
Geometric Integration of a
Constrained Cosserat Beam Model

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der

Naturwissenschaftlichen Fakultät II
Chemie, Physik und Mathematik

der Martin-Luther-Universität Halle-Wittenberg,

vorgelegt von

Herrn Stefan Hante
geb. am 26. März 1990 in Eisenach

Gutachter: Prof. Dr. M. Arnold

Prof. Dr. O. Brüls

Tag der Verteidigung: 16. Juni 2022

Contents

List of Algorithms 4

List of Figures 5

1. Introduction 7

2. Elements of Lie Group Theory 10
2.1. Differential Geometric Aspects . 10
2.2. The Concept of Derivative Vectors . 17
2.3. The Lie Group S3 ⋉R3 . 23
2.4. Isomorphies and Matrix Lie Groups . 28
2.5. Mechanical Systems with Lie Group Structured Configuration Spaces . . . 32
2.6. Lie Groups as Riemannian Manifolds and Metric Spaces 38

3. RATTLie 46
3.1. Derivation . 47

3.1.1. Conservative Systems . 47
3.1.2. External Forces . 51
3.1.3. SHAKELie . 52
3.1.4. Extension to Nonholonomic Constraints 52

3.2. Convergence Analysis . 53
3.2.1. The Local Error . 54
3.2.2. The Global Error . 58
3.2.3. The Lagrange Multipliers . 60

3.3. Implementation Details . 62

4. A Flexible Cosserat Beam Model and Its Discretization in Space 67
4.1. Rigid Bodies . 68
4.2. The Cosserat Beam . 70

4.2.1. The Continuous Cosserat Beam Model 70
4.2.2. Discretizing the Cosserat Beam Model in Space 76

5. Numerical Experiments 83
5.1. Examples and Benchmarks . 83
5.2. Implementation . 88
5.3. Results and Interpretation . 90

6. Conclusion 106

7. References 108

A. Lie Group Functions 115
A.1. Linear Lie Groups Rn . 115

2

A.2. Lie Group of Rotation Matrices SO(3) . 115
A.3. The Special Euclidean Group SE(3) . 116
A.4. The Lie Group of Unit Quaternions S3 . 117
A.5. The Semi-Direct Product S3 ⋉R3 . 118
A.6. The Lie Group of Unit Dual Quaternions UDQ 119

B. Functions with Isolated Singularity 120

C. The Heavy Top in Several Lie Group Formulations 121
C.1. Unconstrained in SO(3) . 122
C.2. Unconstrained in S3 . 122
C.3. Constrained in the Direct Product SO(3)× R3 122
C.4. Constrained in the Direct Product S3 × R3 123
C.5. Constrained in SE(3) . 123
C.6. Constrained in the Semi-Direct Product S3 ⋉R3 123
C.7. Constrained in Unit Dual Quaternions UDQ 124

D. Generalizing the Cosserat Beam Model: A Micropolar Shell Model 124
D.1. The Continuous Cosserat Shell . 125
D.2. Discretizing the Cosserat Shell Model in Space 127

3

List of Algorithms

1. One time step of RATTLie t0 → t1 . 64
2. Calculation of Lagrange multipliers for the (nonholonomic) RATTLie

by using the λ± quantities obtained by two subsequent steps of the
(nonholonomic) RATTLie . 65

3. Separately calculated Lagrange multipliers and acceleration using two
subsequent time steps . 65

4. Separately calculated Lagrange multipliers and acceleration for nonholo-
nomic systems using two subsequent time steps 65

5. One time step of nonholonomic RATTLie t0 → t1 66

4

List of Figures

1. Rolling disk: Top view: Trajectory of the midpoint of the disk (blue),
trajectory of a point on the edge of the disk (green) as well as the initial
configuration of the disk (red). 97

2. Description of the flying spaghetti benchmark [73]: Initial position as well
as applied forces and moments on the left and the magnitude of the forces
and moments on the right. 97

3. Flying spaghetti: Snapshots of the configuration with M = 16 beam
segments at t = 0, 2, 3, 4, . . . , 15 and the trajectory of the end points in
blue. The reader should cross their eyes in order to perceive a three-
dimensional image. 98

4. Roll-up: Snapshots of the configuration with M = 8 beam segments at
t = 0, 0.5, 1, 1.5, 2, 3, 30 and the trajectory of the right end point in blue. . 98

5. Fast heavy top: Maximum of the absolute discretized L2 error in the
configuration variable q expressed in SO(3)× R3. Results were calculated
with RATTLie, the reference solution with the generalized-α method
(ρ∞ = 0.9) in the Lie group SO(3) and h = 2−21 ≈ 4.8×10−7.
The data for SO(3)× R3 and S3 × R3 closely coincide as well as the data
for SE(3), S3 ⋉R3, and UDQ. 99

6. Slow heavy top: Maximum of the absolute discretized L2 error in the
configuration variable q expressed in SO(3)× R3. Results were calculated
with RATTLie, the reference solution with the generalized-α method
(ρ∞ = 0.9) in the Lie group SO(3) and h = 2−21 ≈ 4.8×10−7.
The data for SO(3)× R3 and S3 × R3 closely coincide as well as the data
for SE(3), S3 ⋉R3, and UDQ. 99

7. Kirchhoff beam model: Flying spaghetti: Maximum of the absolute dis-
cretized L2 error in the configuration variables q with different integra-
tion schemes. The reference solution was calculated with RATTLie and
h = 2−20 ≈ 9.5×10−7. 100

8. Kirchhoff beam model: Flying spaghetti: Maximum of the absolute
discretized L2 error in the derivative vectors v with different integra-
tion schemes. The reference solution was calculated with RATTLie and
h = 2−20 ≈ 9.5×10−7. 100

9. Kirchhoff beam model: Flying spaghetti: Maximum of the absolute dis-
cretized L2 error in the Lagrange multiplier λ with different integration
schemes. The reference solution was calculated with RATTLie (separately
calculated λ) and h = 2−20 ≈ 9.5×10−7. 101

10. Fast heavy top: Average computation time compared to the computation
time with Lie group SE(3). Results were calculated with RATTLie. The
relative computation times have been averaged over 100 runs. 101

5

11. Rolling disk: Maximum of the absolute discretized L2 error in the con-
figuration variables q, the derivative vectors v, the Lagrange multipliers
corresponding to the holonomic constraints λ and the Lagrange multi-
pliers corresponding to the nonholonomic constraints η. Results were
calculated with the nonholonomic RATTLie; the reference solution with
h = 2−21 ≈ 4.7684×10−7. 102

12. Kirchhoff beam model: Flying spaghetti: Maximum of the absolute dis-
cretized L2 error in the different approximations to the Lagrange multiplier
λ. The reference solution was calculated with RATTLie (separately cal-
culated λ) and h = 2−20 ≈ 9.5×10−7. 102

13. Kirchhoff beam model: Flying spaghetti: Maximum of the absolute dis-
cretized L2 error in q, v and λ with RATTLie and variable step sizes that
were chosen pseudo-randomly between hmax and hmax/4. The reference
solution was calculated with RATTLie and h = 2−18 ≈ 3.8×10−6. 103

14. Fast heavy top: Change of mechanical energy over time. Results were
calculated in the Lie group S3 ⋉R3, with step size h = 2−16 ≈ 1.5×10−5

with different integration schemes. 103
15. Kirchhoff beam model: Flying spaghetti: Maximum of the absolute dis-

cretized L2 error in the configuration variables q, the derivative vectors v
and the Lagrange multipliers λ. Results were calculated with RATTLie
with time step size h = 2−15 ≈ 3.05×10−5 and the reference solution used
M = 256 spatial discretization intervals. 104

16. Cosserat beam model: Roll-up: Distance ∥x0(t)− xM (t)∥2 + ∥ − p0(t)−
pM (t)∥2 between the end points of the beam over time t. Note that due to
the 360◦ rotation of the right end, the orientation pM (t) approaches the
antipode −p0(t). Both curves closely coincide. 104

17. Cosserat beam model: Roll-up: Velocity ∥[Ω⊤
M (t),U⊤

M (t)]⊤∥2 of the right
end of the beam over time t. Both curves closely coincide. 105

6

1. Introduction

In order to fathom real-world problems, differential equations have to be solved. Specif-
ically, for simulating a mechanical system, these differential equations often come in
the form of differential-algebraic equations of differentiation index three, see e. g. [37].
The reason being that these systems are often large and have to be written in coordi-
nates which are not minimal, leading to algebraic constraints. Moreover, nonlinearities
in the configuration space naturally arise, e. g. when large three-dimensional rotations
are present in the model and linear descriptions of orientation like Euler angles are
infeasible due to the singularities they entail. This has led to the analysis of geomet-
ric integration methods that evolve on manifolds, specifically on Lie groups, spanning
from one-step methods [27, 46] such as Runge-Kutta methods over the generalized-α
method [7, 8, 16, 18, 76] up to multi-step methods such as BDF [84, 85], as well as
variational integrators [24, 44, 56]. Often, notation from abstract geometry has been used
to formulate them. However, Brüls et al. [8, 16] have coined a language which was geared
more towards the mechanical interpretation of these abstract formulations and closer to
the actual implementation of the methods. In this thesis, we call this the language of
derivative vectors.

An especially challenging instance of mechanical systems is the simulation of thin and
highly flexible beams, e. g. by Cosserat beam models [32, 71]. There have been different
approaches to finding a numerical solution to the equations of motion of the beam
model: full discretization, see e. g. [23, 45] or, following a method of lines approach [81],
a semi-discretization in space. For this semi-discretization in space, which will also be
used in this thesis, there are several possibilities: Finite differences, see e. g. [9, 53], finite
Elements, see e. g. [33, 76], or a variational approach [24, 56] are feasible. However, for low
discretization orders, these methods may lead to the same discretizations. In this thesis,
we are going to use the toolbox of variational integrators for the spatial discretization,
although it was inspired by the finite differences approach by Lang and Linn [51, 52].

It is clear that the bending and twisting of an ordinary beam are soft degrees of freedom
compared to shearing and extension, which are usually a lot stiffer. In order to avoid
numerical problems with very stiff problems, one can neglect the stiff degrees of freedom
by working with a Kirchhoff beam model instead. In this thesis, we are going to consider
the Kirchhoff beam model as a constrained Cosserat beam model [51, 53, 60], enabling
us to easily switch between Cosserat and Kirchhoff models and allowing us to omit the
stiff degrees of freedom if desired.

Concerning the time integration method, we are not only going to apply readily
available Lie group integration methods for second order DAEs like the generalized-α
method [8] and the BLieDF method [85]. In contrast, we will consider a new integration
method called RATTLie, which we already published in [44]. It is a generalization of
the well-known RATTLE method to Lie group structured configuration spaces. In order
to derive RATTLie, we interpret RATTLE as a variational integrator and follow its
construction [63] in a Lie group using the language of derivative vectors. Furthermore, we
will analyze the integration method RATTLie, but not from the viewpoint of variational

7

integrators, but as a general one-step method. From this technical analysis, it follows
that RATTLie is convergent of second order and moreover that it is not restricted
to constant time step sizes, see also [10]. Also, we give an interpretation for the two
Lagrange multipliers that arise in RATTLE and RATTLie. Moreover, two different ways
of calculating an approximation to the Lagrange multipliers will be shown. The Lagrange
multiplier becomes especially important when constraint forces have to be accurately
evaluated.

The remainder of this thesis is structured in the following way: In section 2 we
will present all the necessary tools from Lie group theory and mechanics on Lie group
structured configuration spaces that will be used in the following sections. Specifically,
section 2.1 will cover the differential geometric aspects which are not specially tailored
to numerical algorithms or mechanics. They constitute the base of all forthcoming
investigations. In contrast, section 2.2 is concerned with the way Lie groups can be used
in the context of numerical algorithms and gives an in-depth introduction to the language
of derivative vectors and how it relates to the standard notation of Lie groups. Section 2.3
introduces a special kind of Lie group with semi-direct product structure S3 ⋉R3, which
we will later use to describe rigid bodies as well as the Cosserat beam model. This Lie
group will be related to other well-known Lie groups and especially matrix Lie groups in
section 2.4. Then, in section 2.5, we are considering constrained mechanical systems on
Lie group structured configuration spaces, their equations of motion and their derivation
from variational principles. The last subsection 2.6 considers Lie groups as Riemannian
manifolds, giving rise to a notion of distance on the Lie group arising from its geometric
structure and irrespective of how it can be embedded in a higher-dimensional linear space.
These considerations are a building block in the proof of convergence of the Lie group
time integration method RATTLie, which is the subject of section 3.

Specifically, in section 3.1, we will show how the RATTLie method can be derived from
the variational principles which are used to derive the continuous equations of motion
of mechanical systems. First, we start with conservative systems in section 3.1.1, then
add external forces in section 3.1.2. Additionally, we consider a related method called
SHAKELie in section 3.1.3 and also generalize RATTLie to systems with nonholonomic
constraints in section 3.1.4. Section 3.2 gives a proof of convergence of the RATTLie
method. In order to do so, we first analyze the local errors in section 3.2.1 and then
apply a generalization of the standard proof of convergence for one-step methods on Lie
groups to RATTLie in section 3.2.2. However, this proof only shows convergence of the
configuration and the derivative vectors. The convergence of the Lagrange multipliers and
how to calculate them accurately is considered in section 3.2.3. Finally, section 3.3 gives
some implementation details of RATTLie as well as algorithms in high-level pseudocode.

In section 4, we are considering flexible Cosserat models. In order to do so, we first
have to introduce rigid bodies in section 4.1. The main part of Cosserat beam models is
presented in section 4.2. In section 4.2.1, we give a derivation of the continuous equations
of motion of the Cosserat beam and in section 4.2.2 we explain our spatial discretization.

All of the above comes together in section 5, where numerical experiments are considered.
First, we describe our test problems in section 5.1, then present the actual implementation

8

of the numerical algorithms as well as test problems in section 5.2, and finally show the
results as well as give interpretations in section 5.3.

The last section 6 concludes the thesis. Moreover, the appendices give some in-depth
information about Lie group functions and the equations of the heavy top example for
different Lie groups as well as how to implement them with a special attention to the
implementation of functions with removable singularities, which arise in this context.

Notations

We have aimed to be very clear with our notation by, e. g., not omitting arguments,
matrix multiplication signs, etc. This also ties into the language of derivative vectors,
which is very explicit in its notation. The goal was to be as close to the implementation
as possible and to avoid any ambiguities, even for people who are not very familiar
with the language of Lie groups. Sometimes we have to deviate from this stipulation
for reasons of readability, but we indicate when we do so. As usual, scalar variables are
printed in roman italics, but as visual aid, we have set vectors in bold italics and matrices
in upright bold. Often, when considering three-dimensional vectors, lowercase usually
denotes that the vector is measured with respect to the inertial frame and uppercase
denotes that it is measured with respect to the body-fixed frame. Furthermore, elements
of abstract mathematical structures such as Lie groups, Lie algebras, or tangent spaces
are also written in roman italics. The same style applies to functions that map to the
aforementioned quantities. Moreover, we use the notation df for the differential (or
pushforward) of a function f . This means that for f : X → Y with manifolds X,Y , the
differential df(x) : TxX → Tf(x)Y is for each x ∈ X a linear function mapping from the
tangent spaces TxX to Tf(x)Y . Applying a linear function to an element of a linear space
is, as it is often done, denoted without parentheses, such that df(x) a is the application
of the linear function df(x) to a. Furthermore, we will sometimes write a superscript
operation of a function value directly after the function in order to remove visual clutter,

e. g. T−1(v) =
(
T(v)

)−1
and DΦ⊤(q) =

(
DΦ(q)

)⊤
. Additionally, the transpose of the

inverse of a matrix A is written as A−⊤. If a function is infinitely differentiable, we will
call it a smooth function. Finally, note that the variable n is usually the dimension of a
general Lie group, but is also used as the index for time discretization.

9

2. Elements of Lie Group Theory

Lie groups are a well-researched topic that has, as a special application, gained importance
in the research of numerical simulation of mechanical systems, see e. g. [15, 18, 27, 44,
46, 54, 65, 66, 84]. In section 2.1, we will at first briefly introduce Lie groups and their
differential geometric aspects. Then, we will show the concept of derivative vectors in
section 2.2 which will be used to treat velocities of curves that evolve in a Lie group.
Furthermore, in section 2.3, we will introduce the semi-direct product Lie group S3 ⋉R3

which will be used to describe rigid body configuration in this thesis. In order to
do so, we consider the Lie group of unit quaternions S3. Section 2.4 deals with Lie
group isomorphisms, direct Lie group products, matrix Lie groups as well as unit dual
quaternions and how they relate to S3 ⋉R3. The next section 2.5 considers mechanical
systems that are formulated in such a way that the configuration space has Lie group
structure. The last section 2.6 considers Lie groups as metric spaces by constructing
a metric from a scalar product on the tangent space. We also investigate the relation
between the Lie group operation and the metric distance function. These are the tools
needed for the convergence analysis in section 3.

2.1. Differential Geometric Aspects

This section is devoted to the purely theoretical part of Lie groups which will be needed
in the numerical algorithms presented in this thesis. Most of the following statements can
be found in books from the context of pure mathematics [1, 38, 77, 80], more numerically
oriented paper by Iserles et al. [46] or the famous textbook by Hairer, Lubich and Wanner
on geometrical numerical integration [35]. A lot of this theoretical matter, especially on
matrix Lie groups, is also reproduced by works in numerical analysis and mechanical
engineering, see e. g. [16, 20, 23, 54, 56, 64, 84].

First, we will need some notion of smooth manifolds. Since all the examples we are
going to deal with in this thesis are regular surfaces, we will merely define what a regular
surface is and avoid the technicalities of abstract manifolds:

Definition 2.1: Regular surface in RN , see [19, Chapter 0, Example 4.2].

A subset M ⊆ RN is called a regular surface of dimension n ≤ N if for every p ∈ M
there exists a neighborhood Vp ⊆ RN and a mapping χp : Up ⊆ Rn →M ∩ Vp of an open
set Up ⊆ Rn onto M ∩ Vp such that

� χp is a smooth homeomorphism and

� the linear map dχp(q) : Rn → RN is injective for all q ∈ Up. Since n ≤ N this is
equivalent to the requirement that the Jacobian χ′

p(q) ∈ RN×n has full rank.

In do Carmo’s book [19], this is given as an example for smooth manifolds.
This definition is still rather technical, but the following lemma already covers a lot of

the manifolds that will be considered in this thesis:

10

Lemma 2.2: Inverse image of a regular value [19, Chapter 0, Example 4.3].

A set M ⊆ RN is a regular surface of dimension n ≤ N , if it can be written as

M = F−1(a) = {p ∈ RN : F (p) = a},

where F : U ⊆ RN → RN−n is a smooth map of an open set U and a ∈ RN−n is a
regular value of F , meaning that the differential dF (p) : RN → RN−n is surjective for
all p ∈ F−1(a). Since n ≤ N this is equivalent to the requirement that the Jacobian
F ′(p) ∈ R(N−n)×N has full rank.

This means that such a set M ⊆ RN is also a smooth manifold according to [19]. Next,
we need the notion of a group:

Definition 2.3: Groups.

A tuple (G, ◦) of a set G and a mapping ◦ : G×G→ G is called a group if

� there exists an identity element e ∈ G such that

e ◦ g = g, g ∈ G,

� for each element g ∈ G there is an inverse element g−1 ∈ G such that

g ◦ g−1 = e,

� and the mapping ◦ is associative:

(a ◦ b) ◦ c = a ◦ (b ◦ c), a, b, c ∈ G.

Due to the associativity, we can omit parentheses. We call the mapping ◦ the group
operation and by abuse of notation, we say that G is a group, if the group operation can
be concluded from the context.

Now we can define Lie groups:

Definition 2.4: Lie groups.

A tuple (G, ◦) is called a Lie group if G is a regular surface (or more generally a smooth
manifold), (G, ◦) is a group and the mapping

G×G→ G, (a, b) 7→ a−1 ◦ b

is smooth.

Often, in introductionary work to Lie groups like [38] and in work on numerical
algorithms on Lie groups like [16] only a special kind of Lie group is considered:

11

Definition 2.5: Matrix Lie groups.

A Lie group (G, ◦) is called a matrix Lie group, if G ≤ GL(ℵ) for some ℵ ∈ N. Here,
GL(ℵ) ⊆ Rℵ×ℵ is the group of real invertible ℵ × ℵ matrices and A ≤ B denotes that A
is a subgroup of B for two groups A and B.

Sometimes, matrix Lie groups are defined to be closed subgroups of GL(ℵ) without
having to rely on the notion of a general Lie group [38].

In this thesis, however, we will encounter Lie groups that are not matrix Lie groups
themselves, but are still isomorphic to matrix Lie groups, meaning they have essentially
the same structure as their matrix Lie group counterpart. Algorithms that are designed
for matrix Lie groups can thus in principle be applied to those Lie groups as well; for an
example see [9].

Remark 2.6: Lie group isomorphisms.

It can be shown that a continuous homomorphism ψ : G→ H between two Lie groups G
and H must always be smooth [38, Corollary 3.50]. From group theory it is known that
the image ψ(G) must always be a subgroup of H. If ψ is injective, then the inverse map
ψ−1: ψ(G)→ G must be a group isomorphism between ψ(G) and G. If ψ is bicontinuous,
meaning that ψ−1 is continuous as well, then, applying the same argument as before, ψ−1

is also smooth. This makes any injective bicontinuous group homomorphism ψ : G→ H
a diffeomorphism between G and ψ(G). This means that G and ψ(G) are not only
isomorphic as groups, but also diffeomorphic as regular surfaces and thus isomorphic as
Lie groups.

From now on in this section, let (G, ◦) always be an n-dimensional Lie group with
n ∈ N.

Lie groups provide a lot more structure than manifolds or even regular surfaces do
because all tangent spaces are isomorphic. In order to construct the tangent space
isomorphism, we can use the derivative of the left or right translation.

Definition 2.7: Left and right translation.

We define for p ∈ G the left translation

Lp : G→ G, q 7→ Lp(q) = p ◦ q (2.1)

as well as the right translation

Rp : G→ G, q 7→ Rp(q) = q ◦ p. (2.2)

Their derivatives

dLp(q) : TqG→ TLp(q)G = Tp◦qG

and

dRp(q) : TqG→ TRp(q)G = Tq◦pG

12

are isomorphisms between the vector spaces TqG and Tp◦qG or Tq◦pG, respectively. By
deriving the trivial identity La

(
Lb(c)

)
= La◦b(c), we get the following useful equation:

dLa(b ◦ c) dLb(c) = dLa◦b(c), a, b, c ∈ G. (2.3)

In the case that G ≤ GL(ℵ) is a matrix Lie group, it is clear that

dLA(B) C = A ·C, A,B ∈ G ⊆ GL(ℵ), C ∈ TBG ⊆ GL(ℵ). (2.4)

In this thesis, we will usually use the derivative of the left translation in order to
represent all derivatives in the tangent space TeG of the identity element e ∈ G.

Now, we will consider automorphisms Ψh of the Lie group G that can be expressed by
conjugation

Ψh : G→ G, g 7→ h ◦ g ◦ h−1,
where h ∈ G. Differentiating this automorphism at the origin leads us to the adjoint
representation of G, see [46, Definition 2.12]:

Adh : TeG→ TeG, a 7→ dΨh(e) a

for h ∈ G. Now, we want to differentiate the Adh with respect to its subscript. In order
to do so, we define

αa : G→ TeG, g 7→ Adg(a)

for a ∈ TeG.

Definition 2.8: The adjoint operator.

We define the adjoint operator ada for all a ∈ TeG by

ada : TeG→ TeG, b 7→ dαb(e) a. (2.5)

It can be shown that

ada(b) =
d2

ds dt
ρ(s) ◦ σ(t) ◦ ρ(−s)

∣∣
s=t=0

, (2.6)

where ρ, σ : (−ε, ε)→ G are smooth curves with ρ(0) = σ(0) = e, ρ′(0) = a and σ′(0) = b,
see [46]. Furthermore, we can pull apart the differentiation with respect to s in the
following way

d2

dsdt
ρ(s)◦σ(t)◦ρ(−s)

∣∣
s=t=0

=
d2

ds dt
ρ(s)◦σ(t)◦ρ(0)

∣∣
s=t=0

+
d2

ds dt
ρ(0)◦σ(t)◦ρ(−s)

∣∣
s=t=0

,

which then gives us the following formula for the adjoint operator:

ada(b) =
d

ds
dLρ(s)(e) b

∣∣
s=0
− d

dt
dLσ(t)(e) a

∣∣
t=0

. (2.7)

13

The tangent space TeG is called g = TeG, the Lie algebra of G, because g is a linear space
and the adjoint operator fulfills the definition of a Lie bracket on g since it is bilinear,
antisymmetric and fulfills the Jacobi identity

ada

(
adb(c)

)
+ adc

(
ada(b)

)
+ adb

(
adc(a)

)
= 0, a, b, c ∈ TeG.

In the case that G ≤ GL(ℵ) is actually a matrix Lie group we can see from (2.7) that it
holds

adA(B) = A ·B−B ·A, A,B ∈ TIG ⊆ GL(ℵ).

Lemma 2.9: Bivariate functions, see e. g. [17].

Let us consider a differentiable function

q : (−ε, ε)× (−ε, ε)→ G, (s, t) 7→ q(s, t)

with q(0, 0) = e and functions a, b with

q′(s, t) = dLq(s,t)(e) a(s, t) and q̇(s, t) = dLq(s,t)(e) b(s, t),

where the dot denotes the derivative with respect to t and the prime denotes the derivative
with respect to s:

•̇ =
d

dt
• and •′ =

d

ds
• .

Then it holds
ada(0,0)

(
b(0, 0)

)
= ȧ(0, 0)− b′(0, 0).

Proof. First let us derive q′(0, t) with respect to t at t = 0 and q̇(s, 0) with respect to s
at s = 0:

q̇′(0, 0) =
d

dt
dLq(0,t)(e) a(0, 0)

∣∣
t=0

+ dLq(0,0)(e) ȧ(0, 0),

q̇′(0, 0) =
d

ds
dLq(s,0)(e) b(0, 0)

∣∣
s=0

+ dLq(0,0)(e) b
′(0, 0).

This can be used in (2.7) with ρ(s) = q(s, 0), σ(t) = q(0, t), a = a(0, 0) and b = b(0, 0) in
order to obtain

ada(0,0)

(
b(0, 0)

)
= q̇′(0, 0)− dLq(0,0)(e) b

′(0, 0)−
(
q̇′(0, 0)− dLq(0,0)(e) ȧ(0, 0)

)
,

from which the assertion follows since q(0, 0) = e and dLe(e) is the identity.

Let us now consider the following initial value problem on G:

q̇a(t) = dLqa(t)(e) a, q(0) = e (2.8)

with a constant a ∈ TeG. It is clear that an analytic solution q must always fulfill
qa(t) ∈ G, since dLq(t)(e) a ∈ Tq(t)G.

14

Definition 2.10: The exponential map, see e. g. [80].

We call a 7→ qa(1) the exponential map of the constant a ∈ TeG:

exp: TeG→ G, a 7→ exp(a) = qa(1),

where qa(1) is the solution of (2.8) at t = 1.

The exponential map thus gives us a relation between the tangent spaces and the Lie
group itself as well as the possibility to solve initial value problems with a right-hand
side that is constant when mapped to TeG by the left translation. It is easy to show that
the initial value problem

q̇(t) = dLq(t)(e) a, q(t0) = q0 ∈ G (2.9a)

has the solution

q(t) = q0 ◦ exp
(
(t− t0)a

)
. (2.9b)

In the case that G ≤ GL(ℵ) is a matrix Lie group, it is well-known that the exponential
map coincides with the matrix exponential

exp(A) = expm(A) =
∞∑
k=0

1

k!
Ak, (2.10)

for A ∈ G, see e. g. [38].

Lemma 2.11: Properties of the exponential map, [80, Theorem 2.10.1].

The exponential map is smooth. Furthermore, there is an open neighborhood U ⊂ TeG
of 0 ∈ TeG such that exp

∣∣
U

: U → exp(U) ⊆ G is a smooth diffeomorphism.

Lemma 2.11 allows us to define the inverse of the exponential map, which is called the
logarithm.

Definition 2.12: Logarithm.

The logarithm

log : exp(U) ⊆ G→ U ⊆ TeG, g 7→ log(g) = exp−1(g)

is the inverse of the exponential map on the open neighborhood U ⊆ TeG from lemma 2.11.
Often, we will call an element of exp(U) “sufficiently close” to the identity e ∈ G.

By definition it holds

exp
(
log(g)

)
= g, log

(
exp(a)

)
= a

for g ∈ exp(U) and a ∈ U . Notice that log(g) is well-defined if g ∈ G is sufficiently close
to the identity.

15

When we look at the flow of the initial value problem (2.8) which defines the exponential
map, it can be seen that qa(1 + τ) = exp

(
(1 + τ)a

)
for a ∈ TeG and τ ∈ R. On the

other hand, we could solve (2.8) up to t = 1 and then start solving (2.9) with t0 = 1 and
q0 = qa(1), which gives us qa(1 + τ) = qa(1) ◦ exp(τa). This implies that

exp(a+ b) = exp(a) ◦ exp(b), if b = τa for some τ ∈ R. (2.11)

It directly follows that (
exp(a)

)−1
= exp(−a). (2.12)

Unfortunately, (2.11) does not hold in general when b is not a multiple of a. The Baker-
Campbell-Hausdorff formula, see e. g. [80], gives us the possibility to express the Lie
product of two values of the exponential map as only one value of the exponential map
exp(a) ◦ exp(b) = exp(c) and a formula for determining c ∈ TeG from a and b. In this
thesis, however, we will only need a qualitative result of the following form:

Lemma 2.13: Qualitative Baker-Campbell-Hausdorff formula [35, 46].

For a, b ∈ TeG and h→ 0 it holds

exp(ha) ◦ exp(hb) = exp
(
ha+ hb+

h2

2
ada(b) +O(h3)

)
. (2.13)

Similar to the equation (2.11), we can now find ada(τa) for a ∈ TeG and τ ∈ R
by applying (2.6) with ρ(s) = exp(sa) and σ(t) = exp(tτa). We can easily see that
ρ(0) = σ(0) = e, ρ′(0) = dLe(e) a = a and σ′(t) = dLe(e) τa = τa since both ρ and σ
are the solutions to (2.8) with different constants. Now, it can be seen that

ρ(s) ◦ σ(t) ◦ ρ(−s) = exp(sa) ◦ exp(tτa) ◦ exp(−sa) = exp(sa+ tτa− sa) = exp(tτa),

where we have used (2.11). Obviously, exp(tτa) is constant with respect to s, so according
to (2.6) it follows

ada(τa) = 0 ∈ TeG. (2.14)

Now, let us consider the derivative

dexp(a) : TeG→ Texp(a)G

of the exponential map for a ∈ TeG. We will again use the identification of all tangent
spaces with TeG but this time via the derivative of the right translation and write

dexp(a) b = dRexp(a)(e) dxpa(b).

for a, b ∈ TeG and where dxpa : TeG → TeG is a linear function, which is the right
trivialized tangent of the exponential map.

16

Lemma 2.14: A formula for dxp, [80].

For the right trivialized tangent dxpa of the exponential map it holds

dxpa(b) =
∞∑
k=0

1

(k + 1)!
adk

a(b),

for all a, b ∈ TeG, where ad0
a(b) = b and adk

a(b) = adk−1
a

(
ada(b)

)
for k ∈ N.

Note that in research concerned with Lie groups in numerical applications and especially
in this thesis, we will use the left translation instead:

dexp(a) b = dLexp(a)(e) dxp−a(b). (2.15)

Note that usually, the right trivialized tangent is written as dexp, but due to the danger
of confusion with the derivative of exp, we have used the symbol dxp instead.

2.2. The Concept of Derivative Vectors

Lie groups have been widely used in numerical contexts [15, 18, 27, 44, 46, 54, 65, 66, 84].
Often in this field, especially in recent times, the tangent space TeG of the identity
element has been identified with Rn through an isomorphism, giving rise to the concept
of derivative vectors [8, 16]. The tangent space TeG is of course an n-dimensional vector
space and said vector space isomorphism is called the tilde operator [16]

•̃ : Rn → TeG, a 7→ ã. (2.16)

We use derivative vectors to describe derivatives of Lie group valued functions:

Definition 2.15: Derivative vectors [16].

Consider a differentiable G-valued function q. We call v(t) ∈ Rn the derivative vector of
q(t) if it holds

q̇(t) = dLq(t)(e) ṽ(t). (2.17)

Note that the tilde operator •̃ could be chosen arbitrarily but is always chosen in such a
way that the derivative vectors measure physical quantities, e. g. angular velocity.

Often, we will encounter functions ξ : G→ Rk that map from the Lie group G to some
real vector space Rk. The derivative dξ(g) : TgG→ Rk takes arguments from the tangent
space TgG. We want to relate this derivative to the space Rn in which the derivative
vectors reside. Thus, we introduce the following differential operator:

Definition 2.16: Derivative with respect to a Lie group element.

For a differentiable function ξ : G → Rk with k ∈ N, we define Dξ(q) ∈ Rk×n as the
k × n matrix that fulfills

Dξ(g) · y = dξ(g) dLg(e) ỹ (2.18)

for all y ∈ Rn.

17

This differential operator has not yet been widely used in Lie group methods, but helps
to facilitate notation: Often, for each function ξ, a new matrix valued function Ξ = Dξ
was introduced, see e. g. [8].

Now, we will take some more concepts from section 2.1 and adopt them to our concept
of derivative vectors:

Definition 2.17: The hat operator [17].

In order to describe the adjoint operator ad in terms of derivative vectors, we define the
hat operator

•̂ : Rn → Rn×n, a 7→ â

as the unique linear function with the property

˜̂a · b = adã(b̃).

Definition 2.18: The exponential map of derivative vectors.

We introduce the abbreviation

ẽxp: Rn → G, a 7→ ẽxp(a) = exp(ã)

which is a concatenation of the exponential map exp and the tilde operator •̃.

Definition 2.19: The logarithm of derivative vectors.

We introduce the function

l̃og : exp(U)→ Rn, g 7→ l̃og(g),

with U from lemma 2.11 such that

˜̃
log(g) = log(g).

Essentially, l̃og is just the concatenation of the inverse of the tilde operator •̃ and log.

Definition 2.20: The tangent operator [16].

The tangent operator
T : Rn → Rn×n, a 7→ T(a)

describes the left trivialized tangent, see (2.15), of the exponential map in terms of the
derivative vectors via the relation

T̃(a) · b = dxp−ã(b̃).

We collect a couple of properties of the tangent operator:

18

Remark 2.21: Properties of the tangent operator.

If we use definition 2.20 together with equation (2.15), we get

d

dt
ẽxp
(
a(t)

)
=

d

dt
exp
(
ã(t)

)
= dL

ẽxp
(
a(t)
)(e) τ(T(a(t)

)
· ȧ(t)

)
, (2.19)

with the tilde operator written as τ(•) = •̃ and where a is a differentiable function.
From lemma 2.14 we can deduce [17, 46]

T(a) =

∞∑
k=0

(−1)k

(k + 1)!
âk, a ∈ Rn. (2.20)

For the matrix inverse of the tangent operator it holds

T−1(y) =
∞∑
i=0

(−1)iBi

i!
ŷi, y ∈ Rn, (2.21)

where (Bi)i∈N0 = (1,−1
2 ,

1
6 , 0, . . .) are the Bernoulli numbers, see [35, Lemma III.4.2] or

[64], where this expansion is written in terms of dxp.
From

a = l̃og
(
ẽxp(a)

)
for all a ∈ Rn close enough to the origin it follows by differentiation with respect to a in
the direction b that

b = dl̃og
(
ẽxp(a)

)
dẽxp(a) b

= dl̃og
(
ẽxp(a)

)
dLẽxp(a)(e) T̃(a) · b

= D l̃og
(
ẽxp(a)

)
·T(a) · b

Since this has to hold for all directions b ∈ Rn, we get the helpful formula

D l̃og(q) = T−1(l̃og(q)
)
, q ∈ exp(U) ⊆ G, (2.22)

where we have set q = ẽxp(a) and U is the open set from lemma 2.11.

Now, we will prove a qualitative Taylor’s theorem for G-valued functions:

Lemma 2.22: Qualitative Taylor’s theorem for Lie group valued functions.

Let q be a three times continuously differentiable G-valued function with derivative
vectors v(t) according to (2.17). Then it holds

q(t+ h) = q(t) ◦ ẽxp
(
hv(t) + h2

2 v̇(t) +O(h3)
)

(2.23)

for h → 0. A formula of this kind can be found in [64], where even more terms are
provided. It is based on the idea of the Magnus expansion [62].

19

Proof. Let |h| be small enough such that

ψ(h) = l̃og
(
q−1(t) ◦ q(t+ h)

)
is well-defined. It is clear that ψ(0) = 0 . Now, we will find the first two derivatives of
ψ(h) by differentiating both sides of

ẽxp
(
ψ(h)

)
= q−1(t) ◦ q(t+ h)

with respect to h, where we have omitted the argument h of ψ:

dLẽxp(ψ)(e) ˜T(ψ) ·ψ′ = dLq−1(t)

(
q(t+ h)

)
q̇(t+ h)

= dLq−1(t)◦q(t+h)(e)
˜v(t+ h) = dLẽxp(ψ)(e) ˜v(t+ h),

using (2.19) and (2.3). It follows

T
(
ψ(h)

)
·ψ′(h) = v(t+ h).

We can see that it holds ψ′(0) = v(t), because ψ(0) = 0 and T(0) = I. Differentiating
once more at h = 0, we get, keeping ψ(0) = 0 , 0̂ = 0 and the expansion (2.20) in mind:

T
(
0
)
·ψ′′(0) +

(
0 +

(−1)1

(1 + 1)!
ψ̂′(0) + 0

)
·ψ′(0) = v̇(t).

This means that ψ′′(0) = v̇(t), because of (2.14). Now, we apply the standard qualitative
Taylor’s theorem to ψ around h = 0 with order two and get

q(t+ h) = q(t) ◦ ẽxp
(
ψ(h)

)
= q(t) ◦ ẽxp

(
ψ(0) + hψ′(0) + h2

2 ψ
′′(0) +O(h3)

)
for h→ 0 which implies the assertion.

Lemma 2.23: Bivariate functions, see e. g. [17].

Let us consider a continuously differentiable function with q(s, t) ∈ G and derivative
vectors a(s, t) and b(s, t) corresponding to the derivative with respect to s and t respec-
tively:

q′(s, t) = dLq(s,t)(e) ã(s, t) and q̇(s, t) = dLq(s,t)(e) b̃(s, t).

Then it holds
â(s, t) · b(s, t) = ȧ(s, t)− b′(s, t).

Proof. We will apply lemma 2.9 to p(σ, τ) =
(
q(s, t)

)−1 ◦ q(s+ σ, t+ τ). Its derivative
vectors are given by

p′(σ, τ) = dL(
q(s,t)

)−1

(
q(s+ σ, t+ τ)

)
dLq(s+σ,t+τ)(e) ã(s+ σ, t+ τ)

= dLp(σ,τ) ã(s+ σ, t+ τ),

and ṗ(σ, τ) = dL(
q(s,t)

)−1

(
q(s+ σ, t+ τ)

)
dLq(s+σ,t+τ)(e) b̃(s+ σ, t+ τ)

= dLp(σ,τ) b̃(s+ σ, t+ τ),

20

where we have used (2.3). Thus, from lemma 2.9 it follows

ad
ã(s,t)

(
b̃(s, t)

)
= ˙̃a(s, t)− b̃′(s, t),

from which the assertion follows by applying the inverse of the tilde operator and
definition 2.17 of the hat operator.

In the following, we will consider a nonlinear generalization ∆(q0, q1;h) ∈ Rn of
difference quotients of q0, q1 ∈ G and h > 0 on Lie groups. The next Lemma shows that
it has similar properties to the regular difference quotient (q1 − q0)/h for q0, q1 ∈ Rn in
that it can be used to approximate derivatives of functions of scalar arguments up to
second order:

Lemma 2.24: Nonlinear generalization of difference quotients.

Define the nonlinear difference quotient

∆(q0, q1;h) =
1

h
l̃og(q−10 ◦ q1)

for q0, q1 ∈ G and h > 0. For a three times continuously differentiable function q : I ⊆
R→ G, with derivative vectors v(t) and points t0, t1 ∈ I it holds

∆
(
q(t0), q(t1); t1 − t0

)
= v

(t0 + t1
2

)
+O

(
(t1 − t0)2

)
and furthermore

∆
(
q(t0), q(t1); t1 − t0

)
= v(τ) +O

(
t1 − t0

)
for any τ ∈ [t0, t1] and t1 − t0 → 0.

Proof. Let h = (t1− t0)/2 and t1/2 = t0 +h = t1−h. We can use the qualitative Taylor’s
theorem from lemma 2.22 in order to obtain

q(t1) = q(t1/2 + h) = q(t1/2) ◦ ẽxp
(
hv(t1/2) + h2

2 v̇(t1/2) +O(h3)
)
,

q(t0) = q(t1/2 − h) = q(t1/2) ◦ ẽxp
(
−hv(t1/2) + h2

2 v̇(t1/2) +O(h3)
)
.

Now, it follows by applying the qualitative Baker-Campbell-Hausdorff formula from
lemma 2.13(
q(t0)

)−1 ◦ q(t1) = ẽxp
(
2hv(t1/2) + h2

2 v̇(t1/2)− h2

2 v̇(t1/2) + h2

2 v̂(t1/2) · v(t1/2) +O(h3)
)
,

because of (2.12) and (2.14). Now, the first result follows by taking the logarithm l̃og on
both sides and dividing by t1 − t0.

The second result follows analogously by expanding q around τ with h = t1 − τ and
h = t0 + τ .

An alternative proof can be found in [44].

21

Lemma 2.25: Derivatives of ∆.

For the derivatives ∆(q0, q1;h) with respect to the first and second argument it holds

D1∆(q0, q1;h) = −1

h
T−1(−h∆(q0, q1;h)

)
,

D2∆(q0, q1;h) =
1

h
T−1(h∆(q0, q1;h)

)
,

if q0, q1 ∈ G are sufficiently close to each other.

Proof. Let w ∈ Rn be arbitrary but fixed. We consider

D2∆(q0, q1;h) ·w =
1

h
dq1 l̃og

(
Lq−1

0
(q1)

)
dLq1(e) w̃

=
1

h
dl̃og(q−10 ◦ q1) dLq−1

0
(q1) dLq1(e) w̃ =

1

h
dl̃og(q−10 ◦ q1) dLq−1

0 ◦q1(e) w̃

=
1

h
D l̃og(q−10 ◦ q1) ·w =

1

h
T−1(l̃og(q−10 ◦ q1)

)
·w,

where we have used definition 2.16, as well as (2.3) and (2.22). The second identity
follows since w was arbitrary. Furthermore, it holds

∆(q0, q1;h) =
1

h
l̃og
(
(q−11 ◦ q0)−1

)
= −1

h
l̃og(q−11 ◦ q0) = −∆(q1, q0;h)

by using (2.12). Therefore, the first identity follows by

D1∆(q0, q1;h) = −D2∆(q1, q0;h)

= −1

h
T−1(h∆(q1, q0;h)

)
= −1

h
T−1(−h∆(q0, q1;h)

)
.

Now we introduce an interpolation function Ip(τ, q0, q1) for τ ∈ [0, 1] and q0, q1 ∈ G,
which is supposed to be a function q with q(0) = q0, q(1) = q1 and a constant derivative
vector v. If q0 and q1 are close enough to each other, we define Ip(τ, q0, q1) by

Ip(τ, q0, q1) = q0 ◦ ẽxp
(
τ l̃og(q−10 ◦ q1)

)
. (2.24)

This interpolation generalizes the ordinary linear interpolation as well as the spherical
linear interpolation SLERP, see e. g. [40]. In order to see that Ip has similar approximation
properties, we will prove the following:

Lemma 2.26: Interpolation Ip approximates with second order.

Let q : (−h0, h0)→ G be twice continuously differentiable with h0 > 0. Then it holds

Ip
(
τ, q(0), q(h)

)
= q(τh) ◦ ẽxp

(
O(h2)

)
for τ ∈ [0, 1] and h→ 0.

22

Proof. On the one hand, lemma 2.24 implies

Ip
(
τ, q(0), q(h)

)
= q(0) ◦ ẽxp

(
τh∆(q(0), q(h);h

))
= q(0) ◦ ẽxp

(
τh
(
v(0) + ξ1

))
(2.25)

with ξ1 ∈ O(h) and on the other hand the qualitative Taylor’s formula from lemma 2.22
gives us

q(τh) = q(0) ◦ ẽxp
(
τhv(0) + hξ2

)
with ξ2 ∈ O(h). Rearranging this equation using (2.12) yields

q(0) = q(τh) ◦ ẽxp
(
−τhv(0)− hξ2

)
and by inserting it in (2.25) as well as applying the qualitative Baker-Campbell-Hausdorff
formula from lemma 2.13 the assertion follows:

Ip
(
τ, q(0), q(h)

)
= q(τh) ◦ ẽxp

(
−τhv(0)− hξ2

)
◦ ẽxp

(
τh
(
v(0) + ξ1

))
= q(τh) ◦ ẽxp

(
τhv(0)− τhv(0) + h(ξ1 − ξ2)

)
,

where h(ξ1 − ξ2) ∈ O(h2).

Remark 2.27: Piecewise interpolation.

Let t0 < t1 < · · · < tN be a grid and q0, q1, . . . , qN ∈ G. Then we define the interpolation

pIp
(
τ, (tn)n=0,...,N , (qn)n=0,...,N

)
= Ip

(
τ − tn

tn+1 − tn
, qn, qn+1

)
, if τ ∈ [tn, tn+1)

and pIp
(
tN , (tn)n=0,...,N , (qn)n=0,...,N

)
= qN .

Consider now a function q : [t0, te]→ G with t0 < te and a grid t0 < t1 < · · · < tN = te.
Then the piecewise interpolation on the data

(
tn, q(tn)

)
approximates the original function

q with second order if q is smooth enough:

pIp
(
τ, (tn)n=0,...,N , (qn)n=0,...,N

)
= q(τ) ◦ ẽxp

(
O(h2max)

)
,

where hmax = maxn=1,...,N (tn − tn−1) for hmax → 0. This is a direct consequence of
lemma 2.26.

2.3. The Lie Group S3 ⋉R3

In this section, we will consider the Lie group S3 ⋉R3, which is a semi-direct product of
the Lie group of unit quaternions S3 ⊆ R4 and the real vector space R3. We will later
see that it is closely related to the Lie group of rigid body motions SE(3).

Note that in the following, we will identify the orientation of a rigid body with its
rotation from some reference orientation, the position with the translation from some
reference position and likewise the combination of orientation and position with the rigid

23

transformation from some reference orientation and position. This allows us to sensibly
talk about concatenation of these transformations which define the Lie group operation
of S3 ⋉R3.

First, we will consider quaternions. For an introduction to this topic refer to e. g. [26, 40].
In this thesis, we will identify the space of quaternions with the four-dimensional vector
space R4. Typically, we would number the components of a quaternion p ∈ R4 starting
by zero:

p =

p0
p1
p2
p3

 ,
where we call Rep = p0 ∈ R the real or scalar part and Imp = [p1, p2, p3]

⊤ ∈ R3

the imaginary or vector part of the quaternion p ∈ R4. We define the quaternion
multiplication ∗ : R4 → R4 by

p ∗ q =

[
(Rep)(Re q)− (Imp)⊤ · (Im q)

(Rep)(Im q) + (Re q)(Imp) + (Imp)× (Im q)

]
,

where× : R3×R3 → R3 is the cross product. We can see that the quaternion multiplication
is not commutative, since p × q = −q × p. The quaternions form a division algebra
(skew field) with quaternion multiplication ∗, regular addition +, zero 0 ∈ R4 and
one [1, 0, 0, 0]⊤, see e. g. [26]. The inverse element with respect to ∗ of a quaternion
p ∈ R4 \ {0} can be expressed by the conjugate

p =

[
Rep
− Imp

]
and the Euclidean norm ∥ • ∥2:

p−1 =
p

∥p∥22
. (2.26)

Furthermore, for the norm of a quaternion product it holds

∥p ∗ q∥2 = ∥p∥2 ∥q∥2. (2.27)

Let us now focus on the set S3 of unit quaternions

S3 = {p ∈ R4 : ∥p∥22 = 1},

which is a regular surface of dimension three, since p 7→ ∥p∥22−1 is a quadratic polynomial
whose differential only vanishes at the origin, see lemma 2.2. Due to (2.26) and (2.27), it
follows that S3 must be a subgroup of (R4 \ {0}, ∗). Since the quaternion multiplication
and its inversion are clearly smooth mappings, unit quaternions (S3, ∗) form a Lie group
with the identity element e = [1, 0, 0, 0]⊤. It is well-known in the literature, see e. g. [40],

24

that unit quaternions can be used to describe rotations of rigid bodies. The result of the
rotation of a vector w ∈ R3 that is encoded in a unit quaternion p ∈ S3 is given by

p ▷w = Im

(
p ∗
[

0
w

]
∗ p
)
.

Rotating a vector is actually a left action from S3 on R3 since it holds

(p ∗ q) ▷w = p ▷ (q ▷w)

for p, q ∈ S3 and w ∈ R3. Note that the two unit quaternions p ∈ S3 and −p ∈ S3 describe
the same rotation. It can be shown that there is a smooth two-to-one mapping between
unit quaternions S3 and the Lie group of rotation matrices SO(3), see e. g. [40]. We can
consider p ∈ S3 to describe the rotation of a rigid body from a reference orientation. The
Lie algebra s3 = TeS3 is given by all quaternions with vanishing real part

TeS3 = {p ∈ R4 : Rep = 0},

because for every p ∈ S3, p must be normal to TpS3 which can be seen by differentiating
the unity constraint for any differentiable curve in S3 passing through p. Since the
quaternion multiplication is linear in R4, we can immediately see that for p, q ∈ S3 and
a ∈ TqG ⊆ R4

dLp(q) a = p ∗ a.
In order to identify the elements of TeS3 with angular velocities, we choose the tilde
operator as follows:

Ω̃ =

[
0

1
2Ω

]
∈ TeS3, Ω ∈ R3,

see e. g. [53]. Note that if a differentiable curve p(t) ∈ S3 describing the time-dependent
orientation of a rigid body and that has derivative vectors Ω(t), then the components of
Ω(t) describe the angular velocities around the body-fixed frame (p ▷ e1, p ▷ e2, p ▷ e3),
where ei for i = 1, 2, 3 are the canonical base vectors of R3. Furthermore it holds

d

dt

(
p(t) ▷w

)
= p(t) ▷

(
Ω ×w

)
(2.28)

for every w ∈ R3. The exponential map is given by

ẽxp(Ω) =

[
cos(∥Ω∥2/2)
Ω

∥Ω∥2 sin(∥Ω∥2/2)

]

for Ω ∈ R3 \ {0}, because by differentiating ẽxp(tΩ) with respect to t, we get

d

dt
ẽxp(tΩ) =

[
−∥Ω∥2 sin(t∥Ω∥2/2)/2
Ω cos(t∥Ω∥2/2)/2

]
= ẽxp(tΩ) ∗

[
0
Ω/2

]
= dLẽxp(tΩ)(e) Ω̃.

25

Of course, ẽxp(0) = e. The exponential ẽxp is injective on the open ball around the

origin of R3 with radius 2π and its inverse, the logarithm l̃og is given by

l̃og(p) = 2 arccos(Re p)
Im p

∥Im p∥2

for ∥Im p∥2 ̸= 0. Furthermore it holds l̃og(e) = 0 , which can be easily verified by

calculating ẽxp(l̃og(p)) = p for |Re p| ̸= −1. We can calculate the adjoint operator by
using (2.7) for a, b ∈ TeS3:

ada(b) = a ∗ b− b ∗ a,
leading to

Ω̂ = skw(Ω),

where skw: R3 → R3×3 transforms a 3D vector into the skew-symmetric matrix

skw

(Ω1

Ω2

Ω3

) =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 (2.29)

with the property skw(a) · b = a× b. Since the hat operator is equal to the hat operator
of the Lie algebra of SO(3), the tangent operator and its inverse are the same as in
the case of SO(3), see [17]. Note that in order to implement these functions, we need
to be careful in a small neighborhood of the origin of TeS3, because a dramatic loss of
significance can occur. The functions related to (S3, ∗) and notes on how to implement
them properly can be found in appendix A.4.

In the same way that (S3, ∗) describes rotations of a rigid body from a reference
orientation, we can describe the translation of a rigid body from a reference position by
the linear Lie group (R3,+). Now, we are interested in rigid body motions (p,x) that
rotate and translate the body; thus take the form

w 7→ p ▷w + x

for some rotation p ∈ S3 and translation x ∈ R3. The concatenation of two such rigid
body motions (p1,x1) and (p2,x2) would then be

w 7→ p1 ▷ (p2 ▷w + x2) + x1 = (p1 ∗ p2) ▷w + (x1 + p1 ▷ x2).

Let us thus define a function

◦ : (S3 × R3)× (S3 × R3)→ S3 × R3,(
(p1,x1), (p2,x2)

)
7→ (p1,x1) ◦ (p2,x2) = (p1 ∗ p2,x1 + p1 ▷ x2).

It is easy to see that ◦ is associative, that e = ([1, 0, 0, 0]⊤,0) ∈ S3 × R3 is the identity
element and to every element (p,x) ∈ S3 × R3 there is an inverse element

(p,x)−1 = (p,−p ▷ x).

26

Thus, S3 × R3 together with ◦ is a group, which we will call (S3 ⋉R3, ◦) or, by abuse of
notation S3 ⋉R3. More specifically, S3 ⋉R3 is an (outer) semi-direct product of the two
groups S3 and R3. Since ◦ and the inversion are obviously smooth and S3×R3 ⊆ R4×R3

is a regular surface as the direct product of two regular surfaces, S3 ⋉ R3 forms a Lie
group of dimension 3 + 3 = 6. The tangent space at the identity element is given by

Te(S3 ⋉R3) = Te(S3 × R3) = {(a,y) ∈ R4 × R3 : a ∈ T[1,0,0,0]⊤S3},

since, as a manifold, S3 ⋉R3 is a direct product. Now, we can calculate

dL(p,x)(e) (a,w) = (p ∗ a, p ▷w)

with (p,x) ∈ S3⋉R3 and (a,w) ∈ Te(S3⋉R3) by taking a differentiable curve
(
q(t),y(t)

)
∈

S3 ⋉ R3 with the property
(
q(0),y(0)

)
= e and d/ dt

(
q(t),y(t)

)∣∣
t=0

=
(
q̇(0), ẏ(0)

)
=

(a,w) and differentiating L(p,x)

((
q(t),y(t)

))
at t = 0. We will identify the elements of

Te(S3 ⋉R3) by the following tilde operator:[̃
Ω
U

]
=

([
0

1
2Ω

]
,U

)
.

Note that if a differentiable curve
(
p(t),x(t)

)
describing the motion of a rigid body

and that has derivative vectors [Ω⊤(t),U⊤(t)]⊤, then the components of Ω(t) and U(t)
describe the angular velocities around and velocities along the body-fixed frame

(
p(t) ▷

e1, p(t) ▷ e2, p(t) ▷ e3
)
, respectively. The exponential map ẽxp is given by

ẽxp

([
Ω
U

])
=
(
ẽxpS3(Ω),T⊤

S3(Ω) ·U
)
, (2.30)

where ẽxpS3 and TS3 are the exponential map and tangent operator from the Lie group
of unit quaternions S3. We can prove this by showing that d/ dt ẽxp(tv) = dLẽxp(tv)(e) ṽ

for any v ∈ R6 and ẽxp(0) = e, which is obvious. Let v = [Ω⊤,U⊤]⊤:

d

dt
ẽxp(tv) =

(
1

2
ẽxpS3(tΩ) ∗

[
0
Ω

]
,

∞∑
k=0

skw(tΩ)k

k!
·U
)
,

where the equality in the first component is known from the definition of ẽxpS3 and in
the second component, we have used the series definition of the tangent operator, that
the hat operator in S3 is skw, and that skw(Ω)⊤ = − skw(Ω). Furthermore, it can be

seen that
∑∞

k=0
skw(tΩ)k

k! ·U = ẽxpS3(Ω) ▷U by using Rodrigues’ rotation formula, see
e. g. [46]. In the end, we get

d

dt
ẽxp(tv) =

(
1

2
ẽxpS3(tΩ) ∗

[
0
Ω

]
, ẽxpS3(tΩ) ▷U

)
= dLẽxp(tv)(e) ṽ

27

and therefore, the right-hand side of (2.30) really is the exponential function concatenated
with the tilde operator. Similar to the case of S3, the exponential ẽxp is injective for all
[Ω⊤,U⊤]⊤ ∈ R6 with ∥Ω∥2 < 2π and its inverse l̃og is then given by

l̃og
(
(p,x)

)
=

[
l̃ogS3(p)

T−⊤
S3
(
l̃ogS3(p)

)
· x

]

for (p,x) ∈ S3 ⋉R3 with Re p ≠ −1. Now, we will focus on deriving the adjoint operator
by using (2.7) with ρ(s) =

(
p1(s),x1(s)

)
, σ(t) =

(
p2(t),x2(t)

)
, where ρ(0) = σ(0) = e

and

ρ′(0) = w̃1 =

[̃
Ω1

U1

]
, σ̇(0) = w̃2 =

[̃
Ω2

U2

]
.

It follows

adw̃1
(w̃2) =

d

ds

(
p1(s) ∗

[
0

1
2Ω2

]
, p1(s) ▷U2

)∣∣∣∣
s=0

− d

dt

(
p2(t) ∗

[
0

1
2Ω1

]
, p2(t) ▷U1

)∣∣∣∣
t=0

=

([
0

1
2Ω1

]
∗
[

0
1
2Ω2

]
,Ω1 ×U2

)
−
([

0
1
2Ω2

]
∗
[

0
1
2Ω1

]
,Ω2 ×U1

)
=

([
0

1
2(Ω1 ×Ω2)

]
,Ω1 ×U2 −Ω2 ×U1

)
,

where we have used (2.28) and the fact that the cross product is anticommutative. It
immediately follows that for the hat operator it holds[̂

Ω1

U1

]
·
[
Ω2

U2

]
=

[
Ω1 ×Ω2

Ω1 ×U2 −Ω2 ×U1

]
,

[̂
Ω
U

]
=

[
skw(Ω) 0
skw(U) skw(Ω)

]
.

It can be seen that the hat operator of S3 ⋉R3 coincides with the hat operator of SE(3)
and therefore, the tangent operator and its inverse are the same, [17]. The functions
related to (S3 ⋉ R3, ◦) and notes on how to implement them properly can be found in
appendix A.5.

2.4. Isomorphies and Matrix Lie Groups

Now, we will see that the Lie groups (R3,+), (S3, ∗) are in fact isomorphic to matrix Lie
groups, which is well-known, and show that this holds true for their semi-direct product
(S3⋉R3, ◦) and the Lie group of unit dual quaternions as well. Moreover, direct products
of Lie groups which are isomorphic to matrix Lie groups are shown to be isomorphic to
matrix Lie groups as well [38]. This gives us the possibility to apply time integration
methods designed for matrix Lie groups to the aforementioned Lie groups as well as their
direct products, for an example see e. g. [9].

Furthermore, finding explicit expressions for the exponential map for a Lie group can
often be easier by first considering its isomorphic matrix Lie group, where the exponential
map is given by the exponential series (2.10).

28

Remark 2.28: Linear Lie groups are isomorphic to matrix Lie groups, see e. g. [38].

We consider the mapping

ψ : R3 → GL(4), x 7→ ψ(x) =

[
I3 x
0 1

]
.

It is clear that ψ is smooth and injective. The inverse map ψ−1 is just a projection and
therefore smooth as well. Furthermore, it can be seen that

ψ(x) · ψ(y) =

[
I x+ y
0 1

]
= ψ(x+ y)

for x,y ∈ R3. Thus, ψ is also a homomorphism and therefore, (R3,+) is isomorphic to a
matrix Lie group.

Remark 2.29: Unit quaternions are isomorphic to a matrix Lie group.

The quaternion multiplication can also be written with a matrix vector product and a
matrix-valued mapping Q : R4 → R4×4, see e. g. [35, 53]:

p ∗ q = Q(p) · q,

where

Q(p) =

p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

 =

[
Rep − Imp⊤

Imp I3 Rep+ skw(Imp)

]
,

where p = [p0, p1, p2, p3]
⊤. Moreover, it holds

Q(p ∗ q) = Q(p) ·Q(q)

for p, q ∈ R4. This means that Q is a homomorphism from (R4, ∗) to a subgroup of
GL(4). The mapping Q is obviously smooth as well invertible, since its inverse function
is again a projection. Therefore, the Lie group (R4, ∗) is isomorphic to a matrix Lie
group. With the same argument and restricting Q to S3, we get that the Lie group of
unit quaternions (S3, ∗) is isomorphic to a matrix Lie group.

Remark 2.30: Direct product Lie groups, see e. g. [38].

Let us consider two Lie groups (G1, ◦1) and (G2, ◦2) that are isomorphic to matrix Lie
groups. Then there are injective bicontinuous homomorphisms ψk : Gk → GL(ℵk) for
k = 1, 2. We consider the direct product (G1 ×G2, •) with the group operation defined
component-wise:

(g1, g2) • (h1, h2) = (g1 ◦1 h1, g2 ◦2 h2).
Then we can easily construct

ψ : G1 ×G2 → GL(ℵ1 + ℵ2), (g1, g2) 7→ ψ
(
(g1, g2)

)
=

[
ψ1(g1) 0

0 ψ2(g2)

]
,

29

which is obviously injective, bicontinuous and a homomorphism. Therefore, the direct
product (G1 ×G2, •) is isomorphic to a matrix Lie group as well.

Remark 2.31: The semi-direct product (S3 ⋉R3, ◦) is isomorphic to a matrix Lie group.

Let us first consider the mapping w 7→ p ▷w of rotating a vector w around the origin
by a unit quaternion p ∈ S3. This mapping is linear in w and therefore there must be a
matrix R(p) ∈ R3×3 with the same properties, namely

R(p) = [p ▷ e1, p ▷ e2, p ▷ e3] =
∂

∂w
(p ▷w).

The map R is known as the Euler map that maps the unit quaternions to rotation matrices
SO(3), [40]. We can see that R is actually smooth and also fulfills the requirements of a
homomorphism [40]. It is, however, not injective, since antipodal unit quaternions p ∈ S3
and −p ∈ S3 encode the same rotation. Let us now construct the mapping

ψ : S3 ⋉R3 → GL(8), (p,x) 7→ ψ
(
(p,x)

)
=

Q(p) 0 0
0 R(p) x
0 0 1

 .
Here, we can actually see a matrix resembling an element from SE(3) in the lower right
block. Now, we show that ψ is actually a homomorphism:

ψ
(
(p1,x1)

)
· ψ
(
(p1,x1)

)
=

Q(p1) ·Q(p2) 0 0
0 R(p1) ·R(p2) x1 + R(p1) · x2

0 0 1

=

Q(p1 ∗ p2) 0 0
0 R(p1 ∗ p2) x1 + p1 ▷ x2

0 0 1

= ψ

(
(p1,x1) ◦ (p1,x1)

)
.

Furthermore, ψ is smooth, since Q and R are smooth. Its inverse map ψ−1 is again
given by a projection, which is smooth as well. Therefore, (S3 ⋉R3, ◦) is isomorphic to a
matrix Lie group, too.

Remark 2.32: Relation between S3 ⋉R3 and SE(3).

The Euler map R : S3 → SO(3) is a smooth two-to-one homomorphism. Let us consider
the equivalence relation ∼ with

p1 ∼ p2 if and only if p1 ∈ {p2,−p2}.

Then it can be seen that the set S3/∼ = {[p]∼ : p ∈ S3} of equivalence classes of S3 forms
a group with

[p1]∼ ∗ [p2]∼ = [p1 ∗ p2]∼,

30

because (−p1) ∗ p2 = −(p1 ∗ p2) etc. This group is then isomorphic to SO(3) with the
homomorphism

R∼ : S3/∼ → SO(3), [p]∼ 7→ R∼([p]∼) = R(p) = R(−p),

which is surjective [40]. Using quaternions in a numerical algorithm, however, can be
more efficient than using rotation matrices, see [42]. Moreover, S3 is simply connected,
where SO(3) is not [39, Proposition 1.17].

We can make the same argument for S3⋉R3: We consider an equivalence relation that
identifies antipodal quaternions

(p1,x1) ∼ (p2,x2) if and only if p1 ∈ {p2,−p2} and x1 = x2.

Similar to before, S3 ⋉R3/∼ = {[(p,x)]∼ : (p,x) ∈ S3 ⋉R3} becomes a group. Now, we
can define a mapping ψ : S3 ⋉R3/∼ → SE(3) by

ψ
(
[(p,x)]∼

)
=

[
R(p) x
0 1

]
=

[
R(−p) x

0 1

]
.

Similar to remark 2.31, we can now see that ψ is actually a homomorphism . Since the
Euler map R is surjective, ψ is surjective as well. Therefore, the group S3 ⋉ R3/∼ is
isomorphic to SE(3).

Remark 2.33: Dual quaternions.

Often, especially in mechanics, unit dual quaternions are used to describe the position
and orientation of a rigid body [48, 49, 55]. The set of unit dual quaternions can be
defined as

UDQ = {p+ ϵr : p, r ∈ R4, ∥p∥22 = 1, p⊤ · r = 0},
where ϵ is the dual unit with ϵ2 = 0 but ϵ ̸= 0. By introducing the operation

(p1 + ϵr1) ∗ (p2 + ϵr2) = p1 ∗ p2 + ϵ(r1 ∗ p2 + p1 ∗ r2),

the tuple (UDQ, ∗) becomes a group with identity element e = [1, 0, 0, 0]⊤ + ϵ0 and
inverse elements

(p+ ϵr) ∗ (p−1− ϵp−1 ∗ r ∗ p−1) = p ∗ p−1 + ϵ(r ∗ p−1− p ∗ p−1 ∗ r ∗ p−1) = e.

The term “unit” dual quaternions comes from the fact that for p+ ϵr ∈ UDQ it holds

(p+ ϵr) ∗ (p+ ϵr) = e.

We can think of dual quaternions as elements of R4+4 and write UDQ = F−1(0) with

F (p+ ϵr) =

[
p⊤ · p− 1
p⊤ · r

]
.

31

By applying lemma 2.2, we can see that UDQ is a manifold, because

F ′
([p
r

])
=

[
p⊤ 0⊤

r⊤ p⊤

]
has full rank for p ̸= 0. Therefore, (UDQ, ∗) is a Lie group.

Furthermore, UDQ is isomorphic to S3 ⋉ R3. This can be seen by constructing a
bicontinuous bijective homomorphism

ψ : UDQ→ S3 ⋉R3,

see remark 2.6. This map can be chosen to be

ψ(p+ ϵr) =
(
p, 2 Im(r ∗ p−1)

)
,

which is obviously continuous. Its inverse is a continuous function given by

ψ−1((p,x)
)

= p+
1

2
ϵ

[
0
x

]
∗ p,

because we can see that ψ
(
ψ−1((p,x)

))
= (p,x) for all (p,x) ∈ S3 ⋉R3 and ψ−1(ψ(p+

ϵr)
)

= p+ ϵr for all p+ ϵr ∈ UDQ by using that Re(r ∗ p−1) = r⊤ · p = 0. This means
that ψ must be bijective as well. Furthermore, we can see that ψ is a homomorphism:

ψ(p1 + ϵr1) ◦ ψ(p2 + ϵr2)

=
(
p1 ∗ p2, 2 Im(r1 ∗ p−11) + p1 ▷ 2 Im(r2 ∗ p−12)

)
=
(
p1 ∗ p2, 2 Im(r1 ∗ p−11) + 2 Im(p1 ∗ r2 ∗ p−12 ∗ p−11)

)
=
(
p1 ∗ p2, 2 Im(r1 ∗ p2 ∗ p−12 ∗ p−11) + 2 Im(p1 ∗ r2 ∗ p−12 ∗ p−11)

)
=
(
p1 ∗ p2, 2 Im

(
(r1 ∗ p2 + p1 ∗ r2) ∗ (p1 ∗ p2)−1

))
= ψ

(
(p1 + ϵr1) ∗ (p2 + ϵr2)

)
for p1 + ϵr1,p2 + ϵr2 ∈ UDQ, where we used Re(r2 ∗ p−12) = r⊤2 · p2 = 0 again.

The Lie group of unit dual quaternions is therefore isomorphic to the Lie group of S3⋉R3

and is an interesting way to represent the semi-direct product structure. In comparison
to S3 ⋉R3 however, UDQ is computationally inferior [42] since an additional parameter
has to be stored per rigid body configuration, the concatenation and exponential map
require more floating-point operations, and the position vector is not readily available
but has to be computed from the dual part.

2.5. Mechanical Systems with Lie Group Structured Configuration Spaces

If we consider a mechanical system, we need to find a way to describe the configuration
of the system by some parameters. We call the set of the descriptions of all possible

32

configurations the configuration space G. In this section, we will briefly discuss constrained
mechanical systems where the configuration space G is also a Lie group (G, ◦). The
equations of motion of such a system with holonomic constraints can be written in the
form of the following differential-algebraic equations (DAE), see e. g. [17]:

q̇(t) = dLq(t) ṽ(t), (2.31a)

M · v̇(t) = v̂(t)
⊤
·M · v(t) + f

(
t, q(t),v(t)

)
−DΦ⊤(q(t)) · λ(t), (2.31b)

0 = Φ
(
q(t)

)
, (2.31c)

where q(t) ∈ G is the configuration of the system at a time instant t, v(t) ∈ Rn is the
associated derivative vector, M ∈ Rn×n is a constant, positive definite and symmetric
mass matrix, f

(
t, q(t),v(t)

)
∈ Rn is the vector of internal and external forces formulated

in the language of derivative vectors, Φ : G→ Rk is the differentiable submersion with
k ≤ n that we call constraint function and λ(t) ∈ Rk is a Lagrange multiplier. The term

v̂(t)
⊤
·M ·v(t) represents the Coriolis forces. It appears due to the fact that the derivative

vectors are not measured with respect to the inertial frame. In earlier works about
Lie group time integration, see e. g. [8, 16], the Coriolis force would not be considered
separately as it is here, but only as part of the forces f . The term −D⊤Φ

(
q(t)

)
· λ(t) is

the constraint force which ensures that the constraints (2.31c) are fulfilled.
Since the system is constrained, the configuration q(t) does not only have to be an

element of G, but q(t) has to be an element of the regular surface M = {p ∈ G : Φ(p) =
0} ⊆ G. We call M the constraint manifold. Unfortunately, M generally does not need
to have a Lie group structure, so we rely on representing the configurations in a larger
space G that does have a Lie group structure and require the constraint equation (2.31c).

We do not consider state-dependent mass matrices, because for mechanical systems
consisting only of rigid bodies, we can always choose a configuration space G such that
the mass matrix M is constant, see section 4.1.

We assume that the constraint function Φ is a submersion, meaning that the rank of its
differential, which is equal to the rank of DΦ(q) ∈ Rk×n, is constant and equal to k. We
will see that this makes (2.31) a DAE of differentiation index of (at most) three. First,
we differentiate the constraint equation twice, giving us the so-called hidden constraints

0 = DΦ
(
q(t)

)
· v(t), (2.32a)

0 = D2Φ
(
q(t)

) (
v(t),v(t)

)
+ DΦ

(
q(t)

)
· v̇(t), (2.32b)

on velocity and acceleration level, respectively. Here D2Φ(p) (a, b) is an abbreviation for

D2Φ(p) (a, b) = Dp

(
DΦ(p) · a

)
· b. (2.33)

Now, we can replace the constraint equation (2.31c) by the hidden constraint on acceler-
ation level (2.32b), which is analytically equivalent. By bringing the constraint forces
to the left-hand side, combining both equations to one equation of vectors in Rn+k, we

33

arrive at the following formulation

q̇(t) = dLq(t)(e) ṽ(t), (2.34a)[
M DΦ⊤(q(t))

DΦ
(
q(t)

)
0

]
·
[
v̇(t)
λ(t)

]
=

[
v̂(t)

⊤
·M · v(t) + f

(
t, q(t),v(t)

)
−D2Φ

(
q(t)

) (
v(t),v(t)

)]
. (2.34b)

We can see that the matrix on the left-hand side of (2.34b) is invertible, because it is
obviously symmetric and both M as well as DΦ

(
q(t)

)
have full rank by requirement. Its

inverse is given by[
M DΦ⊤

DΦ 0

]−1
=

[
M−1 + M−1 ·DΦ⊤ · S−1 ·DΦ ·M−1 −M−1 ·DΦ⊤ · S−1

−S−1 ·DΦ ·M−1 S−1

]
,

(2.35)
where we have omitted the argument q(t) and used the Schur complement [82, 86]

S = 0−DΦ
(
q(t)

)
·M−1 ·DΦ⊤(q(t)).

By multiplying (2.34b) from the left with the matrix from (2.35) and subsequently
differentiating the equation for λ(t), we get an ordinary differential equation in q(t), v(t)
and λ(t) which is equivalent to both (2.31) as well as (2.34). Since we had to differentiate
three times counting from (2.31) and once counting from (2.34) in order to arrive at
an ODE, we have shown that their differentiation index is in fact (at most) 3 and 1,
respectively. This also justifies the names “index-3 formulation” for (2.31) and “index-1
formulation” for (2.34).

In the following, we want to derive the equations of motion (2.31) from variational
principles. In order to do that, we will use variations:

Remark 2.34: Variations.

Let us first consider a continuous curve x in a real vector space Rn. Now, we can consider
a family of slightly perturbed curves xϵ such that for ϵ = 0 we have x0 = x. Furthermore,
we consider the mapping ϵ 7→ xϵ to be differentiable. Then, we define the derivative of
xϵ with respect to ϵ at ϵ = 0 to be the variation δx of x:

δx(t) =
d

dϵ
xϵ(t)

∣∣
ϵ=0

.

The quantity δx(t) can be thought of as an infinitesimal motion [69].
The same can be done for curves q in a Lie group G, see [54]:

δq(t) =
d

dϵ
qϵ(t)

∣∣
ϵ=0
∈ Tq(t)G

with a family of perturbed curves qϵ in G that are differentiable in ϵ. We will use the
concept of derivative vectors and introduce the derivative vector δq(t) corresponding to
q(t) via the relation

δq(t) = dLq(t)(e) δ̃q(t). (2.36)

34

Note that the derivative vector δq(t) ∈ Rn with respect to the variation has a bold
variation symbol, whereas the variation δq(t) ∈ Tq(t)G has a non-bold variation symbol.

Of course, we can apply the variation to the derivative vector v(t) of q(t) with respect
to the derivative d/dt

δv(t) = δq̇(t) + v̂(t) · δq(t), (2.37)

see e. g. [17], where

δq̇(t) =
d

dt
δq(t).

This can be easily proved through lemma 2.23.

Remark 2.35: Conservative mechanical systems.

We consider a conservative mechanical system with kinetic energy

T
(
v(t)

)
=

1

2
v⊤(t) ·M · v(t)

and some potential energy U
(
q(t)

)
. We consider the action integral with an augmented

Lagrangian [63] on the time span [t0, te]:

S
(
q,λ

)
=

∫ te

t0

T
(
v(t)

)
− U

(
q(t)

)
−Φ⊤(q(t)) · λ(t) dt. (2.38)

Now, we can use Hamilton’s principle of stationary action

0 = δS(q,λ) (2.39a)

where we describe the variation of q(t) with derivative vectors

δq(t) = dLq(t)(e) δ̃q(t) (2.39b)

and the boundary conditions

0 = δq(t0) = δq(te). (2.39c)

Carrying out the details, we get, omitting the argument t:

0 = δS(q,λ)

=

∫ te

t0

δT (v)− δU(q)− δ
(
Φ⊤(q) · λ

)
dt

=

∫ te

t0

v⊤ ·M · δv −
(
DU(q) + λ⊤ ·DΦ(q)

)
· δq −Φ⊤(q) · δλ dt

=

∫ te

t0

v⊤ ·M · δq̇ +
(
v⊤ ·M · v̂ −DU(q)− λ⊤ ·DΦ(q)

)
· δq −Φ⊤(q) · δλdt

=

∫ te

t0

(
−v̇⊤ ·M + v⊤ ·M · v̂ −DU(q)− λ⊤ ·DΦ(q)

)
· δq −Φ⊤(q) · δλdt

35

where we have used the relationship (2.37) and partial integration where the boundary

values v⊤(t) ·M · δq(t)
∣∣te
t0

vanish due to the boundary conditions (2.39c). Since this

has to hold for all variations δq(t) and δλ(t), equations (2.31b) and (2.31c) follow by
transposing with

f
(
t, q(t),v(t)

)
= −DU⊤

(
q(t)

)
.

Remark 2.36: Forced mechanical systems.

We consider a mechanical system as in remark 2.35 but this time with some external
forces F⊤(t, q(t),v(t)

)
∈ Rn acting on it. Of course, these external forces are formulated

in the language of derivative vectors. This time, we use the Lagrange-d’Alembert principle
instead of Hamilton’s principle of stationary action (2.39):

0 = δS(q,λ) +

∫ te

t0

F
(
t, q(t),v(t)

)
· δq(t) dt, (2.40a)

δq(t) = dLq(t)(e) δ̃q(t), (2.40b)

0 = δq(t0) = δq(te). (2.40c)

Since we already know from remark 2.35 how to treat δS(q,λ), we can immediately
conclude from (2.40)

0 =

∫ te

t0

(
−v̇⊤ ·M + v⊤ ·M · v̂ −DU(q)

+ F(t, q,v)− λ⊤ ·DΦ(q)
)
· δq −Φ⊤(q) · δλdt,

where we have omitted the argument t again. As before, this has to hold for all variations,
thus (2.31) follows with

f
(
t, q(t),v(t)

)
= −DU⊤

(
q(t)

)
+ F⊤(t, q(t),v(t)

)
.

Remark 2.37: Mechanical systems with nonholonomic constraints.

This time, we consider a mechanical system as in remark 2.35, but the system is subjected
to nonholonomic constraints in Pfaffian form

0 = B
(
q(t)

)
· v(t), (2.41)

where B
(
q(t)

)
∈ Rknonhol×n, where k+ knonhol ≤ n. This kind of nonholonomic constraint

can appear when there is sliding or rolling without slip in the system [69].
The variational principle we use to derive the equations of motion is similar to Hamil-

ton’s principle of stationary action (2.39), but we have to require that the nonholonomic
constraint is also fulfilled for the variations δq(t). This can be explained by the fact
that each perturbed trajectory qϵ(t) which is the solution of (2.39b), see remark 2.34,

36

has to fulfill the nonholonomic constraints as well. Thus, the variational principle for
conservative systems reads

0 = δS
(
q,λ

)
, (2.42a)

δq(t) = dLq(t)(e) δ̃q(t), (2.42b)

0 = δq(t0) = δq(te), (2.42c)

0 = B
(
q(t)

)
· δq(t). (2.42d)

Just as in remark 2.35, it follows

0 =

∫ te

t0

(
−v̇⊤ ·M + v⊤ ·M · v̂ −DU(q)− λ⊤ ·DΦ(q)

)
· δq −Φ⊤(q) · δλ dt,

but this time, this has to hold for all variations δq(t) that fulfill (2.42d) and all variations
δλ(t). Here, the factor in front of δq(t) does not have to vanish, but its transpose still
has to be an element of the image of B⊤(q(t)) for each t ∈ [t0, te]. We will represent this
element as B⊤(q(t)) · µ(t), where µ(t) ∈ Rknonhol . Combining the above statements, we
get the equations of motion

q̇(t) = dLq(t) ṽ(t), (2.43a)

M · v(t) = v̂(t)
⊤
·M · v(t) + f

(
t, q(t),v(t)

)
−DΦ⊤(q(t)) · λ(t)−B⊤(q(t)) · µ(t),

(2.43b)

0 = Φ
(
q(t)

)
, (2.43c)

0 = B
(
q(t)

)
· v(t). (2.43d)

This way of deriving the equations of motion is well-known for the case that G = Rn,
see [33].

Remark 2.38: Unconstrained mechanical systems.

If we considered a mechanical system without constraints, the equations of motion take
the form

q̇(t) = dLq(t) ṽ(t), (2.44a)

M · v̇(t) = v̂(t)
⊤
·M · v(t) + f

(
t, q(t),v(t)

)
. (2.44b)

We could think of them as the same equations of motion (2.31) with Φ
(
q(t)

)
∈ R0

and λ(t) ∈ R0 being vectors in the zero-dimensional vector space R0 = {0}. This
interpretation means that we simply omit all occurrences of Φ and λ. Here, a⊤ · b = 0
for all a, b ∈ R0. Mathematically, however, (2.44) is an ordinary differential equation,
whereas (2.31) is a DAE. Treating an ODE as a special case of a DAE is unusual, but all
results for these semi-explicit DAEs hold as long as they do not explicitly require the
number of constraints to be nonzero. A DAE, however, cannot be treated as if it was an
ODE [37, 78].

37

2.6. Lie Groups as Riemannian Manifolds and Metric Spaces

In this subsection, we will construct a metric tensor on a smooth, n-dimensional Lie group
G with certain properties. From this, we can construct a notion of distance between
arbitrary points of the Lie group, thus constructing a metric space which inherits the
properties of the metric tensor.

Consider a scalar product

⟨•, •⟩e : TeG× TeG→ R (2.45)

on the Lie algebra TeG. Such a scalar product exists, since TeG is a finite-dimensional
linear space. It is most convenient in the context of this thesis to apply the concept of
derivative vectors and therefore, use a tilde operator (2.16) to construct ⟨•, •⟩e from the
Euclidean scalar product on Rn:

⟨ã, b̃⟩e = ã⊤ · b. (2.46)

The Lie group operation relates all tangent spaces among each other, thus we can
immediately define

⟨•, •⟩q : TqG× TqG→ [0,∞), (a, b) 7→ ⟨a, b⟩q = ⟨dLq−1(q) a,dLq−1(q) b⟩e (2.47)

for q ∈ T \ {e}. It is obvious that ⟨•, •⟩q is a scalar product on the tangent space TqG
for any q ∈ G. Since the left multiplication is smooth, the mapping q 7→ ⟨X(q), Y (q)⟩q
is smooth for all smooth vector fields X,Y on G. That means we can use ⟨•, •⟩q as
a positive-definite metric tensor and the Lie group G equipped with ⟨•, •⟩q becomes a
Riemannian manifold.

Lemma 2.39: Left invariance of ⟨•, •⟩q.
The metric tensor ⟨•, •⟩q is left invariant:

⟨dLr(q) a,dLr(q) b⟩Lr(q) = ⟨a, b⟩q, for all q, r ∈ G and a, b ∈ TqG. (2.48)

Proof. Let r, q ∈ G, a, b ∈ TqG and consider

⟨dLr(q) a,dLr(q) b⟩Lr(q) =
〈
dLLr(q)−1

(
Lr(q)

)
dLr(q) a,dLLr(q)−1

(
Lr(q)

)
dLr(q) b

〉
e

=
〈
dLq−1◦r−1(r ◦ q) dLr(q) a,dLq−1◦r−1(r ◦ q) dLr(q) b

〉
e

=
〈
dLq−1◦r−1◦r(q) a,dLq−1◦r−1◦r(q) b

〉
e

= ⟨a, b⟩q,

where we have used (2.3).

A right invariant metric tensor ⟨•, •⟩∗,q has the property

⟨dRr(q) a,dRr(q) b⟩∗,Rr(q) = ⟨a, b⟩∗,q, for all q, r ∈ G and a, b ∈ TqG, (2.49)

where
Rr : G→ G, q 7→ Rr(q) = q ◦ r

38

is the right multiplication for all r ∈ G. Metric tensors that are left and right invariant are
called bi-invariant. Compact Lie groups, as well as Abelian Lie groups have bi-invariant
metric tensors [2]. In the case of simply connected Lie groups, bi-invariant metric tensors
exist if and only if the Lie group G is a direct product of compact Lie groups and
Abelian Lie groups [2, Section 2.4]. The Lie group SE(3) is a classical example of
a Lie group, where one-parameter subgroups τ 7→ exp(τV) with constant V ∈ se(3)
cannot be geodesics [34, Chapter 2.2], which is equivalent to the fact that no bi-invariant
Riemannian metric tensor can exist. Unfortunately, the metric tensor ⟨•, •⟩q from (2.47)
is not generally right invariant.

Now, we will use the metric tensor in order to define a distance function on G, see
e. g. [29]. In order to do so, we define a norm on each tangent space by

∥ • ∥q : TqG→ [0,∞), a 7→ ∥a∥q =
√
⟨a, a⟩q. (2.50)

Due to the definition (2.47) of ⟨•, •⟩q, we immediately receive

∥a∥q = ∥dLq−1(q) a∥e (2.51)

and due to the left invariance (2.48) it follows

∥dLr(q) a∥Lr(q) = ∥a∥q (2.52)

for all r ∈ G. Now, we define the set of all differentiable curves from p ∈ G to q ∈ G by

Γ(p, q) = {γ ∈ C1([0, 1]→ G) : γ(0) = p, γ(1) = q},

the length of a curve γ ∈ Γ(p, q) by

 L(γ) =

∫ 1

0
∥γ′(s)∥γ(s) ds,

and finally the distance between p and q by

d : G×G→ [0,∞), (p, q) 7→ d(p, q) = inf
γ∈Γ(p,q)

 L(γ). (2.53)

Lemma 2.40: G is a metric space.

The tuple (G, d) is a metric space.

Proof. We need to show positive definiteness, symmetry and the triangle inequality. Let
p, q ∈ G:

Positive definiteness: It is trivial that d(p, q) ≥ 0. For γ(s) ≡ p, we have γ ∈ Γ(p, p)
and from γ′(s) ≡ 0 it follows d(p, p) = 0.

39

Symmetry: For every γ ∈ Γ(p, q) there is a σ ∈ Γ(q, p) defined by σ(s) = γ(1− s). Both
curves have the same length since

 L(σ) =

∫ 1

0
∥σ′(s)∥σ(s) ds =

∫ 1

0
∥−γ′(1− s)∥γ(1−s) ds

=

∫ 0

1
−∥γ′(s)∥γ(s) ds =

∫ 1

0
∥γ′(s)∥γ(s) ds = L(γ).

Obviously, the mapping

Γ(p, q)→ Γ(q, p), γ(s) 7→ γ(1− s)

is a bijection that keeps the length invariant. Therefore

d(p, q) = inf
γ∈Γ(p,q)

 L(γ) = inf
σ∈Γ(q,p)

 L(σ) = d(q, p).

Triangle inequality: Let r ∈ G and σ1 ∈ Γ(p, r), σ2 ∈ Γ(r, q). Define the following
piece-wise differentiable curve from p to q:

γ(s) =

{
σ1(2s), s ∈ [0, 1/2)

σ2(2s− 1), s ∈ [1/2, 1].

This curve γ is not an element of Γ(p, q), because it may be not differentiable at s = 1/2.
Nevertheless, we can calculate its length:

 L(γ) =

∫ 1

0
∥γ′(s)∥γ(s) ds =

∫ 1/2

0
∥2σ′1(2s)∥σ1(2s) ds+

∫ 1

1/2
∥2σ′2(2s− 1)∥σ2(2s−1) ds

=
1

2

∫ 1

0
∥2σ′1(s)∥σ1(s) ds+

1

2

∫ 1

0
∥2σ′2(s)∥σ2(s) ds = L(σ1) + L(σ2).

Let γm ∈ Γ(p, q) be a sequence with L(γm − γ) → 0. The length is continuous, so we
have L(γ) = limm→∞ L(γm). Now, we know that for each m ∈ N it holds

d(p, q) = inf
σ∈Γ(p,q)

 L(σ) ≤ L(γm),

by letting m→∞ follows

d(p, q) ≤ L(γ) = L(σ1) + L(σ2)

and finally by taking the infimum over all σ1 ∈ Γ(p, r) and all σ2 ∈ Γ(r, q):

d(p, q) ≤ inf
σ1∈Γ(p,r)

 L(σ1) + inf
σ2∈Γ(r,q)

 L(σ2) = d(p, r) + d(r, q).

Lemma 2.41: Logarithm and distance.

Let p, q ∈ G be sufficiently close to each other such that p−1 ◦ q ∈ exp(TeG). Then it
holds

d(p, q) ≤ ∥l̃og(p−1 ◦ q)∥2 = ∥l̃og(q−1 ◦ p)∥2, (2.54)

if the metric tensor was constructed using (2.46).

40

Proof. For p, q ∈ G and γ(s) = p ◦ ẽxp
(
s l̃og(p−1◦ q)

)
it holds γ ∈ Γ(p, q). The derivative

of γ is given by
γ′(s) = dLγ(s)(e) log(p−1 ◦ q),

see (2.9). Then we have

 L(γ) =

∫ 1

0
∥dLγ(s)(e) log(p−1 ◦ q)∥γ(s) ds =

∫ 1

0
∥log(p−1 ◦ q)∥e ds = ∥l̃og(p−1 ◦ q)∥2,

where we have used the left invariance, see (2.48), the definition of the scalar product,
see (2.46), and the fact that the norm induced by the Euclidean scalar product of Rn is
the Euclidean norm ∥ • ∥2. The last equality follows from (2.12), which implies

l̃og(p−1 ◦ q) = − l̃og
(
(p−1 ◦ q)−1

)
= − l̃og(q−1 ◦ p).

Lemma 2.42: A Lipschitz condition for differentiable functions on G.

Consider a differentiable function φ : G→ G and a bounded and connected set U ⊂ G.
Then there is a constant κ > 0 such that

d
(
φ(p), φ(q)

)
≤ κ d(p, q) for all p, q ∈ U.

To be more precise, the function φ only has to be differentiable on the set

K(U) =
{
p ∈ G : 2d(p, u) ≤ sup

a,b∈U
d(a, b) for all u ∈ U

}
.

Proof. Let p, q ∈ G. We consider the derivative dφ(q) : TqG→ Tφ(q)G and its operator
norm

∥dφ(q)∥φ(q),q = sup
0̸=a∈TqG

∥dφ(q) a∥φ(q)
∥a∥q

.

The operator norm of linear operators of finite-dimensional linear spaces is always finite
and it follows

∥dφ(q) a∥φ(q) ≤ ∥dφ(q)∥φ(q),q ∥a∥q for all a ∈ TqG.

Now, let γ ∈ Γ(p, q) with γ(s) ∈ K(U) for all s ∈ [0, 1] and consider the length of the
image of γ under φ:

 L(φ ◦ γ) =

∫ 1

0
∥(φ ◦ γ)′(s)∥(φ◦γ)(s) ds =

∫ 1

0
∥dφ

(
γ(s)

)
γ′(s)∥

φ
(
γ(s)
) ds

≤
∫ 1

0
∥dφ

(
γ(s)

)
∥
φ
(
γ(s)
)
,γ(s)
∥γ′(s)∥γ(s) ds ≤ κ L(γ) (2.55)

with

κ = sup
g∈K(U)

∥dφ(g)∥φ(g),g.

41

Since φ is differentiable on the closed and bounded set K(U) ⊆ G, its derivative has
to be continuous on K(U) and therefore, the supremum exists and is finite due to the
extreme value theorem.

Now, consider a sequence (γm)m∈N ⊆ Γ(p, q) with L(γm) → d(p, q) for m → ∞. We
can assume that γm([0, 1]) ⊂ K(U) due to the triangle inequality and the definition of
K(U). By putting γm in (2.55) and taking the limit m→∞, the claim follows.

Lemma 2.43: A qualitative Lipschitz condition.

Consider a continuously differentiable function F : G→ Rw for w ∈ N and a(h), b(h) ∈ G
such that d

(
a(h), b(h)

)
→ 0 for h→ 0. Then it holds

F
(
a(h)

)
− F

(
b(h)

)
∈ O

(
d
(
a(h), b(h)

))
.

Proof. Let h ∈ R be fixed and γ : [0, 1]→ G be a differentiable curve from a(h) to b(h).
Then we use the fundamental theorem of calculus to see that

F
(
γ(1)

)
− F

(
γ(0)

)
=

∫ 1

0
dF
(
γ(s)

)
γ′(s) ds.

Now, we can use the generalized triangle inequality to obtain∥∥F (a(h)
)
− F

(
b(h)

)∥∥
2
≤
∫ 1

0
∥dF

(
γ(s)

)
γ′(s)∥2 ds.

Similar to the proof of lemma 2.42, we conclude

∥dF
(
γ(s)

)
γ′(s)∥2 ≤ ∥dF

(
γ(s)

)
∥2,γ(s) ∥γ′(s)∥γ(s)

from the fact that linear operators of finite-dimensional linear spaces always have a finite
operator norm. It follows∥∥F (a(h)

)
− F

(
b(h)

)∥∥
2
≤
∫ 1

0
∥dF

(
γ(s)

)
∥2,γ(s) ∥γ′(s)∥γ(s) ds.

Then, we can take the maximum of the norm ∥dF
(
γ(s)

)
∥2,γ(s) over a compact set and

take the infimum over all curves γ. The compact set could be, e. g. the closure of
{g ∈ G : d(a, g) + d(g, b) ≤ d(a, b) + ε} for an ε > 0. The argument holds since all
sufficiently short curves from a to b have to belong to that set. We can conclude that
there exists a K > 0 such that∥∥F (a(h)

)
− F

(
b(h)

)∥∥
2
≤ Kd

(
a(h), b(b)

)
.

Now, the assertion follows.

Lemma 2.44: Left invariance.

The distance function d is left invariant in the sense that

d(r ◦ p, r ◦ q) = d(p, q)

for all r, p, q ∈ G.

42

Proof. The assertion follows directly from lemma 2.39 and the definition of d in (2.53).

Lemma 2.45: Almost right invariance.

The distance function d is almost right invariant in the sense that

d(p ◦ r, q ◦ r) ≤ ϱ(r)d(p, q)

for all r, p, q ∈ G, where ϱ : G→ [0,∞) is continuous.

Proof. Two versions of a proof can be found in [70]. Let p, q, r ∈ G and a ∈ TqG. Since
right-multiplication and left-multiplication commute

Lp

(
Rr(q)

)
= p ◦ q ◦ r = Rr

(
Lp(q)

)
,

we have

dLp

(
Rr(q)

)
dRr(q) = dRr

(
Lp(q)

)
dLp(q). (2.56)

Consider now

∥dRr(q) a∥Rr(q) = ∥dL(q◦r)−1(q ◦ r) dRr(q) a∥e
= ∥dRr

(
L(q◦r)−1(q ◦ r)

)
dL(q◦r)−1(q) a∥e

= ∥dRr

(
e
)

dLr−1(e) dLq−1(q) a∥e
≤ ∥dRr

(
e
)

dLr−1(e)∥e,e ∥dLq−1(q) a∥e = ϱ(r)∥a∥q,

where we have used (2.3) and defined ϱ(r) = ∥dRr

(
e
)

dLr−1(e)∥e,e. Since Lie group
multiplication and inversion are differentiable, ϱ must at least be continuous.

For the set of differentiable curves from p ◦ r to q ◦ r it holds

Γ(p ◦ r, q ◦ r) = {Rr ◦ γ : γ ∈ Γ(p, q)},

so we can write each element σ ∈ Γ(p ◦ r, q ◦ r) as σ(s) = γ(s) ◦ r = (Rr ◦ γ)(s) for a
γ ∈ Γ(p, q). For the length it holds

 L(σ) =

∫ 1

0
∥σ′(s)∥σ(s) ds =

∫ 1

0
∥dRr

(
γ(s)

)
γ′(s)∥Rr(γ(s)) ds

≤
∫ 1

0
ϱ(r)∥γ′(s)∥γ(s) ds = ϱ(r) L(γ).

Now, it follows

d(p ◦ r, q ◦ r) = inf
σ∈Γ(p◦r,q◦r)

 L(σ) = inf
γ∈Γ(p,q)

 L(Rr ◦ γ)

≤ ϱ(r) inf
γ∈Γ(p,q)

 L(γ) = ϱ(r)d(p, q).

43

The following lemma can be used in the error analysis of Lie group methods for solving
differential equations on Lie groups, as has been done in e. g. [29, 70]. It replaces the
triangle inequality for norms in vector spaces in the form of

∥(a1 + b1)− (a2 + b2)∥ ≤ ∥a1 − a2∥+ ∥b1 − b2∥

for vectors a1,a2, b1, b2.

Lemma 2.46: Error translation.

For a left invariant and almost right invariant distance d on G it holds

d(a1 ◦ b1, a2 ◦ b2) ≤ ϱ(bk)d(a1, a2) + d(b1, b2), k = 1, 2

for a1, a2, b1, b2 ∈ G.

Proof. A similar proof can be found in [70]. We use the triangle inequality, left invariance,
and almost right invariance:

d(a1 ◦ b1, a2 ◦ b2) ≤ d(a1 ◦ b1, a1 ◦ b2) + d(a1 ◦ b2, a2 ◦ b2)
≤ d(b1, b2) + ϱ(b2)d(a1, a2).

The result for k = 1 follows in the same way.

Remark 2.47: Right invariant, almost left invariant metric.

We could also, instead of using the left translation in (2.47), use the right translation.
This would yield a distance function d that is right invariant, see lemma 2.44,

d(p ◦ r, q ◦ r) = d(p, q)

and only almost left invariant, see lemma 2.45,

d(r ◦ p, r ◦ q) ≤ ρ(r)d(p, q)

for all r, p, q ∈ G with a continuous ρ : G → [0,∞). Lemmas 2.40, 2.41, 2.42 and 2.43
still hold for this left invariant metric. The error translation from lemma 2.46 becomes

d(a1 ◦ b1, a2 ◦ b2) ≤ d(a1, a2) + ρ(ak)d(b1, b2), k = 1, 2

for a1, a2, b1, b2 ∈ G.

Remark 2.48: Bi-invariant metric.

Consider a connected and simply connected Lie group G. If there exists a bi-invariant
metric on G then G must be isomorphic to a direct product of a compact Lie group and
an Abelian Lie group, see [2, Section 2.4].

44

Let G = K ×Rn be connected and simply connected, where K is a compact Lie group
and n ∈ N ∪ {0}. Let the identity element of G be (e,0) ∈ G. Then we can choose the
following scalar product (2.45):〈[

k1
v1

]
,

[
k2
v2

]〉
e

= −B(k1, k2) + ⟨v1,v2⟩Rn ,

where k1, k2 ∈ TeK and v1,v2 ∈ T0Rn = Rn, ⟨•, •⟩Rn is a scalar product on Rn, B is the
Cartan-Killing-Form of K defined by

B(k̃1, k̃2) = trace(k̂1 · k̂2),

where •̂ and •̃ are the hat operator and the tilde operator of K, see [2, Theorem 2.35].
This leads to a bi-invariant metric and distance function, which is unique up to a constant
and up to the choice of ⟨•, •⟩Rn , [2, Proposition 2.48].

For any Lie group G with a bi-invariant metric, the exponential map exp is surjective
and the shortest curve (geodesic) from p ∈ G to q ∈ G with respect to this metric is
given by

[0, 1]→ G, s 7→ p ◦ exp
(
s log(p−1 ◦ q)

)
,

see [2, Theorem 2.27]. This means that the interpolation Ip from (2.24) is a geodesic
interpolation for the Lie groups R3, S3, SO(3) and their direct products, but is not
generally geodesic for SE(3), see [34, Chapter 2.2], and therefore the same holds for
S3 ⋉R3 and UDQ.

45

3. RATTLie

In order to simulate a mechanical system, a suitable time integration method has to be
applied for finding an approximate solution to the equations of motion of the system. In
this thesis, we are focusing on constrained mechanical systems whose equations of motion
take the form (2.31a) of a DAE on a (finite-dimensional, real) Lie group G. There are
already some numerical integrators designed to solve this kind of equation such as the
Lie group generalized-α method [18] or the BLieDF-method [84].

In this section, we will discuss such a time integration method – RATTLie [44]:

qn+1 = qn ◦ ẽxp(hnvn+1/2) (3.1a)

M · vn = T−⊤(−hnvn+1/2) ·M · vn+1/2 −
hn
2
f(tn, qn,vn) +

hn
2

DΦ⊤(qn) · λ+
n (3.1b)

0 = Φ(qn+1) (3.1c)

M · vn+1 = T−⊤(hnvn+1/2) ·M · vn+1/2

+
hn
2
f(tn+1, qn+1,vn+1)−

hn
2

DΦ⊤(qn+1) · λ−
n+1 (3.1d)

0 = DΦ(qn+1) · vn+1. (3.1e)

It approximates the solution q(t) and v(t) of (2.31) on a time grid {t0, t1, . . . , tN} with
variable time step sizes hn = tn+1 − tn and consistent initial conditions

q0 = q(t0), v0 = v(t0). (3.1f)

RATTLie was inspired by the well-known integration scheme RATTLE, which was first
developed by Andersen [5], where it was applied in the field of molecular dynamics. Later,
RATTLE was analyzed numerically as a symplectic integration scheme with order of
convergence of two [35]. It can be considered an extension of the symplectic Euler scheme
to constrained systems [35], but it can also be seen as a variational integrator [63]. In
this thesis, we use the approach of variational integrators together with the toolkit of
Lie groups in order to derive RATTLie [44], a generalization of RATTLE to Lie group
structured configuration spaces. Variational Lie group integrators have been considered
before, see e. g. [24, 54], but here, we work with the concept of derivative vectors [8, 16],
where the unknowns are from a linear space which parametrizes the corresponding Lie
algebra and therefore the tangent spaces. While RATTLE is usually only considered with
constant step sizes, we allow an arbitrary time grid. There has been research on RATTLE
with variable time step sizes in [10], but here we do not need any time reparametrization.
First, conservative systems are considered and subsequently external forces are added to
the system.

Apart from RATTLie itself, we will derive two close relatives: Firstly, the integration
scheme SHAKELie, which can be considered a generalization of SHAKE. Unfortunately, it
ultimately suffers from the same problems as SHAKE, namely an accumulation of round-
off errors [35, Section VII.1.4], see also [6]. Secondly, we extend RATTLie to nonholonomic
constraints, which we had already published in the conference proceedings [41]. This

46

follows along the lines of the work of Ferraro et al. [30], but uses the approach of
variational integrators as well as Lie group structured configuration spaces.

Then we analyze the convergence behavior of RATTLie. Here, we do not rely on
the symplecticity of RATTLie or the fact that we derived it as a variational integrator.
Instead, we construct a special metric on the Lie group which is the configuration space,
similar to the work of Faltinsen [29], see also [70], and follow along the lines of the
convergence analysis of one-step methods [36, 78]. This comprises the analysis of the
local error, which can be done by applying Taylor’s theorem and the BCH formula, as
well as the analysis of the global error, where the error propagation has to be considered.
Subsequently, we analyze how to calculate the Lagrange multipliers, which is not straight-
forward, since the λ+

n and λ−
n do not approximate the Lagrange multiplier λ(t) in a

desirable manner.
Lastly, we will give some implementation details for RATTLie as well as for the

nonholonomic RATTLie, including algorithms in pseudocode.

3.1. Derivation

In this section, we will show how to derive RATTLie using tools from variational
integrators. A major part of the following derivation has already been published in [44].

3.1.1. Conservative Systems

First, we will consider constrained conservative systems with a potential energy U
(
q(t)

)
, a

kinetic energy T
(
v(t)

)
= 1

2v
⊤(t)·M·v(t) and the constraints 0 = Φ

(
q(t)

)
. The continuous

equations of motion can be derived using the variational principle (2.39), where the
Lagrange multiplier λ(t) is introduced. We consider a time grid t0 < t1 < · · · < tN = te
with time step sizes hn = tn+1 − tn for n = 0, . . . , N − 1. Now, we will restrict the
admissible functions q to continuous functions qd with piecewise constant derivative
vectors. Specifically,

qd(t) = qn ◦ ẽxp
(
(t− tn)vn+1/2

)
, t ∈ [tn, tn+1] (3.2)

where

vn+1/2 =
1

hn
l̃og(q−1n ◦ qn+1) (3.3)

for n = 0, . . . , N − 1. This means that qd(t) = pIp
(
t, (tn)n=0,...,N , (qn)n=0,...,N

)
with the

piecewise interpolation from remark 2.27. We can see that vn+1/2 actually coincides with
the derivative vector for t ∈ (tn, tn+1). In the following short proof we will write the tilde
operator as τ(•) = •̃ and use the differential dexp of the exponential map, see (2.15):

q̇d(t) = dLqn

(
ẽxp
(
(t− tn)vn+1/2

))
dexp

(
(t− tn)vn+1/2

)
τ
(d

dt
(t− tn)vn+1/2

)
= dLqn

(
ẽxp
(
(t− tn)vn+1/2

))
dL

exp
(
(t−tn)vn+1/2

)(e) τ(T((t− tn)vn+1/2

)
· vn+1/2

)
= dL

qn◦ẽxp
(
(t−tn)vn+1/2

)(e) ṽn+1/2 = dLqd(t)(e) ṽn+1/2. (3.4)

47

Here we have used (2.19), (2.3), and that (t− tn)vn+1/2 commutes with vn+1/2. Thus,

we can define the derivative vectors vd by

q̇d(t) = dLqd(t)(e) ṽ
d(t), t ̸= tn, n = 0, . . . , N, (3.5)

vd(t) = vn+1/2, t ∈ (tn, tn+1), n = 0, . . . , N − 1. (3.6)

We also allow λd, the Lagrange multiplier associated with qd, to be discontinuous at
t0, . . . , tN and define the one-sided limits

λ+
n = lim

δ→0+0
λd(tn + δ), n = 0, . . . , N − 1,

λ−
n = lim

δ→0−0
λd(tn + δ), n = 1, . . . , N.

Now, we will put the qd and λd in the action functional (2.38), split up the integration
interval and approximate the remaining integral with the trapezoidal rule:

S(qd,λd) =

∫ te

t0

T
(
vd(t)

)
− U

(
qd(t)

)
−Φ⊤(qd(t)

)
· λd(t) dt

=

N−1∑
n=0

(∫ tn+1

tn

T
(
vd(t)

)
dt−

∫ tn+1

tn

U
(
qd(t)

)
+Φ⊤(qd(t)

)
· λd(t) dt

)

=
N−1∑
n=0

(
hn
2
v⊤n+1/2 ·M · vn+1/2 −

∫ tn+1

tn

U
(
qd(t)

)
+Φ⊤(qd(t)

)
· λd(t) dt

)

≈
N−1∑
n=0

(
hn
2
v⊤n+1/2 ·M · vn+1/2 −

hn
2

(
U
(
qd(tn)

)
+Φ⊤(qd(tn)

)
· λ+

n

)
− hn

2

(
U
(
qd(tn+1)

)
+Φ⊤(qd(tn+1)

)
· λ−

n+1

))

=
N−1∑
n=0

hn
2

(
v⊤n+1/2 ·M · vn+1/2 − U

(
qn
)
−Φ⊤(qn) · λ+

n − U
(
qn+1

)
−Φ⊤(qn+1) · λ−

n+1

)
=: Sd

(
(qn)Nn=0, (λ

+
n)N−1

n=0 , (λ
−
n)Nn=1

)
,

where we define the discrete action functional Sd in terms of the discrete configurations qn
for n = 0, . . . , N and the one-sided limits of the Lagrange multiplier λ+

n for n = 0, . . . , N−1
and λ−

n for n = 1, . . . , N . We introduce the discrete augmented Lagrange function

Ld(qn, qn+1,λ
+
n ,λ

−
n+1) =

hn
2

(
v⊤n+1/2 ·M · vn+1/2 − U(qn)−Φ⊤(qn) · λ+

n

− U(qn+1)−Φ⊤(qn+1) · λ−
n+1

)
,

 (3.7)

which allows us to write

Sd
(
(qn)Nn=0, (λ

+
n)N−1

n=0 , (λ
−
n)Nn=1

)
=

N−1∑
n=0

Ld(qn, qn+1,λ
+
n ,λ

−
n+1).

48

Now, we use a discrete analogue of the variational principle (2.39) in order to derive
the discrete equations of motion:

0 = δSd
(
(qn)Nn=0, (λ

+
n)N−1

n=0 , (λ
−
n)Nn=1

)
, (3.8a)

δq0 = δqN = 0 , (3.8b)

where δqn are the derivative vectors of qn with respect to the variation, see (2.39b).
Then, we interchange variation and summation in (3.8) and shift indices, keeping (2.18)
and (3.8b) in mind:

0 =

N−1∑
n=0

(
D1Ld(qn, qn+1,λ

+
n ,λ

−
n+1) · δqn + D2Ld(qn, qn+1,λ

+
n ,λ

−
n+1) · δqn+1

+ d3Ld(qn, qn+1,λ
+
n ,λ

−
n+1) · δλ+

n + d4Ld(qn, qn+1,λ
+
n ,λ

−
n+1) · δλ−

n+1

)
0 =

N−1∑
n=1

D1Ld(qn, qn+1,λ
+
n ,λ

−
n+1) · δqn +

N∑
n=1

D2Ld(qn−1, qn,λ
+
n−1,λ

−
n) · δqn

+

N−1∑
n=0

d3Ld(qn, qn+1,λ
+
n ,λ

−
n+1) · δλ+

n +

N∑
n=1

d4Ld(qn−1, qn,λ
+
n−1,λ

−
n) · δλ−

n

=

N−1∑
n=1

(
D1Ld(qn, qn+1,λ

+
n ,λ

−
n+1) + D2Ld(qn−1, qn,λ

+
n−1,λ

−
n)
)
· δqn

+
N−1∑
n=0

d3Ld(qn, qn+1,λ
+
n ,λ

−
n+1) · δλ+

n +
N∑

n=1

d4Ld(qn−1, qn,λ
+
n−1,λ

−
n) · δλ−

n .

Since this has to hold for all variations (δqn)N−1
n=1 , (δλ

+
n)N−1

n=0 , (δλ
−
n)Nn=1, we get the discrete

equations of motion

D1Ld(qn, qn+1,λ
+
n ,λ

−
n+1) + D2Ld(qn−1, qn,λ

+
n−1,λ

−
n) = 0 , n = 1, . . . , N − 1, (3.9a)

d3Ld(qn, qn+1,λ
+
n ,λ

−
n+1) = 0 , n = 0, . . . , N − 1, (3.9b)

d4Ld(qn−1, qn,λ
+
n−1,λ

−
n) = 0 , n = 1, . . . , N. (3.9c)

Now, we rearrange (3.9a):

−D1Ld(qn, qn+1,λ
+
n ,λ

−
n+1) = D2Ld(qn−1, qn,λ

+
n−1,λ

−
n), n = 1, . . . , N − 1.

The left-hand side and the right-hand side define two matching canonical momenta p+n
and p−n , respectively. This approach is called the discrete Legendre transformation [63].
Applying the inverse of the continuous Legendre transform, we write the momenta in
terms of velocities:

p+n = p−n = (M · vn)⊤,

49

which are associated with the configurations qn for n = 1, . . . , N − 1. Then, we can
write (3.9a) in the form

(M · vn)⊤ = −D1Ld(qn, qn+1,λ
+
n ,λ

−
n+1), n = 1, . . . , N − 1, (3.10a)

(M · vn+1)
⊤ = D2Ld(qn, qn+1,λ

+
n ,λ

−
n+1), n = 0, . . . , N − 2. (3.10b)

We can easily see that (3.10) is equivalent to (3.9) and the back-transformation from
momenta to velocities justifies that vn is an approximation to v(tn).

If we look at (3.9b) and (3.9c), we notice that they are the same for n = 1, . . . , N − 1
since

d3Ld(qn, qn+1,λ
+
n ,λ

−
n+1) = d4Ld(qn−1, qn,λ

+
n−1,λ

−
n) = DΦ⊤(qn).

Thus for n = 1, . . . , N − 1, we replace one of them by

0 = DΦ(qn) · vn, (3.11)

which is similar to the hidden constraint (2.32a), since we want the approximations
(qn,vn) to belong to the set {(q,v) ∈ G× Rn : 0 = Φ(q) = DΦ(q) · v}.

Now, we need to calculate the derivatives of Ld with respect to the first and second
argument D1Ld(qn, qn+1,λ

+
n ,λ

−
n+1) and D2Ld(qn, qn+1,λ

+
n ,λ

−
n+1). We keep in mind

that (3.3) is equivalent to vn+1/2 = ∆(qn, qn+1;hn), see lemma 2.24. Its derivatives are
thus given by

Dqnvn+1/2 = D1∆(qn, qn+1;hn) = − 1

hn
T−1(−hnvn+1/2), (3.12a)

Dqn+1vn+1/2 = D2∆(qn, qn+1;hn) =
1

hn
T−1(hnvn+1/2), (3.12b)

see lemma 2.25. Then, we can calculate the derivatives of the discrete Lagrangian by
applying (2.18) and (3.12) to (3.7) for n = 0, . . . , N − 1:

D1Ld(qn, qn+1,λ
+
n ,λ

−
n+1)

= −v⊤n+1/2 ·M ·T−1(−hnvn+1/2)−
hn
2

DU(qn)− hn
2

(λ+
n)⊤ ·DΦ(qn)

 (3.13a)

D2Ld(qn, qn+1,λ
+
n ,λ

−
n+1)

= v⊤n+1/2 ·M ·T−1(hnvn+1/2)−
hn
2

DU(qn+1)−
hn
2

(λ−
n+1)

⊤ ·DΦ(qn+1)

 (3.13b)

Now, by rearranging (3.3), using (3.13) in (3.10) together with (3.9b) and (3.11), the
equation take the form (3.1) for n = 0, . . . , N − 1 with

f(tn, qn,vn) = −DU⊤(qn), n = 0, . . . , N.

We have extended the index range in which the equations should hold to n = 0, . . . , N − 1
in order to obtain an integrator which can calculate approximations to q(tn) and v(tn)
for n = 1, . . . , N from consistent initial values q0 and v0. We can justify this by using
q−1 = q0 and qN+1 = qN as the boundaries with h−1 = hN = 0.

50

3.1.2. External Forces

In this section, we consider the same constrained mechanical system as before, but now
subjected to external forces F(t, q,v) depending on the time t, the configuration q, and
the derivative vector v. We derived the equations of motion for such a system by using
the variational principle (2.40). In order to derive a forced version of RATTLie, we
restrict the space of admissible functions q to continuous functions qd with piecewise
constant derivative vectors as in the previous section 3.1.1. The principle then reads

0 = δ

∫ te

t0

T
(
vd(t)

)
− U

(
qd(t)

)
dt+

∫ te

t0

F⊤(t, qd(t),vd(t)
)
· δqd(t) dt, (3.14)

where

δqd(t) = dLqd(t)(e) δ̃q
d(t), t ∈ [t0, te].

The first integral is treated in the same way as in section 3.1.1. For the second integral,
we use a similar method of splitting the integration interval, applying the trapezoidal
rule, and shifting the summation index:∫ te

t0

F⊤(t, qd(t),vd(t)
)
· δqd(t) dt

=
N−1∑
n=0

∫ tn+1

tn

F⊤(t, qd(t),vn+1/2

)
· δqd(t) dt

≈
N−1∑
n=0

hn
2

(
F⊤(tn, qn,vn+1/2) · δqn + F⊤(tn+1, qn+1,vn+1/2) · δqn+1

)
=

N−1∑
n=1

hn
2
F⊤(tn, qn,vn+1/2) · δqn +

N−1∑
n=1

hn−1

2
F⊤(tn, qn,vn−1/2) · δqn

=
N−1∑
n=1

hn
2
F⊤(tn, qn,vn+1/2) · δqn +

N−1∑
n=1

hn−1

2
F⊤(tn, qn,vn−1/2) · δqn,

keeping the boundary conditions (3.8b) in mind.
We then arrive, since the variational principle has to hold for all variations, at (3.9),

but with (3.9a) differing slightly and reading instead:

D1Ld(qn, qn+1,λ
+
n ,λ

−
n+1) +

hn
2
F⊤(tn, qn,vn+1/2)

+ D2Ld(qn−1, qn,λ
+
n−1,λ

−
n) +

hn−1

2
F⊤(tn, qn,vn−1/2) = 0

 (3.15)

for n = 1, . . . , N − 1, where Ld is defined by (3.7), as before. Just like in section 3.1.1,
we now apply the forced version of the discrete Legendre transformation [63], writing the
impulses (M · vn)⊤ in terms of velocities vn, replace one of the identical equations (3.9b)

51

and (3.9c) by the hidden constraint (3.11), as well as extend the index ranges. We end
up with (3.1), where

f(tn, qn,vn) = −DU⊤(qn) + F(tn, qn,vn), n = 0, . . . , N.

3.1.3. SHAKELie

In the previous sections, we have always used a discrete Legendre transformation. If,
however, we proceed directly with (3.9), we end up with a Lie group generalization of
SHAKE:

qn+1 = qn ◦ ẽxp(hvn+1/2), (3.16a)

hf(tn, qn,vn)− hDΦ⊤(qn) · λ±
n = T−⊤(−hvn+1/2) ·M · vn+1/2

−T−⊤(hvn−1/2) ·M · vn−1/2, (3.16b)

0 = Φ(qn+1) (3.16c)

for constant step sizes hn ≡ h and the Lagrange multiplier λ±
n = (λ+

n + λ−
n)/2. We can

see that SHAKELie is a two-step method that discretizes the index-3 formulation (2.31)
directly and that there are no approximations to v(tn). In order to start the method
from consistent initial configuration q0 and velocity v0, we need to calculate a v1/2, e. g.
by computing q1 by a first order method like the explicit Euler on Lie groups and then
set v1/2 = l̃og(q−10 ◦ q1)/h. The method does not include velocities vn ≈ v(tn), but they
could be approximated by interpolating the vn+1/2:

vn =
vn+1/2 + vn−1/2

2
.

We will later see in section 5.3, that SHAKELie is usable for coarse step sizes, but suffers
from the typical problems of index-3 integrators, see [6]. Not only the approximations
to the Lagrange multipliers become less precise for very small step sizes, but also the
approximations to the velocities. Therefore RATTLie is superior to SHAKELie in all
respects, which is why SHAKELie will not be analyzed further in this thesis.

3.1.4. Extension to Nonholonomic Constraints

Now, we consider a conservative mechanical system with holonomic constraints Φ(q) = 0
and, in addition, linear nonholonomic constraints B(q) · v = 0 with a matrix-valued
function B, such that the total number of constraints does not exceed the dimension
of G. We can use the variational principle (2.42) in order to derive the equations of
motion of the system. As before, we restrict the set of admissible functions to continuous
functions with piecewise constant derivative vectors and admit the Lagrange multipliers
for the holonomic constraints to be discontinuous at the times where the derivative
vectors are discontinuous, just as in section 3.1.1. We then arrive at a discrete variational
principle (3.8), but with the additional condition

0 = B(qn) · δqn, n = 0, . . . , N. (3.17)

52

Since the variational principle (3.8) has to hold for all variations δqn ∈ kerB(qn), the
left-hand side of (3.9a) does not have to vanish, but still has to lie in imB⊤(qn). This
is true since the coefficient of δqn must be orthogonal to the elements of kerB(qn) and

its orthogonal complement is
(
kerB(qn)

)⊥
= imB⊤(qn). We choose vectors µn ∈ Rk for

n = 1, . . . , N − 1 such that the discrete equations of motion take the form

D1Ld(qn, qn+1,λ
+
n ,λ

−
n+1) + D2Ld(qn−1, qn,λ

+
n−1,λ

−
n) =

hn−1 + hn
2

B⊤(qn) · µn (3.18)

for n = 1, . . . , N − 1 together with (3.9b) and (3.9c). Note that the factor hn−1+hn

2
in (3.18) is a scaling factor, which could be omitted, but ensures that the µn do not scale
with the step sizes.

As before, we use the forced discrete Legendre transformation [63], writing the impulses
(M ·vn)⊤ in terms of velocities vn. Again, we replace one of the identical equations (3.9b)
and (3.9b) by the hidden constraint (3.11) and extend the index ranges just like in
section 3.1.1. Eventually, we end up with

qn+1 = qn ◦ ẽxp(hnvn+1/2) (3.19a)

M · vn = T−⊤(−hnvn+1/2) ·M · vn+1/2 −
hn
2
f(tn, qn,vn) (3.19b)

+
hn
2

DΦ⊤(qn) · λ+
n +

hn
2
B⊤(qn) · µn, (3.19c)

0 = Φ(qn+1) (3.19d)

M · vn+1 = T−⊤(hnvn+1/2) ·M · vn+1/2 +
hn
2
f(tn+1, qn+1,vn+1) (3.19e)

− hn
2

DΦ⊤(qn+1) · λ−
n+1 −

hn
2
B⊤(qn+1) · µn+1, (3.19f)

0 = DΦ(qn+1) · vn+1, (3.19g)

0 = B(qn+1) · vn+1, (3.19h)

for n = 0, . . . , N with internal forces

f(tn, qn,vn) = −DU⊤(qn), n = 0, . . . , N.

Of course, we can follow along the lines of section 3.1.2 and take f to be the sum of
internal and external forces:

f(tn, qn,vn) = −DU⊤(qn) + F(tn, qn,vn), n = 0, . . . , N.

3.2. Convergence Analysis

In this section, we will show that the RATTLie integration scheme is convergent of second
order if f and Φ are smooth enough and some technical presumptions are fulfilled. This
convergence analysis is not based on symplecticity, which is used in the convergence
results in [35, 63] for RATTLE. Our approach views RATTLie as a one-step method of an

53

ODE in q and v, which is equivalent to (2.31) and then applies techniques from one-step
methods [36, 78] generalized to Lie groups. This means that this proof of convergence is
not only valid for constant time step sizes, but also holds for any series of time steps.
The calculation of approximations to the Lagrange multipliers is discussed in detail in
section 3.2.3. Their convergence follows from the convergence of RATTLie in q and v.

3.2.1. The Local Error

We will consider one time step from t0 to t1 = t0 + h0 with the RATTLie scheme. The
consistent initial data q0 = q(t0) and v0 = v(t0), see (3.1f), is supposed to be the exact
solution of the continuous system (2.31).

We assume that the functions f and Φ are smooth enough (C3 and C4 respectively),
the mass matrix M is invertible and that DΦ(q) always has full rank. Additionally, we
use the technical assumptions

v1/2,v1,λ
+
0 ,λ

−
1 ∈ O(1), for h0 → 0. (3.20)

From (2.21) and [64] we know that for h > 0 and w ∈ Rn it holds

T−1(hw) =
∞∑
i=0

(−1)ihiBi

i!
ŵi = I +

h

2
ŵ +

h2

12
ŵ2 +O(h4), (3.21)

where (Bi)i∈N0 are the Bernoulli numbers.
From (3.1b) and (3.21) truncated to first order we get

v1/2 = v0 +O(h0) (3.22)

and by inserting (3.22) and (3.21) into (3.1b)

v1/2 = v0 +
h0
2
M−1 ·

(
v̂⊤0 ·M · v0 + f0 −DΦ⊤(q0) · λ+

0

)
+O(h20)

(2.31b)
= v0 +

h0
2
v̇0 +

h0
2
M−1 ·DΦ⊤(q0)(λ(t0)− λ+

0) +O(h20), (3.23)

where v̇0 = v̇(t0), see (2.31b) and f0 = f(t0, q0,v0). Now, we plug (3.1a) into (3.1c),
use Taylor expansion of h 7→ Φ(q0 ◦ ẽxp(hv1/2)) around h = 0 up to third order, and
subsequently use (3.23):

0 = Φ(q0) + h0DΦ(q0) ·T(0) · v1/2 +
h20
2

D2Φ(q0)
(
T(0) · v1/2,T(0) · v1/2

)
+O(h30)

(3.22)
= h0DΦ(q0) · v1/2 +

h20
2

D2Φ(q0)(v0,v0) +O(h30)

(3.23)
= h0DΦ(q0) ·

(
v0 +

h0
2
v̇0 +

h0
2
M−1 ·DΦ⊤(q0)(λ(t0)− λ+

0)
)

+
h20
2

D2Φ(q0)(v0,v0) +O(h30). (3.24)

54

Here we have used the abbreviation (2.33). Since DΦ(q0) ·v0 = 0 and D2Φ(q0)(v0,v0) =
−DΦ(q0) · v̇0, see (2.32), equation (3.24) implies

λ+
0 = λ(t0) +O(h0), (3.25)

because DΦ(q0) ·M−1 ·DΦ⊤(q0) is invertible. Now, it follows from (3.23) and (3.25)

v1/2 = v0 +
h0
2
v̇0 +O(h20). (3.26)

By using a generalization of the qualitative Taylor theorem on Lie group valued functions,
see lemma 2.22 and also [64], as well as the Baker-Campbell-Hausdorff formula, see
lemma 2.13 and also [46], we obtain

q−11 ◦ q(t1)

= ẽxp
(
h0v0 +

h20
2
v̇0 +O(h30)

)−1
◦ q−10 ◦ q(t0) ◦ ẽxp

(
h0v(t0) +

h20
2
v̇(t0) +O(h30)

)
= ẽxp

(
−h0v0 −

h20
2
v̇0 + h0v(t0) +

h20
2
v̇(t0) +O(h30)

)
= ẽxp

(
O(h30)

)
(3.27)

with (3.1a) and (3.26).
Now, we subtract (3.1b) from (3.1d) and get

M · (v1 − v0) = h0v̂
⊤
1/2 ·M · v1/2 +

h0
2

(
f0 + f(t1, q1,v1)

)
− h0

2

(
DΦ⊤(q0) · λ+

0 + DΦ⊤(q1) · λ−
1

)
, (3.28)

since all odd Bernoulli numbers in (3.21) vanish, except for B1. Considering t1 =
t0 + h0, (3.27) and the technical assumptions (3.20), we can see that it holds

f(t1, q1,v1) = f(t0, q0,v0) +O(1) = f0 +O(1). (3.29)

From (3.28) it is clear that
v1 = v0 +O(h0) (3.30a)

and therefore it follows from (3.27) and (3.30a):

f(t1, q1,v1) = f0 +O(h0) (3.30b)

and furthermore, by using (3.1a) and (3.26) it holds

DΦ(q1) = DΦ(q0) ·T(0) +O(h0) = DΦ(q0) +O(h0) (3.30c)

55

Now, we can apply the above equations in (3.1d) and obtain

M · v1
(3.30)

= T−⊤(h0v1/2) ·M · v1/2 +
h0
2
f(t0, q0,v0)−

h0
2

DΦ⊤(q0) · λ−
1 +O(h20)

(3.21)
= M · v1/2 +

h0
2
v̂1/2

⊤ ·M · v1/2 +
h0
2
f(t0, q0,v0)−

h0
2

DΦ⊤(q0) · λ−
1 +O(h20)

(3.26)
= M · (v0 +

h0
2
v̇0) +

h0
2
v̂0

⊤ ·M · v0 +
h0
2
f(t0, q0,v0) (3.31)

− h0
2

DΦ⊤(q0) · λ−
1 +O(h20)

(2.31b)
= M ·

(
v0 + h0v̇0

)
− h0

2
DΦ⊤(q0) ·

(
λ−
1 − λ(t0)

)
+O(h20). (3.32)

Subsequently, we expand h 7→ DΦ(q0 ◦ ẽxp(hv1/2)) ·w for w ∈ Rn:

DΦ(q1) ·w = DΦ(q0) ·w + h0Z(q0,v1/2) ·w +O(h20), (3.33)

where Z(q0,v1/2) is the matrix that is given for the linear map w 7→ D2Φ(q0)(w,v1/2),
i. e. it holds

Z(p,a) · b = D2Φ(p)(b,a) (3.34)

for p ∈ G and a, b ∈ Rn. Now we consider (3.1e) and apply the above equations:

0
(3.33)

=
(
DΦ(q0) + h0Z(q0,v1/2)

)
· v1 +O(h20)

(3.32)
=

(
DΦ(q0) + h0Z(q0,v1/2) ·

(
v0 + h0v̇0 −

h0
2
M−1 ·DΦ⊤(q0) ·

(
λ−
1

− λ(t1)
))

+O(h20)

(3.22)
= DΦ(q0) ·

(
v0 + h0v̇0 −

h0
2
M−1 ·DΦ⊤(q0) ·

(
λ−
1 − λ(t1)

))
+ h0D

2(q0)(v0,v0) +O(h20)

(2.32)
=
−h0

2
DΦ(q0) ·M−1 ·DΦ⊤(q0) ·

(
λ−
1 − λ(t1)

)
+O(h20),

which in turn implies
λ−
1 = λ(t0) +O(h0), (3.35)

since DΦ(q0) ·M−1 ·DΦ⊤(q0) is invertible. Applying this result in (3.32) yields

v1 = v0 + h0v̇0 +O(h20). (3.36)

Let us now consider the time derivative of the dynamic equation (2.31b) at t = t0:

M · v̈0 =

=:A︷ ︸︸ ︷
v̂0

⊤ ·M · v̇0 + ̂̇v0⊤ ·M · v0 +

=:B︷ ︸︸ ︷
dtf0 + Dqf0 · v0 + dvf0 · v̇0

−DΦ⊤(q0) · λ̇(t0)− Z(q0,v0)
⊤ · λ(t0), (3.37)

56

where v̈0 = v̈(t0). By applying a Taylor expansion, we get

f(t0 + h, q0 ◦ ẽxp(hv1/2),v0 + hv̇0)

= f0 + h
(
dtf0 + Dqf0 ·T(0) · v1/2 + dvf0 · v̇0

)
+O(h2)

and with h = h0 as well as (3.26) it follows

f(t1, q1,v1) = f0 + h0B +O(h20). (3.38)

Furthermore, Taylor expansion of h0 7→ v(t0 + h0) yields

v(t1) = v0 + h0v̇0 +
h20
2
v̈0 +O(h30). (3.39)

Now we can consider (3.28):

M · v1
(3.26)

= M · v0 + h0v̂
⊤
0 ·M · v0 +

h0
2

(
h0A+ f0 + f(t1, q1,v1)−DΦ⊤(q0) · λ+

0

−DΦ⊤(q1) · λ−
1

)
+O(h30)

(3.38)
= M · v0 + h0v̂

⊤
0 ·M · v0 +

h0
2

(
h0(A+B) + 2f0 −DΦ⊤(q0) · λ+

0

−DΦ⊤(q1) · λ−
1

)
+O(h30)

(2.31b)
= M · (v0 + h0v̇0) +

h0
2

(
h0(A+B) + DΦ⊤(q0) ·

(
2λ(t0)− λ+

0

)
−DΦ⊤(q1) · λ−

1

)
+O(h30)

(3.33)
= M · (v0 + h0v̇0) +

h0
2

(
h0(A+B) + DΦ⊤(q0) ·

(
2λ(t0)− λ+

0

)
−
(
DΦ(q0) + h0Z(q0,v1/2)

)⊤ · λ−
1

)
+O(h30)

(3.22)
= M · (v0 + h0v̇0) +

h0
2

(
h0(A+B) + DΦ⊤(q0) ·

(
2λ(t0)− λ+

0 − λ−
1

)
− h0Z⊤(q0,v0) · λ−

1

)
+O(h30)

(3.35)
= M · (v0 + h0v̇0) +

h0
2

(
h0(A+B) + DΦ⊤(q0) ·

(
2λ(t0)− λ+

0 − λ−
1

)
− h0Z⊤(q0,v0) · λ(t0)

)
+O(h30)

(3.37)
= M ·

(
v0 + h0v̇0 +

h20
2
v̈0

)
+
h0
2

DΦ⊤(q0) ·
(
2λ(t0) + h0λ̇(t0)

− λ+
0 − λ−

1

)
+O(h30)

(3.39)
= M · v(t1) +

h0
2

DΦ⊤(q0) ·
(
2λ(t0) + h0λ̇(t0)− λ+

0 − λ−
1

)
+O(h30). (3.40)

Expanding DΦ(q1) – similar to (3.33) – but this time around q(t1) yields

DΦ(q1)
(3.27)

= DΦ
(
q(t1)

)
+O(h30). (3.41)

57

Now we can use (3.40), (3.41), and (2.32a) for t = t1 in (3.1e) and obtain

0 = DΦ
(
q(t1)

)
·
(
h0M

−1 ·DΦ⊤(q0) ·
(λ+

0 + λ−
1

2
− λ(t0)−

h0
2
λ̇(t0)

))
+O(h30),

which implies

λ+
0 + λ−

1

2
= λ(t0) +

h0
2
λ̇(t0) +O(h20) = λ

(t0 + t1
2

)
+O(h20), (3.42)

since DΦ is assumed to have full rank on the solution. Finally it follows

v1 − v(t1) = O(h30) (3.43)

by using (3.42) in (3.40).

3.2.2. The Global Error

We will analyze the global error of the RATTLie scheme on the direct product Lie group
G × Rn, where the elements in G represent the configuration and the elements of Rn

represent the velocity. This direct product structure is in contrast to the Lie group
structure G⋉Ad TeG that is induced by G on the tangent bundle TG, see e. g. [27], which
– as a manifold – is isomorphic to G× Rn.

We will adapt the proof of convergence for one-step methods [36, 78] to Lie groups. In
order to do so, we will consider RATTLie as a mapping (tn, qn,vn) 7→ (tn+1, qn+1,vn+1).
To be more specific, we can define functions φq and φv with

qn+1 = qn ◦ ẽxp
(
hnφ

q
(
tn, (qn,vn);hn

))
,

vn+1 = vn + hnφ
v
(
tn, (qn,vn);hn

)
,

which is similar to Henrici’s notation [36]. Both φq and φv are differentiable by the
inverse function theorem. This gives rise, using the direct product Lie group structure of
G× Rn, see remark 2.30, to the following equation:

(qn+1,vn+1) = (qn,vn) ◦ ẽxp
(
hnφ

(
tn, (qn,vn);hn

))
,

where φ = (φq,φv) and the exponential function as well as the Lie group operation are
with respect to the direct product Lie group G× Rn.

We consider G to be a metric space with a right invariant and almost left invariant
distance dG : G×G→ [0,∞). On every Lie group G, such a distance function exists, see
remark 2.47. Furthermore, we also consider G× Rn to be a metric space with a distance
function

d : (G× Rn)× (G× Rn)→ [0,∞),
(
(q1,v1), (q2,v2)

)
7→ dG(q1, q2) + ∥v2 − v1∥2,

(3.44)

which is then right invariant and almost left invariant as well.

58

Now, we can measure the distance between the analytic solution
(
q(tn),v(tn)

)
and the

numeric approximation (qn,vn) calculated by RATTLie. For brevity let Rn = (qn,vn) ∈
G × Rn be the numerical approximation and Qn =

(
q(tn),v(tn)

)
∈ G × Rn be the

analytical solution. Now, consider

d(Rn+1, Qn+1) ≤ d
(
Rn+1, Qn ◦ ẽxp

(
hnφ(tn, Qn;hn)

))
+ len, (3.45)

where len measures the local error:

len = d
(
Qn ◦ ẽxp

(
hnφ(tn, Qn;hn)

)
, Qn+1

)
. (3.46)

We can continue to estimate (3.45) by using the error translation from remark 2.47, the
almost right invariance of d and lemma 2.42.

d(Rn+1, Qn+1) ≤ d(Rn, Qn) + ρ(Qn)d
(

ẽxp
(
hnφ(tn, Rn;hn)

)
, ẽxp

(
hnφ(tn, Qn;hn)

))
+ len

≤
(

1 + ρ(Qn) sup
Q∈Kn

∥∥dQ ẽxp
(
hnφ(tn, Q;hn)

)∥∥
∗

)
d(Rn, Qn) + len, (3.47)

where ∥ • ∥∗ = ∥ • ∥
ẽxp
(
hnφ(tn,Q;hn)

)
,Q

and Kn is a compact set depending on Qn and Rn.

Under the technical assumptions

hn ∈ (0, H], d
(
Rn, Qn

)
∈ O(1), for all n = 0, . . . , N (3.48)

with some H > 0 we can consider (3.47) only in a compact neighborhood S of {Q(t) : t ∈
[t0, te]}. Since

dQ ẽxp
(
hnφ(tn, Q;hn)

)
= hn dẽxp

(
hnφ(tn, Q;hn)

)
dQφ(tn, Q;hn)

and φ, ẽxp are continuously differentiable, we get from (3.47) restricted to S that for
some constant L > 0 it holds

d(Rn+1, Qn+1) ≤ (1 + hnL)d(Rn, Qn) + len. (3.49)

The local error len can be treated by using remark 2.47, lemma 2.41, (3.27), and (3.43):

len ≤
∥∥∥l̃og

(
Q−1

n+1 ◦Qn ◦ ẽxp
(
hnφ(tn, Qn;hn)

))∥∥∥
2

=

∥∥∥∥∥
[

l̃og
(
q(tn+1)

−1 ◦ q(tn) ◦ ẽxp
(
hnφ

q(tn, Qn;hn)
))

−v(tn+1) + v(tn) + hnφ
v(tn, Qn;hn)

]∥∥∥∥∥
2

≤ Ch3n. (3.50)

for some constant C > 0. This can be done since the calculations leading up to (3.27)
and (3.43) only depend on the starting values and we can take the maximum of all
constants over the exact solution on the compact interval [t0, te]. Now, we can put
everything together in order to formulate the following:

59

Theorem 3.1: Second order convergence of RATTLie.

The RATTLie method is convergent of second order in q and v for step sizes hn ∈ (0, H]
with H > 0 small enough and under the technical assumptions (3.20), (3.48) and if f
and Φ are smooth enough. More precisely, it holds:

d
(

(qn,vn),
(
q(tn),v(tn)

))
≤ C

L

(
eL(tn−t0) − 1

)
h2max, n = 0, . . . , N (3.51)

with constants L,C > 0 and the maximal step size hmax = maxn=0,...,N−1 hn.

Proof. We can use a standard inductive argument found in [36, 78]. It holds

d
(

(q0,v0),
(
q(t0),v(t0)

))
= 0 =

C

L

(
eL(t0−t0) − 1

)
h2max

because of the choice of initial data (3.1f). Assume that (3.51) is true for m < N . Now,
we use (3.50) and the induction hypothesis in (3.49) and get

d
(

(qm+1,vm+1),
(
q(tm+1),v(tm+1)

))
≤ (1 + Lhm+1)

C

L

(
eL(tm−t0) − 1

)
h2max + Ch3m+1

=
C

L

(
(1 + Lhm+1)︸ ︷︷ ︸

≤eLhm+1

eL(tm−t0) − 1
)
h2max + C (h3m+1 − hm+1h

2
max)︸ ︷︷ ︸

≤0

≤ C

L

(
eL(tm+1−t0) − 1

)
h2max.

The equation (3.51) also implies

dG(qn, q(tn)) ∈ O(h2max), vn − v(tn) ∈ O(h2max), n = 0, . . . , N (3.52)

due to the direct product structure of G×Rn and the choice of the distance function (3.44).

3.2.3. The Lagrange Multipliers

Let q(t), v(t) and λ(t) be the exact solution of (2.31), t0 < t1 < · · · < tN a time
grid, as well as (qn)Nn=0, (vn)Nn=0, (λ+

n)N−1
n=0 , and (λ−

n)Nn=1 be calculated by the RATTLie
scheme (3.1) with exact and consistent initial values q0 = q(t0), v0 = v(t0). Furthermore,
let the prerequisites of theorem 3.1 be fulfilled. We define

tn+1/2 =
tn + tn+1

2
, λn+1/2 =

λ+
n + λ−

n+1

2
, (3.53)

which we will later use to calculate approximations to λ(tn).
First, from theorem 3.1, we know that dG

(
qn, q(tn)

)
∈ O(h2max). With remark 2.47

and lemma 2.43 it follows

F (qn)− F
(
q(tn)

)
∈ O

(
dG
(
qn, q(tn)

))

60

for any continuously differentiable function F . Therefore, (3.42) implies

λn+1/2 = λ(tn+1/2) +O(h2max). (3.54)

Now, we can apply linear interpolation of (tn−1/2,λn−1/2) and (tn+1/2,λn+1/2) at tn in
order to obtain an approximation of λ(tn):

λn =
hnλn−1/2 + hn−1λn+1/2

hn−1 + hn
. (3.55)

We will call Lagrange multipliers that were calculated by (3.55) “interpolated Lagrange
multipliers”. The properties of polynomial interpolation and (3.54) yield

λn = λ(tn) +O(h2max). (3.56)

In numerical experiments, it can be seen that the λ+
n and λ−

n approximate λ(tn) only
with first order, see remark 5.10. For small step sizes the λ±

n suffer spurious oscillations,
which can be observed as an increasing error. Since λn is directly calculated from λ+

n−1,
λ±
n and λ−

n+1, we have to suspect that λn may contain spurious oscillations as well.
Therefore, we show an alternative way to calculate approximations λsep

n to λ(tn) by using
the index-1 formulation (2.34):[

M DΦ⊤(qn)
DΦ(qn) 0

]
·
[
v̇sepn

λsep
n

]
=

[
v̂⊤n ·M · vn + f(tn, qn,vn)(

csepn,−DΦ(qn−1) + csepn,0 DΦ(qn) + csepn,+DΦ(qn+1)
)
· vn

]
(3.57)

with

csepn,− =
hn

hn−1(hn−1 + hn)
, csepn,0 =

1

hn
− 1

hn−1
, csepn,+ =

−hn−1

hn(hn−1 + hn)
.

We will call Lagrange multipliers that were calculated by (3.57) “separately calculated
Lagrange multipliers”. It can be easily shown that

csepn,−χ(tn−1) + csepn,0χ(tn) + csepn,+χ(tn+1) = −χ′(tn) +O(h2n−1) +O(h2n) (3.58)

for three times differentiable functions χ : R → Rn by Taylor’s theorem. Using (3.52),
applying (3.58) with χ(t) = DΦ

(
q(t)

)
· v(tn) in (3.57), and finally taking the difference

of (2.34) at t = tn we end up with[
M DΦ⊤(q(tn)

)
DΦ⊤(q(tn)

)
0

]
·
[
v̇(tn)− v̇sepn

λ(tn)− λsep
n

]
=

[
O(h2max)
O(h2max)

]
Since the matrix on the left is invertible, see (2.35), we get the convergence result for the
separately calculated approximations λsep

n and v̇sepn :

λsep
n = λ(tn) +O(h2max), v̇sepn = v̇(tn) +O(h2max). (3.59)

61

3.3. Implementation Details

Now we consider a time step of RATTLie from tn to tn+1 with step size hn, configuration
qn and derivative vector vn. First, we can solve (3.1a), (3.1b), (3.1c) with respect to λ+

n

and vn+1/2. This can be done by inserting (3.1a) into (3.1c) and solving the equivalent
nonlinear system

0 = Ψ1(ξ1),

where

ξ1 =

[
vn+1/2

hnλ
+
n

]
,

Ψ1(ξ1) =

T−⊤(−hnvn+1/2) ·M · vn+1/2 +
(
−hn

2 f(tn, qn,vn)

+ 1
2 DΦ

⊤(qn) · (hnλ+
n)−M · vn

)
Φ
(
qn ◦ ẽxp(hnvn+1/2)

)
/(2hn)

via the Newton-Raphson algorithm. Notice that the Lagrange multiplier λ+

n is scaled
with hn and the constraints with 1/(2hn), see e. g. [14, 61], such that the condition
number of the Jacobian

Ψ ′
1(ξ1) =

d

dξ1
Ψ1(ξ1) =

[
M +O(hn) 1

2 DΦ
⊤(qn)

1
2 DΦ

(
qn ◦ ẽxp(hnvn+1/2)

)
·T(hnvn+1/2) 0

]
of Ψ1 remains bounded for hn → 0:

lim
hn→0

Ψ ′
1(ξ1) =

[
M 1

2 DΦ
⊤(qn)

1
2 DΦ(qn) 0

]
has full rank, see (2.35), and therefore

lim
hn→0

κ
(
Ψ ′
1(ξ)

)
= lim

hn→0

(
∥Ψ ′

1(ξ1)∥
∥∥(Ψ ′

1(ξ1)
)−1∥∥) <∞.

The Newton-Raphson iteration can be started with the initial guess ξ
(0)
1 = [v⊤n, hn(λ−

n)⊤]⊤,

if λ−
n is available. If no approximation to the Lagrange multiplier is available, ξ

(0)
1 =

[v⊤n,0
⊤]⊤ has to be used. Often, it is sufficient to use a simplified inexact Newton-Raphson

method with an approximation to the Jacobian

J =

[
M 1

2 DΦ
⊤(qn)

1
2 DΦ

(
qn ◦ ẽxp(hnvn)

)
·T(hnvn) 0

]
≈ Ψ ′

1(ξ
(0)
1).

In order to check for convergence in an affinely invariant manner, we check the size of
the increments in ξ1 rather than the size of the residuals Ψ1(x1), see [25].

In the next step, we can calculate qn+1 by inserting vn+1/2 into (3.1a).

Now, we will solve (3.1d), (3.1e) with respect to vn+1 and λ−
n+1 by applying the

Newton-Raphson algorithm to the equivalent system

0 = Ψ2(ξ2),

62

where

ξ2 =

[
vn+1

hnλ
−
n+1

]
,

Ψ2(ξ2) =

T−⊤(hnvn+1/2) ·M · vn+1/2 +
(
hn
2 f(tn+1, qn+1,vn+1)

− 1
2 DΦ

⊤(qn+1) · (hnλ−
n+1)−M · vn+1

)
−1

2 DΦ(qn+1) · vn+1

 .
We have scaled the Lagrange multiplier with hn and the hidden constraint with −1/2
such that the Jacobian

Ψ ′
2(ξ2) =

d

dξ2
Ψ2(ξ2) =

[
hn
2 dvn+1f(tn+1, qn+1,vn+1)−M −1

2 DΦ
⊤(qn+1)

−1
2 DΦ(qn+1) 0

]
of Ψ2 is symmetric and has bounded condition number for hn → 0:

lim
hn→0

Ψ ′
2(ξ2) = −

[
M 1

2 DΦ
⊤(qn+1)

1
2 DΦ(qn+1) 0

]
,

lim
hn→0

κ
(
Ψ ′
2(ξ2)

)
= lim

hn→0

(
∥Ψ ′

2(ξ2)∥
∥∥(Ψ ′

2(ξ2)
)−1∥∥) <∞.

The starting values can be selected to be ξ
(0)
2 = [v⊤n+1/2, hn(λ+

n)⊤]⊤. Note that if the
forces f do not depend on the derivative vectors v, this system is linear and can be solved
by exactly one step of the Newton-Raphson algorithm. Otherwise, using a simplified
(inexact) Newton-Raphson method is easy to implement and computationally efficient.

We have summarized the implementation of RATTLie in algorithm 1.
In order to calculate approximations to the Lagrange multipliers λ(tn), we need at least

two steps of RATTLie; tn−1 → tn and tn → tn+1. To calculate the interpolated Lagrange
multipliers from the λ+

m and λ−
m+1 with m = n− 1, n, we can use (3.53) and (3.55). We

could also discard all the Lagrange multipliers calculated by RATTLie and use (3.57) in
order to separately calculate λsep

n purely on the basis of qn−1, qn, qn+1,vn. The benefit
is a better behavior for small time steps, see section 5.3, at the additional cost of the
solution of one linear system. We have summarized the calculation of both variants in
the algorithms 2 and 3.

The implementation of the nonholonomic version of RATTLie is very similar and can
be found in compact version in algorithm 5 as well as algorithms 2 and 3 concerning the
Lagrange multipliers.

63

Algorithm 1 One time step of RATTLie t0 → t1
Require: mass matrix M, generalized force function f , its derivative with respect

to the velocity dvf , constraint function Φ, its Lie group derivative DΦ, Lie group
multiplication ◦, Lie group exponential ẽxp, tangent operator function T, the function
of the transposed and inversed tangent operator T−⊤, maximum number of Newton-
Raphson iterations maxit, absolute and relative tolerances for the Newton-Raphson
method atol and rtol

1: procedure RATTLie step(t0, q0,v0, t1; optional: λ−
0)

2: h0 ← t1 − t0 ▷ Calculate step size
3: v1/2 ← v0, q1 ← q0 ◦ ẽxp(h0v1/2) ▷ Initial guesses

4: λ+
0 ← λ−

0 or λ+
0 ← 0 depending on whether λ−

0 was given

5: E ←∞, i← 0, J←
[

M 1
2 DΦ

⊤(q0)
1
2 DΦ(q1) ·T(h0v0) 0

]
6: while E > 1 do ▷ Start first Newton-Raphson iteration
7: if i ≥ maxit then error: Newton iteration did not converge end if

8: Ψ ←
[
T−⊤(−h0v1/2) ·M · v1/2 − h0

2

(
f(t0, q0,v0)−DΦ⊤(q0) · λ+

0

)
−M · v0

Φ(q1)/(2h0)

]
9: solve linear system J ·

[
∆v
∆λ

]
= −Ψ

10: E ←
∥∥∥∥[∆v

∆λ

]/(
atol + rtol abs

[
v1/2
h0λ

+
0

])∥∥∥∥ ▷ To be read element-wise

11: v1/2 ← v1/2 + ∆v, λ+
0 ← λ+

0 + ∆λ/h0, q1 ← q0 ◦ ẽxp(h0v1/2)
12: end while
13: v1 ← v1/2, λ

−
1 ← λ+

0 ▷ Initial guesses

14: E ←∞, i← 0, J←
[
h0
2 dvf(t1, q1,v1)−M −1

2 DΦ
⊤(q1)

−1
2 DΦ(q1) 0

]
15: while E > 1 do ▷ Start second Newton-Raphson iteration
16: if i ≥ maxit then error: Newton iteration did not converge end if

17: Ψ ←
[
T−⊤(h0v1/2) ·M · v1/2 + h0

2

(
f(t1, q1,v1)−DΦ⊤(q1) · λ−

1

)
−M · v1

−DΦ(q1) · v1/2

]
18: solve linear system J ·

[
∆v
∆λ

]
= −Ψ

19: E ←
∥∥∥∥[∆v

∆λ

]/(
atol + rtol abs

[
v1

h0λ
−
1

])∥∥∥∥ ▷ To be read element-wise

20: v1 ← v1 + ∆v, λ−
1 ← λ−

1 + ∆λ/h0
21: end while
22: return q1,v1,λ

+
0 ,λ

−
1

23: end procedure

64

Algorithm 2 Calculation of Lagrange multipliers for the (nonholonomic) RATTLie
by using the λ± quantities obtained by two subsequent steps of the (nonholonomic)
RATTLie

1: procedure RATTLie Lagrange(t0, t1, t2,λ
+
0 ,λ

−
1 ,λ

+
1 ,λ

−
2)

2: h0 ← t1 − t0, h1 ← t2 − t1 ▷ Calculate step sizes
3: λ1/2 ← 1

2(λ+
0 + λ−

1) ▷ Calculate Lagrange multipliers at midpoints

4: λ3/2 ← 1
2(λ+

1 + λ−
2)

5: λ1 ←
h1λ1/2 + h0λ3/2

h0 + h1
▷ Interpolate

6: return λ1

7: end procedure

Algorithm 3 Separately calculated Lagrange multipliers and acceleration using two
subsequent time steps

1: procedure RATTLie Lagrange sep(t0, t1, t2, q0, q1, q2, v1)
2: h0 ← t1 − t0, h1 ← t2 − t1 ▷ Calculate step sizes

3: c− ←
h1

h0(h0 + h1)
, c0 ←

1

h1
− 1

h0
, c+ ←

−h0
h1(h0 + h1)

4: solve

[
M DΦ⊤(q1)

DΦ(q1) 0

]
·
[
v̇1
λ1

]
=

[
v̂⊤1 ·M · v1 + f(t1, q1,v1)(

c−DΦ(q0) + c0DΦ(q1) + c+DΦ(q2)
)
· v1

]
5: return λ1, v̇1
6: end procedure

Algorithm 4 Separately calculated Lagrange multipliers and acceleration for nonholo-
nomic systems using two subsequent time steps

1: procedure RATTLie nonhol Lagrange sep(t0, t1, t2, q0, q1, q2, v1)
2: h0 ← t1 − t0, h1 ← t2 − t1 ▷ Calculate step sizes

3: c− ←
h1

h0(h0 + h1)
, c0 ←

1

h1
− 1

h0
, c+ ←

−h0
h1(h0 + h1)

4: solve the linear system M DΦ⊤(q1) B⊤(q1)
DΦ(q1) 0 0
B(q1) 0 0

·
v̇1λ1

µ1

 =

 v̂⊤1 ·M · v1 + f(t1, q1,v1)(
c−DΦ(q0) + c0DΦ(q1) + c+DΦ(q2)

)
· v1(

c−B(q0) + c0B(q1) + c+B(q2)
)
· v1

5: return λ1,µ1, v̇1
6: end procedure

65

Algorithm 5 One time step of nonholonomic RATTLie t0 → t1
Require: Requirements of algorithm 1 as well as the matrix function of the linear

nonholonomic constraints B
1: procedure RATTLie nonhol step(t0, q0,v0,µ0, t1; optional: λ−

0)
2: h0 ← t1 − t0 ▷ Calculate step size
3: v1/2 ← v0, q1 ← q0 ◦ ẽxp(h0v1/2) ▷ Initial guesses

4: λ+
0 ← λ−

0 or λ+
0 ← 0 depending on whether λ−

0 was given

5: E ←∞, i← 0, J←
[

M 1
2 DΦ

⊤(q0)
1
2 DΦ(q1) ·T(h0v0) 0

]
6: while E > 1 do ▷ Start first Newton-Raphson iteration
7: if i ≥ maxit then error: Newton iteration did not converge end if

8: Ψ ←

T
−⊤(−h0v1/2) ·M · v1/2 − h0

2

(
f(t0, q0,v0)−DΦ⊤(q0) · λ+

0

−B⊤(q0) · µ0

)
−M · v0

Φ(q1)/(2h0)

9: solve linear system J ·

[
∆v
∆λ

]
= −Ψ

10: E ←
∥∥∥∥[∆v

∆λ

]/(
atol + rtol abs

[
v1/2
h0λ

+
0

])∥∥∥∥ ▷ To be read element-wise

11: v1/2 ← v1/2 + ∆v, λ+
0 ← λ+

0 + ∆λ/h0, q1 ← q0 ◦ ẽxp(h0v1/2)
12: end while
13: v1 ← v1/2, λ

−
1 ← λ+

0 , µ1 ← µ0 ▷ Initial guesses

14: E ←∞, i← 0, J←

h0
2 dvf(t1, q1,v1)−M −1

2 DΦ
⊤(q1) −1

2B
⊤(q1)

−1
2 DΦ(q1) 0 0
−1

2B(q1) 0 0

15: while E > 1 do ▷ Start second Newton-Raphson iteration
16: if i ≥ maxit then error: Newton iteration did not converge end if

17: Ψ ←

T−⊤(h0v1/2) ·M · v1/2 + h0

2

(
f(t1, q1,v1)−DΦ⊤(q1) · λ−

1

−B⊤(q1) · µ1

)
−M · v1

−DΦ(q1) · v1/2
−B(q1) · v1/2

18: solve linear system J ·

∆v
∆λ
∆µ

 = −Ψ

19: E ←

∥∥∥∥∥∥
∆v

∆λ
∆µ

/atol + rtol abs

 v1
h0λ

−
1

h0µ1

∥∥∥∥∥∥ ▷ To be read element-wise

20: v1 ← v1 + ∆v, λ−
1 ← λ−

1 + ∆λ/h0, µ1 ← µ1 + ∆µ/h0
21: end while
22: return q1,v1,λ

+
0 ,λ

−
1 ,µ1

23: end procedure

66

4. A Flexible Cosserat Beam Model and Its Discretization in
Space

In this section, the main focus lies on the dynamics of a geometrically exact Cosserat
beam model. Beam models can be used to simulate slender real-world objects that are
significantly larger in one dimension than in the other two dimensions. The dynamics
of Cosserat beam models has been an active field of research in recent times, see
e. g. [11, 44, 55, 59, 74]. A Cosserat beam model does not consider the beam an arbitrary
flexible body but rather considers it to consist of infinitesimal cross sections that are
assumed to stay rigid.

Most of the research concerning Cosserat beams that we are going to consider here
is based on the work of Simo and Vu-Quoc [71–73], see also the papers of Géradin
and Cardona [32, 33] as well as [47]. These earlier studies had relied on finite element
discretization of the beam model. In contrast, Leyendecker, Leitz, Demoures and others
have focused on spatial discretization using the toolbox of variational integrators [23, 24,
55, 57, 58]. Simultaneously, research by Lang and Linn [51, 53, 59, 60] has considered a
spatial discretization using finite differences. The spatial discretization we will present
is inspired by the latter, although it will additionally employ the ansatz of variational
integration [63]. We will also make use of the Lie group structure of rotation and rigid
body motion similar to the research of Sonneville and Brüls on geometrically exact
beams [18, 74–76]. According to their research, locking can occur [76] if the model
is formulated in such a way that position and orientation of the rigid cross sections
are considered separately. Locking is a phenomenon where the bending stiffness of the
discretized beam is much higher than the stiffness of the continuous beam. To avoid this
problem, a semi-direct product structure of orientation and position can be used either
in the form of SE(3), see e. g. [23, 75, 76], or in the more computationally efficient form
of S3 ⋉R3, see [42, 44, 55], which will be used in this thesis.

The name “Cosserat” beam model refers to Eugène and François Cosserat, who
published their seminal book Théorie des corps déformables [22] as early as 1909. They
had used a new approach in continuum mechanics where each material point has an
orientation in addition to a position. The latter had already been used in classical
continuum mechanics. In the Cosserat beam model, this is applied to the cross sections
of the beam by essentially averaging over the material points of the cross sections [71].

This section is structured in the following way: Firstly, in section 4.1, we will consider
rigid bodies since they constitute the foundation to treat the rigid cross sections of the
Cosserat beam model. Secondly, in section 4.2, the beam model will be considered. Here,
we introduce the continuous model in section 4.2.1 and subsequently show the spatial
discretization in section 4.2.2.

Additionally, in appendix D, we will show a way to generalize the one-dimensional
Cosserat beam model to two dimensions in order to obtain a micropolar Cosserat shell
model.

67

4.1. Rigid Bodies

In this section we will consider a rigid body Q ⊆ R3. The theory of the dynamics of rigid
bodies is well-known, see e. g. the textbook by Schiehlen and Eberhard [69]. We will
use unit quaternions (Euler parameters) to describe orientation, a method that is also
well-established, see e. g. [12] and the references therein. However, we will not only apply
the concept of derivative vectors, see section 2.2, but also use the semi-direct product
S3 ⋉R3 as the configuration space. A semi-direct product in the form of SE(3) has been
used before, see e. g. [17] and in the form of dual quaternions it has been employed in
e. g. [48].

Throughout this section, the configuration of the rigid body Q is described by the
state variable q(t) =

(
p(t),x(t)

)
with p(t) ∈ S3 and x(t) ∈ R3 at each time instance t.

The vector x(t) ∈ R3 represents the position of the center of mass with respect to the
inertial frame and the canonical basis vectors e1, e2, e3 with respect to the body-fixed
frame, described by p(t) ∈ S3, point along the principal axes of the rigid body. This
means that p(t) ∈ S3 is always given in such a way that the vectors

p(t)−1 ▷ e1, p(t)−1 ▷ e2, p(t)−1 ▷ e3

with respect to the inertial frame point along the principal axes of the rigid body. We
will use the Lie group structure S3⋉R3, see section 2.3, for the configuration space of the
rigid body. This will allow us to apply a Lie group time integrator, such as RATTLie from
section 3, the Lie group generalized-α method, see e. g. [18], or the BLieDF method [84].
Like in section 2.2, we will use the derivative vectors in order to describe derivatives with

respect to time: With the derivative vector v(t) =
[
Ω⊤(t),U⊤(t)

]⊤
we get the kinematic

equation (2.17), which reads in components

(
ṗ(t), ẋ(t)

)
= dL(

p(t),x(t)
) [̃Ω(t)
U(t)

]
=

(
1

2
p(t) ∗

[
0

Ω(t)

]
, p(t) ▷U(t)

)
. (4.1)

Here, for i = 1, 2, 3, the i-th component of Ω(t) describes the angular velocity of the
rigid body around its i-th principal axis and the i-th component of U(t) describes the
velocity of the rigid body along its i-th principal axis.

Let us now consider Q ⊆ R3 to be the set of points of the rigid body for the configuration
([1, 0, 0, 0]⊤,0), i. e. its center of mass is in the origin and the canonical unit vectors point
along the principal axes of the body. Let ρ : Q→ [0,∞) be the density of the body at
each point. Then the mass m > 0 of the rigid body and its inertia tensor J ∈ R3×3 are
given by

m =

∫
Q
ρ(ξ) dξ,

J =

∫
Q
ρ(ξ)(I3ξ

⊤ · ξ − ξ · ξ⊤) dξ

= diag

(∫
Q
ρ(ξ)(ξ22 + ξ23) dξ,

∫
Q
ρ(ξ)(ξ21 + ξ23) dξ,

∫
Q
ρ(ξ)(ξ21 + ξ22) dξ

)
, (4.2)

68

where ξ = [ξ1, ξ2, ξ3]
⊤, see [69, Section 3.2.2]. The kinetic energy is given by the sum of

the translational and rotational kinetic energies

T
(
v(t)

)
=

1

2
Ω⊤(t) · J ·Ω(t) +

m

2
U⊤(t) ·U(t) =

1

2
v⊤(t) ·M · v(t),

since it does not depend on the frame in which it is considered. Here

M = blkdiag(J,mI3) ∈ R6×6

denotes the mass matrix, see section 2.5. We can see that the mass matrix is constant
and does not depend on the configuration q(t).

Let the rigid body have a potential energy U
(
q(t)

)
and be subject to holonomic

constraints 0 = Φ
(
q(t)

)
. Then the equations of motion take the form (2.31), see

remark 2.35. If there are some additional external moments and forces applied, refer to
remark 2.36. More specifically, we have

F⊤(t, q(t),v(t)
)

=

[
M ex

(
t, q(t),v(t)

)
F ex

(
t, q(t),v(t)

)] ,
where M ex

(
t, q(t),v(t)

)
∈ R3 and F ex

(
t, q(t),v(t)

)
∈ R3 are external moments and

forces with respect to the body-fixed frame applied to the center of mass of the rigid
body. If we want to apply moments of force and forces mex

(
t, q(t),v(t)

)
∈ R3 and

f ex
(
t, q(t),v(t)

)
∈ R3 that are given with respect to the inertial frame, we can use

M ex
(
t, q(t),v(t)

)
=
(
p(t)

)−1
▷mex

(
t, q(t),v(t)

)
,

F ex
(
t, q(t),v(t)

)
=
(
p(t)

)−1
▷ f ex

(
t, q(t),v(t)

)
.

Since we use the Lie group S3⋉R3, the Coriolis force term v̂(t)
⊤
·M ·v(t) is given by [17]

v̂(t) ·M · v(t) =

[
−Ω(t)×

(
J ·Ω(t)

)
−mΩ(t)×U(t)

]
,

see section 2.3.

Remark 4.1: Gravitational field.

If a rigid body is subject to a constant gravitational field γ ∈ R3, the potential energy is
given by

U
(
q(t)

)
= U

(
p(t),x(t)

)
= −mγ⊤ · x(t)

and its derivative is

DU
(
q(t)

)
=
[
Dp(t)U

(
p(t),x(t)

)
, dx(t)U

(
p(t),x(t)

)]
=
[
01×3,−m(p−1(t) ▷ γ)⊤

]
.

Therefore, the term −DU⊤
(
q(t)

)
is given by

−DU⊤
(
q(t)

)
=

[
0

mp−1(t) ▷ γ

]
see remarks 2.35 and 2.36. The gravitational field results in forces mp−1(t) ▷ γ ∈ R3 with
respect to the body-fixed frame without any moments.

69

4.2. The Cosserat Beam

A Cosserat beam model can be used to model a thin structure Q∗ ⊆ R3 which is a lot
larger in one dimension than in the two other dimensions. The model we are using is
based on the work of Lang, Linn and Arnold [53], see also the technical reports [50, 52]
as well as [51, 59]. The continuous model of the aforementioned research was itself based
on the work of Simo [71, 72]. We will add internal constraints to the model in order to
reduce the full Cosserat beam model to an (extensible or inextensible) Kirchhoff beam
model [51].

The spatial discretization of the Cosserat beam with internal constraints follows a
method of lines approach [81] and will be performed with the toolbox of variational
integrators, similar to the derivation of RATTLie in section 3.1. The approach was
heavily inspired by the staggered grid finite difference discretization employed in [53],
which was geared towards the direct product configuration space S3 × R3. We altered
the approach to match the semi-direct configuration space S3 ⋉R3 and end up with a
scheme that was similar to the derivation of variational integrators [63], see also [55].

First, in section 4.2.1 we will introduce the continuous Cosserat beam model and
subsequently, in section 4.2.2, we will discretize the constrained beam model in space.

4.2.1. The Continuous Cosserat Beam Model

We assume that for each time instant t, the line of mass centroids is given by the curve
s 7→ x(s, t) ∈ R3 for s ∈ [0, L] with an L > 0. The underlying assumption of Cosserat
beams is that the cross sections of beams stay rigid at all times. That means we neglect
any changes like bending or changes in size of the cross sections. Therefore, we can
consider each of these cross sections at s ∈ [0, L] to be an infinitesimally thin rigid body
with configuration q(s, t) =

(
p(s, t),x(s, t)

)
∈ S3 ⋉R3 as described in section 4.1. This

means that the orientation of the rigid cross section that is attached to the center line at
x(s, t) is described by a quaternion p(s, t) ∈ S3. Then the set of material points of the
deformed beam Q(t) ⊂ R3 can be described as

Q(t) = {x(s, t) + p(s, t) ▷ [ξ1, ξ2, 0]⊤ ∈ R3 : s ∈ [0, L], [ξ1, ξ2]
⊤ ∈ A(s)},

where A(s) ⊆ R2 is the cross section of the beam at x(s, t) such that the center of A(s) is
the origin and the canonical unit vectors e1, e2 ∈ R2 point along the principal axes of A(s).
In formulae this can be written as 0 =

∫
A(s) ξ dξ and 0 =

∫
A(s) ξ1ξ2 d[ξ1, ξ2]

⊤ assuming
that the density is constant throughout the cross section. In this thesis, we additionally
assume that the shape of the cross section is constant along the beam: A(s) ≡ A. To
facilitate describing the material properties, we assume that in the undeformed state,
the line of mass centroids x(•, t) is parametrized by arc-length. Therefore, L > 0 is the
length of the undeformed beam.

In summary, at each time t, the configuration of the beam can be described as a curve
s 7→ q(s, t) ∈ S3 ⋉ R3. Thus, the configuration space for the Cosserat beam model is
C([0, L];S3 ⋉R3), the space of all continuous functions that map from [0, L] to S3 ⋉R3.
We can also interpret this model as a line of rigid bodies. As in section 4.1, we choose

70

the semidirect product Lie group structure (S3 ⋉R3, ◦). We will denote time derivatives
with a dot (∂ • /∂t = •̇) and derivatives with respect to the arc-length s with a prime
(∂ • /∂s = •′). Furthermore, we will define for each (s, t) ∈ [0, L]× [t0, te] the derivative
vector v(s, t) ∈ R6 with respect to time in the same way as in (2.17) and a vector
w(s, t) ∈ R6 analogously to (2.17):

q̇(s, t) = dLq(s,t)(e) ṽ(s, t),

q′(s, t) = dLq(s,t)(e) w̃(s, t).

The derivative vector v(s, t) contains, as before, the angular velocity Ω(s, t) and the
velocity U(s, t) of the cross section at s ∈ [0, L], measured in the body-fixed frame:

v(s, t) =
[
Ω⊤(s, t), U⊤(s, t)

]⊤
.

The vector w(s, t) is the derivative vector with respect to the arc-length s of q(s, t).
It therefore corresponds to the spatial derivative of q(s, t) and contains the material
curvature vector K(s, t) ∈ R3 and the material strain vector Γ (s, t), see e. g. [53]:

w(s, t) =
[
K⊤(s, t) +K∗⊤(s), Γ⊤(s, t) + Γ ∗⊤(s)

]⊤
, (4.3)

where K∗(s) ∈ R3 and Γ ∗(s) ∈ R3 are the precurvature and prestrain vectors of the
undeformed beam, respectively. Note that angular velocity, velocity, material curvature,
and material strain are measured with respect to the body-fixed frame.

We first want to develop the kinetic energy T
(
q(•, t)

)
of the beam. For this, we

consider the kinetic energy density T
(
q(s, t)

)
along the center line of the beam:

T
(
q(s, t)

)
=

1

2
Ω⊤(s, t) · J(s) ·Ω(s, t)︸ ︷︷ ︸

rotatory part

+ |A(s)|ρ(s)
1

2
U⊤(s, t) ·U(s, t)︸ ︷︷ ︸

translatory part

,

where ρ(s) > 0 is the volumetric mass density, |A(s)| > 0 the area, and J(s) ∈ R3×3 the
inertia tensor density of the cross section of the beam at s. Note that we assume that the
density ρ(s) is constant on all points of the cross section at arc-length s. The calculation
for J(s) is similar to (4.2):

J(s) = ρ(s) diag

(∫
A(s)

ξ22 dξ,

∫
A(s)

ξ21 dξ,

∫
A(s)

(ξ21 + ξ22) dξ

)
,

where this time the integration variable is ξ = [ξ1, ξ2]
⊤ ∈ R2. This can be obtained by

considering a thin three-dimensional rigid body A(s) × [−ε, ε], calculating its inertia
tensor, dividing it by the thickness 2ε and letting ε→ 0. Since we considered A(s) to be
aligned with its principal axes, the resulting inertia tensor is a diagonal matrix.

In this thesis, we will restrict ourselves to the case that not only the shape of the cross
section, but also the volumetric mass density is constant along s: A(s) ≡ A and ρ(s) ≡ ρ,

71

which imply J(s) ≡ J. The kinetic energy of the whole beam is then given by the integral
over its energy density:

T
(
q(•, t)

)
=

∫ L

0
T
(
q(s, t)

)
ds =

∫ L

0

1

2
v⊤(s, t) ·N · v(s, t) ds, (4.4)

where N = blkdiag(J, |A|ρI3).
Now we focus on the potential energy U

(
q(•, t)

)
of the beam. Like for the kinetic

energy, we consider a potential energy density U
(
q(s, t)

)
. We want to apply linear

(visco-)elastic material behavior of a homogeneous beam, thus U
(
q(s, t)

)
is quadratic in

K(s, t) and Γ (s, t), see [53], where

U
(
q(s, t)

)
=

1

2
K⊤(s, t) ·CK ·K(s, t)︸ ︷︷ ︸

bending and torsion

+
1

2
Γ⊤(s, t) ·CΓ · Γ (s, t)︸ ︷︷ ︸
shearing and extension

,

with diagonal matrices CK ,CΓ ∈ R3×3, which contain material parameters [53]:

CK = diag(EI1, EI2, GI3), CΓ = diag(G|A|κ1, G|A|κ2, E|A|),

where E and G are Young’s modulus and the shear modulus, respectively, κ1 and κ2
are Timoshenko shear correction factors, and diag(I1, I2, I3) = J. In practice, however,
the products EI1, EI2, GI3, G|A|κ1, G|A|κ2, E|A| are measured individually, rather
than calculated from the cross section, the moduli, and the shear correction factors, see
e. g. [59]. The kinetic energy of the whole beam is then given by

U
(
q(•, t)

)
=

∫ L

0
U
(
q(s, t)

)
ds =

∫ L

0

1

2

(
w(s, t)−w∗(s)

)⊤·C ·(w(s, t)−w∗(s)
)

ds, (4.5)

where C = blkdiag(CK ,CΓ) and w∗ = [K∗⊤(s),Γ ∗⊤(s)]⊤.
Now we can derive the equations of motion of the unconstrained Cosserat beam by

applying Hamilton’s principle

0 = δ

∫ te

t0

T
(
v(•, t)

)
− U

(
q(•, t)

)
dt (4.6)

similar to remark 2.35 but without the constraints and hence without the augmentation
of the Lagrangian. We will use the derivative vectors δq(s, t) ∈ R6 of q(s, t) with respect
to variation, see (2.36). As additional boundary conditions to (2.39c), we assume that
there are no inner forces and moments due to curvature and strains at the ends of the
beam, such that w(0, t)−w∗(0) = w(L, t)−w∗(L) = 0 . They describe that the beam
is completely free at both ends [72]. The derivation of the equations of motion reads

0 = δ

∫ te

t0

T
(
v(•, t)

)
− U

(
q(•, t)

)
dt

= δ

∫ te

t0

∫ L

0
T
(
v(s, t)

)
− U

(
q(s, t)

)
ds dt

72

=

∫ te

t0

∫ L

0
v⊤(s, t) ·N · δv(s, t)−

(
w(s, t)−w∗(s)

)⊤ ·C · δw(s, t) ds dt

=

∫ L

0

[
v⊤(s, t) ·N · δq(s, t)

]te
t=t0

+

∫ te

t0

(
v⊤(s, t) ·N · v̂(s, t)− v̇⊤(s, t) ·N

)
· δq(s, t) dt ds

−
∫ te

t0

[(
w(s, t)−w∗(s)

)⊤ ·C · δq(s, t)]L
s=0

+

∫ L

0

((
w(s, t)−w∗(s)

)⊤ ·C · ŵ(s, t)−w′⊤(s, t) ·C
)
· δq(s, t) ds dt

=

∫ te

t0

∫ L

0

(
v⊤(s, t) ·N · v̂(s, t)− v̇⊤(s, t) ·N−

(
w(s, t)−w∗(s)

)⊤ ·C · ŵ(s, t)

+w′⊤(s, t) ·C
)
· δq(s, t) dsdt.

In [52], this has been called a two-dimensional variational principle. Since the above
equation has to hold for all variations, we can deduct that the equations of motion read

q̇(s, t) = dLq(s,t)(e) ṽ(s, t), (4.7a)

q′(s, t) = dLq(s,t)(e) w̃(s, t), (4.7b)

N · v̇(s, t) = v̂(s, t)
⊤
·N · v(s, t)− ŵ(s, t)

⊤
· g(s, t) + g′(s, t), (4.7c)

where g(s, t) ∈ R6 is the vector of generalized internal forces given by

g(s, t) = C ·
(
w(s, t)−w∗(s)

)
. (4.8)

The dynamic equation (4.7c) reads in components

J · Ω̇ = −Ω × (J ·Ω) + (K +K∗)×M + (Γ + Γ ∗)× F +M ′, (4.9a)

ρ|A|U̇ = −Ω × (ρ|A|U) + (K +K∗)× F + F ′, (4.9b)

where we omitted the arguments s and t and introduced the internal moment M(s, t) =
CK ·K(s, t) and internal force F (s, t) = CΓ ·Γ (s, t), both measured with respect to the
body-fixed frame.

Remark 4.2: Equations of motion with respect to the inertial frame.

If we choose to rewrite these equations in such a way that we use the spatial description

ω(s, t) = p(s, t) ▷Ω(s, t), u(s, t) = p(s, t) ▷U(s, t) = ẋ(s, t),

m(s, t) = p(s, t) ▷M(s, t), f(s, t) = p(s, t) ▷ F (s, t),

j(s, t) = R
(
p(s, t)

)
· J ·R⊤(p(s, t)),

73

we end up with the equations

j(s, t) · ω̇(s, t) + ω(s, t)×
(
j(s, t) · ω(s, t)

)
= m′(s, t) + x′(s, t)× f(s, t),

ρ|A|u̇(s, t) = f ′(s, t),

after applying the rotation p(s, t) to both sides, see the papers of Simo [71, 72].

Remark 4.3: Visco-elastic material behavior.

We can include internal damping in this Cosserat beam model by assuming visco-elastic
material behavior, see e. g. [53]. We introduce the dissipative generalized force density

D
(
ẇ(s, t)

)
= −2V · ẇ(s, t),

with visco-elastic material parameters V = diag(cK̇1 , c
K̇
2 , c

K̇
3 , c

Γ̇
1 , c

Γ̇
2 , c

Γ̇
3). We can then

add the term ∫ te

t0

∫ L

0
D⊤(ẇ(s, t)

)
· δw(s, t) ds dt (4.10)

on the right-hand side of the variational principle (4.6), similar to the external generalized
forces in remark 2.36. The equations (4.7) remain valid, but with internal generalized
forces

g(s, t) = C ·
(
w(s, t)−w∗(s)

)
+ 2V · ẇ(s, t). (4.11)

In components, equations (4.9) also remain valid, but with inner moments and forces

M(s, t) = CK ·K(s, t) + 2 diag(cK̇1 , c
K̇
2 , c

K̇
3) · K̇(s, t),

F (s, t) = CΓ · Γ (s, t) + 2 diag(cΓ̇1 , c
Γ̇
2 , c

Γ̇
3) · Γ̇ (s, t),

respectively.

Remark 4.4: External moments and forces.

External moments and forces can be incorporated similar to remark 2.36. We introduce
a generalized force density

gex(q, s, t) =

[
M ex(q, s, t)
F ex(q, s, t)

]
∈ R6

with external moments M ex(q, s, t) ∈ R3 and external forces F ex(q, s, t) ∈ R3 measured
with respect to the body-fixed frame. By adding the term∫ te

t0

∫ L

0

(
gex(q, s, t)

)⊤ · δq(s, t) dsdt (4.12)

on the right-hand side of the variational principle (4.6), we get the additional term
gex(q, s, t) on the right-hand side of (4.7). In components, we get the terms M ex(q, s, t)

74

and F ex(q, s, t) on the right-hand sides of (4.9a) and (4.9b), respectively. Note that since
the external moments and forces depend on the function q, they may not only depend
on the values q(s, t), but also on derivative vectors like v(s, t) and w(s, t). In case that
we want to apply external moments mex(s, t) and forces f ex(s, t) which are given with
respect to the inertial frame, we have to use

M ex
(
q, s, t

)
= p−1(s, t) ▷mex(q, s, t), F ex

(
q, s, t

)
= p−1(s, t) ▷ f ex(q, s, t).

A Cosserat beam model with a very high (shearing) stiffness or with very large cross
sections leads to a very stiff differential equation [53]. On the other end of the spectrum,
in very slender beams the shearing of the beam can be of no interest. In those cases,
it might be appropriate to use a Kirchhoff beam model in which the cross sections are
assumed to stay perpendicular to the center line, see e. g. [71]. We could go even further
and also neglect the extension of the beam, leading to an inextensible Kirchhoff beam, see
e. g. [51]. Instead of deriving a new model, we can reduce the already existing and more
general model by introducing internal constraints [45]. With the internal constraints in
place, the corresponding stiffness coefficients (for shearing or additionally extension) can
be neglected and the result is a differential equation with reduced stiffness whose solution
is more computationally efficient.

Remark 4.5: Reduction of the model by internal constraints.

In order to reduce the Cosserat beam model to a Kirchhoff beam model, we introduce
a constraint density function Ψ

(
w(s, t)

)
∈ Rm which we assume to vanish. We will

introduce this constraint by augmenting the Lagrangian in (4.6) with

C
(
w(•, t),λ(•, t)

)
=

∫ L

0
Ψ⊤(w(s, t)

)
· λ(s, t) ds, (4.13)

where λ(s, t) ∈ Rm are Lagrange multipliers. This means, we introduce the additional
term

−
∫ te

t0

C
(
w(•, t),λ(•, t)

)
dt

on the right-hand side of (4.6), similar to (2.39). This adds the constraint equation

0 = Ψ
(
w(s, t)

)
to the equations of motion (4.7), which remain valid with the sum of internal forces

g(s, t) = C ·
(
w(s, t)−w∗(s)

)
+ dΨ⊤(w(s, t)

)
· λ(s, t). (4.14)

In combination with added viscosity to the model, the generalized internal forces read

g(s, t) = C ·
(
w(s, t)−w∗(s)

)
+ 2V · ẇ(s, t) + dΨ⊤(w(s, t)

)
· λ(s, t), (4.15)

see [45]. External moments and forces can still be applied like in remark 4.4.

75

Remark 4.6: Internal constraints for a Kirchhoff beam model.

In order to reduce the full Cosserat beam model to a Kirchhoff beam model, we introduce
the constraint that no shearing from the undeformed state is possible, see e. g. [53]. This
means that the first two components of the material strain vector Γ (s, t), see (4.3), have
to vanish. We can formulate this by the constraint density

0 = Ψ
(
w(s, t)

)
=

[
e⊤1
e⊤2

]
· Γ (s, t) =

[
e⊤4
e⊤5

]
·
(
w(s, t)−w∗(s)

)
,

From the linear structure we can immediately see the derivatives

dΨ
(
w(s, t)

)
=

[
e⊤4
e⊤5

]
.

Remark 4.7: Internal constraints for an inextensible Kirchhoff beam.

In order to reduce the full Cosserat beam model to an inextensible Kirchhoff beam model,
we need to make sure that additionally the length of the center line does not change, see
e. g. [53]. This means that the third component of Γ (s, t) has to vanish as well. The
corresponding constraint density is given by

0 = Ψ
(
w(s, t)

)
=

e⊤1e⊤2
e⊤3

 · Γ (s, t) =

e⊤4e⊤5
e⊤6

 · (w(s, t)−w∗(s)
)
.

Again, the derivatives are straightforward:

dΨ
(
w(s, t)

)
=

e⊤4e⊤5
e⊤6

 .
4.2.2. Discretizing the Cosserat Beam Model in Space

In this section, we will discretize the continuous Cosserat beam model from section 4.2.1
in space. In order to do so, we follow the framework of variational integrators: In the
variational principle we only consider a finite-dimensional set of admissible configurations
for each time instance and approximate the spatial integrals by second-order quadrature
rules. In the end we obtain a spatially discrete Cosserat beam model.

In the following, we will consider the linearly elastic case and later also cover the case
of visco-elastic material behavior. The internal constraints will be considered right away,
but they could be dropped very easily in order to obtain a semi-discrete Cosserat beam
model without internal constraints.

First, we will approximate the function q(•, t) by a piece-wise interpolation from
remark 2.27:

qd(s, t) = pIp
(
s, (sm)m=0,...,M ,

(
qm(t)

)
m=0,...,M

)
,

76

with a spatial grid s0 < s1 < · · · < sM with step sizes ∆sm−1/2 = sm − sm−1 for
m = 1, . . . ,M and with interpolation points qm(t) ∈ S3 ⋉ R3 for m = 0, . . . ,M . This
approach is similar to the derivation of RATTLie in section 3.1. Let vd(s, t) and wd(s, t)
be the derivative vectors of qd(s, t) with respect to time and space where they are
well-defined:

q̇d(s, t) = dLqd(s,t)(e) ṽ
d(s, t), (qd)′(s, t) = dLqd(s,t)(e) w̃

d(s, t).

Now we consider s ∈ (sm−1, sm) for some m ∈ {1, . . . ,M}. Then it holds

qd(s, t) = qm−1(t) ◦ ẽxp
(
(s− sm−1)wm−1/2(t)

)
with

wm−1/2(t) =
1

∆sm−1/2
l̃og
(
q−1m−1(t) ◦ qm(t)

)
, m = 1, . . . ,M. (4.16)

For the derivative vector with respect to space it holds for s ∈ (sm−1, sm), see (3.4),

wd(s, t) = wm−1/2(t).

We will furthermore define vm(t) to be the derivative vector of qm(t) for m = 0, . . . ,M .
Then we can collect the configuration variables qm(t) in

q(t) =
(
q0(t), . . . , qM (t)

)
∈ (S3 ⋉R3)M+1

as well as the derivative vectors

v(t) =
[
v⊤0 (t), . . . ,v⊤M (t)

]
∈ R6(M+1).

It is clear that v(t) is the derivative vector for q(t) in the Lie group (S3 ⋉R3)M+1 since
this is the (M + 1)-fold direct product of S3 ⋉R3.

Now we can describe this discretized Cosserat beam model. This discretization is
designed similar to the staggered grid discretization of Lang and Linn [53]. First, we
approximate the kinetic energy T

(
qd(•, t)

)
from (4.4) by the chained trapezoidal rule

leading to a discretized kinetic energy

T d
(
v(t)

)
=

M∑
m=1

∆sm−1/2

2

(
T
(
vm−1(t)

)
+ T

(
vm(t)

))
=

∆s0
4
v⊤0 (t) ·N · v0(t) +

M−1∑
m=1

∆sm−1/2 + ∆sm+1/2

4
v⊤m(t) ·N · vm(t)

+
∆sM−1/2

4
v⊤M (t) ·N · vM (t).

The approximation T
(
qd(•, t)

)
≈ T d

(
v(t)

)
is of second order. We can see that T d

(
v(t)

)
is actually quadratic in v(t):

T d
(
v(t)

)
=

1

2
v⊤(t) ·M · v(t)

77

with

M = blkdiag
(∆s1/2

2
N,

∆s1/2 + ∆s3/2

2
N, . . . ,

∆sM−3/2 + ∆sM−1/2

2
N,

∆sM−1/2

2
N
)
.

and thus, differentiation with respect to v(t) is straightforward.
Next, we approximate the potential energy U

(
qd(•, t)

)
from (4.5) by the chained

midpoint rule leading to a discrete potential energy

Ud
(
q(t)

)
=

M∑
m=1

∆sm−1/2U
(
wm−1/2(t)

)
=

M∑
m=1

∆sm−1/2

2

(
wm−1/2(t)−w∗

m−1/2

)⊤ ·C · (wm−1/2(t)−w∗
m−1/2

)
,

with w∗
m−1/2 = w∗(sm−1/2) for m = 1, . . . ,M . Here we used the definition of wm−1/2

in terms of qm−1(t) and qm(t) according to (4.16). Again, the discrete potential energy
Ud
(
q(t)

)
is a second-order approximation to U

(
qd(•, t)

)
. In order to differentiate Ud

(
q(t)

)
with respect to q(t), we have to know Dqi(t)wj−1/2(t) for i = 0, . . . ,M and j = 1, . . . ,M .
From lemma 2.25 applied to (4.16) we know that

Dqi(t)wj−1/2(t) = 0,
1

2
< |i− (j − 1/2)|,

(4.17a)

Dqm−1(t)wm−1/2(t) = − 1

∆sm−1/2
T−1(−∆sm−1/2wm−1/2(t)

)
, m = 0, . . . ,M − 1,

(4.17b)

Dqm(t)wm−1/2(t) =
1

∆sm−1/2
T−1(∆sm−1/2wm−1/2(t)

)
, m = 1, . . . ,M, (4.17c)

with T−1 being the inverse matrix of the tangent operator of S3 ⋉R3, see definition 2.20
and appendix A. This result is similar to (3.12) in the derivation of RATTLie. It follows

Dq0Ud
(
q(t)

)
= −

(
w1/2(t)−w∗

1/2

)⊤ ·C ·T−1(−∆s1/2w1/2(t)
)
,

DqmUd
(
q(t)

)
=
(
wm−1/2(t)−w∗

m−1/2

)⊤ ·C ·T−1(∆sm−1/2wm−1/2(t)
)

−
(
wm+1/2(t)−w∗

m+1/2

)⊤ ·C ·T−1(−∆sm+1/2wm+1/2(t)
)
,

DqMUd
(
q(t)

)
=
(
wM−1/2(t)−w∗

M−1/2

)⊤ ·C ·T−1(∆sM−1/2wM−1/2(t)
)

and furthermore we know

DUd
(
q(t)

)
=

(
Dq0Ud

(
q(t)

))⊤
...(

DqMUd
(
q(t)

))⊤

⊤

.

78

Now we consider the internal constraints. In remark 4.5, we augmented the Lagrangian
with the term C

(
w(•, t),λ(•, t)

)
. Like for the potential energy, we will approximate the

integral in C
(
wd(•, t),λd(•, t)

)
with the chained midpoint rule, which is of second order:

Cd
(
q(t),λ(t)

)
=

M∑
m=1

∆sm−1/2Ψ
⊤(wm−1/2(t)

)
· λm−1/2(t),

where λm−1/2(t) are Lagrange multipliers for m = 1, . . . ,M and the definition

λ(t) = [λ⊤1/2,λ
⊤
3/2, . . . ,λ

⊤
M−1/2]

⊤.

We define

Φ
(
q(t)

)
=

 ∆s1/2Ψ
(
w1/2(t)

)
...

∆sM−1/2Ψ
(
wM−1/2(t)

)

and reformulate the constraint-related term by

Cd
(
q(t),λ(t)

)
= Φ⊤(q(t)) · λ(t).

The derivative of Φ is given by the block matrix

DΦ
(
q(t)

)
=

Z
−
1/2 Z+

1/2

. . .
. . .

Z−
M−1/2 Z+

M−1/2

 ,
with

Z±
m−1/2 = ±dΨ

(
wm−1/2(t)

)
·T−1(±∆sm−1/2wm−1/2(t)

)
,

where we have used the chain rule and (4.17). In the case of internal constraints which
reduce the full Cosserat beam model to a Kirchhoff beam model or an inextensible
Kirchhoff beam model, the derivative dΨ is given explicitly, since Ψ is a linear function,
see remarks 4.6 and 4.7.

In this discretized model with constraint function Φ and Lagrange multipliers λ, the
potential and kinetic energy are given by Ud

(
q(t)

)
and T d

(
v(t)

)
respectively, and the

equations of motion may be obtained as in remark 2.35 resulting in the form (2.31) in
the Lie group (S3 ⋉R3)M+1, where

f
(
t, q(t),v(t)

)
= −

(
DUd

(
q(t)

))⊤
.

If we consider the components of this (M + 1)-fold direct product, the equations of

79

motion take the following form:

q̇m = dLqm(e) ṽm, (4.18a)

∆s1/2

2
N · v̇0 =

∆s1/2

2
v̂0

⊤ ·N · v0 + T−⊤(−∆s1/2w1/2) · g1/2, (4.18b)

∆sm−1/2 + ∆sm+1/2

2
N · v̇m =

∆sm−1/2 + ∆sm+1/2

2
v̂m

⊤ ·N · vm
+ T−⊤(−∆sm+1/2wm+1/2) · gm+1/2

−T−⊤(∆sm−1/2wm−1/2) · gm−1/2,

m ̸= 0,M, (4.18c)

∆sM−1/2

2
N · v̇M =

∆sM−1/2

2
v̂M

⊤ ·N · vM (4.18d)

−T−⊤(∆sM−1/2wM−1/2) · gM−1/2, (4.18e)

0 = ∆sm−1/2Ψ(wm−1/2), m ̸= 0, (4.18f)

with the generalized internal forces

gm−1/2 = C · (wm−1/2 −w∗
m−1/2) + dΨ⊤(wm−1/2) · λm−1/2, m ̸= 0 (4.18g)

for m = 0, . . . ,M where we have omitted the argument t.

Remark 4.8: Visco-elastic material behavior.

To include dissipation into the discretized Cosserat beam model, we follow along the lines
of remark 4.3. First, we consider the time derivative of wm−1/2(t) for m = 1, . . . ,M :

ẇm−1/2(t) =
d

dt
wm−1/2(t) = Dqmwm−1/2(t) · vm(t) + Dqm−1wm−1/2(t) · vm−1(t)

=
1

∆sm−1/2

(
T−1(∆sm−1/2wm−1/2(t)

)
· vm(t)

−T−1(−∆sm−1/2wm−1/2(t)
)
· vm−1(t)

)
using (4.17). If we plug the derivative vector with respect to space of the discretized
curve qd(s, t) into the term (4.10) and approximate the integral over s by the chained
midpoint rule, we end up with∫ te

t0

M∑
m=1

−2∆sm−1/2ẇ
⊤
m−1/2 ·V · δwm−1/2(t) dt

in the right-hand side of the variational principle (4.6), leading to the same equations of
motion (4.18), but with generalized internal forces

gm−1/2(t) = C ·
(
wm−1/2(t)−w∗

m−1/2

)
+ 2V · ẇm−1/2(t)

+ dΨ⊤(wm−1/2(t)
)
· λm−1/2(t),

}
m = 1, . . . ,M

instead of (4.18g).

80

Remark 4.9: External forces and moments.

External forces can, along the lines of remark 4.4, be included in the discretized Cosserat
beam model. We consider the generalized force density

gex(qd, s, t) =

[
M ex(qd, s, t)
F ex(qd, s, t)

]
∈ R6

consisting of given external momentsM ex(qd, s, t) ∈ R3 and external forces F ex(qd, s, t) ∈
R3 measured with respect to the body-fixed frame. We plug the discretized configuration
curve qd(s, t) into (4.12) and approximate the inner integral by the chained trapezoidal
rule: ∫ L

0
(gex)⊤(qd, s, t) · δqd(s, t) ds ≈

M∑
m=0

(gexm)⊤(q, t) · δqm(t), (4.19)

where

gex0 (q, t) =
∆s1/2

2
gex(qd, 0, t),

gexm (q, t) =
∆sm−1/2 + ∆sm+1/2

2
gex(qd, sm, t), m = 1, . . . ,M − 1,

gexM (q, t) =
∆sM−1/2

2
gex(qd, L, t).

Now we can use

F(t) =

g
ex
0 (q, t)

...
gexM (q, t)

in remark 2.36. If we consider the resulting equations of motion in components, we end
up with the same equations of motion (4.18), but with additional terms + gexm (q, t) on
the right-hand sides of (4.18b-d).

Note however, that this approach will neglect any narrow spikes of the external forces
and moments, which might be crucial for the overall behavior of the beam. As an
alternative we could use the total external generalized forces that act on a certain
segment of the beam:

gex0 (q, t) =

∫ (s0+s1)/2

0
gex(qd, s, t) ds,

gexm (q, t) =

∫ (sm+sm+1)/2

(sm−1+sm)/2
gex(qd, s, t) ds, m = 1, . . . ,M − 1,

gexM (q, t) =

∫ sM

(sM−1+sM)/2
gex(qd, s, t) ds.

Moreover, we can model generalized forces h(qd, t) that are applied at a specific point
s∗ = sm by setting:

gexm (qd, t) = h(qd, t).

81

In case the generalized force is applied to a cross section at s∗ ∈ (sm−1, sm), we distribute
the generalized force linearly to the neighboring nodes:

gexm−1(q
d, t) =

s∗ − sm
sm−1 − sm

h(qd, t), gexm (qd, t) =
s∗ − sm−1

sm − sm−1
h(qd, t).

Remark 4.10: Band structure.

If we apply an integration method to solve the equations of motion of the spatially
discretized Cosserat beam model with internal constraints, often a linear system with
coefficient matrix [

M DΦ⊤(q)
DΦ(q) 0

]
or similar structure has to be solved, see e. g. algorithms 1 and 3 for the RATTLie
integration scheme and the algorithm of the Lie group generalized-α method [8, 9, 16].
The dimension M of the space grid might be large, such that the coefficient matrix is
large as well. In order to solve such a system efficiently, we rearrange the unknowns and
right-hand sides resulting in a coefficient matrix with band structure, see [9, 51].

The unknowns are related to derivative vectors and Lagrange multipliers at and in
between the spatial nodes. Similarly, the right-hand sides are related to forces and
geometric curvature terms at and in between the spatial nodes. Let us write

[
M DΦ⊤(q)

DΦ(q) 0

]
·

V0
...
VM

Λ1/2
...

ΛM−1/2

=

G0
...
GM

C1/2
...

CM−1/2

and rearrange the unknowns and the components of the right-hand side with increasing
index:

A ·

V0

Λ1/2

V1

Λ3/2
...

VM−1

ΛM−1/2

VM

=

G0

C1/2

G1

C3/2
...

GM−1

CM−1/2

GM

,

then the resulting coefficient matrix A has band structure.

82

5. Numerical Experiments

In this section, we will put the numerical algorithms developed in section 3 as well as the
spatial discretization of the constrained Cosserat beam model from section 4 to the test.
In order to do so, we will first introduce some example problems in section 5.1, namely
the heavy top example, the rolling disk example, the flying spaghetti benchmark and the
roll-up benchmark. In section 5.2 we will talk about the implementation of the numerical
algorithms and the example problems. Finally, in section 5.3 we will present the results
of the numerical experiments and give an interpretation to each one. Note that we have
omitted all units by assuming that all quantities are given in their respective SI base
units.

5.1. Examples and Benchmarks

In this section, we present in detail the example problems and benchmarks that will be
used in the numerical examples.

Remark 5.1: The fast and slow heavy top.

The so-called heavy top is a well-known academic example that is used to study Lie group
DAE integration schemes, see e. g. [16, 33]. It consists of a three-dimensional spinning top
that is attached to the point of origin by a massless spherical joint. The initial position
of the top’s center of gravity is x0 = [0, 1, 0]⊤ and we consider this configuration of the
top as its reference orientation. The mass of the top is m = 15 and the inertia tensor
is J = diag(0.234375, 0.46875, 0.234375) with respect to the center of gravity of the top.
The top is subjected to a constant gravitational field γ = [0, 0,−9.81]⊤.

If we choose the Lie group S3 ⋉R3 as the configuration space, we have the kinetic and
potential energies

T
(
v(t)

)
=

1

2
v⊤(t) ·M · v(t), U

(
q(t)

)
= −mγ⊤ · x(t),

with the mass matrix M = blkdiag(J,mI3×3), the configuration variable q(t) ∈ S3 ⋉R3

with q(t) =
(
p(t),x(t)

)
and derivative vectors v(t) = [Ω⊤(t),U⊤(t)]⊤ ∈ R6, see section 2.2.

Since the top is attached to the origin, we additionally need to consider the constraint
0 = Φ

(
q(t)

)
with the constraint function

Φ
(
q(t)

)
= p−1(t) ▷ x(t)−X,

whereX = p−10 ▷x0 is the reference position of the top and p0 ∈ S3 is the initial orientation
of the top. The equations of motion of the top then take the form (2.31), see remark 2.35,
with

DU⊤
(
q(t)

)
=

[
0

−mp−1(t) ▷ γ

]
,

DΦ
(
q(t)

)
= [skw(X), I],

83

where the latter equation holds for configurations q(t) that fulfill the constraint equation
0 = Φ

(
q(t)

)
.

We distinguish between the scenario of the fast heavy top with initial angular velocity
Ω0 = [0, 150,−4.61538]⊤, see e. g. [16], and the scenario of the slow heavy top with lower
initial angular velocity Ω0 = [0, 1.5,−0.0461538]⊤, see [83]. We have considered the
heavy top example in numerous different formulations including the ODE formulation in
SO(3), DAE formulations in the direct products SO(3)×R3 and S3×R3, as well as DAE
formulations in the semi-direct products SE(3), S3 ⋉R3 and UDQ, see section 2. The
equations of motion for the different Lie group formulations can be found in appendix C.

The heavy top problem was implemented in the project heavy top, see section 5.2.

Remark 5.2: The rolling disk.

This example consists of an infinitely thin disk of radius r = 1 that rolls without slip
on the plane H = {[x, y, z]⊤ ∈ R3 : z = 0}. The mass of the disk is m = 15 and the
inertia tensor is J = mr2 diag(1/4, 1/4, 1/2), calculated for the reference configuration of
the disk D∗ = {[x, y, z]⊤ ∈ R3 : z = 0, x2 + y2 ≤ r2} with respect to rotation around its
center of mass. The disk is subjected to a constant gravitational field γ = [0, 0,−9.81]⊤.

Similar to the heavy top in remark 5.1, we choose to represent the configuration of the
disk by q(t) =

(
p(t),x(t)

)
∈ S3 ⋉R3, where p(t) ∈ S3 is a unit quaternion representing

the disk’s orientation and x(t) ∈ R3 is the position of the center of mass of the disk. The
kinetic and potential energy are thus given by

T
(
v(t)

)
=

1

2
v⊤(t) · blkdiag(J,mI3) · v(t), U

(
q(t)

)
= −mγ⊤ · x(t),

Here, v(t) = [Ω⊤(t),U⊤(t)]⊤ ∈ R6 are the derivative vectors of q(t), see section 2.2. It
can easily be seen that

DU⊤
(
q(t)

)
=

[
0

−m
(
p(t)

)−1
▷ γ

]
.

Since the disk is supposed to roll without slip on the plane H, the velocity of the point
of the disk closest to H must vanish, see e. g. [69]. We assume the disk to be above
H and not lying flat, so the point closest to H is the point of the disk’s rim with the
smallest z-coordinate. This velocity of the point on the disk closest to H expressed with
respect to the body-fixed frame can be calculated by

Ulow(t) = U(t) +Ω(t)×Xlow(t),

where Xlow(t) is the vector from the center of mass of the disk to the lowest point of the
disk expressed with respect to the body-fixed frame. It holds

Xlow(t) =

p0p2 − p1p3√

(p20 + p23)(p
2
1 + p22)

− p0p1 + p2p3√
(p20 + p23)(p

2
1 + p22)

0

 ,

84

where p = [p0, p1, p2, p3]
⊤ ∈ S3, omitting the argument t for readability. This can be

worked out by applying the method of Lagrange multipliers and finding the stationary
points of

(X1, X2, λ) 7→ [0, 0, 1] · (p(t) ▷ [X1, X2, 0]⊤)− (X2
1 +X2

2 − 12)λ,

which gives two antipodal points; one corresponds to the point on the rim with maximal
z-coordinate and one with minimal z-coordinate. Now we will consider the lowest point
and its velocity with respect to the inertial frame:

xlow(t) = p(t) ▷Xlow(t), ulow(t) = p(t) ▷Ulow(t).

Furthermore, we introduce the Cartesian coordinates

xlow(t) =

xlow,1(t)
xlow,2(t)
xlow,3(t)

 , ulow(t) =

ulow,1(t)
ulow,2(t)
ulow,3(t)

 , x(t) =

x1(t)x2(t)
x3(t)

 .
The no-slip condition gives us that ulow(t) ≡ 0 . The third condition ulow,3(t) ≡ 0 is
actually integrable, since for

ϕ(t) = x3(t) + xlow,3(t)

it holds
d

dt
ϕ(t) = ulow,3(t).

The condition x3(t) = −xlow,3(t) corresponds to the fact that the disk must touch the
plane H. In order to simplify the equations and possibly increase efficiency of the
implementation, we use

(
x3(t)

)2
/2 =

(
xlow,3(t)

)2
/2 as an equivalent condition and use

the constraint function

Φ(q) =
1

2
x23 −

1

2
x2low,3 =

1

2
x23 − 2(p21 + p22)(p

2
0 + p23),

omitting the argument t. Of course, this assumes that the initial values fulfill the original
condition x3(t) = −xlow,3(t). The derivative DΦ(q) is given by

DΦ(q) =

2(p0p1 + p2p3)(p
2
1 + p22 − p20 − p23)

2(p1p3 − p0p2)(p20 + p23 − p21 − p22)
0

2(p1p3 − p0p2)x3
2(p0p1 + p2p3)x3

(p20 + p23 − p21 − p22)x3

⊤

.

The other conditions 0 = ulow,2(t) and 0 = ulow,3(t) are not integrable, but they are
linear in the derivative vector v(t). For easier notation and more efficient evaluation, we

85

scale these conditions with x3(t) and use that x3(t) = −xlow,3(t). This means that the
system is subject to linear nonholonomic constraints (2.41) with

B(q) =

−4(p0p2 + p1p3)(p0p1 + p2p3) 4(p0p1 − p2p3)(p0p1 + p2p3)
−4(p20p

2
2 + p21p

2
3) 4(p0p2 − p1p3)(p0p1 − p2p3)

2(p0p1 − p2p3) 2(p0p2 + p1p3)
(p20 + p21 − p22 − p23)x3 2(p1p2 + p0p3)x3

2(p1p2 − p0p3)x3 (p20 − p21 + p22 − p23)x3
2(p0p2 + p1p3)x3 2(p2p3 − p0p1)x3

⊤

.

The equations of motion of the rolling disk now take the form (2.43). A plot of the
trajectory of the disks center of mass can be found in figure 1 on page 97.

The rolling disk example was implemented in the project rolling disk, see section 5.2.
The project also contains a Mathematica script for the derivation of the holonomic and
nonholonomic constraints.

Remark 5.3: The flying spaghetti benchmark.

The flying spaghetti benchmark is a benchmark problem featuring a soft, slender beam
that first appeared in a paper of Simo and Vu-Quoc [73]. At one end of the initially
straight beam of length L = 10, moments and forces are applied, first ramping up and
subsequently ramping down until they vanish. The initial and undeformed configuration
is given by

x0(s) =

6
0
0

+
s

L
d, p0(s) ≡

[
cos(π/4)

sin(π/4)e3 × d/∥d∥2

]
with

d =

−6
8
0

and vanishing initial angular velocities and velocities. The moments and forces

M ex(t) =

 0
−1/2
−1

 g(t), F ex(t) =

1/10
0
0

 g(t),

are applied at the right end of the beam (s = L) with

g(t) =

200t/2.5, t ∈ [0, 2.5]

200(5− t)/2.5, t ∈ [2.5, 5]

0, t > 5

.

Initial conditions as well as applied moments and forces are depicted in figure 2 on
page 97. The product of density and area of cross section is assumed to be

ρ|A| = 1

86

and the product of density and the inertia tensor density

ρJ = diag(10, 10, 10).

Moreover, elastic material behavior is assumed and the material parameters are chosen
to be

CK = diag(5×102, 5×102, 5×102), CΓ = diag(104, 104, 104).

In order to describe the beam, we use the Cosserat beam model constrained to an
(extensible) Kirchhoff beam model as described in section 4.2 and discretize it with
M ∈ N discretization intervals, see section 4.2.2. Snapshots of the solution of the flying
spaghetti problem can be found in figure 3 on page 98.

This benchmark problem can be realized using the project crmS3R3, see section 5.2.

Remark 5.4: Roll-up of a clamped beam.

This benchmark problem features a heavily damped beam that is clamped at one end
and on the other end a constant moment is applied. From a static analysis, see e. g. [32],
it is known that if the moment is chosen in a special way, a configuration where both
ends touch is an equilibrium point.

In this example, a Cosserat beam model, see section 4.2, of length L = 10 is used. The
initial configuration is chosen to be

x0(s) = se1, p0(s) ≡
[

cos(π/4)
sin(π/4)e3 × e1

]
with vanishing initial angular velocity and velocity. As in the flying spaghetti benchmark,
we assume the product of density and area of cross section to be

ρ|A| = 1

and the product of density and the inertia tensor density

ρJ = diag(10, 10, 10).

In this benchmark, however, we assume viscoelastic material behavior with material
parameters

CK = diag(5×102, 5×102, 5×102), CΓ = diag(104, 104, 104)

CK̇ = diag(102, 102, 102), CΓ̇ = diag(102, 102, 102),

where V = blkdiag(CK̇ ,CΓ̇).
Similar to the flying spaghetti benchmark, the beam model was discretized in space

as described in section 4.2.2 and a depiction of snapshots of the beam can be found in
figure 4 on page 98.

This benchmark problem can be realized, just as the previous example, using the
project crmS3R3, see section 5.2.

87

5.2. Implementation

In order to run numerical examples, we have implemented the integrators from section 3
and the discretized Cosserat beam model from section 4.2.2 as well as the examples from
the previous section 5.1. For the implementation of the integrator and the problems,
object-oriented Fortran 2003 was used. Everything was compiled under Linux using GNU
make. In order to parametrize the problems, the script language Lua was used to write
configuration files. These Lua configuration files can be read by the problem files as well
as by Matlab, which was used to analyze the results and generate plots. For version
control, Git was used and all implementations are now publicly available on GitHub
under an MIT license.

In the following, we will present a list of Git projects that were implemented for this
thesis:

� RATTLie: https://github.com/StHante/RATTLie
In this project, the Lie group time integration algorithm RATTLie, see section 3 was
implemented. The project defines a Fortran module RATTLie, which contains the
declaration of an abstract type RATTLie problem with procedures for integration
as well as deferred procedures for the problem-dependent subroutines and functions.
These deferred procedures define e. g. the mass matrix, the applied generalized forces,
generalized Coriolis forces, constraints and their derivatives, Lie group product, Lie
group exponential map, tangential operator and its inverse, as well as initialization
and output routines. The deferred procedures are specified by an abstract interface
which defines the signature, i. e. input, output and result declarations. The abstract
type RATTLie problem has to be extended by the problem files, which also has to
implement all deferred procedures.

� RATTLie nonhol: https://github.com/StHante/RATTLie_nonhol
This project implements the nonholonomic version of the Lie group time integration
method, see section 3.1.4. It is very similar to the project RATTLie in its structure,
but additionally has deferred procedures in the problem type for the matrix of
linear nonholonomic constraints and its derivative.

� SHAKELie: https://github.com/StHante/SHAKELie
In this project, the SHAKELie time integration method, see section 3.1.3, was
implemented. It is likewise very similar to RATTLie in its structure. Note that the
implementation is done with a constant extrapolation of the initial velocity v0 in
order to determine the first v−1/2, which is needed in order to compute the first
step.

� heavy top: https://github.com/StHante/heavy_top
This project implements the heavy top problem, see remark 5.1, in different
configuration spaces, see section 2.5 and appendix C. It can be used as a problem
implementation for RATTLie and SHAKELie as well as for the projects gena and
BLieDF that implement the Lie group generalized-α integration scheme [8] and the
BLieDF scheme [85], see below.

88

https://github.com/StHante/RATTLie
https://github.com/StHante/RATTLie_nonhol
https://github.com/StHante/SHAKELie
https://github.com/StHante/heavy_top

The supported configuration spaces are SO(3) and S3 (as an ODE) as well as SO(3)×
R3, S3 × R3, SE(3) = SO(3) ⋉R3, S3 ⋉R3 and UDQ (as a DAE). The Lie group,
initial values, problem parameters such as mass, inertia tensor or gravity, as well as
integrator options including the time step size can be specified. The fast and slow
heavy top are described in the configuration files diss config test slow.lua and
diss config test fast.lua, respectively, which are found in the test directory.

Furthermore, in the test/als subdirectory, there are Matlab functions that can
be used to analyze the results of the computations easily. All tests with the heavy
top example that are considered in this thesis can be run by executing the Matlab
script test/als/diss test.m.

� rolling disk: https://github.com/StHante/rolling_disk
In this project, the rolling disk example, see remark 5.2, is implemented. It can be
used as a test problem for the nonholonomic RATTLie integrator RATTLie nonhol.
The project has a similar structure to the heavy top project, with configuration
files controlling the parameters of the problem and the integrator. The config-
uration that was used in this thesis can be found in test/diss conf.lua. All
tests with the rolling disk example can be run by executing the Matlab script
test/als/diss test.m.

� crmS3R3: https://github.com/StHante/crmS3R3
This project implements the spatial discretization of the Cosserat beam model
described in section 4.2. It supports the full Cosserat beam model as well as
constraining it to an extensible Kirchhoff beam model, see remark 4.6. It can be
used, just as heavy top, as a test problem for the integrator projects RATTLie,
SHAKELie, gena and BLieDF.

It likewise features a similar structure to the heavy top project with configuration
files controlling the parameters of the beam and the integrator. The configuration for
the flying spaghetti, see remark 5.3, can be found in the test/diss test fs *.lua

configuration files and the configuration for the roll-up example, see remark 5.4, can
be found in the file test/diss test rollup.lua. All tests with the Cosserat beam
model that are considered in this thesis can be run by executing the Matlab scripts
test/als/diss test.m and test/als/diss test rollup.m. Note that the tests
have a rather high computation time and produce a lot of data. Therefore, the
scripts should be executed cell by cell.

For more information on the different projects, refer to the corresponding readme files.
All of the above projects possess a Git tag Dissertation StHante, which can be checked
out in order to mark the version of the projects that were used to perform the numerical
experiments in this thesis.

Furthermore, we have used the following projects that were written by the author
of this thesis, including implementations of the Lie group generalized-α and BLieDF
integrators:

89

https://github.com/StHante/rolling_disk
https://github.com/StHante/crmS3R3

� gena: https://github.com/StHante/gena
This project implements the Lie group generalized-α scheme [16], see also [7, 8,
18, 21], in Fortran. It is structured very similar to the RATTLie project with a
module that contains an abstract type with deferred procedures. Note that here
the applied generalized forces have to include the Coriolis terms, whereas they are
treated separately by RATTLie.

� BLieDF: https://github.com/StHante/BLieDF
In this project, the BLieDF method [61, 84, 85] up to k = 2 is implemented. It is
likewise structured similarly to the RATTLie and gena projects.

� liegroup: https://github.com/StHante/liegroup
This Fortran project provides several modules that implement functions relating
to cross product, quaternions, the Lie groups S3 and S3 ⋉ R3, see appendix A,
as well as functions with a removable singularity, see appendix B, that appear in
coefficients of Lie group exponential functions and their various derivatives.

� expandconfig: https://github.com/StHante/expandconfig
This program written in plain C is used to pre-process the configuration files of the
implementations of the test problems for describing a whole test series in just one
configuration file.

� readLua: https://github.com/StHante/readLua-for-Matlab-and-Octave
This project implements a Matlab and Octave function readLua which can be used
to read the Lua configuration files in Matlab and Octave. The function is realized
as a MEX function written in C.

In addition, we will mention a few tools and libraries that were used in the implemen-
tation:

� Gfortran from the GNU Compiler Collection:
This compiler (version 8.3.0) has been used to compile all the Fortran code.

� Aotus: https://geb.sts.nt.uni-siegen.de/doxy/aotus/
This library allows to read Lua files in Fortran. It works by providing a Fortran
wrapper to the C-API of Lua.

� GNU Parallel: [79]
This tool allows for parallel execution of code. It has been used to run several tests
in parallel on separate CPUs.

5.3. Results and Interpretation

In this section, we will discuss the results of numerical experiments with the examples
from section 5.1, which were implemented according to the previous section 5.2. All
figures can be found starting from page 97.

90

https://github.com/StHante/gena
https://github.com/StHante/BLieDF
https://github.com/StHante/liegroup
https://github.com/StHante/expandconfig
https://github.com/StHante/readLua-for-Matlab-and-Octave
https://geb.sts.nt.uni-siegen.de/doxy/aotus/

A lot of the following experiments involve the absolute error of some variable y. This
means that the numerical algorithm has calculated a sequence

yn ≈ y(tn), n = 0, . . . , N,

where N is the number of time steps and t0 < t1 < · · · < tN is the time grid on which the
algorithm has calculated an approximation to the exact solution y(tn) for all n = 1, . . . , N .
Most of the experiments use a fixed time step size of the form h = 2−ℓ with ℓ ≥ 7 or
ℓ ≥ 8. In order to calculate the absolute error in y in these cases, we have used the
following formula:

max
n=n∗,2n∗,...,N

∥∥yn − y(tn)
∥∥
L2 ,

where we have used the discrete L2 norm defined by∥∥∥∥∥∥∥
y1...
yℵ

∥∥∥∥∥∥∥
L2

=

√√√√ 1

ℵ
ℵ∑

a=1

ya

and n∗ = 2−ℓ∗/h with ℓ∗ = 7 or ℓ∗ = 8. Of course, instead of using the exact solution,
which is usually not available, we compare to the results of a numerical solution ynref ≈
y(tref

nref) for nref = 0, . . . , N ref with much smaller time step size href = tref1 − tref0 ≪ h.
Note also that we have considered Lie group elements as elements of the surrounding

vector space in order to calculate errors. This is possible since Lie groups locally resemble
Euclidean space and therefore these errors calculated in the surrounding vector space
are a good measure for the distances of the elements in question, assuming they are
sufficiently close to each other. The alternative, using a notion of distance independent
of the surrounding space, is a lot more difficult to implement. Except for the calculation
of errors, Lie group elements are never treated as elements of the surrounding space in
this thesis.

Remark 5.5: RATTLie.

We want to investigate if the convergence of the RATTLie method can be observed
numerically. First, we can have a look at the results of the fast and slow heavy top
examples, see remark 5.1. In figures 5 and 6, the absolute error in the configuration q
against the step size of the RATTLie scheme is depicted. We can clearly see the slope
of 2 for any Lie group, indicating a second order convergence of RATTLie in q. In
figure 5, the error begins to saturate at the level of the absolute tolerance atol of the
Newton-Raphson method which was chosen to be 10−8.

Similarly, we can observe second order convergence of RATTLie in q in figure 7, where
the absolute errors of the flying spaghetti benchmark, see remark 5.3, are depicted
over the time step sizes. We can also see second order convergence of RATTLie in the
derivative vectors v in figure 8. Concerning the Lagrange multipliers, we can observe
second order convergence of RATTLie in figure 9, at least of the separately calculated
Lagrange multipliers, see algorithm 3. Note that for very fine time step sizes, we can

91

observe an error saturation of the separately calculated Lagrange multipliers in the realm
of, again, the absolute tolerance atol of the Newton-Raphson method. For the discussion
of the interpolated Lagrange multipliers, see remark 5.10.

In summary, numerical convergence of second order, which was analytically shown in
section 3.2, can indeed be observed.

Remark 5.6: Comparison of RATTLie with competing Lie group integration schemes.

In figures 7, 8 and 9, we have shown the absolute errors of different Lie group integration
methods such as the generalized-α scheme [16], see also [7, 8, 18, 21], the BLieDF method
of second order, see [61, 84, 85], as well as SHAKELie, see section 3.1.3. In this remark,
we will compare RATTLie to the former two; SHAKELie will be discussed later in
remark 5.9. Note that both the generalized-α method as well as the BLieDF method
were applied in their stabilized index-2 formulation, avoiding error amplification for small
time step sizes, see [6, 8, 31]. We can observe that both methods converge in q, v, and
λ with second order. For the generalized-α method, the convergence was proved in [7]
and for BLieDF with k = 2 in [85]. In the absolute errors in the configuration q, it
can be seen that the RATTLie method is more accurate by a factor between 10 and
100. Concerning the errors in the derivative vectors v, RATTLie is still overall the most
accurate of the three methods, but here the factor is only between 1 and 10. Roughly
the same holds true for the Lagrange multipliers λ, considering the separately calculated
Lagrange multipliers of RATTLie. We can observe error saturation in the Lagrange
multipliers of all three methods for very small time step sizes.

It can be seen that the behavior of BLieDF and the generalized-α scheme changes
slightly between h = 2−14 ≈ 6×10−5 and h = 2−15 ≈ 3×10−5. Interestingly, this is
exactly the range where SHAKELie’s errors start to increase. We have seen in other
tests whose results are not shown here that the errors of the Lagrange multipliers start
to increase for the index-3 formulations of the generalized-α and the BLieDF method.
This points to the presumption that this change in convergence behavior is due to the
stabilization of the generalized-α and BLieDF schemes becoming necessary. Note that
RATTLie needs no stabilization since it automatically fulfills the hidden constraints on
the velocity level.

Overall, it can be seen that, at least for the example of the flying spaghetti benchmark,
RATTLie outperforms both the generalized-α method as well as the BLieDF method of
second order when it comes to accuracy.

Remark 5.7: The choice of the Lie group.

Let us consider the fast heavy top once more. Figure 5 shows the absolute error over
the various step sizes using different Lie groups as the configuration space. The errors
were calculated by first transforming all configurations to SO(3)× R3 in order to have
a better comparison of the magnitude of the errors independent of the representation
of the configuration. It can be seen that the errors are not influenced by the choice of
parametrization of rotations, but the errors in this example are generally smaller by

92

a factor between 10 and 100 if a direct product Lie group is chosen, compared to a
semi-direct product structure. In [17], it was shown for the generalized-α scheme that
this relationship inverts when the slow heavy top is considered. We have confirmed this
in own numerical tests with the generalized-α method, but we can observe something
different for RATTLie: Figure 6 shows the absolute errors for the slow heavy top and we
can see that here the direct products are still more accurate. This difference might be
due to the fact that RATTLie directly incorporates the Coriolis forces in its algorithm,
whereas the generalized-α and the BLieDF scheme consider them together with the
external forces.

Let us now talk about computing times: In figure 10, the average computing times for
the various Lie groups relative to SE(3) over the time step sizes are depicted. Naturally,
the computing times of the direct products are generally lower than those of the semi-
direct products, since the algebraic expressions for exponential map, tangential operator,
and their derivatives are more involved for semi-direct products. It can be seen that
the Lie group formulations with quaternions are generally a little faster than those with
rotation matrices, since there are less parameters and less floating-point operations per
Lie group operation and exponential map, see [42]. The computing times for S3 ⋉ R3

are smaller than those for the unit dual quaternions UDQ, see remark 2.33, since unit
dual quaternions require more parameters and more floating-point operations, see [42].
Additionally, they provide less insight since the translation vector is not directly available.
Note that for coarse time step sizes, the computing times are very small and cannot be
sensibly compared.

Summarizing, we can say that using quaternions is faster than using rotation matrices
and using direct products is faster and – in this example – produces more accurate results
than using semi-direct products.

Remark 5.8: The nonholonomic RATTLie scheme.

In this remark, we want to examine the numerical convergence behavior of the nonholo-
nomic RATTLie scheme, see section 3.1.4. In order to do so, we consider the rolling
disk example, see remark 5.2. We have depicted the absolute errors in the configura-
tion variables q, the derivative vectors v, the Lagrange multipliers corresponding to
the holonomic constraints λ, as well as the Lagrange multipliers corresponding to the
nonholonomic constraints η over the step size in figure 11. Note that the Lagrange
multipliers were separately calculated, see algorithm 3. We can clearly see that the
errors decrease with decreasing time step size with second order. This suggests that the
nonholonomic RATTLie scheme might be second order convergent, although an analytic
proof has not been given for this particular integration method and remains an open
problem.

Remark 5.9: SHAKELie.

Let us again consider the flying spaghetti benchmark problem. The absolute errors in the
configuration variables, the derivative vectors and the Lagrange multipliers are shown in

93

figures 7, 8, and 9. This time, we will concentrate on the SHAKELie method. It can
be seen that SHAKELie produces very similar results to RATTLie for time step sizes
larger than 10−4. For smaller time step sizes, however, the errors start to increase. This
increase can be seen most clearly in the Lagrange multipliers, where we see an increase
with second order. This behavior is known from the SHAKE method [35]. It appears to
be similar to the problems of integration methods that directly discretize the index-3
formulation of the equations of motion [6]. Since the erroneous Lagrange multipliers that
are calculated in one step are directly used in the next step, the error bleeds through to
the configuration and derivative vectors.

It is obvious that the SHAKELie method is inferior to the RATTLie method since the
latter does not show such problems and respects the hidden constraints on the velocity
level.

Remark 5.10: RATTLie and Lagrange multipliers.

We have already seen in figure 9 that the two ways of calculating the Lagrange multipliers
for the RATTLie scheme differ in their accuracy, especially for small time step sizes. Let
us now consider figure 12, where we have additionally shown the absolute errors in the
Lagrange multipliers λ+ and λ− of RATTLie over the time step size. It can be seen
that the errors in both λ+ and λ− decrease with first order, as shown in section 3.2.3,
for coarse time step sizes. Unfortunately, they increase for step sizes smaller than 10−4

with second order, similarly to Lagrange multipliers for schemes that directly discretize
the index-3 formulation of the equations of motion. Since the interpolated Lagrange
multipliers are calculated from λ+ and λ− they surely have to inhibit this error increase.
The error in the interpolated Lagrange multipliers decreases with second order for coarse
time step sizes, as shown in section 3.2.3, but – surely enough – the order drops to one
for smaller time step sizes, similar to the error increase of λ±. An in-depth analysis of
this problem, which is not reproduced in this thesis, has shown that the expression for
λ+ involves a term that approximates v̇ as it appears on the right-hand side of (3.16)
from SHAKELie, which is subject to a similar loss of significance, see remark 5.9. All
our attempts of correcting this error by techniques using insights from [6] have failed,
even in the case of a linear Lie group as the configuration space.

In summary, the separately calculated Lagrange multipliers should be used for fine time
step sizes, while the interpolated Lagrange multipliers are slightly less computationally
costly and are acceptable for coarse step sizes.

Remark 5.11: RATTLie and irregular time grids.

Up to now, we have considered the RATTLie integration scheme only with constant time
step sizes. In this remark, we investigate RATTLie with varying time step sizes. In
figure 13, we have depicted the absolute errors of the flying spaghetti benchmark, see
remark 5.3, that were calculated with RATTLie and varying time step sizes with the
maximal step size hmax. The step sizes were chosen pseudo-randomly in [hmax/4, hmax].
We can clearly see second order convergence in the configuration variables q, the derivative

94

vectors v as well as the separately calculated Lagrange multipliers, as we have predicted
in section 3.2.3. For the interpolated Lagrange multipliers, we can see that the order
seems to drop to one, similar to the constant time step size scenario, see remark 5.10.

This shows that variable time step sizes can be easily implemented in RATTLie without
any changes to the algorithm. Similar results have been shown for RATTLE in [10]
but with the need of introducing a time transformation. Together with a suitable error
estimator, RATTLie could be extended to an integration scheme with adaptive step size
sequences.

Remark 5.12: RATTLie energy behavior.

RATTLie was constructed using the framework of variational integrators. Since variational
integrators are known to preserve a perturbed energy for conservative systems [63], we
expect that if we use RATTLie to simulate a conservative system like the fast heavy
top, see remark 5.1, there should be no systematic drift in the mechanical energy of the
system. In figure 14 we have shown the mechanical energy of the fast heavy top over
time computed with RATTLie, BLieDF of second order and the Lie group generalized-
α scheme with ρ∞ = 0.9. For the generalized-α scheme and BLieDF, we can see a
systematic loss of energy of the actually conservative heavy top example. This was to
be expected, since one of the strengths of the generalized-α scheme is to damp high
oscillations effectively, while conserving a lot of the low frequencies; the BLieDF on the
other hand is the generalization of the A-stable two-step BDF method. Note that the
initial energy jump for BLieDF is likely due to the starting method, which is the implicit
Lie group Euler method; a generalization of the implicit Euler method or the one-step
BDF method. For RATTLie, however, the energy stays almost constant, only showing a
slight oscillation around the initial energy.

This means that RATTLie is especially useful in scenarios with little to no damping or
if energy conservation is a concern.

Remark 5.13: Convergence in space of the discrete constrained Cosserat beam model.

Let us now consider the spatial discretization of the Cosserat beam model. We have
again considered the flying spaghetti benchmark problem with Kirchhoff constraints, see
remark 5.3, and simulated it using RATTLie with h = 2−15 ≈ 3.05×10−5 and a varying
number of spatial discretization intervals. The absolute errors are shown in figure 15.

Note that the errors were calculated interpolating the beam at s/L = 0, 1/16, . . . , 1 and
comparing the errors at t = 15 in these 17 interpolated points. The interpolation in the
configuration variables q was done using remark 2.27, while v and λ were interpolated
piecewise linearly.

We can see that the absolute errors in q clearly decrease with second order, the errors
in v decrease with second order, but show a saturation for large M . This saturation
could be due to the fact that we had to use finite time steps or that the piecewise
linear interpolation in v is not compatible with the semi-direct product structure of the
configuration space S3 ⋉ R3. The errors in the Lagrange multipliers decrease with at

95

least first order, while the order seems to increase for larger M . This first order could be
a similar effect to the one-sided Lagrange multipliers in RATTLie, see remark 5.10, or
even to the Lagrange multipliers in SHAKELie, since we have not split up the Lagrange
multipliers in two one-sided limits in the spatial discretization of the Cosserat beam like
we have done in the derivation of RATTLie. Here, additional analysis is required.

These results show that the spatial discretization converges numerically and indicate
that the convergence order might be 2 for q and v and 1 or 2 for λ, although this has
not been proved analytically.

Remark 5.14: Locking.

In this remark, we will consider the roll-up example, see remark 5.4, and simulate it
using the generalized-α method (ρ∞ = 0.9) with h = 2−10 ≈ 9.7×10−4 and h = 2−16 ≈
1.5×10−5. In figure 4, we have shown snapshots of the heavily damped and clamped
Cosserat beam model, where we can see how applying the correct amount of moments
results in the beam forming a perfect circle. In figures 16 and 17 we have depicted the
distance between both ends as well as the velocities of the end points. We can observe
that at t = 30, both ends have the same position and orientation up to 10−3 and are
barely moving.

This shows that the spatial discretization of the Cosserat beam model does not
suffer from shear locking. Shear locking manifests itself in an artificial increase of the
bending stiffness of the beam in configurations where the beam undergoes large spatial
deformations. It is known that the lack of shear locking is connected to the semi-direct
product structure of the configuration space, see e. g. [55, 76].

96

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

e1

e
2

Figure 1: Rolling disk: Top view: Trajectory of the midpoint of the disk (blue), trajectory
of a point on the edge of the disk (green) as well as the initial configuration of
the disk (red).

e1

2 4 6

e2

2

4

6

8

e3

0.5g(t)

0.1g(t)

g(t)
0 5 10 15

0

100

200

t

g
(t

)

Figure 2: Description of the flying spaghetti benchmark [73]: Initial position as well as
applied forces and moments on the left and the magnitude of the forces and
moments on the right.

97

0

20

40

60

0 5 10

−5

0

5

e1

e2

e
3

0

20

40

60

0 5 10

−5

0

5

e1

e2

e
3

Figure 3: Flying spaghetti: Snapshots of the configuration with M = 16 beam segments
at t = 0, 2, 3, 4, . . . , 15 and the trajectory of the end points in blue. The reader
should cross their eyes in order to perceive a three-dimensional image.

−2 0 2 4 6 8 10

−4

−2

0

2

t = 0

t = 0.5

t = 1

t = 1.5

t = 2

t = 3

t = 30

e1

e
3

Figure 4: Roll-up: Snapshots of the configuration with M = 8 beam segments at t =
0, 0.5, 1, 1.5, 2, 3, 30 and the trajectory of the right end point in blue.

98

10−5 10−4 10−3

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

step size h

a
b

so
lu

te
er

ro
r

in
q

SO(3)× R3

S3 × R3

SE(3)

S3 ⋉R3

UDQ

Figure 5: Fast heavy top: Maximum of the absolute discretized L2 error in the configura-
tion variable q expressed in SO(3)×R3. Results were calculated with RATTLie,
the reference solution with the generalized-α method (ρ∞ = 0.9) in the Lie
group SO(3) and h = 2−21 ≈ 4.8×10−7.
The data for SO(3)× R3 and S3 × R3 closely coincide as well as the data for
SE(3), S3 ⋉R3, and UDQ.

10−5 10−4 10−3

10−9

10−8

10−7

10−6

10−5

10−4

10−3

step size h

ab
so

lu
te

er
ro

r
in
q

SO(3)× R3

S3 × R3

SE(3)

S3 ⋉R3

UDQ

Figure 6: Slow heavy top: Maximum of the absolute discretized L2 error in the con-
figuration variable q expressed in SO(3) × R3. Results were calculated with
RATTLie, the reference solution with the generalized-α method (ρ∞ = 0.9) in
the Lie group SO(3) and h = 2−21 ≈ 4.8×10−7.
The data for SO(3)× R3 and S3 × R3 closely coincide as well as the data for
SE(3), S3 ⋉R3, and UDQ.

99

10−6 10−5 10−4 10−3

10−10

10−8

10−6

10−4

10−2

step size h

a
b

so
lu

te
er

ro
r

in
q

Gen.-α, ρ∞ = 0.9
BLieDF-2
RATTLie
SHAKELie

Figure 7: Kirchhoff beam model: Flying spaghetti: Maximum of the absolute discretized
L2 error in the configuration variables q with different integration schemes. The
reference solution was calculated with RATTLie and h = 2−20 ≈ 9.5×10−7.

10−6 10−5 10−4 10−3

10−9

10−8

10−7

10−6

10−5

10−4

10−3

step size h

ab
so

lu
te

er
ro

r
in
v

Gen.-α, ρ∞ = 0.9
BLieDF-2
RATTLie
SHAKELie

Figure 8: Kirchhoff beam model: Flying spaghetti: Maximum of the absolute discretized
L2 error in the derivative vectors v with different integration schemes. The
reference solution was calculated with RATTLie and h = 2−20 ≈ 9.5×10−7.

100

10−6 10−5 10−4 10−3

10−7

10−6

10−5

10−4

10−3

10−2

step size h

a
b

so
lu

te
er

ro
r

in
λ

Gen.-α, ρ∞ = 0.9
BLieDF-2

RATTLie (interp.)

RATTLie (sep.)
SHAKELie

Figure 9: Kirchhoff beam model: Flying spaghetti: Maximum of the absolute discretized
L2 error in the Lagrange multiplier λ with different integration schemes. The
reference solution was calculated with RATTLie (separately calculated λ) and
h = 2−20 ≈ 9.5×10−7.

10−5 10−4 10−3

80 %

100 %

120 %

140 %

step size h

av
er

ag
ed

re
la

ti
ve

co
m

p
u

ta
ti

on
ti

m
e

SO(3)× R3

S3 × R3

SE(3)

S3 ⋉R3

UDQ

Figure 10: Fast heavy top: Average computation time compared to the computation time
with Lie group SE(3). Results were calculated with RATTLie. The relative
computation times have been averaged over 100 runs.

101

10−6 10−5 10−4 10−3

10−10

10−7

10−4

10−1

102

step size h

a
b

so
lu

te
er

ro
r

q
v
λ
η

Figure 11: Rolling disk: Maximum of the absolute discretized L2 error in the configuration
variables q, the derivative vectors v, the Lagrange multipliers corresponding to
the holonomic constraints λ and the Lagrange multipliers corresponding to the
nonholonomic constraints η. Results were calculated with the nonholonomic
RATTLie; the reference solution with h = 2−21 ≈ 4.7684×10−7.

10−6 10−5 10−4 10−3

10−7

10−6

10−5

10−4

10−3

10−2

10−1

step size h

a
b

so
lu

te
er

ro
r

in
λ

interpolated λ
separately calc. λ

λ−

λ+

Figure 12: Kirchhoff beam model: Flying spaghetti: Maximum of the absolute discretized
L2 error in the different approximations to the Lagrange multiplier λ. The
reference solution was calculated with RATTLie (separately calculated λ) and
h = 2−20 ≈ 9.5×10−7.

102

10−5 10−4 10−3

10−10

10−8

10−6

10−4

10−2

maximal step size hmax

a
b

so
lu

te
er

ro
r

q
v

λ (interp.)

λ (sep.)

Figure 13: Kirchhoff beam model: Flying spaghetti: Maximum of the absolute discretized
L2 error in q, v and λ with RATTLie and variable step sizes that were
chosen pseudo-randomly between hmax and hmax/4. The reference solution
was calculated with RATTLie and h = 2−18 ≈ 3.8×10−6.

−1 0 1 2 3 4 5 6 7 8 9 10 11

−3

−2

−1

0

·10−3

time t

ch
a
n

g
e

o
f

m
ec

h
an

ic
al

en
er

gy

RATTLie
Gen.-α, ρ∞ = 0.9
BLieDF-2

Figure 14: Fast heavy top: Change of mechanical energy over time. Results were cal-
culated in the Lie group S3 ⋉ R3, with step size h = 2−16 ≈ 1.5×10−5 with
different integration schemes.

103

101 102

10−3

10−2

10−1

100

101

discretization intervals M

a
b

so
lu

te
er

ro
r

q
v
λ

Figure 15: Kirchhoff beam model: Flying spaghetti: Maximum of the absolute discretized
L2 error in the configuration variables q, the derivative vectors v and the
Lagrange multipliers λ. Results were calculated with RATTLie with time step
size h = 2−15 ≈ 3.05×10−5 and the reference solution used M = 256 spatial
discretization intervals.

0 5 10 15 20 25 30

10−4

10−3

10−2

10−1

100

101

time t

d
is

ta
n

ce

h ≈ 1.53×10−5

h ≈ 9.77×10−4

Figure 16: Cosserat beam model: Roll-up: Distance ∥x0(t)−xM (t)∥2+∥−p0(t)−pM (t)∥2
between the end points of the beam over time t. Note that due to the 360◦

rotation of the right end, the orientation pM (t) approaches the antipode −p0(t).
Both curves closely coincide.

104

0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

101

time t

ve
lo

ci
ty

h ≈ 1.53×10−5

h ≈ 9.77×10−4

Figure 17: Cosserat beam model: Roll-up: Velocity ∥[Ω⊤
M (t),U⊤

M (t)]⊤∥2 of the right end
of the beam over time t. Both curves closely coincide.

105

6. Conclusion

Section 2 introduces the well-known elements of Lie group theory, where we have laid
the focus on eventually formulating everything in the language of derivative vectors.
The Lie group S3 ⋉ R3, which is a relatively unknown semi-direct product Lie group,
is given special attention since it was used as the configuration space for rigid bodies
as well as the Cosserat beam model. Furthermore, we have shown the connections and
isomorphies between S3 ⋉R3, SE(3), dual unit quaternions and matrix Lie groups. This
also gives a justification that Lie groups, whose elements are not given as matrices can
under some conditions be used in time integration algorithms designed for ODEs and
DAEs with matrix Lie group structured configurations spaces. Additionally, we collected
definitions and theorems about Lie groups as Riemann surfaces and metric spaces, which
are relatively unknown in mechanics and numerical analysis but constitute an essential
building block in the proof of convergence of RATTLie.

Section 3 introduces RATTLie: a novel integration scheme for constrained mechanical
systems. It can be thought of as a generalization of the well-known RATTLE method
to mechanical systems on Lie group structured configuration spaces. RATTLie can
be compared to stabilized index-2 integration methods, because it respects the hidden
constraints on velocity level. It can be derived using the tools of variational integrators,
see section 3.1. Additionally, we have introduced a novel nonholonomic version of
RATTLie as well as the related SHAKELie scheme, which turns out the be uncompetitive.
In section 3.2 we give a proof of second order convergence of the RATTLie method.
The analysis tool used is a generalization of the well-known proof for one-step methods
injected with the notion of Lie groups as metric spaces. This tool has not been used
before in order to prove convergence of a DAE Lie group time integration method for
mechanical systems. We also do not rely on constant time step sizes nor assume that the
system in question has to be conservative. This also proves that RATTLE is convergent
for variable time step sizes and gives an interpretation and a proof of convergence for
the two distinct Lagrange multipliers that appear in RATTLE and RATTLie. Finally,
section 3.3 gives some details on the implementation of the presented integration schemes,
which are rather similar to the implementation of the Lie group generalized-α method.
We also show pseudocode that should make it easy to implement RATTLie and its
nonholonomic version.

The main part of section 4 consists of describing the Cosserat beam model which was
constrained to a Kirchhoff beam model as well as the spatial discretization of the model.
The model itself is well-known, but the discretization using S3 ⋉R3 is rather new, while
other works, e. g. [23, 55, 75], have used similar techniques, only with similar Lie groups.

Section 5 was dedicated to numerical experiments. First, in section 5.1 we have proposed
four common test problems, namely the heavy top example, the rolling disk, the flying
spaghetti benchmark, as well as the roll-up of a clamped beam. These test problems have,
together with the integrators from section 3 as well as two other integration schemes,
been efficiently implemented in object-oriented Fortran, as presented in section 5.2.
Finally, section 5.3 shows and interprets the numerical experiments. We can observe,

106

that the RATTLie method converges numerically with second order, as predicted by
the analytical investigations in section 3.2. The two ways of calculating the Lagrange
multipliers in RATTLie have been compared, yielding that the separate calculation is
more reliable for fine time steps, while matching the slightly computationally cheaper
interpolated calculation for coarser time steps. We have also numerically confirmed that
RATTLie really does not only work for equidistant time grids, but also for varying time
step sizes. Furthermore, we can see that for our test problems, RATTLie even mostly
outperforms the competitors, namely the well-known generalized-α method, the BLieDF
method, as well as SHAKELie, which produces wrong results for fine time step sizes.
Additionally, RATTLie does not show a systematic drift in energy for a conservative
system, whereas the competitors tend to dissipate energy for the sake of stability. We
have shown that the formulation in the Lie group S3 ⋉ R3 can compete with other
semi-direct product Lie groups such as SE(3) and unit dual quaternions, while being
slightly more efficient. Note that for time integration of the equations of motion of
rigid bodies, the formulation in direct products seem to be computationally superior, as
they produce lower errors and faster computation times due to measuring the velocities
with respect to the inertial frame. For discretizing flexible Cosserat beams in space
however, the semi-direct product approach seems to be superior since we can observe no
shear locking of the beam discretized in a semi-direct product Lie group. Furthermore,
we have observed second-order convergence of the nonholonomic RATTLie method; an
analytic proof of this, however, has not yet been given. Lastly, we have shown that the
coupled space/time discretization of the Cosserat beam model converges with second
order numerically, which was to be expected by the variational discretization method,
which used only second-order approximations.

107

7. References

[1] Alexandrino, M., Bettiol, R. (eds.): Lie groups and geometric aspects of isometric
actions. Springer, Cham (2015)

[2] Alexandrino, M., Bettiol, R.: Lie groups with bi-invariant metrics. In: M. Alexan-
drino, R. Bettiol (eds.) Lie groups and geometric aspects of isometric actions, pp.
27–47. Springer, Cham (2015)

[3] Altenbach, H., Eremeyev, V. (eds.): Shell-like structures. CISM International Centre
for Mechanical Sciences. Springer, Cham (2017)

[4] Altenbach, J., Altenbach, H., Eremeyev, V.: On generalized Cosserat-type theories
of plates and shells: a short review and bibliography. Archive of Applied Mechanics
80(1), 73–92 (2010)

[5] Andersen, H.: Rattle: A “velocity” version of the shake algorithm for molecular
dynamics calculations. Journal of Computational Physics 52(1), 24–34 (1983)

[6] Arnold, M.: A perturbation analysis for the dynamical simulation of mechanical
multibody systems. Applied Numerical Mathematics 18(1-3), 37–56 (1995)

[7] Arnold, M., Brüls, O., Cardona, A.: Error analysis of generalized-α Lie group time
integration methods for constrained mechanical systems. Numerische Mathematik
129(1), 149–179 (2015)

[8] Arnold, M., Cardona, A., Brüls, O.: A Lie algebra approach to Lie group time inte-
gration of constrained systems. In: P. Betsch (ed.) Structure-preserving integrators
in nonlinear structural dynamics and flexible multibody dynamics, CISM courses
and lectures, vol. 565, pp. 91–158. Springer, Cham (2016)

[9] Arnold, M., Hante, S.: Implementation details of a generalized-α differential-algebraic
equation Lie group method. Journal of Computational and Nonlinear Dynamics
12(2), 021002 (2017)

[10] Barth, E., Leimkuhler, B., Reich, S.: A time-reversible variable-stepsize integrator
for constrained dynamics. SIAM Journal on Scientific Computing 21(3), 1027–1044
(1999)

[11] Bauchau, O., Betsch, P., Cardona, A., Gerstmayr, J., Jonker, B., Masarati, P.,
Sonneville, V.: Validation of flexible multibody dynamics beam formulations using
benchmark problems. Multibody System Dynamics 37(1), 29–48 (2016)

[12] Betsch, P., Siebert, R.: Rigid body dynamics in terms of quaternions: Hamilto-
nian formulation and conserving numerical integration. International Journal for
Numerical Methods in Engineering 79(4), 444–473 (2009)

108

[13] B̂ırsan, M., Neff, P.: Analysis of the deformation of Cosserat elastic shells using
the dislocation density tensor. In: F. dell’Isola, M. Sofonea, D. Steigmann (eds.)
Mathematical modelling in solid mechanics, Advanced Structured Materials, vol. 69,
pp. 13–30. Springer, Singapore (2017)

[14] Botasso, C., Bauchau, O., Cardona, A.: Time-step-size-independent conditioning
and sensitivity to perturbations in the numerical solution of index three differential
algebraic equations. SIAM Journal on Scientific Computing 29(1), 397–414 (2007)

[15] Botasso, C., Borri, M.: Integrating finite rotations. Computer Methods in Applied
Mechanics and Engineering 164(3-4), 307–331 (1998)

[16] Brüls, O., Cardona, A.: On the use of Lie group time integrators in multibody
dynamics. Journal of Computational and Nonlinear Dynamics 5(3) (2010)

[17] Brüls, O., Cardona, A., Arnold, M.: Two Lie group formulations for dynamic
multibody systems with large rotations. In: Proceedings of the ASME 2011 Interna-
tional Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, pp. 85–94. ASME (2011)

[18] Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-α time integration of
constrained flexible multibody systems. Mechanism and Machine Theory 48, 121–137
(2012)

[19] do Carmo, M.: Riemannian geometry. Mathematics. Birkhäuser, Boston (1992)

[20] Celledoni, E., Owren, B.: Lie group methods for rigid body dynamics and time
integration on manifolds. Computer Methods in Applied Mechanics and Engineering
192(3), 421–438 (2003)

[21] Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics
with improved numerical dissipation: the generalized-α method. ASME Journal of
Applied Mechanics 60, 371–375 (1993)

[22] Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann (1909)

[23] Demoures, F., Gay-Balmaz, F., Leitz, T., Leyendecker, S., Ober-Blöbaum, S., Ratiu,
T.: Asynchronous variational Lie group integration for geometrically exact beam
dynamics. PAMM 13(1), 45–46 (2013)

[24] Demoures, F., Gay-Balmaz, F., Leyendecker, S., Ober-Blöbaum, S., Ratiu, T.,
Weinand, Y.: Discrete variational Lie group formulation of geometrically exact beam
dynamics. Numerische Mathematik 130(1), 73–123 (2015)

[25] Deuflhard, P.: Newton methods for nonlinear problems: affine invariance and adap-
tive algorithms, Springer Series in Computational Mathematics, vol. 35. Springer,
Berlin (2004)

109

[26] Ebbinghaus, H.D., Hermes, H., Hirzebruch, F., Koecher, M., Mainzer, K., Neukirch,
J., Prestel, A., Remmert, R.: Numbers, Graduate Texts in Mathematics, vol. 123.
Springer, New York, NY (1991)

[27] Engø, K.: Partitioned Runge-Kutta methods in Lie-group setting. BIT Numerical
Mathematics 43(1), 21–39 (2003)

[28] Eremeyev, V., Altenbach, H.: Basics of mechanics of micropolar shells. In: H. Al-
tenbach, V. Eremeyev (eds.) Shell-like structures, CISM International Centre for
Mechanical Sciences, vol. 572, pp. 63–111. Springer, Cham (2017)

[29] Faltinsen, S.: Backward error analysis for Lie-group methods. BIT Numerical
Mathematics 40(4), 652–670 (2000)

[30] Ferraro, S., Iglesias-Ponte, D., de Diego, D.: Numerical and geometric aspects of
the nonholonomic SHAKE and RATTLE methods. In: Conference Publications, vol.
2009, p. 220. American Institute of Mathematical Sciences (2009)

[31] Gear, C., Gupta, G., Leimkuhler, B.: Automatic integration of Euler-Lagrange
equations with constraints. Journal of Computational and Applied Mathematics
12-13, 77–90 (1985)

[32] Géradin, M., Cardona, A.: Kinematics and dynamics of rigid and flexible mechanisms
using finite elements and quaternion algebra. Computational Mechanics 4(2), 115–135
(1988)

[33] Géradin, M., Cardona, A.: Flexible multibody dynamics: a finite element approach.
Wiley, Chichester (2001)

[34] Gladwell, G., Angeles, J., Hommel, G., Kovács, P.: Computational kinematics, Solid
Mechanics and Its Applications, vol. 28. Springer, Dordrecht (1993)

[35] Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-
preserving algorithms for ordinary differential equations, Springer Series in Com-
putational Mathematics, vol. 31, first softcover print of 2nd edn. Springer, Berlin,
Heidelberg (2010)

[36] Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I:
Nonstiff problems, Springer Series in Computational Mathematics, vol. 8, rev. 2nd
edn. Springer, Berlin, Heidelberg (1993)

[37] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, 2nd edn. Springer, Berlin, Heidelberg (2002)

[38] Hall, B.: Lie groups, Lie algebras, and representations, Graduate Texts in Mathe-
matics, vol. 222. Springer, Cham (2015)

[39] Hall, J., Leok, M.: Spectral variational integrators. Numerische Mathematik 130(4),
681–740 (2015)

110

[40] Hanson, A.: Visualizing quaternions. Morgan Kaufmann series in interactive 3D
technology. Elsevier professional (2005)

[41] Hante, S.: A Lie group generalization of the RATTLE scheme applied to non-
holonomic constraints. In: T. Gleim, S. Lange (eds.) Proceedings of 8th GACM
Colloquium on Computational Mechanics, pp. 207–210. Kassel University Press,
Kassel (2019)

[42] Hante, S., Arnold, M.: A novel approach to Lie group structured configuration
spaces of rigid bodies. PAMM 17(1), 151–152 (2017)

[43] Hante, S., Arnold, M.: Staggered grid discretizations on Lie groups with applications
in beam and shell theory. PAMM 18, e201800277 (2018)

[44] Hante, S., Arnold, M.: RATTLie: a variational Lie group integration scheme for
constrained mechanical systems. Journal of Computational and Applied Mathematics
387, 112492 (2021)

[45] Hante, S., Tumiotto, D., Arnold, M.: A Lie group variational integration approach
to the full discretization of a constrained geometrically exact Cosserat beam model.
Multibody System Dynamics 54, 97–123 (2022)

[46] Iserles, A., Munthe-Kaas, H., Nørset, S., Zanna, A.: Lie-group methods. Acta
Numerica 9, 215–365 (2000)

[47] Jelenić, G., Crisfield, M.: Geometrically exact 3D beam theory: implementation of
a strain-invariant finite element for statics and dynamics. Computer methods in
applied mechanics and engineering 171(1-2), 141–171 (1999)

[48] Jüttler, B.: Visualization of moving objects using dual quaternion curves. Computers
& Graphics 18(3), 315–326 (1994)

[49] Kenwright, B.: A beginners guide to dual-quaternions. WSCG Communication
proceedings pp. 1–10 (2012)

[50] Lang, H., Arnold, M.: Numerical aspects in the dynamic simulation of geometrically
exact rods. Tech. Rep. 179, Fraunhofer ITWM, Kaiserslautern (2009)

[51] Lang, H., Arnold, M.: Numerical aspects in the dynamic simulation of geometrically
exact rods. Applied Numerical Mathematics 62(10), 1411–1427 (2012)

[52] Lang, H., Linn, J.: Lagrangian field theory in space-time for geometrically exact
Cosserat rods. Tech. Rep. 150, Fraunhofer ITWM, Kaiserslautern (2009)

[53] Lang, H., Linn, J., Arnold, M.: Multi-body dynamics simulation of geometrically
exact Cosserat rods. Multibody System Dynamics 25(3), 285–312 (2011)

111

[54] Lee, T., Leok, M., McClamroch, N.: Lie group variational integrators for the full body
problem. Computer Methods in Applied Mechanics and Engineering 196(29-30),
2907–2924 (2007)

[55] Leitz, T., de Almagro, R., Leyendecker, S.: Multisymplectic Galerkin Lie group
variational integrators for geometrically exact beam dynamics based on unit dual
quaternion interpolation – no shear locking. Computer Methods in Applied Mechanics
and Engineering 374, 113475 (2021)

[56] Leitz, T., Leyendecker, S.: Galerkin Lie-group variational integrators based on unit
quaternion interpolation. Computer Methods in Applied Mechanics and Engineering
338, 333–361 (2018)

[57] Leyendecker, S., Betsch, P., Steinmann, P.: The discrete null space method for the
energy-consistent integration of constrained mechanical systems: part III: flexible
multibody dynamics. Multibody System Dynamics 19(1-2), 45–72 (2008)

[58] Leyendecker, S., Marsden, J., Ortiz, M.: Variational integrators for constrained
dynamical systems. ZAMM 88(9), 677–708 (2008)

[59] Linn, J., Hermansson, T., Andersson, F., Schneider, F.: Kinetic aspects of discrete
Cosserat rods based on the difference geometry of framed curves. In: M. Valáček
(ed.) ECCOMAS thematic conference on multibody dynamics (2017)

[60] Linn, J., Stephan, T.: Simulation of quasistatic deformations using discrete rod
models. Tech. Rep. 144, Fraunhofer ITWM, Kaiserslautern (2008)

[61] Lötstedt, P., Petzold, L.: Numerical solution of nonlinear differential equations with
algebraic constraints I: convergence results for backward differentiation formulas.
Math. of Comp. 46(174), 491–516 (1986)

[62] Magnus, W.: On the exponential solution of differential equations for a linear
operator. Communications on Pure and Applied Mathematics 7(4), 649–673 (1954)

[63] Marsden, J., West, M.: Discrete mechanics and variational integrators. Acta
Numerica 10, 357–514 (2001)

[64] Müller, A.: Approximation of finite rigid body motions from velocity fields. ZAMM
90(6), 514–521 (2010)

[65] Müller, A., Maißer, P.: A Lie-group formulation of kinematics and dynamics of
constrained MBS and its application to analytical mechanics. Multibody System
Dynamics 9, 311–352 (2003)

[66] Müller, A., Terze, Z.: Modelling and integration concepts of multibody systems on
Lie groups. In: Z. Terze (ed.) Multibody dynamics, pp. 123–144. Springer, Cham
(2014)

112

[67] Neff, P.: A geometrically exact planar Cosserat shell-model with microstructure:
existence of minimizers for zero Cosserat couple modulus. Mathematical Models
and Methods in Applied Sciences 17(03), 363–392 (2007)

[68] Roller, M., Betsch, P., Gallrein, A., Linn, J.: On the use of geometrically exact shells
for dynamic tire simulation. In: Z. Terze (ed.) Multibody dynamics, pp. 205–236.
Springer, Cham (2014)

[69] Schiehlen, W., Eberhard, P.: Applied Dynamics. Springer, Cham (2014)

[70] Schiff, J., Shnider, S.: Lie groups and error analysis. Journal of Lie Theory 11(1),
231–254 (2001)

[71] Simo, J.: A finite strain beam formulation: the three-dimensional dynamic problem:
part I. Computer Methods in Applied Mechanics and Engineering 49(1), 55–70
(1985)

[72] Simo, J., Vu-Quoc, L.: A three-dimensional finite-strain rod model: part II: compu-
tational aspects. Computer Methods in Applied Mechanics and Engineering 58(1),
79–116 (1986)

[73] Simo, J., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions:
a geometrically exact approach. Computer Methods in Applied Mechanics and
Engineering 66(2), 125–161 (1988)

[74] Sonneville, V., Brüls, O., Bauchau, O.: Interpolation schemes for geometrically
exact beams: a motion approach. International Journal for Numerical Methods in
Engineering 112(9), 1129–1153 (2017)

[75] Sonneville, V., Cardona, A., Brüls, O.: Geometric interpretation of a non-linear
beam finite element on the Lie group SE(3). Archive of Mechanical Engineering
61(2), 305–329 (2014)

[76] Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact beam finite element
formulated on the special Euclidean group SE(3). Computer Methods in Applied
Mechanics and Engineering 268, 451–474 (2014)

[77] Stillwell, J.: Naive Lie theory. Undergraduate Texts in Mathematics. Springer, New
York, NY (2008)

[78] Strehmel, K., Weiner, R., Podhaisky, H.: Numerik gewöhnlicher Differentialgleichun-
gen: Nichtsteife, steife und differential-algebraische Gleichungen, 2nd edn. Vieweg
& Teubner, Wiesbaden (2012)

[79] Tange, O.: GNU Parallel 2018. Zenodo (2018)

[80] Varadarajan, V.: Lie groups, Lie algebras, and their representations, Graduate Texts
in Mathematics, vol. 102. Springer, New York, Berlin, Heidelberg (1984)

113

[81] Verwer, J., Sanz-Serna, J.: Convergence of method of lines approximations to partial
differential equations. Computing 33(3-4), 297–313 (1984)

[82] Weber, S.: Singulär gestörte Differentialgleichungssysteme und quasistatische
Lösungsverfahren in der Mehrkörperdynamik. Ph.D. thesis, Martin-Luther-
Universität Halle-Wittenberg, Halle (2013)

[83] Wieloch, V.: Analytisch äquivalente Lie-Gruppen-Beschreibungen des Starrkörpers:
Ein numerischer Vergleich. Ph.D. thesis, Martin Luther University Halle-Wittenberg,
Institute of Mathematics (2013)

[84] Wieloch, V., Arnold, M.: BLieDF2nd: a k-step BDF integrator for constrained
mechanical systems on Lie groups. In: Proc. 5th Joint International Conference on
Multibody System Dynamics (2018)

[85] Wieloch, V., Arnold, M.: BDF integrators for constrained mechanical systems on
Lie groups. Journal of Computational and Applied Mathematics 387, 112517 (2021)

[86] Zhang, F.: The Schur complement and its applications, vol. 4. Springer, New York,
NY (2005)

114

A. Lie Group Functions

In this section we will present the most important Lie group functions related to the linear
Lie group (Rn,+), the Lie group of rotation matrices (SO(3), ·), the Lie group of unit
quaternions (S3, ∗), the special Euclidean Lie group (SE(3), ·), the semi-direct product
(S3 ⋉R3, ◦), as well as the Lie group of unit dual quaternions (UDQ, ∗). A lot of these
functions can be found in the project liegroup or heavytop, see section 5.2. Especially
the Mathematica script that comes with liegroup might be helpful in verifying these
statements.

A.1. Linear Lie Groups Rn

Let n ∈ N. We consider the linear Lie group (Rn,+), where the group operation is
the vector addition, inversion is negation, and the identity element is 0 ∈ Rn. Let
x,y,v,w ∈ Rn:

T0Rn = Rn, ṽ = v,

dLx(0)ṽ = v, ẽxp(v) = v,

l̃og(x) = x, v̂ = I,

T(v) = I, T−1(v) = I,

∂

∂v

(
T−⊤(v) ·w

)
= 0.

A.2. Lie Group of Rotation Matrices SO(3)

We consider the Lie group of rotation matrices (SO(3), ·) that is called the special
orthogonal group in three dimensions. It is defined as

SO(3) = {R ∈ R3×3 : R ·R⊤ = I, detR = 1}

and its dimension is dimSO(3) = 3. The group operation is matrix multiplication,
inversion is matrix transposition since R⊤ = R−1 for R ∈ SO(3), and the identity element
is the identity matrix I ∈ SO(3). Let R ∈ SO(3) and v,w ∈ R3:

TISO(3) = so(3) = {A ∈ R3×3 : A + A⊤ = 0},
ṽ = skw(v),

dLR(I)ṽ = R · skw(v),

ẽxp(v) = I + f1(∥v∥) skw(v)− f2(∥v∥)
(
skw(v)

)2
,

v̂ = skw(v),

T(v) = I + f2(∥v∥) skw(v) + f3(∥v∥)
(
skw(v)

)2
,

T−1(v) = I +
1

2
skw(v) + f6(∥v∥)

(
skw(v)

)2
,

115

S(v,w) =
∂

∂v

(
T−⊤(v) ·w

)1

2
skw(w)− f8(∥v∥)

(
skw(w)

)2 · v · v⊤
− f6(∥v∥)

(
skw(v) · skw(w) + skw(v ×w)

)
.

Here, we have used the skew-symmetric matrix skw(•) defined in (2.29) as well as the
singular functions defined in appendix B.

A.3. The Special Euclidean Group SE(3)

We consider the special Euclidean Lie group in three dimensions (SE(3), ·). It is often
defined as

SE(3) =

{[
R x
0 1

]
∈ R4×4 : R ∈ SO(3), x ∈ R3

}
and its dimension is dimSE(3) = 6. The group operation is matrix multiplication,
inversion is matrix inversion, and the identity element is e = I4 ∈ SE(3). Note that when
using this Lie group in an implementation, one should only store the rotation matrix
R ∈ SO(3) and the vector x ∈ R3, dropping the last row, which is constant. In order to
make this visible in the formulae and to simplify notation, we will write the elements as
pairs:

(R,x) =

[
R x
0 1

]
.

Let (R,x), (Q,y) ∈ SE(3), Ω,U ,A,W ∈ R3 and v = [Ω⊤,U⊤]⊤:

(R,x) · (Q,y) = (R ·Q,x+ R · y),

(R,x)−1 = (R⊤,−R⊤ · x),

e = (I,0),

TeSE(3) = se(3) =

{[
A a
0 0

]
∈ R4×4 : A ∈ so(3), a ∈ R3

}
,

ṽ =

[
skw(Ω) U

0 0

]
,

dL(R,x)(e)ṽ =

[
R · skw(Ω) R ·U

0 0

]
,

ẽxp(v) =
(
ẽxpSO(3)(Ω),T⊤

SO(3)(Ω) ·U
)
,

v̂ =

[
skw(Ω) 0
skw(U) skw(Ω)

]
,

C1(Ω,U) = f2(∥Ω∥) skw(U) + f3(∥Ω∥)
(
skw(U) · skw(Ω) + skw(Ω) · skw(U)

)
+ f4(∥Ω∥)(Ω⊤ ·U) skw(Ω)− f5(∥Ω∥)(Ω⊤ ·U)

(
skw(Ω)

)2
,

T(v) =

[
TSO(3)(Ω) 0

C1(Ω,U) TSO(3)(Ω)

]
,

116

C2(Ω,U) =
1

2
skw(U) + f6(∥Ω∥)

(
skw(U) · skw(Ω) + skw(Ω) · skw(U)

)
+ f8(∥Ω∥)(Ω⊤ ·U)

(
skw(Ω)

)2
,

T−1(v) =

[
T−1

SO(3)(Ω) 0

C2(Ω,U) T−1
SO(3)(Ω)

]
,

C3(Ω,U ,W) = −f6(∥Ω∥)
(
skw(U) · skw(W)− skw(W ×U)

)
− f8(∥Ω∥)(U⊤ ·Ω)

(
skw(Ω) · skw(W) + skw(Ω ×W)

)
+ f8(∥Ω∥)

((
Ω × (Ω ×W)

)
·U⊤ +

(
U × (Ω ×W) +Ω × (U ×W)

)
·Ω⊤

)
+ f9(∥Ω∥)(Ω⊤ ·U)

(
Ω × (Ω ×W)

)
·Ω⊤,

S

(
v,

[
A
W

])
=

∂

∂v

(
T−⊤(v) ·

[
A
W

])
=

[
SSO(3)(Ω,A) + C3(Ω,U ,W) SSO(3)(Ω,W)

SSO(3)(Ω,W) 0

]
.

We have used references to functions from the Lie group SO(3) that are marked by the
index •SO(3) as well as singular functions defined in appendix A.

A.4. The Lie Group of Unit Quaternions S3

We consider the Lie group of unit quaternions (S3, ∗). It holds, see section 2.3,

S3 = {p ∈ R4 : ∥p∥ = 1}

and the dimension is dimS3 = 3. The group operation is quaternion multiplication ∗,
inversion is quaternion conjugation, and the identity element is e = [1, 0, 0, 0]⊤ ∈ S3, see
section 2.3. Let p, p1, p2 ∈ S3 and v,w ∈ R3:

TeS3 = s3 =

{[
0
a

]
∈ R4×4 : a ∈ R3

}
,

ṽ =

[
0
1
2v

]
,

dLp(e)ṽ = p ∗ ṽ =
1

2
p ∗
[

0
v

]
,

ẽxp(v) =

[
cos(∥v∥/2)
1
2f1(∥v∥/2)v

]
,

l̃og(p) = f7(Re p) Im p,

v̂ = skw(v),

T(v) = TSO(3)(v),

117

T−1(v) = TSO(3)(v),

S(v,w) =
∂

∂v

(
T−⊤(v) ·w

)
= SSO(3)(v,w).

Again, we have used references to functions from the Lie group SO(3) that are marked
by the index •SO(3), the real and imaginary part Re and Im from section 2.3, as well as
singular functions defined in appendix B. Note that the Lie algebras of S3 and SO(3) are
isomorphic and by choosing the appropriate tilde operator, all functions related to only
the Lie algebra coincide.

A.5. The Semi-Direct Product S3 ⋉R3

We consider the semi-direct product Lie group (S3 ⋉R3, ◦). It is (as a set) defined by

S3 ⋉R3 = {(p,x) : p ∈ S3, x ∈ R3}

and its dimension is dim(S3 ⋉ R3) = 6. Let (p,x), (q,y) ∈ S3 ⋉ R3, Ω,U ,A,W ∈ R3

and v = [Ω⊤,U⊤]⊤:

(p,x) ◦ (q,y) = (p ∗ q,x+ p ▷ y),

(p,x)−1 = (p−1,−p−1 ▷ x),

e = ([1, 0, 0, 0]⊤,0),

Te(S3 ⋉R3) =

{([
0
a

]
, b

)
: a, b ∈ R3

}
,

ṽ =

([
0

1
2Ω

]
,U

)
,

dL(p,x)(e)ṽ =

(
p ∗
[

0
1
2Ω

]
, p ▷U

)
,

ẽxp(v) =
(
ẽxpS3(Ω),T⊤

S3(Ω) ·U
)
,

l̃og
(
(p,x)

)
=

[
l̃ogS3(p)

T−⊤
S3
(
l̃ogS3(p)

)
· x

]
,

v̂ =

[
skw(Ω) 0
skw(U) skw(Ω)

]
,

T(v) = TSE(3)(v),

T−1(v) = T−1
SE(3)(v),

S

(
v,

[
A
W

])
=

∂

∂v

(
T−⊤(v) ·

[
A
W

])
= SSE(3)

(
v,

[
A
W

])
.

We have used the action ▷ as defined in section 2.3 and references to functions from the
Lie groups S3 and SE(3) that are marked by an appropriate index. Note that the Lie

118

algebras of S3 ⋉ R3 and SE(3) are isomorphic and by choosing the appropriate tilde
operator, all functions related to only the Lie algebra coincide.

A.6. The Lie Group of Unit Dual Quaternions UDQ

We consider the Lie group (UDQ, ∗) of unit dual quaternions. It is defined by

UDQ = {p+ ϵr : p, r ∈ R4, ∥p∥ = 1, p⊤ · r = 0},
see remark 2.33, with an imaginary unit ϵ ̸= 0 that fulfills ϵ2 = 0. The dimension is
dimUDQ = 6. Note that when using this Lie group in an implementation, one should
store the real part p and the imaginary part r as a pair or an 8-dimensional vector. In
order to simplify notation, we will write the elements as pairs:

(p, r) = p+ ϵr.

Let (p, r), (q, s) ∈ UDQ, Ω,U ,A,W ∈ R3 and v = [Ω⊤,U⊤]⊤:

(p, r) ∗ (q, s) = (p ∗ q, r ∗ q + p ∗ s),
(p, r)−1 = (p−1,−p−1 ∗ r ∗ p−1),

e = ([1, 0, 0, 0]⊤,0),

TeUDQ =

{([
0
a

]
,

[
0
b

])
: a, b ∈ R3

}
,

ṽ =

([
0

1
2Ω

]
,

[
0

1
2U

])
,

dL(p,r)(e)ṽ =

(
p ∗
[

0
1
2Ω

]
, r ∗

[
0

1
2Ω

]
+ p ∗

[
0

1
2U

])
,

ẽxp(v) =

(
ẽxpS3(Ω),

[
0

1
2T

⊤
S3(Ω) ·U

]
∗ ẽxpS3(Ω)

)
,

v̂ =

[
skw(Ω) 0
skw(U) skw(Ω)

]
,

T(v) = TSE(3)(v),

T−1(v) = T−1
SE(3)(v),

S

(
v,

[
A
W

])
=

∂

∂v

(
T−⊤(v) ·

[
A
W

])
= SSE(3)

(
v,

[
A
W

])
.

We have used references to functions from the Lie groups S3 and SE(3) that are marked
by an appropriate index. Note that the Lie algebras of UDQ and SE(3) are isomorphic
and by choosing the appropriate tilde operator, all functions related to only the Lie
algebra coincide. If an element (p, r) ∈ UDQ describes a rigid body configuration,
p ∈ S3 is the orientation as a unit quaternion and the position can be calculated as
x = 2 Im(r ∗ p−1).

119

B. Functions with Isolated Singularity

We consider the following functions with removable singularities:

f1(x) =

sinx

x
, x > 0,

1, x = 0,

f2(x) =

cosx− 1

x2
, x > 0,

−1
2 , x = 0,

f3(x) =

x− sinx

x3
, x > 0,

1
6 , x = 0,

f4(x) =

2− 2 cosx− x sinx

x4
, x > 0,

1
12 , x = 0,

f5(x) =

x(2 + cosx)− 3 sinx

x5
, x > 0,

1
60 , x = 0,

f6(x) =

2− x cot(x/2)

2x2
, x > 0,

1
12 , x = 0,

f7(x) =

2 arccosx√

1− x2
, −1 < x < 1,

2, x = 1,

f8(x) =

x sinx+ 4 cosx+ x2 − 4

4 sin2(x/2)x4
, x > 0,

1
360 , x = 0,

f9(x) =

64− 12x cot(x/2) +

4x2
(
3+x cot(x/2)

)
cosx−1

8x6
, x > 0,

1
3780 , x = 0.

All of them are continuous for x > 0 and right-continuous in x = 0, except for f7, which
is continuous for −1 < x < 1 and left-continuous for x = 1. When these functions
are evaluated on a computer near x = 0 (or x = 1 in the case of f7), there is a large
loss of significance. Therefore, these functions must be approximated, e. g., by Taylor
polynomials in these cases in order to obtain an accurate and precise function value. The
intervals where to calculate the function value by its actual function or by its Taylor
approximation has to be chosen in a way that there is only negligible loss of significance
and the Taylor approximation is of sufficient order. Of course, the order is chosen as low
as possible at the same time. The limits that we used in the project liegroup, which

120

Table 1: Limits for when to evaluate the singular functions by their function definition
and when by their Taylor polynomial

Function Taylor polynomial for Function definition for Order of Taylor poly.

f1 x < 10−4 x ≥ 10−4 2
f2 x < 10−2 x ≥ 10−2 4
f3 x < 10−4 x ≥ 10−4 4
f4 x < 10−1 x ≥ 10−1 6
f5 x < 10−1 x ≥ 10−1 6
f6 x < 10−2 x ≥ 10−2 4
f7 x > 1− 5×10−3 −1 < x ≤ 1− 5×10−3 5
f8 x < 2×10−1 x ≥ 2×10−1 4
f9 x < 4×10−1 x ≥ 4×10−1 6

implements these nine functions, are chosen by hand using the Mathematica script in
the project and are displayed in table 1. We aimed for an absolute error in the Taylor
approximation of about 10−16 and a relative error in the actual function of about 10−10.
The implemented Taylor polynomials are:

Tf1(x) = 1− x2

6
,

Tf2(x) = −1

2
+
x2

24
− x4

720
,

Tf3(x) =
1

6
− x2

120
+

x4

5040
,

Tf4(x) =
1

12
− x2

180
+

x4

6720
− x6

453600
,

Tf5(x) =
1

60
− x2

1260
+

x4

60480
− x6

4989600
,

Tf6(x) =
1

12
+

x2

720
+

x4

30240
,

Tf7(x) = 2− 2(x− 1)

3
+

4(x− 1)2

15
− 4(x− 1)3

35
+

16(x− 1)4

315
− 16(x− 1)5

693
,

Tf8(x) =
1

360
+

x2

7560
+

x4

201600
+

x6

5987520
+

691x8

130767436800
,

Tf9(x) =
1

3780
+

x2

50400
+

x4

997920
+

691x6

16345929600
.

C. The Heavy Top in Several Lie Group Formulations

The equations of motion of the heavy top example, see e. g. [16] as well as remark 5.1, take
the form (2.31). In this section, we will list the explicit form of mass matrix, generalized

121

forces, constraint function as well as its derivative. We will use the mass m > 0, the
inertia tensor J ∈ R3×3, the gravity vector γ ∈ R3 and the reference position X ∈ R3 as
defined in remark 5.1. Note that we do not give explicit formula for the Coriolis force

v̂(t)
⊤
·M · v(t) as is can be easily calculated by the hat operator found in appendix A.

Furthermore, we will show how to calculate the initial conditions from given initial
rotation p0 ∈ S3, initial position x0 ∈ R3 and initial angular velocity Ω0 ∈ R3. Of course
we assume that p−10 ▷x0 = X. We will use the Euler map REuler : S3 → SO(3) that maps
a unit quaternion to the corresponding rotation matrix with

REuler(p) = [p ▷ e1, p ▷ e2, p ▷ e3],

see remark 2.31.

C.1. Unconstrained in SO(3)

We can formulate the heavy top in SO(3) by only considering the rotation matrix
q(t) = R(t) ∈ SO(3), where we can calculate the position x(t) = R(t) ·X. The derivative
vector of R(t) is the angular velocity v(t) = Ω(t) ∈ R3. Of course, in this case, we do
not need the constraint function: We can formally omit all occurrences of the constraint
function Φ, its derivatives, as well as the Lagrange multiplier λ, see remark 2.38.

M = J−m skw(X) · skw(X), f
(
t, q(t),v(t)

)
= mX ×

(
R⊤(t) · γ

)
,

q0 = REuler(p0), v0 = Ω0.

C.2. Unconstrained in S3

Similarly, we can formulate the heavy top in S3 by only considering the unit quaternion
q(t) = p(t) ∈ S3. The position can be obtained by x(t) = p(t) ▷X and the derivative
vector of p(t) is the angular velocity v(t) = Ω(t) ∈ R3. Again, we do not need the
constraint function.

M = J−m skw(X) · skw(X), f
(
t, q(t),v(t)

)
= mX ×

(
p−1(t) ▷ γ

)
,

q0 = p0, v0 = Ω0.

C.3. Constrained in the Direct Product SO(3)× R3

We can use SO(3) × R3 to formulate the equations of motion for the heavy top by
using the tuple of rotation matrix R(t) and position x(t) as the configuration q(t) =(
R(t),x(t)

)
∈ SO(3)× R3. The derivative vector is comprised of angular velocity Ω(t)

with respect to the body-fixed frame and the velocity u(t) with respect to the inertia

122

frame: v(t) = [Ω⊤(t),u⊤(t)]⊤ ∈ R6.

M = blkdiag(J,mI), f
(
t, q(t),v(t)

)
=

[
0

mR⊤(t) · γ

]
,

Φ
(
q(t)

)
= R⊤(t) · x(t)−X, DΦ

(
q(t)

)
= [skw(X),R⊤(t)],

q0 =
(
REuler(p0),x0

)
, v0 =

[
Ω0

R⊤
Euler(p0) · (Ω0 ×X)

]
.

C.4. Constrained in the Direct Product S3 × R3

Similarly, we can use S3 × R3 to formulate the equations of motion of the heavy top
by using the tuple of unit quaternion p(t) and position x(t) as the configuration q(t) =(
p(t),x(t)

)
∈ S3 × R3. Again, the derivative vector is comprised of angular velocity Ω(t)

with respect to the body-fixed frame and velocity u(t) with respect to the inertia frame:
v(t) = [Ω⊤(t),u⊤(t)]⊤ ∈ R6.

M = blkdiag(J,mI), f
(
t, q(t),v(t)

)
=

[
0

p−1(t) ▷ (mγ)

]
,

Φ
(
q(t)

)
= p−1(t) ▷ x(t)−X, DΦ

(
q(t)

)
= [skw(X),R⊤

Euler

(
p(t)

)
],

q0 =
(
p0,x0

)
, v0 =

[
Ω0

p−10 ▷ (Ω0 ×X)

]
.

C.5. Constrained in SE(3)

The Lie group SE(3) can be used to formulate the equations of motion of the heavy
top. Here, q(t) =

(
R(t),x(t)

)
∈ SE(3) is the configuration, using the tuple notation

from appendix A.3, with the rotation matrix R(t) ∈ SO(3) and the position x(t). The
derivative vector is comprised of angular velocity Ω(t) and velocity U(t) with respect to
the body-fixed frame: v(t) = [Ω⊤(t),U⊤(t)]⊤ ∈ R6.

M = blkdiag(J,mI), f
(
t, q(t),v(t)

)
=

[
0

mR⊤(t) · γ

]
,

Φ
(
q(t)

)
= R⊤(t) · x(t)−X, DΦ

(
q(t)

)
= [skw(X), I],

q0 =
(
REuler(p0),x0

)
, v0 =

[
Ω0

Ω0 ×X

]
.

C.6. Constrained in the Semi-Direct Product S3 ⋉R3

Similarly, the Lie group S3 ⋉ R3 can be used to formulate the equations of motion for
the heavy top. Here, q(t) =

(
p(t),x(t)

)
∈ S3 ⋉ R3 is the configuration with the unit

quaternion p(t) ∈ S3 and the position x(t). The derivative vector is again comprised of
angular velocity Ω(t) and velocity U(t) with respect to the body-fixed frame: v(t) =

123

[Ω⊤(t),U⊤(t)]⊤ ∈ R6.

M = blkdiag(J,mI), f
(
t, q(t),v(t)

)
=

[
0

p−1(t) ▷ (mγ)

]
,

Φ
(
q(t)

)
= p−1(t) ▷ x(t)−X, DΦ

(
q(t)

)
= [skw(X), I],

q0 =
(
p0,x0

)
, v0 =

[
Ω0

Ω0 ×X

]
.

C.7. Constrained in Unit Dual Quaternions UDQ

Lastly, the Lie group UDQ of unit dual quaternions can be used to formulate the
equations of motion for the heavy top as well. Here, q(t) =

(
p(t), r(t)

)
∈ UDQ is the

configuration, using the notation from appendix A.6, with the quaternions p(t), r(t).
Here, p(t) ∈ S3 specifies the orientation as before and the position can be calculated as
x(t) = 2 Im

(
r(t) ∗ p−1(t)

)
. The derivative vector is again comprised of angular velocity

Ω(t) and velocity U(t) with respect to the body-fixed frame: v(t) = [Ω⊤(t),U⊤(t)]⊤ ∈ R6.

M = blkdiag(J,mI), f
(
t, q(t),v(t)

)
=

[
0

mp−1(t) ▷ γ

]
,

Φ
(
q(t)

)
= 2 Im

(
p−1(t) ∗ r(t)

)
−X, DΦ

(
q(t)

)
= [skw(X), I],

q0 =

(
p0,

[
0

1
2x0

]
∗ p0

)
, v0 =

[
Ω0

Ω0 ×X

]
.

D. Generalizing the Cosserat Beam Model: A Micropolar Shell
Model

A shell model is used to describe thin structures Q∗ ⊆ R3 that are a lot larger in two
dimensions than in the remaining third dimension, see e. g. [67]. In this appendix we
will show a way to generalize the Cosserat beam model from section 4.2 to two spatial
dimensions, which will lead us to a Cosserat shell model. While there has been a lot of
research on Cosserat shells, see e. g. [3, 13], this exploratory approach had already been
touched on in [43], but requires additional research and is in heavy need of validation
from the perspective of continuum mechanics and shell theory.

Since the orientation of each one-dimensional cross-section is described by a unit
quaternion, the resulting shell model belongs to the micropolar shell models [28]. These
models are in contrast to director-based shell models where the rotation of the one-
dimensional cross section around its longitudinal axis is not considered [68]. For an
extensive review on the literature on Cosserat shell theories, see e. g. [4].

Like in section 4.2, we will first describe the continuous Cosserat shell model in
section D.1 and in section D.2, the continuous shell model will be discretized for a shell
with rectangular base area.

124

D.1. The Continuous Cosserat Shell

We assume that for each time t ∈ [t0, te] the mass centroids of the shell are given by a
surface s 7→ x(s, t) ∈ R3 for s ∈ Ω ⊆ R2, where Ω is a compact set with piecewise smooth
boundary. We assume that the one-dimensional cross section at each mass centroid stays
rigid. We describe the orientation of the cross section attached to x(s, t) by a quaternion
p(s, t) ∈ S3. Thus, we describe the deformed shell Q(t) as follows:

Q(t) = {x(s, t) + p(s, t) ▷ [0, 0, ξ]⊤ ∈ R3 : s ∈ Ω, ξ ∈ [−θ(s)/2, θ(s)/2]},

where θ(s) is the thickness of the shell. Again, we will assume that all cross sections of
the shell are equal, so we have θ(s) ≡ θ.

The configuration space of the shell is given by C(Ω;S3 ⋉R3) and again, we choose
the semi-direct product Lie group structure (S3 ⋉ R3, ◦). We denote time derivatives
with a dot (∂ • /∂t = •̇) as before and introduce the notation ∂ℓ• = ∂ • /∂s(ℓ) for spatial
derivatives for ℓ = 1, 2. Additionally, we write s = [s(1), s(2)]⊤. Furthermore, we will use
the concept of derivative vectors and introduce v(s, t) and w(ℓ)(s, t) for ℓ = 1, 2 with

q̇(s, t) = dLq(s,t)(e) ṽ(s, t),

∂ℓq(s, t) = dLq(s,t)(e)
˜w(ℓ)(s, t), ℓ = 1, 2.

Similar to the case of the Cosserat beam model, we will now present the kinetic and
potential energy of the shell by integrals over energy densities. The kinetic energy of the
shell is given by

T
(
v(•, t)

)
=

∫
Ω
T
(
v(s, t)

)
ds

with a kinetic energy density

T
(
v(s, t)

)
=

1

2
v⊤(s, t) ·N · v(s, t),

where N = blkdiag(J, θρI3). Here, ρ > 0 is the density of the shell and J ∈ R3×3 is the
inertia tensor of the one-dimensional cross section {[0, 0, ξ]⊤: θ < ξ < θ} and is given by

J = diag
(θ3

12
,
θ3

12
, 0
)
.

The result can be obtained by considering a thin three-dimensional rigid body [−ε, ε]×
[−ε, ε] × [−θ/2, θ/2], calculating its inertia tensor by (4.2), dividing it by (2ε)2, the
product of the thicknesses and letting ε → 0. As before, T

(
v(s, t)

)
is essentially the

sum of the rotatory and translatory energy density of the now one-dimensional cross
section. Note that now J is singular because the mass moment of inertia along one of
the principal axes of the cross section – corresponding to drilling motions – vanishes.

Then we define the potential energy by

U
(
q(•, t)

)
=

∫
Ω
U
(
q(s, t)

)
ds

125

with a potential energy density

U
(
q(s, t)

)
=

1

2

[
w(1)(s, t)−w∗,(1)(s)
w(2)(s, t)−w∗,(2)(s)

]⊤
·C ·

[
w(1)(s, t)−w∗,(1)(s)
w(2)(s, t)−w∗,(2)(s)

]
with a symmetric matrix C ∈ R12×12 containing material and geometric parameters and
w∗,(i)(s) ∈ R6, which reflect the undeformed configuration of the shell. We have assumed
that the potential energy of the shell is quadratic and indeed, a careful translation of the
potential energy in [67] to the language of derivative vectors leads for curvature exponent
p = 1 from [67] to such a quadratic term. Furthermore, we will decompose the matrix C
into four parts:

C =

[
C(11) C(12)

C(21) C(22)

]
.

Now, we want to derive the equations of motion of the shell by applying Hamilton’s
principle

0 = δ

∫ te

t0

T
(
v(s, t)

)
− U

(
q(s, t)

)
dt (D.1)

with the usual boundary conditions δq(t0, s) = δq(te, s) = 0 . Considering both terms
separately, we get

δ

∫ te

t0

T
(
v(s, t)

)
dt =

∫
Ω

∫ te

t0

δT
(
v(s, t)

)
dt ds =

∫
Ω

∫ te

t0

v⊤(s, t) ·N · δv(s, t) dt ds

=

∫
Ω

∫ te

t0

v⊤(s, t) ·N ·
(
v̂(s, t) · δq(s, t) +

∂

∂t
δq(s, t)

)
dtds

=

∫
Ω

[
v⊤(s, t) ·N · δq(s, t)

]te
t=t0︸ ︷︷ ︸

=0

+

∫ te

t0

(
v⊤(s, t) ·N · v̂(s, t)− v̇⊤(s, t) ·N

)
· δq(s, t) dt ds,

where δq(s, t) is the derivative vector associated with δq(s, t). We have applied partial
integration, where the terms δq(s, t0) and δq(s, te) vanish by Hamilton’s principle. Now
we treat the second integral, where, for readability, we drop the arguments s and t:

δ

∫ te

t0

U(q) dt =

∫ te

t0

∫
Ω
δU(q) ds dt =

∫ te

t0

∫
Ω

[
w(1) −w∗,(1)

w(2) −w∗,(2)

]⊤
·C ·

[
δw(1)

δw(2)

]
dsdt

=

∫ te

t0

∫
Ω

[
w(1) −w∗,(1)

w(2) −w∗,(2)

]⊤
·C ·

[
ŵ(1) · δq + ∂1δq

ŵ(2) · δq + ∂2δq

]
dsdt

=

∫ te

t0

∫
Ω

[
w(1) −w∗,(1)

w(2) −w∗,(2)

]⊤
·C ·

[
ŵ(1) · δq
ŵ(2) · δq

]
−

2∑
i,j=1

∂j(w
(i))⊤ ·C(ij) · δq dsdt

+

∫ te

t0

∫
∂Ω

2∑
ℓ=1

[
(w(ℓ) −w∗,(ℓ))⊤ ·C(ℓ1) · δq
(w(ℓ) −w∗,(ℓ))⊤ ·C(ℓ2) · δq

]⊤
· ndσ dt

=

∫ te

t0

(
2∑

i,j=1

(w(i) −w∗,(i))⊤ ·C(ij) · ŵ(j) − ∂j(w(i))⊤ ·C(ij)

)
· δq ds dt.

126

We have applied the divergence theorem where an integral over ∂Ω, the boundary of Ω, is
introduced and where n(s) are the unit normal vectors of s ∈ ∂Ω. This integral vanishes,
since we assume – as in the Cosserat beam model – that the internal moments and forces
at the boundary of the shell vanish, thus it is free at its boundary.

Putting everything together, we get the equations of motion of the continuous Cosserat
shell model:

q̇ = dLq(e) ṽ, (D.2a)

∂ℓq = dLq(e) w̃(ℓ), ℓ = 1, 2, (D.2b)

N · v̇ = v̂⊤ ·N · v +

2∑
i,j=1

∂ig
(ij) − ŵ(i)

⊤
· g(ij), (D.2c)

g(ij) = C(ij) · (w(j) −w∗,(j)), i, j = 1, 2, (D.2d)

where we have omitted the arguments s and t for readability as well as introduced the
generalized forces g(ij)(s, t) ∈ R6 for i, j = 1, 2.

D.2. Discretizing the Cosserat Shell Model in Space

We will apply a spatial discretization similarly to the way we have discretized the
continuous beam model in section 4.2.2. For simplicity, we will restrict ourselves to a
rectangular set Ω = [0, L(1)]× [0, L(2)] and constant spatial step sizes. We introduce an

M (1) ×M (2)-sized grid {s(1)0 , . . . , s
(1)

M(1)} × {s(2)0 , . . . , s
(2)

M(2)}, where

s
(ℓ)

m(ℓ) = m(ℓ)∆s(ℓ), m(ℓ) = 0, . . . ,M (ℓ)

with step sizes ∆s(ℓ) = L(ℓ)/M (ℓ) for ℓ = 1, 2. Now, we consider configurations qd(s, t) of
the following form

qd
([
s(1)

s(2)

]
, t

)
= Ip

(
s(1) − s(1)

m(1)

∆s(1)
, Ip

(
s(2) − s(2)

m(2)

∆s(2)
, qm(1),m(2)(t), qm(1),m(2)+1(t)

)
,

Ip

(
s(2) − s(2)

m(2)

∆s(2)
, qm(1)+1,m(2)(t), qm(1)+1,m(2)+1(t)

))
for s(ℓ) ∈ [s

(ℓ)

m(ℓ) , s
(ℓ)

m(ℓ)+1
] and ℓ = 1, 2 with the interpolation operator (2.24). The

interpolation is done in the s(2) direction first and subsequently in the s(1) direction.
This is a generalization of bilinear interpolation. Note that the interpolating function is
different, when we interpolate in the s(1) direction first. We will later see, however, that
the order will not influence the resulting scheme.

Furthermore, we define the derivative vectors wd,(ℓ) for ℓ = 1, 2 and vd of qd(s, t) with
respect to the two spatial directions and t, respectively, where

q̇d(s, t) = dLqd(s,t)(e) ṽ
d(s, t),

∂ℓq
d(s, t) = dLqd(s,t)(e)

˜wd,(ℓ)(s, t), ℓ = 1, 2

127

and where they are well-defined. It can be seen, similar to section 4.2.2, that it holds

wd,(1)

([
s(1)

s
(2)

m(2)

]
, t

)
≡ w(1)

m(1)+1/2,m(2) , s(1) ∈ (s
(1)

m(1) , s
(1)

m(1)+1
),

wd,(2)

([
s
(1)

m(1)

s(2)

]
, t

)
≡ w(2)

m(1),m(2)+1/2
, s(2) ∈ (s

(2)

m(2) , s
(2)

m(2)+1
),

where

w
(1)

m(1)+1/2,m(2)(t) =
1

∆s(1)
l̃og
(
q−1
m(1),m(2)(t) ◦ qm(1)+1,m(2)(t)

)
,

w
(2)

m(1),m(2)+1/2
(t) =

1

∆s(2)
l̃og
(
q−1
m(1),m(2)(t) ◦ qm(1),m(2)+1(t)

)
for all appropriate indices m(1),m(2). Furthermore, it holds

vd([s
(1)

m(1) , s
(2)

m(2)]
⊤, t) = vm(1),m(2)(t),

where vm(1),m(2)(t) is the derivative vector of qm(1),m(2)(t).
We will only consider trajectories of this type in the variational principle (D.1) and

approximate the spatial integrals by combinations of trapezoidal and midpoint rule in
order to arrive at a discrete variational principle (2.39) with

q(t) =

q1,1(t)
...

qM(1),1(t)

q1,2(t)
...

qM(1),2(t)
...

qM(1),M(2)(t)

, v(t) =

v1,1(t)
...

vM(1),1(t)

v1,2(t)
...

vM(1),2(t)
...

vM(1),M(2)(t)

, (D.3)

ultimately leading to equations of motion of the form (2.31). Note that since we are in
an unconstrained setting, we omit all occurrences of the constraint function Φ and the
Lagrange multipliers λ, see remark 2.38.

Let us now derive a discrete kinetic energy T d by considering T
(
vd(•, t)

)
and approxi-

128

mating the integrals using the trapezoidal rule:

T (vd) =

M(1)∑
m(1)=1

M(2)∑
m(2)=1

∫ s
(1)

m(1)

s
(1)

m(1)−1

∫ s
(2)

m(2)

s
(2)

m(2)−1

T
(
vd
)

ds(1) ds(2)

≈
M(1)∑

m(1)=1

M(2)∑
m(2)=1

∆s(1)∆s(2)

4

(
T (v

s
(1)

m(1)−1
,s

(2)

m(2)−1

) + T (v
s
(1)

m(1)
,s

(2)

m(2)−1

)

+ T (v
s
(1)

m(1)−1
,s

(2)

m(2)

) + T (v
s
(1)

m(1)
,s

(2)

m(2)

)
)

= ∆s(1)∆s(2)
M(1)∑

m(1)=0

M(2)∑
m(2)=0

χm(1),m(2)v⊤
s
(1)

m(1)
,s

(2)

m(2)

·N · v
s
(1)

m(1)
,s

(2)

m(2)

= v⊤ ·M · v =: T d(v),

where we have omitted some of the arguments and with

χa(1),a(2) =

1
4 ,

(
a(1) = 0 ∨ a(1) = M (1)

)
∧
(
a(2) = 0 ∨ a(2) = M (2)

)
,

1
2 ,

(
a(1) = 0 ∨ a(1) = M (1)

)
∧
(
0 < a(2) < M (2)

)
,

1
2 ,

(
0 < a(1) < M (1)

)
∧
(
a(2) = 0 ∨ a(2) = M (2)

)
,

1,
(
0 < a(1) < M (1)

)
∧
(
0 < a(2) < M (2)

)
0, otherwise

for a(1), a(2) ∈ R and a mass matrix

M = ∆s(1)∆s(2) blkdiag
(
χ1,1N, . . . , χM(1),1N, χ1,2N, . . . , χM(1),2N, . . . , χM(1),M(2)N

)
.

Since J (and therefore N and M) are singular, we will use an approximation of the inertia
tensor J instead of J itself in the definition of M:

J ≈ diag
(1

12
θ
(
(∆s(2))2 + θ2

)
,

1

12
θ
(
(∆s(1))2 + θ2

)
,

1

12
θ
(
(∆s(1))2 + (∆s(2))2

))
. (D.4)

We have chosen this approximation by considering the inertia tensor of a rigid body

[−∆s(1)/2,∆s(1)/2]× [−∆s(1)/2,∆s(1)/2]× [−θ/2, θ/2],

see (4.2), and dividing it by ∆s(1) and ∆s(2), since J actually measures an inertial density.
Now we want to derive the discrete potential energy Ud by considering U

(
qd(•, t)

)
and

approximating the integrals. In order to do that, we split up U
(
qd(s, t)

)
in four parts

with i, j = 1, 2:

U (ij)
(
wd,(i)(s, t),wd,(j)(s, t)

)
=

1

2

(
wd(i)(s, t)−w∗,(i)(s)

)⊤ ·C(ij) ·
(
wd,(j)(s, t)−w∗,(j)(s)

)

129

and it holds

U
(
qd(s, t)

)
=

2∑
i=1

2∑
j=1

U (ij)
(
wd,(j)(s, t),wd,(i)(s, t)

)
.

Now, for U (ii) with i = 1, 2, we split up the integration range and apply the midpoint
rule for one spatial direction and the trapezoidal rule for the other spatial direction:∫

Ω
U (11)(wd,(1),wd,(1)) ds

=

M(1)∑
m(1)=1

M(2)∑
m(2)=1

∫ s
(1)

m(1)

s
(1)

m(1)−1

∫ s
(2)

m(2)

s
(2)

m(2)−1

U (11)(wd,(1),wd,(1)) ds(1) ds(2)

≈ ∆s(1)∆s(2)

2

M(1)∑
m(1)=1

M(2)∑
m(2)=1

(
U (11)(w

(1)

m(1)−1/2,m(2) ,w
(1)

m(1)−1/2,m(2))

+ U (11)(w
(1)

m(1)−1/2,m(2)−1
,w

(1)

m(1)−1/2,m(2)−1
)
)
,

= ∆s(1)∆s(2)
M(1)∑

m(1)=0

M(2)∑
m(2)=0

χm(1)−1/2,m(2)U (11)(w
(1)

m(1)−1/2,m(2) ,w
(1)

m(1)−1/2,m(2)),

where we have omitted some arguments. Note that this is well-defined even for m(1) = 0
since all undefined quantities are multiplied with χ−1/2,m(2) = 0. The case of U (22) can

be treated analogously. We can consider U (12) in a similar way, but use the midpoint
rule in both directions and approximate the value of wd,(ℓ) for ℓ = 1, 2 at the midpoints

[s
(1)

m(1) + ∆s(1)/2, s
(2)

m(2) + ∆s(2)/2]⊤ by their mean value:∫
Ω
U (12)(wd,(1),wd,(2)) ds

≈ ∆s(1)∆s(2)
M(1)∑

m(1)=1

M(2)∑
m(2)=1

U (12)(w
(1)

m(1)−1/2,m(2)−1/2
,w

(2)

m(1)−1/2,m(2)−1/2
)

= ∆s(1)∆s(2)
M(1)∑

m(1)=0

M(2)∑
m(2)=0

χm(1)−1/2,m(2)−1/2U
(12)(w

(1)

m(1)−1/2,m(2)−1/2
,w

(2)

m(1)−1/2,m(2)−1/2
)

and analogously for U (21). Note that in the definition of U (ij) with discretized arguments
we have to use the corresponding discretized quantities defined by

w
∗,(ℓ)
a,b = w∗,(ℓ)([s(1)a , s

(2)
b]⊤), ℓ = 1, 2

for appropriate indices a, b. Furthermore we have introduced the midpoints and mean

130

values

s
(ℓ)

m(ℓ)−1/2
=

1

2

(
s
(ℓ)

m(ℓ)−1
+ s

(ℓ)

m(ℓ)

)
,

w
(1)

m(1)−1/2,m(2)−1/2
=

1

2
(w

(1)

m(1)−1/2,m(2)−1
+w

(1)

m(1)−1/2,m(2)),

w
(2)

m(1)−1/2,m(2)−1/2
=

1

2
(w

(2)

m(1)−1,m(2)−1/2
+w

(2)

m(1),m(2)−1/2
)

Plugging everything together, we define

Ud(q) = ∆s(1)∆s(2)
M(1)∑

m(1)=0

M(2)∑
m(2)=0

(
χm(1)−1/2,m(2)U (11)(w

(1)

m(1)−1/2,m(2) ,w
(1)

m(1)−1/2,m(2))

+ χm(1),m(2)−1/2U
(22)(w

(2)

m(1),m(2)−1/2
,w

(2)

m(1),m(2)−1/2
)

+ 2χm(1)−1/2,m(2)−1/2U
(12)(w

(1)

m(1)−1/2,m(2)−1/2
,w

(2)

m(1)−1/2,m(2)−1/2
)

)
.

Note that due to the symmetry of C, we have U (12)(a, b) = U (21)(b,a).
In order to write the equations of motion of the spatially discretized shell, we apply

remark 2.35. In order to do this, we also need to calculate the derivative of the potential
energy. This can be done in components:

Dq
m(1),m(2)

Ud

= ∆s(1)∆s(2)
1

2

∑
a,b∈{−1/2,1/2}

(
(g

(11)

m(1)+a,m(2) + g
(12)

m(1)+a,m(2)+b
)⊤ ·Dq

m(1),m(2)
w

(1)

m(1)+a,m(2)

+ (g
(22)

m(1),m(2)+b
+ g

(21)

m(1)+a,m(2)+b
)⊤ ·Dq

m(1),m(2)
w

(2)

m(1),m(2)+b

)
,

where

g
(11)

m(1)−1/2,m(2) = χm(1)−1/2,m(2)C(11) · (w(1)

m(1)−1/2,m(2) −w∗,(1)
m(1)−1/2,m(2)),

g
(22)

m(1),m(2)−1/2
= χm(1),m(2)−1/2C

(22) · (w(2)

m(1),m(2)−1/2
−w∗,(2)

m(1),m(2)−1/2
),

g
(12)

m(1)−1/2,m(2)−1/2
= χm(1)−1/2,m(2)−1/2C

(12) · (w(2)

m(1)−1/2,m(2)−1/2
−w∗,(2)

m(1)−1/2,m(2)−1/2
),

g
(21)

m(1)−1/2,m(2)−1/2
= χm(1)−1/2,m(2)−1/2C

(21) · (w(1)

m(1)−1/2,m(2)−1/2
−w∗,(1)

m(1)−1/2,m(2)−1/2
)

for all applicable indices, omitting some arguments.
All in all, we can formulate the equations of motion of the spatially discretized Cosserat

131

shell model in components

q̇m(1),m(2) = dLq
m(1),m(2)

(e) ˜vm(1),m(2)

∆s(1)∆s(2)χm(1),m(2)N · v̇m(1),m(2)

= ∆s(1)∆s(2)χm(1),m(2) ̂vm(1),m(2)N · vm(1),m(2)

+
∑

a,b∈{−1/2,1/2}

(
∆s(2)aT−⊤(−2a∆s(1)w

(1)

m(1)+1/2,m(2)

)
(g

(11)

m(1)+a,m(2) + g
(12)

m(1)+a,m(2)+b
)

+ ∆s(1)bT−⊤(−2b∆s(2)w
(2)

m(1),m(2)+b

)
(g

(22)

m(1),m(2)+b
+ g

(21)

m(1)+a,m(2)+b
)

)
,

where we have used an analogue of (4.17) and where N contains the non-singular
approximation (D.4) of J.

132

Publikationsliste

� Hante, S., Tumiotto, D., Arnold, M.: A Lie group variational integration approach
to the full discretization of a constrained geometrically exact Cosserat beam model.
Multibody System Dynamics 54, 97–123 (2022)

� Hante, S.: A Lie group generalization of the RATTLE scheme applied to non-
holonomic constraints. In: T. Gleim, S. Lange (eds.) Proceedings of 8th GACM
Colloquium on Computational Mechanics, pp. 207–210. Kassel University Press,
Kassel (2019)

� Hante, S., Arnold, M.: RATTLie: A variational Lie group integration scheme for
constrained mechanical systems. Journal of Computational and Applied Mathe-
matics 387, 112492 (2021)

� Hante, S., Arnold, M., Köbis, M.: The SNiMoWrapper: An FMI-compatible
testbed for numerical algorithms in co-simulation. In: B. Schweizer (ed.) IUTAM
Symposium on Solver-Coupling and Co-Simulation, pp. 99–116. Springer, Cham
(2019)

� Hante, S., Arnold, M.: Staggered grid discretizations on Lie groups with applications
in beam and shell theory. PAMM 18(1), e201800277 (2018)

� Arnold, M., Hante, S.: Implementation details of a generalized-α differential-
algebraic equation Lie group method. Journal of Computational and Nonlinear
Dynamics 12(2), 021002 (2017)

� Hante, S., Arnold, M.: A novel approach to Lie group structured configuration
spaces of rigid bodies. Proceedings in Applied Mathematics and Mechanics 17(1),
151–152 (2017)

� Arnold, M., Hante, S., Köbis, M.: Error analysis for co-simulation with force-
displacement coupling. PAMM 14(1), 43–44 (2014)

133

Lebenslauf

Stefan Hante, M. Sc., geboren am 26. März 1990 in Eisenach

seit 2021 Application Engineer bei dSPACE GmbH (Paderborn)

2016 – 2021 Wissenschaftlicher Mitarbeiter am Institut für Mathematik der
Martin-Luther-Universität Halle-Wittenberg

2016 Wissenschaftlicher Mitarbeiter am Institut für Mathematik der
Martin-Luther-Universität Halle-Wittenberg
im BMBF-geförderten Projekt MusiKa

2012 – 2015 Master Mathematik mit Anwendungsfach Informatik an der Martin-
Luther-Universität Halle-Wittenberg
Masterarbeit: “A general purpose Lie group generalized-α time
integrator applied to nonlinear flexible geometrically exact beam
models”
Gesamtprädikat: sehr gut (1,1)

2012 – 2013 Wissenschaftlicher Mitarbeiter am Institut für Mathematik der
Martin-Luther-Universität Halle-Wittenberg
im BMBF-geförderten Projekt SNiMoRed

2008 – 2012 Bachelor Mathematik mit Anwendungsfach Chemie an der Martin-
Luther-Universität Halle-Wittenberg
Bachelorarbeit: “Simulation of a Cosserat rod model and its discreti-
sations in space and time”
Gesamtprädikat: gut (1,6)

2000 – 2008 Tilesius-Gymnasium (Mühlhausen)
Abitur (1,0)

134

Selbstständigkeitserklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertation selbständig und
ohne fremde Hilfe angefertigt habe, sowie keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt. Die den benutzten Werken wörtlich oder inhaltlich entnommenen
Stellen habe ich als solche kenntlich gemacht.

Salzkotten, den 23. Februar 2022

135

	List of Algorithms
	List of Figures
	Introduction
	Elements of Lie Group Theory
	Differential Geometric Aspects
	The Concept of Derivative Vectors
	The Lie Group S3R3
	Isomorphies and Matrix Lie Groups
	Mechanical Systems with Lie Group Structured Configuration Spaces
	Lie Groups as Riemannian Manifolds and Metric Spaces

	RATTLie
	Derivation
	Conservative Systems
	External Forces
	SHAKELie
	Extension to Nonholonomic Constraints

	Convergence Analysis
	The Local Error
	The Global Error
	The Lagrange Multipliers

	Implementation Details

	A Flexible Cosserat Beam Model and Its Discretization in Space
	Rigid Bodies
	The Cosserat Beam
	The Continuous Cosserat Beam Model
	Discretizing the Cosserat Beam Model in Space

	Numerical Experiments
	Examples and Benchmarks
	Implementation
	Results and Interpretation

	Conclusion
	References
	Lie Group Functions
	Linear Lie Groups Rn
	Lie Group of Rotation Matrices SO(3)
	The Special Euclidean Group SE(3)
	The Lie Group of Unit Quaternions S3
	The Semi-Direct Product S3R3
	The Lie Group of Unit Dual Quaternions UDQ

	Functions with Isolated Singularity
	The Heavy Top in Several Lie Group Formulations
	Unconstrained in SO(3)
	Unconstrained in S3
	Constrained in the Direct Product SO(3)R3
	Constrained in the Direct Product S3R3
	Constrained in SE(3)
	Constrained in the Semi-Direct Product S3R3
	Constrained in Unit Dual Quaternions UDQ

	Generalizing the Cosserat Beam Model: A Micropolar Shell Model
	The Continuous Cosserat Shell
	Discretizing the Cosserat Shell Model in Space

