will introduce 

current methods used for gait event detection in various applications, section 3.3 will 

provide a comparison of the relevant algorithm approaches. The last section will provide 

an overview of hybrid robotic rehabilitation systems available on the market. 

 

3.1 Gait Recognition Methods with Wearable 

Sensors 

Wearable sensors such as IMUs, force sensors and EMG sensors can be used as a clinical 

tool for rehabilitation approaches, for sports activities to optimise movement patterns, in 

movement sciences to assess movement disorders and various other fields. The following 

paragraphs reviews state-of-the-art approaches of wearable sensors for the use in gait 

event detection / gait recognition. 

 

3.1.1 Inertial Measurement Units 

IMUs as described in section 2.5 are small and rugged devices which can be easily attached 

to an object in order to measure the object’s movement. Despite the possibility to gather 

three different kinds of data (liner acceleration, angular velocity and magnetic field), a lot 

of gait phase classification methods solely use acceleration data [77–82] or gyroscope data 

alone [83–92]. However, the combined use of angular velocity and linear acceleration data, 

with the aim to enhance the robustness of the algorithms, has increased over the last years 

[93–97]. Additionally, the sensor positions such as pelvis, feet, shank can influence the 

chosen algorithm approach [78].  

 

3.1.2 Electromyography Sensors 

Electromyography (EMG) sensors assess the activity of the muscle by recording the 

electrical impulses of the muscles and the corresponding nerves. Approaches for gait event 

detection mostly use surface electrodes as intramuscular electrodes would interfere with 



 

 

28 

 

the movement and cause pain. Due to difficulties in data acquisition such as electrode 

positioning, displacement of electrodes during movement and muscle variations, EMG 

sensors are less commonly used for gait event detection. However, some approaches 

provide promising results for the implementation of EMG sensors in gait recognition 

algorithms [98–102]. 

 

3.1.3 Force Sensors 

Force sensors are often placed inside the shoe or under the foot of a subject and assess the 

contact between the sensor and the ground. These can be binary switches, single Force 

Sensing Resistors (FSR) or full pressure insoles which can be adjusted to the subject’s shoe 

size. Force sensors have been used within several approaches for gait event detection 

[94,103–109]. Despite their high accuracy, approaches for applications in everyday life are 

not yet considered suitable due to their limited lifetime. Additionally, when using pressure 

insoles, a large variety of different insoles must be available in order to cover different shoe 

sizes. However, due to their high accuracy, force sensors are often used as reference 

systems for validation studies [83,93,94]. 
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3.2 Detection Methods 

Threshold methods and machine learning methods are two main categories for gait event 

detection methods. Threshold methods use the identification of peak values and other 

characteristics to classify the gait events according to certain thresholds. Machine learning 

approaches use models such as Hidden Markov Models (HMM) and Neural Networks 

(NN) for gait event detection. Threshold methods are mostly easy and lightweight, 

machine learning approaches are more elaborate, need more data and require more 

computational power. Threshold approaches can be categorised in two main groups such 

as computation threshold methods where different kinds of thresholds are used to detect 

certain characteristics of the gait phases [77,83,93,97,110–113] and time-frequency analysis 

based on thresholds [94,114–117]. Machine learning approaches such as HMM and neural 

networks are amongst the most popular used for the recognition of gait events. 

Approaches using HMM for gait recognition are described in [84–87,103,104,118,119]. 

Approaches with artificial neural networks for gait event detection can be found in 

[85,98,120,121]. 

 

3.3 Comparison 

When comparing different approaches, it is of importance, whether the gait event detection 

algorithm is used offline or online. Online algorithms provide the possibility to detect the 

gait events in real time whereas offline algorithms at first gather the data and have a 

downstream recognition of gait events. Table 4 provides a comparison of online and offline 

algorithms (using signals from IMUs) in terms of the methods used, the gait events 

detected and the amount and location of the used sensor technology.  
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Publication Method Detected events 
Amount / Location 

of IMUs 
Detection 

[85] FNN/HMM IC, FC, HO, TO, MS Seven / Feet, shanks, 

thighs, pelvis 

Online 

[86] HMM IC, FC, HO, TO Four / Foot, shank, 

thigh, waist 

Online 

[93] Threshold IC, TO, HO One / Shank Online 

[115] Heuristic approach, 

Frequency analysis 

IC, TO One / Shank Online 

[117] Threshold, LDA, QDA IC, TO One / Shank Online 

[122] Threshold IC, FC, HO, TO One / Foot Online 

[123] Threshold IC, TO, MS Two / Feet Online 

[124] Threshold IC, TO One / Foot Online 

[77] Thresholds LR, MSt, PS, SW One / Foot Offline 

[79] NN ST, SW Three / Foot, calf, shank Offline 

[87] HMM IC, LR, MS, TS, PS, SW Two / Foot, Shank Offline 

[94] Time-Frequency analysis IC, TO One / Foot Offline 

[118] HMM, Threshold IC, FC, HO, SW One / Foot Offline 

[119] HMM IC, FC, HO, TO One / Foot Offline 

[125] NN Left and Right: initial-

SW, middle-SW, 

terminal-SW, double-ST, 

Four angular sensors/ 

knees, hips 

Offline 

[126] Heuristic based IC, TO, MSt, MS One / Foot Offline 

[127] NN, HMM IC, FC, MSt, HO, TO, SW Two / Feet Offline 

     

[128] NN IC, LR, FC, HO, initial 

SW 

Three / Foot, Calf, Thigh Offline 

Table 4: Online and offline algorithms for gait event detection. 

IC: Initial contact, FC: Full contact, HO: Heel off, TO: Toe off, MS: Mid swing, TS: Terminal swing, 

PS: Pre swing, SW: Swing phase/swing, MSt: Midstance, ST: Stance phase/period 

 

All online approaches in Table 4 aim to detect human walking including overground 

walking, walking on a treadmill and walking detection of subjects with particular gait 

impairments such as an amputated leg. The reported metrics are heterogenic. In [85] the 

sensitivity (true positive rate: 88.49%) and the specificity (true negative rate: 97.12%) 

compared to an optical marker system were reported. The approach described in [86] was 

analysed towards the detection latency (45ms early detection and 35ms late detection) of 

gait events compared to an optical marker system. The combination of detection rate 

(100%) and detection latency (±50ms) compared to a pressure insole were reported in [93]. 

The F1 score, a metric derived from a relation between true-positives, true-negatives and 

false-positives, was analysed in [115] (F1 scores of 0.95-0.98). In [117] the early and late 

detection compared to force plates as metrics of frequency error (8.2%) and temporal error 
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(0.2%) were reported. Latency measures in terms of mean recognition delays (0.1-0.05s) 

compared to an optical marker system were reported in [122]. Similar to [115] in [123] F1 

scores (0.998-0.944) compared to a pressure walkway were reported, additionally the 

analysis included mean detection delays below 31ms. The approach in [124] was validated 

against foot switches and the analysed metrices were latency measures which detected 

early (-8ms) and late contact (13ms). 

Despite the wide usage of IMUs for gait recognition, the majority is focussed on detecting 

gait during walking of healthy people or aim to detect particular movements of patients 

who have gait deficits. To date, there are no algorithms designed to detect a robot-specific 

movement pattern using IMU data. As a result, the approaches are not directly comparable 

to the approach within this work. Thus, a detailed comparison of the different existing 

methods was not performed. Yet, in order to compare the outcome metrics, the detection 

rate including true-positives and false-positives measures as used in a majority of the 

approaches were chosen for the analysis of the recorded data within this work. 
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3.4 Hybrid Robotic Rehabilitation Systems 

As mentioned in 2.4, robot-assisted gait trainers are classified regarding their principle of 

motion. Combinations of RAGT and FES are conventionally termed hybrid robotic 

rehabilitation systems. Hybrid robotic rehabilitation systems can be further differentiated 

in how they transmit energy to the patient. In this chapter, only hybrid systems where the 

electrical stimulation and the robot are both torque-generating devices are taken into 

account. In addition, all mentioned approaches are partially or fully available in the 

market. Systems where electrical stimulation is the main source of torque generation while 

the robotic system only acts as a passive device are excluded as they are not comparable to 

the developed concept within this work. 

3.4.1 Lokomat 

Several different approaches combining the Lokomat (Figure 13) with FES have been 

investigated so far (Table 5). 

The first approach used a finger switch controlled by the patient or the therapist for 

synchronising the Lokomat and the stimulator [33]. Eight muscles (eight channels) were 

stimulated using intramuscular electrodes (IM) and the stimulator was worn on a belt. The 

patient or the therapist activated the finger switch at every heel-strike in order to provide 

FES therapy during training. Despite proven feasible, the approach still was subject to 

human error. Thus, the approach was further developed and an automatic synchronisation 

was introduced [25]. The onset of the stimulation was triggered by a pulse created by the 

robot itself at each right initial contact. This information was sent to an external device 

which initiated the stimulation. According to [25] in order generate a feasible stimulation, 

the latency of the stimulation must be short enough to ensure that the stance muscles are 

activated prior to loading more than 50% of body weight onto the stance limb. Otherwise, 

the control of the stance phase in the knee could not be performed during the loading of 

the limb. For healthy adults, the acceptance of 50% of the weight is reached after 5% of the 

gait cycle [129]. The mean latency between the recognition of the initial contact and the 

actual electrical impulse was 69.05ms ± 12ms. The time for one gait cycle of the Lokomat 

was 2.6s. As a result, the latency was only 2.5% of the gait cycle. Thus, this approach was 

considered feasible; additionally, it was more accurate and repeatable compared to the 

manually triggered stimulation. Yet the electromechanical delay of the muscles was not 

considered within this work. A further approach was developed in order to correct foot 

drop during Lokomat training [26]. In contrast to the approach mentioned before, surface 
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electrodes on the peroneal nerve on the hemiparetic leg were used (one channel). Similar 

to the approach mentioned before, synchronisation of the FES was realised using the 

output signals (rectangular pulse) of the Lokomat. The ascending of edge of the pulse of 

the output signal indicating the beginning of the stance phase triggered the onset of the 

stimulation of the contralateral leg allowing the peroneal nerve to be stimulated. The 

stimulation was stopped when the ascending pulse of the ipsilateral leg was triggered. As 

a result, during the swing phase a dorsiflexion of the foot was achieved. This approach is 

considered feasible and was tested in clinical practice [27]. 

 

Publication 
Synchronisation 

approach 

Number of stimulated 

muscles/nerves 

Feasibility and 

clinical application 

Commercial 

availability 

with FES 

[33] Finger switch 

operated by patient 

or therapist 

Eight (IM): tibialis anterior, 

peroneus longus, lateral 

head of the gastrocnemius, 

short head of the biceps 

femoris, semitendinosus, 

semimembranosus, vastus 

lateralis, gluteus medius 

Feasibility study 

with six subjects 

(stroke) 

Clinical application: 

Yes 

No 

[25] Synchronised using 

information 

provided by 

robot—gait event 

control. 

Eight (IM): tibialis anterior, 

peroneus longus, lateral 

head of the gastrocnemius, 

short head of the biceps 

femoris, semitendinosus, 

semimembranosus, vastus 

lateralis, gluteus medius 

Feasibility, 

reliability and 

consistency was 

valuated. Bench 

testing only. No 

subject involved. 

Clinical application: 

No 

No 

[26], [27] Synchronised using 

information 

provided by 

robot—gait event 

control. 

One (SE): Peroneal nerve at 

the hemiparetic leg 

[26]: Feasibility 

study with three 

subjects (one stroke 

patient, two healthy 

subjects). 

[27]: Feasibility 

study with five 

patients (acquired 

brain injury) 

Clinical application: 

Yes 

No 

Table 5: Lokomat: Hybrid robotic rehabilitation system 
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3.4.2 Gangtrainer GT II 

Approaches to combine the end-effector based gait rehabilitation system Gangtrainer GTII 

(Figure 15) with FES are similar to the approaches of Lokomat (Table 6). The FES is gait-

phase controlled using information provided by the robot. The gait trainer was linked with 

two wires to the FES stimulators. This connection was used to guarantee synchronisation 

between the gait phases and the stimulation [28]. During the stance phase, the stimulation 

was used to activate the quadriceps femoris. The common peroneal nerve received 

electrical stimulation during the swing phase. This approach was evaluated in a 

randomised clinical controlled trial with 54 subjects who suffered from stroke and the 

concept was considered feasible.  

 

Publication 
Synchronisation 

approach 

Number of stimulated 

muscles/nerves 

Feasibility and 

clinical application 

Commercial 

availability 

with FES 

[28],[130] Synchronised using 

information provided 

by robot—gait event 

control. 

Two (SE): quadriceps 

femoris, nervus 

peroneus 

[28]: Case report with 

two subjects (stroke) 

[130]: randomised 

clinically controlled 

trial with 54 subjects 

(stroke) 

Yes 

Table 6: Gangtrainer GT II: Hybrid robotic rehabilitation system 

 

3.4.3 WalkTrainer 

The WalkTrainer (Figure 21) is a commercially available gait trainer with an integrated 

electrical stimulator for additional FES treatment (Table 7). In contrast to the 

aforementioned stationary devices, the WalkTrainer is used for overground ambulation 

[29]. The stimulation was triggered by a feedback controller. An update of the muscle 

stimulation was done at every step to minimise the users-applied force between the user 

and the orthosis [30]. 
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Publication 
Synchronisation 

approach 

Number of stimulated 

muscles/nerves 

Feasibility and 

clinical application 

Commercial 

availability 

with FES 

[29], [30], [31] Feedback controller 

to minimise 

interaction forces.  

Seven (SE): Gluteus 

maximus, rectus 

femoris, castus 

medialis, vastus 

lateralis, hamstrings, 

tibialis anterior, 

gastrocnemius 

[31]: Clinical trial 

with 6 subjects 

(paraplegic) 

Yes 

Table 7: WalkTrainer: Hybrid robotic rehabilitation system 

 

3.4.4 MotionMaker 

MotionMaker (Figure 21) is a stationary robotic system for active mobilisation of the lower 

limbs and incorporates interactive and variable FES (Table 8). Synchronisation is realised 

using position and force sensors mounted on the orthosis of the system. This concept was 

tested with 5 patients (press-leg exercises) [32], yet it does not provide upright walking. 

 

 

Figure 21: Left: MotionMaker (Swortec, Monthey, Switzerland) 

Right: WalkTrainer (Swortec, Monthey, Switzerland) 
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Publication 
Synchronisation 

approach 

Number of stimulated 

muscles/nerves 

Feasibility and 

clinical application 

Commercial 

availability 

with FES 

[32] Feed-forward 

controller using 

position and force 

sensors. 

Five (SE): gluteus 

maximus, quadriceps, 

gastrocnemius, 

hamstrings, tibialis 

anterior 

Clinical trial with 5 

subjects (4 

incomplete and 1 

with complete 

spinal cord lesion) 

Yes 

Table 8: MotionMaker: Hybrid robotic rehabilitation system 

 

3.4.5 G-EO 

The G-EO (Figure 14) is an end-effector based system with optional functional electrical 

stimulation (Table 9).  

 

Publication 
Synchronisation 

approach 

Number of stimulated 

muscles/nerves 

Feasibility and 

clinical application 

Commercial 

availability 

with FES 

Information 

gathered from the 

website and 

product catalogue 

Synchronised using 

information 

provided by 

robot—gait event 

control. 

8 (SE) - Yes 

Table 9: G-EO: Hybrid robotic rehabilitation system 

 

3.4.6 RT 600 

The RT600 ( 

Figure 22) is an upright therapy system which fully incorporates an FES therapy system 

(Table 10).  
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Figure 22: RT 600 (Restorative Therapies, Baltimore, USA) 

 

Publication 
Synchronisation 

approach 

Number of stimulated 

muscles/nerves 

Feasibility and 

clinical application 

Commercial 

availability 

with FES 

Information 

gathered from 

the website and 

product 

catalogue 

Synchronised using 

information provided 

by the robot—gait 

event control. 

Up to 12 (SE): 

Quadriceps, hamstrings, 

gluteals, gastrocnemius, 

anterior tibialis, 

abdominals and back 

muscle groups for core 

strength, stability, and 

postural correction 

- Yes 

Table 10: RT 600: Hybrid robotic rehabilitation system 
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4 Materials and Methods 

In this chapter, the robotic systems and the measurement devices used throughout this 

work are described in sections 4.1, 4.2 and 4.3. The developed algorithm including the 

arbitrary sensor alignment, dynamic adaptions and methods to enhance the confidence of 

the algorithm are elaborated in section 5. 

 

4.1 Robotic Systems 

Within this work, an algorithm for gait recognition during robotic gait training is 

developed. For developing and testing the algorithm and for conducting experiments and 

a clinical trial, two robotic systems—one exoskeletal-based system and one end-effector-

based system—were considered. These robotic systems are described in detail in sections 

4.1.1 and 4.1.2. The information within the following sections is mainly based on 

information provided by the user manuals of the individual gait trainers or on information 

provided by specially trained therapists of MEDIAN rehabilitation clinic in Magdeburg. 

 

4.1.1 Lokomat 

The Lokomat is an exoskeletal robotic gait trainer (section 2.4). It is comprised of a body 

strap, robotic orthosis for the guidance of the lower limbs and an electric treadmill. The 

system is considered to be is a state-of-the-art gait robot [6] which offers effective gait 

training [131]. The cyclic gait pattern is induced by programmable actuators located in the 

mechanical structure of the robot. The Lokomat is a medical device used in clinic and 

rehabilitation centres. According to the manufacturer, it provides a highly intensive 

physiological gait rehabilitation for severely impaired neurological patients. The orthosis 

is adjusted by specifically trained therapists and each patient has their own settings. All 

settings can be stored within the terminal of the Lokomat. During therapy, further 

parameters such as the speed and the guidance force can be adjusted throughout 

rehabilitation. 

Speed: The speed defines the speed of the treadmill in kph and thus can be considered as 

the walking speed of the patient during training. The default value for this gait trainer is 

1.5 kph. When using orthosis, the walking speed can be changed from 0.5 to 3.2kph. Based 

on to the speed of the treadmill, the orthosis speed can be adapted. The adaption of the 
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speed of the orthosis allows to individualise the patient cadence and is utilized for the 

synchronisation of orthosis and treadmill. This setting is adjusted through the graphical 

user interface (GUI) of the Lokomat with a digital slider. 

Guidance force: The guidance force determines the percentage of guidance with which the 

robotic orthosis guides the motion of the patient’s leg during therapy. A guidance force of 

100% means that the forces are acting in such a way that the patient cannot deviate from 

the induced trajectory. A low guidance force requires more active involvement of the 

patient to follow the walking pattern. 

Types of the device: Two types of the Lokomat are existing on the market—LokomatNanos 

and LokomatPro. Within this work, LokomatPro was used. LokomatPro includes the 

aforementioned FreeD module which allows the patient a lateral translation and transverse 

rotation of the pelvis. Depending on the patient, the FreeD module can be activated or 

deactivated. Within this work, the activation/deactivation of this module was not further 

investigated. 

 

4.1.2 Lyra 

The Lyra is an end-effector based robotic gait trainer (section 2.4). It consists of a harness 

and adjustable foot plates. Compared to conventional gait training, robotic gait training 

with end-effector systems have shown to have a superior effect with regard to ADLs and 

gait parameters [132]. Similar to Lokomat, Lyra is a medical device used in clinics and 

rehabilitation centres. According to the manufacturer, it provides a physiological pattern 

and is the gait trainer with the highest net therapy time as the ground-level access allows 

a very easy and short transfer. The foot plates and the according foot bindings are adjusted 

by specifically trained therapists. The bindings are fixed with adjustable straps to ensure 

firm support. During therapy, the speed of the footplates can be adjusted. 

Speed: The speed defines the speed in kph at which the patient walks during the training. 

Furthermore, it can be changed to steps/min. Within this work, the kph setting was used. 

The speed is adjusted with a digital slider and the maximum speed is 4kph or 100steps/min. 

Biofeedback module: The biofeedback module recognises the training intensity and 

analyses the individual activity level of the patient. The patient can therefore influence the 

training intensity by increasing, holding or reducing their own activity. Depending on the 

patient, the biofeedback module can be activated or deactivated. Within this work, the 

activation/deactivation of this module was not further investigated. 
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4.2 MotionSensor 

For data recording, two IMUs (MotionSensor, HASOMED GmbH, Magdeburg, Germany) 

were used. Each sensor consisted of a three-axis accelerometer (± 8g) and a three-axis 

gyroscope (± 1000°/s) [35]. A sampling frequency of 500Hz was chosen for the recordings. 

For the synchronisation of the IMUs, an inbuilt Bluetooth clock form the device was used.  

 

 

Figure 23: MotionSensor with its local coordinate system 

 

The sensor and the commercially available software RehaGait Analyzer are medical 

devices according to the medical device directive (Council Directive 93/42/EEC of 14 June 

1993 concerning medical devices). The accuracy of the device is clinically tested and has 

been published in several scientific studies [34,35]. For the fixation of the sensor, a custom-

made fixation strap as seen in Figure 40 was used. The fixation strap is adaptable in its 

length which allows the application for a wide variety of shoe sizes. Within this work, the 

software of the RehaGait Analyzer was solely used for data recording. 
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4.3 Electrical Stimulator 

RehaStim (HASOMED GmbH, Magdeburg, Germany) is a current-controlled stimulation 

device for functional electrical stimulation (Figure 24). The stimulator can be equipped 

with surface electrodes to stimulate paralysed muscles. The device has a certificate 

according to the EU guideline EN60601-2-10 for medical technical devices and systems. 

The stimulator can be used as a standalone device. Additionally, the stimulator can be 

controlled by external devices and has been used in current research [133]. The stimulator 

has two independent stimulation modules whereas each module has its own current 

source. The stimulation modules are named A (channel 1-4) and B (channel 5-8), and each 

module incorporates a microprocessor for the timing of the pulse. Thus, the pulse 

generations of modules A and B are independent from each other, and stimulation can be 

triggered simultaneously.  

 

Figure 24: Electrical stimulator (RehaStim) 

 

RehaStim provides stimulation impulses ranging up to 130mA. The step size of the 

adjustable current is 2mA. Stimulation frequencies range between 10Hz and 50Hz, the 

according step size is 5Hz. The pulse width (pulse duration) can be set from 20μs up to a 

maximum pulse width of 500μs. The step size of the pulse width is 1μs. The generated 

impulses of the simulator are biphasic and rectangular as visualised in Figure 25. This 

distinct shape is used to guarantee charge neutrality when applying the stimulation. A 

fixed pause of 100μs is pre-defined by the stimulator. Before a stimulation pulse is sent to 

the electrodes, a skin resistance check is performed for safety reasons of the user. In case 

the resistance check fails, no stimulation is generated. According to the manufacturer, the 

stimulator has a maximum internal latency of 2ms. 
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Figure 25: Biphasic rectangular pulse 

 

Furthermore, the stimulator offers three pulse generation modes for altering the frequency. 

The different modes are described in more detail in section 5.6.1. Thus, a wide range of 

settings is given, which allows clinicians and researchers to customise the parameters 

based on their needs.  
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5 Results 

The aim of the developed concept is to stimulate paralysed muscles of patients during 

robotic therapy by using extracted gait events as a trigger for FES. A schematical 

representation of the concept is visualised in Figure 26.  

 

 

Figure 26: Concept: Robotic gait training with IMUs to trigger FES 

 

The development of the concept can be divided into six parts with individual results as 

follows: The first part elaborates the development and training of the gait event detection 

algorithm and an arbitrary sensor alignment algorithm. The second part is focussed on 

describing the functionality of an unsupervised adaptability of the gait detection 

algorithm. The third part is dedicated to the testing and evaluation of the arbitrary sensor 

alignment algorithm. The fourth and the fifth part elaborate the testing, application and 

analysis of the developed algorithm with datasets from a healthy adult, and datasets from 

stroke patients. In the last part, bench testing trials with functional electrical stimulation 

including an analysis of the performance are described. 
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5.1 Development and Training—Algorithms 

The developed algorithm for gait event recognition during robotic gait therapy with the 

capability of an unsupervised adaption to IMU data from healthy subjects and stroke 

patients consists of three main functionalities: 

Firstly, the incoming data stream from a sensor is automatically aligned (rotated) to the 

desired coordinate system to ensure a consistent and recognisable data stream. Secondly, 

the aligned data can be recognised by the algorithm as gait events. Thirdly, the algorithm 

is capable to adapt automatically to the changes of the data while processing the incoming 

data stream. All three steps serve as a basis to provide the possibility of triggering an 

electrical stimulation during robotic gait training. The first two steps are described within 

this section. The methods to enhance the confidence of the algorithm including the 

techniques for the unsupervised adaptability of the algorithm are elaborated in section 5.2. 

As mentioned in section 2.5, an alignment of the local coordinate system and the coordinate 

system of a rigid body enable an IMU to record data which reflects the movements of the 

desired object. During robotic gait training, the desired objects are mostly the lower limbs; 

in this work in particular the desired objects are the left and right foot of a human being. 

Depending on the robotic gait trainer used, the walking pattern is guided by a robot-

specific motion. Depending on the gait trainer and its settings, the subject is able to 

influence the gait pattern. The gait cycle as described in section 2.2 (Figure 9) consists of 

eight events. As a matter of fact, when using only one sensor per foot, not all gait events 

and periods as described in Figure 9 are reliably recognisable. Therefore, the developed 

algorithm is focussed on detecting four main events (initial contact, full contact, heel off, 

and toe off) during robotic gait training. Furthermore, robotic gait training provides a 

physiological and reproducible gait pattern [134]. When the cyclic gait pattern is disturbed 

by a restraining force (applied by the subject or by the therapist) or a spasticity, a robot 

specific strategy can recognise this event and stops the therapy in order to reduce the risk 

of injury for the subject or therapist. Thus, switching between the phases caused by gait 

disorders or a sloppy gait can be excluded. In addition, the motion of most robotic gait 

trainers is largely constraint into the sagittal plane. Exploiting the features of the algorithm 

for the arbitrary sensor alignment and the boundary conditions for the robotic gait training, 

the gait cycle during robotic gait can be simplified and a flow chart of the algorithm 

including the bench testing with electrical stimulation as shown Figure 27 can be obtained. 
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Figure 27: Flowchart of the algorithms 

 

After data acquisition, the raw data (liner acceleration and angular velocity) of the IMU are 

used as input. The arbitrary sensor alignment algorithm (section 5.1.1) rotates and aligns 

the incoming data stream in order to supply the gait event detection algorithm with 

recognisable data. The gait events are detected within the algorithm (sections 5.1.2—5.1.6), 

the techniques to enhance the confidence of the algorithm (section 5.2) enable the algorithm 

to autonomously adjust the detection. As the determination of the full contact event is 

implemented in the process of the arbitrary sensor alignment, the algorithm for gait event 

detection can use this information, this is visualised within the flowchart with a dotted 

line. The output from the gait event detection algorithm serves as an input for the electrical 

stimulation. The testing application of the stimulation is described in detail in sections 5.6. 

The development and training of the arbitrary sensor alignment algorithm is based on a 

small set of training data (human walking) which was recorded during overground 

walking. For the training of the gait event detection algorithm, small datasets during 

robotic gait therapy from of healthy adults and people who suffered a stroke were used. 

Within the training, the functionalities for gait event detection and the methods to enhance 

the confidence of the algorithm were developed. All datasets used for training and 
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developing the algorithm were not considered for the evaluation of the algorithm in order 

to avoid skewing of the results. Thus, the results elaborated in section 5.5 show the 

capability of the algorithm to recognise gait events and show its autonomous adaptability 

to various datasets. 

 

5.1.1 Arbitrary Sensor Alignment Algorithm 

This algorithm is based on the assumption that the global coordinate system is the room a 

person is standing, respectively the room a robotic gait trainer is placed. Thus, an IMU 

attached to a foot can be schematically represented as seen in Figure 28, whereas the body 

coordinate system is defined in such a way that during standing the x⃗ axis, points ventral 

(towards walking direction), the y⃗ axis points lateral (towards the side) and the z axis points 

cranial (vertical axis). 

 

 

Figure 28: Schematic representation of an IMU attached to the left foot 

 

For an arbitrary sensor alignment, the phases of gait and their particular movement 

behaviour can be exploited in order to generate boundary conditions for the alignment of 

the coordinates. For the alignment procedure, a rotation matrix is generated that represents 

the rotation from the local coordinate system of the sensor to the body coordinate system 

of the foot. The rotation matrix can be generated in four main steps and is defined as 

follows: 
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RotationMatrix =  (

xaxis x yaxis x zaxis x

xaxis y yaxis y zaxis y

xaxis z yaxis z zaxis z

) (1)   

 

Step 1: As a first step, the z axis of the rotation matrix can be determined by exploiting the 

stance phase, in particular the mid stance period of the gait cycle. As soon as the forefoot 

hits the floor, the ankle becomes the pivot point for further progression and the foot itself 

is stationary [58]. In gait trainers, the robot-guided movement may result in the subject's 

foot never touching the ground. Nevertheless, the induced gait cycle mimics this 

movement pattern as it aims to replicate a physiological gait pattern, therefore the 

approach can be applied to the robotic movement. During this full contact event (section 

5.1.4), the z axis of the foot aligns with the z axis of the defined global coordinate system. 

During that time, the foot as well as the attached IMU experience only the earth 

gravitational acceleration. An IMU which would already align with the body coordinate 

system would thus only experience an acceleration in the z-direction of its local coordinate 

system. As a result, the linear acceleration of the IMU can be used as the representation of 

the z axis of the rotation matrix. 

Taking real life conditions into account, slight movements and rotations of the foot and 

ankle or movements of the sensor attachment are always present. These disturbances lead 

to the fact that a perfectly resting foot with no other influences other than the earth 

gravitational acceleration is not plausible. As a result, the full contact must be determined 

within certain thresholds which allow the arbitrary sensor alignment algorithm to detect 

the event. Full contact can thus be determined as soon as the bias corrected angular velocity 

of the sensor ω⃗⃗ FullContact  is in a small range (Figure 33) for all directions of its coordinate 

system:  

 

|ω FullContact x(i)| < ωFullContact tresh (2)   

|ωFullContact y(i)| < ωFullContact tresh  

|ωFullContact z(i)| < ωFullContact tresh  

∀ i ∈ (n… . k)  

The variable n denotes the current sample of the sensor and k denotes a reasonable 

number of samples passed through 
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As soon as the condition for the full contact event is fulfilled, the acceleration vector 

a⃗ FullContact is in accordance with the z axis of the rotation matrix. As a result, the z axis shows 

the inclination of the IMU in its local coordinate system during full contact (Figure 29) and 

can be determined as follows: 

 

z axis = (

aFullContact x

aFullContact y

aFullContact z

) (3)   

 

 

Figure 29: Visualisation of an IMU during full contact in the sagittal plane 

 

Step 2: After the mid stance period has taken place, the main axis of rotation of the sensor 

and the y⃗ axis of the rotation matrix can be determined. After the full contact event, the ankle 

experiences a flexion in dorsal direction [58], causing the heel to rise and inducing a 

rotational movement in the y⃗ axis of the foot (Figure 30). The induced rotation affects the 

IMU as well and depending on the location of the sensor, one of its axes in the local 

coordinate system experiences a greater angular velocity during the rotation compared to 

the other axes. 
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Figure 30: Rotation of the foot after the mid stance 

 

The main rotational axis and the y⃗ axis of the rotation matrix are found by adding up the 

data from the angular velocity of all individual axes of the local coordinate system during 

the rotation as shown in the following conditions:  

 

yaxis x = |∑ ωx(i)
k
i=n |  (4)   

yaxis y = |∑ ωy(i)
k
i=n |   

yaxis z = |∑ ωz(i)
k
i=n |   

The calculation is initiated after mid stance has passed, starting with the first sample n 

and ending after a certain amount of data points k. 

 

In Figure 31, the process of rotation and the according angular velocities are visualised. In 

this particular example, the y-direction experiences the largest change of angular velocity 

while the x- and z-direction are less effected by the heel lifting off the ground. 
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Figure 31: Angular velocities during heel off, whereas (i) denotes the current sample and refers to 

condition (4). 

 

The absolute values of the summed up angular velocity data are then stored in a vector 

which defines the y⃗ axis of the rotation matrix. Furthermore, the highest angular velocity 

within this axis defines main axis of rotation of the sensor. The goal of this approach is the 

detection of the main rotational axis, therefore a prior information of the sensor alignment 

with regard to the foot is not required [97] allowing an arbitrary positioning of the sensor. 

 

Step 3: As a next step, the x⃗ axis of the rotation matrix must be defined. The x⃗ axis represents 

the direction of walking. As the z axis is a vertical axis and the y⃗ axis describes an axis 

perpendicular to a parasagittal plane, they can be used as linear independent vectors to 

compute the x⃗ axis using the cross product: 

 

x⃗ axis = y⃗ axis × z axis (5)   

 

Step 4: As soon as all elements of the rotation matrix are filled with the corresponding data, 

the matrix has to be normalised in order to generate the final rotation matrix. The 

normalisation is necessary as the matrix will be used for rotating all incoming datapoints.  
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RotationMatrix = (x̂ ŷ ẑ)  (6)   

Rotating the data: Once the rotation matrix is created, each incoming data point (angular 

velocity and linear acceleration) of the IMU can be rotated to reflect the movement of the 

body coordinate system. 

 

ω⃗⃗ rotated = RotationMatrix ∗ ω⃗⃗ current
T   (7)   

a⃗ rotated = RotationMatrix ∗ a⃗ current
T    

 

The process of creating the rotation matrix is repeated at each step. This is done to ensure 

that variations of individual movements do not distort the data. Furthermore, the frequent 

recalculation of the alignment process takes into account that a sensor attachment might 

shift during a recording session. If a shift of the sensor attachment occurs and the rotation 

matrix is not adjusted accordingly, the further processing of the data might lead to 

incorrect results. 

 

5.1.2 Gait Event Recognition Algorithm 

The detection of gait events starts with the initial contact and is followed by the full contact, 

heel off and toe off. This detection describes the process for one foot independently of the 

other foot. Therefore, gait events such as feet adjacent and opposite initial contact (as 

introduced in Figure 9) are not part of this sequence. Moreover, load response and tibia 

vertical are not part of this sequence as with one sensor they would not be reliably 

detectable. As a result, a simplified state diagram of the detection sequence of gait events 

as shown in Figure 32 can be deduced.   

 

 

Figure 32: State diagram of gait events during robotic gait training, adapted from [122]  
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This distinct sequence must be present for the correct functioning of the presented 

algorithm. Additionally, it is important to mention that a correct functioning arbitrary 

sensor alignment algorithm is needed prior to the detection of gait events. In the following 

sections, the individual detection processes for the gait events will be described in detail. 

 

5.1.3 Initial Contact 

According to [58], the initial contact is the first event of the gait cycle; furthermore, it 

represents the first event of the detection algorithm. The tasks of the initial contact and the 

corresponding weight acceptance are shock absorption, limb stability and preservation of 

progression [58]. The duration of the initial contact is very short and starts with the first 

contact of the heel with the ground, respectively the corresponding motion of the gait 

trainer. During this event, the ankle moves from dorsiflexion to a neutral position and 

afterwards to a plantar flexion [135]. For the detection of this event with an IMU, the shock 

absorption and the resulting change in acceleration is of importance. At the moment when 

the first contact is made with the ground, a stabilisation and damping of the body is 

performed. This is done by an interplay of the muscles and the robotic orthosis. This event 

results in rapid change of linear acceleration. The impact and the resulting abrupt change 

in linear acceleration is reflected in a high peak of the jerk. Within this work, the jerk reflects 

the rate of acceleration change of the foot, respectively the sensor attached to it. Thus, to 

detect this specific behaviour which defines the initial contact, the corresponding jerk 

(jerk⃗⃗ ⃗⃗ ⃗⃗  ⃗
InitialContact) is of importance. 

The incoming data stream of the recorded data consists of linear acceleration data and 

angular velocity data. By calculating the first derivation of the linear acceleration data, the 

jerk is computed. The jerk is calculated for all three axes and is summed up afterwards in 

order to reflect the full impact of the heel striking the floor. After the computation of the 

jerk, the initial contact can be detected using the following condition.  

 

jerkmin < |jerkinitialContact z| < jerkmax (8)   

 

The variables jerkmin and jerkmax define the detection limits within which the current jerk 

must be located to enable the detection of the initial contact. 
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5.1.4 Full Contact 

Shortly before the full contact event is present, the load of the body is accepted by the leg 

(loading response). During that time, the body absorbs the impact by rolling the foot into 

pronation [135], respectively the robotic device absorbs the impact by rotating the 

mechanical structure accordingly. For the detection of the full contact, it is of importance 

that the foot is at rest and does not experience any propelling forces. This is given as soon 

as the angular velocity of the sensor is in a small range for all directions of its coordinate 

system (Figure 33). 

 

 

Figure 33: Angular velocity during the full contact event 

 

The conditions to detect the full contact event are already elaborated in section 5.1.1 as they 

are necessary to enable the arbitrary sensor alignment algorithm. 
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5.1.5 Heel Off 

The heel off comes subsequently to the full contact event. This event is indicated once the 

heel lifts off the ground. In robotic gait training this happens when induced gait pattern 

provides the corresponding robotic motion. The body is in single support and the swing 

leg progresses ahead the stance leg [135]. During the terminal stance phase, an extension 

of around 10 degrees in dorsal direction is reached [58]. Caused by that, the y⃗ axis 

experiences a rotation and subsequently the heel rises. Furthermore, the ankle starts a 

forward movement. As a result, the angular velocity in the primary axis of rotation 

(ωHeelOff y) and the acceleration (a⃗ Heeloff ) of the attached IMU starts to rise. Based on this 

information, and by exploiting the functionalities of the arbitrary sensor alignment 

algorithm the heel off event can be detected utilising the following conditions:  

 

|ωHeelOff y| <  ωHeelOff tresh y (9)   

|aHeelOff x| < aHeelOff tresh x  

|aHeelOff y| < aHeelOff tresh y  

|aHeelOff z| < aHeelOff tresh z  

 

The parameters aHeelOff tresh x, aHeelOff tresh y, aHeelOff tresh z, and ωHeelOff tresh y represent 

threshold values. The acceleration a⃗ HeelOff z is adjusted to gravity by exploiting the 

boundary condition, that the robotic gait is performed on a horizontal surface. The heel off 

is detected if either the threshold value ωHeelOff tresh y is reached or all acceleration 

thresholds are reached. For real life applications, the acceleration thresholds serve as a 

backup in case the heel of a subject is not lifted properly. 

 

5.1.6 Toe Off 

The end of the heel off initiates the pre swing phase. During that event, a plantar flexion 

of around 20 degrees is induced and the toe lifts off the ground [58,135]. After that, the 

initial swing phase causes a reduction of the flexion to approx. 5 degrees, followed by an 

extension into dorsal direction of the ankle in the middle swing [58]. The change in ankle 

flexion and the according rotation of the foot is described by a pronounced alteration of 

the angular velocity ( ωToeOff y) of the sensor as shown in Figure 34.  
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Figure 34: Angular velocity within the y⃗ axis during the toe-off event 

 

This motion sequence indicates the toe-off event. Based on this particular change of the 

angular velocity, three conditions can be used to detect the toe-off event: 

 

 ωToeOff y > ωThresholdhigh
 (10)   

ωToeOff y(i)
< ωy(i−1)

 (11)  

∀ i ∈ (n… . k)  

ωToeOff y < ωThresholdlow
 (12)  

The variable n denotes the current sample of the sensor and k denotes a reasonable 

number of samples passed through 

 

The parameters ωThresholdhigh
, ωThresholdlow

 represent threshold values as shown in Figure 

34. In order to detect the toe-off event, the conditions (10), (11) and (12) have to be satisfied 

sequentially. If the motion sequence and one of the corresponding conditions are not 

fulfilled or if the sequence of conditions is not satisfied, no toe-off event is detected. 
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5.2 Techniques to enhance Confidence of the 

Algorithm 

Robotic gait training is a dynamic process resulting in a variability of measurable 

parameters. Therefore, the presented detection algorithm adapts itself autonomously to 

ensure proper functioning without human intervention. Furthermore, errors throughout 

the chain of measurement can occur. For example, defects in the Bluetooth connection can 

lead to improper communication and missing data, outliers caused by unwanted high 

peaks during the recording can mimic false gait events. Moreover, the robotic induced 

movement pattern can cause vibrations due to the mechanical structure. Problems with the 

calibration of the sensor can additionally lead to unwanted behaviour of the data. These 

potential events should be handled by certain methods to guarantee an exact recognition 

of gait events. To fulfil these requirements, techniques for an unsupervised adaption were 

developed and are presented in the following sections.  

 

5.2.1 Dynamic Threshold—Initial Contact 

The variables jerkmin and jerkmax (section 5.1.3) which define the detection bounds do not 

have fixed values; they rather describe a dynamic (floating) threshold with continuous 

adaptability. A floating threshold (Figure 36) was implemented as the jerk while training 

with a robotic gait training can vary in-between steps. Additionally, outliers such as a rapid 

drop of the subject’s foot due to voluntary influence of the induced gait pattern may distort 

the jerk signal. This floating threshold is computed by adding a particular percentage of 

the actual jerk to the previous jerk in order to calculate detection bounds. Using this 

hysteresis, the threshold can adapt autonomously after every step and an exceeding of 

limits due to unwanted outliers can be diminished. 

 

5.2.2 Sequence Detection 

For the recognition of gait events, it is important that the detection sequence of events is 

defined. The state diagram in Figure 32 shows in which sequence the algorithm is detecting 

the events. A correctly recognised gait cycle is defined as follows:  

The initial contact defines the start and the end of a gait cycle. Between these two events, 

the algorithm is enabled to detect full contact, heel off, and toe off sequentially. The time 

of detection is stored for further processing. Events that do not correspond to the defined 
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sequence are discarded and the detection of gait events continues. Thus, the approach 

rejects falsely recognised gait events. If the sequence of detection is not present, no 

successful step is present, and the recognised events are rejected. A correctly detected 

sequence over three gait cycles can be seen in Figure 35. 

 

 

Figure 35: Detection sequence of the gait event detection algorithm 

 

5.2.3 Temporal Dependencies 

An additional approach addresses solely the detection of correct gait events rather than 

rejecting incorrectly recognized ones. For that approach, time dependent constraints 

between certain events can be used. After an initial contact, the loading response and full 

contact follows, and the foot touches the ground before the heel can rise again. This period 

is named roll time and indicates the duration between the initial contact and the heel off. 

This duration must have passed before the heel off can take place. Thus, a minimum roll 

time was introduced to ensure that a heel off can only be detected after the minimum roll 

time has elapsed. Following the toe-off event, the foot is in the swing phase. The time until 

a new initial contact takes place is called swing time. Thus, a minimum swing time was 

introduced to ensure this interaction. This temporal relation happens after the toe-off 

event. The next initial contact can only be recognised subsequently to this duration.  

This condition prevents the incorrect recognition of other peaks in the jerk which could 

appear during walking [97]. The start and the end of a gait cycle is determined by initial 

contacts; the duration between these events can be termed step time. To ensure that no 

initial contact is incorrectly detected, a minimum duration (minimum step time) in 

between the recognition of two initial contacts must elapse. 
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5.2.4 Dynamic Threshold—Toe Off 

Different speeds of the robotic device (orthosis or treadmill) result in different behaviour 

of the angular velocity and require an adaption of the conditions. For that purpose, an 

angular velocity-dependent adaptation (unsupervised) for the toe-off event (section 5.1.6) 

is introduced. For the computation of this adaption, the highest angular velocity during 

the toe-off event is recognised and stored as a reference value. Depending on this 

maximum angular velocity, the threshold conditions ωThresholdhigh
 and ωThresholdlow

 from 

section 5.1.6 are autonomously adapted to correspond the current state. Furthermore, the 

temporal relations mentioned in section 5.2.3 are adapted within this process 

(unsupervised adaption), since higher angular velocity values lead to shorter times in 

between the individual events.  

 

5.2.5 Adaptions—Robot-specific 

Robotic gait trainers like Lyra and Lokomat state that they provide a physiological walking 

pattern. Although this applies to optical observation, data collected with IMUs (angular 

velocity data and the linear acceleration) differs between the system when collected with a 

sensor on a distinct position on the foot (Figure 40). As a result, these differences have to 

be taken into account and robotic trainer specific optimisations were realised. The 

adaptions can be found in several events. 

 

Initial contact: When comparing the jerk (m/s3) of Lokomat and Lyra, the data of Lyra 

shows lower amplitudes during the initial contact. Thus, the algorithm needs to adapt for 

correct detection of the initial contact. As a result, when analysing signals recorded with 

Lyra, lower thresholds and different threshold adaptions were established. 

 

Initial contact: A second adaption for the initial contact was realised as the behaviour of 

the data, especially of the jerk, differs between the systems. Figure 36 shows the angular 

velocity and the jerk during walking in a Lyra system. Before the actual jerk signal of the 

initial contact, a couple of peaks in the jerk signal are clearly visible. These peaks may 

happen after the duration of the minimum swing time. Furthermore, their amplitude can 

be large enough to pass the floating threshold. Therefore, these peaks could be wrongly 

detected as an initial contact and lead to an improper gait event detection. In order to avoid 

this failure of the algorithm, the angular velocity can be used by introducing an angular 
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velocity band. The velocity band as shown in Figure 36 ensures that the initial contact can 

only be recognised within this band and can discard the unwanted signals. 

 

 

Figure 36: Detection of initial contact: Floating threshold and angular velocity band 

 

Minimum roll time and minimum swing time: A further modification was realised for 

the time dependencies. The durations’ minimum swing time and minimum roll time got 

modified to fulfil the requirements of the different robots. 

 

5.2.6 Adaptions—Stroke Patients 

As mentioned in section 5.1.3, the jerk can be used for the detection of the initial contact. 

Various techniques for an unsupervised adaption were created to ensure the proper 

detection of this event. The described approach delivered satisfying results for the robotic 

training of a healthy adult. Details of the recordings and the analysis of results are 

elaborated in sections 5.4.1 and 5.5.1. However, based on the training datasets, the typical 

behaviour of the jerk and the corresponding angular velocity during robotic gait training 

of a healthy subject and a stroke patient can vary as visualised in Figure 37. In the left image 

of Figure 37, the jerk signal clearly identifies the initial contact during robot-assisted gait 

training. There is another spike in the jerk signal before the actual initial contact; this spike 

might correspond to a rapid change in acceleration during the swing phase.  

The methods described in the previous sections can identify this behaviour and no initial 

contact is detected. However, when looking at the right image of Figure 37, the behaviour 

of the jerk is fuzzy and seems not to follow the expected pattern. As a result, the described 

approaches might not be able to detect the initial contact as patient-specific movements or 



 

 

60 

 

the lack of movement on an affected lower limb seems to influence the acceleration data. 

Thus, another technique for the unsupervised adaption of the algorithm was implemented. 

  

 

Figure 37: Angular velocity signal and jerk signal during robotic gait training (sagittal plane) 

 

Based on observations of data from healthy adults, the interplay between jerk during initial 

contact and angular velocity was exploited. The initial contact takes place at a time when 

the angular velocity crosses the zero line. Moreover, the angular velocity comes from a 

negative value and after crossing the zero line, the value stays in a positive range. In Figure 

38, the new detection method including the additionally developed conditions can be seen. 

 

 

Figure 38: Angular velocity signal and jerk signal during robotic therapy (stroke patient) 
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The method aims to exploit the angular velocity data by using the following conditions: 

Condition (13) checks that the angular velocity is in the negative range prior to the 

recognition of an initial contact. Condition (13) has to be fulfilled prior to the algorithm 

checking for condition (14). 

 

ωInitialContact y(i)
<  0 (13)   

∀ i ∈ (n… . k)  

 

In condition (14), the positive gradient of the angular velocity is investigated. Once this can 

be is ensured, condition (14) is fulfilled. Subsequently, condition (15) can be evaluated. 

 

ωInitialContact y(i)
> ω InitialContact y(i−1)

 (14)   

∀ i ∈ (n… . k)  

 

The final step in this sequence is condition (15). The condition verifies if the angular 

velocity has exceeded the zero line. Additionally, the condition checks if the data stays in 

a positive range for a specific amount of passed samples. 

 

ωInitialContact y(i)
>  0 (15)   

∀ i ∈ (n… . k)  

 

Throughout all conditions, the variable n refers to the present data sample of 

ωInitialContact y, and k describes a certain number of samples passed. As soon as the final 

condition of this sequence is satisfied, an initial contact can be recognised. Subsequently, 

the other gait events as described in Figure 32 can be detected. To pursue the goal of 

increasing robustness and a higher detection rate, the conditions were integrated into the 

proposed algorithm to enhance the detection efficiency. 
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5.3 Testing—Arbitrary Sensor Alignment 

Algorithm 

The functionalities of the arbitrary sensor alignment algorithm such as the arbitrary 

mounting of the IMUs and the automatic adjustment in case of a shift of the attached sensor 

are essential for presented gait recognition algorithm. Therefore, a careful testing and 

evaluation of this process was carried out before the application, to ensure the correct 

functioning of the implemented methods. 

 

5.3.1 Testing  

The testing process is divided into the parts data recording, data processing and data 

visualisation, subsequently followed by the data evaluation including a discussion of the 

results in section 5.3.2. 

 

Data recording: For the data recording, gait cycles with different sensor positions were 

carried out. The sampling frequency of the sensor was 500Hz, the measurement ranges for 

the linear acceleration and angular velocity were ±8g and ±1000°/s. Under the consideration 

of meaningfulness and the practical application of the sensors, two different sensor 

positions, position A and position B, as illustrated in Figure 39 were chosen for 

experimental evaluation. 

 

  

Figure 39: Left: Position A—Inside of the foot 

Right: Position B—Dorsum of the foot 

 

Additionally, a reference sensor as shown in Figure 40 representing the body coordinate 

system was used. The reference sensor was firmly secured to the foot using a custom-made 

fixation strap from HASOMED GmbH. Anatomical landmarks (calcaneus and the cuboid 

bone) were used as reference to position the sensor. The fixation strap ensured that the 

reference sensor was not moving during data recording. 
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Figure 40: Reference position 

 

Two sensors (position A and reference position or position B and reference position) were 

simultaneously attached to one foot. For synchronisation of the recordings, the 

commercially available software RehaGait Analyzer was used. The software started the 

recording of the sensors simultaneously which guaranteed the same time base of the raw 

data acquisition. The subject, a 29-year-old healthy adult performed overground walking 

on a self-chosen comfortable speed between 1m/s and 1.7m/s. A walking paradigm as 

shown in Figure 41 was chosen for the recording. A total amount of ten recordings was 

performed and analysed. 

 

 

Figure 41: Walking paradigm for the evaluation of the arbitrary sensor alignment algorithm 

 

Data processing: After the recordings, the data was stored on a host computer. The raw 

data was rotated using the introduced arbitrary sensor alignment algorithm from 

section 5.1.1. The algorithm was developed in MATLAB 2018b (MathWorks, 

Massachusetts, USA). Each sample of the data was sequentially forwarded to the algorithm 

in order to simulate a real-time data stream. An example of how data processing was 

realised is shown in Figure 42. The results of the data processing are visualised in following 

next section.  
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Figure 42: Data processing: Sequential forwarding of raw data—Arbitrary sensor alignment 

algorithm 

 

Data visualisation: In Figure 43, the linear acceleration signals (rotated and non-rotated) 

of position A are visualised. For data visualisation, a resting time of five seconds was 

selected. 

 

 
Figure 43: Linear acceleration signals. 

Position A—inside of the foot. 
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Figure 44 shows linear acceleration signals (rotated and non-rotated) of position B. Similar 

to position A, a resting time of five seconds was chosen to present the functionality of the 

arbitrary sensor alignment algorithm. 

 

 

Figure 44: Linear acceleration signals. 

Position B—dorsum of the foot. 

 

The angular velocity signals (rotated and non-rotated) of the 𝐲 𝐚𝐱𝐢𝐬 of position A are 

illustrated in Figure 45. For data visualisation, six gait cycles were selected. 

 

 

Figure 45: Angular velocity signals of the 𝐲 𝐚𝐱𝐢𝐬 

Position A—inside of the foot. 
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Figure 45 shows the angular velocity signals (rotated and non-rotated) of the 𝐲 𝐚𝐱𝐢𝐬 of 

position B. Six gait cycles were chosen to show the functionality of the rotation process. 

 

 

Figure 46: Angular velocity signals of the 𝐲 𝐚𝐱𝐢𝐬. 

Position B—dorsum of the foot 

5.3.2 Evaluation 

After data processing and visualisation, the rotated data of position A and B are evaluated 

using the following criteria. 

 

Criteria 1: During resting times of the foot, the linear acceleration in the z axis must 

represent the earth’s gravitational acceleration. Therefore, the data must show a value of 

around 9.81m/s2. Resting times are present during mid stance, respectively the full contact 

event. Additionally, resting times were included into the walking paradigm as shown in 

Figure 41. 

 

Criteria 2: During resting times of the foot (no movement of the foot), the linear 

acceleration in the x⃗ axis and y⃗ axis must be in a low range fluctuating around zero. 

 

Criteria 3: The waveform of the angular velocity of the y⃗ axis of position A and B must have 

a certain similarity to the waveform of the angular velocity of the reference sensor in its 

y⃗ axis. A typical waveform of the angular velocity of two gait cycles is shown in Figure 47. 
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Figure 47: Angular velocity: Typical waveform of two gait cycles 

 

Criteria 4: In this specific application, the roll axis (x⃗ axis) and in the yaw axis (z axis), of the 

angular velocity do not add relevant information to the subsequently used gait event 

detection algorithm, thus they are not examined in the evaluation. 

 

Evaluation of criteria 1: As mentioned in section 5.1, during resting times, the foot as well 

as the attached IMU experience only the earth’s gravitational acceleration, thus the data of 

the rotated signal in the 𝐳 𝐚𝐱𝐢𝐬 of the IMU must show a value of around 9.81m/s2.  

For evaluation of this criteria, a duration of 80 seconds for each position was considered. 

80 seconds were chosen as they were the maximum number of resting times without any 

external disturbances such as a correction step. In Table 11, the mean value of the linear 

acceleration including the standard deviation is visualised. 

 

Duration of 

resting time (s) 
Sensor position Axis 

Mean 

(m/s2) 

Standard 

deviation (m/s2) 

80 A—Inside the foot z axis 9.795 0.016 

80 B—dorsum of the foot z axis 9.782 0.022 

Table 11: Rotated linear acceleration data in the  

z axis during resting times 

 

Evaluation of criteria 2: The rotated data in the �⃗� 𝐚𝐱𝐢𝐬 and 𝐲 𝐚𝐱𝐢𝐬 of the IMU must show a 

value of around zero as the foot itself is stationary during the full contact event. For 

evaluation of this criteria, the same 80 seconds as for criteria 1 were considered. In Table 

12, the mean value including the standard deviation of the corresponding data is 

visualised. 
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Duration of 

resting time (s) 
Sensor position Axis 

Mean 

(m/s2) 

Standard 

deviation (m/s2) 

80 A—Inside the foot x⃗ axis −0.029 0.116 

80 A—Inside the foot y⃗ axis 0.220 0.208 

80 B—Dorsum of the foot x⃗ axis −0.337 0.213 

80 B—Dorsum of the foot y⃗ axis −0.746 0.269 

Table 12: Rotated linear acceleration data in the  

x⃗ axis and yaxis during resting times 

 

Evaluation of criteria 3: The evaluation of criteria 3 is focused on the shape of the angular 

velocity in the 𝐲 𝐚𝐱𝐢𝐬. As the comparison of the waveform should be carried out independent 

from its amplitude, the signal was normalised prior to evaluation. Before normalising, the 

signals offset must be removed by subtracting their individual mean value. The signal can 

then be normalised as shown in the following formula [136] (written as MATLAB code):  

 

signalnormalised = 
signalraw

sqrt (max(xcorr(signalraw)))
 (16)   

 

The normalisation of the individual signals causes the autocorrelation function to get a 

value of 1 which corresponds to a similarity of 100%. This means that a value close to 1 of 

a cross-correlation function between the reference signal and the signals of position A and 

B indicates high similarity of the signals and thus indicates a successful rotation of the 

coordinate system. The normalised reference angular velocity signal and the normalised 

rotated angular velocity signal of position A can be seen in Figure 48. One gait cycle was 

chosen to represent the normalised signals. 
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Figure 48: Angular velocity signals of the y⃗ axis. Position A—Inside of the foot 

 

In Figure 49, the normalised signals of position B (rotated and reference signal) are 

visualised. One gait cycle was chosen to represent the normalised signals. 

 

 

Figure 49:  Angular velocity signals of the y⃗ axis. Position B—Dorsum of the foot 

 

After normalising the signals, a duration of ten gait cycles each was chosen for comparison. 

The start and the end of this duration was defined by the according resting phases. The 

gait cycles of the normalised positions A and B were compared to the corresponding 

normalised gait cycle of the reference position. This process was repeated ten times with 

different gait cycles resulting in a total amount of 100 analysed gait cycles. The results of 

the cross-correlation can be seen in Table 13. 
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Number of gait cycles Sensor position Mean Standard deviation 

100 Inside the foot 0.998 0.001 

100 Dorsum of the foot 0.988 0.002 

Table 13: Cross-correlation between the angular velocity signal of the yaxis of position A and B and 

their reference signal 

 

Discussion: The arbitrary sensor alignment algorithm contributes to the subsequently 

used gait detection algorithm and ensures the easy setup of the sensor. Additionally, it is 

one of the first calculations performed within this algorithm which later leads to a 

dependency of all other computations. Thus, it is an important part of the developed 

algorithm. 

 

Discussion—Criteria 1: Under the assumption of ideal conditions, the linear acceleration 

data of the rotated z axis of the IMU would show a value of 9.81m/s2. Under consideration 

of real-life conditions, slight movements and rotations of the foot and ankle or movements 

of the sensor attachment are always present. Therefore, the results of the z axis in Table 11 

are considered satisfactory, since both the mean value of position A (9.795m/s2 ± 0.016m/s2) 

and the mean value of position B (9.782m/s2 ± 0.022m/s2) have a value close to 9.81m/s2 

(earth’s gravitational acceleration).  

 

Discussion—Criteria 2: Similar to criteria 1, real-life conditions have to be taken into 

account. As the linear acceleration data of the x⃗ axis and the y⃗ axis both fluctuate around zero 

(Table 12), the results are satisfactory. 

 

Discussion—Criteria 3:  

The evaluation shows that both cross-correlations provide values close to 1, indicating high 

similarity in the signals and providing a satisfactory result. In particular, the values were 

0.998 ± 0.001 for the cross-correlating of the reference position and position A, and 0.988 ± 

0.002 for the cross-correlation of the reference position and position B. Details can be found 

in Table 13. 
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5.4 Testing—Gait Event Detection Algorithm 

The aim of the presented algorithm is to recognise four main gait events during robotic 

gait therapy. The following section thus aims to test its functionality and to evaluate the 

developed algorithm based on recorded data from healthy adults and from subjects who 

had a stroke. In section 5.4.1, the recording sessions with a healthy adult are elaborated. 

Section 5.4.2 is focussed on the conducted clinical study with stroke patients. Furthermore, 

experiments towards the performance of the developed algorithm were performed 

(sections 5.4.3). 

 

5.4.1 Healthy Adult 

Robotic gait therapy is intended for the treatment of gait disorders. In order to test and 

evaluate the presented algorithm and the according setup, trials with a healthy adult were 

conducted. The goal of these recording sessions was to prove its feasibility in a clinical 

environment. Furthermore, the data served as a basis to determine the detection rate and 

potential errors of the algorithm. The recordings were performed in the MEDIAN 

Neurological Rehabilitation Center Magdeburg and were supervised by professionally 

trained therapists. The subject was a 39-year-old healthy adult with no known gait 

disorders. The subject was informed about the goals of the recording sessions and has 

never executed a robot-assisted gait training before. The recordings were executed in two 

different robotic systems, Lyra and Lokomat, and prior to the first recording sessions, both 

the subject and the examiner were introduced into the functionalities of the robotic 

systems. The gait during the robotic training was measured with two IMUs attached to the 

foot, the setup is shown in Figure 50. 
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Figure 50: Setup of the recording sessions. 

Left: Lokomat; Right: Lyra 

 

Lokomat: The movement of Lokomat was induced by an orthosis attached to the subject’s 

legs. This orthosis was adjusted to the anthropometric data of the subject and was 

examined by a specifically qualified physiotherapist. Furthermore, the therapist attached 

the harness and adapted it to the convenience of the subject. In this way, an optimal 

training setup was guaranteed. Since the test person was healthy and did not suffer from 

gait disorders, the risk of voluntarily influencing the induced gait pattern by unwanted 

support of the muscles was reduced. Therefore, the settings for the guidance force (section 

4.1.1) were set to the maximum value. This constraint ensured that the recorded motion 

data reflected the walking pattern of the gait trainer and not the movement of the subject.  

 

Lyra: The gait pattern of end-effector gait trainer Lyra was induced by movable foot plates. 

The subject places the feet onto the plates, the fixation was realised by fixation straps. The 

movable foot plates were examined and adjusted by a specifically qualified 

physiotherapist. Similar to Lokomat, the therapist attached the harness and adjusted it to 

the convenience of the subject. Lyra offers a biofeedback mode (section 4.1.2) which allows 

patients to influence the induced gait pattern. For this recording, the biofeedback mode 

was deactivated to reduce the voluntary influencing of the induced gait pattern by 

unwanted support of the muscles. Similar to Lokomat, this constraint ensured that the 

recorded motion data reflected the walking pattern of the gait trainer and not the 

movement of the subject. 
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Recordings: A total amount of six recording sessions was performed. Three recording 

sessions were executed with Lokomat, three with Lyra. Each recording had a total length 

of 60 minutes; the duration included donning time of the gait robot. The sampling 

frequency of the sensor was 500Hz, the measurement ranges for the linear acceleration and 

angular velocity were ±8g and ±1000°/s. Within the recording, three training velocities 

(1.2m/s, 1.5m/s, and 1.7m/s) were examined. According to the supervising therapists, these 

velocities represent typical values used during rehabilitation routine. The examiner started 

the recording with the sensors, afterwards the gait training started. In order to get reliable 

data, the subject was asked to accept the guidance of Lokomat and not to influence the gait 

pattern with voluntary movements. The software RehaGait Analyzer—for mobile gait 

analysis (HASOMED GmbH, Magdeburg, Germany) was used to record the data. 

 

Analysing method: Subsequent to the acquisition, the raw data was utilised to analyse the 

generated algorithm. Beforehand, MATLAB was used to transfer the data into the 

developed algorithm. Following the import of the data, each data point was processed 

individually and sequentially using a customised MATLAB algorithm. A schematic 

representation of the sequential forwarding is visualised in Figure 51. 

 

 

Figure 51: Sequential forwarding of raw data for the gait event detection algorithm 

 

The custom function simulates an error-free and real-time Bluetooth connection to the 

sensors as it routes the samples in sequence. Thus, the gait event detection algorithm was 

applied to each individual datapoint in real time. The consideration of potential delays is 

described in section 5.4.3. 
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After the application of the algorithm, the data was analysed towards its functionality. A 

window-size of 75,000 data points (equal to 2.5 minutes) was chosen for the evaluation. 

The duration of 2.5 minutes was chosen as 7.5 minutes (= 3 windows) were the longest 

available acquisition time over all velocities. For each velocity, three windows were chosen 

in order to get a reliable number of datasets. As a result, nine windows (675,000 data points) 

were analysed for each recording. The selection method can be seen in Figure 52. 

 

 

Figure 52: Selection method for Lokomat and Lyra—heathy adult 

This analysing process was carried out to generate a repeatable and comparable way to 

evaluate the data. The analysing process was applied to the recordings of Lokomat and 

Lyra. The process was performed one time for each recording session. A resting period of 

a gait cycle was defined as the beginning of a window. The corresponding end-point of the 

window was defined by its size of 75,000 data points. Within those windows, the detection 

rate, false-positives and false-negatives as visualised in Table 14 were calculated as they 

represent three main outcomes for the evaluation of the gait event detection algorithm.  
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Table 14: False-positive and false-negative 

 

Correct detected steps within a selection window define the percentage of the detection 

rate. A successfully recognised step is only given if the detection sequence of gait events as 

described in the state diagram (Figure 32) has been fulfilled. The detection rate can thus be 

calculated as follows:  

 

Detection rate =  
100

 stepsreference
∗ stepscorrect detected (17)   

 

For the calculation of the detection rate, double observed steps were used as a reference 

(stepsreference). The correctly recognised steps of the algorithm (stepscorrect detected) are 

determined by subtracting the incorrect detected steps from the total amount of detected 

steps (stepscorrect detected= stepsdetected – stepsincorrect detected). Incorrect detected steps are 

steps which fulfil the conditions of the developed algorithm, yet they appear on an 

incorrect position within the data and thus reflect an untypical motion behaviour during 

walking. In Figure 53, the difference between a correct detected an incorrect detected and 

an undetected step is schematically visualised. At the incorrect detected step, the sequence 

of the gait events is correct, yet the toe-off event is located at an incorrect position. 

These incorrectly detected steps are further used to calculate the false-positives of the 

algorithm. 

 

False − positives =  
100

 stepsreference
∗ stepsincorrect detected (18)   
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Figure 53: Difference between: Detected step, undetected steps and incorrectly detected step 

 

For false-negatives, the amount of undetected steps (stepsundetected) is determined by 

subtracting the detected steps from the reference steps (stepsundetected= stepsreference – 

stepsdetected). Based on that, false-positives are calculated as follows: 

 

False − negatives =  
100

 stepsreference
∗ stepsundetected (19)   

 

The evaluation of the detection rate, false-positives and false-negatives including the 

according results are presented in section 5.5. 

 

5.4.2 Stroke Patients 

In clinical routine, robotic gait training is used to support the treatment of gait disorders. 

Thus, a clinical trial was conducted. The goal of this clinical study was to investigate 

whether the introduced algorithm including the proposed setup (Figure 50) is applicable 

during normal clinical rehabilitation routine of patients who suffered a stroke. 

Furthermore, a main priority was not to negatively influence the therapists or the patient 

during robot-assisted gait training. Thus, disturbances due to additional equipment (IMU 

and host computer) had to be reduced to a minimum by providing an easy setup. 

 

Clinical trial: The recruitment of the participants was organised by the MEDIAN 

Neurological Rehabilitation Center Magdeburg. Ethical approval was granted by the Otto 

von Guericke University’s ethics committee (section 8.3). The recruiting was split into three 

phases.  
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The first phase was executed by Prof. Dr. med. Michael Sailer (medical director and head 

physician of neurology) and Dr. Juliane Lamprecht (project leader at the Institute for 

Neurorehabilitation) who carefully screened the documents and the medical records of the 

patients. Based on the inclusion and exclusion criteria as stated in Figure 54, they provided 

a list of potential subjects who were suitable for robot-assisted gait training with Lokomat 

or Lyra. Phase two was executed by specially trained therapists who screened the potential 

subjects on the medical ward. Depending on their daily constitution (physical and mental), 

the therapists decided whether a robot-assisted gait training was suitable or not. After this 

decision, as a third phase, the subjects were asked whether or not they wanted to 

participate in the clinical study. The result of the recruitment was a total number of n = 10 

stroke patients. All participants signed a written consent form prior to participation. The 

study procedure including the individual phases can be seen in Figure 54. 

 

 

Figure 54: Procedure of the clinical study 

 

After the subjects had been informed about the study procedure and after they had given 

their written consent, the therapists adjusted the robotic devices. The harness was 

adapted to their comfort. The orthosis of Lokomat and the foot plates of Lyra were fixed 

to the participant. For the fixation of the two sensors on the feet of the subject, fixation 

straps as shown in Figure 40 were used. As therapists coordinated the therapy and 

strived for an optimal rehabilitation outcome, the walking speed during the training, the 

guidance force of Lokomat and the biofeedback mode of Lyra were not predetermined 

by the study procedure. Both settings were adjusted according to the subjects’ needs 

throughout the therapy. The total time for each therapy was 90 minutes; this time 
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included the screening of the participants, donning time including the explanation for 

the gait trainer and the description of the course of study. 

This procedure ensured that the recordings could be executed during daily rehabilitation 

routine and thus a regular rehabilitation procedure of the participants could be ensured. 

Information about the individual subjects is listed in Table 15 and Table 16. The affected 

side describes where the subject faced the gait disorder. The abbreviation FAC refers to the 

assessment of Functional Ambulation Categories which is used by therapists to find out 

how much support a patient needs when walking. The result is crucial—for example if it 

is checked whether the patient can return home after hospitalisation [137]. Whereas a FAC 

of 0 is the lowest scale and refers to a person who cannot walk at all or requires the 

assistance of two therapists, a FAC of 5 is the highest scale and refers to patients who can 

walk anywhere on their own, including stairs [138]. 

 

Number Age Sex ICD-10-GM Affected side FAC 

1 69 m I63.9 Left 0 

2 65 f I63.5 Right 0 

3 67 m I63.5 Left 0 

4 72 f I69.3 Left 0 

5 56 f I61.0 Left 0 

Table 15: Subjects of Lokomat 

 

Number Age Sex ICD-10-GM Affected side FAC 

1 64 m I63.4 Right 0 

2 76 m I61.0 Right 0 

3 58 m I63.1 Right 4 

4 63 m I61.9 Left 4 

5 71 m I63.9 Left 3 

Table 16: Subjects of Lyra 

 

Analysing method: After the application of the algorithm, the data was analysed towards 

the functionality of the algorithm. The analysing method is similar to the one described in 

5.4.1. Yet the difference is that the selection windows were chosen differently. Due to the 

fact that the data was recorded during clinical routine, no specifications towards the 

velocity were made, thus the selection windows were not chosen within certain velocities 

but rather throughout the whole recording. Furthermore, the longest available acquisition 
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time of a participant was below eight minutes, thus a time of 3.5 minutes (= 105,000 

datapoints), resulting in at least two windows for a recording, was defined as the window 

size. The selection method can be seen in Figure 55. Within those windows, the detection 

rate, false-positives and false-negatives as described in section 5.4.1 were calculated. 

 

 

Figure 55: Selection method for Lokomat and Lyra—stroke patients 

 

The evaluation of the detection rate, false-positives and false-negatives and the respective 

results are presented in section 5.5.  

 

5.4.3 Performance 

Every part of the algorithm needs a certain time for the data processing; as a result, there 

is a time between the incoming data stream and the output. This time delay can be called 

latency and refers to the performance of the algorithm. To evaluate the latency of the 

algorithm, each element of the gait event detection algorithm was taken into consideration 

for the testing procedure. The arbitrary sensor alignment including the full contact, the 

initial contact, the heel off and the toe off were tested individually. Furthermore, the overall 

latency was measured in order to be able to compare the results and to be able to detect 

potential flaws. Figure 56 shows the process of the latency estimation. 
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Figure 56: Latency estimation 

 

For the estimation of the latency, the built-in MATLAB stopwatch timer (tic/toc;) was used. 

The tic command uses the toc function to measure the time. In detail, the tic function logs 

the actual time, and the toc function utilises the logged value to compute the time passed. 

The host computer was a LENOVO ThinkPad E590 (Windows 10) with an Intel CORE i7 

8th Generation and 8GB of working memory. During the latency measurement MATLAB 

was the only user software actively running on the host computer and the WIFI connection 

was disconnected. The resolution of the stopwatch timer was determined by calling the 

commands tic/toc directly after each other. The data stream was provided by the 

aforementioned sequential forwarding of raw data (Figure 51). For the evaluation, an 

overground walking dataset with a duration of two minutes (=60,000 samples) was used. 

Each latency (Figure 56) was measured ten times and the mean and standard deviation for 

the elapsed time was computed, the corresponding analysis can be found in section 5.5.3. 
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5.5 Analysis—Gait Event Detection Algorithm 

This chapter elaborates the results of the conducted recording with the healthy adult as 

well as the clinical trial and the performance measurements. It is split into three main parts: 

The first part shows the analysed data from the robotic gait training with the healthy adult, 

the second part presents the results of the clinical trial which focussed on gait event 

recognition during robotic gait therapy of patients with a stroke. The last part is focussed 

on the analysis of the performance of the algorithm. 

 

5.5.1 Healthy Adult 

In this section, the analysis of the testing and application from section 5.4.1 is elaborated. 

The detection rates of the recording session from Lokomat are shown in Figure 57. False-

positives and false-negatives for Lokomat recording are shown in Figure 58 and Figure 59. 

The detection rate of Lyra recordings is visualised in Figure 60, the corresponding false-

positives and false-negatives are shown in Figure 61 and Figure 62. Correctly recognised 

steps are defined by the detection rate whereas incorrectly recognised steps are defined by 

false-positives. False-negatives describe the undetected steps. The sensors (left/right) were 

evaluated separately. Furthermore, each selection window was analysed individually. 

Three selection windows representing one particular velocity are visualised within the 

dotted lines of the figures.  

 

 

Figure 57: Detection rate: Lokomat—Healthy adult 
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Figure 57: Detection rate: Lokomat—Healthy adult: Within the first recording, the 

detection rates of the left sensor were between 93.2% and 97.7%. The detection rates of the 

right sensor were between 95.3% and 100%. For the second recording, one detection rate 

of the right sensor had a value of 98.4% whereas the rest had values of 100%. For the third 

recording, one value of 73% was reported for the left sensor, the remaining detection rates 

for this sensor were in between 94.6% and 100%. The overall detection rate for the left 

sensor was 99.1%, the right sensor had a detection rate value of 98.7%; overall a detection 

rate of 98.9%was reached. With regards to the training velocity, the following detection 

rates were achieved, 1.2m/s: 96.5%; 1.5m/s: 99.7%; 1.7m/s: 99.7%.  

 

 

 

Figure 58: False-positives: Lokomat—Healthy adult 

 

Figure 58: False-positives: Lokomat—Healthy adult: The false-positives for the majority 

of the velocities and their according selection windows were zero. As a result, the values 

for false-positives during 1.5m/s and 1.7m/s for both sensors were 0%. The same value 

applies for the whole left sensor. At the second recording session during 1.2m/s the right 

sensor had false-positives up to 15.3%. This results in an overall value for false-positives of 

0.5% for the right sensor. 
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Figure 59: False-negatives: Lokomat—Healthy adult 

 

Figure 59: False-negatives: Lokomat—Healthy adult: Except two values, the false-

negatives during all recordings were below 6.8%. Higher values appeared, during the 

second recording with a value of 13.5% at 1.2m/s, and during the third recording with a 

value of 9.3% at 1.2m/s. With regards to the velocities, the value for false-negatives were 

2.6% at 1.2m/s, 0.3% at 1.5m/s and 0.3% at 1.7m/s. Independently from each other, the left 

sensor had false-negatives of 0.9% and the right sensor had a value of 1% leading to an 

overall value for false-negatives of 0.9%. 

 

 

Figure 60: Detection rate: Lyra – Healthy adult 

 

Figure 60: Detection rate: Lyra – Healthy adult: The detection rates from the first recording 

were within the minimum value of 88.6% and the maximum value of 100%. Similar 
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findings were obtained in the second session where the lowest detection rate was 87% and 

highest 100%. The third recording revealed similar rates, except four values during 1.5 m/s 

where detection rates were below 75%. The analysed data result in a detection rate for the 

left sensor of 94.2%, the right sensor had a value of 97.6%. All in all, a detection rate of 

95.9% was reached. With regards to the training velocities, the following rates were 

achieved, 1.2m/s: 96%; 1.5m/s: 97.3; 1.7m/s: 94.7%. 

 

 

Figure 61: False-positives: Lyra – Healthy adult 

 

Figure 61: False-positives: Lyra – Healthy adult: False-positives for the first recording 

session for both sensors were between 0% and 4.7%. The second recording had similar 

values for the false-positives, except one value of 8.7% during 1.7m/s at the left sensor. 

During the third recording session, false-positives of up to 20% at 1.5 m/s at the left sensor 

were reported. The overall value for false-positives was 0.9%. For the left sensor, the value 

for false-positives was 1.5%. The right sensor had a mean value of 0.5%. The false-positive 

values of the individual velocities were: 1.2m/s: 0.6%; 1.5m/s: 0.3%; 1.7m/s: 1.7%. 
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Figure 62: False-negatives: Lyra—Healthy adult 

 

Figure 62: False-negatives: Lyra—Healthy adult: For the first recording, the false-

negatives of the left sensor were up to 11.4%. For the second and third recording, the false-

negatives were between 0% and 14%. False-negatives of the right sensor were between 0% 

and 7% for the first and second recording, the third recording had false-negatives up to 

12.2%. With regards to the training velocities, the false-negatives were: 1.2m/s: 3.4%; 

1.5m/s: 2.4%; 1.7m/s: 3.6%. Independently from each other, the value for false-negatives of 

the left sensor was 4.4%, for the right sensor, the value for false-negatives was 1.9%. As a 

result, an overall value for false-negatives of 3.1% can be reported. 

 

5.5.2 Stroke Patients 

In this section, the analysis of testing and application from section 5.4.2 is elaborated. 

Figure 63 and Figure 65 visualise the results of the detection rates, false-positives and false-

negatives from the recording sessions of Lokomat. The detection rate of the Lyra recordings 

is shown in Figure 66, the corresponding false-positives and false-negatives can be seen in 

Figure 67 and Figure 68. Correctly recognised steps are defined by the detection rate 

whereas incorrectly recognised steps are defined by the false-positives. False-negatives 

describe the undetected steps. The sensors were evaluated separately. Furthermore, each 

selection window was analysed individually. 
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Figure 63: Detection rate: Lokomat—Stroke patients 

 

Figure 63: Detection rate: Lokomat—Stroke patients: All detection rates of the subjects 

were above or equal to 90%. The detection rate for the left sensor was 99.2%, the right 

sensor had a value of 98.7%; overall, a detection rate of 98.9% was achieved. 

 

 

Figure 64: False-positives: Lokomat—Stroke patients 

 

Figure 64: False-positives: Lokomat—Stroke patients: Except two values which occurred 

in the 1st subject (10%) and in the 2nd subject (8.3%), false-positives were between 0% and 

3%. As a result, a value for false-positives for the left sensor of 0.3%, and a value for the 

right sensor of 1.1% was reported. All in all, the false-positive value was 0.7%. 
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Figure 65: False-negatives: Lokomat—Stroke patients 

 

Figure 65: False-negatives: Lokomat—Stroke patients: False-negative values were 0% for 

almost all analysed selection windows. Two values were above zero with the magnitude 

of 2.4% and 7%. The value for false-negatives for the left sensor was 0.5%, and 0.1% for the 

right sensor, resulting in an overall value for false-negatives of 0.3%.  

 

 

Figure 66: Detection rate: Lyra—Stroke patients 

 

Figure 66: Detection rate: Lyra—Stroke patients: Detection rates of Lyra recording from 

2nd—5th subject was between 80.3% and 100%. During the recording session of subject one, 

two lower values (72% and 70.7%) were reported whereas the other two detection rates 

were above 94%. N.A. refers to a not analysable measurement. All in all, the detection rate 
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was 95.9%. The individual sensors had detection rates of 97.6% (left sensor) and 93.8% 

(right sensor). 

 

Figure 67: False-positives: Lyra—Stroke patients 

 

Figure 67: False-positives: Lyra—Stroke patients: The false-positives for the 1st and the 3rd 

subjects were 0%. In the 2nd subject, values for false-positives up to 7.5% were reported. For 

the other subjects, the false-positives were in between 0% and 3.4%. As a result, the value 

for false-positives of the left sensor was 1.1%. For the right sensor, a value 0.6% was 

reported. This leads to an overall value for false-positives of 0.9%. 

 

 

Figure 68: False-negatives: Lyra – Stroke patients 
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Figure 68: False-negatives: Lyra – Stroke patients: False-negative values for the left sensor 

of the 1st subject were 0%. The right sensor revealed false-negatives of up to 29.3%. The 

second subject had false-negatives up to 16.7% at the right sensor. For the 3rd, 4th and 5th 

subject the false-negatives were between 0% and 6.1%. The value for false-negatives for the 

left sensor was 1.3%, and 5.6% for the right sensor resulting in an overall value for false-

negatives of 3.3%. 

 

5.5.3 Performance 

As mentioned in section 5.4.3, the performance was tested by estimating the latency of the 

individual parts of the algorithm. For the analysis of the performance, overground walking 

dataset with the duration of 120 seconds (60,000 samples) were used. The performance 

measurement was repeated ten times for each element of the algorithm, the mean and the 

standard deviation can be seen in Table 17. 

 

Duration of raw 

data (s) 
Evaluated element 

Mean 

(µs) 

Standard deviation 

(µs) 

120 
Arbitrary sensor alignment and 

full contact 
244 13 

120 Initial contact 3 0.2 

120 Heel off 4 0.2 

120 Toe off 16 5 

120 Overall 282 17 

120 Resolution (tic/toc) 0.5 0.1 

Table 17: Estimated latency for gait events 

 

The arbitrary sensor alignment algorithm induced a mean latency of 244µs ± 13µs. Initial 

contact and heel off both had a mean latency of below 5µs. The computation of the toe-off 

event results in a mean latency of 16µs ± 5µs. Overall, the gait event detection algorithm 

for one sensor induces a mean latency of 282µs ± 17µs. The resolution of the tic/toc function 

was 0.5µs ± 0.1µs. 
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5.6 Application—Functional Electrical 

Stimulation 

Bench testing trials for the combination of the developed algorithm for gait event detection 

and functional electrical stimulation were performed and are elaborated in the following 

sections. Detailed information on the evaluated data and the corresponding results can be 

found in the corresponding analysis section. 

 

5.6.1 Testing and Application—Trial 1 

In order to further evaluate the feasibility of the concept, sub-aspects of the concept as 

shown in Figure 26 were considered and bench-tested. 

To evaluate the capability of the algorithm to trigger FES based on the extracted gait events 

from the IMU data, the electrical stimulator (section 4.3) was connected to the host 

computer using a serial transmission via cable. Serial data transmission was realised with 

the ScienceMode protocol of HASOMED. ScienceMode is a communication protocol for 

controlling the used electrical stimulator. A host computer can be used to utilise the 

communication via a standard USB port. The stimulator was initiated within MATLAB in 

order to connect the hardware with the software. A Bluetooth connection from the sensors 

to the host computer was simulated as described in chapter 5.4. Furthermore, the sample 

frequency was taken into consideration by introducing a time delay after each sample. As 

mentioned in section 4.2, the sampling frequency was 500 Hz, thus the time between two 

samples (sampling period) is the inverse of the sampling frequency. This sampling period 

served as a time delay and was used to simulate the sampling frequency. Thus, real life 

conditions were simulated. This aspect was not taken into consideration for the previous 

experiments as the actual time delay of the incoming data stream was not considered 

relevant when analysing individual datapoints. As a representation of the stimulation 

electrodes, four LEDs each representing one channel were used (Figure 69). The LEDs were 

connected to the stimulation channels 1-4. As the LEDs represent the stimulation 

electrodes, their duration of illumination corresponds to the duration of the stimulation.  
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Figure 69: Setup: Bench test—Trial 1 

 

The aforementioned communication protocol ScienceMode offers three different pulse 

generation modes—Single Pulse Mode, Continuous Channel List (CCL) Mode and One 

Shot Channel List (OSCL) Mode.  

 

Single Pulse Mode: Using this mode, a single pulse can be created on a defined channel. 

Current, amplitude and pulse width can be specified for each pulse. The pulse is triggered 

by an external device such as a host computer and RehaStim creates the impulse 

immediately after the command is processed. If complex stimulation patterns are desired, 

more than one command can be sent sequentially. The external device (host computer) is 

responsible for controlling the timing. 

 

Continuous Channel List (CCL) Mode: CCL simplifies the creation of complex templates. 

Doublets or triplets can be generated by defining a group of pulses which can be repeated. 

Altering intensity of the frequency by using doublets is a technique which can be used to 

influence muscle fatigue [139–143]. An example of CCL mode can be seen in Figure 70. 
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Figure 70: Continuous Channel List Mode—Example of single pulses and doublets 

 

Channels 1 and 3 are enclosed in the channel list. 1/t1 defines the primary stimulation 

frequency. As visualised above, a doublet is created for channel 3, the stimulation 

frequency for that doublet is 1/t2. The duration of the communication between the 

controller and the stimulation modules is visualised as grey bars. Black bars indicate the 

biphasic pulses. When a channel list is created, the duration t1 indicates the time between 

the repetition of the pulse list. Furthermore, a minimum time of 1.5ms must elapse between 

two selected channels of one module before a new stimulation can occur. 

A delay of 0.6ms is in between the two modules processed in parallel. Channels 1-4 are 

connected to Module A, Module B (not visualised in the figure) is responsible for 

generating pulses on the channels 5-8. The inter-pulse time t2 is initiated once and defines 

the time between the pulses of doublets and triplets. For doublets, the channel list is 

processed twice within this period, triplets are processed thrice, respectively. To provide 

more flexibility, the frequency can additionally be altered for some channels. Thus, a 

parameter nt1 can be used to lower the frequency of the selected channels accordingly. The 

usage of this parameter can alter the frequency within doublets and triplets. During 

initialisation, the used channels of the modules, the main time t1, the time between the 

pulses t2 and the maximal size of pulse groups have to be defined. The minimal possible 

inter-pulse time t2 is defined as follows: 

 

t2 ≥ 1.5ms ∗ max(n ChannelA , n ChannelB) (1)   

The variables n ChannelA and n ChannelB represent the number of selected channels 
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The primary stimulation frequency is defined by the duration t1 and depends on the inter-

pulse time t2 as defined in the following condition: 

 

t1 ≥ npulse group ∗ t2 + 1.5ms (2)   

The variable npulse group defines if a single pulse (npulse group = 1), doublets 

(npulse group = 2) or triplets (npulse group = 3) are used 

 

Taking the above-mentioned constraints into consideration, the following ranges for the 

primary stimulation time t1 and inter-pulse time t2 can be deduced. 

 

Variable Minimum (ms) Maximum (ms) Step size (ms) 

Main stimulation time t1 3 1023.5 0.5 

Inter-pulse time t2 3 16 0.5 

Table 18: Main time t1 and inter-pulse time t2 for the channel list mode 

 

Stimulation parameters such as pulse width, amplitude etc. can be changed as long as the 

CCL mode is active by sending a new external command. Deactivating the CCL mode is 

realised by sending a stop command to the stimulator. The primary frequency 1/t1 with 

which the channel list is handled, and the settings are managed and sent by the main 

processor of the RehaStim. As a result, the external device (host computer) is not blocked 

during this time. Thus, the host computer is able to further process data and only needs to 

send commands when the above-mentioned parameters need to be changed. 

 

One Shot Channel List (OSCL) Mode: OSCL is similar to CCL; however, the processing 

of the main time t1 is not automatically repeated. The channel list is only repeated if an 

external command is issued. Thus, the primary stimulation frequency t1 is controlled by a 

command from an external device, in contrast to that the inter-pulse time t2 is controlled 

with the stimulation modules. 

 

Implementation of the CCL: For this bench testing trial, the CCL mode was assumed to 

be the best fit as a list of electrodes can be switched on and off by sending a command from 

the host computer to the stimulator and the stimulator repeats this stimulation 

independently from the host computer as long as no other command is sent. In order to 

evaluate the functionality, a stimulation sequence corresponding to the detected gait 

events as shown in Table 19 was used. 
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Gait event LED 1 LED 2 LED 3 LED 4 

Initial contact On Off Off Off 

Full contact On On Off Off 

Heel off On On On Off 

Toe off On On On On 

Table 19: Stimulation sequence for the bench testing trial 

 

The defined stimulation sequence assures that the LEDs are switched on and off whenever 

the gait event detection algorithm detects a new gait event and that the gait events are 

visually distinguishable by the illumination of the LEDs. Simultaneously, the CCL mode 

guarantees that the gait event detection algorithm is not blocked while performing the 

stimulation.  

 

Initialisation of the Stimulator: To realise the CCL mode and the corresponding 

stimulation, a connection between the host computer and the stimulator has to be 

established. This is realised using the MATLAB commands s = serial(‘port’). The command 

s = serial(‘port’,Name,Value) generates an object for the serial communication port with 

defined properties. If invalid properties are specified, an error occurs, and the serial port 

object is not generated. Thus, the COM Port of the device must be determined beforehand 

using the device manager of the host computer. Afterwards, the serial port is opened with 

the MATLAB command fopen(s). The command fileID = fopen(filename) opens the file, 

filename, for binary read access. After performing the described process, the electrical 

stimulator is connected to the host computer and is opened in MATLAB which allows the 

communication using CCL mode. 

 

CCL mode initialisation command: After initialising the stimulator, the CCL mode is set 

with the corresponding initialisation command. To realise this, the variables of Table 20 

were defined. 
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Variable 
No. of 

bits 
Value/Range Description 

Ident 2 0 Identification number of commands 

00 for the initialisation 

Check 3 0–7 Checksum 

check =  (NFactor + ChannelStim + ChannelLF +

GroupTime + MainTime) mod 8. 

N_Factor 3 0–7 Sets the number of times the stimulation is 

omitted in Channel_Lf and Channel_Stim. 

(never omit=0, omit once=1 … omit 7 times=7) 

Channel_Stim 8 0–255 Specifies the activated channels 

(Bit0 = channel 1 … Bit 7 = channel 8) 

Channel_Lf 8 0–255 Defines the low frequency channels 

(Bit0 = channel 1 … Bit 7 = channel 8) 

GroupTime 5 0–31 Specifies the inter pulse-interval ts2 

ts2 ≥ Group_Time ∗ 0.5ms + 1.5ms 

MainTime 11 0–2047 Specifies the main time period ts1 

ts1 ≥ Main_Time ∗ 0.5ms + 1ms 

Table 20: Initialisation of the CCL mode: Variables 

 

For this bench testing trial, the variable N_Factor and Channel_Lf and GroupTime were 

set to 0. The number of channels were four, thus Channel_Stim was set to 15 as it is the 

decimal value for the binary value of 11112. The MainTime was set to 38 in order to get a 

stimulation frequency of 50Hz. The checksum was calculated based on the set variables. 

All decimal variables were transformed to their binary value in order to generate the bytes 

for the initialisation command. The byte sequence can be seen in Table 21. 
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Bytes Bit number Variable Bits with respect to variable Value 

Byte_1 

7 - - 1 

6 Ident 1 0 

5 Ident 0 0 

4 Check 2 1 

3 Check 1 0 

2 Check 0 1 

1 N_Factor 2 0 

0 N_Factor 1 0 

Byte_2 

7 - - 0 

6 N_Factor 0 0 

5 Channel_Stim 7 0 

4 Channel_Stim 6 0 

3 Channel_Stim 5 0 

2 Channel_Stim 4 0 

1 Channel_Stim 3 1 

0 Channel_Stim 2 1 

Byte_3 

7 - - 0 

6 Channel_Stim 1 1 

5 Channel_Stim 0 1 

4 Chanel_Lf 7 0 

3 Chanel_Lf 6 0 

2 Chanel_Lf 5 0 

1 Chanel_Lf 4 0 

0 Chanel_Lf 3 0 

Byte_4 

  7 - - 0 

6 Chanel_Lf 2 0 

5 Chanel_Lf 1 0 

4 Chanel_Lf 0 0 

3 - - 0 

2 - - 0 

1 GroupTime 4 0 

0 GroupTime 3 0 

Byte_5 

7 - - 0 

6 GroupTime 2 0 

5 GroupTime 1 0 

4 GroupTime 0 0 

3 MainTime 10 0 

2 MainTime 9 0 

1 MainTime 8 0 

0 MainTime 7 0 

Byte_6 

7 - - 0 

6 MainTime 6 0 

5 MainTime 5 1 

4 MainTime 4 0 

3 MainTime 3 0 

2 MainTime 2 1 

1 MainTime 1 1 

0 MainTime 0 0 

Table 21: Initialisation of CCL mode: Byte sequence 
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After the generation of the bytes, the initialisation command can be sent via the serial 

connection to the stimulator using the MATLAB command 

fwrite(s,[Byte_1,Byte_2,Byte_3,Byte_4_,Byte_5,Byte_6]);. 

 

CCL mode updating command: The update command initiates or alters a stimulation as 

soon as the command is sent. Similar to the initialisation command, variables need to be 

sent in the correct order to define the sequence of stimulation (Table 22).  

 

Variable Bits Value/Range Description 

Ident 2 1 Identification number of commands 

00 for the initialisation 

Check 5 0 – 31 Checksum 

check =  (Mode + PulseWidth + PulseCurrent) mod 32. 

Mode 2 0 – 2 Defines the stimulation mode. 

(Single pulse=0, doublet=1, triplet=2) 

PulseWidth 9 0 – 500 Defines the pulse width in 

PulseCurrent 7 0 – 127 Current in mA 

(Bit0 = channel 1 … Bit 7 = channel 8) 

Table 22: Update of CCL mode: Variables 

 

For this bench testing trial, the variable Mode was set 0 as no doublets or triplets were 

required. The pulse width and the current influence, the brightness of the LEDs, both 

values were chosen to be close to the maximum values (pulse width = 400μs and current = 

100mA) to generate a bright illumination. The checksum was calculated based on the set 

variables for each update command. All decimal variables were transformed to their 

binary value in order to generate the bytes for the update command. The sequence of the 

byte sequence can be seen in Table 23. 
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Bytes Bits Variable Bits with respect to variable 

Byte_1 

7 - - 

6 Ident 1 

5 Ident 0 

4 Check 4 

3 Check 3 

2 Check 2 

1 Check 1 

0 Check 0 

For each activated channel, three bytes are sent to the stimulator 

in ascending order with regard to the channel number 

Bytes Bits Variable Bits with respect to variable 

Byte_2 

7 - - 

6 N_Factor 1 

5 Channel_Stim 0 

4 - - 

3 - - 

2 - - 

1 PulseWidth 8 

0 PulseWidth 7 

Byte_3 

7 - - 

6 PulseWidth 6 

5 PulseWidth 5 

4 PulseWidth 4 

3 PulseWidth 3 

2 PulseWidth 2 

1 PulseWidth 1 

0 PulseWidth 0 

Byte_4 

7 - - 

6 PulseCurrent 6 

5 PulseCurrent 5 

4 PulseCurrent 4 

3 PulseCurrent 3 

2 PulseCurrent 2 

1 PulseCurrent 1 

0 PulseCurrent 0 

Table 23: Update of CCL mode: Byte sequence 

 

Depending on the gait event, the CCL mode triggers the LED (Table 19). Thus, four update 

commands each consisting of 13 bytes were generated. These 13 bytes incorporate the Ident 

and Check-Bits and the individual binary configuration depending on the stimulated 

channel as described in Table 23. The values of the bytes during the corresponding gait 

event can be seen in Table 24. 
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Gait phase Byte Value  Gait phase Byte Value 

In
it

ia
l 

co
n

ta
ct

 
1 10110100  

F
u

ll
 c

o
n

ta
ct

 

1 10101000 

2 00000011  2 00000011 

3 00010000  3 00010000 

4 01100100  4 01100100 

5 00000000  5 00000011 

6 00000000  6 00010000 

7 00000000  7 01100100 

8 00000000  8 00000000 

9 00000000  9 00000000 

10 00000000  10 00000000 

11 00000000  11 00000000 

12 00000000  12 00000000 

13 00000000  13 00000000 

H
ee

l 
o

ff
 

1 10101000  

T
o

e 
o

ff
 

1 10101000 

2 00000011  2 00000011 

3 00010000  3 00010000 

4 01100100  4 01100100 

5 00000011  5 00000011 

6 00010000  6 00010000 

7 01100100  7 01100100 

8 00000011  8 00000011 

9 00010000  9 00010000 

10 01100100  10 01100100 

11 00000000  11 00000011 

12 00000000  12 00010000 

13 00000000  13 01100100 

Table 24: Update of CCL mode: Byte sequence for the individual gait events 

 

After the generation of the bytes, the update command can be sent. Depending on the gait 

events, the bytes as defined in Table 24 must be sent using the MATLAB command 

fwrite(s,[Byte_1….,Byte13]);. 

 

CCL mode stop command: The CCL mode runs until the stimulator receives a stop 

command or the electrodes lose skin contact and cause an electrode failure. Similar to the 

initialisation and update command, variables need to be sent in order to define the 

sequence of stimulation (Table 25).  
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Variable Bits Value/Range Description 

Ident 2 1 Identification number of commands 

Check 5 0 – 31 Checksum; check =  (0) mod 32 = 0. 

Table 25: Stop of CCL mode: Variables 

 

The stop command stays the same for all channels and stops the stimulation. By using the 

MATLAB command fwrite(s,[Byte_1]), the stop command is sent, the corresponding 

Byte_1 can be seen in Table 26. 

 

Bytes Bits Variable Bits with respect to variable Value 

Byte_1 

7 - - 1 

6 Ident 1 1 

5 Ident 0 0 

4 Check 4 0 

3 Check 3 0 

2 Check 2 0 

1 Check 4 0 

0 Check 0 0 

Table 26: Stop of CCL mode: Byte sequence 

 

After implementation of the CLL mode to trigger the LEDs according to the gait events, 

the latency was determined. As described in section 5.4.3, the tic/toc function was used to 

estimate the time needed for executing the function. The latency estimation for the bench 

testing was done similarly to Figure 56 but instead of the latency of the gait events, the 

fwrite(s,[…]) function needed to send the update commands after each gait event to the 

stimulator were considered. For the evaluation, an overground walking dataset with a 

duration of two minutes (=60,000 samples) was used. The latency for each command was 

evaluated ten times. Mean and standard deviation for the elapsed time were calculated 

and can be seen in section 5.6.4. 

 

5.6.2 Testing and Application—Trial 2 

After the first bench testing and evaluating the algorithms capability to trigger the 

stimulator according to the gait events, the LEDs representing the stimulation channels 

were replaced by self-adhering neurostimulation electrodes for electrical stimulation.  

The RehaTrode stimulation electrodes (HASOMED GmbH, Magdeburg, Germany) were 
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connected to the stimulator and the device was connected to the host computer using a 

serial connection. The initialisation of the stimulator was done as described in Bench 

testing—Trial 1. In order to generate a walking pattern, the involved muscles were defined. 

As there are only limited stimulation channels (8 stimulation channels, section 4.3), not all 

muscles involved in walking as described in section 2.2.1 can be activated with electrical 

stimulation. Furthermore, the accessibility of muscles must be considered, meaning that 

superficial and more prominent muscles are easier to access compared to underlying 

muscles or muscles which might be covered with clothes during therapy. As a result, four 

main muscles for each lower extremity as visualised in Figure 71 were considered for 

functional electrical stimulation. In the upcoming paragraphs, the applied method is 

described for one leg. For the second leg, the same method would be applied.  

 

 

Figure 71: Four main muscles considered for functional electrical stimulation 

 

For the creation of the update commands (as described in detail in section 5.6.1), the start 

and the end of the activation period is of importance. Taking into account the muscle 

activation sequences with respect to the events of the human gait cycle as described in 

section 2.2.1 and considering the gait cycle as a dynamic and consecutive sequence of eight 

events starting from the initial contact at 0% of the gait cycle and ending at the next initial 

contact at 100% of the gait cycle, a muscle activation sequence for functional electrical 

stimulation as shown in Figure 72 can be derived.  
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Figure 72: Muscle activation sequence for functional electrical stimulation 

 

The duration of the whole gait cycle must be known in order to apply the activation 

sequence as described in Figure 72. Based on that, a first approach for the generation of the 

stimulation was derived: 

As robot-assisted gait training provides a cyclic movement and as the gait velocity is 

subject to only small changes throughout the therapy, the duration of the previous step can 

be considered as the stimulation duration for the next step. In order to realise that the 

duration of the previous step must be known. Based on that information, the duration of 

the individual periods can be calculated according to the percentages of stimulation as 

visualised in Figure 71. Considering a robot-assisted gait training of a stroke patients 

(section 5.4.2), an exemplary duration as shown in Figure 73 can be assumed. 
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Figure 73: Typical duration of a gait cycle during robotic gait training 

 

An update of the step duration can be done repeatedly, and a stimulation can be 

triggered at every initial contact which allows the algorithm to alter the stimulation times 

after every step. An example of the stimulation times combining the step duration of 2.6 

seconds (Figure 73) and the activation percentages (Figure 72) can be seen in Table 27. 

 

Muscle Start #1 (ms) End #1 (ms) Start #2 (ms) End #2 (ms) 

Rectus femoris 1482 1690 - - 

Biceps femoris 0 130 2132 2600 

Tibialis anterior 0 338 1456 2600 

Gastrocnemius 234 1300 - - 

Table 27: Start and stop times for the activation of the muscles during one gait cycle with the 

duration of 2.6 seconds (Bench test—Trial 2) 

 

The stimulation times of the individual muscles overlap at certain points and lead to the 

fact that up to two channels need to be activated simultaneously. Furthermore, there is a 

time between the heel off and the toe off where none of the chosen muscles is active. 

During this period, all channels must be deactivated. The combination of activation and 

deactivation of muscles and the amount of needed update commands for one gait cycle 

are visualised in Figure 74. 
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Figure 74: Amount of update commands of the CCL mode during one gait cycle 

(Bench test—Trial 2) 

 

As a result, nine update commands are needed to activate/deactivate four muscles 

throughout the gait cycle, whereas each muscle is activated by its own channel. Channel 1: 

rectus femoris, channel 2: biceps femoris, channel 3: tibialis anterior and channel 4: 

gastrocnemius. The update commands could also be reduced as some activate the same 

muscle groups, yet for a better overview and for an easier implementation into the 

algorithm, a detailed clustering of commands was chosen. As a next step, the parameters 

frequency, pulse width and amplitude for the stimulation must be defined. 

 

Frequency: The used frequencies for electrical stimulation can be very different depending 

on the aim of the treatment , most clinical applications however tend to use frequencies of 

20-50Hz for the therapy [144,145]. Constant low frequency stimulation can be used to avoid 

fatigue and discomfort [146] but could also lead to a lack of muscle activation which, in 

turn, leads to non-efficient contraction and low force generation [147]. In general, higher 

frequencies are supposed to be more pleasant compared to lower frequencies as they elicit 

a smoother force response (tetanic contraction) and have a less tingling/sparkling effect. 

Lower frequencies rather generate a tapping/twitching effect where the single pulses can 

be differentiated [148]. 

 

Pulse width: For biphasic pulses (Figure 25), the pulse accounts for one positive phase 

coupled with one negative phase, the pulse width or pulse duration refers to the duration 

of the positive or negative phase [149]. For FES cycling where dynamic quadriceps 
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extensions are wanted, pulse widths between 300μs-600μs [147,150–152] are used. Lower 

frequency stimulation which provides pulse durations of 500μs-1000μs can result in a 

lower fatigue index. Furthermore, short pulse widths (10μs-50μs) can influence the 

recruitment of muscular fibres which can lead to a higher torque recruiting a lower amount 

of fibres before generating an activation of a different muscle [153]. A comparison of pulse 

widths with values of 50—1000μs at a frequency of 20 Hz showed, that longer pulse 

durations produced stronger contractions in the soleus muscle generating a greater 

plantarflexion and additionally increased general contractile properties [154]. Typically, 

when a deeper penetration is wanted, longer pulse durations are recommended [155]. 

 

Amplitude: The higher the pulse amplitude, the greater the depolarising effect in the 

regions beneath the stimulation electrodes [156]. Increased intensities will lead to increased 

strength. However, gains in muscle strength are often present after training with electrical 

stimulation [157–160]. The pulse amplitude also influences the patients’ comfort whereas 

higher amplitudes are typically less tolerated compared to lower amplitudes. Overall, the 

combination of frequency and amplitude will determine the quality of muscle contraction 

[155]. 

 

Summary: Summing up all the above-mentioned information of the individual parameters 

and their effect on muscle contraction, an overview as provided in Table 28 can be derived. 

Yet it is important to mention that the combination of parameters has to be evaluated for 

each application and for each subject working with electrical stimulation. Furthermore, a 

gradual increase of the amplitude achieves an optimal contraction within tolerable levels. 

If no contraction can be generated, the parameters can be manipulated and adjusted for 

each patient.  
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Parameter Adjustment Effect 

Frequency Low: 1Hz-10Hz Muscle twitch, can be less comfortable but less 

fatigue. 

 Medium: 20Hz-60Hz Tetanic muscle contraction causing a smoother 

force response. 

 High: > 60Hz Tetanic contraction might diminish gradually, 

sensory response becomes stronger. 

Pulse width Low: 10μs -200μs Superficial contraction, less likely to activate 

other muscle fibres. Can be good for smaller 

muscle groups 

 Medium: 200μs -500μs Stronger contraction, recruiting more motor 

fibres, higher risk for activating other muscles. 

 High: 500μs-1000μs Powerful contraction, can be good for larger 

groups of muscles 

Amplitude Low Causes a weak response: Tends to be a more 

comfortable contraction 

 High Causes a strong response: Less tolerable 

compared to low amplitudes. 

Table 28: Parameters for electrical stimulation 

 

Considering the above-mentioned information, the following parameters were chosen for 

this experiment: frequency: 50Hz; pulse width: 100μs; amplitude: 30mA. As a result, the 

following update commands can be generated. 
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Byte Value Byte Value Byte Value 

1 10100100 1 10100100 1 10100100 

2 00000000 2 00000000 2 00000000 

3 00000000 3 00000000 3 00000000 

4 00000000 4 00000000 4 00000000 

5 00000000 5 00000000 5 00000000 

6 01100100 6 00000000 6 00000000 

7 00011110 7 00000000 7 00000000 

8 00000000 8 00000000 8 00000000 

9 01100100 9 01100100 9 01100100 

10 00011110 10 00011110 10 00011110 

11 00000000 11 00000000 11 00000000 

12 00000000 12 00000000 12 01100100 

13 00000000 13 00000000 13 00011110 

1 10100100 1 10100100 1 10100100 

2 00000000 2 00000000 2 00000000 

3 00000000 3 00000000 3 00000000 

4 00000000 4 00000000 4 00000000 

5 00000000 5 00000000 5 00000000 

6 00000000 6 00000000 6 00000000 

7 00000000 7 00000000 7 00000000 

8 00000000 8 00000000 8 00000000 

9 00000000 9 00000000 9 01100100 

10 00000000 10 00000000 10 00011110 

11 00000000 11 00000000 11 00000000 

12 01100100 12 00000000 12 00000000 

13 00011110 13 00000000 13 00000000 

1 10100100 1 10100100 1 10100100 

2 00000000 2 00000000 2 00000000 

3 01100100 3 00000000 3 00000000 

4 00011110 4 00000000 4 00000000 

5 00000000 5 00000000 5 00000000 

6 00000000 6 00000000 6 01100100 

7 00000000 7 00000000 7 00011110 

8 00000000 8 00000000 8 00000000 

9 01100100 9 01100100 9 01100100 

10 00011110 10 00011110 10 00011110 

11 00000000 11 00000000 11 00000000 

12 00000000 12 00000000 12 00000000 

13 00000000 13 00000000 13 00000000 

Table 29: Update of CCL mode: Byte sequence as described in Figure 74 (Bench test—Trial 2) 
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After defining the parameters and generating the byte sequence, the update commands 

can be implemented. As mentioned before, the initial contact is used for triggering the 

stimulation, the detected duration from the previous step is considered to be the 

stimulation time for the upcoming step and the segmentation of the commands is realised 

by using the muscle activation sequence shown in Figure 71. The individual gait events 

such as initial contact, full contact, heel off and toe off are used for gait event detection, 

thus they are essential for defining the total duration of the step, yet they do not influence 

the stimulation pattern directly. This concept is schematically shown in Figure 75. 

 

 

Figure 75: Concept: Bench test—Trial 2 

 

5.6.3 Testing and Application—Trial 3 

As mentioned in section 5.6.2, the individual gait events were used for defining the step 

time but did not directly influence the stimulation pattern. In order to allow a faster 

response to changes in the gait pattern, all four gait events can be actively utilised to alter 

the stimulation pattern. For the realisation of that approach, a more detailed elaboration of 

the distribution of the individual gait events is needed. Thus, gait events can be organised 

as follows [95,161]: Initial contact—0% Foot flat (respectively full contact) —8%, heel off—

40%, toe off—60% and next initial contact—100%, with the boundary condition that the 

gait cycle is a dynamic and consecutive sequence of eight events starting from the initial 

contact at 0% of the gait cycle and ending at the next initial contact at 100% of the gait cycle. 

Implementing this into the existing concept of section 5.6.2, a new pattern of update 

commands as visualised in Figure 76 can be derived. 
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Figure 76: Amount of update commands of the CCL mode during one gait cycle 

(Bench test—Trial 3) 

 

As a result, ten update commands are needed to activate/deactivate four muscles 

throughout the gait cycle. Parameters like frequency, pulse width, amplitude for the 

stimulation and the allocation of channels were the same as in 5.6.2. Furthermore, the 

initialisation command and the stop command are kept identical as four channels were 

used for stimulation. The update commands could also be reduced as some activate the 

same muscle groups; yet for a better overview and for an easier implementation into the 

algorithm, a detailed clustering of commands was chosen. The newly defined update 

commands are shown in Table 30. 
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Byte Value Byte Value Byte Value 

1 10100100 1 10100100 1 10100100 

2 00000000 2 00000000 2 00000000 

3 00000000 3 00000000 3 00000000 

4 00000000 4 00000000 4 00000000 

5 00000000 5 00000000 5 00000000 

6 01100100 6 00000000 6 00000000 

7 00011110 7 00000000 7 00000000 

8 00000000 8 00000000 8 00000000 

9 01100100 9 01100100 9 01100100 

10 00011110 10 00011110 10 00011110 

11 00000000 11 00000000 11 00000000 

12 00000000 12 00000000 12 01100100 

13 00000000 13 00000000 13 00011110 

1 10100100 1 10100100 1 10100100 

2 00000000 2 00000000 2 00000000 

3 00000000 3 00000000 3 00000000 

4 00000000 4 00000000 4 00000000 

5 00000000 5 00000000 5 00000000 

6 00000000 6 00000000 6 00000000 

7 00000000 7 00000000 7 00000000 

8 00000000 8 00000000 8 00000000 

9 00000000 9 00000000 9 00000000 

10 00000000 10 00000000 10 00000000 

11 00000000 11 00000000 11 00000000 

12 01100100 12 01100100 12 00000000 

13 00011110 13 00011110 13 00000000 

1 10100100 1 10100100 1 10100100 

2 00000000 2 00000000 2 00000000 

3 01100100 3 01100100 3 00000000 

4 00011110 4 00011110 4 00000000 

5 00000000 5 00000000 5 00000000 

6 00000000 6 00000000 6 00000000 

7 00000000 7 00000000 7 00000000 

8 00000000 8 00000000 8 00000000 

9 01100100 9 01100100 9 01100100 

10 00011110 10 00011110 10 00011110 

11 00000000 11 00000000 11 00000000 

12 00000000 12 00000000 12 00000000 

13 00000000 13 00000000 13 00000000 
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  1 10100100   

  2 00000000   

  3 00000000   

  4 00000000   

  5 00000000   

  6 01100100   

  7 00011110   

  8 00000000   

  9 01100100   

  10 00011110   

  11 00000000   

  12 00000000   

  13 00000000   

Table 30: Update of CCL mode: Byte sequence as described in Figure 76 (Bench test—Trial 3) 

 

After defining the parameters and generating the byte sequence, the update commands 

can be implemented. In contrast to Trial 2 from Section 5.6.2 where the initial contact was 

the only trigger for starting and changing the stimulation, in this trial, all gait events (initial 

contact, full contact, heel off and toe off) are capable of changing the stimulation in real 

time. The duration in between the gait events, for the duration of the update commands, is 

derived from the previous step. Yet, every gait event alters the stimulation as soon as it is 

detected, thus a faster adaption to possible alterations in the gait pattern of the robotic gait 

training can be realised. This concept is schematically shown in Figure 77. 

 

 

Figure 77: Concept: Bench test—Trial 3 
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5.6.4 Performance 

After investigating the performance of algorithm, the latency of the update commands was 

tested (section 5.6.1). For the analysis of the latency of the commands, an overground 

walking dataset with the duration of 120 seconds (60,000 samples) was used. The latency 

estimation was repeated ten times for each update command; the mean and the standard 

deviation can be seen in Table 31. 

 

Duration of raw 

data (s) 

Evaluated update 

command 
Mean (µs) Standard deviation (µs) 

120 Initial contact 1.79 0.64 

120 Full contact 1.69 0.61 

120 Heel off 1.74 0.49 

120 Toe off 1.72 0.58 

Table 31: Estimated latency for the update commands 

 

The mean latency of the update commands was 1.74µs ± 0.58µs. The resolution of the tic/toc 

function was evaluated in section 5.4.3 and was 0.5µs ± 0.1µs. 

As the duration of the gait cycle is a key factor for the timing of the stimulation, the step 

duration was measured to evaluate the performance and the applicability of the concept 

(section 6.3). To define a typical step duration during robotic therapy, the steps from stroke 

patients during Lokomat and Lyra therapy were investigated. For the evaluation, 50 steps 

per robotic device consisting of various walking velocities were used. Each duration was 

measured by calculating the time in between two initial contacts as shown in Figure 78. 
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Figure 78: Step duration for four steps 

 

To diversify the results, these 50 steps were distributed to five subjects and 10 steps were 

measured for each subject. The five subjects were the same subjects which were tested in 

section 5.4.2. The step duration of Lokomat datasets can be seen in Table 32. Table 33 

represents the step duration of the datasets of Lyra recordings. 

 

Subject Number of steps Mean (ms) Standard deviation (ms) 

1 10 2825 476 

2 10 3207 24 

3 10 2641 5 

4 10 2380 14 

5 10 3335 9 

Table 32: Step duration during Lokomat training 

 

The step duration for all subjects during Lokomat training is in between 2380ms and 

3335ms, the mean step duration of Lokomat over five subjects for ten steps per subject (left 

leg) was 2878ms ± 417ms. 
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Subject Number of steps Mean (ms) Standard deviation (ms) 

1 10 2661 37 

2 10 2997 45 

3 10 2394 687 

4 10 3003 5 

5 10 2669 45 

Table 33: Step duration during Lyra training 

 

The step duration for all subjects during Lyra training was in between 2661 and 3003. 

Overall, the mean step duration of Lyra over five subjects for ten steps per subject (left leg) 

was 2745ms ± 384ms. As a result, the mean step duration over all subjects (Lyra and 

Lokomat) was 2811ms ± 450ms. 
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6 Discussion and Conclusion 

The following paragraphs aim to discuss and explain the results from the conducted 

clinical trials, the bench testing and the performance testing. Furthermore, already existing 

and similar works will be discussed in this context. Additionally, limitations and boundary 

conditions will be elaborated. Every conducted experiment will be discussed independent 

from each other. Additionally, a conclusion for each experiment is provided within the 

individual section. 

 

6.1 Gait Event Detection—Healthy Adult 

The results from the conducted experiments in section 5.5 are discussed within this section. 

Furthermore, they will be compared to related works within the conclusion.  

The results from the arbitrary sensor alignment algorithm which contributes to the results 

of the gait event detection algorithm as it ensures the correct rotation of the gathered data 

is not discussed within this section. The corresponding discussion for the arbitrary sensor 

alignment algorithm can be found in section 5.3. 

 

6.1.1 Discussion 

For the evaluation of the analysed Lokomat recordings, the detection rate, false-positives 

and false-negatives (Figure 57 - Figure 59) were considered. As visualised in Table 14, false-

positives represent incorrectly detected steps and are a potential hazard as they could 

initiate a stimulation command which is not synchronised with the present gait cycle. 

False-negatives represent undetected steps, they lower the detection rate and are 

considered not to be hazardous as they would not trigger an electrical impulse. Looking at 

the conducted experiment, nearly all results of the false-positives achieved a value of 0% 

and the values for the detection rate reached values of 90.7% up to 100%. Only one 

recording at 1.2 m/s revealed a lower detection rate with a value of 73%. During this 

recording, also the highest false-positives within the whole recording with a value of 13.4% 

at the right sensor was found. High values for false-positives might not be tolerable during 

robotic gait training as the amount of incorrect stimulation would be too high to guarantee 

a valuable therapy. High values for false-positives only occurred during one recording 

session. One reason for this may be that the subject changed the setup during training. 
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Specifically, the subject adjusted the harness during the training as one of the belts carrying 

the weight of the subject moved and resulted in discomfort. This adjustment resulted in a 

movement of the upper and lower body or the legs, respectively, and thus could have 

influenced the robotic movement and the gathered data. Another reason for high false-

positives could be that an evasive movement of the participant was triggered by the 

discomfort of the harness which might have influenced the walking pattern of the robotic 

gait trainer. Similar to the evaluation of Lokomat, for Lyra recordings, the detection rates, 

false-positives and false-negatives were taken into consideration (Figure 60-Figure 62). 

During the first recording of Lyra, detection rates reached values of 88.6% up to 100%. 

False-positives ranged within 0% to 4.7%. As previously noted, false-positives might 

initiate harmful electrical impulses as they represent incorrectly detected step; 

nevertheless, a small number of false-positives might be acceptable. Furthermore they can 

be reduced by developing complementary techniques for error recognition. Comparable 

results could be achieved during the second recording. Except for one outlier, the third 

measurements provide acceptable results as well. While the subject was walking with 1.5 

m/s, the worst results for Lyra training were observed. Values of 70% were obtained for 

the detection rate, additionally the highest value for false-positives was 20%. Yet, the 

acceptable range of false-positives from a medical perspective with regards to electrical 

stimulation was not investigated and should be subject of future research. Similar to 

Lokomat, one possible cause for the outliers could be re-adjustments of the body weight 

support system. The adjustments could have caused swinging of the trunk of the subject 

leading to unwanted movements in the lower extremities. End-effector gait trainers as Lyra 

mostly provide a very rigid fixation of the subject’s foot. Nevertheless, torso movements 

might alter the motion of the subject’s leg and could affect the trajectory of the induced 

walking pattern of the robotic device.  

 

6.1.2 Conclusion 

Based on the results discussed in section 6.1.1, a setup which uses IMUs for the recognition 

of gait events during gait training with robots like Lokomat and Lyra is feasible. 

Furthermore, the results allow the conclusion that a system as conceptually shown in 

Figure 26. with the goal of supporting robotic gait training with FES is realisable. 

The donning time of two inertial measurement units is rather small compared to the setup 

time of Lokomat or Lyra, thus it marginally influences the net therapy time. Furthermore, 

the arbitrary sensor alignment algorithm offers a high degree of flexibility in the 

positioning of the sensors, allowing the therapist to vary the position at which they want 
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to attach the sensor to the foot of the patient. Additionally, it partly avoids incorrect data 

recording due to faulty positioning of the IMU or due to slight shifts of the sensor during 

training. Yet, some boundary conditions such as tightly fixing the sensor on the foot of the 

subject must be fulfilled for proper functioning of the proposed setup. 

High values for false-positives might be caused by unforeseen movements of the subject; 

thus, to avoid high false-positives, further methods of troubleshooting need to be 

established. One limitation of this conducted experiment was that the recordings were 

made with one healthy adult under several boundary conditions such as using the 

maximum guidance force of Lokomat and switching off the biofeedback mode of Lyra. 

Despite the boundary conditions, it could have happened that the subject unconsciously 

modified the robotic walking as a guided gait movement might be a completely new 

experience for a healthy person. In order to test these assumptions, recordings with stroke 

patients were performed (section 5.4.2). The corresponding results are discussed in section 

6.2.  

Approaches using IMUs for the detection of gait events during walking achieved similar 

results [122,162]. Yet, the main goal of these methods was the recognition of human gait 

and not the recognition of a walking pattern performed by a robotic gait trainer, thus the 

comparability is limited to the outcome measures and not to the implemented algorithms.  

Inertial measurement units as used within this work measure angular velocity and linear 

acceleration. Based on this data, the gait events are detected. Neurological patients 

however present unexpected muscular events caused by spasticity or other pathologies 

which can disrupt the smooth movement of the robotic device and can jeopardise the 

electrical trigger instant. This issue was addressed before the recording session by testing 

the capability of the robot to detect voluntary movement. Robotic gait trainers can record 

the load of a patient [163]. This patient output can be used to evaluate induced movement 

such as spasticity of a leg. Once spasticity is detected, the induced gait pattern of the device 

is stopped so that no injury is caused. As a result, the data from the inertial measurement 

units would not correspond to a walking pattern and the troubleshooting methods would 

discard the gait events, and no trigger for an electrical stimulation would be sent to the 

stimulator. For these recordings, the occurrence of spasticity was simulated by applying a 

voluntary force against the robotic movement. Furthermore, a careful evaluation of the risk 

factors for robot-assisted gait training such as joint contractures and limitations in the 

range of motion must be conducted from health care professionals prior to a treatment.  

The described concept offers the possibility to detect four main gait events and to stimulate 

the corresponding muscles within them. Thus, slight changes of the timing of gait events 

within the gait cycle are recognised, and the initiation of stimulation commands can be 
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altered accordingly. There are different approaches that do not offer this flexibility as the 

initiation of stimulation commands is triggered by the initial contact [25], the initial and 

the final stage of the stance period [27] or initiated by a human controlled finger switch 

[33]. Furthermore, the presented approach can be expanded for the application with a 

variety of robotic gait trainers as the use of inertial measurement units makes it 

autonomous from the data delivered by the gait trainers. Concepts as described in [27,33] 

rely on robot-specific information and thus might be less extendable to other robots.  

The presented algorithm functions according to its intendent purpose; nevertheless it is 

must be noted that the algorithm has not been validated against gold standards for motion 

capturing such as an optical marker system. The main reason for that is that an optical 

marker system requires direct visual contact to their markers (active or passive) and robotic 

gait trainers can easily block the direct view with their mechanical structure. Furthermore, 

during clinical routine the therapist has to supervise the training of the patient. Doing so, 

they move around the gait trainer, sit on the base plate of the gait trainer and adjust the 

training according to the needs of the patient. This movement around the feet would 

constantly obscure the markers, causing the analysis of the motion to be erroneous and 

inaccurate. Nevertheless, for future research a different region of interest such as the knee 

joint or the hips allowing easier positioning and visibility of the optical markers should be 

investigated. Although there were some limitations, the described approach offers a 

feasible and novel setup with the capability to serve as an additional tool for robotic gait 

trainers to enhance rehabilitation with functional electrical stimulation. 
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6.2 Gait Event Detection — Stroke Patients 

Within this section, the results of the conducted clinical trail are discussed; additionally, 

they will be compared to related works within the conclusion. The recordings of stroke 

patients during robotic gait training with Lokomat and Lyra are discussed and compared 

to the conducted experiments with a healthy adult. Furthermore, related works will be 

addressed within the conclusion. 

 

6.2.1 Discussion 

Similar to the experiment conducted with the healthy adult, the detection rate (Lokomat: 

Figure 63, Lyra: Figure 66), false-positives (Lokomat: Figure 64, Lyra: Figure 67) and false-

negatives (Lokomat: Figure 65, Lyra: Figure 68) were considered. A mean detection rate 

98.7% for Lokomat was achieved. Compared to the experiment performed from a healthy 

adult, the mean values of the detection rates are similar (98.6%). Similar results were 

achieved for Lyra recordings. The mean value for the detection rates of patients with a 

stroke was 95.8% and for the healthy adult, the mean value for the detection rate was 94.1. 

Also, false-positives for both gait trainers within the clinical trial and the experiment with 

the healthy adult are within the same range. 

Lokomat: False-positives for stroke patients: 0.9%; false-positives for the healthy adult 

0.3%. Lyra: False-positives for stroke patients: 1%; false-positives for the healthy adult: 2%. 

The same applies for the false-negative values where all results are within a comparable 

range. Lokomat: False-negatives for stroke patients: 0.3%; false-negatives for the healthy 

adult: 4%. Lyra: False-negatives for stroke patients: 3.2%; false-negatives for the healthy 

adult: 4%. Nonetheless, also higher values for false-positives of about 11% and higher 

values for false-negatives of about 15% were found. Higher false-positive values as during 

Lokomat training of subject one (Figure 64), and higher false-negative values as during 

Lyra training of subject two (Figure 68) could be caused by various factors. One factor 

could be that the settings of the Lokomat exoskeleton induced vibrations and disrupted 

the sensor signals. This might happen when the therapists adjust the exoskeleton during 

the therapy in order to optimise the exoskeleton to the patient’s comfort. For Lyra therapy, 

this could happen when the therapists adjust the foot fixation during the training. Another 

factor could be that the sensor loosened its attachment during the gait training and caused 

jittered signals, resulting in incorrect gait event detection.  
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6.2.2 Conclusion 

Within this clinical trial, the developed gait event detection algorithm was tested and 

evaluated during robotic gait therapy with stroke patients. The feasibility, acceptability 

and robustness of the concept could be demonstrated. The setup of the IMUs was done 

within the donning time of the robotic gait trainers, thus the patients could execute their 

therapy as planned within their schedule. Therefore, the participants were not exposed to 

adverse effects in the course of the rehabilitation process. The achieved results lead to the 

conclusion that the algorithm is robust towards motion induced by the patients or potential 

lack of movement due to their affected legs. The developed methods to enhance confidence 

of the algorithm including the unsupervised adaptability (section 5.2) improved the gait 

event detection algorithm and were sensitive towards discarding incorrect gait events such 

as detecting a wrong initial contact caused by jittering of the jerk (Figure 37 and Figure 38). 

The feedback from the participating subjects and therapists was largely positive. Only one 

patient reported discomfort caused by the IMU as the sensor was positioned on an already 

existing painful pressure mark. Therefore, one measurement which is marked as “N.A.” in 

Figure 66 and Figure 67 was not analysable. Nevertheless, despite introducing a new 

technology (IMUs) to the rehabilitation process, no further problems occurred. Overall, the 

patients and the subject showed great interest and acceptance for the concept and the 

potential use in the rehabilitation process. 

With regard to the net therapy time of the subjects, not all completely exploited the full 

time. Some subjects had their first robotic gait training which led to longer donning time 

as the orthosis of Lokomat or the adjustments of the foot plates of Lyra had to be defined 

for the first time for these patients. Additionally, the subjects had more questions towards 

the therapist and the rehabilitation technique was explained in detail to the patients. 

Another main factor was the patients’ physical and mental condition which largely 

influenced the therapy time as a tired and unmotivated patient tends to exhaust earlier 

compared to a motivated person. As a result, the amount of gathered data varied and some 

analyses were limited to fewer analysed windows. 

The rehabilitation approach of Lokomat and Lyra covers level-ground walking, thus other 

movements such as backwards walking or stair climbing which are provided by other 

robots such as the G-EO (section 3.4.5) were not taken into consideration and the algorithm 

is not intended to be used for these motions. Nevertheless, future developments with other 

gait trainers might address more walking patterns. 

The developed algorithm covers a variety of techniques to enhance the confidence of the 

algorithm which aim to detect incorrect gait events and discard them. However, only a 
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particular amount of training velocities and training setups was tested, thus a variation 

towards very high or very slow velocities which could also be part of a therapy routine 

might cause situations which have not been taken into consideration so far. Although the 

algorithm is able to adapt within certain bounds, more data with a broader range of 

training velocities is needed to eliminate potential error cases and to provide prove for the 

effectiveness of the developed techniques to enhance the confidence of the algorithm. 

The data was analysed within certain time windows. This process was chosen to generate 

an analysing process which is repeatable and comparable. The smallest usable acquisition 

period was less than eight minutes (1st subject in Figure 64 and Figure 65). Thus, a window 

size of 3.5 minutes to generate at least two analysed time windows for each subject was 

chosen. Variations in the window size (larger or shorter) should not have a high impact on 

the detection rate as walking, and especially walking within a guided movement during 

robotic gait training is a highly repetitive motion. Nevertheless, specific movements of 

patients outside a chosen time window might influence the data leading to a slightly better 

or worse overall detection rate. 

The gait detection technology is a very mature field and has been investigated a lot within 

the past years. The IMU-based or sEMG-based gait sensing techniques as described in [164] 

and the machine learning-based gait detection algorithms such as support vector machine, 

classification via regression and other methods are used in the field of gait detection. Due 

to some limiting factors such as limited amount of reference signals for sEMG patterns 

especially for specific robot-assisted gait trainers (most signals are collected for walking on 

a treadmill [165–167] or during normal walking [164,168,169]) sEMG was not considered a 

valid option for the specific approach within this work. One reasons for that was, that 

reference signals for sEMG patterns during robotic gait training are limited; furthermore, 

the devices used for the recording of sEMG signals can interfere with the signals of a 

prospectively used FES device. In addition, the donning time of IMUs is less compared to 

sEMG devices as the fixation strap can be applied to the subject without any further 

preparation, such as removing clothing to position the device on the muscle or cleaning 

the skin for good adhesion of the sEMG sensor. Especially for patients, this short donning 

time of IMUs is a major advantage as net therapy time is less influenced. 

An approach using long short-term memory deep neural network (LSTM-DNN) for gait 

event detection during treadmill walking resulted in accuracy rates up to 95.1% for gait 

recognition [79]. In this approach, linear acceleration signals from three IMUs attached to 

distinct locations on the subject’s foot were recorded and two gait phases were detected. 

Despite similar result in the gait recognition, the comparability is limited as the main goal 
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of this approach was the recognition of gait during treadmill walking and not the 

recognition of a robotic gait trainer with its system-dependent characteristics of movement. 

Approaches which minimised the setup time with utilising one sensor on the lower back 

are promising as well [170]. Nevertheless, for the application within this work, one IMU 

on the lower back was not applicable as the body weight support system of Lokomat and 

Lyra would cover the sensor and might influence its behaviour due to limiting the 

movement of the subject and due to constant shear forces between the lower back of the 

subject, of the sensor and the body weight support system.  

Approaches using deep neural networks for gait event detection with optical motion 

capture systems achieved recognition values of up to 99% depending on the desired gait 

phase (99% for foot-contact, 95% for foot off) [120]. These results are based on optical 

measurement systems which do not seem feasible for the proposed concept as their usage 

during clinical routine is not applicable due to the fact that the mechanical structure of the 

gait trainer and the movement of the therapist would constantly obscure the markers. 

Additionally, the application of optical markers requires time and expertise. As the aim of 

the suggested setup is to be applied by the therapists during normal rehabilitation routine, 

it must be easy and fast. 

The reported results in [79] are based on four individuals (three sensors per leg), each 

walking 120 seconds three times at different speeds, resulting in a time of 6 minutes per 

subject. The analysed dataset within this work has similar recording time per subject 

(minimum amount of data is 7 minutes). In order to keep the setup as simple as possible, 

especially under the consideration that the recordings were executed during normal 

clinical routine, the aim was to reduce the number of sensors and to develop an easy setup 

with fast donning times which has the potential for further usage in a practical field. A 

total amount of ten subjects (5 subjects per gait trainer) were recorded resulting in more 

than 5,000 analysed steps. The deep learning models as mentioned above are data-

intensive, require lot of training, and their deployment in the real-life scenario needs 

specialised equipment due to high processing power. Nevertheless, they are very powerful 

in their specific fields and provide good and valuable results. 

Comparing the results from this work to the approaches mentioned above, the results of 

the detection rates are similar, yet not fully comparable as the approaches aim for the 

recognition of different movements. Furthermore, the approach within this work provides 

a lightweight algorithm which has the potential to be implemented within a wearable 

device. Nevertheless, a larger number of participants must be evaluated in order to prove 

the results. 
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To sum up, the achieved results within this study are promising and show the feasibility 

of the proposed concept. The developed algorithm and the developed techniques to 

enhance the confidence of the algorithm seem to provide robust setting for the usage 

during the robotic gait therapy of stroke patients. The proposed concept provides a 

lightweight algorithm which enables an easy attachment of the sensor due to possibility of 

an arbitrary sensor alignment, thus an application in the clinical routine seems feasible. 

Despite the limited amounts of subjects, the results showed that gait event detection during 

clinical routine does not add more burden for the therapists, moreover the therapists and 

the patients showed large interest in the technology. Nevertheless, unwanted outliers need 

to be diminished by implementing more error handling methods or by introducing more 

boundary conditions for the setup of the sensors. 
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6.3 Performance and Applicability of the 

Concept 

The performance of the gait event detection algorithm including the performance of the 

electrical stimulation will be discussed and evaluated within this section. Furthermore, a 

potential Bluetooth connection for future use will be introduced and discussed. Related 

works and the applicability of the concept within a clinical setting will be addressed in the 

conclusion. 

 

6.3.1 Discussion 

To evaluate performance of the proposed concept, the whole measurement and execution 

chain including the physiological process during muscle contraction was considered. Thus, 

four main components as shown in Figure 79 were analysed within this work. 

 

 

Figure 79: Schematic representation of the measurement and execution chain of the proposed 

concept 

 

Each component induces a delay between the actual movement of the subject in the gait 

trainer and the resulting stimulation. The performed tests and measurements aimed to 

investigate these delays; the results will be discussed in the following paragraphs. 

 

Delay of Bluetooth transmission: 

For the future use of a Bluetooth connection, the transmission between the inertial 

measurement unit and the host computer (delay of the data transfer) must be taken into 
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consideration. For Bluetooth devices, a maximum delay below 46ms can be obtained [171]. 

The Bluetooth connection was chosen as it is a standard communication protocol which is 

widely used in medical and consumer devices for gait recognition. 

 

Delay of gait event detection algorithm: In addition, the delay of the gait event detection 

algorithm was investigated (section 5.5.3). As the algorithm runs on a host computer, the 

specifications of the computer might influence the runtime of the individual parts; thus, 

the specifications of the host computer were defined in section 5.4.3 as LENOVO ThinkPad 

E590 with an intel CORE i7 8th Generation and 8GB of working memory; additionally, 

during the latency testing, MATLAB was the only software actively running on the host 

computer and the WIFI connection was disconnected in order to avoid interferences.  

A mean latency of the whole gait event detection algorithm of 282µs ± 17µs was derived 

whereas the resolution of the measurement function was tic/toc was 0.5µs ± 0.1µs. As a 

result, the gathered data cannot be generalised to other host computers as no investigations 

towards other computer specifications were done. However, in future works this might be 

improved when developing a concept which incorporates the detection algorithm and the 

stimulation model in one embedded device. 

 

Delay of serial transmission: As a next step, the serial transmission between the host 

computer and the electrical stimulator was considered in section 5.6.4. Similar to the delay 

of the gait event detection algorithm, this aspect depends on the specifications of the host 

computer. For the evaluation, the same host computer as mentioned above was used. The 

mean latency of the serial transmission (sending update commands to the stimulator) was 

1.74µs ± 0.58µs. Furthermore, a maximum delay of 2ms of the stimulator itself (section 2.3) 

must be taken into consideration. 

 

Electromechanical delay: As a last step, physiological processes during muscle contraction 

were considered. The so-called electromechanical delay (EMD) of the muscles is defined 

as the time lag between the (initial) stimulation of a muscle at the neuromuscular junction 

and a measurable change in force output [172]. EMD seems to be influenced by various 

factors such as the angle of the moved joint, motor unit recruitment, and the properties of 

the considered tissue [172–174]. Additionally, physical activity, gender, age, muscle 

exhaustion and temperature, and other factors can influence the EMD [175–178].  

Experimental studies in humans conducted with different methods showed EMD varying 

between 8ms up to more than 100ms [179–181]. An investigation towards the EMD of leg 

flexors and extensors on young and old healthy pre and post a fatigue-inducing protocol 
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adults showed mean EMD for leg extensors for young men of 97.66ms and 110.8ms for old 

men [182]. As a result, an EMD of 100ms was assumed for further discussion.  

 

Delay of the proposed concept: Summing up all relevant information of the components 

with their individual induced latencies, an overall delay as shown in can be derived. 

 

Component Approx. delay (ms) 

Bluetooth transmission 46 

Gait event detection algorithm 0.28 

Serial transmission 0.002 

Stimulator 2 

EMD 100 

Overall 148.282 

Table 34: Approximate overall delay of the proposed concept 

 

As result, an overall induced latency of 148.282ms needs to be considered for the 

performance and the applicability whereas the electromechanical delay of the muscle plays 

the major role within this consideration. 

 

6.3.2 Conclusion 

Concepts as described in [25–33,130] did not consider the delay of a Bluetooth transmission 

as their operating principle is based on information provided directly by the robot. Within 

this work, the delay of the Bluetooth connection was evaluated theoretically as the 

connection to a Bluetooth device was not realised. Nevertheless, the consideration of the 

delay was part of the analysis for the applicability of the concept as it contributes to overall 

delay of the concept. 

According to [25] in order generate a feasible stimulation, the latency of the stimulation 

must be short enough to ensure that the stance muscles are activated prior to loading more 

than 50% of body weight onto the stance limb. For healthy adults, the acceptance of 50% of 

the weight is reached after 5% of the gait cycle [129]. Thus, the duration of the actual gait 

cycle must be known as it is the main factor which influences the timing of the electrical 

stimulation and muscle activation. In order to define a typical step duration during robot-

assisted gait training, the steps from stroke patients during Lokomat and Lyra therapy 

were investigated. For the evaluation, 50 steps per robotic device consisting of various 

walking velocities were used. Each duration was measured by calculating the time in 
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between two initial contacts as shown in Figure 75. The mean step duration over all subjects 

and gait trainers was 2,811ms ± 450ms (section 5.6.4). The gathered step duration is 

comparable with the step duration of 2.6 seconds as reported in [25]. Considering the upper 

bound of the mean step duration (3,261ms), 50% of the body weight are accepted after 

163.05ms, thus the overall delay of 148.282ms would be short enough to ensure a feasible 

stimulation. Considering the lower bound of the step duration (2,361ms), 50% of the body 

weight are accepted after 118.05ms, thus the steps would be would be slightly too short 

(30.232ms) to overcome the overall delay. Yet within the afore-mentioned publication [25], 

EMD was not considered at all for evaluating the feasibility of the stimulation. Concepts 

as described in section 3 often do not take EMD into account, yet most of them consider 

the concept as feasible. A reason for that could be that the exact determination of EMD is 

not always possible for all patient groups due to a lack of clinical data or lack of 

assessments to define EMD. In addition, the delayed reaction between the initiation of the 

stimulation and the generation of muscle power may increase in cases of muscle fatigue 

[183]. Muscle fatigue is defined as a decrease in force or power production in response to 

contractile activity [184], and is highly dependent on the stimulation parameters as 

described in section 5.6.2. Furthermore, various other factors such as metabolic factors and 

fatigue reactants affect the muscle fatigue [185]. Thus, nutrition, the individual training, 

diseases such as stroke and the daily constitution of the patients are likely to affect EMD.  

Taking all the above-mentioned information into account, a big matrix of positively and 

negatively influencing factors for EMD arises. Some of them such as nutrition are 

controllable, some of them such as daily constitution and individual training are less 

controllable leading to the result that EMD during clinical routine is likely to vary widely 

throughout all patients. One option to overcome this uncertainty is to determine EMD for 

each individual subject before FES treatment. In clinics, technologies such as 

electromyography or biomarkers for the diagnosis of muscle fatigue can be used. 

Furthermore, potential high muscle fatigue can be avoided before the treatment by 

omitting improper exercise and good nutrition. However, currently there are no official or 

semi-official guidelines for the management of muscle fatigue [185].  

In fact, taking the lower bound of the gathered step data into account, the delay would be 

slightly too long to be able to stimulate the muscles before shifting 50% of body weight 

onto the stance leg, yet the body weight support system which is provided by the gait 

robots additionally support the patient’s lower limbs during gait training and prevents the 

full body weight to be shifted onto the legs. Thus, the proposed concept of a gait event 

detection algorithm which gathers data from an inertial sensor to initiate FES during 
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robotic gait training seems feasible and applicable during clinical routine and might be a 

valuable additional therapy for people with gait disorders. 
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7 Outlook and Future Works 

As mentioned in section 6, the reported results underlie some limitations. While some of 

them such as the motivation and daily constitution of a patient are only partially solvable 

by technical developments, several other aspects can be addressed in future works. Within 

this section, a selection of possible refinements and future approaches is presented. 

 

Miniaturisation of the concept 

The proposed concept as shown in Figure 26 consists of the robotic gait trainer, two IMUs, 

a stimulator and a host computer. For the daily use in a clinical routine, it would be 

necessary to miniaturise the proposed concept to fewer parts. As the develop threshold-

based algorithm is lightweight and can be transformed from MATLAB Code to C Code, 

the algorithm itself could be integrated into the stimulator, omitting the host computer. A 

concept of an embedded device incorporating all the mentioned functionalities is shown 

in Figure 80. 

 

 

Figure 80: Miniaturised concept (host computer including stimulation modules)  

 

Flexibility of stimulation paradigms 

So far, the proposed concept aims to communicate with RehaStim I electrical stimulator 

(Figure 24). For the daily use in a clinic, the application of eight surface electrodes might 

be too complex and time-consuming, thus a higher flexibility in the number of used 

electrodes would be desirable. In order to realise that, a graphical user interface can be 
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implemented to define the targeted muscles on demand. A concept as shown in Figure 81 

and Figure 82 would allow the user to easily select the required muscles. In the interface 

of Figure 81, the user would be able to select the wanted sides of the lower limbs; 

furthermore, there could be the option to add the upper limbs in case the subject requires 

further stabilisation of the upper body.  

 

 

Figure 81: Graphical user interface—Page 1 

 

After selecting the wanted side, the user can select the specific muscles to further 

individualise the treatment (Figure 82). This individualisation would allow the therapist 

to adapt the treatment easily throughout the training session. 
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Figure 82: Graphical user interface—Page 2 

 

Validation of the algorithm 

The developed algorithm provides good results in terms of detection rate, false-positives 

and false-negatives. Nevertheless, no validation with gold standards has been performed. 

Pressure sensitive walkways might not be a good option as some of the gait trainers such 

as Lyra do not have direct contact of the foot with the ground. Thus, a validation study 

could only be made with optical marker systems. However, this could be very time and 

money-consuming as rehabilitation clinics most likely do not have an optical motion 

capture system in a room where robotic treatment is executed. Moreover, the technical 

design of some gait trainers may hide anatomical landmarks of the patient which would 

be necessary for the recognition of the movement. One approach could be to place the 

markers on a different region of interest such as the knee joint which would make the 

optical motion capturing easier but would limit the comparability. Another possibility 

could be to synchronise the gathered IMU data with the data provided by the robots itself 

such as number of steps. Yet, similar to the optical markers systems with different positions 

of the markers, the comparability would be limited and might not fulfill the validation 

aspect.  

 

Medical efficacy 

The advantages of robotic gait therapy and functional electrical stimulation for the 

treatment of gait disorders or other pathologies is well researched [6,7]. Furthermore, 
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investigations towards the combination of both techniques have only risen within the last 

years. Especially with the improvement of gait event detection, timing of the stimulation 

and thus neural plasticity and motor learning could be improved. However, it seems that 

there is no clear evidence that a better accuracy and better timing of functional electrical 

stimulation is a driving factor for good rehabilitation results. Thus, more research towards 

the medical efficacy of a combination of these rehabilitation methods and of the individual 

methods should be executed to show the potential of these applications.  

 

Detection methods 

The algorithm is threshold-based and lightweight, different approaches such as machine 

learning methods for gait event detection could be a valuable addition to enhance 

robustness and performance of the algorithm. So far, many studies conducted with 

machine learning methods show excellent offline results, yet when applied for real-time 

gait event detection, machine learning methods do not provide as good results as offline 

methods [79,121,125]. Furthermore, as the robotic gait cycle is a highly repetitive 

movement, the integration of an iterative learning control as described in [186] could be a 

valuable asset for error minimisation. Another interesting aspect of research would be the 

inter-comparability of the presented detection method within this work and detection 

methods for human walking. So far, the recorded robotic gait data within this work was 

bench test with commercially available software tools for offline gait recognition with 

unsatisfactory results. Thus, a new approach specifically developed to detect the robotic 

gait with all its robot-specific particularities as presented within this work was developed. 

Nevertheless, in future works this aspect could be investigated to optimise the detection 

methods. Additionally, the presented concept could also be tested with large datasets of 

human walking (like the evaluation of the arbitrary sensor alignment algorithm in section 

5.4) to expand the field of application or to adapt it to a different purpose. 

 

Electrode arrays 

The location of the electrodes is a crucial part of using FES and depending on the intended 

purpose of the treatment, the placement can vary which can consume a lot of time in 

clinical routine. When using electrode arrays, the placement process can be automated , 

and fatigue can be reduced [187,188]. Additionally, smaller muscle groups can be active by 

adjusting the shape and size of the array [189,190]. Thus, in future investigations, replacing 

single pad electrodes with electrode arrays might be a benefit when testing the medical 

efficacy of the proposed setup. 
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Latency optimisation 

The latency of the concept as reported in the performance analysis results from the 

measurement and execution chain and is subject to change as a variation in the setup (host 

computer, IMU etc.) can influence the outcome of the latency. Therefore, an embedded 

device as shown in Figure 80 could be used to standardise the latency. Moreover, a specific 

communication protocol could be developed in order to minimise the transmission latency.  

 

Gait event prediction 

Gait event prediction algorithms can detect steps or gait events before an actual event 

happens [191,192]. In the context of triggering FES, this would allow the stimulation 

algorithm to correct for transmission delay and EMD. The earlier and more detailed a step 

(or gait event) can be predicted, the better the triggering algorithm can adjust the 

stimulation pattern in order to support the next step in the robot. In future works, a 

prediction algorithm might be considered as it could be a big asset for the latency 

optimisation. 
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8 Appendix 

8.1 Measurement Protocols—Healthy Adult 

Number Gait trainer 
Duration 

(min) 

Velocities 

(m/s) 

Comment 

1 Lokomat 60 1.3, 1.5, 1.7 First measurement with 

Lokomat. Fitting of the 

exoskeleton was determined 

initially. 

2 Lokomat 60 1.3, 1.5, 1.7 - 

3 Lokomat 60 1.3, 1.5, 1.7 - 

5 Lokomat 60 1.3, 1.5, 1.7 - 

1 Lyra 60 1.3, 1.5, 1.7 First measurement with 

Lokomat. Fitting of the foot 

fixation was determined 

initially. 

2 Lyra 60 1.3, 1.5, 1.7 - 

3 Lyra 60 1.3, 1.5, 1.7 - 

4 Lyra 60 1.3, 1.5, 1.7 - 

5 Lyra 60 1.3, 1.5, 1.7 - 

General comment: The duration of 60 minutes included the setup time. During the recordings, 

adjustments of the exoskeleton were done. The guidance force was set to 100% and the BWSS 

(body weight support system) was adjusted to the comfort of the subject. 

Table 35: Measurement protocols of Lokomat and Lyra recordings of the healthy adult. 
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8.2 Measurement Protocols—Stroke Patients 

1st Subject (Lokomat)   

Start (hh:mm): 11:13 Duration (min): 10 

Stop (hh:mm): 11:24 Hip fixation (Yes/No): No 

Velocity (m/s): 1.2-1.3   

Additional comment: Adjustments of the exoskeleton were done during recording. The guidance 

force was varied throughout the measurement. BWSS (Body weight support 

system) was adjusted to 35kg (49% according to the display of Lokomat) 

2nd Subject (Lokomat)    

Start (hh:mm): 11:32 Duration (min): 10 

Stop (hh:mm): 11:42 Hip fixation (Yes/No): No 

Velocity (m/s): 1.2   

Additional comment: Adjustments of the exoskeleton were done during recording. The guidance 

was varied throughout the measurement. BWSS was adjusted to 35kg (52% 

according to the display of Lokomat). Exhausted and tired subject. Therapy 

was shorter than planned. 

3rd Subject (Lokomat)    

Start (hh:mm): 09:13 Duration (min): 20 

Stop (hh:mm): 09:33 Hip fixation (Yes/No): No 

Velocity (m/s): 1.5   

Additional comment: Adjustments of the exoskeleton were done during recording. The guidance 

was varied throughout the measurement. BWSS was adjusted to 42.3kg 

(49% according to the display of Lokomat).  

4th Subject (Lokomat)    

Start (hh:mm): 11:15 Duration (min): 30 

Stop (hh:mm): 11:45 Hip fixation (Yes/No): No 

Velocity (m/s): 1.5-1.7   

Additional comment: The guidance was varied throughout the measurement. BWSS was adjusted 

to 34kg (48% according to the display of Lokomat). Exhausted and tired 

subject. Therapy was shorter than planned. 

5th Subject (Lokomat)    

Start (hh:mm): 09:21 Duration (min): 20 

Stop (hh:mm): 09:50 Hip fixation (Yes/No): No 

Velocity (m/s): 1.3-1.4 

Additional comment: Adjustments of the exoskeleton were done during recording. The therapy 

was stopped shortly and continued afterwards. The guidance was varied 

throughout the measurement. BWSS was adjusted to 44kg (49% according to 

the display of Lokomat). Exhausted and tired subject. Therapy was shorter 

than planned. 

Table 36: Measurement protocols of Lokomat recordings 
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1st Subject (Lyra)   

Start (hh:mm): 14:16 Duration (min): 20 

Stop (hh:mm): 14:37 Hip fixation (Yes/No): Yes 

Velocity (m/s): 1.5   

Additional comment: BWSS was adjusted to 20kg (the total weight of the participant was not 

documented within the recording). 

2nd Subject (Lyra)    

Start (hh:mm): 09:20 Duration (min): 20 

Stop (hh:mm): 09:41 Hip fixation (Yes/No): Yes 

Velocity (m/s): 1.3   

Additional comment: BWSS was adjusted to 60kg (the total weight of the participant was not 

documented within the recording). Foot fixation was slightly loose. 

3rd Subject (Lyra)    

Start (hh:mm): 09:50 Duration (min): 25 

Stop (hh:mm): 10:20 Hip fixation (Yes/No): No 

Velocity (m/s): 1.5   

Additional comment: BWSS was adjusted to 20kg (the total weight of the participant was not 

documented within the recording). Therapy was executed with biofeedback 

mode. 

4th Subject (Lyra)    

Start (hh:mm): 09:11 Duration (min): 20 

Stop (hh:mm): 09:40 Hip fixation (Yes/No): No 

Velocity (m/s): 1.3   

Additional comment: BWSS was adjusted to 30kg (the total weight of the participant was not 

documented within the recording). Pain on the right ankle. Sensor was 

removed and replaced several times. Data from right sensor cannot be 

evaluated. 

5th Subject (Lyra)    

Start (hh:mm): 10:45 Duration (min): 20 

Stop (hh:mm): 11:05 Hip fixation (Yes/No): No 

Velocity (m/s): 1.2-1.5 

Additional comment: BWSS was adjusted to 30kg (the total weight of the participant was not 

documented within the recording). 

Table 37: Measurement protocols of Lyra recordings 
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