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Introduction

The motivation of this thesis was to study the problem of hedging in incomplete
markets with coherent risk measures via methods of Convex Analysis. Since the
method to solve this problem was under slight modifications also applicable to the
problem of hedging with convex risk measures and to the closely related problem
of testing compound hypotheses, the idea was born to give a theorem that unifies
these different results.

Historical Development

The problem of pricing and hedging a contingent claim with payoff H is well under-
stood in the context of arbitrage-free option pricing in complete markets (see Black
and Scholes [4], Merton [30]). There, a perfect hedge is always possible, i.e., there
exists a dynamic strategy such that trading in the underlying assets replicates the
payoff of the contingent claim. Then, the price of the contingent claim turns out to
be the expectation of H with respect to the equivalent martingale measure which
is unique. However, the possibility of a perfect hedge is restricted to a complete
market and thus, to certain models and restrictive assumptions. In more realistic
models the market will be incomplete, i.e., a perfect hedge as in the Black-Scholes-
Merton model is not possible and the equivalent martingale measure is not unique
any longer. Thus, a contingent claim bears an intrinsic risk that cannot be hedged
away completely. Therefore, we are faced with the problem of searching strategies
which reduce the risk of the resulting shortfall as much as possible.
One can still stay on the safe side using a superhedging strategy (see [13] for a
survey). Then, the replicating portfolio is in any case larger than the payoff of the
contingent claim. But from a practical point of view, the cost of superhedging is
often too high (see for instance [21]).
For this reason, the problem of investing less capital than the superhedging price
and searching strategies that minimize the risk of the shortfall is considered. An
overview over the quadratic approach, where the difference between H and the repli-
cating portfolio with respect to the L2-norm is minimized, can be found in [44]. This
approach is symmetric since it penalizes both positive and negative differences. In
this thesis, we focus on the asymmetric approach, where only the risk of the short-
fall, i.e., when the replicating portfolio is less than H, is minimized. To do this, one
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vi INTRODUCTION

has to choose a suitable risk measure. This problem has been studied using different
kinds of risk measures. Föllmer and Leukert [16] used the so called quantile hedging
to determine a portfolio strategy which minimizes the probability of loss. This idea
leads to partial hedges. However, in this approach, losses could be very substantial,
even if they occur with a very small probability. Therefore, Föllmer and Leukert
[17] proposed to use the expectation of a loss function as risk measure instead and
solved the linear case in the complete market. Cvitanić [6] and Xu [48] studied
the same problem in an incomplete market. Kirch [26] used a robust version of the
expectation of a loss function as risk measure and Nakano [31], [32] took coherent
risk measures to quantify the shortfall risk. In this thesis, we also consider the men-
tioned risk measures, but we use another method to solve the problem. We compare
our results with the corresponding results in the literature and deduce results for
further risk measures (e.g. convex risk measures).
In the above mentioned papers, nevertheless what risk measure is used, the dynamic
optimization problem of finding an admissible strategy that minimizes the risk of
the shortfall can be split into a static optimization problem and a representation
problem. The optimal strategy consists in superhedging a modified claim ϕ̃H, where
H is the payoff of the claim and ϕ̃ is a solution of the static optimization problem,
an optimal randomized test.
We prove that this decomposition of the dynamic problem is possible for any risk
measure that satisfies a monotonicity property. Since for the representation prob-
lem, the results of [14] can be used (see also [15], [28]), the main topic of the above
mentioned papers studying the hedging problem is how to solve the static optimiza-
tion problem. This is also the central problem studied in this thesis.

Since the choice of the risk measure plays an important role in the problem of
hedging in incomplete markets, we review the main recent developments in the the-
ory of measuring risks. Risk measures should help us to rank and compare different
investment possibilities or to decide if a future random monetary position is accept-
able. By a monetary position we mean a payoff Y , modelled as a random variable
on a given probability space, that will be liquidated to us at a given maturity. A
traditional method to measure the risk of a position, is to calculate the variance of
the payoff σ2(Y ). This has the drawback that losses and gains are penalized in the
same way. A risk measure called Value at Risk (VaRα) at level α seemed to solve
this problem. VaRα is the smallest amount of capital which, if added to a position
and invested in risk-free manner, keeps the probability of a negative outcome below
the level α. Mathematically, VaRα(Y ) is the lower α-quantile of the distribution
of Y with a negative sign. This risk measure became an industry standard for risk
quantification, but in the last years it has received several theoretical criticism (see
for instance [1], [3]). One serious shortcoming of VaRα is that it takes into account
only the probability of a loss and not its actual size. This leaves the position un-
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protected against losses beyond the VaRα. A further point of criticism at VaRα is
that it may fail to measure diversification effects.
In order to develop more appropriate measures of risk, recent research has taken an
axiomatic approach in which the structure of so called coherent risk measures is de-
rived from a set of economically desirable properties, cf. Artzner et al. [3]. This set
of properties consists of monotonicity, positively homogeneity, subadditivity and the
translation property. In [3] representation results are deduced on a finite probability
space. In [8] the theory is extended to more general spaces. In Section 1.3 we explain
the concept of coherent risk measures in detail. Föllmer and Schied [18] relaxed the
axioms of coherent risk measures and replaced positively homogeneity and subad-
ditivity by the weaker condition of convexity. The corresponding risk measures are
called convex risk measures (see also [19] and Section 1.2 of this thesis). Optimiza-
tion problems involving extended real-valued convex risk measures on linear spaces
of random variables are considered in [39]. Note that the definition of convex risk
measures given in Frittelli and Gianin [20] differs from that in [18] since they do not
impose the translation property. In [34] deviation measures, another generalization
of coherent risk measures, are introduced. In [22] and [24] risk measures are studied
from a more abstract point of view, where [22] also studies the set-valued case. In
the recent years dynamic risk measures monitoring the riskiness of a final payoff not
only at the beginning, but also at intermediate dates, have been introduced (for an
overview over this topic see for instance [41]). For a historical overview over different
risk measures see also [45] and for an introduction to the theory we refer to [9].
In this thesis we shall work mainly with coherent and convex risk measures, but also
with the robust version of the expectation of a loss function, which is a risk measure
that does not satisfy the translation property.

The problem of testing hypotheses is closely related to the problem of hedging in
incomplete markets as we shall see in this thesis. The case of testing a compound
hypothesis against a simple alternative hypothesis has been considered in a vari-
ety of papers. A good introduction to this topic can be found in Witting [47]. In
Schied [42], the problem is considered in the context of risk minimization. The more
general problem of testing a compound hypothesis against a compound alternative
hypothesis has been studied for instance by Cvitanić and Karatzas [7], which seems
to present the up to now most general result in this area. In this thesis we work as
well with this general case an compare our results with [7]. In [47], the significance
level α is generalized to be a positive, bounded and measurable function on the
parameter set of the null hypothesis. In Section 3.2, we generalize this problem to
the case of a compound alternative hypothesis.

Main Results

The main contributions of this thesis are the following.
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• A unified proof.
In Chapter 2, we deduce a theorem (Theorem 2.9) that unifies the results of the
closely related problem of hedging in complete and incomplete markets and the
problem of testing compound hypothesis. The theory of Chapter 2 is widely
applicable and yields to new results when applied to the above mentioned
problems.

• A different method.
The method used in Chapter 2 is to solve the problem by a systematic ap-
plication of Convex Analysis, in particular Fenchel duality. This differs from
the methods used in recent literature to solve the coherent hedging problem
([31], [32]), the problem of testing compound hypotheses ([7]) or the (robust)
efficient hedging problem ([17], [26], [48]). In the mentioned papers, a dual
problem had been deduced as well, but to prove existence of a dual solution,
strong assumptions had to be made. The main difference to this thesis is that
in our approach, the existence of a dual solution follows from the validity of
strong duality. Thus, we could weaken the assumptions to get the results.
Furthermore, in the case where the set C∗ is compact (in the hedging problem
C∗ is the set of densities of the equivalent martingale measures which is for
instance in the complete market compact and in the testing problem C∗ is
the compound null hypothesis), it is possible to deduce with our method a
result about the structure of the solution that gives more information about
the solution. That is, because we work with other dual variables than in the
above mentioned papers. These dual variables are finite signed measures on
the set C∗. The structure of the solution can be deduced with respect to
C∗ and elements from the representing set of the risk measure in the case of
hedging and elements from the compound alternative hypothesis in the case of
testing, whereas in the above mentioned papers, the structure of the solution
is deduced with respect to elements from enlarged sets.
In the general case we use Fenchel duality and the duality approach of [27].
A detailed discussion of the relationship between our results and the recent
literature can be found in the corresponding sections in Chapter 3 and 4.

• New results in hedging problems.
Theorem 4.1 states the decomposition of the dynamic hedging problem into
a static and a representation problem for any monotone risk measure. From
Theorem 2.5, the existence of a solution to the static problem follows.
The theory of Chapter 2 gives us the possibility to solve the hedging problem
for a variety of risk measures. We show which properties of a risk measure are
needed to solve the problem and that important risk measures as convex and
coherent risk measures and special cases of the robust version of the expecta-
tion of a loss function are included.
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We consider two cases. When the set of the densities of the equivalent mar-
tingale measures is compact (this includes the case of a complete market), the
problem can be solved by a systematic application of Fenchel duality. The
results are new and even improve, when restricted to coherent risk measures,
the results of Nakano [32].
In the general incomplete market we apply first Fenchel duality as in Chap-
ter 2 and then, we solve the inner problem of the dual problem with a duality
approach due to Kramkov and Schachermayer [27], in the version of Xu [48].
The combination of this two methods makes it possible to solve the hedging
problem for a variety of risk measures which leads to new results in convex
hedging (Corollary 4.14 and 4.39) and for more general risk functions (Theo-
rem 4.9 and 4.38) and extends previous results in coherent hedging and robust
efficient hedging.

• New results in testing compound hypotheses.
We show the differences to the methods used by Cvitanić and Karatzas [7] or
Witting [47] to solve the problem and show in what way our results extend
previous ones.

• Risk functions on Lp-spaces.
We treat in a systematic way risk functions on Lp-spaces. Dual representa-
tions are deduced, representations via acceptance sets are considered and the
important case of L∞, endowed with the weak* topology, is studied in detail.

Outline

The aim of Chapter 1 is to introduce the concept of risk measures. In the literature,
risk measures have been defined in different ways and on different spaces. Being
aware of this, we try to study in a systematic way the basic ideas of risk measures.
This is important for this thesis since we will work with risk measures on differ-
ent Lp-spaces and with different kinds of risk measures (convex and coherent risk
measures, but also with the robust version of the expectation of a loss function).
To prepare a mutual basis, we consider in Section 1.1 functionals on Lp-spaces and
define at first different properties that are important for the definition of certain
classes of risk measures or for obtaining useful dual representation. Then, we study
the impact of these properties to the dual representation of convex and lower semi-
continuous functionals. In Section 1.1.3, we consider the special case L∞ since in
this space we have to take care if a functional is lower semicontinuous with respect
to the norm topology or the weak* topology (this leads to different dual represen-
tations). We provide a possibility that helps to find out if a convex functional on
L∞ is weakly* lower semicontinuous. This extends Theorem 4.31 in [19]. In Sec-
tion 1.1.4, we collect results about the acceptance set of a given risk measure and
review how a risk measure can be defined by a given acceptance set and how these
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procedures are connected. In Section 1.2 we review the definition of convex risk
measures and deduce their dual representation on Lp-spaces. Finally, in Section 1.3
we define coherent risk measures, make their relationship to convex risk measures
clear and deduce their dual representation.

In Chapter 2 an optimization problem involving randomized tests is considered.
In Section 2.1, we motivate the problem and give an overview over the possible ap-
plications. In Section 2.2, we prove the existence of a primal solution and deduce in
Section 2.3 the Fenchel dual problem. In Theorem 2.6 we prove that strong duality
is satisfied. We show, that the problem is a saddle point problem and prove the
existence of a dual solution and thus, the existence of a saddle point.
The dual problem plays an important role in solving the primal problem. In the next
step as described in Section 2.4 the inner problem of the dual problem is analyzed.
Again, Fenchel duality is applied. We regard the inner problem of the dual prob-
lem as a new primal problem, prove the existence of a solution, deduce the Fenchel
dual problem and prove that strong duality is satisfied. The existence of a dual
solution follows and it is possible to give a result about the structure of a solution
with respect to the dual solution. With this result we can deduce in Section 2.5 the
structure of a solution of the original problem with respect to its dual solution and
obtain the main Theorem 2.9 of this thesis.

In Chapter 3 and 4 an application of the theory and the results deduced in Chap-
ter 2 can be found. In Chapter 3, the problem of testing compound hypotheses is
considered. First, we consider the classical problem of testing hypotheses, give a
necessary and sufficient condition of the optimal solution and compare the obtained
result with the recent literature. We show, in which cases our results extend for
instance the ones of [7]. Then, we consider a more generalized test problem and
solve it analogously.

In Chapter 4, we consider the problem of hedging in incomplete markets using
different kinds of risk measures. In Theorem 4.1, the decomposition of the dynamic
hedging problem into a static and a representation problem is proved for any risk
measure that is monotone. For the representation problem there already exist results
in the literature, that is why we focus in our considerations on the static optimiza-
tion problem. We distinguish two cases in which different methods are used to solve
the static problem. In Section 4.1, we consider the case where the set of the densi-
ties of the equivalent martingale measures is compact, which include the complete
market. Then, the problem can be solves by the theory deduced in Chapter 2, i.e.,
by an application of Fenchel duality. In Theorem 4.9 in Section 4.1.1, a result about
the structure of a solution to the static problem is proved for the most general risk
function satisfying the assumptions of Chapter 2. In the following sections, we show
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that this includes several well-known risk measures as convex or coherent risk mea-
sures. Section 4.1.2 summarizes the results for convex hedging. In Section 4.1.3, we
outline the results for coherent hedging and compare them with results from recent
literature. The problem of robust efficient hedging, i.e., the risk measure used to
quantify the risk of the shortfall is a robust version of the expectation of a loss
function, is discussed in Section 4.1.4. The problem can be solved for instance for
Lipschitz continuous loss functions. The connection between the linear case and the
problem of coherent hedging is deduced.
In Section 4.2, the problem of hedging in a general incomplete market is considered.
It is solved by a combination of the results in Chapter 2 (Fenchel duality) and a
duality approach due to Kramkov and Schachermayer [27], in the version of Xu [48].
This makes it possible to solve the hedging problem for a variety of risk measures.
First, we deduce the result for the most general risk measure and then, in the follow-
ing sections, the corresponding results for convex and coherent risk measures and
for the robust version of the expectation of a loss function are deduced. A simple
example is given.

In the appendix, we summarize some well-known facts, which could be useful for
reading this work and prove several lemmata used in this thesis. In Section A we
review some important results from Convex Analysis, among them Fenchel dual-
ity. In Section B we recall several auxiliary results from Functional Analysis and in
Section C from Stochastic Finance.
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Chapter 1

Risk Measures

In this chapter, we shall introduce the concept of risk measures. We start in the
general framework of functionals on Lp-spaces, discuss several important properties
and their impact to the dual representation. This gives us the possibility to work not
only with convex and coherent risk measures, but also with more general functions
on different Lp-spaces that satisfy only some of the properties of e.g. a convex risk
measure. This is not only helpful for the proof of Theorem 4.1 and for Section 4.1.1
and 4.1.4, but also gives a systematic insight into the relationship between duality
and risk measures. We discuss the important case L∞ in Section 1.1.3 in more
detail. In Section 1.2, we review the definition of convex risk measures and deduce
their dual representation on Lp-spaces and in Section 1.3, we consider coherent risk
measures.

1.1 Functionals on Lp-Spaces

Let (Ω,F , P ) be a complete probability space and Y = Lp(Ω,F , P ) with p ∈ [1,∞].
We write Lp for Lp(Ω,F , P ). We want to measure the risk of a financial position
with random payoff profile Y . In order to do this, we introduce functionals ρ :
Y → IR ∪ {+∞}. Most of the results hold true in the general setting of an ordered
separated locally convex vector space Y , but to be more concrete and with the
applications of Chapter 3 and 4 in mind, we work with Lp-spaces. The space Y
is interpreted as the ”habitat” of the financial positions whose riskiness have to be
quantified. Let Y∗ denote the topological dual space of Y .
For every p ∈ [1,∞), Lp is a Banach space whose dual can be identified, through
Riesz Theorem, with Lq, where 1

p
+ 1

q
= 1, q ∈ (1,∞]. An important case in our

applications in Chapter 4 will be Y = L1 with its dual Y∗ = L∞. The bilinear form
between the dual spaces is 〈Y, Y ∗〉 = E[Y Y ∗] for all Y ∈ Lp and Y ∗ ∈ Lq, where E

denotes the mathematical expectation with respect to P . Lp, p ∈ [1,∞), is endowed

with the strong topology generated by the norm ‖Y ‖Lp = E[|Y |p] 1
p .

1
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For p = ∞, we have to distinguish different cases. If we endow L∞ with the strong
topology, generated by the norm ‖Y ‖L∞ = inf{c ≥ 0 : P (|Y | > c) = 0}, its
topological dual space Y∗ can be identified with the space ba(Ω,F , P ) of finitely
additive set functions on (Ω,F) with bounded variation, absolutely continuous to P

(see [49], Chapter IV, 9, Example 5). The bilinear form between L∞ and ba(Ω,F , P )
is 〈Y, Y ∗〉 =

∫
Ω

Y dY ∗ for all Y ∈ L∞ and Y ∗ ∈ ba(Ω,F , P ).
If L∞ is endowed with the weak* topology (also called the σ(L∞, L1) topology) or
with the Mackey topology (see Appendix B.1 for more explanations), this space is
not a Banach space, but a separated locally convex space. Then, the topological dual
space Y∗ can be identified with L1 and the bilinear form is again 〈Y, Y ∗〉 = E[Y Y ∗]
for all Y ∈ L∞ and Y ∗ ∈ L1.
In our applications in Chapter 3 and 4 we will use risk measures on L1 with the
norm topology, L∞ with the norm topology and L∞ with the Mackey topology.
A random variable Y ∈ Y that is P − a.s. equal to a constant c ∈ IR, i.e., Y (ω) =
c P − a.s., is denoted by c. Equations and inequalities between random variables
are always understood as P − a.s.

Let Q̂ be the set of all probability measures on (Ω,F) absolutely continuous with
respect to P . For Q ∈ Q̂ we denote the expectation with respect to Q by EQ and
the Radon-Nikodym derivative dQ/dP by ZQ.

1.1.1 Properties and Definitions

We consider a functional ρ : Y → IR ∪ {+∞}. In this section, we shall introduce
several important properties of ρ and notations that will be used in this thesis. Some
of these properties will be essential for defining certain classes of risk measures.
Other properties are important to obtain useful dual representations.
We shall start with definitions of important properties for risk measures and we
will give their financial motivation and interpretation (see for instance [3], [18], [19],
[20]). A functional ρ is said to be monotone iff for all Y1 ≥ Y2 with Y1, Y2 ∈ Y we
have

ρ(Y1) ≤ ρ(Y2).

The financial interpretation of monotonicity is obvious: if the final net worth of a
position Y2 is P − a.s. smaller than that of another position Y1, which includes that
possible losses are larger, then the risk of this position Y2 has to be larger than the
risk of Y1.
A functional ρ is called convex iff for all λ ∈ (0, 1) and for all Y1, Y2 ∈ Y the
following inequality is satisfied

ρ(λY1 + (1− λ)Y2) ≤ λρ(Y1) + (1− λ)ρ(Y2).

If the inequality is strict for Y1 6= Y2, then ρ is called strictly convex. Convexity
models diversification of risks with proportions of two positions. Since two positions
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λY1 and (1 − λ)Y2 can have effects on each other, the risk of this positions, when
owned jointly, can only be less or equal than the weighted sum of the positions Y1

and Y2 taken separately. Under the assumption ρ(0) = 0, convexity of ρ implies (see
[20])

∀Y ∈ Y , λ ∈ [0, 1] : ρ(λY ) ≤ λρ(Y )

∀Y ∈ Y , λ ≥ 1 : ρ(λY ) ≥ λρ(Y ).

Both inequalities can be interpreted with respect to liquidity arguments. The latter
is reasonable since, when λ becomes large, the whole position λY is less liquid than
λ single positions Y . When λ is small, the opposite inequality must hold.
A functional ρ is said to satisfy the translation property iff for all c ∈ IR, Y ∈ Y

ρ(Y + c1) = ρ(Y )− c.

The random variable 1 can be interpreted as a risk-free reference instrument. If the
amount c of capital is added to the position Y and invested in a risk-free manner,
the capital requirement is reduced by the same amount. Note that the translation
property of ρ implies ρ(Y + ρ(Y )1) = 0 if ρ(Y ) < +∞. This means, if ρ(Y )
is added to the initial position Y , then we obtain a risk neutral position. For
the financial interpretation we recall that if ρ(Y ) is negative, then the position
Y is acceptable and ρ(Y ) represents the maximal amount which the investor can
withdraw without changing the acceptability. On the other hand, if ρ(Y ) is positive,
then Y is unacceptable and ρ(Y ) represents the minimal extra cash the investor has
to add to the initial position Y to make it acceptable. If ρ(Y ) = +∞, then Y is
not acceptable at all. We exclude the case ρ(Y ) = −∞, because this would mean
that an arbitrary amount of capital could be withdrawn without endangering the
position.
This discussion motivates us to define the acceptance set Aρ of a risk measure ρ

as the set of acceptable positions

Aρ := {Y ∈ Y : ρ(Y ) ≤ 0}.

The property ρ(0) = 0 is called normalization. ”Doing nothing” is not risky (but
also does not ”create” money in the sense of the translation property). This property
is reasonable and ensures that ρ(Y ) can be interpreted as an risk adjusted capital
requirement.
The functional ρ is said to be subadditive iff for all Y1, Y2 ∈ Y it holds

ρ(Y1 + Y2) ≤ ρ(Y1) + ρ(Y2).

If an investor owns two positions which jointly have a positive measure of risk, then
he has to add extra cash to obtain a ”neutral” position. If subadditivity did not
hold, then, in order to deposit less extra cash, it would be sufficient to split the
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position in two accounts.
A functional ρ is called positively homogeneous iff for all t > 0 and Y ∈ Y the
equality

ρ(tY ) = tρ(Y )

is satisfied. This means, the risk of a position increases in a linear way with the size
of the position. If ρ is positively homogeneous and ρ(0) < +∞, then it is normalized,
i.e., ρ(0) = 0. It holds that if ρ is positively homogeneous, then ρ is subadditive if
and only if ρ is convex. Since convexity already takes the diversification effect into
account and in many situations the risk of a position might increase in a non-linear
way with the size of the position, several authors (see e.g. [18], [19], [20]) propose
that instead of imposing the stronger condition of ρ being positively homogeneous
and subadditive, it is sufficient to impose the convexity of ρ.

Remark 1.1. A ”good” risk measure should satisfy certain reasonable properties.
In Section 1.2 and 1.3 we shall introduce the concept of convex and coherent risk
measures, that are defined in that way.
By contrast, several well-known risk measures fail to satisfy important properties.
For instance, the widely used risk measure VaRα is positively homogeneous, but not
subadditive and thus, not convex. As a consequence, VaRα may fail to measure
diversification effects. Examples that demonstrate this effect are given in [3], [19].
The risk measure variance σ2(Y ) as well as risk measures defined by ρ(Y ) = −E[Y ]+
ασ(Y ) for α > 0 are not monotone. Semi-variance type risk measures defined by
ρ(Y ) = −E[Y ] + σ((Y − E[Y ])−) are not subadditive (see [3]).

Now, we will give several definitions and introduce properties that are important for
the deduction of dual representations.
A functional ρ is said to be proper if dom ρ 6= ∅, where dom ρ := {Y ∈ Y : ρ(Y ) <

+∞} denotes the effective domain of ρ.

Definition 1.2. ρ is called lower semicontinuous if and only if one of the fol-
lowing equivalent conditions is satisfied (see [11], Section I.2.2).

(i) The epigraph epi ρ := {(Y, r) ∈ Y × IR : ρ(Y ) ≤ r} is closed with respect to
the product topology on Y × IR.

(ii) The sublevel set Na := {Y ∈ Y : ρ(Y ) ≤ a} is closed for every a ∈ IR.

(iii) For every net {Yα}α∈D ⊆ Y (see Appendix B.3) converging to Y we have

ρ(Y ) ≤ lim inf
α→∞

ρ(Yα).

If Y is a Banach space, nets can be replaced by sequences {Yn}n∈IN. By lower
semicontinuity we will always understand lower semicontinuity with respect to the
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topology on Y . If we work with lower semicontinuity with respect to another topol-
ogy, we will explicitly say so.
We will also use a property of ρ which we call lower semicontinuity with respect to
P −a.s. convergent sequences since it is defined similarly: A functional is said to be
lower semicontinuous with respect to P-a.s. convergent sequences iff for
all sequences {Yn}n∈IN ⊂ Y with Yn → Y P − a.s., we have

ρ(Y ) ≤ lim inf
n→∞

ρ(Yn).

In analogy to lower semicontinuity with respect to a topology on Y , we give an
equivalent characterization for lower semicontinuity with respect to P −a.s. conver-
gent sequences in terms of the closedness of epi ρ with respect to P −a.s. convergent
sequences that is sometimes easier to verify.

Lemma 1.3. Let ρ : Y → IR ∪ {+∞}. The following properties are equivalent:

(i) ρ is lower semicontinuous with respect to P − a.s. convergent sequences.

(ii) epi ρ is closed with respect to P − a.s. convergent sequences, i.e., for all se-
quences {(Yn, rn)}n∈IN ⊂ epi ρ with Yn → Y P − a.s. and rn → r, it holds that
(Y, r) ∈ epi ρ.

Proof. (i)⇒(ii): Let (i) be satisfied. Consider a sequence {(Yn, rn)}n∈IN ⊂ epi ρ with
Yn → Y P − a.s. and rn → r. Then, for all n ∈ IN it holds ρ(Yn) ≤ rn. Since ρ is
assumed to satisfy (i), we obtain

ρ(Y ) ≤ lim inf
n→∞

ρ(Yn) ≤ lim
n→∞

rn = r.

Hence, epi ρ is closed with respect to P − a.s. convergent sequences.
(ii)⇒(i): Let (ii) be satisfied. Suppose, ρ is not lower semicontinuous with respect
to P −a.s. convergent sequences. This means, there exists a sequence {Yn}n∈IN ⊂ Y
with Yn → Y P − a.s. satisfying ρ(Y ) > lim infn→∞ ρ(Yn). Hence, there exists a
subsequence {Ynk

}k∈IN with Ynk
→ Y P − a.s. satisfying Ynk

∈ dom ρ for all k ∈ IN
and ρ(Ynk

) → α < ρ(Y ).
Take r ∈ IR with α < r < ρ(Y ). Since ρ(Ynk

) → α, there exists k0 ∈ IN, such that

∀k > k0 : ρ(Ynk
) ≤ r < ρ(Y ).

It follows, (Ynk
, r) ∈ epi ρ for all k > k0. Condition (ii) implies (Y, r) ∈ epi ρ. Thus,

ρ(Y ) ≤ r, a contradiction to r < ρ(Y ). Thus, (i) follows.

A functional ρ is said to satisfy the Fatou property iff for any bounded sequence
{Yn}n∈IN ⊂ Y with Yn → Y P − a.s.,

ρ(Y ) ≤ lim inf
n→∞

ρ(Yn).
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It is obvious, that lower semicontinuity with respect to P−a.s. convergent sequences
of a functional ρ implies the Fatou property of ρ.
The function ρ is called continuous from above iff for all {Yn}n∈IN ⊆ Y with

Yn ↘ Y ⇒ ρ(Yn) ↗ ρ(Y ),

where Yn ↘ Y denotes a nonincreasing sequence {Yn}n∈IN ⊆ Y converging to Y P −
a.s. and analogously ρ(Yn) ↗ ρ(Y ) denotes a nondecreasing sequence converging to
ρ(Y ).
Next, we shall introduce several properties of sets and further notations.
Let us denote the indicator function of a set Ω1 ⊆ Ω by 1Ω1(ω). It is defined as

1Ω1(ω) :=

{
1 : ω ∈ Ω1

0 : ω /∈ Ω1.

In contrast to this we define the indicator function of a set A ⊆ Y by

IA(Y ) :=

{
0 : Y ∈ A

+∞ : Y /∈ A.

A set K ⊆ Y is called a cone if Y ∈ K implies tY ∈ K for all t > 0.
Let ∅ 6= K ⊆ Y be a cone. The set K∗ defined by K∗ := {Y ∗ ∈ Y∗ : ∀Y ∈
K : 〈Y, Y ∗〉 ≤ 0} is a convex, weakly* closed cone with 0 ∈ K∗ and is called the
negative dual cone of K.
Let us define the cone Y+ := {Y ∈ Y : Y ≥ 0 P − a.s.} and its negative dual cone
(Y+)∗ := {Y ∗ ∈ Y∗ : ∀Y ∈ Y+ : 〈Y, Y ∗〉 ≤ 0}.
Lemma 1.4. It holds (Y+)∗ = Y∗−, where Y∗− = {Y ∗ ∈ Y∗ : Y ∗ ≤ 0 P − a.s.}
for Y∗ = Lq, q ∈ [1,∞] and Y∗− = {Y ∗ ∈ Y∗ : ∀A ∈ F : Y ∗(A) ≤ 0} for Y∗ =
ba(Ω,F , P ).

Proof. Let us first consider the case Y∗ = Lq, q ∈ [1,∞]. Take Y ∗ ∈ (Y+)∗ and
suppose that Y ∗ /∈ Y∗−. Then, there exists a set Ω1 ∈ F with P (Ω1) > 0 and
Y ∗(ω) > 0 for ω ∈ Ω1. Consider Y ∈ Y+ defined by Y (ω) := 1Ω1(ω). Then,〈
Y , Y ∗〉 > 0, a contradiction to Y ∗ ∈ (Y+)∗. Thus, (Y+)∗ ⊆ Y∗−. Vice versa, take

Y ∗ ∈ Y∗−. Then for all Y ∈ Y+ it holds 〈Y, Y ∗〉 ≤ 0. Thus, Y ∗ ∈ (Y+)∗.
The proof is analogous for the case Y∗ = ba(Ω,F , P ).

From Lemma 1.4, it follows that −(Y+)∗ = Y∗+, which is used in the next section.

1.1.2 Dual Representation

In this section, we shall deduce representations of functionals ρ : Y → IR ∪ {+∞}
by means of elements of Y∗. It is well known that every convex and lower semi-
continuous functional ρ admits a dual representation via the biconjugation theorem
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(Theorem A.5) of Convex Analysis. We discuss the impact of additional properties
of ρ to this representation. Dual representations are discussed in [3], [8] for coherent
risk measures and in [18], [19] for convex risk measure. Since we shall work in this
thesis also with risk measures on different Lp-spaces that satisfy only some of the
properties of e.g. a convex risk measure, we describe in the following theorem the
impact of several properties of ρ to this representation separately. Note that in the
last item (e) of the following theorem we exclude the case Y = L∞ endowed with
the norm topology, since this allows us to work with probability measures as dual
elements. We denote by ρ∗ the conjugate function of ρ (see Definition A.3).

Theorem 1.5. Let Y = Lp, p ∈ [1, +∞] and let ρ : Y → IR ∪ {+∞} be a convex
and lower semicontinuous function with ρ(0) < +∞. Then, ρ can be represented in
the following way

ρ(Y ) = sup
Y ∗∈Y∗

{〈Y, Y ∗〉 − ρ∗(Y ∗)}. (1.1)

The impact of additional properties of ρ to the dual representation (1.1) is as follows:

(a) The following conditions are equivalent:
(i) ρ(0) = 0.
(ii) inf

Y ∗∈Y∗
ρ∗(Y ∗) = 0.

In this case, it holds ρ∗(Y ∗) ≥ 0 for all Y ∗ ∈ Y∗.
(b) The following conditions are equivalent:

(i) The functional ρ is monotone.
(ii) dom ρ∗ ⊆ Y∗−.
(iii) It holds

ρ(Y ) = sup
Y ∗∈Y∗+

{〈Y,−Y ∗〉 − ρ∗(−Y ∗)}.

(c) The following conditions are equivalent:
(i) ρ satisfies the translation property.
(ii) dom ρ∗ = {Y ∗ ∈ Y∗ : 〈Y ∗,1〉 = −1 and supY ∈Aρ

〈Y, Y ∗〉 < +∞}
(iii) It holds

ρ(Y ) = sup
{Y ∗∈Y∗:〈Y ∗,1〉=−1}

{〈Y, Y ∗〉 − supeY ∈Aρ

〈Ỹ , Y ∗〉}.

In this case, it holds for all Y ∗ with 〈Y ∗,1〉 = −1

ρ∗(Y ∗) = sup
Y ∈Aρ

〈Y, Y ∗〉 . (1.2)

(d) The following conditions are equivalent:
(i) ρ is positively homogeneous.
(ii) ρ is subadditive and ρ(0) = 0.
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(iii) ρ∗(Y ∗) = Idom ρ∗(Y
∗).

(iv) It holds
ρ(Y ) = sup

Y ∗∈dom ρ∗
〈Y, Y ∗〉 .

(e) If ρ is monotone and satisfies the translation property and Y∗ = Lq,
q ∈ [1,∞], then dom ρ∗ ⊆ {−ZQ ∈ Lq : Q ∈ Q̂}. The dual representation
reduces to

ρ(Y ) = sup
Q∈Q

{EQ[−Y ]− supeY ∈Aρ

EQ[−Ỹ ]},

where Q := {Q ∈ Q̂ : ZQ ∈ Lq}.
Proof. Let ρ be convex and lower semicontinuous with ρ(0) < +∞. Since ρ is
proper, the biconjugation theorem (Theorem A.5) yields (1.1).

(a) With (1.1) we obtain ρ(0) = supY ∗∈Y∗{〈0, Y ∗〉 − ρ∗(Y ∗)} = − infY ∗∈Y∗ ρ∗(Y ∗)
and the equivalence of (i) and (ii) follows. The last assertion is obvious.

(b) Let ρ be monotone. Take Y ∈ Y+\{0}, i.e., Y ≥ 0. This implies ρ(Y ) ≤ ρ(0).
Because of (1.1), we have

∀Y ∗ ∈ Y∗ : 〈Y, Y ∗〉 − ρ∗(Y ∗) ≤ ρ(Y ) ≤ ρ(0).

Hence, 〈Y, Y ∗〉 ≤ ρ∗(Y ∗) + ρ(0) for all Y ∗ ∈ Y∗. Since Y+ is a cone, the last
inequality is also satisfied for tY for all t > 0. Thus, for all Y ∗ ∈ Y∗ we have

∀t > 0 : t 〈Y, Y ∗〉 ≤ ρ∗(Y ∗) + ρ(0).

For Y ∗ in dom ρ∗ this is only possible if Y ∗ ∈ (Y+)∗ = Y∗− (Lemma 1.4) since
ρ(0) < +∞. Hence, dom ρ∗ ⊆ Y∗−, i.e., (ii) is satisfied, which implies the
dual representation in (iii). Vice versa, let (iii) be satisfied. Consider Y1 ≥ Y2.
Then Y1−Y2 ∈ Y+. By definition of Y∗− = (Y+)∗ we obtain 〈Y1, Y

∗〉 ≤ 〈Y2, Y
∗〉

for all Y ∗ ∈ Y∗− and therefore

∀Y ∗ ∈ Y∗+ : 〈Y1,−Y ∗〉 ≤ 〈Y2,−Y ∗〉 .
Thus, ρ(Y1) ≤ ρ(Y2), i.e., (i) is satisfied.

(c) Let (i) be satisfied. Denote M∗ := {Y ∗ ∈ Y∗ : 〈Y ∗,1〉 = −1, supY ∈Aρ
〈Y, Y ∗〉 <

+∞}. Take Y ∗ ∈ dom ρ∗. Because of (1.1), we have for all Y ∈ Y
∀Y ∗ ∈ dom ρ∗ : 〈Y, Y ∗〉 − ρ∗(Y ∗) ≤ ρ(Y ).

Consider this inequality with Y = 0 + c1 for an arbitrary c ∈ IR. Then,
because of the translation property of ρ, we obtain

∀c ∈ IR,∀Y ∗ ∈ dom ρ∗ : c(1 + 〈1, Y ∗〉) ≤ ρ∗(Y ∗) + ρ(0).
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This is only possible if 〈1, Y ∗〉 = −1 for all Y ∗ ∈ dom ρ∗ since ρ(0) < +∞ and
ρ∗(Y ∗) < +∞ for Y ∗ ∈ dom ρ∗. For Y ∗ ∈ dom ρ∗ we can choose a ∈ IR with
a ≥ ρ∗(Y ∗) and Y ∈ Aρ. Then we obtain from (1.1)

∀Y ∈ Aρ : 〈Y, Y ∗〉 ≤ a,

hence dom ρ∗ ⊆ M∗. To prove the reverse take Y ∗ ∈ M∗ and Y ∈ dom ρ.
Then Y + ρ(Y )1 ∈ Aρ and by definition of M∗,

∃a ∈ IR : 〈Y + ρ(Y )1, Y ∗〉 = 〈Y, Y ∗〉 − ρ(Y ) ≤ a.

This inequality is trivially satisfied for Y /∈ dom ρ. Hence for all Y ∈ Y it holds
〈Y, Y ∗〉 − ρ(Y ) ≤ a. Taking the supremum over all Y ∈ Y yields ρ∗(Y ∗) ≤ a,
hence Y ∗ ∈ dom ρ∗ and dom ρ∗ = M∗. Thus, (ii) is satisfied.
To prove (1.2) we observe that for Y ∈ Aρ we have ρ(Y ) ≤ 0 and it follows
that

∀Y ∗ ∈ Y∗ : ρ∗(Y ∗) ≥ sup
Y ∈Aρ

{〈Y, Y ∗〉 − ρ(Y )} ≥ sup
Y ∈Aρ

〈Y, Y ∗〉 . (1.3)

To show the reverse, take Y ∗ with 〈Y ∗,1〉 = −1. Consider Y ∈ dom ρ, then
Y + ρ(Y )1 ∈ Aρ, hence

supeY ∈Aρ

〈Ỹ , Y ∗〉 ≥ 〈(Y + ρ(Y )1), Y ∗〉 = 〈Y, Y ∗〉 − ρ(Y ). (1.4)

This inequality is trivially satisfied for Y /∈ dom ρ. Thus, we can take the
supremum over all Y ∈ Y in (1.4), which gives ρ∗ on the right hand side and
leads together with (1.3) to equation (1.2).
The equation dom ρ∗ = M∗ together with (1.2) leads to the dual representation
of ρ in (iii). Vice versa, if ρ admits a dual representation as in (iii), then for
all Y ∈ Y and c ∈ IR

ρ(Y + c1) = sup
{Y ∗∈Y∗:〈Y ∗,1〉=−1}

{〈Y, Y ∗〉+ c 〈1, Y ∗〉 − supeY ∈Aρ

〈Ỹ , Y ∗〉} = ρ(Y )− c.

Hence, ρ satisfies the translation property, i.e., (i) is satisfied.

(d) Convexity and positive homogeneity of ρ imply subadditivity: 1
2
ρ(Y1 + Y2) =

ρ(1
2
Y1 + 1

2
Y2) ≤ 1

2
ρ(Y1) + 1

2
ρ(Y2) for all Y1, Y2 ∈ Y . From positive homogeneity

of ρ we obtain ρ(0) = ρ(t0) = tρ(0) for all t > 0. Since ρ(0) is finite by
assumption, we have ρ(0) = 0. Vice versa, convexity, subadditivity of ρ and
ρ(0) = 0 imply the positive homogeneity of ρ. To show this, we first prove
that ρ(tY ) ≤ tρ(Y ) for all t > 0. Let t ∈ [0, 1]. Because of the convexity of ρ

and ρ(0) = 0 we obtain

∀t ∈ [0, 1] : ρ(tY ) = ρ(tY + (1− t)0) ≤ tρ(Y ). (1.5)
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For t > 1, we write t = n + s with n ∈ IN and s ∈ [0, 1). Then, because of the
subadditivity and (1.5), it follows

ρ(tY ) = ρ((n+s)Y ) = ρ(nY +sY ) ≤ ρ(nY )+ρ(sY ) ≤ nρ(Y )+sρ(Y ) = tρ(Y ).

Thus,

∀t > 0 : ρ(tY ) ≤ tρ(Y ). (1.6)

To show the reverse, take t > 0. Then, we apply (1.6) for 1
t

> 0 and obtain

∀t > 0 : ρ(Y ) = ρ(
1

t
tY ) ≤ 1

t
ρ(tY ).

Thus, ρ is positively homogeneous.
We now verify the equivalence between positive homogeneity and the dual
representation of ρ in (iv). Let ρ be positively homogeneous. Then, ρ(0) = 0
and ρ∗(Y ∗) ≥ 0 for all Y ∗ ∈ Y∗ by (a). On the other hand, if Y ∗ ∈ Y∗ and
Ŷ ∈ Y satisfy 〈Ŷ , Y ∗〉 − ρ(Ŷ ) > 0, then

ρ∗(Y ∗) = sup
Y ∈Y

{〈Y, Y ∗〉 − ρ(Y )} ≥ sup
λ>0
{〈λŶ , Y ∗〉 − ρ(λŶ )}

= sup
λ>0
{λ[〈Ŷ , Y ∗〉 − ρ(Ŷ )]} = +∞.

Thus, Y ∗ ∈ dom ρ∗ implies 〈Y, Y ∗〉 − ρ(Y ) ≤ 0 for all Y ∈ Y . We obtain
ρ∗(Y ∗) ≤ 0 for all Y ∗ ∈ dom ρ∗. Hence, ρ∗(Y ∗) = 0 for all Y ∗ ∈ dom ρ∗.
This is ρ∗(Y ∗) = Idom ρ∗(Y

∗), which is equivalent to the dual representation
of ρ in (iv). Vice versa, if ρ admits a dual representation as in (iv), then
ρ(λY ) = supY ∗∈dom ρ∗ 〈λY, Y ∗〉 = λ supY ∗∈dom ρ∗ 〈Y, Y ∗〉. Thus, ρ is positively
homogeneous.

(e) Let Y∗ = Lq, q ∈ [1,∞] and let ρ be monotone and satisfying the translation
property. We can define for every Y ∗ ∈ dom ρ∗ a measure Q, absolutely
continuous to P by dQ

dP
= −Y ∗. We can show that Q is a probability measure:

for all A ⊆ Ω it holds Q(A) ≥ 0 since by the monotonicity of ρ we obtain with
(b) −Y ∗ ∈ Y∗+. Furthermore, Q(Ω) = 1, since E[−Y ∗] = 1 by the translation
property of ρ (see (c)). Hence, Q is a probability measure and we obtain the
dual representation in (e) for ρ.

In this thesis, Theorem 1.5 is applied in Section 1.2 and 1.3, where we work with
convex and coherent risk measures, but also in Section 4.1.1 and 4.1.4 where more
general risk functions are used.
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1.1.3 The Case Y = L∞

In the case of Y = L∞, the supremum in the dual representation (1.1) of a lower
semicontinuous, convex and proper functional ρ : L∞ → IR ∪ {+∞} is taken over
the dual space Y∗ = ba(Ω,F , P )

ρ(Y ) = sup
Y ∗∈ba(Ω,F ,P )

{〈Y, Y ∗〉 − ρ∗(Y ∗)},

where 〈Y, Y ∗〉 =
∫

Ω
Y dY ∗.

If ρ is additionally lower semicontinuous with respect to the weak* topology, the
supremum in the dual representation can be taken over the smaller, more convenient
space L1 ⊂ ba(Ω,F , P ) and 〈Y, Y ∗〉 reduces to E[Y Y ∗] for Y ∗ ∈ L1. In this case,
the dual representation of ρ is

ρ(Y ) = sup
Y ∗∈L1

{E[Y Y ∗]− ρ∗(Y ∗)}.

This follows immediately from the biconjugation theorem (Theorem A.5) for the
dual pair (L∞, L1), i.e., L∞ is endowed with the weak* topology. To verify the
additional property, that ρ is weakly* lower semicontinuous, we have to work with
nets, since L∞, endowed with the weak* topology, is not metrizable (see Appendix,
Section B.3). It turns out that for a convex function ρ, weak* lower semicontinuity
is equivalent to the Fatou property. The Fatou property can be verified by using
P − a.s. convergent sequences instead of nets. Furthermore, the closedness of epi ρ
with respect to P−a.s. convergent sequences implies the weak* lower semicontinuity
of ρ.
The following theorem generalizes Theorem 4.31 in [19] that treats convex risk mea-
sures ρ and Theorem 3.2 in [8] that deals with coherent risk measures ρ. The
following theorem allows us to find properties for a convex functional on L∞ that
ensure ρ to admit a dual representation with elements of the space L1.

Theorem 1.6. Let ρ : L∞ → IR∪ {+∞} be a convex function. Then, the following
properties are equivalent:

(i) ρ admits a dual representation

ρ(Y ) = sup
Y ∗∈L1

{E[Y Y ∗]− ρ∗(Y ∗)}.

(ii) ρ is lower semicontinuous with respect to the weak* topology.

(iii) ρ satisfies the Fatou property.

Proof. Suppose ρ is not proper. Since ρ maps into IR ∪ {+∞}, ρ ≡ +∞. Thus,
ρ∗ ≡ −∞ and ρ∗∗ ≡ +∞. Then, (i), (ii) and (iii) are trivially satisfied. In the
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following we suppose that ρ is proper.
(ii)⇒(i): Let (ii) be satisfied. ρ is convex, weakly* lower semicontinuous and proper.
Thus, we can apply the biconjugation theorem (Theorem A.5) for the dual pair
(L∞, L1), i.e., L∞ is endowed with the weak* topology, and obtain (i).
(i)⇒(iii): Let (i) be satisfied. If {Yn}n∈IN ⊂ L∞ is a bounded sequence converging
to Y P − a.s., then by Corollary B.20, E[YnY

∗] → E[Y Y ∗] for all Y ∗ ∈ L1. Since
for all n ∈ IN, Y ∗ ∈ L1

E[YnY ∗]− ρ∗(Y ∗) ≤ sup
Z∈L1

{E[ZYn]− ρ∗(Z)} = ρ(Yn),

we obtain for all Y ∗ ∈ L1

E[Y Y ∗]− ρ∗(Y ∗) = lim
n→∞

{E[YnY ∗]− ρ∗(Y ∗)} ≤ lim inf
n→∞

ρ(Yn).

Hence,

ρ(Y ) = sup
Y ∗∈L1

{E[Y Y ∗]− ρ∗(Y ∗)} ≤ lim inf
n→∞

ρ(Yn).

(iii)⇒(ii): Let (iii) be satisfied. ρ is lower semicontinuous with respect to the weak*
topology if and only if for each a ∈ IR the sublevel set Na := {Y ∈ L∞ : ρ(Y ) ≤ a}
is weakly* closed (see Definition 1.2). For r > 0 let

Br := {Y ∈ L∞ : ‖Y ‖L∞ ≤ r}.

Since ρ is convex, Na is convex for each a ∈ IR. Fix a ∈ IR. By Theorem A.64, [19],
Na is weakly* closed if Cr := Na ∩Br is closed in L1 for each r > 0.
Take an arbitrary r > 0. Consider a sequence {Yn}n∈IN ⊂ Cr converging in L1 to
some Y ∈ L1. Then, there is a subsequence {Ynk

}k∈IN converging to Y P − a.s. (see
Theorem 12.38 and 12.39 in [2]). We have Y ∈ Br since Ynk

∈ Br for each k ∈ IN
and the set

A := {ω ∈ Ω : |Y (ω)| > r} ⊆
⋃

k∈IN

{ω ∈ Ω : |Ynk
(ω)| > r}∪{ω ∈ Ω : Ynk

(ω) 9 Y (ω)}

satisfies P (A) = 0. Moreover Y ∈ Na since ρ(Y ) ≤ lim infk→∞ ρ(Ynk
) ≤ a by (ii).

Thus, Y ∈ Cr, i.e., Cr is closed in L1 for all r > 0.
Thus, Na is weakly* closed for all a ∈ IR and (ii) is satisfied.

Lower semicontinuity with respect to P − a.s. convergent sequences of ρ implies
by definition the Fatou property of ρ. In Lemma 1.3 we proved the equivalence
between lower semicontinuity with respect to P −a.s. convergent sequences and the
closedness of epi ρ with respect to P − a.s. convergent sequences. The following
theorem results.
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Theorem 1.7. Let ρ : L∞ → IR ∪ {+∞} be convex and epi ρ closed with respect to
P − a.s. convergent sequences. Then ρ satisfies the Fatou property, is weakly* lower
semicontinuous and admits a dual representation with elements from L1

ρ(Y ) = sup
Y ∗∈L1

{E[Y Y ∗]− ρ∗(Y ∗)}.

Proof. The closedness of epi ρ with respect to P − a.s. convergent sequences is by
Lemma 1.3 equivalent to the lower semicontinuity of ρ with respect to P − a.s.

convergent sequences, which imply the weaker condition that ρ satisfies the Fatou
property. Theorem 1.6 shows that this property is equivalent to the weakly* lower
semicontinuity of ρ and with the biconjugation theorem (Theorem A.5) follows the
dual representation of ρ with elements from L1.

1.1.4 Acceptance Sets

In this section, we review the relationships between a function ρ : Y → IR ∪ {+∞}
and its acceptance set Aρ. Furthermore, we review how a function ρA can be defined
by a given set A ⊆ Y and which properties of A lead to which properties of ρA.
Finally, we state the relationship between the function ρ and the function ρAρ defined
by Aρ. Analogously the relationship between a set A and the acceptance set AρA
of the function ρA can be studied.
A discussion of these questions for different kinds of risk measures and on different
spaces can be found in several papers. For instance, [3] works with coherent risk
measures on a finite probability space Ω and [19] considers in Section 4.1 this topic
for finite valued risk measures that act on the space of bounded functionals on Ω.
To my knowledge, the most general results regarding these questions can be found in
[22] where extended real-valued translative functions on linear spaces and translative
sets are studied from a much more general point of view than in this thesis. In this
section, we summarize the results that are of interest for our case.
Therefore, we give the following definitions. For A,B ⊆ Y we understand A + B to
be the Minkowski sum of two subsets defined by A+B = {a+b : a ∈ A, b ∈ B}. A set
A ⊆ Y is closed under addition iff A+A ⊆ A and convex iff t ∈ (0, 1), Y1, Y2 ∈ A

imply tY1 + (1− t)Y2 ∈ A.
Let C ⊆ Y be a nonempty set. A set A ⊆ Y is called C−upward iff A + C ⊆ A

([22], Definition 7). A set A ⊆ Y is called translative with respect to 1 and IR+

iff for all Y ∈ A and s ≥ 0 it holds Y + s1 ∈ A or, formulated in another way,
iff A + IR+1 ⊆ A ([22], Definition 1). Note that if A is Y+−upward, then A is
automatically translative with respect to 1 and IR+ since IR+1 ⊆ Y+.
A set A ⊆ Y is said to be radially closed with respect to 1 iff

Y ∈ A, {sn}n∈IN ⊂ IR, lim
n→∞

sn = s ∈ IR, Y + sn1 ∈ A ⇒ Y + s1 ∈ A,
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see Definition 3, [22]. Note that if A ⊆ Y is closed, then it is radially closed with
respect to any k ∈ Y\{0} ([22], Section 3.2). In this thesis, we call a set A ⊆ Y that
is translative with respect to 1 and IR+ just translative and a set that is radially
closed with respect to 1 just radially closed.
For a set A ⊆ Y , the intersection of all translative sets containing A is called the
translative hull of A and is denoted by tr A([22], Definition 2).
For a set A ⊆ Y , the intersection of all subsets of Y which contain A and are radially
closed and translative is called the radially closed, translative hull of A. It is
denoted by rt A([22], Definition 5).
We recall the definition of the acceptance set of ρ

Aρ = {Y ∈ Y : ρ(Y ) ≤ 0}.

First, we want to study the relationship between ρ and its acceptance set Aρ. The
following proposition is due to [22], Proposition 3, 5-8, Corollary 6 and Theorem 1.

Proposition 1.8. Consider a function ρ : Y → IR ∪ {+∞}.
(i) ρ is convex. ⇒ Aρ is convex.

(ii) ρ is positively homogeneous. ⇒ Aρ is a cone.

(iii) ρ is subadditive. ⇒ Aρ is closed under addition.

(iv) ρ is monotone. ⇒ Aρ is Y+−upward.

(v) ρ satisfies the translation property. ⇒ Aρ is translative and radially closed
and the sublevel sets of ρ satisfy Na = Aρ + {−a1} for all a ∈ IR.

(vi) Let ρ satisfy the translation property. Then, the function ρ is lower semicon-
tinuous if and only if Aρ is closed.

Conversely, one can take a given set A ⊆ Y of acceptable positions as the primary
object. For a position Y ∈ Y , we can define the capital requirement as the minimal
amount t for which Y + t1 becomes acceptable. This means, we can define the
function ρA : Y → IR ∪ {±∞} by

ρA(Y ) := inf{t ∈ IR : Y + t1 ∈ A}

agreeing on inf ∅ = +∞ and inf IR = −∞. The relationship between A and ρA is as
follows, due to [22], Proposition 3, 5-9 and Corollary 6.

Proposition 1.9. Consider a set A ⊆ Y.

(i) A is convex. ⇒ ρA is convex.

(ii) A is a cone. ⇒ ρA is positively homogeneous.
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(iii) A is closed under addition. ⇒ ρA is subadditive.

(iv) A is Y+−upward. ⇒ ρA is monotone.

(v) ρA satisfies the translation property and it holds A ⊆ AρA.

(vi) Let A be translative and radially closed. Then, A is closed if and only if ρA is
lower semicontinuous.

(vii) inf{t ∈ IR : t1 ∈ A} = 0. ⇒ ρA(0) = 0.

(viii) If A 6= ∅ and for all Y ∈ Y, there exists t ∈ IR such that Y + t1 /∈ trA, then
ρA is proper.

(ix) If for all Y ∈ Y, there exists an t ∈ IR such that Y + t1 /∈ trA and Y =
A+ IR{1}, then ρA is finite valued.

We now discuss the relationship between ρ and ρAρ and the relationship between A
and AρA .

Corollary 1.10 ([22], Proposition 3).
(i) Let ρ satisfies the translation property. Then Aρ is translative and radially closed
and ρ = ρAρ.
(ii) Let A be translative and radially closed. Then ρA satisfies the translation prop-
erty and A = AρA.

Remark 1.11. In [19], the properties of A that lead to (ii) in Corollary 1.10 are
formulated in a different way. There, A is assumed to satisfy

Y1 ∈ A, Y2 ∈ Y , Y2 ≥ Y1 ⇒ Y2 ∈ A (1.7)

and the following closure property: For Y1 ∈ Y and Y2 ∈ Y ,

{λ ∈ [0, 1] : λY1 + (1− λ)Y2 ∈ A}

is closed in [0, 1]. Then, A = AρA holds true.
Condition (1.7) is equivalent to A+ Y+ ⊆ A, which means A is Y+−upward. This
implies that A is translative. Thus, the assumption in Corollary 1.10 (ii) concerning
the translation property of A are weaker than in [19].

Proposition 1.9 (v) states that ρA satisfies the translation property whether or not
A is translative and radially closed. Also, A ⊆ AρA is always true. This gives rise
to ask for the relationship between a set A and AρA and between ρA and ρAρA if we
do not impose any conditions on A.

Proposition 1.12 ([22], Proposition 4). Let A ⊆ Y be a nonempty set. Then,
AρA = rtA and ρA = ρrtA.
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Conditions (vii) of Proposition 1.9 can be equivalently formulated in terms of trA.

Proposition 1.13 ([22], Corollary 4). Let A ⊆ Y. The condition IR+1∩ (− trA) =
{0} implies ρA(0) = 0.

Last but not least, we give a useful property of functions satisfying the translation
property.

Proposition 1.14 ([22], Proposition 1). If ρ : Y → IR ∪ {+∞} satisfies the trans-
lation property and ρ(0) = 0, then ρ is linear on the one dimensional subspace L(1)
spanned by 1.

1.2 Convex Risk Measures

In this section, we shall introduce the concept of convex risk measure.

Definition 1.15. A functional ρ : Y → IR∪{+∞} is called a convex risk measure
if it is convex, monotone, satisfies the translation property and ρ(0) = 0.

This kind of risk measure was introduced by Föllmer and Schied in 2002 in [18] (see
also [19]) and in a slightly different way (without imposing the translation property)
at the same time by Frittelli and Gianin in [20]. We follow the definition of [18], but
in contrast to [18], we allow ρ also to attain the value +∞ and work on Lp-spaces.
Lower semicontinuous convex risk measures have a dual representation. First, we
consider the case Y∗ = Lq, q ∈ [1,∞]. This means, Y = Lp, p ∈ [1,∞), endowed
with the norm topology or Y = L∞, endowed with the weak* topology or the Mackey
topology.

Theorem 1.16. Let Y∗ = Lq, q ∈ [1,∞]. A function ρ : Y → IR∪{+∞} is a lower
semicontinuous, convex risk measure if and only if there exists a representation of
the form

ρ(Y ) = sup
Q∈Q

{EQ[−Y ]− supeY ∈Aρ

EQ[−Ỹ ]}, (1.8)

where Q := {Q ∈ Q̂ : ZQ ∈ Y∗} and infQ∈Q supY ∈Aρ
EQ[−Y ] = 0. The conju-

gate function ρ∗ of ρ is nonnegative, convex, proper, weakly* lower semicontinuous,
satisfies for all Y ∗ with E[Y ∗] = −1

ρ∗(Y ∗) = sup
Y ∈Aρ

E[Y Y ∗]

and it holds

dom ρ∗ ⊆ {−ZQ : Q ∈ Q}.
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Proof. The ”if”-part follows from Theorem 1.5 (e) and (a).
The inverse implication is straightforward: The function

Y 7→ sup
Q∈Q

{EQ[−Y ]− supeY ∈Aρ

EQ[−Ỹ ]}

is convex, monotone, lower semicontinuous (Lemma 2.38, [2]), satisfies the transla-
tion property and ρ(0) = 0.
If ρ is a lower semicontinuous, convex risk measure, then ρ∗ is convex, weak* lower
semicontinuous and proper (see Theorem A.4). From Theorem 1.5 (a) we conclude,
that ρ∗ is nonnegative. The remaining results follow from Theorem 1.5 (e).

Remark 1.17. Föllmer and Schied [19] called ρ∗(−ZQ) =: αmin(Q) for Q ∈ Q the
”minimal penalty function”. In this notation (1.8) becomes

ρ (Y ) = sup
Q∈Q

{EQ[−Y ]− αmin(Q)}.

Remark 1.18. Let α(Q) : Q → IR ∪ {+∞} be a functional with infQ∈Q α(Q) = 0.
Then,

ρ (Y ) := sup
Q∈Q

{EQ[−Y ]− α(Q)} (1.9)

is a convex risk measure. The functional α is called a penalty function and αmin

(Remark 1.17) is the minimal penalty function on Q that represents ρ (see [19]).
The penalty function α can describe how seriously the probabilistic model Q ∈ Q is
taken. The value of the convex risk measure ρ(Y ) is the worst case of the expected
loss EQ[−Y ], taken over all models Q ∈ Q, but reduced by α(Q) ([19], Section 3.4).

The case Y∗ = ba(Ω,F , P ), hence the case Y = L∞, endowed with the norm topol-
ogy, was excluded in Theorem 1.16. In this case, we have to work with finitely
additive measures and obtain an analogous theorem.

Theorem 1.19. Let Y = L∞, endowed with the norm topology. A function ρ :
L∞ → IR ∪ {+∞} is a lower semicontinuous, convex risk measure if and only if
there exists a representation of the form

ρ(Y ) = sup
Y ∗∈M

{〈−Y, Y ∗〉 − supeY ∈Aρ

〈−Ỹ , Y ∗〉}, (1.10)

where M := {Y ∗ ∈ ba(Ω,F , P )+ : Y ∗(Ω) = 1}. The conjugate function ρ∗ of ρ is
nonnegative, convex, proper, weakly* lower semicontinuous, satisfies for all Y ∗ with
Y ∗(Ω) = −1

ρ∗(Y ∗) = sup
Y ∈Aρ

〈Y, Y ∗〉

and we have
dom ρ∗ ⊆ {Y ∗ ∈ ba(Ω,F , P )− : Y ∗(Ω) = −1}.
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Proof. We obtain the results analogously to the proof of Theorem 1.16.

If ρ is additionally lower semicontinuous with respect to the weak* topology, the
supremum in the dual representation (1.10) can be taken over the smaller, more
convenient space L1 ⊂ ba(Ω,F , P ) and 〈Y, Y ∗〉 reduces to E[Y Y ∗] for Y ∗ ∈ L1. We
give some equivalent conditions that ensure the weak* lower semicontinuity of ρ,
and thus a dual representation with elements of L1. The first part of the theorem
corresponds to Theorem 4.31 in [19].

Theorem 1.20. Let ρ : L∞ → IR ∪ {+∞} be a convex risk measure. Then the
following conditions are equivalent.

(i) ρ can be represented by elements of L1

ρ(Y ) = sup
Q∈ bQ{EQ[−Y ]− supeY ∈Aρ

EQ[−Ỹ ]}.

(ii) ρ is weakly* lower semicontinuous.

(iii) ρ satisfies the Fatou property.

(iv) The acceptance set Aρ of ρ is weakly* closed.

(v) ρ is continuous from above.

Furthermore, if epi ρ is closed with respect to P − a.s. convergent sequences, then ρ

is weakly* lower semicontinuous and the above properties are satisfied.

Proof. (i)⇔(ii) follows from Theorem 1.6 and 1.5 (e).
(ii)⇔(iii) because of Theorem 1.6.
(ii)⇔(iv) because of Definition 1.2 (ii) and because the translation property of ρ

implies the weak* closedness of all sublevel sets if the sublevel set to level zero
Aρ = N0 is weakly* closed (see Proposition 1.8 (v)).
(iii)⇒(v): Take Yn ↘ Y . Yn is a bounded sequence converging to Y P−a.s. Because
of the monotonicity of ρ we have for all n ∈ IN that ρ(Yn) ≤ ρ(Yn+1) and together
with (iii) we obtain that ρ(Yn) ≤ ρ(Y ) ≤ lim infn→∞ ρ(Yn) and thus, ρ(Yn) ↗ ρ(Y ).
(v)⇒(iii): Let {Yn}n∈IN be a bounded sequence in Y converging P−a.s. to Y . Define
Zm := supn≥m Yn ∈ Y . Then Zm decreases P − a.s. to Y . Since Zm ≥ Ym for all
m ∈ IN, we obtain by the monotonicity of ρ that ρ(Ym) ≥ ρ(Zm) and thus, with (v)

lim inf
m→∞

ρ(Ym) ≥ lim
m→∞

ρ(Zm) = ρ(Y ).

The last part follows from Theorem 1.7.
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As shown in Section 1.1.4, a risk measure can be constructed via a given set A ⊆ Y
of acceptable positions by defining

ρA(Y ) := inf{t ∈ IR : Y + t1 ∈ A}. (1.11)

If the set A is convex and Y+-upward, then ρA is convex, monotone and satisfies
the translation property (Proposition 1.9). To obtain a convex risk measure, A
has additionally to satisfy inf{t ∈ IR : t1 ∈ A} = 0 or the equivalent condition
in Proposition 1.13. Then, ρA(0) = 0. Alternatively, the normalization ρ̃(Y ) :=
ρA(Y )− ρA(0) yields a convex risk measure if inf{t ∈ IR : t1 ∈ A} ∈ IR.
Another possibility is to start with a given penalty function α : Q → IR∪{+∞} on
Q := {Q ∈ Q̂ : ZQ ∈ Y∗} with infQ∈Q α(Q) ∈ IR (cf. Remark 1.18) and to define

ρ (Y ) := sup
Q∈Q

{EQ[−Y ]− α(Q)}. (1.12)

If infQ∈Q α(Q) = 0 holds, then ρ is a convex risk measure. Otherwise, the normalized
function ρ̃(Y ) := ρ(Y ) − ρ(0) is a convex risk measure on Y . We give now some
examples.

Example 1.21. [[19], Example 4.9] Let Q ⊆ Q̂. Consider a map γ : Q → IR
satisfying supQ∈Q γ(Q) < ∞, which specifies for each Q ∈ Q some threshold γ(Q).
Suppose that a position Y is acceptable if

∀Q ∈ Q : EQ[Y ] ≥ γ(Q).

The set A of all acceptable positions is convex, satisfies inf{t ∈ IR : t1 ∈ A} ∈ IR
and is L∞+ -upward since it satisfies (1.7). Thus, ρ = ρA defined by (1.11) is convex,
monotone and translation invariant and the normalization of ρ yields a convex risk
measure on L∞ that is weakly* lower semicontinuous.
Alternatively, ρ can be written as

ρ(Y ) = sup
Q∈ bQ{EQ[−Y ]− α(Q)},

where the penalty function α : Q̂ → (−∞,∞] is defined by α(Q) = −γ(Q) for
Q ∈ Q and α(Q) = +∞ otherwise.

Example 1.22. [[19], Example 4.33] Consider the penalty function α : Q̂ → [0,∞]
defined by

α(Q) :=
1

β
H(Q|P ),

where β > 0 is a given constant and H(Q|P ) = EQ[log dQ
dP

] is the relative entropy of
Q with respect to P . The corresponding entropic risk measure ρ on L∞ is given by

ρ(Y ) = sup
Q∈ bQ{EQ[−Y ]− 1

β
H(Q|P )}.
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The functional α is the minimal penalty function representing ρ. The function α(Q)
penalizes the model Q ∈ Q proportional to the deviation of Q from P , measured by
the relative entropy. Thus, the given model P is the one taken most seriously. The
entropic risk measure can be written as

ρ(Y ) =
1

β
log E[e−βY ]

and is a weakly* lower semicontinuous convex risk measure on L∞.

1.3 Coherent Risk Measures

In this section, we shall introduce the concept of coherent risk measure. Coherent
risk measures are a subclass of convex risk measures and have been introduced in
the seminal paper of Artzner et al. [3] in 1999 on finite probability spaces. Delbaen
[8] extended the results to more general spaces.

Definition 1.23. A functional ρ : Y → IR∪{+∞} is called a coherent risk mea-
sure if it is subadditive, positively homogeneous, monotone, satisfies the translation
property and ρ(0) = 0.

The relationships between convex and coherent risk measures are explained by the
following theorem.

Theorem 1.24. Let ρ : Y → IR ∪ {+∞} be a lower semicontinuous convex risk
measure. The following conditions are equivalent.

(i) ρ is a coherent risk measure

(ii) The acceptance set Aρ is a cone.

(iii) ρ is subadditive.

(iv) ρ is positively homogeneous.

(v) ρ∗(Y ∗) = IM∗(Y ∗), where M∗ ⊆ Y∗.
Proof. Let ρ be a lower semicontinuous convex risk measure.
(i) ⇒ (ii): Since ρ is positively homogeneous, we have for all t > 0 and all Y ∈ Aρ

that ρ(tY ) = tρ(Y ) ≤ 0. Thus, tY ∈ Aρ. This means, Aρ is a cone.
(ii) ⇒ (i): From Theorem 1.5 (c) we obtain that ρ∗(Y ∗) = supY ∈Aρ

〈Y, Y ∗〉 for all
Y ∗ ∈ Y∗ with 〈Y ∗,1〉 = −1 and +∞ else. Since ρ(0) = 0, Aρ is a cone with 0 ∈ Aρ

and we obtain with Example A.11

ρ∗(Y ∗) = IA∗ρ∩{Y ∗∈Y∗:〈Y ∗,1〉=−1}(Y
∗).
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Thus, ρ(Y ) = supA∗ρ∩{Y ∗∈Y∗:E[Y ∗]=−1} 〈Y, Y ∗〉 and is as a support function positively
homogeneous and subadditive (Example A.6), thus a coherent risk measure.
(iii) ⇔ (iv): This was shown in Theorem 1.5 (d).
(i) ⇔ (iii): Obvious since (iii) is equivalent to (iv).
(i) ⇔ (v): Follows from Theorem 1.5 (d).

Next, we shall show that a lower semicontinuous coherent risk measure admits a dual
representation as a support function. We start with the case Y∗ = Lq, q ∈ [1,∞],
that means, Y = Lp, p ∈ [1,∞), endowed with the norm topology or Y = L∞,
endowed with the weak* topology or with the Mackey topology. In this cases, the
bilinear form between the dual spaces is the expectation 〈Y, Y ∗〉 = E[Y Y ∗] for all
Y ∈ Y and Y ∗ ∈ Y∗. In the following theorem we shall show that the dual elements
in the representation of ρ are probability measures.

Theorem 1.25. Let Y∗ = Lq, q ∈ [1,∞]. A function ρ : Y → IR∪{+∞} is a lower
semicontinuous coherent risk measure if and only if there exists a subset Q of Q̂
such that {ZQ : Q ∈ Q} ⊆ Y∗ and

ρ(Y ) = sup
Q∈Q

EQ[−Y ]. (1.13)

The maximal representing set is Qmax = co∗Q, i.e., it holds

ρ(Y ) = sup
Q∈co∗Q

EQ[−Y ],

where co∗Q is the weak* closure of the convex hull of of the densities ZQ of Q. It
holds −co∗Q = A∗

ρ ∩ {Y ∗ ∈ Y∗ : E[Y ∗] = −1} and

ρ∗(Y ∗) = I−co∗Q(Y ∗).

Remark 1.26. Obviously, a coherent risk measure ρ with dual representation (1.13)
can be represented with every set Q′

satisfying co∗Q′
= co∗Q and Q′

= co∗Q is the
maximal one.

Remark 1.27. Except in the case Y = L1, we can replace the weak* closure of
coQ in Theorem 1.25 with the closure of coQ with respect to the norm topology.
Let us explain this in more detail.
First, we consider the case Y = Lp, p ∈ (1,∞), endowed with the norm topology
or Y = L∞, endowed with the weak* topology or with the Mackey topology. This
means, we exclude for a moment the case Y = L1. We have {ZQ : Q ∈ Q} ⊆ Lq, q ∈
[1,∞). Then, the weak* closure of the convex hull of the densities of Q coincides
with the closure of the convex hull of the densities of Q with respect to the norm
topology. This follows since a convex subset of Lq is weakly closed if and only if
it is closed with respect to the norm topology ([19], Theorem A.59) and since in
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Lq, q ∈ [1,∞) the weak and the weak* topology coincide.
Note that in the case of Y = L1, i.e., {ZQ : Q ∈ Q} ⊆ L∞, this is not true. In this
case, the norm closure of coQ coincides with the weak closure of coQ, but this is
in general only a subset of the weak* closure of coQ.

Proof of Theorem 1.25. The ”if” part follows from Theorem 1.5. The inverse im-
plication follows since the function ρ : Y → IR ∪ {+∞} defined by ρ(Y ) :=
supQ∈Q EQ[−Y ] satisfies the translation property, is lower semicontinuous, mono-
tone, positively homogeneous and convex with ρ(0) = 0 and thus, subadditive.
Let ρ be a lower semicontinuous coherent risk measure with dual representation
(1.13). Consider a space Z with the topology τ such that its topological dual space
Z∗ satisfies Z∗ = Y . For Y = Lp, p ∈ [1,∞] we have Z = Lq with 1

p
+ 1

q
= 1,

endowed with the weak* topology (cf. Remark 1.27). Since in our cases Z = Y∗,
we can regard Q as a subset of Z. Since ρ is a support function of −Q, it follows
from Example A.7 that ρ can also be represented in terms of Qmax = co∗Q

ρ(Y ) = sup
Q∈Q

EQ[−Y ] = sup
Q∈co∗Q

EQ[−Y ],

where the closure is taken with respect to the topology τ on Z and thus, with respect
to the weak* topology on Y∗. With Example A.10 we obtain

ρ∗(Y ∗) = I−co∗Q(Y ∗).

From Theorem 1.5 (c) we obtain that ρ∗(Y ∗) = supY ∈Aρ
E[Y Y ∗] for all Y ∗ with

E[Y ∗] = −1 and +∞ else. From Theorem 1.24 (i) and (ii) and ρ(0) = 0, it follows
that Aρ is a cone containing 0 ∈ Y . Together with Example A.11 we obtain

ρ∗(Y ∗) = IA∗ρ∩{Y ∗∈Y∗:E[Y ∗]=−1}(Y
∗).

Thus, −co∗Q = A∗
ρ ∩ {Y ∗ ∈ Y∗ : E[Y ∗] = −1}.

Now, we consider the case Y = L∞, endowed with the norm topology.

Theorem 1.28. Let Y = L∞, endowed with the norm topology. A function ρ :
L∞ → IR ∪ {+∞} is a lower semicontinuous coherent risk measure if and only if
there exists a set M∗ ⊆ {Y ∗ ∈ ba(Ω,F , P )+ : Y ∗(Ω) = 1} such that

ρ(Y ) = sup
Y ∗∈M∗

〈−Y, Y ∗〉 . (1.14)

Moreover, M∗ can be chosen to be convex and weakly* closed.

Proof. The results follow from Theorem 1.5 (b), (c) and (d) and since the function
Y 7→ supY ∗∈M 〈−Y, Y ∗〉 satisfies the properties of a coherent risk measure and is
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lower semicontinuous.
In analogy to the proof of Theorem 1.25, we can show that

ρ∗(Y ∗) = IA∗ρ∩{Y ∗∈Y∗:Y ∗(Ω)=−1}(Y
∗).

Since ρ∗ is convex and weakly* lower semicontinuous (Lemma A.4), the set A∗
ρ ∩

{Y ∗ ∈ Y∗ : Y ∗(Ω) = −1} is convex and weakly* closed and ρ can be represented
with this set.

Let ρ be a coherent risk measure on L∞. In analogy to Theorem 1.20, we can
give several conditions that ensure a representation of ρ with respect to probability
measures as in (1.13) instead of a representation with respect to finitely additive
measures as in (1.14).

Corollary 1.29. Let ρ : L∞ → IR ∪ {+∞} be a coherent risk measure. Then the
following conditions are equivalent.

(i) ρ can be represented by a set of probability measures Q ⊆ Q̂
ρ(Y ) = sup

Q∈Q
EQ[−Y ].

(ii) ρ is weakly* lower semicontinuous.

(iii) ρ satisfies the Fatou property.

(iv) The acceptance set Aρ of ρ is weakly* closed.

(v) ρ is continuous from above.

Furthermore, if epi ρ is closed with respect to P − a.s. convergent sequences, then ρ

is weakly* lower semicontinuous and the above properties are satisfied.

Proof. The results follow immediately from Theorem 1.20.

If one considers a set of acceptable positions A ⊆ Y that is a convex cone, Y+-
upward and satisfies inf{t ∈ IR : t1 ∈ A} ∈ IR, then the risk measure ρA defined via
(1.11) is a coherent risk measure on Y (see Proposition 1.9, Theorem 1.5 (d)) with
the acceptance set AρA = rtA (Proposition 1.12). Another possibility to construct

a coherent risk measure is to start with a set of probability measures Q ⊆ Q̂ such
that {ZQ : Q ∈ Q} ⊆ Y∗. Then, the function defined by

ρ(Y ) := sup
Q∈Q

EQ[−Y ]

is a coherent risk measure on Y with dom ρ∗ = co∗Q (see Theorem 1.25).
We give some examples to illustrate the variety in this class of risk measures. The
examples are taken from [19].
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Example 1.30. [[19], Example 4.9] Consider Example 1.21. If γ satisfies γ(Q) = 0
for all Q ∈ Q, then ρ is a weakly* lower semicontinuous coherent risk measure on
L∞ and takes the form

ρ(Y ) = sup
Q∈Q

EQ[−Y ].

Example 1.31. [[19], Example 4.8] Consider the worst-case risk measure ρmax on
L∞ that measures the maximal loss. It is defined by

ρmax(Y ) := ess. sup(−Y ).

The corresponding acceptance set A is given by the convex cone L∞+ . Thus, ρmax is
a coherent risk measure. It is the most conservative coherent risk measure or, more
general, for any monotone risk function ρ that satisfies the translation property and
ρ(0) = 0 it holds

∀Y ∈ L∞ : ρ(Y ) ≤ ρmax(Y ).

The risk measure ρmax can be represented in the form

ρmax(Y ) = sup
Q∈ bQEQ[−Y ]

and is weakly* lower semicontinuous.

Example 1.32. [[19], Example 4.37, Section 4.4] Let Qα be the class of all Q ∈ Q̂
whose density dQ/dP is bounded by 1/α for some fixed parameter α ∈ (0, 1]. The
corresponding coherent risk measure

AV aRα(Y ) := sup
Q∈Qα

EQ[−Y ]

is defined on L1 and is called the Average Value at Risk at level α. It can be written
in terms of the Value at Risk

AV aRα(Y ) =
1

α

∫ α

0

V aRγ(Y )dγ.

Sometimes, the Average Value at Risk is also called the Conditional Value at Risk
(CVaRα) or the expected shortfall (ESα). The set Qα is equal to the maximal set
Qmax of Theorem 1.25.
For α = 1, one obtains AV aR1(Y ) = E[−Y ]. For Y ∈ L∞, we have

AV aR0(Y ) := V aR0(Y ) := lim
α↓0

AV aRα(Y ) = ess. sup(−Y )

which is the worst-case risk measure on L∞ (Example 1.31).
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Example 1.33. [[19], Example 4.38] Let Q be the class of all conditional distribu-
tions P [·|A] such that A ∈ F has P (A) > α for some fixed level α ∈ (0, 1). The
coherent risk measure induced by Q ,

WCEα(Y ) := sup{E[−Y |A] : A ∈ F , P (A) > α},

is called the worst conditional expectation at level α. If the underlying probability
space is atomless, the coherent risk measures AVaRα and WCEα coincides ([19],
Corollary 4.62).
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Chapter 2

Optimization Problems for
Randomized Tests

In this section, we shall consider an optimization problem that arises from different
problems in mathematical finance and test theory.
Let Y be a separated locally convex space with its topological dual space Y∗ and
ρ : Y → IR ∪ {+∞}. Let X = L∞, endowed with the norm topology and X ∗ =
ba(Ω,F , P ), its topological dual space. Let A : X → Y be a linear and continuous
operator and b ∈ Y . We want to solve the problem

min
X∈X0

ρ(AX + b), (2.1)

where the constraint set is

X0 = {X ∈ X1 : sup
X∗∈C∗

〈HX∗, X〉 ≤ c} (2.2)

with

X1 := {X ∈ L∞ : 0 ≤ X ≤ 1} ⊂ X .

The set X1 is called the set of randomized tests. X0 is a subset of X1 satisfying (2.2)
with c > 0 and C∗ ⊆ L1 ⊂ ba(Ω,F , P ). Let H be an element of L1 such that for all
X∗ ∈ C∗ it holds HX∗ ∈ L1. We keep in mind that Y can be as in Chapter 1 the
space Lp for p ∈ [1,∞], endowed with the norm topology or the space L∞, endowed
with the weak* or Mackey topology. In this chapter we may consider any separated
locally convex space Y .
The special choice of X1 being the set of randomized tests ensures that we can deduce
a result about the structure of a solution to problem (2.1). In all the applications
in Chapter 3 and 4 we will work with this set.
We now introduce a list of assumptions. In each of the following theorems and lem-
mata we will quote, which assumptions we use. For the main theorem, Theorem 2.9,
we have to impose all of them.

27
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Assumption 2.1. We impose the following assumptions.

(A1) c > 0.

(A2) Let C∗ ⊆ L1 and H ∈ L1 such that {HX∗ : X∗ ∈ C∗} ⊆ L1.

(A3) Let supX∗∈C∗ ‖HX∗‖L1 < +∞ and C∗ be compact.

(A4) The operator A : L∞ → Y is linear and continuous.

(A5) The functional ρ : Y → IR ∪ {+∞} is convex, lower semicontinuous, continu-
ous in some AX0 + b with X0 ∈ X0 and satisfies ρ(AX0 + b) < +∞.

(A6) The map X 7→ ρ(AX + b) is lower semicontinuous in the weak* topology on
X0.

(A7) The map X 7→ 〈Y ∗, AX〉 is continuous in the weak* topology for all Y ∗ ∈ Y∗

Remark 2.2. Assumption (A6) is for example satisfied if the operator A is contin-
uous with respect to the weak* topology on L∞ and the topology used in Y and ρ

is lower semicontinuous.
Under the validity of (A4), condition (A7) is equivalent to A∗Y ∗ ∈ L1 for all Y ∗ ∈ Y∗,
where A∗ denotes the adjoint operator of A (see Definition 6.51 in [2]).

Remark 2.3. In Section 4.1.4, we will show that it is possible to weaken Assumption
(A7) as follows

(A7’) A∗Ỹ ∗ admits a Hahn decomposition,

where Ỹ ∗ is the solution of problem (2.4). Furthermore, in Remark 2.11 we discuss
that the constant c > 0 can be replaced by a positive, continuous function c(·) :
C∗ → IR and thus Assumption (A1) can be generalized correspondingly. But unless
otherwise stated, we shall work with Assumption 2.1 as above.

2.1 Motivation

Problem (2.1) arises in various applications. The two main cases are the problem
of hedging in incomplete markets and the problem of testing compound hypotheses.
We shall give a short motivation.

• Testing Compound Hypotheses.
We want to discriminate a family P∗ of probability measures (compound null
hypothesis) against another family Q of probability measures (compound al-
ternative hypothesis). This means, we look for a randomized test ϕ̃ that
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minimizes the probability of accepting P∗ when it is false, while the proba-
bility of rejecting P∗ when it is true should be less than a given acceptable
significance level α ∈ (0, 1). Thus, the problem, a special case of (2.1), is

sup
ϕ∈R0

inf
Q∈Q

EQ[ϕ],

where X0 = R0 = {ϕ ∈ X1 : supP ∗∈P∗ EP ∗ [ϕ] ≤ α}. Thus, in this case we
have Aϕ = ϕ, b = 0, C∗ = P∗, H = 1 and c = α. The space Y = L∞ is
endowed with the Mackey topology, Y∗ = L1 and the function ρ : L∞ → IR
is a coherent risk measure defined by ρ(Y ) := supQ∈Q EQ[−Y ]. This problem
will be considered in Section 3.1.

• Hedging in Incomplete Markets.
We want to find an admissible strategy that minimizes the shortfall risk when
hedging in incomplete markets. This dynamic problem can be split into a
representation problem and a static problem. The latter problem is a special
case of (2.1),

min
ϕ∈R0

ρ ((ϕ− 1)H) ,

where ϕ is a randomized test. The constraint set X0 coincides with R0 = {ϕ ∈
X1 : supP ∗∈P EP ∗ [ϕH] ≤ Ṽ0}. H ∈ L1

+ is the payoff of a contingent claim and
P is the set of equivalent martingale measures. Thus, this is problem (2.1)
with Aϕ = Hϕ, b = −H, C∗ = {ZP ∗ : P ∗ ∈ P}, c = Ṽ0 and Y = L1. ρ is a risk
measure that quantifies the risk of losses due to the shortfall. In Section 4.1,
we consider the problem of hedging for different kinds of measures of risk when
the set {ZP ∗ : P ∗ ∈ P} is compact. In Section 4.1.1, we consider the most
general case. In Sections 4.1.2, we consider a convex risk measure ρ and in
Section 4.1.3 a coherent risk measure ρ. In Section 4.1.4, we consider a robust
version of the expectation of a loss function l to quantify the risk of losses.
The problem is solved for the case of Lipschitz continuous loss functions l. In
the general case, we consider a modified problem

min
ϕ∈R0

ρ(ϕ).

The function ρ is a modification of the robust version of the expectation of
a loss function l and we have Aϕ = ϕ, b = 0, C∗ = P , H = 1, c = Ṽ0 and
Y = L∞, endowed with the norm topology.
Analogously, the problem of hedging in general incomplete markets for differ-
ent kind of risk measures is considered in Section 4.2.

The applications will be discussed in detail in Chapter 3 and 4. In this chapter,
we work with the problem as general as possible since in the different applications,
as motivated above, we have to vary the space Y , the operator A, the set C∗, the
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multiplicative element H ∈ L1, the function ρ and the constants b, c ∈ IR.
In this chapter, we will prove the existence of a solution to the primal problem (2.1),
deduce the dual problem and verify the validity of strong duality. Then, we solve
the inner problem of the dual problem and finally the whole problem.

2.2 Existence of a Solution to the Primal Problem

To show the existence of a solution to (2.1), we first prove the following lemma.

Lemma 2.4. Let (A2) be satisfied. Then, the sets X1 and X0 are weakly* compact
and convex.

Proof. The unit sphere B := {X ∈ L∞ : −1 ≤ X ≤ 1} in L∞ is weakly* compact
(Theorem V.4.2, [10]), since L1 is a Banach space. It is sufficient to prove the
closedness of X1 in the weak* topology. Then, the compactness of X1 in the weak*
topology follows from Theorem V.4.3, [10], since X1 is a weakly* closed subset of the
weakly* compact set B. Consider a net (see Section B.3 for definition) {Xα}α∈D ⊆
X1 that converges to X with respect to the weak* topology in L∞. This means, for all
X∗ ∈ L1 it holds E[XαX∗] → E[XX∗]. If there would exist Ω1 ⊆ Ω with P (Ω1) > 0
and X(ω) > 1 for all ω ∈ Ω1, then we can choose X̂∗ = 1Ω1(ω) in L1 and obtain
E[XX̂∗] > P (Ω1). This is a contradiction to E[XX̂∗] = limα E[XαX̂∗] ≤ P (Ω1),
which follows from Xα ≤ 1 for all α ∈ D, since Xα ∈ X1. Hence, X(ω) ≤ 1 for all
ω ∈ Ω. Analogously, it can be shown that X(ω) ≥ 0 for all ω ∈ Ω. Hence, X1 is
weakly* closed, hence, weakly* compact.
We show that X0 is weakly* closed. Consider a net {Xα}α∈D ⊆ X0 that converges
to X with respect to the weak* topology in L∞. Since {HX∗ : X∗ ∈ C∗} ⊆ L1

(Assumption (A2)), we obtain

∀X∗ ∈ C∗ : E[XHX∗] = lim
α

E[XαHX∗] ≤ c.

Hence, we can take the supremum on the left hand side and obtain that X0 is weakly*
closed and, as a subset of a weakly* compact set, also weakly* compact.
The convexity of X1 and X0 is obvious.

Now, we prove the existence of a solution to problem (2.1).

Theorem 2.5. Let Assumption (A2), (A5) and (A6) be satisfied. There exists
X̃ ∈ X0 solving the optimization problem (2.1) and ρ(AX̃ + b) is finite. If ρ is
additionally strictly convex, then the difference of any two solutions has to be an
element of ker A := {X ∈ X : AX = 0}.

Proof. The constraint set X0 is weakly* compact, as proved in Lemma 2.4. Because
we assumed X 7→ ρ(AX + b) to be lower semicontinuous in the weak* topology



2.3. THE DUAL PROBLEM 31

on X0 (Assumption (A6)), there exists X̃ ∈ X0 solving (2.1) (cf. [46], 5.4(b)) and
ρ(AX̃ + b) is finite since ρ is assumed to be finite in some AX0 + b with X0 ∈ R0

(Assumption (A5)). Thus, ρ(AX̃ + b) ≤ ρ(AX0 + b) < +∞.
Let X̃1 be a solution. For any X ∈ X0 and for ε ∈ (0, 1) we define

Xε = (1− ε)X̃1 + εX.

If ρ is strictly convex, we obtain

ρ(AXε + b) ≤ (1− ε)ρ(AX̃1 + b) + ερ(AX + b).

The inequality is strict if AX̃1 6= AX. Hence, for any two solutions X̃1 and X̃2 we
have AX̃1 = AX̃2. This means, A(X̃1 − X̃2) = 0, hence (X̃1 − X̃2) ∈ ker A.

2.3 The Dual Problem

We now want to deduce the dual problem of (2.1).
Since ρ is lower semicontinuous, convex and proper, there exists a dual representation
(biconjugation theorem, Theorem A.5) for ρ

ρ(Y ) = ρ∗∗(Y ) = sup
Y ∗∈Y∗

{〈Y ∗, Y 〉 − ρ∗(Y ∗)}. (2.3)

Equation (2.3) enables us to rewrite the primal problem (2.1) with value p

p = min
X∈X0

{ sup
Y ∗∈Y∗

{〈Y ∗, AX + b〉 − ρ∗(Y ∗)}}.

The dual problem to (2.1) with value d is:

d = sup
Y ∗∈Y∗

{ inf
X∈X0

{〈Y ∗, AX + b〉 − ρ∗(Y ∗)}}. (2.4)

The following strong duality theorem holds.

Theorem 2.6. Let Assumptions (A2), (A4), (A5) and (A6) be satisfied. Strong
duality holds, i.e., the values of the primal problem (2.1) and its dual problem (2.4)
are equal: p = d and there exists a solution Ỹ ∗ of the dual problem (2.4).
Furthermore, (X̃, Ỹ ∗) is a saddle point of the functional (X, Y ∗) 7→ 〈Y ∗, AX + b〉 −
ρ∗(Y ∗) in X0 × Y∗, where X̃ is the solution of (2.1). Thus,

min
X∈X0

{max
Y ∗∈Y∗

{〈Y ∗, AX + b〉 − ρ∗(Y ∗)}} = max
Y ∗∈Y∗

{min
X∈X0

{〈Y ∗, AX + b〉 − ρ∗(Y ∗)}}.

Proof. Problem (2.1) can be rewritten as

p = min
X∈L∞

{ρ(AX + b) + IX0(X)} (2.5)
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We denote in (2.5): f(X) := IX0(X) and g(AX) := ρ(AX + b). The dual problem
(see Theorem A.12) is

d = sup
Y ∗∈Y∗

{−f ∗(A∗Y ∗)− g∗(−Y ∗)},

where A∗ is the adjoined operator of A and f ∗, g∗ are the conjugate functions of
f and g, respectively. The value p of the primal problem is finite (Theorem 2.5).
The function f : X → IR ∪ {+∞} is convex because of the convexity of X0 (see
Example A.8). The function g : Y → IR∪{+∞} is convex since ρ is convex. Since ρ

is assumed to be continuous in some AX0 + b with X0 ∈ X0, we have strong duality
p = d (Theorem A.12). To establish the dual problem, we calculate the conjugate
functions f ∗ and g∗.

f ∗(A∗Y ∗) = sup
X∈X

{〈A∗Y ∗, X〉 − f(X)} = sup
X∈X

{〈A∗Y ∗, X〉 − IX0(X)}
= sup

X∈X0

{〈Y ∗, AX〉}.

The function g is defined by g(Y ) = ρ(Y + b). Its conjugate function is [50, Theo-
rem 2.3.1 (vi)]

g∗(Y ∗) = ρ∗(Y ∗)− 〈Y ∗, b〉 .
Then, the dual problem is

d = supbY ∗∈Y∗{− sup
X∈X0

〈Ŷ ∗, AX〉 − ρ∗(−Ŷ ∗)− 〈Ŷ ∗, b〉}

We set Y ∗ := −Ŷ ∗ and obtain

d = sup
Y ∗∈Y∗

{ inf
X∈X0

{〈Y ∗, AX + b〉 − ρ∗(Y ∗)}}. (2.6)

The existence of a solution Ỹ ∗ to the dual problem (2.6) follows from the validity
of strong duality (Theorem A.12). Let X̃ be a solution to the primal problem (2.1)
(Theorem 2.5). Since

p = sup
Y ∗∈Y∗

{〈Y ∗, AX̃ + b〉 − ρ∗(Y ∗)} ≥ 〈Ỹ ∗, AX̃ + b〉 − ρ∗(Ỹ ∗), (2.7)

d = inf
X∈X0

{〈Ỹ ∗, AX + b〉 − ρ∗(Ỹ ∗)} ≤ 〈Ỹ ∗, AX̃ + b〉 − ρ∗(Ỹ ∗) (2.8)

and because of strong duality we have

〈Ỹ ∗, AX̃ + b〉 − ρ∗(Ỹ ∗) ≤ p = d ≤ 〈Ỹ ∗, AX̃ + b〉 − ρ∗(Ỹ ∗). (2.9)

Hence, we have equality in (2.9) and also in (2.7) and (2.8). This means, the
supremum in (2.7) and the infimum in (2.8) is attained. Thus,

min
X∈X0

{max
Y ∗∈Y∗

{〈Y ∗, AX + b〉 − ρ∗(Y ∗)}} = max
Y ∗∈Y∗

{min
X∈X0

{〈Y ∗, AX + b〉 − ρ∗(Y ∗)}}.

Thus, (X̃, Ỹ ∗) is a saddle point of the function (X,Y ∗) 7→ 〈Y ∗, AX + b〉−ρ∗(Y ∗).

This strong duality theorem motivates us to consider the inner problem of the dual
problem.
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2.4 The Inner Problem of the Dual Problem

Let us consider the inner problem of the dual problem (2.4) for an arbitrary, but
fixed Y ∗ ∈ Y∗:

inf
X∈X0

{〈Y ∗, AX + b〉 − ρ∗(Y ∗)} = inf
X∈X0

{〈Y ∗, AX〉}+ 〈Y ∗, b〉 − ρ∗(Y ∗).

Thus, the inner problem reduces to

inf
X∈X0

〈Y ∗, AX〉 . (2.10)

Denote by p̃(Y ∗) the optimal value of (2.10). Rewriting the constraint set X0,
problem (2.10) can be written as

inf
X∈X1

〈Y ∗, AX〉 , (2.11)

∀X∗ ∈ C∗ : 〈HX∗, X〉 ≤ c. (2.12)

(2.11), (2.12) is an optimization problem on an infinite dimensional space with a
linear objective function and a sublinear constraint or, formulated in another way,
infinitely many linear constraints.

Lemma 2.7. Let (A2) and (A7) be satisfied. There exists a solution X̃Y ∗ to problem
(2.11), (2.12) and p̃(Y ∗) is finite.

Proof. The assertion follows since X0 is weakly* compact (Lemma 2.4) and X 7→
〈Y ∗, AX〉 is assumed to be continuous in the weak* topology for all Y ∗ ∈ Y∗ (As-
sumption (A7)).

Since X = L∞(Ω,F , P ) and X1 is the set of randomized test, we can give a result
about the structure of a solution to (2.11), (2.12) and, using this, a result about the
structure of a solution to (2.1). In the examples of Chapter 3 and 4 this will always
be the case. Note that we do not need to specify the space Y .
Let B denote the σ-algebra of all Borel sets on C∗. Let Λ+ be the set of all finite
measures on (C∗,B). We assign to (2.11), (2.12) the following dual problem

sup
λ∈Λ+

{−E[(−A∗Y ∗ −H

∫

C∗

X∗dλ)+]− cλ(C∗)}. (2.13)

Denote by d̃(Y ∗) its optimal value. The following strong duality theorem holds.

Theorem 2.8. Let Assumptions (A1) - (A4) and (A7) be satisfied. Then, strong
duality holds true for problems (2.11), (2.12) and (2.13), i.e.,

∀Y ∗ ∈ Y∗ : d̃(Y ∗) = p̃(Y ∗).
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Moreover, for each Y ∗ ∈ Y∗ there exists a solution λ̃Y ∗ ∈ Λ+ to problem (2.13). The
optimal randomized test X̃Y ∗ of problem (2.11), (2.12) has the following structure:

X̃Y ∗(ω) =





1 : −A∗Y ∗ > H
∫
C∗

X∗dλ̃Y ∗

0 : −A∗Y ∗ < H
∫
C∗

X∗dλ̃Y ∗
P − a.s. (2.14)

and

E[HX∗X̃Y ∗ ] = c λ̃Y ∗ − a.s. (2.15)

Proof. Let L be the linear space of all continuous functions l : C∗ → IR on the com-
pact set C∗ (Assumption (A3)) with pointwise addition, multiplication with real
numbers and pointwise partial order l1 ≤ l2 ⇔ l2 − l1 ∈ L+ := {l ∈ L : ∀X∗ ∈ C∗ :
l(X∗) ≥ 0}. We endow L with the norm ‖l‖L = supX∗∈C∗ |l(X∗)|, which ensures
that L is a Banach space ([10], Section IV.6).
We define a linear and continuous operator B : (L∞, ‖ · ‖L∞) → (L, ‖ · ‖L) by
(BX)(X∗) := −〈HX∗, X〉 for X∗ ∈ C∗. Assumption (A3) ensures that B is
bounded and thus continuous. We define the functions 1,0 ∈ L by

∀X∗ ∈ C∗ : 1(X∗) = 1 ∈ IR, 0(X∗) = 0 ∈ IR.

The constraint (2.12) can be rewritten as

c1 + BX ≥ 0 ⇔ BX ∈ L+ − c1.

Then, we can write problem (2.11), (2.12) equivalently as

p̃(Y ∗) = min
X∈L∞

{〈Y ∗, AX〉+ IX1(X) + IL+−c1(BX)}, (2.16)

where Lemma 2.7 ensures that the minimum in (2.16) is attained. Let Λ be the
space of finite signed measures on (C∗,B), regarded as the dual space of L with the
bilinear form 〈l, λ〉 =

∫
C∗ ldλ for l ∈ L and λ ∈ Λ (see [2], Corollary 13.15). We

want to establish the dual problem of (2.16) as in Theorem A.12

d̃(Y ∗) = sup
λ∈Λ

{−f ∗(B∗λ)− g∗(−λ)}, (2.17)

where f(X) := 〈Y ∗, AX〉 + IX1(X) and g(BX) := IL+−c1(BX). The conjugate
function of g is

g∗(λ) = supel∈L{〈l̃, λ〉 − IL+−c1(l̃)} = supel∈L+−c1

〈l̃, λ〉 = sup
l∈L+

〈l − c1, λ〉

= sup
l∈L+

〈l, λ〉 − c

∫

C∗

dλ = IL∗+(λ)− cλ(C∗),
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where L∗+ := {λ ∈ Λ : ∀l ∈ L+ : 〈l, λ〉 ≤ 0} is the negative dual cone of L+. The
last equality follows from Example A.11 since L+ is a cone containing 0 ∈ L. To
determine the conjugate function of f at B∗λ, i.e.,

f ∗(B∗λ) = sup
X∈L∞

{
〈B∗λ,X〉 − 〈Y ∗, AX〉 − IX1(X)

}
,

we have to calculate 〈B∗λ,X〉, where B∗ : Λ → ba(Ω,F , P ) is the adjoined operator
of B. By definition of B∗, the equation 〈B∗λ,X〉 = 〈λ,BX〉 has to be satisfied for
all X ∈ L∞, λ ∈ Λ (see [2], Definition 6.51). Thus,

∀X ∈ L∞,∀λ ∈ Λ : 〈B∗λ,X〉 =

∫

C∗

−〈HX∗, X〉 dλ = −
∫

C∗

E[HX∗X]dλ

The last equality holds true, since {HX∗ : X∗ ∈ C∗} ⊆ L1 (Assumption (A2)).
Furthermore, we have A∗Y ∗ ∈ L1 for all Y ∗ ∈ Y∗ (Assumption (A7), Remark 2.2).
Hence the conjugate function of f at B∗λ is

f ∗(B∗λ) = sup
X∈X1

{−
∫

C∗

E[HX∗X]dλ− E[A∗Y ∗X]}.

The dual problem (2.17) becomes

d̃(Y ∗) = sup
λ∈Λ

{
− sup

X∈X1

{−
∫

C∗

E[HX∗X]dλ− E[A∗Y ∗X]} − I−L∗+(λ)− cλ(C∗)
}

,

= sup
λ∈−L∗+

{
− sup

X∈X1

{−
∫

C∗

E[HX∗X]dλ− E[A∗Y ∗X]} − cλ(C∗)
}

, (2.18)

where −L∗+ = {λ ∈ Λ : ∀l ∈ L+ : 〈l, λ〉 ≥ 0}. It holds −L∗+ = Λ+ := {λ ∈ Λ :
∀M∗ ∈ B : λ(M∗) ≥ 0}. This is the set of finite measures on (C∗,B). To prove this,
we take λ ∈ −L∗+ and suppose that λ /∈ Λ+, i.e., there exists a set M

∗ ∈ B with
λ(M

∗
) < 0. Define l by l(X∗) := 1M

∗(X∗) ∈ L+. Then,
〈
l, λ

〉
= λ(M

∗
) < 0, which

is a contradiction to λ ∈ −L∗+. Thus, −L∗+ ⊆ Λ+. Vice versa, take λ ∈ Λ+. Then
for all l ∈ L+ it holds l(X∗) ≥ 0 for all X∗ ∈ C∗. Thus, 〈l, λ〉 ≥ 〈0, λ〉 = 0 for all
l ∈ L+. This means, λ ∈ −L∗+. Thus, we can rewrite (2.18) and obtain

d̃(Y ∗) = sup
λ∈Λ+

{
− sup

X∈X1

{−
∫

C∗

E[HX∗X]dλ− E[A∗Y ∗X]} − cλ(C∗)
}

. (2.19)

The spaces (Ω,F , P ) and (C∗,B, λ) for λ ∈ Λ+ are positive, finite measure spaces,
and thus also σ-finite. Furthermore, the function f(ω, X∗) = H(ω)X∗(ω)X(ω) is
measurable for all X ∈ X1 and it holds that for all λ ∈ Λ+ and for all X ∈ X1

∫

C∗

∫

Ω

|HX∗X|dPdλ
‖X‖L∞≤1

≤ sup
X∗∈C∗

‖HX∗‖L1λ(C∗)
(A3)
< +∞.
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Thus, we can apply Tonelli’s Theorem (Theorem B.22) and obtain that the order of
integration can be changed, i.e., for all λ ∈ Λ+ and for all X ∈ X1

∫

C∗

∫

Ω

HX∗XdPdλ =

∫

Ω

∫

C∗

HX∗XdλdP < +∞. (2.20)

Since in (2.19) only elements λ ∈ Λ+ and X ∈ X1 have to be considered, we can
change the order of integration and obtain

d̃(Y ∗) = sup
λ∈Λ+

{
− sup

X∈X1

E[X(−A∗Y ∗ −H

∫

C∗

X∗dλ)]− cλ(C∗)
}

(2.21)

We can apply Tonelli’s Theorem (Theorem B.22) also for the function g(ω, X∗) =
|H(ω)X∗(ω)X(ω)|. Thus, we can choose in the equation corresponding to (2.20),
i.e., in

∀λ ∈ Λ+, ∀X ∈ X1 :

∫

C∗

∫

Ω

|HX∗X|dPdλ =

∫

Ω

∫

C∗

|HX∗X|dλdP < +∞,

X = 1 ∈ X1 and obtain that H
∫

C∗ X∗dλ ∈ L1 for all λ ∈ Λ+. Together with
A∗Y ∗ ∈ L1 for all Y ∗ ∈ Y∗ (Assumption (A7), Remark 2.2), we obtain −A∗Y ∗ −
H

∫
C∗ X∗dλ ∈ L1 for all λ ∈ Λ+, Y ∗ ∈ Y∗. Since X ∈ X1 is a randomized test,

it follows that the supremum over all X ∈ X1 in (2.21) is attained by an X ∈ X1

satisfying

X(ω) =





1 : ω ∈ {ω ∈ Ω : −(A∗Y ∗)(ω) > (H
∫
C∗

X∗dλ)(ω)}
0 : ω ∈ {ω ∈ Ω : −(A∗Y ∗)(ω) < (H

∫
C∗

X∗dλ)(ω)} P−a.s. (2.22)

In the following, we shall use the simpler notation as in (2.14). If we denote for the
moment −A∗Y ∗ −H

∫
C∗ X∗dλ =: νλ ∈ L1 and with ν+

λ the positive part, the value
of the dual problem is

d̃(Y ∗) = sup
λ∈Λ+

{−E[ν+
λ ]− cλ(C∗)}.

This is equation (2.13). Strong duality holds if f and g are convex, g is continuous in
some BX0 with X0 ∈ dom f and p̃(Y ∗) is finite (see Theorem A.12). The existence
of a primal solution ensures the finiteness of p̃(Y ∗) (Lemma 2.7). The function f

is convex since X1 is a convex set and g is convex since the set L+ − c1 is convex
(see Example A.8). The function g is continuous in some BX0 with X0 ∈ dom f

if BX0 ∈ int(L+ − c1). If we take X0 ≡ 0, then X0 ∈ dom f since X0 ∈ X1 and
we see that BX0 = 0 ∈ int(L+ − c1) since intL+ 6= ∅ (Lemma B.12) and c > 0
(Assumption (A1)). Hence, we have strong duality.
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To indicate the dependence from the selected Y ∗ ∈ Y∗, we use the notation X̃Y ∗

and λ̃Y ∗ for the primal and dual solution, respectively. The existence of a solution
X̃Y ∗ ∈ X0 of the primal problem follows from Lemma 2.7. Now, with strong duality
the existence of a dual solution λ̃Y ∗ ∈ Λ+ follows and the values of the primal and
dual objective function at X̃Y ∗ , respectively λ̃Y ∗ , coincide (see Theorem A.12). This
leads to a necessary and sufficient optimality condition. Let us consider the primal
objective function. Note that A∗Y ∗ ∈ L1 for all Y ∗ ∈ Y∗ ((A7), Remark 2.2).

〈Y ∗, AX〉 = 〈A∗Y ∗, X〉 = E[X(A∗Y ∗ + H

∫

C∗
X∗dλ)]− E[XH

∫

C∗
X∗dλ]

= E[Xν−λ ]− E[Xν+
λ ]− E[XH

∫

C∗
X∗dλ].

We subtract from the primal objective function the dual objective function. Because
of strong duality, the difference has to be zero at X̃Y ∗ , respectively λ̃Y ∗ :

E[ν+eλY ∗
(1− X̃Y ∗)] + E[ν−eλY ∗

X̃Y ∗ ] +

∫

C∗

(c− E[HX∗X̃Y ∗ ])dλ̃Y ∗ = 0.

The sum of these three nonnegative integrals is zero if and only if X̃Y ∗ ∈ X0 satisfies
condition (2.14) and (2.15) of Theorem 2.8.

2.5 Result about the Structure of a Solution

Now, it is possible to get a result about the solution to the original problem (2.1).

Theorem 2.9. Let Assumption 2.1 be satisfied. Then, there exists a pair (Ỹ ∗, λ̃) ∈
Y∗ × Λ+ solving

max
Y ∗∈Y∗,λ∈Λ+

{〈Y ∗, b〉 − ρ∗(Y ∗)− E[(−A∗Y ∗ −H

∫

C∗

X∗dλ)+]− cλ(C∗)}. (2.23)

The solution to (2.1) is

X̃(ω) =





1 : −A∗Ỹ ∗ > H
∫
C∗

X∗dλ̃

0 : −A∗Ỹ ∗ < H
∫
C∗

X∗dλ̃
P − a.s. (2.24)

with

E[HX∗X̃] = c λ̃− a.s. (2.25)

and (X̃, Ỹ ∗) is the saddle point of the functional (X,Y ∗) 7→ 〈Y ∗, AX + b〉 − ρ∗(Y ∗)
in X0 × Y∗ as described in Theorem 2.6.
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Remark 2.10. It follows that there exists a [0, 1]-valued random variable δ such
that X̃ as in Theorem 2.9 satisfies

X̃(ω) = 1{−A∗ eY ∗>H
R

C∗
X∗deλ}(ω) + δ(ω)1{−A∗ eY ∗=H

R
C∗

X∗deλ}(ω).

δ has to be chosen such that X̃ satisfies (2.25).

Proof of Theorem 2.9. Consider the dual problem of (2.1) given in (2.4), where The-
orem 2.6 ensures that the supremum with respect to Y ∗ ∈ Y∗ and the infimum with
respect to X ∈ X0 are attained. We obtain by the validity of strong duality for the
inner problem (Theorem 2.8):

max
Y ∗∈Y∗

min
X∈X0

{〈Y ∗, AX + b〉 − ρ∗(Y ∗)} = max
Y ∗∈Y∗

{p̃(Y ∗) + 〈Y ∗, b〉 − ρ∗(Y ∗)}

= max
Y ∗∈Y∗

{d̃(Y ∗) + 〈Y ∗, b〉 − ρ∗(Y ∗)}

= max
Y ∗∈Y∗,λ∈Λ+

{〈Y ∗, b〉 − ρ∗(Y ∗)− E[(−A∗Y ∗ −H

∫

C∗

X∗dλ)+]− cλ(C∗)}.

With Theorem 2.6 it follows that Ỹ ∗ attains the maximum with respect to Y ∗ ∈ Y∗.
Theorem 2.8 shows the existence of a λ̃ = λ̃eY ∗ that attains the maximum with

respect to λ ∈ Λ+. Thus, there exists a pair (Ỹ ∗, λ̃) solving (2.23). The application
of Theorem 2.8 with Y ∗ = Ỹ ∗ leads to the results.

Remark 2.11. The theory works analogously if we replace the constant c > 0 by
a positive, continuous function c(·) : C∗ → IR, this means c(·) ∈ L, with c(X∗) > 0
for all X∗ ∈ C∗. Then the constraint set in problem (2.1) becomes

X0 = {X ∈ X1 : ∀X∗ ∈ C∗ : 〈HX∗, X〉 ≤ c(X∗)}.
Thus, Assumption (A1) can be modified as follows.

(A1’) c(·) ∈ L with c(X∗) > 0 for all X∗ ∈ C∗.

It is easy to show that X0 remains convex and weakly* compact under this modifi-
cation. The results are similar. In Theorem 2.8, (2.15) has to be replaced by

E[HX∗X̃Y ∗ ] = c(X∗) λ̃Y ∗ − a.s.

and equation (2.13) turns into

d̃(Y ∗) = sup
λ∈Λ+

{−E[(−A∗Y ∗ −H

∫

C∗

X∗dλ)+]−
∫

C∗

c(X∗)dλ}.

In Theorem 2.9, (2.25) has to be replaced by

E[HX∗X̃] = c(X∗) λ̃− a.s.
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and problem (2.23) becomes

max
Y ∗∈Y∗,λ∈Λ+

{〈Y ∗, b〉 − ρ∗(Y ∗)− E[(−A∗Y ∗ −H

∫

C∗

X∗dλ)+]−
∫

C∗

c(X∗)dλ}.

We shall use this modification in Section 3.2.

In the following chapters, we will show that the optimization problem considered in
Chapter 2 arises in a naturally way from the problem of hedging contingent claims
as well from testing hypotheses.
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Chapter 3

Test Theory

In this chapter, we shall study the classical problem of testing hypotheses. In Sec-
tion 3.1, we consider the most general case of testing a compound null hypothesis,
consisting of a family of probability measures against another family of probability
measures, the compound alternative hypothesis. In Section 3.2, we formulate a more
abstract test problem by discriminating not only families of probability measures but
families of measures and by using a positive, continuous function on the parameter
set of the null hypothesis instead of a constant significance level α ∈ (0, 1).

3.1 Testing of Compound Hypotheses

Let (Ω,F) be a measurable space. The general problem in test theory is to discrimi-
nate a family P∗ of probability measures (compound null hypothesis) against another
family Q of probability measures (compound alternative hypothesis). Suppose that
P is another probability measure such that all P ∗ ∈ P∗ and Q ∈ Q are absolutely
continuous with respect to P . Recall that the Radon-Nikodym derivative dQ/dP of
a probability measure Q is denoted by ZQ. Let the set ZP∗ := {ZP ∗ : P ∗ ∈ P∗} as
a subset of L1 be compact.
Let R denote the set of all randomized tests, i.e., the set of all random variables
ϕ : Ω → [0, 1]. We want to minimize the probability of accepting P∗ when it is
false (probability of type-II-error), while the probability of rejecting P∗ when it is
true (probability of type-I-error) should be less than a given acceptable significance
level α ∈ (0, 1). In other words, we look for a randomized test ϕ̃ that maximizes
the smallest power infQ∈Q EQ[ϕ] over all randomized tests ϕ of size less or equal to
a significance level α: supP ∗∈P∗ EP ∗ [ϕ] ≤ α. This means, we look for ϕ̃ solving

sup
ϕ∈R0

inf
Q∈Q

EQ[ϕ], (3.1)

where
R0 = {ϕ ∈ R : sup

P ∗∈P∗
EP ∗ [ϕ] ≤ α}.

41
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The optimal randomized test ϕ̃ can be interpreted as follows. If the outcome ω ∈ Ω
is observed, then the hypothesis P∗ is rejected with probability ϕ̃(ω).
Problem (3.1) can be identified as a special case of the optimization problem (2.1).
Thus, we can deduce the optimal randomized test ϕ̃ by applying the theory deduced
in Chapter 2. Note that in problem (3.1) the set Q can be replaced by coQ without
altering the optimal value or the solution ϕ̃. The set coQ denotes the closure of
the convex hull of the densities ZQ of Q with respect to the norm topology in L1.
This means, the problem of testing the compound null hypothesis P∗ against the
compound alternative hypothesis coQ is equivalent to the problem of testing P∗
against Q. This result follows from Theorem 1.25 and Remark 1.27 as we shall see
in the proof of Theorem 3.1.
Let us denote the σ-algebra of all Borel sets of ZP∗ with B and the set of finite
measures on (ZP∗ ,B) with Λ+. We give a short survey about the procedure deduced
in Chapter 2, adapted to the setting of problem (3.1).

(i) Prove the existence of a solution ϕ̃ to the primal problem (3.1) (Theorem 2.5)

−p = max
ϕ∈R0

inf
Q∈Q

EQ[ϕ].

(ii) Prove the validity of strong duality p = d (Theorem 2.6) between the primal
problem (3.1) and its Fenchel dual problem

−d = inf
Q∈coQ

sup
ϕ∈R0

EQ[ϕ]. (3.2)

We obtain the existence of a dual solution Q̃ ∈ coQ and can show that the
problem is a saddle point problem

max
ϕ∈R0

min
Q∈coQ

EQ[ϕ] = min
Q∈coQ

max
ϕ∈R0

EQ[ϕ].

(iii) Consider the inner problem of the dual problem (3.2) for an arbitrary Q ∈ coQ:

pi(Q) := sup
ϕ∈R0

EQ[ϕ]. (3.3)

Prove the existence of a solution ϕ̃Q to (3.3) (Lemma 2.7). Prove the validity
of strong duality pi(Q) = di(Q) between (3.3) and its Fenchel dual problem

di(Q) = inf
λ∈Λ+

{ ∫

Ω

[ZQ −
∫

P∗
ZP ∗dλ]+dP + αλ(ZP∗)

}
.

Deduce the necessary and sufficient structure of a solution to the inner problem
ϕ̃Q (Theorem 2.8). Note that pi(Q) coincides with −p̃(−Y ∗) in the notation
of Chapter 2.
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(iv) Apply Theorem 2.6 and 2.8 to the primal problem (3.1) and deduce the nec-
essary and sufficient structure of a solution ϕ̃ to (3.1) (Theorem 2.9).

The result is as follows.

Theorem 3.1 (generalized Neyman-Pearson lemma). Let P∗,Q be families of prob-
ability measure such that all P ∗ ∈ P∗ and all Q ∈ Q are absolutely continuous with
respect to a probability measure P and let ZP∗ be a compact set. Let R be the set
of all randomized tests and α ∈ (0, 1). Then, there exists a solution ϕ̃ to (3.1).
Furthermore, there exists a pair (Q̃, λ̃) ∈ coQ× Λ+ solving

min
Q∈coQ,λ∈Λ+

{
E[(ZQ −

∫

P∗
ZP ∗dλ)+] + αλ(ZP∗)

}
. (3.4)

It holds:

• The optimal randomized test of (3.1) has the following structure:

ϕ̃ =





1 : Z̃Q >
∫
P∗ ZP ∗dλ̃

0 : Z̃Q <
∫
P∗ ZP ∗dλ̃

P − a.s. (3.5)

with

EP ∗ [ϕ̃] = α λ̃− a.s. (3.6)

• (ϕ̃, Q̃) is a saddle point of the functional (ϕ, Q) 7→ EQ[ϕ] in R0 × coQ.

Proof. Problem (3.1) can be identified, up to the sign, with problem (2.1) by setting
X = L∞, endowed with the norm topology, X ∗ = ba(Ω,F , P ). The space Y = L∞

is endowed with the Mackey topology with respect to the dual pair (L∞, L1). This
is the finest locally convex Hausdorff topology which still preserves the topological
dual L1 (see Definition B.4). Thus, Y∗ = L1. The operator A : (L∞, ‖ · ‖L∞) →
(L∞, Mackey topology) is the identical operator Aϕ = ϕ, b = 0, C∗ = ZP∗ , H = 1,
c = α, X1 = R and X0 = R0. The function ρ : L∞ → IR is defined by ρ(Y ) :=
supQ∈Q EQ[−Y ]. Let us verify condition (A1)-(A7) of Assumption 2.1:

(A1): c = α > 0.

(A2): For the Radon-Nikodym derivative of P ∗ ∈ P∗ with respect to P it holds
ZP ∗ ∈ L1. Since H = 1 ∈ L1, we have {HX∗ : X∗ ∈ C∗} = {ZP ∗1 : P ∗ ∈
P∗} ⊆ L1.

(A3): Since P∗ is a set of probability measures, it follows that supP ∗∈P∗ ‖ZP ∗1‖L1 =
1 < +∞. The set ZP∗ = {ZP ∗ : P ∗ ∈ P∗} is compact by assumption.
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(A4): The operator A : (L∞, ‖·‖L∞) → (L∞, Mackey topology), defined by Aϕ := ϕ,
is linear and continuous, since every sequence {ϕn}n∈IN ⊆ L∞ converging in
the norm topology in L∞, converges also in the weaker Mackey topology on
L∞ (see Example B.5 and [2], Lemma 2.47-4.).

(A5): The function ρ as defined above can be interpreted as a coherent risk measure
(cf. Theorem 1.25). ρ is lower semicontinuous in the weak* topology, since it
admits by definition a dual representation with a set of probability measures
Q (see Corollary 1.29 (i), (ii)). Furthermore, ρ is convex. Since Q is a set of
probability measures, we have supQ∈Q ‖ZQ‖L1 = 1. Hence, ρ is finite for all
Y ∈ L∞:

ρ(Y ) = sup
Q∈Q

EQ[−Y ] ≤ sup
Q∈Q

| 〈Y, ZQ〉 | ≤ ‖Y ‖L∞ sup
Q∈Q

‖ZQ‖L1 = ‖Y ‖L∞ < +∞.

Thus, we can apply Corollary B.11 and obtain that ρ is continuous with respect
to the Mackey topology in every Y ∈ Y and thus trivially lower semicontinuous
with respect to the Mackey topology. Hence, Assumption (A5) is satisfied.

(A6): The map X 7→ ρ(AX+b) coincides with ρ(X), since A is the identical operator
and b = 0. It is already shown that ρ is lower semicontinuous in the weak*
topology.

(A7): The map X 7→ 〈Y ∗, AX〉 = E[Y ∗X] is continuous in the weak* topology of
L∞ for all Y ∗ ∈ Y∗, since Y∗ = L1.

Thus, Assumption 2.1 is satisfied and we can apply the theory deduced in Chapter 2.
The existence of a solution ϕ̃ to (3.1) follows from Theorem 2.5. Since ρ is a coherent
risk measure, Theorem 1.25 and Remark 1.27 yield dom ρ∗ = −coQ. Thus, the
solution Q̃ to the dual problem (3.2) is in general attained in coQ. The identical
operator A is self-adjoint. Hence, A∗Y ∗ = Y ∗. Note that ZQ = −Y ∗ ∈ − dom ρ∗.
By an application of Theorem 2.9, we obtain the stated results.

Remark 3.2. It follows that there exists a [0, 1]-valued random variable δ such that
ϕ̃ as in Theorem 3.1 satisfies

ϕ̃(ω) = 1{ eZQ>
R
P∗ ZP∗deλ}(ω) + δ(ω)1{ eZQ=

R
P∗ ZP∗deλ}(ω).

δ has to be chosen such that ϕ̃ satisfies (3.6).

The case of testing a compound hypothesis against a simple alternative hypothesis
has been considered in a variety of papers. The problem of testing a compound
hypothesis against a compound alternative hypothesis has been studied for instance
by Cvitanić and Karatzas [7]. Since Cvitanić and Karatzas [7] seem to present the
up to now most general result in this topic, we want to give a short overview over
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the differences between [7] and Theorem 3.1 in terms of the obtained results and the
methods used to solve the problem. In [7] the enlargement

D := {D ∈ L1 : D ≥ 0,∀ϕ ∈ R0 : E[ϕD] ≤ α} ⊇ ZP∗

of the convex hull of the densities of P∗ is introduced. The set D is convex, bounded
in L1 and closed under P −a.s. convergence. Furthermore, it is assumed in [7], that
the set of densities of Q is convex and closed under P − a.s. convergence. The basic
observation in [7] is

∀Q ∈ Q,∀D ∈ D,∀z > 0,∀ϕ ∈ R0 : EQ[ϕ] ≤ E[(ZQ − zD)+] + αz. (3.7)

Then, the existence of a quadruple (Q̂, D̂, ẑ, ϕ̂) ∈ (Q × D × (0,∞) × R0) that
satisfies equality in (3.7) is shown and the structure of the optimal randomized test
ϕ̂ is deduced:

ϕ̂ = 1{bz bD< bZQ} + δ1{bz bD= bZQ}, (3.8)

where δ is a suitable random variable and (Q̂, D̂, ẑ) is a solution of

inf
z>0,(Q,D)∈(Q,D)

{αz + E[(ZQ − zD)+]}. (3.9)

With the method deduced in this thesis, it is not necessary to introduce the enlarged
set D and to impose the above assumption to Q. Let us study the relationship
between Theorem 3.1 and the results of [7]. With Tonelli’s Theorem (Theorem B.22)
it is easy to show that k

∫
P∗ ZP ∗dλ ∈ D for all λ ∈ Λ+, where k = λ(ZP∗)−1 if

λ(ZP∗) 6= 0 and zero if λ(ZP∗) = 0. The case λ(ZP∗) = 0 implies λ(B) = 0 for all
B ∈ B and thus

∫
P∗ ZP ∗dλ = 0.

If we consider in (3.7) only elements k
∫
P∗ ZP ∗dλ ∈ D, then inequality (3.7) coincides

with weak duality between the primal and dual objective function of pi(Q) and di(Q)
(cf. Theorem A.12) and reduces to

∀Q ∈ coQ,∀λ ∈ Λ+,∀ϕ ∈ R0 : EQ[ϕ] ≤ E[(ZQ −
∫

P∗
ZP ∗dλ)+] + αλ(ZP∗). (3.10)

Problem (3.9) reduces to (3.4). To summarize the methods, Cvitanić and Karatzas
[7] proved the existence of a primal and a dual solution that satisfy equality in (3.7).
In order to do this, stronger assumptions had to be imposed. In our method, the
validity of strong duality, hence equality in (3.10) was shown directly by Fenchel
duality (cf. step (ii) and (iii) of the procedure, Theorem A.12). Then, the existence
of a dual solution follows. Both methods lead to a result about the structure of a
solution. But now it is possible to show the impact of the original set P∗ to the sets
that define the solution ϕ̂ in Cvitanić and Karatzas [7] (see 3.8):

ẑD̂ =

∫

P∗
ZP ∗dλ̃, (3.11)
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where (Q̃, λ̃) is the optimal pair in (3.4). This means, ẑ = λ̃(ZP∗) and

D̂ = k

∫

P∗
ZP ∗dλ̃, (3.12)

where k = λ̃(ZP∗)−1 if λ̃(ZP∗) 6= 0 and zero if λ̃(ZP∗) = 0. Let us summarize the
improvements of our method. With Theorem 3.1 it is now possible to give a result
about the structure of the solution ϕ̃ in terms of the original sets P∗ and Q. It is
not necessary to embed P∗ into the larger set D, to impose the assumption that
{ZQ : Q ∈ Q} is convex and closed under P − a.s. convergence and to impose
P∗ ∩ Q = ∅, but we have to impose that ZP∗ is compact. The assumption that the
elements of P∗ and Q are probability measures that are absolutely continuous to
another probability measure P can be weakened as we shall see in the next section.

3.2 The Generalized Test Problem

Instead of probability measures P ∗ and Q as considered in the test problem in
Section 3.1, we consider more general subsets H and G of L1 and instead of a
constant α ∈ (0, 1), we consider a positive, continuous function α(g).
We want to solve the following optimization problem

sup
ϕ∈R

inf
h∈H

E[ϕh], (3.13)

subject to
sup
g∈G

E[ϕg] ≤ α(g). (3.14)

This is no longer a test problem in the classical sense, but the structure of the
problem is similar to the problem of testing compound hypotheses. Problem (3.13),
(3.14), the so called generalized test problem, arises for example from the problem
of hedging in incomplete markets (see Remark 4.8). This problem will be studied
in detail in Chapter 4.
Let us denote the constraint set with R0 := {ϕ ∈ R : ϕ satisfies (3.14)}. We consider
the measurable space (G,B), where B is a σ-algebra of all Borel sets of G and denote
the set of finite measures on (G,B) with Λ+.
Taking Remark 2.11 into account, we obtain the following theorem with the help of
the results from Chapter 2.

Theorem 3.3. Let H,G ⊆ L1(Ω,F , P ) with suph∈H ‖h‖L1 < +∞, supg∈G ‖g‖L1 <

+∞ and G compact. Let α(g) be a continuous function on the measurable space
(G,B) with α(g) > 0 for all g ∈ G. Let R be the set of randomized tests. Then,
there exists a solution ϕ̃ to (3.13), (3.14). Furthermore, there exists a pair (h̃, λ̃) ∈
coH× Λ+ solving

min
h∈coH,λ∈Λ+

{
E[(h−

∫

G
gdλ)+] +

∫

G
α(g)dλ

}
, (3.15)
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where Λ+ is the set of finite measures on (G,B). We obtain:

• The optimal randomized test of (3.13), (3.14) has the following structure:

ϕ̃ =





1 : h̃ >
∫
G gdλ̃

0 : h̃ <
∫
G gdλ̃

P − a.s. (3.16)

with
E[ϕ̃g] = α(g) λ̃− a.s. (3.17)

• (ϕ̃, h̃) is a saddle point of the functional (ϕ, h) 7→ E[ϕh] in R0 × coH.

Proof of Theorem 3.3. The proof is similar to the proof of Theorem 3.1. Let the
space X = L∞ be endowed with the norm topology, X ∗ = ba(Ω,F , P ). The space
Y = L∞ is endowed with the Mackey topology with respect to the dual pair (L∞, L1)
(see Section B.1). Thus, Y∗ = L1. Let X1 = R, X0 = R0, Aϕ = ϕ, b = 0 and H = 1.
In contrast to the proof of Theorem 3.1 we have C∗ = G and α(g) is the positive,
continuous function c(·) in Remark 2.11. The function ρ : L∞ → IR is defined by
ρ(X) := suph∈H E[−Xh]. Then, problem (2.1) turns, up to the sign, into (3.13),
(3.14). We verify condition (A1)-(A7) of Assumption 2.1:

(A1’): Replacing c by the positive, continuous function α(g) as discussed in Re-
mark 2.11, one can see that Assumption (A1’) is satisfied.

(A2): {HX∗ : X∗ ∈ C∗} = G ⊆ L1.

(A3): supg∈G ‖g1‖L1 < +∞ and G compact as assumed in Theorem 3.3.

(A4): The operator A : (L∞, ‖ · ‖L∞) → (L∞, Mackey topology) defined by Aϕ := ϕ

is linear and continuous, since every sequence {ϕn}n∈IN ⊆ L∞ converging in
the norm topology in L∞, converges also in the weaker Mackey topology on
L∞ (see [2], Lemma 2.47-4.).

(A5): The function ρ as defined above is lower semicontinuous in the weak* topol-
ogy, since it admits by definition a dual representation with H ⊆ L1 and is
convex (see Theorem 1.6 (i), (ii)). Furthermore, since suph∈H ‖h‖L1 < +∞
by assumption, ρ is finite and hence continuous with respect to the Mackey
topology (Corollary B.11).

(A6): The map X 7→ ρ(AX +b) coincides with ρ(X) since A is the identical operator
and b = 0. It is already shown that ρ is lower semicontinuous in the weak*
topology.

(A7): The map X 7→ 〈Y ∗, AX〉 = E[Y ∗X] is continuous in the weak* topology of
L∞ for all Y ∗ ∈ Y∗, since Y∗ = L1.
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Thus, Assumption 2.1 is satisfied and we can apply the theory deduced in Chap-
ter 2. The existence of a solution ϕ̃ follows from Theorem 2.5. Example A.10 yields
dom ρ∗ = −coH. Thus, the dual solution h̃ is in general attained in coH. The
application of Theorem 2.9 under the modifications mentioned in Remark 2.11 yield
the stated results.

This kind of generalized test problem was studied for the case of a simple alternative
hypothesis (H being a singleton) and a positive, bounded and measurable function
α in Witting [47], Section 2.5.1. For this case it was shown with Lagrange duality
that the structure (3.16), (3.17) of a test is sufficient for optimality. Furthermore,
it was shown in [47] that for a finite set G the conditions (3.16), (3.17) are sufficient
and necessary for optimality. In Rudloff [35] we could show that in the general case
of a infinite set G and a positive, constant function α, the structure (3.16), (3.17) of
ϕ̃ is necessary and sufficient for optimality.
In Theorem 3.3, we show that a generalization of these results is even possible for the
case where both, the hypothesis G and the alternative hypothesis H, are compound
hypothesis and α is a positive, continuous function.

Remark 3.4. The reason why in [47], Section 2.5.1, the function α is assumed to be
a measurable bounded function, whereas in Theorem 3.3 the function α is assumed
to be continuous, is that in [47] Lagrange duality is done with a dual space to the
space of all measurable bounded functions that is not the topological dual space with
respect to the supremum norm. In [47] the space of finite σ-additive signed measures
is used as a dual space (see Example 1.63 in [47]) and a weak duality result is obtained
([47], Section 2.5.1). To apply Fenchel duality (Theorem A.12), we have to work
with the topological dual space with respect to the supremum norm, i.e., with the
space of bounded, finitely additive set functions (see [10], Theorem IV.5.1). Since
Tonelli’s Theorem (Theorem B.22) does not hold for finitely additive set functions,
we can not work with this space and have to impose the assumption that the set
C∗ = G is compact. Then, it is possible to work in the proof of Theorem 2.8 with the
space of continuous functions on a compact set and its norm dual of finite σ-additive
signed measures (see [2], Corollary 13.15). Thus, we can apply Tonelli’s Theorem
and obtain a strong duality result.



Chapter 4

Hedging in Complete and
Incomplete Markets

The problem of pricing and hedging a contingent claim with payoff H is well un-
derstood in the context of arbitrage-free option pricing in complete markets (see
Black and Scholes [4], Merton [30]). In this situation, a perfect hedge is always
possible, i.e., there exists a dynamic strategy such that trading in the underlying
assets replicates the payoff of the contingent claim. Then, the price of the contingent
claim turns out to be the expectation of H with respect to the equivalent martingale
measure which is unique. However, the possibility of a perfect hedge is restricted
to the complete market and thus, to certain models and restrictive assumptions. In
more realistic models the market will be incomplete, i.e., a perfect hedge as in the
Black-Scholes-Merton model is not possible and the equivalent martingale measure
is not unique any longer. Thus, a contingent claim bears an intrinsic risk that cannot
be hedged away completely. Therefore, we are faced with the problem of searching
strategies which reduce the risk of the resulting shortfall as much as possible.
One can still stay on the safe side using a superhedging strategy (see [13] for a
survey). Then, the replicating portfolio at final time T is in any case larger than
the payoff of the contingent claim. But from a practical point of view, the cost of
superhedging is often too high (see for instance [21]). For this reason, we consider
the possibility of investing less capital than the superhedging price of the liability.
This leads to a shortfall, the risk of which, measured by a suitable risk measure,
should be minimized.
A similar problem arises when hedging in complete markets and the investor is un-
willing or unable to pay the unique arbitrage free price of a contingent claim and
wants to invest a sum less than this price. The aim is to find a hedging strategy
that minimizes the losses due to the difference between the claim and the hedging
portfolio at time T , measured by a suitable risk measure. This is a special case of
the above mentioned problem since we have only to deal with an unique equivalent
martingale measure. In Section 4.1, we shall consider this problem and the problem
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of hedging in special incomplete markets. In Section 4.2, we consider the general
incomplete market.
We study the hedging problem using different types of risk measures. First, we
give a general result and then deduce in the following subsections the corresponding
results for different kinds of risk measures and compare the obtained results with
the recent literature.
In our setting, the discounted price process of the d underlying assets is described
as an IRd-valued semimartingale S = (St)t∈[0,T ] on a complete probability space
(Ω,F , P ) with filtration (Ft)t∈[0,T ] and F = FT . A semimartingale is the sum of a
continuous local martingale and a finite-variation process that is right-continuous
with left-hand limits (for details regarding the notation and the filtration we refer
to [25]). Let P denote the set of equivalent martingale measures with respect to P .
Since we assume the absence of arbitrage opportunities, it holds P 6= ∅.
Recall that Q̂ denotes the set of all probability measures on (Ω,F) absolutely con-
tinuous with respect to P . For Q ∈ Q̂ we denote the expectation with respect
to Q by EQ and the Radon-Nikodym derivative dQ/dP by ZQ. Let us denote
ZP := {ZP ∗ : P ∗ ∈ P}.
A self-financing strategy is given by an initial capital V0 ≥ 0 and a predictable
process ξ such that the resulting value process

Vt = V0 +

∫ t

0

ξsdSs, t ∈ [0, T ],

is well defined. Such a strategy (V0, ξ) is called admissible if the corresponding value
process V satisfies Vt ≥ 0 for all t ∈ [0, T ].
Consider a contingent claim. Its payoff is given by an FT -measurable, nonnegative
random variable H ∈ L1. We assume

U0 = sup
P ∗∈P

EP ∗ [H] < +∞. (4.1)

The above equation is the dual characterization of the superhedging price U0, the
smallest amount V0 such that there exists an admissible strategy (V0, ξ) with value
process Vt satisfying VT ≥ H (see [13] for an overview over this topic). In the
complete case, where the equivalent martingale measure P ∗ is unique, U0 = EP ∗ [H]
is the unique arbitrage-free price of the contingent claim.
Since superhedging can be quite expensive in the incomplete market (see [21] for the
general semimartingale case), we search for the best hedge an investor can achieve
with a smaller amount Ṽ0 < U0. In other words, we look for an admissible strategy
(V0, ξ) with 0 < V0 ≤ Ṽ0 that minimizes the risk of losses due to the shortfall
{ω : VT (ω) < H(ω)}, this means we want to minimize the risk of −(H − VT )+. The
risk will be measured by a suitable risk measure ρ. Thus, we consider the dynamic
optimization problem of finding an admissible strategy that minimizes

min
(V0,ξ)

ρ
(− (H − VT )+)

(4.2)
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under the capital constraint of investing less capital than the superhedging price

0 < V0 ≤ Ṽ0 < U0. (4.3)

The dynamic optimization problem (4.2), (4.3) can be split into the following two
problems:

1. Static optimization problem: Find an optimal modified claim ϕ̃H, where ϕ̃ is
a randomized test solving

min
ϕ∈R0

ρ ((ϕ− 1)H) , (4.4)

R0 = {ϕ : Ω → [0, 1], FT −measurable, sup
P ∗∈P

EP ∗ [ϕH] ≤ Ṽ0}. (4.5)

2. Representation problem: Find a superhedging strategy for the modified claim
ϕ̃H.

The representation problem can be solved by the optional decomposition theorem of
Föllmer and Kabanov [14] (see Appendix, Theorem C.3). The idea of splitting the
dynamic optimization problem in this way was introduced by Föllmer and Leukert
[16], minimizing the probability of a shortfall. It was used for the expectation
of a loss function as risk measure in [17], for coherent risk measures in Nakano
[31, 32], Rudloff [36] and for convex risk measures in Rudloff [38] analogously. The
only property of ρ that is needed in the proof is monotonicity.

Theorem 4.1. Let ρ : L1 → IR ∪ {+∞} be a monotone function and let ϕ̃ be a
solution of the minimization problem (4.4) and (Ṽ0, ξ̃) be the admissible strategy,
where ξ̃ is determined by the optional decomposition of the claim ϕ̃H. Then the
strategy (Ṽ0, ξ̃) solves the optimization problem (4.2), (4.3) and it holds

min
(V0,ξ)

ρ(−(H − VT )+) = min
ϕ∈R0

ρ ((ϕ− 1)H) . (4.6)

To prove the theorem, we first review the optional decomposition theorem (The-
orem C.3) in our setting (see also [16], [17]). Therefore, we consider the modified
claim ϕ̃H, where ϕ̃ is the solution of (4.4) and define Ũ as a right-continuous version
of the process

Ũt = ess. sup
P ∗∈P

EP ∗ [ϕ̃H|Ft].

For the definition of the essential supremum, see Section C. The process Ũ is a P-
supermartingale, i.e., a supermartingale with respect to any equivalent martingale
measure P ∗ ∈ P (see [16], [17]). By the optional decomposition theorem (The-
orem C.3) there exists an admissible strategy (Ũ0, ξ̃) and an increasing optional
process C̃ with C̃0 = 0 such that

Ũt = Ũ0 +

∫ t

0

ξ̃sdSs − C̃t.
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One obtains that Ũ0 = supP ∗∈P EP ∗ [ϕ̃H] is the superhedging price and ξ̃ the super-
hedging strategy of the modified claim ϕ̃H.

Remark 4.2. In the complete case where the equivalent martingale measure is
unique, (Ũ0, ξ̃) is simply the replicating strategy for the modified claim ϕ̃H. Thus,
Ũ0 = EP ∗ [ϕ̃H] is the unique arbitrage-free price of the contingent claim ϕ̃H.

Remark 4.3. In the incomplete market, when a risk measure ρ is used that allows
the construction of ϕ̃ via the Neyman-Pearson lemma directly (cf. [16] and some
special cases of [17]), one can see that Ũ0 = Ṽ0 since the optimal test ϕ̃ attains the
bound Ṽ0 in (4.5). In Theorem 4.9, equation (4.13) shows (except in the case where
the dual solution takes only the value zero (see Remark 4.15 for the convex hedging
case)) that in the general case the bound Ṽ0 is as well attained by the optimal test.

Proof of Theorem 4.1. Let (V0, ξ) with V0 ≤ Ṽ0 be an admissible strategy. We define
the corresponding success ratio ϕ = ϕ(V0,ξ) as

ϕ(V0,ξ) := 1{VT≥H} +
VT

H
1{VT <H}.

Thus, −(H − VT )+ = (ϕ− 1)H. Since Vt is a P-supermartingale and ϕH ≤ VT :

∀P ∗ ∈ P : EP ∗ [ϕH] ≤ EP ∗ [VT ] ≤ V0 ≤ Ṽ0,

hence, ϕ ∈ R0. Thus,

ρ(−(H − VT )+) = ρ((ϕ− 1)H) ≥ ρ((ϕ̃− 1)H), (4.7)

where ϕ̃ is the solution to the static optimization problem (4.4). Inequality (4.7) is
especially satisfied for the success ratio of the admissible strategy (V 0, ξ̃), where ξ̃ is
the superhedging strategy for the modified claim ϕ̃H, determined by the optional de-
composition theorem (Theorem C.3) and V 0 ∈ [Ũ0, Ṽ0], where Ũ0 = supP ∗∈P EP ∗ [ϕ̃H]
is the superhedging price of the modified claim ϕ̃H. Thus,

ρ((ϕ(V 0,eξ) − 1)H) ≥ ρ((ϕ̃− 1)H). (4.8)

To show the revers inequality, let us consider ϕ(V 0,eξ)H = min(ṼT , H), where ṼT =

V 0 +
∫ T

0
ξ̃sdSs. It holds

ṼT = V 0 +

∫ T

0

ξ̃sdSs = V 0 + ŨT + C̃T − Ũ0

= V 0 + ess. sup
P ∗∈P

EP ∗ [ϕ̃H|FT ] + C̃T − Ũ0 = ϕ̃H + C̃T + V 0 − Ũ0

≥ ϕ̃H.
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Thus, ϕ(V 0,eξ)H ≥ ϕ̃H. Since ρ is monotone, we obtain

ρ((ϕ(V 0,eξ) − 1)H) ≤ ρ((ϕ̃− 1)H).

Together with (4.8), we see that ϕ(V 0,eξ) attains the minimum of the static optimiza-
tion problem (4.4). Due to (4.7), we now have

min
(V0,ξ)

ρ(−(H − VT )+) ≥ ρ(−(H − ṼT )+).

Hence, (V 0, ξ̃) with V 0 ∈ [Ũ0, Ṽ0] is the strategy that attains the minimum in the
dynamic optimization problem (4.2), (4.3) and it holds

min
(V0,ξ)

ρ(−(H − VT )+) = min
ϕ∈R0

ρ ((ϕ− 1)H) .

Remark 4.4. As mentioned in Remark 4.3, relationship (4.13) of Theorem 4.9
means that Ũ0 = Ṽ0. Thus, the optimal strategy is (Ṽ0, ξ̃).

The static optimization problem (4.4) can be identified as the optimization problem
considered in (2.1) by defining that H ∈ L1

+ is the payoff of the contingent claim,

Aϕ = Hϕ, b = −H, c = Ṽ0, C∗ = ZP , X = Y∗ = L∞, X ∗ = ba(Ω,F , P ), Y = L1,
X1 = R, X0 = R0 and ρ is a suitable risk measure.
The problem (4.4) has been studied using different types of risk measures. Föllmer
and Leukert [16] used the so called quantile hedging to determine a portfolio strategy
which minimizes the probability of loss. This idea leads to partial hedges. In this
approach, losses could be very substantial, even if they occur with a very small
probability. Therefore, Föllmer and Leukert [17] proposed to use the expectation
of a loss function as risk measure instead. Nakano [31, 32] and Rudloff [36] used
coherent risk measures and Rudloff [37, 38] convex risk measures to quantify the
shortfall risk. We want to study the hedging problem using a risk measure as
general as possible.
Since in Theorem 2.8 and 2.9 we need the assumption that C∗ = ZP is a compact
set, we shall divide the following considerations into two cases. In Section 4.1 we
shall assume that ZP is compact, which includes the important case of complete
markets. In Section 4.2 we solve the general case of incomplete markets. Since in
this general setting we can no longer apply Theorem 2.8 and 2.9, we shall solve the
inner problem of the dual problem with a duality method presented in [27].

4.1 Hedging in Complete and Special Incomplete

Markets

In this section, we consider the problem of hedging in complete markets, i.e., the set
P = {P ∗} is a singleton, when the investor is unwilling or unable to pay the unique
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arbitrage free price of a contingent claim and wants to invest a sum less than this
price. Since the results also hold true in the more general case of an incomplete
market with ZP := {ZP ∗ : P ∗ ∈ P} compact, we work in this more general setting.
We want to study the hedging problem using a risk measure as general as possible.
In Theorem 4.1 we needed to assume that ρ is monotone. To solve the problem
by application of the results of Chapter 2, we additionally need to assume that ρ is
convex, lower semicontinuous and continuous in some (ϕ0−1)H with ϕ0 ∈ R0. First,
we shall give the result for this most general case. Then, in the next subsections we
shall add more properties to ρ which leads to different types of risk measures and
we analyze the influence on the results.

4.1.1 The General Case

First, we consider a risk function as general as possible. We impose the following
assumption.

Assumption 4.5. Let ρ : L1 → IR∪{+∞} be a monotone, convex, lower semicon-
tinuous function, that is continuous and finite in some (ϕ0− 1)H with ϕ0 ∈ R0 and
satisfies ρ(0) < +∞.

Remark 4.6. Especially, if ρ is a lower semicontinuous convex function with ρ(Y ) <

+∞ for all Y ∈ L1, then ρ is continuous for all Y ∈ L1 since L1 is a Banach space
([11], Corollary I.2.5).
In general, a lower semicontinuous convex function ρ : L1 → IR∪{+∞} is continuous
in some Y if Y is an interior point of the domain of ρ (see [11], Corollary I.2.5).

Let us consider the measurable space (ZP ,B), where B is the σ-algebra of all Borel
sets on ZP . We denote by Λ+ the set of finite measures on (ZP ,B).

Remark 4.7. We review the procedure deduced in Chapter 2 to solve the static
optimization problem (4.4), where ρ is a function satisfying Assumption 4.5:

(i) Prove the existence of a solution ϕ̃ to the primal problem (4.4) (Theorem 2.5)

p = min
ϕ∈R0

ρ ((ϕ− 1)H) = min
ϕ∈R0

{ sup
Y ∗∈L∞+

{E[(1− ϕ)HY ∗]− ρ∗(−Y ∗)}}.

(ii) Deduce the dual problem to (4.4) by Fenchel duality:

d = sup
Y ∗∈L∞+

{ inf
ϕ∈R0

{E[(1− ϕ)HY ∗]− ρ∗(−Y ∗)}} (4.9)

and prove the validity of strong duality p = d (Theorem 2.6). We obtain the
existence of a dual solution and can show that the problem is a saddle point
problem.
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(iii) Consider the inner problem of the dual problem (4.9) for an arbitrary Y ∗ ∈ L∞+ :

pi(Y ∗) := max
ϕ∈R0

E[ϕHY ∗]. (4.10)

Prove the existence of a solution ϕ̃Y ∗ to (4.10) (Lemma 2.7). Deduce the dual
problem by Fenchel duality:

di(Y ∗) = inf
λ∈Λ+

{ ∫

Ω

[HY ∗ −H

∫

P

ZP ∗dλ]+dP + Ṽ0λ(ZP)
}

.

Prove the validity of strong duality pi(Y ∗) = di(Y ∗) and deduce the neces-
sary and sufficient structure of a solution ϕ̃Y ∗ to the inner problem (4.10)
(Theorem 2.8). Note that pi(Y ∗) = −p̃(−Y ∗) in the notation of Chapter 2.

(iv) Apply Theorem 2.6 and 2.8 to the primal problem (4.4) and deduce the nec-
essary and sufficient structure of a solution ϕ̃ to (4.4) (Theorem 2.9).

Remark 4.8. Problem (4.10) can be identified as a problem of test theory. Let us
define the measures O and O∗ = O∗(P ∗) by dO

dP
= HY ∗ and dO∗

dP ∗ = H for P ∗ ∈ P .
Problem (4.10) turns into

max
ϕ∈R

EO[ϕ]

subject to

∀P ∗ ∈ P : EO∗ [ϕ] ≤ Ṽ0 =: α.

This is equivalent of looking for an optimal test ϕ̃Y ∗ when testing the compound
hypothesis H0 = {O∗(P ∗) : P ∗ ∈ P}, parameterized by the class of equivalent
martingale measures, against the simple alternative H1 = {O} in a generalized
sense. In the generalized test problem (see Section 3.2), O and O∗ are not necessarily
probability measures, but measures and the significance level α is generalized to be
a positive continuous function α(P ∗).

We now give the main results by applying the procedure described in Remark 4.7
to problem (4.4).

Theorem 4.9 (Solution to the Generalized Hedging Problem). Let ρ be as in As-
sumption 4.5 and let ZP be compact. Then, there exists a solution ϕ̃ to (4.4). If ρ is
strictly convex, then any two solutions coincide P − a.s. on {H > 0}. There exists
a pair (Ỹ ∗, λ̃) solving

max
Y ∗∈L∞+ ,λ∈Λ+

{
E[HY ∗ ∧H

∫

P

ZP ∗dλ]− Ṽ0λ(ZP)− ρ∗(−Y ∗)
}

, (4.11)

where x ∧ y = min(x, y). It follows that:
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• The solution of the static optimization problem (4.4) is

ϕ̃ =





1 : HỸ ∗ > H
∫
P ZP ∗dλ̃

0 : HỸ ∗ < H
∫
P ZP ∗dλ̃

P − a.s. (4.12)

with
EP ∗ [ϕ̃H] = Ṽ0 λ̃− a.s. (4.13)

• (ϕ̃, Ỹ ∗) is a saddle point of the functional (ϕ, Y ∗) 7→ E[(1−ϕ)HY ∗]−ρ∗(−Y ∗)
in R0 × L∞+ .

• (Ṽ0, ξ̃) solves the dynamic hedging problem (4.2), (4.3), where ξ̃ is the super-
hedging strategy of the modified claim ϕ̃H, obtained by the optional decompo-
sition theorem (Theorem C.3).

Remark 4.10. It follows that there exists a [0, 1]-valued random variable δ such
that ϕ̃ as in Theorem 4.9 satisfies

ϕ̃(ω) = 1{H eY ∗>H
R
P ZP∗deλ}(ω) + δ(ω)1{H eY ∗=H

R
P ZP∗deλ}(ω).

δ has to be chosen such that ϕ̃ satisfies (4.13).

Remark 4.11. Theorem 4.9 gives a result about the structure of a solution to the
hedging problem for every risk measure satisfying Assumption 4.5. Note that we do
not need a translation property for ρ to obtain this result.

Proof of Theorem 4.9. 1) We can apply the theory of Chapter 2 by setting H equal
to the payoff of the contingent claim in L1

+ , Aϕ = Hϕ, b = −H, C∗ = ZP and

c = Ṽ0. We have X = L∞, endowed with the norm topology, X ∗ = ba(Ω,F , P ),
Y = L1, Y∗ = L∞. The function ρ is as in Assumption 4.5 and X1 is the set of
randomized tests and coincides with R = {ϕ : Ω → [0, 1], FT −measurable}.
Hence, X0 = R0. Then, the static optimization problem (4.4) can be identified
as a special case of problem (2.1).

2) First, we verify that condition (A1)-(A7) of Assumption 2.1 are satisfied:

(A1): c = Ṽ0 > 0 (see (4.3)).

(A2): H ∈ L1
+, C∗ = ZP ⊆ L1 and {HX∗ : X∗ ∈ C∗} = {HZP ∗ : P ∗ ∈ P} ⊆

L1, since we assumed in (4.1) the superhedging price of H to be finite.

(A3): (4.1) also ensures that supX∗∈C∗ ‖HX∗‖L1 < +∞. The set ZP is assumed
to be compact.

(A4): The operator A : L∞ → L1, defined by Aϕ := Hϕ, is linear and continu-
ous.
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(A5): Since ρ is as in Assumption 4.5, it satisfies the condition (A5).

(A6): We prove that the function f : L∞ → IR ∪ {+∞}, defined by f(ϕ) :=
ρ((ϕ− 1)H), is lower semicontinuous in the weak* topology. Because of
Assumption 4.5, ρ admits a dual representation (see Theorem 1.5 (b))

ρ(Y ) = sup
Y ∗∈L∞+

{E[−Y Y ∗]− ρ∗(−Y ∗)}.

Thus,

f(ϕ) = sup
Y ∗∈L∞+

{E[(1− ϕ)HY ∗]− ρ∗(−Y ∗)}

= sup
Y ∗∈L∞+

{E[HY ∗] + E[ϕH(−Y ∗)]− ρ∗(−Y ∗)}.

The function ϕ 7→ E[ϕH(−Y ∗)] + E[HY ∗]− ρ∗(−Y ∗) is weakly* contin-
uous for all Y ∗ ∈ L∞ since H(−Y ∗) ∈ L1. Since f(ϕ) is the pointwise
supremum of weakly* continuous functions, f is weakly* lower semicon-
tinuous (Lemma 2.38, [2]).

(A7): The map ϕ 7→ 〈Y ∗, Aϕ〉 = E[Y ∗Hϕ] is continuous in the weak* topology
for all Y ∗ ∈ L∞, since HY ∗ ∈ L1 for all Y ∗ ∈ L∞.

Thus, all conditions in Assumption 2.1 are satisfied.

3) The existence of a solution ϕ̃ to (4.4) follows from Theorem 2.5. If ρ is addi-
tionally strictly convex, then any two solutions coincides P −a.s. on {H > 0}.
By definition of the adjoined operator A∗ of A (see Definition 6.51 in [2]), the
equation 〈Aϕ, Y ∗〉 = 〈ϕ,A∗Y ∗〉 has to be satisfied for all ϕ ∈ L∞, Y ∗ ∈ L∞.
Since from the validity of (A7) we obtain A∗Y ∗ ∈ L1 for all Y ∗ ∈ L∞ (cf.
Remark 2.2), it holds

∀ϕ ∈ L∞,∀Y ∗ ∈ L∞ :

∫

Ω

HϕY ∗dP =

∫

Ω

ϕA∗Y ∗dP. (4.14)

Suppose A∗Y ∗ < HY ∗ on Ω1 ⊆ Ω with P (Ω1) > 0. Define ϕ(ω) = 1Ω1(ω).
This ϕ ∈ L∞ violates (4.14). The case A∗Y ∗ > HY ∗ on Ω2 ⊆ Ω with
P (Ω2) > 0 is analogous. We conclude A∗Y ∗ = HY ∗ = AY ∗, i.e., the op-
erator A is self-adjoined.
In our setting, the optimization problem (2.23) becomes (4.11). Note that,
since ρ is monotone, it is convenient to work with −Y ∗ ∈ dom ρ∗ (cf. The-
orem 1.5), whereas in Chapter 2 we work with Y

∗ ∈ dom ρ∗. By applying
Theorem 2.9, we obtain the existence of an optimal pair (Ỹ ∗, λ̃) solving (4.11)
and the structure (4.12), (4.13) of an optimal randomized test ϕ̃. Furthermore,
(ϕ̃, Ỹ ∗) is a saddle point of the functional (ϕ, Y ∗) 7→ E[(1−ϕ)HY ∗]−ρ∗(−Y ∗).



58 CHAPTER 4. HEDGING IN COMPLETE AND INCOMPLETE MARKETS

4) Equation (4.13) and Theorem 4.1 show, that (Ṽ0, ξ̃) solves the dynamic hedging
problem (4.2), (4.3), where ξ̃ is the superhedging strategy of the modified claim
ϕ̃H obtained by the optional decomposition theorem (Theorem C.3).

If ρ satisfies additionally to Assumption 4.5 the translation property and ρ(0) = 0,
it forms a convex risk measure (see Section 1.2). If it is additionally to this pos-
itively homogeneous, it is a coherent risk measure (Section 1.3). The translation
property is a natural assumption for a risk measure used as a risk adjusted capital
requirement, but is not necessary for the proof of Theorem 4.9. Furthermore, there
are risk measures, that do not necessarily have this property, e.g. the expectation
of a loss function. This risk measure was used in the context of hedging in [17].
In the following subsections, we shall analyze the hedging problem (4.2) and there-
fore the corresponding static optimization problem (4.4) using different important
risk measures to quantify the shortfall risk. In Section 4.1.2, we use convex risk
measures and in Section 4.1.3 coherent risk measures. These risk measures will be
special cases of functions satisfying Assumption 4.5. We shall analyze the influence
of different additional properties of these risk measures on the results of Theorem 4.9.
Furthermore, we shall compare these results with results that can be found in the
recent literature using these special risk measures when hedging in incomplete mar-
kets. We shall show that Theorem 4.9 is widely applicable and that the obtained
results improve previous results in the case ZP compact.
In Section 4.1.4, we shall consider the hedging problem when the risk is measured
by a robust version of the expectation of a loss function. For Lipschitz continuous
loss functions the problem can be solved by an application of Theorem 4.9. We show
that the linear case is related to the coherent hedging problem and can be solved
analogously. We compare our results with the literature. The case of a general loss
function turns out to fit not exactly to the setting of Theorem 4.9. We show which
assumptions can be weakened and give proposals how the problem could be solved
in general.
We start with the case of convex risk measures.

4.1.2 Convex Hedging

In this section we consider the problem of hedging when the attitude towards losses
is modelled by a convex risk measure. This problem was studied in Rudloff [37, 38].

Assumption 4.12. Let ρ : L1 → IR∪{+∞} be a lower semicontinuous convex risk
measure that is continuous and finite in some (ϕ0 − 1)H with ϕ0 ∈ R0.

Remark 4.13. Note that, if ρ(Y ) < +∞ for all Y ∈ L1, a lower semicontinuous
convex risk measure turns out to be continuous (see Remark 4.6). Finite valued
convex risk measures are discussed in [18], [19], where also examples can be found.
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A convex risk measure ρ is lower semicontinuous if and only if its acceptance set Aρ

is closed (Proposition 1.8 (vi)).

Convex risk measures have been studied in Section 1.2 and are by definition convex,
monotone, satisfy the translation property and ρ(0) = 0. Lower semicontinuous
convex risk measures on L1 admit the following dual representation (Theorem 1.16)

ρ(Y ) = sup
Q∈Q

{EQ[−Y ]− supeY ∈Aρ

EQ[−Ỹ ]}, (4.15)

where Q := {Q ∈ Q̂ : ZQ ∈ L∞} is the set of all probability measures Q, absolutely
continuous to P and with densities in L∞ and Aρ is the acceptance set of ρ.
The dynamic convex hedging problem consists in finding an admissible strategy
solving

min
(V0,ξ)

ρ
(− (H − VT )+)

, 0 < V0 ≤ Ṽ0 < U0. (4.16)

With Theorem 4.1, it follows that the corresponding static optimization problem is

min
ϕ∈R0

ρ ((ϕ− 1)H) = min
ϕ∈R0

{sup
Q∈Q

{EQ[(1− ϕ)H]− sup
Y ∈Aρ

EQ(−Y )}}, (4.17)

where R0 is as in (4.5). By applying Theorem 4.9 and Theorem 1.16, we obtain the
following result:

Corollary 4.14 (Convex Hedging). Let ρ be a convex risk measure satisfying As-
sumption 4.12 and let ZP be compact. Then, there exists a solution ϕ̃ to (4.17).
Furthermore, there exists a pair (Q̃, λ̃) ∈ Q× Λ+ solving

max
Q∈Q,λ∈Λ+

{
E[HZQ ∧H

∫

P

ZP ∗dλ]− Ṽ0λ(ZP)− sup
Y ∈Aρ

EQ(−Y )
}

. (4.18)

It follows that:

• The solution of the static optimization problem (4.17) is

ϕ̃ =





1 : HZ̃Q > H
∫
P ZP ∗dλ̃

0 : HZ̃Q < H
∫
P ZP ∗dλ̃

P − a.s.

with
EP ∗ [ϕ̃H] = Ṽ0 λ̃− a.s. (4.19)

• (ϕ̃, Q̃) is a saddle point of the functional (ϕ,Q) 7→ EQ[(1−ϕ)H]−supY ∈Aρ
EQ(−Y )

in R0 ×Q.

• (Ṽ0, ξ̃) solves the dynamic convex hedging problem (4.16), where ξ̃ is the su-
perhedging strategy of the modified claim ϕ̃H, obtained by the optional decom-
position theorem (Theorem C.3).
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It is not longer possible to show the essential uniqueness of a solution ϕ̃ to (4.17)
on {H > 0} since a convex risk measure cannot be strictly convex. The translation
property of ρ and ρ(0) = 0 imply the linearity of ρ on the one dimensional subspace
L(1) spanned by the random variable 1 (see Proposition 1.14). This means that
for convex risk measures one can only show the existence, but not the essential
uniqueness of a solution.

Proof of Corollary 4.14. Since ρ satisfies Assumption 4.12, we can apply Theo-
rem 4.9. Together with the dual representation of convex risk measures (see Theo-
rem 1.16) we obtain the stated results.

Remark 4.15. From equation (4.19) it follows (except in the case where λ̃ is the
zero-measure, i.e., λ̃(B) = 0 for all B ∈ B) that Ũ0 := supP ∗∈P EP ∗ [ϕ̃H] = Ṽ0 (see

Remark 4.3 and 4.4). This ensures, that Ṽ0 is the minimal amount of capital that
is necessary to solve together with ξ̃ the dynamic problem (4.16).
Let us check if the case λ̃(B) = 0 for all B ∈ B can be excluded. If λ̃ is the
zero-measure, the optimal randomized test is

ϕ̃ =





1 : HZ̃Q > 0

δ : HZ̃Q = 0
P − a.s.,

where δ is a [0, 1]-valued random variable such that (if possible) ϕ̃ ∈ R0, for instance
δ = 0. Equation (4.19) has no longer an impact on ϕ̃ since λ̃ takes only the value
zero. Then, the optimal value of the static optimization problem (4.17) becomes
(see Theorem 1.5 (a), (c))

p = ρ(ϕ̃H −H) = E
eQ[H]− E

eQ[ϕ̃H]− ρ∗(−Z̃Q) = −ρ∗(−Z̃Q) ≤ 0.

From ρ monotone and ϕ̃H−H ≤ 0, we obtain ρ(ϕ̃H−H) ≥ 0 and thus ρ(ϕ̃H−H) =
0. This means, the risk of the difference between the modified claim ϕ̃H and H is
zero. In some special cases we can exclude that λ̃ takes only value zero. If Q̃ is a
probability measure equivalent to P , then λ̃(B) = 0 for all B ∈ B implies ϕ̃ /∈ R0.
Thus, in this case λ̃(B) = 0 for all B ∈ B is not possible.

4.1.3 Coherent Hedging

In this section, we consider the hedging problem when the risk of losses due to
the shortfall is measured by a coherent risk measure. This problem was studied in
Nakano [31, 32] and Rudloff [36]. Coherent risk measures are convex risk measures
that are additionally positively homogeneous. In this section, we deduce the main
results for the case ZP compact and show the differences between the method used
in [31, 32] and our method to solve the problem. We show that our results give
more information about the structure of a solution. A comparison of the results in
the general incomplete market can be found in Section 4.2.2.
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Assumption 4.16. Let ρ : L1 → IR ∪ {+∞} be a lower semicontinuous coherent
risk measure that is continuous and finite in some (ϕ0 − 1)H with ϕ0 ∈ R0.

To assume that ρ is continuous in some (ϕ0−1)H with ϕ0 ∈ R0 is not very restrictive.
If we take for instance a finite valued lower semicontinuous coherent risk measure ρ

as considered for example in [19], then ρ is continuous. (see Remark 4.6).
The dynamic coherent hedging problem is to find an admissible strategy solving

min
(V0,ξ)

ρ
(− (H − VT )+)

, 0 < V0 ≤ Ṽ0 < U0. (4.20)

With Theorem 4.1 and the dual representation of a lower semicontinuous coherent
risk measure (Theorem 1.25) it follows that the corresponding static optimization
problem, the primal problem, is

min
ϕ∈R0

ρ ((ϕ− 1)H) = min
ϕ∈R0

{sup
Q∈Q

EQ[(1− ϕ)H]}, (4.21)

where

R0 = {ϕ : Ω → [0, 1], FT −measurable, sup
P ∗∈P

EP ∗ [ϕH] ≤ Ṽ0} (4.22)

and Q, the maximal representing set, is a convex and weakly* closed subset of
{Q ∈ Q̂ : ZQ ∈ L∞} determined by the dual representation of ρ (Theorem 1.25).
The dual problem of (4.21) is (see Remark 4.7, (ii))

d = max
Q∈Q

{min
ϕ∈R0

EQ[(1− ϕ)H]}. (4.23)

The inner problem of (4.23) for a fixed Q ∈ Q is (see Remark 4.7, (iii))

pi(Q) := max
ϕ∈R0

EQ[ϕH]. (4.24)

Its dual problem (see Remark 4.7, (iii)), deduced via Fenchel duality, is

di(Q) = inf
λ∈Λ+

{ ∫

Ω

[HZQ −H

∫

P

ZP ∗dλ]+dP + Ṽ0λ(ZP)
}

. (4.25)

Corollary 4.17 (Coherent Hedging). Let ρ be a coherent risk measure satisfying
Assumption 4.16 and let ZP be compact. Then, there exists a solution ϕ̃ to (4.21).
Furthermore, there exists a pair (Q̃, λ̃) ∈ Q× Λ+ solving

max
Q∈Q,λ∈Λ+

{
E[HZQ ∧H

∫

P

ZP ∗dλ]− Ṽ0λ(ZP)
}

. (4.26)

It follows that:
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• The solution of the static optimization problem (4.21) is

ϕ̃ =





1 : HZ̃Q > H
∫
P ZP ∗dλ̃

0 : HZ̃Q < H
∫
P ZP ∗dλ̃

P − a.s. (4.27)

with
EP ∗ [ϕ̃H] = Ṽ0 λ̃− a.s. (4.28)

• (ϕ̃, Q̃) is a saddle point of the functional (ϕ,Q) 7→ EQ[(1− ϕ)H] in R0 ×Q.

• (Ṽ0, ξ̃) solves the dynamic coherent hedging problem (4.20), where ξ̃ is the
superhedging strategy of the modified claim ϕ̃H, obtained by the optional de-
composition theorem (Theorem C.3).

Proof. Since coherent risk measures are also convex risk measures, the results fol-
low from Corollary 4.14 and the dual representation of coherent risk measures (see
Theorem 1.25).

The problem (4.20) of hedging with coherent risk measures was studied by Nakano
[31, 32]. In [32], the decomposition of the dynamic problem and the existence of a
solution to the static problem was shown. In [31] a similar result as in Corollary 4.17
was obtained. We now want to make the differences in the methods clear that are
used in the proofs and show in which way Corollary 4.17 is an improvement of
Theorem 4.11 in [31] for the case ZP compact. Nakano [31] followed the method of
Cvitanić and Karatzas [7] (see Section 3.1) to show that the solution of the static
optimization problem is a Neyman-Pearson test. In Nakano [31] it is necessary to
introduce the enlarged sets

Z = {Z ∈ L∞+ | E[Z] ≤ 1,∀X ∈ L1
+ : E[XZ] ≤ ρ(−X)} ⊇ {ZQ : Q ∈ Q}

and

D = {D ∈ L1
+ | E[D] ≤ 1, E[DH] ≤ U0, ∀ϕ ∈ R0 : E[DϕH] ≤ Ṽ0} ⊇ ZP ,

where Z is closed under P − a.s. convergence and convex and D is bounded in L1,
convex and closed under P − a.s. convergence. These enlarged sets were introduced
to ensure the existence of a quadruple (Ẑ, D̂, ẑ, ϕ̂) ∈ (Z × D × (0,∞) × R0) that
yield equality in

∀Z ∈ Z,∀D ∈ D,∀z > 0,∀ϕ ∈ R0 : E[Z(H−ϕH)] ≥ E[H(Z∧zD)]−Ṽ0z (4.29)

In Theorem 4.11 in [31] the typical 0-1-structure of an optimal randomized test ϕ̂

is deduced, but with respect to elements from the larger sets Z and D:

ϕ̂ = 1{bz bD< bZ} + δ1{bz bD= bZ},
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where (ẑ, Ẑ, D̂) attain the supremum of

sup
z≥0,Z∈Z,D∈D

{E[H(Z ∧ zD)]− Ṽ0z}.

We can show that inequality (4.29) corresponds to the validity of weak duality
between the inner problem (4.24) and its dual problem (4.25) that is automatically
satisfied (cf. Theorem A.12). That is

∀Q ∈ Q, ∀λ ∈ Λ+,∀ϕ ∈ R0 : EQ[(1− ϕ)H] ≥ E[HZQ ∧H

∫

P

ZP ∗dλ]− Ṽ0λ(ZP).

With our method, it is not necessary to consider the larger sets Z and D. We prove
the validity of strong duality via Fenchel duality directly (step (ii) and (iii), Remark
4.7). The existence of a dual solution follows from the validity of strong duality
(cf. Theorem A.12). This makes it possible to deduce the 0-1-structure of ϕ̃ with
respect to elements from the original sets Q and P . In contrast to this, Nakano [31]
proved the existence of a solution to the dual problem. Therefore, it was necessary
to consider the larger sets Z and D. The application of Corollary 4.17 shows that
there is a one-to-one relationship between the optimal elements Ẑ, D̂ and ẑ of [31]
and elements of Q and P :

Ẑ =

{
Z̃Q : {H > 0}

0 : {H = 0}
,

D̂ =

{
k

∫
P ZP ∗dλ̃ : {H > 0}

0 : {H = 0}
,

ẑ = λ̃(ZP),

where (Q̃, λ̃) is the optimal pair in (4.26) and k = λ̃(ZP)−1 if λ̃(ZP) 6= 0 and zero
if λ̃(ZP) = 0. It holds ϕ̃ = ϕ̂. Thus, the direct application of convex duality
gives more detailed information about the structure of the optimal randomized test
ϕ̃. Another difference to [31] is that we consider coherent risk measures that can
also attain the value +∞. Furthermore, we now can show in equation (4.28) of
Corollary 4.17 that the upper bound of the constraint in (4.22) is attained (except
in the pathological case where λ̃ takes only the value zero (see Remark 4.15)). Then,
Ũ0 = supP ∗∈P EP ∗ [ϕ̃H] = Ṽ0. It follows, that Ṽ0, the upper capital boundary, is the

minimal required capital that is necessary for the optimal hedge and thus, (Ṽ0, ξ̃)
solves the optimization problem (4.20) (see Proof of Theorem 4.1 and Remark 4.4).
This was not possible to deduce from the analogous result E[ϕ̂HD̂] = Ṽ0, D̂ ∈ D in
Nakano [31]. A comparison of the results in the general incomplete market can be
found in Section 4.2.2.
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4.1.4 Robust Efficient Hedging

In the concept of efficient hedging the expectation of a loss function l is used as
the risk measure in problem (4.2). This problem was introduced by Föllmer and
Leukert [17] (see also [19]).

Assumption 4.18. Let l : IR → IR be a nondecreasing convex function with l(x) = 0
for all x ≤ 0.

The function l is continuous since it is a convex and finite valued function on IR
([11], Corollary I.2.3). Let L0 = L0(Ω,F , P ) be the space of P − a.s. finite random
variables and L0

+ := {Y ∈ L0 : Y ≥ 0 P − a.s.}. We define L : L1 → L0
+ by

L(Y )(ω) := l(Y (ω)).

The function L maps into L0
+ since l is continuous and maps into IR+. We consider

the dynamic efficient hedging problem derived from (4.2) with the risk measure
ρ0(Y ) = E[L(−Y )] for Y ∈ L1. This means, we look for an admissible strategy that
is a solution of

min
(V0,ξ)

E[L((H − VT )+)], 0 < V0 ≤ Ṽ0 < U0.

We want to generalize this problem and consider a robust version (see Remark 8.12
in [19]) of the expectation of a loss function defined as

ρ1(Y ) = sup
Q∈Q

EQ[L(−Y )], Y ∈ L1, (4.30)

where Q ⊆ Q̂ is a set of probability measures absolutely continuous with respect to
P . By passing from a single probability measure P to a whole set Q of probability
measures one can take into account an uncertainty regarding the underlying model.
This can be the case if for instance the underlying asset price process is modelled
via an jump-diffusion process and there is uncertainty regarding the jump intensities
(see [26] for several examples).
In the following, we will study the robust efficient hedging problem using the risk
measure ρ1. The dynamic problem is to find an admissible strategy solving

min
(V0,ξ)

sup
Q∈Q

EQ[L((H − VT )+)], 0 < V0 ≤ Ṽ0 < U0. (4.31)

Remark 4.19. A special case of (4.31) is the problem of quantile hedging. In this
case, the probability of losses due to the shortfall has to be minimized. We obtain
this problem from (4.31) by setting Q = {P} and using the non-convex loss function
l(x) = 1(0,∞)(x). This problem was solved in [16].

We impose the following assumption on l,Q and H.
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Assumption 4.20. sup
Q∈Q

EQ[L(H)] < +∞.

Let us analyze the properties of ρ1.

Proposition 4.21. Under Assumption 4.18, the function ρ1 : L1 → IR ∪ {+∞} is
monotone, convex, lower semicontinuous and satisfies ρ1(0) = 0.

Proof. ρ1 is monotone and convex since l is nondecreasing and convex. ρ1 satisfies
ρ1(0) = 0 since l(0) = 0. To prove the lower semicontinuity of ρ1, we prove that
epi ρ1 is closed. Take a sequence (Yn, rn) ∈ epi ρ1 for all n ∈ IN with Yn → Y in L1

and rn → r. Thus, for all n ∈ IN it holds ρ1(Yn) ≤ rn. Since Yn → Y in L1, there is
a subsequence Ynk

converging P − a.s. to Y (see Theorem 10.38 and 10.39 in [2]).
The sequence L(−Ynk

) converges P − a.s. to L(−Y ) since l is continuous. L(−Ynk
)

is for all k ∈ IN a nonnegative random variable due to Assumption 4.18. Thus, we
can apply Fatou’s Lemma (Lemma B.21) and obtain

∀Q ∈ Q : EQ[L(−Y )] = EQ[lim inf
k→∞

L(−Ynk
)] ≤ lim inf

k→∞
EQ[L(−Ynk

)]. (4.32)

Since (Ynk
, rnk

) ∈ epi ρ1 for all k ∈ IN, we have

∀Q ∈ Q : EQ[L(−Ynk
)] ≤ supbQ∈QE

bQ[L(−Ynk
)] ≤ rnk

.

Together with (4.32) we obtain

∀Q ∈ Q : EQ[L(−Y )] ≤ r.

Hence, ρ1(Y ) = supQ∈Q EQ[L(−Y )] ≤ r. This means, (Y, r) ∈ epi ρ1 and thus ρ1 is
lower semicontinuous in L1.

Since ρ1 is monotone, we can apply Theorem 4.1 and obtain the static optimization
problem that corresponds to the dynamic problem (4.31)

min
ϕ∈R0

sup
Q∈Q

EQ[L((1− ϕ)H)], (4.33)

where R0 is as in (4.5)

R0 = {ϕ : Ω → [0, 1], FT −measurable, sup
P ∗∈P

EP ∗ [ϕH] ≤ Ṽ0}.

By Proposition 4.21, ρ1 is monotone, convex, lower semicontinuous and satisfies
ρ1(0) = 0. To apply Theorem 4.9, ρ1 has to satisfy Assumption 4.5. Thus, ρ1 has
to be continuous and finite in some (ϕ0 − 1)H with ϕ0 ∈ R0.
Since ρ1 is a convex and lower semicontinuous functional on L1, it is continuous in
the interior of its effective domain ([11], Corollary I.2.5). The points, where ρ1 takes
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finite values, depend on the choice of the loss function l. Let us consider the simple
example of l(x) = x2 and Q = {P}. Let us ignore for the moment the condition
l(x) = 0 for x ≤ 0, which does not have an impact on the optimization problem
(4.31) since we work only with nonnegative values. Then, the effective domain of
the function ρ1(Y ) = E[Y 2] consists of all elements of L2. Since the interior of L2

as a linear subspace of L1 is empty, there does not exist a point Y ∈ L1 such that
ρ1(Y ) = E[Y 2] is continuous. Thus, in general, we can not expect to find an inner
point of the domain of ρ1 and thus, a point where ρ1 is continuous.
In the following, we shall consider several special cases, where the continuity of ρ1 in
some (ϕ0− 1)H with ϕ0 ∈ R0 can be verified and thus, Theorem 4.9 can be applied
to solve the problem.

The Special Case of Lipschitz Continuous Loss Functions

In this section, we consider a special case, i.e., we impose stronger assumptions to
solve problem (4.31). These assumptions are for instance satisfied if the loss function
is Lipschitz continuous and the set Q of measures satisfies a certain condition. In
addition to Assumption 4.20, we shall impose the following in this section.

Assumption 4.22. Let {ZQ : Q ∈ Q} ⊆ L∞ with supQ∈Q ‖ZQ‖L∞ < +∞.

Let ε > 0. We denote by Uε(H) := {Y ∈ L1 : ‖Y −H‖L1 ≤ ε} the ε−neighborhood
of H ∈ L1.

Assumption 4.23. Let l be such that there exists an ε−neighborhood Uε(H) of H

with
∀Y ∈ Uε(H) : L(Y )− L(H) ∈ L1.

Remark 4.24. Assumption 4.23 is for instance satisfied if l is Lipschitz continuous,
i.e., there exists a constant c ∈ IR such that for all x, y ∈ IR

|l(x)− l(y)| ≤ c|x− y|.

Then, it follows that L is Lipschitz continuous and maps into L1 since for all Y1, Y2 ∈
L1 we have

‖L(Y1)− L(Y2)‖L1 =

∫

Ω

|L(Y1)(ω)− L(Y2)(ω)|dP =

∫

Ω

|l(Y1(ω))− l(Y2(ω))|dP

≤
∫

Ω

c|Y1(ω)− Y2(ω)|dP = c‖Y1 − Y2‖L1 .

Remark 4.25. If l is Lipschitz continuous and Assumption 4.22 is satisfied, then
Assumption 4.20 holds since

sup
Q∈Q

EQ[L(H)] ≤ ‖L(H)‖L1 sup
Q∈Q

‖ZQ‖L∞ ≤ c‖H‖L1 sup
Q∈Q

‖ZQ‖L∞ < +∞.
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Proposition 4.26. Let Assumption 4.20, 4.22 and 4.23 be satisfied. Then, ρ1 is
continuous and finite in −H = (ϕ0 − 1)H with ϕ0 = 0 ∈ R0.

Proof. For all −Y ∈ Uε(H) we have L(−Y )− L(H) ∈ L1 due to Assumption 4.23.
Together with Assumption 4.22 and 4.20, we obtain that for all −Y ∈ Uε(H)

ρ1(Y ) = sup
Q∈Q

EQ[L(−Y )] ≤ sup
Q∈Q

EQ[L(−Y )− L(H)] + sup
Q∈Q

EQ[L(H)]

≤ ‖L(−Y )− L(H)‖L1 sup
Q∈Q

‖ZQ‖L∞ + sup
Q∈Q

EQ[L(H)] < +∞.

Since −Y ∈ Uε(H) if and only if Y ∈ Uε(−H), we obtain that for all Y ∈ Uε(−H)
the convex function ρ1 is bounded above by a finite constant. Thus, by Lemma I.2.1,
[11], ρ1 is continuous in −H = (ϕ0 − 1)H with ϕ0 = 0 ∈ R0.

This means, if Assumption 4.18, 4.20, 4.22 and 4.23 are satisfied (for instance if we
work with a Lipschitz continuous loss functions l and a finite set Q with {ZQ : Q ∈
Q} ⊆ L∞), we can apply Theorem 4.9 to deduce a result about the structure of a
solution ϕ̃ to (4.33). Since ρ1 : L1 → IR ∪ {+∞} is lower semicontinuous, convex,
proper and monotone (Proposition 4.21), it has the following dual representation
(see Theorem 1.5 (b))

ρ1(Y ) = sup
Y ∗∈L∞+

{E[−Y Y ∗]− ρ∗1(−Y ∗)}.

In the following theorem we shall work with this dual representation instead of the
representation (4.30) of ρ1. The application of Theorem 4.9 yields the following
result.

Corollary 4.27 (Robust Efficient Hedging). Let Assumption 4.18, 4.20, 4.22 and
4.23 be satisfied and let ZP be compact. Then, there exists a solution ϕ̃ to (4.33).
If ρ1 is strictly convex, then any two solutions coincide P − a.s. on {H > 0}.
Furthermore, there exists a pair (Ỹ ∗, λ̃) ∈ L∞+ × Λ+ solving

max
Y ∗∈L∞+ ,λ∈Λ+

{
E[HY ∗ ∧H

∫

P

ZP ∗dλ]− Ṽ0λ(ZP)− ρ∗1(−Y ∗)
}

. (4.34)

Let (Ỹ ∗, λ̃) be the optimal pair in (4.34). It follows that:

• The solution of the static optimization problem (4.33) is

ϕ̃ =





1 : HỸ ∗ > H
∫
P ZP ∗dλ̃

0 : HỸ ∗ < H
∫
P ZP ∗dλ̃

P − a.s.

with
EP ∗ [ϕ̃H] = Ṽ0 λ̃− a.s.
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• (ϕ̃, Ỹ ∗) is a saddle point of the functional (ϕ, Y ∗) 7→ E[(1−ϕ)HY ∗]−ρ∗1(−Y ∗)
in R0 × L∞+ .

• (Ṽ0, ξ̃) solves the dynamic robust efficient hedging problem (4.31), where ξ̃ is
the superhedging strategy of the modified claim ϕ̃H, obtained by the optional
decomposition theorem (Theorem C.3).

Proof. The Assumptions 4.18, 4.20, 4.22 and 4.23 ensure that Assumption 4.5 is
satisfied (see Proposition 4.21 and 4.26). Thus, we can apply Theorem 4.9 and the
stated results follow.

Remark 4.28. The function ρ1 is strictly convex if for instance l(x) is strictly
convex and Q has only finitely many elements.

The Linear Case

Let us impose Assumption 4.22 for this section. Since the ”linear” loss function
l(x) = x+ is Lipschitz continuous, we can apply Corollary 4.27 (see Remark 4.24
and 4.25). But, in the linear case we can even go a step further.
Problem (4.33) with l(x) = x+ is equivalent to problem (4.33) with l(x) = x since
we work only with nonnegative values. Thus, the static optimization problem in the
linear case is

min
ϕ∈R0

sup
Q∈Q

EQ[(1− ϕ)H], (4.35)

where R0 is as in (4.5) and the risk measure that is used is

ρ2(Y ) = sup
Q∈Q

EQ[−Y ],

defined on L1. Since we impose Assumption 4.22, the risk measure ρ2 is a coherent
risk measure on L1 (cf. Section 1.3) that is finite valued, thus continuous ([11],
Corollary I.2.5). The maximal representing set of ρ2 is Qmax = co∗Q, the weak*
closure of the convex hull of the densities of Q (see Theorem 1.25). Then, the 0-
1-structure of ϕ̃ can be deduced with respect to a Q̃ ∈ co∗Q instead of Ỹ ∗ ∈ L∞+
as in Corollary 4.27. Thus, we obtain by an application of Corollary 4.17 with the
maximal representing set co∗Q of ρ2 the following Corollary.

Corollary 4.29 (Robust Efficient Hedging with linear loss function). Let Assump-
tion 4.22 be satisfied and let ZP be compact. Then, there exists a solution ϕ̃ to
(4.35). Furthermore, there exists a pair (Q̃, λ̃) ∈ co∗Q× Λ+ solving

max
Q∈co∗Q,λ∈Λ+

{
E[HZQ ∧H

∫

P

ZP ∗dλ]− Ṽ0λ(ZP)
}

. (4.36)

Let (Q̃, λ̃) be the optimal pair in (4.36). It follows that:
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• The solution of the static optimization problem (4.35) is

ϕ̃ =





1 : HZ̃Q > H
∫
P ZP ∗dλ̃

0 : HZ̃Q < H
∫
P ZP ∗dλ̃

P − a.s.

with

EP ∗ [ϕ̃H] = Ṽ0 λ̃− a.s.

• (ϕ̃, Q̃) is a saddle point of the functional (ϕ,Q) 7→ EQ[(1−ϕ)H] in R0×co∗Q.

• (Ṽ0, ξ̃) solves the dynamic problem (4.31) in the linear case, where ξ̃ is the
superhedging strategy of the modified claim ϕ̃H, obtained by the optional de-
composition theorem (Theorem C.3).

Corollary 4.29 is a generalization of Proposition 4.1 in Föllmer and Leukert [17]
and a generalization of Theorem 1.19 in Xu [48] for the case ZP compact. In [17]
and [48] the set Q = {P} is a singleton. In [17], the problem is solved in the
complete financial market, i.e., P = {P ∗} and in [48] the problem is solved in the
incomplete financial market. Furthermore, in [48] the optimal strategy is computed
in three complete market cases. In analogy to Nakano [31] (see Section 4.1.3), Xu [48]
enlarged the set P that contains the equivalent martingale measures and deduced
the 0-1-structure of the optimal randomized test with respect to an element from
the enlarged set. With our method this is not necessary, we work directly with the
set P . Furthermore, we do not need to impose the assumption that the discounted
asset price S is locally bounded as used in [48]. A comparison of the results in the
general incomplete market can be found in Section 4.2.3.
With our method it is possible to solve the problem not only in the case Q = {P},
but also for more general sets Q satisfying Assumption 4.22 and even for more
general loss functions satisfying Assumption 4.23.

Prospect: The General Case

This section should be understood as a discussion and as a prospect of further
research. The problem of robust efficient hedging does, in general, not satisfy As-
sumption 4.5. We shall show which results are affected and we give proposals how
the problem could be solved.
Let us consider a general loss function l and problem (4.33) in the context of Chap-
ter 2. All conditions of Assumption 2.1 are satisfied except the continuity of ρ1 in
some (ϕ0 − 1)H with ϕ0 ∈ R0 as postulated in (A5). The lack of this condition
has an effect on the validity of strong duality in Theorem 2.6. Thus, the equality
between the values of the primal problem (4.33) and its Fenchel dual problem is no
longer ensured.
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This motivates us to use the special structure of the problem and to define a mod-
ified risk measure on the space L∞ that might satisfy the required assumptions.
First, we define L̃ : L∞ → L0

+ by

L̃(Y ) := L(H − Y H)

Consider the function ρ : L∞ → IR ∪ {+∞} defined by

ρ(Y ) :=

{
sup
Q∈Q

EQ[L̃(Y )] : Y ∈ L∞+

+∞ : Y /∈ L∞+
. (4.37)

Then, problem (4.33) is equivalent to the static optimization problem

min
ϕ∈R0

ρ(ϕ) (4.38)

We shall deduce several properties of ρ.

Proposition 4.30. Suppose Assumption 4.18 and 4.20 hold. Then, the function ρ

defined in (4.37) is monotone, convex and proper with dom ρ = L∞+ . Furthermore,
ρ is lower semicontinuous and there exists a ϕ0 ∈ R0, such that ρ is continuous and
finite in ϕ0.

Proof. ρ is monotone and convex, since l is nondecreasing and convex (Assump-
tion 4.18). Take Y ∈ L∞+ . Then, since l is nondecreasing, H ∈ L1

+ (see page 50) and
because of Assumption 4.20, ρ(Y ) = supQ∈QEQ[L(H−Y H)] ≤ supQ∈QEQ[L(H)] <

+∞. For Y /∈ L∞+ , we have ρ(Y ) = +∞. Thus, dom ρ = L∞+ and ρ is proper.
To show the lower semicontinuity of ρ, we shall show that the epigraph epi ρ is
closed. Take a sequence (Yn, rn) ∈ epi ρ for all n ∈ IN with Yn → Y in the norm
topology of L∞ and rn → r. Thus, for all n ∈ IN we have Yn ∈ L∞+ with ρ(Yn) ≤ rn.
Then

∀n ∈ IN, ∀Q ∈ Q : EQ[L̃(Yn)] ≤ supbQ∈QE
bQ[L̃(Yn)] ≤ rn. (4.39)

Take Q ∈ Q. Since from Yn → Y in the norm topology of L∞ it follows Yn → Y

P − a.s. (see Section 4.3 in [12]), we obtain that L̃(Yn) converges P − a.s. to L̃(Y ).
Since for all Y ∈ L∞+ it holds 0 ≤ L̃(Y ) ≤ L(H) because of Assumption 4.18 and

H ∈ L1
+. It follows that |L̃(Yn)| is dominated by L(H). Because of Assumption 4.20,

L(H) is integrable with respect to Q ∈ Q. Thus, we can apply Corollary B.20 and
obtain together with (4.39)

∀Q ∈ Q : EQ[L̃(Y )] = lim
n→∞

EQ[L̃(Yn)] ≤ r.

Since L∞+ is a closed set, Y ∈ L∞+ . It follows that ρ(Y ) = supQ∈Q EQ[L̃(Y )] ≤ r.
Thus, (Y, r) ∈ epi ρ, hence ρ is lower semicontinuous.
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Since ρ is lower semicontinuous and convex and because of L∞ endowed with the
norm topology is a Banach space, ρ is continuous in the interior of its domain (see
[11], Corollary 2.5). This means, ρ is continuous in int(L∞+ ) 6= ∅ (see Lemma B.13).

Take ϕ0 ∈ int(L∞+ ) with ϕ0 ≡ c, c ∈ (0, 1) such that cU0 ≤ Ṽ0. Such a constant

c always exists. Then supP ∗∈P EP ∗ [ϕ0H] ≤ cU0 ≤ Ṽ0. Thus, ϕ0 ∈ R0 and ρ is
continuous and finite in ϕ0.

Proposition 4.31. Suppose Assumption 4.18 and 4.20 hold. Then, the function ρ

defined in (4.37) is lower semicontinuous with respect to the weak* topology.

Proof. The proof is similar to the proof of the lower semicontinuity of ρ in Proposi-
tion 4.30. We show that epi ρ is closed with respect to P−a.s. convergent sequences.
Take a sequence {(Yn, rn)}n∈IN ⊂ epi ρ with Yn → Y P − a.s and rn → r. Thus, for
all n ∈ IN it holds Yn ∈ L∞+ with ρ(Yn) ≤ rn. Then

∀n ∈ IN,∀Q ∈ Q : EQ[L̃(Yn)] ≤ supbQ∈QE
bQ[L̃(Yn)] ≤ rn. (4.40)

Since |L̃(Yn)| is dominated by the Q−integrable function L(H) for all n ∈ IN, we
can apply Corollary B.20 and obtain together with (4.40)

∀Q ∈ Q : EQ[L̃(Y )] = lim
n→∞

EQ[L̃(Yn)] ≤ r.

Since L∞+ is closed with respect to P − a.s. convergent sequences, Y ∈ L∞+ . Hence,

ρ(Y ) = sup
Q∈Q

EQ[L̃(Y )] ≤ r.

Thus, epi ρ is closed with respect to P−a.s. convergent sequences. Since ρ is convex,
we can apply Theorem 1.7 and obtain that ρ is lower semicontinuous with respect
to the weak* topology.

Since we work with the modified problem (4.38), we cannot apply Theorem 4.9 and
have to work directly with the results of Chapter 2. The modified problem (4.38)
turns out to be a special case of optimization problem (2.1) by setting Aϕ = ϕ,
b = 0, C∗ = ZP , c = Ṽ0 and X = Y = L∞, endowed with the norm topology. Hence,
X ∗ = Y∗ = ba(Ω,F , P ). H ∈ L1

+ is the payoff of the contingent claim. It holds
X1 = R and X0 = R0. We check (A1)-(A7) of Assumption 2.1:

(A1): We have c = Ṽ0 > 0 (see (4.3)).

(A2): It holds H ∈ L1
+, C∗ = ZP ⊆ L1 and {HX∗ : X∗ ∈ C∗} = {HP ∗ : ZP ∗ ∈

P} ⊆ L1, since we assumed in (4.1) the superhedging price of H to be finite.

(A3): Inequality (4.1) also ensures that supX∗∈C∗ ‖HX∗‖L1 < +∞.
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(A4): The operator A : L∞ → L∞, defined by Aϕ := ϕ, is linear and continuous.

(A5): Proposition 4.30 ensures the conditions for ρ.

(A6): The map ϕ 7→ ρ(Aϕ + b) coincides with ρ(ϕ) and is lower semicontinuous in
the weak* topology as proved in Proposition 4.31.

Note that Assumption (A7) is not satisfied, in general: The map ϕ 7→ 〈Y ∗, Aϕ〉 =
〈Y ∗, ϕ〉 is, in general, not continuous in the weak* topology for all Y ∗ ∈ dom ρ∗

since dom ρ∗ ⊆ ba(Ω,F , P ).

Remark 4.32. One could think of endowing Y = L∞ with the weak* topology
since we already proved that ρ is weakly* lower semicontinuous (Proposition 4.31).
Then, Assumption (A7) is satisfied since dom ρ∗ ⊆ Y∗ = L1. But in this case, we
can not ensure the continuity of ρ in ϕ0 ∈ R0 as postulated in (A5) since int L∞+ = ∅
with respect to the weak* topology (Lemma B.14, cf. proof of Proposition 4.30).

It would be sufficient for the application of Theorem 2.9 to postulate that Ỹ ∗, the
solution to the dual problem, is an element of L1 and thus ϕ 7→ 〈Ỹ ∗, ϕ〉 is continuous
in the weak* topology. But, in general, this condition is not satisfied.
In the following, we show which results in the theorems of Chapter 2 do not longer
hold since Assumption (A7) is not satisfied and we shall give proposals how the
problem could be solved in spite of this. Assumption (A7) has no impact on Theo-
rem 2.5 and 2.6.
Since ρ is lower semicontinuous, convex and monotone with ρ(0) < +∞ (Proposi-
tion 4.30), it has a dual representation with respect to elements of Y∗+ = ba(Ω,F , P )+

(see Theorem 1.5 (b)). Since ρ is weakly* lower semicontinuous (Proposition 4.31), it
is sufficient to consider elements of L1

+ in the dual representation (see Theorem 1.6)

ρ(Y ) = sup
Y ∗∈ba(Ω,F ,P )+

{〈Y,−Y ∗〉 − ρ∗(−Y ∗)} = sup
Y ∗∈L1

+

{E[−Y Y ∗]− ρ∗(−Y ∗)}.

Then, the primal problem (4.38) can be written as

min
ϕ∈R0

{ sup
Y ∗∈L1

+

{E[−ϕY ∗]− ρ∗(−Y ∗)}},

where Theorem 2.5 ensures the existence of a primal solution ϕ̃. The continuity of ρ

in some ϕ0 ∈ R0 (Proposition 4.30) ensures strong duality between the primal and
its dual problem (Theorem 2.6) with respect to Y∗ = ba(Ω,F , P ), i.e.,

min
ϕ∈R0

{ sup
Y ∗∈L1

+

{E[−ϕY ∗]− ρ∗(−Y ∗)}} = sup
Y ∗∈ba(Ω,F ,P )+

{ inf
ϕ∈R0

{〈ϕ,−Y ∗〉 − ρ∗(−Y ∗)}}.

Strong duality also ensures the existence of a dual solution Ỹ ∗ ∈ ba(Ω,F , P )+ and
with equation (2.6) of Theorem 2.6 we obtain

min
ϕ∈R0

{ sup
Y ∗∈L1

+

{E[−ϕY ∗]− ρ∗(−Y ∗)}} = max
Y ∗∈ba(Ω,F ,P )+

{min
ϕ∈R0

{〈ϕ,−Y ∗〉 − ρ∗(−Y ∗)}}.

(4.41)
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In Theorem 2.8 we considered the inner problem of the dual problem for every
Y ∗ ∈ Y∗, but it is sufficient to consider the inner problem just for Ỹ ∗ ∈ ba(Ω,F , P )+,
i.e., the problem

max
ϕ∈R0

〈ϕ, Ỹ ∗〉, (4.42)

where (2.6) of Theorem 2.6 ensures the existence of a solution ϕ̃. The dual problem
of (4.42) is

inf
λ∈Λ+

{
sup
ϕ∈R

〈Ỹ ∗ −H

∫

P

ZP ∗dλ, ϕ〉 − cλ(ZP)
}

, (4.43)

where Λ+ is the set of all finite measures on (ZP ,B) and B is a σ-algebra of all Borel
sets on ZP . Assumption (A7) does not have an impact on the validity of strong
duality between (4.42) and (4.43) as in the proof of Theorem 2.8

max
ϕ∈R0

〈ϕ, Ỹ ∗〉 = min
λ∈Λ+

{
sup
ϕ∈R

〈Ỹ ∗ −H

∫

P

ZP ∗dλ, ϕ〉 − cλ(ZP)
}

. (4.44)

The validity of strong duality also ensures the existence of a dual solution λ̃ ∈ Λ+

(Theorem A.12).
Assumption (A2) and (A3) ensure that H

∫
P ZP ∗dλ ∈ L1 and thus, the signed

measure with density H
∫
P ZP ∗dλ admits a Hahn decomposition for λ ∈ Λ+. For

simplicity, we write Y admits a Hahn decomposition instead of the measure with
density Y admits a Hahn decomposition. With Assumption (A7) we wanted to
ensure that Ỹ ∗ is an element of L1 and thus, the whole term Ỹ ∗ − H

∫
P ZP ∗dλ

admits a Hahn decomposition which could be used in (4.44) (as it was in (2.22)
in the proof of Theorem 2.8) and would lead to a result about the structure of a
solution ϕ̃ (see Theorem 2.9).
This makes clear that it is possible to weaken Assumption (A7) as proposed in
Remark 2.3:

(A7’) A∗Ỹ ∗ admits a Hahn decomposition.

At this point, we give several proposals of further research that could lead to a
possibility to solve the modified problem (4.38) and thus, also the original problem
(4.33) or that work directly with problem (4.33).

• Does Ỹ ∗ admit a Hahn decomposition? Ỹ ∗ is an element of ba(Ω,F , P )+,
a nonnegative, finitely additive set functions on (Ω,F) with bounded variation,
absolutely continuous to P (see [49], Chapter IV, 9, Example 5). In [5] it was
shown, that a bounded finitely additive real-valued measure Ỹ ∗ admits a Hahn
decomposition if and only if it attains its norm on the unit ball of L∞. This
is equivalent to the condition, that Ỹ ∗ attains its bounds (see [40]). Schmidt
[43], Lemma 2.1, showed that it is sufficient to show that the upper bound is
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attained.
In (4.42) we see that Ỹ ∗ attains its supremum over the set R0 (follows from
(2.6) of Theorem 2.6). If it also attains its supremum over the set R, and thus
over the unit ball in L∞ (since Ỹ ∗ ∈ ba(Ω,F , P )+), Ỹ ∗ would admit a Hahn
decomposition ([5], Theorem 1) and we could solve the problem analogously
to Theorem 2.9.

• Approximation. If Ỹ ∗ does not admit a Hahn decomposition, Ỹ ∗ could
be approximated by a sequence Ỹ ∗

n ∈ ba(Ω,F , P ), where Ỹ ∗
n admits a Hahn

decomposition for all n ∈ IN or, if possible, even with a sequence Ỹ ∗
n ∈ L1. For

every Ỹ ∗
n ∈ L1, there exists a solution ϕ̃eY ∗n to

max
ϕ∈R0

〈ϕ, Ỹ ∗
n 〉,

since R0 is weakly* compact and the map ϕ 7→ 〈ϕ, Ỹ ∗
n 〉 is weakly* continuous

for Ỹ ∗
n ∈ L1. Then, one has to analyze the behavior of the sequence ϕ̃eY ∗n and

to check if it converges to the solution ϕ̃.
Furthermore, another possible approximation can be discussed. From (4.41)
and Proposition 4.31 it follows that

ρ(ϕ̃) = 〈ϕ̃,−Ỹ ∗〉 − ρ∗(−Ỹ ∗) = max
Y ∗∈ba(Ω,F ,P )+

{〈ϕ̃,−Y ∗〉 − ρ∗(−Y ∗)}
= sup

Y ∗∈L1
+

{E[−ϕ̃Y ∗]− ρ∗(−Y ∗)}.

Hence, there exists a maximizing sequence Y ∗
n ∈ L1

+ such that E[−ϕ̃Y ∗
n ] −

ρ∗(−Y ∗
n ) converges to 〈ϕ̃,−Ỹ ∗〉 − ρ∗(−Ỹ ∗). Again, for every Y ∗

n ∈ L1, there
exists a solution ϕ̃Y ∗n to

max
ϕ∈R0

〈ϕ, Y ∗
n 〉

and one could analyze the behavior of the sequence ϕ̃Y ∗n

• Is a weaker condition for strong duality satisfied? Consider problem
(4.33) and check if a weaker condition than the continuity in (ϕ0 − 1)H with
ϕ0 ∈ R0 leads to a strong duality result (see [50], Theorem 2.7.1 for a list of
conditions that lead to strong duality).

It seems to be worthwhile to do further research in this direction since for special
cases there already exist results in the literature. In Föllmer and Leukert [17] the
efficient hedging problem was considered. This is a special case of problem (4.31)
with Q = {P}, a singleton. For this case, the decomposition of the dynamic prob-
lem into the static problem and the representation problem (cf. Theorem 4.1) was
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already proved and the existence of a solution to the static problem was shown. Fur-
thermore, a solutions for the linear case l(x) = x in the complete market P = {P ∗}
was deduced by an application of the Neyman-Pearson lemma. The linear case
l(x) = x in the incomplete market was solved by Xu [48]. These special cases can be
solved with the method deduced in this thesis as well (see also Section 4.2.3). It is
even possible to solve the problem for the more general case of Lipschitz continuous
loss functions and with a more general set Q satisfying Assumption 4.22. Interest-
ing for further research are more general loss functions, for instance the function
l(x) = (x+)p, p ≥ 1.
Kirch [26] considered the general robust efficient hedging problem (4.31) with the
following assumptions concerning the loss function l. In [26], l(x, ω) was assumed to
be strictly convex, increasing, continuous differentiable on (0, H) and bounded for
all x ≥ 0. It is then possible to express the solution in terms of the inverse of the
derivative of the utility function u := −l̃. The problem was solved by enlarging the
sets Q and P by passing to the closed convex hull of the densities of Q in L1 and to
the closure of the densities of P in L0. The solution to the problem could be reduced
to a solution to a simple problem (fixed Q ∈ coQ and fixed P ∗ in the closure of the
densities of P). In some cases only an approximation of the solution by a sequence
of simple problems was possible. These results motivate further research in this area
using the method deduced in this thesis.

4.2 Hedging in Incomplete Markets

In this section, we study the problem of hedging in incomplete markets in the general
case, i.e., we only assume that the set of equivalent martingale measures satisfies P 6=
∅ due to absence of arbitrage opportunities. We do no longer impose compactness
of ZP . Let us consider problem (4.2), (4.3), i.e., the dynamic optimization problem
of finding an admissible strategy that solves

min
(eV0,ξ)

ρ
(− (H − VT )+)

, 0 < Ṽ0 < U0. (4.45)

We summarize the assumptions of this section.

Assumption 4.33.

• P 6= ∅.
• The payoff of the contingent claim satisfies H ∈ L1

+.

• The superhedging price of H is finite, i.e., U0 = supP ∗∈P EP ∗ [H] < +∞.

Assumption 4.34. The risk measure ρ : L1 → IR ∪ {+∞} is a monotone, convex,
lower semicontinuous function that is continuous and finite in some (ϕ0− 1)H with
ϕ0 ∈ R0 and satisfies ρ(0) < +∞.
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We can apply all theorems of Chapter 2 that do not need Assumption (A3) (com-
pactness of ZP). Since ρ is monotone, we can apply Theorem 4.1 and obtain that
the corresponding static optimization problem is

min
ϕ∈R0

ρ ((ϕ− 1)H) , (4.46)

R0 = {ϕ : Ω → [0, 1], FT −measurable, sup
P ∗∈P

EP ∗ [ϕH] ≤ Ṽ0}.

Theorem 2.5 ensures the existence of a solution ϕ̃ to (4.46) and the dual represen-
tation of ρ (Theorem 1.5 (b)) enables us to rewrite (4.46) as follows

p = min
ϕ∈R0

ρ ((ϕ− 1)H) = min
ϕ∈R0

{ sup
Y ∗∈L∞+

{E[(1− ϕ)HY ∗]− ρ∗(−Y ∗)}}.

Theorem 2.6 ensures strong duality between (4.46) and its Fenchel dual problem

sup
Y ∗∈L∞+

{ inf
ϕ∈R0

{E[(1− ϕ)HY ∗]− ρ∗(−Y ∗)}} (4.47)

and ensures the existence of a saddle point, i.e.,

min
ϕ∈R0

{ max
Y ∗∈L∞+

{E[(1−ϕ)HY ∗]−ρ∗(−Y ∗)}} = max
Y ∗∈L∞+

{min
ϕ∈R0

{E[(1−ϕ)HY ∗]−ρ∗(−Y ∗)}}.

It is no longer possible to solve the inner problem of the dual problem with the
theory deduced in Chapter 2 (Theorem 2.8) since ZP is not assumed to be compact.
In this section, we want to solve the inner problem with the method in Xu [48] that
is based on a duality approach deduced by Kramkov and Schachermayer [27]. Let
us consider the inner problem of the dual problem for a fixed Y ∗ ∈ L∞+

min
ϕ∈R0

E[(1− ϕ)HY ∗]. (4.48)

The existence of a solution ϕ̃Y ∗ to (4.48) follows from Lemma 2.7. Problem (4.48)
is the static problem to the dynamic problem of finding an admissible strategy that
minimizes

min
(eV0,ξ)

E[(H − VT )+ Y ∗], 0 < Ṽ0 < U0. (4.49)

This problem was solved in [48] for the case Y ∗ = 1. We want to adopt the method to
our case. Therefore, we introduce the set of admissible, self-financing value processes
V starting at initial capital x > 0

V(x) := {V : Vt = x +

∫ t

0

ξsdSs ≥ 0, t ∈ [0, T ]}

and the set of contingent claims super-replicable by some admissible self-financing
strategies with initial capital x

C(x) := {g ∈ L0(Ω,F , P ) : 0 ≤ g ≤ VT for some V ∈ V(x)}.
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We consider the state dependent utility function U : IR+ × Ω → IR+

U(x, ω) := H(ω)Y ∗(ω)− (H(ω)− x)+Y ∗(ω) = (H(ω) ∧ x)Y ∗(ω) (4.50)

and the primal problem for x > 0

u(x) = sup
V ∈V(x)

E[U(VT (ω), ω)]

= sup
g∈C(x)

E[U(g(ω), ω)] = sup
g∈C(x)

E[(H ∧ g)Y ∗]. (4.51)

If necessary, we use the notation uY ∗(x) to emphasize the dependence from the
selected Y ∗ ∈ L∞+ . Note that the problem u(Ṽ0) is equivalent to problem (4.49) in

the sense that if g̃ ∈ C(Ṽ0) is a solution to (4.51) for x = Ṽ0, then the admissible
self-financing superhedging strategy (Ṽ0, ξ̃) of g̃ solves (4.49), where ξ̃ is obtained
by the optional decomposition theorem (Theorem C.3). Furthermore, it holds (with
(4.6)) that

−u(Ṽ0) + E[HY ∗] = min
(eV0,ξ)

E[(H − VT )+ Y ∗] = min
ϕ∈R0

E[(1− ϕ)HY ∗]. (4.52)

As in [48] and [27], we define the following set of processes Y

Y(y) := {Y ≥ 0 : Y0 = y and V Y is a P -supermartingale for any V ∈ V(1)}

and the set D(y) of random variables h by

D(y) := {h ∈ L0(Ω,F , P ) : 0 ≤ h ≤ YT for some Y ∈ Y(y)}.

The dual relation between C(1) and D(1) (or equivalently between V(1) and Y(1))
is for instance shown in [27], Proposition 3.1.
Let us consider the function W : IR+ × Ω → IR+ defined by

W (y, ω) := sup
x≥0
{U(x, ω)− xy}

for y ≥ 0. It holds W (y, ω) = (−U+IIR+)∗(−y, ω) for each ω ∈ Ω (see Definition A.3
for the definition of the conjugate function). With (4.50) and because of W (0, ω) ≥
U(0, ω) = 0 we obtain

W (y, ω) = (Y ∗(ω)− y)+H(ω). (4.53)

We assign to (4.51) the following dual problem

w(y) = inf
Y ∈Y(y)

E[W (YT (ω), ω)]

= inf
h∈D(y)

E[W (h(ω), ω)] = inf
h∈D(y)

E[(Y ∗ − h)+H]. (4.54)
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The utility function U(·, ω) and the value function u are concave, continuous and
increasing. The functions W (·, ω) and w are convex, continuous and decreasing. For
the definition of the subdifferential of a convex function we refer to Definition A.13
and for that of a concave function we refer to Definition A.14. For fixed ω ∈ Ω we
consider the function U : IR+ → IR+ defined by U(g) := U(g(ω), ω) for g ∈ C(x).
The subdifferential ∂U(g) is then understood for each ω ∈ Ω in the sense that
h ∈ ∂U(g) P − a.s. Analogously we define the function W (h) : IR+ → IR+ for
h ∈ D(y) and the subdifferential ∂W (h). The following duality theorem holds true.

Theorem 4.35. Let Assumptions 4.33 be satisfied. Then, it holds:
(i) For x > 0 and y > 0 an optimal solution g̃(x) ∈ C(x) to (4.51) exists and an
optimal solution h̃(y) ∈ D(y) to (4.54) exists.
(ii) The value functions u and w satisfy the following relationship

w(y) = sup
x>0
{u(x)− xy} for any y > 0 and

u(x) = inf
y>0
{w(y) + xy} for any x > 0. (4.55)

(iii) Let x > 0 and y > 0 such that y ∈ ∂u(x). Then, E[g̃h̃] = xy and h̃ ∈
∂U(g̃) P − a.s., or equivalently, g̃ ∈ −∂W (h̃) P − a.s. if and only if g̃ solves (4.51)
and h̃ solves (4.54).

Proof. The assumptions of Theorem C.7 are satisfied since P 6= ∅, U(·, ω) is con-
tinuous, increasing and concave for any fixed ω and U(0, ω) = 0. Furthermore,
the right-hand derivative satisfies U r(0, ω) ≥ 0 (cf. Remark C.8) and U r(∞, ω) =
limx→∞ U r(x, ω) = 0. Since Y ∗ ∈ L∞+ and H ∈ L1

+, is holds U(x, ω) ≤ H(ω)Y ∗(ω) P−
a.s. for all x ≥ 0 and HY ∗ ∈ L1 since E[HY ∗] ≤ ‖Y ∗‖L∞‖H‖L1 < +∞. Then, the
assertion of the theorem follows from Theorem C.7.

Remark 4.36. Note that the relationship in Theorem 4.35 (ii) means that w(y) =
(−u + IIR>0)

∗(−y) and u(x) = −(w + IIR>0)
∗(−x).

Let us consider the condition x > 0 and y > 0 such that y ∈ ∂u(x) in Theorem 4.35
(iii). It holds (cf. [48])

y ∈ ∂u(x) ⇔ u(x) = w(y) + xy,

which means that the infimum in (4.55) is attained.
For x > 0, we have ∂u(x) 6= ∅ since u is continuous in the interior of its effective
domain (see [11], Corollary I.2.3) and for all y ∈ ∂u(x) it holds y ≥ 0.

The structure of a primal solution with respect to a dual solution can be deduced
as follows.



4.2. HEDGING IN INCOMPLETE MARKETS 79

Theorem 4.37. Let Assumption 4.33 be satisfied. Let x > 0 and y > 0 such that
y ∈ ∂u(x). Let h̃(y) ∈ D(y) be an optimal solution to (4.54). Then, there is an
optimal solution g̃(x) to (4.51) such that

g̃ = (1{0≤eh<Y ∗} + δ1{eh=Y ∗})H

and
E[g̃h̃] = xy,

where δ is a [0, 1]-valued random variable.

Proof. Let x > 0 and y > 0 such that y ∈ ∂u(x). From Theorem 4.35 the existence
of an optimal solution g̃(x) ∈ C(x) to (4.51) and h̃(y) ∈ D(y) to (4.54) follows.
Furthermore, it holds E[g̃h̃] = xy and g̃ ∈ −∂W (h̃) P − a.s. It holds (cf. [48], page
8) that

g̃ ∈ −∂W (h̃) ⇔ W (h̃) = U(g̃)− g̃h̃.

With (4.50) and (4.53) this becomes

g̃ ∈ −∂W (h̃) ⇔ (Y ∗ − h̃)+H = (H ∧ g̃)Y ∗ − g̃h̃.

It follows

−∂W (h̃) =





0 if h̃ > Y ∗

H if 0 < h̃ < Y ∗

[H,∞) if h̃ = 0

[0, H] if h̃ = Y ∗.

Thus, g̃ = (1{0≤eh<Y ∗} + δ1{eh=Y ∗})H ∈ −∂W (h̃) P − a.s. is an optimal solution to

(4.51), where δ is an [0, 1]-valued random variable such that E[g̃h̃] = xy is satisfied.

To emphasis the dependence of the value function u and the solutions g̃ and h̃ from
the selected Y ∗ ∈ L∞+ , we use the notation uY ∗ , g̃Y ∗ and h̃Y ∗ .

Let the initial capital be x = Ṽ0. We conclude that the optimal solution g̃Y ∗(Ṽ0) to
(4.51) can be written as g̃Y ∗ = ϕ̃Y ∗H, where ϕ̃Y ∗ = 1{0≤eh<Y ∗}+ δ1{eh=Y ∗} ∈ R0 is the
solution to (4.48).
Now, we are ready to go back to the static optimization problem (4.46) and to
deduce a result about the structure of its solution.

Theorem 4.38 (Solution to the Generalized Hedging Problem). Let Assumption 4.33
and 4.34 be satisfied. There exists a solution ϕ̃ to problem (4.46) and a solution
Ỹ ∗ ∈ L∞+ to problem (4.47).
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Let ỹ > 0 such that ỹ ∈ ∂ueY ∗(Ṽ0). Then, there exists an h̃ ∈ D(ỹ) such that the

triple (Ỹ ∗, ỹ, h̃) ∈ (L∞+ × IR>0 ×D(y)) solves

max
Y ∗∈L∞+ ,y>0,h∈D(y)

{E[(Y ∗ ∧ h)H]− Ṽ0y − ρ∗(−Y ∗)}. (4.56)

It follows that:

• The solution to (4.46) is

ϕ̃ =





1 : 0 ≤ h̃ < Ỹ ∗

0 : h̃ > Ỹ ∗
P − a.s.

with
E[ϕ̃Hh̃] = Ṽ0ỹ.

• (ϕ̃, Ỹ ∗) is the saddle point of the functional (ϕ, Y ∗) 7→ E[(1 − ϕ)HY ∗] −
ρ∗(−Y ∗) in R0 × L∞+ .

• (Ṽ0, ξ̃) solves the dynamic hedging problem (4.45), where ξ̃ is the superhedg-
ing strategy of the modified claim ϕ̃H, obtained by the optional decomposition
theorem (Theorem C.3).

Proof. Theorem 2.5 ensures the existence of a solution ϕ̃ to (4.46). Consider the dual
problem of (4.46) given in (4.47), where Theorem 2.6 ensures that the supremum
with respect to Y ∗ ∈ L∞+ and the infimum with respect to ϕ ∈ R0 are attained. We
obtain

max
Y ∗∈L∞+

min
ϕ∈R0

{E[(1− ϕ)HY ∗]− ρ∗(−Y ∗)} (4.52)
= max

Y ∗∈L∞+
{−uY ∗(Ṽ0) + E[HY ∗]− ρ∗(−Y ∗)}

(4.55)
= max

Y ∗∈L∞+
{−min

y>0
{w(y) + Ṽ0y}+ E[HY ∗]− ρ∗(−Y ∗)}

(4.54)
= max

Y ∗∈L∞+
{−min

y>0
{ min

h∈D(y)
E[(Y ∗ − h)+H] + Ṽ0y}+ E[HY ∗]− ρ∗(−Y ∗)}

= max
Y ∗∈L∞+ ,y>0,h∈D(y)

{E[(Y ∗ ∧ h)H]− Ṽ0y − ρ∗(−Y ∗)}.

With Theorem 2.6 it follows that Ỹ ∗ attains the maximum with respect to Y ∗ ∈ L∞+ .

Remark 4.36 shows that the condition ỹ > 0 such that ỹ ∈ ∂ueY ∗(Ṽ0) ensures that
ỹ attains the above infimum with respect to y > 0. Theorem 4.35 shows that
h̃ := h̃eY ∗(ỹ) ∈ D(ỹ) attains the above infimum with respect to h ∈ D(ỹ). Thus,

there exists a triple (Ỹ ∗, ỹ, h̃) ∈ (L∞+ × IR>0×D(y)) solving (4.56). The application

of Theorem 4.37 with Y ∗ = Ỹ ∗ leads to the result about the structure of ϕ̃. It follows
that (ϕ̃, Ỹ ∗) is the saddle point described in Theorem 2.6. Theorem 4.1 shows that
(Ṽ0, ξ̃) solves the dynamic hedging problem (4.45), where ξ̃ is the superhedging
strategy of the modified claim ϕ̃H obtained by the optional decomposition theorem
(Theorem C.3).
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If we compare Theorem 4.38 (general incomplete market) with Theorem 4.9 (com-
plete and special incomplete markets), we see that both lead to a structural result
of the solution ϕ̃ to the static optimization problem (4.4). If ZP is compact, the
0-1-structure of an optimal randomized test ϕ̃ can be deduced with elements from P
and elements from the representing set of the risk measure (L∞+ or Q, this depends
on the choice of the risk measure). In the general case, this is not possible any
longer. The 0-1-structure of an optimal randomized test ϕ̃ can be deduced as well
with elements from the representing set L∞+ (respectively Q), but no longer with
elements from P . We have to pass to a larger set D(y) which is a subset of L0

+.
Thus, in the case where ZP is compact, we can deduce a more detailed result about
the structure of ϕ̃.
When special risk measures ρ as in Section 4.1 are considered, the results are anal-
ogously to Theorem 4.38. A special choice of ρ has an impact on the optimization
problem (4.56) regarding the set, the solution Ỹ ∗ is attained in, and on the repre-
sentation of the conjugate function ρ∗ of ρ.

4.2.1 Convex Hedging

If ρ : L1 → IR ∪ {+∞} satisfies additionally to Assumption 4.34 the translation
property, it forms a convex risk measure as in Assumption 4.12. Then, ρ admits the
dual representation (see Theorem 1.16)

ρ(Y ) = sup
Q∈Q

{EQ[−Y ]− supeY ∈Aρ

EQ[−Ỹ ]}, (4.57)

where Q := {Q ∈ Q̂ : ZQ ∈ L∞} is the set of all probability measures Q, absolutely
continuous to P and with densities in L∞ and Aρ is the acceptance set of ρ. If we
consider problem (4.46) with a convex risk measure ρ satisfying Assumption 4.12,
its Fenchel dual problem (see Theorem 2.6) is

sup
Q∈Q

inf
ϕ∈R0

{EQ[(1− ϕ)H]− sup
Y ∈Aρ

EQ[−Y ]}. (4.58)

Then, Theorem 4.38 and the dual representation (4.57) of ρ lead to the following
corollary.

Corollary 4.39 (Convex Hedging). Let Assumption 4.33 be satisfied and let ρ be
a convex risk measure satisfying Assumption 4.12. There exists a solution ϕ̃ to
problem (4.46) and a solution Q̃ ∈ Q to (4.58). Let ỹ > 0 such that ỹ ∈ ∂u eQ(Ṽ0).

Then, there exists an h̃ ∈ D(ỹ) such that the triple (Q̃, ỹ, h̃) ∈ (Q × IR>0 × D(y))
solves

max
Q∈Q,y>0,h∈D(y)

{E[(ZQ ∧ h)H]− Ṽ0y − sup
Y ∈Aρ

EQ[−Y ]}.

It follows that:
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• The solution to (4.46) is

ϕ̃ =





1 : 0 ≤ h̃ < Z̃Q

0 : h̃ > Z̃Q

P − a.s.

with
E[ϕ̃Hh̃] = Ṽ0ỹ.

• (ϕ̃, Q̃) is the saddle point of the functional (ϕ,Q) 7→ EQ[(1− ϕ)H]
− supY ∈Aρ

EQ[−Y ] in R0 ×Q.

• (Ṽ0, ξ̃) solves the dynamic hedging problem (4.45), where ξ̃ is the superhedg-
ing strategy of the modified claim ϕ̃H, obtained by the optional decomposition
theorem (Theorem C.3).

4.2.2 Coherent Hedging

Let us consider a coherent risk measure ρ : L1 → IR ∪ {+∞} satisfying Assump-
tion 4.16. Then, the Fenchel dual problem of problem (4.46) is (see Theorem 2.6)

sup
Q∈Q

inf
ϕ∈R0

EQ[(1− ϕ)H], (4.59)

where Q, the maximal representing set of ρ, is a convex and weakly* closed subset of
{Q ∈ Q̂ : ZQ ∈ L∞} (see Theorem 1.25). Theorem 4.38 and the dual representation
(Theorem 1.25) of ρ lead to the following corollary.

Corollary 4.40 (Coherent Hedging). Let Assumption 4.33 be satisfied and let ρ

be a coherent risk measure satisfying Assumption 4.16. There exists a solution ϕ̃

to problem (4.46) and a solution Q̃ ∈ Q to problem (4.59). Let ỹ > 0 such that
ỹ ∈ ∂u eQ(Ṽ0). Then, there exists an h̃ ∈ D(ỹ) such that the triple (Q̃, ỹ, h̃) ∈
(Q× IR>0 ×D(y)) solves

max
Q∈Q,y>0,h∈D(y)

{E[(ZQ ∧ h)H]− Ṽ0y}.

It follows that:

• The solution to (4.46) is

ϕ̃ =





1 : 0 ≤ h̃ < Z̃Q

0 : h̃ > Z̃Q

P − a.s.

with
E[ϕ̃Hh̃] = Ṽ0ỹ.
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• (ϕ̃, Q̃) is the saddle point of the functional (ϕ,Q) 7→ EQ[(1−ϕ)H] in R0×Q.

• (Ṽ0, ξ̃) solves the dynamic hedging problem (4.45), where ξ̃ is the superhedg-
ing strategy of the modified claim ϕ̃H, obtained by the optional decomposition
theorem (Theorem C.3).

As in Section 4.1.3, we can compare Corollary 4.40 with the results of Nakano
[32]. Corollary 4.40 shows that the typical 0-1-structure of an optimal randomized
test ϕ̃ is deduced with respect to elements from the sets Q and D(ỹ). Thus, with
our method it is not necessary to consider the enlarged set Z that contains the
set {ZQ : Q ∈ Q} as in [32]. But in contrast to the complete case (Corollary 4.17)
considered in Section 4.1, it is no longer possible to deduce the structure of ϕ̃ directly
with elements from ZP .

4.2.3 Robust Efficient Hedging

Let us consider a Lipschitz continuous loss function l satisfying Assumption 4.18.
Let the risk measure in the problem of hedging in incomplete markets be the robust
version of the expectation of the loss function (see Section 4.1.4)

ρ1(Y ) = sup
Q∈Q

EQ[L(−Y )], Y ∈ L1,

where L : L1 → L0
+ is as in Section 4.1.4 defined by L(Y )(ω) := l(Y (ω)). The prob-

ability measures Q ⊆ Q̂ take into account an uncertainty regarding the underlying
model and satisfy Assumption 4.22. We can show that the risk measure ρ1 satisfies
Assumption 4.34 (see Proposition 4.21 and 4.26) and has the dual representation

ρ1(Y ) = sup
Y ∗∈L∞+

{E[−Y Y ∗]− ρ∗1(−Y ∗)}.

Thus, this fits exactly into the setting of Theorem 4.38 and we can solve the problem
by an application of this theorem. Analogously, we can treat the more general case
where the loss function l and the set of probability measures Q satisfy Assump-
tion 4.18, 4.20, 4.22 and 4.23.
In the case of a linear loss function, we can go a step further and deduce the struc-
ture of the solution ϕ̃ with respect to elements from Q. We consider the hedging
problem (4.46) with the risk measure

ρ2(Y ) = sup
Q∈Q

EQ[−Y ], (4.60)

which is a continuous coherent risk measure on L1 with the maximal representing
set Qmax = co∗Q (see Section 4.1.4). Its Fenchel dual problem is

sup
Q∈co∗Q

inf
ϕ∈R0

EQ[(1− ϕ)H]. (4.61)
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An application of Corollary 4.40 with the maximal representing set co∗Q yields the
following result.

Corollary 4.41 (Robust Efficient Hedging with linear loss function). Let the risk
measure ρ be as in (4.60) and let Assumption 4.22 and 4.33 be satisfied. There
exists a solution ϕ̃ to problem (4.46) and a solution Q̃ ∈ co∗Q to its dual problem
(4.61). Let ỹ > 0 such that ỹ ∈ ∂u eQ(Ṽ0). Then, there exists an h̃ ∈ D(ỹ) such that

the triple (Q̃, ỹ, h̃) ∈ (co∗Q× IR>0 ×D(y)) solves

max
Q∈co∗Q,y>0,h∈D(y)

{E[(ZQ ∧ h)H]− Ṽ0y}.

It follows that:

• The solution to (4.46) is

ϕ̃ =





1 : 0 ≤ h̃ < Z̃Q

0 : h̃ > Z̃Q

P − a.s.

with

E[ϕ̃Hh̃] = Ṽ0ỹ.

• (ϕ̃, Q̃) is the saddle point of the functional (ϕ,Q) 7→ EQ[(1−ϕ)H] in R0×co∗Q.

• (Ṽ0, ξ̃) solves the dynamic hedging problem (4.45), where ξ̃ is the superhedg-
ing strategy of the modified claim ϕ̃H, obtained by the optional decomposition
theorem (Theorem C.3).

With Theorem 4.38, the robust efficient hedging problem can be solved when the
loss function l and the set of probability measures Q satisfy Assumption 4.18, 4.20,
4.22 and 4.23. Corollary 4.41 treats the special case of a linear loss function. These
results generalize Proposition 4.1 in Föllmer and Leukert [17] and Theorem 1.19 in
Xu [48]. In [17] and [48] the set Q = {P} is a singleton and a linear loss function
is considered. In [17], the problem is solved in the complete financial market, i.e.,
P = {P ∗} and in [48] the problem is solved in the incomplete financial market. With
our method it is possible to solve the problem not only in the case Q = {P}, but
also for more general sets Q satisfying Assumption 4.22 and even for more general
loss functions.

Example 4.42. For a risk measure ρ (regardless if it is a convex or coherent risk
measure or as general as in Assumption 4.5), the structure of a solution ϕ̃ to the
hedging problem (4.2), (4.3) is not given explicitly (it depends on the dual solutions
(Ỹ ∗, λ̃) in the case where ZP is compact (see Theorem 4.9), respectively on the dual
solutions (Ỹ ∗, ỹ, h̃) in the general incomplete market (see Theorem 4.38)). We give
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a very simple example that is connected to different kinds of risk measures and a
special case, where the problem can be solved explicitly.
Let us consider the problem of minimizing the risk of losses −(H − VT )+ due to the
shortfall where the risk is measured by the coherent risk measure ρ : L1 → IR∪{+∞}
defined by

ρ(X) = EQ[−X].

This means, the representing set in the dual representation of the coherent risk
measure (see Theorem 1.25) is a singleton, Q = {Q} with ZQ ∈ L∞. Thus we look

for an admissible strategy (V0, ξ̃) that minimizes

ρ(−(H − VT )+) = EQ[(H − VT )+] (4.62)

under the constraint

0 < V0 ≤ Ṽ0, (4.63)

where Ṽ0 is a given capital constraint that is strictly less than the superhedging price
U0 of H. Theorem 4.1 shows that the corresponding static optimization problem is

max
ϕ∈R

EQ[ϕH] (4.64)

under the constraint

∀P ∗ ∈ P : EP ∗ [ϕH] ≤ Ṽ0. (4.65)

The same optimization problem with HZQ = ZP arises in [16], Section 4, where the
problem of quantile hedging in the incomplete case is considered. The risk measure
used there is just the probability of the shortfall.
In [17], the expectation of a loss function is used as a risk measure. In Section 4, the
problem of minimizing the expected shortfall is considered. This means, the linear
loss function l(x) = x is used. This leads to the optimization problem (4.64), (4.65)
with Q = P .
Corollary 4.17 and 4.40 make it possible to solve these problems not only in the
complete market. We consider two cases. First, let ZP be compact. Under the
assumption Ṽ0 > 0, the following conditions are necessary and sufficient for the
optimality of ϕ̃ with respect to the optimization problem (4.64), (4.65) and give a
result about the structure of the solution (see Corollary 4.17):

ϕ̃ =





1 : HZQ > H
∫
P ZP ∗dλ̃

0 : HZQ < H
∫
P ZP ∗dλ̃

P − a.s.

with

EP ∗ [ϕ̃H] = Ṽ0 λ̃− a.s.,
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where λ̃, a finite measure on P , is the solution of the dual problem of (4.64), (4.65),
i.e., a solution to

inf
λ∈Λ+

{
E[(HZQ −H

∫

P

ZP ∗dλ)+] + Ṽ0λ(ZP)
}

.

In the general incomplete market, we can apply Corollary 4.40 and obtain that the
structure of the optimal solution ϕ̃ of (4.64), (4.65) is the following

ϕ̃ =





1 : 0 ≤ h̃ < ZQ

0 : h̃ > ZQ

P − a.s.

with
E[ϕ̃Hh̃] = Ṽ0ỹ,

where ỹ ∈ ∂uQ(Ṽ0) is assumed to satisfy ỹ > 0 and h̃ ∈ D(ỹ) solves

inf
h∈D(ey)

E[(ZQ − h)+H].

In both cases, the dynamic coherent hedging problem (4.62), (4.63) can be solved
by the optional decomposition theorem (Theorem C.3). The solution is (Ṽ0, ξ̃),
where ξ̃ is the superhedging strategy of the corresponding modified claim ϕ̃H (see
Theorem 4.1).
If additionally P = {P ∗} is a singleton as in [32], Proposition 4.1, i.e., we work in
a complete financial market, but with capital constraint Ṽ0 < U0 = EP ∗ [H] and
can apply Corollary 4.17. Then, the static problem can be solved explicitly. The
optimal solution is

ϕ̃(ω) = 1{ZQ>eaZP∗}(ω) + δ1{ZQ=eaZP∗}(ω),

where
ã = inf{a | EP ∗ [H1{ZQ>aZP∗}] ≤ Ṽ0}

and

δ =





Ṽ0 − EP ∗ [H1{ZQ>eaZP∗}]

EP ∗ [H1{ZQ=eaZP∗}]
: P ∗({ZQ = ãZP ∗} ∩ {H > 0}) > 0

c ∈ [0, 1] arbitrarily : P ∗({ZQ = ãZP ∗} ∩ {H > 0}) = 0.

When Q is equal to P this coincides with Proposition 4.1 in [17].
If there would be no capital constraint in the complete case, the optimal randomized
test of the static problem would be ϕ̃ = 1 on {H > 0}. That means ϕ̃H = H.
Thus, the optimal strategy of problem (4.62), (4.63) would be exactly the replicating
strategy (EP ∗ [H], ξ̃) of the claim H.



Appendix

A Results from Convex Analysis

For the convenience of the reader, we collect some important definitions and results
from Convex Analysis that are used in this thesis. Most of the results can be found
in [11] or [50], if not, we give the proofs.

Definition A.1 ([2], Definition 5.52). A topology on a linear vector space X is
called locally convex if every neighborhood of zero contains a convex neighborhood
of zero.

Definition A.2 ([2], Definition 2.5). A topology on X is called separated or Haus-
dorff if any two distinct points can be separated by two disjoint neighborhoods of the
points. That is, for each pair X1, X2 ∈ X with X1 6= X2 there exist neighborhoods
U(X1) and U(X2) such that U(X1) ∩ U(X2) = ∅.
We call a linear vector space X with a locally convex Hausdorff topology a sepa-
rated locally convex space. In the following, let X and Y be separated locally
convex spaces and X ∗,Y∗ their topological dual spaces. This means, X ∗ is the vector
space of all continuous linear functionals on X . Let 〈X, X∗〉 denote the value of the
continuous linear functional X∗ at X. For Y∗ the notation is analogously.

Definition A.3 ([50], Section 2.3). Let f : X → IR ∪ {+∞}. The function f ∗ :
X ∗ → IR ∪ {±∞}

f ∗(X∗) := sup
X∈X

{〈X, X∗〉 − f(X)}

is called the conjugate or Fenchel conjugate of f . The biconjugate f ∗∗ : X →
IR ∪ {±∞} of f ∗ is defined as

f ∗∗(X) := sup
X∗∈X ∗

{〈X, X∗〉 − f ∗(X∗)}.

We recall that a function f : X → IR ∪ {+∞} is called proper if dom f 6= ∅.
Theorem A.4 ([50], Theorem 2.3.1, Corollary 2.3.2). Let f : X → IR ∪ {+∞} be
a function. Then, f ∗ is convex and weakly* lower semicontinuous. It holds, f ∗ is
proper if and only if f is proper.

87
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Theorem A.5 (biconjugation theorem, [50], Theorem 2.3.3). Let f : X → IR ∪
{+∞} be convex, proper and lower semicontinuous. Then,

f = f ∗∗.

Example A.6. [[50], Section 2.3] Let ∅ 6= M ⊆ X . The support function δM :
X ∗ → IR ∪ {+∞} of M is defined as

δM(X∗) := sup
X∈M

〈X, X∗〉 .

Let ∅ 6= M∗ ⊆ X ∗. The support function δM∗ : X → IR ∪ {+∞} of M∗ is defined
similarly as

δM∗(X) := sup
X∗∈M∗

〈X, X∗〉 .

The support function δM is weakly* lower semicontinuous, positively homogeneous
and subadditive and δM∗ is lower semicontinuous, positively homogeneous and sub-
additive.

Example A.7. [[50], Section 2.3] Let ∅ 6= M ⊆ X . The support function of M

coincides with the support function on the closed convex hull of M

δM(X∗) = sup
X∈M

〈X,X∗〉 = δcoM(X∗) = sup
X∈coM

〈X, X∗〉 .

Example A.8. [[50], Section 2.1] Let M ⊆ X . The indicator function IM : X →
IR ∪ {+∞}

IM(X) =

{
0 : X ∈ M

+∞ : X /∈ M.

is convex if and only if the set M is convex.

Example A.9. [[11], Example I.4.3] Let ∅ 6= M ⊆ X . Then,

I∗∗M (X) = IcoM(X).

Example A.10. Let ∅ 6= M ⊆ X . The conjugate of the support function of M is
an indicator function of the closed convex hull of M

δ∗M(X) = IcoM(X).

Proof. Consider the function f : X → IR ∪ {+∞} defined by f(X) := IM(X). By
definition of the conjugate, it holds

f ∗(X∗) = sup
X∈X

{〈X, X∗〉 − IM(X)} = sup
X∈M

〈X, X∗〉 = δM(X∗).

By Example A.9, we obtain

f ∗∗(X) = I∗∗M (X) = δ∗M(X) = IcoM(X).
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We recall that the negative dual cone K∗ of a cone K ⊆ X is defined by K∗ =
{X∗ ∈ X ∗ : ∀X ∈ K : 〈X,X∗〉 ≤ 0}.
Example A.11. Let K ⊆ X be a cone containing 0 ∈ X . Then, the support
function of K is the indicator function of the negative dual cone K∗ of K

δK(X∗) = sup
X∈K

〈X, X∗〉 = IK∗(X∗).

Proof. First, take X∗ ∈ K∗. Since 0 ∈ K, supX∈K 〈X, X∗〉 = 0 for all X∗ ∈ K∗.
Now, take X∗ /∈ K∗. This means, there exists X ∈ K, such that

〈
X,X∗〉 > 0.

Consider a sequence tn > 0 for all n ∈ IN with tn → +∞. Since K is a cone,
tnX ∈ K for all n ∈ IN. We obtain

∀X∗ /∈ K∗ :
〈
tnX, X∗〉 = tn

〈
X, X∗〉 → +∞.

Thus, supX∈K 〈X,X∗〉 = +∞ for all X∗ /∈ K∗.

The following theorem is a special case of the fundamental duality formula, Theo-
rem III.4.1 in [11].

Theorem A.12 (Fenchel’s duality theorem). Let f : X → IR ∪ {+∞}, g : Y →
IR ∪ {+∞} and A : X → Y be a linear and continuous operator with the adjoint
operator A∗ : Y∗ → X ∗. Let p, d ∈ IR ∪ {±∞} be the values of the primal and the
dual optimization problem,

p = inf
X∈X

{f(X) + g(AX)}
d = sup

Y ∗∈Y∗
{−f ∗(A∗Y ∗)− g∗(−Y ∗)},

respectively. Then, weak duality holds true, i.e., d ≤ p.
If f and g are convex, the value p of the primal problem is finite and there exists
a point X0 ∈ dom f such that g is continuous and finite in AX0 ∈ Y, then strong
duality holds true, i.e., d = p and there exists a Ỹ ∗ ∈ Y∗ that attains the supremum
in the dual problem.

Proof. The first part of the theorem (weak duality) follows from Proposition III.1.1
in [11]. The results about strong duality follow from Theorem III.4.1 and Re-
mark III.4.2 in [11].

Definition A.13 ([11], Section I.5). Let f : X → IR∪{+∞}. An element X∗ ∈ X ∗

is called a subgradient of the function f at X if

f(X) + f ∗(X∗) = 〈X, X∗〉 .

The set of all subgradients of the function f at X is denoted by ∂f(X) and is called
the subdifferential of f at X.
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If ∂f(X) 6= ∅, then f = f ∗∗ and ∂f(X) = ∂f ∗∗(X) ([11], Section I.5). This justifies
why only proper convex functions are considered when discussing subdifferentiabil-
ity. A function f : X → IR∪{+∞} is called concave if −f is convex. For a concave
function f , the subdifferential is defined as the negative of the subdifferential of the
convex function −f .

Definition A.14 ([33], Section 30). Let f : X → IR ∪ {+∞} be concave.

∂f(X) := −∂(−f)(X).

B Results from Functional Analysis

B.1 Barrelledness, Weak* and Mackey Topology

In this section, we give the definitions of the weak* and the Mackey topology on
X ∗. Furthermore, we shall present the theory that leads to an important result that
is used in this thesis: A weakly* lower semicontinuous, convex and finite valued
functional on L∞ is continuous with respect to the Mackey topology.

Definition B.1 ([23], Definition 15). Let X be a separated locally convex space and
X ∗ its topological dual space. The coarsest locally convex Hausdorff topology on X
for which the map X 7→ 〈X, X∗〉 is continuous for each X∗ ∈ X ∗, is called the weak
topology σ(X ,X ∗) on X .
The coarsest locally convex Hausdorff topology on X ∗ for which the map X∗ 7→
〈X, X∗〉 is continuous for each X ∈ X , is called the weak* topology σ(X ∗,X ) on
X ∗.

Definition B.2 ([2], Definition 4.66). A dual pair is a pair (X ,X ∗) of vector spaces
together with a function (X, X∗) 7→ 〈X, X∗〉, from X ×X ∗ into IR such that 〈X,X∗〉
is a bilinear form that satisfies the following. If 〈X, X∗〉 = 0 for each X∗ ∈ X ∗, then
X = 0 and if 〈X, X∗〉 = 0 for each X ∈ X , then X∗ = 0.

Definition B.3 ([2], Definition 5.85). A locally convex Hausdorff topology τ on X
is consistent with the dual pair (X ,X ∗) if (X , τ)∗ = X ∗. Consistent topologies on
X ∗ are defined analogously.

Definition B.4 (Mackey-Arens, [23], Theorem I.11, Definition I.17). The Mackey
topology is the finest locally convex Hausdorff topology on X ∗ consistent with the
dual pair (X ,X ∗).

Example B.5. Let X ∗ = L∞(Ω,F , P ). The Mackey topology with respect to
the dual pair (L∞, L1) is finer than the weak* topology on L∞. If L∞ is endowed
with the weak* topology or the Mackey topology, its topological dual space can be
identified with L1. The norm topology on L∞ is finer than the Mackey topology
with respect to the dual pair (L∞, L1). If L∞ is endowed with the norm topology,
its topological dual space can be identified with ba(Ω,F , P ).



B. RESULTS FROM FUNCTIONAL ANALYSIS 91

Definition B.6 ([23], Definition I.2, II.1 and II.2). A set A ⊆ X is said to be
circled if tA ⊆ A for every t ∈ IR with |t| ≤ 1 and it is called absorbing if for
each X ∈ X there is an α > 0 such that X ∈ tA for all t ∈ IR with |t| ≥ α.
A locally convex space (X , τ) is called a barrelled space if each closed, circled,
convex and absorbing subset of X is a neighborhood of zero.

Example B.7. Every Banach space is a barrelled space (see [23], Corollary I.1).
Thus, the space Lp, p ∈ [0,∞], endowed with the norm topology, is a barrelled space.

Theorem B.8 ([23], Corollary II.2, II.4). A locally convex space (X , τ) is barrelled
if and only if τ is the Mackey topology.

Example B.9. The space L∞, endowed with the Mackey topology with respect to
the dual pair (L∞, L1) is a barrelled space.

Theorem B.10 ([11], Corollary I.2.5). Let X be a barrelled space. Then, every
lower semicontinuous, convex function ρ : X → IR ∪ {+∞} is continuous over the
interior of its effective domain.

Now, it is possible to prove the following corollary.

Corollary B.11. A weakly* lower semicontinuous, convex and finite valued func-
tional on L∞ is continuous with respect to the Mackey topology.

Proof. A weakly* lower semicontinuous functional of L∞ is also lower semicontinu-
ous in the finer Mackey topology with respect to the dual pair (L∞, L1) ([2], Lemma
2.48-2.). Since L∞, endowed with the Mackey topology is a barrelled space (Theo-
rem B.8), we can apply Theorem B.10 and obtain the stated result.

B.2 Ordering Cones and their Interior

In this subsection, we shall consider several important cones that induce an order
relation in the corresponding space and answer the question if these cones have an
empty (or not empty) interior. The existence of interior points is important when
dealing with the question if the indicator function of the cone is continuous in at
least one point.
First, let us consider the Banach space L of continuous functions l : C∗ → IR on a
compact set C∗, endowed with the supremum norm ‖l‖L = supX∗∈C∗ |l(X∗)|. Let
L+ := {l ∈ L : ∀X∗ ∈ C∗ : l(X∗) ≥ 0} be the cone generating the pointwise partial
order on L defined by l1 ≤ l2 if and only if l2 − l1 ∈ L+.

Lemma B.12. It holds intL+ 6= ∅.
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Proof. Consider l0(X
∗) := 1(X∗) = 1 for all X∗ ∈ C∗. Thus, l0 ∈ L+. l0 is an

interior point of L+ if and only if there exists an ε−neighborhood Uε(l0) := {l ∈ L :
‖l − l0‖L < ε} of l0 with ε > 0 such that Uε(l0) ⊆ L+. For all l ∈ Uε(l0) it holds
supX∗∈C∗ |l(X∗)− 1| < ε, i.e., for all X∗ ∈ C∗ we have 1− ε < l(X∗) < 1 + ε. Thus,
for 0 < ε ≤ 1 it holds that Uε(l0) ⊆ L+.

Let us consider the space L∞ = L∞(Ω,F , P ), endowed with the norm ‖X‖L∞ =
inf{c ≥ 0 : P [|X| > c] = 0} and its ordering cone L∞+ := {X ∈ L∞ : X ≥ 0 P−a.s.}.
Lemma B.13. It holds int L∞+ 6= ∅ with respect to the norm topology.

Proof. Consider X0(ω) := 1 P − a.s. Thus, X0 ∈ L∞+ . Define Uε(X0) := {X ∈ L∞ :
‖X −X0‖L∞ < ε}. Thus, for all X ∈ Uε(X0) it holds |X(ω)− 1| < ε P − a.s., i.e.,
1− ε < X(ω) < 1 + ε P − a.s. Thus, Uε(X0) ⊆ L∞+ for 0 < ε ≤ 1.

Now, let us consider L∞, endowed with the weak* topology and L∞+ as above.

Lemma B.14. It holds int L∞+ = ∅ with respect to the weak* topology.

Proof. Consider An ∈ F with P (An) > 0 for all n ∈ IN and with P (An) → 0. Take
an arbitrary X ∈ L∞+ . Then, the sequence X − 2‖X‖L∞IAn converges with respect
to the weak* topology to X, since

∀Y ∈ L1 : E[(X − 2‖X‖L∞IAn)Y ] = E[XY ]− 2‖X‖L∞E[IAnY ] → E[XY ].

This means, to every X ∈ L∞+ there exists a sequence converging with respect to
the weak* topology to X, but

∀n ∈ IN : X − 2‖X‖L∞IAn /∈ L∞+ .

Thus, every ε−neighborhood Uε(X) of X ∈ L∞+ with respect to the weak* topology
contains elements that are not in L∞+ . Thus, int L∞+ = ∅ with respect to weak*
topology. Note that the sequence {X − 2‖X‖L∞IAn}n∈IN does not converge with
respect to the norm topology on L∞.

For the sake of completeness let us consider Lp = Lp(Ω,F , P ), p ∈ [1,∞), endowed
with the strong topology, generated by the norm ‖X‖p

Lp = E[|X|p] and the ordering
cone Lp

+ := {X ∈ Lp : X ≥ 0 P − a.s.}. It is well-known that int Lp
+ = ∅.

B.3 Nets

In this section we recall the definition of a net (see for instance [2]).
A sequence in X is a function from the natural numbers IN into X . A net is a direct
generalization of the notion of a sequence. Instead of the natural numbers, the index
set can be more general. The key issue is that the index set has a sense of direction.
A direction º on a (not necessarily infinite) set D is a reflexive transitive binary
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relation with the property that each pair has an upper bound. That is, for each pair
α, β ∈ D there exists some γ ∈ D satisfying γ º α and γ º β. A directed set is
any set D, equipped with a direction º.

Definition B.15 (Definition 2.8, [2]). A net in a set X is a function X : D → X ,
where D is a directed set. The directed set is called the index set of the net and
the members of D are indexes.

In particular, sequences are nets. A net {Xα} in a topological spaces converges to
some point X, if for each neighborhood V of X, there is some index α0, depending
on V , such that Xα ∈ V for all α ≥ α0. We say X is the limit of the net and write
Xα → X. In separated topological vector spaces limits are unique.

Theorem B.16 (Theorem 2.9, [2]). A topological space is separated if and only if
every net converges to at most one point.

Whenever possible, it is desirable to replace nets with sequences. One case, that
allows this (see [2], Section 2.9), is the case of a first countable topology (each point
has a countable neighborhood base). This class of spaces includes all metric spaces,
hence all Banach spaces. Thus, in the Banach space Lp(Ω,F , P ), p ∈ [1,∞] with
the norm topology, it is sufficient to work with sequences. Note that the space
L∞(Ω,F , P ), endowed with the weak* topology is not first countable due to the
following results.

Lemma B.17 ([29], Corollary 2.3.12). A separated topological vector space is metriz-
able if and only if it is first countable.

Lemma B.18 ([29], Proposition 2.6.12). Let X be a Banach space. Then, the weak*
topology on the dual X ∗ is metrizable if and only if X is finite dimensional.

Thus, we have to work with nets if the space L∞(Ω,F , P ) is endowed with the weak*
topology.

B.4 Auxiliary Results about Integration

Theorem B.19 (Lebesgue’s dominated convergence theorem, [10], Theorem IV.10.10).
Let (Ω,F , µ) be a measure space. If Yn is a sequence of µ−integrable functions which
converges µ − a.s. to Y and if Z is a µ−integrable function such that |Yn(ω)| ≤
Z(ω) µ− a.s. for all n ∈ IN, then Y is µ−integrable and

∫

Ω

Y (ω)dµ = lim
n→∞

∫

Ω

Yn(ω)dµ.

In this thesis we need the following version of Lebesgue’s dominated convergence
theorem.
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Corollary B.20. Let (Ω,F , P ) be a complete probability space and Y ∗ ∈ L1. We
define a σ−additive set function Q = Q(Y ∗), absolutely continuous with respect to
P , by the Radon-Nikodym derivative dQ

dP
= Y ∗. If Yn is a sequence of measurable

functions which converges P − a.s. to Y , and if Z is a Q−integrable function such
that |Yn(ω)| ≤ Z(ω) P − a.s. for all n ∈ IN. Then, Y is Q−integrable and

EQ[Y ] = lim
n→∞

EQ[Yn].

If there exists a constant c ∈ IR, such that |Yn(ω)| ≤ c P − a.s. for all n ∈ IN, then

∀Y ∗ ∈ L1 : E[Y Y ∗] = lim
n→∞

E[YnY
∗].

Proof. Because of Q absolutely continuous with respect to P , Yn converges also
Q − a.s. to Y and we have |Yn(ω)| ≤ Z(ω) Q − a.s. for all n ∈ IN and thus, Yn is
also Q−integrable. Hence, we can apply Theorem B.19. If additionally |Yn(ω)| ≤
Z(ω) = c P − a.s. for all n ∈ IN, then Z is integrable with respect to Q(Y ∗) for all
Y ∗ ∈ L1 and we obtain the stated results.

Theorem B.21 (Lemma von Fatou, [10], Theorem III.6.19). Let (Ω,F , µ) be a
positive measure space. If {Yn}n∈IN is a sequence of nonnegative measurable, but not
necessarily integrable, functions, then

∫

Ω

lim inf
n→∞

Yn(ω)dµ ≤ lim inf
n→∞

∫

Ω

Yn(ω)dµ.

Theorem B.22 (Tonelli, [10], Corollary III.11.15). Let (R, ΣR, ν) = (S, ΣS, µ) ×
(T, ΣT , λ) be the product of two positive, σ-finite measure spaces. Let f : S×T → IR
be measurable with respect to the product σ-algebra ΣR and let

∫

S

{ ∫

T

|f(s, t)|dλ(dt)
}

µ(ds) < +∞.

Then f is ν-integrable and
∫

S

{ ∫

T

f(s, t)dλ(dt)
}

µ(ds) =

∫

T

{ ∫

S

f(s, t)µ(ds)
}

dλ(dt) < +∞.

C Results from Stochastic Finance

We give the definition of the essential supremum of a family of random variables
and review the optional decomposition theorem of Föllmer and Kabanov [14].

Theorem C.1 (Theorem A.32, [19]). Let Φ be any set of random variables on
(Ω,F , P ).
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(i) There exists a random variable ϕ∗ such that

∀ϕ ∈ Φ : ϕ∗ ≥ ϕ P − a.s. (C.1)

Moreover, ϕ∗ is P − a.s. unique in the following sense: Any other random
variable ψ with property (C.1)satisfies ψ ≥ ϕ∗ P − a.s.

(ii) Suppose that Φ is directed upwards, i.e., for ϕ, ϕ̃ ∈ Φ there exists ψ ∈ Φ with
ψ ≥ ϕ∨ ϕ̃. Then, there exists an increasing sequence ϕ1 ≤ ϕ2 ≤ ... in Φ, such
that ϕ∗ = limn→∞ ϕn P − a.s.

Definition C.2 (Definition A.33, [19]). The random variable ϕ∗ in Theorem C.1 is
called the essential supremum of Φ with respect to P , and we write

ess. sup Φ = ess. sup
ϕ∈Φ

ϕ := ϕ∗.

Theorem C.3 (optional decomposition theorem, [14], Theorem 1). Let S be an IRd-
valued right-continuous semimartingale on a complete probability space (Ω,F , P )
with filtration (Ft)t∈[0,T ]. Let P 6= ∅ denote the set of equivalent measures with
respect to P such that S is a local martingale with respect to P ∗ ∈ P. Let Ut

be a right-continuous process which is a local supermartingale with respect to any
P ∗ ∈ P. Then there exists an increasing, right-continuous optional (that means
adapted) process C with C0 = 0 and a predictable ξ such that

Ut = U0 +

∫ t

0

ξsdSs − Ct.

The following theorem is a duality result of Xu [48], based on a result for expected
utility maximization problems due to Kramkov and Schachermayer [27]. First, we
review the assumptions of this theory. Let the discounted asset price process be
a semimartingale S = (St)t∈[0,T ] on a complete probability space (Ω,F , P ) with
filtration (Ft)t∈[0,T ] that satisfies the usual conditions.

Assumption C.4. Let the set of equivalent martingale measures P satisfy P 6= ∅.

Assumption C.5. Let U(x, ω) : (IR+×Ω) → IR+ be a utility function that satisfies
U(·, ω) is continuous, increasing and concave for any fixed ω and U(0, ω) = 0. The
right-hand derivative satisfies U r(0, ω) > 0 and U r(∞, ω) = limx→∞ U r(x, ω) = 0
for all ω ∈ Ω.

Assumption C.6. Let U satisfy U(x, ω) ≤ Z(ω) P − a.s. for all x ≥ 0 and let
Z ∈ L1(Ω,F , P ).
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We introduce the set of admissible, self-financing value processes V starting at initial
capital x > 0

V(x) := {V : Vt = x +

∫ t

0

ξsdSs ≥ 0, t ∈ [0, T ]}.

Let us denote the set of contingent claims super-replicable by some admissible self-
financing strategies with initial capital x by

C(x) := {g ∈ L0(Ω,F , P ) : 0 ≤ g ≤ VT for some V ∈ V(x)}.
We consider the optimization problem of maximizing the expected utility at time T

u(x) = sup
V ∈V(x)

E[U(VT (ω), ω)] = sup
g∈C(x)

E[U(g(ω), ω)]. (C.2)

Let us define the set of processes Y by

Y(y) := {Y ≥ 0 : Y0 = y and V Y is a P -supermartingale for any V ∈ V(1)}
and the set of random variables h by

D(y) := {h ∈ L0(Ω,F , P ) : 0 ≤ h ≤ YT for some Y ∈ Y(y)}.
Let us consider the function W (y, ω) : (IR+ × Ω) → IR+ defined for y ≥ 0 by

W (y, ω) := sup
x≥0
{U(x, ω)− xy}.

It holds W (y, ω) = (−U + IIR+)∗(−y, ω). We assign a dual problem to (C.2) by

w(y) = inf
Y ∈Y(y)

E[W (YT (ω), ω)] = inf
h∈D(y)

E[W (h(ω), ω)]. (C.3)

The following duality theorem holds true.

Theorem C.7 ([48], Theorem 1.9 and 1.13). Let Assumptions C.4, C.5 and C.6 be
satisfied. Then, it holds:
(i) For x > 0 and y > 0 an optimal solution g̃(x) ∈ C(x) to (C.2) exists and an
optimal solution h̃(y) ∈ D(y) to (C.3) exists.
(ii) The value functions u and w satisfy the following relationship

w(y) = sup
x>0
{u(x)− xy} for any y > 0 and

u(x) = inf
y>0
{w(y) + xy} for any x > 0.

(iii) Let x > 0 and y > 0 such that y ∈ ∂u(x). Then, E[g̃h̃] = xy and h̃ ∈
∂U(g̃) P − a.s., or equivalently, g̃ ∈ −∂W (h̃) P − a.s. if and only if g̃ solves (C.2)
and h̃ solves (C.3).

Remark C.8. It is easy to verify that the results of Theorem C.7 remains true if
we substitute the condition U r(0, ω) > 0 in Assumption C.5 by U r(0, ω) ≥ 0 (see
proofs of Theorem 1.9 and 1.13 in [48]).
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