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Zusammenfassung

Ich beschreibe unstrukturierte Zufallsnetzwerke in silico von (pulsierenden) Neuro-
nen vom "Integrate-and-Fire-Typ" mit Leckstrom, frequenzabhängigen, leitungs-
basierten Synapsen und mit einer neuartigen Art von heterogener Topologie, im
superkritischen Regime, in dem sich ausgeprägte Synchronitätsereignisse (genannt
Netzwerkpulse) mit Phasen von vernachlässigbarer Aktivität abwechseln. In Über-
einstimmung mit früheren Arbeiten experimenteller und theoretischer Natur finde
ich eine Kohorte von priviligierten Pionierneuronen, die durch ihr frühes Feuern
die Netzwerkpulse ankündigen. Abgesehen von der Darlegung makroskopischer
Aspekte der Aktivität – sowohl in Bezug auf spontanes als auch evoziertes Verhal-
ten – beschreibe ich in großem Detail verschiedene Aspekte der mikroskopischen
Aktivität der Pionierneurone, wie Phänomenologie, Ursachen und Mechanismen,
die im frühen Feuern der Pionierneurone involviert sind sowie der erfolgreichen
Codierung der Lokalisierung schwacher externer Stimuli durch zeitbasierte neu-
ronale Codierschemata. Letzteres bedeutet, dass der Ursprung schwacher externer
Stimuli reliabel durch die Rangfolge der ersten Pulse der Pionierneurone decodiert
werden kann. Ratenbasierte Codierschemata und die Rangfolge von Nichtpionieren
sind im Gegensatz dazu zu dieser Codierung nicht fähig. Ich stelle auch die Frage,
ob Pioniere in nicht-heterogenen Netzwerken auftreten können und berichte, dass
Heterogenität den Pioniereffekt wesentlich verstärkt. Ich gebe ferner eine Erklärung
für diese starke Abhängigkeit der Phänomenologie von dem Grad der Heterogenität
des zugrunde liegenden Netzwerkes. Eine Folge davon ist, dass mein unstruk-
tiertes heterogenes Netzwerk ein minimales Modell für die Effekte darstellt, die ich
beschreibe, und es tut dies ohne heterogene Pulsschwellen, Hintergrundströme
oder andere Heterogenität in den neuronalen Parametern.

Als ein Nebenprodukt dieser Bemühungen beschreibe ich auch eine "Bayes-
sche" computationale Methode, die es möglich macht, starke Synapsen und starke
kausale Wechselwirkungen zwischen Paaren von Einheiten in neuronalen Systemen
zu detektieren. Die Methode wird mit Hilfe meiner in-silico-Netzwerke verifiziert,
aber sie ist immer anwendbar, wenn superkritisches Verhalten auftritt und kann
daher auch auf geeignete neuronale Kulturen in vitro angewandt werden, sogar
wenn starke Untererprobung die Messungen limitiert. Dies ist wichtig, denn das
Problem, die Struktur neuronaler Systeme aus Aktivitätsmessungen herzuleiten, ist
ein schwieriges "Reverse-Engineering-Problem".
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Abstract

I describe unstructured random networks of (spiking) leaky integrate-and-fire neu-
rons in silico with frequency-dependent conductance-based synapses and with
a novel type of heterogeneous topology in the super-critical regime, where pro-
nounced synchronisation events (termed ‘network spikes,’ NS) alternate with phases
of near-silence. In agreement with earlier experimental and modelling studies, I
observe a cohort of privileged ‘pioneer’ neurons which herald NS by their early firing.
Apart from describing the macroscopic aspects of the activity in the spontaneous
and in the evoked case, I elaborate in considerable detail on several aspects related
to the microscopic dynamics of pioneer neurons, such as phenomenology, reasons
and mechanisms involved in their early firing and such as the successful encoding of
locations of weak external stimuli by means of time-based neuronal coding schemes.
The latter means, more specifically, that the origin of weak external stimulation
can reliably be decoded by the rank-order of the first spikes of pioneer neurons. In
contrast, rate-based coding schemes, or rank-order by non-pioneers, are unable to
do so. I also consider whether pioneers can arise in non-heterogeneous networks
and report that heterogeneity considerably enhances the pioneer-effect. I also give
an explanation for this strong dependence of the phenomenology on the degree of
heterogeneity in the underlying network. As a consequence, my unstructured het-
erogeneous network provides a minimal model for the effects which are described
here, and does so without heterogeneous firing thresholds or heterogeneous back-
ground currents or other heterogeneity in neuronal parameters.

As a by-product of my work, I also describe a special ‘Bayesian-like’ computa-
tional method which makes it possible to infer strong synapses or strong causal
interaction between pairs of units in neural systems. The method is verified by
using my in silico networks; the method, however, applies whenever super-critical
behaviour is observed and may thus be applied to appropriate neuronal cultures
in vitro – and all this even when strong sub-sampling of neurons is at work. This
is important, because inferring structure from activity measurements is a difficult
‘reverse-engineering’ problem in general.
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Chapter 1

Background, previous work and

aims

In this chapter, I first give a very concise presentation of neurons and synapses and

of the ordinary differential equations which are typically used for their mathemati-

cal description. Additionally, I summarise previous studies which are pertinent to

my work. Particular emphasis will be given to the experimental observations that

motivated this project. Lastly, I introduce the goals and contributions of the thesis.

1.1 Background

None of the material presented in this background section is original. Useful refer-

ences for the topics described in this section and references for important topics

left out are: Kandel et al. (2000), Bear et al. (2007), Thompson (2000), Dayan et al.

(2001), Gerstner et al. (2014), Izhikevich (2007), Tuckwell (2005), Rolls (2008), Rolls

and Deco (2010), Rolls (2016), Koch (1999), Burkitt (2006a), Burkitt (2006b), Tsodyks

et al. (1998), Tsodyks and Markram (1997), Markram et al. (1998), Risken (1996),

Honerkamp (1993), Stratonovich (1967), Van Kampen (1992), Gardiner (2009), Pa-

1
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poulis and Pillai (2002). In the sequel, I will rarely mention particular references

when I introduce a concept. All that I review (and much more, of course) can be

found in these textbooks and papers.

1.1.1 Neurons and neuron models

Around 1900, it was discovered (primarily by Santiago Ramón y Cajal) that nervous

tissue is composed of discrete entities. These discrete units are specialised cells

which are referred to as nerve cells or neurons. Before 1900, it was widely believed

that nervous tissue provides an exception to the rule – first proposed by Jacob Schlei-

den and Theodor Schwann around 1830 – that all tissue consists of single discrete

cells. We now know, however, that it also applies to the brain.

Thus, in the very end, the brain is ‘simply’ an extremely complex network of

neurons in which the neurons communicate with each other at sites called synapses.

It also contains other cells, however, which are required for the correct functioning

of neurons, such as cells which comprise the components of blood vessels and so-

called glia cells, which are believed to have a supporting and modulatory function.

In the sequel, only neurons are relevant.

Neurons are able to generate certain ‘signals’ by means of which they process

and transmit information. These are the action potentials. Action potentials are

often referred to as spikes, and I will follow this custom. In this thesis, a striking

instance of self-similarity is considered where an entire network of neurons behaves

‘like a single neuron,’ thus producing a network spike. In order to distinguish these

two entirely different types of ‘spike,’ I will sometimes refer to action potentials

(as generated by single neurons) by using the term ‘individual’ (individual spike).

When I talk about spikes or action potentials, I will always mean individual spikes. In

contrast, when I talk about network spikes, I will always retain the word ‘network.’

An action potential manifests itself by a stereotypical, very short and strong,

all-or-none fluctuation of the so-called membrane voltage V (t ), which is the (time-

dependent) difference Vinside(t )−Voutside(t ) of the electrical potentials inside and

outside the neuron. Here one makes use of the idealisation that these two potentials
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are well-defined, i.e. independent of the specific choices of positions within these

two regions, because the electric conductances within these two regions are (ideally)

very high,1 so that electrical fields are immediately neutralised, as, e.g., within a

solid body made of metal.

The shape of an action potential is so strongly localised in time – and believed

to be so inessential for neuronal coding – that spikes are mathematically modelled

as (Dirac) δ-peaks. A sequence of spikes is then described by a sequence of δ-peaks,

a so-called Dirac comb (see below).

To a certain approximation – and by employing a couple of idealisations2 –

the behaviour of the membrane voltage V (t ) of neurons between spikes can phe-

nomenologically be described by the differential equation

dV

dt
(t ) =

EL −V (t )
τm

+
Rm Ib

τm
+

Rm Iinput (t )

τm
. (1.1)

I first want to elaborate on this equation, which does not yet include spikes. EL ,

τm , Rm and Ib are parameters, whereas Iinput (t ) is a current which describes the

part of the ‘input’ to the neuron different from the background current Ib . EL is

the so-called leak reversal potential. It is the value to which the voltage relaxes if

the input current Iinput and the constant background current Ib are switched off.

τm is the time-scale (membrane time constant) according to which the relaxation

occurs. As far as Rm is concerned (membrane resistance), for my purposes, one may

consider it simply as a constant of proportionality which translates a current into a

voltage. The background current Ib effectively shifts the leak reversal potential EL

to the effective leak reversal potential EL ,eff = EL +Rm Ib . Thus, if the input current

Iinput (but not the background current) is switched off, the voltage relaxes to the

1The fluids inside and outside the neuron consist of water where large amounts of salts are solved.
This is the reason for the high conductibility within these two regions. The neuronal membrane, on
the other hand, is not permeable to most of the ions which are solved in the intra-cellular and in the
extra-cellular fluid. Therefore, the membrane voltage can be non-zero.

2With this step from neurons and action potentials to the leaky integrate-and-fire neuron model
(which I am up to introduce), I make a very long story very short. In reality, this is a very dramatic
simplification which ignores many details, such as the spatial extent of neurons, and the intricacies of
the precise dynamics of the large family of different ion channels. However, integrate-and-fire neurons
are very useful for minimal network models. See the literature mentioned at the beginning of this section
for more details on the modelling of single neurons and their spikes.
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effective leak reversal potential.

The differential equation just mentioned can be understood in several ways.

In the first sense, it is simply a ‘machine’ which translates the input Iinput into an

output V (t ). And from a more specific point of view, it is an input-output relation

which performs a certain type of low-pass filtering on the input signal. I want to

mention that the ordinary differential equation (ODE) at hand (essentially) gives

rise to Ornstein-Uhlenbeck noise if the signal Iinput is chosen to be Gaussian white

noise. Finally, I want to stress that the equation as it stands so far is entirely linear,

in the sense that the space of differences of solutions (for fixed Iinput ) is a vector

space.

The ODE at hand is forgetful. This means that any initial condition is ‘forgotten’

(i.e. not relevant) after a time which is much larger than the membrane time con-

stant, see Figs. 1.1 and 1.2 below.

Now I take the generation of spikes into account. This is done by the ad hoc

specification that a spike is generated whenever the voltage V (t ) reaches a threshold

Vthr from below. When this happens, the voltage is immediately reset to the reset

voltage Vres. Upon adding these two rules, the equation above gives a coherent and

(strongly) idealised description of the behaviour of (real) neurons (see footnote 2,

however). This equation together with the two additional specifications mentioned

(threshold voltage and reset) is referred to as the leaky integrate-and-fire (LIF) neu-

ron model (see Fig. 1.1 and Fig. 1.2 for an illustration3). The threshold-and-reset rule

originates from the fact that for many purposes the spike generation of neurons can

be considered threshold-governed, although in principle already this is an idealisa-

tion. The ODE at hand, including the ad hoc specifications, can still be considered

as an input-output relation, but it is highly non-linear4. When the LIF model is

considered in this way (as an input-output correspondence), the output signal is,

however, simply the list of spike times, i.e. the list of times of threshold crossings

of V (t ). In other words, one is usually not interested in the precise behaviour of

3In these two figures, the notion of the ∗-voltage is introduced, which plays a central role in this
thesis.

4The non-linearity of neurons is one of the primary reasons for the complexity and richness of the
information processing capabilities of neurons and neural networks.
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Figure 1.1 | Illustration of the LIF neuron model. The magenta line is the threshold voltage
and the yellow line is the reset voltage, which is here identical to the (bare) leak reversal potential.
The green line indicates the effective reversal potential. The blue curve depicts the actual voltage,
and the red curve the so-called ∗-voltage, which is not reset, but otherwise follows the same ODE
as the actual voltage. (The ∗-voltage is a fake voltage without physiological relevance. However it
is very useful for certain theoretical considerations of the behaviour of the model neurons.) This
figure is generated with parameters where the neuron is in the noise-driven regime, i.e. the (total)
input current is highly irregular and its mean is below the critical point where spiking occurs even
without noise. Therefore, the spikes (marked by vertical, black, dashed lines) occur at irregular
intervals. Because the ODE at hand is ‘forgetful,’ and because the average inter-spike interval is large
compared to the membrane time constant, both voltages agree when the time since the last spike is
relatively large. Parameters: Vthr = −50.0 mV; Vres = −65.0 mV; EL = −65.0 mV; τm = 20.0 ms;
Rm = 0.4 GΩ; Ib = 20.0 pA. The input current Iinput was chosen to be Gaussian white noise (with
mean zero) with a certain noise strength.

sub-threshold fluctuations of the membrane voltage V (t ), but only in the instances

where action potentials occur. The list of spike times is usually described by the

so-called neural response function ρ (a Dirac comb), which is defined as

ρ(t ) =
∑

k

δ(t − tk ), (1.2)

where the sum is over all spikes, and where tk are the spike times. Here, δ denotes

the well-known Dirac δ-function.

I mention at this point that the highly non-linear LIF neuron model can give

rise to an effect which is counter-intuitive at first sight but qualitatively easy to
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Figure 1.2 | Illustration of the LIF neuron model (continued). Magnification of a region in Fig. 1.1
where a spike occurs (black, dashed, vertical line). Here one can nicely observe the agreement of
both voltages when the time since the last spike is large relative to the membrane time constant
(20 ms); and one can readily observe that the actual voltage is reset when the spike occurs, whereas
the ∗-voltage is not. The agreement of both voltages, when the time since the last spike is large,
also demonstrates that initial conditions are ‘forgotten’ after some time.

understand: coherence resonance, see Lindner (2002). This means that (in a certain

regime) the output signal (spike train) can become more regular if the noisiness of

the input is increased.

The LIF model is often extended to include a so-called absolute refractory period.

This is a short time τref after a spike where the voltage is not allowed to evolve, i.e., it

is ‘frozen’ to the reset voltage. This comes from the fact that real neurons are unable

to produce a new spike immediately after a previous spike, no matter how large the

input is, and in this case the neuron is said to be refractory. The period where this

applies is, by definition, the absolute refractory period5.

Finally, one may add a mechanism of adaptation to the LIF model with refractory

period. Adaptation is a mechanism by which the firing rate (the rate of occurrences

of spikes) slowly decreases upon constant stimulation, which is often observed in

cortical neurons. This means that the neuron becomes less active and thus ‘adapts’

5In reality, the absolute refractory period is followed by a relative refractory period, where it is more
difficult, but not impossible, to evoke a spike. In the LIF model, this is to a certain extent incorporated
by the reset rule.
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to the given stimulus. The LIF model with refractory period and adaptation can

quite reliably reproduce6 actual spiking patterns of individual neurons (referred

to as spike trains) apart from few missed or additional spikes. In this thesis, I will

exclusively consider the LIF model without adaptation. The refractory period is

retained in the simulations. The neglect of adaptation is done for simplicity. The

possibility to explain in simple physical terms what I actually observe in silico will

profit from this neglect, as well as the degree to which the networks are amenable

to analytical computation. It is also my aim to find and describe a minimal model

which gives rise to the class of phenomena I am interested in, and as I will describe,

adaptation is not needed if another fatigue mechanism is present, see below. In fact,

my synapses are dynamical and in particular may deplete, and to a certain degree

the effects caused by this are qualitatively comparable to the effect of adaptation of

neurons (see Figs. 1.3 and 1.4 below). Adaptation (of neurons) and depletion (of

synapses, see below) are collectively referred to as fatigue mechanisms.

The fact that here I only describe the LIF model (with refractory period and

without adaptation) also includes the specification that the LIF neuron model with

refractory period (and without adaptation) is the only neuron model used in those

network simulations whose phenomenology is described in this thesis.

By fitting the LIF model to the behaviour of real neurons, one observes that the

physiological range of some of the parameters is typically as described below.

Physiological range of parameters:

• τm ∼ 20 ms;

• R ∼ GΩ;

• EL ∼ −65 mV;

• Vthr ∼ −50 mV;

6This applies in experiments where – in the first phase – the model neuron is fitted to a real neuron
by stimulating the real neuron with a certain (known) injected input current Iinput , and where – in the
second phase – one attempts to predict (using the model neuron) actual spikes in the real neuron by
using another certain (known) input current and the parameters found in the first phase. In contrast,
spike trains of neurons which are embedded in real neural networks, and which are not artificially
stimulated, can usually not be predicted and require a probabilistic description, because the (effective)
input currents are not known a priori.
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• Vres ∼ −65 mV;

• τref ∼ 1 ms.

1.1.2 Synapses and synapse models

Different neurons communicate with each other by means of synapses. This com-

munication is spatially and temporally directed: The transfer of information is

always from a pre-synaptic neuron towards a post-synaptic neuron. The biological

realisation of this process is chemical7: When an all-or-none spike is triggered in

the pre-synaptic neuron, and when this spike has propagated to the synaptic ter-

minals, a chemical substance referred to as neurotransmitter8 is released by the

pre-synaptic side of the synapse, then diffuses through the synaptic cleft (which

isolates the two neurons from each other), and then causes a small regular voltage

fluctuation (the post-synaptic potential, PSP) in the post-synaptic neuron. When

many spikes – from many pre-synaptic neurons – occur within a sufficiently small

time interval, these fluctuations may add up so that the post-synaptic neuron also

reaches threshold and by itself produces a spike. Thus, the post-synaptic neuron is

essentially a (highly non-linear) ‘machine’ which produces an all-or-none signal (a

spike) when the total input – caused by pre-synaptic neurons – is large enough.

Every neuron produces only PSPs which decrease (increase9, respectively) the

distances to threshold of the voltages of all post-synaptic neurons (Dale’s law). They

are referred to as excitatory (inhibitory, respectively) neurons. Essentially, the PSP

caused by excitatory neurons (excitatory PSP, EPSP) comprises a positive deviation

of the membrane voltage V (t ) (of the post-synaptic neuron) from its previous level,

and the PSP caused by inhibitory neurons (inhibitory PSP, IPSP) manifests itself by

a negative deviation of the membrane voltage of the post-synaptic neuron from its

previous level.

7I ignore electrical synapses.
8There are many different known neurotransmitters and receptors for these. The latter are proteins,

embedded in the post-synaptic membrane, which detect neurotransmitter molecules in a ‘lock-and-key’
way. I will not describe the precise chemical names of neurotransmitters and receptors, not to mention
the agonists and antagonists of the receptors.

9Here I slightly idealise matters by ignoring, e.g., the effect called shunting inhibition, see below.
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As far as the modelling is concerned, two conceptually different manifestations

of PSPs are considered. PSPs can be initiated by directly prescribing a certain input

current component Isyn which effectively stimulates the post-synaptic neuron and

adds (linearly) to any other input currents which may be present. Model synapses

which make use of this way of initiating the PSP are referred to as current synapses.

The other, more ‘physiological,’ but also more ‘complicated’ possibility found in the

modelling literature prescribes the post-synaptic conductance changes (which add

linearly to any other conductance changes – w.r.t to the same type of ion – which

may be present) instead of current changes. The post-synaptic current (which in-

duces the PSP) caused by pre-synaptic spikes is then determined by these changing

(synaptic) conductances and the running voltage by (essentially) Ohm’s law, so that

one could say that w.r.t. conductance synapses there are two computational ‘steps’

instead of one. Conductance synapses could be dubbed voltage-dependent and cur-

rent synapses voltage-independent. From a different point of view, one may think of

current synapses (as described so far) as being linear and of conductance synapses

as being non-linear, because in the latter case the synaptic currents which cause

the PSP do not add up linearly in general. This is also the reason why an analytical

treatment of conductance synapses is more involved than consideration of current

synapses. Shunting inhibition, the effect that strong inhibitory input to a neuron

does not directly alter the membrane voltage, but effectively makes the co-active

excitatory input in-effective, can only occur with conductance synapses. Thus the

more ‘realistic’ conductance synapses in principle show a richer phenomenology.

These are the reasons why I used them in spite of my aim to provide a minimal

model for the effects I am interested in.

Current synapses: mathematical modelling

Assume that i is a certain neuron within a network of LIF neurons, such that these

neurons are connected to each other by current synapses. Then the membrane
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voltage of neuron i (between spikes) behaves as

dVi

dt
(t ) =

EL ,i −Vi (t )
τm ,i

+
Rm ,i Ib ,i

τm ,i
+

Rm ,i Isyn,exc,i (t )

τm ,i
+

Rm ,i Isyn,inh,i (t )

τm ,i
, (1.3)

assuming that the synaptic currents Isyn,exc,i (excitatory synaptic current) and Isyn,inh,i

(inhibitory synaptic current) are the only components of the input current10 Iinput .

The synaptic currents are often modelled by letting them evolve according to the

ODEs
dIsyn,exc,i

dt
(t ) =−

Isyn,exc,i (t )

τsyn,exc,i
+
∑

j exc.

Aijρ j (t ) (1.4)

and
dIsyn,i

dt
(t ) =−

Isyn,inh,i (t )

τsyn,inh,i
+
∑

j inh.

Aijρ j (t ), (1.5)

where in the first equation the sum is over all excitatory neurons and in the sec-

ond equation over all inhibitory neurons in the network. τsyn,exc,i and τsyn,inh,i are

time constants which may depend on the neuron i . They are called the excitatory

(inhibitory, respectively) synaptic time constant of neuron i . Aij is a constant de-

pending on the pair (i , j )with physical dimension of Ampère. It is referred to as the

synaptic weight of the synapse j → i . ρ j is the neural response function of neuron

j . In model networks like the one which I describe here, if j and i are neurons such

that Aij is non-zero, then neuron j is said to be pre-synaptic to neuron i and neuron

i is said to be post-synaptic to neuron j 11. Obviously, in the above equations, it

would be sufficient to sum over all neurons j which are pre-synaptic to neuron i .

Equation 1.4 just says that the excitatory synaptic current of neuron i is ele-

vated by the amplitude Aij if a pre-synaptic spike arrives which originates from

the excitatory neuron j . Between spikes, the excitatory synaptic current relaxes to

zero with the time-constant τsyn,exc,i . An analogous statement can be made for the

inhibitory synaptic current. When j is a pre-synaptic neuron of neuron i , the weight

Aij will be positive if neuron j is excitatory, and negative if neuron j is inhibitory.

10If, in addition, a certain constant or variable current Ie were artificially injected into neuron i , the
input current would be Iinput = Ie + Isyn,exc + Isyn,inh.

11An analogous terminology applies in networks of model neurons connected by conductance
synapses, see below.



1.1. BACKGROUND 11

Thus, in model networks of neurons connected by current synapses, the signs of the

out-going weights of neuron j (either all non-negative or all non-positive accord-

ing to Dale’s law) determine whether the neuron is excitatory or inhibitory. In my

simulations, however, I use conductance synapses, which I describe now.

Conductance synapses: mathematical modelling

Now let i be a neuron within a network of LIF neurons connected by conductance

synapses. Then the membrane voltage of neuron i behaves (between spikes) as

(assuming again that no current is artificially injected)

dVi

dt
(t ) =

EL ,i −Vi (t )
τm ,i

+
Rm ,i Ib ,i

τm ,i
+

Rm ,i Isyn,i (t )

τm ,i
, (1.6)

where

Isyn,i (t ) = gexc,i (t )(Eexc,i −Vi (t ))+ g inh,i (t )(Einh,i −Vi (t )). (1.7)

Here, gexc,i is the excitatory synaptic conductance of neuron i an g inh,i is the in-

hibitory synaptic conductance of neuron i . These quantities are always non-negative.

The idea now is that the excitatory synaptic reversal potential Eexc,i is above threshold,

and that an incoming spike originating from an excitatory pre-synaptic neuron j

increases gexc,i by a certain (positive) amount∆g i j . Then the change of the first term

in the right hand side of equation 1.7 will be positive, and hence neuron i is excited

towards threshold. In contrast, the inhibitory synaptic reversal potential Einh,i is

typically close to the reset voltage – or even more negative; if a spike originating from

the inhibitory pre-synaptic neuron j arrives at neuron i , the inhibitory synaptic

conductance g inh,i is (again) increased by the (positive) amount∆g i j . Because the

membrane voltage is typically above the reset value, this means that the change of

the second term on the right hand side of equation 1.7 will be negative in general,

so that neuron i is likely to be inhibited. The∆g i j are referred to as the weights in

networks of neurons connected by conductance synapses. Note that in networks of

neurons connected by current synapses, the weights have dimension of Ampère and
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are positive or negative (or zero). In contrast, in networks of neurons connected

by conductance synapses, the weights have dimension of Siemens and are always

positive (or zero).

In networks of (non-dynamical) conductance synapses, gexc,i and g inh,i evolve

typically according to the ODEs

dgexc,i

dt
(t ) =−

gexc,i (t )
τsyn,exc,i

+
∑

j exc.

∆g i jρ j (t ) (1.8)

and
dg inh,i

dt
(t ) =−

g inh,i (t )
τsyn,inh,i

+
∑

j inh.

∆g i jρ j (t ), (1.9)

where in the first equation the sum is over all excitatory neurons and in the second

equation over all inhibitory neurons. τsyn,exc,i and τsyn,inh,i are again the synaptic

time constants. The above equations just say that a spike originating from a pre-

synaptic excitatory neuron j elevates the excitatory synaptic conductance of neuron

i by the (positive) amount∆g i j , and likewise a spike originating from an inhibitory

pre-synaptic neuron j elevates the inhibitory synaptic conductance of neuron i

by the (positive) amount∆g i j . Between spikes, the synaptic conductances relax to

zero with respective time constants.

I want to emphasise that all that I have said so far applies when the synapses

are not dynamical, i.e. static. I shall need the extension from (static) conductance

synapses to dynamical conductance synapses, and this is the topic of the next

subsection.

Dynamical synapses: the quantal model

Synapses are here made dynamical by using a model which was first proposed

by Tsodyks, Pawelzik and Markram (Tsodyks et al. (1998)). The model assumes

that there exist (for each synapse) four time-dependent, non-dimensional quan-

tities R (t ), E (t ), I (t ), and u (t ) (with values between zero and unity) which evolve
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according to the following equations:

dR

dt
(t ) =

I (t )
τrec
−u (t +ε)R (t −ε)ρ(t ); (1.10)

dE

dt
(t ) = −

E (t )
τI
+u (t +ε)R (t −ε)ρ(t ); (1.11)

dI

dt
(t ) =

E (t )
τI
−

I (t )
τrec

; (1.12)

du

dt
(t ) =

−u (t )
τfacil

+U (1−u (t −ε))ρ(t ); (1.13)

also, the relation

R (t ) +E (t ) + I (t ) = 1 (1.14)

holds. Here,ρ(t ) is the neural response function of the neuron which is pre-synaptic

to the synapse which is being described. τrec, τI , and τfacil are time constants which

are referred to as the recovery time constant, the inactivation time constant, and the

facilitation time constant, respectively. U is a non-dimensional constant between

zero and one. u (t +ε) is just a suggestive notation for the one-sided limit lim
ε↓0

u (t +ε)

and similarly for the other expressions of the same type in the above equations.

My notation should suggest adding (subtracting, respectively) an infinitesimally

small quantity to the argument t . This is needed because the quantities described

in general have jumps at the instances where they are evaluated (due to the Dirac

functions which appear in the neural response function).

The above equations comprise a phenomenological model for the depletion and

recovery of synaptic resources. I do not want to elaborate on possible biophysical

interpretations of these equations, but I shall follow the simplest (and very sug-

gestive) way of understanding these equations, which says that R (t ) is the fraction

of neurotransmitter which is ready for release (at time t ), that E (t ) is the fraction

of neurotransmitter in the effective state (at time t ), i.e. docking at post-synaptic

receptors, and that I (t ) is the fraction of neurotransmitter in the inactive state, i.e.

non-docking and distributed in the synaptic cleft (again at time t ).

Equation 1.14 then says that every molecule of neurotransmitter must be in

one of the three states and that it cannot be in more than one state at a time. The
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quantity u (t +ε) is the fraction of ready-to-release neurotransmitter which becomes

active when a pre-synaptic spike arrives at the synapse at time t . This implies that

the fraction of the entire neurotransmitter which becomes active upon arrival of a

pre-synaptic spike is the product u (t +ε)R (t −ε). Here, R is evaluated as a left-sided

limit because of causality. It is simplest to explain this assuming that the entire

neurotransmitter in the recovered state becomes segregated into the synaptic cleft.

In this case, R (t + ε) would be zero, but the fraction of neurotransmitter which

changed in the active state is of course non-zero in general. Therefore multiplying

u (t +ε)with R (t +ε)would not make sense. It must be multiplied with R (t −ε).

We can now understand equation 1.11: It says that resources in the active state

become inactivated (and hence leave the active state) with a rate 1
τI

, and that – upon

arrival of a pre-synaptic spike – E is elevated by the fraction of resources which are

released into the synaptic cleft. Equation 1.10 then says that R is decreased by the

same amount – if a pre-synaptic spike arrives –, and that the neurotransmitter in

the inactive state recovers with a rate of 1
τrec

. Equation 1.12 is the unique differential

equation for I which is implied by the other equations.

Finally, the equation for u (t ) says that u relaxes to zero with a time constant of

τfacil, and that it is elevated by U (1−u (t −ε)) if a pre-synaptic spike arrives at the

synapse. U in principle describes how strongly it is elevated, and the actual (more

complicated) form of the size of the jump, U (1−u (t −ε)), has this particular form

in order to make sure that u does not become larger than unity. The entire set of

equations stated above phenomenologically describes the (short-term) dynamics

of synaptic resources (depression and facilitation), and it has been shown that they

can well reproduce observations of the dynamics of synapses in the neocortex. The

model with τfacil = 0 (τfacil > 0) is illustrated in Fig. 1.3 (Fig. 1.4, respectively). In the

simulations described in this thesis, I modelled – following Tsodyks and colleagues

– synapses where the post-synaptic neuron is excitatory with τfacil = 0 and synapses

where the post-synaptic neuron is inhibitory with τfacil ̸= 0 (see appendix).

Finally, the connection with synaptic conductances is provided by the equations
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a

b

Figure 1.3 | Illustration of the quantal model without facilitation. I considered two neurons 1
and 2 connected by a synapse S from 1 to 2. Neuron 1 (the ‘pre-synaptic’ neuron) fires according to
a homogeneous Poisson process (left figures, entitled ‘irregular input’) or according to a completely
regular spike train (right figures, entitled ‘regular input’); rate of neuron 1 is 50 Hz in both cases. The
vertical black, dashed lines in the two top figures show the spike times of neuron 1. The synaptic
resources of synapse S are shown in colour in the top figures. The bottom figures show the membrane
voltages (in colour) and the spike instances (vertical black, dashed lines) of neuron 2. One observes
that the inter-spike intervals (the time intervals between consecutive spikes) of neuron 2 slightly
increase with time. This shows that the depletion of synaptic resources can have a similar effect as
the adaptation of neurons when the parameters are chosen appropriately. Parameters of neuron
2: τm = 30 ms, Rm = 40 MΩ, EL = −70 mV, Vthr = −50 mV, Vres = −65 mV, Eexc = 0 mV,
Ib = (Vthr − EL) · 0.98/Rm. Parameters of synapse S: U = 0.1, τrec = 1 s, τfacil = 0 s, τI = 3 ms,
∆g = 100 nS.

gexc,i (t ) =
∑

j exc.

∆g i j Ei j (t ) (1.15)

g inh,i (t ) =
∑

j inh.

∆g i j Ei j (t ), (1.16)

which just translate the fraction of resources in the active state in the amount of

synaptic conductance, with the specification that the conductance changes caused

by the pre-synaptic neurons add up linearly. These two equations replace equa-

tions 1.8 and 1.9 when synapses are dynamical. In this case, the inactivation time

constants replace the synaptic time constants and play their role.

Networks with dynamical synapses, i.e. with synapses showing the type of short-

term dynamics described here, can show a rich phenomenology and many effects
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a

b

Figure 1.4 | Illustration of the quantal model (continued). Same as Fig. 1.3, but with facilitation
switched on (τfacil = 1 s).

not possible with static synapses. For example, when synapses are dynamical, the

stationary deviation of the post-synaptic potential from its resting level saturates as

the pre-synaptic firing rate increases, essentially because the amount of synaptic

resources is finite. Thus, in this regime, the rate of the post-synaptic neuron is

essentially independent of the firing pattern of the pre-synaptic neuron and rate

coding becomes impossible. Since rate-coding is perfectly prominent when the

pre-synaptic firing rate is small, dynamic synapses are sometimes referred to as

frequency-dependent synapses. When the pre-synaptic firing rate is large, temporal

features of the post-synaptic spike train (instead of its rate) encode the information

which is provided by the spiking activity of the pre-synaptic neuron.

Note that, in this thesis, I only include short-term dynamics of synapses, but not

long-term effects such as learning. I do not want the network to be able to ‘learn’ to

be in the dynamical state which I am interested in, because one has to study this

state in isolation first. Long-term dynamics of synapses, such as learning, would be

contrary to having a minimal model for the effects I am primarily interested in.
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1.2 Previous work

In this section, I shall elaborate on research results which have already been ob-

tained by other researches and are relevant for my work. I shall do so by considering

several key words of topics in neural science to which my thesis contributes. After

each key word, results in the respective field are described. Along the lines, I will

establish how the results which I review are related to the present work.

1.2.1 Neuronal cultures: important experimental results

Neuronal cultures in vitro provide important model systems which can be observed

with multi-electrode arrays. Also, these preparations can be stimulated electrically

and pharmacologically. An important source for general aspects of cultured net-

works in vitro, in particular about how these cultures are obtained, how their activity

develops in time, etc., is Marom and Shahaf (2002). Another useful source in this

respect is Morin et al. (2005). In addition to this, the following four publications

(see below) are very important for the motivation of the present work. Note that the

principal mode of operation of neuronal cultures is the network spike (NS), which is

a recurring strong all-or-none fluctuation in the population activity (essentially the

sum of the activities of all neurons) of the culture, which in turn is interrupted by

phases of near-silent, irregular activity (see Fig. 2.2 for a computer simulation of an

artificial neural network showing this type of activity).

Eytan and Marom (2006)

The authors ask where the shape and time-scale (O (100 ms)) of NS comes from and

argue that assembly activation is a threshold-governed phenomenon. They further

conjecture that the effective topology of the neural cultures which they study is

scale-free (see below), since this would explain why the time-scale of NS is indepen-

dent of the size of the network. They further report that NS are completely abolished

by blockade of excitation, so that NS are not due to so-called self-pacing neurons.

They also show that NS can be evoked by stimulation, a fact which is very important
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for the present work. They report furthermore that the initial phase of NS follows

an exponential growth, and that the rate of recruitment is independent of the size

of NS. Next, they demonstrate that the decline of activity after the peak of the NS

occurs even if inhibition is blocked, so the decline is presumably caused by fatigue

mechanisms at the cellular level. Moreover, they argue that the initial recruitment

of neurons is non-random and hierarchical. There exists a cohort of privileged

neurons which reliably increase their firing tens of milliseconds before the peak of

the NS, and this phenomenon is stable over time. This fact is very important to the

present work, since this is one of the first experimental evidences for the existence

of ‘pioneer neurons,’ which are the topic of this thesis. Eytan and colleagues also

observe that the same neurons – pioneer neurons – are activated early, independent

of whether a NS is evoked or spontaneous.

The authors also observe that in coupled networks of cultured neurons, the tem-

poral relation between ‘upstream’ NS and evoked ‘downstream’ NS can be tuned as

a function of the identity of neurons which are coupled, and argue that this might

be the basis for fast information processing.

In summary, Eytan and Marom establish that NS are all-or-nothing, threshold-

governed events which are terminated mainly by synaptic depression, and that

the order of recruitment of individual neurons is non-random and sequential. As

already mentioned, this paper comprises the experimental impetus which initiated

the current project, which is aimed (among other things) at the minimal modelling

of the phenomenon of pioneer neurons.

Shahaf et al. (2008)

This paper provides an extension of the ideas presented in the previously described

publication. The authors ask whether neuronal coding by recruitment order (i.e.

spike order) is applicable for stimuli which are not ordered temporally, in complex

recurrent neural networks. They also ask, if the temporal code is applicable, how it

deals with trial-to-trial variations (they also give evidence for the latter) in the spike

times of individual neurons (‘time-warping’). They argue that the response of the
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network to stimulation is such that directly activated neurons (‘receptive sheath’)

is very reliable (which is somewhat trivial), but they move on to the next step in

processing: the response of neurons beyond the receptive sheath. The times of

first-spikes of these neurons are highly variable. However, they demonstrate that

the rank-order (the order of the recruitment of the early neurons which are sampled)

is stimulus-site specific. They do this by comparing strings (‘order strings’) which

describe the order of recruitment of individual neurons, so that ‘F D A’ would mean:

first neuron F , then neuron D , then neuron A. In doing so, they compare (using

the so-called Levenshtein edit distance) order strings of the privileged neurons

during evoked NS which are evoked by stimulation at different sites (or loci). This

comparison shows what they want to demonstrate, i.e. that recruitment order is

stimulus-site specific, in spite of variability in the absolute spike times.

In summary, they provide experimental evidence for rank-order-based coding

to be applicable in complex recurrent networks of cultured neurons.

This paper is also very important to the present work, since I am interested

(among other things) in verifying these results (i.e., rank-order based coding) in

silico (using similar methods), where no experimental restrictions limit the spatial

or temporal resolution.

Kermany et al. (2010)

The authors consider experiments where a cultured network is stimulated in various

ways. They model different stimuli by electrically stimulating the networks at differ-

ent sites or sources. They ask which features in the activity, following stimulation,

is informative and thus encodes the stimulation site. They use a support vector

machine (SVM) to estimate the information content of different features of the

neural activity following stimulation. They find that temporal coding schemes, in

particular rank-order based coding, outperform coding schemes based on firing

rates in spatial classification tasks.

This paper is very important to the present work, since I follow the special

technique used to estimate the information content. In fact, I perform the same
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experiment with my in silico network, where spatial and temporal resolution are not

limited. In this way, I can confirm the results obtained by Kermany and colleagues.

Eckmann et al. (2008)

This is an extensive experimental study of the phenomenon of pioneer neurons.

Results are based on long-term measurements from rat cortical neuronal cultures.

The authors identify ‘precursor events’ of network bursts, consistent with the idea

of ‘pioneer neurons’ as heralds of network events. More specifically, Eckmann and

colleagues observe that the ‘pre-bursts’ are initiated by a single ‘leader neuron’ and

that the identity of this leader is stable over long time-scales. The authors also

observe that the identity of the leaders is informative of the ‘identity’ of the network

bursts, which they assess in terms of the ‘signature’ of network bursts (the number

of spikes per neuron during the network burst). Eckmann and colleagues conclude:

"[...] the leaders play a role in the development of the bursts and [we] conjecture

that they are part of an underlying sub-network that is excited first and then acts as

a nucleation center for the burst."

In summary, the authors give compelling experimental evidence for the exis-

tence and stability of leader neurons.

I conclude this short description of relevant experimental results – regarding

neuronal cultures – with the remark that, despite of the simplifications in in vitro

networks compared with in vivo networks, neuronal cultures are still tremendously

complex systems, with effects on many spatial scales and many timescales (see, e.g.,

Haroush and Marom (2015) and Haroush and Marom (2014)).

1.2.2 Spiking neural networks and mean-field theory

Artificial spiking neural networks (SNNs) and in particular random SNNs have

gained much attention in theoretical neuroscience. Two very different and read-

able reviews of the topic are Ponulak and Kasinski (2011) and Paugam-Moisy and

Bohte (2012). Randomly connected SNNs have contributed considerably to the

understanding of neural function. They provide generic models for experimentally
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observed dynamics in cortical activity associated with phenomena such as short-

term memory, attentional biasing, or decision-making (Rolls (2008); Rolls and Deco

(2010); Rolls (2016)). In addition, SNNs deepen our understanding of such phenom-

ena because their activity dynamics can often be described analytically in terms

of a mean-field theory (Feng (2003); Gerstner et al. (2014); Rolls and Deco (2010);

Amit and Tsodyks (1991a,b); Amit et al. (1997); Amit and Brunel (1997a,b); Brunel

(2000a); Brunel and Wang (2001); Mattia and Del Giudice (2002)). In this thesis, I

do not contribute to this endeavour, i.e. to mean-field theory. For a mean-field

description of spiking networks of adapting neurons, see Guido Gigante’s thesis

(Gigante (2006)). Aspects of the modelling of neuronal cultures with SNNs are the

subject of the next keyword.

1.2.3 The modelling of cultured neuronal networks

Papers on modelling of the activity of cultured networks can be divided into what

aspects precisely they attempt to model, and what kind of model is used to reach this

goal. The aspects which are modelled reach from the existence of network spikes

via the profile of network spikes and inter-network-spike-interval (INSI) statistics

to the modelling of the existence of privileged neurons (‘pioneer neurons,’ ‘early-to-

fire neurons,’ ‘leader neurons’) which herald NS. Previous attempts to model the

privileged neurons are discussed in a separate keyword section, since the privileged

neurons are so central to this thesis.

The first serious modelling attempt which could explain NS (as observed in

vitro) is the paper Tsodyks et al. (2000). The authors use networks of LIF neurons

connected by frequency-dependent synapses. They show that neurons in this net-

work discharge (during NS) in a specific order depending on the average firing rate.

This motivates them to sort neurons by their average firing rate in many figures,

and I am following this custom in this thesis. In Tsodyks’s model, NS terminate due

to depression, as is observed experimentally by Eytan and colleagues (see above).

Also, Tsodyks and colleagues show that NS are completely abolished if certain neu-

rons with intermediate firing rates are made ineffective. These are essentially the
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neurons which I refer to as pioneers, and I will repeat and extend this experiment

by Tsodyks and colleagues. They write: "We explain this result by the fact that these

neurons not only have low firing rates, and therefore effectively strong excitatory

synapses, but are also close enough to threshold to trigger the avalanche of the

firing activity leading to the crescendo PB." With ‘PB,’ they mean ‘population burst,’

i.e. NS. This single sentence by Tsodyks and colleagues summarises much of the

work which I offer here. However, I considerably extend the seminal analysis by

Tsodyks and colleagues in that I describe much of the pioneer-phenomenology in

greater detail. Tsodyks and colleagues also compute cross-correlations between all

individual neurons and the peak of the population burst and plot the maximum of

this cross-correlation for each neuron, where the neurons are sorted by discharge

rate. In this way, they identify the privileged neurons. In this thesis, I will extend

this plot and in this way I give useful additional information. In summary, Tsodyks

and colleagues show that ‘population bursts’ and pioneer neurons arise naturally

in heterogeneous networks with LIF neurons and dynamics synapses. This opens

the door for an extensive analysis of the phenomenon in silico. I hope to offer this

analysis.

Loebel and Tsodyks (2002) analyse the computational ability of Tsodyks’s model

by giving a mean-field description of the model. They observe that the depression

considerably extends the computational abilities of the network. They are further-

more able to predict the response of the network to various inputs and so gain a

deeper understanding of the mechanisms of synchronisation and the computations

such a network can perform on its inputs.

Gritsun and colleagues model inter-event-interval statistics (Gritsun et al. (2011))

and burst profiles (Gritsun et al. (2010)). Persi and colleagues attempt to model

both (Persi et al. (2004a), Persi et al. (2004b)). Masquelier and Deco (2013) make

an attempt to study the laws governing inter-event-interval statistics using both

fatigue mechanisms (depression and adaptation) and facilitation.

Vladimirski et al. (2008) also model cultures with LIF neurons and depressing

synapses. They observe that heterogeneity improves the robustness of the episodic
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behaviour. In other words, they show that heterogeneity (of depression) renders

the network behaviour robust to variations in excitability.

Wiedemann and Lüthi (2003) observe that "subgroups of easily recruitable

neurons serve as amplifiers [...] thereby initiating a cascade-like recruitment of

neurons."

1.2.4 Self-organised criticality

Self-organised criticality (SOC) is a phenomenon in which certain complex systems

self-organise into a state similar to thermodynamic criticality, however without

the need of fine-tuning. This phenomenon is first described by Bak, Tang and

Wiesenfeld in their 1988 paper (Bak et al., 1988). Typical examples for critical systems

are sand piles, superconductors, the earth (here the ‘excitations’ are earthquakes),

and forests (here the ‘excitations’ are forest fires). Systems in the state of SOC are

characterised among other things by avalanche sizes (the sizes of the excitations of

the system) and durations which are distributed by a power-law, so that there is no

typical scale in the size and the duration of the excitations. Furthermore, the power

spectrum is often of the form 1/ f , so that the small-frequency limit gives rise to

long correlations in time. More information can be found in Jensen (1998) and Bak

and Chen (1991). I keep the description of this phenomenon rather short, because

SOC is only indirectly relevant for this thesis.

Cortical slices and the brain are also prominent physical systems which have

been linked to SOC. As is visible from the references below, neural systems can

operate in a sub-critical, a critical or a super-critical regime (depending heavily on

the balance between excitation and inhibition). When making this classification, it

emerges that the critical systems are at the edge between stochastic and ordered

activity. Evidence for critical behaviour vs. sub-critical or super-critical behaviour

in such systems (either real neural systems or model systems) is Scarpetta and

de Candia (2014), Chialvo (2010), Rubinov et al. (2011), Wang et al. (2011), Massobrio

et al. (2015), Pasquale et al. (2008), Beggs and Plenz (2003). Evidence for slightly

sub-critical behaviour in vivo is also given in Priesemann et al. (2014). Poil et al.
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(2012) show how critical dynamics of avalanches and oscillations arises jointly in

networks with balanced excitation and inhibition. SOC in adaptive neural networks

is also studied in Christian Meisel’s thesis (Meisel, 2009).

The system which I studied is super-critical. My ‘avalanches,’ the NS, are far

away from being distributed in a scale-free way. Due to the evidence for either SOC,

or slightly sub-critical behaviour, in neural systems, it would be interesting to study

privileged neurons and rank-order based coding in such systems. I will come back

to this point in the discussion.

1.2.5 Privileged leader neurons: modelling studies

In the literature, there seem to dominate two general approaches to model pio-

neers. One is based on a simple percolation scheme. The second, more realistic

approach, is based on networks of integrate-and-fire (IF) neurons, often combined

with frequency-dependent synapses. The first modelling attempt which clearly

identifies privileged neurons is at the same time one of the first papers which mod-

els the type of synchronisation often seen in neuronal cultures (Tsodyks et al. (2000),

networks of LIF neurons). The main actors in the development after this impetus

are Cyrille Zbinden and Jean-Pierre Eckmann, (using percolation and IF networks),

Olav Stetter (also using percolation and IF networks), and researchers around Jordi

Soriano (quorum percolation). Note that these three sources are interconnected in

that many publications about leaders originate jointly from two or even all of these

authors (and collaborating researchers).

Cyrille Zbinden’s contribution is mainly distributed in his PhD thesis (Zbinden

(2010)) and in Zbinden (2011). He simulates a structured network (with a Gaussian

distribution of thresholds) of leaky integrators to study what makes a leader neuron

a leader neuron. He assigns a leadership score to each neuron, so that neurons with

a high score are leaders and finds that leaders are excitatory neurons with a low

firing threshold. Furthermore, he detects a tendency that leaders send signals to

many excitatory neurons and few inhibitory neurons (thus exhibiting influence)

and receives only few signals from other excitatory neurons.
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Olav Stetter (see Stetter (2012)) models the initiation of NS using discrete time

dynamics, quorum percolation and networks of LIF neurons, using different topolo-

gies (both random and locally clustered). One of his main results is a formula for

the mean of the latency (spike time relative to NS) of a neuron in terms of its degree

(number of in-going fibres). Next, he finds evidence that clustering increases the

variability of average latencies in the network. Olav Stetter also attempts to recon-

struct network topology from activity, using generalised transfer entropy (see also

Stetter et al. (2012) and Orlandi et al. (2014)).

Important references – which have not been mentioned so far – for work about

the properties of leaders in terms of quorum percolation are Breskin et al. (2006);

Cohen et al. (2010); Schmeltzer et al. (2014); Soriano et al. (2008); Eckmann et al.

(2010). The review article Eckmann et al. (2007) summarises Eckmann’s and So-

riano’s ‘philosophy’ about neuronal cultures (including quorum percolation) by

considering the physics of these in vitro preparations.

A recurring theme in these works is the relation between ‘leader’ on the one

hand and ‘excitatory in-degree’ on the other hand. As we will see, I do not observe

the necessity for such a correlation.

1.2.6 The neural code and rank-order based representation

The question of what ‘is’ the neural code employed by neurons is a strongly debated

question in theoretical neuroscience. Readable review articles are Thorpe et al.

(2001) and Decharms and Zador (2000). Thorpe et al. (2001) argue that the speed

of processing in neural systems is often too fast for rate-coding to be applicable.

Also, they argue that rank-order based coding (ROC) is very efficient and easy to

implement. I give more evidence for the applicability of ROC in this thesis.

A famous book about the neural code is Rieke (2008). Ju et al. (2015) stimulate

a culture optogenetically and are able to make the culture differentiate between

different musical styles (which they deliver optically) and thus demonstrate that the

ability to process and integrate complex spatio-temporal information is an intrinsic

property of generic cortical networks.
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1.2.7 Topology and modular organisation

By the topology of a neural network, one means the collective information of which

neuron is connected to which neuron. This information is a directed graph in a

natural way. Sometimes, with topology, one means the labelled, directed graph

which consists of the connectivity pattern together with the values of the synaptic

weights (which then label the edges of the graph).

Thus, graphs and networks, which abstractly consist of nodes connected by edges,

are a central topic in neural science. Network science is, in a sense, a meta-theory

which unifies and applies to many particular theories inside the field of complex

systems. It is important whenever single non-linear units interact within complex

networks. Applications of networks and graphs are found in many fields, whenever

they deal with networks of coupled oscillators, networks of biological oscillators,

Josephson junction arrays, excitable media, neural networks, spatial games, genetic

control networks, or many other self-organising systems (see Watts and Strogatz

(1998) and references therein). Graphs are also very prominent in foundational

research in theoretical physics, as Feynman graphs in quantum field theory (Peskin,

2018), or as graphs labelling states in loop quantum gravity (Rovelli, 2004).

A very popular aspect of network theory is the aspect of the ‘six degrees of sep-

aration’ (Watts and Strogatz, 1998). This says that in many real-world networks,

the average distance between two randomly chosen nodes grows logarithmically

with the total number of nodes. As a consequence, the average distance between

two nodes is often in the order of five even in very large networks, a phenomenon

which led to the famous ‘Erdös number’ with respect to co-authorship networks in

the mathematical and physical sciences. Networks with this scaling behaviour of

inter-nodal distance are given the suggestive name ‘small-world networks’. They

arise naturally as networks which are initially completely clustered or regular, and in

which then some of the edges are ‘rewired’ in a random fashion (Watts and Strogatz,

1998). Thus these networks lie somewhere between networks which are completely

random and networks which are completely regular.

Núñez-Amaral et al. (2000) study small-world networks, give a clear definition of
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when a network is ‘small-world,’ and give examples. Newman (2000) is an extensive

review of the small-world phenomenon. Strogatz (2001) is also a review article about

real-world networks. The paper Watts and Strogatz (1998), which was already cited

above, explores models of the small-world, the small-world phenomenon, they

give examples, and they discuss that the phenomenon is associated with enhanced

signal propagation speed, computational power and synchronisability. Thus, e.g.,

infectious diseases spread more easily. Other works devoted to the spread of infor-

mation on graphs are Clementi et al. (2015) and Durrett (2010).

A different aspect is the phenomenon that degree-distributions are scale-free,

typically following a power-law. Networks of this type are referred to as ‘scale-free

networks.’ One of the three neural networks which I consider in this thesis is a

scale-free network. Scale-free networks are often also small-world networks. They

arise as developing networks, where new edges are created which attach preferably

to already well-connected nodes12 (‘preferential attachment’), see Barabási and

Albert (1999).

In this thesis, I shall focus my attention on a new network type which has not

gained much interest so far. It is a random network which is very heterogeneous,

in that connection probabilities vary among the units – uniformly inside a certain

interval. I am also interested in the generic topic of spread of information, in this

case the spread of activity inside neural networks. I will show that certain synchro-

nisation events are heralded by privileged neurons, and that this effect is most

pronounced in broadly heterogeneous networks. A reference for random graphs

with arbitrary degree distributions is Newman et al. (2001).

Neural networks in vivo are typically highly modular on larger scales, which

means that if neurons B and C are connected both to neuron A, there is a higher

probability (compared to baseline) that B is also connected to C . Modular net-

works arise naturally as follows: One starts with a certain number of sub-networks

N1, . . . ,Nr , such that neurons within a certain sub-network are highly connected,

and then weakly couples the different sub-networks with each other. A summary of

12Well-connected nodes in a network are called hubs, see Wills and Meyer (2019).
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different network topology measures useful in neuroscience is Rubinov and Sporns

(2010).

The networks which I consider in this thesis are unstructured random networks

without imprinted modularity. However, as mentioned already above, one of the net-

works I consider has a feature which has not gained much attention in the modelling

literature: it is highly heterogeneous. The reasons why I did not include modularity

in these networks in spite of the experimental evidence in vivo for this network

property are multi-fold. First, I wanted to find a minimal model for the effects which

I shall describe. Second, there is some evidence (Marom and Shahaf (2002)) that

neuronal cultures in vitro can evolve into unstructured random networks without

considerable modularity, and one of my aims is the minimal modelling of certain

aspects of the activity of these cultures. Finally, one may adopt a philosophy that

something which is achievable in random networks without modularity is also be

possible in networks with precise anatomical connections. Thus, if even unstruc-

tured random networks express privileged neurons, as long as synchronisation

occurs, then the possibility that these neurons encode information and the precise

neuronal code used might be invariants, so that the coding principles may apply

also to the precisely structured networks of neuronal assemblies in vivo.

I finish this subsection with two remarks. The first is that there exists a very

simple family of random graphs where connections are established independently

of each other and randomly. These graphs are referred to as Erdös-Rényi graphs,

and the degree distribution in such a network is binomial (Erdős and Rényi (1960)).

The second remark is almost needless: real neural networks in vivo are tremen-

dously complex and specific, far away from random networks (see, e.g., Shepherd

(2003)).

1.3 Aims

How spiking activity reverberates through neuronal networks, how evoked and

spontaneous activity are interrelated, and how the combined activities of neurons
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represent external stimulation are pivotal questions in neuroscience. In the first

part of the this thesis, after this introductory chapter, I aim to describe minimal

models of unstructured spiking networks in silico which can show a representational

behaviour and information-processing capabilities which have been observed so

far (if at all) only in networks where heterogeneity of neuronal background cur-

rents and hence an unnecessary artificiality in the choice of parameters enters in

a crucial way. I first want to show that my new network shows the same advanta-

geous and appealing behaviour of its tailor-made ancestors: privileged ‘pioneer

neurons,’ which discharge reliably early and in reproducible ‘paths’ in the early

phase of recruitment during synchronisation events, in particular if the latter are

caused by gentle stimulation. After that, I will come to the central results of this

thesis regarding the question how the network’s dynamics enables representational

capabilities. My aim is to show how gentle external stimulation can be subsequently

read out from diverging activity-fluctuations by means of spike-order codes – when

the privileged pioneer neurons are used for read-out. Here, I apply two methods

which have not – to the best knowledge of the author – been applied in computo to

this particular set of questions. In particular, I aim to show conclusively that the

‘source’ of stimulation is faithfully represented by the discharge order of pioneers

and not by any rate-based features, thus demonstrating the viability and importance

of this type of ‘temporal’ code. I aim to show in the same part that the distinctive

role of pioneer neurons is owed to a combination of exceptional sensitivity to – and

considerable influence on – network activity, an effect which makes pioneers act

effectively as the strongest amplifiers in the network. All these effects, which have

been observed only in considerably more bespoke models in the past (if at all), are

described in greater detail and are extended considerably. Furthermore, I attempt

to go far beyond mentioning phenomenology by explaining in detail the mecha-

nisms which are responsible for the pioneer-effect and many phenomena which are

derived from it. Along these lines, I show that broadly heterogeneous but random

connection-topology not only increases the number of pioneer neurons in entirely

unstructured networks, but also renders the emergence of pioneer neurons more
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robust to changes in the excitatory-inhibitory balance. Concluding the first part of

this thesis, I offer a new minimal model for the emergence and representational role

of pioneer neurons, as observed experimentally in vitro (Eytan and Marom, 2006;

Shahaf et al., 2008; Kermany et al., 2010), putting emphasis on a type of unstructured

random connectivity which has not been studied much in the literature before –

in contrast to homogeneous random networks of Erdös-Rényi type and scale-free

networks with hubs. The latter two networks are also considered in this thesis, but

only in so far as they serve to provide a counter-example to the generality in which

the effects I am interested in are expressed.

In the last chapter of the results’ part, I aim to point the reader to an intrigu-

ing but subtle way to detect relatively strong synapses in my in silico network, a

method which might conceivably also succeed in in vitro neuronal networks, since

all quantities needed can be measured ex vivo. I do this by computing (in my in silico

network) a bespoke ratio of two different expressions which compute similarly but

differently the same quantity: the so-called precedence probability, the probability

that neuron i in the network will deposit its first spike within a synchronisation

event before neuron j does.



Chapter 2

Phenomenology in silico

2.1 A concise description of my networks

My recurrent networks consist of 400 excitatory and 100 (Sahara et al., 2012) in-

hibitory LIF neurons1 each, connected by frequency-dependent (dynamical) con-

ductance synapses. Background currents which effectively shift the leak reversal

potentials are constant in time and do not vary from neuron to neuron within the

class of excitatory neurons (or inhibitory neurons, respectively). Spontaneous activ-

ity occurs because the effective leak reversal potentials are above threshold. There

is no noise in the definition of my model. Heterogeneity of neurons is solely due to

heterogeneity in the topology, be it tiny or considerable. This is a variant – and I

would argue an improvement – of Tsodyks’s model where heterogeneity is due to

heterogeneous background currents.

I consider three different types of connection topologies: One homogeneous

topology of Erdös-Rényi (ER) type, one network with scale-free connectivity and

hubs, and one network with pronounced topological heterogeneity. In the last of

the three networks, each neuron essentially has its own connection probability.

Mean connection density is 20 % in all cases, consistent with figures obtained in

1This means that the network is rather small. One of the reasons for the small size is that I need very
long simulations (O (103 s)) in order to verify the effects I am interested in. But the time a simulation
takes scales as N 2, where N is the number of neurons (due to the synaptic dynamics).

31



32 CHAPTER 2. PHENOMENOLOGY IN SILICO

vitro and in vivo (Perin et al. (2011)). Note also that the weights∆g i j of synapses are

chosen randomly from a clipped Gaussian distribution with certain mean values.

These mean values of the weights are different for the different type of connections

(excitatory-to-excitatory, excitatory-to-inhibitory, etc.) and are different in the three

networks considered. The reason is that comparable behaviour in the three net-

works is only possible with slight variations in the excitation-inhibition-balance,

due to the different degree-distributions. See appendix for more details about the

networks and the parameters. I want to emphasise at this point that all three net-

works are unstructured, i.e. they are random networks without tailor-made circuitry

or particular built-in ‘anatomical’ connections.

My network comprises a minimal model for the effects I am interested in. De-

pression of synapses (one example of a fatigue mechanism) is needed in order to

obtain all-or-nothing synchrony (interrupted by phases of near-silence), and – as we

shall see – heterogeneity is needed in order to robustly obtain the so-called pioneer

neurons (see below), which are at the centre of this thesis.

The network is programmed in C once using discrete time steps (Euler steps in

conjunction with the first-order exponential integrator method) and once using

a programming technique where the simulator jumps from spike to spike (event-

based simulator). I tested my C code by making sure that both types of simulators

give equivalent results, and by translating Tsodyks’s model (Tsodyks et al. (2000))

into a model with conductance synapses and simulating this model. I obtained

the same network behaviour as Tsodyks did. Note that many of the choices of pa-

rameters of my models are inspired by Tsodyks et al. (2000). Yet, the model is quite

different, because I do not employ heterogeneous background currents.

The three different topologies are visualised in Fig. 2.1 in terms of representative

examples of their degree distributions. See the figure caption for details.



2.2. MACROSCOPIC BEHAVIOUR OF THE NETWORKS 33
de

ns
ity

out-going ee
homogeneous
scale-free
heterogeneous

out-going ie out-going ei out-going ii

0 40 80 120
degree

de
ns

ity

in-going ee

0 40 80 120
degree

in-going ie

0 40 80 120
degree

in-going ei

0 40 80 120
degree

in-going ii

Figure 2.1 | Example degree histograms for the visualisation of the three topologies consid-
ered. The label ‘ie’ means ‘excitatory-to-inhibitory’ and similarly for the other labels. One observes
that out-going and in-going connections of type ‘excitatory-to-excitatory’ are almost flat in a certain
range (up to finite-size fluctuations, see below) in the heterogeneous case. By looking at the same
quantity, one sees that the scale-free case serves to interpolate between the homogeneous and
heterogeneous case. The statistics is here created from a single realisation of each network in order
to illustrate finite-size fluctuations. Note that, in the heterogeneous network, there are no correlations
between the number of in-going fibres (‘in-degree’) of a neuron and the number of its out-going
fibres (‘out-degree’). This is, of course, not visible from this figure, which does not show correlations
between degrees. The colour code employed here for the different topologies will be used throughout
the entire thesis and should suggest ‘the hotter, the more heterogeneous.’

2.2 Macroscopic behaviour of the networks

In this section, I essentially describe only the macroscopic appearance of my three

networks, i.e. all elements of the behaviour which manifest themselves from the

point of view of the (summed) population activity. The majority of the details of the

microscopic behaviour, i.e. the behaviour of individual neurons, will be postponed

until later. When I look at the macroscopic behaviour, I first discuss the spontaneous

activity and then the evoked activity. I will show most of the phenomenology only

for the heterogeneous network, because qualitatively, the effects I am interested

in, typically also arise in the same form in the other two networks (if parameters

are fine-tuned). However, there is a strong tendency that many of the effects I am
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interested in are quantitatively much less pronounced in the non-heterogeneous

case. Here, I adopt the terminology that only my broadly heterogeneous network is

considered heterogeneous, and both the (truly) homogeneous network and the scale-

free network are referred to as homogeneous or non-heterogeneous networks. The

reason for this choice of terminology is that, as we shall see, and as mentioned above,

the scale-free network behaves very similar to the (truly) homogeneous network (w.r.t.

the microscopic activity), in spite of the scale-free degree distribution (including

hubs).

2.2.1 Spontaneous activity

Fig. 2.2 shows elements2 of the spontaneous behaviour of the population of excita-

tory neurons. The population activity is visualised in the form of raster plots (A) and

spike-count3 histograms (B). Pronounced synchronisation events are readily visible

and are marked by red stars in subplot A and by red dashed lines in subplot B. These

events are referred to as network spikes. The term ‘network spike’ will be abbreviated

as ‘NS’ in the sequel4. Subplot C shows the power spectral densities of the activity of

single neurons (averaged over all neurons). Although the network is deterministic,

sparse connectivity ensures (apart from NS) irregular and asynchronous activity in

many neurons (Brunel, 2000b; Mattia and Del Giudice, 2002). The average power

spectral density of individual neuron firing (apart from NS) resembles the power

spectrum of Poisson spikes with a refractory period (which here corresponds to

excised periods of NS) (Spiridon and Gerstner, 1999). As random connectivity en-

tails some non-uniformity in all three network types, the power spectral densities

of individual neurons are quite diverse (Pena et al., 2018), with some neurons firing

more frequently and regularly (albeit at different rates) and others firing more rarely

and irregularly. Finite-size fluctuations of population activity (Brunel, 2000b; Mattia

2In a small fraction of realisations of the networks, the activity does not express activity as shown in
the figure. In these rare cases, synchronisation events are not all-or-none. See appendix for more details.

3Only spikes by excitatory neurons are being counted.
4In some experiments, I have deliberately removed NS from the traces. Specifically, in these cases, I

removed the window – beginning 35 ms before and ending 35 ms after the peak of the NS – from the
data files. See Fig. 2.5 for the average shape of NS.
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and Del Giudice, 2002) induce pairwise correlations between individual neuron

spikes (apart from NS), which on average are moderate for homogeneous and scale-

free networks (ρhom = 0.29± 0.21, ρsf = 0.18± 0.18) and weak for heterogeneous

networks (ρhet = 0.01±0.013). See the appendix for my definition of spectra and

cross-correlations.

The parameters of the networks (in particular the strength of excitation) are

chosen so that the rate of NS is typically in the order of 1 Hz in all three cases (i.e.

topologies). The coefficient of variation of the inter-network-spike interval (INSI,

the interval between consecutive NS) is usually close to 0.6, i.e. the point process

associated with the synchronisation events is approximately located ‘in the middle’

between regularity and irregularity.

Why do network spikes occur? The network is designed to be at a point where

a larger-than-average positive fluctuation of the excitatory population activity is

amplified by the excitatory units: a positive feed-back process occurs which recruits

essentially all excitatory neurons. Inhibitory neurons discharge continuously (i.e.

all the time) and provide a constant background of inhibition to all excitatory neu-

rons which balances and re-normalises the (effective) leak reversal potentials, so

that many of the excitatory neurons are inactive between NS. The approximately

exponentially rising activity in the initial phase of a NS is terminated when the

excitatory-to-excitatory synapses become depressed due to the high activity of the

neurons which are pre-synaptic to these synapses. This terminates the NS and

leads to a strong drop in activity. When the activity has its next larger-than-average

positive deviation, and when the depressed synapses have recovered, the next NS

can be generated. The generation of NS is approximately a threshold-governed

phenomenon: NS occur when the excitatory population activity reaches a threshold.

This will become important later, although this concept of a population-activity-

threshold is only approximately valid, because a given value of the population

activity is consistent with a myriad of combinations of individual activities.

The serial correlation coefficients (with positive lag) of the inter-network-spike

intervals are close to zero (not shown). This is in accordance with the idea that NS



36 CHAPTER 2. PHENOMENOLOGY IN SILICO
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Figure 2.2 | Spontaneous, macroscopic activity. Raster plots of the excitatory activity (a),
time-dependent spike-count histograms (b), and power spectral densities of the individual excitatory
activities, averaged over all excitatory neurons (c). NS are marked by asterisks in subplot a and
by dashed red lines in subplot b. The horizontal black lines in c indicate the mean values of the
individual (excitatory) average firing rates.

are renewal events, i.e. a NS acts as a reset of the network variables5 (see Dranias

et al. (2015) for evidence for this in vitro).

Figure 2.3 shows the firing rates of all excitatory units, which are sorted by their

discharge rate. Most neurons do not fire between NS and discharge precisely once

during NS. This is the reason why most neurons in Figure 2.3 have the same firing

rate (which is identical to the NS rate, red dashed line). Inhibitory neurons fire

continuously at a rate of about 30 Hz and do not increase their firing during NS.

My networks are tuned so that NS are all-or-nothing events. In order to verify

the all-or-none character, I used the following procedure. I introduced an activity-

threshold θ with a value θ = 1.1 · 〈A〉, where 〈A〉 is the average value of the time-

dependent excitatory population activity. Whenever the excitatory population

activity crosses θ from below, I determine the corresponding instance of time as t1.

Next, the earliest instance of time after t1 where the excitatory population activity

5In the LIF neuron driven by un-correlated noise, a reset of the membrane voltage also acts as a
reset, i.e. the resulting spike train is a renewal point process.
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Figure 2.3 | Distribution of individual firing rates. Typical distribution of firing rates of excitatory
neurons for the three networks considered. Neurons are sorted by their discharge rate. The dashed
red lines denote the NS rates.

crosses θ from above is determined as t2. Then I determine the global maximum

Amax of the activity inside the interval [t1, t2]. I then construct a histogram of all

the values Amax. In short: I establish a histogram of activities associated with ac-

tivity peaks (‘histogram of peak-activities’). If NS are all-or-none, I expect two

well-separated peaks in this histogram: One peak which consists of activity values

corresponding to local maximums of small sub-threshold fluctuations; and one

peak which consists of the maximums of activity which occur during NS. Figure

2.4 A shows that these two types of peaks together with their separation are indeed

observed, confirming the all-or-none character of NS. In Figure 2.4 A, activity is

measured in units of the average activity. One observes that the relative size of NS

is slightly smaller in the heterogeneous case. This is due to a higher level of activity

between NS in the heterogeneous case.

I note that the same procedure (as described above) for detection of activity

peaks was used for the detection of (proper) network spikes (in particular their

instances of time). The only difference is that in the latter case the threshold was
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chosen to be 0.5 · max(A) instead of 1.1 · 〈A〉, where max(A) is the global maximum

of the population activity, so that sub-threshold peaks are excluded.

Figure 2.4 B shows a black dot for each individual spike emitted by an excitatory

neuron, with an x -value corresponding to the logarithm of the time from the spike

to the next NS, and with a y -value representing the so-called sorted neuron ID, i.e.

the least active neuron has ID 1, the next least active neuron has ID 2 and so on.

This way of sorting will be used frequently in the sequel and is indicated by the label

‘neuron ID (sorted)’. (I already used it in Figure 2.3.) The distribution of black dots

in the three plots corresponding to the three networks in Figure 2.4 B is reminiscent

of the letter ‘π’. The right ‘leg’ corresponds to individual spikes with a large time

to the next NS. These spikes occur shortly after a NS, which is why the time to the

next NS is large. The left ‘leg’ corresponds to spikes which occur shortly before an

NS and this is why the time to the next NS is very small. The separation between

the two ‘legs,’ indicated by the red line, shows that for the approximately 350 least

active excitatory neurons, there is almost no activity between NS, so that for these

neurons a first spike within a certain NS is well-defined. This will become important

later.

Figure 2.5 shows the average shape of the excitatory activity during NS (red)

as well as all shapes of the individual NS which occurred in the simulation (black

curves). One observes that the shape of NS is rather stereotypical.

2.2.2 Evoked activity

NS can be evoked by stimulating a small set of excitatory neurons. This simply

means that the spikes which are directly evoked (‘receptive sheath’), i.e. directly

enforced by stimulation, raise the population activity above threshold so that the

positive feedback process associated with NS is initiated. I note that the set of neu-

rons which are stimulated can be very small in order to evoke NS: O (10) stimulated

neurons are enough (when stimulation is carried out by simultaneously enforcing

spikes, see below) in general in order to make sure that many stimulations cause a

NS. Note by the way that NS can also be evoked by stimulating inhibitory neurons
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Figure 2.4 | Histogram of peak activities and activity relative to NS. (a) Histogram of peak-
activities. The peak at the left of each of the three plots originates from local maximums of sub-
threshold activity fluctuations. The peak at the right in each of the three plots comes from activity-
peaks which occur during NS. The separation of the two peaks in each of the three figures shows
that NS are all-or-none events. Activity is measured in units of the average activity. (b) For each
individual spike (in a random subset of the collections of all spikes) emitted by one of the excitatory
neurons, I plot a dot whose x-value shows the logarithm of the latency from the spike to the next NS,
and whose y-value is the sorted neuron ID, i.e. the excitatory neuron N1 with the lowest average
activity has ID 1, the least active neuron more active than N1 has ID 2, and so on. The plot shows
that neurons with sorted ID in the range of the red bar do not discharge between NS, because there
is a clear separation between dots on the left which represent spikes which occurred shortly before
an NS, and dots on the right which represent spikes which occurred shortly after an NS. Thus, for
neurons in the range of the red bar, a first spike within an NS is well-defined. The latency-value at
which the red bar is plotted (called ‘fake latency,’ because it is here not associated with a proper
physical event like a stimulation) represents a latency which can be used as a criterion in order to
determine to which NS a spike emitted by a relatively inactive neuron belongs. Note that, in the
heterogeneous network, all neurons from ID = 265 on discharge sometimes between NS in long
simulations. This is not clearly visible here because I have only plotted a random subset of the set of
all spikes, in order to keep the figure size restricted.

(not shown).

There are at least two possibilities of how to stimulate neurons. One can enforce

a spike in the neurons which are targeted, or one may induce a membrane voltage

jump (by some amount ∆V ) in the target neurons. The difference is that in the

latter case the stimulation may fail to evoke a spike in some of the target neurons.

For clarity and simplicity, I decide to use the first method. When I stimulate net-

works, I make sure that the enforced spikes occur simultaneously. Also, the (directly)

enforced spikes are not written into the spike-data files which I analyse. This will

become important later.
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Figure 2.5 | Shape of NS. Average activity-shape (red) of NS in a heterogeneous network and
individual activity-shapes of all NS (black) which occurred in this simulation.

Now the question arises of how to detect a successful stimulation, i.e. a stimula-

tion which causes a NS. I expect that a NS which is evoked by stimulation occurs

shortly after the stimulation. However, even if the time lag between stimulation and

NS is very small, there is a priori a small, but positive, probability that the NS would

have occurred even without the stimulation, so that it would be inappropriate to

say that the stimulation causes the NS. However, this problem does not arise in my

case, as I will explain now.

Figure 2.6 A shows an epoch of activity (in blue) in which stimulation occurs at

irregular intervals6. Stimulation instances are shown as vertical red dashed lines.

The figure shows some spontaneous (i.e. not evoked by stimulation) NS: they are

marked by an asterisk. The stimulation labelled with a minus sign is ineffective,

i.e. it does not evoke a NS. The two stimulations labelled with a plus sign cause the

6Stimulation instances in this thesis are always modelled as a homogeneous Poisson process with a
rate in the order of the spontaneous NS rate.
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subsequent NS. This classification of stimulations and NS is based on Figure 2.6 B.

There, I plot (this is based on Gigante et al. (2014)) for each stimulation instance a

red dot with an x -value which is the latency from the last NS to this stimulation,

and a y -value which is the latency from the stimulation to the next NS. The red

dots are, apart from one outlier, separated in two regions: one below and one above

the blue rectangle. How does this separation arise? If a stimulation causes a NS,

then the time from stimulation to next NS is small (group of red dots below the blue

rectangle). If the stimulation is not successful, there is still a reduction of synaptic

resources associated with the stimulation, and this drop in synaptic efficacy in-

creases the time to the next NS. This mechanism is responsible for the existence of

the ‘forbidden region’ in the space of times from stimulation to the next NS (blue

rectangle). Thus, the blue rectangle can be used to uniquely divide stimulations

into successful and unsuccessful. Figure 2.6 A and all classifications of stimulations

(into successful or unsuccessful) and NS (into evoked or spontaneous) in the sequel

are based on these observations. Finally, I plotted in Figure 2.6 B a distribution of

dots (‘surrogate events’) which would be expected if instances of stimulations and

instances of NS were entirely independent of each other. The black dots are sampled

from this distribution and the number of black dots is equal to the number of red

dots. The fact that there are numerous black dots inside the ‘forbidden’ blue rectan-

gle confirms my strategy described above for classifying stimulations as successful

or unsuccessful and for classifying NS as evoked or spontaneous.

Figure 2.7 shows activity shapes of spontaneous (black) NS and evoked NS (in

colour), where the different colours serve to distinguish the different stimulation

sites. A stimulation site is here (and in the sequel) simply a small collection of

randomly chosen neurons (since my networks do not have a ‘spatial’ structure),

such that the groups corresponding to different sites are disjoint. One observes

that NS shapes are rather stereotypical, so that the different origins of NS cannot be

deduced from the respective NS shape. This observation will be corroborated later

by means of a different method (see section 2.4).
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Figure 2.6 | Evoked activity. (a) An epoch of activity of the network where stimulation occurs.
The activity is drawn in blue, and a few NS are visible. The red dashed lines denote instances of
stimulation. The NS labelled with an asterisk are spontaneous, i.e. not evoked by stimulation. The
stimulation labelled with a minus is ineffective, i.e. does not evoke a NS. The two stimulations labelled
with a plus sign are effective, i.e. evoke NS. Here and in the sequel, stimulation occurs with statistics
of a homogeneous Poisson process with a rate in the order of the rate of spontaneous NS. The
green arrow illustrates ‘time-since-last-NS’ and the yellow arrow ‘time-to-next-NS’ for the ineffective
stimulation (see subplot b). (b) For each instance of stimulation, I plot a red dot at a position whose
x-value is the latency from the last NS to this stimulation, and whose y-value is the the latency
from the stimulation to the next NS. The distribution of red dots is separated in a region above the
blue rectangle and a region below the blue rectangle (apart from one outlier). This clear separation
suggests that red dots below the blue rectangle, with small time-to-next NS, correspond to effective
stimulations, and that red dots above the blue rectangle, with large time-to-next-NS, correspond
to ineffective stimulations. The efficacy of the stimulations is further confirmed by the fact that the
‘forbidden’ region (blue rectangle) contains many black dots, since the black dots are sampled from
the distribution which would be expected if stimulations were entirely ineffective. See also main text.
Subplot b is based on Gigante et al. (2014).
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Figure 2.7 | Shapes of evoked NS. This figure shows the activity-shape of NS in a simulation
where stimulation occurs at five different sites. Spontaneous NS are shown as black dashed lines,
and the NS evoked by stimulation at one of the five sites are shown in colour, where the different
colours (red, blue, green, magenta, and cyan) correspond to the different stimulation sites. The figure
shows that the shape of NS is rather uninformative about the site where stimulation occurred. This
will be confirmed later by means of a different approach.

2.3 Microscopic behaviour of the networks

It turns out that spikes of different neurons within NS have different typical latencies

relative to the peak of the NS. Probability distributions of latencies tspike− tNS of first

spikes for three different neurons (showing different characteristic behaviour) are

shown in Figure 2.8. The curve depicted in black shows a neuron which has its max-

imal probability of firing in coincidence with the peak of the NS. The curve shown

in dark grey arises from a neuron which typically fires after the peak of NS. Finally,

the light grey curve originates from a neuron which fires typically and consistently

several milliseconds before the peak of the NS. These neurons are by definition the

pioneer neurons and they are at the centre of my investigations. For the moment,

I rely on this rather vague definition of ‘pioneer.’ In section 2.5, I give a precise

definition.

What is the connection between the average firing rate (or sorted neuron ID)
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Figure 2.8 | Characteristic latency distributions of three representative neurons. Distributions
of latencies of individual first-spikes relative to the peak of NS for three representative neurons. The
peak of the NS by definition has latency 0 ms. The neuron whose latency distribution is shown in
black fires predominantly with NS (sorted neuron ID 150). The neuron whose latency distribution
is shown in dark grey fires typically after NS (sorted neuron ID 40). The neuron whose latency
distribution is shown in light grey fires predominantly before NS (sorted neuron ID 300) and hence is
a pioneer.

and the sign of the (typical) latency between individual first spike and (peak of) NS?

This can be deduced from Figure 2.9 A. This figure shows that essentially the higher

the sorted neuron ID, the lower (more negative) is the average latency. Neurons

with sorted neuron ID between 0 and 50 fire consistently after the peak of the NS.

Neurons with sorted ID between 60 and 250 fire most often during the peak of the

NS. Neurons with ID between 260 and 320 fire consistently before the NS and thus

are pioneers7. Finally, neurons with ID greater than 320 fire continuously, i.e. all the

7This rather vague definition of ‘pioneer’ will be sufficient for the moment. In section 2.5, I give a
precise definition which there is shown to be equivalent to this simple definition in terms of the sorted
neuron ID.
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Figure 2.9 | Latency distributions, membrane ∗-voltage distributions, and spike-triggered
average activity of individual neurons. Excitatory neurons are sorted horizontally by mean activity
(sorted neuron ID). Red shading marks the pioneer range (ID 260 to 320). (a) Latency distributions
(lightness-coded and arranged vertically) of first spikes of individual neurons, relative to associated
peak of NS. Zero latency (yellow line) is defined by the peak (maximum) of the activity during NS.
Neurons in the pioneer range fire reliably before the NS (negative latencies). (b) Distribution of
∗-voltage in individual neurons (again lightness-coded and arranged vertically), during intervals
without NS, relative to firing threshold (horizontal red line). Neurons in the pioneer range have
membrane potential just below threshold. (c) Average deviation Γn(τ) of population activity at lag τ

(lightness-coded and arranged vertically), conditioned on individual spikes of neuron n (see main
text and appendix). Spikes of neurons in the pioneer range are consistently preceded by positive
deviations. Note that deviation Γn(τ) is not defined below ID 265 (see main text).

time8. This figure is based on a long simulation of a network with heterogeneous

connectivity. If parameters are fine-tuned, qualitatively (but not quantitatively)

similar behaviour can also be observed with the other two networks.

The reason for this monotonous relation between firing rate and latency is easy

to understand. The greater the sensitivity of a neuron to network activity, the greater

is its firing rate (and hence its sorted neuron ID), and the earlier it is recruited during

8Fig. 2.9 A shows (distributions of) latencies of first-spikes to the peak of NS. For this, a critical
latency needs to be chosen from where to measure first-spikes. I refer to this critical latency as fake
latency, because it is (here) not a latency associated with a true physical event (such as a stimulation).
The fake latency can be chosen with the help of Fig. 2.4B. In my case it is about−80 ms. Because neurons
with ID bigger than 320 fire continuously, the support of their first-spike-latency distribution is close to
the fake latency, which is outside the latency-range of the plot (2.9 A). Therefore the latency-densities
of the most active neurons are almost zero (in the range shown) and hence appear very dark in the
plot. Later, when I evoke some of the NS by stimulation, I will choose the critical latency of evoked NS
(and only of the evoked NS) as the latency of the stimulation, so that first-spikes are measured from the
stimulation on.
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NS. The sensitivity can be measured in terms of the distribution of the membrane

∗-voltage. The ∗-voltage is a fake voltage which evolves according to the same dif-

ferential equation as the proper membrane voltage, but it is never reset9. Therefore,

the ∗-voltage can be above threshold (which is impossible for the proper membrane

voltage). Also, there is often approximately a simple monotonous relation between

firing rate and the mean of the ∗-voltage: the higher the latter, the higher the for-

mer (this assumes that the standard deviation of the ∗-voltages are comparable for

the different neurons). This qualitative and approximate monotonous relation is

demonstrated in Figure 2.9 B. From there it is also visible that pioneers (ID 260 to

320, see red shaded bars above the three subplots) reside just below threshold (red

line). This is one reason for their distinctive sensitivity and their early recruitment.

Figure 2.9 C shows the average shape Γn (τ) := Aexc(tspike,n + τ)−



Aexc

�

(i.e., a

spike-triggered average of the excitatory population activity) – as a function of τ –

for the most active individual neurons n (sorted by average firing rate) and for nega-

tive τ, where the average is over all spikes of neuron n which occur between NS (see

appendix). Here, Aexc is the excitatory population activity and



Aexc

�

its mean. Put

simply: I show the average shape of the excitatory activity (with mean subtracted)

preceding spikes of neuron n (for all n). Thus we can see how the summed activity

deviates from its mean prior to individual spikes of pioneers. It is not only made sure

that the individual spikes which enter this statistics are between NS, but also that the

window of the activity which is averaged over does not contain a NS. The idea here is

to see the average shape of activity around individual spikes without contamination

by the large NS. The plot is only defined from ID 265 upwards, because neurons

with lower firing rate never discharge between NS. Also, the plot is only defined

for negative τ because the activity after the individual spike usually contains a NS,

which I want to exclude by definition of the statistics.

One observes that spikes of pioneers are associated the excitatory activity having

a positive deviation of ≈ 2 Hz from its mean for a time window T preceding the

spike, where the length of T depends on the precise neuron ID. The most early pio-

9See Fig. 1.1 and Fig. 1.2 for illustration.
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neers have T ≈ 40 ms. As the neuron ID decreases to late pioneers, the T increases

up to 80 ms. Since T is in the order of O (10 ms), a small and short positive (but

significant) deviation of the activity from its mean (with about 30 to 60 more spikes

than usual in this time window) suffices for recruiting pioneers. This is another

aspect of their distinctive sensitivity.

The average distribution (between NS) of recovered resources of excitatory

synapses projecting from the excitatory neuron n to other neurons is shown in

Figure 2.10 A (for all n , see Tsodyks et al. (2000)). The location of the red bar, rep-

resenting (here and elsewhere) the range of pioneers, shows that the privileged

pioneer neurons have out-going synapses which are almost completely recovered

between NS (in the asynchronous state). In this sense, pioneers are also very influ-

ential on population activity. However, I want to emphasise that pioneers are not

hubs in general (see Fig. 3.1 A below). In my model, the only connection between

‘being a pioneer’ on the one hand and the ‘degree’ (out or in) on the other is that

pioneers have relatively few inhibitory ancestors (see Fig. 3.1 B below), which is the

main reason why they are located ‘just below threshold.’

Figure 2.10 B shows the average amplitude of the post-synaptic potential (see

appendix for details about its computation) caused by a spike in neuron n in neu-

rons which are post-synaptic to neuron n . As expected, plotting this for all n , where

the neurons are sorted by their firing rate, resembles the shape of the distribution

of recovered resources (Figure 2.10 A). In particular, the higher the average firing

rate of a neuron, the smaller is its average PSP caused in its post-synaptic partners,

because the synapses involved are more depleted.

However, when the stationary post-synaptic deviation from the reference level

(see appendix) of the membrane voltage caused by all spikes in neuron n is consid-

ered (for all n sorted by firing rate), the resulting plot increases with sorted neuron ID,

because the drop in the synaptic efficacy is more than counter-balanced by the fact

that there are more pre-synaptic spikes (since the firing rate increases with sorted

neuron ID). Thus, if I de-efferentiate or silence (i.e. cut all out-going connections

of neurons) selective groups of neurons with similar sorted neuron ID, silencing
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Figure 2.10 | Influence of excitatory neurons. Red shading marks the pioneer range (ID 260 to
320). (a): Probability density of synaptic resources R, average over all efferent synapses of a given
neuron, during intervals between NS. Resources decrease monotonically with mean activity. The
most active neurons to retain substantial resouces are neurons in the pioneer range. (b) Amplitude
of post-synaptic potentials PSPi elicited by single spikes, averaged over all efferent synapses. (c):
Steady-state post-synaptic potential ⟨PSPi⟩ss elicited by Poisson spiking at individual mean rate
of neuron, averaged over all efferent synapses. Note that increasing firing rate overcompensates
diminishing resources. (d): Same as (b), but summed over all efferent synapses. (e): Same as (c),
but summed over all efferent synapses.

the most active excitatory neurons should cause the strongest drop in the average

activity level. This will become important in a moment. All this shows that w.r.t.

influence – as measured by PSPs – pioneers are not extremal: they lie ‘in the middle’

as does their firing rate.

This observation is challenged by actually carrying out the experiment described

above (see Tsodyks et al. (2000)), see Figure 2.11 A: I de-efferentiate neurons with
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sorted neuron ID in the interval [0, 30], then in the interval [10, 40], and so on, and

plot the resulting average NS rate as a function of the sorted neuron ID of the most

inactive neuron which is de-efferentiated. One observes that de-efferentiating pio-

neers has a very strong effect: NS are completely abolished if the earliest pioneers

are made ineffective (Tsodyks et al. (2000)). Figure 2.11 A shows two curves (in

green and blue) which correspond to two different realisations of the network. The

blue curve has the property that the NS rate becomes positive again when neurons

which are more active than pioneers are being silenced. I want to emphasise at this

point that this behaviour (which does not occur in the case of the curve shown in

green) is the typical behaviour, i.e. it occurs in most realisations of the network (not

shown). But how is that possible? If silencing neurons which are more active than

pioneers causes the strongest drop in the average level of activity (as suggested by

Figure 2.10 C), why does the NS rate become positive again in this case?

The NS rate depends on two factors. It depends on the average level of the

excitatory activity, and on the size of the activity-threshold for NS generation (and

on the variability of the activity). The fact that (in most realisations) only silencing

pioneers abolishes NS could be explained if making pioneers ineffective signifi-

cantly increases the threshold for NS generation. Silencing neurons which are more

active than pioneers would lead to a positive NS rate again if the lower average level

of excitation (as compared to silencing pioneers) was paired with a zero increase

of the threshold for NS generation (as compared to silencing pioneers), so that the

difference between threshold and average activity-level is smaller when making

neurons impotent which are more active than pioneers. This could explain why NS

are again observed if these neurons are made ineffective.

This is precisely the case, as shown in Figure 2.11 B. There I estimate the thresh-

old for NS generation as a function of the neurons which are silenced. I do this by

measuring the highest value of the excitatory population activity which occurred

well between NS. The logic here is that due to the stochastic behaviour of the ac-

tivity, it will ‘just miss’ the threshold at least once in long simulations. Therefore

the highest value of activity between NS should set a lower limit for the threshold
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Figure 2.11 | Effect of silencing groups of neurons. Red shading marks the pioneer range
(ID 260 to 320). (a) Rate of NS as a function of N, for modified networks with neuron cohort
N ≤ ID ≤ N + 30 silenced by de-efferentiation. Results are shown for two realisations (blue and
green) with different spontaneous NS rates (dashed lines). NS cease when neurons in the pioneer
range are silenced. Typically, NS are recovered when neurons above this range are silenced (e.g.,
blue trace). (b) Silencing pioneer neurons elevates threshold for triggering NS. Threshold population
activity (in Hz), after silencing neurons N ≤ ID ≤ N +30. Two realisations are shown (blue and green
traces). Over much of the pioneer range, only a lower bound for the threshold could be established
(dashed traces), because even the largest observed fluctuations failed to trigger a NS.

for NS generation. Figure 2.11 B shows that the threshold does in fact increase if

pioneers are made ineffective. This fact can be explained by the assumption that

pioneers are the first link in the positive feedback-chain which supports the NS. If

they are silenced, the feedback-chain breaks and thus the threshold is increased.

All this shows again that pioneers are not only sensitive, but also rather influential.

2.4 Information and dynamics: rank-order based cod-

ing

How information is encoded in the spiking activity of neurons is a popular topic

in theoretical neuroscience. The final aim must be to understand neural coding in
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vivo. However neuronal cultures provide a useful model system for studying coding,

and probing the neurons is much easier in this case. As already mentioned earlier,

Kermany and colleagues (Kermany et al. (2010)) studied decoding by modelling

different stimuli as stimulation of geometrically distant parts of the culture (i.e. dif-

ferent ‘loci’ or ‘sites’). Furthermore, they investigate decoding by means of different

coding schemes by considering the following four different coding schemes: the

vector of individual average-firing rates (‘neuronal rates’), the time-dependent pop-

ulation activity (‘temporal rates’), the time-to-first-spike (TFS) vector (equivalent to

the vector of latencies from first-spike to the peak of the NS) and the order (‘rank or-

der’) of first-spikes of individual neurons. The first two schemes may be considered

as rate codes, the latter two as temporal codes. See Fig. 2.12 for illustration.

Kermany and colleagues then study decoding by enquiring how much informa-

   window nr.   1      2      3      4      5      6      7      8

T = 800 ms

neuronal rates

tempal rates    3      4     2      3      2      4      2      3         spikes
         =             6     8     4      6      4      8      4      6              Hz       

rank-order =
   BDAEC

             time-to-first
                   spike
              vector (TFS)

neuron A       I           I           I   I        II  I            I I       9 spikes = 11,25 Hz            85 ms

neuron B I         II                I                      I                  5 spikes = 6,25 Hz               1 ms

neuron C                    I                     I                            2 spikes = 2,5 Hz              245 ms

neuron D      I        I            I                          I               4 spikes = 5 Hz                  80 ms

neuron E             I                        I                   I             3 spikes = 3,75 Hz            150 ms        

Figure 2.12 | Coding schemes considered. Illustration of neuronal rates (red), TFS vector
(purple), rank-order (green) and temporal rates (yellow). The vertical black lines in the region with
light-blue background are the spike times of the five neurons which are presented.

tion about the site of stimulation is contained in the activity-features corresponding

to the different coding schemes. They do this by employing a support vector ma-

chine10 (SVM). First they train the SVM by providing examples of feature-label pairs

10The SVM which I use here is based on the Python package ‘sklearn’ which implements the LIBSVM
algorithm, see Chang and Lin (2011).
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(where the labels are simply the IDs of the stimulation sites) based on the first half

of the data. Then the SVM is fed with the feature-data of the second half of the data

and the percentage of successful predictions of the label is recorded (‘classification

accuracy’). Kermany and colleagues observe that temporal coding schemes out-

perform rate codes in spatial classification tasks. Note that obviously rank-order is

contained in the TFS scheme, so the former is a ‘compacted’ version of the latter.

Kermany and colleagues also demonstrate that in many cases the TFS scheme does

not add additional information to the rank scheme. In other words, there is virtually

no loss of information when TFS vectors are compacted to rank-order strings.

Kermany and colleagues remove the directly stimulated neurons (‘receptive

a                                  b

Figure 2.13 | Activity following successful and unsuccessful stimulation. Average activity of
all excitatory neurons (ID 1 to 400) and of pioneer neurons (ID 260 to 320), over 100 ms following
stimulation. (a) Unsuccessful stimulations. (b) Successful stimulations.

sheath’) from the data so that only activity propagating deeper into the network is

used to assess TFS and rank-order. This makes the classification task highly non-

trivial.

I perform the same experiments with my in-silico network. I only consider
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successful stimulations. Fig. 2.13 shows the time-dependent firing rate of the popu-

lation of pioneers and of the entire population of neurons for both successful and

unsuccessful stimulations. I consider information coding in two situations. The

first situation has five different stimulation sites and readout is carried out by groups

of ten neurons. The second situation has twelve stimulation sites and readout is

done by groups consisting of 30 neurons.

I also remove the receptive sheath by not writing (directly) evoked individual

spikes into the data files which enter the analysis. In addition, first spikes of NS

which are evoked by stimulation are counted from the instance of stimulation on

instead from the instance which corresponds to the proper fake latency (which is

employed for spontaneous NS, see footnote 8).

The result is shown in Fig. 2.14 (see caption for details). One observes that

rate-based schemes are impotent: the classification task is solved at chance level

in this case. In contrast, the two temporal schemes are quite informative about

the site where stimulation occurred, at least when pioneers are used for read-out.

And again the TFS scheme does not provide more information than the spike-order

scheme.

It is possible to interpolate between the neuronal-rates scheme and the TFS

scheme. For this, I divide the entire time window about NS in bins of a fixed length

Tbin and compute the average firing rate of each neuron in each bin. This gives rise

to a matrix (ri j ) of rates where one index labels the bins and one index labels the

neurons. For large bin size, this corresponds to the neuronal-rates scheme, and for

small bin size this corresponds effectively to the TFS scheme (because each neuron

typically deposits only one spike per NS), apart from the fact that the information

of TFS is then presented less compactly. Performing the same experiment as before

as a function of bin size yields the plot shown in Fig. 2.15. The information content

is small for large bin size, consistent with what has been shown earlier. If the bin

size decreases, the information content of the population of pioneers increases

until a bin size of 5 ms is reached. From that point on, the information content

formally decreases again, but this is presumably due to incomplete convergence of
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a

b

Figure 2.14 | Classification performance of different decoding schemes, based on different
groups of neurons. (a) 5 stimulation sites and 10 readout neurons. (b) 12 stimulation sites and
30 readout neurons. Red shading marks the pioneer range (ID 260 to 320). Results for ‘spike
time,’ ‘spike order,’ ‘neuronal rates,’ ‘temporal rates’ are shown separately. Percentage of correct
classification α(N) of one of five (twelve) stimulated locations is shown, based on the activity of
neurons with sorted ID [N, N + 10] (a) or [N, N + 30] (b). Chance performance is 20% in subplot a
and 8.3% in subplot b.

the algorithm: the matrix (ri j ) is very large in this case and learning is more difficult.

A different point of view on this behaviour can be obtained by the following

procedure (compare Shahaf et al. (2008)). I first measure the order OA in which the

neurons in a certain group G discharge during a certain NS N SA . Then I measure,

in which order OB these neurons (i.e. again the neurons in group G ) discharge in a

different NS N SB . Since the pioneers’ discharge order is very informative of the site

where stimulation occurs (as we have seen), I expect that the orders OA and OB are

‘more similar’ when G is the set (or a subset) of pioneers and when N SA and N SB

are both caused by stimulation at the same site, than if N SA and N SB were evoked

by stimulation at different sites. Fig. 2.16 C and D shows that this is precisely the
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Figure 2.15 | Interpolation between rate-based and spike-based decoding. Here I only show
the case of 5 stimulation sites with 10 readout neurons. The activity of groups of n = 10 neurons over
100 ms) was analysed in k time-bins, forming a rate vector of length k · n. Decoding performance is
shown for different groups of neurons and different bin sizes.

case. Here, I adopt a very simple measure for similarity of discharge orders based on

(essentially) counting the minimal number of transpositions (pair-exchanging per-

mutations) needed for transforming one spike order into the other (see appendix for
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details). There is also a tendency that spike orders of pioneers prior to spontaneous

NS are less similar than spike-orders of NS evoked by stimulation at one given site

and that spike orders obtained from NS evoked at different sites are less similar than

spike orders obtained from spontaneous NS. Figure 2.16 also shows (see subplots

A and B) that spike orders are extremely stereotypical when the analysis is done

using groups of neurons which contain only non-pioneers. Therefore, the pioneers’

ability to encode information provided by differential spatial stimulation is due to

differential sensitivity to stimulation at different sites.

To confirm these observations and to comprehensively compare all groups

of excitatory neurons, I establish the distribution of spike-order similarity (SOS),

both within and between classes of NS. As before, NS classes are understood to

be ‘spontaneous,’ ‘evoked at site 1,’ ‘evoked at site 2,’ and so on. Given two distri-

butions of SOS values, with means µ1,2 and standard deviations σ1,2, I expressed

their ‘distance’ in terms of the z-score, z = |µ2−µ1|/(σ1+σ2). The results are shown

in Figs. 2.16 E and F, for the two experiments with k = 5 and k = 12 stimulation

sites, respectively. In both experiments, the difference between ‘within-class’ and

‘between-class’ distributions was most pronounced when SOS was computed for

pioneers (ID 260 to 320). This demonstrates conclusively that the ‘spike order’ of

pioneers is more informative about stimulation site than that of any other group of

excitatory neurons.

2.5 Automatic detection of pioneers

For several reasons, it is desirable to have an ‘automatic procedure’ for detecting

pioneer neurons. One of these reasons is that one may obtain a ‘landscape’ which

shows how many pioneers exist in different networks as a function of the aver-

age weights11. Another more fundamental reason is that I defined pioneers rather

vaguely. I looked at latency distributions and decided quite provisionally that neu-

rons with a sorted neuron ID between 260 and 320 are pioneers. This will be rectified

11This is the topic of the next section.
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Figure 2.16 | Matrices of average ‘spike order similarity’ (SOS) during different NS. Observed
NS were classified as ‘spontaneous’ (S), ‘evoked at site 1’ (E1), ‘evoked at site 2’ (E2), and so on,
and class boundaries between sorted NS are marked by red lines. (a-d) Representative sets of
non-pioneer or pioneer neurons, average SOS of pairs of NS (fraction of maximal similarity, colour
scale) (a): Non-pioneer SOS, five stimulation sites (k = 5 and n = 10). (b): Non-pioneer SOS,
twelve stimulation sites (k = 12 and n = 30). (c): Pioneer SOS, five stimulation sites (k = 5 and
n = 10). (d): Pioneer SOS, twelve stimulation sites (k = 12 and n = 30).(ef ) Distance between SOS
distributions (mean and std. dev. of z-score), within-class and between-class, for sets of neurons
with contiguous ID. (e): Five stimulation sites and sets of ten neurons (k = 5 and n = 10, contiguous
ID in range [N, N + n − 1]). (f ): Twelve stimulation sites and sets of thirty neurons (k = 5 and n = 10,
contiguous ID in range [N, N + n]).
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now.

Pioneers should be pioneers because (i) their average latency is negative, be-

cause (ii) the absolute value of the average latency is rather large and because (iii)

the standard deviation of the latency is (relatively) small. In order to quantify this, I

consider the latency consistency

1/C V (τ) :=−
〈τ〉
∆τ

, (2.1)

where 〈τ〉 is the average latency and where ∆τ is the standard deviation of the

latency. Due to the minus sign, one would expect that pioneers have the highest

latency consistency (i.e. large and positive).

The latency consistency as a function of the sorted neuron ID is plotted in

Fig. 2.17A. A suitable threshold (θ = 1.5625) for the latency consistency is plotted

in red. One observes that the neurons between ID 260 and 320 are in fact above

threshold. However, there are also many other neurons which are above thresh-

old, both neurons which are less active and neurons which are more active than

pioneers (as defined so far). In order to deal with this, I now also look at the (abso-

lute value of the) coefficient of variation C V (V ∗) := ∆V ∗

Vthr−〈V ∗〉 of the ∗-voltage. Since

pioneers are distinguished by their characteristic sensitivity, I would expect that

pioneers ‘are also situated close to threshold,’ so that |C V (V ∗)| is rather large. This

is shown in the same figure (subplot B). The threshold for the ‘voltage variability’

|C V (V ∗)| plotted in red is θ = 0.64. In order to show that my pioneers, as previously

defined, are essentially identical with the neurons where both latency-consistency

and voltage variability are above the respective thresholds, I plot the ‘false alarms’

and the ‘misses,’ counting (for simplicity) the criterion based on neuron ID as the

‘true’ measure. If this terminology (from signal detection theory) is accepted, I can

declare that in Fig. 2.17 the misses are plotted in red and the false alarms in magenta.

Obviously, my criterion (the thresholds) is chosen to be rather ‘liberal’ in that there

are more false alarms than misses. In any case, the number of wrong classifica-

tions is in the order of 10, so one can see that the new ‘operational’ criterion for
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(automatically) detecting pioneers essentially agrees with my provisional definition

based on neuron ID. From now on, I will consider pioneers as those neurons which

are pioneers according to the new criterion. In particular, I am now able to detect

pioneers in an automated way, which will be important in the next section. My

previously obtained results will remain essentially unchanged under this substi-

tution of ‘definition,’ as shown in Fig. 2.17. Note that this Figure also shows that

in principle considering the ∗-voltage would be sufficient to detect pioneers, at

least in the example shown. However I do not treat this as being conclusive: in

‘arbitrary’ networks a neuron might be close to threshold without being a pioneer,

so in making landscapes (as I want to do now) I am on the safer side if I also include

a condition based on latency-consistency. If this were not needed in certain cases,

it would do no harm.

a

b

Figure 2.17 | Latency consistency and voltage variability for all excitatory neurons. (a)
Latency-consistency (LC) as a function of sorted neuron ID. The range of pioneers, as previously
defined, is marked by vertical blue lines. The LC-threshold for the new criterion (for detecting
pioneers) is the horizontal red line. Misses are plotted in red and false alarms in magenta. For all
black dots the two definitions (of being a pioneer) agree. (b) Same as a, but the absolute value of the
voltage variability is considered. Note that in classifying dots as ‘correct,’ ‘false alarms,’ and ‘misses,’
I consider (in both subplots) the conjunction of the two threshold-based criteria.
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2.6 The dependence on recurrent excitation and inhi-

bition

All what I have described so far is phenomenology which applies in particular net-

works with a certain choice of parameters. It would thus be interesting to obtain a

‘landscape’ which shows how the phenomenology depends on the parameters, in

particular the choices for the average weights. In principle, there are four average

weights: excitatory-to-excitatory, excitatory-to-inhibitory, inhibitory-to-excitatory

and inhibitory-to-inhibitory. Varying them all would however be overkill, in a sense,

and not in practice realisable. Following Gigante et al. (2015), I varied only ex-

citation and inhibition jointly, so that the average weights12 are parametrised as

ω0,e e = rEω0,e e ,ω0,i e = rEω0,i e ,ω0,e i = rIω0,e i andω0,i i = rIω0,i i , where the over-

lined quantities are certain convenient reference values. The scaling factors rE

and rI are varied between 0 and 2. The entire procedure is carried out for all three

network topologies, and the (over-lined) reference values of the average weights are

identical in all three cases. In order to get a wide ‘image’ of the macroscopic activ-

ity, I measure the average interval between NS (TINSI , INSI = ‘inter-network-spike

interval’), the coefficient of variation of the INSI (C VINSI ) and the ratio Amax/Amean

between the maximum Amax of the time-dependent excitatory population activity

and its temporal mean Amean. This ratio is a simple dimensionless measure of how

all-or-none the synchronisation events are. Note that for many choices of the pa-

rameters, NS will not be all-or-none, due to a different balance between excitation

and inhibition. In these cases, the statistics of the INSI simply measure the statistics

of ‘relatively large’ events, such as avalanches.

The result is shown in Fig. 2.18 (see also Gigante et al. (2015)). Note that in creat-

ing this figure, I create several (O (10)) realisations at each point in the landscape and

plot the mean in each ensemble of individual realisations. This procedure enables

me to assess also the stability of the phenomena at each point in the landscape.

12In my networks, the weights∆g i j associated with connections are drawn from a clipped Gaussian
distribution with certain mean values (see appendix). These mean values are denoted asω0,xy , where
x , y ∈ {e , i }.
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Qualitatively, the activity is divided in two regions: one above the blue dashed

lines and one below them. In the region around the blue lines, the avalanches

are separated by large intervals, they occur rather irregularly and the activity ratio

Amax/Amean is large. This is the (super-critical) regime where NS occur (in an all-

or-none fashion). From what is known for single neurons, I expect that increasing

excitation or decreasing inhibition at this point leads to tonic activity, i.e. the syn-

chronisation events are large, all-or-none and very frequent. This is confirmed by

looking at the bottom-right corner of the subplots in Fig. 2.18. There, the average

INSI interval is small, the C VINSI is very small. Also, due to the large frequency of the

synchronisation events, Amean increases so that the activity ratio becomes small.

Decreasing excitation or increasing inhibition should lead to a regime where

avalanches are not all-or-none, occur more frequently than in the default regime

(defined by the blue dashed curves), occur irregularly, and where the activity ratio

is small due to the smallness of Amax. As one can see, this is precisely the case. Also,

there is no qualitative difference between the different topologies at this macro-

scopic level.

So far, I have only reproduced results by other researchers and one has only

seen what seems rather obvious. The next step is to count how many pioneers exist

(using the method described in the previous section) at the points in the landscape

which are denoted by red dots.

The result is shown in Fig. 2.19. As one can observe (subplot A), there are consis-

tently much more pioneers in the heterogeneous network. Subplot B shows that the

fraction of realisations where NS occur are also generally higher in general. Thus

the entire phenomenon (NS and existence of pioneers) is much more stable and

consistent in the heterogeneous case. I give an explanation for this in the next chap-

ter. Note that having more pioneers potentially also leads to a more pronounced

information encoding by the rank-order of pioneers. This gives a belated justifica-

tion for the heterogeneous topology which I construct.

Fig. 2.19 also shows that different topologies express highly disparate dynamics

for identical (rE , rI ) values (see subplot C ). For example, NS rates differ up to fivefold
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between topologies.
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Figure 2.18 | Macroscopic dynamics, excitation/inhibition strength, and type of connectivity.
Dynamical characteristics of synchronisation events, for different types of connectivity and for different
absolute and relative strengths of excitation, rE , and inhibition, rI . Blue, dashed curves indicate the
transitional region which, for each type of connectivity, separates the excitation-dominated regime
of ‘tonic’ dynamics from the inhibition-dominated regime with ‘asynchronous’ and ‘avalanche-like’
dynamics (see text). Red dots mark the (rE , rI ) value pairs further investigated in Fig. 2.19. (a)
Average interval between NS, TINSI; (b) Coefficient of variation of interval, CV INSI; (c) Activity ratio,
Amax/Amean .
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Figure 2.19 | Microscopic and macroscopic dynamics at selected connection strengths
rE , rI . Fraction of pioneer neurons and NS rates in networks with rE ∈ {1.0, 1.4, 1.8} and rI ∈
{0.8, 1.0, . . . , 1.6, 1.8} (red dots in Fig. 2.18c). (a) Percentage of pioneer neurons in networks of
different topology, for selected values (rE , rI ). (see text). (b) Consistent NS in different network
realisations. Value pairs (rE , rI ) that produced NS in ≥ 50% of realisations. (c) Disparity of NS
rates in networks with different topologies, but identical values of (rE , rI ). Ratio of NS rates, sorted
by reference rate, for all ordered topology pairs. For example, at three identical value pairs (rE , rI ),
NS rates fhom and fhet could be established for homogeneous and heterogeneous networks. Ratios
fhet/fhom are shown against fhom (black circles) and ratios fhom/fhet against fhet (red diamonds).
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Chapter 3

Mechanisms in silico

In this chapter, I shall analyse the pioneer-effect in more detail. In particular, it is my

aim to link the existence of pioneers to the heterogeneous topology. In order to do so,

I have developed a two-step-procedure. My argument is that the heterogeneity, in

particular the degree-distribution, shapes the appearance of the ∗-voltage-statistics

of individual neurons in the network (see section 3.1), and that, in turn, the ∗-

voltage-statistics shapes the first-spike-histograms (i.e. latency-distributions), see

section 3.2.

3.1 Voltage-statistics from degree-statistics

My first observation is that in all three of my networks, the mean and the standard

deviation of the ∗-voltage of each neuron are determined approximately by the

degrees (and the average ee-weight) as follows:




V ∗
�

≈−0.12 mV · Dinh−48.3 mV, (3.1)

std(V ∗)≈ 2.1 · 107 V

S
·
p

Dexc ·ω0,e e . (3.2)

65
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Here, Dexc is the number of excitatory neurons which are pre-synaptic to the given

neuron (excitatory in-degree), and Dinh is the number of inhibitory neurons which

are pre-synaptic to the given neuron (inhibitory in-degree). These approximate

equations are verified in Figs. 3.1 D and E, respectively. Of course, these equations

are approximate and phenomenological equations. I do not expect these equations

to hold exactly in general networks, where the mean and the standard deviation of

the ∗-voltage depend on many factors, such as both degrees, the ISI-statistics of the

pre-synaptic spike trains, etc.

In order to verify that, qualitatively, the statistics of the ∗-voltage is determined
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Figure 3.1 | Afferent connectivity and ∗-voltage V⋆ during periods without NS, for different
network topologies. Colours distinguish heterogeneous (red), homogeneous (blue), and scale-free
topology (black). Symbols mark pioneer neurons in a representative realisation. (a) Distribution of
afferent excitation, Dexc , averaged over multiple network-realisations. (b) Distribution of afferent
inhibition, Dinh , averaged over multiple network-realisations. (c) Distribution of ‘effective afference
ratio’, ωee,0Dexc/Dinh , averaged over multiple network-realisations. (d) Dependence of the standard
deviation of ∗-voltage, std

(
V⋆

)
on Dexc . Regression curves indicate proportionality std(V⋆) ≈

2.1 · 107 V
S ·

√
Dexc ·ωee,0. (e) Dependence of mean ∗-voltage, ⟨V⋆⟩, on Dinh . Regression line

indicates proportionality ⟨V⋆⟩ ≈ −0.12 mV · Dinh − 48.3 mV. (f ) Distribution of sensitivity, CV(V⋆),
with right tail on logarithmic scale (inset).

by the statistics of the degree distributions in the above way, I plotted the mean

and standard deviation of the ∗-voltage for each neuron in an ensemble of 400

neurons in two ways. The red dots in Fig. 3.2 show for all 400 excitatory neurons
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in one network of each type the mean and the standard deviation of the ∗-voltage

as measured. The black dots are as numerous as the red dots, and for each black

dot a value for Dexc and for Dinh has been obtained by sampling (independently1)

the measured degree-distributions as shown in Fig. 3.1 A and B, and computing the

mean and standard deviation of the ∗-voltage according to equations 3.1 and 3.2.

Fig. 3.2 shows that the measured distributions and the ‘theoretical’ distributions

based on degree-sampling agree qualitatively. Thus I have effectively deduced the

voltage-statistics from the degree-statistics.
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Figure 3.2 | Distribution of mean and standard deviation of ∗-voltage (theory vs. observed).
Red dots show individual means and standard deviations of ∗-voltages as observed, black dots show
distribution expected theoretically (see main text for details).

1In all three topologies, there is no correlation between Dexc and Dinh.
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3.2 Latency-statistics from voltage-statistics

In order to obtain latency-statistics from voltage-statistics, one needs a theory for

the latencies. I employed the following ‘toy theory.’ The ∗-voltage distribution of

neuron i is approximately Gaussian:

pi (V ) =
1
Æ

2π∆V ∗2i

exp

�

−
(V −〈V 〉i )2

2∆V ∗2i

�

, (3.3)

I now assume that, during NS, this distribution undergoes a ‘rigid motion’ which is

described by an ‘activation function’ u :

pi (t , V ) =
1
Æ

2π∆V ∗2i

exp

�

−
(V −〈V 〉i −u (t ))2

2∆V ∗2i

�

, (3.4)

where

u (t ) =αexp

�

−
t 2

2σ2
NS

�

, (3.5)

and where α= 0.56 mV and whereσNS = 23 ms. These parameters are rather arbi-

trary and have been chosen so that there is a good qualitative agreement between

the theory (which I am about to develop) and results obtained from simulations.

The next step is to compute the probability flux Fi (τ) through threshold for each

neuron:

Fi (τ) =
d

dτ

∫ ∞

Vthr

pi (τ, V )dV = µ̇(τ)exp

�

−
[Vthr −〈V 〉i −u (τ)]2

2∆V ∗2i

�

, (3.6)

which I want to use as an approximation to the latency-distribution. However,

this quantity can become negative. For this reason, I half-wave-rectified it and

re-normalised it (to unity). This yields the following approximation for the latency

distribution:

plat,i (τ) =N [µ̇(τ)]+ exp

�

−
[Vthr −〈V 〉i −u (τ)]2

2∆V ∗2i

�

, (3.7)

where N is a normalisation constant. This distribution can be computed (for each

neuron) as soon as the mean and the standard deviation of the ∗-voltage is known.
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The result is shown in Fig. 3.3. Subplots A and C show the mean of the latency vs.

the variability of the ∗-voltage, and subplots B and D show the latency-consistency

(LC) vs. the variability of the ∗-voltage. Subplots A and B show the quantities as

measured, and subplots C and D shows the same as subplots A and B, however

with the predicted latency-statistics. Subplot A shows that the mean latencies are

much broader and more negative in the heterogeneous case. The pioneers (fat

dots) are the neurons with the most negative latencies. There are fewer pioneers in

the homogeneous networks, and the few pioneers in the homogeneous networks

have smaller latencies. Subplot B shows that LC is also generally higher in the

heterogeneous case. Note that I consider here the same three networks for which I

presented the phenomenology in the respective earlier chapter. I.e., I consider here

the three networks with different parameters, but at a point where the macroscopic

dynamics is similar. In Fig. 2.19 on the other hand, I compared networks with

identical parameters. Thus the demonstration that there are also more pioneers

in the heterogeneous network when the networks are compared at points where

the macroscopic dynamics is similar (but the average weights different) has been

missing so far.

Now the more interesting part of Fig. 3.3 are, of course, subplots C and D showing

the theory. However, there is a large quantitative deviation between subplot A and C

on the one hand and subplot B and D on the other. In order to explain this, remember

that the activation function u (τ) was fixed, i.e. identical in all three topologies. I

expect that having more pioneers is reflected partially by a broader shape of the

activation function u (τ). However, if I made u (τ) broader in the heterogeneous

case, I would put in the pioneers by hand, which I want to avoid. In principle,

the ‘toy theory’ would have to be iterated: compute latency-distributions from a

fixed activation function first, then compute a new activation function from the

obtained latency-distributions, obtain updated latency-distributions, compute a

new activation function based on these, etc. I only show the first iteration in this

iterative procedure. It is highly interesting and non-trivial that already in this first

iteration, qualitative differences appear between the three topologies, as shown
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in subplots C and D. As is visible there, the qualitative appearance of subplots A

and B is reproduced. And presumably, iterating the ‘toy theory’ would increase

the qualitative agreement. Since the activation function was identical in all three

topologies, I conclude that the characteristic appearance of the ∗-voltage statistics

is the cause for the broader latencies and the higher LC in the heterogeneous case, and

thus is also the cause for the broader shape of the ‘actual’ activation function. Since I

could reproduce the ∗-voltage statistics from the degree-distributions (section 3.1),

this means that there exists a direct link between the heterogeneity and the stability

of the pioneer-effect.

3.3 Chains of sensitivity

In the last two sections, I have shown how the characteristic heterogeneous degree-

distribution leads to a characteristic distribution of the ∗-voltage statistics, and

how the latter leads to the enhanced pioneer-effect. However, the presentation was

somewhat formal. I have not said precisely what property of the ∗-voltage statistics

is responsible for the more pronounced pioneers. I will now attempt to trace the

effect back.

This is based on chains of sensitivity. The recruitment process during NS pre-

sumably works as follows: First, neurons (pioneers) with a high sensitivity S1 are

recruited. The spikes of these neurons raise the population activity even further,

so that neurons with a sensitivity S2 = S1 −∆S are recruited. Their spikes make

neurons with sensitivity S3 = S2−∆S discharge, and so on. So in order to obtain a

broad recruitment process, the number of neurons with sensitivities in each interval

[S2,S1], [S3,S2] has to be relatively small. If I measure the sensitivity by means of the

variability C V (V ∗) of the ∗-voltage, I see that one needs a relatively broad distribu-

tion of C V (V ∗). Or equivalently, since a broader shape of this distribution means

that the curve assumes generally smaller values, I expect that the distribution of

voltage variabilities assumes smaller values in the heterogeneous case, so that in
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Figure 3.3 | Spiking behaviour and sensitivity compared for different network topologies.
Colours distinguish neurons of heterogeneous (red), scale-free (black), and homogeneous networks
(blue). Pioneers are marked by large dots, other neurons by small dots. (ab) Full effects of network
topology (including different time-courses of population activity). (a) Comparison of mean latency ⟨τ⟩
during NS initiation and sensitivity CV(V⋆) during periods without NS. (b) Comparison of consistency
of latency 1/CV(τ) and sensitivity CV(V⋆). The sensitivity-consistency criterion (dashed lines) for
pioneers and the sorted-ID criterion largely overlap (discrepancies are marked by red circles). (cd)
Isolated effects of network topology (for identical time-course of population activity). Corresponding
comparisons of latency, consistency, and sensitivity when an identical, rigid time-course of population
activity is prescribed for all network topologies.

fact in each of the above ‘sensitivity intervals’ there are fewer neurons. Fig. 3.1 F

shows that this is indeed the case. From there it is seen that the distribution of

voltage variabilities peaks at smaller values in the heterogeneous case, hence as-

sumes generally smaller values than the ‘homogeneous distributions’ for moderate

sensitivities, and has a tail at high sensitivities which is as pronounced as in the

other two cases (see inset).
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Thus I can summarise the influence of the heterogeneous topology in one sen-

tence: Broad degree-distributions lead to broad distributions of voltage variabilities,

which leads to broad chains of sensitivity, where in each sensitivity interval [S2,S1],

[S3,S2], . . . , there are fewer neurons. Thus, at each step in the recruitment process,

fewer neurons are recruited in the heterogeneous case, and hence the entire recruit-

ment process is broader and slower.



Chapter 4

Inferring strong synapses from

activity measurements

A frequent problem in neuroscience is to obtain knowledge about a biological neural

network from activity measurements (see, e.g., Stetter et al. (2012), Mishchencko

et al. (2011)). This is a difficult ‘reverse-engineering’ problem. Here, I show how

strong synapses between units in an in vitro network can be detected from the mea-

surement of neural activity. I assume here that the network shows a super-critical

activity consisting of large bursts interrupted by periods of near-silent activity, as is

often observed. My strategy is to describe and verify a procedure in silico, which

then may be also applied in vitro, since all quantities needed can be measured in the

latter case. As we will see, the method can be applied whenever time is ‘absolute,’

so that first-spikes can be defined. More generally, the procedure applies whenever

a distinguished spike (e.g. first-spike) exists for each neuron in the population

which is recorded. For simplicity, however, I assume in the sequel that there exists

a network spike, so that the ‘distinguished’ spike of each neuron is the first spike

within a NS (as earlier).

There are several ways to ‘compute’ the probability that neuron i in the network

will deposit its first spike before unit j during NS. The most appropriate way to do

73
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so is to measure this quantity directly. Thus I look at all NS and consider during how

many of them neuron i fires before neuron j . I call the resulting probability Pi→ j

and I record this for all neuronal pairs (i , j ) of which both neurons rarely discharge

between NS, so that it is meaningful to talk about first spikes.

There is a second way to ‘compute’ these precedence probabilities. I record

for each neuron i when it discharges relative to NS and estimate from this a dis-

tribution plat,i of latencies. This is done for all neurons. If neurons i and j were

entirely independent, I would expect that the precedence probability is equal to the

‘convolution’ Qi→ j

Qi→ j =

∫ ∞

−∞
plat,i (τ)

�

∫ ∞

τ

plat, j (σ)dσ

�

dτ. (4.1)

The ratio Ri→ j := Pi→ j /Qi→ j (more precisely: its deviation from unity) is therefore a

measure for the mutual dependence of neuron i and j . If there is a strong synapse

from i to j , and if neuron j fires usually after i , I expect that the difference t j − ti

of the latencies of the first-spikes (t j and ti , respectively) from j and i is smaller

(than if the synapse were weak). The reason is that discharge of neuron i strongly

excites neuron j and thus it is likely that the latency of the first spike of neuron

j is decreased, so that the difference between the latencies also decreases. This

increases the overlap between the latency-distributions of neuron i and j and

thus decreases the above convolution Qi→ j . On the other hand, a strong synapse

between neuron i and j cannot influence the true precedence probability Pi→ j

(assuming that i discharges first in most cases), because at the point where neuron

i discharges, the order of the spikes is pre-determined, and the strong synapse from

i to j on the other hand can only show its effect when i already discharged, so that

the subsequent excitation of neuron j cannot alter the order. All this shows that the

ratio of both precedence probabilities should be indicative of strong synapses. I

show below that this is actually the case.

I now determine the joint distribution pforward(R ,∆g ) of Ri→ j and∆g i→ j (=∆g j i ),

which is the joint distribution of my causality-measure and the weight from neuron i
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to j . The ensemble of this distribution is the ensemble of all excitatory-to-excitatory

synapses in the network where the weight is non-zero. This distribution is labelled

with a ‘forward,’ because it measures the ‘forward’ causality where the ratio Ri→ j

is the one from i to j and the weight is also the one from i to j , i.e. ∆g i→ j . There

is a ‘control case,’ the ‘backward direction,’ where I determine the joint distribu-

tion pbackward(R ,∆g ), which is the distribution of the joint probability of Ri→ j and

∆g j→i (=∆g i j ). I expect that the forward distribution is significantly elevated when

R and∆g are relatively large, and I do not expect such an effect in the backward

direction.

Now, if∆g and R are correlated, I expect the ‘correlation’ p (R ,∆g )
p (R )p (∆g ) to be differ-

ent from unity. Here, the two distributions in the denominator are the respective

marginal distributions. In order to make ‘distance to unity’ and thus correlations

visible, I now plot the logarithm of this correlation as a function of R and∆g . This is

shown in Fig. 4.1 once in the forward direction and once in the backward direction.

In the forward direction, a strong positive correlation between R and∆g is visible,

which is not there in the backward direction. This establishes the above claims.

a                                    b

Figure 4.1 | Correlation between R and ∆g. Natural logarithm of the ratio p(R,∆g)
p(R)p(∆g) , as a function

of R and ∆g, whose deviation from zero shows correlations between R and ∆g. (a): forward
direction; (b): backward direction. In the ‘forward-case,’ large weights are correlated with strong
causality. The dashed red line is the value of the average weight.
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Chapter 5

Summary, discussion and

outlook

In this thesis, I have described heterogeneous, unstructured, random networks of

LIF neurons connected with frequency-dependent and conductance-based synapses.

Such networks give rise to a ‘super-critical’ macroscopic activity with network-wide

bursts (‘network spikes’) interrupted by phases of near-silence, in agreement with

findings in vitro (Marom and Shahaf (2002)), and resembling activity described by

Tsodyks and colleagues (Tsodyks et al. (2000)). The microscopic dynamics manifests

itself by privileged ‘pioneer neurons’ which herald network spikes and whose spike

order is indicative of the source of stimulation, as is also observed experimentally

(Eytan and Marom (2006); Shahaf et al. (2008); Kermany et al. (2010)). I believe that

I analysed the phenomenology and mechanisms involved in the ‘pioneer-effect’ in

great detail, describing a plethora of effects in silico, where temporal and spatial

resolution are not limited.

Specifically, I described an unstructured network with all-or-nothing synchroni-

sation events (NS), where the NS are terminated by synaptic depression (as observed

experimentally, see Eytan and Marom (2006)), and with a macroscopic activity as

shown in Fig. 2.2. Three network topologies were considered: a homogeneous
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network of Erdös-Rényi type, a heterogeneous network where each neuron has its

own connection probability, and a ‘scale-free’ network which serves to interpolate

between the former two networks (Fig. 2.1). The three networks were designed with

different average weights, so that the activity was comparable in terms of existence

of NS and NS rate. Additionally, I verified that NS are all-or-none events (Fig. 2.4).

The next step was to stimulate the network in order to evoke NS. A procedure for

classifying NS as spontaneous or evoked was introduced (based on Gigante et al.

(2015)). The microscopic dynamics manifests itself by the existence of pioneer neu-

rons whose latency distribution is such that these neurons discharge consistently

early (Fig. 2.9 A). The reason for this behaviour is their characteristic sensitivity, as

measured by the ∗-voltage distribution (Fig. 2.9 B). In addition, I reproduced an

experiment by Tsodyks and colleagues, where groups of neurons are silenced based

on their average firing rate. I observed that making pioneers ineffective abolished

NS (Tsodyks et al. (2000)). In order to explain the paradoxical result that NS are ob-

served again when neurons more active than pioneers are silenced, I measured the

threshold for NS generation and showed in this way that this threshold is increased

when pioneers are silenced (Fig. 2.11). Along these lines, I also showed that pioneers

are not distinguished by a particularly large excitatory in-degree (Fig. 3.1A). In our

work, the only visible correlation between ‘degree,’ on the one hand, and ‘being a

pioneer,’ on the other, is that the inhibitory in-degree does not assume large values

for pioneers (Fig. 3.1B).

Then, I studied how the dynamics influences representational capabilities by

studying how information (provided spatially) is encoded in my networks. I re-

produced earlier experiments in vitro (Kermany et al. (2010)) by showing that the

discharge order of pioneers is indicative of where a stimulation occurred. Rate-

based schemes were not able to to so, in contrast (Fig. 2.14). I confirmed this result

by computing matrices of rank-order similarities (Fig. 2.16).

Next, I introduced a technique for automatically detecting pioneers. The reason

is that I needed an operational criterion in order to assess how the existence of

pioneers depends on the network parameters. The latter was than determined in
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the form of a landscape (Fig. 2.18). The operational criterion for being a pioneer was

based on the conjunction of two criteria: pioneers have a high latency consistency

and a high voltage variability.

In chapter 3, I attempted to understand the mechanism behind the connection

between heterogeneity on the one hand and the abundance of pioneers on the

other. I derived the characteristic distribution of ∗-voltage statistics in the three

networks from the respective degree distributions, and, in turn, derived – using

a simple ‘toy’ theory – the latency distributions from the distribution of ∗-voltage

statistics. I summarised this effect by showing that heterogeneous degrees make

the distribution of voltage variabilities flatter, which, in turn, leads to sparsely pop-

ulated sensitivity chains, which finally lead to a more pronounced pioneer effect.

Finally, I described a ‘Bayesian-like’ approach to detecting strong synapses (see

chapter 4). This makes it possible to infer elements of the structure (synapses with

high synaptic weights) of real neural networks solely from activity measurements.

On a very general scale, my work contributes to the topic of "spread of rumour"

on random graphs. More specifically, it adds insight to the ubiquitous discussion

of possible neural codes: even unstructured random networks without any type of

cellular inhomogeneity express pioneer neurons whose discharge order is indicative

of where a (spatial) stimulation occurred. Pioneer or ‘leader’ neurons have already

been studied by several research groups. Much of this research activity detected

connections between ‘being a pioneer’ and the ‘excitatory in-degree.’ In my net-

works, such a connection was not present (as already mentioned above). Pioneers

were distinguished by having particular average discharge rates, but these were

not simply determined by the excitatory in-degree. Also, pioneers were influential

by comprising the first link in the positive feedback-loop supporting NS, but did

not show exceptionally large out-degree (because in my networks in-degrees and

out-degrees are not correlated). The main reason for the early discharge of pioneers,

however, was their characteristic sensitivity to small fluctuations of the population

activity: pioneers are situated just below threshold. But why are recruitment paths

and rank-order strings of pioneers very dissimilar if the network is stimulated at
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different sites? I have shown that this is the main reason why pioneers encode

the stimulation site by means of the rank. The answer to the previous question

is presumably that the pioneers’ sensitivity is by itself somewhat heterogeneous:

some pioneers have a very high sensitivity, some a moderately high sensitivity. In

the very fist phase of the initiation of NS, after a stimulation at a specific site, activity

percolates along paths of least resistance. If a moderately sensitive pioneer happens

to have many fathers which have already been active at time t due to their direct

activation, it will discharge very early, otherwise it may discharge later. Thus, the

chain of sensitivity which the pioneers comprise interferes with the information

about paths of least resistance which a particular stimulation site gives rise to, so

that effectively different rank-orders emerge.

During my studies, I have also attempted to couple my in silico networks uni-

directionally in order to demonstrate information transmission (Bauermeister et al.

(2015)) from an ‘upstream’ network towards a ‘downstream’ network (not shown

in this thesis). This information transmission has been demonstrated in vitro by

Levy and colleagues (Levy et al. (2012)). However, my first attempts to do so were

based on coupling an upstream in vitro network to an in silico downstream partner.

I succeeded in transmitting order-based information to the downstream network

(not shown). Upstream NS can be classified as ‘spontaneous’, ‘evoked at site 1,’ etc.,

so that the NS which occur downstream can be classified as ‘spontaneous,’ ‘evoked

by a spontaneous NS upstream,’ ‘evoked by a NS upstream which was there evoked

at site 1,’ etc. I was able to show that the information where upstream stimulation

occurred could be read out downstream – under the assumption that the evoked

downstream NS precedes the evoking upstream NS. This ‘reversed’ mode of trans-

mission is consistent with the ‘fast’ mode where the transmission is not severely

delayed. However, I did not present these results in this thesis, because I was unable

to reproduce this in a more consistent scheme, where two in silico networks (of my

type) are being coupled. The main obstruction was that I was not able to determine

conditions under which many of the peaks of evoked downstream NS occur before

the peaks of the evoking upstream NS, so that the recruitment phase downstream
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is generally faster. By the way, it is easy to see why NS have to occur in this reverse

order for information transmission to work: the upstream NS acts as a reset of the

upstream network, and the uni-directional coupling from upstream to downstream

destroys any information contained in the recruitment phase of the downstream

NS, if the order of the two NS is ‘sequential’ instead of ‘reversed.’ Thus, future work

has to establish conditions under which two neuronal modules can be coupled

coherently and such that the order of NS ‘upstream’ and ‘downstream’ is reversed

very frequently.

My results do not directly have relevance in vivo, since super-critical behaviour

in vivo is mainly associated with sleep (sleep spindles) or epileptiform, i.e. patho-

logical, activity. Therefore, the most important proposal for future work would be

to analyse rank-order based coding in the critical or slightly sub-critical regime. It

is to be expected that this change in the character of the synchronisation events

severely interferes with coding schemes based on the rank of neurons which herald

the events (which then would be avalanches). Evidence for sequential recruitment

in vivo abounds, on the other hand: Contreras et al. (2013) (anaesthetised rats so-

matosensory and auditory cortex), Luczak et al. (2007) (somatosensory) Luczak and

Barthó (2012) and Luczak and MacLean (2012) (somatosensory), Stark et al. (2015)

(hippocampus), Rolston et al. (2007) (cultures), Matsumoto et al. (2013) (hippocam-

pus ex vivo) Peyrache et al. (2010) (prefrontal cortex sleeping rats) Carrillo-Reid et al.

(2015) (primary visual cortex).

Understanding the encoding of information in neural population activity is im-

portant for grasping the fundamental computations underlying brain function, and

for interpreting signals that may be useful for the control of prosthetic devices. My

work might contribute to first steps in this direction, which asks for ‘gentle steering’

of neuronal device.
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Appendices
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Appendix A

Network design and parameters

I simulated the collective activity of assemblies of 400 excitatory and 100 inhibitory

neurons (leaky integrate-and-fire, LIF) (Tuckwell, 2005), connected randomly by

means of conductance synapses with short-term dynamics (Tsodyks et al., 1998).

Spontaneous activity was evoked by a uniform and constant background current

injected into all neurons. As neuron models were identical, the only source of

heterogeneity was the connectivity (20 % mean density). Three types of connectivity

were investigated: ‘homogeneous random’ (Erdös-Rényi), ‘scale-free’ (Barabási and

Albert, 1999), and ‘heterogeneous random’.

A neural simulator was programmed in C and verified against existing simulators,

as well as by reproducing the results of (Tsodyks et al., 2000). Time was discretised

in steps of 0.5 ms and numerical integration was performed with the first-order

exponential integration method. To compute power spectra, smaller integration

steps of 0.1 ms were used. To ensure representative results, I investigated multiple

realisations of every network architecture (typically more than 10). Each type of

connectivity expressed generally consistent behaviour, although event rates and

average activity levels varied between realisations.
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A.1 Neurons

The time-dependent membrane voltage V (t )was governed by the differential equa-

tion
dV

dt
(t ) =

EL −V (t )
τm

+
Rm Ib

τm
+

Rm Isyn(t )

τm
, (A.1)

where EL is the leak reversal potential, τm is the membrane time constant, Rm is the

membrane resistance, Ib is the background current, and Isyn is the synaptic current,

see below. Whenever the voltage reached the threshold Vthr , it was reset immediately

to Vres, where it remained for a refractory period τref . The parameters of the neuron

model were as follows: EL =−70 mV; τm = 30 ms for excitatory neurons and τm =

10 ms for inhibitory neurons; Rm = 40 MΩ for excitatory neurons and Rm = 50 MΩ

for inhibitory neurons; Ib = 525 pA for excitatory neurons and Ib = 420 pA for

inhibitory neurons; Vthr =−50 mV; Vres =−65 mV; τref = 3 ms for excitatory neurons

and τref = 2 ms for inhibitory neurons. Note that the background currents raise the

equilibrium potential over the threshold level, ensuring spontaneous activity (with

hypothetical rates νexc = 12 Hz and νinh = 36 Hz in the absence of connectivity).

Note further that the model is defined without noise. Initial membrane voltages

were assigned randomly from the interval [Vres,Vthr]. To avoid onset artefacts, the

initial two seconds of activity were ignored.

A.2 Synapses

The synaptic state is described by four time-dependent variables (Tsodyks et al.,

1998): the instantaneous fractions of recovered, active, and inactive (synaptic)

resources (R (t ), E (t ), and I (t ), respectively) and the fraction of recovered resources

u (t ) recruited by pre-synaptic spikes. These non-dimensional variables satisfy

equations 1.10, 1.11, 1.12, 1.13 and 1.14 (see chapter 1). The axonal conduction delay

was uniform and 0.5 ms. τrec is the recovery time constant;τI is the inactivation time

constant; τfacil is the facilitation time constant; and U is a parameter associated

with resource utilisation. Parameter values are as follows (subscript ‘ee’ stands
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for ‘excitatory-to-excitatory,’ ‘ie’ stands for ‘excitatory-to-inhibitory,’ ‘ei’ stands for

‘inhibitory-to-excitatory,’ ‘ii’ stands for ‘inhibitory-to-inhibitory’): τI ,ee =τI ,ie = 3 ms

and τI ,ei = τI ,ii = 10 ms; the values for U , τrec and τfacil were randomly chosen

and hence varied from synapse to synapse. Values were chosen from Gaussian

distributions with mean Uee =Uei = 0.3; Uie =Uii = 0.04; τrec,ee =τrec,ei = 0.8 s; τrec,ie =

τrec,ii = 0.1 s; τfacil,ie = τfacil,ii = 1 s. The standard deviation of each distribution

was half the respective mean. However, Gaussian distributions were clipped and

restricted to a physically possible range ( i.e., positive values for time constants and

values between zero and unity for U ). For ee- and ei-synapses, τfacil was zero (no

facilitation).

The synaptic current Isyn,i of the i -th neurons was

Isyn,i(t ) = gexc,i(t )(Eexc −V (t ))+ g inh,i(t )(Einh−V (t )), (A.2)

where the reversal potentials were chosen as Eexc = 0 and Einh = −70 mV. The

conductances gexc,i and g inh,i are given by

gexc,i(t ) =
∑

j exc

∆g ijEij(t )

g inh,i(t ) =
∑

j inh

∆g ijEij(t ),

where the sum is over all excitatory (inhibitory respectively) neurons. ∆g ij is the

matrix of synaptic weights, and Eij is the (time-dependent) matrix of resources in

the active state.

The assignment of neuron and synapse parameters was modelled on (Tsodyks

et al., 2000).

A.3 Connectivity matrix

In homogeneous random (Erdös-Rényi) networks, each ordered neuron pair (i , j )

formed a synaptic connection i → j with 20 % probability. Over all neurons, the
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degree of connectivity thus followed a Gaussian distribution. Scale-free networks

were obtained with the ‘preferential attachment’ procedure (Barabási and Albert,

1999), such that connectivity followed a power-law distribution with a mean con-

nectivity of 20 %. Heterogeneous random networks were generated as follows. Every

neuron i was individually assigned four random numbers, λpre,exc, λpost,exc, λpre,inh,

and λpost,inh, each drawn independently from the interval [0,δ], where δ = 0.2 is

the mean connection density. In a second step, every ordered neuron pair i , j was

individually assigned two random numbers, ξ and η, drawn independently from

[0,1]. An excitatory projection j → i was established, if neuron j was excitatory

and ξ<λpre,exc. Similarly, an inhibitory projection j → i was established, if j was

inhibitory and ξ < λpre,inh. Projections i → j were established if j was excitatory

and η < λpost,exc, or if j was inhibitory and η < λpost,inh. This procedure resulted

in a random graph with mean connection density of 20 %. Heterogeneity arises

because each neuron exhibits an individual connection density, with independent

out-degree and in-degree.

Established projections were assigned a synaptic weight∆g ij, each chosen ran-

domly and independently from a (clipped) Gaussian distribution with meanω and

standard deviationω/2 (clipping ensured ∆g ij > 0). Not established projections

were assigned∆g ij = 0. Mean values were chosen such as to obtain spontaneous

activity with pronounced synchronisation events (‘network spikes’, see below) at

rates of O (100 Hz). Specifically, I choseωee,0 = 1150 pS,ωei,0 = 8500 pS,ωie,0 = 5 pS,

ωii,0 = 200 pS for homogeneous random networks;ωee,0 = 1450 pS,ωei,0 = 9500 pS,

ωie,0 = 5 pS,ωii,0 = 200 pS for scale-free networks;ωee,0 = 1000 pS,ωei,0 = 8500 pS,

ωie,0 = 5 pS,ωii,0 = 200 pS for heterogeneous random networks.

Almost all realisations of random connectivity resulted in spontaneous network

activity including large synchronisation events. This was the case for ≈ 90 % of the

homogeneous random networks, ≈ 80 % of the scale-free networks, and ≈ 100 % of

the heterogeneous random networks. In the remaining realisations, spontaneous

activity failed to ignite network spikes (in an all-or-nothing fashion).



Appendix B

Power spectra and

cross-correlations

For the computation of power spectra and cross-correlations, I divided a long simu-

lation (≈ 1000 s, resolution 0.1 ms, with NS removed) into bins of length T = 20 s ,

thus creating an ensemble of ≈ 50 time-traces. For computation of power-spectra

of individual neurons, I computed the Fourier-transform

ρ̃i (ω) =

∫

dtρi (t )exp (iωt ) (B.1)

of the spike-trains of each neuron i , integrated over single bins. The power spectrum

Si ( f ) of the activity of the i th excitatory neuron was then determined as

Si ( f ) =




|ρ̃i (2π f )|2
�

T
, (B.2)

where the average is taken over the ensemble of bins. This was averaged over

excitatory neurons to yield Fig. 2.2 C.

For the computation of cross-correlations, I determined the normalised ‘scalar
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product’

Ci j (τ) =

¬

∫

dt (ρi (t )−νi )(ρ j (t +τ)−ν j )
¶

r

¬

∫

dt (ρi −νi )2(t )
¶

r

¬

∫

dt (ρ j −ν j )2(t )
¶

(B.3)

for each pair of distinct neurons i and j which discharge at least once between

NS (where νi and ν j are the average firing rates between NS). The integral is again

over single bins and the average is over the ensemble of all bins. Spike trains were

regularised by square-shaped kernels with a width of 0.5 ms. Then I considered the

ensemble of cross-correlations Ci j (0) at lag τ = 0 for each pair of distinct excita-

tory neurons which both discharge between NS. For this ensemble, the mean and

standard deviation were stated.



Appendix C

Histograms and densities

Histograms and densities were computed as follows. In Fig. 2.2 B, rectangular bins of

size 50 ms were used. In Fig. 2.4 A, rectangular bins of size 2 (for the relative activity)

were used. In all other cases, densities were estimated with Gaussian kernels. Kernel

width and sampling resolution for population activity (spike density) were 3 ms and

0.1 ms, respectively. For latency distributions, the corresponding values were 0.8 ms

and 0.1 ms, with approximately 400 samples per kernel. For voltage distributions

they were 0.1 mV and 10 µV, with 20,000 samples. For the fraction of recovered

resources R , kernel width and voltage distribution were 0.05 and 0.01, with O (104)

samples.

Recovered resources Ri (t ) of neuron i were averaged over synapses i → j to Ni

post-synaptic neurons j

Ri (t ) =

∑

j R j i (t )

Ni
, (C.1)

where R j i (t ) is recovered resources of synapse i → j at time t . Densities pi (R ) were

established over all time points excluding NS (i.e., time-points more than 35 ms

before or after a NS).

Population activity is understood to be activity of the excitatory subpopulation

and is sometimes given as absolute activity (in Hz) and sometimes as relative activity

(i.e., in units of the average activity level).
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Appendix D

Encoding of external

stimulation

To assess the extent to which network activity encodes external stimulation, I per-

turbed spontaneous network activity in some simulations. External stimulation

targeted particular subsets of excitatory neurons (10 or 30 randomly selected neu-

rons) and forced a single spike in each target neuron. Each subset of targets was

considered a ‘stimulation site’ and up to 12 non-overlapping sites were used. Sub-

sequent network activity (i.e., 100 ms of activity, exclusive of the forced spikes) was

characterised in terms of four features, following (Kermany et al., 2010). Two fea-

tures were based on firing rates ai (t ) of neurons i : temporal profile of population

activity A(t ) =
∑

i ai (t ), and spatial profile of population activity Ai =
∫

ai (t )d t .

Two further features were based on spiking activity of neurons i in the interval

between stimulation and the subsequent NS: timing of first spikes ti and rank

order of first spikes oi . Rank order was obtained by sorting negative spike laten-

cies with respect to the subsequent NS (for example, the negative latency vector

(−20 ms,−10 ms,−15 ms,−17 ms)would yield the rank order vector (1, 4, 3, 2)).

To analyse the information encoded by different activity features, simulations

were divided into a training and a test set. Following (Kermany et al., 2010), the
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training set was used to train a support vector machine (SVM, from Python library

LIBSVM, module ‘sklearn’, (Chang and Lin, 2011)) to classify the stimulated location

on the basis a particular feature. The test set was used to determine classification

performance (fraction of correct classifications of the stimulated site), providing a

lower bound for the ‘true’ information about stimulation site encoded by a particular

activity feature.



Appendix E

Silencing of neurons

To assess the relative importance of different subsets of excitatory neurons, I wished

to render ineffective the members of any particular subset. To do so, I retained

the spikes of such neurons, but suppressed all post-synaptic effects. A reduced fre-

quency of NS in partially de-afferentiated networks revealed the relative importance

of the manipulated subset of neurons.
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Appendix F

Spike-triggered average

population activity

To assess the relation between population activity and individual neuron spikes, I

computed the ‘spike-triggered deviation’ Γi (τ) as follows

Γi (τ) =

∫ �

A(t )−〈A〉
�

ρi (t −τ)dt
∫

ρi (t )dt
(F.1)

where A(t ) is time-dependent population activity, 〈A〉 is its temporal mean, ρi (t ) is

the spike sequence (Dirac comb) of neuron i , and τ is the latency between activity

time t and spike time t −τ. The computation was restricted to periods between

NS, and the normalisation term
∫

ρi (t )dt is the number of spikes fired by neuron

i between NS. In principle, Γi (τ)measures influence and sensitivity (for τ> 0 and

τ< 0, respectively) to population activity of neuron i . However, as many neurons

spike only shortly before NS, I mostly obtain information about negative latencies,

that is, about sensitivity to population activity. For this reason, the spike-triggered

deviation in Fig. 2.9 C is restricted to negative latencies. Moreover, it is defined only

for (sorted) neuron ID > 260, as less active neurons never spike between NS.
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Appendix G

Estimation of post-synaptic

effects

To estimate the differential effect of neuron i on post-synaptic neurons j throughout

the network, I proceeded as follows. For every synaptic target j , I formed the

difference Wji ≡V ′j −Vj between the hypothetical ∗-voltage V ′j (t ) that would have

resulted from a single additional spike of neuron i at time tsp and the actual the

∗-voltage Vj (t ), which may be approximated as

Wji(t )≈
τI U∆g Rm (Eexc−




Vj

�

)

(τm −τI )(1+Uτrecνi )
Θ(t − tsp)
�

e −(t−tsp)/τm − e −(t−tsp)/τI

�

. (G.1)

where νi is the asynchronous firing rate of neuron i (between NS),



Vj

�

is the ex-

pected ∗-voltage of neuron j , and τI , U ,∆g , τrec are parameters of the synapse in

question. Note that I neglect conduction delays and assume the driving force to be

constant. The expression for Wji(t ) peaks at time

tmax =
τmτI

(τm −τI )
log

�

τm

τI

�

, (G.2)

so that the post-synaptic potential in neuron j that is triggered by the additional

spike in neuron i at time tsp is Wji(tmax). The cumulative post-synaptic effect of all
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spikes in neuron i is given by the stationary limit




Wji

�

ss
=

Rm∆g (Eexc−



Vj

�

)τI U νi

1+Uτrecνi
. (G.3)

which is approximately equal to τm ·νi · Wji(tmax).

In Fig. 2.10 B and C, the differential effects of neuron i are averaged over all Ni

post-synpatic neurons j

PSPi ≡
1

Ni

∑

j

Wj i (tmax),



PSPi

�

ss
≡

1

Ni

∑

j




Wj i

�

ss
. (G.4)

In Fig. 2.10 D and E, the products PSPi · Ni and



PSPi

�

ss
Ni are plotted (summed

effect).



Appendix H

Modification of the Levenshtein

edit distance

To quantify dissimilarity in the rank order or ‘first spikes’ observed in different

contexts, I modified the Levenshtein edit distance (Levenshtein, 1966) used in

previous studies (Shahaf et al., 2008). Whereas the Levenshtein metric is useful for

strings with same and/or different ‘letters,’ in the present situation all rank order

strings contain the same ‘letters’ (because all neurons fire at least one spike and

rare missing spikes can be ‘filled in’ at the highest rank). Now consider two strings

s1s2 . . . sn and sπ(1)sπ(2) . . . sπ(n ), where π is an appropriately chosen permutation. The

number of inversions L , which is the number pairs (i , j ) such that i < j but π(i )>

π( j ), ranges from 0 (if strings are identical) to L = n (n−1)
2 (if strings are inverted).

Accordingly, I adopted

Ln =

�

1−
2L

n (n −1)

�

100% (H.1)

as normalised measure of similarity.
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